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About this tutorial 
About this Tutorial 
This document is the reference guide for all functions 
and macros contained in the Xnumbers addin. It is a 
printable version of the help-on-line, with a larger 
collection of examples. 

 
 
XNUMBERS.XLA is an Excel addin containing useful functions for numeric 
calculus in standard and multiprecision floating point arithmetic up to 200 
significant digits.  

The main purpose of this document is to give a reference guide for numeric calculus 
functions of this package, showing how to work with multiprecision arithmetic in Excel. 
Much of the material contained in this document comes from the Xnumbers help-on-
line. You may print it in order to have a handle paper manual. This tutorial is written 
with the aim of teaching how to use the Xnumbers functions. Of course it speaks about 
math and numeric calculus but this is not a math book.  You rarely find here theorems 
and demonstrations. You can find, on the contrary, many explaining examples. 
 
I thank all those who suggested me to write this tutorial and - indeed - who 
encouraged me. I am grateful to all those who will provide constructive criticisms. 

Special thanks to everyone that have kindly collaborated. 
 

 

Leonardo Volpi 

 

Chapter 

1 



Xnumbers Tutorial 

9 

Array functions 

What is an array-function? 
A function that returns multiple values is called "array-function". Xnumbers contains 
many of these functions. Those that return a matrix or a vector are array functions. 
Matrix operations such as the inversion, the multiplication, the sum, etc. are examples 
of array-functions. Also complex numbers are arrays of two cells. On the contrary, in 
the real domain, the logarithm, the exponential, the trigonometric functions, etc. are 
scalar functions because they return only one value. 

In a worksheet, an array-function always returns a (n x m) rectangular 
range of cells. To enter it, you must select this range, enter the 
function as usually and and give the keys sequence 
CTRL+SHIFT+ENTER. Keep down both keys CTRL and SHIFT (do 
not care the order) and then press ENTER. 

 

How to insert an array function 
The following example explains, step-by-step, how it works 

The System Solution 
Assume to have to solve a 3x3 linear system. The solution is a vector of 3 values. 

Ax = b 
Where: 

 

 

 

The function SYSLIN returns the 
solution x. To see the three values 
you must select before the area 
where you want to insert these 
values. 

 

Now insert the function either from 

menu or by the icon   
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Select the area of the matrix A "A5:C7" and the constant vector b "E5:E7" 

 
 

Now - attention! - give the "magic" keys sequence CTRL+SHIFT+ENTER  

That is: 

• Press and keep down the CTRL and SHIFT keys 

• Press the ENTER key 

 

All the values will fill the cells that you have selected. 
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Note that Excel shows the function around two braces { }. These symbols mean that 
the function return an array (you cannot insert them by hand). 

 

An array function has several constrains. Any cell of the array cannot be modified or 
deleted. To modify or delete an array function you must selected before the entire 
array cells. 

 

Adding two matrices 
The CTRL+SHIFT+ENTER rule is valid for any function and/or operation returning a 
matrix or a vector 

Example - Adding two matrices  

 

We can use directly the addition operator "+".  We can do this following these steps. 

1) Enter the matrices into the spreadsheet. 

2) Select the B8:C9 empty cells so that a 2 × 2 range is highlighted.  

3) Write a formula that adds the two ranges. Either write =B4:C5+E4:F5 Do not 
press <Enter>. At this point the spreadsheet should look something like the figure 
below. Note that the entire range B8:C9 is selected.  

 
 

4) Press and hold down <CTRL> + <SHIFT>  

5) Press <ENTER>. 

If you have correctly followed the procedure, the spreadsheet should now look 
something like this 









+







 −
10
01

12
21
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This trick can also work for matrix subtraction and for the scalar-matrix multiplication, 
but not for the matrix-matrix multiplication. 

Let's see this example that shows how to calculate the linear combination of two 
vectors   

 

 
 

 

Functions returning optional values 
Some function, such as for example the definite integral of a real function f(x), can 
return one single real value or optional extra data (iterations, error estimation, etc...) 

If you do not want to see this additional information simply select one cell and insert 
the function with the standard procedure. On the contrary, if you want to see also the 
extra information, you must select the extra cells needed and insert it as an array-
function 
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How to get the help on line 
Xnumbers provides the help on line that can be recalled in the same way of any other 
Excel function. When you have selected the function that you need, press the F1 key 
or click on the “guide hyperlink” 

 

 
 

There is also another way to get the help-on-line. It is from the Xnumbers Function 
Handbook 

 
 

Select the function that you want and press the Help button 
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You can also recall the help guide from the function wizard window 
 

 
 
 
 
Of course you can open the help on-line from the Xnumber menu 
 

 
 
or directly by double clicking on the Xnumbers.hlp file  
 

 
 
 



Xnumbers Tutorial 

15 

Xnumbers installation 
 
This addin for Excel 2000/XP  is composed by the following files: 
 
Addin file 
(It contains the Excel macros 
and functions) 

Help file 
(It contains the help notes) 

Handbook file 
(It contains the macros and 
functiosn description list for the 
Xnumbers Handbook) 

 

 
 

  

 
This installation is entirely contained in the folder that you specify. 
Put all these files in a same directory as you like.  
Open Excel and follow the usually operations for the addin installation: 
 
  1) Select <addins...> from <tools> menu, 
  2) Excel shows the Addins Manager, 
  3) Search for the file xnumbers.xla, 
  4) Press OK, 
 

NB. Nella versione italiana di 
Excel, "Addin Manager" si 
chiama "Componenti 
aggiuntivi" e si trova nel menu 
<Strumenti> < Modelli e 
aggiunte...> 
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After the first installation, Xnumbers.xla will be add to the Addin Manager 

 

By this tool, you can load or unload the 
addins that you want, simply switching 
on/off the check-boxes. 

 

At the starting, the addins checked in 
the Addins Manager will be 
automatically loaded  

If you want to stop the automatic loading 
of xnumbers.xla simply deselect the 
check box before closing Excel 

 

 

 

If all goes right you should see the welcome popup of Xnumbers. This appears only 
when you activate the check box of the Addin Manager. When Excel automatically 
loads Xnumbers, this popup is hidden. 

 
 

 

How to uninstall 
If you want to uninstall this package, simply delete its folder. Once you have cancelled 
the Xnumbers.xla file, to remove the corresponding entry in the Addin Manager, follow 
these steps: 

1) Open Excel 

2) Select <Addins...> from the <Tools> menu. 

3) Once in the Addins Manager, click on the Xnumbers entry 

4) Excel will inform you that the addin is missing and ask you if you want to remove 
it from the list. Give "yes".  
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Multiprecision Floating Point Arithmetic 
Any computer having hardware at 32-bit can perform arithmetic operations with 15 
significant digits, at the most. The only way to overcome this finite fixed precision is to 
adopt special software that extends the accuracy of the native arithmetic  

Why using extended precision numbers? 
First of all, for example, to compute the following operation: 
 
 90000000002341 x 
 8067 = 
 -------------------- 
 726030000018884847 . 
 
Any student, with a little work, can do it. Excel, as any 32-bit machine, cannot! It 
always gives the (approximate) result 726030000018885000 , with a difference of 
+153.  
But do not ask Excel for the difference. It replies 0! 
 
The second, deeper, example regards numeric analysis.  
Suppose we have to find the roots of a 9th order Polynomial. 

∑
=

=
n

i

i
i xaxP

0
)(       

Where its coefficients  ia   are listed in the table below. 
 
Coefficients 
a9 1 
a8 -279 
a7 34606 
a6 -2504614 
a5 116565491 
a4 -3617705301 
a3 74873877954 
a2 -996476661206 
a1 7738306354988 
a0 -26715751812360 
 
There are excellent algorithms for finding a numerical solution of this problem. We can 
use the Newton-Raphson method: starting from x= 32 and operating with 15 significant 
digits (the maximum for Excel), we have: 
 

xn P(x) (15 digit) P' (x) (15 digit) -P/P' |xn-x| 
32 120 428 0,280373832 1

31,71962617 43,77734375 158,9873047 0,275351191 0,7196262
31,44427498 15,69921875 60,93164063 0,257652979 0,444275

31,186622 4,78125 29,46289063 0,162280411 0,186622
31,02434159 0,65625 24,10644531 0,02722301 0,0243416
30,99711858 -0,07421875 24,01953125 -0,003089933 0,0028814
31,00020851 0,23828125 24,04980469 0,009907825 0,0002085
30,99030069 -0,52734375 23,98925781 -0,021982495 0,0096993
31,01228318 0,2421875 24,02050781 0,01008253 0,0122832
31,00220065 -0,03515625 23,99023438 -0,00146544 0,0022007

 
As we can see, the iteration approaches the solution x = 31 but the error |xn - x| 
remains too high. Why? Multiple roots? No, because P'(x) >> 0. Algorithm failed? Of 
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course not. This method is very well tested. The only explanation is the finite precision 
of the computation. In fact, repeating the calculus of P(x) and P'(x) with 25 significant 
digits, we find the excellent convergence of this method. 
 

xn P(x) (25 digit) P' (x) (25 digit) -P/P' |xn-x| 
32 120 428 0,28037383 1

31,71962617 43,71020049043 158,979858019937 0,27494175 0,719626

31,44468442 15,71277333004 61,059647049872 0,25733482 0,444684

31,1873496 4,83334748037 29,483621556222 0,1639333 0,18735

31,02341629 0,56263326884 24,082301045236 0,02336294 0,023416

31,00005336 0,00128056327 24,000000427051 5,3357E-05 5,34E-05

31 0,00000000053 23,999999999984 2,2083E-11 1,54E-11

31 0,00000000004 23,999999999995 1,6667E-12 6,66E-12

 
The graph below resumes the effect of computation with 15 and 25 significant digits. 

 
The application field of multi-precision computation is wide. Overall it is very useful 
during the testing of numeric algorithms. In the above example, we had not doubt 
about the Newton-Raphson method, but what about the new algorithm that you are 
studying? This package helps you in this work. 
 
 

1E-12

1E-10

1E-08

1E-06

0,0001

0,01

1

1 2 3 4 5 6 7 8 9 10

|Xn -X|

15 digits

25 digits

Iteration
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Multiprecision methods 
Several methods exist for simulating variable multi-precision floating point arithmetic. 
The basic concept consists of breaking down a long number into two or more sub-
numbers, and repeating cyclic operations with them. The ways in which long numbers 
are stored vary from one method to another. The two most popular methods use the 
"string" conversion and the "packing"  
 

How to store long number 
String Extended Numbers 
 
In this method, long numbers are stored as vectors of characters, each representing a 
digit in base 256. Input numbers are converted from decimal to 256 base and vice 
versa for output. All internal computations are in 256 base. this requires only 16 bit for 
storing and a 32 bit accumulator for computing. Here is an example of how to convert 
the number 456789 into string 

( ) ( )25610 85 248, ,6456789 ≡  

String = chr(6)&chr(248)&chr(85) 
 
This method is very fast, and efficient algorithms for the input-output conversion have 
been realized. A good explanation of this method can be found in "NUMERICAL 
RECIPES in C - The Art of Scientific Computing", Cambridge University Press, 1992, 
pp. 920-928. In this excellent work you can also find efficient routines and functions to 
implement an arbitrary-precision arithmetic. 
Perhaps the most critical factor of this method is the debug and test activity. It will be 
true that the computer does not care about the base representation of numbers, but 
programmers usually do it. During debugging, programmers examine lots and lots of 
intermediate results, and they must always translate them from base 256 to 10. For 
this kind of programs, the debugging and tuning activity usually takes 80 - 90% of the 
total develop time.  
 
Packet Extended Numbers 
 
This method avoids converting the base representation of long numbers and stores 
them as vectors of integers. This is adopted in all FORTRAN77 routines of  "MPFUN: 
A MULTIPLE PRECISION FLOATING POINT COMPUTATION PACKAGE" by NASA 
Ames Research Center. For further details we remand to the refined work of David H. 
Bailey published in "TRANSACTIONS ON MATHEMATICAL SOFTWARE", Vol. 19, 
No. 3, SEPTEMBER, 1993, pp. 286-317. 
Of course this add-in does not have the performance of the mainframe package (16 
million digits) but the method is substantially the same. Long numbers are divided into 
packets of 6 or 7 digits.  
For example, the number  601105112456789   in packet form of 6 digits becomes the 
following integer vector: 
 

456789
105112

601

 
As we can see, the sub-packet numbers are in decimal base and the original long 
number is perfectly recognizable. This a great advantage for the future debugging 
operation. 
An example of arithmetic operation - the multiplication A x B = C - between two packet 
numbers is shown in the following: 
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A  B 

456789  654321 
105112 X  

601   
 
The schema below illustrates the algorithm adopted: 
 

carry  A  B  C'  C 
0 + 456789 x 654321 = 298886635269 => 635269 

298886 + 105112 x 654321 = 68777287838 => 287838 
68777 + 601 x 654321 = 393315697 => 315697 

393 + 0 x 654321 = 393 => 393 
 
The numbers in the accumulator C' are split into two numbers. The last 6 digits are 
stored in C, the remaining left digits are copied into the carry register of the next row. 
As we can see, the maximum number of digits is reached in accumulator C'. In the 
other vectors, the numbers require only six digits at most. The maximum number of 
digits for a single packet depends of the hardware accumulator. Normally, for a 32-
system, is 6 digits.. This is equivalent to conversion from a decimal to a 10^6 
representation base. This value is not critical at all. Values from 4 to 7 affect the 
computation speed of about 30 %. But it does not affect the precision of the results in 
any case. 
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Functions 

General Description 
Xnumbers is an Excel addin (xla) that performs multi-precision floating point arithmetic. 
Perhaps the first package providing functions for Excel with precision from 15 up to 
200 significant digits. It is compatible with Excel XP and consists of a set of more than 
270 functions for arithmetic, complex, trigonometric, logarithmic, exponential and 
matrix calculus covering the following main subjects. 
 
The basic arithmetical functions: addition, multiplication, and division were developed 
at the first. They form the basic kernel for all other functions. 
All functions perform multiprecision floating point computations for up to 200 significant 
digits. You can set a precision level separately for each function by an optional 
parameter.  By default, all functions use the precision of 30 digits, but the numerical 
precision can easily be regulated continually from 1 to 200 significant digits. In 
advance some useful constants like π, Log(2), Log(10) are provided with up to 400 
digits. 
 

Using Xnumbers functions 
These functions can be used in an Excel worksheet as any other built-in function. After 
the installation, look up in the functions library or click on the icon 

  
Upon "user's" category you will find the functions of this package.  
From version 2.0 you can manage functions also by the Function Handbook. It starts 
by the Xnumbers menu 

 
 
All the functions for multi-precision computation begin with "x". The example below 
shows two basic functions for the addition and subtraction. 
 

 
 
As any other functions they can also be nested to build complex expressions. In the 
example below we compute x^4 with 30 digits precision 
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Using extended numbers in Excel 
 

If you try to enter a long number with more than 15 digits in a 
worksheet cell, Excel automatically converts it in standard precision 
eliminating the extra digits. The only way to preserve the accuracy is 
to convert the number in a string. It can be done by prefixing it with 
the hyphen symbol  ' . 
This symbol is invisible in a cell but avoid the conversion. 

 
Example: enter in a cell the number 1234567890123456789. 
 

 

We have inserted the same 
number with the hyphen in B2 
and without the hyphen in B3.  
Excel treats the first number as a 
string and the second as a 
numbers 
Note also the different alignment 

 

 

We have inserted a long 
numbers with full precision as a 
string in B2 
If we try to multiply the cell B2 for 
another number, example for 2, 
Excel converts the string into 
number before performing the 
multiplication. In this way the 
originally accuracy is destroyed 
 

 
The only way to perform arithmetic operations 
preserving the precision is to use the 
multiprecision functions of the Xnumbers 
library.  
In that case we use the function xmult 
Note from the alignment that the result is still 
a string 
 

 
You can also insert extended numbers directly in the function. Only remember that, for 
preserving Excel to convert them, you must insert extended numbers like string, within 
quote "...".  
 

2469135780246913578 =xmult( "1234567890123456789" , 2 ) 
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Functions Handbook 
  Xnumbers includes a new application for searching and pasting the Xnumbers 
functions, that are cataloged by subject. This feature (born to overcome the poor 
standard Excel function wizard) can also submit the Xnumbers macros.  
You can activate the Functions Handbook from the menu bar "Help > Function 
manager". 
 
 

 
 
Category: you can filter macros by category (Arithmetic, Statistical, Trigonometric, 
etc.) 
Macro Type: filters by macro Functions, by macro Subroutines, or both 
Paste Into: choose the cell you want to paste a function, default is the active cell 
Search: searches macros by words or sub-words contained into the name or 
description. For example, if you input "div" you list all macros that match words like 
(div, divisor, division,...) 
You can associate more words in AND/OR. Separate words with comma "," for OR, 
with plus "+", for AND. For example, if you type "+div +multi" you will get all the rows 
containing words like (div, divisor, division,...) and words like (multi, multiprecision,...). 
On the contrary, if you type "div, multi", you get all the rows that contain words like 
(div, divisor, division,...) or also the words like (multi, multiprecision,...). Remember to 
choose also the Category and Macro Type. Example, if you enter the word 
“hyperbolic”, setting the Category “complex”, you find the hyperbolic functions 
restricted to the complex category. 
Help: recalls the help-on-line for the selected function. 
OK: insert the selected function into the worksheet ". This activates the standard Excel 
function wizard panel. If the macro selected is a "sub", the OK button activates the 
macro. 
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Precision 
Most functions of this package have an optional parameter - Digit_Max - setting the 
maximum number of significant digits for floating point computation, from 1 to 200 
(default is 30). The default can be changed from the menu X-Edit\Defaut Digits 
 
This parameter also determines how the output is automatically formatted. If the result 
has fewer integer digits than Digit_Max, then the output is in the plain decimal format ( 
123.45,  -0.0002364, 4000, etc.), otherwise, if the number of integer digits exceeds the 
maximum number of digits allowed (significant or not), the output is automatically 
converted in exponential format (1.23456789E+94).  
The exponent can reach the extreme values of +/- 2,147,483,.647. 
The output format is independent of the input format. 
 
In synthesis, the Digit_Max parameter limits: 
The significant digits of internal floating point computation 
The maximum number output digits, significant or not. 
The default of Digit_Max can be changed from the X-Edit menu . This affects any 
multiprecision function and macro. 
 

Formatting Result 
The user can not format an extended number with standard Excel number format 
tools, because, it is a string for Excel. You can only change the alignment. To change 
it you can use the usual standard Excel format tools. 
 

 
 
It is possible to separate the digits of a x-numbers in groups, by the user function 
xFormat() and xUnformat() 1.  
It work similar at the built-in function Format(x, "#,##0.00") 

2,469,135,780,246,913,578 = xformat("2469135780246913578",3) 

 
. 

                                                 
1 These functions were original developed by Ton Jeursen for the add-in XNUMBER95, the downgrade version of 
XNUMBERS for Excel 5. Because they are very useful for examining long string of number, we have imported them in 
this package 
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Arithmetic Functions 
 

Addition 
 
xadd(a, b, [Digit_Max])       
 
Performs the addition of two extended numbers:   xadd(a, b) = a + b.  
 

 
 
 

Subtraction 
 
xsub(a, b, [Digit_Max])         
 
Performs the subtraction of two extended numbers:   xsub(a, b) = a − b.  
NB. Do not use the operation  xadd(a, -b)  if “b” is an extended number. Excel converts 
“b” into double, then changes its sign, and finally calls the xadd routine. By this time 
the original precision of “b” is lost. If you want to change sign at an extended number 
and preserve its precision use the function xneg()   
 

Accuracy lack by subtraction 
The subtraction is a critical operation from the point of view of numeric calculus. When 
the operands are very near each others, this operation can cause a lack of accuracy. 
Of course this can happen for addition when the operands are near and have opposit 
signs. Let’s see this example 
 
Assume one performs the following subtraction where the first operand has a precision 
of 30 significant digits 
 
 (digits) 

800000.008209750361424423316366 30 
800000 6 

0.008209750361424423316366 25 
 
The subtraction is exact (no approximation has been entered). But the final result have 
25 total digits, of wich only 22 are significant. 8 significant digits are lost in this 
subtraction. We cannot do anything about this phenomenon, except to increase the 
precision of the operands, when possible. 
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Multiplication 
 
xmult(a, b, [Digit_Max])        
 
Performs the multiplication of two extended numbers:   xmult(a, b) = a x b.  
 
The product can often lead to long extended numbers. If the result has more integer 
digits than the ones set by Digit_Max, then the function automatically converts the 
result into exponential format. 
 

 
 
 

Division  
 
xdiv(a, b, [Digit_Max])     
 
Performs the division of two extended numbers:   xdiv(a, b) = a / b. 
If b = 0 the function returns “?”. The division can return long extended numbers even 
when the operands are small. In the example below we see the well-known periodic 
division 1 / 7 = 0,142857 ….Excel breaks the results after 15 digits, while the xdiv 
shows up to 30 digit 
 

 
 
 

Inverse 
 
xinv(x, [Digit_Max])  
 
It returns the inverse of an extended number 
 
xinv(x) = 1 / x 
 
If x = 0,  the function returns “?”. 
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Integer Division 
 
xdivint(a, b, [Digit_Max])  
 
Returns the quotient of the integer division:   xdivint(a, b) = INT(a / b),  
If b = 0 the function returns “?”.  
 
a = b*q + r   , with  0< r < b 

xdivint(a, b)= q 

 
 

Integer Remainder 
 
xdivrem(a, b, [Digit_Max])  
 
Returns the remainder of the integer division:  
If b = 0 the function returns “?”.  
 
a = b*q + r   , with  0< r < b 

xdivrem(a, b)= r 

 
 
How to test multiprecision functions ? 
 
This test is the most important problem in developing multiprecision arithmetic. This 
activity, absorbs almoust the 60% of the totally realization effort. 
Apart the first immediate random tests, we can use many known formulas and 
algorithms. The general selecting criterions are: 
 

1. Formulas should be iterative 
2. Formulas should have many arithmetic elementary operations 
3. Final results should be easyly verified 
4. Intermediate results should be easily verified 
5. Algorithms should be stable 
6. Efficency is not important 

 
For example, a good arithmetic test is the Newton algoritm to compute the square root 
of a number. The iterative formula: 
 

n

nn

n

n
n x

xx
x
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⋅

+⋅
=+=+ 2

21
21

 
 
converges to 21/2, starting from x0 = 1.  
We have rearranged the formula in order to increase the number of operations 
(remember: the efficency is not important). In this way we can test mutliplication, 
division and addition. 
 
 x0 = 1 
 x1 = 1.5 
 x2 = 1.41… 
 x3 = 1.41421…… 
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Look at a possible Excel arrangement. We have limited the number of the significant 
digits to 100 only for the picture dimensions, but there is no difficult to repeat it with the 
maximum digits. 
 

 
 
For each iterate only the blu digits are exacts. We see the progressive convergence. 
By the way, we note that this algorithm is also very efficent. The rate of convergence is 
quadratic. The number of digits approximately doubles at each iteration (In fact this is 
just the algorithm used by the xsqr multiprecision function) 
But, as said, for testing, the efficiency has no influence. It is important only that the 
algorithm involves the most multiprecision functions as possible. 
 
Another algorithm quite suitable for testing multiprecision accuracy is the π 
approximatation by continuous fraction2. 
 
Initialize 

X = 31/2,  Y = 1/2,  T = 6 
 
Iteration 

X = (2 + X)1/2 

Y = Y/X 

T = 2T 

P = Y*T*(5Y6/112 + 3Y4/40 + Y2/6 + 1)  

 
Accuracy: approximately 12 decimal digits every 5 iterations) 
 
Below, step by step, a possible Excel arrangement: 
 

 
 
The Digit_Max parameter is in the A1 cell. By this parameter we can modulate the 
arithmetic accuracy. We have set 30 digits only for the picture dimensions. But you 
can try with 60, 100 or more. 

                                                 
2 This version, studied by David Sloan, using many arithmetic operations, permitted us to detect a very 
much hidden bug of Xnumbers 
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Note that, in order to have a more compact form,  we have used the xeval function for 
calculating the X and P formulas that are inserted into the cells B3 and E3 rispectively. 
Selecting the last row (range A6:F6) and dragging it down, we get the following 
iteration table 
 

 
 
The convergence to pi greek is evident. 
 
 

Sum  
 
xsum(v, [Digit_Max])  
 
This is the extended version of the Excel built-in function SUM. It returns the sum of a 
vector of numbers. The argument is a standard range of cells.  
 

ni i vvvv ... 21 ++=∑  
 
Note that you can not use the standard function SUM, because it recognizes extended 
numbers as strings and it excludes them from the calculus. 
 
 

 
 
 

Product  
 
xprod(v, [Digit_Max]) 
 
Returns the product of a vector of numbers. 
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nii vvvv ... 21 ⋅⋅=∏  
 

 
 
Note that the result is an extended number even if all the factors are in standard 
precision 
 
 

Raise to power 
 
xpow(x, n, [Digit_Max])  
 
Returns the integer power od an extended number.  xpow(x, n) = x n    
 
xpow("0.39155749636098981077147016011",90) = 1.9904508921478176508981155284E-7 

xpow(5,81,60)  =  5 81  =  413590306276513837435704346034981426782906055450439453125 

 
 

Square Root 
 
xsqr(x, [Digit_Max])  
 
Returns the square root of an extended number    xsqr(x) =  x      
The example below shows how to compute the 2  with 30 and 60 significant digits: 
 
xsqr(2) =        1.41421356237309504880168872420969807 

xsqr(2, 60) =  1.41421356237309504880168872420969807856967187537694807317667973799 

 
 

Nth- Root 
 
xroot(x, n, [Digit_Max])  
 
Returns the nth root of an extended number    xroot(x, n)=   n x  
The root's index must be a positive integer.  
The example below shows how to compute the 9 100  with 30 and 60 significant digits: 
 
xroot(100,9) =      1.66810053720005875359979114908 

xroot(100,9,60) = 1.66810053720005875359979114908865584747919268415239470704499 
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Absolute 
 
xabs(x)  
 
Returns the absolute value of an extended number    xabs(x)= |x| 
Do not use the built-in function "abs", as Excel converts x in double, then takes the 
absolute value. By that time the original precision of x is lost. 
 

Change sign 
 
xneg(x)  
 
Returns the opposite of an extended number:   xneg(x) = −x 
Do not use the operator “−“ (minus) for extended numbers. Otherwise Excel converts 
the extended numbers into double and, afterwords, changes its sign. By taht time the 
original precision is lost. In the following example the cell B8 contains an extended 
number with18 digits. If you use the “−“ as in the cell B9, you lose the last 3 digits. The 
function xneg(), as we can see in the cell B10, preserves the original precision. 
 

 
 

Integer part 
 
xint(x)  
 
Returns the integer part of an extended number,  thus the greatest integer less than or 
equal to x. 
Examples: 
 
xint(2.99) =      2 
xint(2.14) =      2 
xint(-2.14) =    −3 
xint(-2.99) =    −3 
xint(12345675.00000001) =    12345675 
xint(−12345675.00000001) =  −12345676 
 

Decimal part 
 
xdec(x)  
 
Returns the decimal part of an extended number 
 
Examples: 
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xdec(2.99) =  0.99 
xdec(-2.14) =  - 0.14 
 
 

Truncating 
 
xtrunc(x)  
 
Eliminates the decimal part of an extended number. 
Examples: 
 
xtrunc(2.99) =      2 
xtrunc(2.14) =      2 
xtrunc(-2.14) =    -2 
xtrunc(-2.99) =    -2 
xtrunc(12345675.00000001) =    12345675 
xtrunc(-12345675.00000001) =  -12345675 
 
If x >0 this function returns the same value of xInt() 
 
 

Rounding 
 
=xround(x, [dec])  
 
Rounds an extended number, the parameter "dec" sets the decimal number of is to 
keep (default 0). It works like standard round function. “dec” can be negative, in that 
case x is rounded to the integer number, starting to count back from decimal point. 
See the following examples. 
 
number to round dec number rounded 
6.2831853071795864769 0 6 
6.2831853071795864769 1 6.3 

6.2831853071795864769 2 6.28 

6.2831853071795864769 3 6.283 
6.2831853071795864769 4 6.2832 

100352934.23345 0 100352934 

100352934.23345 -1 100352930 
100352934.23345 -2 100352900 

 
When the number is in exponential format, it is internally converted into decimal before 
the rounding. 
 
number to round Decimal format Dec number rounded 
1.238521E-17 0.00000000000000001238521 16 0 

1.238521E-17 0.00000000000000001238521 17 1.E-17 
1.238521E-17 0.00000000000000001238521 18 1.2E-17 

1.238521E-17 0.00000000000000001238521 19 1.24E-17 
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Relative Rounding 
 
=xroundr(x, [dgt])  
 
Returns the relative round of a number. The optional parameter Dec sets the 
significant digits to keep. (default = 15) 
This function always rounds the decimal place no matter what the exponent is 
 
number to round dgt number rounded 
1.23423311238765E+44 15 1.23423311238765E+44 

1.23423311238765E+44 14 1.2342331123876E+44 
1.23423311238765E+44 13 1.234233112388E+44 

1.23423311238765E+44 12 1.23423311239E+44 

1.23423311238765E+44 11 1.2342331124E+44 
1.23423311238765E+44 10 1.234233112E+44 

 
 
 



Xnumbers Tutorial 

34 

 

Extended Numbers manipulation 
 
 

Digits count 
 
xdgt(x)  
 
Returns the number of digits, significant or not, of an extended number. 
It is useful for counting the digits of long numbers 
 
xdgt(4.47213595499957939281834733746) = 30 
xdgt(3.99999999999999999999999990000) = 30 
xdgt(100000) = 6 
xdgt(5856.51311933374) = 15 
xdgt(1.2345678E-12) = 8 
 
 

Significant Digits count 
 
xdgts(x)  
 
Returns the number of significant digits of a number, assuming that trailing zeros are 
not significant 
 
xdgts("1240100000") = 5 

 
 

Compare numbers 
 
xcomp(a [b])  
 
Compares two extended numbers. It returns the value y defined by: 
 









<⇒−
=⇒
>⇒

=
ba
ba
ba

y
1
0  
1   

 
 
The number b is optional (default b=0) 
If the second argument is omitted, the function returns the sign(a) 
 
xcomp(300, 299)= 1 
xcomp(298, 299)= -1 
xcomp(300, 300)= 0 
 
if b is missing, then b = 0 for default and we get the sign(a) 
xcomp(3.58E-12)=  1 
xcomp(0)= 0 
xcomp(-0.0023)=  -1 
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Extended Numbe Check  
 
isXnumbers(x)   
 
Returns TRUE if x is a true extended number.  
That is, x cannot be converted into double precision without lost of significant digits. It 
happens if a number has more than 15 significant digits. 
 
isXnubers(1641915798169656809371) = TRUE 
isXnubers(1200000000000000000000) = FALSE 
 
 

Format Extended Number 
 
=xFormat(str, [Digit_Sep])  
 
=xUnformat(str)  
 
This function3 separates an extended number in groups of digits by the separation 
character of you local system ( e.g. a comma "," for USA, a dot "." for Italy). Parameter 
"str" is the string number to format, Digit_Sep sets the group of digits ( 0 means no 
format) 
The second function removes any separator character from the string 
 
Example (on Italian standard): 
 
x = 1230000012,00002345678 
xFormat(x,3) = 1.230.000.012,000.023.456.79 
xFormat(x,6) = 1230.000012,000023.45679 
 
Example (on USA standard): 
 
xFormat(x,3)= 1,230,000,012.000,023,456,78 
xFormat(x,6)= 1230,000012.000023,45678 
 

                                                 
3 These functions were original developed by Ton Jeursen for his add-in XNUMBER95, the downgrade 
version of XNUMBERS for Excel 5. 
Because it works well and it is very useful for examining long string of number, I have imported it in this 
package. 
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Check digits  
 
 DigitsAllDiff(number)  
 
This function4 return TRUE  if a number has all digits different.  
 
DigitsAllDiff(12345) = TRUE 

DigitsAllDiff(123452) = FALSE 
 
Argument can be also a string. Example 
DigitsAllDiff(12345ABCDEFGHIM) = TRUE 

DigitsAllDiff(ABCDA) = FALSE 
 
 

SortRange 
 
=SortRange (ArrayToSort, [IndexCol], [Order], [CaseSensitive])  
 
This function returns an array sorted along a specified column 
ArrayToSort: is the (N x M ) array to sort  
IndexCol: is the index column for sorting (1 default) 
Order: can be "A" ascending (default) or "D" descending 
CaseSensitive: True (default) or False. It is useful for alphanumeric string sorting 
 
Example: The left table contains same points of a function f(x,y). The right table is 
ordered from low to high function values (the 3-th column)  
 

 
 
 

Digits sum 
 
sumDigits(number)  
 
This useful5 function returns the digits sum of an integer number (extended or not) 
 
sumDigits(1234569888674326778876543) = 137 

                                                 
4 This function appears by the courtesy of Richard Huxtable 
5 This function appears by the courtesy of Richard Huxtable 
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Vector Inversion 
 
Flip(v)  
 
This function returns a vector in inverse order [a1, a2, a3, a4] ⇒ [a4, a3, a2, a1] 
 

 
 

 
 

Scientific Format 
 
xcvexp(mantissa, [exponent])  
 
This function converts a number into scientific format. Useful for extended numbers 
that, being string, Excel cannot format. 
 
xcvexp(-6.364758987642234, 934) = -6.364758987642234E+934 

xcvexp(1.2334567890122786, ) = 1.2334567890122786E-807 

 
This function is useful also to convert any xnumbers into scientific notation, simply 
setting exponent = 0 (default) 
 
xcvexp(12342330100876523, 0) = 1.2342330100876523E+16 

xcvexp(0.000023494756398348) = 2.3494756398348E-5 

 
 

Split scientific format  
 
xsplit(x)  
 
This function returns an array containing the mantissa and exponent of a scientific 
notation.  
 
If you press Enter this function returns only the mantissa. If you select two cells and 
give the CTRL+SHIFT+ENTER sequence, you get both mantissa and exponent 
 
xsplit( 2.3494756398348E-5 ) = { 2.3494756398348 , -5 } 

xsplit( -1.233456E-807 ) = { -1.2334567890122786 , -807 } 
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Note that, in the last case, you cannot convert directly into double (for example, using 
the VALUE function), even if the number of digits is less than 15. The exponent is too 
large for the standard double precision. 
 
 

Convert Extended Number 
 
=xcdbl(str)  
 
This function converts an extended number into standard double precision  
It can be nested with other functions and/or array-functions. 
Usually the extended numbers are too long for a compact visualization. So, after, the 
multiprecision computation, we would like to convert the result in a compact standard 
precision.  
For example, if you invert the matrix 
 

1 1 2 
4 5 3 
-2 1 5 

 
using the multiprecision xMatInv function, you will get a matrix like the following 
 
0.9166666666666666666666666 -0.1249999999999999999999999 -0.2916666666666666666666666 
-1.083333333333333333333333 0.375 0.20833333333333333333333333 
0.5833333333333333333333333 -0.125 4.16666666666666666666666E-2 

 
If you use the functions xcdbl nested with the multiprecision function, the matrix will be 
rounded in standard precision and the result will have a more compact format 
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Macros X-Edit 
 
These simple macros are very useful for manipulating extended numbers in the Excel 
worksheet. They perform the following operations: 
 
Format   Separates groups of digits 
Unformat  Removes the separation character 
Double Conversion Converts multiprecision numbers into standard double precision 
Round Rounding multiprecision numbers 
Relative Round Relative rounding multiprecision numbers 
Mop-Up Converts small numbers into 0 
 
From this menu you can also change the default Digit_Max parameter   
Using these macros is very simple. Select the range where you want to operate and 
then start the relative macro. They work only over cells containing only numeric 
values, extended or standard. Cells containing function are ignored 
 
Tip.  For stripping-out a formula from a cell and leaving its value, you can select the 
cell and then click in sequence           (copy + paste values) 
 
Here are same little examples: 
 
Format - group 6 
 
31415926.53589793238462643  31,415926.535897,932384,62643 

19831415926.53589793238462 ⇒ 19831,415926.535897,932384,62 

0.535897932384626433832734  0.535897,932384,626433,832734 
 
 
Double Conversion 
 
31415926.53589793238462643  31415926.5358979 

19831415926.53589793238462 ⇒ 19831415926.5358 

0.535897932384626433832734  0.535897932384626 
 
 
Rounding  3 decimals. 
 
31415926.53589793238462643  31415926.536 

19831415926.53589793238462 ⇒ 19831415926.536 

0.535897932384626433832734  0.536 
 
 
Relative rounding - significant digits 15. 
 
4.5399929762484851535591E-5  4.53999297624849E-05 

1.0015629762484851535591E-6 ⇒ 1.00156297624849E-06 

0.539929762484851535591E-12  5.39929762484852E-13 
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Mop-Up - Error limit 1E-15. 
 

31415926.53589793238462643  31415926.53589793238462643 

-1.00E-15 ⇒ 0

5.78E-16  0

-1.40E-18  0
 
Note that the function mopup is used overall for improving the readability. The cells 
having values greater than the limit are not modified. 
 
 



Xnumbers Tutorial 

41 

 

Statistical Functions 
 
 

Factorial 
 
xfact(n, [Digit_Max])  
 
Returns the factorial of an integer number    xfact(n)= n!  
 
This example shows all 99 digits of 69! 
xfact(69, 100) = 711224524281413113724683388812728390922705448935203693936480 
40923257279754140647424000000000000000 

If the parameter Digit_Max is less than 99, the function returns the approximate result 
in exponential format: 
 
xfact(69) = 1.71122452428141311372468338881E+98 
 
For large number (n>> 1000) you can use the faster function xGamma(x). The relation 
between the factorial and the gama function is: 

Γ(n)  =  (n-1)! 

 

Factorial with double-step 
 
xfact2(n, [Digit_Max])  
 
Returns the factorial with double step.   
 
if n is odd    ⇒  xfact2(n) = 1⋅3⋅5⋅7⋅9...n 

if n is even  ⇒  xfact2(n) = 2⋅4⋅6⋅8⋅ ...n 

 
Note: In many books, this function is indicate improperly as "double factorial", or - even worse - with the 
confusing symbol "!!".  
 

Combinations 
 
xComb(n, k, [Digit_Max])  
 
Returns the binomial coefficients, a combination of n, class k.  xcomb = C n,k 
The example below shows all the 29 digits of the combination of 100 objects grouped 
in class of 49 elements: 
 
xComb(100,49) = 98913082887808032681188722800 
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Combinations of N = 100 
objects in class of 10, 20, 
… 90 
 
Note the typical parabolic 
outline of the binomial 
coefficients 

 
For large argument (n and k >>1000) use the faster function xcomb_big(n,k) .  
 

Permutations 
 
xPerm(n, [k], [Digit_Max]) 
 
Returns the permutation of n, class k.  xperm(n,k)= Pn,k. 
If k is omitted, the function assume k = n and in this case will be  P(n) = n! 
 
Examples: 
 
xPerm(100, 20, 60) = 1303995018204712451095685346159820800000 
xPerm(100) = 9.33262154439441526816992388562E+157 
 

Arithmetic Mean 
 
xmean(x, [Digit_Max])  
 
Returns the arithmetic mean of n numbers, extended or not. The argument is a range 
of cells.  

n

x
n

i
i∑

== 1 m  

 

Geometric Mean 
 
xgmean(x, [Digit_Max])  
 
Returns the geometric mean of n numbers, extended or not.  
 

n
nxxxx ...GM 221=  
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Quadratic Mean 
 
xqmean(x, [Digit_Max])  
 
Returns the quadratic mean of n numbers, extended or not. 
 

n
x∑=

2

QM  

 
 

Standard Deviation 
 
xstdev(x, [Digit_Max])  
 
Returns the standard deviation of n numbers, extended or not.  
 

( )
2

22

n
xxn ∑∑ −

=σ  

 

Variance 
 
xvar(x, [Digit_Max])  
 
Returns the variance of n numbers, extended or not.  
 

( )
2

22

n
xxn

v ∑∑ −
=  
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Linear Regression Coefficients 
 
xRegLin_Coeff( Y, X, [DgtMax], [Intcpt])  
 
RegLin_Coeff( Y, X , [Intcpt] )  
 
Computes the multivariate linear regression with the least squares method in multi-
precision. 
Parameter Y is a vector (n x 1) of dependent variable.  
Parameter X is a list of the independent variable. It may be an (n x 1) vector for 
monovariable regression or a (n x m) matrix for multivariate regression. 
Parameter Intcpt, if present, forces the Y intercept: Y(0)= Intcpt 
The function returns the coefficients of linear regression function. For monovariate 
regression, it returns two coefficients [a0, a1], the first one is the intercept of Y axis, the 
second one is the slope. 
 
For standard precision use the faster RegLin_Coef 
 
Simple Linear Regression 
Example. Evaluate the linear regression for the following xy data table 
 

x y 
0.1 1991 
0.2 1991.001046 

0.35 1991.001831 
0.4 1991.002092 

0.45 1991.002354 
0.6 1991.003138 
0.7 1991.003661 
0.8 1991.004184 
0.9 1991.004707 

1 1991.00523 
1.5 1991.007845 
1.8 1991.009414 

2 1991.01046 
3 1991.01569 

 

 
 

The model for this data set is 
 
y = a0 + a1 x 
 
Where [a0 , a1] are the unknown coefficents 
that can be evaluate by the xRegLin_Coeff 
function 
 
We can also compute the factor r2 in order to 
measure the goodness of the regression 
This can be done by the xRegLinStat 
function 
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Multivariate Regression 
This function can also compute a multivariate regression. This is when y depends by 
several variables x1, x2, … xn. Look at this example 
 

x1 x2 x3 y 
0 0 -4 4000.8 

0.1 0 -2 4000.7 
0.2 0.5 -1 4001.55 
0.3 0.5 0 4001.65 
0.4 1 1.5 4002.4 
0.5 1 2 4002.59 

 

 
 

The model for this data set is 

y = a0 + a1 x1+ a2 x2+ a3 x3 

Where [a0 , a1 , a2 , a3] are the 
unknown coefficients  
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Polynomial Regression 
The same algorithm for finding the linear regression can easily be adapted to the 
polynomial regression. In the example below we will find the best fitting polynomial of 
3rd degree for the given data 
 

x y 
10 1120 
11 1473 
12 1894 
13 2389 
14 2964 
15 3625 
16 4378 
17 5229 
18 6184 
19 7249 
20 8430 

 
First of all we add at the given table two extra columns containing the power x2, x3    
They can easily be computed in an Excel worksheet as shown below. 

The polynomial coefficients can be computed by xRegLin_Coeff.  The exact result is y 
= 10 + x + x2 + x3  

 

 
 
We can performe the same calculus with the Excel LINEST (REGR.LIN in italian 
version). The other nested functions - flip and MatT – have been used only to 
rearrange the LINEST output as vertical vector, in the same order of the 
xRegLin_Coeff. 
 

The model for this data set is 

y = a0 + a1 x+ a2 x2+ a3 x3 

where [a0 , a1 , a2 , a3] are the unknown coefficients 
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Linear Regression Formulas 
 
Generally, the multivariate linear regression function is: 
 

mm xaxaxaay ...22110 +++=  
 
where:     [ ]maaaa  ... , , 210  
 
The coefficients of regression can be found by the following algorithm 
Make the following variables substitution: 
 

1..mifor       =−= xxX ii
 

 
yyY −=  

 
where the right values are the averages of samples y and x  respectively: 
 

∑= k ky
n

y 1  ∑= k kii x
n

x ,
1  

 
After that, the coefficients a= [a1, a2, ....an] are the solution of the following linear 
system  

baC =⋅][  
 
where [C] is the cross-covariance matrix 
and b is the XY covariance 
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and the constant coefficient is given by: 
 

∑
=

−=
m

i
ii XaYa

1
0

 

 
For m=1 we obtain the popular formulas of monovariate linear regression 
 

∑
∑

=
j j

j jj

X
XY

a 21
 

XaYa 10 −=  

 
 
This is the linear solution known as the Ordinary Least Squares (OLS). The analysis of 
this kind of approach shows that, for large dimensions of n (many measurement 
values) the matrix C can become nearly singular 
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Linear Regression Covariance Matrix 
 
xRegLin_Covar( Y, X , [DgtMax], [Intcpt] )  
 
RegLin_Covar( Y, X , [Intcpt] )  
 
Returns the (m+1 x m+1) covariance matrix of a linear regression of m independent 
variables 

mm xaxaxaay +++= ...ˆ 22110  
For a given set of n points ) ,     ( 21 imiiii yxxxP =  
 
Parameter Y is an (n x 1)  vector of dependent variable. Parameter X is a matrix of 
independent variables. It may be an (n x 1) vector for monovariable regression or an (n 
x m) matrix for multivariate regression. 
Parameter Coeff is a vector of m+1 coefficents of the linear regression 
For standard precision use the faster RegLin_Covar 
 
Cross Covariance Matrix  
 
Given the matrix X of the independent variables points 
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The covariance matrix C is 

( ) 12 −
⋅⋅= TXXsC  

where: 
 

( )
1
ˆ 2

2

−−

−
= ∑

mn
yy

s i ii

 
 
Note that the square roots of the diagonal elements of the covariance matrix 

iii cs =  

are the standard deviations of the linear regression coefficients  
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Linear Regression Statistics 
 
xRegLinStat( Y, X, Coeff, [DgtMax], [Intcpt])  
 
RegLinStat( Y, X, Coeff, [Intcpt])  
 
Returns some statistics about the linear regression  
 

R2 Square of the linear correlation factor 

S y,x Standard deviation of the linear regression 
 
Parameter Y is a vector (n x 1) of dependent variable.  
Parameter X is a list of independent variable. It may be an (n x 1)  vector for 
monovariable regression or a (n x m) matrix for multivariate regression. 
Coeff is the coefficients vector of the linear regression function [a0, a1, a2...am].  
For standard precision use the faster RegLin_Covar 
 
Formulas 

The regression factor (better: the square of regression factor) R2 lie between 0 and 1 
and roughly indicates how closely the regression function fits the given values Y. 
Generally, it can be computed by the following formula: 
 

2

2
*

2

2*
2 1
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1
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yy

i i

i ii

yy
yy

R
σ

σ
−−=

−
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∑
∑  

 
Where *y  is the value estimated by the regression function and y   is the mean of y 
values. 

mm xaxaxaay ...* 22110 +++=  

∑=
k ky

n
y 1

 

 
For monovariate regression (m=1), the above formula returns the popular formula: 

( )

( )
∑ ∑

∑ ∑

−

−
=

n
yy

n
xx

R 2
2

2
2
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Standard error of the linear regression is: 
 

Intercept calculated Intercept constrained to 0 

( )
1

2*

, −−

−
= ∑

gln
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s i ii
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s i ii

xy −

−
= ∑ 2*

,

 
 
Where gl = number of independent variables 
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Linear Regression Evaluation  
 
= xRegLin_Eval(Coeff, X)  
 
= RegLin_Eval(Coeff, X, [DgtMax])  
 
Evaluates the multivariate linear regression in multi precision arithmetic. 
Parameter Coeff is the coefficients vector [a0. a1, a2, ....] of the linear regression 
Parameter X is the vector of independent variables. It is one value for a simple 
regression 
For standard precision use the faster RegLin_Eval function 
 
The functions return the linear combination. 

nn xaxaxaay ...22110 +++=  
 
Example: Plot the linear regression for the following data set 
  

x y 
-1 0.58 

-0.8 0.65 
-0.6 0.88 
-0.4 1.25 
-0.2 1.32 

0 1.14 
0.2 1.31 
0.4 1.51 
0.6 1.54 
0.8 1.48 

1 1.98 

 
In this sheet , each value of linear regression *y  is computed by the RegLin_Eval 
function. The coefficients are computed by the RegLin_Coeff 
Selecting the three columns and plotting the data we get the following graphs 
 

0

0.4

0.8

1.2

1.6

2

2.4

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

y
y*
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Summary of Linear Regressions  
 
Let's perform the linear regression of the following data set having 9 observations, 2 
independent variables and 1 dependent variable 
 

x1 x2 y 
-4 0 -4 
-3 0 -2.1 
-2 1 -1 
-1 1 1 
0 2 2 
1 2 4.1 
2 3 5 
3 3 7 
4 4 8 

 
 

 
 
 
The standard error of each coefficient a0, a1, a2  can be derived by  the corresponding 
diagonal element of the covariance matrix 

iii cs =  
 

coefficients value err. std. 
a0 = 4 0.129443252 

a1 = 2.006666667 0.036717137 

a2 = -1 0.072111026 

 
 
 

First of all we have to compute the coefficients of 
the linear regression [a0, a1, a2] by the 
RegLin_Coeff 
 
Then, with this coefficients, we can compute the 
regression factor R2 and the standard error by the 
RegLinStat. 
 
We can also compute the covariance matrix, by 
the RegLin_Covar, and the standard error of each 
coefficient 
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Sub-Tabulation 
One important application of linear regression is the sub-tabulation, which is the 
method to extract a table of values with smaller step from an original table with bigger 
steps. In other words, we can obtain a fine tabulation from a table with a few values of 
a function. Let’s see this example. 
Example: Extract from the following dataset, a table having 10 values with step 0.1 
 

x y 
0 5.1 

0.2 4.7 
0.5 4.5 
0.6 4.3 
0.7 4.2 

1 3.6 
 
 

3.00

3.50

4.00

4.50

5.00

5.50

0 0.2 0.4 0.6 0.8 1

 
The graph shows the extra points added by the sub tabulation. Note that this method 
is different from the interpolation because the regression line does not pass through 
any of the original points. The new values of the table B are different from the ones 
table A even in the same x-values. 
This feature came in handy when we want to regularize the row data. 
 
 

Data Conditioning 
The conditioning of the data consists of subtracting the mean from the values of the 
sample. It can improve the accuracy of the linear regression, but the regression 
coefficients obtained - conditioned coefficients - are different from the regression 
coefficients of the row data. They can be re-obtained by the following method: 
 
Given X and Y two data vectors, the linear regression polynomial of n degree well be: 

∑
=

⋅=
n

i

i
i xaxp

0
)(

 
 
 
We made the data conditioning, making the average of X and Y 
 

First of all we find the linear regression coefficients 

[ a0 , a1 ] 

Than we re-calculate the values 

y i = a0 + a1 x i   ,   i = 1…10 
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Substituting the old variables with the new variable u and v 
 

yyvxxu iiii −=−=            
 
Than, the new linear regression polynomial well be: 
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The original ai coefficients can be obtained from the new bi coefficients by the following 
formulas. 
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This method is often very useful for accuracy increasing  
 
 

Data Conditioned Linear Regression Coefficients  
 
= RLCondCoef(Coef, Ym, Xm)  
 
This function transforms the coefficients of the conditioned linear regression to the 
original coefficients 
 

Regression coefficients 
 with conditioned data  Regression coefficients 

 with original data 

[b0, b1, b2,...] ⇒ [a0, a1, a2,...] 

 
The parameter Coef is the vector of the regression coefficients with data conditioned. 
Parameter Ym is the mean of Y-values 
Parameter Xm is the mean of X-values. It can be a vector for multivariate regression  
 
Example: Compute the linear regression for the following dataset, where x1 , x2 are the 
independent variables and y is the dependent variable 
 

x1 x2 y 

200 8000000 8000210 
201 8120601 8120812 
202 8242408 8242620 
203 8365427 8365640 
204 8489664 8489878 
205 8615125 8615340 
206 8741816 8742032 

 

The model for this data set is 

y = a0 + a1 x1+ a2 x2 

Where [a0 , a1 , a2] are the unknown 
coefficients  
We use the Excel function LINEST  
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We have also added the exact values a0 = 10, a1= 1, a2 = 1.  In order to measure the 
accuracy  we have computed the LRE (Log relative error) with the mjLRE function.  
We wonder if it would be possible to increase the accuracy without using the 
multiprecision arithmetic (slow) or changing the computer (expensive)? Yes, this is 
possible using the data conditioning method. Let’s see how. 
 
For each column of the original data set (raw data table) we compute the average. We 
can use the Excel function AVERAGE, for standard numbers, or xmean, for extended 
numbers. Than, we build a new table (conditioned data table) where each column-
element is the difference between the raw column-element and the corresponding 
mean. 
 

 
 
For definition, the conditioned data columns have mean 0. 
Now compute the linear regression of the conditioned data, using the LINEST function 
 

 
 
Now, surprisingly, the accuracy is excellent! The only fact is that the new coefficients 
are not exactly the coefficient of the given data. We can obtain the original coefficients 
by the formulas of the previous topic, or, more easily, by the RLCondCoef function. 
Note. We have used the flip(MatT(I2:K2) to reorder the coefficients vector as needed 
from the RLCondCoef 
 
Tip: the data conditioning method works also for polynomial regressions 
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Linear Regression with Robust Method 
 
RegLinRM(x, y, [Method])  
 
This function6 performs the linear regression with three different robust methods:  

     - SM: simple median 

     - RM: repeated median 

     - LMS: least median squared 

Robust methods are suitable for data containing wrong points. When data samples 
have noise (experimental data), the basic problem is that classic LMS (least minimum 
squared) is highly affected by noisy points. The main goal of robust methods is to 
minimize as much as possible the influence of the wrong points when fitting the 
function 
 
The parameter x and y are two vectors of the points to fit.  
The optional parameter "Method" sets the method you want to use (default = SM) 
The functions returns an array of two coefficients [a1, a0]  where  

01 axay +⋅≅  
 
Use CTRL+SHIFT+ENTER to paste it. 
 
 
Example: Suppose you have sampled 5 experimental values (xi, yi), with a 
(suspected) large error in the last value 6.5.  
 
 

x y 
1 1.1 
2 2 
3 3.1 
4 3.8 
5 6.5 

 
In the graph are shown the 
regression lines obtained 
with all robust methods in 
comparison with the 
standard OLS regression. 
As we can see all the lines SM, RM, LMS (Robust Methods) minimize the influence of 
the value (5, 6.5) 
 

                                                 
6 The routines for robust linear regression were developed by Alfredo Álvarez Valdivia. They appear in 
this collection thanks to its courtesy 

Linear Regression
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Linear Regression Min-Max 
 
RegLinMM(x, y)  
 
This function performs the linear regression with the Min-Max criterion (also called 
Chebychev approximation) of a discrete dataset (x, y) 
 
The parameter "x" is a (n x 1)  vector of the independent variable,  
The parameter "y" is a (n x 1)  vector of the dependent variable 
 
The function returns the coefficients [a0, a1] of the max-min linear regression 

xaay 10
~ +=  

 
As known, those coefficients minimize the max absolute error for the given dataset 

|)(~|max ii yxyE −=  
 
 
Example. Find the better fitting line that minimize the absolute error  
 

 
 
 
The liner regression is        y ≅ 0.428 + 1.142 x    
with an error max               Emax   ≅ ±0.7 
 
The scatter plot shows the lineare regression approximation 
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As we can see, all the points lie in the plane strips of ±Emax around the min-max line 
(pink line). (Emax  ≅ 0.7 in this example) 
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Certification Results for Linear Regression 
 
XNUMBERS addin is not a specific statistical package. But it contains a few useful 
functions for linear regression and univariate summary statistic showing interesting 
performance. Here, we report the NIST StRD7 test for Linear Regression Coefficients 
for the the following functions:  
 
RegLin_Coeff() XNUMBERS function with standard double precision 

xRegLin_Coeff() XNUMBERS function with multiprecision  

LINEST  EXCEL built-in function  

 
Let's apply each of the above function to the NIST/ITL Longley test, a multivariate 
regression with 6 predictor variables and 16 data. 
 
NIST/ITL StRD 
Dataset Name:  Longley (Longley.dat) 
Data:          1 Response Variable (y) 
               6 Predictor Variable (x) 
               16 Observations 
               Higher Level of Difficulty 
               Observed Data 
  
Model:         Polynomial Class 
               7 Parameters (B0,B1,...,B7) 
               y = b0 + b1*x1 + b2*x2 + b3*x3 + b4*x4 + b5*x5 + b6*x6 
 
 
Test row data are: 
 
 raw data 
 y x1 x2 x3 x4 x5 x6 

 1 60323  83.0 234289 2356 1590 107608 1947 
 2 61122  88.5 259426 2325 1456 108632 1948 
 3 60171  88.2 258054 3682 1616 109773 1949 
 4 61187  89.5 284599 3351 1650 110929 1950 
 5 63221  96.2 328975 2099 3099 112075 1951 
 6 63639  98.1 346999 1932 3594 113270 1952 
 7 64989  99.0 365385 1870 3547 115094 1953 
 8 63761 100.0 363112 3578 3350 116219 1954 
 9 66019 101.2 397469 2904 3048 117388 1955 
10 67857 104.6 419180 2822 2857 118734 1956 
11 68169 108.4 442769 2936 2798 120445 1957 
12 66513 110.8 444546 4681 2637 121950 1958 
13 68655 112.6 482704 3813 2552 123366 1959 
14 69564 114.2 502601 3931 2514 125368 1960 
15 69331 115.7 518173 4806 2572 127852 1961 
16 70551 116.9 554894 4007 2827 130081 1962 

 
Now let's calculate the linear regression coefficients, and compare the result with their 
certified values. In order to show their accuracy, we calculate also the LRE for each 
result 
 
The NIST StRD certified coefficients are: 
                                                 
7 The Statistical Engineering and Mathematical and Computational Sciences Divisions of the Information Technology 
Laboratory (National Institute of Standards and Technology) has released a number of benchmark datasets for 
assessing the numerical accuracy of statistical software. The Statistical Reference Datasets (StRD) were designed 
explicitly to assist researchers in benchmarking statistical software packages 
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NIST/ITL StRD   

Param. Certified Values 
b0 -3482258.63459582
b1 15.0618722713733
b2 -0.0358191792925910
b3 -2.02022980381683
b4 -1.03322686717359
b5 -0.0511041056535807

b6 1829.15146461355
 
 
While the calculated results are shown in the following table (the xRegLin_Coeff output 
has been converted into double precision). 
 
  LINEST()   RegLin_Coeff()   xRegLin_Coeff()   
Param. Estimate LRE Estimate LRE Rounded Estimate LRE 

b0 -3482258.65389031  8.3 -3482258.63459501 12.6 -3482258.63459582 15 
b1 15.0618726770786  7.6 15.0618722713460 11.7 15.0618722713733 15 
b2 -0.0358191798902255  7.8 -0.0358191792925737 12.3 -0.0358191792925910 15 
b3 -2.02022981272773  8.4 -2.02022980381635 12.6 -2.02022980381683 15 
b4 -1.03322686974925  8.6 -1.03322686717341 12.8 -1.03322686717359 15 
b5 -0.0511041036005626  7.4 -0.0511041056535569 12.3 -0.0511041056535807 15 

b6 1829.15147447748  8.3 1829.15146461313 12.6 1829.15146461355 15 
 
 
Taking the average of LRE, we obtaining the following graph of the general accuracy 
 

LRE

0.0
3.0

6.0
9.0

12.0

15
18

LINEST() RegLin_Coeff() xRegLin_Coeff()

 
 
As we can see both functions for linear regression give very accurate result. The 
multiprecision version xRegLin is the top but, of course, is also much more slow then 
the correspondent version in 32-bit precision.  
 
 
Linear Regression  - General Accuracy  
 
The NIST StRD Statistical Reference Datasets include several linear regression 
problem tests in each of three difficulty levels: low, average, and high. These 
benchmarks were specifically designed so that reliable algorithms implemented in 
double precision would produce acceptable results for all four suites. 
 
Repeating the calculus for each linear regression StRD datasets we obtain the 
following table showing the general accuracy performance. 
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Method Accuracy 
1) LINEST 9.7
2) RegLin_Coeff() 11.5
3) xRegLin_Coeff() 15

 
 

NIST StRD Dataset Properties for Linear Regression 

Name 
Level of 
 difficulty 

Model of 
 class Param. variables Points 

(1) 
LRE 

(2) 
LRE 

(3) 
LRE 

Norris low Linear 2 1 36 13.5 14.7 15 

Pontius low Quadratic 3 1 40 12.5 14.3 15 

NoInt1 medium Linear 1 1 11 15 15 15 

NoInt2 medium Linear 1 1 3 15 15 15 

Filip high Polynomial 11 1 82 0 0 15 

Longley high Multilinear 7 6 16 8 12.3 15 

Wampler1 high Polynomial 6 1 21 8.1 11.7 15 

Wampler2 high Polynomial 6 1 21 10.3 13.5 15 

Wampler3 high Polynomial 6 1 21 8.1 11.5 15 

Wampler4 high Polynomial 6 1 21 8.1 10 15 

Wampler5 high Polynomial 6 1 21 8.1 8.9 15 

 
 
This table shows the high accuracy of the regression routine of Xnumbers. Of course 
all that has a cost: the multiprecision computation is much slower than the standard 
one. The multiprecision should be used only when needed. For example, the Filippelli 
test needs the multiprecision computing because, in standard precision, the result is 
totally wrong 
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Transcendental Functions 
 
 

Logarithm natural (Napier’s) 
 
xLn(x, [Digit_Max])  
 
Returns the natural logarithm (or Napier’s) , in base "e" 
The argument may be either normal or extended number.  
Example: 
 
xLn(30) = 3.4011973816621553754132366916 
 

Logarithm for any base 
 
xLog(x, [base], [Digit_Max])  
 
Returns the logarithm for any base (default 10)  
 

)(log xy base=  
 
The argument may be either normal or extended number.  
Example 
 
xlog(30) = 1.47712125471966243729502790325 
 

Exponential 
 
xexp(x, [Digit_Max])  
 
Returns the exponential of x in base "e"         xexp(x) =  ex    
Example 
 

e10     = xexp(10) = 22026.4657948067165169579006452 

e1000  = xexp(1000) = 1.97007111401704699388887935224E+434 

 
Note the exponent 434 of the second result. Such kind of numbers can be managed 
only with extended precision functions because they are outside the standard limits of  
double precision. 
 

Exponential for any base 
 
xexpbase(a, x, [Digit_Max])  
 
Returns the exponential of x any in base          xexpbase(a,x) =  ax 
The arguments “a” and “x” may be either normal or extended numbers, with a > 0. 
Example.  
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21.234   = xexpbase(2, 1.234) = 2.3521825005819296401155858555 

0.365 − 0.54   = xexpbase(0356, -0.54) = 1.72330382988412269578819213881 

 
 

Constant  “e” 
 
xe([Digit_Max])  
 
Returns Euler's constant "e", the base of the natural logarithm.  
The optional parameter Digit_Max, from 1 to 415, sets the number of significant digits 
(default 30). 
 

xe()     = 2.71828182845904523536028747135 

xe(60) = 2.71828182845904523536028747135266249775724709369995957496696 

 
 

Constant Ln(2) 
 
xLn2([Digit_Max])  
 
Returns the constant Ln(2).  
The optional parameter Digit_Max, from 1 to 415, sets the number of significant digits 
(default 30). 
 

Constant Ln(10) 
 
xLn10([Digit_Max])  
 
Returns the constant Ln(10).  
The optional parameter Digit_Max, from 1 to 415, sets the number of significant digits 
(default 30). 
 

Hyperbolic Sine 
 
xsinh(x, [Digit_Max])  
 
Returns the hyperbolic sine of x in multiprecision arithmetic 
 

2
sinh

xx ee −−
=

 
 

Hyperbolic ArSine 
 
xasinh(x, [Digit_Max])  
 
Returns the hyperbolic arsine of x in multiprecision arithmetic 
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( )1ln)(asinh 2 ++= xxx  

 
 

Hyperbolic Cosine 
 
xcosh(x, [Digit_Max])  
 
Returns the hyperbolic cosine of x in multiprecision arithmetic 
 

2
)cosh(

xx eex
−+

=
 

 
 

Hyperbolic ArCosine 
 
xacosh(x, [Digit_Max])  
 
Returns the hyperbolic Arcosine of x in multiprecision arithmetic 
The argument x, normal or extended, must be x >1 
 

( ) 1  ,   1lnacosh 2 >−+= xxx  
 
 

Hyperbolic Tangent 
 
xtanh(x, [Digit_Max])  
 
Returns the hyperbolic tangent of x in multiprecision arithmetic 
 

xx

xx

ee
eex −

−

+
−

=)tanh(
 

 
 

Hyperbolic ArTangent 
 
xatanh(x, [Digit_Max])  
 
Returns the hyperbolic artangent of x in multiprecision arithmetic 
The argument x, normal or extended, must be  |x| < 1 
 

1   ,       
1
1ln

2
1)(atanh <








−
+

= x
x
xx
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Euler’s constant gamma 
 
=xeu( [Digits_Max] )  
 
Returns the Euler-Mascheroni constant gamma 
(The same as Gamma constan returnde by xGm function)   
 
Example 
 

xeu()     = 0.57721566490153286060651209008 

xeu(60) = 0.57721566490153286060651209008240243104215933593992359880576 
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Trigonometric Functions 
 
 

Sin 
 
xsin(a, [Digit_Max])  
 
Returns the sine of the angle a         xsin(a) =  sin(a) 
The argument a, in radians, may be either a normal or an extended number. 
 
 xsin(1.5)     = 0.997494986604054430941723371141 

 
 

Cos 
 
xcos(a, [Digit_Max])  
 
Returns the cosine of the angle a        xcos(a) =  cos(a) 
The argument a, in radians, may be either a normal or an extended number. 
 
 xcos(1.5) = 7.07372016677029100881898514342E-2 
 
 

Computation effect of cos(π/2) 
Example: compute cos (89,99999995°)  with the standard built-in function COS function 
 COS(89.99999995) = COS(1.570796326) = 7.94896654250123E-10 
 
The correct answer, accurate to 15 digits, is 7.94896619231321E-10 
As we can see, only 7 digits are corrected. The remaining 8 digits are meaningless. 
On the contrary, with the multiprecision function xcos(x) we have the correct result with 
all its significant digits. 
 xcos(1.570796326)  =  7.94896619231321E-10 

The table below shows the computation effect when a approaches π /2 
 
angle α α (deg) xcos(α)   COS(α)   built-in Err % 
1.57 89.95437383553930 7.96326710733325E-4 7.96326710733263E-04 7.75E-14 
1.570 89.95437383553930 7.96326710733325E-4 7.96326710733263E-04 7.75E-14 
1.5707 89.99448088119850 9.63267947476522E-5 9.63267947476672E-05 -1.55E-13 
1.57079 89.99963750135470 6.32679489657702E-6 6.32679489666849E-06 -1.45E-11 
1.570796 89.99998127603180 3.26794896619225E-7 3.26794896538163E-07 2.48E-10 
1.5707963 89.99999846476560 2.67948966192313E-8 2.67948965850537E-08 1.28E-09 
1.57079632 89.99999961068120 6.79489661923132E-9 6.79489670660314E-09 -1.29E-08 
1.570796326 89.99999995445590 7.94896619231321E-10 7.94896654250123E-10 -4.41E-08 
1.5707963267 89.99999999456290 9.48966192313216E-11 9.48965963318629E-11 2.41E-07 
1.57079632679 89.99999999971950 4.89661923132169E-12 4.89658888522954E-12 6.20E-06 

 
As we can see, the accuracy of the standard function COS decreases when the angle 
approaches the right angle. On the contrary, the xcos function keeps its accuracy. 
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Tan 
 
xtan(a, [Digit_Max])  
 
Returns the tangent of a         xtan(a) =  tan(a) 
The argument a, in radians, may be either a normal or an extended number. 
 
 

Arcsine 
 
xasin(a, [Digit_Max])  
 
Returns the arcsine of a         xasin(a) =  arcsin(a) 
The arcsine is defined between -π/2 and π/2 
The argument a, where 1|| ≤a ,  may be either a normal or an extended number. 
 
 

Arccosine 
 
xacos(a, [Digit_Max])  
 
Returns the arccosine of a         xacos(a) =  arccos(a) 
The arccosine is defined between 0 and π 
The argument a, where 1|| ≤a ,  may be either a normal or an extended number. 
 
 

Arctan 
 
xatan(a, [Digit_Max])  
 
Returns the arctan of a        xatan(a) =  arctan(a) 
The arctan(a) is defined between  

2/arctan(a)2/ ππ <<−  
 
 

Constant π 
These functions return the following multiples of π 
 
xpi([Digit_Max])  xpi = π 

xpi2([Digit_Max])  xpi2 = π/2 

xpi4([Digit_Max])  xpi4 = π/4 

x2pi([Digit_Max])  x2pi = 2π 
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The optional parameter Digit_Max, from 1 to 415, sets the number of significant digits 
(default 30). 
 
 

Complement of right angle  
 
xanglecompl(a, [Digit_Max])  
 
Returns the complement of angle a  to the right angle   

xanglecompl(α) =   π/2−α 
 
where   0 ≤ α ≤ π/2 . 
 
Example:  
 
xanglecompl(1.4 ) =  0.17079632679489661923132169163 

For angles not too near the right angle this function is like the ordinary subtraction. The 
use of this function is computing the difference without loss of significant digits when 
the angle is very close to the right angle. For example, computing in Excel the 
following difference: 

=(PI()/2 − 1.570796) =  1.57079632679490 −- 1.570796 = 0,00000032679490 

we have a loss of 7 significant digits, even though the computation has been made 
with 15 significant digits. On the contrary, if we use: 

xanglecompl(1,570796 , 15) =    3,26794896619231E-7 

we get the full precision with 15 significant digits. The "lost" digits are automatically 
replaced 
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Polynomial Rootfinder 
 
The roots of polynomials are of interest to more than just mathematicians. They play a 
central role in applied sciences including mechanical and electrical engineering where 
they are used in solving a variety of design problems.  
 
All rootfinder routines are largely revised in this version. 
Didactical routine like: Lin-Bairstow’s ,Newton-Raphson’s and Halley’s method, are not 
still supported. They will migrate in another workbook. They are substitute by more 
robust routines based on the following polynomial rootfinder algorithms. 
 

RootFinderJT Jenkins and Traub algorithm (translated in VB from original FORTRAN 77) 

RootFinderGN Generalized Newton-Raphson method 

RootFinderDK Durand, Kerner algorithm This methods was been developed by Ehrilich 
(1967) and Aberth (1973). So is also called with these names.  

RootfinderRF Ruffini's method for real integer roots. It uses the Rutishauser' s QD 
algorithm for roots bracketing. 

 
All these algorithms are able to find, in a few seconds all roots of a dense polynomial 
up to 15th - 20th degree, with real or complex roots, in standard double precision or 
multi-precision. It is remarkable that sometimes the results have shown in exact way, 
even if the computation is intrinsically approximated. All these algorithms start with 
random initial guess. Therefore, if your computation is not converging, don't mind! Re-
try again.  
 
We have to point out that despite the effort dedicated to this problem and the large 
class of solution methods, any computer algorithm using finite precision is destined to 
fail for polynomials with sufficiently high degree. Pathological polynomials having 
tightly clustered roots or very large range are also very difficult to solve. Nevertheless, 
for polynomials encountered in practical use the above algorithms can find all the roots 
with good global accuracy. 
 

The characteristics of each rootfinder are synthesized in the following table 
 

Macro Roots Coefficients Arithmetic 

RootfinderJT Complex Real Standard 

RootfinderGN Complex Real Multiprecision 

RootfinderDK Complex Complex Multiprecision 

RootfinderRF Real, integer Real, integer Multiprecision 

 



Xnumbers Tutorial 

69 

 

Input parameters 
The input  interface has been revised. It is more simple and straight. 
 

 
 
Coefficients input: is the array containing the polynomial coefficients – from top to 
bottom – with increasing degree. May be also a single cell containing the polynomial 
symbolic formula such as: 
-120+274x-225x^2+85x^3-15x^4+x^5 

RootfinderDK can also accept complex coefficients. In that case the input is an (n x 2) 
array. Examples of possible input ranges are (thick black box): 
 

 
 
Note  
The symbolic notation is more adapt for sparse polynomials. 
Real coefficients can be put in horizontal or vertical vector. Complex coefficients, only 
in vertical vectors 
 
Results Output:  It is the upper left corner of the output area. If blank, the routine 
assumes the cell nearest the given coefficients range. 
 
Error: Sets the relative roots accuracy. The algorithm terminates when the relative 
difference between two iterations is less then this value. 
 
Iter: The algorithm stops when the iterations counter reaches this value.  
 
Multi-Precision: Enable/disable the multi-precision arithmetic  
 
MP-out: If checked, the results are written in multi-precision, otherwise they are 
converted in standard double 
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Printing Results 
The rootfinder macros write their results in the following simplified layout 
The root list and their estimated relative errors are written in a table starting from the 
left upper cell indicated in the input window. In the right-bottom cell is written the total 
elaboration time in seconds 
 

 

Note: we have formatted the table 
only for clarity. The macros do not 
perform this task. You do it! 
 

 
 
Integer Rootfinder output 
 
Integer Rootfinder outputs all integer roots of the polynomial (if any) at the left and the 
coefficients of the remainder polynomial (deflated  polynomial) at the right 
 

 

 

 
This result means that the given polynomial 

8704119046280328151058214720 2345678 −+−−+−+− xxxxxxxx  
 
can be factorized as 

)3438234()8)(2)(2( 2342 +−+−+−+ xxxxxxx  
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How to use rootfinder macros 
Using polynomial rootfinder macros is simpler than before. Simply select the 
coefficients polynomial and start the rootfinder that you prefer. All input fields are filled 
and the only work that you have to do – in the most cases - is to press "Run".  
 
Now start the RootfinderJT . The input coefficients field is filled with C3:C11 and the 
output cell is filled with the cell E3. Press “Run” and wait. 
 

 
 
Press “run” and - after a while -  the routine ends and the roots will be displayed at the 
right, like in the following fugure 
 

 
 
 
Sparse polynomials. We can pass to the rootfinder macros also symbolic polynomial 
string, (that it is the faster way for sparse high degree polynomials). Let’s see this 
example 
Find all roots of the following 16th degree polynomial 
 

x^16-6817x^8+1679616 
 
Write this string in a cell, select it and start a rootfinder macro 
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In this case we have used the Durand-Kerner algorithm obtaining a very high accuracy 
(practically the highest accuracy in standard double precision) 
 
 

Root Error Estimation 
 
The third column produced by the rootfinder macros is an estimation of the relative 
root error, defined as: 
 

||
|~|

i

i
i x

xxEr −
=

 
 
where x~   is the true unknown root and  ix   is the approximate root given by the 
rootfinder 
 
We have to say that this number should be regarded as an estimation of  “goodness” 
of the root found; small values (for example 1E-9 , 1E-12 ) indicate a great precision of 
the root. On the contrary, high values (for examples 1E-3 , 1E-5) indicates “difficult” 
roots that require an extra investigation. 
 
For example assume to find the root of the following 6th degree polynomial 
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Clustering effect: In this case, the accuracy is enough good, but quite lower than the 
previous example. The reason is that the roots: 
 – 1, 1.01, 1.02, 1.03, 1.04, 1.05  

are very close each other (0.1% of difference) 
 
 
Complex polynomials. The macro RootfinderKD can solve also complex polynomials 
Example: find the roots of the following polynomial with complex coefficients 
 

5432 )3(5)515(4)412()( zzizzizizP ++−+−−+++−=  
 
Select both real and imaginary coefficients columns and start the macro RootfinderKD 
 

 
 
The roots are z = ±1 , z = ±2 , z = 3 − j  
 
 
A polynomial of n degree, having as 
roots the first integer n numbers, 
belongs to the Wilkinson class that, 
as known, is hill-conditioned. This 
dense polynomial is usually used as 
standard reference for polynomial 
rootfinder algorithms. We have 
tabulated the LRE (log relative error) 
obtained with all the rootfinder 
macros. 
As we can see, for a Wilkinson 
polynomial of 20th degree, we have 
exact about four significant digits 
(0.1% accuracy) 

Wilkinson polynomial test

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

0 5 10 15 20 25

LRE

 
But all polynomials are so hard to solve? Fortunately not. Many polynomials with 
higher degree, can be solved with good accuracy 
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For example, if we try to get all real roots of the 16th degree Legendre’s polynomial 
 
6435-875160x^2+19399380x^4-162954792x^6+669278610x^8-1487285800x^10+1825305300x^12-
1163381400x^14+300540195x^16 
 
We have a general accuracy of more than 13 digits 
 

Legendre polyn. Coeff. Real Imm Rel. Err. 
6435 -0.989400934991646 0 2.9585E-17 

0 -0.944575023073157 0 1.6352E-13 
-875160 -0.865631202387904 0 3.673E-14 

0 -0.755404408355024 0 1.1559E-14 
19399380 -0.617876244402639 0 1.0779E-14 

0 -0.458016777657228 0 7.4625E-16 
-162954792 -0.281603550779259 0 1.9313E-16 

0 -0.095012509837637 0 8.5038E-18 
669278610 0.095012509837637 0 8.5038E-18 

0 0.281603550779259 0 1.4485E-16 
-1487285800 0.458016777657228 0 1.5356E-15 

0 0.617876244402640 0 5.0196E-15 
1825305300 0.755404408354981 0 2.5615E-14 

0 0.865631202387767 0 4.6793E-14 
-1163381400 0.944575023073325 0 8.4139E-14 

0 0.989400934991655 0 5.5583E-15 
300540195    

  Time = 0.34375 
 
(remember that the higher degree coefficients are at bottom) 
In the last column are the estimation errors given by the rootfinder DK.  They are slight 
different from the true roots errors, but we have to remember that this column must be 
regard as an index of the root approximation: low error values mean a good accuracy, 
higher errors could mean poor approximation (but not always!) 
 
 

Integer roots  
In applied science it's rarely  to came across polynomials having exact integer roots. 
Nevertheless, they are frequent in math, didactical examples and algorithm testing . 
Xnumbers has a dedicated special macro for finding the integer real roots of a 
polynomial. It uses the Ruffini's method with the QD algorithm for roots isolation. 
This method is generally less efficient then JT or DK but it can gain in accuracy. 
The roots found with this method have no round-off errors so the deflated polynomial 
is exact. Therefore, in that case, the process root-finding-deflating is without errors. 
 
For polynomial having a mix of integer real roots, complex roots and real roots the 
method returns the integer roots and the coefficients of the deflated polynomial that  
can be solved with the aid of the general purpose macros: DK, GN or JT. Because the 
deflated polynomial has a lower degree, the roots accuracy will be generally higher 
than if we solve directly the given polynomials. 
 

 
 
 

find real and complex 
roots (if exist) 

Extract integer roots 
(if exist) 

original 
 P(x) 

Deflated 
Q(x) 
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Let's see how it works practically 
 
Assume to have the following polynomial 
  

degree coeff 
a0 8678880 
a1 -13381116 
a2 8844928 
a3 -3279447 
a4 746825 
a5 -107049 
a6 9437 
a7 -468 
a8 10 

The exact roots are: 
 

integer real complex 

5, 6, 7, 8, 9 2.8 5.0 i5.4 ±  
 
If we try to solve this 8th degree polynomial with a general 
rootfinder, probably the best accuracy that we can obtain 
is about 1e-10, that it is a good result but we can do better 
if we extract the integer roots before and then, solving for 
the remaining roots 
 

 
Extract the integer roots and deflated polynomial 
 

 
 
The original polynomial is now cracked into the following factors 

)574 457 118 10)(8)(7)(6)(5( 23 −+−−−−− xxxxxxx  
 
Now let's find the roots of the following 3rd degree polynomial by, for example, the 
general JT rootfinder. We obtain: 
 

Re Im Rel. Err. 
2.8 0 1.14E-17
4.5 0.5 1.44E-15
4.5 -0.5 1.44E-15

 
The general accuracy is better  than 1e-14 , thousand times than the direct method. 
Clearly is a good thing to keep attention to the integer roots (when there are). 
 

1.0E-16

1.0E-14

1.0E-12

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

Rootfinder
RF + DK

Rootfinder
JT

Rootfinder
DK

Rootfinder
NG

 

Global roots accuracy 
versus the solving 
methods: 
 
Rootfinder RF + DK 
Rootfinder JT 
Rootfinder DK 
Rootfinder NG 
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The multiprecision should be used when the coefficients exceed 15 digits (remember 
that the coefficients must be exact in order to extract the exact integer roots) 
 
Let's see the following 18th degree polynomial having the roots 
 
Coefficients 

-612914519230813800000 
91181999821816015800 
-5186948337826516202 

137665995531841931 
-1622627967498318 

6214402509219 
-11208193158 

10605849 
-5122 

1  

Polynomial roots 

 
Note that same coefficients have 16 - 18 significant digits and 
they must be inserted as x-numbers, (that is as string) in 
order to preserve the original precision. 
We have also to set the multiprecision check-box in the 
macro RootfinderRF 
 

integer real complex 

25, 27,29, 31,  
1000, 1001, 1002, 1003, 1004 none none 

 

 
 
 
Note that this a so called clustered polynomial because some of its integer roots 
(1000, 1001, 1002, 1003, 1004) are very closed each other (difference less then 1%). 
This situation is quite difficult for many algorithms and the accuracy is generally quite 
poor. On the contrary, the Ruffini's method works very fine in that case. 
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Central Polynomial 
 
We call "central normalized polynomial" a polynomial having the center B of his roots 
equal to point (0 , 0).  
Given a generic normalized polynomial (an=1) 
 

01
2

2
3

3
1

1 ...)( azazazazazazP n
n

n
n +++++= −

−
 

 
For real coefficients, the roots are symmetric to the y-axis, so the BY = 0. 
While for BX we have: 
 

n
a

n
x

x ni
c

1−−== ∑
 

 
So, the central condition implies: 
 

0        0 1 =⇔= −nc ax  
 
Any generic polynomial can be transformed in "central" by the following translation: 
 

cxsz +=
 

 
Example: 
 

  1-    4   2552569616 4234 sszzzzz  → +=+−+−  
 
As we can see, transforming a generic polynomial into a center polynomial may 
reduce the complexity and the magnitude of coefficients. This is very important to 
avoid the overflow during numeric computing and also the convergence of the iterative 
rootfinder methods can be greatly improved. 
The graph below shows the transformation effect. All the roots are shifted to the origin 
 
 

j

-j

-1 1

4+j

4-j

3 5
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Coefficients Transformation 
Given a polynomial 
 

01
2

2
3

3
1

1 ...)( azazazazazazP n
n

n
n +++++= −

−
 

 
Setting the variable substitution: 

cxxz +=  
where 

n
ax n

c
1−−=

 
 
The above translation involves the transformation of all original coefficients. Indicated 
the central polynomial as: 
 

01
2

2
2

2 ... bxbxbxbxb n
n

n
n ++++ −

−  
 
Then, the coefficients b can be given by the following formulas: 
 

nk
k

xPb c
k

k ...0        
!

)()(

==
 

 
We can avoid the computation of the n-th order derivatives and the computation of 
factorial by the following the iterative method: 
 
Starting with 
 

 )()(0 zPzP =  
 
For  k = 0, 1 … n 
 

)( ckk xPb =  
 

dz
dP

k
P k

k 1
1

1 +
=+
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Circle of the Roots 
 
We define "circle of the roots" the smallest circle that contains all the roots of a 
polynomial. The radius of this circle is: 
 

|)(|max
...1 ini

zR
=

=  

 
If the polynomial is "central", a good estimation for R is: 







⋅= −=
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That is: 







⋅= −−

−− 2
1

2
3
1

3
2

1

2
1

1

1

1

0
*  , ,... , , max1.1 nn

nnn bbbbbR
 

 
Of course the "true" R is not exactly the R*, but is distributed around R* with a 
statistical distribution. If we define the stochastic variable: 

*R
Rt =  

 
We can also define  p(t) and F(t) respectively the Probability Density and the 
Probability cumulative function of statistical distribution of "t". 
The graph below shows an example of statistical distribution given from a sample of a 
few hundred random polynomials, from 3° to 6° degree. 

0

0.2

0.4

0.6

0.8

1

1.2

0.4 0.6 0.8 1 1.2 1.4

density

cumulative 

 
 
As we can see, for  t = 1 the probability is about 50%. Thus, the probability to find all 
the roots in a circle with radius equal to R* is about 50%. 
The probability becomes more than 99%  for a radius of 1.2 R* 
 
This result helps to restrict the searching area of the polynomial roots.  
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Polynomial Functions 
 
 

Polynomial evaluation 
 
 =POLYN(z, Coefficients, [DgtMax])  
 
Computes the polynomial at the value z. 
 

n
n zazazaazP ...)( 2

210 +++=  
 
The parameter Coefficients is the (n+1) column vector containing the polynomial 
coefficients from the lowest to the highest order. 
This function accept also complex coefficients. In that case the parameter Coefficients 
is an (n+1 x 2)  array. 
The optional parameter DgtMax set the number of the precision digits. If omitted, the 
function works in the faster double precision. 
 
This function works also for complex arguments. In that case, z must be a complex 
number (two adjacent cells) and the function returns two values. To see both real and 
imaginary part, select two cells and give the CTRL+SHIFT+ENTER key sequence. If 
you press only ENTER, the function returns only its real part. 
 
Example: compute the following real polynomial  
 

4 2 5  2)( 234 ++−+= zzzzzP  
 
for  iz 24 −=  
 

 
 
Otherwise, if you want to compute a real polynomial for a real argument, e.g. z = 10 - 
simply pass a single value 
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Example: compute the following complex polynomial  
 

)54( )2( 5 )1( 2)( 234 izizzizzP −+−+−−+=  
 
for  iz 24 −=  
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Polynomial derivatives 
 
 =DPOLYN(z, Coefficients, Order, [DgtMax])  
 
Computes the polynomial derivative at the value z. 
 

n
n zazazaazP ...)( 2

210 +++=  

j

j

j dz
zPdzD )()( =  

 
The parameter "Coefficients" is the (n+1) vector containing the polynomial coefficients 
from the lowest to the highest order. 
This function accept also complex coefficients. In that case the parameter Coefficients 
is an (n+1 x 2)  array. 
The parameter "Order" sets the order of the derivative. 
The optional parameter "DgtMax" set the number of the precision digits. If omitted, the 
function works in the faster double precision. 
 
This function works also for complex arguments. In that case, z must be a complex 
number (two adjacent cells) and the function returns two values. To see both real and 
imaginary part, select two cells and give the CTRL+SHIFT+ENTER key sequence. If 
you press only ENTER, the function returns only its real part. 
 
 
Example.  Compute the derivatives of the following polynomial  
 

3223)( zzzzP +++=  
 
For z= 3, we have: 
 

 
 
 
Example: calculate the 2nd derivative of the following  complex polynomial at the point 

iz 24 −=  
 

)54( )2( 5)1(  2)( 234 izizzizzP −+−+−−+=  
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With DPOLYN and POLYN it is very easy to implement, for example, the Newton’s 
algorithm for finding the polynomial root with high precision 
 
Example: find the real root of the following polynomial with Newton’s algorithm 

8000645 367 −+− xxx  
 
The popular iterative Newton’s formula is 

)('
)(

1
i

i
ii xp

xpxx +=+

 
Starting from the point x = 10. Note that we cannot use the handly x = 0 , because the 
derivative is zero 

 
 
The exact digits caught by the algorithm, are shown in blue. Note the impressive 
acceleration. Try this example with 60 and more digits if you like. 
 
 

Polynomial coefficients 
 
 =PolyTerms(Polynomial)  
 
Returns the vector of the polynomial coefficients 
The argument is a polynomial string like "1-3x+5x^2 +x^5" in any order. 
 
Example 
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Note the braces { } in the formula. This indicates that the function return a vector. We 
must select the range before enter the function with "shift+ctrl+enter". 
 

Polynomial writing 
 
 =PolyWrite(Coefficients, [variable]) 
 
It returns the polynomial string from its coefficients. 
The first argument may be a (1 x n) vector  or an (2 x n) array. In the last case, the first 
row indicates the coefficient position and the second row contains the correspondent 
coefficient value. 
The second optional argument specifies the variable string (default is "x"). 
 

 
 
Note that the second argument "t" must be insert as string, that is between quotes "..." 
 

Polynomial addition 
 
 =PolyAdd(Poly1, Poly2)  
 
Performs the addition of two polynomials.  
The arguments are monovariable polynomial strings. 
 
Example: 
 
PolyAdd("1-3x" , "-2-x+x^2")  =  "-1-4x+x^2" . 
 

Polynomial multiplication 
 
 =PolyMult(Poly1, Poly2)  
 
Performs the multiplication of two polynomials  
The arguments are monovariable polynomial strings. 
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Example: 
 
PolyMult("1-3x" , "-2+5x+x^2") =  "-2+11x-14x^2-3x^3" . 
 
( )( ) 322 3141125231 xxxxxx −−+−=++−−  
 
 

Polynomial subtraction 
 
 =PolySub(Poly1, Poly2)  
 
Returns the difference of two polynomials   
The arguments are monovariable polynomial strings. 
 
Example: 
 
PolySub("1-3x" , "-2+5x+x^2") = "3-8x-x^2" . 
 
 

Polynomial division quotient 
 
 =PolyDiv(Poly1, Poly2)  
 
Returns the quotient of two polynomials 
The arguments are monovariable polynomial strings. 
 
Example: 
 
PolyDiv("x^4-1" , "x^2-x-1") = "2+x+x^2" . 
 
In fact: 
 

( )( ) xxxxxx 31211 224 ++++−−=−  
 
 

Polynomial division remainder 
 
 =PolyRem(Poly1, Poly2)  
 
Returns the remainder of two polynomials  
The arguments are monovariable polynomial strings. 
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Hermite’s and Cebychev’s polynomials 
By the basic operations we can build any other polynomial.  
Example: Calculate the first 9 Cebychev’s and Hermite’s polynomials  
 

Cebysev’s polynomials can be obtained by 
the iterative formula  

Hermite’s polynomials can be obtained by 
the iterative formula  

xTT == 10     ,  1  
11 2 −+ −⋅= nnn TTxT  

 

xHH == 10     ,  1  
11 22 −+ ⋅−⋅= nnn HnHxH  

 
 
The two iterative formulas can be arrange as: 
 
=polysub(PolyMult("2x",Tn),Tn-1) 

=polysub(PolyMult("2x",Hn),PolyMult(2*n,Hn-1)) 

 
These functions are inserted from the cell B4 to B9 and C5 to C9 
 

 
 
 

Legendre’s Polynomials 
Legendre’s polynomials can be obtained by the following well known iterative formula 
 

xPPxP
n

nxPx
n

nxP nnn ==⋅
−

−⋅⋅
−

= −− 1021   ,  1     ,     )(1)(12)(
 

 
The first five polynomials are: 

( ) ( ) ( )33035
8
1  ,  35

2
1  , 13

2
1  ,    ,  1 24

4
3

3
2

210 +−=−=−=== xxPxxPxPxPP
 

 
The above formula is very popular, but from the point of view of numeric calculus has 
one disadvantage: its coefficients are decimal and this causes round-off errors leading 
inaccuracy for higher polynomial degree. It is convenient to rearrange the iterative 
formula to avoid fractional coefficients. 
Let’s assume that a Legendre’s polynomial can be written as  
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)(1)( xL
k

xP n
n

n =
 

 
Where kn is an integer number and Ln(x) is a polynomial having integer coefficients 
The Legendre’s polynomial Pn(x) is completely defined by the couple of (kn , Ln(x)) 
 
Starting with 

1
1

1

0

=
=

k
k

 xL
L

=
=

1

0 1

 
 
We can show that the following iterative process, with n ≥ 2 , gives the couples (kn , 
Ln(x)) 

)()()()(
 )1(

 )12()(

21

1

2

xLaxLxUxV
nka

xnkxU

nnnnn

nn

nn

−−

−

−

⋅−⋅=
−⋅=

−⋅=

 
 

( ))(,
21

nnn

nnn

VcoefbGCDc
kknb

=
⋅⋅= −−  

 
Where the coeff operator returns the coefficients vector of the polynomial Vn(x), and 
the GCD is the greatest common divisor. 
Simplifying, we get, finally the couple (kn , Ln(x)) 

)(1)( xV
c

xL

c
bk

n
n

n

n

n
n

=

=

 
 
This iterative algorithm, working only with integer values, is adapted to build 
Legendre’s polynomials with high degree.  
 
Let’s see how to arrange a worksheet for finding Legendre’s polynomial 
 
In the first column we insert the degree n, beginning from 0 to 2, for the moment 
In the last two columns “k” and “L(x)” we have added the starting values. 
 

 
 
The row 6 contains all the functions that the process needs. 
In particularly we note: 
The function polyterms(D6) gives the coefficients vectors [-1, 0, 3] of V(x) = -1+3x^2 
The function xMCD returns the greatest common divisor of [-1, 0, 3, 2] ⇒ 1 
 

(1a)
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Select the row 6 and drag it down. We generate the Legendre’s polynomial in the form 
(1a) 
 

 
 
Here is a table of Legendre’s polynomials obtained with the above method 
 

n k L(x) 
0 1 1 

1 1 x 

2 2 -1+3x^2 

3 2 -3x+5x^3 

4 8 3-30x^2+35x^4 

5 8 15x-70x^3+63x^5 

6 16 -5+105x^2-315x^4+231x^6 

7 16 -35x+315x^3-693x^5+429x^7 

8 128 35-1260x^2+6930x^4-12012x^6+6435x^8 

9 128 315x-4620x^3+18018x^5-25740x^7+12155x^9 

10 256 -63+3465x^2-30030x^4+90090x^6-109395x^8+46189x^10 

11 256 -693x+15015x^3-90090x^5+218790x^7-230945x^9+88179x^11 

12 1024 231-18018x^2+225225x^4-1021020x^6+2078505x^8-1939938x^10+676039x^12 

13 1024 3003x-90090x^3+765765x^5-2771340x^7+4849845x^9-4056234x^11+1300075x^13 

 
We can also extract a table of Legendre’s coefficients by the Polyterms() function 
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Polynomial shift 
 
 =PolyShift(Poly, x0)  
 
Performs the polynomial translation of x0,  
The argument "Poly" can be the polynomial strings or the vector of polynomial 
coefficients. 
This function returns the coefficient vector of the translated polynomial. 
If you select one cell, the output will be a polynomial string 
 

Example: 
Given the polynomial: 

65432 1448633275809495250447389623188784918 xxxxxx +−+−+−  
substituting x with  z+24, we have 

6432 916918 zzzzz +−−−+−  
 

 
 
This function is useful for transforming polynomial for reducing the coefficients 
amplitude and improving the precision of rootfinder methods. In this example we work 
with coefficients of two maximum digits, instead of 9 digits. We note also that the 
second polynomial, having the second coefficient = 0, is centered. His roots are the 
same of the given polynomial, translated of 24, but can be factorize much better. In 
fact, we have 
 

)9)(2)(1( 222 −+++− zzzzz  
 
 

Polynomial center 
 
 =PolyCenter(Coefficients)  
 
Returns the center of the polynomial roots circle 
The argument specifies the vector of the polynomial coefficients in the following order: 

[ ]naaaa  ... , , 210  

It can also be a polynomial string  
 
if x1, x2, ...xn are roots of polynomial the center Bx is defined as: 
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n
a

n
xxxx nn

x
1210 ...B −−

=
+++

=  

 
 

Polynomial roots radius 
 
 =PolyRadius(Coefficients)  
 
Returns the approximated radius of the polynomial roots circle. 
The argument is the vector of the polynomial coefficients in the following order: 

[ ]naaaa  ... , , 210  

It can also be a polynomial string  
 
If zi are the roots of a polynomial, the radius is defined as: 

|)(|max
...1 ini

zR
=

=  

.The circle of root is very useful for locating all the roots of a polynomial. For example, 
given the following 9 degree polynomial.  
 

degree coefficents 
a0 -3098250
a1 4116825
a2 -2427570
a3 916272
a4 -244674
a5 46934
a6 -6430
a7 608
a8 -36
a9 1

 
 
The center = 4 and the radius ≅ 6.8 
We can draw the circle containing, with high probability, all polynomial roots  
We know that the roots of this polynomial are:  
 

x real x imm 
9 0 
5 0 
2 0 
3 -6 
3 6 
1 -4 
1 4 
6 -3 
6 3  

 
 
We have to point out that this method is probabilistic. It means that the most part of the 
roots are found inside the circle but it is also possible to find same roots outside the 
circle with 1% of probability.  
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Example: compute the root circle of the polynomial: x^7-5x^6+64x^3-8000 
 
radius ≅ 4.331 
center ≅ 0.714 
 
The roots are: 
 

x real x imm 
-2.7429701 1.6132552 
-2.7429701 -1.6132552 
-0.4369651 3.2182957 
-0.4369651 -3.2182957 
3.17993518 2.2060806 
3.17993518 -2.2060806 

5 0 
 
 
 
 

Polynomial building from roots 
 
 =PolyBuild(Roots, [Variable])  
 
Builds a polynomial from its roots. Argument "Roots" is an (n x 2)  array, contains the 
polynomial roots. It can be a vector for real roots. 
This function returns the coefficient vector of the polynomial. 
If you select one cell, the output will be a polynomial string 
 
Complex roots for real polynomial: Multiple roots: 

 
 

 
Complex roots for complex polynomial 
If the complex roots are not symmetrical, the 
polynomial has both real and imaginary part. 
This function returns both, simply as a vector 
(2 x 1).  

Zero roots  
If you want a polynomial with multiple zero 
roots, simply repeat many couple [0, 0] as they 
need. 

 
This function can return the vector of polynomial coefficients if you select more than 
two vertical cells. It is very useful for higher degree polynomial 
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In this example we get the 10 
coefficients of the 9th degree 
polynomial having the 9 roots in 
the range A2:B10 
 

 

 

If complex roots are not conjugate, 
the polynomial has complex 
coefficients. This function can 
return also the imaginary column 
of the coefficients, simply 
selecting two columns 
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Polynomial building with multi-precision 
 
 PolyBuildCfx()  
 
This macro generate the polynomial coefficients from the given roots.  
This macro works like the function PolyBuild except that it works in multi-precision. It is 
very useful for high degree polynomial, when the coefficients become longer than 15 
digits.  
 

 

For using this macro select the range that 
contains the roots. 
 
Then, start the macro. Choose the digits 
precision (default=30) and the range you 
want to paste the coefficients (default is 
the range at the right side of the roots 
range selected). 
 

 
In the following table we have calculated the coefficient of the polynomial having as 
roots the first 19 integer numbers. That is: 

x1 = 1 , x2 = 2,  x3 = 3 ,.... x19 = 19 

 
Roots PolybuildCfx (30 digits) PolyBuild Diff. 

1 -121645100408832000 -121645100408832000 0
2 431565146817638400 431565146817638000 400
3 -668609730341153280 -668609730341153000 -280
4 610116075740491776 610116075740492000 -224
5 -371384787345228000 -371384787345228000 0
6 161429736530118960 161429736530119000 -40
7 -52260903362512720 -52260903362512700 -20
8 12953636989943896 12953636989943900 -4
9 -2503858755467550 -2503858755467550 0

10 381922055502195 381922055502195 0
11 -46280647751910 -46280647751910 0
12 4465226757381 4465226757381 0
13 -342252511900 -342252511900 0
14 20692933630 20692933630 0
15 -973941900 -973941900 0
16 34916946 34916946 0
17 -920550 -920550 0
18 16815 16815 0
19 -190 -190 0

 1 1 0

 
As we can see there are a little difference (digits in red) between the exact coefficients 
computed by this macro PolyBuildCfx  (multiprecision arithmetic with 30 digits) and 
those returned by the function PolyBuild (standard double precision 32-bit).  
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Polynomial solving 
 
 =PolySolve (Polynomial)  
 
This function returns the roots of a given real polynomial using the Jenkins-Traub 
algorithm.  

n
n xaxaxaa ...2

210 +++  
The arguments can be a monovariable polynomial strings like "X^2+3x+2" or a vector 
of coefficients 
This function returns an (n x 2) array. 
It uses the same algorithm of the RootfinderJT macro. It works fine with low-moderate 
degree polynomials, typically from 2° till 10° degree. For higher degree it is more 
convenient to use the macro. 
 
Example. Find all roots of the given 10 degree polynomial 
 

 
 
 

Integer polynomial  
 
 =PolyInt(Polynomial)  
 
This function returns a polynomial with integer coefficients having the same roots of 
the given polynomial. This transformation is also know as "denormalization" and can 
be useful when the coefficients of the normalized polynomial are decimal. 
 
Example: Eliminate decimal coefficients from the following polynomial:  
 
-0.44+2.82x-3.3x^2+x^3 
 
To eliminate decimal coefficients we denormalize the polynomial 
-22+141x-165x^2+50x^3 = PolyInt("-0.44+2.82x-3.3x^2+x^3") 

 
Take care with the denormalization because the coefficients became larger and the 
computation can lose accuracy. See the example below 
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The following polynomials have the same root  x = 11/10: 
Pb(x)  = -2.4024+10.1524x-17.1x^2+14.35x^3-6x^4+x^5 

Pa(x)  = -6006+25381x-42750x^2+35875x^3-15000x^4+2500x^5 

 
If we compute both polynomials for x = 11/10, with standard double precision we get: 
Pa(1.1) = -2.664E-15 

Pb(1.1) =  4.547E-12 
 
As we can see, the first value, obtained by the decimal polynomial, is 1000 times more 
precise then the one obtained by the integer polynomial 
 
 
 

Polynomial interpolation 
 
 =PolyInterp (x, xi, yi, [DgtMax])  

 =PolyInterpCf (xi, yi, [DgtMax])  

 
These functions perform the polynomial interpolation 
The first function performs the interpolation of a given set of points (xi,yi), and returns 
the value at the point x. If the parameter x is literal, like  "x", the function returns the 
interpolation polynomial expression. 
Input parameters xi and yi are vectors.  
The optional parameter DgtMax sets the max digits in multiprecision arithmetic. If 
omitted or zero, the functions works in faster standard double precision. 
 
The second function returns an array containing the coefficients of polynomial 
interpolation 
These functions use the following popular Newton's formula: 
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Where D are the "divided differences", given by the following recursive formulas: 
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Sub-tabulation 
Interpolation method is very useful to generate a sub-tabulation from a given table. 
Usually interpolation is used when we have few exact knots, and we want to 
approximate the value between two consecutive knots. On the contrary, when we have 
many values affected by relevant random errors (experimental samples) is better to 
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use the regression. The main differences is that interpolation curve always crosses for 
all knots, the regression line may not cross for any given knots. 
Example: 
 

x y 
0 0.5 

0.5 0.7 
1 1.2 

1.5 1.2 
2 1.3 

2.5 2.2 
 
 

 

In the cell E2 insert the function 
PolyInterp as in figure. 
Select the cell E2 and drag it down to 
fill all the cells that you need. 

 
The following graph shows the interpolate points (blue) and the given knots (pink) 
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Interpolation Polynomial string 
We can obtain the interpolation polynomial expression, simply passing a generic letter 
(Ex: "x") to the argument x . We get: 
 
=PolyInterp("x";A2:A7;B2:B7) = 0.5-x+6.93333333333333x^2- 
6.9x^3+2.66666666666667x^4-0.346666666666667x^5 

 
If we do not want decimal values, use the function PolyInt(). We get: 
75-150x+1040x^2-1035x^3+400x^4-52x^5 
 
Remember that this polynomial is not the same of the above interpolation polynomial. 
We must divide it for an adapt coefficient, that can be computed dividing a coefficient 
of the second polynomial (e.g: 75) for the corresponding coefficient of the first one 
(e.g. 0.5). We get  

Sub-tabulation problem.  
Given the following table we want to 
generate a new table with step = 0.1 and   
for 0 ≤ x ≤ 3  
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M= 75/0.5 = 150 

So the final interpolation polynomial can be written as: 
 
P(x) = 1/150*(75-150x+1040x^2-1035x^3+400x^4-52x^5) 
 
 

Polynomial System of 2nd degree 
 
 =SYSPOLY2(Poly1, Poly2)  
Solves a system of two 2nd degree polynomials.  







=+++++

=+++++
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It returns a (4 x 4) array containing the four solutions.  
The parameters Poly1 and Poly2 can be coefficients vectors or polynomials strings 
The coefficients must be passed in the same order of the above equation. 
Polynomial strings, on the contrary, can be written in any order. Examples of 2nd 
degree x-y polynomials strings are: 
 
13+x + y^2 - y + x^2 + 2x*y 
x^2 + y^2 - 10 
4x^2+8x*y+y^2+2x-2  
 
Note: the product symbol “*” can be omitted except for the x*y mixed term 
 
A 2nd degree system can have up to four solutions. It can also have no solution 
(impossible) or even infinite solutions (undetermined). The function returns  #N/D if a 
solution is missing 
 
Example: solve the following system 
 







=−+

=−+++

010
02

22

22

yx
yxyxyx

 
 
Using SYSPOLY2 the solutions – real or 
complex – can be obtained in a very 
quick way 
 
Real solutions represent the intersection 
point of the curve poly1 and poly2.  
They are: P1 = (−3 , 1)  ,  P2 = (−1 , 3)       

 
The system has also two complex solutions that have not a geometrical representation 

P3 = (2.5 +j 1.118034 , −2.5 +j 1.118034)   , P4 = (2.5 −j 1.118034 , −2.5 −j 1.118034)     

The degree of the given system is 4 
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Example: solve the following system 
 





=−+++

=−

012
01
2 yxyxy

xy

 
 
The apparent degree of the system is 2 x 2 = 4 
 

 
 
As we can see, the function SYSPOLY2 returns only three solutions: one real and two 
complex. 
 
P1 = (−1, −1) ,     P2 = (−j , j ) ,       P3 = = ( j , −j )  
 
Thus, the actual system degree is 3. 
 
 

Bivariate Polynomial   
 
 =POLYN2(Polynomial, x, y, [DgtMax])  
Returns the bivariate polynomial value, real or complex, at the point x, y. 
The parameter "Polynomial" is an expression strings. Valid examples of x y polynomial 
strings are: 
13+x+y^2-y+x^2+2x*y , x^2+y^2-10 , 8x*y+y^2+2x-2 , 10+4x^6+x^2*y^2 
 
Note: the product symbol “*” can be omitted except for the x*y mixed terms 
The third optional parameter is used for multi precision computing. If you set any 
number from 1 to 200, the computation is performed in multiprecision.  
 
The variables x , y can be real or complex. The function can return real or complex 
numbers. Select two cells if you want to see the imaginary part and give the 
CTRL+SHIFT+ENTER sequence 
 
Example: Compute the polynomial  

yxyxyxP −+++= 22 2  
at the point  
x = (2.5 + j 1.11803398874989)  

y = (−2.5 + j 1.11803398874989)  
 
And verify that it is a good approximation 
of the polynomial root 
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Partial fraction decomposition    
 
Partial fraction decomposition is the process of rewriting a rational expression as the 
sum of a quotient polynomial plus partial fractions. If the rational expression is proper - 
thus the degree of numerator polynomial is lower than the denominator -  the quotient 
will be zero and it remains only the partial fractions terms. A polynomial with real 
coefficients can be factored into a product of powers of linear and quadratic factors: 
the linear factors are taken by real roots while the quadratic factors are taken by 
complex roots. 
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being m is the multiplicity of the correspondent root 
The denominators is determined from the poles, thus the roots of the denominator 
D(x). In fact, p is just a real root of D(x), while the quadratic factor can be obtained 
from the complex root using the following relation 
 

22    ,    2        βααβα +=−=⇒± cbi  (1) 
 
Many calculators and computer algebra systems, are able to factor polynomials and 
split rational functions into partial fractions. But also in Excel a solution can be 
arranged with the aid of Xnumbers functions. Let's see 
 
Real single poles. Find the fraction decomposition of the following rational fraction 

54 105 65 15
1794 1433 2763
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First of all, we try to find the roots of the denominator using, for example, the function 
polysolve. We find that the roots are  pi = [1, 2, 3, 9]. They are all real with unitary 
multiplicity, therefore the fraction expansion will be 
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where pi are the roots and Ai are unknow 
Several methods exist for solving the fraction coefficients Ai . One of the most straight 
and elegant is the Heaviside's formula that, for a real single root, is simple: 
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where D' is the derivative of D 
 
A possible arrangement in Excel is the following 
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Therefore, the requested decomposition is 
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You can prove yourself that this expression is an identity, thus always true for every x, 
except the poles. 
 
Complex single poles. Find the fraction decomposition of the following rational 
fraction 

650 42 29 2
123 52 21
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First of all, we try to find the roots of the denominator using, for example, the function 
polysolve. We find that the roots are } 34  ,  25 { iip ±−±= . They are complex with 
unitary multiplicity, therefore the fraction expansion will be 
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+
++

+
=

 
 
where bi and ci , calculated by the (1), are 25  ,  8  ,  26  ,  10 2211 ===−= cbcb  
The coefficients Bi and Ci are unknown. For solving them we used here the so called 
undetermined coefficients method 
Renamed, for simplicity: 

22
2

211
2

1 )(    ,   )( cxbxxDcxbxxD ++=++=  
 
The fraction expansion may be rewritten as 

)()(
 

)()(
 

)(
)(

2

2

2

2

1

1

1

1

xD
C

xD
xB

xD
Cx

xD
xB

xD
xN

+++=
 

 
Giving 4 different values to x, the above relation provides 4 linear equations in B1, C1, 
B2, C2, that can be easily solved. We can choose any value that we want; for example 
xi = { 0, 1, 2, 3 } and we get the following linear system 
 

0   1/26 0   1/25  B1  123/650 
  1/17   1/17   1/34   1/34 C1 9/34  
  1/5    1/10   2/45   1/45 

X 
B2 

= 
3/10  

  3/5    1/5    3/58   1/58  C2   63/290 
 
Solving this linear system by any method that we like, we get the solution 
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[B1 , C1 , B2 , C2] = [-2 , 7 , 1 , -2] 

 
Substituting these values, we have finally the fraction decomposition 

258
2

2610
72

65042 29 2
123 52 21

22234

23

++
−

+
+−

+−
=

+−−−
++−−

xx
x

xx
x

xxxx
xxx

 
 
You can prove yourself that this expression is an identity, thus always true for every x 
 
In Excel a possible arrangement for 
solving this problem is a bit more 
complicated then the previous one. 
Let's see. First of all we compute 
the roots with the function 
Polysolve,  then we compute the 
trinomials D1(x) and D2(x) by the 
formulas (1)  

 
Then we compute the polynomials N, D, D1, D2 for each values of x by the function 
polyn. We get the 4x5 table at the right 
 

 
From the value-table we get the complete system matrix 
 

 
 
That can be solved by any method that you want. For example by matrix inversion 
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Orthogonal Polynomials    
 
Orthogonal polynomials are a class of polynomials following the rule: 
 

 
 
Where m and n are the degrees of the polynomials, w(x) is the weighting function, and 
c(n) is the weight. nm δ  is the Kronecker's delta function being 1 if n = m and 0 
otherwise. 
 
The following table synthesizes the interval [a, b], the w(x) functions and the relative 
weigh c(n) for each polynomials family 
 

polynomial interval w(x)  

Chebyshev polynomial 
of the first kind   

 

Chebyshev polynomial 
of the second kind    

Gegenbauer polynomial 
  

 

Hermite polynomial 
   

Jacobi polynomial 
       

Laguerre polynomial 
  1 

generalized Laguerre 
polynomial   

 

Legendre polynomial 
 

1 
 

 
Where 
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Orthogonal Polynomials evaluation    
 
This set of functions8 calculate the orthogonal polynomials and their derivatives at the 
given point . They return two values: the first one is the polynomial value, the second 
is its 1st derivative. If you want to see both values select two adjacent cells and give 
the CTRL+SHIFT+ENTER sequence. If you give ENTER, you will get only the 
polynomial value 
 

Function Poly_ChebychevT(x, n) Chebychev polynomial of the first kind 

Function Poly_ChebychevU(x, n) Chebychev polynomial of the second kind 

Function Poly_Gegenbauer(a, x, n) Gegenbauer polynomial 

Function Poly_Hermite(x, n) Hermite polynomial 

Function Poly_Jacobi(a, b, x, n) Jacobi polynomial 

Function Poly_Laguerre(x, n, m) Laguerre generalized polynomial 

Function Poly_Legendre(x, n) Legendre polynomial 

 
 
Example:  
 
Tabulate the Legendre polynomial of 6th degree, for 0 ≤ x ≤ 1, with step h = 0.1 
 

 
 
As we can see we have insert Poly_Legendre  as a standard function, because in this 
exercise we do not need the derivative information 
 
 
Example.  Find the greatest zero of the 5th degree Legendre polynomial 
We can use the Newton-Raphson method, starting from x = 1, as shown in the 
following sheet arrangement 
 

                                                 
8 Many thanks to Luis Isaac Ramos Garcia for his great contribution in developing this software 
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Both polynomial and derivative are obtained from the Poly_Legendre simply selecting 
the range B5:C5 and pasting the function as array with CTRL+SHIFT+ENTER 
sequence 
The other cells are filled simply by dragging down the range B5:C5 
 
 
Function Poly_ChebychevT(x, [n]) 
Function Poly_ChebychevU(x, [n]) 
 
Evaluate the Chebychev orthogonal polynomial of 1st and 2nd kind 
Parameters: 

 x (real) is the abscissa, 
 n (integers) is the degree. Default n = 1 
 
 
Function Poly_Gegenbauer(L, x, [n]) 
 
Evaluate the Gegenbauer orthogonal polynomial of 1st and 2nd kind 
Parameters: 
 
  x (real) is the abscissa,  
 n (integers) is the degree. Default n = 1 
 L (real) is the Gegenbauer factor and must be L < 1/2 
 
 
Function Poly_Hermite(x, [n]) 
 
Evaluate the Hermite orthogonal polynomial of 1st and 2nd kind 
 
Parameters: 
  x (real) is the abscissa,  
 n (integers) is the degree. Default n = 1 
 
 
Function Poly_Jacobi(a, b, x, [n]) 
 
Evaluate the Jacobi orthogonal polynomial of 1st and 2nd kind 
Parameters: 
  x (real) is the abscissa,  
 n (integers) is the degree. Default n = 1 
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 a (real) is the power of (1-x) factor of  the weighting function 
 b (real) is the power of (1+x) factor of  the weighting function 
 
 
Function Poly_Laguerre(x, [n], [m]) 
 
Evaluate the Laguerre orthogonal polynomial of 1st and 2nd kind 
Parameters: 
  x (real) is the abscissa,  
 n (integers) is the degree. Default n = 1 
 m (integer) is the number of generalized polynomial. Default m = 0 
 
 
Function Poly_Legendre(x, [n]) 
 
Evaluate the Legendre orthogonal polynomial of 1st and 2nd kind 
Parameters: 
  x (real) is the abscissa,  
 n (integers) is the degree. Default n = 1 
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Weight of Orhogonal Polynomials    
 
This set of functions calculate the weight  c(n) for each orthogonal polynomial p(x, n) 
 

 
 
Function Poly_Weight_ChebychevT(n) Chebychev polynomial of the first kind 

Function Poly_Weight_ChebychevU(n) Chebychev polynomial of the second kind 

Function Poly_Weight_Gegenbauer(n, l) Gegenbauer polynomial 

Function Poly_Weight_Hermite(n) Hermite polynomial 

Function Poly_Weight_Jacobi(n, a, b) Jacobi polynomial 

Function Poly_Weight_Laguerre(n, m) Laguerre generalized polynomial 

Function Poly_Weight_Legendre(n) Legendre polynomial 

 
 
If we divide each orthogonal polynomial family for the relative weight we have an 
orthonormal polynomial family 
 

Zeros of Orthogonal Polynomials    
 
This macro finds all roots of the most common orthogonal polynomials 
Its use is very easy. Simply start the Zero macro from the menu  
"tools > Ortho-polynomials..." 
 

 

Choose the family and the degree that 
you want and fill the optional parameters 
Then press OK 
 

 

 

This is an example of output for a 
Laguerre polynomial of 6th 
degree ( m = 0) 
 
 
Note: formatting is added for clarity. 
The macro does not format 
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Coefficients of Orthogonal Polynomials    
 
This macro calculate the coefficients of the most common orthogonal polynomials 
Its use is very easy. Simply start the Coeff macro from the menu "tools/Ortho-
polynomials..." 
 

 

Choose the family and the 
degree that you want and fill 
the optional parameters. 
Then, press OK 
 
 

 
This macro return also the polynomial weight 
 

 

This is an example of output for a Laguerre 
polynomial of 4th degree (m = 0) 
 
The orthopolynomial can be written as 
 

( )24967216
24
1)( 234

6 +−+−= xxxxxL
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Complex Arithmetic and Functions 
 
Xnumbers provides a large collection of complex functions 
 
 Complex Addition  
 Complex Subtraction  
 Complex Multiplication  
 Complex Division  
 Polar Conversion  
 Rectangular Conversion  
 Complex absolute  
 Complex power  
 Complex Root  
 Complex Log  
 Complex Exp  
 Complex inv  
 Complex negative  
 Complex conjugate  
 Complex Sin  
 Complex Cos  
 Complex Tangent  
 Complex Inverse Cos  
 Complex Inverse Sin  
 Complex Inverse Tan  
 
 

 Complex Hyperbolic Sin  
 Complex Hyperbolic Cos  
 Complex Hyperbolic Tan  
 Complex Inverse Hyperbolic Cos  
 Complex Inverse Hyperbolic Sin  
 Complex Inverse Hyperbolic Tan  
 Complex digamma  
 Complex Exponential Integral  
 Complex Error Function  
 Complex Complem. Error Function  
 Complex Gamma Function  
 Complex Logarith. Gamma Function  
 Complex Zeta Function  
 Complex Quadratic Equation  
 Complex Expression Evaluation 

 

How to insert a complex number 
For definition a complex number is an ordered couple of numbers: (a,b) 
In Excel a couple of numbers is represented by two vertical or horizontal adjacent 
cells, so the complex number (a, b) is a range of two cells. The figure below shows 
both vertical and horizontal representations: 
 
  (234 , 105) in range "B7:C7"  and in range "B2:B3" 
  ( -100 , 23) in the range "E7:F7" and in range "D2:D3" 
 

 
 
Most of complex-functions return a complex number, which is an array of two values.  
For entering complex functions you must select two cells, insert the comple function 
and give the CTRL+SHIFT+ENTER keys sequence 
 
 
If you press the ENTER key, the function returns only the real part of the complex  
number. 
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Symbolic rectangular format 
Xnumbers support the format  "x+jy " only in expression strings passed to the function 
cplxeval. Except this case, you must always provides a complex number as a couple 
of real numbers (one or two cells). 
The reason for this choice is that the rectangular format is more adapt for symbolic 
calculation while the array format is more convenient for numerical computation where, 
often, we have to manage long, decimal numbers 
But, of course, you can convert a complex number (a,b) into its symbolic format "a+jb" 
by the Excel function COMPLEX, as shown in the following example  
 

 
 
 
XNUMBERS has two sets of complex functions: for standard double precision 
(prefixed by "cplx") and for multiprecision (prefixed by "xcplx").  
 

Complex Addition 
 
xcplxadd(a, b, [Digit_Max])  
 
cplxadd(a, b)  
 
Performs the complex addition: 

( ) ( ) ( )21212121 bb , aab , ba , a ++=+  
 
 

Complex Subtraction 
 
xcplxsub(a, b, [Digit_Max])  
 
cplxsub(a, b)  
 
Performs the complex subtraction.    

( ) ( ) ( )21212121 bb , aab , ba , a −−=−  
 
 

Complex Multiplication 
 
xcplxmult(a, b, [Digit_Max])  
 
cplxmult(a, b)  
 
Performs the complex multiplication: 
 

( ) ( ) ( )122122112121 baba , ba-bab , b*a , a +=  



Xnumbers Tutorial 

110 

 
 

Complex Division 
 
xcplxdiv(a, b, [Digit_Max])  
 
cplxdiv(a, b)  
 
Performs the complex division    
 

( )
( ) 








+
−

+
+

= 2
2

2
1

2112
2
2

2
1

2211

21

21

bb
baba , 

bb
baba

b , b
a , a

 

 
 

Polar Conversion 
 
xcplxpolar(z, [angle], [Digit_Max])  
 
cplxpolar(z, [angle])  
 
Converts a complex number from its rectangular form to the equivalent polar form.  
The optional parameter angle sets the angle unit (RAD, DEG) (default RAD). 
 
     (x, y)  ⇒  ( ρ , θ )    
 
Where 

   
22 yx +=ρ  

0  ,   atan >





= x

x
yθ

 

0  ,   
2

)sgn( =⋅= xy πθ
 








<≠⋅+







<=
=

 0,0  ,   )sgn(atan

 0,0  ,   

xyy
x
y

xy

π

π
θ

 
 
 
 

Rectangular Conversion 
 
xcplxrect(z, [angle], [Digit_Max])  
 
cplxrect(z, [angle])  
 
Converts a complex number from its polar form to the equivalent rectangular form. The 
optional parameter angle sets the angle unit (RAD, DEG) (default RAD). 
 

( ρ , θ )  ⇒  (x, y) 

x y ρ θ (deg) 
1 0 1 0 

0.866025 0.5 1 30 
0.707107 0.707107 1 45 

0.5 0.866025 1 60 
0 1 1 90 

-0.5 0.866025 1 120 
-0.70711 0.707107 1 135 
-0.86603 0.5 1 150 

-1 0 1 180 
-0.86603 -0.5 1 -150 
-0.70711 -0.70711 1 -135 

-0.5 -0.86603 1 -120 
0 -1 1 -90 

0.5 -0.86603 1 -60 
0.707107 -0.70711 1 -45 
0.866025 -0.5 1 -30 
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Where 
( )
( )θρ
θρ

sin
cos

=
=

y
x

 
 
 

Complex absolute 
 
xcplxabs(z, [Digit_Max])  
 
cplxabs(z)  
 
Returns the absolute value of a complex number     
 

2
2

2
1|| zzz +=  

 
 

Complex power 
 
xcplxpow(z, [n], [Digit_Max])  
 
cplxpow(z, [n])  
 
Returns the nth integer power of a complex number  zn   (default n = 2) 
 

( ) θρ nnnn eiyxz ⋅=+=  
Where 









=+=

y
xyx atan              ,         22 θρ

      
 
 

Complex Roots 
 
xcplxroot(z, [n], [Digit_Max])  
 
cplxroot(z, [n])  
 
Returns all the nth roots of a complex extended number  z (1/n)   (default n = 2) 
The function returns a matrix of (n x 2) values. Remember to press the sequence 
CTRL+SHIFT+ENTER for insert properly this function. 
 
The root of a complex number is computed by the de Moivre-Laplace formula. 
 

1...1,0   ,   2sin2cos    −=













 +

⋅+





 +

⋅=+= nk
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kiyxz nnn πθπθρ
 

where 
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Note: If you select only one row, the function return only the first complex root (given 
for k = 0). 
 
Example: compute all the 3 complex cubic roots of the number z = 8  
 

 
 

Complex Log 
 
xcplxLn(z, [Digit_Max])  
 
cplxLn(z)  
 
Returns the natural logarithm of a complex number 
 

( ) θρ +=+= log)log()log( iyxz  
Where: 







=+=

x
yyx atan      ,     22 θρ

 
 

Complex Exp 
 
xcplxExp(z, [Digit_Max])  
 
cplxExp(z)  
 
Returns the exponential of a complex number 
 

)sin()cos( yieyeee xxiyxz +== +
 

 

Complex inverse 
 
xcplxinv(z, [Digit_Max])  
 
cplxinv(z)  
 
Returns the inverse of a complex number 

2222

11
yx

yi
yx

x
iyxz +

−
+

=
+

=
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Complex negative 
 
xcplxneg(z)  
 
cplxneg(z)  
 
Returns the complex negative 
 

( ) iyxiyxz −−=+−=−  
 

Complex conjugate 
 
xcplxconj(z)  
 
cplxconj(z)  
 
Returns the conjugate of a complex number 
 

iyxiyxz −=+=  
 

Complex Sin 
 
=cplxsin(z)  
 
Returns the sine of a complex number 
 

Complex Cos 
 
cplxcos(z)  
 
Returns the cosine of a complex number 
 

Complex Tangent 
 
cplxtan(z)  
 
Returns the tangent of a complex number 
 

Complex ArcCos 
 
cplxacos(z)  
 
Returns the arccosine of a complex number 
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Complex ArcSin 
 
cplxasin(z)  
 
Returns the arcsine of a complex number 
 
 

Complex ArcTan 
 
cplxatan(z)  
 
Returns the arctangent of a complex number 
 
 

Complex Hyperbolic Sine 
 
cplxsinh(z)  
 
Returns the hyperbolic sine of a complex number 
Parameter “z” can be a real or complex number (two adjacent cells) 
 

Complex Hyperbolic Cosine 
 
cplxcosh(z)  
 
Returns the hyperbolic cosine of a complex number 
Parameter “z” can be a real or complex number (two adjacent cells) 
 

Complex Hyperbolic Tan 
 
cplxtanh(z)  
 
Returns the hyperbolic tangent of a complex number 
 

Complex Inverse Hyperbolic Cos 
 
cplxacosh(z)  
 
Returns the inverse of the hyperbolic cosine of a complex number 
 

Complex Inverse Hyperbolic Sin 
 
cplxasinh(z)  
 
Returns the inverse of the hyperbolic sine of a complex number 
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Complex Inverse Hyperbolic Tan 
 
cplxatanh(z)  
 
Returns the inverse of the hyperbolic tangent of a complex number 
 

Complex digamma 
 
cplxdigamma(z)  
 
Returns the logarithmic derivative of the gamma function for complex argument.  
 

( )
)(
)(' )(ln)(

x
xx

dx
dx

Γ
Γ

=Γ=Ψ
 

 

Complex Exponential Integral 
 
cplxei(z)  
 
Returns the exponential integral of a complex number 
 

∫
∞

−

−

−=
x

t

dt
t

exEi  )(
 

 

Complex Error Function 
 
cplxerf(z)  
 
Returns the "error function" or "Integral of Gauss's function" of a complex number 

∫ −=
z

t dtezerf
0

22)(
π  

 

Complex Complementary Error Function 
 
cplxerfc(z)  
 
Returns the complementary error function for a complex number 
 

)(1)( zerfzerfc −=  
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Complex Gamma Function 
 
cplxgamma(z)  
 
Returns the gamma function for a complex number 
 

∫
∞

−−=Γ
0

1 )( dtetx tx

 
 
 

Complex Logarithm Gamma Function 
 
cplxgammaln(z)  
 
Returns the natural logarithm of the Gamma function for a complex number 
 

Complex Zeta Function 
 
cplxzeta(z)  
 
Returns the Riemann zeta function ζ(s)   for a complex number. It is an important 
special function of mathematics and physics which is intimately related with very deep 
results surrounding the prime number, series, integrals, etc. 
Definition: For |s|>1 the  function is defined 
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Complex Quadratic Equation 
 
cplxEquation2(a, b, c, [DgtMax])  
 
Returns the multiprecision solution of the quadratic equation with complex coefficients 

02 =+⋅+⋅ czbza  
 
where a, b, c are complex 
The solutions are found by the resolution formula 

a
acb

a
bz

2
4

2

2 −
±−=

 
 
This function returns an (2 x 2) array 
The optional parameter DgtMax, from 1 to 200, sets the number of the significant 
digits. If missing, the computation is in standard double precision. 
 
Example: Find the solution of the following complex equation with 20 digits precision 
 

04)29(2 =++⋅−+ iziz  
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Number Theory 
 

Maximum Common Divisor 
 
xMCD(a1, [a2], [Digit_Max])  
 
MCD(a1, [a2], [a3]...)  
 
Returns the Maximum Common Divisor (also called Greatest Common Divisor, GCD)  
of two or more extended numbers 
The arguments "a1" and "a2" may be single numbers or arrays (range). At least, two 
values must be input. If "a1" is a range, "a2" may be omitted 
 
 

Minimum Common Multiple 
 
xMCM(a1, [a2], [Digit_Max])  
 
MCM(a1, [a2], [a3]...)  
 
Returns the Minimum Common Multiple (also Least Common Multiple, LCM)  of two or 
more extended numbers 
The arguments "a1" and "a2" may be single numbers or arrays (range). At least, two 
values must be input. If "a1" is a range, "a2" may be omitted 
 
Example 
 

 
 
Tip.. The LCM may easily overcome the standard precision limit even if the arguments 
are all standard precision.  
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Rational Fraction approximation 
 
xfrac(x, [Digit_Max])  
 
fract(x, [ErrMax])  
 
Returns the rational fractional approximation of a decimal number x, the functions 
returns a vector of two numbers, numerator N and denominator D : 

x ≈ N / D 

The optional parameter ErrMax sets the accuracy of the fraction conversion 
(default=1E-14). The function tries to calculate the fraction with the maximum accuracy 
possible. 
The algorithm employed in this routine uses the continued fraction expansion9 
 

0  ,   1
1  ,   0

10

10

==
==

DD
NN

 
 

11
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+⋅=
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Where ai  are found by the following algorithm: 
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In the example below  we want to 
find the fraction form of  decimal 
number  0.126.  
The function returns the solution: 
 N = 63 , D = 500 
  
 
Often the rational form is not so easy to find, and depends strongly on the precision we 
want to reach.  
See, for example, the fractions that approximate √2 with increasing precision 
 

Digit N D N/D Error 
2 3 2 1.500000000000000 0.08579 
3 7 5 1.400000000000000 0.01421 
4 41 29 1.413793103448280 0.00042 
5 99 70 1.414285714285710 7.2E-05 
6 239 169 1.414201183431950 1.2E-05 
7 1393 985 1.414213197969540 3.6E-07 
8 3363 2378 1.414213624894870 6.3E-08 
9 8119 5741 1.414213551646050 1.1E-08 
10 47321 33461 1.414213562057320 3.2E-10 
11 114243 80782 1.414213562427270 5.4E-11 
12 275807 195025 1.414213562363800 9.3E-12 
13 1607521 1136689 1.414213562372820 2.8E-13 
14 3880899 2744210 1.414213562373140 4.2E-14 
15 9369319 6625109 1.414213562373090 1.3E-14 

 
You can regulate the desiderate approximation with the parameter ErrMax 
 
 

                                                 
9 form The art of Computer Programming, D.E.Knuth, Vol.2, Addison-Wesley, 1969 
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Check Prime 
 
Prime(n)  
 
CheckPrime(n)  
 
These functions10 state whether a number is prime. They differ only for the values 
returned 
 

Prime(n) = "prime"                   if  n is  prime 
the lowest factor    if n is not prime 
"not found"            if the function is not able to check n. 

CheckPrime(n) = TRUE                    if  n is  prime 
FALSE                  if n is not prime 
"?"                         if the function is not able to check n. 

 
 

Next Prime 
 
NextPrime(n)  
 
This function10 returns the prime number greater than n or "not found"  
 
nextprime(9,343,560,093) = 9,343,560,103 
 
 

Modular Power  
 
xPowMod(a, p, m, [digit_max])  
 
Returns the modular integer power of ap 
That is defined as the remainder of the integer division of ap by m 
 









⋅−=

m
amar

p
p

 
 
Example: compute 

)0059 (mod324
 

xPowMod(3,24,9005) = 3306 
 
It's easy to prove that  

3306)9005mod( 812824295364)9005mod(324 ==    
 
When the number a or p become larger it is impossible to compute the integer power 
directly. But the function xPowMod can return the correct result. 
 

                                                 
10 These functions appears by the courtesy of Richard Huxtable 
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Examples: compute 

)3001mod(123939040   
 
It would be impossible to compute all the digits of this power. Using multiprecision we 
have 
 
xPow(12,3939040) =  1.24575154970238125896669174496E+4250938 
 
This result shows that 123939040 has more then 4 million of digits! 
Nevertheless the remainder of this impossible division is 
 
xPowMod(12, 3939040,3001) = 947 
 
 

Perfect Square  
 
xIsSquare(n)  
 
Checks if a number n is a perfect square 
 
xisSquare(1000018092081830116) = TRUE 
 
Because:   1000018092081830116 = 10000090462 
 
xisSquare(2000018092081830116) = FALSE 
 
 

Check odd/even  
 
xIsOdd (n)  
 
Checks if a number n is odd (TRUE) or even (FALSE)  
 
 

Factorize 
 
Factorize()  
 
This macro factorizes an integer number returning the list of its prime factors with their 
exponents 
 

n = p1
e1⋅ p2

e2⋅ p3
e3⋅ ...pk

ek⋅       where pi ∈{prime} 
 
Example. Assume to have in the cell A2 the following extended number 
 
13320493696756339619246691430 
 
Select the cell contains the number you want to factorize and the run the macro 
Factorize (from the Xnumbers menu Macros > Numbers or from the Handbook). 
Choose a factorization method, for example the "Trial Division" and click "Factorize" 
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Click “copy” if you want to 
copy the list in the 
worksheet, starting from 
the cell just below the 
number cell A2. 
 
The macro stops itself 
after the time out is 
reached, and prompts if 
you want to continue or 
interrupt the factorization 
task 
 

 
This macro uses the trial division method with the prime table generated by the 
Eratostene's sieve algorithm. This method is adapt for numbers having factors no 
more that 7 digts max. For higher factor the elaboration time becames extremely long. 
In this situation we can choose a second factorization method, the so called Pollard 
rho algorithm, for craking a number into two lower factors (not necessary prime). Each 
factors, if not prime, can be factorized separately with the trial division method. 
 
Example. The number  

18446744073709551617 = 274177*67280421310721 

can be factorized with both methods: it requires about 33 sec with trial division, but 
less then 3 sec with Pollard method 
The following number instead can be factorize only with Pollard method (about 40 
sec). 

10023859281455311421 = 7660450463*1308520867 

Note that in this case both factors have 10 digts. The factors are prime so the 
factorization stops. 
For prime testing see the probabilistic Fermat's Prime Test 
 
 

Factorize function 
 
Factor(n)  
 
This function performs the decomposition in prime factor of a given number 
Returns an array of two columns: the first column contains the prime factors and the 
second column contains the exponents 
Note. This function is adapt for low-moderate numbers. 
 

 

In this example, the given number is 
decomposed in 5 factors 
 
2277785128000 = 26 53 232 732 101 
 
The #ND symbol indicates the end of 
factors list. To make sure to get all 
factors you have to extend the 
selection until you see this symbol 
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Prime Numbers Generator 
 
PrimeGenerator()  
This macro is useful to generate your own table of prime number. The table begins 
from the cell A1 of the active worksheet. 
 

 
 
 

Fermat's Prime Test 
 
Prime_Test_Fermat()  
 
This macro perform the probabilistic prime test with the Fermat's method. This is adapt 
for long number. Using it is very simple. 
Start the macro from the menu  Macros > Numbers > Prime test 
 
Select the number that you want to test and press "Test". After few seconds you get 
the results. 
 
 

 

Note that this test is exact for 
detecting composite numbers, 
but it can detect a prime 
number with a finite 
probability (usually very high). 
 
Numbers satisfying the 
Fermat' test are called 
"pseudo-prime" 
 
 

 
The probability is correlated to the number of trials  "T" with the following approximate 
formula 

The macro computes 10.000 
(default) prime numbers for each 
time. 
The macro can be stop and restart 
as you like 
 
It always restarts from the last prime 
number saved. 
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1002121 −− −=−= Tp  

For  T = 100  the probability is about   31108.71 −⋅−  
 
You can also select a list of cells containing several numbers to test. This is useful for 
find new long prime numbers 
 
Example: find the next prime number after 100000000000000 (1E14) 
 
A prime number must be odd, so let's begin to prepare a sequence of 20 or more odd 
numbers starting from 100000000000001 
The frequency of prime numbers, in this range, is about 5%, so we hope to find a 
prime number in our list. If this does not happen we try with a successive set of 
numbers, and so on, until a prime comes out. 
 

 
 
 
In this case we have found a probable prime 100000000000031 
We can prove that it is a true prime 
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Diophantine Equation  
 
DiophEqu(a, b, c)  
 
This function solves the Diophantine linear equation  
 

Zyxcybxa ∈=+ ,            
 
where a, b, c , x, y are all integer numbers 
 
The integer solutions 
can be expressed as 
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This function return an array (2, 2) of four integer values. 
The first row contains a particular solution, while the second row 
contains the integer increments for generating all the solutions.  
If you want only a particular solution [x0, y0] simply select an 
array of 2 adjacent cells. If the equation has no solution the 
function return "?" 

 

     









yx DD
yx 00

 

 
Example. Find all the integer solutions of the equation  2x+3y = 6   
 

 

As we can see, the function returns 
one solution (-6, 6)  and the 
increments (3, -2). So all the integer 
solutions of the above equation can 
be obtained from the following 
formulas for any integer value of k 
 





−=
+−=

ky
kx

k

k

26
36

 

 
Often is not so easy to find the solution of a diophantine equation. Let's see 
 
Long numbers. This function works also with extended numbers. 
Example. Find a solution of the equation  ax+by = c  having the following coefficients 
 

 
 
Note that the first coefficients has 17 digits and the second one has 14 digits. Without 
multiprecision it would be difficult to solve this problem. But fortunately the function 
return the following results 
 

 
 
You can enjoy yourself to prove that this result is correct 
 



Xnumbers Tutorial 

126 

 

Linear Algebra Functions 
 
 

Matrix Addition 
 
xMatAdd(mat1, mat2, [DgtMax])  
 
Performs the addition of two matrices in multiprecision 
mat1 and mat2 are (n x m) arrays  
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Matrix Subtraction 
 
xMatSub(mat1, mat2, [DgtMax])  
 
Performs the subtraction of two matrices in multiprecision 
mat1 and mat2 are (n x m) arrays  
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Matrix Multiplication 
 
xMatMult(mat1, mat2, [DgtMax])  
 
Performs the multiplication of two matrices in multiprecision 
mat1 (n x p) and mat2 (p x m) are arrays  
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Matrix Inverse 
 
xMatInv(A, [DgtMax])  
 
Returns the inverse of square matrix (n x n)  in multiprecision  
It returns "?" for singular matrix. 
 
This function uses the Gauss-Jordan diagonalization algorithm with partial pivoting 
method. 
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Matrix Determinant 
 
xMatDet(A, [DgtMax])  
 
Returns the determinant of a square matrix in multiprecision  
It returns "?" for singular matrix. 
 
 

Matrix Modulus 
 
xMatAbs(A, [DgtMax])  
 
Returns the absolute value of a matrix or vector in multiprecision. 
It is also known as "modulus" or "norm"  
Parameters A may be an (n x m) array or a vector 
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Scalar Product  
 
xProdScal( v1, v2, [DgtMax])  
 
Returns the scalar product of two vectors in multiprecision  

i 2
1

i 121 VVVVc
n

i
⋅=•= ∑

=

 

Note: The scalar product is zero if, and only if, the vectors are perpendicular 
 

            0 2121 VVVV ⊥⇔=•  
 
 

Similarity Transformation 
 
= xMat_BAB(A, B, [DgtMax])  
 
Returns the matrix product: 

BABC  1−=  
 
This operation is also called the "similarity transformation" of the matrix A by the matrix 
B. This operation plays a crucial role in the computation of eigenvalues, because it 
leaves the eigenvalues of the matrix A unchanged. For real, symmetrical matrices, B is 
orthogonal. The similarity transformation is also called the "orthogonal transformation".  
A and B must be square matrices.  
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Matrix Power 
 
= xMatPow(A, n, [DgtMax])  
 
Returns the integer power of a square matrix. 
 

48476  time

...
n

n AAAAAB ⋅⋅==  
 
 

Matrix LU decomposition 
 
= xMat_LU(A, [Pivot], [DgtMax])  
 
Returns the LU decomposition of a square matrix A 
It uses Crout's algorithm  
 
















⋅
















=⋅=

33

2322

131211

2121

21

00
0

1
01
001

u
uu
uuu

ll
lULA

 
 
Where L is a lower triangular matrix, and U is an upper triangular matrix 
The parameter Pivot (default=TRUE) activates the partial pivoting. 
Note: if partial pivot is activated, the LU decomposition can refer to a permutation of A 
If the square matrix has dimensions (n x n), this function returns an (n x 3n) array  
where the first n columns are the matrix L, the next n columns are the matrix U, and 
the last n columns are the matrix P. 
Globally, the output of the Mat_LU function will be: 

-  Columns  (1, n)         =  Matrix L 
-  Columns  (n+1, 2n)   =  Matrix U 
-  Columns  (2n+1, 3n) =  Matrix P 
 
When pivoting is activated the right decomposition formula is A = P L U , where P is a 
permutation matrix 
Note: LU decomposition does not work if the first element of the diagonal of A is zero 
 
Example: find the factorization of the following 3x3 matrix A 
 

 
 
Note: if you want to get only the L and U matrices select a range (3 x 6) before 
entering this function 
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Matrix LLT decomposition 
 
= xMat_LL(A, [DgtMax])  
 
This function returns the LLT  decomposition of a square matrix A 
It uses Cholesky's algorithm  
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Where L is a lower triangular matrix 
The function returns an (n x n) array  
Note: Cholesky decomposition works only for positive definite matrices 
 
Example. 
 

 
 
The diagonal elements of the L matrix are all positive. So the matrix A is definite 
positive and the decomposition is correct. This function simply stops when detects a 
negative diagonal element, returning the incomplete decomposition.  
See this example 
 

 

A diagonal element of the L matrix is 
negative. So the matrix is not positive 
definite and the decomposition cannot be 
completed 

 
 

Vector Product  
 
= xProdVect(v1, v2, [DgtMax])  
 
Returns the vector product of two vectors  
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Note that if V1 and V2 are parallels, the vector product is the null vector. 
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Solve Linear Equation System  
 
xSYSLIN( A, B, [DgtMax])  
 
Solves a system of linear algebraic equations in multiprecision. 
The input parameter A is an (n x n) array, B may be a vector (n x 1) or an (n x m) array 
Returns a vector (n x 1) or an (n x m) array depending by the argument B 
 
A set of m linear systems in n unknowns looks like this: 
 

 ][ ...  ,  ][   ,  ][ 12111 mbxAbxAbxA =⋅=⋅=⋅  
 
It can be rewritten as: 
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This function uses the Gauss-Jordan diagonalization algorithm with partial pivoting 
method. 
 
Example. Find the solution of the following 7x7 linear system  
 

A       b 
462 792 1287 2002 3003 4368 12376 24290
924 1716 3003 5005 8008 12376 31824 62856

1716 3432 6435 11440 19448 31824 75582 149877
3003 6435 12870 24310 43758 75582 167960 333918
5005 11440 24310 48620 92378 167960 352716 702429
8008 19448 43758 92378 184756 352716 705432 1406496

12376 31824 75582 167960 352716 705432 1352078 2697968
 
The solution is the vector [1, 1, 1, 1, 1, 1, 1].  Solving with standard arithmetic, we get 
an average accuracy of about 1E-8, while in multiprecision we have an accuracy better 
than 1E-28 
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Solve Linear Equation System with Iterative method 
 
SYSLIN_ITER_G(A, b, x0, [Nmax])  
 
This function find the solution of a linear system by the iterative Gauss-Seidel 
algorithm. 

bxA =⋅][  

The parameter  A  is the system matrix (n x n) 
The parameter  b   is the system vector n x 1) 
The parameter  x0  is the starting approximate solution vector (n x 1) 
The parameter  Nmax  is the maximum steps performed (default = 1) 
 
The function returns the vector at Nmax step, if the matrix is convergent, this vector is 
closer to the exact solution. 
In the example below it is returned the 20th GS iteration step.  
As we can see, the values approximate the exact solution [4, -3, 5]. Precision increase 
with steps (of course, for convergent matrices) 
 

 
 
For Nmax=1, we can study the iterative method step by step 
 
Usually, the convergence speed is quite low, but it can be greatly accelerated by the 
Aitken's extrapolation formula, also called as "square delta extrapolation" 
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Square Delta Extrapolation 
 
ExtDelta2(x)  
 
xExtDelta2(x, [DgtMax])  
 
This function returns the Aitken's extrapolation, also known as "Square Delta 
Extrapolation". The parameter x is a vector of n value (n > 2), in vertical consecutive 
cells. (n= 2 for the multi-precision function  xExtDelta2).  
This formula can be applied to any generic sequence of values (vector with n>2 ) for 
accelerating the convergence. 

) , ...  ,  , () , ...  ,  , ( 2321
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∆
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Note that this algorithm produces a vector with n-2 values. If n = 3, the result is a 
single value. 
Taking the difference: 

iii xx  1 −=∆ +  
 
The Aitken's extrapolation formula is: 
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This formula can be applied to the second sequence to obtain a new sequence with n-
4 values, and so on. The process stops when the last sequence has less than 3 
values. 
 
Example. we want to find the numeric solution of the equation x = cos(x) 
We choose the central point method. Starting from x0 = 0 we build the iterations 

xn+1 = cos(xn) 

As we can see in the following table, the convergence is evident but very slow (after 
12 iterations the precision is about 3E-5) .  
 

 

The functions of this worksheet are: 
 
The cell B2 contains the starting value x0 
The cell B3 contains the formula 
the formula 

=C2 
 
The cell C2 contains the formula 

=COS(B2) 
 
The cell D3 contains the formula 

=ASS(B2-C2) 

 

 

As we can see the last 12th value has an 
error of about 3.5E-3. Taking the delta 
extrapolation of the three last values we 
get a new value having an accuracy 
better than 1E-5.  
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Now let's repeat the iterative process using systematically the square delta 
extrapolation 
 

In this process, we have systematically 
repeated the ∆2 extrapolation every 3 
iterations 
 
We have insertet in the cell B5 

=ExtDelta2(B2:B4) 
 
In the cell B8 

=ExtDelta2(B3:B7) 
 
In the cell B14 

=ExtDelta2(B9:B11) 
 
 

 
The acceleration is superb!. After only 12 steps, the precision is better than 1E-15.  
The graph below shows better than many words this acceleration effect 
 

1E-16

1E-14
1E-12

1E-10

1E-08

1E-06
0.0001

0.01

1
0 2 4 6 8 10 12

Error (extrap)

Error

 
 
The Aitken's extrapolation formula work very well with the Gauss-Seidel iterative 
method, and for accelerating the convergence of many series.  
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Multiprecision Matrix operations (macro) 
 
This application collects a set of useful macros performing multiprecision matrix 
operations  
 

Determinant )det(A  Gauss-Jordan algorithm 

Addition BA +   

Subtraction BA −   

Multiplication BA ⋅   

Scalar multiplication  Ak ⋅   

Inverse 1−A  Gauss-Jordan algorithm 

Similarity transform BAB 1−
  

Linear System BAX =  Gauss-Jordan algorithm 

Linear System overdetermined. bAx =  rows > columns 

LU decomposition LUA =  Crout’s algorithm 

Cholesky decomposition TLLA =  Cholesky’s algorithm 

Norm 
 A  

 

Scalar product BAT ⋅   

SVD  TVU ⋅Σ⋅  Golub-Reinsch algorithm 

 
 
The use of this macro is quite simple. If the operation requires only one matrix 
(determinant, inversion, etc.) select the matrix, start the macro and choose the 
appropriate operation 
Other operations require two matrices (addition, multiplication, etc.). In that case you 
have also to select the second matrix. 
 
The internal calculus is performed in multiprecision. The result is converted in standard 
precision (15 significant digits max) for more readability, but you may also leave it in 
full multiprecision format. 
 
Example: If you want to solve the following linear system Ax = b. 
 

 
 
Select the matrix A and start the macro 
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Choose the operation “Linear System” and then move in the right field to select the 
vector b. 
 

 
 

 

Indicate, if necessary, the upper-
left cell of the range where you 
want to write the result. 
 

 
Then, press OK. The result will be filled starting from the output cell I2. 
 
 
Smart  
Selector  

The special button near the input field is useful for selecting large 
matrices .Select the first cell, or an internal cell of the matrix and then 
press this button. The entire matrix will be selected 

 
 
Elaboration time 
 
Multiprecision computation does slow down the computation considerably. It takes 
much more time then the standard double precision.  The time depends on the matrix 
dimension and on the precision digits. The following graphs show the average time for 
the inversion and the multiplication of dense matrices. 
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As we can see, the inversion of a (100 x 100) matrix, with 30 precision digits, takes 
about 150 seconds. Clearly, for this kind of tasks, macros are more suitable than 
functions. 
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Integrals & Series 
 
 

Discrete Fourier Transform 
 
=DFT(samples)  
=FFT(samples)  
 
Returns the complex matrix of the DFT transformation of N samples. 
This function returns an (N x 2) array. The first column contains the real part; the 
second column the complex part  
If N is an integer power of 2, thus N=2p, use the fastest FFT 
FFT uses the Cooley and Tukey decimation-in-time algorithm. 
 
Formulas 
Given N samples ( f(0), f(1), f(2),....f(N-1) ) of a periodic function f(t) with a normalized 
sampling rate (T=1), the DFT is defined by: 
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The components (Fr , Fi) are called the harmonic spectrum of f(t) 
From the Fourier series, we can approximate a periodic function f(t) by: 
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where the coefficients (ak  , bk ) are the components 2Fr and 2Fi of DFT 
 
 
Example: Find the 16-FFT of the following periodic function (T = 1 sec) 
 

) 3cos(5.0) cos(3)( tttf ωω ++=  where 
T
πω 2

=
 

 
First of all we have to sample the given function. Setting N = 16 , we have a sampling 
period of  
 

1,...1 ,0    ,               
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) 3cos(5.0) cos(3 iii ttf ωω ++=  
 
Appling the FFT function at the samples set ( f0, f1, f2,....f15 ), we get the complex 
discrete Fourier’s transform  
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Note that the FFT returns a (16 x2) 
matrix. The first column contains the 
real part of FFT while the second 
column the imaginary one. 
 
The magnitude and phase can be 
easily obtained with the following 
formulas 
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Note that the first row of the FFT 
contains the average of f(t).  
Note also that the rows from 10 to 16 
are the mirror copy of the previous 
rows. 
 

 
 
 

Discrete Fourier Inverse Transform 
 
=DFT_INV(samples)  
 
=FFT_INV(samples)  
 
Returns the inverse of the DFT transform of N complex samples. 
This function returns an (N x 2) array containing the samples of the function f(t) 
If N is an integer power of 2, thus N=2p, use the fastest FFT_INV function 
FFT_INV uses the Cooley and Tukey decimation-in-time algorithm. 
 
 
Formulas 
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Where the components (Fr , Fi)  are the harmonic spectrum of f(t) 
 
Example: Find the inverse transform of the FFT computed in the previous example 
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As we can see, the first column of  FFT_INV returns the samples of f(t) that have 
originated the FFT 
 
 

Discrete Fourier Spectrum 
 
=DFSP(samples, [dB], [Angle])  
 
This function returns the harmonic spectrum of a samples set 
 
The parameter samples are e vector of N equidistance samples 
The optional parameter dB (default FALSE) sets the output in decibel 
The optional parameter Angle (default “RAD”) sets the angle unit (RAD, GRAD, DEG) 
The function returns an (N x 2) array, containing the amplitude and phase. 
 
The spectrum is computed for real positive frequencys.  

( )nnA θ  ,   
Where 

( )∑ ++≅ nn tnAftf θω sin)0()(  
 
Example: Find the harmonic spectrum of the following 32 samples 
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Inverse Discrete Fourier Spectrum 
 
=DFSP_INV(spectrum, [dB], [Angle])  
 
This function rebuilds the temporal sequence from its real spectrum (amplitude, phase) 

( ) )(      , inn tfA ⇒θ  
 
The parameter spectrum is an (M x 2) array. Each row contains a harmonic. The first 
column contains the amplitude and the second column the phase  
The optional parameter dB (default FALSE) sets the output in decibel 
The optional parameter Angle (default “RAD”) sets the angle unit (RAD, GRAD, DEG) 
The function returns the vector (N x 1) where N = 2M 
 
 

2D Discrete Fourier Transform 
 
=FFT2D (samples)  
 
This function performs the 2D-FFT of a bidimensional data samples (x, y).  
The parameter Samples is an (N x M) array where N and M are integer powers of 2 (4, 
8, 16, 32, 64…) 
The function returns an (2N x M) array. The first N rows contain the real part, the last 
N rows contain the imaginary part. 
 
Note: This function requires a large amount of space and effort. Usually it can works 
with matrices up to (64 x 64). 
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Example: Analyze the harmonic component of the following 8x8 data matrix  
 

 
 

 

The 2D-FFT can be 
computed in a very straight 
way. Simply select a 16 x 8 
array and insert the FFT2D 
where the input parameter is 
the given matrix (range 
B10:I17).  
 
We can easily extract the 
harmonic components: 
 

1)0,0( =H  
05.0)0,1( =H  
1.0)1,0( =H  

jH 354.0354.0)1,1( +=  
jH 25.0)2,2( =  

 
 

 
If we compute the inverse transform DFT2D_INV(“L10:S25”) we will obtain again the 
given starting matrix. 
 
 

2D Inverse Discrete Fourier Transform 
 
=FFT2D_INV (samples)  
 
This function FFT2D_INV performs the inverse task of the FFT2D. It accepts as input 
an (2N x M) array having the real part in the first N rows and the imaginary part in the 
last N rows. It returns an (N x N) array 
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Macro DFT (Discrete Fourier Transform) 
 
This macro performs: 

• the DFT of a data set of N samples 
• the DFT-Inverse of a data set of N complex samples  
• the 2D-DFT of a matrix of N x M samples  
• the 2D-DFT-Inverse of a two matrices of N x M samples  

 
DFT   
It works for any number N.  
If N is a powers of 2 (8, 16, 32, 64, etc.) the macro uses the faster FFT algorithm and 
the elaboration is more efficient.  
The use is quite simple. Select the vector of samples f(k) and then start this macro 
 

 
 
The column “t” is not strictly necessary. If present, the macros use it to calculate the 
sampling parameters (see the top-right box). 
Note that if you have a large input vector, you can select only the first cell f(1) and the 
macro automatically select the entire column. 
The macro writes the result in the following way 
 

 

f          =  frequency sample 
Hre     =  Real part of DFT transform 
Him    =  Imaginary part of DFT transform 
Amp   =  Amplitude  (if “polar” is hecked) 
Phase =  Phase    (if “polar” is checked) 
The amplituted can be converted in dB  
 Amp dB = 20⋅Log(Amp)) 
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Operation DFT-inverse 
 
In this case you have to select two columns: the real and imaginary part of the DFT 
(Hre, Him). Then start the macro as usually.  
If the DFT is in polar form (Amplitude, Phase), you have to checked the “polar” option 
and choose consequently the appropriate units: dB and angle 
 
Operation 2D-DFT 
It works only for N and M integer power of 2 
In this case you have to select a matrix of N x M values (do not select the axes-scales) 
Then start the macro as usually.  
If you want the DFT in polar form (Amplitude, Phase), you have to checked the “polar” 
option and choose consequently the appropriate units: dB and angle 
 

 
 
The macro generates two matrices 
containing the real and imaginary parts of 
the 2D-DFT 
 

 
 
 
Operation 2D-DFT inverse 
In this case you have to select a matrix of 2N x M values (do not select the axes 
values) containing both real and imaginary part. 
Then start the macro as usually. 
If the DFT is in polar form (Amplitude, Phase), you have to checked the “polar” option 
and choose consequently the appropriate units: dB and angle 
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Macro Sampler 
 
This is a simple but very useful macro for function sampling 
It can generate samples of functions such as: 

  f (x) ,   f (x1, x2)  or even more variables  f (x1, ... xm) 

The samples can be arranged in a list and, for two variables only, also in a table 
Examples of lists and tables generated by this macro are shown in the following sheet 
 

 
 
The tables at the top are the skeletons to generate the samples-list or the samples-
table just below. The skeleton contains the parameter for the sampler 
 
  Start starting point of the variable X0 
  Samples  number of samples to generate: N 
  Period  length of the sampling: P 
  Step length between two consecutive point    H = X1 – X0   
  Cyclic True or False (default), specifies if the function is periodic with period P.   

 
The difference between a cyclic or no-cyclic function is in the formula for the step 
calculation 

S = P / N         for cyclic function 
S = P / (N-1)   for no-cyclic function 

 
For example, the sampling of N = 5, from X0 = 0  and P = 2, needs a step H = 0.5 

 
The first and the points, in this case, are always taken 
But, for a periodic function, the same sampling needs a step of H = 0.4 

 
Practically, the last point X = 2, in this case, is discharged, because of being periodic, 
is f (0) = f (2).  Usually periodic functions require to set Cyclic = “True” for the FT 
analysis 
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The skeleton can be drawn 
by hand or automatically. In 
this case you have only to 
give the number of variables 
that you need. 
 
The check-box “Function 
seed” tells the macro to 
created also the cell in which 
you can insert the function to 
sample 
 
A simple skeleton for one variable is: 
 

In the cell C2 you must insert the function 
f(x) to sample. The reference for the 
independent variable x is the cell B2. For 
example, if the function is y = x +2x2 
You have to insert the formula 

= B2+2*B2^2  in the cell C2 
 
Parameters N (Samples), P (Period), H (Step) are not all independent. Only two 
parameters can be freely chosen. 
The macro chooses the first two parameters found from top to bottom 
The remain parameter is obtained by the step-formula 
Synthetically you can have one of the following three cases  
 

Given parameters Obtained parameter 
Samples, Period    (N, P)   Step        (H) 
Samples, Step       (N, H) Period     (P) 
Period, Step           (P, H) Samples  (N) 

 
Look at the following three examples below for better explanation. The given 
parameters are in blue while the obtained parameter is in red. 
 

 
 
After you have set and filled the skeleton, select it and start the sampler macro again 
(remember that range must always have 6 rows, including the header) 
The macro show the following window 
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The check-box “Add formula” tells to the macro to leave the formula in the sample set. 
Otherwise the sample set will contain only the values. Formulas can be add only for a 
monovariable list or for a table 
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Data Integration (Romberg method) 
 
=IntegrDataR(x,y)  
 
=IntRombergMat(x,y)  
 
The first function computes the integral of a discrete set of equidistant points (xi, yi) 
using the Romberg method 
The set of point may be obtained by sampling with step h. 

      xi = x0 + i⋅h  , yi = f(xi)  ,   for   i = 0, 1, 2,.... (2p+1),   where     p = 0,1,2, 3... 

Usually p is called the rank of Romberg integration 
 
The second function returns the (p+1) x (p+1) Romberg integration matrix R.  
 

R(0,0)     
R(1,0) R(1,1)    
R(2,0) R(2,1) R(2,2)   
R(3,0) R(3,1) R(3,2) R(3,3)  
R(4,0) R(4,1) R(4,2) R(4,3) R(4,4) 
........ ........ ........ ........ ........ 

 
The first column R(p,0) of the above table contains the first integral approximation 
obtained by the trapezoidal rule with 2p+1 points. The other columns are generated 
using the Richardson's extrapolation formula:  

14j
jp,j1,p

j1,p1j1,p −
−

+= +
+++

RR
RR

 
The right-bottom R(p, p) element converges to the integral. 
Relation between  N (points) , p (rank), and dim(R) 
 

p (rank)=> 0 1 2 3 4 5 6 7 8 
N (points)=> 2 3 5 9 17 33 65 129 257 
Dim(R) => 1 2 3 4 5 6 7 8 9 

 
In the following example we performs the numerical integration of the given data set  
(xi, fi). We have also computed the Romberg matrix. From the last row it is evident the 
fast convergence of this method. 
 

 
 
By the way, the given data set was obtained by sampling of the function sin(x)/x 
So we have computed an approximation of the Sine-Integral for x = 1.6 
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dt
t

txSi
x

∫=
0

)sin( )(
 

 
Si(1.6) ≅ 1.38918048587044... 
 

 
Note that with only 9 points we have approximated the Sine-Integral with a precision 
better of 1e-9. 
 

Function Integration (Romberg method) 
 
=Integr_ro(Funct, a, b, [Parm], [rank], [ErrMax])  
 
This function computes the numeric integral of a function f(x) by the Romberg method. 

∫=
b

a
xfI )(

 
The parameter Funct is a math expression string in the variable x, such as: 

 "x*cos(x)", "1+x+x^2", "exp(-x^2)", ecc.. .  

Remember the quote " " for passing a string to an Excel function. 
Funct may be also a cell containing a string formula 
Param contains values for parameters substitution (if there are) 
Rank, from 1 to 16 (default), sets the maximum integration rank.  
ErrMax (default 1E-15) , sets the maximum relative error. 

For further details about writing a math string see  Math formula string 

 
The algorithm starts with rank =1 and continues incrementing the rank until it detects a 
stop condition. 
 

         |R(p, p) - R(p, p-1)| < 10^-15          absolute error detect 
or  
        (|R(p, p) - R(p, p-1)|) / |R(p, p)|  < 10^-15     if |R(p, p)| >> 1    relative error detect 
or 
        rank = 16 

 
Example 

Compute the integral of  x*cos(x)  for  0 <= x <= 0.4 
Integr_ro("x*cos(x)";0;0.4) = 0.0768283309263453 

This result is reached with rank =4 , s =16 sub-intervals, and an estimate error of 
about  E= 3.75E-16 
 
This function can also displays the number of sub-intervals and the estimate error, To 
see these values simply select three adjacent cells and give the 
CTRL+SHIFT+ENTER key sequence. 
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Function Integration (Double Exponential method) 
 
= Integr_de(funct, a, b, [Param])  
 
This function11 computes the numeric integral of a function f(x) by the Double 
Exponential method. This is particularly adapted for improper integrals and infinite, not 
oscillating integrals. 
 

∫=
b

a

dxxfI )(
 

∫
+∞

=
a

dxxfI )(
 

∫
+∞

∞−

= dxxfI )(
 

 
The parameter funct is a math expression string in the variable x, such as: 

 "x*cos(x)", "1+x+x^2", "exp(-x^2)", ecc.. .  

Remember the quote " " for passing a string to an Excel function. 
Funct may be also a cell containing a string formula 
The limits "a" and "b" can also be infinite. In this case insert the string "inf" 
Param contains labels and values for parameters substitution (if there are) 

For further details about writing a math string see  Math formula string 

 
The Double Exponential method is a fairly good numerical integration technique of 
high efficiency adapt for integrating improper integrals, infinite integrals and "stiff" 
integrals having discontinue derivative functions. 
This ingenious scheme, was introduced first by Takahasi and Mori [1974] 
 
For finite integral, the formula, also called "tanh-sinh transformation" is the following 
 

∫∫
+∞

∞−

⋅= dtthtxfdxxf
b

a

)())(()(
 

where: 

( ))sinh(tanh
22

)( tababtx −
+

+
=

 ( ))sinh(cosh
)cosh(

2
)( 2 t

tabth −
=

 
 
 
Example 
 

4996...0.47442115)1(
1  

0

3.05.0 =−∫ dxxx
 

The above integral is very difficult to compute because the derivative is discontinue at 
0 and 1 
The Romberg method would require more than 32.000 points to reach an accuracy of 
1E-7. On the contrary, this function requires less then 100 points reaching the high 
accuracy of 1E-14 
 

                                                 
11 This function uses the double exponential quadrature derived from the original FORTRAN subroutine 
INTDE of the DE-Quadrature (Numerical Automatic Integrator) Package , by Takuya OOURA, 
Copyright(C) 1996 
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This function can also evaluate infinite and/or semi-infinite integral 
Example 

∫
∞

−
  

0

dxx n

 
 
As known, the integral exist if n > 1 and its value is I = 1/(n-1). The parameter "n" is 
called "order of convergence". 
 
For n = 1.1 we get   I = 10 
 

 
 
Note that we need to pass the parameter with its label "n". (Param = D1:D2) 
 
This function cannot give reliable results if n is too close to 1. The minimum value is 
about n = 1.03 
For lower values the function returns  "?". 
 
The DE integration works very well for finite improper integral 
Example 
 

( ) ( ) 2lnlimln
1  

2

0

1  

0

2 −== ∫∫ +→
a

a
dxxdxx

 
 

 
 
Note that the function f(x) is not defined for x = 0 
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Function Integration (mixed method) 
 
= Integr(Funct, a, b, [Param])  
 
This function computes the numeric integral of a function f(x) over a finite or infinite 
interval 
 

∫
b

a

dxxf
  

)(
 

∫
∞+  

)(
a

dxxf
 

∫
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b

dxxf
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∫
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∞−

  

)( dxxf
 

 
This function can also works with improper integrals and piece-wise functions 
The parameter funct is a math expression string in the variable x, such as: 

 "x*cos(x)", "1+x+x^2", "exp(-x^2)", ecc.. .  

Remember the quote " " for passing a string to an Excel function. 
Funct may be also a cell containing a string formula 
The limits "a" and "b" can also be infinite. In this case, insert the string "inf" 
Param contains labels and values for parameters substitution (if there are) 
 
This function uses two quadrature algorithms 
 1) The double exponential method12  (see function integr_de ) 
 2) The adaptive Newton-Cotes schema (Bode's formula)   (see macro Integral_Inf  ) 
 
If the first method fails, the function switches on the second method 
 
Oscillating functions, need specific algorithms.  See Integration of oscillating functions 
(Filon formulas)  and Fourier's sine-cosine transform  
 
 
Example. Compute the integral of  x⋅cos(x)   for  0 ≤ x ≤ 0.4 
 

 
 
In the given interval the function is continuous, so its definite integral exists. This result 
is reached with rank = 4, s = 16 sub-intervals, and an estimate error of about  3.7E-16. 
This function returns the integral and can also displays the number of sub-intervals 
and the estimate error. To see these values simply select three adjacent cells and give 
the CTRL+SHIFT+ENTER keys sequence. 
Note that the function Integr is surrounded by { } . This means that it returns an array 
 
The function Integr can accept also parameters in the math expression string. 
See the example below.  
 

                                                 
12 This function uses the double exponential quadrature derived from the original FORTRAN subroutines 
INTDE and INTDEI of the DE-Quadrature (Numerical Automatic Integrator) Package , by Takuya OOURA, 
Copyright(C) 1996 
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Note that we must include the parameter labels in order to distinguish the parameters 
"k", "w", and "q". The integration variable is always "x" 
 
Beware of the poles 
Before attempting to evaluate a definite integral, we must always check if the integral 
exists. The function integr does not perform this check and the result may be wrong. In 
other words, we have to make a short investigation about the function that we want to 
integrate. Let's see the following example 
Assume to have to compute the following integrals 
 

dx
x

 dx
x
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2      ,    
12

2
2

1

0
2

2/1

0 −− ∫∫
 

 
We show that the first integral exists while, on the contrary, the second does not exist 
For ...707.02/2 ≅=px  the function has a pole; that is: 

+∞=







−
−∞=








− +− →→ 12
2  lim      ,     

12
2  lim 22 xx pp xxxx  

 
The first integral exists because its interval [0, 0.5] does not contain the pole and the 
function is continuous in this interval. We can compute its exact value: 
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In this situation the function Integr 
returns the correct numeric result 
with an excellent accuracy, better 
than 1E-14. 
 
For this result the integration 
algorithm needs 128 sub-intervals 
 

 
The interval of the second integral contains the pole, so we have to perform some 
more investigation. Let's begin to examine how the integral function approaches the 
pole xp  taking separately the limit from the right and from the left  
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As we can see the both limits are infinite, so the second integral does not exists 
Note that if we apply directly the fundamental integral theorem we would a wrong 
result: 

( )12ln2
|12|
|12|log

2
2

12
2

1

0

!1

0
2 −=





















+
−

=
−∫ x

xdx
x

wrong

 
 
Let's see how the function integr works in this case. 
 

 

The numeric result is, of course, 
completely wrong because the 
given integral goes to the infinity. 
But, even in this situation, this 
function gives us an alert: the sub-
intervals have reached the 
maximum limit of 65536 (216) 
So the result accuracy must be 
regarded with a reasonable doubt. 
 

 
 

Complex Function Integration (Romberg method) 
 
=cplxintegr(Funct, a, b)  
 
This function returns the numeric integral of a complex function f(z) by the Romberg 
method. 

dzzf aFbF
b

a

)()()( ∫=−
 

 
The integration function Funct must be a string in the variable z and can be defined 
mixing all arithmetic operators, common elementary functions and complex numbers 
like: 

"z*cos(z)", "1+(1+i)*z+z^2", "exp(-z^2)", ecc.. . 

Remember the quote " " for passing a string to an Excel function. 
Parameters "a" and b”  can be real or complex. Complex values are inserted as arrays 
of two cells.  
 
Example: Evaluate the following integral 
 

dz
z

ii

i

 1 
1

1
2∫

+

−

+

 
 
Because the integration function is analytic, then the given integral is independent 
form the integration path. Therefore it can be calculated by the function cplxintegr   
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The exact result is the complex 
number (−1+i) 
 
Note that, thanks to the excellent 
accuracy, the result is shown exactly 
even if it is intrinsically approximated 
 
 

 



Xnumbers Tutorial 

154 

 

Data Integration (Newton-Cotes) 
 
=IntegrDataC(x,y, [Degree])  
 
This function returns the integral of a discrete set of points (xi, yi) using the Newton-
Cotes formulas. The points may be equidistance or random. The parameter degree, 
from 1(default) to 10, set the order of the Newton-Cotes formula written as: 

∑∫
=

+

⋅⋅=
n

j
jj

hnx

x
bf

k
hdxxf

0

 0

0

  )(
 

where  fi = yi ,  h is the integration step,  n is the degree; the coefficients (bj , K)   can 
be extracted from the following table: 
 

Degree 1 2 3 4 5 6 7 8 9 10 
K 2 3 8 45 288 140 17280 14175 89600 299376 
b0 1 1 3 14 95 41 5257 3956 25713 80335 
b1 1 4 9 64 375 216 25039 23552 141669 531500 
b2  1 9 24 250 27 9261 -3712 9720 -242625 
b3   3 64 250 272 20923 41984 174096 1362000 
b4    14 375 27 20923 -18160 52002 -1302750 
b5     95 216 9261 41984 52002 2136840 
b6      41 25039 -3712 174096 -1302750 
b7       5257 23552 9720 1362000 
b8        3956 141669 -242625 
b9         25713 531500 
b10          80335 

 
As we can see, for degree=1, the Newton-Cotes formula coincides with the trapezoidal 
rule and, for degree = 2, with the popular Cavalieri-Simpson formula. 
 

Trapezoid rule Cavalieri-Simpson rule 
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For degree = 4, the table gives the Bode's rule 
 

4
04 xxh −
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Using the IntegrDataC is very easy. 
Example. Given the data table (x y) of pag 142 , calculate the integral with the Newton-
Cotes formulas of degree = 1, 2, 4, 6 
We already know that the table is the sampling of the function sin(x)/x with step 0.2 
and that the result approximates the function Si(1.6) ≅ 1.38918048587044. Using the 
Romberg's method we have computed the integral with an accuracy better than 1E-9 
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Let's see now how the Newton-Cotes formulas work. 
 

 
 
As we can see, the convergence to the exact result is evident. The most accurate 
result is reached with the 6th degree Newton-Cotes formula. We observe that the 
accuracy is comparable with those of the Romberg method. From experience we 
observe that often the Romberg method gives a global accuracy comparable with the 
Newton-Cotes formulas between 4th and 6th order. 
 
Differently from IntegrDataR (Romberg method), the IntegrDataC is suitable to work 
with random samples 
 
Example. Given the data table (x y) , approximate the integral with the Cavalieri-
Simpson formula 
 
 

x y 
1 0 

1.1 0.09531018 
1.2 0.182321557 
1.4 0.336472237 
1.8 0.587786665 
2.4 0.875468737 
3.2 1.16315081 

4 1.386294361 
5 1.609437912  0

0.4

0.8

1.2

1.6

2

0 1 2 3 4 5 6

 
Note that the data points are not equidistant 
 

 

The points have been 
extracted from the function 

 y = ln(x) .  

Thus the exact integral is 

   5*ln(5)-4 ≅ 4.0471896 
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Data integration for random point. 
For a distribution of set of points (xi, yi) not equidistant, we cannot use directly the 
Newton-Cotes formulas for fixed step. 
In that case, IntegrDataC reorganizes the random data samples in equidistant data 
samples and after that, computes the integral using the standard formulas for fixed 
step 
 

Random Samples Converted to Equispaced Samples 

{ (xi , yi) ; i = 0, 1, ... n } ⇒ { (xi = x0+i h , yi  (xi ) ; i = 0, 1, ... m } 
 
For the computation of the function f(x0+i h ) at the equispaced fixed points, 
IntegrDataC uses the Aitken's Interpolation algorithm.  
 
Aitken's interpolation algorithm.  
Given a set of points: 

f(x)   ≡  { (xi , yi)    i = 0, 1, ... n } 

This method is used to find the interpolation  yp = f(xp)  at the wanted value xp  . 
It is efficient as the Newton formula, and it is also easy to code. 
 
For j = 1 To n - 1 
    For i = j + 1 To n 
        y(i) = y(j) * (x(i) - xp) - y(i) * (x(j) - xp)/ (x(i) - x(j)) 
    Next i 
Next j 
 
yp = yi(n) 
 
 

Function Integration (Newton-Cotes formulas) 
 
=Integr_nc(funct, a, b, Intervals, [Degree])  
 
This function returns the numeric integral of a function f(x) using the Newton-Cotes 
formulas. 

dxxf aFbF
b

a

)()()( ∫=−
 

 
The parameter Funct is a math expression string in the variable x, such as: 

"x*cos(x)",  "1+x+x^2",  "exp(-x^2)", ecc.. . 

Remember the quote " " for passing a string to an Excel function. 
Funct may be also a cell containing a string formula 
The parameters "a" and "b" are the limits of integration interval 
The parameter "Intervals" sets the number of sub-intervals dividing the integration 
interval. 
The parameter degree, from 1(default) to 10, set the order of the Newton-Cotes 
formula. The degree = 1 coincides with the Trapezoidal rule 
The degree = 2 coincides with the Cavalieri-Simpson formula; the degree = 4 with the 
Bode's rule 
 
Remember that the total knots of the function computation is:  

knots = Intervals × Degree + 1 
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Example: Approximate the following integral using 10 sub-intervals and three different 
methods: trapezoidal, Cavalieri-Simpson, and the Bode's rule.  

∫ −⋅
1

0

dxex x

 
 
The indefinite integral is known in a closed form: 

( ) xx exdxex −− +−=⋅∫ 1
 

 
So we can compare the exact result, that is 121 −− e  ≅ 0.264241117657115356 
 
Integr_nc("x*exp(-x)",0,1,10,1) = 0.263408098685072  (8.3E-04) 
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The trapezoidal rule, 
with 10 sub-intervals,  
requires 2 knots for 
each sub-interval for a 
total of 11 function 
evaluations (11 knots) 
 
The accuracy is better 
then 1E-3 
 

 
 
Integr_nc("x*exp(-x)",0,1,10,2) = 0.264241039074082  (7.8E-08) 
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The Cavalieri-Simpson 
rule, with 10 sub-
intervals, requires 3 
knots for each sub-
interval for a total 21 
function evaluation (21 
knots) 
 
The accuracy is better 
then 1E-7 
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Integr_nc("x*exp(-x)",0,1,10,4) = 0.264241117655293  (1.8E-12) 
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The Bode's rule, with 10 
sub-intervals,  requires 
5 knots for each sub-
interval for a total of 41 
function evaluation (41 
knots). 
 
The accuracy is better 
then 2E-12 
 
 

 
 

Integration: symbolic and numeric approaches  
The usual approach to the calculation of the definite integral involves two steps: the 
first is the construction of the symbolic anti-derivative F(x) of f(x) 

∫= dxxfxF )()(
 

 
and the second step is the evaluation of the definite integral applying the fundamental 
integration theorem. 

∫ −=
b
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This approach can only be adopt for the set of the functions of which we know the anti-
derivative in a closed form. For the most f(x), the integral must be approximated either 
by numerical quadrature or by same kind of series expansion. 
 
It is usually accepted that symbolic approaches, when possible, gives more accurate 
result then the numeric one. This is not always true. Even if the symbolic anti-
derivative is know in a closed form, it may often be unsuitable for further numerical 
evaluation. In particular, we have cases in which such "exact" answers when 
numerically evaluated give less accurate results than numerical quadrature methods13 
Let's see. Assume to have the following integral functions 

( ) cxdx
x

xxF +=
+

= ∫ 3
6

2

arctan
1

3 )(
 

 
We want to calculated the definite integral between a = 2000 and b = 2004 
The analytic approach gives 

( ) ( )33 arctanarctan)()( abaFbF −=−  
 
In the following worksheet we have compared the evaluations with the exact anti-
derivative and the numerical quadrature with the Bode's rule 
                                                 
13 "Improving Exact Integral from Symbolic Algebra System", R.J. Fateman and W. Kaham, University of 
California, Berkeley, July 18,2000 
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In the cell C2 we have inserted the anti-derivative function  
=ARCTAN(B2^3)-ARCTAN(A2^3) 
 
In the cell C2 we have inserted the Bode formula with 20 intervals  
=Integr_nc(D1;A2;B2;20;4) 
 

 
 
In the cell C5 we have also inserted the reference integral value 
 
As we can see, the more accurate result is those obtained with the numerical 
quadrature; surprisingly, it is more than 200 millions times more accurate than the one 
of the exact method!  
It is evident from this example that only the symbolic integration could not resolve 
efficiently the problem. For numerical integration the quadrature methods are often 
more efficient and accurate. 
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Integration of oscillating functions (Filon formulas) 
 
=Integr_fsin(Funct, a, b, k, Intervals)  
 
=Integr_fcos(Funct, a, b, k, Intervals)  
 
Oscillating functions can reserve several problems for the common polynomial 
integration formulas. The Filon's formulas is adapt to compute efficiently the following 
integrals. 

 ) (sin)(     ,      ) cos()( ∫∫ ⋅⋅
b

a

b

a
dttktfdttktf

 
for  k = 1, 2, 3...N 
The parameter Funct is a math expression string in the variable x, such as: 

"x*cos(x)",  "1+x+x^2",  "exp(-x^2)", ecc.. . 

Remember the quote " " for passing a string to an Excel function. 
Funct may be also a cell containing a string formula 
The parameters "a" and "b" are the limits of integration interval 
The parameter "k" is a positive integer 
The parameter "Intervals" sets the number of sub-intervals dividing the integration 
interval. 
 
Remember that the total nodes of function computation is:  

Nodes = Intervals × 2 + 1 
 
To understand the effort in this kind of numerical integration let's see this simple test. 
Assume we have to numerically evaluate the following integral for several integer 
values of k, with   0 < k < 25 

  ) cos(
0

4∫ ⋅
π

dttkx
 

If we perform the computation with the Cavalieri-Simpson formula (80 nodes) and with 
the Filon formula (80 nodes), we get the following result  
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Relative error versus k 
 
As we can see, the relative error 
increase with the number k much 
more for the Cavalieri-Simpson rule 
than the Filon formula.  
For k = 24 the first formula should 
have at least 400 nodes to reach 
the same accuracy of the Filon 
formula. 

 
 
Example: evaluate the integral of the following oscillating function 
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that can be rearranged as 
 

∫ ⋅
π2

0

)8sin()( xxg
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The plot of the integration function and the envelope function g(x) are shown in the 
following graph 
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Below, a simple arrangement to compute the given integral 
 

 
 
The approximate error is less then 1E-8, with 300 intervals (default) 
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Integration of oscillating functions (Fourier transform) 
 
= Fourier_sin(funct, k, [a], [param])  
 
= Fourier_cos(funct, k, [a], [param])  
 
These functions14 perform the numerical integration of oscillating functions over infinite 
intervals 

∫
+∞

⋅⋅
a

dxxkxf  )sin()(
 

∫
+∞

⋅⋅
a

dxxkxf  )cos()(
 

 
If a = 0 (default) , these integrals are called "Fourier's sine-cosine transforms" 
 
The parameter funct is a math expression defining the function f(x), not oscillating and 
converging to 0 for x approaching to infinity: 

 "1/x", " 1/(8*x^2)", " exp(-b*x)", ecc.. .  

Remember the quote " " for passing a string to an Excel function. Funct may be also a 
cell containing a string formula 
The parameter  "k" is a positive number 
The "Param" contains labels and values for parameters substitution (if there are) 
 
These functions return "?" if the integral is not converging or if they cannot compute 
the integral with sufficient accuracy 
 
For finite integration see also Integration of oscillating functions (Filon formulas) 
 
 
Example. Prove that is 
 

2
 sin

0

π
=∫

∞+

dx
x

x

 
 
The graph of the integration 
functions is at the right. 
 
Numerically specking, this 
integral is very difficult to 
calculate for many algorithms.  
 
For example, the Bode adaptive quadrature needs more than 10.000 points for getting 
accuracy of about 1E-4. The Fourier_sin function on the contrary is very efficient for 
this kind of integral 

The integral can be arranged in the following form 

                                                 
14 These functions use the double exponential quadrature derived from the original FORTRAN subroutine 
INTDEO of the DE-Quadrature (Numerical Automatic Integrator) Package , by Takuya OOURA, 
Copyright(C) 1996 
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∫∫
∞+∞+

=
00

 sin 1  sin dxx
x

dx
x

x

 
 
That is the Fourier's sine transform of  1/x 
 

 
 
We see that the accuracy is better than 1E-15. Note that the function automatically 
multiply the integration function f(x) for the factor sin(k*x). So we have only to write the 
f(x) 
 
Example. Verify that is 
 

8
 4cos

0

π
=∫

∞+

dx
x

x

 
 
The graph of the integration functions is 
Observe that the integration function 
goes to infinity for x approaching to 0. 
 
 
Numerically specking this function is "terrible". 
The integral can be arranged in the following form 
 

∫∫
∞+∞+

=
00

 4cos 1  4cos dxx
x

dx
x

x

 
 
That is the Fourier's cosine transform of  1/x^0.5 
 

 
 
The accuracy is better than 1E-15 
 
 

Infinite Integration of oscillating functions 
 
Generally, the infinite integration of real functions having a certain type of infinite 
oscillating tails may give some problem even to the most efficient quadrature 
algorithms. These problems can be avoided adopting specific integration tricks 
Let's see some of them. 
Example. Assume to calculate the following integral 
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( ) ( ) dx
x

xx  2coscos 
0
∫

+∞ −

 
 
 
The integration function coverges to zero but it contains two oscillating terms. So we 
cannot use directly the integr or integr_de function because they returns "?" 
For solving we can use the Fourier's cosine trasform, separating each oscillating term. 
 
The given integral can be re-arranged in the following way 
 

( ) ( ) ( ) ( ) ( ) ( ) dx
x

xdx
x

xdx
x

xxdx
x

xx  2cos  cos  2coscos  2coscos 
11

1

00
∫∫∫∫
∞+∞+∞+

−++
−

=
−

 
 
Note that the last two integrals cannot have the lower limit 0 because they do not 
converge for x approaching to 0. 
 
The first integral can be evaluted with the integr function and the two last integrals are 
evaluated with the Fourier_cos function with a = 1. Let's see the following 
spreadsheet arrangement 
 

 
 
Compare the accuracy with the exact result I = Ln(2) 
 
 
Example. Calculate the following integral 
 

dx
x

x  )(sin 
0

2

4

∫
∞+

 
 
Remembering that is 

8
)4cos(

2
)2cos(

8
3)(sin4 xxx +−=

 
 
The given integral can be arranged as 
 

( ) ( )dx
x

xdx
x

xdx
x

dx
x

xdx
x

x
∫∫∫∫∫

+∞+∞+∞∞+

+−++=
1

2
1

2
1

2

1   

0
2

4   

0
2

4

8
4cos

2
2cos

8
3sin sin
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The first and second integral can be evaluted with the integr function and the two last 
integrals are evaluated with the Fourier_cos function with a = 1. Let's see the 
following spreadsheet arrangement 
 
 

 
 
Compare the accuracy with the exact result I = π /2 
 
Example. Calculate the following integral 
 

( )dxx  sin 
0

2∫
∞+

 
 
This function oscillates very badly. Note that the function does not converge to zero, 
oscillating continuously from 1 and −1, but we can show that its integral is finite. 
 

 
 
Let's perform the substitution   

dt
t

dxtxtx
2

1            2 =⇒=⇒=
 

So, the given integral becomes 

( ) ( ) dt
t
tdxx  

2
sin  sin 

00

2 ∫∫
∞+∞+

=
 

 
That can be easily computed by the Fourier's cosine transform 
 

 
 
Compare the accuracy with the exact result I = (π /8)1/2     
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Double Integral 
 
2D Integration for Normal Domains 
Xnumbers contains routines for integrating bivariate functions f (x, y) over a normal 
domain (normal to the x-axis and/or to the y-axis) or a circular domain.  
 

c

d
h 2(y) h 1(y) 

x 

y

Domain normal to y-axis 
a b

g 1(x) 

g 2(x) 

x 

y 

Domain normal to x-axis  

x2+y2 ≤ R2 

x

y 

Circular Domain 
 

 
For those kinds of 2D-domains the integration formulas can be re-written as the 
following 

∫ ∫∫∫ =
b

a

xg

xgD

dydxyxfdsyxf
X

)(

)(

2

1

),( ),(
 

 

∫ ∫∫∫ =
d

c

yh

yhD

dxdyyxfdsyxf
Y

)(

)(

2

1

),( ),(
 

 

∫ ∫∫∫ =
π

θρρθρθρ
2

0 0

  ))sin(),cos(( ),(
R

C

ddfdsyxf
 

 
Note that a normal domain implies that - at least - one axis must have constant limits. 
Rectangular domains are a sub-case of normal domains in which both axes have 
constant limits. 
 
The routines are the macro Integr2D - adapted for integrating smooth functions f(x, y)  
– and its function version Integr_2D that uses the same bidimensional Romberg 
algorithm, but limited to about 65.000 points. 
 
 

Double Integration macro 
 
Integr2D()  
 
This macro performs the numerical integration of a smooth, regular function f(x, y) over 
a plane normal domain D(x, y) .  

∫ ∫
b

a

d

c

dydxyxf   ),(
 

 
The integration functions f(x, y) and – eventually – also the bounding limits – a, b, c, d 
-can be written in symbolic expression 
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The integration function can be:  

• bi-variate functions like  x^2+y^2-x*y,  log(1+x+y), 1/(1+x^2+2*y^2), etc. 
• constant numbers like  0 , 2, 1.5, 1E-6 , etc. 
• constant expressions like  1/2, √2+1, sin(0.1), etc. 

 
Boundary limits can be:  

• constant numbers like  0 , 2 , 10 , 3.141 , etc. 
• constant expressions like   1/2 , √2+1, pi, sin(1/2*pi) , exp(1) , etc. 
• mono-variable functions like  x/2 , 3y-10 , x^2+x-1 , etc. 

 
A normal domain has, at least, two constant boundary limits. 
Function and limits can be passed to the macro directly or by reference. That is: you 
can write directly the symbolic expressions or constants into the input-fields or you can 
pass the cells containing the expressions. This second mode is more easy and straight  
There is also a function version of this routine. 
 
Let’ see how it works  
Approximate the following double integral of the function ln(1+x+y) in the closed region 
delimited by the given constrains 
 

0
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1
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Integration function 

)1ln( yx ++  
 
Integration domain D 

1
10

2 +≤≤

≤≤

xyx
x

 
 
The domain D is show in the above 
plot. As we can see, it is a domain 
normal to the x-axis 

 
Verify that the given integral approximates the symbolic expression at the right 
 

∫ ∫∫∫
+

++=
1

0

1

),( 2

)1ln(   ),(
x

xyxD

dydxyxdsyxf
 

8
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3)2ln(7

4
)3ln(9

−−+
− π

 

 
The macro assume as default the following simple arrangement (but, of course, it is 
not obligatory at all) 
 

 

Select the A2 cell and start 
the Integr2D macro. 
 

 



Xnumbers Tutorial 

168 

As we can see, the entire input 
fields are filled with the right cell 
references. 
 
The output result will start from the 
A4 cell 
The macro outputs 5 results: 
 
1) Integral 
2) Relative error estimation 
3) Total points evaluated 
4) Elaboration time 
5) Error message 
 
Optional we can adjust the Error 
limit or the Rank. But usually the 
only thing to do is clicking on the 
“run” button 
 

 
Note: the computation effort 
increases exponentially with the 
rank, because is:  

Total points = 4K. 

The results will appear as the 
following 
  
 
 

Double integration function 
 
=Integr_2D (Fxy, a, b, c, d, [Polar],[ErrMax])  
 
This function returns the numeric integral of a smooth regular function f(x, y) over a 
plane normal domain D(x, y) . 

∫ ∫
b

a

d

c

dydxyxf   ),(
 

 
The integration functions f(x, y) and – eventually – also the bounding limits – a, b, c, d 
-can be written in symbolic expression 
 
The integration function can be:  

• bivariate functions like  x^2+y^2-x*y, log(1+x+y), 1/(1+x^2+2*y^2), etc. 
• constant numbers like  0 , 2, 1.5, 1E-6 , etc. 
• constant expressions like  1/2, √2+1, sin(0.1), etc. 

 
The boundary limits can be:  

• constant numbers like  0 , 2 , 10 , 3.141 , etc. 
• constant expressions like   1/2 , √2+1, pi, sin(1/2*pi) , exp(1) , etc. 
• monovariable functions like  x/2 , 3y-10 , x^2+x-1 , etc. 

 
A normal domain has, at least, two constant boundary limits. 
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Example. Approximate the following double integral 
 

∫ ∫
+

++
1

0

1

2

  1)yln(x
x

x

dxdy
 

8
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12
3)2ln(7

4
)3ln(9

−−+
− π

 
 
The integration domain is shown in the previous example. 
The computing can be arranged as the following 
 

 
 
In order to avoid long elaboration time, the function limits the total evaluation points to 
about 65.000 (rank = 8). For heavy computations use the macro Integr2D 
Tip: this function can also return the relative error, the total of evaluation points and the 
error message (if any). To see these values simply select a range of two, three or four, 
adjacent cells (vertical or horizontal) and give the CTRL+SHIFT+ENTER key 
sequence. 
 
Example: Approximate the following integral 

dxdy
yx∫ ∫ ++

1   

0

    

y/2
22

xe

1
1  

 
 
The integration domain is represented in the following plot 
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Integration domain D 
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As we can see the domain is 
normal to the y-axes 
 

 
The computation of this double integral can be arranged as the following 
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Infinite integral 
 
Integral_Inf()  
 
This macro performs the numeric integration of a smooth, regular, not oscillating 
function f(x) over an unlimited (or very long) interval 
 

∫∫∫
+∞

∞−∞−

+∞
dxxfdxxfdxxf

a

a
)(     ,    )(      ,    )(  

 
 
 
This macro can use two different methods:  
 

• The Bode formula with adaptive step  
• The double exponential algorithm 

 
The Bode formula with 8 steps to calculate the integral and the truncation error. 
 

( )432101 73212327
45
2 fffffhIh ++++=

 
 

( )876542 73212327
45
2 fffffhIh ++++=

 
 

21 hhh III +=  
 

63
2hh

T
IIE −

≈
 

 
After each step the routine detects the truncation error and recalculates the step in 
order to keep a constant error (variable step integration method). 
 
The double exponential algorithm, also called "tanh-sinh quadrature". first introduced 
by Takahasi and Mori, is based on the hyperbolic variable transformations.  
 

))tanh(sinh(tx =  ( ) dt
t

tdx  
)sinh(cosh2

)cosh(
2=

 
 
It is more complicated then the polynomial Newton-Cotes schema but, on the other 
hand, it is much more efficient. 
 
 
Using this macro is very easy.  
Example: Approximate the given integral 
 

∫
∞+ −⋅⋅

0

2100  dxex x

 
 
The integration function is regular over the entire x-axes; the exponential assures the 
convergence. Thus the infinite integral exists. 
Put the symbolic expression “100*x^2*exp(-x)” in any cell that you like (A3 for 
example), and arrange the worksheet in the following way (but it is not obligatory at all) 
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The word “inf” means – of course –
infinity. 
It is not necessary to specify the 
sign, because the macro always 
assumes 
“b”  as   +inf  
“a”  as   -inf 
 

 
Now select the cell A3 and run the macro Integral_Inf  . The input fields will be 
automatically filled 
 

 
 
Choose “run” to start the integration routine. The result will be similar to the worksheet 
below (without formatting) where we have compare the result of both methods 
 

 
 
As we can see the integral is 200 with excellent approximation for both methods but 
the double exponential is more efficient. It required only 199 function evaluations. 
 
 
Sometime we have to calculate the integral over the entire x- axes. Let’ see 
 

∫
∞+

∞− ++
++ dx

xx
xx

1
32  4

2
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Note that in this case we have needed more than 10.000 evaluation point for the 
variable step method but only 344 for the DE method. The superiority is ever so 
evident? Not ever. There are cases in which the adaptive quadrature schema works 
better. For example when the integration function has a finite discontinuity (jump) 
inside the integration interval; this usually happens for the piecewise functions.  
 
Example, Assume to have to compute the following didactical integral  
 

( )∫
∞+

−
1

2

15.1sgn dx
x

x
 

 
The integration function is sketched 
in the following graph 
 
In this case is easy to calculate the 
integral simply separating the given 
interval [1, +∞] in two sub-intervals:  
[1, 1.5]∪ [1.5, +∞]. 
Calculating each integral and 
summing we get the exact result  
I = −1/3.  
 
 
But we want here to investigate how the two methods works in this situation 
 

 
 
As we can see the variable step method has find the result with high precision using 
about 7200 steps. The double exponential algorithm even fails the convergence 
 
We have to put in evidence that using this macro in a “blind” way, can lead to wrong 
result. We should always study the integration function to discover singularities, 
discontinuities, convergence rate, etc. If the integration function is “sufficiently” 
smooth, then the numeric integration can give good approximate results.  
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This routine can also be used over a closed long interval, when other algorithms would 
take too long computational time. 
 
 

Series Evaluation 
 
=xSerie(Funct, Id, Id_min, Id_max, [Param], [DgtMax]) 
 
Returns the numeric series of a function f(n) . 

∑
=

=
max

min n 
)( nfs
 

 
The parameter Funct is a math expression string such as: 
 "2^n/n*(-1)^(n+1)", "x^n/n!", "(-1)^(n)*(3+a)*x/(n-1)", ...  

Remember the quote " " for passing a string to an Excel function. 
For further details about the math string see  Math formula string  
 
Id  indicates the integer index of the sum (usually "n", "k" , "i", etc.) 
Id_min and Id_max indicate the range of the index. 
The function may have also other parameters ("x", "y", "a", etc.) that can assume real 
values.  
Param contains labels and values for parameters substitution (if there are). If we pass 
the variable range without “labels”, the function will assign the values to the variables 
in the same order that they appear in the formula string, from left to right. 
The parameter DgtMax sets the multiprecision arithmetic. if omitted or zero the 
function uses the fastest standard arithmetic 
 
Example 1. 

xSerie("x^n/n*(-1)^(n+1)", "n", 1, 10, 2) 

The function substitutes  x = 2  and then, computes the series f(n)  for n =1, 2, 3,...10 

10
2...

5
2

4
2

3
2

2
22

)1(
2 

105432
1

10

1
1 −+−+−=

−⋅
∑

=
+

n
n

n

n  
 
Example 2. Compute  

∑
=

=
10

0 n 

n

n!
 xs

 
 
for  x = −1.5, with standard precision (15 digits) and with 25 digits. As known, this 
series approximates the exponential  e^(-1.5) 
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The function xSerie accepts one or more parameters. 
Example 3. Compute the following series 

 
∑

=

+⋅
=

10

1 n n
n abs

 
 
for a = 0.7  and b = 1.5, in standard precision 
 

 
 
Note that we have enclosed the labels "a" and "b" in the range B4:C5 passed to the 
function as the argument "Param". The labels indicate to the function the correct 
assignment between the variables and their values 
Labels are optional. If we pass only the range B5:C5, without labels, the function 
assign the values to the variables in the order from left to right. 
Note how compact and straight is the calculation using the xSerie function. 
 

Series acceleration with ∆^2 
 
Many series are very slow to converge requiring therefore methods to accelerate their 
convergence. The Aitken's extrapolation formula ( ∆2 extrapolation) can be used for 
this scope. Practically we build a new series S(1), whose partial sums Sn

(1) are given by 
the Aitken's formula. It is possible to repeat the process starting from the series S(1) to 
obtain S(2)., and so on. 
 
Example. We want to approximate the following series: 

 
∑

∞

= +
−

=
0k

k

k1
)1( S

 
 

 

We know the exact result that is 

 Σ = Log(2) = 0.693147180559945... 

In the cell B4 we have insert the formula 

=Series($B$1;"k";0;A4) 

In the cell C4 we have inserted  

=(B4-LN(2)) 

we fill the rows from 5 to 16 simply selecting the range 
B4:C4 and dragging it down.  
In the last cell B17 we have inserted the function 

=ExtDelta2(B10:B16) 

performing the ∆2 extrapolation using the last 7 values 
of the sum 
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As we can see, the cell B16 shows the sum with 12 terms; its approximation is very 
poor having an error of more than 0.01. But if we apply the ∆2 extrapolation at the last 
seven partial sums   S(12),  S(11),  S(10)  ....  S(6)    we have a good approximation with an 
error less then 1E-8 
Note that for reaching this accuracy the given series would need more than 100 million 
terms! 
 
 

Complex Series Evaluation 
 
=cplxserie(Formula, min, max, [z0])  
 
This function returns the numeric series of a complex function f(z, n) . 

∑
=

=
1

0

),(
n

nn
nzfS

 
Formula is a math expression string defined by arithmetic operators and common 
elementary functions such as: 
 "2^n/n*(-1)^(n+1)", "x^n/n!", "(-1)^(n)*(3+j)*x/(n-1)", ...  

Remember the quote """ to pass a string to an Excel function. 
The integer variable must be “n”.  
The parameters "min" and "max" set the minimum and the maximum limits of the 
integer variable "n". 
The function may have also a complex variable "z". In that case specify its value in the 
parameter z0. 
 
Example: evaluate the given series for z = z0 = 2-i 
 

 20
...

32
 

20

1  

zzzz
n
zS

n

+++== ∑
=  
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Double Series  
 
= xSerie2D(Funct, Id1, Id1_min, Id1_max, Id2, Id2_min, Id2_max, [Param], 
[DgtMax])  
 
Returns the numeric double series of a function f(n, m). 

∑∑=
n m

)m,n(fs
 

 
The parameter Funct is a math expression string such as: 
 " x^(n+2*m)/(n!*m!)", "(n+1)/(m+1)!", "comb(n,k)*a^k*b^(n-k)" ...  

Remember the quote " " for passing a string to an Excel function. 
For further details about the math string see the par. Math formula string 
 
Id1 , Id2 indicate the integer indexes of the sum (usually "n", "m", "k" , "i", etc.) 
Id1_min and Id1_max , Id2_min and Id2_max indicate the range of the 
correspondent index. 
The function may have also other parameters ("x", "y", "a", etc.) that can assume real 
values.  
Param contains labels and values for parameters substitution (if there are). If we pass 
the variable range without “labels”, the function will assign the values to the variables 
in the same order that they appear in the formula string, from left to right. 
The parameter DgtMax sets the multiprecision arithmetic. if omitted or zero the 
function uses the fastest standard arithmetic 
 
Example. Compute the following double series, in standard (15 digits) and 
multiprecision (25 digits) 

( )

∑ ∑
= =

+

=
4

0 m

10

1n 

2mn

m!n!
  xs

 
for x = 0.8 
 

 
 
 
Take care to the index limits because, for large interval, this function can slow down 
your Excel application 
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Trigonometric series 
 
= Serie_trig(t, period, spectrum, [offset], [Angle])  
 
It returns the trigonometric series defined by 
 

( )∑
=

++=
N

1n
 sin)0()( nn tnaftf θω

 

 T
πω 2

=
 

 

The set 

( ) Nna nn ...1 ,      , =θ  
is called “spectrum” of the function f(t) 
Each couple is called harmonic. 

 
The parameter “t” can be a single value or a vector values 
The parameter “period” is the period T.  
The parameter "spectrum" is an array of (n x 2) elements: the first column contains the 
amplitude, the second column the phase (in “rad”, “deg”, or “grad” degree).  
The optional parameter "offset" adds the average level (default 0) 
The optional parameter "Angle" sets the angle unit: (RAD (default), DEG, GRAD) 
 
Example: 
 

 

Here is a worksheet 
arrangement to tabulate a 
trigonometric serie having 
a spectrum of max 8 
harmonics (the formulas 
inserted are in blue) 
 
The independent 
parameters are N 
(samples) and T (periodo) 
 
From those, we get the 
sampling interval 
 
∆T = T/(N-1) 
 
The table at the left 
contains the parameters 
for each harmonic: the 
integer multiple of the 
harmonic, its amplitude 
and its phase 
 

 
The following plot is obtained for  

 )4/ 3sin(4.0)4/ sin(2)( πωπω −+++= tttf  
where: 

 T
πω 2

=
 

and T = 1 
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T = 1 
 

 
 
 

n° Arm. Amp Phase 
1 1 45 
2 0 0 
3 0.4 -45 

 
Note that you can always transform cosine terms into sine terms with the following 
formula 

)2/sin()cos( παα +=  
 
 

Trigonometric double serie 
 
= Serie2D_trig(x, y, Lx, Ly, Spectrum, [offset], [Angle])  
 
It returns the trigonometric double serie f(x,y) defined by: 

 
∑∑

= =

+++=
N

n

M

m
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where  

 y
y

x
x LL

πωπω 2    ,      2
==

 
The set  

 
[ ] MmNna mnmn ...0  ,  ...0     , ,, ==θ

 
is called “spectrum” of the function f(t). Each couple is called "harmonic". 
The parameters “x” and “y” are vectors 
The parameters “Lx”  and “Ly” are the base lengths of the x-axis and y-axis. 
The parameter "Spectrum" is an array of (n x 4) elements: containing the following 
information: index n, index m, amplitude and phase.  
That is, for example: 
 

n m Amplitude Phase 
0 1 1 45 
2 1 0.5 -45 
3 1 0.25 15.5 
1 4 0.125 30 

 
The optional parameter "offset" adds the average level (default 0) 
The optional parameter "Angle" sets the angle unit (RAD (default), DEG, GRAD) 
 
The function f(x, y) is returned as an (N x M) array.  
Use the CTRL+SHIFT+ENTER key to insert this function. 
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Example: Here it is a worksheet arrangement to tabulate a trigonometric serie f(x, y) 
having a spectrum of max 4 harmonics  
 

 
 
 
Here is the contour plot and the 3D plot of the function f(x, y) 
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Discrete Convolution  
 
Convol(f, g, h)  
 
This function approximates the convolution of two sampled functions f(t), g(t)  

∫
∞+

∞−

−=
   

)()(* dvvtgvfgf
 

 
The parameters "f" and "g" are column-vectors 
The parameter "h" is the sampling step (also called ∆t) 
Returns a vector with the same dimension of the two vectors f and g.  
The convolutions is also called "Faltung" 
Example 
 

 
 
Here are other examples of convolution plots 

  
 
In the signals analysis the function f is called "input signal" x(t) and g is called "system 
impulse response" h(t). The convolution f∗g  is called "system responce" y(t) 
The system behavior is reassumed in the following schema 
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If the system is described by the following differential equation 

)()()(' txtykty =⋅+  
 
which has an impulse response given by 

k t)( −= eth  
 
We will use convolution to find the zero input response of this system to the square 
signal of period T = 1 and amplitude xmax = 1.5  
 

 
 
For obtaining this gaph we have used a sampling step of ∆t = 0.02, but this value is not 
critical at all. You can choose the size that you like in order to obtain the needed 
accuracy. 
 
 
 
 

 h(t)  x(t)  y(t) 

In a linear system, the outputs signal y(t) depends by the input signal x(t) 
and by the inpulse responce of the system h(t). That is: 

y(t) = ∫ x(v) h(t-v) dv 
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Interpolation 
 
 

Interpolation with continue fraction  
 
Fract_Interp_Coef(xi, yi)  
Fract_Interp(x, xi, coeff)  
xFract_Interp_Coef(xi, yi, [Digit_Max])  
xFract_Interp(x, xi, coeff, [Digit_Max])  
 
These functions perform the interpolation with the continue fraction method.  
Given, for example, a set of 5 points   

xi = [ x0, x1, x2, x3, x4] , yi  = [ y0, y1, y2, y3, y4 ] 

the function Fract_Interp_Coef returns the coefficients vector [ a0, a1, a2, a3, a4 ] of the 
continue fraction expansion given by the following formula: 
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The function Fract_Interp returns the interpolate value y at the point x 
For multiprecision computing use the function xFract_Interp and xFract_Interp_Coef  
 

Example: find the continue fraction interpolation coefficients for the following 10 
samples 
 
 

n x y samples 
0 0.5 -3.461538462 
1 0.6 -4.37037037 
2 0.7 -6.073170732 
3 0.8 -10.15384615 
4 0.9 -31.22222222 
5 1 30 
6 1.1 10.35483871 
7 1.2 6.37037037 
8 1.3 4.670886076 
9 1.4 3.735849057 

 
 

 
These points are extracted from the following function 

9.0
2

2

2

−
+

=
x
xy
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You can verify that the interpolation with these coefficients are better than 1E-14 for all 
x-values in the range [0.4 − 1.6] 
Note also that this great precision is reached in spite of the pole at x ≅ 0.95 
The continue fraction interpolation is adapt just to interpolate rational functions 
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-20

0

20

40

60

0.4 0.6 0.8 1 1.2 1.4
 

 
 
Example:  Find an interpolation formula for the function tan(x) in the range 0 ≤ x ≤ 1.5 
with no more than 7 points.  
The function tan(x) has a pole at x = 1.57..., closed to the upper bound 1.5; so its 
presence suggest to adopt a fraction interpolation. Assume to take samples of the 
function tan(x) at the values (0, 0.2, 0.6, 1, 1.25, 1.45, 1.5). 
 

 

The column A contains the knots of the 
interpolations 
In colum B we have inserted the 
correspondent values of tan(x)  
And in column C we have computed the 
coefficients of the fraction interpolation. 
 
 

 
Now using the function Fract_Interp we can interpolate any value between 0 and 1.5 
obtaining the graph to the left. The second graph shows the absolute error in the given 
range. You can verify that the interpolation is better than 1E-5 for any value x. 

 
 
 

Interpolation with continued 
fraction 
 
The blue dot are the given 
knots. 
The light black line is the 
interpolation obtained 
 
There is a pole at x ≅ 0.95 
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Interpolation with Cubic Spline  
 
cspline_interp(Xin , Yin , Xtarget )  
cspline_eval(Xin, Yin, Ypp, Xtarget)  
 
These functions15 perform the natural cubic spline interpolation  
Xin is the vector containing the x-values. 
Yin is the vector containing the y-values.. 
Xtarget  is the x value which we want to compute the interpolation 
Xpp  is the vector containing the 2nd derivative 
 
The cubic spline interpolation is based on fitting cubic polynomial curves through all 
the given set of points, called knots 
The cubic spline follows these rules:  

• the curves pass through all the knots 
• at each knot, the first and second derivatives of the two curves that meet there 

are equal  
• at the first and last knot, the second derivatives of each curve is equal to 0 

(natural cubic spline constrain). 
 
The natural cubic spline has a continuous second derivative (acceleration). This 
characteristic is very important in many applied sciences (Numeric Control, 
Automation, etc...) when we need to reduce vibration and noise in electromechanical 
motions, although cubic spline is much slower than other interpolation methods. 
 
The function cspline_eval is faster than cspline_interp, because the first uses the 
information of the 2nd derivatives and does not have to calculate them all over again 
like the cspline_interp does. 
 
The 2nd derivatives can be computed by the function cspline_pre (see next page) 
 
Example: 
 

 
 
 
 

                                                 
15 These functions appear thanks to the courtesy of  Olgierd Zieba 
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Cubic Spline 2nd derivatives 
 
cspline_pre(Xin , Yin)  
 
This function16 Returns the cubic spline 2nd derivatives at a given set of points (knots). 
Xin is the vector containing the x-values. 
Yin is the vector containing the y-values.. 
For n knots, it returns an array of n 2nd derivative values. The first and the last values 
are zero (natural spline constrain). 
 
The 2nd derivatives depend only by the given set of knots. So this function can be 
evaluate only once for the whole range of the interpolation. By cspline_eval function 
we can compute fast interpolation 
 
Example. Perform the sub-tabulation with ∆x = 0.1 of the following table 
 

The given table is in the range A3:B13 
In the adjacent column C we have 
computed the 2nd derivatives by the 
function cspline_pre. 
Note that this function returns a vector of 
11 values. It must be inserted with the 
ctrl+shift+enter keys sequence 
At the right we have set the new table 
with step 0.1; the value of F3 has been 
interpolate by the formula 

= cspline_eval($A$3:$A$13; $B$3:$B$13; 
$C$3:$C$13; E3) 

The other values are computed simply by 
dragging down the cell F3. 

 
The following figure shows the knots and the cubic spline fit 
 

 
 
The points of the original table was extracted from the function y = [cos(x)]4 .  
You can verify that the interpolation accuracy is better than 1% over the entire range. 
 

                                                 
16 These functions appear thanks to the courtesy of  Olgierd Zieba 
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Cubic Spline Coefficients 
 
cspline_coeff(Xin , Yin)  
 
This function17 returns the coefficients of the cubic spline polynomials 
Xin is the vector containing the x-values. 
Yin is the vector containing the y-values.. 
It returns an (n-1 x 4 )  array where n is the number of knots. Each row contains the 
coefficients of the cubic polynomial of each segment s [as,3  as,2  as,1 as,0] 

0,1,
2

2,
3

3, )()()( ssssssss axxaxxaxxay +−+−+−=
 

where s = 1, 2, (n-1) 
 
Example. Find the cubic spline polynomials that fit the given knots 
 

 
 

                                                 
17 These functions appear thanks to the courtesy of  Olgierd Zieba 
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Multi-variables Interpolation 
 
=InterpL(Point, Knots, Funct)  
=InterpL_Coef(Point, Knots, Funct)  
 
These functions perform the linear multivariate interpolation of a function 

 ) ...,( n21 xxxfy =  
Point = an (n) vector containing the point that you want to interpolate  
Knots = an (m x n) array containing m knots of the interpolation 
Funct = a (m) vector containing the m function values at the given knots  
 
Given a vector  (x1, x2, ...xn) the linear interpolation formula is 

nn22110 ...ˆ xaxaxaay ++++=  
The first function returns the ŷ  value while the second returns the coefficients vector  
 
Example.  
Interpolate the function f(x,y) at the point (6.5 , 3.2). Note that the knots in the given 
table are neither equidistant, nor sorted (random sampling)  
 

 
 
The interpolate value is f(6.5 , 3.3) = 76.3, given by the linear formula 

f(x, y) =  15*x + 34*y -130 

 
Both InterpL and InterpL_Coef can also work in 3D and more dimensions. 
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2D Interpolation 
 
=Interp_Mesh(TableXY)  
 
This function performs the linear interpolation of a bivariate function given in a pivot 
table XY.  
The x-values and y-values of the table must be sorted but not necessarily equidistant. 
This function returns an array. Let's see how it works. 
 

 

Regularization 
 
As we can see, the use of this function 
is straight. Simply select the area you 
want to insert the new table and pass 
the old table as parameter. 
Note that both axes are not regular 
 
The function Interp_mesh returns the 
equidistant-linear-interpolated array. 
Or, in other words, it returns the 
regularized table 
 

 

 

Rescaling 
 
We can obtain a sub-tabulated 
function in an very fast way 
 
Simply select a larger area  
The function Interp_mesh 
counts the cells that you have 
selected and fill all the cells with 
the linear interpolated values 
 
In this case the given table has 
5 x 4 = 20 values. 
The new table has 9 x 7 = 63 
values; therefore, there are 43 
new interpolated values 
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Interpolation of Tabulated data function 
Given a tabulated data (x i , y i), i = 1...N, generally not equidistant, the task is 
estimating y for an arbitrary x value, where   x1 ≤ x ≤ xN  
The points (x i , y i) are called knots of the interpolation 
 

Cubic Spline interpolation 
The goal of cubic spline interpolation is to get a polynomial interpolation formula that is 
smooth in the 1st derivative, and continuous in the 2nd derivative, within the interval and 
at each boundaries. 
This method ensures that the functions y(x), y’(x), and y’’(x) are equal at the interior 
node points for adjacent segments. The cubic polynomials Pi(x) satisfie these 
constrains. 

Pi(xi−1) = yi−1     for i = 2...N 
Pi(xi)   = yi     for i = 2...N 
P'i(xi)  = P'i+1(xi) for i = 2...N−1 
P''i(xi)  = P''i+1(xi) for i = 2...N−1 

 
Formulas 
One form to write the interpolation polynomials is: 

P(x) = A Pi + B Pi+1 + C P’’i + D P’’i+1     ,   for i = 1...(N-1) 

Where: 

A = (xi+1 – x)/ (xi+1 – xi)  
B =  1 – A 
C = 1/6 (A3 – A) (xi+1 – xi)2       
D = 1/6 (B3 – B) (xi+1 – xi)2       

 
The 2nd derivatives can be evaluated by the following linear equations 

(xi – x i-1) P’’i-1  +  2 (xi+1 – xi-1) P’’i + (xi+1 – xi) P’’i+1 = Hi      for i = 2...(N-1)         

where: 
Hi = 6[(Pi+1 – Pi)/(xi+1 – xi) – (Pi – Pi-1)/(xi – xi-1)] 
P’’1 = 0   
P’’N = 0   

 
That gives the following tridiagonal matrix system 
 
2(x3 – x1) (x3 – x2) 0 0 ... 0  P’’2  H2 

(x3 – x2) 2(x4 – x2) (x4 – x3) 0 ... 0  P’’3  H3 

0 (x4 – x3) 2(x5 – x3) (x5 – x4) ... 0  P’’4 = H4 

0 0 (x5 – x4) 2(x6 – x4) ... ...  P’’5  H5 

... ... ... ... ... (xN – xN-1)  ...   

0 0 0 ... (xN – xN-1) 2(xN – xN-2)  P’’N-1  HN-1 

 
 
Another common way to write the interpolation polynomial is: 
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P(x) = a3i (x – xi)3 + a2i (x – xi)2 + a1i (x – xi)  + a0i    ,        xi ≤ x < xi+1   

for  i = 1...(N-1) 

Where the coefficients are: 

a3i = (P’’i+1 – P’’i)/(xi+1 – xi)/6  
a2i =  P’’i / 2 
a1i = (Pi+1 – Pi)/(xi+1 – xi) – (xi+1 – xi) (2 P’’i + P’’i+1)/6 
a0i = Pi 

 
The matrix of the system is tridiagonal, therefore can be solved in O(N) operations  
We note also that its solution (P’’1 , P’’2 , ... P’’N ) depends only by the given knots, 
therefore the 2nd derivatives  can be evaluated only once for any interpolate. 
This example shows very well how the interpolation spline works.  
 

X Y 
0 0 
1 2 

2.5 4 
3 3 
4 4 
5 1 

 
For these 6 knots we obtain 5 cubic polynomials having the following coefficients 
 
Polynomials a3 a2 a1 a0 Range 
1st spline 0.20148927 0 1.79851073 0 0 ≤ x < 1 
2nd spline -0.8783764 0.60446781 2.40297854 2 1 ≤ x < 2.5 

3rd spline 5.54708717 -3.348226 -1.7126588 4 2.5 ≤ x < 3 

4th spline -3.0718353 4.97240473 -0.9005694 3 3 ≤ x < 4 

5th spline 1.41436706 -4.2431012 -0.1712659 4 4 ≤ x < 5 

 
In the graphs below we can see the interpolated points (dotted line) fitting the data 
points and the cubic polynomials (green line) passing through the nodes of each 
segment. Each polynomial interpolates inside the proper segment. That is: the 1st 
spline works for 0 ≤ x < 1, the 2nd spline for 1 ≤ x < 2.5, and so on. 
In the graphs below are shown the entire interpolation line (left) and the 1st spline 
(right). 
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In the graphs below are shown the 2nd spline (left) and the 3rd spline (right) 
 

Assuming to have to sub-tabulate with a step 
 ∆x = 0.1 a given function known only in the 
following 6 points 
Note that these points are unequal spaced 
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In the graphs below are shown the 4th spline (left) and the 5th spline (right) 
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Let’s examine the 1st and 2nd derivatives. We can compute them either analytically or 
numerically using – for example -the following derivative formulas: 

y’(xi) ≅ (yi+1 – yi-1)/2∆x 
y’’(xi) ≅ (yi+1 – 2 yi + yi-1)/ ∆x2      

In both ways, we get the following graphs 
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As we can see the 1st derivatives is smooth and the 2nd is continuous. This last feature 
is particularly appreciated in many fields of engineering. Although this algorithm is 
much slower than other polynomial interpolation methods, it has the advantage of 
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following the interpolated curve without the spurious oscillations that other schemes 
can create 
 

Cubic poly interpolation 
In many documents we found sentences like this: “...a typical curve fit involves forming 
one polynomial equation through all n points of the given interval...” 
We are induced to believe that for 6 knots we should choose a 6th degree polynomial 
and for 100 knots a 100th one! 
This is not all exact. We can apply for this kind of interpolation the same method of the 
spline. That is, we can freely choose the polynomial degree and then calculate it for a 
sub-set of consecutive knots. 
The only difference is that we can use only the knots information and nothing else. 
So, if we choose a 3th  degree polynomial we can fit the first 4 points (y1, y2, y3, y4). 
Of course we can interpolate y(x) in any value between x1 and x4, but we are induced 
to think that central values x2 ≤ x < x3 are better approximated. Moving to the next set 
of 4 nodes  (y2, y3, y4, y5 ) we obtain a new polynomial adapted to interpolate values for 
x3 ≤ x < x4  , and so on.. 
This method can be repeated for any internal segment, except for the first and the last 
one. In these cases we have to interpolate with the first and the last polynomial, 
tolerating a (probable) less accuracy. 
 
 
 
 
 
 
 
 
Formulas 
Many algorithms can be used for computing the interpolation polynomial: formulas of 
Lagrange, Newton, Aitken, Everett, Taylor, Stirling, Bessel, Hermite, etc... 
For simplicity, we choose the Newton cubic formula. 
 
y(x) = y1 + D(x1, x2) (x – x1) + D(x1, x2, x3) (x – x1) (x – x2) +  

+ D(x1, x2, x3, x4) (x – x1) (x – x2) (x – x3) 
 
where D are: 

D(x1, x2) = (y1 – y2)/ (x1 – x2) 
D(x2, x3) = (y2 – y3)/ (x2 – x3) 
D(x3, x4) = (y3 – y4)/ (x3 – x4) 
D(x1, x2, x3) = (D(x1, x2) – D(x2, x3))/ (x1 – x3) 
D(x2, x3, x4) = (D(x2, x3) – D(x3, x4))/ (x2 – x4) 
D(x1, x2, x3, x4) = (D(x1, x2, x3) – D(x2, x3, x4))/ (x1 – x4) 
 
Example. Repeating the interpolation of the above example we get the following 
polynomial  
 

1st polynomial (33x + 41x2 – 14x3)/30 0 ≤ x < 2.5 

2nd polynomial (-228 + 415x – 173x2 + 22x3)/18 2.5 ≤ x < 3 

3rd polynomial (360 – 301x + 86x2 – 8x3)/5 3 ≤ x < 5 

 

  xi   xi+1,  xi+2, xi+3  xN-3,  xN-2,  xN-1, xN   x1,  x2,   x3,  x4   
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In the graphs below we can see the interpolate points (dotted line) fitting to data points 
and the cubic polynomials (yellow) passing through the nodes of each segment. 
Each polynomial interpolates inside the proper segment.  
 

-2

-1

0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6

Y

Knot s

-2

-1

0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6

Y

Knot s

Poly1

 

-2

-1

0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6

Y

Knot s

Poly2

-2

-1

0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6

Y

Knots

Poly3

 
 
Let’s compute numerically the 1st and 2nd derivatives. We obtain the following graphs 
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In the last plot we clearly see the spikes of the 2nd derivative. In engineering 
applications such as mechanical motions, spurious spikes of the 2nd derivative produce 
unwanted vibrations transmitted to the other parts of the system: gears, bearing, etc.. 
This involves higher noise, wear, etc... On the contrary, spline motions can great 
reduce these drawbacks. 
 

Observations 
Both methods can provide an acceptable interpolation in the entire range of x ∈[0, 5]. 
Slight differences among interpolate values exist, but we cannot say that one is better 
than other because the function values between nodes is unknown and both models 
are conceptually equivalent.  
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But there is an aspect that make the difference and it is the 2nd derivative of the spline 
interpolation. Although this algorithm is much slower than other polynomial 
interpolation methods, it has the advantage of giving an exact fit to the curve without 
the spurious oscillations that other schemes can create.  
 

Other test functions 
In our last example we have found that both methods can provide acceptable 
interpolation for all range of x . Thus, there are same case, that the superiority of the 
spline interpolation is more evident. Gerald [2] used the “bump” test case to illustrate 
problems with other interpolation methods. Let’s see. 
 
Interpolate the following knots 
Y = (cos(x))10   , for x= -2 , -1 , -0.5 , 0 , 0.5 , 1 , 2 
 
Plotting the interpolated values with a step of 0.1, we get the following graphs 
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The curves appear acceptable in both graphs. The second shows a closer fit near the 
points x = 1 and x = -1 where are "knees" of the curve. 
 
But matching the error plots, we see clearly the better accuracy of the spline 
interpolation. 
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As we can see, the amplitude 
error of the cubic polynomial is 
much more than the spline. 
 
We can show  that an higher 
order of the interpolation 
polynomial, is even worst  
 
In this case, the cubic spline is 
the better choice 
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High and low interpolation degree 
Surprisingly, an high degree of the interpolation polynomial does not mean high 
accuracy. On the contrary, we often choose a low degree polynomial to get the 
maximum accuracy. Let’s see this example. 
 
Interpolate the following knots 

y(x) = 1+log10(x+0.1)  ,   for x= 0 , 0.15 , 0.5 ,1 , 1.5 , 2  , with step ∆x = 0.1 
 

 
Interpolations near the zero are done with a 5th degree polynomial (the maximum), 
while at the end of the range we use a simpler parabolic interpolation. The graphs 
below show better how it works. 
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Now we compare the absolute errors among this interpolation schema with the spline 
and with the 5th degree polynomial interpolation over the entire range. 
 

For clarity, we have draw the function line and 
the knots. 
The attack strategy can be: 

Interpolation 
range 

Knots used Poly degree 

0 , 0.5 all 5° 

0.5 , 1 0.15 , 0.5 , 1 , 1.5 , 2 4° 

1 , 1.5 0.5 , 1 , 1.5 , 2 3° 
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1.5 , 2 1 , 1.5 , 2 2° 
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As we can see, we have a good generally 
accuracy of about 0.01, but the interpolation with 
the 5th degree polynomial is not the best. 
In fact, the average absolute errors obtained are: 

Method Avg error  

5th degree polynomial   0.016  

cubic spline 0.0072  
variable polynomial 0.0035  

0.0001

0.001

0.01

0.1

1
0 0.5 1 1.5 2

var poly
spline

5° poly

Absolute Error

 

 
Note that, for 1 < x < 2, the simply parabolic 
interpolation is absolutely more accurate than the 
5th degree polynomial, and even more than the 
cubic spline. 

 
What can we get from all that? As rules of thumb we can say that “Respect to the 
values that we want to interpolate is better to use few knots but near than many knots 
but distant”. 
 

Continued fraction interpolation 
Continued fractions are often a powerful ways of interpolation when we work near the 
functions poles.  
 
Formulas 
For N knots, the continued fraction expansion is: 

 

y(x) = a1 + (x-x1)/d1      
d1(x) = a2 + (x-x2)/d2    
d2(x) = a3 + (x-x3)/d3    
d3(x) = a4 + (x-x4)/d4    
................. 
dN-1(x) = aN  

The coefficients ai can be computed by the 
following iterative algorithm 

For i = 1 to N  ,  ai= yi   
For k = 1 to N-1  
For i = k+1 to N 
  If |ai – ai-1| > 10-14 
      ai = (xi – xk)/ (ai – ai-1) 
  else 
     ai=0 

 
 
NOTE. In XNUMBERS the continued fraction coefficients can be obtained by  the 
function Fract_Interp_Coef  and the interpolation value with Fract_Interp 
 
Example. Interpolate the following dataset 

y(x) = 1/(x+0.01)1/2  ,   for x = 0,  0.05,  01,  0.2,  0.5,  1   , with step ∆x = 0.1 

In the graphs below we have plotted the interpolated values obtained with three 
different methods: cubic polynomial, cubic spline  and continue fraction 
Note that y(x) have a poles in x = −0.01 very near to the node x = 0 
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We can see a good general accuracy except for the final part of the polynomial 
interpolation method. In this case, the worst accuracy is concentrated where the 
function is more flat, but, surprisingly, this perturbation is due to the distant  
pole in x = -0.01. 
We note also that both spline and fraction methods keep a good accuracy also for 
point external at the interpolation range ( extrapolation for x >1 ) 
 
Absolute Error Plot 
 

As we can see, the average 
error of the continue fraction 
is much lower than other 
methods 

Method Avg. error 

Cubic spline 0.22

Cubic poly 0.19
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Differential Equations 
 
Xnumbers contains functions for solving the following differential problem of the 1st 
order with initial conditions (Cauchy’s problem): 

00 )(  ,       ),( ytyytfy ==′  
 
and for solving the ordinary differential system written as: 

00 )(  ,       ),( yyyfy ==′ tt  ⇔  
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ODE Runge-Kutta 4  
 
= ODE_RK4(Equations, VarInit, Step, [Par, …])  
 
This function integrates numerically a 1st order ordinary differential equation or a 1st 
order differential system, with the Runge-Kutta formula of 4th order 
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"Equations" is a math expression string containing the equation to solve. For a system 
It is a vector of equations. Examples of correct equation definition are: 
y’ = -2*y*x   ,    v’ = 2*x-v^2+v   ,  y1’ = -3*y1+y2+sin(10*t) 

Each string may contain symbolic functions with variables, operators, parenthesis and 
other basic functions.  
The parameter "VarInit"  is a vector containing the initial values. It has two values for 
two variables [ t0, y0 ].  
For a system with n+1 variables, "Varinit" is an (n+1) vector [ t0, y10 , y20, ….yn0 ]. 
The parameter "Step" is the integration step.  
The optional parameter "Par" contains the values of other extra parameters of the 
equations. 
 
Let’s see how it works with an example 
Solve numerically the following Cauchy’s problem for   0 ≤ x ≤ 3 

1)0(  ,     2 =−=′ yxyy  

We know that the exact solution is  
2xey −=  

For performing the computation we can arrange a sheet like the following 
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As we can see, we have written in cell G5 the differential equation   
y’ = - 2*x*y 

In the range A5:B5 we have inserted the starting values of x and y. Note that we have 
written the labels just above theirs values. Labels are necessary for the correct 
variables assignment 
Finally, in the range A6:B6 - just below the starting values - we have inserted the 
ODE_RK4, that returns the value y(0.2) = 0.9607893… with a good accuracy of about 
1E-7 (compare with the exact solution) 
 

 

Tip: In order to get all other values,  
select the range A6:B6 and simply 
drag it down.  
The cells below will be filled 
automatically 
 
Only remember to fix the constant 
cells in the function with the $ 
symbol 
 
=ODE_RK4($G$5,A5:B5,$F$5) 

 
We have also added the column with the exact values in order to check the 
approximation error. Both exact and approximated solutions are plotted in the following 
graph 
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The fit, in this case, seems excellent. 
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If you need you can include parameters inside the differential equation 
Example. Solve the following differential problem 

1)0(
' n

=

⋅⋅−=

y
yxky

 
where  k = 2 and n = 1 
 

 

Note that we have added the 
labels "k" and "n" above the 
cells D2 and E2. In this way, 
the parser will correctly 
substitute the value 2 for the 
variable "k" and 1 for the 
variable "n". in the differential 
equation 
 
Do not forget the labels "x" 
and "y" in the cells A5 and B5 
 

 
 
Example: Solve the following linear differential equation 

0)1(   ,  1' =⋅=+ yxay
x

y n

 
For n = 3 and a = 1 
Rearranging, we get  

0)1(   ,   ' =−⋅= y
x
yxay n

 
 

 

Note the labels "a" and "n" 
above the cells D2 and E2. In 
this way, the parser will 
substitute the value 1 for the 
variable "a" and 3 for the 
variable "n". in the differential 
equation 
 
Do not forget the labels "x" 
and "y" in the cells A5 and B5 
 

 
With the step h = 0.1, we have a numerical solution with a very good approximation 
comparing with the exact solution xxxy 5/)( 5 −= , (better than 1E-6) 
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This function can be used to solve ordinary differential systems.  
Example: Solve numerically the following differential system, where v(t) and i(t) are the 
voltage and the current of an electric network 
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The computation can be arranged as 
following.  
Write the variables labels in the row 6. The 
labels “v” and “i” must be the same that 
you have written in the equations. Just 
one row below, insert the starting values in 
the same order. 
Select the range A8:C8 and insert the 
function ODE_RK4. The first step will be 
returned.  
Now select this row and drag it down for 
evaluating all the steps that you need 
 

 
The graph below show the transient of v(t) and i(t) with good accuracy 
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Note that you can change 
the step “h” in order to re-
compute the transient in a 
very fast and quick way. 
 

 
 
Optional constant parameters can be arranged. For example if you want to add a 
parameter R, independent from the time “t”, write: 
 

 

Constant parameters can be 
written in any part of the 
worksheet. You need only to add 
the labels with the same symbols 
with they appear in the differential 
equations. In this case, we have 
added the label "R" in the cell C1, 
upon its values. 
You can add as many optional 
parameters that you like 
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ODE Multi-Steps  
 
Another very popular method for integrating ordinary differential equations adopts the 
multi-step Adams’ formulas. Even if a little formally complicated, they are very fast, 
and adapted to build a large family of ODE integration methods  
The multi-step Adams’ formulas can be generally written as: 
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where ),(' iii ytfy =  ihtti ⋅+= 0  
 
The first formula generates the explicit formulas – also called predictor formulas. 
The second formula generates the implicit formulas – also called corrector formulas. 
The number N is the order of the formula. A formula of N order requires N starting 
steps. Of course, formulas with high N are more accurate. 
 
For N = 1 we get the popular Euler integration formulas 

iii yhyy '1 ⋅+=+  Euler’s predictor (1 step) 

( )iiii yyhyy ''
2 11 +⋅+= ++

 
Trapezoid formula corrector (1 step) 

 
Theirs errors are given by 

)2(2

2
1 yhe ≈

 
Error predictor 1st order 

)3(3

12
1 yhe −≈

 
Error corrector 2st order 

 
For N = 4 we get the popular Adams-Bashfort-Moulton predictor-corrector formulas 

( )3211 '9'37'59'55
24 −−−+ −+−⋅+= iiiiii yyyyhyy

 
Predictor (4 step) 

( )2111 ''5'19'9
24 −−++ +−+⋅+= iiiiii yyyyhyy

 
Corrector (4 step) 

 
Theirs errors are given by 

)5(5

720
251 yhe ≈

 
Error predictor 4th order 

)5(5

720
19 yhe −≈

 
Error corrector 4th order 

 
There are a large set of predictor-corrector formulas 
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Multi-step coefficents tables 
The following tables list the coefficents for the Adams’ predictor-corrector formulas up 
to the 9th order and relative errors  
 
Multi-step Predictor coefficients 

N  ⇒ 1 2 3 4 5 6 7 8 9 10 
M 1 2 12 24 720 1440 60480 120960 3628800 7257600 

β 0 1 -1 5 -9 251 -475 19087 -36799 1070017 -2082753 
β 1   3 -16 37 -1274 2877 -134472 295767 -9664106 20884811 
β 2     23 -59 2616 -7298 407139 -1041723 38833486 -94307320 
β 3       55 -2774 9982 -688256 2102243 -91172642 252618224 
β 4         1901 -7923 705549 -2664477 137968480 -444772162 
β 5           4277 -447288 2183877 -139855262 538363838 
β 6             198721 -1152169 95476786 -454661776 
β 7               434241 -43125206 265932680 
β 8                 14097247 -104995189 
β 9                   30277247 

 
Multi-step Corrector coefficients 

N ⇒ 1 2 3 4 5 6 7 8 9 10 

M   2 12 24 720 1440 60480 120960 3628800 7257600 
β 0   1 -1 1 -19 27 -863 1375 -33953 57281 
β 1   1 8 -5 106 -173 6312 -11351 312874 -583435 
β 2     5 19 -264 482 -20211 41499 -1291214 2687864 
β 3       9 646 -798 37504 -88547 3146338 -7394032 
β 4         251 1427 -46461 123133 -5033120 13510082 
β 5           475 65112 -121797 5595358 -17283646 
β 6             19087 139849 -4604594 16002320 
β 7               36799 4467094 -11271304 
β 8                 1070017 9449717 
β 9                   2082753 

 
Error coefficient  
The general error is  e ≈ -k⋅hn-1y(n-1)   where k is given by the following table  

N  ⇒ 1 2 3 4 5 6 7 8 9 10 
predictor 0.5 0.41667 0.375 0.34861 0.32986 0.31559 0.30422 0.29487 0.28698 0.28019
corrector - -0.0833 -0.0417 -0.0264 -0.0188 -0.0143 -0.0114 -0.0094 -0.0079 -0.0068

 
The predictor-corrector algorithm 
Usually the multi-step formulas, implicit and explicit, are used together to build a 
Predictor-Corrector algorithm . Here is how to build the 2nd order PEC algorithm 
(Prediction-Evaluation-Correction).  
It uses the Euler’s formula as predictor and the trapezoidal formula as corrector 
 
Prediction Evaluation Correction 

yp1 = y0 +h f(t0, y0)      ⇒ f(t1, yp1)      ⇒ y1 = y0 +h/2 [f(t0, y0) +f(t1, yp1)]  

yp2 = y1 +h f(t1, yp1)      ⇒ f(t2, yp2)      ⇒ y2 = y1 +h/2 [f(t1, y1) +f(t2, yp2)]   

yp3 =…. …. …. 
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The value y1 can be reused to evaluate again the function f(t1, y1), that can be used in 
the corrector formula to obtain a more accurate value for y1. 
If we indicate the first value obtained by the corrector with  y1

(1)  and the second value 
with y1

(2)   we can arrange a new following schema 
 

Prediction Evaluation Correction Evaluation Correction 

yp1   ⇒ f(t1, yp1)  ⇒ y1
(1)    ⇒ f(t1, y1

(1))  ⇒ y1
(2) 

 
This is the so called PECEC or P(EC)2 schema. 
The group EC can also be repeated m-times or even iterated still the convergence. In 
these cases we have the schemas P(EC)m  and  P(EC)∞  respectively. 
Note that, for m >> 1 the final accuracy depends mainly by the corrector. 
 
Let's come back to the PEC schema. 
We note that, at the step, we use the value f(t1, yp1) to predict the new value yp2  
We could increase the accuracy if we take the better approximation f(t1, y1).  
The new schema becomes: 
 

Prediction Evaluation Correction Evaluation 

yp1   ⇒ f(t1, yp1)  ⇒ y1
    ⇒ f(t1, y1)  ⇒ 

 
This schema is called PECE and it is used very often being a reasonable compromise 
between the accuracy and the computation effort.  
 
Using different schemas with different predictor-corrector formulas we can build a wide 
set of algorithms for the ODE integration. Of course they are not equivalent at all. 
Same of them have a high accuracy, others show a better efficiency and others have a 
better stability. This last characteristic may be very important for long integration 
intervals. In fact, the most algorithms, especially those with higher order, become 
unstable when the integration step grows over a limit. Algorithms that are stable for 
any integration step (so called A-stable algorithms) are much appreciated, but 
unfortunately they have a low general accuracy. 
One A-stable algorithm is the P(EC)∞  with the Euler’s formula as predictor and the 
trapezoid formula as corrector. It is a 2nd order algorithm 
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Predictor- Corrector 
 
= ODE_PRE(yn, f, h)   
 
= ODE_COR(yn, fp, f, h)  
 
These functions perform the integration of the ordinary differential equations with the 
popular multi-step predictor-corrector Adams’ formulas 

00 )(  ,       ),( ytyytfy ==′  
 
The first function returns the predictor value yn+1,p while the second function returns the 
corrector yn+1.  
The parameter “yn” is the last point of the function y(t). 
The parameter “f” is a vector containing the last N values of the derivative of y(t). That 
are the last N-1 values of the corrector.  
The parameter “fp”, only for the corrector, is the best approximation of the derivative of 
y(t) at the step n+1. Usually it is provided by a predictor formula 
The parameter “h” sets the integration step 
 

PECE algorithm of 2nd order 
Now we see how arrange a PECE algorithm of 2nd order to solve a the following 
differential problem. 

2)0(   ,    ' 2 =−= yxyy  
Let's set in a cell that we like the integration step “h” and then the heading of the data 
table. We set separate columns for predictor and corrector values 
 

Build the first row. 
Begin to insert the starting 
values (x0, y0) in the cells A6 
and B6 respectively, and the 
formula evaluations of f(x,y) in 
the cell C6 and E6. The 
corrector value is set equal to 
the starting value B6 

 
The second row is a bit more 
complicated. Let’s see. 
Select the first row A6:E6 and 
drag it down one row. This will 
copy the formula for fp and fc 
Insert in the cell A7 the 
increment formula  
xi+1 = xi+h 
 

 
Now we have to add the predictor and corrector function  
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Insert in the cell B7 

=ODE_PRE(yn, f, h) 

“yn” is the last value of y(x). 
contained in D6. “f” is the last 
value of f(x,y) contained in E6. 
“h” is the step B3. 
 

 
Insert in the cell D7 

=ODE_COR(yn, fp, f, h) 

Where “yn” is the last value of 
y(x). In that case is D6. “f” is 
the last value of f(x,y), E6. 
 “fp” is the predicted. value of 
f(x,y), C7 in this case.  
“h” is the constan step. 
 

 
Now the setting of the 
PECE algorithm of 2nd order 
is completed. Select the 
second row A7:E7 and drag 
it down in order to calculate 
the steps that you want. 

 
 
The yP and yC values can be compared with the ones of the exact solution. 
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are plotted in the graph at the right 
We note clearly the characteristic 
behavior of the predictor-corrector 
algorithm. The second formula refines 
the approximation of the first one. 
The final accuracy of PECE algorithm 
is practically the accuracy of the 
corrector 
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PECE algorithm of 4th order  
Now we solve the above differential equation with a 4th order PECE algorithm using 
the 4 steps Adams-Bashfort-Moulton formulas 

2)0(   ,    ' 2 =−= yxyy  
To start this algorithm needs 4 steps. A good set of starting steps is: 
 

x y(x) 
0 2 

0.2 1.9230769231 
0.4 1.7241379310 
0.6 1.4705882353 

 
 
The first 4 rows of the PECE algorithm are built as shown in the previous example.  
 

The first 4 values of yp and yc are 
the same. 
Now let's insert in the cell B10 

=ODE_PRE(yn, f, h) 

where “yn” is the last value of 
y(x), D9 in that case.  
“f” is a vector of the the last four 
values of f(x,y), E6:E9 in this 
case.  
“h” is the step B3. 
 

 
Insert in the cell D10 

=ODE_COR(yn, fp, f, h) 

where “yn” is the last value of 
y(x). In that case D9.  
“f” is a vector of the last 3 values 
of f(x,y), E7:E9.  
“fp” is the predicted value of 
f(x,y), C10 in this case. 
“h” is the step B3 

 
Now the setting of the PECE algorithm of 4th  order is completed. Select the 5th  row 
and drag it down in order to calculate the steps you want. 
 

We do not investigate here how to get the extra 3 
values (they could comes by Runge-Kutta method or by 
Taylor series approximation). The only thing that we 
have to point out is that these values must be 
sufficiently accurate in order to not degraded the global 
accuracy of the algorithm 
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The predictor-corrector error curves are shown in the following graph 
 

 
 
 
In order to compare the accuracy of the solutions of the this algorithm with the 2nd 
order algorithm of the previous example let's draw both the error curves in a same 
graph 
 

 
 
As we can see, the 4th order algorithm is evidently more accurate then the 2nd order. 
On the other hand, the first one requires an extra work for providing 3 starting points. 
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Nonlinear Equations 
 
 

Bisection 
 
=Zero_bisec(a, b, func, [step])  
 
Approximates the zero of a monovariable function f(x) with the bisection method 

0)( =xf  
This function needs two starting points [a, b] bracketing the zero. 
Parameter "func" is a math expression string containing the symbolic function f(x)  
Examples of correct function definitions are: 
-2*ln(x)   ,    2*cos(x)-x   ,  3*x^2-10*exp(-4*x) , etc. 

The optional parameter "step" sets the maximum number of steps allowed. If omitted 
the function iterates still the convergence. Step = 1 is useful to study the method step-
bay-step 
At the first step, the function returns a new segment  

[ a1, b1]   where   a1 < x0 < b1 

At the second step, the function return a new segment 

[ a2, b2]   where    a1< a2 < x0 < b2 < b1. 

The interval [an , bn ], with n>>1, will be very closed to the value x0  
 
 
Example: Find the approximated zero of the following equation and show the first 
steps of the bisection method. 

05
)(log

2)(log3
10

10 =−+⋅
x

x
 

The plot indicates two zeros: one trivial   
x = 10 and another into the interval  
2 < x < 9 
 
Starting the algorithm with a = 2 and b = 9 
we get  x0 = 4.64158883361278   
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The root approximates the 
exact zero x0 = 1001/3    
with error < 1E-14  
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We can also solve this equation step-by-step in order to investigate how this algorithm 
works 
 

 
 
As we can see, the convergence is quite low but very robust because the zero always 
remains bracketed between the interval limits [a, b]. The error estimation is also very 
quick. Simply take the difference |b-a| 
 
 

Secant 
 
=Zero_sec(a, b, func, [step], [DgtMax])  
 
Approximates the zero of a monovariable function f(x) with the secant method 

0)( =xf  
This function needs two starting points [a, b] bracketing the zero. 
Parameter "func" is a math expression string containing the symbolic function f(x)  
Examples of correct function definitions are: 
-2*ln(x)   ,    2*cos(x)-x   ,  3*x^2-10*exp(-4*x) , etc. 

The optional parameter "step" sets the maximum number of steps allowed. If omitted 
the function iterates still the convergence. Step = 1 is useful to study the method step-
bay-step 
The optional parameter "DgtMax" sets the maximum number of multi-precision digits. If 
omitted the function works in double precision. 
At the first step, the function returns a new segment  

[ a1, b1]   where   a1 < x0 < b1 

At the second step, the function return a new segment 

[ a2, b2]   where    a1< a2 < x0 < b2 < b1. 

The interval [an , bn ], with n>>1, will be very closed to the value x0  
 
Use the CTRL+SHIFT+ENTER sequence to paste this function 
 
Example: Find the approximated zero of the following equation and show the first 
steps of the secant method. 

0)sin())2ln(3exp( =⋅−⋅− xx π  
 
The plot indicates one zeros into the interval  0 < x < 0.5  
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Starting the algorithm with a = 0 and b = 0.5 we get  x0 = 0.166666666666667   
 

 

The root  approximates 
the exact zero  x0 = 1/6  
with error < 1E-15  
 

 
 
Let’ see now the iteration trace setting the parameter step = 1 
 

 
 
As we can see the convergence of this method is much faster than the one of the 
bisection method. On the other hand, it is no guaranteed that the zero remains 
bracketed into the interval. 
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Derivatives 
 
 

First Derivative 
 
=Diff1(x, fx, [lim])  
 
Approximates the first derivative of a mono-variable function f(x) at the given point x 

)()(' xf
dx
dxf =

 
The parameter “Fx”  is a math expression string containing the symbolic function f(x)  
Examples of function definition are: 
-2*Ln(x) ,  2*cos(x) ,  3*x^2-10*exp(-4*x) , x^2+4*x+1 , etc. 

The optional parameter “Lim” (default = 0) sets the way how the limit approach to x. If 
lim = 1, it approaches from the right; if lim = -1, it approaches from the left;  
if lim = 0 , it approaches centrally. That is, it returns the following derivatives 
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This function uses the following formulas to approximate each derivative 
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Example. Evaluate numerically the left, right and central derivatives of the given 
function at the point x = 0, and check if the given function is differentiable in that point 
 

1||
)( 2 ++

=
xx

xxf
 

 
 
 
 
As we can see all derivatives are equal, so the function is differentiable in x = 0 
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Second Derivative 
 
=Diff2(x, fx)  
 
It approximates the second derivative of mono-variable function f(x) at the given point 

)()('' 2

2

xf
dx
dxf =

 
 
The parameter "Fx"  is a math expression string containing the symbolic function f(x)  
Examples of function definition are: 
-2*Ln(x) ,  2*cos(x) ,  3*x^2-10*exp(-4*x) , x^2+4*x+1 , etc. 

 
Example: Evaluate the first and 
second derivatives at the point x = 2 
for the following function 

1
3)( 2 +

+
=

x
xxf

 
  
 
 

Gradient 
 
=Grad(p, func)  
 
Approximates the gradient of a multivariate function f(x, y, z) at the given point  
 









∂
∂

∂
∂

∂
∂

=∇
z
f

y
f

x
fzyxf   ,    ,  ),,(

 
 
The parameter "p"  is the vector of the variables [x, y, z] 
The parameter "Func"  is an expression string containing the function f(x, y, z). 
Examples of function definition are: 
-2*ln(x+3y), 2*exp(-x)*cos(3*t), 3*x^2-y^2+z^2, (x^2+y^2)^(1/3),etc. 

For performance problem, the number of variables is restricted to 4, “x”, “y”, “z”, “t”. 
The variables values must be always passed in this order. 
 
Example. Evaluate the gradient of 
the following function at the point 
P(1, 1)  
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Jacobian matrix 
 
=Jacobian (p, func)  
 
Approximates the Jacobian’s matrix of a multivariate vector-function F(x, y, z) at the 
given point p(x, y, z) 
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The parameter "p"  is the vector of the variables [x, y, z] 
The parameter "Func"  is an expression string containing the function f(x, y, z). 
Examples of function definition are: 
-2*ln(x+3y), 2*exp(-x)*cos(3*t), 3*x^2-y^2+z^2, (x^2+y^2)^(1/3),etc. 

For performance problem, the number of variables is restricted to 4, “x”, “y”, “z”, “t”. 
The variables values must be always passed in this order. 
  
Example. Evaluate the Jacobian’s matrix of the following vector-function at the point  
P(1, 1)  

2221 5
1),,(

zyx
zyxf

++
=

 
)2ln(),,(2 yxzzyxf +⋅=  xyzzyxf 4),,(3 =  

 

 
 
 

Hessian matrix 
 
=Hessian (p, func)  
 
Approximates the Hessian’ matrix of a multivariate function f(x, y) at the given point 
p(x, y) 
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The parameter "p"  is the vector of the variables [x, y] 
The parameter "Func"  is an expression string containing the function f(x, y, z). 
Examples of function definition are: 
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-2*ln(x+3y), 2*exp(-x)*cos(3*t), 3*x^2-y^2+z^2, (x^2+y^2)^(1/3), etc. 

For performance problem, the number of variables is restricted to 4, “x”, “y”, “z”, “t”. 
The variables values must be always passed in this order. 
This function returns a square a matrix (n x n) of the second derivatives  
 
Note: the derivatives approximation is about to 1E-10 
 
Example. Approx. the Hessian’s matrix of the following function at the point (2,1,1) 
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Non-linear equation solving with derivatives 
 
Derivatives play a strategic role in solving non-linear equation and non-linear system  
The most efficient algorithms use the derivatives information in order to speed up the 
convergence or the final accuracy. From the point of view of numeric calculus, 
derivatives are rarely used because they tend to magnify the truncation error. This is in 
true in generally and a naive approach should always avoid the derivatives. In solving 
non-linear problem, however, the derivatives can be very useful because they can 
greatly improve the convergence without influence the final result accuracy, that 
depends only by the evaluation function f(x)  
 
Let's see and example. 
Solve the following equation  xx sin2 =   with an accuracy better then 1e-25. 
 
First of all we build the function  

xxxf sin)( 2 −=  
 
and draw its plot. The point x where 0)( =xf  
is the solution of the given equation We see 
that the zero exists and it is near the point 1. 
We note also that in the interval [0.5 1.5] the 
function is monotonic 
  

In this interval the Newton-Raphson iterative algorithm, starting from x = 1.5, should 
work fine.  

... 2 1, 0,n        
)('
)(

n

n
n1n =−=+ xf

xfxx
 

 
To implement this algorithm we need the evaluation function f(x) with about 30 
significant digits. For that, it comes in handy the multiprecision function xeval. For the 
derivative we have to way: computing the function f'(x) by hand and evaluating it by 
xeval or approximating the derivative by the function diff1 in standard precision. 
Because we are a bit lazy and the derivatives is not so immediate, we chose the 
second way. A simple spreadsheet arrangement may be the following 
 

 
 
As we can see the convergence is superb!. After few iteration the solution is 
 

x ≅ 0.9496166887146629471509830317   with |f(x)| < 1e-28 
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This excellent result has been obtained in spite of the approximated precision (1e-13) 
of the derivative. The reason is simple: the accuracy of the derivative does not 
influence the final accuracy of the root. We note that the derivative, after very few 
iterations, remains constant: we might substitute this value with an even more 
approximated values, i.e. f' = 1.57, for all iterations. The final accuracy will not change. 
We will need only more few steps, at the most. 
 
But this method show its power overall for non-linear systems. For a 2 variables 
problem the Newton-Raphson method becomes 
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The (2 x 2) matrix is the Jacobian calculated at the point (xn, yn). In Xnumbers it can be 
evaluated by the function Jacobian 
 
Example. Solve the following system 
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setting: 

6),( 25 −−+−= xyxyxf  
1),( −++= − yxeyxg yx  

the contour plots of the functions f = 0 and g = 0 show two 
intersection points: one near the point (-1 2) and one near 
(-1, -2)  
 

The function f(x,y) and g(x,y) are 
evaluated and converted in double 
precision by the nested functions 

=xcdbl(xeval(B4,B7:B8)) 

=xcdbl(xeval(B5,B7:B8)) 
 
At the begin insert the starting point  
(-1, 2) in the cells B7, B5. 
The new point is calculated in the 
cells E7:E8. Copy this range and re-
insert in the range B7:B8. At each 
iteration the increments dx,dy of the 
range E10:E11 becomes more and 
more small. 

 
Starting from (-1, 2) and (-1, -2) the iteration algorithm leads to the correct solutions 
 

x y  x y 
-1 2  -1 -2 

-1.0201151219 1.9698273171  -0.7964138633 -2.3053792051 
-1.0196483063 1.9693084022  -0.8079928505 -2.2042117521 
-1.0196480758 1.9693081215  -0.8107932120 -2.1997452584 
-1.0196480758 1.9693081215  -0.8108021826 -2.1997248438 
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Conversions 
 

Decibel 
 
=dBel(A, [MinLevel])  
 
Converts a positive number A into decibel 

( )AA 10dB log20=  
 
If zero, A is substituted with the value contained in the parameter "MinLevel" (default 
1E-15) 
Example 

A A dB 
1 0

0.5 -6.0206
0.1 -20

0.05 -26.021
0.01 -40

0.001 -60
0.0001 -80

0 -300
 
 

Base conversion 
 
cvDecBin(DecNum)  base 10 ⇒ base 2 
cvBinDec(BinNum)  base 2 ⇒  base 10 
cvDecBase(DecNum, Base)  base 10 ⇒ any base (2-16) 
cvBaseDec(BaseNum, Base)  any base (2-16) ⇒ base 10 
baseChange(number, old_base, new_base)  
  

any base (2 - 36) ⇒ any base (2 - 36) 

 
These functions perform the number conversion between different bases. 
Example: Converts the decimal number  n = 902023485 into bases 2 and 3. 
cvDecBin(902023485) = 110101110000111100100100111101  (base 2) 

cvDecBase(902023485, 3 )= 2022212022112121020   (base 3) 

Example: Converts the hexadecimal number  n = 35CFFF3D into decimal 
cvBaseDec(35CFFF3D) = 902823741  (base 10) 

You can also convert directly base-to-base, nesting two functions.  
Example convert n = 35CFFF3D from base 16 into 8 
cvDecBase(cvBaseDec(35CFFF3D,16),8) = 6563777475   (base 8) 

For this scope you can also use the baseChange function18 
In spite of its digits limitation (15), this function has several interesting features 
It converts any number into many different bases (up to 36). The digits greater then 9 
are indicated as A, B, C, D E, F, G, H, etc. It converts also decimal numbers. It formats 
the result consistently with the source cell. Let's see how it works 
                                                 
18 The function baseChange appears thanks to the courtesy of Richard Huxtable 
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The cell C4 is formatted with 7 
digits and also its results have 
the same format; the cell D4 is 
formatted with 2 decimals and 
its result has the same format. 
 

 
 

Log Relative Error 
 
= mjkLRE(q, c, NoSD)  
 
= xLRE(q, c, NoSD, [DgtMax])  
 
This function19 returns the log relative error (LRE) for an estimated value (q) and a 
certified value (c), which has a specified number of significant digits (NoSD). The LRE 
is a measure of the number of correct significant digits only when the estimated value 
is “close” to the exact value. Therefore, each estimated quantity must be compared to 
its certified value to make sure that they differ by a factor of less than two, otherwise 
the LRE for the estimated quantity is zero. 
 
Definition  
The base-10 logarithm of the relative error is defined as: 
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Example: 
 
Assume that you want to compare an approximate value with a 15 digits certified value 
of pi-Greek. LRE metric can show this in a easy way 
 
Certified value C = 3.14159265358979 

Approx.  value Q = 3.14159265300001 

mjkLRE(C, Q, 15) = 9.7 

 

                                                 
19 These functions appear by courtesy of Michael J. Kozluk. This algorithm was first programmed into an 
Excel user function, by Michael, in standard 32 bit precision. As it works fine also for comparing long 
extended numbers (NoSD> 15), we have now developed its multiprecision version xLRE(). 
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This means that two values are close for about 10 significant digits. LRE metric rejects 
non significant digits. Look at this example: 
 
Certified value C = 0.000133333333333333 

Approx.  value Q = 0.000133333333333311 

mjkLRE(C, Q, 15) = 12.8 

 
As we see, the two numbers appear exact up to the 17th digit, but the relative error is 
about 1E-13 
LRE is very useful when you work with long string of extended numbers. For example, 
compare this approximation of "e" (Napier’s number) 
 
Certified value C = 2.71828182845904523536028747111 

Approx.  value Q = 2.71828182845904523536028747135 

xLRE(C, Q, 30) = 28.1 

 
At the first sight it is hard to say, but the LRE function shows immediately a precision 
of about 28 digits 
 
 
 



Xnumbers Tutorial 

221 

 

Special Functions 
 

The computation of special functions is a fundamental aspect of numerical analysis in 
virtually all areas of engineering and the physical sciences. 
All these special functions have a high-fixed-precision. Because most of these special 
functions are in the form of infinite series or infinite integrals, their solutions are quite 
complicated, and we have spent many times for selecting and testing many different 
algorithms in order to achieve the highest possible accuracy in 32 bit arithmetic.  
 

Error Function  Erf(x) 
 
errfun(x)  
 
Returns the error function 

∫ −=
x

t dtexerf
0

22)(
π  

 
Accuracy: about 10^-14 per x>0 
 

Exponential integral Ei(x) 
 
exp_integr(x)  
 
Returns the exponential integral  

∫
∞

−

−

−=
x

t

dt
t

exEi  )(
 

 
Accuracy: about 10^-14 for x> 0 
 

Exponential integral En(x) 
 
exp_integr_n(x, n)  
 
Returns the exponential integral of n-th order 

∫
∞ −

−=
1

 )( dt
t

exEn n

xt

 
 
Accuracy: about 10^-14 for x> 0 and n>0 
 

Euler-Mascheroni Constant  γ 
 
xGm([Digit_Max])  
 
Returns the Euler-Mascheroni gamma constant. 
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The optional parameter Digit_Max sets the maximum digits (default 30, max 415)  
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Example: compute the gamma constant with 40 significant digits 
 
xGm(40) = 0.5772156649015328606084804798767149086546 
 

Gamma function Γ(x) 
 
xGamma(x)  
 
Returns the gamma function.  

∫
∞

−−=Γ
0

1 )( dtetx tx

 
 
This routine uses an excellent Lanczos series approximation20  
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where: g = 607/128  and ci are the Lanczos' coefficients. 
Relative accuracy is better than 10^-14, except very near to the poles x=0, -1. -2, -3... 
This function works also with large argument because it uses the multiprecision format 
to avoid the overflow for arguments greater than 170.  
Example,  
 

x xgamma(x) Rel. Error 
0.001 9.99423772484596E+2 1.02E-15 
0.01 9.94325851191507E+1 1.00E-15 
0.1 9.51350769866874 9.33E-16 
1 1 0 
10 3.6288E+5 0 

100 9.33262154439441E+155 5.64E-16 
1,000 4.02387260077093E+2564 1.92E-15 

10,000 2.84625968091705E+35655 1.58E-15 
100,000 2.82422940796034E+456568 2.75E-15 

1,000,000 8.26393168833122E+5565702 2.54E-15 
 
Note that relative accuracy is better than 5*10^-15 in any case 
 
You can convert in double only the values with x ≤170, otherwise you will get  
#VALUE! (error). You can manipulate these large values only by the "x-functions", or, 
separating mantissa and exponent (see xsplit()) 
 
FACTORIAL: Thanks to its efficence and accuracy, this function can also be used to 
calculate the factorial of a big integer number, using the relation 

n! = Γ(n+1) 

                                                 
20 This accurate algorithm has been extracted from a very good note by Paul Godfrey, Intersil , C.2001 
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Example: 
 
xfact(10002) = 2.84711361574652325360317551421E+35667 30 digits, slower 

xgamma(10003) = 2.84711361574651E+35667 15 digits, faster 
 

Log Gamma function 
 
xGammaln(x)  
xGammalog(x)  
 
These function return the natural and decimal logarithm of the gamma function. 
 
xgammaln(100000)  = 1051287.7089736568948 

xgammalog(100000) = 456568.45089997090835 
 
Relative accuracy is better than 10^-(14+|log(x)|)      for x>0 
 
These functions are added only for compatibility with Excel and other math packages. 
In fact they are useful to avoid overflow in standard precision arithmetic for large 
arguments of gamma function. However if you use directly the xgamma() and 
multiprecision arithmetic, you need no more to use these functions. 
 

Gamma quotient 
 
xGammaQ(x1, x2)  
 
Performs the division of two gamma functions. 

q = Γ(x1) / Γ(x2) 

 
Relative accuracy is better than 10^-14, for x1>0 and x2>0 
 
Example: suppose you have to calculate for v =1,000,000 the following quotient 

)(
)(

2

2
1

v

v

q
Γ

Γ
=

+

 
 
Taking    x1 = 500,000.5   and   x2 = 500,000  , we have easily 
xgammaq(500000.5 , 500000) = 707.106604409874    (rel error = 5.96E-16 ) 

 
Note that if you have used the standard GAMMALN() function, you should have: 
 
EXP(GAMMALEN(500000.5) - GAMMALEN(500000)) = 707.106604681849 

(rel error = 3.846E-10) 
 
As we can see, In this case, the error is more than 500,000 times bigger that the 
previous one!  
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Gamma F-factor 
 
xGammaF(x1, x2)  
 
Returns the gamma factor of the Fischer distribution. 







Γ⋅






Γ







 +

Γ
=

22

2
21

21

xx

xx

k

 
 
Relative accuracy is better than 10^-14, for x1>0 and x2>0 
 

Digamma function 
 
digamma(x)  
 
Returns the logarithmic derivative of the gamma function 
 

( )
)(
)(' )(ln)(

x
xx

dx
dx

Γ
Γ

=Γ=Ψ
 

 
Relative accuracy is better than 10^-14, for x1>0  
 
Example 
 

digamma(x) value rel. error 
0.01 -100.560885457869 3.24E-15 
0.1 -10.4237549404111 2.23E-15 
1 -0.577215664901532 1.49E-15 
10 2.25175258906672 4.92E-16 

100 4.60016185273809 5.65E-16 
1000 6.90725519564881 2.97E-16 

 
Note that  Ψ(1) = − γ   (Eulero- constant) 
 
 

Beta function 
 
xbeta(x, y)  
 
Returns the beta function 

∫ −− −=
1

0

11 )1(),( dtttyxB yx

 
 
Relative accuracy is better than 10^-14, for x>0  and y >0 
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Combinations function 
 
xcomb_big(n, k)  
 
Returns the combination, or binomial coefficients, for large integer numbers 
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=

 
 
Relative accuracy is better than 10^-14, for n>>0  and k >>0 
This function uses the gamma function to calculate the factorials. It is much faster than 
xcomb function. For this reason is adapted for large integer values (10,000 - 
1,000,000) 
 
xcomb(5000,2493) = 1.5627920156854189438574778889E+1503  (30 digits, slow)

xcomb_big(5000,2493) = 1.56279201568542E+1503 (15 digits , fast)
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Bessel  functions 
 

BesselJ (x, [n]) Bessel function of 1° kind, order n: Jn(x) 

BesselY (x, [n]) Bessel function of 2°kind, order n: Yn(x) 

BesseldJ (x, [n]) First derivative of Bessel functions of 1° kind, order n: J'n(x) 

BesseldY (x, [n]) First derivative of Bessel functions of 2° kind, order n: Y'n(x) 

BesselI (x, [n]) Modified Bessel function of 1° kind, order n: In(x) 

BesselK (x, [n]) Modified Bessel function of 2°kind, order n: Kn(x) 

BesseldI (x, [n]) First derivative of mod. Bessel functions of 1° kind, order n: I'n(x) 

BesseldK (x, [n]) First derivative of mod. Bessel functions of 2° kind, order n: K'n(x) 

 
  
 
Relative accuracy is better than 10^-13, for x>0  and n any integer 
 
These routines21 have a high general accuracy. Look at the following example. We 
have compared results obtained from our BesselJ with the standard Excel similar 
function 
 

x J0(x) (BesselJ) Rel. Error J0(x) (Excel standard) Rel. Error 
0.1 0.997501562066040 1.11E-16 0.997501564770017 2.71E-09 
0.5 0.938469807240813 1.06E-15 0.938469807423541 1.95E-10 
1 0.765197686557967 7.25E-16 0.765197683754859 3.66E-09 
5 -0.177596771314338 2.66E-15 -0.177596774112343 1.58E-08 
10 -0.245935764451374 1.06E-13 -0.245935764384446 2.72E-10 
50 0.055812327669252 3.98E-15 0.055812327598901 1.26E-09 

 
As we can se, the general accuracy improving is more than 200,000 times! 
 
 

Cosine Integral Ci(x) 
 
CosIntegral(x)  
 
Returns the Cosine integral defined as: 

dt
t

tx
x

 )cos( )(ci ∫
∞

−=
 

 
Relative accuracy is better than 10^-13, for x>0   
 
 

                                                 
21 All these special functions are provided thanks to the FORTRAN 77 Routines Library for Computation 
of Special Functions developed by Shanjie Zhang and Jianming Jin . The programs and subroutines 
contained in this library are copyrighted. However, authors kindly gave permission to the user to 
incorporate any of these routines into his programs. 
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Sine Integral Si(x) 
 
SinIntegral(x)  
 
Returns the sine integral defined as: 

dt
t

tsinx
x

 )( )(si
0
∫=

 
 
Relative accuracy is better than 10^-13, for x>0   
 

Fresnel sine Integral  
 
Fresnel_sin(x)  
 
Returns the Fresnel's sine integral defined as: 

dttsinxS
x

 )  ()( 2

0
2
1 π∫=

 
 
Relative accuracy is better than 10^-13, for x>0   
Remember also the following relation 
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where: 
π
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Fresnel cosine Integral  
 
Fresnel_cos(x)  
 
Returns the Fresnel's cosine integral defined as: 

dttxC
x

 )  cos()( 2

0
2
1 π∫=

 
 
Relative accuracy is better than 10^-13, for x>0   
Remember also the following relation 
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Fibonacci numbers  
 
xFib(n, [DgtMax])  
 
Returns the Fibonacci's numbers defined by the following recurrent formula: 

2n1nn21       , 2    , 1 −− +=== FFFFF  
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Example:  
 
xFib(136)  = 11825896447871834976429068427 

xFib(4000) = 3.99094734350044227920812480949E+835 

 

Hypergeometric function   
 
Hypergeom(a, b, c, x)  
 
Returns the Hypergeometric function 
The parameter "a" is real, "b" is real, "c" is real and different form 0, -1, -2, -3 ... 
The variable "x" is real with |x| < 1 
Relative accuracy is better than 10^-14, for -1 < x < 1   
 
The hypergeometric function is the solution of the so called Gaussian-hypergeometric 
differential equation 

( ) ( )( ) 0 11 =+′++−+′′− yabyxbacyxx  
 
An integral form of the hypergeometric function is 
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More known is the series expansion that converges for !x| < 1 
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Special result are: 
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Zeta function  ζ(s) 
 
Zeta(s)  
 
The Riemann zeta function ζ(s) is an important special function of mathematics and 
physics which is intimately related with very deep results surrounding the prime 
number, series, integrals, etc. 
Relative accuracy is better than 1E-14, for any s <> 1   
 
For |s|>1 the function is defined 
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Analytic continuation. The Riemman zeta function can be defined for 0< s <1 by the 
following analytic continuation: 

 
For s< 0 the function is defined by the following relation: 

 
 
Same known exact results are:  ζ(2) = π^2/6  ,   ζ(4) = π^4/90   
 
Zeta function is very useful in computing series. Look at this example: 
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So, the final result is  π2/6 −5/4 
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Formulas Evaluation 
 

Multiprecision Expression Evaluation 
 
These functions realize a little math shell, putting together the power of multiprecision 
numeric computation with the ease of symbolic calculus. Sometime we may want to 
perform the computation using symbolic formulas. 
We would pass these strings to a routine for evaluation, returning the numerical results 
with a given accuracy. These functions perform this useful task. 
 
xeval( Formula, [Var], [DgtMax], [Angle],) 
 
xevall( Formula, [Var1, Var2 …] ) 
 
These functions return the evaluation of a math expression in multiprecision arithmetic. 
They use the same algorithm22 and have the same variable accuracy. They differ only 
for the input parameters. 
 
The parameter "Formula" is a math expression string containing variables, operators, 
parenthesis and other basic functions. Examples. 
3+1/(x^2+y^2), sin(2*pi*t)+4*cos(2*pi*t), (x^4+2x^3+6x^2-12x-10)^(1/2) 

The optional parameter "Var" is an array containing one or more value for variables 
substitution. Before computing, the parser substitutes each symbolic variable with its 
correspondent value. It can be a single value, an array of values or, even an array of 
values + labels (see examples). 
 
The optional parameter "Var1", "Var2"... are single values or array as "Var" but without 
labels, because the function xevall automatic finds by itself the appropriate labels. 
(See example) 
 
The optional parameter "DgtMax" – from 1 to 200 - sets the maximum number of 
precision digits (default=30). Setting DgtMax = 0 will force the function to evaluate in 
faster standard precision. 
 
The optional parameter "Angle" sets the angle unit "RAD” (default) “DEG”, “GRAD”.of 
for trigonometric computation:  
 
Example: 
 
xeval("(1+sqr(2))/2+5^(1/3))") = 2.91708272786324451375395323463 

xeval("(1+cos(x))/2+x^y" , {5, 1.2}) = 7.5404794000376872941836369067 

xeval("(a+b)*(a-b)", {2, 3})= (2+3)*(2-3) = -5 

 
All the function parameters can also be passed by reference of cell 
 
Example. Tabulate the following function for x = 1, 1.5, 2, … with 30 significant digits 

                                                 
22 The algorithm is divided into two steps: parsing and evaluation. The first step is performed by the 
MathParser class. The evaluation is performed with the x-functions of  XNUMBERS. 
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Note how the use of this function is simple and straight comparing with the nested 
formulas 
=xdiv(xadd(1,A6),xsqr(xadd(1,xpow(A6,2)))) 

 
Calculating functions with more than one variable a bit complication arises, because 
we have to pay attention which values are assigned to the variables. Let’s see this 
example 
Calculate the following bivariate function for x = 2.4, y = 5.5 

21
)ln(),(

x
xyyyxf

+

+
=

 
 
In order to pass to the parameter "Var" the correct value for each variable we select 
the variables range B2:C3 including the labels "x" and "y" (header). The labels must 
contain the same symbols contained into the formula string 
 

 
 
Note If we pass the range B3:C3 without the labels, the function assigns the values to 
the variables in the same order that they appear in the formula, from left to right. In our 
example the first variables is “y” and the second is “x”, so the function assignes the 
first value 2.4 to “y” and the second value 5.5 to “x” 
To by-pass the variable order rule, the function uses the trick of the “variables labels”. 
On the contrary, for one or none variable it is impossible to make confusion so the 
header can be omitted. 
 
Variables order. The function returns the variables order in the Excel function insertion 
panel 
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In our example we see the string “y x” , that means you have to pass the first value for 
the variable “y” and the second value for the variables “x” 
The variables order is by-passed by labels. Using labels you do not need to worry 
about the variables order 
 
Let’s see another example. Calculat,e with 30 digits precision, the following function 

)2cos()sin(),,( xbxabaxf −=  
for x = 30° deg , a = 1 , b = -2 
 

 
 
Note that we have set the angle unit = “DEG” 
Note also that in this case the variable order would be “a, x, b”, but with the aid of the 
labels the function can associate the exact parameters in the right way. 
 
Sometime it is not possible to add a label near its value (in the middle of a table, for 
example). Neither all parameters are located adjacent each others. For these cases 
we can use the second evaluator function xevall 
This function accepts separate parameters or separate array. We do not need to pass 
variables labels. The function automatically finds all labels present on the active 
worksheet 
Of course all this has a cost. the function xevall is about 10 times slower then xeval. 
 
Let’s see how it works with an example. Tabulate the given trigonometric function, 
from t = 0 to 0.5, with step = 0.1 and an error less then 1E-20 

)cos()cos()( tbtatf ⋅⋅+⋅⋅= ππ  
where   a = 0.5   and   b = -2 
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The above sheet shows a possible arrangement. If we look the last cell B8 we 
discover that the parameters are: 
Var1 the cell A8 containing the value of the independent variable “t” 
Var2 the range “C4:D4”, containing the values of the parameters “a” and “b” 
Var3 range “C7:D7”, the the internal parameter “DgtMax” and “AngleSet”  
 
The internal “DgtMax” and “AngleSet” parameters are reserved word and must write 
as is. 
Note also that the cell A8 has no label, but the function performs the correct 
assignment to the “t” variable. 
 
Label Rules. Labels must stay always at 
the top or at the left of the corresponding 
values. Labels can have any 
alphanumeric name starting with any 
letter and not containing blank. 
In the example:   

 t = 0.1, a = 0.5 , DgtMax = 30 

 

 

The function xevall only assigns a column (or a row) of values to the correspondent 
variable on top (or at left) 
 

Complex Expression Evaluation 
 
=cplxeval( Formula, [Var1, Var2 …] )  
 
This function23 evaluates a math expression in complex arithmetic. 
The parameter "Formula" is a math expression string containing variables, operators, 
parenthesis and other basic functions. 
(3+8j)*(-1-4j) ,  (1+i)*ln(1+3i) ,  ((x+3i)/(x+4-2i))^(1-i)   

The optional parameter "Var1", "Var2",... can be single or complex value. See How to 
insert a complex number  for better details 
 
Example: Evaluate the given complex polynomial for z = 2 – i  
 

)52()3(2 iziz ++++  
 
 

                                                 
23 This function uses the clsMathParserC class by A. De Grammont and L. Volpi 
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Note that we use the complex 
rectangular format only in the 
symbolic math formula. 
When we pass a complex variable 
we must always use the double cell 
format 
Note also that we can write “i” or “j” 
as well for imaginary symbol, the 
parser can recognize both of them. 
 

For complex numbers labels are not supported. When we have formulas with two or 
more variables, we must provide the values for variable substitutions in the exact order 
that they appear in the formula, starting from left to right. The formula wizard will easily 
help you. Look at this example. 
 
Example. Compute the expression for the given complexes values 

))((
)(

sk  

bsas
esF

−−
=

 
s = 1 + j  , a = 1 − 4j  ,   b = 3 + 6j , k = − 0.5 

 
In the cell B2 we have inserted the string 
“exp(k*s)/((s-a)(s-b)” 
 

 
 
 

When we enter the formula, the parser 
recognizes the variables symbols and 
shows us the exact order in which we 
have to pass to the function itself. 
In this case: k,  s,  a,  b 
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Math expression strings 
 
Functions like Integr, Series, xeval, xevall, cplxeval operate with symbolic math 
expressions by the aid of clsMathParser and claMathparserC evaluators (two 
internal class modules). 
These programs (for real and complex numbers) accept in input any string 
representing an arithmetic or algebraic expression with a list of variable values and 
return a single numeric result.  
Typical math expressions are: 
 
1+(2-5)*3+8/(5+3)^2 sqr(2)+asin(x) 

(a+b)*(a-b) x^2+3*x+1 

1.5*exp(-t/12)*cos(pi*t + pi/4) (1+(2-5)*3+8/(5+3)^2)/sqr(5^2+3^2) 

2+3x+2x^2 0.25x + 3.5y + 1 

sqr(4^2+3^2) 1/(1+e# ) + Root(x,6) 

(-1)^(2n+1)*x^n/n! |x-2|+|x-5| 

And((x<2),(x<=5)) sin(2*pi*x)+cos(2*pi*x) 

 
 
Variables can be any alphanumeric string and must start with a letter 
x, y, a1, a2, time, alpha , beta  

Also the symbol "_" is accepted to build variable names in "programming style". 
time_1, alpha_b1 , rise_time  

Capitals are accepted but ignored. Names such as "Alpha", "alpha", "ALPHA" indicate 
the same variable. 

 
Implicit multiplication is not supported because of its intrinsical ambiguity. So "xy" 
stands for variable named "xy" and not for x*y. The multiplication symbol "*" generally 
cannot be omitted. It can be omitted only for coefficients of the classic math variables 
x, y, z. It means that string like 2x and 2*x are equivalent 

2x, 3.141y, 338z^2   ⇔   2*x, 3.141*y, 338*z^2 

On the contrary, the following expressions are illegal in this context. 
2a, 3(x+1), 334omega 

 
Constant numbers can be integer, decimal, or exponential 
2, -3234, 1.3333, -0.00025,  1.2345E-12 

 
Logical expression are supported 
"x<1", "x+2y >= 4",  "x^2+5x-1>0"  , "t<>0" , and(x>0;x<1) 

Logical expressions always returns 1 (True) or 0 (False). Multiple logical expression, 
like “0<x<1” , are not supported; you must enter: 
   and(x>0,x<1) or  (x>0)*(x<1) 

 
Math Constants supported are: Pi Greek (π),Euler-Napier 
pi = 3.14159265358979    or  pi# = 3.14159265358979    

e# = 2.71828182845905  
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Angle expression 
This version supports angles in RAD radians, DEG degree, or GRAD degree.  
For example if you set the unit "DEG", all angles will be read and converted into 
degrees 
sin(120) => 0.86602540378444 
asin(0.86602540378444) => 120 
rad(pi/2) => 90    , grad(400) => 360  , deg(360) => 360      

Angles can also be write in DMS format like for example 45° 12' 13"  
sin(29°59'60") => 0.5 
 
Complex number can be indicated in a formula string as an ordered couple of 
number enclosed into parenthesis “(..)” and divided by a comma “,”  like for example: 
 (2, 3)    (a, b)    (-1, -0.05)   (-1.4142135623731,  -9.94665E-18) 

On the other hand, complex numbers can also be indicate by the common rectangular 
form: 

3+3j   a+bj   -1 − 0.05j    -1.4142135623731 − 9.94665E-18j 

You note that the second form is suitable for integer numbers, while, on the contrary, 
for decimal or exponential number the first one is clearer. The parenthesis form is 
more suitable also in nested results like 
((2+3*4), (8-1/2)) that gives the complex number (14, 7.5) 

Note: Pay attention if you want to use the rectangular convention in nested formulas. 
wrong (2+3*4)+(8-1/2)j.       correct (2+3*4)+(8-1/2)*j     . 

Do not omit the product symbol “*” before j because the parser recognize it as an 
expression, not a complex number. The product symbol can be omitted only when 
before the letter “j” is a constant number 
Note: You can use both “j” and “i” for indicating the imaginary number 1−  
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List of basic functions and operators  
 

Function Description Note 
+ addition  
- subtraction  
* multiplication  
/ division 35/4 = 8.75 
% percentage 35% = 3.5   , 1000+35% =1035 
\ integer division 35\4 = 8 
^ raise to power 3^1.8 = 7.22467405584208 
| | absolute value |-5|=5      (the same as abs) 
! factorial 5!=120    (the same as fact) 
abs(x) absolute value abs(-5)= 5 
atn(x) inverse tangent  
cos(x) cosine argument in radians 
sin(x) sine argument in radians 
exp(x) exponential exp(1) = 2.71828182845905 
fix(x) integer part fix(-3.8) = 3 
int(x) integer part int(-3.8) = 4 
dec(x) decimal part dec(-3.8) = -0.8 
ln(x) logarithm natural argument x>0 
log(x) logarithm decimal argument x>0 
rnd(x) random returns a random number between x and 0 
sgn(x) sign returns 1 if x >0 , 0 if x=0, -1 if x<0 
sqr(x) square root sqr(2) =1.4142135623731,  also 2^(1/2) 
cbr(x) cube root  ∀x, example  cbr(2) = 1.2599,  cbr(-2) = -1.2599 
tan(x) tangent argument (in radians)  x≠ k*π/2  with k = ± 1, ± 2… 
acos(x) inverse cosine argument -1 ≤ x ≤ 1 
asin(x) inverse sine argument -1 ≤ x ≤ 1 
cosh(x) hyperbolic cosine  
sinh(x) hyperbolic sine  
tanh(x) hyperbolic tangent  
acosh(x) inverse hyperbolic cosine argument x ≥ 1 
asinh(x) inverse hyperbolic sine  
atanh(x) inverse hyperbolic tangent argument -1 < x < 1 
root(x,n) n-th root (the same as x^(1/n) Argument n ≠ 0  ,  x ≥ 0 if n even ,  ∀x  if n odd 
mod(a, b) division quotient  
fact(x) factorial argument 0 ≤ x ≤ 170  
comb(n,k) combinations comb(6,3) = 20 
min(a, b) min between two numbers  
max(a, b) max between two numbers  

mcd(a, b) 
maximum common divisor between two 
numbers mcm(4346,174) = 2 

mcm(a, b) 
minimum common multiple between two 
numbers mcm(4346,174) = 378102 

gcd(a, b) 
greatest common divisor between two 
numbers The same as mcd 

lcm(a, b) 
lowest common multiple between two 
numbers The same as mcm 

erf(x) error Gauss's function argument x>0 
gamma(x) gamma argument 0 < x < 172 
gammaln(x) logarithm gamma argument x>0 
digamma(x) digamma argument x>0 
beta(x,y) beta argument x>0 y>0 
zeta(x) zeta Riemman's function argument x<-1 or x>1 
ei(x) exponential integral function argument x>0 
csc(x) cosecant argument (in radians) x≠ k*π  with k = 0, ± 1, ± 2… 
sec(x) secant argument (in radians) x≠ k*π/2  with k = ± 1, ± 2… 
cot(x) cotangent argument (in radians) x≠ k*π  with k = 0, ± 1, ± 2… 
acsc(x) inverse cosecant  
asec(x) inverse secant  
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acot(x) inverse cotangent  
csch(x) hyperbolic cosecant argument x>0 
sech(x) hyperbolic secant argument x>1 
coth(x) hyperbolic cotangent argument x>2 
acsch(x) inverse hyperbolic cosecant  
asech(x) inverse hyperbolic secant argument   0 ≤ x ≤ 1 
acoth(x) inverse hyperbolic cotangent argument   x<-1 or x>1 
rad(x) radians conversion converts radians into current unit of angle 
deg(x) degree DEG. conversion converts DEG degree into current unit of angle 
grad(x) degree GRAD. conversion converts GRAD. degree into current unit of angle 
round(x,d) round a number with d decimal round(1.35712, 2) = 1.36   
> greater than return 1 (true)   0 (false) 
>= equal or greater than return 1 (true)   0 (false) 
< less than return 1 (true)   0 (false) 
<= equal or less than return 1 (true)   0 (false) 
= equal return 1 (true)   0 (false) 
<> not equal return 1 (true)   0 (false) 
and logic and and(a, b) = return 0 (false)  if a=0 or b=0  
or logic or or(a, b) = return 0 (false) only if a=0 and b=0 
not logic not not(a) = return 0 (false) if a ≠ 0 , else 1 
xor logic exclusive-or xor(a, b) = return 1 (true)  only if a ≠ b 
nand logic nand nand(a, b) = return 1 (true)  if a=1 or b=1  
nor logic nor nor(a, b) = return 1 (true) only if a=0 and b=0 
nxor logic exclusive-nor nxor(a, b) = return 1 (true)  only if a=b 

 
Symbol "!" is the same as "Fact",  symbol "\" is the integer division, symbols “|x|” is the same as Abs(x) 
Logical function and operators returns 1 (true) or 0 (false) 
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Function Optimization 
 

Macros for optimization on site  
These macros has been ideated for performing the optimization task directly on the 
worksheet. This means that you can define any function that you want simply using the 
standard Excel built-in functions.  
 
Objective function. For example: if you want to search the minimum of the bivariate 
function  

( ) ( )2
100
352

100
51),( −+−= yxyxf  

insert in the cell E4 the formula  "=(B4-0.51)^2+(C4-0.35)^2", where the cells B4 and 
C4 contain the current values of the variables x and y respectively. Changing the 
values of B4 e/o C4 the function value E4 also changes consequently.  
 

 
 
For optimization, you can choose two different algorithms 
 
Downhill-Simplex 24 

The Nelder–Mead downhill simplex algorithm is a popular derivative-free 
optimization method. Although there are no theoretical results on the 
convergence of this algorithm, it works very well on a wide range of 
practical problems. It is a good choice when a one-off solution is wanted 
with minimum programming effort. It can also be used to minimize 
functions that are not differentiable, or we cannot differentiate. 
It shows a very robust behavior and converges for a very large set of 
starting points. In our experience is the best general purpose algorithm, 
solid as a rock, it's a "jack" for all trades. 
 

 
For mono and 
multivariate 
functions without 
constrains 
 

Divide-Conquer 1D 

For monovariable function only, it is an high robust derivative free 
algorithm. It is simply a modified version of the bisection algorithm 
Adapt for every function, smooth or discontinue. 
It converges for very large segments. Starting point not necessary 
 

For monovariable 
function only. It 
needs the segment 
where the max or 
min is located 

 
 
Example assume to have to minimize the following function for x > 0 

                                                 
24 The Downhill-Simplex of Nelder and Maid routine appears by the courtesy of Luis Isaac Ramos Garcia 
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)4cos()3sin()( 3 xexexf xx −− +=  

 
We try to search the minimum in the range  0 < x < 10 
Choose a cell for the variable x , example B6, and insert the function  
 
= SIN(3*B6)*EXP(- 2*B6) + COS(4*B6)*EXP(-B6) 
 
in a cell that you like, for example C6. 
After this, add the constrain values into another range, for example B3:C3 
The values of the variables at the start are not important 
 

 
 
Select the cell of the function C6 and start the macro "1D divide and conquer", filling 
the input field as shown 
 

 
 
Stopping limit. Set the maximum evaluation points allowed.  
 
Max/Min. The radio buttons switches between the minimization and maximization 
algorithm 
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The "Downhill-Simplex" macro is similar except that: 
• The constrain box is optional.  
• It accepts up to 9 variables (range form 1 to 9 cells) 
• The algorithm starts from the point that you give in the variable cells. If the 

constrain box is present, the algorithm starts from a random point inside the 
box 

 
Let's see how it works. 
The following examples are extracted from "Optimization and Nonlinear Fitting" , Foxes Team, 
Nov. 2004 
 

Example 1 - Rosenbrock's parabolic valley 
This family of test functions is well known to be a minimizing problem of high difficult 

( ) ( )222 1),( xxymyxf −+−⋅=  
 
The parameter "m" tunes the difficult: high value means high difficult in minimum 
searching. The reason is that the minimum is located in a large flat region with a very 
low slope.  The following 3D plot shows the Rosenbrock's parabolic valley for m = 100 
 

 
 
The following contour plot is obtained for m = 10 
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The function is always positive except in the point (1, 1) where it is 0. it is simple to 
demonstrate it, taking the gradient  
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From the second equation, we get 

( ) 22           02 xyxym =⇒=−  
 
Substituting in the first equation, we have 

( ) 1         022          022124 23 =⇒=−⇒=−⋅−+⋅ xxxmxxm  
 
So the only extreme is the point (1, 1) that is the absolute minimum of the function 
 
To find numerically the minimum, let's arrange a similar sheet. 
We can insert the function and the parameters as we like 
Select the cell D4 - containing the objective function - and start the macro "Downhill-
Simplex". The macro fills automatically the variables-field with the cells related to the 
objective function. But, In that case, the cell A4 contains the parameter m that must 
not change. So insert the range B4:C4 int the variables field. 
 
 

 
The cells B4:C4 will change for minimizing the 
objective function in the cell D4 
 
 
 
Starting from the point (0, 0) we obtain the following good results 
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m Algorithm x y error time 
10 Simplex 1 1 2.16E-13 2 sec 
100 Simplex 1 1 4.19E-13 2 sec 

 
Where  the error is calculated as  |x-1|+|y-1| 
 
 

Example 2 - Constrained minimization 
 
Example: assume to have to minimize the following function 
 

710442),( 22 +−+−+= yyxxyxyxf  
 
with the ranges constrains  
 

5.00   ,   20 ≤≤≤≤ yx  
 
The Excel arrangement can be like the following 
 
 

 
 
 
Compare with the exact solution  x = 1.5, y = 0.5 
 
Note that the function has a free minimum at x = 1, y = 1 
Repeat the example living empty the constrains box input, for finding those free 
extremes. 
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Example 3 - Nonlinear Regression with Absolute Sum 
This example explains how to perform a nonlinear regression with an objective 
function different from the "Least Squared". In this example we adopt the "Absolute 
Sum".  
We choose the exponential model 

xkeakaxf ⋅−⋅=),,(  
 
The goal of the regression is to find the best couple of parameters (a, k) that minimizes 
the sum of the absolute errors between the regression model and the given data set. 

∑ −= |),,(| kaxfyAS ii  
 
The objective function AS depends only by parameter a, k. Giving in input this function 
to our optimization algorithm we hope to solve the regression problem 
A possible arrangement of the worksheet may be: 
 

 
 
We hope that changing the parameters "a" and "k" int the cells E2 and F3, the 
objective function (yellow cell) goes to its minimum value. Note that the objective 
function depends indirectly by the parameters a and k.  
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The starting condition is the 
following, where y indicates 
the given data and y* is the 
regression plot (a flat line at 
the beginning) 

 
Start the Downhil-Simplex and insert the appropriate range as shown in the picture 
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Starting form the point (1, 0) you will see the cells changing quickly until the macro 
stops itself leaving the following "best" fitting parameters and the values of the 
regression y* 
 
 
Best fitting parameters  
 

a k 
1 -2 

  
 
The plot of the y* function and 
the samples y are shown in 
the graph. As we can see the 
regression fits perfectly the 
given dataset. 
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Analytical Index 
Analytical index 
 

A 

Absolute; 31 
Adams; 202; 203 
Adams-Bashfort-Moulton; 202 
Addition; 25 
Aitken; 156; 174 
Arccos; 66 
Arcsine; 66 
Arctan; 66 
Arithmetic Mean; 42 

B 

Base conversion; 218 
baseChange; 218 
Bessel  functions; 226 
BesseldI; 226 
BesseldJ; 226 
BesseldK; 226 
BesseldY; 226 
BesselI; 226 
BesselJ; 226 
BesselK; 226 
BesselY; 226 
Beta function; 224 
Bisection; 209 
Bivariate Polynomial; 98 

C 

Cebychev; 86 
Central Polynomial; 77 
Change sign; 31 
Check digits; 36 
Check odd/even; 121 
Check Prime; 120 
CheckPrime; 120 
Cholesky; 129 
Circle of the Roots; 79 
Coefficients of Orthogonal Polynomials; 

107 
Coefficients Transformation; 78 
Combinations; 41 
Combinations function; 225 
Compare numbers; 34 
Complement of right angle; 67 
Complex absolute; 111 
Complex Addition; 109 
Complex ArcCos; 113 

Complex ArcSin; 114 
Complex ArcTan; 114 
Complex Complementary Error Function; 

115 
Complex conjugate; 113 
Complex Cos; 113 
Complex digamma; 115 
Complex Division; 110 
Complex Error Function; 115 
Complex Exp; 112 
Complex Exponential Integral; 115 
Complex Expression Evaluation; 233 
Complex Function Integration (Romberg 

method); 152 
Complex Gamma Function; 116 
Complex Hyperbolic Cosine; 114 
Complex Hyperbolic Sine; 114 
Complex Hyperbolic Tan; 114 
Complex inverse; 112 
Complex Inverse Hyperbolic Cos; 114 
Complex Inverse Hyperbolic Sin; 114 
Complex Inverse Hyperbolic Tan; 115 
Complex Log; 112 
Complex Logarithm Gamma Function; 116 
Complex Multiplication; 109 
Complex negative; 113 
Complex power; 111 
Complex Quadratic Equation; 117 
Complex Roots; 111 
Complex Series Evaluation; 175 
Complex Sin; 113 
Complex Subtraction; 109 
Complex Tangent; 113 
Complex Zeta Function; 116 
Constant  “e”; 62 
Constant Ln(10); 62 
Constant Ln(2); 62 
Constant pi; 66 
Convert Extended Number; 38 
Convol; 180 
corrector; 202 
Corrector; 203; 205 
Cos; 65 
Cosine Integral Ci(x); 226 
CosIntegral; 226 
cplxabs; 111 
cplxacos; 113 
cplxacosh; 114 
cplxadd; 109 
cplxasin; 114 
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cplxasinh; 114 
cplxatan; 114 
cplxatanh; 115 
cplxconj; 113 
cplxcos; 113 
cplxcosh; 114 
cplxdigamma; 115 
cplxdiv; 110 
cplxei; 115 
cplxEquation2; 117 
cplxerf; 115 
cplxerfc; 115 
cplxeval; 233 
cplxExp; 112 
cplxgamma; 116 
cplxgammaln; 116 
cplxintegr; 152 
cplxinv; 112 
cplxLn; 112 
cplxmult; 109 
cplxneg; 113 
cplxpolar; 110 
cplxpow; 111 
cplxrect; 110 
cplxroot; 111 
cplxserie; 175 
cplxsin; 113 
cplxsinh; 114 
cplxsub; 109 
cplxtan; 113 
cplxtanh; 114 
cplxzeta; 116 
Crout; 128 
cspline_coeff; 186 
cspline_eval; 184 
cspline_interp; 184 
cspline_pre; 185 
Cubic Spline 2nd derivatives; 185 
Cubic Spline Coefficients; 186 
cvBaseDec; 218 
cvBinDec; 218 
cvDecBase; 218 
cvDecBin; 218 

D 

Data Conditioned Linear Regression 
Coefficients; 53 

Data Conditioning; 52 
Data Integration (Newton Cotes); 154 
Data Integration (Romberg method); 146 
dBel; 218 
Decibel; 218 
Decimal part; 31 
DFSP; 138 
DFSP_INV; 139 
DFT; 136; 141 
DFT_INV; 137 
Diff1; 212 
Diff2; 213 

digamma; 224 
Digamma function; 224 
Digit_Max; 24; 39 
Digits count; 34 
Digits sum; 36 
DigitsAllDiff; 36 
Diophantine; 125 
Diophantine Equation; 125 
DiophEqu; 125 
Discrete 2D Fourier Transform; 139 
Discrete Convolution; 180 
Discrete Fourier Inverse Transform; 137 
Discrete Fourier Spectrum; 138 
Discrete Fourier Transform; 136 
Division; 26 
Double Exponential; 148 
Double Integral; 166 
Double integration function; 168 
Double Integration macro; 166 
Double Series; 176 
Downhill; 241 
DPOLYN; 82 

E 

Eratostene; 122 
errfun; 221 
Error Function  Erf(x); 221 
Euler; 202 
Euler’s constant gamma; 64 
Euler-Mascheroni Constant; 221 
exp_integr; 221 
exp_integr_n; 221 
Exponential; 61 
Exponential any base; 61 
Exponential integral Ei(x); 221 
Exponential integral En(x); 221 
Extended Number Check; 35 

F 

Factor; 122 
Factorial; 41 
Factorial with double-step; 41 
Factorize; 121 
Factorize function; 122 
Fermat; 123 
Fermat's Prime Test; 123 
FFT; 136; 141 
FFT_INV; 137 
FFT2D; 139 
FFT2D_INV; 140 
Fibonacci numbers; 227 
First Derivative; 212 
Flip; 37 
Format Extended Number; 35 
Fourier; 164 
Fourier_cos; 162 
Fourier_cos; 164 
Fourier_cos; 165 
Fourier_sin; 162 
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fract; 119 
Fract_Interp; 182 
Fract_Interp_Coef; 182 
Fresnel cosine Integral; 227 
Fresnel sine Integral; 227 
Fresnel_cos; 227 
Fresnel_sin; 227 
Function Integration (Double Exponential 

method); 148 
Function Integration (mixed method); 150 
Function Integration (Newton-Cotes 

formulas); 156 
Function Integration (Romberg method); 

147 

G 

Gamma F-factor; 224 
Gamma function); 222 
Gamma quotient; 223 
GCD; 118 
Geometric Mean; 42 
Grad; 213 
Gradient; 213 
Greatest Common Divisor; 118 

H 

Hermite; 86 
Hessian; 214 
Hessian matrix; 214 
Hyperbolic Arc Cosine; 63 
Hyperbolic Arc Sine; 62 
Hyperbolic Arc Tangent; 63 
Hyperbolic Cosine; 63 
Hyperbolic Sine; 62 
Hyperbolic Tangent; 63 
Hypergeom; 228 
Hypergeometric function; 228 

I 

Infinite integral; 170 
Infinite Integration of oscillating functions; 

163 
Integer Division; 27 
Integer part; 31 
Integer polynomial; 94 
Integer Remainder; 27 
Integer roots; 74 
integr; 164; 165 
Integr; 150 
Integr_2D; 168 
Integr_fcos; 160 
Integr_fsin; 160 
Integr_nc; 156 
Integr_ro; 147 
Integr2D; 166 
Integral_Inf; 170 
Integration of oscillating functions (Filon 

formulas); 160 

Integration of oscillating functions (Fourier 
transform); 162 

IntegrDataC; 154 
IntegrDataR; 146 
Interp_Mesh; 188 
InterpL; 187 
InterpL_Coef; 187 
Interpolation 2D; 188 
Interpolation with continue fraction; 182 
Interpolation with Cubic Spline; 184 
IntRombergMat; 146 
Inverse; 26 
Inverse 2D Discrete Fourier Transform; 140 
Inverse Discrete Fourier Spectrum; 139 
isXnumbers; 35 

J 

Jacobian; 214 
Jacobian matrix; 214 

L 

LCM; 118 
Least Common Multiple; 118 
Legendre; 86 
Linear Regression Coefficients; 44 
Linear Regression Covariance Matrix; 48 
Linear Regression Evaluation; 50 
Linear Regression Formulas; 47 
Linear Regression Min-Max; 56 
Linear Regression Statistics; 49 
Linear Regression with Robust Method; 55 
LINEST; 46 
Log Gamma function; 223 
Log Relative Error; 219 
Logarithm in any base; 61 
Logarithm natural (Napier’s); 61 
LRE; 54 

M 

Macro Sampler; 143 
Macros for optimization on site; 239 
Macros X-Edit; 39 
Math expression strings; 235 
MathParser; 237 
matrix; 134 
Matrix Addition; 126 
Matrix Determinant; 127 
Matrix Inverse; 126 
Matrix LLT decomposition; 129 
Matrix LU decomposition; 128 
Matrix Modulus; 127 
Matrix Multiplication; 126 
Matrix Power; 128 
Matrix Subtraction; 126 
Maximum Common Divisor; 118 
MCD; 118 
MCM; 118 
Minimum Common Multiple; 118 
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mjkLRE; 219 
mjLRE; 54 
modular power; 120 
Modular Power; 120 
Multiplication; 26 
Multiprecision Expression Evaluation; 230 
Multiprecision Matrix operations; 134 
Multi-variables Interpolation; 187 

N 

Next Prime; 120 
NextPrime; 120 
Non Linear Equation Solving; 216 
N-Root; 30 

O 

Objective function; 239 
ODE Multi-Steps; 202 
ODE Runge-Kutta 4; 198 
ODE_COR; 205 
ODE_PRE; 205 
ODE_RK4; 198 
Orthogonal polynomials; 102 
Orthogonal Polynomials; 102 
Orthogonal Polynomials evaluation; 103 
oscillating; 163 

P 

Partial; 99 
PECE; 205; 207 
Perfect Square; 121 
permutation; 42 
Permutations; 42 
Polar Conversion; 110 
Pollard; 122 
Poly_ChebychevT; 103 
Poly_ChebychevU; 103 
Poly_Gegenbauer; 103 
Poly_Hermite; 103 
Poly_Jacobi; 103 
Poly_Laguerre; 103 
Poly_Legendre; 103 
Poly_Weight_ChebychevT; 106 
Poly_Weight_ChebychevU; 106 
Poly_Weight_Gegenbauer; 106 
Poly_Weight_Hermite; 106 
Poly_Weight_Jacobi; 106 
Poly_Weight_Laguerre; 106 
Poly_Weight_Legendre; 106 
PolyAdd; 84 
PolyBuild; 91 
PolyBuildCfx; 93 
PolyCenter; 89 
PolyDiv; 85 
PolyInt; 94 
PolyInterp; 95 
PolyInterpCf; 95 
PolyMult; 84 

POLYN; 80 
POLYN2; 98 
Polynomial addition; 84 
Polynomial building from roots; 91 
Polynomial building with multi-precision; 93 
Polynomial center; 89 
Polynomial coefficients; 83 
Polynomial derivatives; 82 
Polynomial division quotient; 85 
Polynomial division remainder; 85 
Polynomial evaluation; 80 
Polynomial interpolation; 95 
Polynomial multiplication; 84 
Polynomial roots radius; 90 
Polynomial shift; 89 
Polynomial solving; 94 
Polynomial subtraction; 85 
Polynomial System of 2nd degree; 97 
Polynomial writing; 84 
PolyRadius; 90 
PolyRem; 85 
PolyShift; 89 
PolySolve; 94 
PolySub; 85 
Polyterms; 88 
PolyTerms; 83 
predictor; 202 
Predictor; 203 
Predictor; 205 
Prime; 120 
Prime Numbers Generator; 123 
Prime_Test_Fermat; 123 
PrimeGenerator; 123 
Product; 29 

Q 

Quadratic Mean; 43 

R 

Raise to power; 30 
Rational Fraction approximation; 119 
Rectangular Conversion; 110 
RegLin_Coeff; 44 
RegLin_Eval; 50 
RegLinMM; 56 
RegLinRM; 55 
regression; 244 
Relative Rounding; 33 
RLCondCoef; 53 
Root Error Estimation; 72 
Rounding; 32 

S 

Scalar Product; 127 
Scientific Format; 37 
Secant; 210 
Second Derivative; 213 
Serie_trig; 177 
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Serie2D_trig; 178 
Series acceleration with ∆^2; 174 
Series Evaluation; 173 
sign; 34 
Significant Digits count; 34 
Similarity Transformation; 127 
Simplex; 241 
Sin; 65 
Sine Integral Si(x); 227 
SinIntegral; 227 
Solve Linear Equation System; 130 
Solve Linear Equation System with Iterative 

method; 131 
SortRange; 36 
Split scientific format; 37 
Square Delta Extrapolation; 132 
Square Root; 30 
Standard Deviation; 43 
Sub-Tabulation; 52 
Subtraction; 25 
Sum; 29 
sumDigits; 36 
Summary of Linear Regressions; 51 
SYSLIN_ITER_G; 131 
SYSPOLY2; 97 

T 

Tan; 66 
tanh-sinh transformation; 148 
trial division; 122 
Trigonometric double serie; 178 
Trigonometric series; 177 
Truncating; 32 

V 

Variance; 43 
Vector Inversion; 37 
Vector Product; 129 

W 

Weight of Orhogonal Polynomials; 106 

X 

x2pi; 66 
xabs; 31 
xacos; 66 
xacosh; 63 
xadd; 25 
xanglecompl; 67 
xasin; 66 
xasinh; 62 
xatan; 66 
xatanh; 63 
xbeta; 224 
xcdbl; 38 
xcomb; 41 
xcomb_big; 225 

xcomp; 34 
xcos; 65 
xcosh; 63 
xcplxabs; 111 
xcplxadd; 109 
xcplxconj; 113 
xcplxdiv; 110 
xcplxExp; 112 
xcplxinv; 112 
xcplxLn; 112 
xcplxmult; 109 
xcplxneg; 113 
xcplxpolar; 110 
xcplxpow; 111 
xcplxrect; 110 
xcplxroot; 111 
xcplxsub; 109 
xcvexp; 37 
xdec; 31 
xDgt; 34 
xdiv; 26 
xdivint; 27 
xdivrem; 27 
xe; 62 
xeu; 64 
xeval; 29; 230 
xevall; 230 
xexp; 61 
xfact; 41 
xfact2; 41 
xFib; 227 
xFormat; 35 
xfrac; 119 
xFract_Interp; 182 
xFract_Interp_Coef; 182 
xGamma; 222 
xGammaF; 224 
xGammaln; 223 
xGammalog; 223 
xGammaQ; 223 
xGm; 221 
xgmean; 42 
xint; 31 
xinv; 26 
xIsOdd; 121 
xIsSquare; 121 
xLn; 61 
xLn10; 62 
xLn2; 62 
xLog; 61 
xLRE; 219 
xMat_BAB; 127 
xMat_LL; 129 
xMat_LU; 128 
xMatAbs; 127 
xMatAdd; 126 
xMatDet; 127 
xMatInv; 126 
xMatMult; 126 
xMatPow; 128 
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xMatSub; 126 
xMCD; 118 
xMCM; 118 
xmean; 42 
xmult; 26 
xneg; 25; 31 
xpi; 66 
xpi2; 66 
xpi4; 66 
xpow; 30 
xProdScal; 127 
xProdVect; 129 
xqmean; 43 
xRegLin_Coeff; 44 
xRegLin_Coeff; 46 
xRegLin_Eval; 50 
xroot; 30 
xround; 32 
xroundr; 33 
xSerie2D; 176 
xsin; 65 

xsinh; 62 
xsplit; 37 
xsqr; 30 
xstdev; 43 
xsub; 25 
xsum; 29 
xSYSLIN; 130 
xtan; 66 
xtanh; 63 
xtrunc; 32 
xUnformat; 35 
xvar; 43 

Z 

Zero_bisec; 209 
Zero_sec; 210 
Zeros of Orthogonal Polynomials; 106 
Zeta; 228 
Zeta function; 228 
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