

FOXES TEAM
Reference for Xnumbers.xla

Numeric Calculus
in Excel

 Volume

1x

R E F E R E N C E F O R X N U M B E R S . X L A

Numeric Calculus
 in EXCEL

 2005, by Foxes Team
ITALY

Sept 2005

Xnumbers Tutorial

2

Index
About this Tutorial ... 8
Array functions .. 9

What is an array-function? ... 9
How to insert an array function... 9

How to get the help on line ... 13
Xnumbers installation ... 15

How to uninstall .. 16
Multiprecision Floating Point Arithmetic... 17

Why using extended precision numbers? .. 17
Multiprecision methods... 19
How to store long number .. 19

Functions.. 21
General Description.. 21
Using Xnumbers functions ... 21
Using extended numbers in Excel.. 22
Functions Handbook .. 23
Precision... 24
Formatting Result ... 24
Arithmetic Functions... 25

Addition... 25
Subtraction.. 25
Accuracy lack by subtraction .. 25
Multiplication ... 26
Division ... 26
Inverse.. 26
Integer Division ... 27
Integer Remainder .. 27
Sum .. 29
Product ... 29
Raise to power.. 30
Square Root.. 30
Nth- Root ... 30
Absolute.. 31
Change sign.. 31
Integer part ... 31
Decimal part.. 31
Truncating... 32
Rounding .. 32
Relative Rounding .. 33

Extended Numbers manipulation ... 34
Digits count ... 34
Significant Digits count.. 34
Compare numbers .. 34
Extended Numbe Check ... 35
Format Extended Number... 35
Check digits .. 36
SortRange... 36
Digits sum... 36
Vector Inversion.. 37
Scientific Format ... 37
Split scientific format ... 37
Convert Extended Number ... 38
Macros X-Edit ... 39

Statistical Functions ... 41
Factorial .. 41
Factorial with double-step ... 41

Xnumbers Tutorial

3

Combinations.. 41
Permutations... 42
Arithmetic Mean.. 42
Geometric Mean ... 42
Quadratic Mean .. 43
Standard Deviation ... 43
Variance.. 43
Linear Regression Coefficients ... 44
Linear Regression Formulas... 47
Linear Regression Covariance Matrix... 48
Linear Regression Statistics ... 49
Linear Regression Evaluation ... 50
Summary of Linear Regressions... 51
Sub-Tabulation ... 52
Data Conditioning ... 52
Data Conditioned Linear Regression Coefficients .. 53
Linear Regression with Robust Method .. 55
Linear Regression Min-Max .. 56
Certification Results for Linear Regression... 58

Transcendental Functions .. 61
Logarithm natural (Napier’s) ... 61
Logarithm for any base ... 61
Exponential ... 61
Exponential for any base .. 61
Constant “e” ... 62
Constant Ln(2) .. 62
Constant Ln(10) .. 62
Hyperbolic Sine... 62
Hyperbolic ArSine ... 62
Hyperbolic Cosine... 63
Hyperbolic ArCosine ... 63
Hyperbolic Tangent... 63
Hyperbolic ArTangent ... 63
Euler’s constant gamma ... 64

Trigonometric Functions... 65
Sin .. 65
Cos ... 65
Computation effect of cos(π/2).. 65
Tan ... 66
Arcsine.. 66
Arccosine .. 66
Arctan ... 66
Constant π .. 66
Complement of right angle.. 67

Polynomial Rootfinder .. 68
Input parameters... 69
Printing Results... 70
How to use rootfinder macros ... 71
Root Error Estimation ... 72
Integer roots.. 74
Central Polynomial.. 77
Coefficients Transformation .. 78
Circle of the Roots .. 79

Polynomial Functions ... 80
Polynomial evaluation... 80
Polynomial derivatives .. 82
Polynomial coefficients ... 83
Polynomial writing... 84
Polynomial addition... 84
Polynomial multiplication... 84
Polynomial subtraction.. 85
Polynomial division quotient.. 85
Polynomial division remainder .. 85
Hermite’s and Cebychev’s polynomials .. 86
Legendre’s Polynomials.. 86
Polynomial shift... 89
Polynomial center ... 89
Polynomial roots radius... 90
Polynomial building from roots.. 91

Xnumbers Tutorial

4

Polynomial building with multi-precision.. 93
Polynomial solving .. 94
Integer polynomial .. 94
Polynomial interpolation.. 95
Sub-tabulation... 95
Polynomial System of 2nd degree.. 97
Bivariate Polynomial ... 98
Partial fraction decomposition... 99
Orthogonal Polynomials.. 102
Orthogonal Polynomials evaluation .. 103
Weight of Orhogonal Polynomials... 106
Zeros of Orthogonal Polynomials.. 106
Coefficients of Orthogonal Polynomials .. 107

Complex Arithmetic and Functions... 108
How to insert a complex number .. 108
Complex Addition.. 109
Complex Subtraction .. 109
Complex Multiplication .. 109
Complex Division .. 110
Polar Conversion .. 110
Rectangular Conversion ... 110
Complex absolute ... 111
Complex power... 111
Complex Roots ... 111
Complex Log... 112
Complex Exp .. 112
Complex inverse ... 112
Complex negative ... 113
Complex conjugate ... 113
Complex Sin ... 113
Complex Cos .. 113
Complex Tangent ... 113
Complex ArcCos... 113
Complex ArcSin .. 114
Complex ArcTan ... 114
Complex Hyperbolic Sine.. 114
Complex Hyperbolic Cosine.. 114
Complex Hyperbolic Tan... 114
Complex Inverse Hyperbolic Cos.. 114
Complex Inverse Hyperbolic Sin... 114
Complex Inverse Hyperbolic Tan.. 115
Complex digamma.. 115
Complex Exponential Integral ... 115
Complex Error Function .. 115
Complex Complementary Error Function.. 115
Complex Gamma Function ... 116
Complex Logarithm Gamma Function .. 116
Complex Zeta Function... 116
Complex Quadratic Equation .. 117

Number Theory .. 118
Maximum Common Divisor... 118
Minimum Common Multiple .. 118
Rational Fraction approximation ... 119
Check Prime ... 120
Next Prime .. 120
Modular Power.. 120
Perfect Square.. 121
Check odd/even.. 121
Factorize ... 121
Factorize function ... 122
Prime Numbers Generator.. 123
Fermat's Prime Test.. 123
Diophantine Equation ... 125

Linear Algebra Functions ... 126
Matrix Addition .. 126
Matrix Subtraction... 126
Matrix Multiplication .. 126
Matrix Inverse ... 126
Matrix Determinant ... 127

Xnumbers Tutorial

5

Matrix Modulus ... 127
Scalar Product .. 127
Similarity Transformation .. 127
Matrix Power... 128
Matrix LU decomposition .. 128
Matrix LLT decomposition ... 129
Vector Product .. 129
Solve Linear Equation System.. 130
Solve Linear Equation System with Iterative method.. 131
Square Delta Extrapolation ... 132
Multiprecision Matrix operations (macro) .. 134

Integrals & Series ... 136
Discrete Fourier Transform... 136
Discrete Fourier Inverse Transform .. 137
Discrete Fourier Spectrum.. 138
Inverse Discrete Fourier Spectrum ... 139
2D Discrete Fourier Transform ... 139
2D Inverse Discrete Fourier Transform... 140
Macro DFT (Discrete Fourier Transform).. 141
Macro Sampler ... 143
Data Integration (Romberg method) ... 146
Function Integration (Romberg method) ... 147
Function Integration (Double Exponential method)... 148
Function Integration (mixed method) .. 150
Complex Function Integration (Romberg method) .. 152
Data Integration (Newton-Cotes) .. 154
Data integration for random point. .. 156
Function Integration (Newton-Cotes formulas) ... 156
Integration: symbolic and numeric approaches... 158
Integration of oscillating functions (Filon formulas) ... 160
Integration of oscillating functions (Fourier transform) .. 162
Infinite Integration of oscillating functions ... 163
Double Integral ... 166
Double Integration macro.. 166
Double integration function ... 168
Infinite integral .. 170
Series Evaluation.. 173
Series acceleration with ∆^2 ... 174
Complex Series Evaluation... 175
Double Series ... 176
Trigonometric series ... 177
Trigonometric double serie ... 178
Discrete Convolution... 180

Interpolation.. 182
Interpolation with continue fraction ... 182
Interpolation with Cubic Spline.. 184
Cubic Spline 2nd derivatives... 185
Cubic Spline Coefficients .. 186
Multi-variables Interpolation .. 187
2D Interpolation .. 188

Interpolation of Tabulated data function ... 189
Cubic Spline interpolation ... 189
Cubic poly interpolation... 192
Observations... 193
Other test functions... 194
High and low interpolation degree .. 195
Continued fraction interpolation .. 196

Differential Equations ... 198
ODE Runge-Kutta 4.. 198

ODE Multi-Steps... 202
Multi-step coefficents tables.. 203
Predictor- Corrector .. 205
PECE algorithm of 2nd order ... 205
PECE algorithm of 4th order .. 207

Nonlinear Equations ... 209
Bisection ... 209
Secant... 210

Derivatives.. 212

Xnumbers Tutorial

6

First Derivative.. 212
Second Derivative... 213
Gradient .. 213
Jacobian matrix... 214
Hessian matrix .. 214
Non-linear equation solving with derivatives ... 216

Conversions ... 218
Decibel.. 218
Base conversion ... 218
Log Relative Error... 219

Special Functions ... 221
Error Function Erf(x) .. 221
Exponential integral Ei(x) .. 221
Exponential integral En(x)... 221
Euler-Mascheroni Constant γ ... 221
Gamma function Γ(x) .. 222
Log Gamma function .. 223
Gamma quotient ... 223
Gamma F-factor.. 224
Digamma function... 224
Beta function... 224
Combinations function .. 225
Bessel functions... 226
Cosine Integral Ci(x) ... 226
Sine Integral Si(x) ... 227
Fresnel sine Integral ... 227
Fresnel cosine Integral.. 227
Fibonacci numbers ... 227
Hypergeometric function ... 228
Zeta function ζ(s) ... 228

Formulas Evaluation... 230
Multiprecision Expression Evaluation ... 230
Complex Expression Evaluation ... 233
Math expression strings .. 235
List of basic functions and operators .. 237

Function Optimization... 239
Macros for optimization on site ... 239
Example 1 - Rosenbrock's parabolic valley .. 241
Example 2 - Constrained minimization ... 243
Example 3 - Nonlinear Regression with Absolute Sum... 244

References.. 246
Analytical index.. 249

Xnumbers Tutorial

7

WHITE PAGE

Xnumbers Tutorial

8

About this tutorial
About this Tutorial
This document is the reference guide for all functions
and macros contained in the Xnumbers addin. It is a
printable version of the help-on-line, with a larger
collection of examples.

XNUMBERS.XLA is an Excel addin containing useful functions for numeric
calculus in standard and multiprecision floating point arithmetic up to 200
significant digits.

The main purpose of this document is to give a reference guide for numeric calculus
functions of this package, showing how to work with multiprecision arithmetic in Excel.
Much of the material contained in this document comes from the Xnumbers help-on-
line. You may print it in order to have a handle paper manual. This tutorial is written
with the aim of teaching how to use the Xnumbers functions. Of course it speaks about
math and numeric calculus but this is not a math book. You rarely find here theorems
and demonstrations. You can find, on the contrary, many explaining examples.

I thank all those who suggested me to write this tutorial and - indeed - who
encouraged me. I am grateful to all those who will provide constructive criticisms.

Special thanks to everyone that have kindly collaborated.

Leonardo Volpi

Chapter

1

Xnumbers Tutorial

9

Array functions

What is an array-function?
A function that returns multiple values is called "array-function". Xnumbers contains
many of these functions. Those that return a matrix or a vector are array functions.
Matrix operations such as the inversion, the multiplication, the sum, etc. are examples
of array-functions. Also complex numbers are arrays of two cells. On the contrary, in
the real domain, the logarithm, the exponential, the trigonometric functions, etc. are
scalar functions because they return only one value.

In a worksheet, an array-function always returns a (n x m) rectangular
range of cells. To enter it, you must select this range, enter the
function as usually and and give the keys sequence
CTRL+SHIFT+ENTER. Keep down both keys CTRL and SHIFT (do
not care the order) and then press ENTER.

How to insert an array function
The following example explains, step-by-step, how it works

The System Solution
Assume to have to solve a 3x3 linear system. The solution is a vector of 3 values.

Ax = b
Where:

The function SYSLIN returns the
solution x. To see the three values
you must select before the area
where you want to insert these
values.

Now insert the function either from

menu or by the icon

=

431
221
111

A

=

3
2
4

b

Xnumbers Tutorial

10

Select the area of the matrix A "A5:C7" and the constant vector b "E5:E7"

Now - attention! - give the "magic" keys sequence CTRL+SHIFT+ENTER

That is:

• Press and keep down the CTRL and SHIFT keys

• Press the ENTER key

All the values will fill the cells that you have selected.

Xnumbers Tutorial

11

Note that Excel shows the function around two braces { }. These symbols mean that
the function return an array (you cannot insert them by hand).

An array function has several constrains. Any cell of the array cannot be modified or
deleted. To modify or delete an array function you must selected before the entire
array cells.

Adding two matrices
The CTRL+SHIFT+ENTER rule is valid for any function and/or operation returning a
matrix or a vector

Example - Adding two matrices

We can use directly the addition operator "+". We can do this following these steps.

1) Enter the matrices into the spreadsheet.

2) Select the B8:C9 empty cells so that a 2 × 2 range is highlighted.

3) Write a formula that adds the two ranges. Either write =B4:C5+E4:F5 Do not
press <Enter>. At this point the spreadsheet should look something like the figure
below. Note that the entire range B8:C9 is selected.

4) Press and hold down <CTRL> + <SHIFT>

5) Press <ENTER>.

If you have correctly followed the procedure, the spreadsheet should now look
something like this

+

 −
10
01

12
21

Xnumbers Tutorial

12

This trick can also work for matrix subtraction and for the scalar-matrix multiplication,
but not for the matrix-matrix multiplication.

Let's see this example that shows how to calculate the linear combination of two
vectors

Functions returning optional values
Some function, such as for example the definite integral of a real function f(x), can
return one single real value or optional extra data (iterations, error estimation, etc...)

If you do not want to see this additional information simply select one cell and insert
the function with the standard procedure. On the contrary, if you want to see also the
extra information, you must select the extra cells needed and insert it as an array-
function

Xnumbers Tutorial

13

How to get the help on line
Xnumbers provides the help on line that can be recalled in the same way of any other
Excel function. When you have selected the function that you need, press the F1 key
or click on the “guide hyperlink”

There is also another way to get the help-on-line. It is from the Xnumbers Function
Handbook

Select the function that you want and press the Help button

Xnumbers Tutorial

14

You can also recall the help guide from the function wizard window

Of course you can open the help on-line from the Xnumber menu

or directly by double clicking on the Xnumbers.hlp file

Xnumbers Tutorial

15

Xnumbers installation

This addin for Excel 2000/XP is composed by the following files:

Addin file
(It contains the Excel macros
and functions)

Help file
(It contains the help notes)

Handbook file
(It contains the macros and
functiosn description list for the
Xnumbers Handbook)

This installation is entirely contained in the folder that you specify.
Put all these files in a same directory as you like.
Open Excel and follow the usually operations for the addin installation:

 1) Select <addins...> from <tools> menu,
 2) Excel shows the Addins Manager,
 3) Search for the file xnumbers.xla,
 4) Press OK,

NB. Nella versione italiana di
Excel, "Addin Manager" si
chiama "Componenti
aggiuntivi" e si trova nel menu
<Strumenti> < Modelli e
aggiunte...>

Xnumbers Tutorial

16

After the first installation, Xnumbers.xla will be add to the Addin Manager

By this tool, you can load or unload the
addins that you want, simply switching
on/off the check-boxes.

At the starting, the addins checked in
the Addins Manager will be
automatically loaded

If you want to stop the automatic loading
of xnumbers.xla simply deselect the
check box before closing Excel

If all goes right you should see the welcome popup of Xnumbers. This appears only
when you activate the check box of the Addin Manager. When Excel automatically
loads Xnumbers, this popup is hidden.

How to uninstall
If you want to uninstall this package, simply delete its folder. Once you have cancelled
the Xnumbers.xla file, to remove the corresponding entry in the Addin Manager, follow
these steps:

1) Open Excel

2) Select <Addins...> from the <Tools> menu.

3) Once in the Addins Manager, click on the Xnumbers entry

4) Excel will inform you that the addin is missing and ask you if you want to remove
it from the list. Give "yes".

Xnumbers Tutorial

17

Multiprecision Floating Point Arithmetic
Any computer having hardware at 32-bit can perform arithmetic operations with 15
significant digits, at the most. The only way to overcome this finite fixed precision is to
adopt special software that extends the accuracy of the native arithmetic

Why using extended precision numbers?
First of all, for example, to compute the following operation:

 90000000002341 x
 8067 =

 726030000018884847 .

Any student, with a little work, can do it. Excel, as any 32-bit machine, cannot! It
always gives the (approximate) result 726030000018885000 , with a difference of
+153.
But do not ask Excel for the difference. It replies 0!

The second, deeper, example regards numeric analysis.
Suppose we have to find the roots of a 9th order Polynomial.

∑
=

=
n

i

i
i xaxP

0
)(

Where its coefficients ia are listed in the table below.

Coefficients
a9 1
a8 -279
a7 34606
a6 -2504614
a5 116565491
a4 -3617705301
a3 74873877954
a2 -996476661206
a1 7738306354988
a0 -26715751812360

There are excellent algorithms for finding a numerical solution of this problem. We can
use the Newton-Raphson method: starting from x= 32 and operating with 15 significant
digits (the maximum for Excel), we have:

xn P(x) (15 digit) P' (x) (15 digit) -P/P' |xn-x|
32 120 428 0,280373832 1

31,71962617 43,77734375 158,9873047 0,275351191 0,7196262
31,44427498 15,69921875 60,93164063 0,257652979 0,444275

31,186622 4,78125 29,46289063 0,162280411 0,186622
31,02434159 0,65625 24,10644531 0,02722301 0,0243416
30,99711858 -0,07421875 24,01953125 -0,003089933 0,0028814
31,00020851 0,23828125 24,04980469 0,009907825 0,0002085
30,99030069 -0,52734375 23,98925781 -0,021982495 0,0096993
31,01228318 0,2421875 24,02050781 0,01008253 0,0122832
31,00220065 -0,03515625 23,99023438 -0,00146544 0,0022007

As we can see, the iteration approaches the solution x = 31 but the error |xn - x|
remains too high. Why? Multiple roots? No, because P'(x) >> 0. Algorithm failed? Of

Xnumbers Tutorial

18

course not. This method is very well tested. The only explanation is the finite precision
of the computation. In fact, repeating the calculus of P(x) and P'(x) with 25 significant
digits, we find the excellent convergence of this method.

xn P(x) (25 digit) P' (x) (25 digit) -P/P' |xn-x|
32 120 428 0,28037383 1

31,71962617 43,71020049043 158,979858019937 0,27494175 0,719626

31,44468442 15,71277333004 61,059647049872 0,25733482 0,444684

31,1873496 4,83334748037 29,483621556222 0,1639333 0,18735

31,02341629 0,56263326884 24,082301045236 0,02336294 0,023416

31,00005336 0,00128056327 24,000000427051 5,3357E-05 5,34E-05

31 0,00000000053 23,999999999984 2,2083E-11 1,54E-11

31 0,00000000004 23,999999999995 1,6667E-12 6,66E-12

The graph below resumes the effect of computation with 15 and 25 significant digits.

The application field of multi-precision computation is wide. Overall it is very useful
during the testing of numeric algorithms. In the above example, we had not doubt
about the Newton-Raphson method, but what about the new algorithm that you are
studying? This package helps you in this work.

1E-12

1E-10

1E-08

1E-06

0,0001

0,01

1

1 2 3 4 5 6 7 8 9 10

|Xn -X|

15 digits

25 digits

Iteration

Xnumbers Tutorial

19

Multiprecision methods
Several methods exist for simulating variable multi-precision floating point arithmetic.
The basic concept consists of breaking down a long number into two or more sub-
numbers, and repeating cyclic operations with them. The ways in which long numbers
are stored vary from one method to another. The two most popular methods use the
"string" conversion and the "packing"

How to store long number
String Extended Numbers

In this method, long numbers are stored as vectors of characters, each representing a
digit in base 256. Input numbers are converted from decimal to 256 base and vice
versa for output. All internal computations are in 256 base. this requires only 16 bit for
storing and a 32 bit accumulator for computing. Here is an example of how to convert
the number 456789 into string

() ()25610 85 248, ,6456789 ≡

String = chr(6)&chr(248)&chr(85)

This method is very fast, and efficient algorithms for the input-output conversion have
been realized. A good explanation of this method can be found in "NUMERICAL
RECIPES in C - The Art of Scientific Computing", Cambridge University Press, 1992,
pp. 920-928. In this excellent work you can also find efficient routines and functions to
implement an arbitrary-precision arithmetic.
Perhaps the most critical factor of this method is the debug and test activity. It will be
true that the computer does not care about the base representation of numbers, but
programmers usually do it. During debugging, programmers examine lots and lots of
intermediate results, and they must always translate them from base 256 to 10. For
this kind of programs, the debugging and tuning activity usually takes 80 - 90% of the
total develop time.

Packet Extended Numbers

This method avoids converting the base representation of long numbers and stores
them as vectors of integers. This is adopted in all FORTRAN77 routines of "MPFUN:
A MULTIPLE PRECISION FLOATING POINT COMPUTATION PACKAGE" by NASA
Ames Research Center. For further details we remand to the refined work of David H.
Bailey published in "TRANSACTIONS ON MATHEMATICAL SOFTWARE", Vol. 19,
No. 3, SEPTEMBER, 1993, pp. 286-317.
Of course this add-in does not have the performance of the mainframe package (16
million digits) but the method is substantially the same. Long numbers are divided into
packets of 6 or 7 digits.
For example, the number 601105112456789 in packet form of 6 digits becomes the
following integer vector:

456789
105112

601

As we can see, the sub-packet numbers are in decimal base and the original long
number is perfectly recognizable. This a great advantage for the future debugging
operation.
An example of arithmetic operation - the multiplication A x B = C - between two packet
numbers is shown in the following:

Xnumbers Tutorial

20

A B

456789 654321
105112 X

601

The schema below illustrates the algorithm adopted:

carry A B C' C
0 + 456789 x 654321 = 298886635269 => 635269

298886 + 105112 x 654321 = 68777287838 => 287838
68777 + 601 x 654321 = 393315697 => 315697

393 + 0 x 654321 = 393 => 393

The numbers in the accumulator C' are split into two numbers. The last 6 digits are
stored in C, the remaining left digits are copied into the carry register of the next row.
As we can see, the maximum number of digits is reached in accumulator C'. In the
other vectors, the numbers require only six digits at most. The maximum number of
digits for a single packet depends of the hardware accumulator. Normally, for a 32-
system, is 6 digits.. This is equivalent to conversion from a decimal to a 10^6
representation base. This value is not critical at all. Values from 4 to 7 affect the
computation speed of about 30 %. But it does not affect the precision of the results in
any case.

Xnumbers Tutorial

21

Functions

General Description
Xnumbers is an Excel addin (xla) that performs multi-precision floating point arithmetic.
Perhaps the first package providing functions for Excel with precision from 15 up to
200 significant digits. It is compatible with Excel XP and consists of a set of more than
270 functions for arithmetic, complex, trigonometric, logarithmic, exponential and
matrix calculus covering the following main subjects.

The basic arithmetical functions: addition, multiplication, and division were developed
at the first. They form the basic kernel for all other functions.
All functions perform multiprecision floating point computations for up to 200 significant
digits. You can set a precision level separately for each function by an optional
parameter. By default, all functions use the precision of 30 digits, but the numerical
precision can easily be regulated continually from 1 to 200 significant digits. In
advance some useful constants like π, Log(2), Log(10) are provided with up to 400
digits.

Using Xnumbers functions
These functions can be used in an Excel worksheet as any other built-in function. After
the installation, look up in the functions library or click on the icon

Upon "user's" category you will find the functions of this package.
From version 2.0 you can manage functions also by the Function Handbook. It starts
by the Xnumbers menu

All the functions for multi-precision computation begin with "x". The example below
shows two basic functions for the addition and subtraction.

As any other functions they can also be nested to build complex expressions. In the
example below we compute x^4 with 30 digits precision

Xnumbers Tutorial

22

Using extended numbers in Excel

If you try to enter a long number with more than 15 digits in a
worksheet cell, Excel automatically converts it in standard precision
eliminating the extra digits. The only way to preserve the accuracy is
to convert the number in a string. It can be done by prefixing it with
the hyphen symbol ' .
This symbol is invisible in a cell but avoid the conversion.

Example: enter in a cell the number 1234567890123456789.

We have inserted the same
number with the hyphen in B2
and without the hyphen in B3.
Excel treats the first number as a
string and the second as a
numbers
Note also the different alignment

We have inserted a long
numbers with full precision as a
string in B2
If we try to multiply the cell B2 for
another number, example for 2,
Excel converts the string into
number before performing the
multiplication. In this way the
originally accuracy is destroyed

The only way to perform arithmetic operations
preserving the precision is to use the
multiprecision functions of the Xnumbers
library.
In that case we use the function xmult
Note from the alignment that the result is still
a string

You can also insert extended numbers directly in the function. Only remember that, for
preserving Excel to convert them, you must insert extended numbers like string, within
quote "...".

2469135780246913578 =xmult("1234567890123456789" , 2)

Xnumbers Tutorial

23

Functions Handbook
 Xnumbers includes a new application for searching and pasting the Xnumbers
functions, that are cataloged by subject. This feature (born to overcome the poor
standard Excel function wizard) can also submit the Xnumbers macros.
You can activate the Functions Handbook from the menu bar "Help > Function
manager".

Category: you can filter macros by category (Arithmetic, Statistical, Trigonometric,
etc.)
Macro Type: filters by macro Functions, by macro Subroutines, or both
Paste Into: choose the cell you want to paste a function, default is the active cell
Search: searches macros by words or sub-words contained into the name or
description. For example, if you input "div" you list all macros that match words like
(div, divisor, division,...)
You can associate more words in AND/OR. Separate words with comma "," for OR,
with plus "+", for AND. For example, if you type "+div +multi" you will get all the rows
containing words like (div, divisor, division,...) and words like (multi, multiprecision,...).
On the contrary, if you type "div, multi", you get all the rows that contain words like
(div, divisor, division,...) or also the words like (multi, multiprecision,...). Remember to
choose also the Category and Macro Type. Example, if you enter the word
“hyperbolic”, setting the Category “complex”, you find the hyperbolic functions
restricted to the complex category.
Help: recalls the help-on-line for the selected function.
OK: insert the selected function into the worksheet ". This activates the standard Excel
function wizard panel. If the macro selected is a "sub", the OK button activates the
macro.

Xnumbers Tutorial

24

Precision
Most functions of this package have an optional parameter - Digit_Max - setting the
maximum number of significant digits for floating point computation, from 1 to 200
(default is 30). The default can be changed from the menu X-Edit\Defaut Digits

This parameter also determines how the output is automatically formatted. If the result
has fewer integer digits than Digit_Max, then the output is in the plain decimal format (
123.45, -0.0002364, 4000, etc.), otherwise, if the number of integer digits exceeds the
maximum number of digits allowed (significant or not), the output is automatically
converted in exponential format (1.23456789E+94).
The exponent can reach the extreme values of +/- 2,147,483,.647.
The output format is independent of the input format.

In synthesis, the Digit_Max parameter limits:
The significant digits of internal floating point computation
The maximum number output digits, significant or not.
The default of Digit_Max can be changed from the X-Edit menu . This affects any
multiprecision function and macro.

Formatting Result
The user can not format an extended number with standard Excel number format
tools, because, it is a string for Excel. You can only change the alignment. To change
it you can use the usual standard Excel format tools.

It is possible to separate the digits of a x-numbers in groups, by the user function
xFormat() and xUnformat() 1.
It work similar at the built-in function Format(x, "#,##0.00")

2,469,135,780,246,913,578 = xformat("2469135780246913578",3)

.

1 These functions were original developed by Ton Jeursen for the add-in XNUMBER95, the downgrade version of
XNUMBERS for Excel 5. Because they are very useful for examining long string of number, we have imported them in
this package

Xnumbers Tutorial

25

Arithmetic Functions

Addition

xadd(a, b, [Digit_Max])

Performs the addition of two extended numbers: xadd(a, b) = a + b.

Subtraction

xsub(a, b, [Digit_Max])

Performs the subtraction of two extended numbers: xsub(a, b) = a − b.
NB. Do not use the operation xadd(a, -b) if “b” is an extended number. Excel converts
“b” into double, then changes its sign, and finally calls the xadd routine. By this time
the original precision of “b” is lost. If you want to change sign at an extended number
and preserve its precision use the function xneg()

Accuracy lack by subtraction
The subtraction is a critical operation from the point of view of numeric calculus. When
the operands are very near each others, this operation can cause a lack of accuracy.
Of course this can happen for addition when the operands are near and have opposit
signs. Let’s see this example

Assume one performs the following subtraction where the first operand has a precision
of 30 significant digits

 (digits)

800000.008209750361424423316366 30
800000 6

0.008209750361424423316366 25

The subtraction is exact (no approximation has been entered). But the final result have
25 total digits, of wich only 22 are significant. 8 significant digits are lost in this
subtraction. We cannot do anything about this phenomenon, except to increase the
precision of the operands, when possible.

Xnumbers Tutorial

26

Multiplication

xmult(a, b, [Digit_Max])

Performs the multiplication of two extended numbers: xmult(a, b) = a x b.

The product can often lead to long extended numbers. If the result has more integer
digits than the ones set by Digit_Max, then the function automatically converts the
result into exponential format.

Division

xdiv(a, b, [Digit_Max])

Performs the division of two extended numbers: xdiv(a, b) = a / b.
If b = 0 the function returns “?”. The division can return long extended numbers even
when the operands are small. In the example below we see the well-known periodic
division 1 / 7 = 0,142857 ….Excel breaks the results after 15 digits, while the xdiv
shows up to 30 digit

Inverse

xinv(x, [Digit_Max])

It returns the inverse of an extended number

xinv(x) = 1 / x

If x = 0, the function returns “?”.

Xnumbers Tutorial

27

Integer Division

xdivint(a, b, [Digit_Max])

Returns the quotient of the integer division: xdivint(a, b) = INT(a / b),
If b = 0 the function returns “?”.

a = b*q + r , with 0< r < b

xdivint(a, b)= q

Integer Remainder

xdivrem(a, b, [Digit_Max])

Returns the remainder of the integer division:
If b = 0 the function returns “?”.

a = b*q + r , with 0< r < b

xdivrem(a, b)= r

How to test multiprecision functions ?

This test is the most important problem in developing multiprecision arithmetic. This
activity, absorbs almoust the 60% of the totally realization effort.
Apart the first immediate random tests, we can use many known formulas and
algorithms. The general selecting criterions are:

1. Formulas should be iterative
2. Formulas should have many arithmetic elementary operations
3. Final results should be easyly verified
4. Intermediate results should be easily verified
5. Algorithms should be stable
6. Efficency is not important

For example, a good arithmetic test is the Newton algoritm to compute the square root
of a number. The iterative formula:

n

nn

n

n
n x

xx
x

xx
⋅

+⋅
=+=+ 2

21
21

converges to 21/2, starting from x0 = 1.
We have rearranged the formula in order to increase the number of operations
(remember: the efficency is not important). In this way we can test mutliplication,
division and addition.

 x0 = 1
 x1 = 1.5
 x2 = 1.41…
 x3 = 1.41421……

Xnumbers Tutorial

28

Look at a possible Excel arrangement. We have limited the number of the significant
digits to 100 only for the picture dimensions, but there is no difficult to repeat it with the
maximum digits.

For each iterate only the blu digits are exacts. We see the progressive convergence.
By the way, we note that this algorithm is also very efficent. The rate of convergence is
quadratic. The number of digits approximately doubles at each iteration (In fact this is
just the algorithm used by the xsqr multiprecision function)
But, as said, for testing, the efficiency has no influence. It is important only that the
algorithm involves the most multiprecision functions as possible.

Another algorithm quite suitable for testing multiprecision accuracy is the π
approximatation by continuous fraction2.

Initialize

X = 31/2, Y = 1/2, T = 6

Iteration

X = (2 + X)1/2

Y = Y/X

T = 2T

P = Y*T*(5Y6/112 + 3Y4/40 + Y2/6 + 1)

Accuracy: approximately 12 decimal digits every 5 iterations)

Below, step by step, a possible Excel arrangement:

The Digit_Max parameter is in the A1 cell. By this parameter we can modulate the
arithmetic accuracy. We have set 30 digits only for the picture dimensions. But you
can try with 60, 100 or more.

2 This version, studied by David Sloan, using many arithmetic operations, permitted us to detect a very
much hidden bug of Xnumbers

Xnumbers Tutorial

29

Note that, in order to have a more compact form, we have used the xeval function for
calculating the X and P formulas that are inserted into the cells B3 and E3 rispectively.
Selecting the last row (range A6:F6) and dragging it down, we get the following
iteration table

The convergence to pi greek is evident.

Sum

xsum(v, [Digit_Max])

This is the extended version of the Excel built-in function SUM. It returns the sum of a
vector of numbers. The argument is a standard range of cells.

ni i vvvv ... 21 ++=∑

Note that you can not use the standard function SUM, because it recognizes extended
numbers as strings and it excludes them from the calculus.

Product

xprod(v, [Digit_Max])

Returns the product of a vector of numbers.

Xnumbers Tutorial

30

nii vvvv ... 21 ⋅⋅=∏

Note that the result is an extended number even if all the factors are in standard
precision

Raise to power

xpow(x, n, [Digit_Max])

Returns the integer power od an extended number. xpow(x, n) = x n

xpow("0.39155749636098981077147016011",90) = 1.9904508921478176508981155284E-7

xpow(5,81,60) = 5 81 = 413590306276513837435704346034981426782906055450439453125

Square Root

xsqr(x, [Digit_Max])

Returns the square root of an extended number xsqr(x) = x
The example below shows how to compute the 2 with 30 and 60 significant digits:

xsqr(2) = 1.41421356237309504880168872420969807

xsqr(2, 60) = 1.41421356237309504880168872420969807856967187537694807317667973799

Nth- Root

xroot(x, n, [Digit_Max])

Returns the nth root of an extended number xroot(x, n)= n x
The root's index must be a positive integer.
The example below shows how to compute the 9 100 with 30 and 60 significant digits:

xroot(100,9) = 1.66810053720005875359979114908

xroot(100,9,60) = 1.66810053720005875359979114908865584747919268415239470704499

Xnumbers Tutorial

31

Absolute

xabs(x)

Returns the absolute value of an extended number xabs(x)= |x|
Do not use the built-in function "abs", as Excel converts x in double, then takes the
absolute value. By that time the original precision of x is lost.

Change sign

xneg(x)

Returns the opposite of an extended number: xneg(x) = −x
Do not use the operator “−“ (minus) for extended numbers. Otherwise Excel converts
the extended numbers into double and, afterwords, changes its sign. By taht time the
original precision is lost. In the following example the cell B8 contains an extended
number with18 digits. If you use the “−“ as in the cell B9, you lose the last 3 digits. The
function xneg(), as we can see in the cell B10, preserves the original precision.

Integer part

xint(x)

Returns the integer part of an extended number, thus the greatest integer less than or
equal to x.
Examples:

xint(2.99) = 2
xint(2.14) = 2
xint(-2.14) = −3
xint(-2.99) = −3
xint(12345675.00000001) = 12345675
xint(−12345675.00000001) = −12345676

Decimal part

xdec(x)

Returns the decimal part of an extended number

Examples:

Xnumbers Tutorial

32

xdec(2.99) = 0.99
xdec(-2.14) = - 0.14

Truncating

xtrunc(x)

Eliminates the decimal part of an extended number.
Examples:

xtrunc(2.99) = 2
xtrunc(2.14) = 2
xtrunc(-2.14) = -2
xtrunc(-2.99) = -2
xtrunc(12345675.00000001) = 12345675
xtrunc(-12345675.00000001) = -12345675

If x >0 this function returns the same value of xInt()

Rounding

=xround(x, [dec])

Rounds an extended number, the parameter "dec" sets the decimal number of is to
keep (default 0). It works like standard round function. “dec” can be negative, in that
case x is rounded to the integer number, starting to count back from decimal point.
See the following examples.

number to round dec number rounded
6.2831853071795864769 0 6
6.2831853071795864769 1 6.3

6.2831853071795864769 2 6.28

6.2831853071795864769 3 6.283
6.2831853071795864769 4 6.2832

100352934.23345 0 100352934

100352934.23345 -1 100352930
100352934.23345 -2 100352900

When the number is in exponential format, it is internally converted into decimal before
the rounding.

number to round Decimal format Dec number rounded
1.238521E-17 0.00000000000000001238521 16 0

1.238521E-17 0.00000000000000001238521 17 1.E-17
1.238521E-17 0.00000000000000001238521 18 1.2E-17

1.238521E-17 0.00000000000000001238521 19 1.24E-17

Xnumbers Tutorial

33

Relative Rounding

=xroundr(x, [dgt])

Returns the relative round of a number. The optional parameter Dec sets the
significant digits to keep. (default = 15)
This function always rounds the decimal place no matter what the exponent is

number to round dgt number rounded
1.23423311238765E+44 15 1.23423311238765E+44

1.23423311238765E+44 14 1.2342331123876E+44
1.23423311238765E+44 13 1.234233112388E+44

1.23423311238765E+44 12 1.23423311239E+44

1.23423311238765E+44 11 1.2342331124E+44
1.23423311238765E+44 10 1.234233112E+44

Xnumbers Tutorial

34

Extended Numbers manipulation

Digits count

xdgt(x)

Returns the number of digits, significant or not, of an extended number.
It is useful for counting the digits of long numbers

xdgt(4.47213595499957939281834733746) = 30
xdgt(3.99999999999999999999999990000) = 30
xdgt(100000) = 6
xdgt(5856.51311933374) = 15
xdgt(1.2345678E-12) = 8

Significant Digits count

xdgts(x)

Returns the number of significant digits of a number, assuming that trailing zeros are
not significant

xdgts("1240100000") = 5

Compare numbers

xcomp(a [b])

Compares two extended numbers. It returns the value y defined by:

<⇒−
=⇒
>⇒

=
ba
ba
ba

y
1
0
1

The number b is optional (default b=0)
If the second argument is omitted, the function returns the sign(a)

xcomp(300, 299)= 1
xcomp(298, 299)= -1
xcomp(300, 300)= 0

if b is missing, then b = 0 for default and we get the sign(a)
xcomp(3.58E-12)= 1
xcomp(0)= 0
xcomp(-0.0023)= -1

Xnumbers Tutorial

35

Extended Numbe Check

isXnumbers(x)

Returns TRUE if x is a true extended number.
That is, x cannot be converted into double precision without lost of significant digits. It
happens if a number has more than 15 significant digits.

isXnubers(1641915798169656809371) = TRUE
isXnubers(1200000000000000000000) = FALSE

Format Extended Number

=xFormat(str, [Digit_Sep])

=xUnformat(str)

This function3 separates an extended number in groups of digits by the separation
character of you local system (e.g. a comma "," for USA, a dot "." for Italy). Parameter
"str" is the string number to format, Digit_Sep sets the group of digits (0 means no
format)
The second function removes any separator character from the string

Example (on Italian standard):

x = 1230000012,00002345678
xFormat(x,3) = 1.230.000.012,000.023.456.79
xFormat(x,6) = 1230.000012,000023.45679

Example (on USA standard):

xFormat(x,3)= 1,230,000,012.000,023,456,78
xFormat(x,6)= 1230,000012.000023,45678

3 These functions were original developed by Ton Jeursen for his add-in XNUMBER95, the downgrade
version of XNUMBERS for Excel 5.
Because it works well and it is very useful for examining long string of number, I have imported it in this
package.

Xnumbers Tutorial

36

Check digits

 DigitsAllDiff(number)

This function4 return TRUE if a number has all digits different.

DigitsAllDiff(12345) = TRUE

DigitsAllDiff(123452) = FALSE

Argument can be also a string. Example
DigitsAllDiff(12345ABCDEFGHIM) = TRUE

DigitsAllDiff(ABCDA) = FALSE

SortRange

=SortRange (ArrayToSort, [IndexCol], [Order], [CaseSensitive])

This function returns an array sorted along a specified column
ArrayToSort: is the (N x M) array to sort
IndexCol: is the index column for sorting (1 default)
Order: can be "A" ascending (default) or "D" descending
CaseSensitive: True (default) or False. It is useful for alphanumeric string sorting

Example: The left table contains same points of a function f(x,y). The right table is
ordered from low to high function values (the 3-th column)

Digits sum

sumDigits(number)

This useful5 function returns the digits sum of an integer number (extended or not)

sumDigits(1234569888674326778876543) = 137

4 This function appears by the courtesy of Richard Huxtable
5 This function appears by the courtesy of Richard Huxtable

Xnumbers Tutorial

37

Vector Inversion

Flip(v)

This function returns a vector in inverse order [a1, a2, a3, a4] ⇒ [a4, a3, a2, a1]

Scientific Format

xcvexp(mantissa, [exponent])

This function converts a number into scientific format. Useful for extended numbers
that, being string, Excel cannot format.

xcvexp(-6.364758987642234, 934) = -6.364758987642234E+934

xcvexp(1.2334567890122786,) = 1.2334567890122786E-807

This function is useful also to convert any xnumbers into scientific notation, simply
setting exponent = 0 (default)

xcvexp(12342330100876523, 0) = 1.2342330100876523E+16

xcvexp(0.000023494756398348) = 2.3494756398348E-5

Split scientific format

xsplit(x)

This function returns an array containing the mantissa and exponent of a scientific
notation.

If you press Enter this function returns only the mantissa. If you select two cells and
give the CTRL+SHIFT+ENTER sequence, you get both mantissa and exponent

xsplit(2.3494756398348E-5) = { 2.3494756398348 , -5 }

xsplit(-1.233456E-807) = { -1.2334567890122786 , -807 }

Xnumbers Tutorial

38

Note that, in the last case, you cannot convert directly into double (for example, using
the VALUE function), even if the number of digits is less than 15. The exponent is too
large for the standard double precision.

Convert Extended Number

=xcdbl(str)

This function converts an extended number into standard double precision
It can be nested with other functions and/or array-functions.
Usually the extended numbers are too long for a compact visualization. So, after, the
multiprecision computation, we would like to convert the result in a compact standard
precision.
For example, if you invert the matrix

1 1 2
4 5 3
-2 1 5

using the multiprecision xMatInv function, you will get a matrix like the following

0.9166666666666666666666666 -0.1249999999999999999999999 -0.2916666666666666666666666
-1.083333333333333333333333 0.375 0.20833333333333333333333333
0.5833333333333333333333333 -0.125 4.16666666666666666666666E-2

If you use the functions xcdbl nested with the multiprecision function, the matrix will be
rounded in standard precision and the result will have a more compact format

Xnumbers Tutorial

39

Macros X-Edit

These simple macros are very useful for manipulating extended numbers in the Excel
worksheet. They perform the following operations:

Format Separates groups of digits
Unformat Removes the separation character
Double Conversion Converts multiprecision numbers into standard double precision
Round Rounding multiprecision numbers
Relative Round Relative rounding multiprecision numbers
Mop-Up Converts small numbers into 0

From this menu you can also change the default Digit_Max parameter
Using these macros is very simple. Select the range where you want to operate and
then start the relative macro. They work only over cells containing only numeric
values, extended or standard. Cells containing function are ignored

Tip. For stripping-out a formula from a cell and leaving its value, you can select the
cell and then click in sequence (copy + paste values)

Here are same little examples:

Format - group 6

31415926.53589793238462643 31,415926.535897,932384,62643

19831415926.53589793238462 ⇒ 19831,415926.535897,932384,62

0.535897932384626433832734 0.535897,932384,626433,832734

Double Conversion

31415926.53589793238462643 31415926.5358979

19831415926.53589793238462 ⇒ 19831415926.5358

0.535897932384626433832734 0.535897932384626

Rounding 3 decimals.

31415926.53589793238462643 31415926.536

19831415926.53589793238462 ⇒ 19831415926.536

0.535897932384626433832734 0.536

Relative rounding - significant digits 15.

4.5399929762484851535591E-5 4.53999297624849E-05

1.0015629762484851535591E-6 ⇒ 1.00156297624849E-06

0.539929762484851535591E-12 5.39929762484852E-13

Xnumbers Tutorial

40

Mop-Up - Error limit 1E-15.

31415926.53589793238462643 31415926.53589793238462643

-1.00E-15 ⇒ 0

5.78E-16 0

-1.40E-18 0

Note that the function mopup is used overall for improving the readability. The cells
having values greater than the limit are not modified.

Xnumbers Tutorial

41

Statistical Functions

Factorial

xfact(n, [Digit_Max])

Returns the factorial of an integer number xfact(n)= n!

This example shows all 99 digits of 69!
xfact(69, 100) = 711224524281413113724683388812728390922705448935203693936480
40923257279754140647424000000000000000

If the parameter Digit_Max is less than 99, the function returns the approximate result
in exponential format:

xfact(69) = 1.71122452428141311372468338881E+98

For large number (n>> 1000) you can use the faster function xGamma(x). The relation
between the factorial and the gama function is:

Γ(n) = (n-1)!

Factorial with double-step

xfact2(n, [Digit_Max])

Returns the factorial with double step.

if n is odd ⇒ xfact2(n) = 1⋅3⋅5⋅7⋅9...n

if n is even ⇒ xfact2(n) = 2⋅4⋅6⋅8⋅ ...n

Note: In many books, this function is indicate improperly as "double factorial", or - even worse - with the
confusing symbol "!!".

Combinations

xComb(n, k, [Digit_Max])

Returns the binomial coefficients, a combination of n, class k. xcomb = C n,k
The example below shows all the 29 digits of the combination of 100 objects grouped
in class of 49 elements:

xComb(100,49) = 98913082887808032681188722800

Xnumbers Tutorial

42

Combinations of N = 100
objects in class of 10, 20,
… 90

Note the typical parabolic
outline of the binomial
coefficients

For large argument (n and k >>1000) use the faster function xcomb_big(n,k) .

Permutations

xPerm(n, [k], [Digit_Max])

Returns the permutation of n, class k. xperm(n,k)= Pn,k.
If k is omitted, the function assume k = n and in this case will be P(n) = n!

Examples:

xPerm(100, 20, 60) = 1303995018204712451095685346159820800000
xPerm(100) = 9.33262154439441526816992388562E+157

Arithmetic Mean

xmean(x, [Digit_Max])

Returns the arithmetic mean of n numbers, extended or not. The argument is a range
of cells.

n

x
n

i
i∑

== 1 m

Geometric Mean

xgmean(x, [Digit_Max])

Returns the geometric mean of n numbers, extended or not.

n
nxxxx ...GM 221=

Xnumbers Tutorial

43

Quadratic Mean

xqmean(x, [Digit_Max])

Returns the quadratic mean of n numbers, extended or not.

n
x∑=

2

QM

Standard Deviation

xstdev(x, [Digit_Max])

Returns the standard deviation of n numbers, extended or not.

()
2

22

n
xxn ∑∑ −

=σ

Variance

xvar(x, [Digit_Max])

Returns the variance of n numbers, extended or not.

()
2

22

n
xxn

v ∑∑ −
=

Xnumbers Tutorial

44

Linear Regression Coefficients

xRegLin_Coeff(Y, X, [DgtMax], [Intcpt])

RegLin_Coeff(Y, X , [Intcpt])

Computes the multivariate linear regression with the least squares method in multi-
precision.
Parameter Y is a vector (n x 1) of dependent variable.
Parameter X is a list of the independent variable. It may be an (n x 1) vector for
monovariable regression or a (n x m) matrix for multivariate regression.
Parameter Intcpt, if present, forces the Y intercept: Y(0)= Intcpt
The function returns the coefficients of linear regression function. For monovariate
regression, it returns two coefficients [a0, a1], the first one is the intercept of Y axis, the
second one is the slope.

For standard precision use the faster RegLin_Coef

Simple Linear Regression
Example. Evaluate the linear regression for the following xy data table

x y
0.1 1991
0.2 1991.001046

0.35 1991.001831
0.4 1991.002092

0.45 1991.002354
0.6 1991.003138
0.7 1991.003661
0.8 1991.004184
0.9 1991.004707

1 1991.00523
1.5 1991.007845
1.8 1991.009414

2 1991.01046
3 1991.01569

The model for this data set is

y = a0 + a1 x

Where [a0 , a1] are the unknown coefficents
that can be evaluate by the xRegLin_Coeff
function

We can also compute the factor r2 in order to
measure the goodness of the regression
This can be done by the xRegLinStat
function

Xnumbers Tutorial

45

Multivariate Regression
This function can also compute a multivariate regression. This is when y depends by
several variables x1, x2, … xn. Look at this example

x1 x2 x3 y
0 0 -4 4000.8

0.1 0 -2 4000.7
0.2 0.5 -1 4001.55
0.3 0.5 0 4001.65
0.4 1 1.5 4002.4
0.5 1 2 4002.59

The model for this data set is

y = a0 + a1 x1+ a2 x2+ a3 x3

Where [a0 , a1 , a2 , a3] are the
unknown coefficients

Xnumbers Tutorial

46

Polynomial Regression
The same algorithm for finding the linear regression can easily be adapted to the
polynomial regression. In the example below we will find the best fitting polynomial of
3rd degree for the given data

x y
10 1120
11 1473
12 1894
13 2389
14 2964
15 3625
16 4378
17 5229
18 6184
19 7249
20 8430

First of all we add at the given table two extra columns containing the power x2, x3
They can easily be computed in an Excel worksheet as shown below.

The polynomial coefficients can be computed by xRegLin_Coeff. The exact result is y
= 10 + x + x2 + x3

We can performe the same calculus with the Excel LINEST (REGR.LIN in italian
version). The other nested functions - flip and MatT – have been used only to
rearrange the LINEST output as vertical vector, in the same order of the
xRegLin_Coeff.

The model for this data set is

y = a0 + a1 x+ a2 x2+ a3 x3

where [a0 , a1 , a2 , a3] are the unknown coefficients

Xnumbers Tutorial

47

Linear Regression Formulas

Generally, the multivariate linear regression function is:

mm xaxaxaay ...22110 +++=

where: []maaaa ... , , 210

The coefficients of regression can be found by the following algorithm
Make the following variables substitution:

1..mifor =−= xxX ii

yyY −=

where the right values are the averages of samples y and x respectively:

∑= k ky
n

y 1 ∑= k kii x
n

x ,
1

After that, the coefficients a= [a1, a2,an] are the solution of the following linear
system

baC =⋅][

where [C] is the cross-covariance matrix
and b is the XY covariance

===

==

=
=

∑
∑∑
∑∑∑
∑∑∑∑

j jm

j jmjj j

j jmjj jjj j

j jmjj jjj jjj j

X
XXX
XXXXX
XXXXXXX

2
,

,,3
2
,3

,,2,3,2
2
,2

,,1,3,1,2,1
2
,1

..

..

..

C

=

∑

∑
∑
∑

j jmj

j jj

j jj

j jj

XY

XY
XY
XY

,

,3

,2

,1

....
b

and the constant coefficient is given by:

∑
=

−=
m

i
ii XaYa

1
0

For m=1 we obtain the popular formulas of monovariate linear regression

∑
∑

=
j j

j jj

X
XY

a 21

XaYa 10 −=

This is the linear solution known as the Ordinary Least Squares (OLS). The analysis of
this kind of approach shows that, for large dimensions of n (many measurement
values) the matrix C can become nearly singular

Xnumbers Tutorial

48

Linear Regression Covariance Matrix

xRegLin_Covar(Y, X , [DgtMax], [Intcpt])

RegLin_Covar(Y, X , [Intcpt])

Returns the (m+1 x m+1) covariance matrix of a linear regression of m independent
variables

mm xaxaxaay +++= ...ˆ 22110
For a given set of n points) , (21 imiiii yxxxP =

Parameter Y is an (n x 1) vector of dependent variable. Parameter X is a matrix of
independent variables. It may be an (n x 1) vector for monovariable regression or an (n
x m) matrix for multivariate regression.
Parameter Coeff is a vector of m+1 coefficents of the linear regression
For standard precision use the faster RegLin_Covar

Cross Covariance Matrix

Given the matrix X of the independent variables points

=

mnn

m

m

xx

xx
xx

X

...1
............

...1

...1

1

212

111

The covariance matrix C is

() 12 −
⋅⋅= TXXsC

where:

()
1
ˆ 2

2

−−

−
= ∑

mn
yy

s i ii

Note that the square roots of the diagonal elements of the covariance matrix

iii cs =

are the standard deviations of the linear regression coefficients

Xnumbers Tutorial

49

Linear Regression Statistics

xRegLinStat(Y, X, Coeff, [DgtMax], [Intcpt])

RegLinStat(Y, X, Coeff, [Intcpt])

Returns some statistics about the linear regression

R2 Square of the linear correlation factor

S y,x Standard deviation of the linear regression

Parameter Y is a vector (n x 1) of dependent variable.
Parameter X is a list of independent variable. It may be an (n x 1) vector for
monovariable regression or a (n x m) matrix for multivariate regression.
Coeff is the coefficients vector of the linear regression function [a0, a1, a2...am].
For standard precision use the faster RegLin_Covar

Formulas

The regression factor (better: the square of regression factor) R2 lie between 0 and 1
and roughly indicates how closely the regression function fits the given values Y.
Generally, it can be computed by the following formula:

2

2
*

2

2*
2 1

)(
)(

1
y

yy

i i

i ii

yy
yy

R
σ

σ
−−=

−
−

−=
∑
∑

Where *y is the value estimated by the regression function and y is the mean of y
values.

mm xaxaxaay ...* 22110 +++=

∑=
k ky

n
y 1

For monovariate regression (m=1), the above formula returns the popular formula:

()

()
∑ ∑

∑ ∑

−

−
=

n
yy

n
xx

R 2
2

2
2

2

Standard error of the linear regression is:

Intercept calculated Intercept constrained to 0

()
1

2*

, −−

−
= ∑

gln
yy

s i ii
xy

()
gln

yy
s i ii

xy −

−
= ∑ 2*

,

Where gl = number of independent variables

Xnumbers Tutorial

50

Linear Regression Evaluation

= xRegLin_Eval(Coeff, X)

= RegLin_Eval(Coeff, X, [DgtMax])

Evaluates the multivariate linear regression in multi precision arithmetic.
Parameter Coeff is the coefficients vector [a0. a1, a2,] of the linear regression
Parameter X is the vector of independent variables. It is one value for a simple
regression
For standard precision use the faster RegLin_Eval function

The functions return the linear combination.

nn xaxaxaay ...22110 +++=

Example: Plot the linear regression for the following data set

x y
-1 0.58

-0.8 0.65
-0.6 0.88
-0.4 1.25
-0.2 1.32

0 1.14
0.2 1.31
0.4 1.51
0.6 1.54
0.8 1.48

1 1.98

In this sheet , each value of linear regression *y is computed by the RegLin_Eval
function. The coefficients are computed by the RegLin_Coeff
Selecting the three columns and plotting the data we get the following graphs

0

0.4

0.8

1.2

1.6

2

2.4

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

y
y*

Xnumbers Tutorial

51

Summary of Linear Regressions

Let's perform the linear regression of the following data set having 9 observations, 2
independent variables and 1 dependent variable

x1 x2 y
-4 0 -4
-3 0 -2.1
-2 1 -1
-1 1 1
0 2 2
1 2 4.1
2 3 5
3 3 7
4 4 8

The standard error of each coefficient a0, a1, a2 can be derived by the corresponding
diagonal element of the covariance matrix

iii cs =

coefficients value err. std.
a0 = 4 0.129443252

a1 = 2.006666667 0.036717137

a2 = -1 0.072111026

First of all we have to compute the coefficients of
the linear regression [a0, a1, a2] by the
RegLin_Coeff

Then, with this coefficients, we can compute the
regression factor R2 and the standard error by the
RegLinStat.

We can also compute the covariance matrix, by
the RegLin_Covar, and the standard error of each
coefficient

Xnumbers Tutorial

52

Sub-Tabulation
One important application of linear regression is the sub-tabulation, which is the
method to extract a table of values with smaller step from an original table with bigger
steps. In other words, we can obtain a fine tabulation from a table with a few values of
a function. Let’s see this example.
Example: Extract from the following dataset, a table having 10 values with step 0.1

x y
0 5.1

0.2 4.7
0.5 4.5
0.6 4.3
0.7 4.2

1 3.6

3.00

3.50

4.00

4.50

5.00

5.50

0 0.2 0.4 0.6 0.8 1

The graph shows the extra points added by the sub tabulation. Note that this method
is different from the interpolation because the regression line does not pass through
any of the original points. The new values of the table B are different from the ones
table A even in the same x-values.
This feature came in handy when we want to regularize the row data.

Data Conditioning
The conditioning of the data consists of subtracting the mean from the values of the
sample. It can improve the accuracy of the linear regression, but the regression
coefficients obtained - conditioned coefficients - are different from the regression
coefficients of the row data. They can be re-obtained by the following method:

Given X and Y two data vectors, the linear regression polynomial of n degree well be:

∑
=

⋅=
n

i

i
i xaxp

0
)(

We made the data conditioning, making the average of X and Y

First of all we find the linear regression coefficients

[a0 , a1]

Than we re-calculate the values

y i = a0 + a1 x i , i = 1…10

Xnumbers Tutorial

53

 1 1 ∑∑ == ii y
n

yx
n

x

Substituting the old variables with the new variable u and v

yyvxxu iiii −=−=

Than, the new linear regression polynomial well be:

∑
=

⋅=
n

i

i
i ubup

0
)(

The original ai coefficients can be obtained from the new bi coefficients by the following
formulas.

i
i

n

i

i xbya ⋅⋅−+= ∑
=0

0)1(

ki
i

n

ki

ki
k xb

k
i

a −

=

+ ⋅⋅

−= ∑)1(

This method is often very useful for accuracy increasing

Data Conditioned Linear Regression Coefficients

= RLCondCoef(Coef, Ym, Xm)

This function transforms the coefficients of the conditioned linear regression to the
original coefficients

Regression coefficients
 with conditioned data Regression coefficients

 with original data

[b0, b1, b2,...] ⇒ [a0, a1, a2,...]

The parameter Coef is the vector of the regression coefficients with data conditioned.
Parameter Ym is the mean of Y-values
Parameter Xm is the mean of X-values. It can be a vector for multivariate regression

Example: Compute the linear regression for the following dataset, where x1 , x2 are the
independent variables and y is the dependent variable

x1 x2 y

200 8000000 8000210
201 8120601 8120812
202 8242408 8242620
203 8365427 8365640
204 8489664 8489878
205 8615125 8615340
206 8741816 8742032

The model for this data set is

y = a0 + a1 x1+ a2 x2

Where [a0 , a1 , a2] are the unknown
coefficients
We use the Excel function LINEST

Xnumbers Tutorial

54

We have also added the exact values a0 = 10, a1= 1, a2 = 1. In order to measure the
accuracy we have computed the LRE (Log relative error) with the mjLRE function.
We wonder if it would be possible to increase the accuracy without using the
multiprecision arithmetic (slow) or changing the computer (expensive)? Yes, this is
possible using the data conditioning method. Let’s see how.

For each column of the original data set (raw data table) we compute the average. We
can use the Excel function AVERAGE, for standard numbers, or xmean, for extended
numbers. Than, we build a new table (conditioned data table) where each column-
element is the difference between the raw column-element and the corresponding
mean.

For definition, the conditioned data columns have mean 0.
Now compute the linear regression of the conditioned data, using the LINEST function

Now, surprisingly, the accuracy is excellent! The only fact is that the new coefficients
are not exactly the coefficient of the given data. We can obtain the original coefficients
by the formulas of the previous topic, or, more easily, by the RLCondCoef function.
Note. We have used the flip(MatT(I2:K2) to reorder the coefficients vector as needed
from the RLCondCoef

Tip: the data conditioning method works also for polynomial regressions

Xnumbers Tutorial

55

Linear Regression with Robust Method

RegLinRM(x, y, [Method])

This function6 performs the linear regression with three different robust methods:

 - SM: simple median

 - RM: repeated median

 - LMS: least median squared

Robust methods are suitable for data containing wrong points. When data samples
have noise (experimental data), the basic problem is that classic LMS (least minimum
squared) is highly affected by noisy points. The main goal of robust methods is to
minimize as much as possible the influence of the wrong points when fitting the
function

The parameter x and y are two vectors of the points to fit.
The optional parameter "Method" sets the method you want to use (default = SM)
The functions returns an array of two coefficients [a1, a0] where

01 axay +⋅≅

Use CTRL+SHIFT+ENTER to paste it.

Example: Suppose you have sampled 5 experimental values (xi, yi), with a
(suspected) large error in the last value 6.5.

x y
1 1.1
2 2
3 3.1
4 3.8
5 6.5

In the graph are shown the
regression lines obtained
with all robust methods in
comparison with the
standard OLS regression.
As we can see all the lines SM, RM, LMS (Robust Methods) minimize the influence of
the value (5, 6.5)

6 The routines for robust linear regression were developed by Alfredo Álvarez Valdivia. They appear in
this collection thanks to its courtesy

Linear Regression

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6

Ordenadas
SM
RM
LMS
MM.CC.Standard

Xnumbers Tutorial

56

Linear Regression Min-Max

RegLinMM(x, y)

This function performs the linear regression with the Min-Max criterion (also called
Chebychev approximation) of a discrete dataset (x, y)

The parameter "x" is a (n x 1) vector of the independent variable,
The parameter "y" is a (n x 1) vector of the dependent variable

The function returns the coefficients [a0, a1] of the max-min linear regression

xaay 10
~ +=

As known, those coefficients minimize the max absolute error for the given dataset

|)(~|max ii yxyE −=

Example. Find the better fitting line that minimize the absolute error

The liner regression is y ≅ 0.428 + 1.142 x
with an error max Emax ≅ ±0.7

The scatter plot shows the lineare regression approximation

Xnumbers Tutorial

57

As we can see, all the points lie in the plane strips of ±Emax around the min-max line
(pink line). (Emax ≅ 0.7 in this example)

Xnumbers Tutorial

58

Certification Results for Linear Regression

XNUMBERS addin is not a specific statistical package. But it contains a few useful
functions for linear regression and univariate summary statistic showing interesting
performance. Here, we report the NIST StRD7 test for Linear Regression Coefficients
for the the following functions:

RegLin_Coeff() XNUMBERS function with standard double precision

xRegLin_Coeff() XNUMBERS function with multiprecision

LINEST EXCEL built-in function

Let's apply each of the above function to the NIST/ITL Longley test, a multivariate
regression with 6 predictor variables and 16 data.

NIST/ITL StRD
Dataset Name: Longley (Longley.dat)
Data: 1 Response Variable (y)
 6 Predictor Variable (x)
 16 Observations
 Higher Level of Difficulty
 Observed Data

Model: Polynomial Class
 7 Parameters (B0,B1,...,B7)
 y = b0 + b1*x1 + b2*x2 + b3*x3 + b4*x4 + b5*x5 + b6*x6

Test row data are:

 raw data
 y x1 x2 x3 x4 x5 x6

 1 60323 83.0 234289 2356 1590 107608 1947
 2 61122 88.5 259426 2325 1456 108632 1948
 3 60171 88.2 258054 3682 1616 109773 1949
 4 61187 89.5 284599 3351 1650 110929 1950
 5 63221 96.2 328975 2099 3099 112075 1951
 6 63639 98.1 346999 1932 3594 113270 1952
 7 64989 99.0 365385 1870 3547 115094 1953
 8 63761 100.0 363112 3578 3350 116219 1954
 9 66019 101.2 397469 2904 3048 117388 1955
10 67857 104.6 419180 2822 2857 118734 1956
11 68169 108.4 442769 2936 2798 120445 1957
12 66513 110.8 444546 4681 2637 121950 1958
13 68655 112.6 482704 3813 2552 123366 1959
14 69564 114.2 502601 3931 2514 125368 1960
15 69331 115.7 518173 4806 2572 127852 1961
16 70551 116.9 554894 4007 2827 130081 1962

Now let's calculate the linear regression coefficients, and compare the result with their
certified values. In order to show their accuracy, we calculate also the LRE for each
result

The NIST StRD certified coefficients are:

7 The Statistical Engineering and Mathematical and Computational Sciences Divisions of the Information Technology
Laboratory (National Institute of Standards and Technology) has released a number of benchmark datasets for
assessing the numerical accuracy of statistical software. The Statistical Reference Datasets (StRD) were designed
explicitly to assist researchers in benchmarking statistical software packages

Xnumbers Tutorial

59

NIST/ITL StRD

Param. Certified Values
b0 -3482258.63459582
b1 15.0618722713733
b2 -0.0358191792925910
b3 -2.02022980381683
b4 -1.03322686717359
b5 -0.0511041056535807

b6 1829.15146461355

While the calculated results are shown in the following table (the xRegLin_Coeff output
has been converted into double precision).

 LINEST() RegLin_Coeff() xRegLin_Coeff()
Param. Estimate LRE Estimate LRE Rounded Estimate LRE

b0 -3482258.65389031 8.3 -3482258.63459501 12.6 -3482258.63459582 15
b1 15.0618726770786 7.6 15.0618722713460 11.7 15.0618722713733 15
b2 -0.0358191798902255 7.8 -0.0358191792925737 12.3 -0.0358191792925910 15
b3 -2.02022981272773 8.4 -2.02022980381635 12.6 -2.02022980381683 15
b4 -1.03322686974925 8.6 -1.03322686717341 12.8 -1.03322686717359 15
b5 -0.0511041036005626 7.4 -0.0511041056535569 12.3 -0.0511041056535807 15

b6 1829.15147447748 8.3 1829.15146461313 12.6 1829.15146461355 15

Taking the average of LRE, we obtaining the following graph of the general accuracy

LRE

0.0
3.0

6.0
9.0

12.0

15
18

LINEST() RegLin_Coeff() xRegLin_Coeff()

As we can see both functions for linear regression give very accurate result. The
multiprecision version xRegLin is the top but, of course, is also much more slow then
the correspondent version in 32-bit precision.

Linear Regression - General Accuracy

The NIST StRD Statistical Reference Datasets include several linear regression
problem tests in each of three difficulty levels: low, average, and high. These
benchmarks were specifically designed so that reliable algorithms implemented in
double precision would produce acceptable results for all four suites.

Repeating the calculus for each linear regression StRD datasets we obtain the
following table showing the general accuracy performance.

Xnumbers Tutorial

60

Method Accuracy
1) LINEST 9.7
2) RegLin_Coeff() 11.5
3) xRegLin_Coeff() 15

NIST StRD Dataset Properties for Linear Regression

Name
Level of
 difficulty

Model of
 class Param. variables Points

(1)
LRE

(2)
LRE

(3)
LRE

Norris low Linear 2 1 36 13.5 14.7 15

Pontius low Quadratic 3 1 40 12.5 14.3 15

NoInt1 medium Linear 1 1 11 15 15 15

NoInt2 medium Linear 1 1 3 15 15 15

Filip high Polynomial 11 1 82 0 0 15

Longley high Multilinear 7 6 16 8 12.3 15

Wampler1 high Polynomial 6 1 21 8.1 11.7 15

Wampler2 high Polynomial 6 1 21 10.3 13.5 15

Wampler3 high Polynomial 6 1 21 8.1 11.5 15

Wampler4 high Polynomial 6 1 21 8.1 10 15

Wampler5 high Polynomial 6 1 21 8.1 8.9 15

This table shows the high accuracy of the regression routine of Xnumbers. Of course
all that has a cost: the multiprecision computation is much slower than the standard
one. The multiprecision should be used only when needed. For example, the Filippelli
test needs the multiprecision computing because, in standard precision, the result is
totally wrong

Xnumbers Tutorial

61

Transcendental Functions

Logarithm natural (Napier’s)

xLn(x, [Digit_Max])

Returns the natural logarithm (or Napier’s) , in base "e"
The argument may be either normal or extended number.
Example:

xLn(30) = 3.4011973816621553754132366916

Logarithm for any base

xLog(x, [base], [Digit_Max])

Returns the logarithm for any base (default 10)

)(log xy base=

The argument may be either normal or extended number.
Example

xlog(30) = 1.47712125471966243729502790325

Exponential

xexp(x, [Digit_Max])

Returns the exponential of x in base "e" xexp(x) = ex
Example

e10 = xexp(10) = 22026.4657948067165169579006452

e1000 = xexp(1000) = 1.97007111401704699388887935224E+434

Note the exponent 434 of the second result. Such kind of numbers can be managed
only with extended precision functions because they are outside the standard limits of
double precision.

Exponential for any base

xexpbase(a, x, [Digit_Max])

Returns the exponential of x any in base xexpbase(a,x) = ax
The arguments “a” and “x” may be either normal or extended numbers, with a > 0.
Example.

Xnumbers Tutorial

62

21.234 = xexpbase(2, 1.234) = 2.3521825005819296401155858555

0.365 − 0.54 = xexpbase(0356, -0.54) = 1.72330382988412269578819213881

Constant “e”

xe([Digit_Max])

Returns Euler's constant "e", the base of the natural logarithm.
The optional parameter Digit_Max, from 1 to 415, sets the number of significant digits
(default 30).

xe() = 2.71828182845904523536028747135

xe(60) = 2.71828182845904523536028747135266249775724709369995957496696

Constant Ln(2)

xLn2([Digit_Max])

Returns the constant Ln(2).
The optional parameter Digit_Max, from 1 to 415, sets the number of significant digits
(default 30).

Constant Ln(10)

xLn10([Digit_Max])

Returns the constant Ln(10).
The optional parameter Digit_Max, from 1 to 415, sets the number of significant digits
(default 30).

Hyperbolic Sine

xsinh(x, [Digit_Max])

Returns the hyperbolic sine of x in multiprecision arithmetic

2
sinh

xx ee −−
=

Hyperbolic ArSine

xasinh(x, [Digit_Max])

Returns the hyperbolic arsine of x in multiprecision arithmetic

Xnumbers Tutorial

63

()1ln)(asinh 2 ++= xxx

Hyperbolic Cosine

xcosh(x, [Digit_Max])

Returns the hyperbolic cosine of x in multiprecision arithmetic

2
)cosh(

xx eex
−+

=

Hyperbolic ArCosine

xacosh(x, [Digit_Max])

Returns the hyperbolic Arcosine of x in multiprecision arithmetic
The argument x, normal or extended, must be x >1

() 1 , 1lnacosh 2 >−+= xxx

Hyperbolic Tangent

xtanh(x, [Digit_Max])

Returns the hyperbolic tangent of x in multiprecision arithmetic

xx

xx

ee
eex −

−

+
−

=)tanh(

Hyperbolic ArTangent

xatanh(x, [Digit_Max])

Returns the hyperbolic artangent of x in multiprecision arithmetic
The argument x, normal or extended, must be |x| < 1

1 ,
1
1ln

2
1)(atanh <

−
+

= x
x
xx

Xnumbers Tutorial

64

Euler’s constant gamma

=xeu([Digits_Max])

Returns the Euler-Mascheroni constant gamma
(The same as Gamma constan returnde by xGm function)

Example

xeu() = 0.57721566490153286060651209008

xeu(60) = 0.57721566490153286060651209008240243104215933593992359880576

Xnumbers Tutorial

65

Trigonometric Functions

Sin

xsin(a, [Digit_Max])

Returns the sine of the angle a xsin(a) = sin(a)
The argument a, in radians, may be either a normal or an extended number.

 xsin(1.5) = 0.997494986604054430941723371141

Cos

xcos(a, [Digit_Max])

Returns the cosine of the angle a xcos(a) = cos(a)
The argument a, in radians, may be either a normal or an extended number.

 xcos(1.5) = 7.07372016677029100881898514342E-2

Computation effect of cos(π/2)
Example: compute cos (89,99999995°) with the standard built-in function COS function
 COS(89.99999995) = COS(1.570796326) = 7.94896654250123E-10

The correct answer, accurate to 15 digits, is 7.94896619231321E-10
As we can see, only 7 digits are corrected. The remaining 8 digits are meaningless.
On the contrary, with the multiprecision function xcos(x) we have the correct result with
all its significant digits.
 xcos(1.570796326) = 7.94896619231321E-10

The table below shows the computation effect when a approaches π /2

angle α α (deg) xcos(α) COS(α) built-in Err %
1.57 89.95437383553930 7.96326710733325E-4 7.96326710733263E-04 7.75E-14
1.570 89.95437383553930 7.96326710733325E-4 7.96326710733263E-04 7.75E-14
1.5707 89.99448088119850 9.63267947476522E-5 9.63267947476672E-05 -1.55E-13
1.57079 89.99963750135470 6.32679489657702E-6 6.32679489666849E-06 -1.45E-11
1.570796 89.99998127603180 3.26794896619225E-7 3.26794896538163E-07 2.48E-10
1.5707963 89.99999846476560 2.67948966192313E-8 2.67948965850537E-08 1.28E-09
1.57079632 89.99999961068120 6.79489661923132E-9 6.79489670660314E-09 -1.29E-08
1.570796326 89.99999995445590 7.94896619231321E-10 7.94896654250123E-10 -4.41E-08
1.5707963267 89.99999999456290 9.48966192313216E-11 9.48965963318629E-11 2.41E-07
1.57079632679 89.99999999971950 4.89661923132169E-12 4.89658888522954E-12 6.20E-06

As we can see, the accuracy of the standard function COS decreases when the angle
approaches the right angle. On the contrary, the xcos function keeps its accuracy.

Xnumbers Tutorial

66

Tan

xtan(a, [Digit_Max])

Returns the tangent of a xtan(a) = tan(a)
The argument a, in radians, may be either a normal or an extended number.

Arcsine

xasin(a, [Digit_Max])

Returns the arcsine of a xasin(a) = arcsin(a)
The arcsine is defined between -π/2 and π/2
The argument a, where 1|| ≤a , may be either a normal or an extended number.

Arccosine

xacos(a, [Digit_Max])

Returns the arccosine of a xacos(a) = arccos(a)
The arccosine is defined between 0 and π
The argument a, where 1|| ≤a , may be either a normal or an extended number.

Arctan

xatan(a, [Digit_Max])

Returns the arctan of a xatan(a) = arctan(a)
The arctan(a) is defined between

2/arctan(a)2/ ππ <<−

Constant π
These functions return the following multiples of π

xpi([Digit_Max]) xpi = π

xpi2([Digit_Max]) xpi2 = π/2

xpi4([Digit_Max]) xpi4 = π/4

x2pi([Digit_Max]) x2pi = 2π

Xnumbers Tutorial

67

The optional parameter Digit_Max, from 1 to 415, sets the number of significant digits
(default 30).

Complement of right angle

xanglecompl(a, [Digit_Max])

Returns the complement of angle a to the right angle

xanglecompl(α) = π/2−α

where 0 ≤ α ≤ π/2 .

Example:

xanglecompl(1.4) = 0.17079632679489661923132169163

For angles not too near the right angle this function is like the ordinary subtraction. The
use of this function is computing the difference without loss of significant digits when
the angle is very close to the right angle. For example, computing in Excel the
following difference:

=(PI()/2 − 1.570796) = 1.57079632679490 −- 1.570796 = 0,00000032679490

we have a loss of 7 significant digits, even though the computation has been made
with 15 significant digits. On the contrary, if we use:

xanglecompl(1,570796 , 15) = 3,26794896619231E-7

we get the full precision with 15 significant digits. The "lost" digits are automatically
replaced

Xnumbers Tutorial

68

Polynomial Rootfinder

The roots of polynomials are of interest to more than just mathematicians. They play a
central role in applied sciences including mechanical and electrical engineering where
they are used in solving a variety of design problems.

All rootfinder routines are largely revised in this version.
Didactical routine like: Lin-Bairstow’s ,Newton-Raphson’s and Halley’s method, are not
still supported. They will migrate in another workbook. They are substitute by more
robust routines based on the following polynomial rootfinder algorithms.

RootFinderJT Jenkins and Traub algorithm (translated in VB from original FORTRAN 77)

RootFinderGN Generalized Newton-Raphson method

RootFinderDK Durand, Kerner algorithm This methods was been developed by Ehrilich
(1967) and Aberth (1973). So is also called with these names.

RootfinderRF Ruffini's method for real integer roots. It uses the Rutishauser' s QD
algorithm for roots bracketing.

All these algorithms are able to find, in a few seconds all roots of a dense polynomial
up to 15th - 20th degree, with real or complex roots, in standard double precision or
multi-precision. It is remarkable that sometimes the results have shown in exact way,
even if the computation is intrinsically approximated. All these algorithms start with
random initial guess. Therefore, if your computation is not converging, don't mind! Re-
try again.

We have to point out that despite the effort dedicated to this problem and the large
class of solution methods, any computer algorithm using finite precision is destined to
fail for polynomials with sufficiently high degree. Pathological polynomials having
tightly clustered roots or very large range are also very difficult to solve. Nevertheless,
for polynomials encountered in practical use the above algorithms can find all the roots
with good global accuracy.

The characteristics of each rootfinder are synthesized in the following table

Macro Roots Coefficients Arithmetic

RootfinderJT Complex Real Standard

RootfinderGN Complex Real Multiprecision

RootfinderDK Complex Complex Multiprecision

RootfinderRF Real, integer Real, integer Multiprecision

Xnumbers Tutorial

69

Input parameters
The input interface has been revised. It is more simple and straight.

Coefficients input: is the array containing the polynomial coefficients – from top to
bottom – with increasing degree. May be also a single cell containing the polynomial
symbolic formula such as:
-120+274x-225x^2+85x^3-15x^4+x^5

RootfinderDK can also accept complex coefficients. In that case the input is an (n x 2)
array. Examples of possible input ranges are (thick black box):

Note
The symbolic notation is more adapt for sparse polynomials.
Real coefficients can be put in horizontal or vertical vector. Complex coefficients, only
in vertical vectors

Results Output: It is the upper left corner of the output area. If blank, the routine
assumes the cell nearest the given coefficients range.

Error: Sets the relative roots accuracy. The algorithm terminates when the relative
difference between two iterations is less then this value.

Iter: The algorithm stops when the iterations counter reaches this value.

Multi-Precision: Enable/disable the multi-precision arithmetic

MP-out: If checked, the results are written in multi-precision, otherwise they are
converted in standard double

Xnumbers Tutorial

70

Printing Results
The rootfinder macros write their results in the following simplified layout
The root list and their estimated relative errors are written in a table starting from the
left upper cell indicated in the input window. In the right-bottom cell is written the total
elaboration time in seconds

Note: we have formatted the table
only for clarity. The macros do not
perform this task. You do it!

Integer Rootfinder output

Integer Rootfinder outputs all integer roots of the polynomial (if any) at the left and the
coefficients of the remainder polynomial (deflated polynomial) at the right

This result means that the given polynomial

8704119046280328151058214720 2345678 −+−−+−+− xxxxxxxx

can be factorized as

)3438234()8)(2)(2(2342 +−+−+−+ xxxxxxx

Xnumbers Tutorial

71

How to use rootfinder macros
Using polynomial rootfinder macros is simpler than before. Simply select the
coefficients polynomial and start the rootfinder that you prefer. All input fields are filled
and the only work that you have to do – in the most cases - is to press "Run".

Now start the RootfinderJT . The input coefficients field is filled with C3:C11 and the
output cell is filled with the cell E3. Press “Run” and wait.

Press “run” and - after a while - the routine ends and the roots will be displayed at the
right, like in the following fugure

Sparse polynomials. We can pass to the rootfinder macros also symbolic polynomial
string, (that it is the faster way for sparse high degree polynomials). Let’s see this
example
Find all roots of the following 16th degree polynomial

x^16-6817x^8+1679616

Write this string in a cell, select it and start a rootfinder macro

Xnumbers Tutorial

72

In this case we have used the Durand-Kerner algorithm obtaining a very high accuracy
(practically the highest accuracy in standard double precision)

Root Error Estimation

The third column produced by the rootfinder macros is an estimation of the relative
root error, defined as:

||
|~|

i

i
i x

xxEr −
=

where x~ is the true unknown root and ix is the approximate root given by the
rootfinder

We have to say that this number should be regarded as an estimation of “goodness”
of the root found; small values (for example 1E-9 , 1E-12) indicate a great precision of
the root. On the contrary, high values (for examples 1E-3 , 1E-5) indicates “difficult”
roots that require an extra investigation.

For example assume to find the root of the following 6th degree polynomial

Xnumbers Tutorial

73

Clustering effect: In this case, the accuracy is enough good, but quite lower than the
previous example. The reason is that the roots:
 – 1, 1.01, 1.02, 1.03, 1.04, 1.05

are very close each other (0.1% of difference)

Complex polynomials. The macro RootfinderKD can solve also complex polynomials
Example: find the roots of the following polynomial with complex coefficients

5432)3(5)515(4)412()(zzizzizizP ++−+−−+++−=

Select both real and imaginary coefficients columns and start the macro RootfinderKD

The roots are z = ±1 , z = ±2 , z = 3 − j

A polynomial of n degree, having as
roots the first integer n numbers,
belongs to the Wilkinson class that,
as known, is hill-conditioned. This
dense polynomial is usually used as
standard reference for polynomial
rootfinder algorithms. We have
tabulated the LRE (log relative error)
obtained with all the rootfinder
macros.
As we can see, for a Wilkinson
polynomial of 20th degree, we have
exact about four significant digits
(0.1% accuracy)

Wilkinson polynomial test

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

0 5 10 15 20 25

LRE

But all polynomials are so hard to solve? Fortunately not. Many polynomials with
higher degree, can be solved with good accuracy

Xnumbers Tutorial

74

For example, if we try to get all real roots of the 16th degree Legendre’s polynomial

6435-875160x^2+19399380x^4-162954792x^6+669278610x^8-1487285800x^10+1825305300x^12-
1163381400x^14+300540195x^16

We have a general accuracy of more than 13 digits

Legendre polyn. Coeff. Real Imm Rel. Err.
6435 -0.989400934991646 0 2.9585E-17

0 -0.944575023073157 0 1.6352E-13
-875160 -0.865631202387904 0 3.673E-14

0 -0.755404408355024 0 1.1559E-14
19399380 -0.617876244402639 0 1.0779E-14

0 -0.458016777657228 0 7.4625E-16
-162954792 -0.281603550779259 0 1.9313E-16

0 -0.095012509837637 0 8.5038E-18
669278610 0.095012509837637 0 8.5038E-18

0 0.281603550779259 0 1.4485E-16
-1487285800 0.458016777657228 0 1.5356E-15

0 0.617876244402640 0 5.0196E-15
1825305300 0.755404408354981 0 2.5615E-14

0 0.865631202387767 0 4.6793E-14
-1163381400 0.944575023073325 0 8.4139E-14

0 0.989400934991655 0 5.5583E-15
300540195

 Time = 0.34375

(remember that the higher degree coefficients are at bottom)
In the last column are the estimation errors given by the rootfinder DK. They are slight
different from the true roots errors, but we have to remember that this column must be
regard as an index of the root approximation: low error values mean a good accuracy,
higher errors could mean poor approximation (but not always!)

Integer roots
In applied science it's rarely to came across polynomials having exact integer roots.
Nevertheless, they are frequent in math, didactical examples and algorithm testing .
Xnumbers has a dedicated special macro for finding the integer real roots of a
polynomial. It uses the Ruffini's method with the QD algorithm for roots isolation.
This method is generally less efficient then JT or DK but it can gain in accuracy.
The roots found with this method have no round-off errors so the deflated polynomial
is exact. Therefore, in that case, the process root-finding-deflating is without errors.

For polynomial having a mix of integer real roots, complex roots and real roots the
method returns the integer roots and the coefficients of the deflated polynomial that
can be solved with the aid of the general purpose macros: DK, GN or JT. Because the
deflated polynomial has a lower degree, the roots accuracy will be generally higher
than if we solve directly the given polynomials.

find real and complex
roots (if exist)

Extract integer roots
(if exist)

original
 P(x)

Deflated
Q(x)

Xnumbers Tutorial

75

Let's see how it works practically

Assume to have the following polynomial

degree coeff
a0 8678880
a1 -13381116
a2 8844928
a3 -3279447
a4 746825
a5 -107049
a6 9437
a7 -468
a8 10

The exact roots are:

integer real complex

5, 6, 7, 8, 9 2.8 5.0 i5.4 ±

If we try to solve this 8th degree polynomial with a general
rootfinder, probably the best accuracy that we can obtain
is about 1e-10, that it is a good result but we can do better
if we extract the integer roots before and then, solving for
the remaining roots

Extract the integer roots and deflated polynomial

The original polynomial is now cracked into the following factors

)574 457 118 10)(8)(7)(6)(5(23 −+−−−−− xxxxxxx

Now let's find the roots of the following 3rd degree polynomial by, for example, the
general JT rootfinder. We obtain:

Re Im Rel. Err.
2.8 0 1.14E-17
4.5 0.5 1.44E-15
4.5 -0.5 1.44E-15

The general accuracy is better than 1e-14 , thousand times than the direct method.
Clearly is a good thing to keep attention to the integer roots (when there are).

1.0E-16

1.0E-14

1.0E-12

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

Rootfinder
RF + DK

Rootfinder
JT

Rootfinder
DK

Rootfinder
NG

Global roots accuracy
versus the solving
methods:

Rootfinder RF + DK
Rootfinder JT
Rootfinder DK
Rootfinder NG

Xnumbers Tutorial

76

The multiprecision should be used when the coefficients exceed 15 digits (remember
that the coefficients must be exact in order to extract the exact integer roots)

Let's see the following 18th degree polynomial having the roots

Coefficients

-612914519230813800000
91181999821816015800
-5186948337826516202

137665995531841931
-1622627967498318

6214402509219
-11208193158

10605849
-5122

1

Polynomial roots

Note that same coefficients have 16 - 18 significant digits and
they must be inserted as x-numbers, (that is as string) in
order to preserve the original precision.
We have also to set the multiprecision check-box in the
macro RootfinderRF

integer real complex

25, 27,29, 31,
1000, 1001, 1002, 1003, 1004 none none

Note that this a so called clustered polynomial because some of its integer roots
(1000, 1001, 1002, 1003, 1004) are very closed each other (difference less then 1%).
This situation is quite difficult for many algorithms and the accuracy is generally quite
poor. On the contrary, the Ruffini's method works very fine in that case.

Xnumbers Tutorial

77

Central Polynomial

We call "central normalized polynomial" a polynomial having the center B of his roots
equal to point (0 , 0).
Given a generic normalized polynomial (an=1)

01
2

2
3

3
1

1 ...)(azazazazazazP n
n

n
n +++++= −

−

For real coefficients, the roots are symmetric to the y-axis, so the BY = 0.
While for BX we have:

n
a

n
x

x ni
c

1−−== ∑

So, the central condition implies:

0 0 1 =⇔= −nc ax

Any generic polynomial can be transformed in "central" by the following translation:

cxsz +=

Example:

 1- 4 2552569616 4234 sszzzzz → +=+−+−

As we can see, transforming a generic polynomial into a center polynomial may
reduce the complexity and the magnitude of coefficients. This is very important to
avoid the overflow during numeric computing and also the convergence of the iterative
rootfinder methods can be greatly improved.
The graph below shows the transformation effect. All the roots are shifted to the origin

j

-j

-1 1

4+j

4-j

3 5

Xnumbers Tutorial

78

Coefficients Transformation
Given a polynomial

01
2

2
3

3
1

1 ...)(azazazazazazP n
n

n
n +++++= −

−

Setting the variable substitution:

cxxz +=
where

n
ax n

c
1−−=

The above translation involves the transformation of all original coefficients. Indicated
the central polynomial as:

01
2

2
2

2 ... bxbxbxbxb n
n

n
n ++++ −

−

Then, the coefficients b can be given by the following formulas:

nk
k

xPb c
k

k ...0
!

)()(

==

We can avoid the computation of the n-th order derivatives and the computation of
factorial by the following the iterative method:

Starting with

)()(0 zPzP =

For k = 0, 1 … n

)(ckk xPb =

dz
dP

k
P k

k 1
1

1 +
=+

Xnumbers Tutorial

79

Circle of the Roots

We define "circle of the roots" the smallest circle that contains all the roots of a
polynomial. The radius of this circle is:

|)(|max
...1 ini

zR
=

=

If the polynomial is "central", a good estimation for R is:

⋅= −=

i
inni

bR
1

...2

* max1.1

That is:

⋅= −−

−− 2
1

2
3
1

3
2

1

2
1

1

1

1

0
* , ,... , , max1.1 nn

nnn bbbbbR

Of course the "true" R is not exactly the R*, but is distributed around R* with a
statistical distribution. If we define the stochastic variable:

*R
Rt =

We can also define p(t) and F(t) respectively the Probability Density and the
Probability cumulative function of statistical distribution of "t".
The graph below shows an example of statistical distribution given from a sample of a
few hundred random polynomials, from 3° to 6° degree.

0

0.2

0.4

0.6

0.8

1

1.2

0.4 0.6 0.8 1 1.2 1.4

density

cumulative

As we can see, for t = 1 the probability is about 50%. Thus, the probability to find all
the roots in a circle with radius equal to R* is about 50%.
The probability becomes more than 99% for a radius of 1.2 R*

This result helps to restrict the searching area of the polynomial roots.

Xnumbers Tutorial

80

Polynomial Functions

Polynomial evaluation

 =POLYN(z, Coefficients, [DgtMax])

Computes the polynomial at the value z.

n
n zazazaazP ...)(2

210 +++=

The parameter Coefficients is the (n+1) column vector containing the polynomial
coefficients from the lowest to the highest order.
This function accept also complex coefficients. In that case the parameter Coefficients
is an (n+1 x 2) array.
The optional parameter DgtMax set the number of the precision digits. If omitted, the
function works in the faster double precision.

This function works also for complex arguments. In that case, z must be a complex
number (two adjacent cells) and the function returns two values. To see both real and
imaginary part, select two cells and give the CTRL+SHIFT+ENTER key sequence. If
you press only ENTER, the function returns only its real part.

Example: compute the following real polynomial

4 2 5 2)(234 ++−+= zzzzzP

for iz 24 −=

Otherwise, if you want to compute a real polynomial for a real argument, e.g. z = 10 -
simply pass a single value

Xnumbers Tutorial

81

Example: compute the following complex polynomial

)54()2(5)1(2)(234 izizzizzP −+−+−−+=

for iz 24 −=

Xnumbers Tutorial

82

Polynomial derivatives

 =DPOLYN(z, Coefficients, Order, [DgtMax])

Computes the polynomial derivative at the value z.

n
n zazazaazP ...)(2

210 +++=

j

j

j dz
zPdzD)()(=

The parameter "Coefficients" is the (n+1) vector containing the polynomial coefficients
from the lowest to the highest order.
This function accept also complex coefficients. In that case the parameter Coefficients
is an (n+1 x 2) array.
The parameter "Order" sets the order of the derivative.
The optional parameter "DgtMax" set the number of the precision digits. If omitted, the
function works in the faster double precision.

This function works also for complex arguments. In that case, z must be a complex
number (two adjacent cells) and the function returns two values. To see both real and
imaginary part, select two cells and give the CTRL+SHIFT+ENTER key sequence. If
you press only ENTER, the function returns only its real part.

Example. Compute the derivatives of the following polynomial

3223)(zzzzP +++=

For z= 3, we have:

Example: calculate the 2nd derivative of the following complex polynomial at the point

iz 24 −=

)54()2(5)1(2)(234 izizzizzP −+−+−−+=

Xnumbers Tutorial

83

With DPOLYN and POLYN it is very easy to implement, for example, the Newton’s
algorithm for finding the polynomial root with high precision

Example: find the real root of the following polynomial with Newton’s algorithm

8000645 367 −+− xxx

The popular iterative Newton’s formula is

)('
)(

1
i

i
ii xp

xpxx +=+

Starting from the point x = 10. Note that we cannot use the handly x = 0 , because the
derivative is zero

The exact digits caught by the algorithm, are shown in blue. Note the impressive
acceleration. Try this example with 60 and more digits if you like.

Polynomial coefficients

 =PolyTerms(Polynomial)

Returns the vector of the polynomial coefficients
The argument is a polynomial string like "1-3x+5x^2 +x^5" in any order.

Example

Xnumbers Tutorial

84

Note the braces { } in the formula. This indicates that the function return a vector. We
must select the range before enter the function with "shift+ctrl+enter".

Polynomial writing

 =PolyWrite(Coefficients, [variable])

It returns the polynomial string from its coefficients.
The first argument may be a (1 x n) vector or an (2 x n) array. In the last case, the first
row indicates the coefficient position and the second row contains the correspondent
coefficient value.
The second optional argument specifies the variable string (default is "x").

Note that the second argument "t" must be insert as string, that is between quotes "..."

Polynomial addition

 =PolyAdd(Poly1, Poly2)

Performs the addition of two polynomials.
The arguments are monovariable polynomial strings.

Example:

PolyAdd("1-3x" , "-2-x+x^2") = "-1-4x+x^2" .

Polynomial multiplication

 =PolyMult(Poly1, Poly2)

Performs the multiplication of two polynomials
The arguments are monovariable polynomial strings.

Xnumbers Tutorial

85

Example:

PolyMult("1-3x" , "-2+5x+x^2") = "-2+11x-14x^2-3x^3" .

()() 322 3141125231 xxxxxx −−+−=++−−

Polynomial subtraction

 =PolySub(Poly1, Poly2)

Returns the difference of two polynomials
The arguments are monovariable polynomial strings.

Example:

PolySub("1-3x" , "-2+5x+x^2") = "3-8x-x^2" .

Polynomial division quotient

 =PolyDiv(Poly1, Poly2)

Returns the quotient of two polynomials
The arguments are monovariable polynomial strings.

Example:

PolyDiv("x^4-1" , "x^2-x-1") = "2+x+x^2" .

In fact:

()() xxxxxx 31211 224 ++++−−=−

Polynomial division remainder

 =PolyRem(Poly1, Poly2)

Returns the remainder of two polynomials
The arguments are monovariable polynomial strings.

Xnumbers Tutorial

86

Hermite’s and Cebychev’s polynomials
By the basic operations we can build any other polynomial.
Example: Calculate the first 9 Cebychev’s and Hermite’s polynomials

Cebysev’s polynomials can be obtained by
the iterative formula

Hermite’s polynomials can be obtained by
the iterative formula

xTT == 10 , 1
11 2 −+ −⋅= nnn TTxT

xHH == 10 , 1
11 22 −+ ⋅−⋅= nnn HnHxH

The two iterative formulas can be arrange as:

=polysub(PolyMult("2x",Tn),Tn-1)

=polysub(PolyMult("2x",Hn),PolyMult(2*n,Hn-1))

These functions are inserted from the cell B4 to B9 and C5 to C9

Legendre’s Polynomials
Legendre’s polynomials can be obtained by the following well known iterative formula

xPPxP
n

nxPx
n

nxP nnn ==⋅
−

−⋅⋅
−

= −− 1021 , 1 ,)(1)(12)(

The first five polynomials are:

() () ()33035
8
1 , 35

2
1 , 13

2
1 , , 1 24

4
3

3
2

210 +−=−=−=== xxPxxPxPxPP

The above formula is very popular, but from the point of view of numeric calculus has
one disadvantage: its coefficients are decimal and this causes round-off errors leading
inaccuracy for higher polynomial degree. It is convenient to rearrange the iterative
formula to avoid fractional coefficients.
Let’s assume that a Legendre’s polynomial can be written as

Xnumbers Tutorial

87

)(1)(xL
k

xP n
n

n =

Where kn is an integer number and Ln(x) is a polynomial having integer coefficients
The Legendre’s polynomial Pn(x) is completely defined by the couple of (kn , Ln(x))

Starting with

1
1

1

0

=
=

k
k

 xL
L

=
=

1

0 1

We can show that the following iterative process, with n ≥ 2 , gives the couples (kn ,
Ln(x))

)()()()(
)1(

)12()(

21

1

2

xLaxLxUxV
nka

xnkxU

nnnnn

nn

nn

−−

−

−

⋅−⋅=
−⋅=

−⋅=

())(,
21

nnn

nnn

VcoefbGCDc
kknb

=
⋅⋅= −−

Where the coeff operator returns the coefficients vector of the polynomial Vn(x), and
the GCD is the greatest common divisor.
Simplifying, we get, finally the couple (kn , Ln(x))

)(1)(xV
c

xL

c
bk

n
n

n

n

n
n

=

=

This iterative algorithm, working only with integer values, is adapted to build
Legendre’s polynomials with high degree.

Let’s see how to arrange a worksheet for finding Legendre’s polynomial

In the first column we insert the degree n, beginning from 0 to 2, for the moment
In the last two columns “k” and “L(x)” we have added the starting values.

The row 6 contains all the functions that the process needs.
In particularly we note:
The function polyterms(D6) gives the coefficients vectors [-1, 0, 3] of V(x) = -1+3x^2
The function xMCD returns the greatest common divisor of [-1, 0, 3, 2] ⇒ 1

(1a)

Xnumbers Tutorial

88

Select the row 6 and drag it down. We generate the Legendre’s polynomial in the form
(1a)

Here is a table of Legendre’s polynomials obtained with the above method

n k L(x)
0 1 1

1 1 x

2 2 -1+3x^2

3 2 -3x+5x^3

4 8 3-30x^2+35x^4

5 8 15x-70x^3+63x^5

6 16 -5+105x^2-315x^4+231x^6

7 16 -35x+315x^3-693x^5+429x^7

8 128 35-1260x^2+6930x^4-12012x^6+6435x^8

9 128 315x-4620x^3+18018x^5-25740x^7+12155x^9

10 256 -63+3465x^2-30030x^4+90090x^6-109395x^8+46189x^10

11 256 -693x+15015x^3-90090x^5+218790x^7-230945x^9+88179x^11

12 1024 231-18018x^2+225225x^4-1021020x^6+2078505x^8-1939938x^10+676039x^12

13 1024 3003x-90090x^3+765765x^5-2771340x^7+4849845x^9-4056234x^11+1300075x^13

We can also extract a table of Legendre’s coefficients by the Polyterms() function

Xnumbers Tutorial

89

Polynomial shift

 =PolyShift(Poly, x0)

Performs the polynomial translation of x0,
The argument "Poly" can be the polynomial strings or the vector of polynomial
coefficients.
This function returns the coefficient vector of the translated polynomial.
If you select one cell, the output will be a polynomial string

Example:
Given the polynomial:

65432 1448633275809495250447389623188784918 xxxxxx +−+−+−
substituting x with z+24, we have

6432 916918 zzzzz +−−−+−

This function is useful for transforming polynomial for reducing the coefficients
amplitude and improving the precision of rootfinder methods. In this example we work
with coefficients of two maximum digits, instead of 9 digits. We note also that the
second polynomial, having the second coefficient = 0, is centered. His roots are the
same of the given polynomial, translated of 24, but can be factorize much better. In
fact, we have

)9)(2)(1(222 −+++− zzzzz

Polynomial center

 =PolyCenter(Coefficients)

Returns the center of the polynomial roots circle
The argument specifies the vector of the polynomial coefficients in the following order:

[]naaaa ... , , 210

It can also be a polynomial string

if x1, x2, ...xn are roots of polynomial the center Bx is defined as:

Xnumbers Tutorial

90

n
a

n
xxxx nn

x
1210 ...B −−

=
+++

=

Polynomial roots radius

 =PolyRadius(Coefficients)

Returns the approximated radius of the polynomial roots circle.
The argument is the vector of the polynomial coefficients in the following order:

[]naaaa ... , , 210

It can also be a polynomial string

If zi are the roots of a polynomial, the radius is defined as:

|)(|max
...1 ini

zR
=

=

.The circle of root is very useful for locating all the roots of a polynomial. For example,
given the following 9 degree polynomial.

degree coefficents
a0 -3098250
a1 4116825
a2 -2427570
a3 916272
a4 -244674
a5 46934
a6 -6430
a7 608
a8 -36
a9 1

The center = 4 and the radius ≅ 6.8
We can draw the circle containing, with high probability, all polynomial roots
We know that the roots of this polynomial are:

x real x imm
9 0
5 0
2 0
3 -6
3 6
1 -4
1 4
6 -3
6 3

We have to point out that this method is probabilistic. It means that the most part of the
roots are found inside the circle but it is also possible to find same roots outside the
circle with 1% of probability.

Xnumbers Tutorial

91

Example: compute the root circle of the polynomial: x^7-5x^6+64x^3-8000

radius ≅ 4.331
center ≅ 0.714

The roots are:

x real x imm
-2.7429701 1.6132552
-2.7429701 -1.6132552
-0.4369651 3.2182957
-0.4369651 -3.2182957
3.17993518 2.2060806
3.17993518 -2.2060806

5 0

Polynomial building from roots

 =PolyBuild(Roots, [Variable])

Builds a polynomial from its roots. Argument "Roots" is an (n x 2) array, contains the
polynomial roots. It can be a vector for real roots.
This function returns the coefficient vector of the polynomial.
If you select one cell, the output will be a polynomial string

Complex roots for real polynomial: Multiple roots:

Complex roots for complex polynomial
If the complex roots are not symmetrical, the
polynomial has both real and imaginary part.
This function returns both, simply as a vector
(2 x 1).

Zero roots
If you want a polynomial with multiple zero
roots, simply repeat many couple [0, 0] as they
need.

This function can return the vector of polynomial coefficients if you select more than
two vertical cells. It is very useful for higher degree polynomial

Xnumbers Tutorial

92

In this example we get the 10
coefficients of the 9th degree
polynomial having the 9 roots in
the range A2:B10

If complex roots are not conjugate,
the polynomial has complex
coefficients. This function can
return also the imaginary column
of the coefficients, simply
selecting two columns

Xnumbers Tutorial

93

Polynomial building with multi-precision

 PolyBuildCfx()

This macro generate the polynomial coefficients from the given roots.
This macro works like the function PolyBuild except that it works in multi-precision. It is
very useful for high degree polynomial, when the coefficients become longer than 15
digits.

For using this macro select the range that
contains the roots.

Then, start the macro. Choose the digits
precision (default=30) and the range you
want to paste the coefficients (default is
the range at the right side of the roots
range selected).

In the following table we have calculated the coefficient of the polynomial having as
roots the first 19 integer numbers. That is:

x1 = 1 , x2 = 2, x3 = 3 ,.... x19 = 19

Roots PolybuildCfx (30 digits) PolyBuild Diff.

1 -121645100408832000 -121645100408832000 0
2 431565146817638400 431565146817638000 400
3 -668609730341153280 -668609730341153000 -280
4 610116075740491776 610116075740492000 -224
5 -371384787345228000 -371384787345228000 0
6 161429736530118960 161429736530119000 -40
7 -52260903362512720 -52260903362512700 -20
8 12953636989943896 12953636989943900 -4
9 -2503858755467550 -2503858755467550 0

10 381922055502195 381922055502195 0
11 -46280647751910 -46280647751910 0
12 4465226757381 4465226757381 0
13 -342252511900 -342252511900 0
14 20692933630 20692933630 0
15 -973941900 -973941900 0
16 34916946 34916946 0
17 -920550 -920550 0
18 16815 16815 0
19 -190 -190 0

 1 1 0

As we can see there are a little difference (digits in red) between the exact coefficients
computed by this macro PolyBuildCfx (multiprecision arithmetic with 30 digits) and
those returned by the function PolyBuild (standard double precision 32-bit).

Xnumbers Tutorial

94

Polynomial solving

 =PolySolve (Polynomial)

This function returns the roots of a given real polynomial using the Jenkins-Traub
algorithm.

n
n xaxaxaa ...2

210 +++
The arguments can be a monovariable polynomial strings like "X^2+3x+2" or a vector
of coefficients
This function returns an (n x 2) array.
It uses the same algorithm of the RootfinderJT macro. It works fine with low-moderate
degree polynomials, typically from 2° till 10° degree. For higher degree it is more
convenient to use the macro.

Example. Find all roots of the given 10 degree polynomial

Integer polynomial

 =PolyInt(Polynomial)

This function returns a polynomial with integer coefficients having the same roots of
the given polynomial. This transformation is also know as "denormalization" and can
be useful when the coefficients of the normalized polynomial are decimal.

Example: Eliminate decimal coefficients from the following polynomial:

-0.44+2.82x-3.3x^2+x^3

To eliminate decimal coefficients we denormalize the polynomial
-22+141x-165x^2+50x^3 = PolyInt("-0.44+2.82x-3.3x^2+x^3")

Take care with the denormalization because the coefficients became larger and the
computation can lose accuracy. See the example below

Xnumbers Tutorial

95

The following polynomials have the same root x = 11/10:
Pb(x) = -2.4024+10.1524x-17.1x^2+14.35x^3-6x^4+x^5

Pa(x) = -6006+25381x-42750x^2+35875x^3-15000x^4+2500x^5

If we compute both polynomials for x = 11/10, with standard double precision we get:
Pa(1.1) = -2.664E-15

Pb(1.1) = 4.547E-12

As we can see, the first value, obtained by the decimal polynomial, is 1000 times more
precise then the one obtained by the integer polynomial

Polynomial interpolation

 =PolyInterp (x, xi, yi, [DgtMax])

 =PolyInterpCf (xi, yi, [DgtMax])

These functions perform the polynomial interpolation
The first function performs the interpolation of a given set of points (xi,yi), and returns
the value at the point x. If the parameter x is literal, like "x", the function returns the
interpolation polynomial expression.
Input parameters xi and yi are vectors.
The optional parameter DgtMax sets the max digits in multiprecision arithmetic. If
omitted or zero, the functions works in faster standard double precision.

The second function returns an array containing the coefficients of polynomial
interpolation
These functions use the following popular Newton's formula:

∑ ∏
=

−

=

−+=

n

m

m

j
jm xxxxDyxp

1

1

1
11)(),...()(

Where D are the "divided differences", given by the following recursive formulas:

,....),(,),(

32

32
32

21

21
21 xx

yyxxD
xx
yyxxD

−
−

=
−
−

=

..... ,),(),(),,(

31

3221
321 xx

xxDxxDxxxD
−
−

=

 m

mm
m xx

xxDxxDxxD
−
−

= −

1

211
1

),...(),...(),...(

Sub-tabulation
Interpolation method is very useful to generate a sub-tabulation from a given table.
Usually interpolation is used when we have few exact knots, and we want to
approximate the value between two consecutive knots. On the contrary, when we have
many values affected by relevant random errors (experimental samples) is better to

Xnumbers Tutorial

96

use the regression. The main differences is that interpolation curve always crosses for
all knots, the regression line may not cross for any given knots.
Example:

x y
0 0.5

0.5 0.7
1 1.2

1.5 1.2
2 1.3

2.5 2.2

In the cell E2 insert the function
PolyInterp as in figure.
Select the cell E2 and drag it down to
fill all the cells that you need.

The following graph shows the interpolate points (blue) and the given knots (pink)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3

interp

knots

Interpolation Polynomial string
We can obtain the interpolation polynomial expression, simply passing a generic letter
(Ex: "x") to the argument x . We get:

=PolyInterp("x";A2:A7;B2:B7) = 0.5-x+6.93333333333333x^2-
6.9x^3+2.66666666666667x^4-0.346666666666667x^5

If we do not want decimal values, use the function PolyInt(). We get:
75-150x+1040x^2-1035x^3+400x^4-52x^5

Remember that this polynomial is not the same of the above interpolation polynomial.
We must divide it for an adapt coefficient, that can be computed dividing a coefficient
of the second polynomial (e.g: 75) for the corresponding coefficient of the first one
(e.g. 0.5). We get

Sub-tabulation problem.
Given the following table we want to
generate a new table with step = 0.1 and
for 0 ≤ x ≤ 3

Xnumbers Tutorial

97

M= 75/0.5 = 150

So the final interpolation polynomial can be written as:

P(x) = 1/150*(75-150x+1040x^2-1035x^3+400x^4-52x^5)

Polynomial System of 2nd degree

 =SYSPOLY2(Poly1, Poly2)
Solves a system of two 2nd degree polynomials.

=+++++

=+++++

0

0

202524
2

2322
2

21

101514
2

1312
2

11

ayaxayaxyaxa

ayaxayaxyaxa

It returns a (4 x 4) array containing the four solutions.
The parameters Poly1 and Poly2 can be coefficients vectors or polynomials strings
The coefficients must be passed in the same order of the above equation.
Polynomial strings, on the contrary, can be written in any order. Examples of 2nd
degree x-y polynomials strings are:

13+x + y^2 - y + x^2 + 2x*y
x^2 + y^2 - 10
4x^2+8x*y+y^2+2x-2

Note: the product symbol “*” can be omitted except for the x*y mixed term

A 2nd degree system can have up to four solutions. It can also have no solution
(impossible) or even infinite solutions (undetermined). The function returns #N/D if a
solution is missing

Example: solve the following system

=−+

=−+++

010
02

22

22

yx
yxyxyx

Using SYSPOLY2 the solutions – real or
complex – can be obtained in a very
quick way

Real solutions represent the intersection
point of the curve poly1 and poly2.
They are: P1 = (−3 , 1) , P2 = (−1 , 3)

The system has also two complex solutions that have not a geometrical representation

P3 = (2.5 +j 1.118034 , −2.5 +j 1.118034) , P4 = (2.5 −j 1.118034 , −2.5 −j 1.118034)

The degree of the given system is 4

Xnumbers Tutorial

98

Example: solve the following system

=−+++

=−

012
01
2 yxyxy

xy

The apparent degree of the system is 2 x 2 = 4

As we can see, the function SYSPOLY2 returns only three solutions: one real and two
complex.

P1 = (−1, −1) , P2 = (−j , j) , P3 = = (j , −j)

Thus, the actual system degree is 3.

Bivariate Polynomial

 =POLYN2(Polynomial, x, y, [DgtMax])
Returns the bivariate polynomial value, real or complex, at the point x, y.
The parameter "Polynomial" is an expression strings. Valid examples of x y polynomial
strings are:
13+x+y^2-y+x^2+2x*y , x^2+y^2-10 , 8x*y+y^2+2x-2 , 10+4x^6+x^2*y^2

Note: the product symbol “*” can be omitted except for the x*y mixed terms
The third optional parameter is used for multi precision computing. If you set any
number from 1 to 200, the computation is performed in multiprecision.

The variables x , y can be real or complex. The function can return real or complex
numbers. Select two cells if you want to see the imaginary part and give the
CTRL+SHIFT+ENTER sequence

Example: Compute the polynomial

yxyxyxP −+++= 22 2
at the point
x = (2.5 + j 1.11803398874989)

y = (−2.5 + j 1.11803398874989)

And verify that it is a good approximation
of the polynomial root

Xnumbers Tutorial

99

Partial fraction decomposition

Partial fraction decomposition is the process of rewriting a rational expression as the
sum of a quotient polynomial plus partial fractions. If the rational expression is proper -
thus the degree of numerator polynomial is lower than the denominator - the quotient
will be zero and it remains only the partial fractions terms. A polynomial with real
coefficients can be factored into a product of powers of linear and quadratic factors:
the linear factors are taken by real roots while the quadratic factors are taken by
complex roots.

∑+=+= iFxQ
xD
xRxQ

xD
xN)(

)(
)()(

)(
)(

where each Fi is a fractions of the form

m
m

px
A

px
A

px
A

)(
...

)(2
21

+
+

+
+

+
or

m
mm

cbxx
CxB

cbxx
CxB

cbxx
CxB

)(
...

)(222
22

2
11

++
+

+
++

+
+

++
+

being m is the multiplicity of the correspondent root
The denominators is determined from the poles, thus the roots of the denominator
D(x). In fact, p is just a real root of D(x), while the quadratic factor can be obtained
from the complex root using the following relation

22 , 2 βααβα +=−=⇒± cbi (1)

Many calculators and computer algebra systems, are able to factor polynomials and
split rational functions into partial fractions. But also in Excel a solution can be
arranged with the aid of Xnumbers functions. Let's see

Real single poles. Find the fraction decomposition of the following rational fraction

54 105 65 15
1794 1433 2763

)(
)(

234

23

+−+−
+−+

=
xxxx

xxx
xD
xN

First of all, we try to find the roots of the denominator using, for example, the function
polysolve. We find that the roots are pi = [1, 2, 3, 9]. They are all real with unitary
multiplicity, therefore the fraction expansion will be

4

4

3

3

2

2

1

1

)(
)(

px
A

px
A

px
A

px
A

xD
xN

+
+

+
+

+
+

+
=

where pi are the roots and Ai are unknow
Several methods exist for solving the fraction coefficients Ai . One of the most straight
and elegant is the Heaviside's formula that, for a real single root, is simple:

)('
)(

i

i
i pD

pNA =

where D' is the derivative of D

A possible arrangement in Excel is the following

Xnumbers Tutorial

100

Therefore, the requested decomposition is

9
40

3
5

2
8

1
40

54105 65 15
1794 1433 2763

234

23

+
+

+
−

+
+

+
−=

+−+−
+−+

xxxxxxxx
xxx

You can prove yourself that this expression is an identity, thus always true for every x,
except the poles.

Complex single poles. Find the fraction decomposition of the following rational
fraction

650 42 29 2
123 52 21

)(
)(

234

23

+−−−
++−−

=
xxxx

xxx
xD
xN

First of all, we try to find the roots of the denominator using, for example, the function
polysolve. We find that the roots are } 34 , 25 { iip ±−±= . They are complex with
unitary multiplicity, therefore the fraction expansion will be

22
2

22

11
2

11

)(
)(

cxbx
CxB

cxbx
CxB

xD
xN

++
+

+
++

+
=

where bi and ci , calculated by the (1), are 25 , 8 , 26 , 10 2211 ===−= cbcb
The coefficients Bi and Ci are unknown. For solving them we used here the so called
undetermined coefficients method
Renamed, for simplicity:

22
2

211
2

1)(,)(cxbxxDcxbxxD ++=++=

The fraction expansion may be rewritten as

)()(

)()(

)(
)(

2

2

2

2

1

1

1

1

xD
C

xD
xB

xD
Cx

xD
xB

xD
xN

+++=

Giving 4 different values to x, the above relation provides 4 linear equations in B1, C1,
B2, C2, that can be easily solved. We can choose any value that we want; for example
xi = { 0, 1, 2, 3 } and we get the following linear system

0 1/26 0 1/25 B1 123/650
 1/17 1/17 1/34 1/34 C1 9/34
 1/5 1/10 2/45 1/45

X
B2

=
3/10

 3/5 1/5 3/58 1/58 C2 63/290

Solving this linear system by any method that we like, we get the solution

Xnumbers Tutorial

101

[B1 , C1 , B2 , C2] = [-2 , 7 , 1 , -2]

Substituting these values, we have finally the fraction decomposition

258
2

2610
72

65042 29 2
123 52 21

22234

23

++
−

+
+−

+−
=

+−−−
++−−

xx
x

xx
x

xxxx
xxx

You can prove yourself that this expression is an identity, thus always true for every x

In Excel a possible arrangement for
solving this problem is a bit more
complicated then the previous one.
Let's see. First of all we compute
the roots with the function
Polysolve, then we compute the
trinomials D1(x) and D2(x) by the
formulas (1)

Then we compute the polynomials N, D, D1, D2 for each values of x by the function
polyn. We get the 4x5 table at the right

From the value-table we get the complete system matrix

That can be solved by any method that you want. For example by matrix inversion

Xnumbers Tutorial

102

Orthogonal Polynomials

Orthogonal polynomials are a class of polynomials following the rule:

Where m and n are the degrees of the polynomials, w(x) is the weighting function, and
c(n) is the weight. nm δ is the Kronecker's delta function being 1 if n = m and 0
otherwise.

The following table synthesizes the interval [a, b], the w(x) functions and the relative
weigh c(n) for each polynomials family

polynomial interval w(x)

Chebyshev polynomial
of the first kind

Chebyshev polynomial
of the second kind

Gegenbauer polynomial

Hermite polynomial

Jacobi polynomial

Laguerre polynomial
 1

generalized Laguerre
polynomial

Legendre polynomial

1

Where

Xnumbers Tutorial

103

Orthogonal Polynomials evaluation

This set of functions8 calculate the orthogonal polynomials and their derivatives at the
given point . They return two values: the first one is the polynomial value, the second
is its 1st derivative. If you want to see both values select two adjacent cells and give
the CTRL+SHIFT+ENTER sequence. If you give ENTER, you will get only the
polynomial value

Function Poly_ChebychevT(x, n) Chebychev polynomial of the first kind

Function Poly_ChebychevU(x, n) Chebychev polynomial of the second kind

Function Poly_Gegenbauer(a, x, n) Gegenbauer polynomial

Function Poly_Hermite(x, n) Hermite polynomial

Function Poly_Jacobi(a, b, x, n) Jacobi polynomial

Function Poly_Laguerre(x, n, m) Laguerre generalized polynomial

Function Poly_Legendre(x, n) Legendre polynomial

Example:

Tabulate the Legendre polynomial of 6th degree, for 0 ≤ x ≤ 1, with step h = 0.1

As we can see we have insert Poly_Legendre as a standard function, because in this
exercise we do not need the derivative information

Example. Find the greatest zero of the 5th degree Legendre polynomial
We can use the Newton-Raphson method, starting from x = 1, as shown in the
following sheet arrangement

8 Many thanks to Luis Isaac Ramos Garcia for his great contribution in developing this software

Xnumbers Tutorial

104

Both polynomial and derivative are obtained from the Poly_Legendre simply selecting
the range B5:C5 and pasting the function as array with CTRL+SHIFT+ENTER
sequence
The other cells are filled simply by dragging down the range B5:C5

Function Poly_ChebychevT(x, [n])
Function Poly_ChebychevU(x, [n])

Evaluate the Chebychev orthogonal polynomial of 1st and 2nd kind
Parameters:

 x (real) is the abscissa,
 n (integers) is the degree. Default n = 1

Function Poly_Gegenbauer(L, x, [n])

Evaluate the Gegenbauer orthogonal polynomial of 1st and 2nd kind
Parameters:

 x (real) is the abscissa,
 n (integers) is the degree. Default n = 1
 L (real) is the Gegenbauer factor and must be L < 1/2

Function Poly_Hermite(x, [n])

Evaluate the Hermite orthogonal polynomial of 1st and 2nd kind

Parameters:
 x (real) is the abscissa,
 n (integers) is the degree. Default n = 1

Function Poly_Jacobi(a, b, x, [n])

Evaluate the Jacobi orthogonal polynomial of 1st and 2nd kind
Parameters:
 x (real) is the abscissa,
 n (integers) is the degree. Default n = 1

Xnumbers Tutorial

105

 a (real) is the power of (1-x) factor of the weighting function
 b (real) is the power of (1+x) factor of the weighting function

Function Poly_Laguerre(x, [n], [m])

Evaluate the Laguerre orthogonal polynomial of 1st and 2nd kind
Parameters:
 x (real) is the abscissa,
 n (integers) is the degree. Default n = 1
 m (integer) is the number of generalized polynomial. Default m = 0

Function Poly_Legendre(x, [n])

Evaluate the Legendre orthogonal polynomial of 1st and 2nd kind
Parameters:
 x (real) is the abscissa,
 n (integers) is the degree. Default n = 1

Xnumbers Tutorial

106

Weight of Orhogonal Polynomials

This set of functions calculate the weight c(n) for each orthogonal polynomial p(x, n)

Function Poly_Weight_ChebychevT(n) Chebychev polynomial of the first kind

Function Poly_Weight_ChebychevU(n) Chebychev polynomial of the second kind

Function Poly_Weight_Gegenbauer(n, l) Gegenbauer polynomial

Function Poly_Weight_Hermite(n) Hermite polynomial

Function Poly_Weight_Jacobi(n, a, b) Jacobi polynomial

Function Poly_Weight_Laguerre(n, m) Laguerre generalized polynomial

Function Poly_Weight_Legendre(n) Legendre polynomial

If we divide each orthogonal polynomial family for the relative weight we have an
orthonormal polynomial family

Zeros of Orthogonal Polynomials

This macro finds all roots of the most common orthogonal polynomials
Its use is very easy. Simply start the Zero macro from the menu
"tools > Ortho-polynomials..."

Choose the family and the degree that
you want and fill the optional parameters
Then press OK

This is an example of output for a
Laguerre polynomial of 6th
degree (m = 0)

Note: formatting is added for clarity.
The macro does not format

Xnumbers Tutorial

107

Coefficients of Orthogonal Polynomials

This macro calculate the coefficients of the most common orthogonal polynomials
Its use is very easy. Simply start the Coeff macro from the menu "tools/Ortho-
polynomials..."

Choose the family and the
degree that you want and fill
the optional parameters.
Then, press OK

This macro return also the polynomial weight

This is an example of output for a Laguerre
polynomial of 4th degree (m = 0)

The orthopolynomial can be written as

()24967216
24
1)(234

6 +−+−= xxxxxL

Xnumbers Tutorial

108

Complex Arithmetic and Functions

Xnumbers provides a large collection of complex functions

 Complex Addition
 Complex Subtraction
 Complex Multiplication
 Complex Division
 Polar Conversion
 Rectangular Conversion
 Complex absolute
 Complex power
 Complex Root
 Complex Log
 Complex Exp
 Complex inv
 Complex negative
 Complex conjugate
 Complex Sin
 Complex Cos
 Complex Tangent
 Complex Inverse Cos
 Complex Inverse Sin
 Complex Inverse Tan

 Complex Hyperbolic Sin
 Complex Hyperbolic Cos
 Complex Hyperbolic Tan
 Complex Inverse Hyperbolic Cos
 Complex Inverse Hyperbolic Sin
 Complex Inverse Hyperbolic Tan
 Complex digamma
 Complex Exponential Integral
 Complex Error Function
 Complex Complem. Error Function
 Complex Gamma Function
 Complex Logarith. Gamma Function
 Complex Zeta Function
 Complex Quadratic Equation
 Complex Expression Evaluation

How to insert a complex number
For definition a complex number is an ordered couple of numbers: (a,b)
In Excel a couple of numbers is represented by two vertical or horizontal adjacent
cells, so the complex number (a, b) is a range of two cells. The figure below shows
both vertical and horizontal representations:

 (234 , 105) in range "B7:C7" and in range "B2:B3"
 (-100 , 23) in the range "E7:F7" and in range "D2:D3"

Most of complex-functions return a complex number, which is an array of two values.
For entering complex functions you must select two cells, insert the comple function
and give the CTRL+SHIFT+ENTER keys sequence

If you press the ENTER key, the function returns only the real part of the complex
number.

Xnumbers Tutorial

109

Symbolic rectangular format
Xnumbers support the format "x+jy " only in expression strings passed to the function
cplxeval. Except this case, you must always provides a complex number as a couple
of real numbers (one or two cells).
The reason for this choice is that the rectangular format is more adapt for symbolic
calculation while the array format is more convenient for numerical computation where,
often, we have to manage long, decimal numbers
But, of course, you can convert a complex number (a,b) into its symbolic format "a+jb"
by the Excel function COMPLEX, as shown in the following example

XNUMBERS has two sets of complex functions: for standard double precision
(prefixed by "cplx") and for multiprecision (prefixed by "xcplx").

Complex Addition

xcplxadd(a, b, [Digit_Max])

cplxadd(a, b)

Performs the complex addition:

() () ()21212121 bb , aab , ba , a ++=+

Complex Subtraction

xcplxsub(a, b, [Digit_Max])

cplxsub(a, b)

Performs the complex subtraction.

() () ()21212121 bb , aab , ba , a −−=−

Complex Multiplication

xcplxmult(a, b, [Digit_Max])

cplxmult(a, b)

Performs the complex multiplication:

() () ()122122112121 baba , ba-bab , b*a , a +=

Xnumbers Tutorial

110

Complex Division

xcplxdiv(a, b, [Digit_Max])

cplxdiv(a, b)

Performs the complex division

()
()

+
−

+
+

= 2
2

2
1

2112
2
2

2
1

2211

21

21

bb
baba ,

bb
baba

b , b
a , a

Polar Conversion

xcplxpolar(z, [angle], [Digit_Max])

cplxpolar(z, [angle])

Converts a complex number from its rectangular form to the equivalent polar form.
The optional parameter angle sets the angle unit (RAD, DEG) (default RAD).

 (x, y) ⇒ (ρ , θ)

Where

22 yx +=ρ

0 , atan >

= x

x
yθ

0 ,
2

)sgn(=⋅= xy πθ

<≠⋅+

<=
=

 0,0 ,)sgn(atan

 0,0 ,

xyy
x
y

xy

π

π
θ

Rectangular Conversion

xcplxrect(z, [angle], [Digit_Max])

cplxrect(z, [angle])

Converts a complex number from its polar form to the equivalent rectangular form. The
optional parameter angle sets the angle unit (RAD, DEG) (default RAD).

(ρ , θ) ⇒ (x, y)

x y ρ θ (deg)
1 0 1 0

0.866025 0.5 1 30
0.707107 0.707107 1 45

0.5 0.866025 1 60
0 1 1 90

-0.5 0.866025 1 120
-0.70711 0.707107 1 135
-0.86603 0.5 1 150

-1 0 1 180
-0.86603 -0.5 1 -150
-0.70711 -0.70711 1 -135

-0.5 -0.86603 1 -120
0 -1 1 -90

0.5 -0.86603 1 -60
0.707107 -0.70711 1 -45
0.866025 -0.5 1 -30

Xnumbers Tutorial

111

Where
()
()θρ
θρ

sin
cos

=
=

y
x

Complex absolute

xcplxabs(z, [Digit_Max])

cplxabs(z)

Returns the absolute value of a complex number

2
2

2
1|| zzz +=

Complex power

xcplxpow(z, [n], [Digit_Max])

cplxpow(z, [n])

Returns the nth integer power of a complex number zn (default n = 2)

() θρ nnnn eiyxz ⋅=+=
Where

=+=

y
xyx atan , 22 θρ

Complex Roots

xcplxroot(z, [n], [Digit_Max])

cplxroot(z, [n])

Returns all the nth roots of a complex extended number z (1/n) (default n = 2)
The function returns a matrix of (n x 2) values. Remember to press the sequence
CTRL+SHIFT+ENTER for insert properly this function.

The root of a complex number is computed by the de Moivre-Laplace formula.

1...1,0 , 2sin2cos −=

 +

⋅+

 +

⋅=+= nk
n

ki
n

kiyxz nnn πθπθρ

where

=+=

y
xyx atan , 22 θρ

Xnumbers Tutorial

112

Note: If you select only one row, the function return only the first complex root (given
for k = 0).

Example: compute all the 3 complex cubic roots of the number z = 8

Complex Log

xcplxLn(z, [Digit_Max])

cplxLn(z)

Returns the natural logarithm of a complex number

() θρ +=+= log)log()log(iyxz
Where:

=+=

x
yyx atan , 22 θρ

Complex Exp

xcplxExp(z, [Digit_Max])

cplxExp(z)

Returns the exponential of a complex number

)sin()cos(yieyeee xxiyxz +== +

Complex inverse

xcplxinv(z, [Digit_Max])

cplxinv(z)

Returns the inverse of a complex number

2222

11
yx

yi
yx

x
iyxz +

−
+

=
+

=

Xnumbers Tutorial

113

Complex negative

xcplxneg(z)

cplxneg(z)

Returns the complex negative

() iyxiyxz −−=+−=−

Complex conjugate

xcplxconj(z)

cplxconj(z)

Returns the conjugate of a complex number

iyxiyxz −=+=

Complex Sin

=cplxsin(z)

Returns the sine of a complex number

Complex Cos

cplxcos(z)

Returns the cosine of a complex number

Complex Tangent

cplxtan(z)

Returns the tangent of a complex number

Complex ArcCos

cplxacos(z)

Returns the arccosine of a complex number

Xnumbers Tutorial

114

Complex ArcSin

cplxasin(z)

Returns the arcsine of a complex number

Complex ArcTan

cplxatan(z)

Returns the arctangent of a complex number

Complex Hyperbolic Sine

cplxsinh(z)

Returns the hyperbolic sine of a complex number
Parameter “z” can be a real or complex number (two adjacent cells)

Complex Hyperbolic Cosine

cplxcosh(z)

Returns the hyperbolic cosine of a complex number
Parameter “z” can be a real or complex number (two adjacent cells)

Complex Hyperbolic Tan

cplxtanh(z)

Returns the hyperbolic tangent of a complex number

Complex Inverse Hyperbolic Cos

cplxacosh(z)

Returns the inverse of the hyperbolic cosine of a complex number

Complex Inverse Hyperbolic Sin

cplxasinh(z)

Returns the inverse of the hyperbolic sine of a complex number

Xnumbers Tutorial

115

Complex Inverse Hyperbolic Tan

cplxatanh(z)

Returns the inverse of the hyperbolic tangent of a complex number

Complex digamma

cplxdigamma(z)

Returns the logarithmic derivative of the gamma function for complex argument.

()
)(
)(')(ln)(

x
xx

dx
dx

Γ
Γ

=Γ=Ψ

Complex Exponential Integral

cplxei(z)

Returns the exponential integral of a complex number

∫
∞

−

−

−=
x

t

dt
t

exEi)(

Complex Error Function

cplxerf(z)

Returns the "error function" or "Integral of Gauss's function" of a complex number

∫ −=
z

t dtezerf
0

22)(
π

Complex Complementary Error Function

cplxerfc(z)

Returns the complementary error function for a complex number

)(1)(zerfzerfc −=

Xnumbers Tutorial

116

Complex Gamma Function

cplxgamma(z)

Returns the gamma function for a complex number

∫
∞

−−=Γ
0

1)(dtetx tx

Complex Logarithm Gamma Function

cplxgammaln(z)

Returns the natural logarithm of the Gamma function for a complex number

Complex Zeta Function

cplxzeta(z)

Returns the Riemann zeta function ζ(s) for a complex number. It is an important
special function of mathematics and physics which is intimately related with very deep
results surrounding the prime number, series, integrals, etc.
Definition: For |s|>1 the function is defined

Xnumbers Tutorial

117

Complex Quadratic Equation

cplxEquation2(a, b, c, [DgtMax])

Returns the multiprecision solution of the quadratic equation with complex coefficients

02 =+⋅+⋅ czbza

where a, b, c are complex
The solutions are found by the resolution formula

a
acb

a
bz

2
4

2

2 −
±−=

This function returns an (2 x 2) array
The optional parameter DgtMax, from 1 to 200, sets the number of the significant
digits. If missing, the computation is in standard double precision.

Example: Find the solution of the following complex equation with 20 digits precision

04)29(2 =++⋅−+ iziz

Xnumbers Tutorial

118

Number Theory

Maximum Common Divisor

xMCD(a1, [a2], [Digit_Max])

MCD(a1, [a2], [a3]...)

Returns the Maximum Common Divisor (also called Greatest Common Divisor, GCD)
of two or more extended numbers
The arguments "a1" and "a2" may be single numbers or arrays (range). At least, two
values must be input. If "a1" is a range, "a2" may be omitted

Minimum Common Multiple

xMCM(a1, [a2], [Digit_Max])

MCM(a1, [a2], [a3]...)

Returns the Minimum Common Multiple (also Least Common Multiple, LCM) of two or
more extended numbers
The arguments "a1" and "a2" may be single numbers or arrays (range). At least, two
values must be input. If "a1" is a range, "a2" may be omitted

Example

Tip.. The LCM may easily overcome the standard precision limit even if the arguments
are all standard precision.

Xnumbers Tutorial

119

Rational Fraction approximation

xfrac(x, [Digit_Max])

fract(x, [ErrMax])

Returns the rational fractional approximation of a decimal number x, the functions
returns a vector of two numbers, numerator N and denominator D :

x ≈ N / D

The optional parameter ErrMax sets the accuracy of the fraction conversion
(default=1E-14). The function tries to calculate the fraction with the maximum accuracy
possible.
The algorithm employed in this routine uses the continued fraction expansion9

0 , 1
1 , 0

10

10

==
==

DD
NN

11

11

−+

−+

+⋅=
+⋅=

iiii

iiii

DDaD
NNaN

Where ai are found by the following algorithm:

()

11

1

1 /int

++

+

+

⋅−=
=
=

iiii

ii

iii

ayxy
yx

yxa

In the example below we want to
find the fraction form of decimal
number 0.126.
The function returns the solution:
 N = 63 , D = 500

Often the rational form is not so easy to find, and depends strongly on the precision we
want to reach.
See, for example, the fractions that approximate √2 with increasing precision

Digit N D N/D Error
2 3 2 1.500000000000000 0.08579
3 7 5 1.400000000000000 0.01421
4 41 29 1.413793103448280 0.00042
5 99 70 1.414285714285710 7.2E-05
6 239 169 1.414201183431950 1.2E-05
7 1393 985 1.414213197969540 3.6E-07
8 3363 2378 1.414213624894870 6.3E-08
9 8119 5741 1.414213551646050 1.1E-08
10 47321 33461 1.414213562057320 3.2E-10
11 114243 80782 1.414213562427270 5.4E-11
12 275807 195025 1.414213562363800 9.3E-12
13 1607521 1136689 1.414213562372820 2.8E-13
14 3880899 2744210 1.414213562373140 4.2E-14
15 9369319 6625109 1.414213562373090 1.3E-14

You can regulate the desiderate approximation with the parameter ErrMax

9 form The art of Computer Programming, D.E.Knuth, Vol.2, Addison-Wesley, 1969

Xnumbers Tutorial

120

Check Prime

Prime(n)

CheckPrime(n)

These functions10 state whether a number is prime. They differ only for the values
returned

Prime(n) = "prime" if n is prime
the lowest factor if n is not prime
"not found" if the function is not able to check n.

CheckPrime(n) = TRUE if n is prime
FALSE if n is not prime
"?" if the function is not able to check n.

Next Prime

NextPrime(n)

This function10 returns the prime number greater than n or "not found"

nextprime(9,343,560,093) = 9,343,560,103

Modular Power

xPowMod(a, p, m, [digit_max])

Returns the modular integer power of ap
That is defined as the remainder of the integer division of ap by m

⋅−=

m
amar

p
p

Example: compute

)0059 (mod324

xPowMod(3,24,9005) = 3306

It's easy to prove that

3306)9005mod(812824295364)9005mod(324 ==

When the number a or p become larger it is impossible to compute the integer power
directly. But the function xPowMod can return the correct result.

10 These functions appears by the courtesy of Richard Huxtable

Xnumbers Tutorial

121

Examples: compute

)3001mod(123939040

It would be impossible to compute all the digits of this power. Using multiprecision we
have

xPow(12,3939040) = 1.24575154970238125896669174496E+4250938

This result shows that 123939040 has more then 4 million of digits!
Nevertheless the remainder of this impossible division is

xPowMod(12, 3939040,3001) = 947

Perfect Square

xIsSquare(n)

Checks if a number n is a perfect square

xisSquare(1000018092081830116) = TRUE

Because: 1000018092081830116 = 10000090462

xisSquare(2000018092081830116) = FALSE

Check odd/even

xIsOdd (n)

Checks if a number n is odd (TRUE) or even (FALSE)

Factorize

Factorize()

This macro factorizes an integer number returning the list of its prime factors with their
exponents

n = p1
e1⋅ p2

e2⋅ p3
e3⋅ ...pk

ek⋅ where pi ∈{prime}

Example. Assume to have in the cell A2 the following extended number

13320493696756339619246691430

Select the cell contains the number you want to factorize and the run the macro
Factorize (from the Xnumbers menu Macros > Numbers or from the Handbook).
Choose a factorization method, for example the "Trial Division" and click "Factorize"

Xnumbers Tutorial

122

Click “copy” if you want to
copy the list in the
worksheet, starting from
the cell just below the
number cell A2.

The macro stops itself
after the time out is
reached, and prompts if
you want to continue or
interrupt the factorization
task

This macro uses the trial division method with the prime table generated by the
Eratostene's sieve algorithm. This method is adapt for numbers having factors no
more that 7 digts max. For higher factor the elaboration time becames extremely long.
In this situation we can choose a second factorization method, the so called Pollard
rho algorithm, for craking a number into two lower factors (not necessary prime). Each
factors, if not prime, can be factorized separately with the trial division method.

Example. The number

18446744073709551617 = 274177*67280421310721

can be factorized with both methods: it requires about 33 sec with trial division, but
less then 3 sec with Pollard method
The following number instead can be factorize only with Pollard method (about 40
sec).

10023859281455311421 = 7660450463*1308520867

Note that in this case both factors have 10 digts. The factors are prime so the
factorization stops.
For prime testing see the probabilistic Fermat's Prime Test

Factorize function

Factor(n)

This function performs the decomposition in prime factor of a given number
Returns an array of two columns: the first column contains the prime factors and the
second column contains the exponents
Note. This function is adapt for low-moderate numbers.

In this example, the given number is
decomposed in 5 factors

2277785128000 = 26 53 232 732 101

The #ND symbol indicates the end of
factors list. To make sure to get all
factors you have to extend the
selection until you see this symbol

Xnumbers Tutorial

123

Prime Numbers Generator

PrimeGenerator()
This macro is useful to generate your own table of prime number. The table begins
from the cell A1 of the active worksheet.

Fermat's Prime Test

Prime_Test_Fermat()

This macro perform the probabilistic prime test with the Fermat's method. This is adapt
for long number. Using it is very simple.
Start the macro from the menu Macros > Numbers > Prime test

Select the number that you want to test and press "Test". After few seconds you get
the results.

Note that this test is exact for
detecting composite numbers,
but it can detect a prime
number with a finite
probability (usually very high).

Numbers satisfying the
Fermat' test are called
"pseudo-prime"

The probability is correlated to the number of trials "T" with the following approximate
formula

The macro computes 10.000
(default) prime numbers for each
time.
The macro can be stop and restart
as you like

It always restarts from the last prime
number saved.

Xnumbers Tutorial

124

1002121 −− −=−= Tp

For T = 100 the probability is about 31108.71 −⋅−

You can also select a list of cells containing several numbers to test. This is useful for
find new long prime numbers

Example: find the next prime number after 100000000000000 (1E14)

A prime number must be odd, so let's begin to prepare a sequence of 20 or more odd
numbers starting from 100000000000001
The frequency of prime numbers, in this range, is about 5%, so we hope to find a
prime number in our list. If this does not happen we try with a successive set of
numbers, and so on, until a prime comes out.

In this case we have found a probable prime 100000000000031
We can prove that it is a true prime

Xnumbers Tutorial

125

Diophantine Equation

DiophEqu(a, b, c)

This function solves the Diophantine linear equation

Zyxcybxa ∈=+ ,

where a, b, c , x, y are all integer numbers

The integer solutions
can be expressed as

...2 ,1 ,0for
0

0 ±±=

⋅+=
⋅+=

k
Dkyy
Dkxx

yk

xk

This function return an array (2, 2) of four integer values.
The first row contains a particular solution, while the second row
contains the integer increments for generating all the solutions.
If you want only a particular solution [x0, y0] simply select an
array of 2 adjacent cells. If the equation has no solution the
function return "?"

yx DD
yx 00

Example. Find all the integer solutions of the equation 2x+3y = 6

As we can see, the function returns
one solution (-6, 6) and the
increments (3, -2). So all the integer
solutions of the above equation can
be obtained from the following
formulas for any integer value of k

−=
+−=

ky
kx

k

k

26
36

Often is not so easy to find the solution of a diophantine equation. Let's see

Long numbers. This function works also with extended numbers.
Example. Find a solution of the equation ax+by = c having the following coefficients

Note that the first coefficients has 17 digits and the second one has 14 digits. Without
multiprecision it would be difficult to solve this problem. But fortunately the function
return the following results

You can enjoy yourself to prove that this result is correct

Xnumbers Tutorial

126

Linear Algebra Functions

Matrix Addition

xMatAdd(mat1, mat2, [DgtMax])

Performs the addition of two matrices in multiprecision
mat1 and mat2 are (n x m) arrays

+

=

mnn

n

mnn

n

mnn

n

bb
bb

aa
aa

cc
cc

 1

 111

 1

 111

 1

 111

 ..
 ..

 ..
 ..

 ..
 ..

Matrix Subtraction

xMatSub(mat1, mat2, [DgtMax])

Performs the subtraction of two matrices in multiprecision
mat1 and mat2 are (n x m) arrays

−

=

mnn

n

mnn

n

mnn

n

bb
bb

aa
aa

cc
cc

 1

 111

 1

 111

 1

 111

 ..
 ..

 ..
 ..

 ..
 ..

Matrix Multiplication

xMatMult(mat1, mat2, [DgtMax])

Performs the multiplication of two matrices in multiprecision
mat1 (n x p) and mat2 (p x m) are arrays

⋅

=

mpp

m

m

pnnn

p

mnn

n

aa
aa
aa

aaa
aaa

cc
cc

 1

 21 2

 11 1

 2 1

11211

 1

 111

 ..
 ..
 ..

 ..
 ..

 ..
 ..

Matrix Inverse

xMatInv(A, [DgtMax])

Returns the inverse of square matrix (n x n) in multiprecision
It returns "?" for singular matrix.

This function uses the Gauss-Jordan diagonalization algorithm with partial pivoting
method.

Xnumbers Tutorial

127

Matrix Determinant

xMatDet(A, [DgtMax])

Returns the determinant of a square matrix in multiprecision
It returns "?" for singular matrix.

Matrix Modulus

xMatAbs(A, [DgtMax])

Returns the absolute value of a matrix or vector in multiprecision.
It is also known as "modulus" or "norm"
Parameters A may be an (n x m) array or a vector

2

1 1
,)(∑ ∑

= =
=

n

i

m

j
jiaA

Scalar Product

xProdScal(v1, v2, [DgtMax])

Returns the scalar product of two vectors in multiprecision

i 2
1

i 121 VVVVc
n

i
⋅=•= ∑

=

Note: The scalar product is zero if, and only if, the vectors are perpendicular

 0 2121 VVVV ⊥⇔=•

Similarity Transformation

= xMat_BAB(A, B, [DgtMax])

Returns the matrix product:

BABC 1−=

This operation is also called the "similarity transformation" of the matrix A by the matrix
B. This operation plays a crucial role in the computation of eigenvalues, because it
leaves the eigenvalues of the matrix A unchanged. For real, symmetrical matrices, B is
orthogonal. The similarity transformation is also called the "orthogonal transformation".
A and B must be square matrices.

Xnumbers Tutorial

128

Matrix Power

= xMatPow(A, n, [DgtMax])

Returns the integer power of a square matrix.

48476 time

...
n

n AAAAAB ⋅⋅==

Matrix LU decomposition

= xMat_LU(A, [Pivot], [DgtMax])

Returns the LU decomposition of a square matrix A
It uses Crout's algorithm

⋅

=⋅=

33

2322

131211

2121

21

00
0

1
01
001

u
uu
uuu

ll
lULA

Where L is a lower triangular matrix, and U is an upper triangular matrix
The parameter Pivot (default=TRUE) activates the partial pivoting.
Note: if partial pivot is activated, the LU decomposition can refer to a permutation of A
If the square matrix has dimensions (n x n), this function returns an (n x 3n) array
where the first n columns are the matrix L, the next n columns are the matrix U, and
the last n columns are the matrix P.
Globally, the output of the Mat_LU function will be:

- Columns (1, n) = Matrix L
- Columns (n+1, 2n) = Matrix U
- Columns (2n+1, 3n) = Matrix P

When pivoting is activated the right decomposition formula is A = P L U , where P is a
permutation matrix
Note: LU decomposition does not work if the first element of the diagonal of A is zero

Example: find the factorization of the following 3x3 matrix A

Note: if you want to get only the L and U matrices select a range (3 x 6) before
entering this function

Xnumbers Tutorial

129

Matrix LLT decomposition

= xMat_LL(A, [DgtMax])

This function returns the LLT decomposition of a square matrix A
It uses Cholesky's algorithm

T

T

lll
ll

l

lll
ll

l
LLA

⋅

=⋅=

333231

2221

11

333231

2221

11

0
00

0
00

Where L is a lower triangular matrix
The function returns an (n x n) array
Note: Cholesky decomposition works only for positive definite matrices

Example.

The diagonal elements of the L matrix are all positive. So the matrix A is definite
positive and the decomposition is correct. This function simply stops when detects a
negative diagonal element, returning the incomplete decomposition.
See this example

A diagonal element of the L matrix is
negative. So the matrix is not positive
definite and the decomposition cannot be
completed

Vector Product

= xProdVect(v1, v2, [DgtMax])

Returns the vector product of two vectors

−
−
−

=

×

=×

12212211

32113112

31223221

32

22

12

31

21

11

21

vvvv
vvvv
vvvv

v
v
v

v
v
v

VV

Note that if V1 and V2 are parallels, the vector product is the null vector.

Xnumbers Tutorial

130

Solve Linear Equation System

xSYSLIN(A, B, [DgtMax])

Solves a system of linear algebraic equations in multiprecision.
The input parameter A is an (n x n) array, B may be a vector (n x 1) or an (n x m) array
Returns a vector (n x 1) or an (n x m) array depending by the argument B

A set of m linear systems in n unknowns looks like this:

][... ,][,][12111 mbxAbxAbxA =⋅=⋅=⋅

It can be rewritten as:

=

⋅

⇒=⋅

mnn

m

mnn

m

nnn

n

bb

bb

xx

xx

aa

aa

 1

 111

 1

111

 1

 111

 ..
....
 ..

...
..
.... ...

..

 ..
....
 ..

...][][][BxA

This function uses the Gauss-Jordan diagonalization algorithm with partial pivoting
method.

Example. Find the solution of the following 7x7 linear system

A b
462 792 1287 2002 3003 4368 12376 24290
924 1716 3003 5005 8008 12376 31824 62856

1716 3432 6435 11440 19448 31824 75582 149877
3003 6435 12870 24310 43758 75582 167960 333918
5005 11440 24310 48620 92378 167960 352716 702429
8008 19448 43758 92378 184756 352716 705432 1406496

12376 31824 75582 167960 352716 705432 1352078 2697968

The solution is the vector [1, 1, 1, 1, 1, 1, 1]. Solving with standard arithmetic, we get
an average accuracy of about 1E-8, while in multiprecision we have an accuracy better
than 1E-28

Xnumbers Tutorial

131

Solve Linear Equation System with Iterative method

SYSLIN_ITER_G(A, b, x0, [Nmax])

This function find the solution of a linear system by the iterative Gauss-Seidel
algorithm.

bxA =⋅][

The parameter A is the system matrix (n x n)
The parameter b is the system vector n x 1)
The parameter x0 is the starting approximate solution vector (n x 1)
The parameter Nmax is the maximum steps performed (default = 1)

The function returns the vector at Nmax step, if the matrix is convergent, this vector is
closer to the exact solution.
In the example below it is returned the 20th GS iteration step.
As we can see, the values approximate the exact solution [4, -3, 5]. Precision increase
with steps (of course, for convergent matrices)

For Nmax=1, we can study the iterative method step by step

Usually, the convergence speed is quite low, but it can be greatly accelerated by the
Aitken's extrapolation formula, also called as "square delta extrapolation"

Xnumbers Tutorial

132

Square Delta Extrapolation

ExtDelta2(x)

xExtDelta2(x, [DgtMax])

This function returns the Aitken's extrapolation, also known as "Square Delta
Extrapolation". The parameter x is a vector of n value (n > 2), in vertical consecutive
cells. (n= 2 for the multi-precision function xExtDelta2).
This formula can be applied to any generic sequence of values (vector with n>2) for
accelerating the convergence.

) , ... , , () , ... , , (2321

2

321 −

∆
→ nn vvvvxxxx

Note that this algorithm produces a vector with n-2 values. If n = 3, the result is a
single value.
Taking the difference:

iii xx 1 −=∆ +

The Aitken's extrapolation formula is:

()
()21

2
1

21

2
1

2 −−

−

−−

−

+−
−

−=
∆−∆

∆
−=

iii

ii
i

ii

i
ii xxx

xxxxv

This formula can be applied to the second sequence to obtain a new sequence with n-
4 values, and so on. The process stops when the last sequence has less than 3
values.

Example. we want to find the numeric solution of the equation x = cos(x)
We choose the central point method. Starting from x0 = 0 we build the iterations

xn+1 = cos(xn)

As we can see in the following table, the convergence is evident but very slow (after
12 iterations the precision is about 3E-5) .

The functions of this worksheet are:

The cell B2 contains the starting value x0
The cell B3 contains the formula
the formula

=C2

The cell C2 contains the formula

=COS(B2)

The cell D3 contains the formula

=ASS(B2-C2)

As we can see the last 12th value has an
error of about 3.5E-3. Taking the delta
extrapolation of the three last values we
get a new value having an accuracy
better than 1E-5.

Xnumbers Tutorial

133

Now let's repeat the iterative process using systematically the square delta
extrapolation

In this process, we have systematically
repeated the ∆2 extrapolation every 3
iterations

We have insertet in the cell B5

=ExtDelta2(B2:B4)

In the cell B8

=ExtDelta2(B3:B7)

In the cell B14

=ExtDelta2(B9:B11)

The acceleration is superb!. After only 12 steps, the precision is better than 1E-15.
The graph below shows better than many words this acceleration effect

1E-16

1E-14
1E-12

1E-10

1E-08

1E-06
0.0001

0.01

1
0 2 4 6 8 10 12

Error (extrap)

Error

The Aitken's extrapolation formula work very well with the Gauss-Seidel iterative
method, and for accelerating the convergence of many series.

Xnumbers Tutorial

134

Multiprecision Matrix operations (macro)

This application collects a set of useful macros performing multiprecision matrix
operations

Determinant)det(A Gauss-Jordan algorithm

Addition BA +

Subtraction BA −

Multiplication BA ⋅

Scalar multiplication Ak ⋅

Inverse 1−A Gauss-Jordan algorithm

Similarity transform BAB 1−

Linear System BAX = Gauss-Jordan algorithm

Linear System overdetermined. bAx = rows > columns

LU decomposition LUA = Crout’s algorithm

Cholesky decomposition TLLA = Cholesky’s algorithm

Norm
 A

Scalar product BAT ⋅

SVD TVU ⋅Σ⋅ Golub-Reinsch algorithm

The use of this macro is quite simple. If the operation requires only one matrix
(determinant, inversion, etc.) select the matrix, start the macro and choose the
appropriate operation
Other operations require two matrices (addition, multiplication, etc.). In that case you
have also to select the second matrix.

The internal calculus is performed in multiprecision. The result is converted in standard
precision (15 significant digits max) for more readability, but you may also leave it in
full multiprecision format.

Example: If you want to solve the following linear system Ax = b.

Select the matrix A and start the macro

Xnumbers Tutorial

135

Choose the operation “Linear System” and then move in the right field to select the
vector b.

Indicate, if necessary, the upper-
left cell of the range where you
want to write the result.

Then, press OK. The result will be filled starting from the output cell I2.

Smart
Selector

The special button near the input field is useful for selecting large
matrices .Select the first cell, or an internal cell of the matrix and then
press this button. The entire matrix will be selected

Elaboration time

Multiprecision computation does slow down the computation considerably. It takes
much more time then the standard double precision. The time depends on the matrix
dimension and on the precision digits. The following graphs show the average time for
the inversion and the multiplication of dense matrices.

0

20

40

60

80

100

120

140

160

0 25 50 75 100

invers.
multip.

Time (sec)

N x N

30 digits

Multiprecision

0

1

2

3

4

5

6

0 50 100 150 200

digits

time (sec)

20 x 20

standard precision

As we can see, the inversion of a (100 x 100) matrix, with 30 precision digits, takes
about 150 seconds. Clearly, for this kind of tasks, macros are more suitable than
functions.

Xnumbers Tutorial

136

Integrals & Series

Discrete Fourier Transform

=DFT(samples)
=FFT(samples)

Returns the complex matrix of the DFT transformation of N samples.
This function returns an (N x 2) array. The first column contains the real part; the
second column the complex part
If N is an integer power of 2, thus N=2p, use the fastest FFT
FFT uses the Cooley and Tukey decimation-in-time algorithm.

Formulas
Given N samples (f(0), f(1), f(2),....f(N-1)) of a periodic function f(t) with a normalized
sampling rate (T=1), the DFT is defined by:

() ()[]∑
−

=
⋅−⋅=⋅+=

1

0
/ 2/ 2cos)()()()(

N

n
ir NnksiniNnknfkFikFkF ππ

The components (Fr , Fi) are called the harmonic spectrum of f(t)
From the Fourier series, we can approximate a periodic function f(t) by:

() ()tksinbtkaatf k

K

k
k ⋅+⋅+≅ ∑

−

=
ωωcos)(

1

1
0

where the coefficients (ak , bk) are the components 2Fr and 2Fi of DFT

Example: Find the 16-FFT of the following periodic function (T = 1 sec)

) 3cos(5.0) cos(3)(tttf ωω ++= where
T
πω 2

=

First of all we have to sample the given function. Setting N = 16 , we have a sampling
period of

1,...1 ,0 ,
16
1

−=∆⋅=⇒==∆ Nitit
N
Tt i

) 3cos(5.0) cos(3 iii ttf ωω ++=

Appling the FFT function at the samples set (f0, f1, f2,....f15), we get the complex
discrete Fourier’s transform

Xnumbers Tutorial

137

Note that the FFT returns a (16 x2)
matrix. The first column contains the
real part of FFT while the second
column the imaginary one.

The magnitude and phase can be
easily obtained with the following
formulas

() ()22
imrei FFTFFTA +=

=

re

im
i FFT

FFTarctanθ

Note that the first row of the FFT
contains the average of f(t).
Note also that the rows from 10 to 16
are the mirror copy of the previous
rows.

Discrete Fourier Inverse Transform

=DFT_INV(samples)

=FFT_INV(samples)

Returns the inverse of the DFT transform of N complex samples.
This function returns an (N x 2) array containing the samples of the function f(t)
If N is an integer power of 2, thus N=2p, use the fastest FFT_INV function
FFT_INV uses the Cooley and Tukey decimation-in-time algorithm.

Formulas

[] () ()[]∑
−

=
⋅+⋅⋅+=

1

0
/ 2/ 2cos)()()(

N

k
ir NnksiniNnkkFikFnf ππ

Where the components (Fr , Fi) are the harmonic spectrum of f(t)

Example: Find the inverse transform of the FFT computed in the previous example

Xnumbers Tutorial

138

As we can see, the first column of FFT_INV returns the samples of f(t) that have
originated the FFT

Discrete Fourier Spectrum

=DFSP(samples, [dB], [Angle])

This function returns the harmonic spectrum of a samples set

The parameter samples are e vector of N equidistance samples
The optional parameter dB (default FALSE) sets the output in decibel
The optional parameter Angle (default “RAD”) sets the angle unit (RAD, GRAD, DEG)
The function returns an (N x 2) array, containing the amplitude and phase.

The spectrum is computed for real positive frequencys.

()nnA θ ,
Where

()∑ ++≅ nn tnAftf θω sin)0()(

Example: Find the harmonic spectrum of the following 32 samples

Xnumbers Tutorial

139

Amplitude

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Phase

-100

-50

0

50

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Inverse Discrete Fourier Spectrum

=DFSP_INV(spectrum, [dB], [Angle])

This function rebuilds the temporal sequence from its real spectrum (amplitude, phase)

())(, inn tfA ⇒θ

The parameter spectrum is an (M x 2) array. Each row contains a harmonic. The first
column contains the amplitude and the second column the phase
The optional parameter dB (default FALSE) sets the output in decibel
The optional parameter Angle (default “RAD”) sets the angle unit (RAD, GRAD, DEG)
The function returns the vector (N x 1) where N = 2M

2D Discrete Fourier Transform

=FFT2D (samples)

This function performs the 2D-FFT of a bidimensional data samples (x, y).
The parameter Samples is an (N x M) array where N and M are integer powers of 2 (4,
8, 16, 32, 64…)
The function returns an (2N x M) array. The first N rows contain the real part, the last
N rows contain the imaginary part.

Note: This function requires a large amount of space and effort. Usually it can works
with matrices up to (64 x 64).

Xnumbers Tutorial

140

Example: Analyze the harmonic component of the following 8x8 data matrix

The 2D-FFT can be
computed in a very straight
way. Simply select a 16 x 8
array and insert the FFT2D
where the input parameter is
the given matrix (range
B10:I17).

We can easily extract the
harmonic components:

1)0,0(=H
05.0)0,1(=H
1.0)1,0(=H

jH 354.0354.0)1,1(+=
jH 25.0)2,2(=

If we compute the inverse transform DFT2D_INV(“L10:S25”) we will obtain again the
given starting matrix.

2D Inverse Discrete Fourier Transform

=FFT2D_INV (samples)

This function FFT2D_INV performs the inverse task of the FFT2D. It accepts as input
an (2N x M) array having the real part in the first N rows and the imaginary part in the
last N rows. It returns an (N x N) array

Xnumbers Tutorial

141

Macro DFT (Discrete Fourier Transform)

This macro performs:

• the DFT of a data set of N samples
• the DFT-Inverse of a data set of N complex samples
• the 2D-DFT of a matrix of N x M samples
• the 2D-DFT-Inverse of a two matrices of N x M samples

DFT
It works for any number N.
If N is a powers of 2 (8, 16, 32, 64, etc.) the macro uses the faster FFT algorithm and
the elaboration is more efficient.
The use is quite simple. Select the vector of samples f(k) and then start this macro

The column “t” is not strictly necessary. If present, the macros use it to calculate the
sampling parameters (see the top-right box).
Note that if you have a large input vector, you can select only the first cell f(1) and the
macro automatically select the entire column.
The macro writes the result in the following way

f = frequency sample
Hre = Real part of DFT transform
Him = Imaginary part of DFT transform
Amp = Amplitude (if “polar” is hecked)
Phase = Phase (if “polar” is checked)
The amplituted can be converted in dB
 Amp dB = 20⋅Log(Amp))

Xnumbers Tutorial

142

Operation DFT-inverse

In this case you have to select two columns: the real and imaginary part of the DFT
(Hre, Him). Then start the macro as usually.
If the DFT is in polar form (Amplitude, Phase), you have to checked the “polar” option
and choose consequently the appropriate units: dB and angle

Operation 2D-DFT
It works only for N and M integer power of 2
In this case you have to select a matrix of N x M values (do not select the axes-scales)
Then start the macro as usually.
If you want the DFT in polar form (Amplitude, Phase), you have to checked the “polar”
option and choose consequently the appropriate units: dB and angle

The macro generates two matrices
containing the real and imaginary parts of
the 2D-DFT

Operation 2D-DFT inverse
In this case you have to select a matrix of 2N x M values (do not select the axes
values) containing both real and imaginary part.
Then start the macro as usually.
If the DFT is in polar form (Amplitude, Phase), you have to checked the “polar” option
and choose consequently the appropriate units: dB and angle

Xnumbers Tutorial

143

Macro Sampler

This is a simple but very useful macro for function sampling
It can generate samples of functions such as:

 f (x) , f (x1, x2) or even more variables f (x1, ... xm)

The samples can be arranged in a list and, for two variables only, also in a table
Examples of lists and tables generated by this macro are shown in the following sheet

The tables at the top are the skeletons to generate the samples-list or the samples-
table just below. The skeleton contains the parameter for the sampler

 Start starting point of the variable X0
 Samples number of samples to generate: N
 Period length of the sampling: P
 Step length between two consecutive point H = X1 – X0
 Cyclic True or False (default), specifies if the function is periodic with period P.

The difference between a cyclic or no-cyclic function is in the formula for the step
calculation

S = P / N for cyclic function
S = P / (N-1) for no-cyclic function

For example, the sampling of N = 5, from X0 = 0 and P = 2, needs a step H = 0.5

The first and the points, in this case, are always taken
But, for a periodic function, the same sampling needs a step of H = 0.4

Practically, the last point X = 2, in this case, is discharged, because of being periodic,
is f (0) = f (2). Usually periodic functions require to set Cyclic = “True” for the FT
analysis

Xnumbers Tutorial

144

The skeleton can be drawn
by hand or automatically. In
this case you have only to
give the number of variables
that you need.

The check-box “Function
seed” tells the macro to
created also the cell in which
you can insert the function to
sample

A simple skeleton for one variable is:

In the cell C2 you must insert the function
f(x) to sample. The reference for the
independent variable x is the cell B2. For
example, if the function is y = x +2x2
You have to insert the formula

= B2+2*B2^2 in the cell C2

Parameters N (Samples), P (Period), H (Step) are not all independent. Only two
parameters can be freely chosen.
The macro chooses the first two parameters found from top to bottom
The remain parameter is obtained by the step-formula
Synthetically you can have one of the following three cases

Given parameters Obtained parameter
Samples, Period (N, P) Step (H)
Samples, Step (N, H) Period (P)
Period, Step (P, H) Samples (N)

Look at the following three examples below for better explanation. The given
parameters are in blue while the obtained parameter is in red.

After you have set and filled the skeleton, select it and start the sampler macro again
(remember that range must always have 6 rows, including the header)
The macro show the following window

Xnumbers Tutorial

145

The check-box “Add formula” tells to the macro to leave the formula in the sample set.
Otherwise the sample set will contain only the values. Formulas can be add only for a
monovariable list or for a table

Xnumbers Tutorial

146

Data Integration (Romberg method)

=IntegrDataR(x,y)

=IntRombergMat(x,y)

The first function computes the integral of a discrete set of equidistant points (xi, yi)
using the Romberg method
The set of point may be obtained by sampling with step h.

 xi = x0 + i⋅h , yi = f(xi) , for i = 0, 1, 2,.... (2p+1), where p = 0,1,2, 3...

Usually p is called the rank of Romberg integration

The second function returns the (p+1) x (p+1) Romberg integration matrix R.

R(0,0)
R(1,0) R(1,1)
R(2,0) R(2,1) R(2,2)
R(3,0) R(3,1) R(3,2) R(3,3)
R(4,0) R(4,1) R(4,2) R(4,3) R(4,4)
........

The first column R(p,0) of the above table contains the first integral approximation
obtained by the trapezoidal rule with 2p+1 points. The other columns are generated
using the Richardson's extrapolation formula:

14j
jp,j1,p

j1,p1j1,p −
−

+= +
+++

RR
RR

The right-bottom R(p, p) element converges to the integral.
Relation between N (points) , p (rank), and dim(R)

p (rank)=> 0 1 2 3 4 5 6 7 8
N (points)=> 2 3 5 9 17 33 65 129 257
Dim(R) => 1 2 3 4 5 6 7 8 9

In the following example we performs the numerical integration of the given data set
(xi, fi). We have also computed the Romberg matrix. From the last row it is evident the
fast convergence of this method.

By the way, the given data set was obtained by sampling of the function sin(x)/x
So we have computed an approximation of the Sine-Integral for x = 1.6

Xnumbers Tutorial

147

dt
t

txSi
x

∫=
0

)sin()(

Si(1.6) ≅ 1.38918048587044...

Note that with only 9 points we have approximated the Sine-Integral with a precision
better of 1e-9.

Function Integration (Romberg method)

=Integr_ro(Funct, a, b, [Parm], [rank], [ErrMax])

This function computes the numeric integral of a function f(x) by the Romberg method.

∫=
b

a
xfI)(

The parameter Funct is a math expression string in the variable x, such as:

 "x*cos(x)", "1+x+x^2", "exp(-x^2)", ecc.. .

Remember the quote " " for passing a string to an Excel function.
Funct may be also a cell containing a string formula
Param contains values for parameters substitution (if there are)
Rank, from 1 to 16 (default), sets the maximum integration rank.
ErrMax (default 1E-15) , sets the maximum relative error.

For further details about writing a math string see Math formula string

The algorithm starts with rank =1 and continues incrementing the rank until it detects a
stop condition.

 |R(p, p) - R(p, p-1)| < 10^-15 absolute error detect
or
 (|R(p, p) - R(p, p-1)|) / |R(p, p)| < 10^-15 if |R(p, p)| >> 1 relative error detect
or
 rank = 16

Example

Compute the integral of x*cos(x) for 0 <= x <= 0.4
Integr_ro("x*cos(x)";0;0.4) = 0.0768283309263453

This result is reached with rank =4 , s =16 sub-intervals, and an estimate error of
about E= 3.75E-16

This function can also displays the number of sub-intervals and the estimate error, To
see these values simply select three adjacent cells and give the
CTRL+SHIFT+ENTER key sequence.

Xnumbers Tutorial

148

Function Integration (Double Exponential method)

= Integr_de(funct, a, b, [Param])

This function11 computes the numeric integral of a function f(x) by the Double
Exponential method. This is particularly adapted for improper integrals and infinite, not
oscillating integrals.

∫=
b

a

dxxfI)(

∫
+∞

=
a

dxxfI)(

∫
+∞

∞−

= dxxfI)(

The parameter funct is a math expression string in the variable x, such as:

 "x*cos(x)", "1+x+x^2", "exp(-x^2)", ecc.. .

Remember the quote " " for passing a string to an Excel function.
Funct may be also a cell containing a string formula
The limits "a" and "b" can also be infinite. In this case insert the string "inf"
Param contains labels and values for parameters substitution (if there are)

For further details about writing a math string see Math formula string

The Double Exponential method is a fairly good numerical integration technique of
high efficiency adapt for integrating improper integrals, infinite integrals and "stiff"
integrals having discontinue derivative functions.
This ingenious scheme, was introduced first by Takahasi and Mori [1974]

For finite integral, the formula, also called "tanh-sinh transformation" is the following

∫∫
+∞

∞−

⋅= dtthtxfdxxf
b

a

)())(()(

where:

())sinh(tanh
22

)(tababtx −
+

+
=

 ())sinh(cosh
)cosh(

2
)(2 t

tabth −
=

Example

4996...0.47442115)1(
1

0

3.05.0 =−∫ dxxx

The above integral is very difficult to compute because the derivative is discontinue at
0 and 1
The Romberg method would require more than 32.000 points to reach an accuracy of
1E-7. On the contrary, this function requires less then 100 points reaching the high
accuracy of 1E-14

11 This function uses the double exponential quadrature derived from the original FORTRAN subroutine
INTDE of the DE-Quadrature (Numerical Automatic Integrator) Package , by Takuya OOURA,
Copyright(C) 1996

Xnumbers Tutorial

149

This function can also evaluate infinite and/or semi-infinite integral
Example

∫
∞

−

0

dxx n

As known, the integral exist if n > 1 and its value is I = 1/(n-1). The parameter "n" is
called "order of convergence".

For n = 1.1 we get I = 10

Note that we need to pass the parameter with its label "n". (Param = D1:D2)

This function cannot give reliable results if n is too close to 1. The minimum value is
about n = 1.03
For lower values the function returns "?".

The DE integration works very well for finite improper integral
Example

() () 2lnlimln
1

2

0

1

0

2 −== ∫∫ +→
a

a
dxxdxx

Note that the function f(x) is not defined for x = 0

Xnumbers Tutorial

150

Function Integration (mixed method)

= Integr(Funct, a, b, [Param])

This function computes the numeric integral of a function f(x) over a finite or infinite
interval

∫
b

a

dxxf

)(

∫
∞+

)(
a

dxxf

∫
∞−

b

dxxf

)(

∫
∞+

∞−

)(dxxf

This function can also works with improper integrals and piece-wise functions
The parameter funct is a math expression string in the variable x, such as:

 "x*cos(x)", "1+x+x^2", "exp(-x^2)", ecc.. .

Remember the quote " " for passing a string to an Excel function.
Funct may be also a cell containing a string formula
The limits "a" and "b" can also be infinite. In this case, insert the string "inf"
Param contains labels and values for parameters substitution (if there are)

This function uses two quadrature algorithms
 1) The double exponential method12 (see function integr_de)
 2) The adaptive Newton-Cotes schema (Bode's formula) (see macro Integral_Inf)

If the first method fails, the function switches on the second method

Oscillating functions, need specific algorithms. See Integration of oscillating functions
(Filon formulas) and Fourier's sine-cosine transform

Example. Compute the integral of x⋅cos(x) for 0 ≤ x ≤ 0.4

In the given interval the function is continuous, so its definite integral exists. This result
is reached with rank = 4, s = 16 sub-intervals, and an estimate error of about 3.7E-16.
This function returns the integral and can also displays the number of sub-intervals
and the estimate error. To see these values simply select three adjacent cells and give
the CTRL+SHIFT+ENTER keys sequence.
Note that the function Integr is surrounded by { } . This means that it returns an array

The function Integr can accept also parameters in the math expression string.
See the example below.

12 This function uses the double exponential quadrature derived from the original FORTRAN subroutines
INTDE and INTDEI of the DE-Quadrature (Numerical Automatic Integrator) Package , by Takuya OOURA,
Copyright(C) 1996

Xnumbers Tutorial

151

Note that we must include the parameter labels in order to distinguish the parameters
"k", "w", and "q". The integration variable is always "x"

Beware of the poles
Before attempting to evaluate a definite integral, we must always check if the integral
exists. The function integr does not perform this check and the result may be wrong. In
other words, we have to make a short investigation about the function that we want to
integrate. Let's see the following example
Assume to have to compute the following integrals

dx
x

 dx
x

12

2 ,
12

2
2

1

0
2

2/1

0 −− ∫∫

We show that the first integral exists while, on the contrary, the second does not exist
For ...707.02/2 ≅=px the function has a pole; that is:

+∞=

−
−∞=

− +− →→ 12
2 lim ,

12
2 lim 22 xx pp xxxx

The first integral exists because its interval [0, 0.5] does not contain the pole and the
function is continuous in this interval. We can compute its exact value:

+
−

=
−∫ |12|

|12|log
2
2

12
2
2 x

xdx
x

⇒ ()12log2

12
22/1

0
2 −=

−∫ dx
x

In this situation the function Integr
returns the correct numeric result
with an excellent accuracy, better
than 1E-14.

For this result the integration
algorithm needs 128 sub-intervals

The interval of the second integral contains the pole, so we have to perform some
more investigation. Let's begin to examine how the integral function approaches the
pole xp taking separately the limit from the right and from the left

−∞=

+

−
−∞=

+

−
+− →→ 12

12
log lim ,

12

12
log lim

x

x

x

x

pp xxxx

Xnumbers Tutorial

152

As we can see the both limits are infinite, so the second integral does not exists
Note that if we apply directly the fundamental integral theorem we would a wrong
result:

()12ln2
|12|
|12|log

2
2

12
2

1

0

!1

0
2 −=

+
−

=
−∫ x

xdx
x

wrong

Let's see how the function integr works in this case.

The numeric result is, of course,
completely wrong because the
given integral goes to the infinity.
But, even in this situation, this
function gives us an alert: the sub-
intervals have reached the
maximum limit of 65536 (216)
So the result accuracy must be
regarded with a reasonable doubt.

Complex Function Integration (Romberg method)

=cplxintegr(Funct, a, b)

This function returns the numeric integral of a complex function f(z) by the Romberg
method.

dzzf aFbF
b

a

)()()(∫=−

The integration function Funct must be a string in the variable z and can be defined
mixing all arithmetic operators, common elementary functions and complex numbers
like:

"z*cos(z)", "1+(1+i)*z+z^2", "exp(-z^2)", ecc.. .

Remember the quote " " for passing a string to an Excel function.
Parameters "a" and b” can be real or complex. Complex values are inserted as arrays
of two cells.

Example: Evaluate the following integral

dz
z

ii

i

 1
1

1
2∫

+

−

+

Because the integration function is analytic, then the given integral is independent
form the integration path. Therefore it can be calculated by the function cplxintegr

Xnumbers Tutorial

153

The exact result is the complex
number (−1+i)

Note that, thanks to the excellent
accuracy, the result is shown exactly
even if it is intrinsically approximated

Xnumbers Tutorial

154

Data Integration (Newton-Cotes)

=IntegrDataC(x,y, [Degree])

This function returns the integral of a discrete set of points (xi, yi) using the Newton-
Cotes formulas. The points may be equidistance or random. The parameter degree,
from 1(default) to 10, set the order of the Newton-Cotes formula written as:

∑∫
=

+

⋅⋅=
n

j
jj

hnx

x
bf

k
hdxxf

0

 0

0

)(

where fi = yi , h is the integration step, n is the degree; the coefficients (bj , K) can
be extracted from the following table:

Degree 1 2 3 4 5 6 7 8 9 10
K 2 3 8 45 288 140 17280 14175 89600 299376
b0 1 1 3 14 95 41 5257 3956 25713 80335
b1 1 4 9 64 375 216 25039 23552 141669 531500
b2 1 9 24 250 27 9261 -3712 9720 -242625
b3 3 64 250 272 20923 41984 174096 1362000
b4 14 375 27 20923 -18160 52002 -1302750
b5 95 216 9261 41984 52002 2136840
b6 41 25039 -3712 174096 -1302750
b7 5257 23552 9720 1362000
b8 3956 141669 -242625
b9 25713 531500
b10 80335

As we can see, for degree=1, the Newton-Cotes formula coincides with the trapezoidal
rule and, for degree = 2, with the popular Cavalieri-Simpson formula.

Trapezoid rule Cavalieri-Simpson rule

()10

1

0

01

2
)(ffhxf

xxh
x

x
+≅

−=

∫
 ()210

2

0

02

4
3

)(

2

fffhxf

xxh

x

x
++≅

−
=

∫

For degree = 4, the table gives the Bode's rule

4
04 xxh −

=

()00000 1464246414
45

)(
4

0

fffffhdxxf
x

x

++++≅∫

Using the IntegrDataC is very easy.
Example. Given the data table (x y) of pag 142 , calculate the integral with the Newton-
Cotes formulas of degree = 1, 2, 4, 6
We already know that the table is the sampling of the function sin(x)/x with step 0.2
and that the result approximates the function Si(1.6) ≅ 1.38918048587044. Using the
Romberg's method we have computed the integral with an accuracy better than 1E-9

Xnumbers Tutorial

155

Let's see now how the Newton-Cotes formulas work.

As we can see, the convergence to the exact result is evident. The most accurate
result is reached with the 6th degree Newton-Cotes formula. We observe that the
accuracy is comparable with those of the Romberg method. From experience we
observe that often the Romberg method gives a global accuracy comparable with the
Newton-Cotes formulas between 4th and 6th order.

Differently from IntegrDataR (Romberg method), the IntegrDataC is suitable to work
with random samples

Example. Given the data table (x y) , approximate the integral with the Cavalieri-
Simpson formula

x y
1 0

1.1 0.09531018
1.2 0.182321557
1.4 0.336472237
1.8 0.587786665
2.4 0.875468737
3.2 1.16315081

4 1.386294361
5 1.609437912 0

0.4

0.8

1.2

1.6

2

0 1 2 3 4 5 6

Note that the data points are not equidistant

The points have been
extracted from the function

 y = ln(x) .

Thus the exact integral is

 5*ln(5)-4 ≅ 4.0471896

Xnumbers Tutorial

156

Data integration for random point.
For a distribution of set of points (xi, yi) not equidistant, we cannot use directly the
Newton-Cotes formulas for fixed step.
In that case, IntegrDataC reorganizes the random data samples in equidistant data
samples and after that, computes the integral using the standard formulas for fixed
step

Random Samples Converted to Equispaced Samples

{ (xi , yi) ; i = 0, 1, ... n } ⇒ { (xi = x0+i h , yi (xi) ; i = 0, 1, ... m }

For the computation of the function f(x0+i h) at the equispaced fixed points,
IntegrDataC uses the Aitken's Interpolation algorithm.

Aitken's interpolation algorithm.
Given a set of points:

f(x) ≡ { (xi , yi) i = 0, 1, ... n }

This method is used to find the interpolation yp = f(xp) at the wanted value xp .
It is efficient as the Newton formula, and it is also easy to code.

For j = 1 To n - 1
 For i = j + 1 To n
 y(i) = y(j) * (x(i) - xp) - y(i) * (x(j) - xp)/ (x(i) - x(j))
 Next i
Next j

yp = yi(n)

Function Integration (Newton-Cotes formulas)

=Integr_nc(funct, a, b, Intervals, [Degree])

This function returns the numeric integral of a function f(x) using the Newton-Cotes
formulas.

dxxf aFbF
b

a

)()()(∫=−

The parameter Funct is a math expression string in the variable x, such as:

"x*cos(x)", "1+x+x^2", "exp(-x^2)", ecc.. .

Remember the quote " " for passing a string to an Excel function.
Funct may be also a cell containing a string formula
The parameters "a" and "b" are the limits of integration interval
The parameter "Intervals" sets the number of sub-intervals dividing the integration
interval.
The parameter degree, from 1(default) to 10, set the order of the Newton-Cotes
formula. The degree = 1 coincides with the Trapezoidal rule
The degree = 2 coincides with the Cavalieri-Simpson formula; the degree = 4 with the
Bode's rule

Remember that the total knots of the function computation is:

knots = Intervals × Degree + 1

Xnumbers Tutorial

157

Example: Approximate the following integral using 10 sub-intervals and three different
methods: trapezoidal, Cavalieri-Simpson, and the Bode's rule.

∫ −⋅
1

0

dxex x

The indefinite integral is known in a closed form:

() xx exdxex −− +−=⋅∫ 1

So we can compare the exact result, that is 121 −− e ≅ 0.264241117657115356

Integr_nc("x*exp(-x)",0,1,10,1) = 0.263408098685072 (8.3E-04)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1 1.2

x

f(x)

The trapezoidal rule,
with 10 sub-intervals,
requires 2 knots for
each sub-interval for a
total of 11 function
evaluations (11 knots)

The accuracy is better
then 1E-3

Integr_nc("x*exp(-x)",0,1,10,2) = 0.264241039074082 (7.8E-08)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1 1.2

x

f(x)

The Cavalieri-Simpson
rule, with 10 sub-
intervals, requires 3
knots for each sub-
interval for a total 21
function evaluation (21
knots)

The accuracy is better
then 1E-7

Xnumbers Tutorial

158

Integr_nc("x*exp(-x)",0,1,10,4) = 0.264241117655293 (1.8E-12)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1 1.2

x

f(x)

The Bode's rule, with 10
sub-intervals, requires
5 knots for each sub-
interval for a total of 41
function evaluation (41
knots).

The accuracy is better
then 2E-12

Integration: symbolic and numeric approaches
The usual approach to the calculation of the definite integral involves two steps: the
first is the construction of the symbolic anti-derivative F(x) of f(x)

∫= dxxfxF)()(

and the second step is the evaluation of the definite integral applying the fundamental
integration theorem.

∫ −=
b

a

aFbFdxxf)()()(

This approach can only be adopt for the set of the functions of which we know the anti-
derivative in a closed form. For the most f(x), the integral must be approximated either
by numerical quadrature or by same kind of series expansion.

It is usually accepted that symbolic approaches, when possible, gives more accurate
result then the numeric one. This is not always true. Even if the symbolic anti-
derivative is know in a closed form, it may often be unsuitable for further numerical
evaluation. In particular, we have cases in which such "exact" answers when
numerically evaluated give less accurate results than numerical quadrature methods13
Let's see. Assume to have the following integral functions

() cxdx
x

xxF +=
+

= ∫ 3
6

2

arctan
1

3)(

We want to calculated the definite integral between a = 2000 and b = 2004
The analytic approach gives

() ()33 arctanarctan)()(abaFbF −=−

In the following worksheet we have compared the evaluations with the exact anti-
derivative and the numerical quadrature with the Bode's rule

13 "Improving Exact Integral from Symbolic Algebra System", R.J. Fateman and W. Kaham, University of
California, Berkeley, July 18,2000

Xnumbers Tutorial

159

In the cell C2 we have inserted the anti-derivative function
=ARCTAN(B2^3)-ARCTAN(A2^3)

In the cell C2 we have inserted the Bode formula with 20 intervals
=Integr_nc(D1;A2;B2;20;4)

In the cell C5 we have also inserted the reference integral value

As we can see, the more accurate result is those obtained with the numerical
quadrature; surprisingly, it is more than 200 millions times more accurate than the one
of the exact method!
It is evident from this example that only the symbolic integration could not resolve
efficiently the problem. For numerical integration the quadrature methods are often
more efficient and accurate.

Xnumbers Tutorial

160

Integration of oscillating functions (Filon formulas)

=Integr_fsin(Funct, a, b, k, Intervals)

=Integr_fcos(Funct, a, b, k, Intervals)

Oscillating functions can reserve several problems for the common polynomial
integration formulas. The Filon's formulas is adapt to compute efficiently the following
integrals.

) (sin)(,) cos()(∫∫ ⋅⋅
b

a

b

a
dttktfdttktf

for k = 1, 2, 3...N
The parameter Funct is a math expression string in the variable x, such as:

"x*cos(x)", "1+x+x^2", "exp(-x^2)", ecc.. .

Remember the quote " " for passing a string to an Excel function.
Funct may be also a cell containing a string formula
The parameters "a" and "b" are the limits of integration interval
The parameter "k" is a positive integer
The parameter "Intervals" sets the number of sub-intervals dividing the integration
interval.

Remember that the total nodes of function computation is:

Nodes = Intervals × 2 + 1

To understand the effort in this kind of numerical integration let's see this simple test.
Assume we have to numerically evaluate the following integral for several integer
values of k, with 0 < k < 25

) cos(
0

4∫ ⋅
π

dttkx

If we perform the computation with the Cavalieri-Simpson formula (80 nodes) and with
the Filon formula (80 nodes), we get the following result

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
0 5 10 15 20 25 30k

Cavalieri-Simpson
Fillon

Relative error versus k

As we can see, the relative error
increase with the number k much
more for the Cavalieri-Simpson rule
than the Filon formula.
For k = 24 the first formula should
have at least 400 nodes to reach
the same accuracy of the Filon
formula.

Example: evaluate the integral of the following oscillating function

Xnumbers Tutorial

161

∫ ⋅
+

π2

0
2)8sin(

1
1 x

x

that can be rearranged as

∫ ⋅
π2

0

)8sin()(xxg

where
1

1)(2 +
=

x
xg

The plot of the integration function and the envelope function g(x) are shown in the
following graph

-1.2

-1
-0.8

-0.6
-0.4

-0.2

0
0.2

0.4
0.6

0.8
1

1.2

0 1 2 3 4 5 6 7

1/(x^2+1)

-1/(x^2+1)

1/(x^2+1)*sin(8*x)

Below, a simple arrangement to compute the given integral

The approximate error is less then 1E-8, with 300 intervals (default)

Xnumbers Tutorial

162

Integration of oscillating functions (Fourier transform)

= Fourier_sin(funct, k, [a], [param])

= Fourier_cos(funct, k, [a], [param])

These functions14 perform the numerical integration of oscillating functions over infinite
intervals

∫
+∞

⋅⋅
a

dxxkxf)sin()(

∫
+∞

⋅⋅
a

dxxkxf)cos()(

If a = 0 (default) , these integrals are called "Fourier's sine-cosine transforms"

The parameter funct is a math expression defining the function f(x), not oscillating and
converging to 0 for x approaching to infinity:

 "1/x", " 1/(8*x^2)", " exp(-b*x)", ecc.. .

Remember the quote " " for passing a string to an Excel function. Funct may be also a
cell containing a string formula
The parameter "k" is a positive number
The "Param" contains labels and values for parameters substitution (if there are)

These functions return "?" if the integral is not converging or if they cannot compute
the integral with sufficient accuracy

For finite integration see also Integration of oscillating functions (Filon formulas)

Example. Prove that is

2
 sin

0

π
=∫

∞+

dx
x

x

The graph of the integration
functions is at the right.

Numerically specking, this
integral is very difficult to
calculate for many algorithms.

For example, the Bode adaptive quadrature needs more than 10.000 points for getting
accuracy of about 1E-4. The Fourier_sin function on the contrary is very efficient for
this kind of integral

The integral can be arranged in the following form

14 These functions use the double exponential quadrature derived from the original FORTRAN subroutine
INTDEO of the DE-Quadrature (Numerical Automatic Integrator) Package , by Takuya OOURA,
Copyright(C) 1996

Xnumbers Tutorial

163

∫∫
∞+∞+

=
00

 sin 1 sin dxx
x

dx
x

x

That is the Fourier's sine transform of 1/x

We see that the accuracy is better than 1E-15. Note that the function automatically
multiply the integration function f(x) for the factor sin(k*x). So we have only to write the
f(x)

Example. Verify that is

8
 4cos

0

π
=∫

∞+

dx
x

x

The graph of the integration functions is
Observe that the integration function
goes to infinity for x approaching to 0.

Numerically specking this function is "terrible".
The integral can be arranged in the following form

∫∫
∞+∞+

=
00

 4cos 1 4cos dxx
x

dx
x

x

That is the Fourier's cosine transform of 1/x^0.5

The accuracy is better than 1E-15

Infinite Integration of oscillating functions

Generally, the infinite integration of real functions having a certain type of infinite
oscillating tails may give some problem even to the most efficient quadrature
algorithms. These problems can be avoided adopting specific integration tricks
Let's see some of them.
Example. Assume to calculate the following integral

Xnumbers Tutorial

164

() () dx
x

xx 2coscos
0
∫

+∞ −

The integration function coverges to zero but it contains two oscillating terms. So we
cannot use directly the integr or integr_de function because they returns "?"
For solving we can use the Fourier's cosine trasform, separating each oscillating term.

The given integral can be re-arranged in the following way

() () () () () () dx
x

xdx
x

xdx
x

xxdx
x

xx 2cos cos 2coscos 2coscos
11

1

00
∫∫∫∫
∞+∞+∞+

−++
−

=
−

Note that the last two integrals cannot have the lower limit 0 because they do not
converge for x approaching to 0.

The first integral can be evaluted with the integr function and the two last integrals are
evaluated with the Fourier_cos function with a = 1. Let's see the following
spreadsheet arrangement

Compare the accuracy with the exact result I = Ln(2)

Example. Calculate the following integral

dx
x

x)(sin
0

2

4

∫
∞+

Remembering that is

8
)4cos(

2
)2cos(

8
3)(sin4 xxx +−=

The given integral can be arranged as

() ()dx
x

xdx
x

xdx
x

dx
x

xdx
x

x
∫∫∫∫∫

+∞+∞+∞∞+

+−++=
1

2
1

2
1

2

1

0
2

4

0
2

4

8
4cos

2
2cos

8
3sin sin

Xnumbers Tutorial

165

The first and second integral can be evaluted with the integr function and the two last
integrals are evaluated with the Fourier_cos function with a = 1. Let's see the
following spreadsheet arrangement

Compare the accuracy with the exact result I = π /2

Example. Calculate the following integral

()dxx sin
0

2∫
∞+

This function oscillates very badly. Note that the function does not converge to zero,
oscillating continuously from 1 and −1, but we can show that its integral is finite.

Let's perform the substitution

dt
t

dxtxtx
2

1 2 =⇒=⇒=

So, the given integral becomes

() () dt
t
tdxx

2
sin sin

00

2 ∫∫
∞+∞+

=

That can be easily computed by the Fourier's cosine transform

Compare the accuracy with the exact result I = (π /8)1/2

Xnumbers Tutorial

166

Double Integral

2D Integration for Normal Domains
Xnumbers contains routines for integrating bivariate functions f (x, y) over a normal
domain (normal to the x-axis and/or to the y-axis) or a circular domain.

c

d
h 2(y) h 1(y)

x

y

Domain normal to y-axis
a b

g 1(x)

g 2(x)

x

y

Domain normal to x-axis

x2+y2 ≤ R2

x

y

Circular Domain

For those kinds of 2D-domains the integration formulas can be re-written as the
following

∫ ∫∫∫ =
b

a

xg

xgD

dydxyxfdsyxf
X

)(

)(

2

1

),(),(

∫ ∫∫∫ =
d

c

yh

yhD

dxdyyxfdsyxf
Y

)(

)(

2

1

),(),(

∫ ∫∫∫ =
π

θρρθρθρ
2

0 0

))sin(),cos((),(
R

C

ddfdsyxf

Note that a normal domain implies that - at least - one axis must have constant limits.
Rectangular domains are a sub-case of normal domains in which both axes have
constant limits.

The routines are the macro Integr2D - adapted for integrating smooth functions f(x, y)
– and its function version Integr_2D that uses the same bidimensional Romberg
algorithm, but limited to about 65.000 points.

Double Integration macro

Integr2D()

This macro performs the numerical integration of a smooth, regular function f(x, y) over
a plane normal domain D(x, y) .

∫ ∫
b

a

d

c

dydxyxf),(

The integration functions f(x, y) and – eventually – also the bounding limits – a, b, c, d
-can be written in symbolic expression

Xnumbers Tutorial

167

The integration function can be:

• bi-variate functions like x^2+y^2-x*y, log(1+x+y), 1/(1+x^2+2*y^2), etc.
• constant numbers like 0 , 2, 1.5, 1E-6 , etc.
• constant expressions like 1/2, √2+1, sin(0.1), etc.

Boundary limits can be:

• constant numbers like 0 , 2 , 10 , 3.141 , etc.
• constant expressions like 1/2 , √2+1, pi, sin(1/2*pi) , exp(1) , etc.
• mono-variable functions like x/2 , 3y-10 , x^2+x-1 , etc.

A normal domain has, at least, two constant boundary limits.
Function and limits can be passed to the macro directly or by reference. That is: you
can write directly the symbolic expressions or constants into the input-fields or you can
pass the cells containing the expressions. This second mode is more easy and straight
There is also a function version of this routine.

Let’ see how it works
Approximate the following double integral of the function ln(1+x+y) in the closed region
delimited by the given constrains

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x^2

x+1

Integration function

)1ln(yx ++

Integration domain D

1
10

2 +≤≤

≤≤

xyx
x

The domain D is show in the above
plot. As we can see, it is a domain
normal to the x-axis

Verify that the given integral approximates the symbolic expression at the right

∫ ∫∫∫
+

++=
1

0

1

),(2

)1ln(),(
x

xyxD

dydxyxdsyxf

8
17

12
3)2ln(7

4
)3ln(9

−−+
− π

The macro assume as default the following simple arrangement (but, of course, it is
not obligatory at all)

Select the A2 cell and start
the Integr2D macro.

Xnumbers Tutorial

168

As we can see, the entire input
fields are filled with the right cell
references.

The output result will start from the
A4 cell
The macro outputs 5 results:

1) Integral
2) Relative error estimation
3) Total points evaluated
4) Elaboration time
5) Error message

Optional we can adjust the Error
limit or the Rank. But usually the
only thing to do is clicking on the
“run” button

Note: the computation effort
increases exponentially with the
rank, because is:

Total points = 4K.

The results will appear as the
following

Double integration function

=Integr_2D (Fxy, a, b, c, d, [Polar],[ErrMax])

This function returns the numeric integral of a smooth regular function f(x, y) over a
plane normal domain D(x, y) .

∫ ∫
b

a

d

c

dydxyxf),(

The integration functions f(x, y) and – eventually – also the bounding limits – a, b, c, d
-can be written in symbolic expression

The integration function can be:

• bivariate functions like x^2+y^2-x*y, log(1+x+y), 1/(1+x^2+2*y^2), etc.
• constant numbers like 0 , 2, 1.5, 1E-6 , etc.
• constant expressions like 1/2, √2+1, sin(0.1), etc.

The boundary limits can be:

• constant numbers like 0 , 2 , 10 , 3.141 , etc.
• constant expressions like 1/2 , √2+1, pi, sin(1/2*pi) , exp(1) , etc.
• monovariable functions like x/2 , 3y-10 , x^2+x-1 , etc.

A normal domain has, at least, two constant boundary limits.

Xnumbers Tutorial

169

Example. Approximate the following double integral

∫ ∫
+

++
1

0

1

2

 1)yln(x
x

x

dxdy

8
17

12
3)2ln(7

4
)3ln(9

−−+
− π

The integration domain is shown in the previous example.
The computing can be arranged as the following

In order to avoid long elaboration time, the function limits the total evaluation points to
about 65.000 (rank = 8). For heavy computations use the macro Integr2D
Tip: this function can also return the relative error, the total of evaluation points and the
error message (if any). To see these values simply select a range of two, three or four,
adjacent cells (vertical or horizontal) and give the CTRL+SHIFT+ENTER key
sequence.

Example: Approximate the following integral

dxdy
yx∫ ∫ ++

1

0

y/2
22

xe

1
1

The integration domain is represented in the following plot

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

log(x)

2x

Integration domain D

yexy
y

≤≤

≤≤

2

10

As we can see the domain is
normal to the y-axes

The computation of this double integral can be arranged as the following

Xnumbers Tutorial

170

Infinite integral

Integral_Inf()

This macro performs the numeric integration of a smooth, regular, not oscillating
function f(x) over an unlimited (or very long) interval

∫∫∫
+∞

∞−∞−

+∞
dxxfdxxfdxxf

a

a
)(,)(,)(

This macro can use two different methods:

• The Bode formula with adaptive step
• The double exponential algorithm

The Bode formula with 8 steps to calculate the integral and the truncation error.

()432101 73212327
45
2 fffffhIh ++++=

()876542 73212327
45
2 fffffhIh ++++=

21 hhh III +=

63
2hh

T
IIE −

≈

After each step the routine detects the truncation error and recalculates the step in
order to keep a constant error (variable step integration method).

The double exponential algorithm, also called "tanh-sinh quadrature". first introduced
by Takahasi and Mori, is based on the hyperbolic variable transformations.

))tanh(sinh(tx = () dt
t

tdx
)sinh(cosh2

)cosh(
2=

It is more complicated then the polynomial Newton-Cotes schema but, on the other
hand, it is much more efficient.

Using this macro is very easy.
Example: Approximate the given integral

∫
∞+ −⋅⋅

0

2100 dxex x

The integration function is regular over the entire x-axes; the exponential assures the
convergence. Thus the infinite integral exists.
Put the symbolic expression “100*x^2*exp(-x)” in any cell that you like (A3 for
example), and arrange the worksheet in the following way (but it is not obligatory at all)

Xnumbers Tutorial

171

The word “inf” means – of course –
infinity.
It is not necessary to specify the
sign, because the macro always
assumes
“b” as +inf
“a” as -inf

Now select the cell A3 and run the macro Integral_Inf . The input fields will be
automatically filled

Choose “run” to start the integration routine. The result will be similar to the worksheet
below (without formatting) where we have compare the result of both methods

As we can see the integral is 200 with excellent approximation for both methods but
the double exponential is more efficient. It required only 199 function evaluations.

Sometime we have to calculate the integral over the entire x- axes. Let’ see

∫
∞+

∞− ++
++ dx

xx
xx

1
32 4

2

Xnumbers Tutorial

172

Note that in this case we have needed more than 10.000 evaluation point for the
variable step method but only 344 for the DE method. The superiority is ever so
evident? Not ever. There are cases in which the adaptive quadrature schema works
better. For example when the integration function has a finite discontinuity (jump)
inside the integration interval; this usually happens for the piecewise functions.

Example, Assume to have to compute the following didactical integral

()∫
∞+

−
1

2

15.1sgn dx
x

x

The integration function is sketched
in the following graph

In this case is easy to calculate the
integral simply separating the given
interval [1, +∞] in two sub-intervals:
[1, 1.5]∪ [1.5, +∞].
Calculating each integral and
summing we get the exact result
I = −1/3.

But we want here to investigate how the two methods works in this situation

As we can see the variable step method has find the result with high precision using
about 7200 steps. The double exponential algorithm even fails the convergence

We have to put in evidence that using this macro in a “blind” way, can lead to wrong
result. We should always study the integration function to discover singularities,
discontinuities, convergence rate, etc. If the integration function is “sufficiently”
smooth, then the numeric integration can give good approximate results.

Xnumbers Tutorial

173

This routine can also be used over a closed long interval, when other algorithms would
take too long computational time.

Series Evaluation

=xSerie(Funct, Id, Id_min, Id_max, [Param], [DgtMax])

Returns the numeric series of a function f(n) .

∑
=

=
max

min n
)(nfs

The parameter Funct is a math expression string such as:
 "2^n/n*(-1)^(n+1)", "x^n/n!", "(-1)^(n)*(3+a)*x/(n-1)", ...

Remember the quote " " for passing a string to an Excel function.
For further details about the math string see Math formula string

Id indicates the integer index of the sum (usually "n", "k" , "i", etc.)
Id_min and Id_max indicate the range of the index.
The function may have also other parameters ("x", "y", "a", etc.) that can assume real
values.
Param contains labels and values for parameters substitution (if there are). If we pass
the variable range without “labels”, the function will assign the values to the variables
in the same order that they appear in the formula string, from left to right.
The parameter DgtMax sets the multiprecision arithmetic. if omitted or zero the
function uses the fastest standard arithmetic

Example 1.

xSerie("x^n/n*(-1)^(n+1)", "n", 1, 10, 2)

The function substitutes x = 2 and then, computes the series f(n) for n =1, 2, 3,...10

10
2...

5
2

4
2

3
2

2
22

)1(
2

105432
1

10

1
1 −+−+−=

−⋅
∑

=
+

n
n

n

n

Example 2. Compute

∑
=

=
10

0 n

n

n!
 xs

for x = −1.5, with standard precision (15 digits) and with 25 digits. As known, this
series approximates the exponential e^(-1.5)

Xnumbers Tutorial

174

The function xSerie accepts one or more parameters.
Example 3. Compute the following series

∑

=

+⋅
=

10

1 n n
n abs

for a = 0.7 and b = 1.5, in standard precision

Note that we have enclosed the labels "a" and "b" in the range B4:C5 passed to the
function as the argument "Param". The labels indicate to the function the correct
assignment between the variables and their values
Labels are optional. If we pass only the range B5:C5, without labels, the function
assign the values to the variables in the order from left to right.
Note how compact and straight is the calculation using the xSerie function.

Series acceleration with ∆^2

Many series are very slow to converge requiring therefore methods to accelerate their
convergence. The Aitken's extrapolation formula (∆2 extrapolation) can be used for
this scope. Practically we build a new series S(1), whose partial sums Sn

(1) are given by
the Aitken's formula. It is possible to repeat the process starting from the series S(1) to
obtain S(2)., and so on.

Example. We want to approximate the following series:

∑

∞

= +
−

=
0k

k

k1
)1(S

We know the exact result that is

 Σ = Log(2) = 0.693147180559945...

In the cell B4 we have insert the formula

=Series(B1;"k";0;A4)

In the cell C4 we have inserted

=(B4-LN(2))

we fill the rows from 5 to 16 simply selecting the range
B4:C4 and dragging it down.
In the last cell B17 we have inserted the function

=ExtDelta2(B10:B16)

performing the ∆2 extrapolation using the last 7 values
of the sum

Xnumbers Tutorial

175

As we can see, the cell B16 shows the sum with 12 terms; its approximation is very
poor having an error of more than 0.01. But if we apply the ∆2 extrapolation at the last
seven partial sums S(12), S(11), S(10) S(6) we have a good approximation with an
error less then 1E-8
Note that for reaching this accuracy the given series would need more than 100 million
terms!

Complex Series Evaluation

=cplxserie(Formula, min, max, [z0])

This function returns the numeric series of a complex function f(z, n) .

∑
=

=
1

0

),(
n

nn
nzfS

Formula is a math expression string defined by arithmetic operators and common
elementary functions such as:
 "2^n/n*(-1)^(n+1)", "x^n/n!", "(-1)^(n)*(3+j)*x/(n-1)", ...

Remember the quote """ to pass a string to an Excel function.
The integer variable must be “n”.
The parameters "min" and "max" set the minimum and the maximum limits of the
integer variable "n".
The function may have also a complex variable "z". In that case specify its value in the
parameter z0.

Example: evaluate the given series for z = z0 = 2-i

 20
...

32

20

1

zzzz
n
zS

n

+++== ∑
=

Xnumbers Tutorial

176

Double Series

= xSerie2D(Funct, Id1, Id1_min, Id1_max, Id2, Id2_min, Id2_max, [Param],
[DgtMax])

Returns the numeric double series of a function f(n, m).

∑∑=
n m

)m,n(fs

The parameter Funct is a math expression string such as:
 " x^(n+2*m)/(n!*m!)", "(n+1)/(m+1)!", "comb(n,k)*a^k*b^(n-k)" ...

Remember the quote " " for passing a string to an Excel function.
For further details about the math string see the par. Math formula string

Id1 , Id2 indicate the integer indexes of the sum (usually "n", "m", "k" , "i", etc.)
Id1_min and Id1_max , Id2_min and Id2_max indicate the range of the
correspondent index.
The function may have also other parameters ("x", "y", "a", etc.) that can assume real
values.
Param contains labels and values for parameters substitution (if there are). If we pass
the variable range without “labels”, the function will assign the values to the variables
in the same order that they appear in the formula string, from left to right.
The parameter DgtMax sets the multiprecision arithmetic. if omitted or zero the
function uses the fastest standard arithmetic

Example. Compute the following double series, in standard (15 digits) and
multiprecision (25 digits)

()

∑ ∑
= =

+

=
4

0 m

10

1n

2mn

m!n!
 xs

for x = 0.8

Take care to the index limits because, for large interval, this function can slow down
your Excel application

Xnumbers Tutorial

177

Trigonometric series

= Serie_trig(t, period, spectrum, [offset], [Angle])

It returns the trigonometric series defined by

()∑
=

++=
N

1n
 sin)0()(nn tnaftf θω

 T
πω 2

=

The set

() Nna nn ...1 , , =θ
is called “spectrum” of the function f(t)
Each couple is called harmonic.

The parameter “t” can be a single value or a vector values
The parameter “period” is the period T.
The parameter "spectrum" is an array of (n x 2) elements: the first column contains the
amplitude, the second column the phase (in “rad”, “deg”, or “grad” degree).
The optional parameter "offset" adds the average level (default 0)
The optional parameter "Angle" sets the angle unit: (RAD (default), DEG, GRAD)

Example:

Here is a worksheet
arrangement to tabulate a
trigonometric serie having
a spectrum of max 8
harmonics (the formulas
inserted are in blue)

The independent
parameters are N
(samples) and T (periodo)

From those, we get the
sampling interval

∆T = T/(N-1)

The table at the left
contains the parameters
for each harmonic: the
integer multiple of the
harmonic, its amplitude
and its phase

The following plot is obtained for

)4/ 3sin(4.0)4/ sin(2)(πωπω −+++= tttf
where:

 T
πω 2

=

and T = 1

Xnumbers Tutorial

178

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2

Period T

T = 1

n° Arm. Amp Phase
1 1 45
2 0 0
3 0.4 -45

Note that you can always transform cosine terms into sine terms with the following
formula

)2/sin()cos(παα +=

Trigonometric double serie

= Serie2D_trig(x, y, Lx, Ly, Spectrum, [offset], [Angle])

It returns the trigonometric double serie f(x,y) defined by:

∑∑

= =

+++=
N

n

M

m
mnyxmn ymxnafyxf

1 1
,,0) cos(),(θωω

where

 y
y

x
x LL

πωπω 2 , 2
==

The set

[] MmNna mnmn ...0 , ...0 , ,, ==θ

is called “spectrum” of the function f(t). Each couple is called "harmonic".
The parameters “x” and “y” are vectors
The parameters “Lx” and “Ly” are the base lengths of the x-axis and y-axis.
The parameter "Spectrum" is an array of (n x 4) elements: containing the following
information: index n, index m, amplitude and phase.
That is, for example:

n m Amplitude Phase
0 1 1 45
2 1 0.5 -45
3 1 0.25 15.5
1 4 0.125 30

The optional parameter "offset" adds the average level (default 0)
The optional parameter "Angle" sets the angle unit (RAD (default), DEG, GRAD)

The function f(x, y) is returned as an (N x M) array.
Use the CTRL+SHIFT+ENTER key to insert this function.

Xnumbers Tutorial

179

Example: Here it is a worksheet arrangement to tabulate a trigonometric serie f(x, y)
having a spectrum of max 4 harmonics

Here is the contour plot and the 3D plot of the function f(x, y)

Xnumbers Tutorial

180

Discrete Convolution

Convol(f, g, h)

This function approximates the convolution of two sampled functions f(t), g(t)

∫
∞+

∞−

−=

)()(* dvvtgvfgf

The parameters "f" and "g" are column-vectors
The parameter "h" is the sampling step (also called ∆t)
Returns a vector with the same dimension of the two vectors f and g.
The convolutions is also called "Faltung"
Example

Here are other examples of convolution plots

In the signals analysis the function f is called "input signal" x(t) and g is called "system
impulse response" h(t). The convolution f∗g is called "system responce" y(t)
The system behavior is reassumed in the following schema

Xnumbers Tutorial

181

If the system is described by the following differential equation

)()()(' txtykty =⋅+

which has an impulse response given by

k t)(−= eth

We will use convolution to find the zero input response of this system to the square
signal of period T = 1 and amplitude xmax = 1.5

For obtaining this gaph we have used a sampling step of ∆t = 0.02, but this value is not
critical at all. You can choose the size that you like in order to obtain the needed
accuracy.

 h(t) x(t) y(t)

In a linear system, the outputs signal y(t) depends by the input signal x(t)
and by the inpulse responce of the system h(t). That is:

y(t) = ∫ x(v) h(t-v) dv

Xnumbers Tutorial

182

Interpolation

Interpolation with continue fraction

Fract_Interp_Coef(xi, yi)
Fract_Interp(x, xi, coeff)
xFract_Interp_Coef(xi, yi, [Digit_Max])
xFract_Interp(x, xi, coeff, [Digit_Max])

These functions perform the interpolation with the continue fraction method.
Given, for example, a set of 5 points

xi = [x0, x1, x2, x3, x4] , yi = [y0, y1, y2, y3, y4]

the function Fract_Interp_Coef returns the coefficients vector [a0, a1, a2, a3, a4] of the
continue fraction expansion given by the following formula:

4

3
3

2
2

1
1

0
0

a
xxa

xxa

xxa

xxay

−
+

−
+

−
+

−
+≅

The function Fract_Interp returns the interpolate value y at the point x
For multiprecision computing use the function xFract_Interp and xFract_Interp_Coef

Example: find the continue fraction interpolation coefficients for the following 10
samples

n x y samples
0 0.5 -3.461538462
1 0.6 -4.37037037
2 0.7 -6.073170732
3 0.8 -10.15384615
4 0.9 -31.22222222
5 1 30
6 1.1 10.35483871
7 1.2 6.37037037
8 1.3 4.670886076
9 1.4 3.735849057

These points are extracted from the following function

9.0
2

2

2

−
+

=
x
xy

Xnumbers Tutorial

183

You can verify that the interpolation with these coefficients are better than 1E-14 for all
x-values in the range [0.4 − 1.6]
Note also that this great precision is reached in spite of the pole at x ≅ 0.95
The continue fraction interpolation is adapt just to interpolate rational functions

-60

-40

-20

0

20

40

60

0.4 0.6 0.8 1 1.2 1.4

Example: Find an interpolation formula for the function tan(x) in the range 0 ≤ x ≤ 1.5
with no more than 7 points.
The function tan(x) has a pole at x = 1.57..., closed to the upper bound 1.5; so its
presence suggest to adopt a fraction interpolation. Assume to take samples of the
function tan(x) at the values (0, 0.2, 0.6, 1, 1.25, 1.45, 1.5).

The column A contains the knots of the
interpolations
In colum B we have inserted the
correspondent values of tan(x)
And in column C we have computed the
coefficients of the fraction interpolation.

Now using the function Fract_Interp we can interpolate any value between 0 and 1.5
obtaining the graph to the left. The second graph shows the absolute error in the given
range. You can verify that the interpolation is better than 1E-5 for any value x.

Interpolation with continued
fraction

The blue dot are the given
knots.
The light black line is the
interpolation obtained

There is a pole at x ≅ 0.95

Xnumbers Tutorial

184

Interpolation with Cubic Spline

cspline_interp(Xin , Yin , Xtarget)
cspline_eval(Xin, Yin, Ypp, Xtarget)

These functions15 perform the natural cubic spline interpolation
Xin is the vector containing the x-values.
Yin is the vector containing the y-values..
Xtarget is the x value which we want to compute the interpolation
Xpp is the vector containing the 2nd derivative

The cubic spline interpolation is based on fitting cubic polynomial curves through all
the given set of points, called knots
The cubic spline follows these rules:

• the curves pass through all the knots
• at each knot, the first and second derivatives of the two curves that meet there

are equal
• at the first and last knot, the second derivatives of each curve is equal to 0

(natural cubic spline constrain).

The natural cubic spline has a continuous second derivative (acceleration). This
characteristic is very important in many applied sciences (Numeric Control,
Automation, etc...) when we need to reduce vibration and noise in electromechanical
motions, although cubic spline is much slower than other interpolation methods.

The function cspline_eval is faster than cspline_interp, because the first uses the
information of the 2nd derivatives and does not have to calculate them all over again
like the cspline_interp does.

The 2nd derivatives can be computed by the function cspline_pre (see next page)

Example:

15 These functions appear thanks to the courtesy of Olgierd Zieba

Xnumbers Tutorial

185

Cubic Spline 2nd derivatives

cspline_pre(Xin , Yin)

This function16 Returns the cubic spline 2nd derivatives at a given set of points (knots).
Xin is the vector containing the x-values.
Yin is the vector containing the y-values..
For n knots, it returns an array of n 2nd derivative values. The first and the last values
are zero (natural spline constrain).

The 2nd derivatives depend only by the given set of knots. So this function can be
evaluate only once for the whole range of the interpolation. By cspline_eval function
we can compute fast interpolation

Example. Perform the sub-tabulation with ∆x = 0.1 of the following table

The given table is in the range A3:B13
In the adjacent column C we have
computed the 2nd derivatives by the
function cspline_pre.
Note that this function returns a vector of
11 values. It must be inserted with the
ctrl+shift+enter keys sequence
At the right we have set the new table
with step 0.1; the value of F3 has been
interpolate by the formula

= cspline_eval(A3:A13; B3:B13;
C3:C13; E3)

The other values are computed simply by
dragging down the cell F3.

The following figure shows the knots and the cubic spline fit

The points of the original table was extracted from the function y = [cos(x)]4 .
You can verify that the interpolation accuracy is better than 1% over the entire range.

16 These functions appear thanks to the courtesy of Olgierd Zieba

Xnumbers Tutorial

186

Cubic Spline Coefficients

cspline_coeff(Xin , Yin)

This function17 returns the coefficients of the cubic spline polynomials
Xin is the vector containing the x-values.
Yin is the vector containing the y-values..
It returns an (n-1 x 4) array where n is the number of knots. Each row contains the
coefficients of the cubic polynomial of each segment s [as,3 as,2 as,1 as,0]

0,1,
2

2,
3

3,)()()(ssssssss axxaxxaxxay +−+−+−=

where s = 1, 2, (n-1)

Example. Find the cubic spline polynomials that fit the given knots

17 These functions appear thanks to the courtesy of Olgierd Zieba

Xnumbers Tutorial

187

Multi-variables Interpolation

=InterpL(Point, Knots, Funct)
=InterpL_Coef(Point, Knots, Funct)

These functions perform the linear multivariate interpolation of a function

) ...,(n21 xxxfy =
Point = an (n) vector containing the point that you want to interpolate
Knots = an (m x n) array containing m knots of the interpolation
Funct = a (m) vector containing the m function values at the given knots

Given a vector (x1, x2, ...xn) the linear interpolation formula is

nn22110 ...ˆ xaxaxaay ++++=
The first function returns the ŷ value while the second returns the coefficients vector

Example.
Interpolate the function f(x,y) at the point (6.5 , 3.2). Note that the knots in the given
table are neither equidistant, nor sorted (random sampling)

The interpolate value is f(6.5 , 3.3) = 76.3, given by the linear formula

f(x, y) = 15*x + 34*y -130

Both InterpL and InterpL_Coef can also work in 3D and more dimensions.

Xnumbers Tutorial

188

2D Interpolation

=Interp_Mesh(TableXY)

This function performs the linear interpolation of a bivariate function given in a pivot
table XY.
The x-values and y-values of the table must be sorted but not necessarily equidistant.
This function returns an array. Let's see how it works.

Regularization

As we can see, the use of this function
is straight. Simply select the area you
want to insert the new table and pass
the old table as parameter.
Note that both axes are not regular

The function Interp_mesh returns the
equidistant-linear-interpolated array.
Or, in other words, it returns the
regularized table

Rescaling

We can obtain a sub-tabulated
function in an very fast way

Simply select a larger area
The function Interp_mesh
counts the cells that you have
selected and fill all the cells with
the linear interpolated values

In this case the given table has
5 x 4 = 20 values.
The new table has 9 x 7 = 63
values; therefore, there are 43
new interpolated values

Xnumbers Tutorial

189

Interpolation of Tabulated data function
Given a tabulated data (x i , y i), i = 1...N, generally not equidistant, the task is
estimating y for an arbitrary x value, where x1 ≤ x ≤ xN
The points (x i , y i) are called knots of the interpolation

Cubic Spline interpolation
The goal of cubic spline interpolation is to get a polynomial interpolation formula that is
smooth in the 1st derivative, and continuous in the 2nd derivative, within the interval and
at each boundaries.
This method ensures that the functions y(x), y’(x), and y’’(x) are equal at the interior
node points for adjacent segments. The cubic polynomials Pi(x) satisfie these
constrains.

Pi(xi−1) = yi−1 for i = 2...N
Pi(xi) = yi for i = 2...N
P'i(xi) = P'i+1(xi) for i = 2...N−1
P''i(xi) = P''i+1(xi) for i = 2...N−1

Formulas
One form to write the interpolation polynomials is:

P(x) = A Pi + B Pi+1 + C P’’i + D P’’i+1 , for i = 1...(N-1)

Where:

A = (xi+1 – x)/ (xi+1 – xi)
B = 1 – A
C = 1/6 (A3 – A) (xi+1 – xi)2
D = 1/6 (B3 – B) (xi+1 – xi)2

The 2nd derivatives can be evaluated by the following linear equations

(xi – x i-1) P’’i-1 + 2 (xi+1 – xi-1) P’’i + (xi+1 – xi) P’’i+1 = Hi for i = 2...(N-1)

where:
Hi = 6[(Pi+1 – Pi)/(xi+1 – xi) – (Pi – Pi-1)/(xi – xi-1)]
P’’1 = 0
P’’N = 0

That gives the following tridiagonal matrix system

2(x3 – x1) (x3 – x2) 0 0 ... 0 P’’2 H2

(x3 – x2) 2(x4 – x2) (x4 – x3) 0 ... 0 P’’3 H3

0 (x4 – x3) 2(x5 – x3) (x5 – x4) ... 0 P’’4 = H4

0 0 (x5 – x4) 2(x6 – x4) P’’5 H5

... (xN – xN-1) ...

0 0 0 ... (xN – xN-1) 2(xN – xN-2) P’’N-1 HN-1

Another common way to write the interpolation polynomial is:

Xnumbers Tutorial

190

P(x) = a3i (x – xi)3 + a2i (x – xi)2 + a1i (x – xi) + a0i , xi ≤ x < xi+1

for i = 1...(N-1)

Where the coefficients are:

a3i = (P’’i+1 – P’’i)/(xi+1 – xi)/6
a2i = P’’i / 2
a1i = (Pi+1 – Pi)/(xi+1 – xi) – (xi+1 – xi) (2 P’’i + P’’i+1)/6
a0i = Pi

The matrix of the system is tridiagonal, therefore can be solved in O(N) operations
We note also that its solution (P’’1 , P’’2 , ... P’’N) depends only by the given knots,
therefore the 2nd derivatives can be evaluated only once for any interpolate.
This example shows very well how the interpolation spline works.

X Y
0 0
1 2

2.5 4
3 3
4 4
5 1

For these 6 knots we obtain 5 cubic polynomials having the following coefficients

Polynomials a3 a2 a1 a0 Range
1st spline 0.20148927 0 1.79851073 0 0 ≤ x < 1
2nd spline -0.8783764 0.60446781 2.40297854 2 1 ≤ x < 2.5

3rd spline 5.54708717 -3.348226 -1.7126588 4 2.5 ≤ x < 3

4th spline -3.0718353 4.97240473 -0.9005694 3 3 ≤ x < 4

5th spline 1.41436706 -4.2431012 -0.1712659 4 4 ≤ x < 5

In the graphs below we can see the interpolated points (dotted line) fitting the data
points and the cubic polynomials (green line) passing through the nodes of each
segment. Each polynomial interpolates inside the proper segment. That is: the 1st
spline works for 0 ≤ x < 1, the 2nd spline for 1 ≤ x < 2.5, and so on.
In the graphs below are shown the entire interpolation line (left) and the 1st spline
(right).

-2

-1

0

1

2

3

4

5

6

-1 1 3 5

spline Interp

knots

-2

-1

0

1

2

3

4

5

6

-1 1 3 5

spline Interp
knots
1st spline

In the graphs below are shown the 2nd spline (left) and the 3rd spline (right)

Assuming to have to sub-tabulate with a step
 ∆x = 0.1 a given function known only in the
following 6 points
Note that these points are unequal spaced

Xnumbers Tutorial

191

-2

-1

0

1

2

3

4

5

6

-1 1 3 5

spline Interp
knots
2nd spline

-2

-1

0

1

2

3

4

5

6

-1 1 3 5

spline Interp
knots
3rd spline

In the graphs below are shown the 4th spline (left) and the 5th spline (right)

-2

-1

0

1

2

3

4

5

6

-1 1 3 5

spline Interp
knots
4th spline

-2

-1

0

1

2

3

4

5

6

-1 1 3 5

spline Interp
knots
5th spline

Let’s examine the 1st and 2nd derivatives. We can compute them either analytically or
numerically using – for example -the following derivative formulas:

y’(xi) ≅ (yi+1 – yi-1)/2∆x
y’’(xi) ≅ (yi+1 – 2 yi + yi-1)/ ∆x2

In both ways, we get the following graphs

1st Derivative

-5
-4
-3
-2
-1
0

1
2
3
4
5

0 1 2 3 4 5

2nd Derivative

-20

-15

-10

-5

0

5

10

15

20

0 1 2 3 4 5

As we can see the 1st derivatives is smooth and the 2nd is continuous. This last feature
is particularly appreciated in many fields of engineering. Although this algorithm is
much slower than other polynomial interpolation methods, it has the advantage of

Xnumbers Tutorial

192

following the interpolated curve without the spurious oscillations that other schemes
can create

Cubic poly interpolation
In many documents we found sentences like this: “...a typical curve fit involves forming
one polynomial equation through all n points of the given interval...”
We are induced to believe that for 6 knots we should choose a 6th degree polynomial
and for 100 knots a 100th one!
This is not all exact. We can apply for this kind of interpolation the same method of the
spline. That is, we can freely choose the polynomial degree and then calculate it for a
sub-set of consecutive knots.
The only difference is that we can use only the knots information and nothing else.
So, if we choose a 3th degree polynomial we can fit the first 4 points (y1, y2, y3, y4).
Of course we can interpolate y(x) in any value between x1 and x4, but we are induced
to think that central values x2 ≤ x < x3 are better approximated. Moving to the next set
of 4 nodes (y2, y3, y4, y5) we obtain a new polynomial adapted to interpolate values for
x3 ≤ x < x4 , and so on..
This method can be repeated for any internal segment, except for the first and the last
one. In these cases we have to interpolate with the first and the last polynomial,
tolerating a (probable) less accuracy.

Formulas
Many algorithms can be used for computing the interpolation polynomial: formulas of
Lagrange, Newton, Aitken, Everett, Taylor, Stirling, Bessel, Hermite, etc...
For simplicity, we choose the Newton cubic formula.

y(x) = y1 + D(x1, x2) (x – x1) + D(x1, x2, x3) (x – x1) (x – x2) +

+ D(x1, x2, x3, x4) (x – x1) (x – x2) (x – x3)

where D are:

D(x1, x2) = (y1 – y2)/ (x1 – x2)
D(x2, x3) = (y2 – y3)/ (x2 – x3)
D(x3, x4) = (y3 – y4)/ (x3 – x4)
D(x1, x2, x3) = (D(x1, x2) – D(x2, x3))/ (x1 – x3)
D(x2, x3, x4) = (D(x2, x3) – D(x3, x4))/ (x2 – x4)
D(x1, x2, x3, x4) = (D(x1, x2, x3) – D(x2, x3, x4))/ (x1 – x4)

Example. Repeating the interpolation of the above example we get the following
polynomial

1st polynomial (33x + 41x2 – 14x3)/30 0 ≤ x < 2.5

2nd polynomial (-228 + 415x – 173x2 + 22x3)/18 2.5 ≤ x < 3

3rd polynomial (360 – 301x + 86x2 – 8x3)/5 3 ≤ x < 5

 xi xi+1, xi+2, xi+3 xN-3, xN-2, xN-1, xN x1, x2, x3, x4

Xnumbers Tutorial

193

In the graphs below we can see the interpolate points (dotted line) fitting to data points
and the cubic polynomials (yellow) passing through the nodes of each segment.
Each polynomial interpolates inside the proper segment.

-2

-1

0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6

Y

Knot s

-2

-1

0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6

Y

Knot s

Poly1

-2

-1

0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6

Y

Knot s

Poly2

-2

-1

0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6

Y

Knots

Poly3

Let’s compute numerically the 1st and 2nd derivatives. We obtain the following graphs

1st derivative

-5
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5

2nd derivative

-20

-15

-10

-5

0

5

10

15

20

0 1 2 3 4 5

In the last plot we clearly see the spikes of the 2nd derivative. In engineering
applications such as mechanical motions, spurious spikes of the 2nd derivative produce
unwanted vibrations transmitted to the other parts of the system: gears, bearing, etc..
This involves higher noise, wear, etc... On the contrary, spline motions can great
reduce these drawbacks.

Observations
Both methods can provide an acceptable interpolation in the entire range of x ∈[0, 5].
Slight differences among interpolate values exist, but we cannot say that one is better
than other because the function values between nodes is unknown and both models
are conceptually equivalent.

Xnumbers Tutorial

194

But there is an aspect that make the difference and it is the 2nd derivative of the spline
interpolation. Although this algorithm is much slower than other polynomial
interpolation methods, it has the advantage of giving an exact fit to the curve without
the spurious oscillations that other schemes can create.

Other test functions
In our last example we have found that both methods can provide acceptable
interpolation for all range of x . Thus, there are same case, that the superiority of the
spline interpolation is more evident. Gerald [2] used the “bump” test case to illustrate
problems with other interpolation methods. Let’s see.

Interpolate the following knots
Y = (cos(x))10 , for x= -2 , -1 , -0.5 , 0 , 0.5 , 1 , 2

Plotting the interpolated values with a step of 0.1, we get the following graphs

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-2 -1 0 1 2

cos(x)^10

cubic poly

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-2 -1 0 1 2

cos(x)^10

cubic spline

The curves appear acceptable in both graphs. The second shows a closer fit near the
points x = 1 and x = -1 where are "knees" of the curve.

But matching the error plots, we see clearly the better accuracy of the spline
interpolation.

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

error cubic poly

error cubic spline

As we can see, the amplitude
error of the cubic polynomial is
much more than the spline.

We can show that an higher
order of the interpolation
polynomial, is even worst

In this case, the cubic spline is
the better choice

Xnumbers Tutorial

195

High and low interpolation degree
Surprisingly, an high degree of the interpolation polynomial does not mean high
accuracy. On the contrary, we often choose a low degree polynomial to get the
maximum accuracy. Let’s see this example.

Interpolate the following knots

y(x) = 1+log10(x+0.1) , for x= 0 , 0.15 , 0.5 ,1 , 1.5 , 2 , with step ∆x = 0.1

Interpolations near the zero are done with a 5th degree polynomial (the maximum),
while at the end of the range we use a simpler parabolic interpolation. The graphs
below show better how it works.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2

y

poly 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2

y

poly 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2

y

poly 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2

y

poly 2

Now we compare the absolute errors among this interpolation schema with the spline
and with the 5th degree polynomial interpolation over the entire range.

For clarity, we have draw the function line and
the knots.
The attack strategy can be:

Interpolation
range

Knots used Poly degree

0 , 0.5 all 5°

0.5 , 1 0.15 , 0.5 , 1 , 1.5 , 2 4°

1 , 1.5 0.5 , 1 , 1.5 , 2 3°
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2

y

1.5 , 2 1 , 1.5 , 2 2°

Xnumbers Tutorial

196

As we can see, we have a good generally
accuracy of about 0.01, but the interpolation with
the 5th degree polynomial is not the best.
In fact, the average absolute errors obtained are:

Method Avg error

5th degree polynomial 0.016

cubic spline 0.0072
variable polynomial 0.0035

0.0001

0.001

0.01

0.1

1
0 0.5 1 1.5 2

var poly
spline

5° poly

Absolute Error

Note that, for 1 < x < 2, the simply parabolic
interpolation is absolutely more accurate than the
5th degree polynomial, and even more than the
cubic spline.

What can we get from all that? As rules of thumb we can say that “Respect to the
values that we want to interpolate is better to use few knots but near than many knots
but distant”.

Continued fraction interpolation
Continued fractions are often a powerful ways of interpolation when we work near the
functions poles.

Formulas
For N knots, the continued fraction expansion is:

y(x) = a1 + (x-x1)/d1
d1(x) = a2 + (x-x2)/d2
d2(x) = a3 + (x-x3)/d3
d3(x) = a4 + (x-x4)/d4
.................
dN-1(x) = aN

The coefficients ai can be computed by the
following iterative algorithm

For i = 1 to N , ai= yi
For k = 1 to N-1
For i = k+1 to N
 If |ai – ai-1| > 10-14
 ai = (xi – xk)/ (ai – ai-1)
 else
 ai=0

NOTE. In XNUMBERS the continued fraction coefficients can be obtained by the
function Fract_Interp_Coef and the interpolation value with Fract_Interp

Example. Interpolate the following dataset

y(x) = 1/(x+0.01)1/2 , for x = 0, 0.05, 01, 0.2, 0.5, 1 , with step ∆x = 0.1

In the graphs below we have plotted the interpolated values obtained with three
different methods: cubic polynomial, cubic spline and continue fraction
Note that y(x) have a poles in x = −0.01 very near to the node x = 0

Xnumbers Tutorial

197

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2

y

knots

01.0
1

+
=

x
y

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2

y

cubic poly

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2

y

cubic spline

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2

y

fraction

We can see a good general accuracy except for the final part of the polynomial
interpolation method. In this case, the worst accuracy is concentrated where the
function is more flat, but, surprisingly, this perturbation is due to the distant
pole in x = -0.01.
We note also that both spline and fraction methods keep a good accuracy also for
point external at the interpolation range (extrapolation for x >1)

Absolute Error Plot

As we can see, the average
error of the continue fraction
is much lower than other
methods

Method Avg. error

Cubic spline 0.22

Cubic poly 0.19

0.0001

0.001

0.01

0.1

1

10
0 0.2 0.4 0.6 0.8 1

poly

spline

fraction

Absolute

Continued
fraction 0.003

Xnumbers Tutorial

198

Differential Equations

Xnumbers contains functions for solving the following differential problem of the 1st
order with initial conditions (Cauchy’s problem):

00)(,),(ytyytfy ==′

and for solving the ordinary differential system written as:

00)(,),(yyyfy ==′ tt ⇔

=

=
=

=′

=′
=′

00

2002

1001

21

2122

2111

)(
....

)(
)(

 ,

)...,,(
....

)...,,(
)...,,(

nnnnn

n

n

yty

yty
yty

yyytfy

yyytfy
yyytfy

ODE Runge-Kutta 4

= ODE_RK4(Equations, VarInit, Step, [Par, …])

This function integrates numerically a 1st order ordinary differential equation or a 1st
order differential system, with the Runge-Kutta formula of 4th order

) ,(
) 5.0 , 5.0(
) 5.0 , 5.0(

),(

34

23

12

1

khyhtfk
khyhtfk
khyhtfk

ytfk

ii

ii

ii

ii

++=
++=
++=

=

()43211 22

6
kkkkhyy ii ++++=+

"Equations" is a math expression string containing the equation to solve. For a system
It is a vector of equations. Examples of correct equation definition are:
y’ = -2*y*x , v’ = 2*x-v^2+v , y1’ = -3*y1+y2+sin(10*t)

Each string may contain symbolic functions with variables, operators, parenthesis and
other basic functions.
The parameter "VarInit" is a vector containing the initial values. It has two values for
two variables [t0, y0].
For a system with n+1 variables, "Varinit" is an (n+1) vector [t0, y10 , y20, ….yn0].
The parameter "Step" is the integration step.
The optional parameter "Par" contains the values of other extra parameters of the
equations.

Let’s see how it works with an example
Solve numerically the following Cauchy’s problem for 0 ≤ x ≤ 3

1)0(, 2 =−=′ yxyy

We know that the exact solution is
2xey −=

For performing the computation we can arrange a sheet like the following

Xnumbers Tutorial

199

As we can see, we have written in cell G5 the differential equation
y’ = - 2*x*y

In the range A5:B5 we have inserted the starting values of x and y. Note that we have
written the labels just above theirs values. Labels are necessary for the correct
variables assignment
Finally, in the range A6:B6 - just below the starting values - we have inserted the
ODE_RK4, that returns the value y(0.2) = 0.9607893… with a good accuracy of about
1E-7 (compare with the exact solution)

Tip: In order to get all other values,
select the range A6:B6 and simply
drag it down.
The cells below will be filled
automatically

Only remember to fix the constant
cells in the function with the $
symbol

=ODE_RK4(G5,A5:B5,F5)

We have also added the column with the exact values in order to check the
approximation error. Both exact and approximated solutions are plotted in the following
graph

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

y

y esatta

The fit, in this case, seems excellent.

Xnumbers Tutorial

200

If you need you can include parameters inside the differential equation
Example. Solve the following differential problem

1)0(
' n

=

⋅⋅−=

y
yxky

where k = 2 and n = 1

Note that we have added the
labels "k" and "n" above the
cells D2 and E2. In this way,
the parser will correctly
substitute the value 2 for the
variable "k" and 1 for the
variable "n". in the differential
equation

Do not forget the labels "x"
and "y" in the cells A5 and B5

Example: Solve the following linear differential equation

0)1(, 1' =⋅=+ yxay
x

y n

For n = 3 and a = 1
Rearranging, we get

0)1(, ' =−⋅= y
x
yxay n

Note the labels "a" and "n"
above the cells D2 and E2. In
this way, the parser will
substitute the value 1 for the
variable "a" and 3 for the
variable "n". in the differential
equation

Do not forget the labels "x"
and "y" in the cells A5 and B5

With the step h = 0.1, we have a numerical solution with a very good approximation
comparing with the exact solution xxxy 5/)(5 −= , (better than 1E-6)

Xnumbers Tutorial

201

This function can be used to solve ordinary differential systems.
Example: Solve numerically the following differential system, where v(t) and i(t) are the
voltage and the current of an electric network

⋅+⋅−=
⋅−=

vii
viv
155'

7'

=
=

0)0(
10)0(

i
v

The computation can be arranged as
following.
Write the variables labels in the row 6. The
labels “v” and “i” must be the same that
you have written in the equations. Just
one row below, insert the starting values in
the same order.
Select the range A8:C8 and insert the
function ODE_RK4. The first step will be
returned.
Now select this row and drag it down for
evaluating all the steps that you need

The graph below show the transient of v(t) and i(t) with good accuracy

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2

v

i

Note that you can change
the step “h” in order to re-
compute the transient in a
very fast and quick way.

Optional constant parameters can be arranged. For example if you want to add a
parameter R, independent from the time “t”, write:

Constant parameters can be
written in any part of the
worksheet. You need only to add
the labels with the same symbols
with they appear in the differential
equations. In this case, we have
added the label "R" in the cell C1,
upon its values.
You can add as many optional
parameters that you like

Xnumbers Tutorial

202

ODE Multi-Steps

Another very popular method for integrating ordinary differential equations adopts the
multi-step Adams’ formulas. Even if a little formally complicated, they are very fast,
and adapted to build a large family of ODE integration methods
The multi-step Adams’ formulas can be generally written as:

()10121

1
11 '...''' +−−−−

=
+−−+ ⋅+⋅+⋅+=⋅+= ∑ NiiNiNi

N

k
kikNii yyy

M
hyy

M
hyy ββββ

()20211

1
21 '...''' +−−+−

=
+−−+ ⋅+⋅+⋅+=⋅+= ∑ NiiNiNi

N

k
kikNii yyy

M
hyy

M
hyy ββββ

where),(' iii ytfy = ihtti ⋅+= 0

The first formula generates the explicit formulas – also called predictor formulas.
The second formula generates the implicit formulas – also called corrector formulas.
The number N is the order of the formula. A formula of N order requires N starting
steps. Of course, formulas with high N are more accurate.

For N = 1 we get the popular Euler integration formulas

iii yhyy '1 ⋅+=+ Euler’s predictor (1 step)

()iiii yyhyy ''
2 11 +⋅+= ++

Trapezoid formula corrector (1 step)

Theirs errors are given by

)2(2

2
1 yhe ≈

Error predictor 1st order

)3(3

12
1 yhe −≈

Error corrector 2st order

For N = 4 we get the popular Adams-Bashfort-Moulton predictor-corrector formulas

()3211 '9'37'59'55
24 −−−+ −+−⋅+= iiiiii yyyyhyy

Predictor (4 step)

()2111 ''5'19'9
24 −−++ +−+⋅+= iiiiii yyyyhyy

Corrector (4 step)

Theirs errors are given by

)5(5

720
251 yhe ≈

Error predictor 4th order

)5(5

720
19 yhe −≈

Error corrector 4th order

There are a large set of predictor-corrector formulas

Xnumbers Tutorial

203

Multi-step coefficents tables
The following tables list the coefficents for the Adams’ predictor-corrector formulas up
to the 9th order and relative errors

Multi-step Predictor coefficients

N ⇒ 1 2 3 4 5 6 7 8 9 10
M 1 2 12 24 720 1440 60480 120960 3628800 7257600

β 0 1 -1 5 -9 251 -475 19087 -36799 1070017 -2082753
β 1 3 -16 37 -1274 2877 -134472 295767 -9664106 20884811
β 2 23 -59 2616 -7298 407139 -1041723 38833486 -94307320
β 3 55 -2774 9982 -688256 2102243 -91172642 252618224
β 4 1901 -7923 705549 -2664477 137968480 -444772162
β 5 4277 -447288 2183877 -139855262 538363838
β 6 198721 -1152169 95476786 -454661776
β 7 434241 -43125206 265932680
β 8 14097247 -104995189
β 9 30277247

Multi-step Corrector coefficients

N ⇒ 1 2 3 4 5 6 7 8 9 10

M 2 12 24 720 1440 60480 120960 3628800 7257600
β 0 1 -1 1 -19 27 -863 1375 -33953 57281
β 1 1 8 -5 106 -173 6312 -11351 312874 -583435
β 2 5 19 -264 482 -20211 41499 -1291214 2687864
β 3 9 646 -798 37504 -88547 3146338 -7394032
β 4 251 1427 -46461 123133 -5033120 13510082
β 5 475 65112 -121797 5595358 -17283646
β 6 19087 139849 -4604594 16002320
β 7 36799 4467094 -11271304
β 8 1070017 9449717
β 9 2082753

Error coefficient
The general error is e ≈ -k⋅hn-1y(n-1) where k is given by the following table

N ⇒ 1 2 3 4 5 6 7 8 9 10
predictor 0.5 0.41667 0.375 0.34861 0.32986 0.31559 0.30422 0.29487 0.28698 0.28019
corrector - -0.0833 -0.0417 -0.0264 -0.0188 -0.0143 -0.0114 -0.0094 -0.0079 -0.0068

The predictor-corrector algorithm
Usually the multi-step formulas, implicit and explicit, are used together to build a
Predictor-Corrector algorithm . Here is how to build the 2nd order PEC algorithm
(Prediction-Evaluation-Correction).
It uses the Euler’s formula as predictor and the trapezoidal formula as corrector

Prediction Evaluation Correction

yp1 = y0 +h f(t0, y0) ⇒ f(t1, yp1) ⇒ y1 = y0 +h/2 [f(t0, y0) +f(t1, yp1)]

yp2 = y1 +h f(t1, yp1) ⇒ f(t2, yp2) ⇒ y2 = y1 +h/2 [f(t1, y1) +f(t2, yp2)]

yp3 =…. …. ….

Xnumbers Tutorial

204

The value y1 can be reused to evaluate again the function f(t1, y1), that can be used in
the corrector formula to obtain a more accurate value for y1.
If we indicate the first value obtained by the corrector with y1

(1) and the second value
with y1

(2) we can arrange a new following schema

Prediction Evaluation Correction Evaluation Correction

yp1 ⇒ f(t1, yp1) ⇒ y1
(1) ⇒ f(t1, y1

(1)) ⇒ y1
(2)

This is the so called PECEC or P(EC)2 schema.
The group EC can also be repeated m-times or even iterated still the convergence. In
these cases we have the schemas P(EC)m and P(EC)∞ respectively.
Note that, for m >> 1 the final accuracy depends mainly by the corrector.

Let's come back to the PEC schema.
We note that, at the step, we use the value f(t1, yp1) to predict the new value yp2
We could increase the accuracy if we take the better approximation f(t1, y1).
The new schema becomes:

Prediction Evaluation Correction Evaluation

yp1 ⇒ f(t1, yp1) ⇒ y1
 ⇒ f(t1, y1) ⇒

This schema is called PECE and it is used very often being a reasonable compromise
between the accuracy and the computation effort.

Using different schemas with different predictor-corrector formulas we can build a wide
set of algorithms for the ODE integration. Of course they are not equivalent at all.
Same of them have a high accuracy, others show a better efficiency and others have a
better stability. This last characteristic may be very important for long integration
intervals. In fact, the most algorithms, especially those with higher order, become
unstable when the integration step grows over a limit. Algorithms that are stable for
any integration step (so called A-stable algorithms) are much appreciated, but
unfortunately they have a low general accuracy.
One A-stable algorithm is the P(EC)∞ with the Euler’s formula as predictor and the
trapezoid formula as corrector. It is a 2nd order algorithm

Xnumbers Tutorial

205

Predictor- Corrector

= ODE_PRE(yn, f, h)

= ODE_COR(yn, fp, f, h)

These functions perform the integration of the ordinary differential equations with the
popular multi-step predictor-corrector Adams’ formulas

00)(,),(ytyytfy ==′

The first function returns the predictor value yn+1,p while the second function returns the
corrector yn+1.
The parameter “yn” is the last point of the function y(t).
The parameter “f” is a vector containing the last N values of the derivative of y(t). That
are the last N-1 values of the corrector.
The parameter “fp”, only for the corrector, is the best approximation of the derivative of
y(t) at the step n+1. Usually it is provided by a predictor formula
The parameter “h” sets the integration step

PECE algorithm of 2nd order
Now we see how arrange a PECE algorithm of 2nd order to solve a the following
differential problem.

2)0(, ' 2 =−= yxyy
Let's set in a cell that we like the integration step “h” and then the heading of the data
table. We set separate columns for predictor and corrector values

Build the first row.
Begin to insert the starting
values (x0, y0) in the cells A6
and B6 respectively, and the
formula evaluations of f(x,y) in
the cell C6 and E6. The
corrector value is set equal to
the starting value B6

The second row is a bit more
complicated. Let’s see.
Select the first row A6:E6 and
drag it down one row. This will
copy the formula for fp and fc
Insert in the cell A7 the
increment formula
xi+1 = xi+h

Now we have to add the predictor and corrector function

Xnumbers Tutorial

206

Insert in the cell B7

=ODE_PRE(yn, f, h)

“yn” is the last value of y(x).
contained in D6. “f” is the last
value of f(x,y) contained in E6.
“h” is the step B3.

Insert in the cell D7

=ODE_COR(yn, fp, f, h)

Where “yn” is the last value of
y(x). In that case is D6. “f” is
the last value of f(x,y), E6.
 “fp” is the predicted. value of
f(x,y), C7 in this case.
“h” is the constan step.

Now the setting of the
PECE algorithm of 2nd order
is completed. Select the
second row A7:E7 and drag
it down in order to calculate
the steps that you want.

The yP and yC values can be compared with the ones of the exact solution.

21
2
x

y
+

=

The differences:

)(

)(

iicic

iipip

xyyd

xyyd

−=

−=

are plotted in the graph at the right
We note clearly the characteristic
behavior of the predictor-corrector
algorithm. The second formula refines
the approximation of the first one.
The final accuracy of PECE algorithm
is practically the accuracy of the
corrector

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 1 2 3

err predictor

error corrector

Xnumbers Tutorial

207

PECE algorithm of 4th order
Now we solve the above differential equation with a 4th order PECE algorithm using
the 4 steps Adams-Bashfort-Moulton formulas

2)0(, ' 2 =−= yxyy
To start this algorithm needs 4 steps. A good set of starting steps is:

x y(x)
0 2

0.2 1.9230769231
0.4 1.7241379310
0.6 1.4705882353

The first 4 rows of the PECE algorithm are built as shown in the previous example.

The first 4 values of yp and yc are
the same.
Now let's insert in the cell B10

=ODE_PRE(yn, f, h)

where “yn” is the last value of
y(x), D9 in that case.
“f” is a vector of the the last four
values of f(x,y), E6:E9 in this
case.
“h” is the step B3.

Insert in the cell D10

=ODE_COR(yn, fp, f, h)

where “yn” is the last value of
y(x). In that case D9.
“f” is a vector of the last 3 values
of f(x,y), E7:E9.
“fp” is the predicted value of
f(x,y), C10 in this case.
“h” is the step B3

Now the setting of the PECE algorithm of 4th order is completed. Select the 5th row
and drag it down in order to calculate the steps you want.

We do not investigate here how to get the extra 3
values (they could comes by Runge-Kutta method or by
Taylor series approximation). The only thing that we
have to point out is that these values must be
sufficiently accurate in order to not degraded the global
accuracy of the algorithm

Xnumbers Tutorial

208

The predictor-corrector error curves are shown in the following graph

In order to compare the accuracy of the solutions of the this algorithm with the 2nd
order algorithm of the previous example let's draw both the error curves in a same
graph

As we can see, the 4th order algorithm is evidently more accurate then the 2nd order.
On the other hand, the first one requires an extra work for providing 3 starting points.

Xnumbers Tutorial

209

Nonlinear Equations

Bisection

=Zero_bisec(a, b, func, [step])

Approximates the zero of a monovariable function f(x) with the bisection method

0)(=xf
This function needs two starting points [a, b] bracketing the zero.
Parameter "func" is a math expression string containing the symbolic function f(x)
Examples of correct function definitions are:
-2*ln(x) , 2*cos(x)-x , 3*x^2-10*exp(-4*x) , etc.

The optional parameter "step" sets the maximum number of steps allowed. If omitted
the function iterates still the convergence. Step = 1 is useful to study the method step-
bay-step
At the first step, the function returns a new segment

[a1, b1] where a1 < x0 < b1

At the second step, the function return a new segment

[a2, b2] where a1< a2 < x0 < b2 < b1.

The interval [an , bn], with n>>1, will be very closed to the value x0

Example: Find the approximated zero of the following equation and show the first
steps of the bisection method.

05
)(log

2)(log3
10

10 =−+⋅
x

x

The plot indicates two zeros: one trivial
x = 10 and another into the interval
2 < x < 9

Starting the algorithm with a = 2 and b = 9
we get x0 = 4.64158883361278

-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 2 4 6 8 10 12

3Log(x)+2/Log(x)-5

The root approximates the
exact zero x0 = 1001/3
with error < 1E-14

Xnumbers Tutorial

210

We can also solve this equation step-by-step in order to investigate how this algorithm
works

As we can see, the convergence is quite low but very robust because the zero always
remains bracketed between the interval limits [a, b]. The error estimation is also very
quick. Simply take the difference |b-a|

Secant

=Zero_sec(a, b, func, [step], [DgtMax])

Approximates the zero of a monovariable function f(x) with the secant method

0)(=xf
This function needs two starting points [a, b] bracketing the zero.
Parameter "func" is a math expression string containing the symbolic function f(x)
Examples of correct function definitions are:
-2*ln(x) , 2*cos(x)-x , 3*x^2-10*exp(-4*x) , etc.

The optional parameter "step" sets the maximum number of steps allowed. If omitted
the function iterates still the convergence. Step = 1 is useful to study the method step-
bay-step
The optional parameter "DgtMax" sets the maximum number of multi-precision digits. If
omitted the function works in double precision.
At the first step, the function returns a new segment

[a1, b1] where a1 < x0 < b1

At the second step, the function return a new segment

[a2, b2] where a1< a2 < x0 < b2 < b1.

The interval [an , bn], with n>>1, will be very closed to the value x0

Use the CTRL+SHIFT+ENTER sequence to paste this function

Example: Find the approximated zero of the following equation and show the first
steps of the secant method.

0)sin())2ln(3exp(=⋅−⋅− xx π

The plot indicates one zeros into the interval 0 < x < 0.5

Xnumbers Tutorial

211

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

exp(-6*x*Ln(2))-sin(pi*x)

Starting the algorithm with a = 0 and b = 0.5 we get x0 = 0.166666666666667

The root approximates
the exact zero x0 = 1/6
with error < 1E-15

Let’ see now the iteration trace setting the parameter step = 1

As we can see the convergence of this method is much faster than the one of the
bisection method. On the other hand, it is no guaranteed that the zero remains
bracketed into the interval.

Xnumbers Tutorial

212

Derivatives

First Derivative

=Diff1(x, fx, [lim])

Approximates the first derivative of a mono-variable function f(x) at the given point x

)()(' xf
dx
dxf =

The parameter “Fx” is a math expression string containing the symbolic function f(x)
Examples of function definition are:
-2*Ln(x) , 2*cos(x) , 3*x^2-10*exp(-4*x) , x^2+4*x+1 , etc.

The optional parameter “Lim” (default = 0) sets the way how the limit approach to x. If
lim = 1, it approaches from the right; if lim = -1, it approaches from the left;
if lim = 0 , it approaches centrally. That is, it returns the following derivatives

=

=

=

=

+

+→

→

−

−→

)(')(lim

)(')(lim

)(')(lim

)('

0

0

0

xfxf

xfxf

xfxf

xf

h

h

h

This function uses the following formulas to approximate each derivative

())4(3)3(16)2(36)(48)(25
12

1)(' hxfhxfhxfhxfxf
h

xf −+−−−+−−≅−

())2()(8)(8)2(

12
1)(' hxfhxfhxfhxf
h

xf +−++−−−≅

())4(3)3(16)2(36)(48)(25
12

1)(' hxfhxfhxfhxfxf
h

xf +++−+++−≅+

Example. Evaluate numerically the left, right and central derivatives of the given
function at the point x = 0, and check if the given function is differentiable in that point

1||
)(2 ++

=
xx

xxf

As we can see all derivatives are equal, so the function is differentiable in x = 0

Xnumbers Tutorial

213

Second Derivative

=Diff2(x, fx)

It approximates the second derivative of mono-variable function f(x) at the given point

)()('' 2

2

xf
dx
dxf =

The parameter "Fx" is a math expression string containing the symbolic function f(x)
Examples of function definition are:
-2*Ln(x) , 2*cos(x) , 3*x^2-10*exp(-4*x) , x^2+4*x+1 , etc.

Example: Evaluate the first and
second derivatives at the point x = 2
for the following function

1
3)(2 +

+
=

x
xxf

Gradient

=Grad(p, func)

Approximates the gradient of a multivariate function f(x, y, z) at the given point

∂
∂

∂
∂

∂
∂

=∇
z
f

y
f

x
fzyxf , ,),,(

The parameter "p" is the vector of the variables [x, y, z]
The parameter "Func" is an expression string containing the function f(x, y, z).
Examples of function definition are:
-2*ln(x+3y), 2*exp(-x)*cos(3*t), 3*x^2-y^2+z^2, (x^2+y^2)^(1/3),etc.

For performance problem, the number of variables is restricted to 4, “x”, “y”, “z”, “t”.
The variables values must be always passed in this order.

Example. Evaluate the gradient of
the following function at the point
P(1, 1)

22 5
1),(

yx
yxf

+
=

Xnumbers Tutorial

214

Jacobian matrix

=Jacobian (p, func)

Approximates the Jacobian’s matrix of a multivariate vector-function F(x, y, z) at the
given point p(x, y, z)

=

),,(
),,(
),,(

),,(

3

2

1

zyxf
zyxf
zyxf

zyxF

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

z
f

y
f

x
f

z
f

y
f

x
f

z
f

y
f

x
f

zyxJ

333

222

111

 , ,

 , ,

 , ,

),,(

The parameter "p" is the vector of the variables [x, y, z]
The parameter "Func" is an expression string containing the function f(x, y, z).
Examples of function definition are:
-2*ln(x+3y), 2*exp(-x)*cos(3*t), 3*x^2-y^2+z^2, (x^2+y^2)^(1/3),etc.

For performance problem, the number of variables is restricted to 4, “x”, “y”, “z”, “t”.
The variables values must be always passed in this order.

Example. Evaluate the Jacobian’s matrix of the following vector-function at the point
P(1, 1)

2221 5
1),,(

zyx
zyxf

++
=

)2ln(),,(2 yxzzyxf +⋅= xyzzyxf 4),,(3 =

Hessian matrix

=Hessian (p, func)

Approximates the Hessian’ matrix of a multivariate function f(x, y) at the given point
p(x, y)

∂
∂

∂∂
∂

∂∂
∂

∂
∂

=

2

22

2

2

2

 ,

 ,
),(

y
f

xy
f

yx
f

x
f

yxH

The parameter "p" is the vector of the variables [x, y]
The parameter "Func" is an expression string containing the function f(x, y, z).
Examples of function definition are:

Xnumbers Tutorial

215

-2*ln(x+3y), 2*exp(-x)*cos(3*t), 3*x^2-y^2+z^2, (x^2+y^2)^(1/3), etc.

For performance problem, the number of variables is restricted to 4, “x”, “y”, “z”, “t”.
The variables values must be always passed in this order.
This function returns a square a matrix (n x n) of the second derivatives

Note: the derivatives approximation is about to 1E-10

Example. Approx. the Hessian’s matrix of the following function at the point (2,1,1)

222 5
1),,(

zyx
zyxf

++
=

Xnumbers Tutorial

216

Non-linear equation solving with derivatives

Derivatives play a strategic role in solving non-linear equation and non-linear system
The most efficient algorithms use the derivatives information in order to speed up the
convergence or the final accuracy. From the point of view of numeric calculus,
derivatives are rarely used because they tend to magnify the truncation error. This is in
true in generally and a naive approach should always avoid the derivatives. In solving
non-linear problem, however, the derivatives can be very useful because they can
greatly improve the convergence without influence the final result accuracy, that
depends only by the evaluation function f(x)

Let's see and example.
Solve the following equation xx sin2 = with an accuracy better then 1e-25.

First of all we build the function

xxxf sin)(2 −=

and draw its plot. The point x where 0)(=xf
is the solution of the given equation We see
that the zero exists and it is near the point 1.
We note also that in the interval [0.5 1.5] the
function is monotonic

In this interval the Newton-Raphson iterative algorithm, starting from x = 1.5, should
work fine.

... 2 1, 0,n
)('
)(

n

n
n1n =−=+ xf

xfxx

To implement this algorithm we need the evaluation function f(x) with about 30
significant digits. For that, it comes in handy the multiprecision function xeval. For the
derivative we have to way: computing the function f'(x) by hand and evaluating it by
xeval or approximating the derivative by the function diff1 in standard precision.
Because we are a bit lazy and the derivatives is not so immediate, we chose the
second way. A simple spreadsheet arrangement may be the following

As we can see the convergence is superb!. After few iteration the solution is

x ≅ 0.9496166887146629471509830317 with |f(x)| < 1e-28

Xnumbers Tutorial

217

This excellent result has been obtained in spite of the approximated precision (1e-13)
of the derivative. The reason is simple: the accuracy of the derivative does not
influence the final accuracy of the root. We note that the derivative, after very few
iterations, remains constant: we might substitute this value with an even more
approximated values, i.e. f' = 1.57, for all iterations. The final accuracy will not change.
We will need only more few steps, at the most.

But this method show its power overall for non-linear systems. For a 2 variables
problem the Newton-Raphson method becomes

=
=

0),(
0),(

yxg
yxf

⇒

n

1

n1n1n

−

=

−

++
g
f

gg
ff

y
x

y
x

yx

yx

The (2 x 2) matrix is the Jacobian calculated at the point (xn, yn). In Xnumbers it can be
evaluated by the function Jacobian

Example. Solve the following system

=−++

=−−+−
− 01

0625

yxe
xyx

yx

setting:

6),(25 −−+−= xyxyxf
1),(−++= − yxeyxg yx

the contour plots of the functions f = 0 and g = 0 show two
intersection points: one near the point (-1 2) and one near
(-1, -2)

The function f(x,y) and g(x,y) are
evaluated and converted in double
precision by the nested functions

=xcdbl(xeval(B4,B7:B8))

=xcdbl(xeval(B5,B7:B8))

At the begin insert the starting point
(-1, 2) in the cells B7, B5.
The new point is calculated in the
cells E7:E8. Copy this range and re-
insert in the range B7:B8. At each
iteration the increments dx,dy of the
range E10:E11 becomes more and
more small.

Starting from (-1, 2) and (-1, -2) the iteration algorithm leads to the correct solutions

x y x y
-1 2 -1 -2

-1.0201151219 1.9698273171 -0.7964138633 -2.3053792051
-1.0196483063 1.9693084022 -0.8079928505 -2.2042117521
-1.0196480758 1.9693081215 -0.8107932120 -2.1997452584
-1.0196480758 1.9693081215 -0.8108021826 -2.1997248438

Xnumbers Tutorial

218

Conversions

Decibel

=dBel(A, [MinLevel])

Converts a positive number A into decibel

()AA 10dB log20=

If zero, A is substituted with the value contained in the parameter "MinLevel" (default
1E-15)
Example

A A dB
1 0

0.5 -6.0206
0.1 -20

0.05 -26.021
0.01 -40

0.001 -60
0.0001 -80

0 -300

Base conversion

cvDecBin(DecNum) base 10 ⇒ base 2
cvBinDec(BinNum) base 2 ⇒ base 10
cvDecBase(DecNum, Base) base 10 ⇒ any base (2-16)
cvBaseDec(BaseNum, Base) any base (2-16) ⇒ base 10
baseChange(number, old_base, new_base)

any base (2 - 36) ⇒ any base (2 - 36)

These functions perform the number conversion between different bases.
Example: Converts the decimal number n = 902023485 into bases 2 and 3.
cvDecBin(902023485) = 110101110000111100100100111101 (base 2)

cvDecBase(902023485, 3)= 2022212022112121020 (base 3)

Example: Converts the hexadecimal number n = 35CFFF3D into decimal
cvBaseDec(35CFFF3D) = 902823741 (base 10)

You can also convert directly base-to-base, nesting two functions.
Example convert n = 35CFFF3D from base 16 into 8
cvDecBase(cvBaseDec(35CFFF3D,16),8) = 6563777475 (base 8)

For this scope you can also use the baseChange function18
In spite of its digits limitation (15), this function has several interesting features
It converts any number into many different bases (up to 36). The digits greater then 9
are indicated as A, B, C, D E, F, G, H, etc. It converts also decimal numbers. It formats
the result consistently with the source cell. Let's see how it works

18 The function baseChange appears thanks to the courtesy of Richard Huxtable

Xnumbers Tutorial

219

The cell C4 is formatted with 7
digits and also its results have
the same format; the cell D4 is
formatted with 2 decimals and
its result has the same format.

Log Relative Error

= mjkLRE(q, c, NoSD)

= xLRE(q, c, NoSD, [DgtMax])

This function19 returns the log relative error (LRE) for an estimated value (q) and a
certified value (c), which has a specified number of significant digits (NoSD). The LRE
is a measure of the number of correct significant digits only when the estimated value
is “close” to the exact value. Therefore, each estimated quantity must be compared to
its certified value to make sure that they differ by a factor of less than two, otherwise
the LRE for the estimated quantity is zero.

Definition
The base-10 logarithm of the relative error is defined as:

<−=
>=

=
1|q|) ,)log(min(LRE

1 |q| if 0LRE
 0c if

NoSDq

=
==

≤≤≠−−=
≠

lse if 0LRE
 qc if LRE

2 |q/c| 1/2 and qc if) , |)|/|log(|min(LRE
 0c if

e
NoSD

NoSDccq

Example:

Assume that you want to compare an approximate value with a 15 digits certified value
of pi-Greek. LRE metric can show this in a easy way

Certified value C = 3.14159265358979

Approx. value Q = 3.14159265300001

mjkLRE(C, Q, 15) = 9.7

19 These functions appear by courtesy of Michael J. Kozluk. This algorithm was first programmed into an
Excel user function, by Michael, in standard 32 bit precision. As it works fine also for comparing long
extended numbers (NoSD> 15), we have now developed its multiprecision version xLRE().

Xnumbers Tutorial

220

This means that two values are close for about 10 significant digits. LRE metric rejects
non significant digits. Look at this example:

Certified value C = 0.000133333333333333

Approx. value Q = 0.000133333333333311

mjkLRE(C, Q, 15) = 12.8

As we see, the two numbers appear exact up to the 17th digit, but the relative error is
about 1E-13
LRE is very useful when you work with long string of extended numbers. For example,
compare this approximation of "e" (Napier’s number)

Certified value C = 2.71828182845904523536028747111

Approx. value Q = 2.71828182845904523536028747135

xLRE(C, Q, 30) = 28.1

At the first sight it is hard to say, but the LRE function shows immediately a precision
of about 28 digits

Xnumbers Tutorial

221

Special Functions

The computation of special functions is a fundamental aspect of numerical analysis in
virtually all areas of engineering and the physical sciences.
All these special functions have a high-fixed-precision. Because most of these special
functions are in the form of infinite series or infinite integrals, their solutions are quite
complicated, and we have spent many times for selecting and testing many different
algorithms in order to achieve the highest possible accuracy in 32 bit arithmetic.

Error Function Erf(x)

errfun(x)

Returns the error function

∫ −=
x

t dtexerf
0

22)(
π

Accuracy: about 10^-14 per x>0

Exponential integral Ei(x)

exp_integr(x)

Returns the exponential integral

∫
∞

−

−

−=
x

t

dt
t

exEi)(

Accuracy: about 10^-14 for x> 0

Exponential integral En(x)

exp_integr_n(x, n)

Returns the exponential integral of n-th order

∫
∞ −

−=
1

)(dt
t

exEn n

xt

Accuracy: about 10^-14 for x> 0 and n>0

Euler-Mascheroni Constant γ

xGm([Digit_Max])

Returns the Euler-Mascheroni gamma constant.

Xnumbers Tutorial

222

The optional parameter Digit_Max sets the maximum digits (default 30, max 415)

 −+++=

∞→
)log(1...

3
1

2
11lim n

nn
γ

Example: compute the gamma constant with 40 significant digits

xGm(40) = 0.5772156649015328606084804798767149086546

Gamma function Γ(x)

xGamma(x)

Returns the gamma function.

∫
∞

−−=Γ
0

1)(dtetx tx

This routine uses an excellent Lanczos series approximation20

+
+⋅

 ++
≅Γ ∑

=

+
14

1
0

2
1

2
12)(

i

i
z

g ix
cc

e
gx

e
x π

where: g = 607/128 and ci are the Lanczos' coefficients.
Relative accuracy is better than 10^-14, except very near to the poles x=0, -1. -2, -3...
This function works also with large argument because it uses the multiprecision format
to avoid the overflow for arguments greater than 170.
Example,

x xgamma(x) Rel. Error
0.001 9.99423772484596E+2 1.02E-15
0.01 9.94325851191507E+1 1.00E-15
0.1 9.51350769866874 9.33E-16
1 1 0
10 3.6288E+5 0

100 9.33262154439441E+155 5.64E-16
1,000 4.02387260077093E+2564 1.92E-15

10,000 2.84625968091705E+35655 1.58E-15
100,000 2.82422940796034E+456568 2.75E-15

1,000,000 8.26393168833122E+5565702 2.54E-15

Note that relative accuracy is better than 5*10^-15 in any case

You can convert in double only the values with x ≤170, otherwise you will get
#VALUE! (error). You can manipulate these large values only by the "x-functions", or,
separating mantissa and exponent (see xsplit())

FACTORIAL: Thanks to its efficence and accuracy, this function can also be used to
calculate the factorial of a big integer number, using the relation

n! = Γ(n+1)

20 This accurate algorithm has been extracted from a very good note by Paul Godfrey, Intersil , C.2001

Xnumbers Tutorial

223

Example:

xfact(10002) = 2.84711361574652325360317551421E+35667 30 digits, slower

xgamma(10003) = 2.84711361574651E+35667 15 digits, faster

Log Gamma function

xGammaln(x)
xGammalog(x)

These function return the natural and decimal logarithm of the gamma function.

xgammaln(100000) = 1051287.7089736568948

xgammalog(100000) = 456568.45089997090835

Relative accuracy is better than 10^-(14+|log(x)|) for x>0

These functions are added only for compatibility with Excel and other math packages.
In fact they are useful to avoid overflow in standard precision arithmetic for large
arguments of gamma function. However if you use directly the xgamma() and
multiprecision arithmetic, you need no more to use these functions.

Gamma quotient

xGammaQ(x1, x2)

Performs the division of two gamma functions.

q = Γ(x1) / Γ(x2)

Relative accuracy is better than 10^-14, for x1>0 and x2>0

Example: suppose you have to calculate for v =1,000,000 the following quotient

)(
)(

2

2
1

v

v

q
Γ

Γ
=

+

Taking x1 = 500,000.5 and x2 = 500,000 , we have easily
xgammaq(500000.5 , 500000) = 707.106604409874 (rel error = 5.96E-16)

Note that if you have used the standard GAMMALN() function, you should have:

EXP(GAMMALEN(500000.5) - GAMMALEN(500000)) = 707.106604681849

(rel error = 3.846E-10)

As we can see, In this case, the error is more than 500,000 times bigger that the
previous one!

Xnumbers Tutorial

224

Gamma F-factor

xGammaF(x1, x2)

Returns the gamma factor of the Fischer distribution.

Γ⋅

Γ

 +

Γ
=

22

2
21

21

xx

xx

k

Relative accuracy is better than 10^-14, for x1>0 and x2>0

Digamma function

digamma(x)

Returns the logarithmic derivative of the gamma function

()
)(
)(')(ln)(

x
xx

dx
dx

Γ
Γ

=Γ=Ψ

Relative accuracy is better than 10^-14, for x1>0

Example

digamma(x) value rel. error
0.01 -100.560885457869 3.24E-15
0.1 -10.4237549404111 2.23E-15
1 -0.577215664901532 1.49E-15
10 2.25175258906672 4.92E-16

100 4.60016185273809 5.65E-16
1000 6.90725519564881 2.97E-16

Note that Ψ(1) = − γ (Eulero- constant)

Beta function

xbeta(x, y)

Returns the beta function

∫ −− −=
1

0

11)1(),(dtttyxB yx

Relative accuracy is better than 10^-14, for x>0 and y >0

Xnumbers Tutorial

225

Combinations function

xcomb_big(n, k)

Returns the combination, or binomial coefficients, for large integer numbers

!)!(
!

 , nkn
n

k
n

C kn −
=

=

Relative accuracy is better than 10^-14, for n>>0 and k >>0
This function uses the gamma function to calculate the factorials. It is much faster than
xcomb function. For this reason is adapted for large integer values (10,000 -
1,000,000)

xcomb(5000,2493) = 1.5627920156854189438574778889E+1503 (30 digits, slow)

xcomb_big(5000,2493) = 1.56279201568542E+1503 (15 digits , fast)

Xnumbers Tutorial

226

Bessel functions

BesselJ (x, [n]) Bessel function of 1° kind, order n: Jn(x)

BesselY (x, [n]) Bessel function of 2°kind, order n: Yn(x)

BesseldJ (x, [n]) First derivative of Bessel functions of 1° kind, order n: J'n(x)

BesseldY (x, [n]) First derivative of Bessel functions of 2° kind, order n: Y'n(x)

BesselI (x, [n]) Modified Bessel function of 1° kind, order n: In(x)

BesselK (x, [n]) Modified Bessel function of 2°kind, order n: Kn(x)

BesseldI (x, [n]) First derivative of mod. Bessel functions of 1° kind, order n: I'n(x)

BesseldK (x, [n]) First derivative of mod. Bessel functions of 2° kind, order n: K'n(x)

Relative accuracy is better than 10^-13, for x>0 and n any integer

These routines21 have a high general accuracy. Look at the following example. We
have compared results obtained from our BesselJ with the standard Excel similar
function

x J0(x) (BesselJ) Rel. Error J0(x) (Excel standard) Rel. Error
0.1 0.997501562066040 1.11E-16 0.997501564770017 2.71E-09
0.5 0.938469807240813 1.06E-15 0.938469807423541 1.95E-10
1 0.765197686557967 7.25E-16 0.765197683754859 3.66E-09
5 -0.177596771314338 2.66E-15 -0.177596774112343 1.58E-08
10 -0.245935764451374 1.06E-13 -0.245935764384446 2.72E-10
50 0.055812327669252 3.98E-15 0.055812327598901 1.26E-09

As we can se, the general accuracy improving is more than 200,000 times!

Cosine Integral Ci(x)

CosIntegral(x)

Returns the Cosine integral defined as:

dt
t

tx
x

)cos()(ci ∫
∞

−=

Relative accuracy is better than 10^-13, for x>0

21 All these special functions are provided thanks to the FORTRAN 77 Routines Library for Computation
of Special Functions developed by Shanjie Zhang and Jianming Jin . The programs and subroutines
contained in this library are copyrighted. However, authors kindly gave permission to the user to
incorporate any of these routines into his programs.

Xnumbers Tutorial

227

Sine Integral Si(x)

SinIntegral(x)

Returns the sine integral defined as:

dt
t

tsinx
x

)()(si
0
∫=

Relative accuracy is better than 10^-13, for x>0

Fresnel sine Integral

Fresnel_sin(x)

Returns the Fresnel's sine integral defined as:

dttsinxS
x

) ()(2

0
2
1 π∫=

Relative accuracy is better than 10^-13, for x>0
Remember also the following relation

()∫ ⋅=⋅
x

zkSdttk
0

2)(sin

where:
π
2

=k

Fresnel cosine Integral

Fresnel_cos(x)

Returns the Fresnel's cosine integral defined as:

dttxC
x

) cos()(2

0
2
1 π∫=

Relative accuracy is better than 10^-13, for x>0
Remember also the following relation

()∫ ⋅=⋅
x

zkCdttk
0

2)cos(

where:
π
2

=k

Fibonacci numbers

xFib(n, [DgtMax])

Returns the Fibonacci's numbers defined by the following recurrent formula:

2n1nn21 , 2 , 1 −− +=== FFFFF

Xnumbers Tutorial

228

Example:

xFib(136) = 11825896447871834976429068427

xFib(4000) = 3.99094734350044227920812480949E+835

Hypergeometric function

Hypergeom(a, b, c, x)

Returns the Hypergeometric function
The parameter "a" is real, "b" is real, "c" is real and different form 0, -1, -2, -3 ...
The variable "x" is real with |x| < 1
Relative accuracy is better than 10^-14, for -1 < x < 1

The hypergeometric function is the solution of the so called Gaussian-hypergeometric
differential equation

() ()() 0 11 =+′++−+′′− yabyxbacyxx

An integral form of the hypergeometric function is

() ()∫ −−−− −−
−ΓΓ

Γ
=

1

0

11 11
)()(

)().,,(dtxttt
bcb

cxcbaF abcb

More known is the series expansion that converges for !x| < 1

...
!6)2)(1(

)2)(1()2)(1(
!2)1(

)1()1(
!1

1).,,(
32

+
++

++++
+

+
++

++=
x

ccc
bbbaaax

cc
bbaax

c
abxcbaF

Special result are:

pxxpF −−=)1(),1,1,(

x
xxF)1ln(),2,1,1(+

=−

6.1),,,(32
27

6
5

3
2

3
1 =F

Zeta function ζ(s)

Zeta(s)

The Riemann zeta function ζ(s) is an important special function of mathematics and
physics which is intimately related with very deep results surrounding the prime
number, series, integrals, etc.
Relative accuracy is better than 1E-14, for any s <> 1

For |s|>1 the function is defined

Xnumbers Tutorial

229

Analytic continuation. The Riemman zeta function can be defined for 0< s <1 by the
following analytic continuation:

For s< 0 the function is defined by the following relation:

Same known exact results are: ζ(2) = π^2/6 , ζ(4) = π^4/90

Zeta function is very useful in computing series. Look at this example:

4
5)2(

2
111 1

)2(
1 2

1k
2

2k
2

0k
2 −=−−==

+
∑∑∑
∞

=

∞

=

∞

=
ζ

iik

So, the final result is π2/6 −5/4

Xnumbers Tutorial

230

Formulas Evaluation

Multiprecision Expression Evaluation

These functions realize a little math shell, putting together the power of multiprecision
numeric computation with the ease of symbolic calculus. Sometime we may want to
perform the computation using symbolic formulas.
We would pass these strings to a routine for evaluation, returning the numerical results
with a given accuracy. These functions perform this useful task.

xeval(Formula, [Var], [DgtMax], [Angle],)

xevall(Formula, [Var1, Var2 …])

These functions return the evaluation of a math expression in multiprecision arithmetic.
They use the same algorithm22 and have the same variable accuracy. They differ only
for the input parameters.

The parameter "Formula" is a math expression string containing variables, operators,
parenthesis and other basic functions. Examples.
3+1/(x^2+y^2), sin(2*pi*t)+4*cos(2*pi*t), (x^4+2x^3+6x^2-12x-10)^(1/2)

The optional parameter "Var" is an array containing one or more value for variables
substitution. Before computing, the parser substitutes each symbolic variable with its
correspondent value. It can be a single value, an array of values or, even an array of
values + labels (see examples).

The optional parameter "Var1", "Var2"... are single values or array as "Var" but without
labels, because the function xevall automatic finds by itself the appropriate labels.
(See example)

The optional parameter "DgtMax" – from 1 to 200 - sets the maximum number of
precision digits (default=30). Setting DgtMax = 0 will force the function to evaluate in
faster standard precision.

The optional parameter "Angle" sets the angle unit "RAD” (default) “DEG”, “GRAD”.of
for trigonometric computation:

Example:

xeval("(1+sqr(2))/2+5^(1/3))") = 2.91708272786324451375395323463

xeval("(1+cos(x))/2+x^y" , {5, 1.2}) = 7.5404794000376872941836369067

xeval("(a+b)*(a-b)", {2, 3})= (2+3)*(2-3) = -5

All the function parameters can also be passed by reference of cell

Example. Tabulate the following function for x = 1, 1.5, 2, … with 30 significant digits

22 The algorithm is divided into two steps: parsing and evaluation. The first step is performed by the
MathParser class. The evaluation is performed with the x-functions of XNUMBERS.

Xnumbers Tutorial

231

21
1)(

x
xxf

+

+
=

Note how the use of this function is simple and straight comparing with the nested
formulas
=xdiv(xadd(1,A6),xsqr(xadd(1,xpow(A6,2))))

Calculating functions with more than one variable a bit complication arises, because
we have to pay attention which values are assigned to the variables. Let’s see this
example
Calculate the following bivariate function for x = 2.4, y = 5.5

21
)ln(),(

x
xyyyxf

+

+
=

In order to pass to the parameter "Var" the correct value for each variable we select
the variables range B2:C3 including the labels "x" and "y" (header). The labels must
contain the same symbols contained into the formula string

Note If we pass the range B3:C3 without the labels, the function assigns the values to
the variables in the same order that they appear in the formula, from left to right. In our
example the first variables is “y” and the second is “x”, so the function assignes the
first value 2.4 to “y” and the second value 5.5 to “x”
To by-pass the variable order rule, the function uses the trick of the “variables labels”.
On the contrary, for one or none variable it is impossible to make confusion so the
header can be omitted.

Variables order. The function returns the variables order in the Excel function insertion
panel

Xnumbers Tutorial

232

In our example we see the string “y x” , that means you have to pass the first value for
the variable “y” and the second value for the variables “x”
The variables order is by-passed by labels. Using labels you do not need to worry
about the variables order

Let’s see another example. Calculat,e with 30 digits precision, the following function

)2cos()sin(),,(xbxabaxf −=
for x = 30° deg , a = 1 , b = -2

Note that we have set the angle unit = “DEG”
Note also that in this case the variable order would be “a, x, b”, but with the aid of the
labels the function can associate the exact parameters in the right way.

Sometime it is not possible to add a label near its value (in the middle of a table, for
example). Neither all parameters are located adjacent each others. For these cases
we can use the second evaluator function xevall
This function accepts separate parameters or separate array. We do not need to pass
variables labels. The function automatically finds all labels present on the active
worksheet
Of course all this has a cost. the function xevall is about 10 times slower then xeval.

Let’s see how it works with an example. Tabulate the given trigonometric function,
from t = 0 to 0.5, with step = 0.1 and an error less then 1E-20

)cos()cos()(tbtatf ⋅⋅+⋅⋅= ππ
where a = 0.5 and b = -2

Xnumbers Tutorial

233

The above sheet shows a possible arrangement. If we look the last cell B8 we
discover that the parameters are:
Var1 the cell A8 containing the value of the independent variable “t”
Var2 the range “C4:D4”, containing the values of the parameters “a” and “b”
Var3 range “C7:D7”, the the internal parameter “DgtMax” and “AngleSet”

The internal “DgtMax” and “AngleSet” parameters are reserved word and must write
as is.
Note also that the cell A8 has no label, but the function performs the correct
assignment to the “t” variable.

Label Rules. Labels must stay always at
the top or at the left of the corresponding
values. Labels can have any
alphanumeric name starting with any
letter and not containing blank.
In the example:

 t = 0.1, a = 0.5 , DgtMax = 30

The function xevall only assigns a column (or a row) of values to the correspondent
variable on top (or at left)

Complex Expression Evaluation

=cplxeval(Formula, [Var1, Var2 …])

This function23 evaluates a math expression in complex arithmetic.
The parameter "Formula" is a math expression string containing variables, operators,
parenthesis and other basic functions.
(3+8j)*(-1-4j) , (1+i)*ln(1+3i) , ((x+3i)/(x+4-2i))^(1-i)

The optional parameter "Var1", "Var2",... can be single or complex value. See How to
insert a complex number for better details

Example: Evaluate the given complex polynomial for z = 2 – i

)52()3(2 iziz ++++

23 This function uses the clsMathParserC class by A. De Grammont and L. Volpi

Xnumbers Tutorial

234

Note that we use the complex
rectangular format only in the
symbolic math formula.
When we pass a complex variable
we must always use the double cell
format
Note also that we can write “i” or “j”
as well for imaginary symbol, the
parser can recognize both of them.

For complex numbers labels are not supported. When we have formulas with two or
more variables, we must provide the values for variable substitutions in the exact order
that they appear in the formula, starting from left to right. The formula wizard will easily
help you. Look at this example.

Example. Compute the expression for the given complexes values

))((
)(

sk

bsas
esF

−−
=

s = 1 + j , a = 1 − 4j , b = 3 + 6j , k = − 0.5

In the cell B2 we have inserted the string
“exp(k*s)/((s-a)(s-b)”

When we enter the formula, the parser
recognizes the variables symbols and
shows us the exact order in which we
have to pass to the function itself.
In this case: k, s, a, b

Xnumbers Tutorial

235

Math expression strings

Functions like Integr, Series, xeval, xevall, cplxeval operate with symbolic math
expressions by the aid of clsMathParser and claMathparserC evaluators (two
internal class modules).
These programs (for real and complex numbers) accept in input any string
representing an arithmetic or algebraic expression with a list of variable values and
return a single numeric result.
Typical math expressions are:

1+(2-5)*3+8/(5+3)^2 sqr(2)+asin(x)

(a+b)*(a-b) x^2+3*x+1

1.5*exp(-t/12)*cos(pi*t + pi/4) (1+(2-5)*3+8/(5+3)^2)/sqr(5^2+3^2)

2+3x+2x^2 0.25x + 3.5y + 1

sqr(4^2+3^2) 1/(1+e#) + Root(x,6)

(-1)^(2n+1)*x^n/n! |x-2|+|x-5|

And((x<2),(x<=5)) sin(2*pi*x)+cos(2*pi*x)

Variables can be any alphanumeric string and must start with a letter
x, y, a1, a2, time, alpha , beta

Also the symbol "_" is accepted to build variable names in "programming style".
time_1, alpha_b1 , rise_time

Capitals are accepted but ignored. Names such as "Alpha", "alpha", "ALPHA" indicate
the same variable.

Implicit multiplication is not supported because of its intrinsical ambiguity. So "xy"
stands for variable named "xy" and not for x*y. The multiplication symbol "*" generally
cannot be omitted. It can be omitted only for coefficients of the classic math variables
x, y, z. It means that string like 2x and 2*x are equivalent

2x, 3.141y, 338z^2 ⇔ 2*x, 3.141*y, 338*z^2

On the contrary, the following expressions are illegal in this context.
2a, 3(x+1), 334omega

Constant numbers can be integer, decimal, or exponential
2, -3234, 1.3333, -0.00025, 1.2345E-12

Logical expression are supported
"x<1", "x+2y >= 4", "x^2+5x-1>0" , "t<>0" , and(x>0;x<1)

Logical expressions always returns 1 (True) or 0 (False). Multiple logical expression,
like “0<x<1” , are not supported; you must enter:
 and(x>0,x<1) or (x>0)*(x<1)

Math Constants supported are: Pi Greek (π),Euler-Napier
pi = 3.14159265358979 or pi# = 3.14159265358979

e# = 2.71828182845905

Xnumbers Tutorial

236

Angle expression
This version supports angles in RAD radians, DEG degree, or GRAD degree.
For example if you set the unit "DEG", all angles will be read and converted into
degrees
sin(120) => 0.86602540378444
asin(0.86602540378444) => 120
rad(pi/2) => 90 , grad(400) => 360 , deg(360) => 360

Angles can also be write in DMS format like for example 45° 12' 13"
sin(29°59'60") => 0.5

Complex number can be indicated in a formula string as an ordered couple of
number enclosed into parenthesis “(..)” and divided by a comma “,” like for example:
 (2, 3) (a, b) (-1, -0.05) (-1.4142135623731, -9.94665E-18)

On the other hand, complex numbers can also be indicate by the common rectangular
form:

3+3j a+bj -1 − 0.05j -1.4142135623731 − 9.94665E-18j

You note that the second form is suitable for integer numbers, while, on the contrary,
for decimal or exponential number the first one is clearer. The parenthesis form is
more suitable also in nested results like
((2+3*4), (8-1/2)) that gives the complex number (14, 7.5)

Note: Pay attention if you want to use the rectangular convention in nested formulas.
wrong (2+3*4)+(8-1/2)j. correct (2+3*4)+(8-1/2)*j .

Do not omit the product symbol “*” before j because the parser recognize it as an
expression, not a complex number. The product symbol can be omitted only when
before the letter “j” is a constant number
Note: You can use both “j” and “i” for indicating the imaginary number 1−

Xnumbers Tutorial

237

List of basic functions and operators

Function Description Note
+ addition
- subtraction
* multiplication
/ division 35/4 = 8.75
% percentage 35% = 3.5 , 1000+35% =1035
\ integer division 35\4 = 8
^ raise to power 3^1.8 = 7.22467405584208
| | absolute value |-5|=5 (the same as abs)
! factorial 5!=120 (the same as fact)
abs(x) absolute value abs(-5)= 5
atn(x) inverse tangent
cos(x) cosine argument in radians
sin(x) sine argument in radians
exp(x) exponential exp(1) = 2.71828182845905
fix(x) integer part fix(-3.8) = 3
int(x) integer part int(-3.8) = 4
dec(x) decimal part dec(-3.8) = -0.8
ln(x) logarithm natural argument x>0
log(x) logarithm decimal argument x>0
rnd(x) random returns a random number between x and 0
sgn(x) sign returns 1 if x >0 , 0 if x=0, -1 if x<0
sqr(x) square root sqr(2) =1.4142135623731, also 2^(1/2)
cbr(x) cube root ∀x, example cbr(2) = 1.2599, cbr(-2) = -1.2599
tan(x) tangent argument (in radians) x≠ k*π/2 with k = ± 1, ± 2…
acos(x) inverse cosine argument -1 ≤ x ≤ 1
asin(x) inverse sine argument -1 ≤ x ≤ 1
cosh(x) hyperbolic cosine
sinh(x) hyperbolic sine
tanh(x) hyperbolic tangent
acosh(x) inverse hyperbolic cosine argument x ≥ 1
asinh(x) inverse hyperbolic sine
atanh(x) inverse hyperbolic tangent argument -1 < x < 1
root(x,n) n-th root (the same as x^(1/n) Argument n ≠ 0 , x ≥ 0 if n even , ∀x if n odd
mod(a, b) division quotient
fact(x) factorial argument 0 ≤ x ≤ 170
comb(n,k) combinations comb(6,3) = 20
min(a, b) min between two numbers
max(a, b) max between two numbers

mcd(a, b)
maximum common divisor between two
numbers mcm(4346,174) = 2

mcm(a, b)
minimum common multiple between two
numbers mcm(4346,174) = 378102

gcd(a, b)
greatest common divisor between two
numbers The same as mcd

lcm(a, b)
lowest common multiple between two
numbers The same as mcm

erf(x) error Gauss's function argument x>0
gamma(x) gamma argument 0 < x < 172
gammaln(x) logarithm gamma argument x>0
digamma(x) digamma argument x>0
beta(x,y) beta argument x>0 y>0
zeta(x) zeta Riemman's function argument x<-1 or x>1
ei(x) exponential integral function argument x>0
csc(x) cosecant argument (in radians) x≠ k*π with k = 0, ± 1, ± 2…
sec(x) secant argument (in radians) x≠ k*π/2 with k = ± 1, ± 2…
cot(x) cotangent argument (in radians) x≠ k*π with k = 0, ± 1, ± 2…
acsc(x) inverse cosecant
asec(x) inverse secant

Xnumbers Tutorial

238

acot(x) inverse cotangent
csch(x) hyperbolic cosecant argument x>0
sech(x) hyperbolic secant argument x>1
coth(x) hyperbolic cotangent argument x>2
acsch(x) inverse hyperbolic cosecant
asech(x) inverse hyperbolic secant argument 0 ≤ x ≤ 1
acoth(x) inverse hyperbolic cotangent argument x<-1 or x>1
rad(x) radians conversion converts radians into current unit of angle
deg(x) degree DEG. conversion converts DEG degree into current unit of angle
grad(x) degree GRAD. conversion converts GRAD. degree into current unit of angle
round(x,d) round a number with d decimal round(1.35712, 2) = 1.36
> greater than return 1 (true) 0 (false)
>= equal or greater than return 1 (true) 0 (false)
< less than return 1 (true) 0 (false)
<= equal or less than return 1 (true) 0 (false)
= equal return 1 (true) 0 (false)
<> not equal return 1 (true) 0 (false)
and logic and and(a, b) = return 0 (false) if a=0 or b=0
or logic or or(a, b) = return 0 (false) only if a=0 and b=0
not logic not not(a) = return 0 (false) if a ≠ 0 , else 1
xor logic exclusive-or xor(a, b) = return 1 (true) only if a ≠ b
nand logic nand nand(a, b) = return 1 (true) if a=1 or b=1
nor logic nor nor(a, b) = return 1 (true) only if a=0 and b=0
nxor logic exclusive-nor nxor(a, b) = return 1 (true) only if a=b

Symbol "!" is the same as "Fact", symbol "\" is the integer division, symbols “|x|” is the same as Abs(x)
Logical function and operators returns 1 (true) or 0 (false)

Xnumbers Tutorial

239

Function Optimization

Macros for optimization on site
These macros has been ideated for performing the optimization task directly on the
worksheet. This means that you can define any function that you want simply using the
standard Excel built-in functions.

Objective function. For example: if you want to search the minimum of the bivariate
function

() ()2
100
352

100
51),(−+−= yxyxf

insert in the cell E4 the formula "=(B4-0.51)^2+(C4-0.35)^2", where the cells B4 and
C4 contain the current values of the variables x and y respectively. Changing the
values of B4 e/o C4 the function value E4 also changes consequently.

For optimization, you can choose two different algorithms

Downhill-Simplex 24

The Nelder–Mead downhill simplex algorithm is a popular derivative-free
optimization method. Although there are no theoretical results on the
convergence of this algorithm, it works very well on a wide range of
practical problems. It is a good choice when a one-off solution is wanted
with minimum programming effort. It can also be used to minimize
functions that are not differentiable, or we cannot differentiate.
It shows a very robust behavior and converges for a very large set of
starting points. In our experience is the best general purpose algorithm,
solid as a rock, it's a "jack" for all trades.

For mono and
multivariate
functions without
constrains

Divide-Conquer 1D

For monovariable function only, it is an high robust derivative free
algorithm. It is simply a modified version of the bisection algorithm
Adapt for every function, smooth or discontinue.
It converges for very large segments. Starting point not necessary

For monovariable
function only. It
needs the segment
where the max or
min is located

Example assume to have to minimize the following function for x > 0

24 The Downhill-Simplex of Nelder and Maid routine appears by the courtesy of Luis Isaac Ramos Garcia

Xnumbers Tutorial

240

)4cos()3sin()(3 xexexf xx −− +=

We try to search the minimum in the range 0 < x < 10
Choose a cell for the variable x , example B6, and insert the function

= SIN(3*B6)*EXP(- 2*B6) + COS(4*B6)*EXP(-B6)

in a cell that you like, for example C6.
After this, add the constrain values into another range, for example B3:C3
The values of the variables at the start are not important

Select the cell of the function C6 and start the macro "1D divide and conquer", filling
the input field as shown

Stopping limit. Set the maximum evaluation points allowed.

Max/Min. The radio buttons switches between the minimization and maximization
algorithm

Xnumbers Tutorial

241

The "Downhill-Simplex" macro is similar except that:
• The constrain box is optional.
• It accepts up to 9 variables (range form 1 to 9 cells)
• The algorithm starts from the point that you give in the variable cells. If the

constrain box is present, the algorithm starts from a random point inside the
box

Let's see how it works.
The following examples are extracted from "Optimization and Nonlinear Fitting" , Foxes Team,
Nov. 2004

Example 1 - Rosenbrock's parabolic valley
This family of test functions is well known to be a minimizing problem of high difficult

() ()222 1),(xxymyxf −+−⋅=

The parameter "m" tunes the difficult: high value means high difficult in minimum
searching. The reason is that the minimum is located in a large flat region with a very
low slope. The following 3D plot shows the Rosenbrock's parabolic valley for m = 100

The following contour plot is obtained for m = 10

Xnumbers Tutorial

242

The function is always positive except in the point (1, 1) where it is 0. it is simple to
demonstrate it, taking the gradient

()
()

=−

=−⋅−+⋅
⇒=∇

02
022124

 0
2

3

xym
ymxxm

f

From the second equation, we get

() 22 02 xyxym =⇒=−

Substituting in the first equation, we have

() 1 022 022124 23 =⇒=−⇒=−⋅−+⋅ xxxmxxm

So the only extreme is the point (1, 1) that is the absolute minimum of the function

To find numerically the minimum, let's arrange a similar sheet.
We can insert the function and the parameters as we like
Select the cell D4 - containing the objective function - and start the macro "Downhill-
Simplex". The macro fills automatically the variables-field with the cells related to the
objective function. But, In that case, the cell A4 contains the parameter m that must
not change. So insert the range B4:C4 int the variables field.

The cells B4:C4 will change for minimizing the
objective function in the cell D4

Starting from the point (0, 0) we obtain the following good results

Xnumbers Tutorial

243

m Algorithm x y error time
10 Simplex 1 1 2.16E-13 2 sec
100 Simplex 1 1 4.19E-13 2 sec

Where the error is calculated as |x-1|+|y-1|

Example 2 - Constrained minimization

Example: assume to have to minimize the following function

710442),(22 +−+−+= yyxxyxyxf

with the ranges constrains

5.00 , 20 ≤≤≤≤ yx

The Excel arrangement can be like the following

Compare with the exact solution x = 1.5, y = 0.5

Note that the function has a free minimum at x = 1, y = 1
Repeat the example living empty the constrains box input, for finding those free
extremes.

Xnumbers Tutorial

244

Example 3 - Nonlinear Regression with Absolute Sum
This example explains how to perform a nonlinear regression with an objective
function different from the "Least Squared". In this example we adopt the "Absolute
Sum".
We choose the exponential model

xkeakaxf ⋅−⋅=),,(

The goal of the regression is to find the best couple of parameters (a, k) that minimizes
the sum of the absolute errors between the regression model and the given data set.

∑ −= |),,(| kaxfyAS ii

The objective function AS depends only by parameter a, k. Giving in input this function
to our optimization algorithm we hope to solve the regression problem
A possible arrangement of the worksheet may be:

We hope that changing the parameters "a" and "k" int the cells E2 and F3, the
objective function (yellow cell) goes to its minimum value. Note that the objective
function depends indirectly by the parameters a and k.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

y

y*

The starting condition is the
following, where y indicates
the given data and y* is the
regression plot (a flat line at
the beginning)

Start the Downhil-Simplex and insert the appropriate range as shown in the picture

Xnumbers Tutorial

245

Starting form the point (1, 0) you will see the cells changing quickly until the macro
stops itself leaving the following "best" fitting parameters and the values of the
regression y*

Best fitting parameters

a k
1 -2

The plot of the y* function and
the samples y are shown in
the graph. As we can see the
regression fits perfectly the
given dataset.

Xnumbers Tutorial

246

References

"Computation of Special Functions" by Shanjie Zhang and Jianming Jin - John Wiley and Sons,
Inc
Computation of Special Functions" is a valuable book/software package containing more than 100 original computer
programs for the computation of most special functions currently in use. These include many functions commonly
omitted from available software packages, such as the Bessel and modified Bessel functions, the Mathieu and modified
Mathieu functions, parabolic cylinder functions, and various prolate and oblate spheroidal wave functions. Also, unlike
most software packages, this book/disk set gives readers the latitude to modify programs according to special
demands of the sophisticated problems they are working on.
All the programs and subroutines contained in this library are copyrighted. However, authors kindly gave permission to
the user to incorporate any of these routines into his or her programs.
We have cured to preserve the clean original code, modifying as less as possible, to adapt it from FORTRAN 77 to the
VBA language.

"Lanczos Implementation of the Gamma Function" by Paul Godfrey, Intersil Corp, 2001
A note on the computation of the convergent Lanczos complex Gamma approximation.
Abstract: The convergent approximation of the Gamma function as developed by Lanczos is examined. It is found that
the coefficients in the series expansion can be written as the product of 4 matrices. This allows greater accuracy in
computing the function.[...] A 15 term expansion was found that provides an accuracy of about 15 significant digits.

Resource Library of Wolfram Research by Eric Weisstein

"Numerical Recipes in FORTRAN 77- The Art of Scientific Computing - 1986-1992 by
Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical Recipes
Software

clsMathParser - A Class for Math Expressions Evaluation in Visual Basic, Leonardo Volpi ,
Michael Ruder, Thomas Zeutschler, Lieven Dossche, . 3.2 Jan. 2003, by .Volpi

clsMathParserC -A Class for Complex Math Expressions Evaluation in Visual Basic, Arnaud de
Grammont, Leonardo Volpi, v. 3.2 , Jan. 2003

F F T (Fast Fourier Transform), Paul Bourke, June 1993, http://astronomy.swin.edu.au

2 Dimensional FFT , Paul Bourke, June 1998, http://astronomy.swin.edu.au

“Solutions Numeriques des Equations Algebriques”, E., Durand, Tome I, Masson,Paris ,1960.

”A modified Newton method for Polynomials” , W.,Ehrilich, Comm., ACM, 1967, 10, 107-108.

“Ein Gesamschrittverfahren zur Berechnung der Nullstellen eines Polynoms”, O., Kerner,
Num.Math., 1966, 8, 290-294.

“Iteration methods for finding all the zeros of a polynomial simultaneously”, O. Aberth, Math.
Comp. ,1973, 27, 339-344.

“The Ehrlich-Aberth Method for the nonsymmetric tridiagonal eigenvalue problem”, D. A. Bini,
L. Gemignani, F, Tisseur, AMS subject classifications. 65F15

“Progress on the implementetion of Aberth’s method”, D. A. Bini, G. Fiorentino, , 2002, The
FRISCO Consortiunm (LTR 21.024)

"Nonlinear regression", Gordon K. Smyth Vol. 3, pp 1405/1411, in Encyclopedia of
Environmetrics (ISBN 0471 899976), Edited by John Wiley & Sons, Ltd, Chichester, 2002

"Optimization", Gordon K. Smyth Vol. 3, pp 1481/1487, in Encyclopedia of Environmetrics
(ISBN 0471 899976), Edited by John Wiley & Sons, Ltd, Chichester, 2002

"Process Modeling", The National Institute of Standards and Technology (NIST) website for
Statistical Reference Datasets,
(http://www.itl.nist.gov/div898/handbook/pmd/pmd)

Xnumbers Tutorial

247

"Metodos numericos con Matlab", J. M Mathewss et al., Prentice Hall

"Genetic and Nelder-Mead", E. Chelouan, et al, EJOR 148(2003) 335-348

"Convergence properties", J.C. Lagarias, et al, SIAM J Optim. 9(1), 112-147

"Optimization for Engineering Systems", Ralph W. Pike, 2001, Louisiana State University
(http://www.mpri.lsu.edu/bookindex)

"Zeros of Orthogonal Polynomials" , Leonardo Volpi, Foxes Team
(http://digilander.libero.it/foxes/Documents)

"How to tabulate the Legendre’s polynomials coefficients" Leonardo Volpi, Foxes Team
(http://digilander.libero.it/foxes/Documents)

"Gli algoritmi della crittografia a chiave pubblica", Giovanni Fraterno, settembre 2000
(http://digilander.libero.it/crittazione)

"Improving Exact Integral from Symbolic Algebra System", R.J. Fateman and W. Kaham,
University of California, Berkeley, July 18,2000

"NIST/SEMATECH e-Handbook of Statistical Methods", January 26, 2005
(http://www.itl.nist.gov/div898/handbook)

"DE-Quadrature (Numerical Automatic Integrator) Package", by Takuya OOURA, Copyright(C) 1996,
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-01, Japan
(http://momonga.t.u-tokyo.ac.jp/~ooura)

"A Comparison of three high-precision quadrature schemes", David H. Bailey and Xiaoye S. Li,
Copyright 2003, University of California
(http://repositories.cdlib.org/lbnl/LBNL-53652)

"Asymptotic Bit Cost of Quadrature Formulas Obtained by Variable Transformation" P. Favati,
Appl. Math. Lett. Vol. 10, No. 3, pp. 1-7, 1997, Pergamon Copyright 1997

"Matrix Analysis and Applied Linear Algebra" Carl Meyer, 2000, SIAM, Philadelphia

"Handbook of Mathematical Functions", by M. Abramowitz and I. Stegun, Dover Publication
Inc., New York.

Xnumbers Tutorial

248

Credits

Software developed
Xnumbers contains code developed by the following authors that kindly contributed to
this collection.

Luis Isaac Ramos Garcia Orthogonal Polynomials and Downhill Simplex Nelder-Mead

routine
Olgierd Zieba Cubic Spline and documentation

Alfredo Álvarez Valdivia Robust Method fitting routines

Michael J. Kozluk Log Relative Error function, Linear regression debugging, and
documentation (StRD benchmark)

Ton Jeursen Format function, Xnumber debugging; Xnumber for Excel95

Richard Huxtable ChangeBase and Prime functions

Michael Ruder MathParser improvement and debugging

Thomas Zeutschler MathParser improvement and debugging

Lieven Dossche Class MathParser development

Arnaud de Grammont Complex MathParser developement

Rodrigo Farinha MathParser improvement and debugging

Vladimir Zakharov Installation and initialization improvement

Software translated
Xnumbers contains VB code translated from the following packages:

Takuya OOURA DE-Quadrature (Numerical Automatic Integrator) Package

Shanjie Zhang
 Jianming Jin

FORTRAN routines for computation of Special Functions

Many thanks to everybody

Xnumbers Tutorial

249

Analytical Index
Analytical index

A

Absolute; 31
Adams; 202; 203
Adams-Bashfort-Moulton; 202
Addition; 25
Aitken; 156; 174
Arccos; 66
Arcsine; 66
Arctan; 66
Arithmetic Mean; 42

B

Base conversion; 218
baseChange; 218
Bessel functions; 226
BesseldI; 226
BesseldJ; 226
BesseldK; 226
BesseldY; 226
BesselI; 226
BesselJ; 226
BesselK; 226
BesselY; 226
Beta function; 224
Bisection; 209
Bivariate Polynomial; 98

C

Cebychev; 86
Central Polynomial; 77
Change sign; 31
Check digits; 36
Check odd/even; 121
Check Prime; 120
CheckPrime; 120
Cholesky; 129
Circle of the Roots; 79
Coefficients of Orthogonal Polynomials;

107
Coefficients Transformation; 78
Combinations; 41
Combinations function; 225
Compare numbers; 34
Complement of right angle; 67
Complex absolute; 111
Complex Addition; 109
Complex ArcCos; 113

Complex ArcSin; 114
Complex ArcTan; 114
Complex Complementary Error Function;

115
Complex conjugate; 113
Complex Cos; 113
Complex digamma; 115
Complex Division; 110
Complex Error Function; 115
Complex Exp; 112
Complex Exponential Integral; 115
Complex Expression Evaluation; 233
Complex Function Integration (Romberg

method); 152
Complex Gamma Function; 116
Complex Hyperbolic Cosine; 114
Complex Hyperbolic Sine; 114
Complex Hyperbolic Tan; 114
Complex inverse; 112
Complex Inverse Hyperbolic Cos; 114
Complex Inverse Hyperbolic Sin; 114
Complex Inverse Hyperbolic Tan; 115
Complex Log; 112
Complex Logarithm Gamma Function; 116
Complex Multiplication; 109
Complex negative; 113
Complex power; 111
Complex Quadratic Equation; 117
Complex Roots; 111
Complex Series Evaluation; 175
Complex Sin; 113
Complex Subtraction; 109
Complex Tangent; 113
Complex Zeta Function; 116
Constant “e”; 62
Constant Ln(10); 62
Constant Ln(2); 62
Constant pi; 66
Convert Extended Number; 38
Convol; 180
corrector; 202
Corrector; 203; 205
Cos; 65
Cosine Integral Ci(x); 226
CosIntegral; 226
cplxabs; 111
cplxacos; 113
cplxacosh; 114
cplxadd; 109
cplxasin; 114

Xnumbers Tutorial

250

cplxasinh; 114
cplxatan; 114
cplxatanh; 115
cplxconj; 113
cplxcos; 113
cplxcosh; 114
cplxdigamma; 115
cplxdiv; 110
cplxei; 115
cplxEquation2; 117
cplxerf; 115
cplxerfc; 115
cplxeval; 233
cplxExp; 112
cplxgamma; 116
cplxgammaln; 116
cplxintegr; 152
cplxinv; 112
cplxLn; 112
cplxmult; 109
cplxneg; 113
cplxpolar; 110
cplxpow; 111
cplxrect; 110
cplxroot; 111
cplxserie; 175
cplxsin; 113
cplxsinh; 114
cplxsub; 109
cplxtan; 113
cplxtanh; 114
cplxzeta; 116
Crout; 128
cspline_coeff; 186
cspline_eval; 184
cspline_interp; 184
cspline_pre; 185
Cubic Spline 2nd derivatives; 185
Cubic Spline Coefficients; 186
cvBaseDec; 218
cvBinDec; 218
cvDecBase; 218
cvDecBin; 218

D

Data Conditioned Linear Regression
Coefficients; 53

Data Conditioning; 52
Data Integration (Newton Cotes); 154
Data Integration (Romberg method); 146
dBel; 218
Decibel; 218
Decimal part; 31
DFSP; 138
DFSP_INV; 139
DFT; 136; 141
DFT_INV; 137
Diff1; 212
Diff2; 213

digamma; 224
Digamma function; 224
Digit_Max; 24; 39
Digits count; 34
Digits sum; 36
DigitsAllDiff; 36
Diophantine; 125
Diophantine Equation; 125
DiophEqu; 125
Discrete 2D Fourier Transform; 139
Discrete Convolution; 180
Discrete Fourier Inverse Transform; 137
Discrete Fourier Spectrum; 138
Discrete Fourier Transform; 136
Division; 26
Double Exponential; 148
Double Integral; 166
Double integration function; 168
Double Integration macro; 166
Double Series; 176
Downhill; 241
DPOLYN; 82

E

Eratostene; 122
errfun; 221
Error Function Erf(x); 221
Euler; 202
Euler’s constant gamma; 64
Euler-Mascheroni Constant; 221
exp_integr; 221
exp_integr_n; 221
Exponential; 61
Exponential any base; 61
Exponential integral Ei(x); 221
Exponential integral En(x); 221
Extended Number Check; 35

F

Factor; 122
Factorial; 41
Factorial with double-step; 41
Factorize; 121
Factorize function; 122
Fermat; 123
Fermat's Prime Test; 123
FFT; 136; 141
FFT_INV; 137
FFT2D; 139
FFT2D_INV; 140
Fibonacci numbers; 227
First Derivative; 212
Flip; 37
Format Extended Number; 35
Fourier; 164
Fourier_cos; 162
Fourier_cos; 164
Fourier_cos; 165
Fourier_sin; 162

Xnumbers Tutorial

251

fract; 119
Fract_Interp; 182
Fract_Interp_Coef; 182
Fresnel cosine Integral; 227
Fresnel sine Integral; 227
Fresnel_cos; 227
Fresnel_sin; 227
Function Integration (Double Exponential

method); 148
Function Integration (mixed method); 150
Function Integration (Newton-Cotes

formulas); 156
Function Integration (Romberg method);

147

G

Gamma F-factor; 224
Gamma function); 222
Gamma quotient; 223
GCD; 118
Geometric Mean; 42
Grad; 213
Gradient; 213
Greatest Common Divisor; 118

H

Hermite; 86
Hessian; 214
Hessian matrix; 214
Hyperbolic Arc Cosine; 63
Hyperbolic Arc Sine; 62
Hyperbolic Arc Tangent; 63
Hyperbolic Cosine; 63
Hyperbolic Sine; 62
Hyperbolic Tangent; 63
Hypergeom; 228
Hypergeometric function; 228

I

Infinite integral; 170
Infinite Integration of oscillating functions;

163
Integer Division; 27
Integer part; 31
Integer polynomial; 94
Integer Remainder; 27
Integer roots; 74
integr; 164; 165
Integr; 150
Integr_2D; 168
Integr_fcos; 160
Integr_fsin; 160
Integr_nc; 156
Integr_ro; 147
Integr2D; 166
Integral_Inf; 170
Integration of oscillating functions (Filon

formulas); 160

Integration of oscillating functions (Fourier
transform); 162

IntegrDataC; 154
IntegrDataR; 146
Interp_Mesh; 188
InterpL; 187
InterpL_Coef; 187
Interpolation 2D; 188
Interpolation with continue fraction; 182
Interpolation with Cubic Spline; 184
IntRombergMat; 146
Inverse; 26
Inverse 2D Discrete Fourier Transform; 140
Inverse Discrete Fourier Spectrum; 139
isXnumbers; 35

J

Jacobian; 214
Jacobian matrix; 214

L

LCM; 118
Least Common Multiple; 118
Legendre; 86
Linear Regression Coefficients; 44
Linear Regression Covariance Matrix; 48
Linear Regression Evaluation; 50
Linear Regression Formulas; 47
Linear Regression Min-Max; 56
Linear Regression Statistics; 49
Linear Regression with Robust Method; 55
LINEST; 46
Log Gamma function; 223
Log Relative Error; 219
Logarithm in any base; 61
Logarithm natural (Napier’s); 61
LRE; 54

M

Macro Sampler; 143
Macros for optimization on site; 239
Macros X-Edit; 39
Math expression strings; 235
MathParser; 237
matrix; 134
Matrix Addition; 126
Matrix Determinant; 127
Matrix Inverse; 126
Matrix LLT decomposition; 129
Matrix LU decomposition; 128
Matrix Modulus; 127
Matrix Multiplication; 126
Matrix Power; 128
Matrix Subtraction; 126
Maximum Common Divisor; 118
MCD; 118
MCM; 118
Minimum Common Multiple; 118

Xnumbers Tutorial

252

mjkLRE; 219
mjLRE; 54
modular power; 120
Modular Power; 120
Multiplication; 26
Multiprecision Expression Evaluation; 230
Multiprecision Matrix operations; 134
Multi-variables Interpolation; 187

N

Next Prime; 120
NextPrime; 120
Non Linear Equation Solving; 216
N-Root; 30

O

Objective function; 239
ODE Multi-Steps; 202
ODE Runge-Kutta 4; 198
ODE_COR; 205
ODE_PRE; 205
ODE_RK4; 198
Orthogonal polynomials; 102
Orthogonal Polynomials; 102
Orthogonal Polynomials evaluation; 103
oscillating; 163

P

Partial; 99
PECE; 205; 207
Perfect Square; 121
permutation; 42
Permutations; 42
Polar Conversion; 110
Pollard; 122
Poly_ChebychevT; 103
Poly_ChebychevU; 103
Poly_Gegenbauer; 103
Poly_Hermite; 103
Poly_Jacobi; 103
Poly_Laguerre; 103
Poly_Legendre; 103
Poly_Weight_ChebychevT; 106
Poly_Weight_ChebychevU; 106
Poly_Weight_Gegenbauer; 106
Poly_Weight_Hermite; 106
Poly_Weight_Jacobi; 106
Poly_Weight_Laguerre; 106
Poly_Weight_Legendre; 106
PolyAdd; 84
PolyBuild; 91
PolyBuildCfx; 93
PolyCenter; 89
PolyDiv; 85
PolyInt; 94
PolyInterp; 95
PolyInterpCf; 95
PolyMult; 84

POLYN; 80
POLYN2; 98
Polynomial addition; 84
Polynomial building from roots; 91
Polynomial building with multi-precision; 93
Polynomial center; 89
Polynomial coefficients; 83
Polynomial derivatives; 82
Polynomial division quotient; 85
Polynomial division remainder; 85
Polynomial evaluation; 80
Polynomial interpolation; 95
Polynomial multiplication; 84
Polynomial roots radius; 90
Polynomial shift; 89
Polynomial solving; 94
Polynomial subtraction; 85
Polynomial System of 2nd degree; 97
Polynomial writing; 84
PolyRadius; 90
PolyRem; 85
PolyShift; 89
PolySolve; 94
PolySub; 85
Polyterms; 88
PolyTerms; 83
predictor; 202
Predictor; 203
Predictor; 205
Prime; 120
Prime Numbers Generator; 123
Prime_Test_Fermat; 123
PrimeGenerator; 123
Product; 29

Q

Quadratic Mean; 43

R

Raise to power; 30
Rational Fraction approximation; 119
Rectangular Conversion; 110
RegLin_Coeff; 44
RegLin_Eval; 50
RegLinMM; 56
RegLinRM; 55
regression; 244
Relative Rounding; 33
RLCondCoef; 53
Root Error Estimation; 72
Rounding; 32

S

Scalar Product; 127
Scientific Format; 37
Secant; 210
Second Derivative; 213
Serie_trig; 177

Xnumbers Tutorial

253

Serie2D_trig; 178
Series acceleration with ∆^2; 174
Series Evaluation; 173
sign; 34
Significant Digits count; 34
Similarity Transformation; 127
Simplex; 241
Sin; 65
Sine Integral Si(x); 227
SinIntegral; 227
Solve Linear Equation System; 130
Solve Linear Equation System with Iterative

method; 131
SortRange; 36
Split scientific format; 37
Square Delta Extrapolation; 132
Square Root; 30
Standard Deviation; 43
Sub-Tabulation; 52
Subtraction; 25
Sum; 29
sumDigits; 36
Summary of Linear Regressions; 51
SYSLIN_ITER_G; 131
SYSPOLY2; 97

T

Tan; 66
tanh-sinh transformation; 148
trial division; 122
Trigonometric double serie; 178
Trigonometric series; 177
Truncating; 32

V

Variance; 43
Vector Inversion; 37
Vector Product; 129

W

Weight of Orhogonal Polynomials; 106

X

x2pi; 66
xabs; 31
xacos; 66
xacosh; 63
xadd; 25
xanglecompl; 67
xasin; 66
xasinh; 62
xatan; 66
xatanh; 63
xbeta; 224
xcdbl; 38
xcomb; 41
xcomb_big; 225

xcomp; 34
xcos; 65
xcosh; 63
xcplxabs; 111
xcplxadd; 109
xcplxconj; 113
xcplxdiv; 110
xcplxExp; 112
xcplxinv; 112
xcplxLn; 112
xcplxmult; 109
xcplxneg; 113
xcplxpolar; 110
xcplxpow; 111
xcplxrect; 110
xcplxroot; 111
xcplxsub; 109
xcvexp; 37
xdec; 31
xDgt; 34
xdiv; 26
xdivint; 27
xdivrem; 27
xe; 62
xeu; 64
xeval; 29; 230
xevall; 230
xexp; 61
xfact; 41
xfact2; 41
xFib; 227
xFormat; 35
xfrac; 119
xFract_Interp; 182
xFract_Interp_Coef; 182
xGamma; 222
xGammaF; 224
xGammaln; 223
xGammalog; 223
xGammaQ; 223
xGm; 221
xgmean; 42
xint; 31
xinv; 26
xIsOdd; 121
xIsSquare; 121
xLn; 61
xLn10; 62
xLn2; 62
xLog; 61
xLRE; 219
xMat_BAB; 127
xMat_LL; 129
xMat_LU; 128
xMatAbs; 127
xMatAdd; 126
xMatDet; 127
xMatInv; 126
xMatMult; 126
xMatPow; 128

Xnumbers Tutorial

254

xMatSub; 126
xMCD; 118
xMCM; 118
xmean; 42
xmult; 26
xneg; 25; 31
xpi; 66
xpi2; 66
xpi4; 66
xpow; 30
xProdScal; 127
xProdVect; 129
xqmean; 43
xRegLin_Coeff; 44
xRegLin_Coeff; 46
xRegLin_Eval; 50
xroot; 30
xround; 32
xroundr; 33
xSerie2D; 176
xsin; 65

xsinh; 62
xsplit; 37
xsqr; 30
xstdev; 43
xsub; 25
xsum; 29
xSYSLIN; 130
xtan; 66
xtanh; 63
xtrunc; 32
xUnformat; 35
xvar; 43

Z

Zero_bisec; 209
Zero_sec; 210
Zeros of Orthogonal Polynomials; 106
Zeta; 228
Zeta function; 228

Xnumbers Tutorial

255

 2005, by Foxes Team
ITALY

Sept 2005

