PDP-1 Simulator Usage 15-Jan-2006

COPYRIGHT NOTICE

The following copyright notice applies to the SIMH source, binary, and documentation:

Original code published in 1993-2006, written by Robert M Supnik Copyright (c) 1993-2006, Robert M Supnik

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik.

1	Simulat	or Files	
2	PDP-1	Features	
	2.1 CF	۲U	4
	2.2 Pro	ogrammed I/O Devices	5
	2.2.1	Paper Tape Reader (PTR)	5
	2.2.2	Paper Tape Punch (PTP)	5
	2.2.3	Console Typewriter (TTY)	6
	2.2.4	Type 62 Line Printer (LPT)	6
	2.2.5	Type 550/555 Microtape (DECtape) (DT)	7
	2.3 Dr	ums	
	2.3.1	Type 24 Serial Drum (DRM)	
	2.3.2	Type 23 Parallel Drum (DRP)	
3	Symbol	ic Display and Input	9
4		er Sets	

This memorandum documents the PDP-1 simulator.

1 Simulator Files

scp.h

sim/

sim_console.h sim_defs.h sim_fio.h sim_rev.h sim_sock.h sim_timer.h sim_tmxr.h scp.c sim_console.c sim fio.c sim_sock.c sim_timer.c sim_tmxr.c sim/pdp1/ pdp1_defs.h pdp1_cpu.c pdp1_drm.c pdp1 dt.c pdp1_lp.c pdp1_stddev.c pdp1_sys.c

2 PDP-1 Features

The PDP-1 is configured as follows:

<pre>device name(s)</pre>	simulates
CPU	PDP-1 CPU with up to 64KW of memory
PTR,PTP	integral paper tape reader/punch
TTY	console typewriter
LPT	Type 62 line printer
DRM	Type 24 serial drum
DRP	Type 23 parallel drum
DT	Type 550 Microtape (DECtape)

The PDP-1 simulator implements the following unique stop conditions:

- An unimplemented instruction is decoded, and register STOP_INST is set
- More than IND_MAX indirect addresses are detected during memory reference address decoding
- More than XCT_MAX nested executes are detected during instruction execution
- I/O wait, and no I/O operations outstanding (i.e, no I/O completion will ever occur)
- A simulated DECtape runs off the end of its reel

The LOAD command supports RIM format tapes and BLK format tapes. If the file to be loaded has an extension of .BIN, or switch -B is specified, the file is assumed to be BLK format; otherwise, it defaults to RIM format. LOAD takes an optional argument that specifies the starting address of the field to be loaded:

```
LOAD lisp.rim load RIM format file lisp.rim
LOAD ddt.rim 70000 load RIM format file ddt.rim into
the field starting at 70000
load BLK format file macro.blk
```

The DUMP command is not implemented.

2.1 CPU

The only CPU options are the presence of hardware multiply/divide and the size of main memory.

SET	CPU	MDV	enable multiply/divide	
SET	CPU	NOMDV	disable multiply/divide	2
SET	CPU	4K	set memory size = 4K	
SET	CPU	8K	set memory size = 8K	
SET	CPU	12K	set memory size = 12K	
SET	CPU	16K	set memory size = 16K	
SET	CPU	20K	set memory size = 20K	
SET	CPU	24K	set memory size = 24K	
SET	CPU	28K	set memory size = 28K	
SET	CPU	32K	set memory size = 32K	
SET	CPU	48K	set memory size = 48K	
SET	CPU	64K	set memory size = 64K	

If memory size is being reduced, and the memory being truncated contains non-zero data, the simulator asks for confirmation. Data in the truncated portion of memory is lost. Initial memory size is 64K.

CPU registers include the visible state of the processor as well as the control registers for the interrupt system.

name	size	comments
PC	16	program counter
AC	18	accumulator
IO	18	IO register
OV	1	overflow flag
PF	6	program flags<1:6>
SS	6	sense switches<1:6>
ТА	16	address switches
TW	18	test word (front panel switches)
EXTM	1	extend mode
IOSTA	18	IO status register
SBON	1	sequence break enable
SBRQ	1	sequence break request
SBIP	1	sequence break in progress
IOH	1	I/O halt in progress
IOS	1	I/O synchronizer (completion)
PCQ[0:63]	16	PC prior to last jump or interrupt; most recent PC change first
STOP_INST	1	stop on undefined instruction
SBS_INIT	1	initial state of sequence break enable

EXTM_INIT	1	initial state of extend mode
XCT_MAX	8	maximum XCT chain
IND_MAX	8	maximum nested indirect addresses
WRU	8	interrupt character

The CPU can maintain a history of the most recently executed instructions. This is controlled by the SET CPU HISTORY and SHOW CPU HISTORY commands:

SET CPU HISTORY	clear history buffer
SET CPU HISTORY=0	disable history
SET CPU HISTORY=n	enable history, length = n
SHOW CPU HISTORY	print CPU history
SHOW CPU HISTORY=n	print first n entries of CPU history

The maximum length for the history is 65536 entries.

2.2 Programmed I/O Devices

2.2.1 Paper Tape Reader (PTR)

The paper tape reader (PTR) reads data from or a disk file. The POS register specifies the number of the next data item to be read. Thus, by changing POS, the user can backspace or advance the reader.

The paper tape reader supports the BOOT command. BOOT PTR copies the RIM loader into memory and starts it running. BOOT PTR loads into the field selected by TA<0:3> (the high order four bits of the address switches).

The paper tape reader implements these registers:

name	size	comments
BUF	8	last data item processed
DONE	1	device done flag
RPLS	1	return restart pulse flag
POS	32	position in the input file
TIME	24	time from I/O initiation to interrupt
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1 0	report error and stop out of tape
end of file	1 0	report error and stop out of tape
OS I/O error	x	report error and stop

2.2.2 Paper Tape Punch (PTP)

The paper tape punch (PTP) writes data to a disk file. The POS register specifies the number of the next data item to be written. Thus, by changing POS, the user can backspace or advance the punch.

The paper tape punch implements these registers:

name	size	comments
BUF	8	last data item processed
DONE	1	device done flag
RPLS	1	return restart pulse flag
POS	32	position in the output file
TIME	24	time from I/O initiation to interrupt
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1 0	report error and stop out of tape
OS I/O error	x	report error and stop

2.2.3 Console Typewriter (TTY)

The Typewriter is a half-duplex electric typewriter (originally a Friden Flexowriter, later a Sorobon-modified IBM B). It has only a single buffer and a single carriage state but distinct input and output done and interrupt flags. The typewriter input (TTY unit 0) polls the console keyboard for input. The typewriter output (TTY unit 1) writes to the simulator console window.

The typewriter implements these registers:

name	size	comments
BUF	6	typewriter buffer
UC	1	upper case/lower case state flag
RPLS	1	return restart pulse flag
KDONE	1	input ready flag
KPOS	32	number of characters input
KTIME	24	keyboard polling interval
TDONE	1	output done flag
TPOS	32	number of characters output
TTIME	24	time from I/O initiation to interrupt

2.2.4 Type 62 Line Printer (LPT)

The line printer (LPT) writes data to a disk file. The POS register specifies the number of the next data item to be written. Thus, by changing POS, the user can backspace or advance the printer.

The line printer can be disabled and enabled with the SET LPT DISABLED and SET LPT ENABLED commands, respectively.

The line printer implements these registers:

name	size	comments
BUF	8	last data item processed

PNT	1	printing done flag
SPC	1	spacing done flag
RPLS	1	return restart pulse flag
BPTR	б	print buffer pointer
POS	32	position in the output file
TIME	24	time from I/O initiation to interrupt
STOP_IOE	1	stop on I/O error
LBUF[0:119]	8	line buffer

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1 0	report error and stop out of tape or paper
OS I/O error	x	report error and stop

2.2.5 Type 550/555 Microtape (DECtape) (DT)

The PDP-1 uses the Type 550 Microtape (later renamed DECtape), a programmed I/O controller. PDP-1 DECtape format has 4 18b words in its block headers and trailers.

DECtapes drives are numbered 1-8; in the simulator, drive 8 is unit 0. DECtape options include the ability to make units write enabled or write locked.

SET	DTn	WRITEENABLED	set	unit	n	write	enabled
SET	DTn	LOCKED	set	unit	n	write	locked

Units can also be set ENABLED or DISABLED.

The DECtape controller can be disabled and enabled with the SET DT DISABLED and SET DT ENABLED commands, respectively.

The Type 550 supports PDP-8 format, PDP-11 format, and 18b format DECtape images. ATTACH tries to determine the tape format from the DECtape image; the user can force a particular format with switches:

-r	PDP-8 format
-s	PDP-11 format
-t	18b format

The DECtape controller is a data-only simulator; the timing and mark track, and block header and trailer, are not stored. Thus, the WRITE TIMING AND MARK TRACK function is not supported; the READ ALL function always returns the hardware standard block header and trailer; and the WRITE ALL function dumps non-data words into the bit bucket.

The DECtape controller implements these registers:

name	size	comments
DTSA DTSB	12 12	status register A status register B
DTDB	18	data buffer
DTF	1	DECtape flag
BEF	1	block end flag

ERF	1	error flag
LTIME	31	time between lines
DCTIME	31	time to decelerate to a full stop
SUBSTATE	2	read/write command substate
POS[0:7]	32	position, in lines, units 0-7
STATT[0:7]	18	unit state, units 0-7
STOP_OFFR	1	stop on off-reel error

It is critically important to maintain certain timing relationships among the DECtape parameters, or the DECtape simulator will fail to operate correctly.

- LTIME must be at least 6
- DCTIME needs to be at least 100 times LTIME

Acceleration time is set to 75% of deceleration time.

2.3 Drums

The PDP-1 supported two drums: the Type 23 parallel drum (DRP) and the Type 24 serial drum (DRM). Both use device addresses 061-064; accordingly, only one can be enabled at a time. By default, the Type 24 serial drum is enabled, and the Type 23 parallel drum is disabled.

2.3.1 Type 24 Serial Drum (DRM)

The serial drum (DRM) implements these registers:

name	size	comments		
DA	9	drum address (sector number)		
MA	16	current memory address		
DONE	1	device done flag		
ERR	1	error flag		
WLK	32	write lock switches		
TIME	24	rotational latency, per word		
STOP_IOE	1	stop on I/O error		

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1 0	report error and stop drum not ready

Drum data files are buffered in memory; therefore, end of file and OS I/O errors cannot occur.

2.3.2 Type 23 Parallel Drum (DRP)

The parallel drum (DRP) implements these registers:

name	size	comments
TA RDF	12 5	track address read field
RDE	1	read enable flag

WRF	5	write field
WRF	1	write enable flag
MA	16	current memory address
WC	12	word count
BUSY	1	device busy flag
ERR	1	error flag
TIME	24	rotational latency, per word
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1 0	report error and stop drum not ready

Drum data files are buffered in memory; therefore, end of file and OS I/O errors cannot occur.

3 Symbolic Display and Input

The PDP-1 simulator implements symbolic display and input. Display is controlled by command line switches:

-a	display	as	ASCII	character	
-C	display	as	FIODEC	C character	string
-m	display	ins	structi	on mnemonio	CS

Input parsing is controlled by the first character typed in or by command line switches:

' or -a	ASCII character
" or -c	three character FIODEC string
alphabetic	instruction mnemonic
numeric	octal number

Instruction input uses modified PDP-1 assembler syntax. There are six instruction classes: memory reference, shift, skip, operate, IOT, and LAW.

Memory reference instructions have the format

memref {I} address

where I signifies indirect reference. The address is an octal number in the range 0 - 0177777.

Shift instructions have the format

shift shift_count

The shift count is an octal number in the range 0-9.

Skip instructions consist of single mnemonics, eg, SZA, SZS4. Skip instructions may be or'd together

skip skip skip...

The sense of a skip can be inverted by including the mnemonic I.

Operate instructions consist of single mnemonics, eg, CLA, CLI. Operate instructions may be or'd together

```
opr opr opr...
```

IOT instructions consist of single mnemonics, eg, TYI, TYO. IOT instructions may include an octal numeric modifier or the modifier I:

iot modifier

The simulator does not check the legality of skip, operate, or IOT combinations.

Finally, the LAW instruction has the format

LAW {I} immediate

where immediate is in the range 0 to 07777.

4 Character Sets

The PDP-1's first console was a Frieden Flexowriter; its character encoding was known as FIODEC. The PDP-1's line printer used a modified Hollerith character set. The following table provides equivalences between ASCII characters and the PDP-1's I/O devices. In the console table, UC stands for upper case.

	PDP-1	PDP-1	
ASCII	console	line printer	
000 - 007	none	none	
bs	075	none	
tab	036	none	
012 - 014	none	none	
cr	077	none	
016 - 037	none	none	
space	000	000	
!	{OR} UC+005	none	
"	UC+001	none	
#	{IMPLIES} UC+004	none	
\$ %	none	none	
00	none	none	
&	{AND} UC+006	none	
1	UC+002	none	
(057	057	
)	055	055	
*	{TIMES} UC+073	072	
+	UC+054	074	
,	033	033	
-	054	054	
	073	073	
/	021	021	
0	020	020	
1	001	001	
2	002	002	
3	003	003	
4	004	004	

5	005	005
6	006	006
7	007	007
8	010	010
9	011	011
:		
	none	none
i	none	none
<	UC+007	034
=	UC+033	053
>	UC+010	034
?	UC+021	037
@	{MID DOT} 040	{MID DOT} 040
A	UC+061	061
В	UC+062	062
С	UC+063	063
D	UC+064	064
Е	UC+065	065
F	UC+066	066
G	UC+067	067
н	UC+070	070
	UC+070 UC+071	
I		071
J	UC+041	041
K	UC+042	042
L	UC+043	043
M	UC+044	044
N	UC+045	045
0	UC+046	046
P	UC+047	047
Q	UC+050	050
R	UC+051	051
S	UC+022	022
Т	UC+023	023
U	UC+024	024
V	UC+025	025
Ŵ	UC+026	026
X	UC+020 UC+027	027
Y	UC+030	030
Z	UC+031	031
]	UC+057	none
\mathbf{X}	{OVERLINE} 056	{OVERLINE} 056
]	UC+055	none
^	{UP ARROW} UC+011	{UP ARROW} 035
-	UC+040	UC+040
•	{RT ARROW} UC+020	036
a	061	none
b	062	none
С	063	none
d	064	none
e	065	none
f	066	none
g	067	none
9 h	070	
i	071	none
		none
j ŀ	041	none
k	042	none
1	043	none
m	044	none

045	none
046	none
047	none
050	none
051	none
022	none
023	none
024	none
025	none
026	none
027	none
030	none
031	none
none	none
UC+056	076
none	none
UC+003	013
075	none
	046 047 050 051 022 023 024 025 026 027 030 031 none UC+056 none UC+003