VAX (MicroVAX 3900) Simulator Usage 15-Jan-2006

COPYRIGHT NOTICE

The following copyright notice applies to the SIMH source, binary, and documentation:

Original code published in 1993-2006, written by Robert M Supnik Copyright (c) 1993-2006, Robert M Supnik

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik.

1 Simulato	r Files	3
2 VAX Fea	atures	4
2.1 CPU	J and System Devices	5
2.1.1	CPU	5
2.1.2	Translation Buffer (TLB)	7
2.1.3	Qbus Adapter (QBA)	7
2.1.4	Read-only memory (ROM)	8
2.1.5	Non-volatile Memory (NVR)	8
2.1.6	System Devices (SYSD)	8
2.2 I/O	Device Addressing	9
2.3 Prog	grammed I/O Devices	9
2.3.1	Terminal Input (TTI)	9
2.3.2	Terminal Output (TTO)	
2.3.3	LPV11 Line Printer (LPT)	10
2.3.4	Real-Time Clock (CLK)	11
2.4 Disl	KS	
2.4.1	RLV12/RL01,RL02 Cartridge Disk (RL)	
2.4.2	RQDX3 MSCP Disk Controllers (RQ, RQB, RQC, RQD)	12
2.4.3	RXV21/RX02 Floppy Disk (RY)	13
2.5 Tap	es	
2.5.1	TSV11/TSV05 Magnetic Tape (TS)	14
2.5.2	TQK50 TMSCP Disk Controller (TQ)	15
2.6 Con	nmunications Devices	
2.6.1	DZV11 Terminal Multiplexer (DZ)	
2.6.2	DHQ11 Terminal Multiplexer (VH)	
2.6.3	DELQA/DEQNA Qbus Ethernet Controllers (XQ, XQB)	
	Display and Input	
Appendix - Th	ne KA655"X"	21

This memorandum documents the DEC VAX (MicroVAX 3900) simulator.

1 Simulator Files

To compile the VAX, you must define VM_VAX and USE_INT64 as part of the compilation command line. To enable extended file support (files greater than 2GB), you must define USE_ADDR64 as part of the command line as well.

sim/	scp.h sim_console.h sim_defs.h sim_ether.h sim_fio.h sim_rev.h sim_sock.h sim_tape.h sim_timer.h sim_timer.h scp.c sim_console.c sim_ether.c sim_fio.c sim_sock.c sim_tape.c sim_timer.c sim_timer.c
sim/vax/	vax_defs.h vaxmod_defs.h vax_cis.c vax_cmode.c vax_cpu.c vax_cpu1.c vax_fpa.c vax_io.c vax_mmu.c vax_octa.c vax_sys.c vax_sys.c vax_sys.c vax_sysdev.c vax_syslist.c
sim/pdp11/	pdp11_mscp.h pdp11_uqssp.h pdp11_xq.h pdp11_xq_bootrom.h pdp11_dz.c pdp11_lp.c pdp11_rl.c pdp11_rl.c pdp11_ry.c pdp11_rq.c pdp11_tq.c pdp11_ts.c

pdp11_	_vh.c
pdp11_	_xq.c

Additional files are:

sim/vax/	ka655x.bin	extended memory boot ROM code

2 VAX Features

The VAX simulator is configured as follows:

simulates
KA655"X" CPU with 16MB-512MB of memory
translation buffer
read-only memory
non-volatile memory
Qbus adapter
system devices
console terminal
real-time clock
DZV11 4-line terminal multiplexer (up to 4)
DHQ11 8-line terminal multiplexer (up to 4)
LPV11 line printer
RLV12/RL01(2) cartridge disk controller with four drives
RQDX3 MSCP controller with four drives
second RQDX3 MSCP controller with four drives
third RQDX3 MSCP controller with four drives
fourth RQDX3 MSCP controller with four drives
RXV21 floppy disk controller with two drives
TSV11/TSV05 magnetic tape controller with one drive
TQK50 TMSCP magnetic tape controller with four drives
DELQA/DEQNA Ethernet controller
second DELQA/DEQNA Ethernet controller

The DZ, VH, LPT, RL, RQ, RQB, RQC, RQD, RY, TS, TQ, XQ, and XQB devices can be set DISABLED. RQB, RQC, RQD, and XQB are disabled by default.

The VAX simulator implements several unique stop conditions:

- Change mode to interrupt stack
- Illegal vector (bits<1:0> = 2 or 3)
- Unexpected exception during interrupt or exception
- Process PTE in P0 or P1 space instead of system space
- Unknown IPL
- Infinite loop (BRB/W to self at IPL 1F)

The LOAD command supports a simple binary format, consisting of a stream of binary bytes without origin or checksum, for loading memory, the boot ROM, or the non-volatile memory. The DUMP command is not implemented.

2.1 CPU and System Devices

2.1.1 CPU

CPU options include the size of main memory and the treatment of the HALT instruction.

SET	CPU	16M	set memory size = 16MB
SET	CPU	32M	set memory size = 32MB
SET	CPU	48M	set memory size = 48MB
SET	CPU	64M	set memory size = 64MB
SET	CPU	128M	set memory size = 128MB
SET	CPU	256M	set memory size = 256MB
SET	CPU	512M	set memory size = 512MB
SET	CPU	SIMHALT	kernel HALT returns to simulator
SET	CPU	CONHALT	kernel HALT returns to boot ROM console

The CPU implements a show command to display the I/O address map:

SHOW	CPII	IOSPACE	show	т/О	space	address	man
SHOM	CPU	TOPPACE	SHOW	T/0	space	auuress	шар

The CPU also implements a command to display a virtual to physical address translation:

SHOW CPU VIRTUAL=n	show translation for address n
--------------------	--------------------------------

Notes on memory size:

- The real KA655 CPU only supported 16MB to 64MB of memory. The simulator implements a KA655"X", which increases supported memory to 512MB.
- The firmware (ka655x.bin) contains code to determine the size of extended memory and set up the PFN bit map accordingly. Other than setting up the PFN bit map, the firmware does not recognize extended memory and will behave as though memory size was 64MB.
- If memory size is being reduced, and the memory being truncated contains non-zero data, the simulator asks for confirmation. Data in the truncated portion of memory is lost.
- If the simulator is running VMS, the operating system may have a SYSGEN parameter set called PHYSICAL PAGES (viewable from "MCR SYSGEN SHOW PHYSICALPAGES"). PHYSICALPAGES limits the maximum number of physical pages of memory the OS will recognize. If it is set to a lower value than the new memory size of the machine, then only the first PHYSICALPAGES of memory will be recognized, otherwise the actual size of the extended memory will be realized by VMS upon each boot. Some users and/or sites may specify the PHYSICALPAGES parameter in the input file to AUTOGEN (SYS\$SYSTEM:MODPARAMS.DAT). If PHYSICALPAGES is specified there, it will have to be adjusted before running AUTOGEN to recognize more memory. The default value for PHYSICALPAGES is 1048576, which describes 512MB of RAM.

Initial memory size is 16MB.

Memory can be loaded with a binary byte stream using the LOAD command. The LOAD command recognizes three switches:

-0	origin argument fo	ollows file name
-r	load the boot ROM	
-n	load the non-volat	ile RAM

The CPU supports the BOOT command and is the only VAX device to do so. Note that the behavior of the bootstrap depends on the capabilities of the console terminator emulator. If the terminal window supports

full VT100 emulation (including Multilanguage Character Set support), the bootstrap will ask the user to specify the language; otherwise, it will default to English.

These switches are recognized when examining or depositing in CPU memory:

-b	examine/deposit bytes
-w-	examine/deposit words
-1	examine/deposit longwords
-d	data radix is decimal
-0	data radix is octal
-h	data radix is hexadecimal
-m	examine (only) VAX instructions
-p	examine/deposit PDP-11 (compatibility mode) instructions
-r	examine (only) RADIX50 encoded data
-v	interpret address as virtual, current mode

CPU registers include the visible state of the processor as well as the control registers for the interrupt system.

name	size	comments
PC	32	program counter
R0R14	32	R0R14
AP	32	alias for R12
FP	32	alias for R13
SP	32	alias for R14
PSL	32	processor status longword
CC	4	condition codes, PSL<3:0>
KSP	32	kernel stack pointer
ESP	32	executive stack pointer
SSP	32	supervisor stack pointer
USP	32	user stack pointer
IS	32	interrupt stack pointer
SCBB	32	system control block base
PCBB	32	process controll block base
POBR	32	P0 base register
POLR	22	P0 length register
P1BR	32	Pl base register
P1LR	22	Pl length register
SBR	32	system base register
SLR	22	system length register
SISR	16	software interrupt summary register
ASTLVL	4	AST level register
MAPEN	1	memory management enable
PME	1	performance monitor enable
TRPIRQ	8	trap/interrupt pending
CRDERR	1	correctible read data error flag
MEMERR	1	memory error flag
PCQ[0:63]	32	PC prior to last PC change or interrupt; most recent PC change first
WRU	8	interrupt character

The CPU can maintain a history of the most recently executed instructions. This is controlled by the SET CPU HISTORY and SHOW CPU HISTORY commands:

SET CPU HISTORY

clear history buffer

SET CPU HISTORY=0	disable history
SET CPU HISTORY=n	enable history, length = n
SHOW CPU HISTORY	print CPU history
SHOW CPU HISTORY=n	print first n entries of CPU history

The maximum length for the history is 65536 entries.

2.1.2 Translation Buffer (TLB)

The translation buffer consists of two units, representing the system and user translation buffers, respectively. It has no registers. Each translation buffer entry consists of two 32b words, as follows:

word n tag word n+1 cached PTE

An invalid entry is indicated by a tag of 0xFFFFFFF.

2.1.3 Qbus Adapter (QBA)

The QBA simulates the CQBIC Qbus adapter chip. It recognizes the following options:

SET	QBA	AUTOCONFIGURE	enable autoconfiguration
SET	QBA	NOAUTOCONFIGURE	disable autoconfiguration

and the following display command:

SHOW QBA	IOSPACE	show	IO	space	addresses
----------	---------	------	----	-------	-----------

The QBA also implements a command to display a Qbus address to physical address translation:

SHOW QBA VIRTUAL=n	show	translation	for	Qbus	address	n
--------------------	------	-------------	-----	------	---------	---

Finally, the QBA implements main memory examination and modification via the Qbus map. The data width is always 16b:

EX QBA 0/10	examine	main	memory	words	corresponding
	to Qbus	addre	esses 0-	-10	

The QBA registers are:

name	size	comments
SCR	16	system configuration register
DSER	8	DMA system error register
MEAR	13	master error address register
SEAR	20	slave error address register
MBR	29	Qbus map base register
IPC	16	interprocessor communications register
IPL17	32	IPL 17 interrupt flags
IPL16	32	IPL 16 interrupt flags
IPL15	32	IPL 15 interrupt flags
IPL14	32	IPL 14 interrupt flags

2.1.4 Read-only memory (ROM)

The boot ROM consists of a single unit, simulating the 128KB boot ROM. It has no registers. The boot ROM is loaded with a binary byte stream using the LOAD -r command:

LOAD -r KA655X.BIN load ROM image KA655X.BIN

ROM accesses a use a calibrated delay that slows ROM-based execution to about 500K instructions per second. This delay is required to make the power-up self-test routines run correctly on very fast hosts. The delay is controlled with the commands:

SET	ROM	NODELAY	ROM	runs	like	RAM
SET	ROM	DELAY	ROM	runs	slow]	Ly

2.1.5 Non-volatile Memory (NVR)

The NVR consists of a single unit, simulating 1KB of battery-backed up memory in the SSC chip. When the simulator starts, NVR is cleared to 0, and the SSC battery-low indicator is set. Normally, NVR is saved and restored like other memory in the system. Alternately, NVR can be attached to a file. This allows its contents to be saved and restored independently of other memories, so that NVR state can be preserved across simulator runs.

Successfully loading an NVR image clears the SSC battery-low indicator.

2.1.6 System Devices (SYSD)

The system devices are the system-specific facilities implemented in the CVAX chip, the KA655 CPU board, the CMCTL memory controller, and the SSC system support chip. Note that the simulation of these devices is incomplete and is intended strictly to allow the patched bootstrap and console code to run. The SYSD registers are:

name	size	comments
CADR MSER CONPC CONPSL CMCSR[0:17] CACR	8 8 32 32 32 32 8	cache disable register memory system error register PC at console halt PSL at console halt CMCTL control and status registers second-level cache control register
BDR	8	front panel jumper register
BASE	29	SSC base address register
CNF	32	SSC configuration register
BTO	32	SSC bus timeout register
TCSR0	32	SSC timer 0 control/status register
TIRO	32	SSC timer 0 interval register
TNIRO	32	SSC timer 0 next interval register
TIVECO	9	SSC timer 0 interrupt vector register
TCSR1	32	SSC timer 1 control/status register
TIR1	32	SSC timer 1 interval register
TNIR1	32	SSC timer 1 next interval register
TIVEC1	9	SSC timer 1 interrupt vector register
ADSM0	32	SSC address match 0 address
ADSKO	32	SSC address match 0 mask
ADSM1	32	SSC address match 1 address

ADSK1	32	SSC address match 1 mask
CDGDAT[0:16383]	32	cache diagnostic data store

BDR<7> is the halt-enabled switch. It controls how the console firmware responds to a BOOT command, a kernel halt (if option CONHALT is set), or a console halt (BREAK typed on the console terminal). If BDR<7> is set, the console firmware responds to all these conditions by entering its interactive command mode. If BDR<7> is clear, the console firmware boots the operating system in response to these conditions.

2.2 I/O Device Addressing

Qbus I/O space is not large enough to allow all possible devices to be configured simultaneously at fixed addresses. Instead, many devices have floating addresses; that is, the assigned device address depends on the presense of other devices in the configuration:

DZ11	all instances have floating addresses
DHQ11	all instances have floating addresses
RL11	first instance has fixed address, rest floating
RXV211	first instance has fixed address, rest floating
MSCP disk	first instance has fixed address, rest floating
TMSCP tape	first instance has fixed address, rest floating

To maintain addressing consistency as the configuration changes, the simulator implements DEC's standard I/O address and vector autoconfiguration algorithms for devices DZ, VH, RL, RY, RQn, and TQ. This allows the user to enable or disable devices without needing to manage I/O addresses and vectors.

In addition to autoconfiguration, most devices support the SET <device> ADDRESS command, which allows the I/O page address of the device to be changed, and the SET <device> VECTOR command, which allows the vector of the device to be changed. Explicitly setting the I/O address of a device that normally uses autoconfiguration DISABLES autoconfiguration for that device and for the entire system. As a consequence, the user may have to manually configure all other autoconfigured devices, because the autoconfiguration algorithm no longer recognizes the explicitly configured device. A device can be reset to autoconfigure with the SET <device> AUTOCONFIGURE command. Auto-configuration can be restored for the entire system with the SET QBA AUTOCONFIGURE command.

The current I/O map can be displayed with the SHOW QBA IOSPACE command. Addresses that have set by autoconfiguration are marked with an asterisk (*).

All devices support the SHOW <device> ADDRESS and SHOW <device> VECTOR commands, which display the device address and vector, respectively.

2.3 Programmed I/O Devices

2.3.1 Terminal Input (TTI)

The terminal interfaces (TTI, TTO) can be set to one of three modes, 7P, 7B or 8B:

mode	input characters	output characters
7P	high-order bit cleared	high-order bit cleared, non-printing characters suppressed
7B 8B	high-order bit cleared no changes	high-order bit cleared no changes

The default mode is 8B.

When the console terminal is attached to a Telnet session, it recognizes BREAK. If BREAK is entered, and BDR<7> is set, control returns to the console firmware; otherwise, BREAK is treated as a normal terminal input condition.

The terminal input (TTI) polls the console keyboard for input. It implements these registers:

name	size	comments
BUF CSR	8 16	last data item processed control/status register
INT ERR	1	interrupt pending flag error flag (CSR<15>)
DONE	1	device done flag (CSR<7>)
IE	1	interrupt enable flag (CSR<6>)
POS	32	number of characters input
TIME	24	keyboard polling interval

2.3.2 Terminal Output (TTO)

The terminal output (TTO) writes to the simulator console window. It implements these registers:

name	size	comments
BUF CSR INT ERR DONE IE POS	8 16 1 1 1 32	<pre>last data item processed control/status register interrupt pending flag error flag (CSR<15>) device done flag (CSR<7>) interrupt enable flag (CSR<6>) number of characters input</pre>
TIME	24	time from I/O initiation to interrupt

2.3.3 LPV11 Line Printer (LPT)

The line printer (LPT) writes data to a disk file. The POS register specifies the number of the next data item to be written. Thus, by changing POS, the user can backspace or advance the printer.

The line printer implements these registers:

name	size	comments
BUF CSR INT ERR	8 16 1	<pre>last data item processed control/status register interrupt pending flag error flag (CSR<15>) device dema flag (CSR<7>)</pre>
DONE IE POS TIME STOP_IOE	1 1 32 24 1	device done flag (CSR<7>) interrupt enable flag (CSR<6>) position in the output file time from I/O initiation to interrupt stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
-------	----------	--------------

not attached	1 0	report error and stop out of paper
OS I/O error	x	report error and stop

2.3.4 Real-Time Clock (CLK)

The clock (CLK) implements these registers:

name	size	comments
CSR	16	control/status register
INT	1	interrupt pending flag
IE	1	interrupt enable flag (CSR<6>)
TODR	32	time-of-day register
BLOW	1	TODR battery low indicator
TIME	24	clock frequency
TPS	8	ticks per second (100)

The real-time clock autocalibrates; the clock interval is adjusted up or down so that the clock tracks actual elapsed time.

2.4 Disks

2.4.1 RLV12/RL01,RL02 Cartridge Disk (RL)

RLV12 options include the ability to set units write enabled or write locked, to set the drive type to RL01, RL02, or autosize, and to write a DEC standard 044 compliant bad block table on the last track:

SET RLn	LOCKED	set unit n write locked
SET RLn	WRITEENABLED	set unit n write enabled
SET RLn	RL01	set type to RL01
SET RLn	RL02	set type to RL02
SET RLn	AUTOSIZE	set type based on file size at ATTACH
SET RLn	BADBLOCK	write bad block table on last track

The type options can be used only when a unit is not attached to a file. The bad block option can be used only when a unit is attached to a file. Units can also be set ENABLED or DISABLED. The RLV12 does not support the BOOT command.

The RLV12 implements these registers:

name	size	comments
RLCS RLDA	16 16	control/status disk address
RLBA RLBAE	16 6	memory address memory address extension (RLV12)
RLMPRLMP2	16	multipurpose register queue
INT	1	interrupt pending flag
ERR	1	error flag (CSR<15>)
DONE	1	device done flag (CSR<7>)
IE	1	interrupt enable flag (CSR<6>)
STIME	24	seek time, per cylinder

RTIME	24	rotational delay
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1 0	report error and stop disk not ready
end of file	x	assume rest of disk is zero
OS I/O error	x	report error and stop

2.4.2 RQDX3 MSCP Disk Controllers (RQ, RQB, RQC, RQD)

The simulator implements four MSCP disk controllers, RQ, RQB, RQC, RQD. Initially, RQB, RQC, and RQD are disabled. Each RQ controller simulates an RQDX3 MSCP disk controller with four drives. RQ options include the ability to set units write enabled or write locked, and to set the drive type to one of many disk types:

SET RQn L	LOCKED	set	unit	n١	write	locke	ed	
SET RQn W	WRITEENABLED	set	unit	n١	write	enabl	Led	
SET RQn R	RX50	set	type	to	RX50			
SET RQn R	RX33	set	type	to	RX33			
SET RQn R	RD51	set	type	to	RD51			
SET RQn R	RD52	set	type	to	RD52			
SET RQn R	RD53	set	type	to	RD53			
SET RQn R	RD54	set	type	to	RD54			
SET RQn R	RD31	set	type	to	RD31			
SET RQn R	RA81	set	type	to	RA81			
SET RQn R	RA82	set	type	to	RA82			
set RQn R	RA71	set	type	to	RA71			
SET RQn R	RA72	set	type	to	RA72			
SET RQn R	RA90	set	type	to	RA90			
SET RQn R	RA92	set	type	to	RA92			
SET RQn R	RRD40	set	type	to	RRD40) (CD	ROI	M)
SET RQn R	RAUSER{=n}	set	type	to	RA82	with	n l	MB's
SET -L RQ	2n RAUSER{=n}	set	type	to	RA82	with	n i	LBN's

The type options can be used only when a unit is not attached to a file. RAUSER is a "user specified" disk; the user can specify the size of the disk in either MB (1000000 bytes) or logical block numbers (LBN's, 512 bytes each). The minimum size is 5MB; the maximum size is 2GB without extended file support, 1TB with extended file support

Units can also be set ENABLED or DISABLED. The RQ controllers do not support the BOOT command.

Each RQ controller implements the following special SHOW commands:

SHOW RQn TYPE	show drive type
SHOW RQ RINGS	show command and response rings
SHOW RQ FREEQ	show packet free queue
SHOW RQ RESPQ	show packet response queue
SHOW RQ UNITQ	show unit queues
SHOW RQ ALL	show all ring and queue state
SHOW RQn UNITQ	show unit queues for unit n

Each RQ controller implements these registers:

name	size	comments
SA	16	status/address register
SIDAT	16	step 1 init host data
COBA	22	command queue base address
COLNT	8	command queue length
CQIDX	8	command queue index
ROBA	22	request queue base address
RQLNT	8	request queue length
RQIDX	8	request queue index
FREE	5	head of free packet list
RESP	5	
	5	head of response packet list
PBSY	-	number of busy packets
CFLGS	16	controller flags
CSTA	4	controller state
PERR	9	port error number
CRED	5	host credits
HAT	17	host available timer
HTMO	17	host timeout value
CPKT[0:3]	5	current packet, units 0-3
PKTQ[0:3]	5	packet queue, units 0-3
UFLG[0:3]	16	unit flags, units 0-3
INT	1	interrupt request
ITIME	1	response time for initialization steps
		(except for step 4)
QTIME	24	response time for 'immediate' packets
XTIME	24	response time for data transfers
PKTS[33*32]	16	packet buffers, 33W each, 32 entries

While VMS is not timing sensitive, most of the BSD-derived operating systems (NetBSD, OpenBSD, etc) are. The QTIME and XTIME parameters are set to values that allow these operating systems to run correctly.

Error handling is as follows:

error	processed as
not attached	disk not ready
end of file	assume rest of disk is zero
OS I/O error	report error and stop

2.4.3 RXV21/RX02 Floppy Disk (RY)

RXV21 options include the ability to set units write enabled or write locked, single or double density, or autosized:

SET RYn	LOCKED	set	unit	n	write locked
SET RYn	WRITEENABLED	set	unit	n	write enabled
SET RYn	SINGLE	set	unit	n	single density
SET RYn	DOUBLE	set	unit	n	double density (default)
SET RYn	AUTOSIZE	set	unit	n	autosized

The RXV21 does not support the BOOT command.

The RXV21 implements these registers:

name	size	comments
RYCS	16	status
RYBA	16	buffer address
RYWC	8	word count
RYDB	16	data buffer
RYES	12	error status
RYERR	8	error code
RYTA	8	current track
RYSA	8	current sector
STAPTR	4	controller state
INT	1	interrupt pending flag
ERR	1	error flag (CSR<15>)
TR	1	transfer ready flag (CSR<7>)
IE	1	interrupt enable flag (CSR<6>)
DONE	1	device done flag (CSR<5>)
CTIME	24	command completion time
STIME	24	seek time, per track
XTIME	24	transfer ready delay
STOP_IOE	1	stop on I/O error
SBUF[0:255]	8	sector buffer array

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1	report error and stop
	0	disk not ready

RX02 data files are buffered in memory; therefore, end of file and OS I/O errors cannot occur.

2.5 Tapes

2.5.1 TSV11/TSV05 Magnetic Tape (TS)

TS options include the ability to make the unit write enabled or write locked.

SET	ΤS	LOCKED	set	unit	write	locked
SET	ΤS	WRITEENABLED	set	unit	write	enabled

The TSV11 does not support the BOOT command.

The TS controller implements these registers:

name	size	comments
TSSR	16	status register
TSBA	16	bus address register
TSDBX	16	data buffer extension register
CHDR	16	command packet header

MHDR16message packet headerMRFC16message packet residual frame countMXS016message packet extended status 0MXS116message packet extended status 1MXS216message packet extended status 2MXS316message packet extended status 3MXS416message packet extended status 4
MXS016message packet extended status 0MXS116message packet extended status 1MXS216message packet extended status 2MXS316message packet extended status 3
MXS216message packet extended status 2MXS316message packet extended status 3
MXS3 16 message packet extended status 3
MXS4 16 message packet extended status 4
WADL 16 write char packet low address
WADH 16 write char packet high address
WLNT 16 write char packet length
WOPT 16 write char packet options
WXOPT 16 write char packet extended options
ATTN 1 attention message pending
BOOT 1 boot request pending
OWNC 1 if set, tape owns command buffer
OWNM 1 if set, tape owns message buffer
TIME 24 delay
POS 32 position

Error handling is as follows:

error	processed as
not attached	tape not ready
end of file	bad tape
OS I/O error	fatal tape error

2.5.2 TQK50 TMSCP Disk Controller (TQ)

The TQ controller simulates the TQK50 TMSCP disk controller. TQ options include the ability to set units write enabled or write locked, and to specify the controller type and tape length:

SET	TQn LOCKED	set unit n write locked
SET	TQn WRITEENABLED	set unit n write enabled
SET	TQ TK50	set controller type to TK50
SET	TQ TK70	set controller type to TK70
SET	TQ TU81	set controller type to TU81
SET	TQ TKUSER{=n}	set controller type to TK50 with
		tape capacity of n MB

User-specified capacity must be between 50 and 2000 MB. The TQK50 does not support the $\tt BOOT$ command.

The TQ controller implements the following special SHOW commands:

SHOW TO	Q TYPE	show controller type
SHOW TÇ	Q RINGS	show command and response rings
SHOW TÇ	Q FREEQ	show packet free queue
SHOW TO	Q RESPQ	show packet response queue
SHOW TO	Q UNITQ	show unit queues
SHOW TO	2 ALL	show all ring and queue state

SHOW TQn UNITQ

The TQ controller implements these registers:

name	size	comments
SA	16	status/address register
SIDAT	16	step 1 init host data
CQBA	22	command queue base address
CQLNT	8	command queue length
CQIDX	8	command queue index
RQBA	22	request queue base address
RQLNT	8	request queue length
RQIDX	8	request queue index
FREE	5	head of free packet list
RESP	5	head of response packet list
PBSY	5	number of busy packets
CFLGS	16	controller flags
CSTA	4	controller state
PERR	9	port error number
CRED	5	host credits
HAT	17	host available timer
HTMO	17	host timeout value
CPKT[0:3]	5	current packet, units 0-3
PKTQ[0:3]	5	packet queue, units 0-3
UFLG[0:3]	16	unit flags, units 0-3
POS[0:3]	32	tape position, units 0-3
OBJP[0:3]	32	object position, units 0-3
INT	1	interrupt request
ITIME	1	response time for initialization steps (except for step 4)
QTIME	24	response time for 'immediate' packets
XTIME	24	response time for data transfers
PKTS[33*32]	16	packet buffers, 33W each, 32 entries

Error handling is as follows:

error	processed as
not attached	tape not ready
end of file	end of medium
OS I/O error	fatal tape error

2.6 Communications Devices

2.6.1 DZV11 Terminal Multiplexer (DZ)

The DZV11 is an 4-line terminal multiplexor. Up to 4 DZ11's (16 lines) are supported. The number of lines can be changed with the command

```
SET DZ LINES=n set line count to n
```

The line count must be a multiple of 4, with a maximum of 16.

The DZ11 supports three character processing modes, 7P, 7B, and 8B:

mode	input characters	output characters
7P	high-order bit cleared	high-order bit cleared, non-printing characters suppressed
7B 8B	high-order bit cleared no changes	high-order bit cleared no changes

The default is 8B.

The DZV11 supports logging on a per-line basis. The command

SET DZ LOG=line=filename

enables logging for the specified line to the indicated file. The command

SET DZ NOLOG=line

disables logging for the specified line and closes any open log file. Finally, the command

SHOW DZ LOG

displays logging information for all DZ lines.

The terminal lines perform input and output through Telnet sessions connected to a user-specified port. The ATTACH command specifies the port to be used:

ATTACH {-am} DZ <port> set up listening port

where port is a decimal number between 1 and 65535 that is not being used for other TCP/IP activities. The optional switch -m turns on the DZV11's modem controls; the optional switch -a turns on active disconnects (disconnect session if computer clears Data Terminal Ready). Without modem control, the DZV11 behaves as though terminals were directly connected; disconnecting the Telnet session does not cause any operating system-visible change in line status.

Once the DZ is attached and the simulator is running, the DZ will listen for connections on the specified port. It assumes that the incoming connections are Telnet connections. The connection remains open until disconnected by the simulated program, the Telnet client, a SET DZ DISCONNECT command, or a DETACH DZ command.

Other special DZ commands:

SHOW DZ CONNECTIONS	show current connections
SHOW DZ STATISTICS	show statistics for active connections
SET DZ DISCONNECT=linenumber	disconnects the specified line.

The DZV11 implements these registers:

name	size	comments
CSR[0:3] RBUF[0:3]	16 16	control/status register, boards 03 receive buffer, boards 03
LPR[0:3]	16	line parameter register, boards 03

TCR[0:3]	16	transmission control register, boards 03
MSR[0:3]	16	modem status register, boards 03
TDR[0:3]	16	transmit data register, boards 03
SAENB[0:3]	1	silo alarm enabled, boards 03
RXINT	4	receive interrupts, boards 30
TXINT	4	transmit interrupts, boards 30
MDMTCL	1	modem control enabled
AUTODS	1	autodisconnect enabled

The DZV11 does not support save and restore. All open connections are lost when the simulator shuts down or the DZ is detached.

2.6.2 DHQ11 Terminal Multiplexer (VH)

The DHQ11 is an 8-line terminal multiplexer for Qbus systems. Up to 4 DHQ11's are supported.

The DHQ11 is a programmable asynchronous terminal multiplexer. It has two programming modes: DHV11 and DHU11. The register sets are compatible with these devices. For transmission, the DHQ11 can be used in either DMA or programmed I/O mode. For reception, there is a 256-entry FIFO for received characters, dataset status changes, and diagnostic information, and a programmable input interrupt timer (in DHU mode). The device supports 16-, 18-, and 22-bit addressing. The DHQ11 can be programmed to filter and/or handle XON/XOFF characters independently of the processor. The DHQ11 supports programmable bit width (between 5 and 8) for the input and output of characters.

The DHQ11 has a rocker switch for determining the programming mode. By default, the DHV11 mode is selected, though DHU11 mode is recommended for applications that can support it. The VH controller may be adjusted on a per controller basis as follows:

SET VHn DHU	use the DHU programming mode and registers
SET VHn DHV	use the DHV programming mode and registers

DMA output is supported. In a real DHQ11, DMA is not initiated immediately upon receipt of TX.DMA.START but is dependent upon some internal processes. The VH controller mimics this behavior by default. It may be desirable to alter this and start immediately, though this may not be compatible with all operating systems and diagnostics. You can change the behavior of the VH controller as follows:

SET VHn NORMAL	use normal DMA procedures
SET VHn FASTDMA	set DMA to initiate immediately

The terminal lines perform input and output through Telnet sessions connected to a user-specified port. The ATTACH command specifies the port to be used:

ATTACH VH <port> set up listening port

where port is a decimal number between 1 and 65535 that is not being used for other TCP/IP activities. This port is the point of entry for al lines on all VH controllers.

Modem and auto-disconnect support may be set on an individual controller basis. The SET MODEM command directs the controller to report modem status changes to the computer. The SET HANGUP command turns on active disconnects (disconnect session if computer clears Data Terminal Ready).

SET	VHn	[NO]MODEM	disable/enable	modem control	
SET	VHn	[NO]HANGUP	disable/enable	disconnect on DTR of	drop

Once the VH is attached and the simulator is running, the VH will listen for connections on the specified port. It assumes that the incoming connections are Telnet connections. The connection remains open until disconnected by the simulated program, the Telnet client, a SET VH DISCONNECT command, or a DETACH VH command.

Other special VH commands:

SHOW VH CONNECTIONS	show current connections
SHOW VH STATISTICS	show statistics for active connections
SET VH DISCONNECT=linenumber	disconnects the specified line.

The DHQ11 implements these registers, though not all can be examined from SCP:

name	size	comments
CSR[0:3]	16	control/status register, boards 03
RBUF[0:3]	16	receive buffer, boards 03
LPR[0:3]	16	line parameter register, boards 03
RXINT	4	receive interrupts, boards 30
TXINT	4	transmit interrupts, boards 30

[more to be described...]

The DHQ11 does not support save and restore. All open connections are lost when the simulator shuts down or the VH is detached.

2.6.3 DELQA/DEQNA Qbus Ethernet Controllers (XQ, XQB)

The simulator implements two DELQA/DEQNA Qbus Ethernet controllers (XQ, XQB). Initially, XQ is enabled, and XQB is disabled. Options allow control of the MAC address, the controller mode, and the sanity timer.

SET XQ MAC=<mac-address> ex. 08-00-2B-AA-BB-CC SHOW XQ MAC

These commands are used to change or display the MAC address. <mac-address> is a valid ethernet MAC, delimited by dashes or periods. The controller defaults to 08-00-2B-AA-BB-CC, which should be sufficient if there is only one SIMH controller on your LAN. Two cards with the same MAC address will see each other's packets, resulting in a serious mess.

```
SET XQ TYPE={DEQNA|[DELQA]}
SHOW XQ TYPE
```

These commands are used to change or display the controller mode. DELQA mode is better and faster but may not be usable by older or non-DEC OS's. Also, be aware that DEQNA mode is not supported by many modern OS's. The DEQNA-LOCK mode of the DELQA card is emulated by setting the the controller to DEQNA -- there is no need for a separate mode. DEQNA-LOCK mode behaves exactly like a DEQNA, except for the operation of the VAR and MOP processing.

```
SET XQ SANITY={ON|[OFF]}
SHOW XQ SANITY
```

These commands change or display the INITIALIZATION sanity timer (DEQNA jumper W3/DELQA switch S4). The INITIALIZATION sanity timer has a default timeout of 4 minutes, and cannot be turned off, just reset. The normal sanity timer can be set by operating system software regardless of the state of this

switch. Note that only the DEQNA (or the DELQA in DEQNA-LOCK mode (=DEQNA)) supports the sanity timer -- it is ignored by a DELQA in Normal mode, which uses switch S4 for a different purpose.

```
SET XQ POLL={DEFAULT | 4..2500}
SHOW XQ POLL
```

These commands change or display the service polling timer. The polling timer is calibrated to run the service thread 200 times per second. This value can be changed to accomodate particular system requirements for more (or less) frequent polling.

SHOW XQ STATS

This command will display the accumulated statistics for the simulated Ethernet controller.

To access the network, the simulated Ethernet controller must be attached to a real Ethernet interface:

```
ATTACH XQ0 {ethX|<device_name>} ex. eth0 or /dev/era0 SHOW XQ ETH
```

where X in 'ethX' is the number of the Ethernet controller to attach, or the real device name. The X number is system dependant. If you only have one Ethernet controller, the number will probably be 0. To find out what your system thinks the Ethernet numbers are, use the SHOW XQ ETH command. The device list can be quite cryptic, depending on the host system, but is probably better than guessing. If you do not attach the device, the controller will behave as though the Ethernet cable were unplugged.

XQ and XQB have the following registers:

name	size	comments
SA0	16	station address word 0
SA1	16	station address word 1
SA2	16	station address word 2
SA3	16	station address word 3
SA4	16	station address word 4
SA5	16	station address word 5
RBDL	32	receive buffer descriptor list
XBDL	32	<pre>trans(X)mit buffer descriptor list</pre>
CSR	16	control status register
VAR	16	vector address register
INT	1	interrupt request flag

One final note: because of its asynchronous nature, the XQ controller is not limited to the ~1.5Mbit/sec of the real DEQNA/DELQA controllers, nor the 10Mbit/sec of a standard Ethernet. Attach it to a Fast Ethernet (100 Mbit/sec) card, and "Feel the Power!" :-)

3 Symbolic Display and Input

The VAX simulator implements symbolic display and input. Display is controlled by command line switches:

-a,-c	display as ASCII data
-m	display instruction mnemonics
-p	display compatibility mode mnemonics
-r	display RADIX50 encoding

Input parsing is controlled by the first character typed in or by command line switches:

' or -a	ASCII characters (determined by length)
" or -c	ASCII string (maximum 60 characters)
-р	compatibility mode instruction mnemonic
alphabetic	instruction mnemonic
numeric	octal number

VAX instruction input uses standard VAX assembler syntax. Compatibility mode instruction input uses standard PDP-11 assembler syntax.

syntax	specifier	displacemen	t comments
#s^n, #n	On	-	short literal, integer only
[Rn]	4n	-	indexed, second specifier follows
Rn	5n	-	PC illegal
(Rn)	бn	-	PC illegal
– (Rn)	7n	-	PC illegal
(Rn)+	8n	-	
#i^n, #n	8F	n	immediate
@(Rn)+	9n	-	
@#addr	9F	addr	absolute
{+/-}b^d(Rn)	An	{+/-}d	byte displacement
b^d	AF	d – PC	byte PC relative
@{+/-}b^d(Rn)	Bn	{+/-}d	byte displacement deferred
@b^d	BF	d - PC	byte PC relative deferred
{+/-}w^d(Rn)	Cn	{+/-}d	word displacement
w^d	CF	d - PC	word PC relative
@{+/-}w^d(Rn)	Dn	{+/-}d	word displacement deferred
@w^d	DF	d - PC	word PC relative deferred
{+/-}l^d(Rn)	En	{+/-}d	long displacement
l^d	EF	d - PC	
@{+/-}l^d(Rn)	Fn	{+/-}d	long displacement deferred
@l^d	FF	d – PC	

The syntax for VAX specifiers is as follows:

If no override is given for a literal (s^ or i^) or for a displacement or PC relative address (b^, w^, or l^), the simulator chooses the mode automatically.

Appendix - The KA655"X"

The real KA655 is limited to 64MB of memory, and the KA655 firmware is coded to this limit. However, the VAX operating systems (VMS, Ultrix, NetBSD) know very little about the hardware details. Instead, they take their memory size information from the Restart Parameter Block (RPB). If the firmware sets up an RPB for more than 64MB, the operating systems use the extra memory without requiring source changes.

If more than 64MB of memory is configured, the simulator implements an 18th CMCTL register. This readonly register gives the size of main memory in MB. The console firmware (ka655x.bin) uses this to set up the RPB. No other parts of the firmware are aware of extended memory; thus, all the diagnostic and display commands operate only on the first 64MB of memory. If 64MB or less of memory is configured, the 18th CMCTL register is invisible, and the simulator operates like a real KA655.