HP2100 Simulator Usage 15-Jan-2006

COPYRIGHT NOTICE

The following copyright notice applies to the SIMH source, binary, and documentation:

Original code published in 1993-2006, written by Robert M Supnik Copyright (c) 1993-2006, Robert M Supnik

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik.

1	Sim	ulator Files	3
2	HP2	100 Features	3
	2.1	CPU	4
	2.2	Memory Protect	6
	2.3	DMA/DCPC Controllers	7
	2.4	Variable Device Assignments	7
	2.4.1	Device State	8
	2.5	Programmed I/O Devices	8
	2.5.1	12597A-002 Duplex Register Interface (PTR) with 2748 Paper Tape Reader	8
	2.5.2	2 12597A-005 Duplex Register Interface (PTP) with 2895 Paper Tape Punch	9
	2.5.3	3 12531C Buffered Teleprinter Interface (TTY) with 2752 Teleprinter 1	0
	2.5.4	12653A Printer Controller (LPS) with 2767 Line Printer, 12566B Microcircuit	
	Inter	face with Loopback Connector1	1
	2.5.5	5 12845B Printer Controller (LPT) with 2607 Line Printer 1	2
	2.5.6	5 12539C Time Base Generator (CLK) 1	3
	2.5.7	1 12920A Terminal Multiplexer (MUX, MUXL, MUXM) 1	3
	2.5.8	B Interprocessor Link (IPLI, IPLO) 1	5
	2.6	Disk Controllers 1	6
	2.6.1	12557A Disk Controller (DPC, DPD) with Four 2781 Drives, 13210A Disk	
	Con	troller (DPC, DPD) with Four 7900 Drives 1	6
	2.6.2	2 12565A Disk Controller (DQC, DQD) with Two 2883 Drives 1	7
	2.6.3	12606B Fixed Head Disk Controller (DRC, DRD) with 2770/2771 Disk, 12610B	
	Drui	m Controller (DRC, DRD) with 2773/2774/2775 Drum 1	9
	2.6.4	13037 Disk Controller (DS) with Eight 7905/7906/7920/7925 Drives 2	0
	2.7	Magnetic Tape	2
	2.7.1	1 12559C Magnetic Tape Controller (MTC, MTD) with One 3030 Drive 2	2
	2.7.2	2 13181A Magnetic Tape Controller (MSC, MSD) with Four 7970B Drives, 18183A	
	Mag	netic Tape Controller (MSC, MSD) with Four 7970E Drives	3
3	Sym	bolic Display and Input 2	4

This memorandum documents the HP 2100 simulator.

Simulator Files 1

sim/

sim/	scp.h sim_console.h sim_defs.h sim_fio.h sim_rev.h sim_rev.h sim_sock.h sim_tape.h sim_timer.h sim_tmxr.h
	scp.c sim_console.c sim_fio.c sim_sock.c sim_tape.c sim_timer.c sim_tmxr.c
sim/hp2100/	hp2100_cpu.h hp2100_defs.h hp2100_fp1.h hp2100_cpu.c hp2100_cpu1.c hp2100_fp1.c hp2100_dp.c hp2100_dq.c hp2100_dr.c hp2100_dr.c hp2100_lp1.c hp2100_lp1.c hp2100_lp1.c hp2100_lp1.c hp2100_mt.c hp2100_mt.c hp2100_mt.c hp2100_mt.c hp2100_stddev.c hp2100_sys.c

2 HP2100 Features

The HP2100 simulator is configured as follows:

device names	simulates
СРИ	2116 CPU with up to 32KW of memory 2100 CPU with up to 32KW of memory 21MX-M or -E CPU with up to 1024KW of memory EAU, FP, FFP, IOP, and/or DMS microcode extensions
MP	12892B memory protect

DMA0, DMA1	12895A/12897B direct memory access controller
PTR	12597A duplex register interface with 2748 paper tape
	reader
PTP	12597A duplex register interface with 2895 paper tape
	punch
TTY	12531C buffered teleprinter interface with 2752
	teleprinter
LPS	12653A printer controller with 2767 line printer
	12566B microcircuit interface with loopback connector
LPT	12845B printer controller with 2607 line printer
CLK	12539C time base generator
MUX,MUXL,MUXM	12920A terminal multiplexer
DP	12557A disk controller with four 2871 drives
	13210A disk controller with four 7900 drives
DQ	12565A disk controller with two 2883 drives
DR	12606B fixed head disk controller with 2770/2771 disk
	12610B drum controller with 2773/2774/2775 drum
DS	13037 disk controller with eight 7905/7906/7920/7925
	drives
MT	12559C magnetic tape controller with one 3030 drive
MS	13181A magnetic tape controller with four 7970B drives
	13183A magnetic tape controller with four 7970E drives
IPLI	12566B interprocessor link, input side
IPLO	12566B interprocessor link, output side

The HP2100 simulator implements several unique stop conditions:

- Decode of an undefined instruction, and STOP_INST is set -
- -
- Reference to an undefined I/O device, and STOP_DEV is set More than INDMAX indirect references are detected during memory reference address decoding

The LOAD command supports standard absolute binary format. The DUMP command is not implemented.

2.1 CPU

CPU options include choice of model, memory size, and instruction sets. Several microcode options are simulated:

EAU	Extended Arithmetic Unit
FP	Single-Precision Floating Point
FFP	Fast FORTRAN Processor
IOP	2000/Access I/O Processor
DMS	Dynamic Mapping System

The general command form is:

SET {-F} CPU <option>

Options that may be specified are:

CPU	2116	2116 CPU
CPU	2100	2100 CPU
CPU	21MX-M	21MX M-series CPU
CPU	21MX-E	21MX E-series CPU
CPU	EAU	EAU instructions (2116 only)
	CPU CPU CPU CPU CPU	CPU 2116 CPU 2100 CPU 21MX-M CPU 21MX-E CPU EAU

SET	CPU	NOEAU	no EAU instructions (2116 only)
SET	CPU	FP	FP instructions (2100 only)
SET	CPU	NOFP	no FP instructions (2100 only)
SET	CPU	IOP	IOP instructions (2100, 21MX only)
SET	CPU	NOIOP	no IOP instructions (2100, 21MX only)
SET	CPU	FFP	FFP instructions (2100, 21MX only)
SET	CPU	NOFFP	no FFP instructions (2100, 21MX only)
SET	CPU	DMS	DMS instructions (21MX only)
SET	CPU	NODMS	no DMS instructions (21MX only)
SET	CPU	4K	set memory size = 4K
SET	CPU	8K	set memory size = 8K
SET	CPU	16K	set memory size = 16K
SET	CPU	32K	set memory size = 32K
SET	CPU	64K	set memory size = 64K (21MX only)
SET	CPU	128K	set memory size = 128K (21MX only)
SET	CPU	256K	set memory size = 256K (21MX only)
SET	CPU	512K	set memory size = 512K (21MX only)
SET	CPU	1024K	set memory size = 1024K (21MX only)

On the 2100, EAU is standard, and the FP or FFP and IOP options are mutually exclusive. On the 21MX, EAU and FP are standard. The DMS, FFP, and IOP instructions are optional. The 21MX-E supports the TIMER instruction; on the 21MX-M, this instruction decodes as MPY.

Setting the CPU type to 2116, 2100, or 21MX establishes a consistent set of common options. Additional SET CPU commands may follow to fine-tune the desired feature set.

The initial memory size is 32K. Memory sizes larger than 32K are supported only on the 21MX. If the memory size is being reduced, either by setting a smaller size or by changing the CPU model from 21MX to 2116 or 2100 when the current memory size is more than 32K, and the memory being truncated contains non-zero data, the simulator asks for confirmation before proceeding. The confirmation request may be suppressed by using the "-f" switch. Data in the truncated portion of memory is lost.

These switches are recognized when examining or depositing in CPU memory:

-v ii	DMS	enabled,	interpret address as virtual
-s it	DMS	enabled,	force system map
-u it	DMS	enabled,	force user map
-p it	DMS	enabled,	force port A map
-q it	E DMS	enabled,	force port B map

The CPU implements four different kinds of instruction breakpoints:

-е	break	uncondi	tionally	
-n	break	if DMS	is disable	d
-s	break	if DMS	enabled an	d system map
-u	break	if DMS	enabled an	d user map

CPU registers include the visible state of the processor as well as the control registers for the interrupt system.

name	models	size	comments
P A	all all	15 16	program counter A register
В	all	16	B register
М	all	15	M (memory address) register

Т	all	16	T (memory data) register
Х	21MX	16	X index register
Y	21MX	16	Y index register
S	all	16	switch/display register
Е	all	1	extend flag
0	all	1	overflow flag
ION	all	1	interrupt enable flag
ION_DEFER	all	1	interrupt defer flag
CIR	all	б	central interrupt register
DMSENB	21MX	1	DMS enable
DMSCUR	21MX	1	DMS current map (1 = user map)
DMSSR	21MX	16	DMS status register
DMSVR	21MX	16	DMS violation register
DMSMAP[128]	21MX	16	DMS maps
			[0:31] system map
			[32:63] user map
			[64:95] port A map
			[96:127] port B map
STOP_INST	all	1	stop on undefined instruction
STOP_DEV	all	1	stop on undefined device
INDMAX	all	16	indirect address limit
PCQ[0:63]	all	15	P of last JMP, JSB, or interrupt;
			most recent P change first

BOOT CPU implements the 21MX IBL facility. IBL is controlled by the switch register S. S<15:14> selects the device to boot:

00	2748B paper-tape reader (12992K ROM)
01	7900A/2883 disk (12992A ROM)
10	7970B/E tape (12992D ROM)
11	13037 disk (12992B ROM)

For the 7900A/2883 only, S<13:12> specify the type of disk:

00	7900A
10	2883

S<11:6> contains the device address. If the device has two addresses, S<11:6> specifies the lower address. S<5:3> are passed to the bootstrap program. S<2:0> specify options for the boot loader. IBL will not report an error if the device address in S<11:6> is incorrect.

2.2 Memory Protect

Memory protect is standard equipment on the 2100 (although it may be disabled by removing a jumper) and optional on the 2116 and 21MX. The following registers are implemented:

name	size	comments
CTL	1	memory protection enable
FLG	1	protection violation flag
FBF	1	protection violation flag buffer
FR	15	fence register
VR	16	violation register
EVR	1	enable violation register flag
MEV	1	memory expansion (DMS) violation flag

The 21MX memory protect card (12892B) has three feature options that are implemented by jumper settings. These are controlled by the following commands:

SET	MP	JSBIN	jumper	W5	installed
SET	MP	JSBOUT	jumper	W5	removed
SET	MP	INTIN	jumper	Wб	installed
SET	MP	INTOUT	jumper	₩б	removed
SET	MP	SEL1IN	jumper	W7	installed
SET	MP	SEL1OUT	jumper	W7	removed

W5 determines whether JSB instructions referencing memory locations 0 and 1 are legal (installed) or illegal (removed). W6 controls whether the first three levels of indirect addressing hold off (installed) or permit (removed) pending interrupts. W7 determines whether I/O instructions referencing select codes other than 1 are legal (installed) or illegal (removed); note that I/O instructions referencing select code 1 are legal, and HLT instructions are illegal, regardless of the setting of W7.

The default configuration is JSB (W5) installed, INT (W6) installed, and SEL1 (W7) removed, providing compatibility with the 2116 and 2100 memory protect cards.

2.3 DMA/DCPC Controllers

The direct memory access/dual channel port controller is an option for all three CPUs. DMA/DCPC provides two channel controllers (DMA0 and DMA1). Each DMA channel has the following visible state:

name	size	comments
CMD	1	channel enabled
CTL	1	interrupt enabled
FLG	1	channel ready
FBF	1	channel ready buffer
CTLALT	1	command word 2/3 selector
CW1	16	command word 1
CW2	16	command word 2
CW3	16	command word 3

2.4 Variable Device Assignments

On the HP2100, I/O device take their device numbers from the backplane slot they are plugged into. Thus, device number assignments vary considerably from system to system, and software package to software package. The HP2100 simulator supports dynamic device number assignment. To show the current device number, use the SHOW <dev> DEVNO command:

```
sim> SHOW PTR DEVNO
device=10
```

To change the device number, use the SET <dev> DEVNO=<num> command:

```
sim> SET PTR DEVNO=30
sim> SHOW PTR DEVNO
device=30
```

The new device number must be in the range 010..077 (octal). For devices with two device numbers, only the lower numbered device number can be changed; the higher is automatically set to the lower + 1. If a device number conflict occurs, the simulator will return an error when started.

2.4.1 Device State

All devices other than the CPU and TTY may be disabled or enabled. Disabling a device simulates removing the associated interface from the CPU card cage. To disable or enable a device, use:

SET	<dev></dev>	DISABLED	disable device
SET	<dev></dev>	ENABLED	enable device

For devices with more than one device number, disabling or enabling any device in the set disables or enables all of the devices.

Devices consisting of multiple addressable units connected to a controller typically allow the units to be individually enabled or disabled. Disabled simulates disconnecting the associated unit from the controller. The commands to set units enabled and disabled are:

SET	<unit></unit>	DISABLED	disable unit
SET	<unit></unit>	ENABLED	enable unit

Some devices and units allow simulation of power-down conditions. Power settings are controlled by these commands:

SET	<dev></dev>	POWEROFF	turn	power	off
SET	<dev></dev>	POWERON	turn	power	on

Peripherals that provide operator-selectable disconnection, typically via an "offline" switch, provide these simulation equivalents:

SET	<dev></dev>	OFFLINE	set	peripheral	offline
SET	<dev></dev>	ONLINE	set	peripheral	online

2.5 Programmed I/O Devices

2.5.1 12597A-002 Duplex Register Interface (PTR) with 2748 Paper Tape Reader

The paper tape reader (PTR) reads data from a disk file. The POS register specifies the number of the next data item to be read. Thus, by changing POS, the user can backspace or advance the reader.

For diagnostic purposes, a tape loop may be simulated with the commands:

SET	PTR	DIAG	rewind	tape	at EOF		
SET	PTR	READER	supply	tape	trailer	at	EOF

The paper tape reader supports the BOOT command. BOOT PTR copies the IBL into memory and starts it running. The switch register (S) is set automatically to the value expected by the IBL loader:

<15:12> = 0000 <11:6> = device code <5:3> = unchanged <2:0> = 000

The paper tape reader implements these registers:

name size comments

BUF	8	last data item processed	
CMD	1	reader enable	
CTL	1	device/interrupt enable	
FLG	1	device ready	
FBF	1	device ready buffer	
SRQ	1	device DMA service request	
TRLLIM	8	number of trailing nulls to append	
		after end-of-file is detected	
POS	32	position in the input file	
TIME	24	time from I/O initiation to interrupt	
STOP_IOE	1	stop on I/O error	

The TRLLIM register specifies the number of nulls to supply as paper tape trailer when EOF is detected. If TRLLIM is set to zero or the count is exhausted, the reader will hang.

Error handling is as follows:

error	STOP_IOE	processed as				
not attached	1 0	report error and stop out of tape				
end of file	1 0	report error and stop out of tape				
OS I/O error	x	report error and stop				

2.5.2 12597A-005 Duplex Register Interface (PTP) with 2895 Paper Tape Punch

The paper tape punch (PTP) writes data to a disk file. The POS register specifies the number of the next data item to be written. Thus, by changing POS, the user can backspace or advance the punch.

The paper tape punch implements these registers:

name	size	comments
BUF	8	last data item processed
CMD	1	punch enable
CTL	1	device/interrupt enable
FLG	1	device ready
FBF	1	device ready buffer
SRQ	1	device DMA service request
POS	32	position in the output file
TIME	24	time from I/O initiation to interrupt
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1 0	report error and stop out of tape
OS I/O error	x	report error and stop

2.5.3 12531C Buffered Teleprinter Interface (TTY) with 2752 Teleprinter

The console teleprinter has three units: keyboard (unit 0), printer (unit 1), and punch (unit 2). The keyboard reads from the console keyboard; the printer writes to the simulator console window. The punch writes to a disk file. The keyboard and printer units (TTY0, TTY1) can be set to one of four modes: UC, 7P, 7B, or 8B:

mode	input characters	output characters
UC	lower case converted to upper case, high-order bit cleared	lower case converted to upper case, high-order bit cleared,
7P	high-order bit cleared	high-order bit cleared,
		non-printing characters suppressed
7B	high-order bit cleared	high-order bit cleared
8B	no changes	no changes

The default mode is UC.

Some HP software systems expect the console to transmit line-feed automatically following carriage-return. This feature is enabled with:

SET TTY AUTOLF

and disabled with:

SET TTY NOAUTOLF

The console teleprinter implements these registers:

name	size	comments
סווד	0	last data itom progoggod
BUF	0	Tast data Item processed
MODE	16	mode
CTL	1	device/interrupt enable
FLG	1	device ready
FBF	1	device ready buffer
SRQ	1	device DMA service request
KPOS	32	number of characters input
KTIME	24	keyboard polling interval
TPOS	32	number of characters printed
TTIME	24	time from I/O initiation to interrupt
PPOS	32	position in the punch output file
STOP_IOE	1	punch stop on I/O error

Error handling for the punch is as follows:

error	STOP_IOE	processed as
not attached	1 0	report error and stop out of tape
OS I/O error	x	report error and stop

2.5.4 12653A Printer Controller (LPS) with 2767 Line Printer, 12566B Microcircuit Interface with Loopback Connector

The 2767 line printer uses the 12653A line printer interface as its controller. As a line printer, LPS writes data to a disk file. The POS register specifies the number of the next data item to be written. Thus, by changing POS, the user can backspace or advance the printer.

The line printer responds to SET LPS POWEROFF as if the power were removed or the printer cable were disconnected, and to DETACH LPS as if the paper were out. It also provides these additional state commands:

SET	LPS	OFFLINE	simulate ONLINE button up
SET	LPS	ONLINE	simulate ONLINE button down
SET	LPS	REALTIME	use realistic timing for print operations
SET	LPS	FASTTIME	use optimized timing for print operations

As a 12566B microcircuit interface, LPS provides the test device for running several of the HP diagnostics. Printer mode verus diagnostic mode is controlled by the commands:

SET	LPS	PRINTER	configure	as	line printer	
SET	LPS	DIAG	configure	for	diagnostic	tests

In diagnostic mode, LPS simulates the installation of the HP 1251-0332 diagnostic test (loopback) connector onto the 12566B card.

LPS may be configured to send debugging information to the previously enabled debug output device using these commands:

SET	LPS	DEBUG	provide	debug	printouts
SET	LPS	NODEBUG	inhibit	debug	printouts

Diagnostic information includes characters supplied to and status received from the interface, as well as data transfer initiations and completions.

The 12653A is disabled by default.

The 12653A implements these registers:

name	size	comments
BUF	16	output buffer
STA	16	input buffer or status
POWER	2	printer power state
CMD	1	printer enable
CTL	1	device/interrupt enable
FLG	1	device ready
FBF	1	device ready buffer
SRQ	1	device DMA service request
CCNT	7	current character count
LCNT	7	current line count
POS	32	position in the output file
CTIME	24	character transfer time
PTIME	24	per-zone print operation time
STIME	24	per-line paper slew time
RTIME	24	power-on ready delay time

STOP_IOE

1

stop on I/O error

In printer mode, error handling is as follows:

error	STOP_IOE	processed as
not attached	1 0	report error and stop out of paper
SET POWEROFF	1 0	report error and stop powered off
SET OFFLINE	1 0	report error and stop offline
OS I/O error	x	report error and stop

With STOP_IOE set to 0, output performed when the device is powered off or offline will initiate but then hang, waiting for the device to be returned online. When it is, the output operation will complete.

In diagnostic mode, there are no errors; data sent to the output buffer is looped back to the status register with a fixed delay of 1.

2.5.5 12845B Printer Controller (LPT) with 2607 Line Printer

The line printer (LPT) writes data to a disk file. The POS register specifies the number of the next data item to be written. Thus, by changing POS, the user can backspace or advance the printer.

The line printer responds to SET LPT POWEROFF as if the power were removed or the printer cable were disconnected and DETACH LPT as if the paper were out. It also provides these additional state commands:

SET	LPT	OFFLINE	simulate	PAPER	button	up
SET	LPT	ONLINE	simulate	PAPER	button	down

The line printer implements these registers:

name	size	comments
BUF	8	last data item processed
CMD	1	printer enable
CTL	1	device/interrupt enable
FLG	1	device ready
FBF	1	device ready buffer
SRQ	1	device DMA service request
LCNT	7	line count within page
POS	32	position in the output file
CTIME	24	time between characters
PTIME	24	time for a print operation
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1	report error and stop
	0	out of paper

SET POWEROFF	1 0	report error and stop powered off
SET OFFLINE	1 0	report error and stop offline
OS I/O error	x	report error and stop

With STOP_IOE set to 0, output performed when the device is powered off or offline will initiate but then hang, waiting for the device to be returned online. When it is, the output operation will complete.

2.5.6 12539C Time Base Generator (CLK)

The time base generator (CLK) may be set for diagnostic mode:

SET	CLK	DIAG	configure	for	diagnostic mode
SET	CLK	CALIBRATED	configure	for	timing mode

Diagnostic mode corresponds to setting jumper W2 to position "B". This turns off autocalibration and divides the longest time intervals down by 1000.

The time base generator implements these registers:

name	size	comments
CET	2	time base select
SEL	3	LIME Dase select
CTR	14	repeat counter for < 1Hz operation
CTL	1	device/interrupt enable
FLG	1	device ready
FBF	1	device ready buffer
ERR	1	error flag
TIME[0:7]	31	clock intervals, select = 07
DEVNO	6	current device number (read only)

The time base generator autocalibrates; the clock interval is adjusted up or down so that the clock tracks actual elapsed time. Operation at the fastest rates (100 microseconds, 1 millisecond) is not recommended.

2.5.7 12920A Terminal Multiplexer (MUX, MUXL, MUXM)

The 12920A is a 16-line terminal multiplexer, with five additional receive-only diagnostic lines. It consists of three devices:

MUX	scanning logic (corresponds to the upper data card)
MUXL	individual lines (corresponds to the lower data card)
MUXM	modem control and status logic (corresponds to the control
	card)

The MUX performs input and output through Telnet sessions connected to a user-specified port. The ATTACH command to the scanning logic specifies the port to be used:

ATTACH MUX <port> set up listening port

where port is a decimal number between 1 and 65535 that is not being used for other TCP/IP activities.

Each line (each unit of MUXL) can be set to one of four modes: UC, 7P, 7B, or 8B:

mode	input characters	output characters
UC	lower case converted to upper case, high-order bit cleared	lower case converted to upper case, high-order bit cleared, non-printing characters suppressed
7P	high-order bit cleared	high-order bit cleared,
		non-printing characters suppressed
7B 8B	high-order bit cleared no changes	high-order bit cleared no changes

In addition, each line supports the DATASET option. DATASET, when set, enables modem control. The default settings are UC mode and DATASET disabled. Finally, each line supports output logging. The SET MUXLn LOG command enables logging on a line:

SET MUXLn LOG=filename log output of line n to filename

The SET MUXLn NOLOG command disables logging and closes the open log file, if any.

The modem controls model a simplified Bell 103A dataset with just four lines: data terminal ready and request to send from the computer to the data set, and carrier detect and data set ready from the data set to the computer. There is no ring detection. If data terminal ready is set when a Telnet connection starts up, then carrier detect and data set ready are also set. The connection is established whether data terminal ready is set or not.

Once MUX is attached and the simulator is running, the multiplexer listens for connections on the specified port. It assumes that the incoming connections are Telnet connections. The connections remain open until disconnected either by the Telnet client, a SET MUXL DISCONNECT command, or a DETACH MUX command.

Other special multiplexer commands:

SHOW MUX CONNECTIONS	show current connections
SHOW MUX STATISTICS	show statistics for active connections
SET MUXLn DISCONNECT	disconnects the specified line.

The scanner (MUX) implements these registers:

name	size	comments
IBUF	16	input buffer, holds line status
OBUF	16	output buffer, holds channel select

The lines (MUXL) implements these registers:

size	comments
1	device/interrupt enable
1	device ready
1	device ready buffer
1	device DMA service request
16	line status, lines 0-20
16	receive parameters, lines 0-20
16	transmit parameters, lines 0-15
8	receive buffer, lines 0-20
	size 1 1 1 16 16 16 16 8

XBUF[0:15]	8	transmit buffer, lines 0-15
RCHP[0:20]	1	receive character present, lines 0-20
XDON[0:15]	1	transmit done, lines 0-15
TIME[0:15]	24	transmit time, lines 0-15

The modem control (MUXM) implements these registers:

name	size	comments
CTL	1	device/interrupt enable
FLG	1	device ready
FBF	1	device ready buffer
SRQ	1	device DMA service request
SCAN	1	scan enabled
CHAN	4	current line
DSO[0:15]	б	C2,C1,ES2,ES1,SS2,SS1, lines 0-15
DSI[0:15]	2	S2,S1, lines 0-15

The terminal multiplexer does not support save and restore. All open connections are lost when the simulator shuts down or MUX is detached.

2.5.8 Interprocessor Link (IPLI, IPLO)

The interprocessor link is a pair of 12566B parallel interfaces that are cross coupled to provide interprocessor communications to a second copy of the HP2100 simulator. The IPL is intended to support simulation of a two system HP TimeShared Basic configuration. The links are actually bidirectional half-duplex; TimeShared Basic uses them unidirectionally. The IPL is disabled by default.

To operate, the IPL devices must be enabled and then connected to the IPL devices in another copy of the simulator. The IPLI device in the first simulator is connected to the IPLO device in the second, and vice versa. Connections are established with the ATTACH command. One copy of the simulator listens for connections on a specified port (ATTACH -L); the other establishes connections to an IP address and port (ATTACH -C). Either copy may perform either operation, but the operations must be done in matched pairs:

simulator #1	simulator #2
sim> set ipli ena (also enables iplo) sim> att -lw ipli 4000	sim> set ipli ena (also enables iplo)
Listening on port 4000	
Waiting for connection	
	sim> att -c iplo 4000
Connection established sim> att -lw iplo 4000 Listening on port 4001 Waiting for connection	Connected to 127.0.0.1 port 4000
	sim> att -c ipli 4001
Connection established	Connected to 127.0.0.1 port 4000

Both forms of ATTACH take a modifier -W (wait); if specified, the command will wait up to 30 seconds for the connection process to complete. ATTACH -C can specify both an IP address and a port, in the form aa.bb.cc.dd:port; if the IP address is omitted, it defaults to 127.0.0.1 (local system).

Both IPLI and IPLO implement the BOOT command. BOOT loads the HP Access Basic Block Loader for the IOP into the top 64 words of memory and starts it running.

Both IPLI and IPLO implement these registers:

name	size	comments
BUF	16	buffer
HOLD	8	holding buffer
CMD	1	device enable
CTL	1	device/interrupt enable
FLG	1	device ready
FBF	1	device ready buffer
SRQ	1	device DMA service request
TIME	24	polling interval for input
STOP_IOE	1	stop on I/O error

2.6 Disk Controllers

2.6.1 12557A Disk Controller (DPC, DPD) with Four 2781 Drives, 13210A Disk Controller (DPC, DPD) with Four 7900 Drives

The 125557A/13210A disk controller has two separate devices, a data channel (DPD) and a command channel (DPC). The data channel includes a 128-word (one sector) buffer for reads and writes. The command channel includes the four disk drives. The 12557A/13210A controller can be configured as either a 12557A, supporting 2.5MB drives, or a 13210A, supporting 5MB drives, with the commands:

SET	DPC	12557A	2.5MB	drives
SET	DPC	13210A	5.0MB	drives

Drive types cannot be intermixed; the controller is configured for one type or the other. The 13210A (for 7900/7901 disks) is selected by default.

Individual drives may be protected against writing. These commands simulate the Upper/Lower Disc Protect switches on the drives:

SET	DPCn	LOCKED	set	unit	n	write	locked
SET	DPCn	WRITEENABLED	set	unit	n	write	enabled

Separate protection for the upper and lower platters of the 7900 drive is not supported. Also, the drive Protect/Override switch is not supported; drive protection is permanently overridden.

Drives may also have their heads unloaded and loaded:

SET	DPCn	UNLOADED	unloa	ad	head	ls	on	uni	Lt	n
SET	DPCn	LOADED	load	he	eads	on	ur	nit	n	

This provides a convenient method of setting a drive "down" without detaching the associated disk image file. Drives can also be set DISABLED or ENABLED.

The 12557A/13210A supports the BOOT command. BOOT DPC copies the IBL for 7900 class disks into memory and starts it running. BOOT -R DPC boots from the removable platter (head 0). The switch register (S) is set automatically to the value expected by the IBL loader:

<15:14>	=	01			
<13:12>	=	00			
<11:6>	=	data	channel	device	code

<5:3>	=	unchanged
<2:1>	=	00
< 0 >	=	1 if booting from the removable platter

The data channel (DPD) implements these registers:

name	size	comments
IBUF	16	input buffer
OBUF	16	output buffer
DBUF[0:127]	16	sector buffer
BPTR	7	sector buffer pointer
CMD	1	channel enable
CTL	1	interrupt enable
FLG	1	channel ready
FBF	1	channel ready buffer
SRQ	1	channel DMA service request
XFER	1	transfer in progress flag
WVAL	1	write data valid flag

The command channel (DPC) implements these registers:

name	size	comments
OBUF	16	output buffer
BUSY	4	<pre>busy (unit #, + 1, of active unit)</pre>
CNT	5	check record count
CMD	1	controller enable
CTL	1	interrupt enable
FLG	1	controller ready
FBF	1	controller ready buffer
SRQ	1	controller DMA service request
EOC	1	end of cylinder pending
POLL	1	attention polling enabled
RARC	8	record address register (cylinder)
RARH	2	record address register (head)
RARS	4	record address register (sector)
CYL[0:3]	8	current cylinder, drives 0-3
STA[0:3]	16	drive status, drives 0-3
CTIME	24	data transfer command delay time
DTIME	24	data channel command delay time
STIME	24	seek delay time, per cylinder
XTIME	24	interword transfer time

Error handling is as follows:

error	processed as			
not attached	disk not ready (heads unloaded)			
end of file	assume rest of disk is zero			
OS I/O error	report error and stop			

2.6.2 12565A Disk Controller (DQC, DQD) with Two 2883 Drives

The 12565A disk controller has two separate devices, a data channel (DQD) and a command channel (DQC). The data channel includes a 128-word (one sector) buffer for reads and writes. The command channel includes the two disk drives.

Individual drives may be protected against writing:

SET	DQCn	LOCKED	set	unit	n	write	locked
SET	DQCn	WRITEENABLED	set	unit	n	write	enabled

Drives may have their heads unloaded and loaded:

SET	DQCn	UNLOADED	unloa	ad	head	ls	on	unit	2	n
SET	DQCn	LOADED	load	he	eads	on	ur	nit r	ı	

This provides a convenient method of setting a drive "down" without detaching the associated disk image file. Disk drives can also be set DISABLED or ENABLED.

The 12565A supports the BOOT command. BOOT DQC copies the IBL for 2883 class disks into memory and starts it running. The switch register (S) is set automatically to the value expected by the IBL loader:

<15:12>	=	0110
<11:6>	=	data channel device code
<5:3>	=	unchanged
<2:0>	=	000

The data channel (DQD) implements these registers:

name	size	comments
	1.6	
TBOF.	16	input buffer
OBUF	16	output buffer
DBUF[0:127]	16	sector buffer
BPTR	7	sector buffer pointer
CMD	1	channel enable
CTL	1	interrupt enable
FLG	1	channel ready
FBF	1	channel ready buffer
SRQ	1	channel DMA service request
XFER	1	transfer in progress flag
WVAL	1	write data valid flag

The command channel (DQC) implements these registers:

name	size	comments
OBUF	16	output buffer
BUSY	2	<pre>busy (unit # + 1 of active unit)</pre>
CNT	9	check record count
CMD	1	controller enable
CTL	1	interrupt enable
FLG	1	controller ready
FBF	1	controller ready buffer
SRQ	1	controller DMA service request
RARC	8	record address register (cylinder)
RARH	5	record address register (head)
RARS	5	record address register (sector)

CYL[0:1]	8	current cylinder, drives 0-1
HED[0:1]	5	current head, drives 0-1
STA[0:1]	16	drive status, drives 0-1
CTIME	24	data transfer command delay time
DTIME	24	data channel command delay time
STIME	24	seek delay time, per cylinder
XTIME	24	interword transfer time

Error handling is as follows:

error	processed as
not attached	disk not ready (heads unloaded)
end of file	assume rest of disk is zero
OS I/O error	report error and stop

2.6.3 12606B Fixed Head Disk Controller (DRC, DRD) with 2770/2771 Disk, 12610B Drum Controller (DRC, DRD) with 2773/2774/2775 Drum

The 12606B/12610B fixed head disk/drum controller has two separate devices, a data channel (DRD) and a command channel (DRC). The command channel includes the actual drive. Ten different models are supported:

command		interfac	ce and size	model
SET DRC	180K	12606В,	180K words	2770A
SET DRC	360K	12606В,	360K words	2771A
SET DRC	720K	12606В,	720K words	2771A-001
SET DRC	384K	12610B,	384K words	2773A
SET DRC	512K	12610B,	512K words	2773A-001
SET DRC	640K	12610B,	640K words	2773A-002
SET DRC	768K	12610B,	768K words	2774A
SET DRC	896K	12610B,	896K words	2774A-001
SET DRC	1024K	12610B,	1024K words	2774A-002
SET DRC	1536K	12610B,	1536K words	2775A

The command channel supports write-protected tracks. Track protection is enabled with this command:

SET DRC PROTECTED

In addition, the number of protected tracks is specified by the command:

SET DRC TRACKPROT=count

The track protect count must be a power of two from 1 to 128 on the 12606 interface and from 1 to 512, or 768, on the 12610 interface. If the drive has fewer tracks than the track protect count, then all tracks on the drive are eligible for protection.

Track protection is disabled with this command:

SET DRC UNPROTECTED

The 12606B/12610B support the BOOT command. BOOT DRD loads the first sector from the disk or drum into locations 0-77 and then jumps to 77. This is very different from the IBL loader protocol used by the 12565A and the 12557A/13210A.

The data channel (DRD) implements these registers:

name	size	comments
IBUF	16	input buffer
OBUF	16	output buffer
CMD	1	channel enable
CTL	1	interrupt enable
FLG	1	channel ready
FBF	1	channel ready buffer
SRQ	1	channel DMA service request
BPTR	б	sector buffer pointer

The command channel implements these registers:

name	size	comments
CW	16	command word
STA	16	status
RUN	1	run flip-flop
CMD	1	controller enable
CTL	1	interrupt enable
FLG	1	controller ready
FBF	1	controller ready buffer
SRQ	1	controller DMA service request
TIME	24	interword transfer time
STOP_IOE	1	stop on I/O error

Error handling is as follows:

erro	or	proce	esse	ed as		
not	attached	drum	or	disk	not	ready

12606B/12610B data files are buffered in memory; therefore, end of file and OS I/O errors cannot occur.

2.6.4 13037 Disk Controller (DS) with Eight 7905/7906/7920/7925 Drives

The 13037 disk controller supports 7905 (15MB), 7906 (20MB), 7920 (50MB), or 7925 (120MB) disk drives, as well as autosizing, based on the size of the disk image file:

SET	DSn	7905	drive	n	is	а	15MB	driv	re			
SET	DSn	7906	drive	n	is	а	20MB	driv	re			
SET	DSn	7920	drive	n	is	а	50MB	driv	re			
SET	DSn	7925	drive	n	is	а	120MB	dri	ve			
SET	DSn	AUTOSIZE	drive	n	tyr	pe	based	on	file	size	at	ATTACH

Drive types can be intermixed. The 7905 is selected by default.

Individual drives may be protected against writing. These commands simulate the Disc Protect/Read Only switches on the drives:

SET	DSn	LOCKED	set	unit	n	write	locked
SET	DSn	WRITEENABLED	set	unit	n	write	enabled

Separate protection for the upper and lower platters of the 7905 and 7906 drives is not supported. Protecting a 7905 or 7906 drive behaves as though both of the Disc Protect switches were on.

Drives may also have their heads unloaded and loaded:

SET	DSn	UNLOADED	unloa	ad	head	ls (on	uni	.t	n
SET	DSn	LOADED	load	he	eads	on	ur	nit	n	

This provides a convenient method of setting a drive "down" without detaching the associated disk image file.

The setting of the drive Format switch may be changed with:

SET	DSn	FORMAT	set	format	enabled
SET	DSn	NOFORMAT	set	format	disabled

Drives can also be set **DISABLED** or **ENABLED**.

The 13037 supports the BOOT command. BOOT DS copies the IBL loader for the 13037 controller into memory and starts it running. The switch register (S) is set automatically to the value expected by the IBL loader:

<15:14>	=	11
<13:12>	=	01
<11:6>	=	data channel device code
<5:3>	=	unchanged
<2>	=	0
<1:0>	=	unchanged (head number)

The DS controller implements these registers:

name	size	comments
CMD	16	command register
FIFO[0:15]	16	data FIFO
SR1	16	status register 1
VCTR	16	verify counter
FMASK	8	file mask
CYL	16	cylinder address register
HS	16	head/sector address register
STATE	2	controller state
LASTA	3	last unit polled for attention flag
FIP	4	FIFO insertion pointer
FRP	4	FIFO removal pointer
FCNT	5	FIFO counter
CTL	1	interrupt enable
FLG	1	ready flag
FBF	1	ready flag buffer
SRQ	1	DMA service request
BUSY	1	visible busy status
CMDF	1	command follows flag
CMDP	1	command pending flag
EOC	1	end of cylinder flag

EOD	1	end of data flag
DBUF[0:127]	16	sector buffer
DPTR	8	sector buffer pointer
CTIME	24	command response time
DTIME	24	data transfer response time
STIME	24	seek time (per cylinder)
RTIME	24	rotation time
TIMEOUT	31	controller timeout

Error handling is as follows:

error	processed as
not attached	disk not ready (heads unloaded)
end of file	assume rest of disk is zero
OS I/O error	report error and stop

2.7 Magnetic Tape

2.7.1 12559C Magnetic Tape Controller (MTC, MTD) with One 3030 Drive

The 12559C magnetic tape drive has two separate devices, a data channel (MTD) and a command channel (MTD). The data channel includes a maximum record sized buffer for reads and writes. The command channel includes the tape unit. Magnetic tape options include the ability to make the unit write enabled or write locked.

SET	MTC	LOCKED	set	unit	write	locked
SET	MTC	WRITEENABLED	set	unit	write	enabled

The BOOT command is not supported. The 12559C was HP's earliest tape drive and is not supported by most of its operating systems. It is disabled by default.

The data channel (MTD) implements these registers:

size	comments
1	channel ready
1	channel DMA service request
8	transfer buffer
16	<pre>buffer pointer (reads and writes)</pre>
16	buffer size (writes)
	size 1 1 8 16 16

The command channel (MTD) implements these registers:

name	size	comments
FNC	8	current function
STA	9	tape status
BUF	8	buffer
CTL	1	interrupt enabled
FLG	1	controller ready
FBF	1	controller ready buffer
SRQ	1	controller DMA service request

DTF	1	data transfer flop
FSVC	1	first service flop
POS	32	magtape position
CTIME	24	command delay time
XTIME	24	interword transfer delay time
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	processed as
not attached	tape not ready; if STOP_IOE, stop
end of file	parity error
OS I/O error	parity error; if STOP_IOE, stop

2.7.2 13181A Magnetic Tape Controller (MSC, MSD) with Four 7970B Drives, 18183A Magnetic Tape Controller (MSC, MSD) with Four 7970E Drives

The 13181A/13183A magnetic tape drive has two separate devices, a data channel (MTD) and a command channel (MTC). The data channel includes a maximum record sized buffer for reads and writes. The command channel includes the tape units. Magnetic tape options include the ability to select the 13181A (800 bpi) controller or the 13183A (1600 bpi) controller, and the ability to set a drive offline and online, write enabled or write locked.

SET	MSC 13181A	set	controller to 13181A
SET	MSC 13183A	set	controller to 13183A
SET	MSCn OFFLINE	set	unit n offline
SET	MSCn ONLINE	set	unit n online
SET	MSCn LOCKED	set	unit n write locked
SET	MSCn WRITEENABLED	set	unit n write enabled
SET	MSC REALTIME	set	controller to actual timing
SET	MSC FASTTIME	set	controller to optimized timing (default)
SET	MSCn REEL=length	set	unit tape reel size
		0 =	unlimited (default)
		600	= 600 feet
		1200) = 1200 feet
		2400) = 2400 feet

Magnetic tape units can also be **DISABLED** or **ENABLED**.

MSC may be configured to send debugging information to the previously enabled debug output device using these commands:

SET	MSC	DEBUG	provide	debug	printouts
SET	MSC	NODEBUG	inhibit	debug	printouts

Diagnostic information includes commands supplied to and status received from the interface, as well as command initiations and completions.

The 13181A/13183A supports the BOOT command. BOOT MSC loads the IBL for 7970B/E magnetic tape drives into memory and starts it running. BOOT -S MSC causes the loader to position to the file number specified in the A register before starting to load data. The switch register (S) is set automatically to the value expected by the IBL loader:

<15:12>	=	1000
<11:6>	=	data channel device code
<5:3>	=	unchanged
<2:0>	=	00
< 0 >	=	1 if position tape before loading

The data channel (MSD) implements these registers:

name	size	comments
BUF	16	data buffer
CTL	1	interrupt enabled
FLG	1	channel ready
FBF	1	channel ready buffer
SRQ	1	channel DMA service request
DBUF[0:65535]	8	transfer buffer
BPTR	17	buffer pointer (reads and writes)
BMAX	17	buffer size (writes)

The command channel (MSC) implements these registers:

name	size	comments
STA	12	tape status
BUF	16	buffer
USEL	2	currently selected unit
FSVC	1	first service flop
CTL	1	interrupt enabled
FLG	1	controller ready
FBF	1	controller ready buffer
SRQ	1	controller DMA service request
POS[0:3]	32	magtape position
BTIME	24	BOT start delay time
CTIME	24	command delay time
GTIME	24	gap traversal time
ITIME	24	IRG traversal time
RTIME	24	rewind initiation time
XTIME	24	interword transfer delay time
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	processed as
not attached	<pre>tape not ready; if STOP_IOE, stop</pre>
end of file	parity error
OS I/O error	parity error; if STOP_IOE, stop

3 Symbolic Display and Input

The HP2100 simulator implements symbolic display and input. Display is controlled by command line switches:

-a	display	as	ASCI	II cha	aracte	er
-C	display	as	two	chara	acter	string
-m	display	ins	struc	tion	mnemo	onics

Input parsing is controlled by the first character typed in or by command line switches:

' or -a	ASCII character
" or -c	two character sixbit string
alphabetic	instruction mnemonic
numeric	octal number

Instruction input uses standard HP2100 assembler syntax. There are seven instruction classes: memory reference, I/O, shift, alter skip, extended shift, extended memory reference, extended two address reference.

Memory reference instructions have the format

```
memref {C/Z} address{,I}
```

where I signifies indirect, C a current page reference, and Z a zero page reference. The address is an octal number in the range 0 - 077777; if C or Z is specified, the address is a page offset in the range 0 - 01777. Normally, C is not needed; the simulator figures out from the address what mode to use. However, when referencing memory outside the CPU (e.g., disks), there is no valid PC, and C must be used to specify current page addressing.

IOT instructions have the format

io device{,C}

where C signifies that the device flag is to be cleared. The device is an octal number in the range 0 - 77.

Shift and alter/skip instructions have the format

sub-op sub-op sub-op...

The simulator checks that the combination of sub-opcodes is legal.

Extended shift instructions have the format

```
extshift count
```

where count is an octal number in the range 1 - 020.

Extended memory reference instructions have the format

```
extmemref address{,I}
```

where I signifies indirect addressing. The address is an octal number in the range 0 - 077777.

Extended two address instructions have the format

```
ext2addr addr1{,I},addr2{,I}
```

where I signifies indirect addressing. Both address 1 and address 2 are octal numbers in the range 0 - 077777.