
WASD VMS Hypertext
Services
-Technical Overview

March 2008

For version 9.3 release of the WASD VMS Hypertext Services.

Supercedes:

November 2006 (v9.2)
June 2005 (v9.1)
December 2004 (v9.0)
June 2004 (v8.5)
January 2004 (v8.4)
July 2003 (v8.3)
April 2003 (v8.2)
December 2002 (v8.1)
July 2002 (v8.0)
July 2001 (v7.2)
November 2000 (v7.1)
June 2000 (v7.0)
December 1999 (v6.1)
May 1999 (v6.0)
November 1998 (v5.3)
September 1998 (v5.2)
July 1998 (v5.1)
March 1998 (v5.0)
November 1997 (v4.5)
October 1997 (v4.4)
August 1997 (v4.3)
July 1997 (v4.2)
June 1997 (v4.1)
October 1996 (v3.4)
December 1995 (initial freeware release, v3.1)
August 1995 (v2.3)
May 1995 (v2.1)

Abstract

This document introduces the WASD Hypertext Services package.

Also see ‘‘WASD Hypertext Services - Environment Overview’’ containing a description of WASD
Web author facilities, and the ‘‘WASD Hypertext Services - Scripting Overview’’ for information
on CGI, CGIplus, ISAPI, OSU, etc., scripting.

It is strongly suggested those using printed versions of this document also access the Hypertext
version. It provides online access to some examples, etc.

Author

Mark G. Daniel
Intelligence, Surveillance & Reconnaissance Division
Defence Science and Technology Organisation

For WASD-related email please use Mark.Daniel@wasd.vsm.com.au

Should the above address present problems or provide no response for an extended period then
use Mark.Daniel@dsto.defence.gov.au

A pox on the houses of all SPAMers. Make that two poxes.

+61 (8) 82596189 (bus)
+61 (8) 82596673 (fax)

PO Box 1500
Edinburgh
South Australia 5108

Online Search
online search

Online PDF

This book is available in PDF for access and subsequent printing by suitable viewers (e.g.
Ghostscript) from the location HT_ROOT:[DOC.HTD]HTD.PDF

Online Demonstrations

Some of the online demonstrations may not work due to the local organisation of the Web
environment differing from WASD where it was originally written.

ii

WASD VMS Hypertext Services

Copyright © 1996-2008 Mark G. Daniel.

This package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; version 3 of the License,
or any later version.

This package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

HT_ROOT:[000000]GNU_GENERAL_PUBLIC_LICENSE.TXT

http://www.gnu.org/licenses/gpl.txt

You should have received a copy of the GNU General Public License along with this package;
if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

The Apache Group

This product includes software developed by the Apache Group for use in the Apache HTTP
server project (http://www.apache.org/).

Redistribution and use in source and binary forms, with or without
modification, are permitted ...

OpenSSL Project

This product can include software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

Redistribution and use in source and binary forms, with or without
modification, are permitted ...

Eric A. Young

This package can include cryptographic software written by Eric Young (eay@cryptsoft.com) and
Tim Hudson (tjh@cryptsoft.com).

This library is free for commercial and non-commercial use provided ...
Eric Young should be given attribution as the author ...
copyright notice is retained

Free Software Foundation

This package contains software made available by the Free Software Foundation under the GNU
General Public License.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

iii

Ohio State University

This package contains software provided with the OSU (DECthreads) HTTP server package,
authored by David Jones:

Copyright 1994,1997 The Ohio State University.
The Ohio State University will not assert copyright with respect
to reproduction, distribution, performance and/or modification
of this program by any person or entity that ensures that all
copies made, controlled or distributed by or for him or it bear
appropriate acknowlegement of the developers of this program.

RSA Data Security

This software contains code derived in part from RSA Data Security, Inc:

permission granted to make and use derivative works provided that such
works are identified as "derived from the RSA Data Security, Inc.
MD5 Message-Digest Algorithm" in all material mentioning or referencing
the derived work.

Bailey Brown Jr.

LZW compression is implemented using code derived in part from the PBM suite. This code is
copyright by the original author:

* GIF Image compression - LZW algorithm implemented with Tree type
* structure.
* Written by Bailey Brown, Jr.
* last change May 24, 1990
* file: compgif.c
*
* You may use or modify this code as you wish, as long as you mention
* my name in your documentation.

Other

OpenVMS , Compaq TCP/IP Services for OpenVMS , Compaq C , Alpha and VAX
are registered trademarks of Hewlett Packard Corporation.

MultiNet is a registered trademark of Process Software Corporation.

Pathway is a registered trademark of Attachmate, Inc.

TCPware is a registered trademark of Process Software Corporation.

Ghostscript is Copyright (C) 2005 artofcode LLC, Benicia, CA. All rights reserved.

iv

Contents

Chapter 1 Introduction

Chapter 2 HTTPd - Overview

2.1 Server Behaviour . 2–3

2.2 VMS Versions . 2–3

2.3 TCP/IP Packages . 2–3

2.4 International Features . 2–3

2.5 HTTP Methods Usage . 2–5

2.5.1 GET . 2–5

2.5.2 POST & PUT . 2–5

2.5.3 DELETE . 2–7

Chapter 3 New to WASD? Start Here!

Chapter 4 Installation and Update

4.1 Package UNZIP . 4–2

4.2 ODS-5 Volumes . 4–3

4.3 Accessible Volume . 4–4

4.4 Package Directory Structure . 4–4

4.5 TCP/IP Infrastructure . 4–5

4.6 SYSUAF and RIGHTSLIST WARNING! . 4–5

4.7 Installation DCL Procedure . 4–5

4.8 Update DCL Procedure . 4–6

4.9 Quick-Check . 4–7

4.10 ‘‘Clone’’ Procedure . 4–9

4.11 Re-Linking . 4–9

iii

4.12 VMS 6.0 and 6.1 . 4–9

4.13 VMS 5.5-n . 4–9

4.14 Local Setup Suggestions . 4–10

4.15 Reporting Problems . 4–10

Chapter 5 Server Account and Environment

5.1 VMS Server Account . 5–2

5.2 VMS Scripting Account . 5–2

5.3 Account Support Files . 5–3

5.4 Other Resources . 5–6

5.5 Server Startup . 5–7

Chapter 6 Configuration Considerations

6.1 Site Organisation . 6–2

6.2 Server Instances . 6–4

6.3 Virtual Services . 6–6

6.4 Request Throttling . 6–8

6.5 GZIP Encoding . 6–11

6.5.1 Response Encoding . 6–11

6.5.2 Request Encoding . 6–13

6.6 Client Concurrency . 6–13

6.7 Content-Type Configuration . 6–14

6.7.1 Adding Content-Types . 6–14

6.7.2 MIME.TYPES . 6–15

6.7.3 Unknown Content-Types . 6–16

6.7.4 Explicitly Specifying Content-Type . 6–17

6.8 Language Variants . 6–18

6.9 Character Set Conversion . 6–19

6.10 Error Reporting . 6–20

6.10.1 Basic and Detailed . 6–20

6.10.2 Site Specific . 6–21

6.11 OPCOM Logging . 6–24

6.12 Access Logging . 6–24

6.12.1 Log Format . 6–24

6.12.2 Log Per-Period . 6–27

6.12.3 Log Per-Service . 6–27

6.12.4 Log Per-Instance . 6–28

6.12.5 Log Naming . 6–28

6.12.6 Access Tracking . 6–29

6.12.7 Access Alert . 6–30

iv

6.13 Include File Directive . 6–30

Chapter 7 Security Considerations

7.1 Recommended Package Security . 7–2

7.2 Maintaining Package Security . 7–4

7.3 Independent Package and Local Resources . 7–6

7.4 Configuration . 7–6

7.4.1 Directory Listings . 7–6

7.4.2 Server Reports . 7–7

7.4.3 Scripting . 7–7

7.4.4 Server Side Includes . 7–7

7.5 Scripting . 7–8

7.6 Authorization . 7–8

7.7 Miscellaneous Issues . 7–9

7.8 Site Attacks . 7–10

Chapter 8 String Matching

8.1 Wildcard Patterns . 8–1

8.2 Regular Expressions . 8–2

8.3 Examples . 8–4

8.4 Expression Substitution . 8–4

Chapter 9 Conditional Configuration

9.1 Conditional Syntax . 9–2

9.2 Conditional Keywords . 9–3

9.2.1 Notepad: Keyword . 9–6

9.2.2 Rand: Keyword . 9–7

9.2.3 Request: Keyword . 9–7

9.2.4 Instance: and Robin: Keywords . 9–8

9.2.5 Time: Keyword . 9–9

9.2.6 Trnlnm: Keyword . 9–10

9.2.7 Host Addresses . 9–10

9.3 Examples . 9–11

v

Chapter 10 Global Configuration

10.1 Functional Groupings . 10–1

10.2 Alphabetic Listing . 10–7

Chapter 11 Service Configuration

11.1 IPv4 and IPv6 . 11–3

11.2 Service Directives . 11–4

11.3 Directive Detail . 11–5

11.4 Administration . 11–8

11.5 Examples . 11–8

Chapter 12 Message Configuration

12.1 Behaviour . 12–1

12.2 Message File Format . 12–2

12.3 Multiple Language Specifications . 12–3

12.4 Supplied Message Files . 12–5

Chapter 13 Cache Configuration

13.1 Non-File Content Caching . 13–2

13.2 Permanent and Volatile . 13–3

13.3 Cache Suitability Considerations . 13–3

13.4 Cache Content Validation . 13–5

13.5 Cache Configuration . 13–5

13.6 Cache Control . 13–7

13.7 Circumventing The Cache . 13–7

Chapter 14 Request Processing Configuration

14.1 Rule Interpretation . 14–2

14.2 VMS File System Specifications . 14–3

14.3 Extended File Specifications (ODS-5) . 14–4

14.3.1 Characters In Request Paths . 14–4

14.3.2 Characters In Server-Generated Paths . 14–5

14.4 Rules . 14–5

14.4.1 MAP, PASS, FAIL Rules . 14–6

14.4.2 REDIRECT Rule . 14–6

14.4.3 USER Rule . 14–7

vi

14.4.4 EXEC/UXEC and SCRIPT, Script Mapping Rules . 14–8

14.4.5 SET Rule . 14–10

14.5 Mapping Examples . 14–20

14.6 Virtual Servers . 14–22

14.7 Conditional Mapping . 14–23

14.8 Mapping User Directories (tilde character (‘‘~’’)) . 14–26

14.8.1 Using The SYSUAF . 14–26

14.8.2 Without Using The SYSUAF . 14–28

Chapter 15 Authorization Quick Guide

15.1 SYSUAF/Identifier Authentication . 15–1

15.2 Other Authentication . 15–2

15.3 Read and Write Groupings . 15–3

15.4 Considerations . 15–4

Chapter 16 Authentication and Authorization

16.1 Rule Interpretation . 16–2

16.2 Authentication Policy . 16–2

16.3 Permissions, Path and User . 16–4

16.4 Authorization Configuration File . 16–5

16.5 Authorization Sources . 16–8

16.6 Realm, Full-Access, Read-Only . 16–13

16.7 Virtual Servers . 16–14

16.8 Authorization Configuration Examples . 16–14

16.8.1 KISS . 16–16

16.9 Authorization Cache . 16–17

16.10 SYSUAF-Authenticated Users . 16–18

16.10.1 ACME . 16–18

16.10.2 Rights Identifiers . 16–18

16.10.3 WASD ‘‘Hard-Wired’’ Identifiers . 16–19

16.10.4 VMS Account Proxying . 16–21

16.10.5 Nil-Access VMS Accounts . 16–22

16.10.6 SYSUAF and SSL . 16–23

16.10.7 SYSUAF Security Profile . 16–23

16.10.8 SYSUAF Profile For Full Site Access . 16–24

16.11 Skeleton-Key Authentication . 16–25

16.12 Controlling Server Write Access . 16–26

16.13 Securing All Requests . 16–27

16.14 User Password Modification . 16–27

16.15 Cancelling Authorization . 16–29

vii

Chapter 17 Proxy Services

17.1 HTTP Proxy Serving . 17–2

17.1.1 Enabling A Proxy Service . 17–3

17.1.2 Proxy Affinity . 17–3

17.1.3 Proxy Bind . 17–4

17.1.4 Proxy Chaining . 17–4

17.1.5 Controlling Proxy Serving . 17–4

17.2 Caching . 17–6

17.2.1 Cache Device . 17–8

17.2.2 Enabling Caching . 17–9

17.2.3 Cache Management . 17–9

17.2.4 Cache Invalidation . 17–11

17.2.5 Cache Retention . 17–12

17.2.6 Reporting and Maintenance . 17–13

17.2.7 PCACHE Utility . 17–13

17.3 CONNECT Serving . 17–15

17.3.1 Enabling CONNECT Serving . 17–15

17.3.2 Controlling CONNECT Serving . 17–16

17.4 FTP Proxy Serving . 17–16

17.4.1 FTP Query String Keywords . 17–17

17.4.2 ‘‘login’’ Keyword . 17–18

17.5 Gatewaying Using Proxy . 17–18

17.5.1 Reverse Proxy . 17–19

17.5.2 One-Shot Proxy . 17–20

17.5.3 DNS Wildcard Proxy . 17–21

17.5.4 Originating SSL . 17–22

17.6 Tunnelling Using Proxy . 17–22

17.6.1 [ServiceProxyTunnel] CONNECT . 17–23

17.6.2 [ServiceProxyTunnel] RAW . 17–23

17.6.3 [ServiceProxyTunnel] FIREWALL . 17–24

17.6.4 Encrypted Tunnel . 17–24

17.6.5 Encrypted Tunnel With Authentication . 17–26

17.7 Browser Proxy Configuration . 17–26

17.7.1 Manual . 17–27

17.7.2 Automatic . 17–27

viii

Chapter 18 Secure Sockets Layer

18.1 SSL Functionality Sources . 18–3

18.2 WASD SSL Quick-Start . 18–4

18.3 SSL Configuration . 18–5

18.3.1 HTTPD$CONFIG [Service] . 18–6

18.3.2 HTTPD$SERVICE . 18–6

18.3.3 SSL Server Certificate . 18–6

18.3.4 SSL Private key . 18–6

18.3.5 SSL Virtual Services . 18–7

18.3.6 SSL Access Control . 18–8

18.3.7 Authorization Using X.509 Certification . 18–8

18.3.8 Features . 18–8

18.3.9 X509 Configuration . 18–9

18.3.10 Certificate Authority Verification File . 18–13

18.3.11 X.509 Authorization CGI Variables . 18–14

18.4 Certificate Management . 18–15

18.4.1 Server Certificate . 18–16

18.4.2 Client Certificate . 18–17

18.4.3 Certificate Signing Request . 18–18

18.5 SSL CGI Variables . 18–21

18.6 SSL References . 18–23

Chapter 19 Server Administration

19.1 Access Before Configuration . 19–1

19.2 Access Configuration . 19–2

19.3 Server Instances . 19–3

19.4 HTTPd Server Reports . 19–4

19.5 HTTPd Server Revise . 19–7

19.6 HTTPd Server Action . 19–9

19.7 HTTPd Command Line . 19–10

19.7.1 Accounting . 19–11

19.7.2 Authentication . 19–11

19.7.3 Cache . 19–11

19.7.4 DCL/Scripting Processes . 19–11

19.7.5 DECnet Scripting Connections . 19–12

19.7.6 Instances . 19–12

19.7.7 Logging . 19–12

19.7.8 Mapping . 19–13

19.7.9 Shutdown and Restart . 19–13

19.7.10 Secure Sockets Layer . 19–14

ix

19.7.11 Throttle . 19–14

Chapter 20 WATCH Facility

20.1 Server Instances . 20–2

20.2 Event Categories . 20–2

20.3 Request Filtering . 20–5

20.4 Report Format . 20–7

20.5 Usage Suggestions . 20–9

20.6 Command-Line Use . 20–10

Chapter 21 Server Performance

21.1 Simple File Request Turn-Around . 21–2

21.2 Scripting . 21–4

21.3 SSL . 21–7

21.4 Suggestions . 21–7

Chapter 22 HTTPd Web Update

Chapter 23 Utilities and Facilities

23.1 Echo Facility . 23–1

23.2 Hiss Facility . 23–2

23.3 Where Facility . 23–2

23.4 Xray Facility . 23–2

23.5 Apache Bench . 23–2

23.6 CALogs . 23–3

23.7 HTAdmin . 23–4

23.8 HTTPd Monitor . 23–6

23.9 MD5digest . 23–7

23.10 QDLogStats . 23–8

23.11 SECHAN Utility . 23–9

23.12 Scrunch Utility (obsolete) . 23–9

23.13 StreamLF Utility . 23–10

23.14 WASD Bench :^) . 23–10

23.15 WOTSUP Utility . 23–11

23.16 Server Workout (obsolete) . 23–11

x

Chapter 1

Introduction

This document provides an basic overview of the WASD VMS Hypertext Services. All
programs were designed only to specifically comply with the requirements of DEC-C, within
a Compaq TCP/IP Services for VMS environment, or compatible.

The document assumes a basic understanding of the hypertext technologies and uses terms
without explaining them (e.g. HTTP, HTML, URL, CGI, SSI, etc.) The reader is refered to
documents specifically on these topics.

Also see ‘‘WASD Hypertext Services - Environment Overview’’ containing a description of
WASD Web author facilities, and the ‘‘WASD Hypertext Services - Scripting Overview’’ for
information on CGI, CGIplus, ISAPI, OSU, etc., scripting.

It is strongly suggested those using printed versions of this document also access the
Hypertext version. It provides online demonstrations of some concepts.

Objectives

The primary impetus for an internal Web environment was a 1993 decision by Wide Area
Surveillance Division (WASD) management (then High Frequency Radar Division, HFRD) to
make as much information as possible, both administrative and research, available online (to
use the current term . . . an intranet). Early experimentation with a Gopher implementation
soon made way for the obvious advantages of the emerging Web technology.

It then became the objective of this author to make all of our systems’ VMS-related resources
available via HTTP and HTML, regardless of the underlying data or storage format. An
examination of the WASD package will show that this objective is substantially achieved.

Reasons For Yet Another Web Package

Reasons for developing a local HTTP server were few but compelling:

• The WASD (then HFRD) Web implementation began mid-1994.

• It was prefered to support the hypertext environment on a VMS platform. At the time
this the most widely used and accessible environment within WASD.

Introduction 1–1

• At that time servers (and even at that time there were quite a few variations) were largely
Unix based, although it was being supported (to a greater or lesses extent) across a wide
range of platforms. Ports to VMS, if they existed, were often in progress or half-baked,
employing Unixisms that don’t translate elegantly to the VMS environment.

• The VMS version of the CERN server (3.0-6) was evaluated during mid-1994:

— It was (still is) not multi-threaded under VMS (i.e. cannot support concurrent clients).
For example, a lengthy search may delay other clients for unacceptable periods.

— The performance was good with document transfers, but became poor when running
a script.

— It is acknowleged in the release notes that it cannot handle a client cancelling a data
transfer (a not-uncommon action). This was confirmed experimentally.

• An early version of the OSU (DECthreads) server was evaluated via documentation
mid-1994. The author considered that the DECthreads of the time to have limitations
(including frequent, show-stopping bugs) and OSU had a number of implementation
idiosyncracies (e.g. DECnet based scripting).

• HyperText Transport Protocol, in the then standard implementation (HTTP/1.0, RFC1945),
was relatively simple to implement to the level required to support intra-Divisional re-
quirements.

• As of December 1995 the server has worked extremely well and has a number of
facilities tailored for the VMS environment. It can continue to be utilized until there
are overwhelming reasons for implementing something else.

• As of June 1997 the server and associated software continues to evolve and provide a
stable and effective VMS Web environment, even with the advent of a small number of
commercial VMS Web products.

• As of October 1999 the package is beginning to mature as an HTTP/1.0 solution,
providing not only a fast and stable server but an increasingly extensive collection of
applications and tools.

• As of July 2002 it continues to be refined and extended. A greater emphasis on
‘‘commercial’’ functionality has occured over the past couple of years.

• As of December 2004 it now complies with the HTTP/1.1 specification (RFC2616) and
provides a very respectable range of functionality and the fastest and most efficient
serving environment for VMS.

1–2 Introduction

Chapter 2

HTTPd - Overview

The most fundamental component of the WASD VMS Hypertext Services environment is the
HTTPd, or HyperText Protocol Transport Daemon, or HTTP server. WASD has a single-
process, multi-threaded, asynchronous I/O design.

General

• concurrent, multi-threaded client support

• HTTP/1.0 compliant (RFC1954)

• HTTP/1.1 compliant (RFC2616)

• virtual services (servers)

• IPv4 and IPv6 support (requires underlying TCP/IP support)

• requests above a configurable limit can be queued (‘‘throttling’’)

• enhanced privacy using Secure Sockets Layer (SSL) technology, including OpenSSL
Toolkit, WASD OpenSSL, and HP SSL (Secure Sockets Layer) for OpenVMS Alpha,
Itanium and (from late 2003) VAX product

• serves ODS-2 and ODS-5 (EFS) volumes, as well as file names encoded using the
PATHWORKS 4/5, Advanced Server (PATHWORKS 6) and SRI (MultiNet NFS, etc.)
schemas

• versatile directory listing (generic and VMS-style)

• Server-Side Includes (SSI HTML pre-processing)

• configurable cache, with time-based and forced revalidation (reload)

• byte-range support with 206 partial responses (useful for PDF and restarting file download
by modern browsers)

• proxy serving, with local file-system caching, plus the CONNECT method (also allowing
a number of esoteric SSL tunnelling configurations), along with FTP proxy

• gatewaying between Web protocols (HTTP-to-SSL, SSL-to-HTTP, HTTP-to-FTP)

HTTPd - Overview 2–1

• gatewaying between IP protocols (IPv4-to-IPv6, IPv6-to-IPv4)

• clickable-image support (both NCSA and CERN formats)

Scripting

• CGI 1.1 compliant scripting (RFC3875)

• non-server and user account scripting

• ‘‘CGIplus’’ scripting (offering reduced latency, increased throughput and reduced system
impact)

• ‘‘Persistent’’ scripting, Run-Time Environments (RTEs) that provide for simple persistent
scripting

• ‘‘ISAPI’’ extensions/scripting (also offering reduced latency, increased throughput and
reduced system impact)

• DECnet-based CGI scripting (with connection reuse)

• OSU (DECthreads server) scripting emulation, with connection reuse (as per OSU 3.3a),
allowing many OSU scripts to be employed unmodified

• script processor (e.g. PERL, PHP, Python) configurable on file type (suffix)

• configurable, automatic, MIME content-type initiated scripting (‘‘presentation’’ scripting)

Access Control

• host-level, on per-host or per-domain

• ‘‘Basic’’ and ‘‘Digest’’ user authentication and path/group-based authorization

• WASD-specific user databases

• SYSUAF-authentication and VMS user security profile based file access control

• ACME service authentication (on applicable platforms)

• X.509 client certificate authentication (for SSL transactions)

• RFC1413 (ident daemon) ‘‘authentication’’

Administration

• multiple instances (server processes) executing on the one system allow continuous
availability via rolling restarts and ‘‘fail-through’’ processing

• ‘‘one-button’’ control of multiple instances on both single systems and across clusters

• online server configuration, including reports on requests, loaded configuration, mapping
rules, authorization information and graphical activity displays

• online, live server processing event report (WATCH)

• Web-standard, ‘‘common’’ and ‘‘combined’’ access log formats (allowing processing by most
log-analysis tools), along with a user-definition capability allowing custom log formats

2–2 HTTPd - Overview

• logging periods, where log files automatically change on a daily, weekly or monthly basis
(keeps log files ordered and at a managable size)

• customizable message database (capable of supporting non-English and concurrent, mul-
tiple languages)

2.1 Server Behaviour
The technical aspects of server design and behaviour are described in
HT_ROOT:[SRC.HTTPD]READMORE.TXT

2.2 VMS Versions
The WASD server is officially supported on any VMS version from V6.0 upwards, on Alpha,
Itanium and VAX architectures. The most recently released version (as of early 2008), V8.3
Alpha and Itanium, as is commonly the case on VMS platforms, required nothing more than
relinking. Obviously no guarantees can be made for yet-to-be-released versions but at a worst-
case these should only require the same. Pre 7.n versions of WASD have also been known to
compile and run successfully under V5.5-n (Section 4.13).

Non-server account scripting requires a minimum VMS V6.2, to provide the $PERSONA
services required for this functionality. Equivalent functionality on earlier versions of VAX
VMS (i.e. 6.0 and 6.1) is available using the PERSONA_MACRO build option (Section 4.12).

The WASD distribution and package organisation fully supports mixed-architecture clusters
(Alpha, Itanium and/or VAX in the one cluster) as one integrated installation.

2.3 TCP/IP Packages
The WASD server uses the Compaq TCP/IP Services (UCX) BG $QIO interface. The following
packages support this interface and may be used.

• TCP/IP Services for OpenVMS (Hewlett Packard Corporation), any version

• Digital TCP/IP Services for OpenVMS (aka UCX), any version

• MultiNet for OpenVMS (Process Software Corporation), any version

• TCPware (Process Software Corporation), any version

To deploy IPv6 services this package must support IPv6 (needless-to-say).

2.4 International Features
WASD provides a number of features that assist in the support of non-English and multi-
language sites. These ‘‘international’’ features only apply to the server, not necessarily to any
scripts!

• Language Variants

HTTPd - Overview 2–3

A directory may contain language-specific variants of a basic document. When requesting
the basic document name these variants are automatically and transparently provided
as the response if one matches preferences expresses in the request’s ‘‘Accept-Language:’’
request header field. Both text and non-text documents (e.g. images) may be provided
using this mechanism.

Configuration information is provided in Section 6.8.

• Character Sets

Generally the default character set for documents on the Web is ISO-8859-1 (Latin-1).
The server allows the specification of any character set as a default for text document
responses (plain and HTML). In addition, text document file types may be modified or
additional ones specified that have a different character set associated with that type.
Furthermore, specific character sets may be associated with mapping paths. A site can
therefore relatively easily support multiple character set document resources.

In addition the server may be configured to dynamically convert one character set to
another during request processing. This is supported using the VMS standard NCS
character set conversion library.

For further information see [CharsetDefault], [CharsetConvert] and [AddType] in Chap-
ter 10.

• Server Messages

The server uses an administrator-customizable database of messages that can contain
multiple language instances of some or all messages, using the Latin-1 character set
(ISO8859-1). Although the base English messages can be completely changed and/or
translated to provide any message text required or desired, a more convenient approach
is to supplement this base set with a language-specific one.

One language is designated the prefered language. This would most commonly be the
language appropriate to the geographical location and/or clientele of the server. Another
language is designated the base language. This must have a complete set of messages
and is a fall-back for any messages not configured for the additional language. Of course
this base language would most commonly be the original English version.

More than just two languages can be supported. If the browser has prefered languages
set the server will attempt to match a message with a language in this preference list.
If not, then the server-prefered and then the base language message would be issued, in
that order. In this way it would be possible to simultaneously provide for English, French,
German and Swedish audiences, just for example.

For message configuration information see Chapter 12.

• Server Dates

Dates appearing in server-generated, non-administrative content (e.g. directory listings,
not META-tags, which use Web-standard time formats) will use the natural language
specified by any SYS$LANGUAGE environment in use on the system or specifically
created for the server.

• Virtual Services

2–4 HTTPd - Overview

Virtual-server-associated mapping, authorization and character-sets allow for easy multi-
ple language and environment sites. Further per-request tailoring may be deployed using
conditional rule mapping described below. Single server can support multi-homed (host
name) and multiple port services.

For virtual services information see Chapter 6.

• Conditional Rule Mapping

Mapping rules map requested URL paths to physical or other paths (Chapter 14).
Conditional rules are only applied if the request matches criteria such as prefered
language, host address (hence geographical location to a certain extent), etc. This allows
requests for generic documents (e.g. home pages) to be mapped to language versions
appropriate to the above criteria.

For conditional mapping information see Section 14.7.

2.5 HTTP Methods Usage
This section describes WASD-specific characteristics of the available HTTP/1.0 request meth-
ods.

2.5.1 GET

Of course, the GET method is used to access documents supplied by the server. There is
nothing WASD server-specific about this method.

2.5.2 POST & PUT

The WASD HTTPd does not differentiate between POST and PUT methods, both are handled
identically.

Script Handling

The ‘‘normal’’ usage of the POST method is to return data from a <FORM>..</FORM>
construct to a script running on the server. In this regard WASD is no different to other
any web server; the form data is delivered to the script’s standard input as a stream of
URL-encoded text. For example:

name=Fred+Nurk&address=Fred%27s+House%0D%0A0+Nowhere+Lane&submit=Submit

Note that WWW_CONTENT_LENGTH will be the length of the form data. See ‘‘WASD
Scripting’’ document for further information.

File Creation/Upload

If the client sends data back to the server using either the POST or the PUT methods, without
a script being mapped to be executed in response to that data, the WASD HTTPd will create
a file corresponding to the specified path. The data stream may be text or binary.

Of course, for the server to accept POST and PUT data in this manner, authen-
tication and authorization must be enabled and allow such access to the request
path.

HTTPd - Overview 2–5

The data stream is processed according to MIME content-type:

• application/x-www-form-urlencoded

The server specially processes ‘‘application/x-www-form-urlencoded’’ POSTS (i.e. those
generated by <FORM>...</FORM>, allowing files to be created directly from HTML forms.
The processing eliminates any field names from the URL-encoded data stream, placing
only field values into the file. This capability can be quite useful and is demonstrated in
the Update HTTPd module

online hypertext link .

• multipart/form-data

This server can process a request body according to RFC1867, ‘‘Form-based File Upload
in HTML’’. As yet it is not a full implementation. It will not process "multipart/mixed"
subsections. The implementation is basic, providing a facility to allow the upload of a file
into the server administered file system. The ACTION= parameter of the <FORM> tag
must specify the directory (as a URL path) in which the uploaded file will be created.

The following example HTML illustrates how a form may be used to upload a file from
the browser host file system:

<FORM METHOD=POST ACTION="/web/directory/" ENCTYPE="multipart/form-data">
<INPUT TYPE=submit VALUE=" Upload document ... ">
<INPUT TYPE=file SIZE=50 NAME=uploadfile>
</FORM>

online hypertext link

Note
This capability has only been tested against Netscape Navigator versions 2 and 3.
VMS Netscape Navigator 3.0b5 hangs if an upload of a variable-record format file
is attempted. Stick to STREAM-LF or fixed, or convert the file to STREAM-LF.

• text/html
text/plain

Text file created according to the path, VMS record type is STREAM-LF.

• image/gif
application/octet-stream
etc., etc., etc.

Any other MIME type is considered binary and the created file is made an UNDEFINED
record type.

Directory Creation

A directory will be created by the HTTPd if a directory path is provided with the POST or
PUT methods. For example:

/dir1/dir2/dir-to-be-created/

2–6 HTTPd - Overview

File Deletion

A file will be deleted by the HTTPd if the file path ending with a wildard version specification
is provided with the POST or PUT methods. For example:

/dir1/dir2/file-to-be.deleted;*

Directory Deletion

A directory will be deleted by the HTTPd if a directory path ending with a wildard version
specification is provided with the POST or PUT methods. For example:

/dir1/dir2/dir-to-be-deleted/;*

2.5.3 DELETE

The DELETE method should delete the file or directory corresponding to the supplied path.

HTTPd - Overview 2–7

Chapter 3

New to WASD? Start Here!

This chapter provides a quick guide to getting your WASD package installed, configured and
serving. This covers initial installation.

1. Unzip Package

Install the files following the guidelines in Chapter 4. Note that more than one archive
may be needed (Source Archive, Object Module Archives).

2. INSTALL Package

Server installation is performed using the INSTALL.COM procedure (Section 4.7).

• Build Package - Compile and link, or just link supplied object files to produce VMS
executables for the system’s version of VMS.

• Check Package - Check basic operation of the package (Section 4.9).

• Create Server and Scripting Accounts - Create two independent accounts, one
for executing the server, the other for executing scripts (Section 5.1). If quotas are
enabled on the target disk provides an ambit allocation for these accounts. Review
this at some stage.

• Set Package Security - This sections traverses the newly installed tree and sets
all package directories and files to required levels of access (Section 7.2).

• Copy Support and Configuration Files - Copy the example server support and
configuration files (Section 5.3).

• Install Scripts - Selectively copy groups of scripts from package build directories
into the scripting directories.

3. Configure Package

Following the execution of the INSTALL.COM procedure the package should require only
minor, further configuration.

New to WASD? Start Here! 3–1

Initially two files may require alteration.

1. The startup file, possibly to set the local HTTPD$GMT logical (for systems not
supporting DTSS (e.g. DECnet-Plus)). Consider using the STARTUP_LOCAL.COM
file for other site-specific requirements (Section 5.3).

2. The only configuration that should require immediate attention will be to the mapping
rules (Chapter 14).

More generally server runtime configuration involves the considerations discussed in
Section 6.1 along with the following aspects:

• Configuring the HTTP server run-time characteristics (Chapter 6).

• Mapping request paths to the VMS file system, and to other things such as scripts
(Chapter 14).

• Customizing some messages (or all if non-English language environment) (Chap-
ter 12).

• Establishing an authentication and authorization environment (Chapter 16).

4. Start Server

Execute the startup procedure. Get your browser and connect!

5. Find Out What’s Wrong :^(

Of course something will not be right! This can happen with the initial configuration and
sometimes when changing configuration. The server provides information messages in
the run-time log, look in the HT_ROOT:[LOG_SERVER] directory.

Remember, the basic installation’s integrity can always be checked as described in
Chapter 4, Section 4.9. This uses the configuration files from the [EXAMPLE] directory,
so provided these have not been altered the server should execute in demonstration mode
correctly.

Can’t resolve it? See Section 4.15.

3–2 New to WASD? Start Here!

Chapter 4

Installation and Update

The WASD package is distributed as ZIP archives.

It generally pays to use the latest version of VMS UNZIP available. Archives will contain a
comment about the minimum version required, check that as described in the next paragraph.
To show the version of the current UNZIP utility, use

$ UNZIP -v

The ZIP archive will contain brief installation instructions. Use the following command to
read this and any other information provided.

$ UNZIP -z device:[dir]archive.ZIP

It is recommended to check the integrity of, then list the contents of, the archive before
UNZIPing.

$ UNZIP -t device:[dir]archive.ZIP
$ UNZIP -l device:[dir]archive.ZIP

The archive will have the structure:

Archive: DKA0:[WASD]HTROOT921.ZIP;1

WASD VMS Hypertext Services, Copyright (C) 1996-2007 Mark G.Daniel.
This package (all associated programs), comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under the conditions of the GNU GENERAL PUBLIC LICENSE, version 2.

* Full release of v9.2.1 (May 2007)
**
*** CONTAINS SOURCE FILES, DOCUMENTATION, ETC. ***
**
Package must be built using INSTALL or UPDATE as described below.

* To install files:
$ SET DEFAULT device:[000000]
$ UNZIP device:[dir]HTROOT921.ZIP

* To build/link images use the appropriate one of:
$ @device:[HT_ROOT]INSTALL
$ @HT_ROOT:[000000]UPDATE

Installation and Update 4–1

* NOTE: Accounting data will be zeroed when v9.2 first starts.

*** UPGRADING from v8.4 or EARLIER ***

WASD v8.5 thru v9.2 uses a different lock naming schema.
Be sure to shut down any running server before beginning the update.

VMS file attributes saved ... use UnZip 5.2+ on OpenVMS

Archive created 19-MAY-2007

Length Date Time Name
-------- ---- ---- ----

0 05-19-07 07:47 ht_root/000000/
0 05-19-07 07:47 ht_root/axp-bin/
0 05-19-07 07:47 ht_root/axp/
0 05-19-07 07:47 ht_root/cgi-bin/
0 05-19-07 07:47 ht_root/doc/
0 05-19-07 07:48 ht_root/example/
0 05-19-07 07:48 ht_root/exercise/

2734 03-06-03 17:20 ht_root/favicon.ico
...

1433 04-25-02 13:58 ht_root/src/utils/wb_exercise.com
89932 10-26-06 14:31 ht_root/src/utils/wotsup.c
1990 05-10-05 09:21 ht_root/src/utils/wotsup.com
263 10-14-02 16:55 ht_root/startup/readme.html
342 11-19-02 05:31 ht_root/vax-bin/readme.html
499 12-26-03 21:09 ht_root/vax/readme.html

-------- -------
14978508 819 files

4.1 Package UNZIP
The archive contains the complete directory tree. Hence it is necessary to SET DEFAULT
into the top-level directory of the volume the package is to be installed on.

$ SET DEFAULT device:[000000]

It should be unarchived to restore the VMS file system characteristics.

$ UNZIP device:[dir]archive.ZIP

Source Archive, Object Module Archives

The complete package, source code, documentation, examples, etc., is provided in a single
main archive. Installation and other build procedures allow the entire package to be compiled
and linked from this if prefered. This requires a later version of DEC C (preferably v5.n or
greater). VAX C is no longer supported.

In addition, for those unable or not wishing to fully build the distribution, three other
platform-specific archives are available, AXP (Alpha) IA64 (Itanium) and VAX, containing
a complete set of object modules, allowing the package to be built via a link operation only.

4–2 Installation and Update

If a complete build is planned then only the main archive is required. If a link-only build
then an additional archive for each architecture must be UNZIPped as described above.
This applies to both full installations and subsequent updates. The archives will be clearly
identified with the architecture type, as illustrated in this example.

$ UNZIP device:[dir]archive-AXP.ZIP
$ UNZIP device:[dir]archive-IA64.ZIP
$ UNZIP device:[dir]archive-VAX.ZIP

Note
The WASD distribution and package organisation fully supports mixed-architecture
clusters (AXP, Itanium and/or VAX in the one cluster) as one integrated installation.

Existing Installations

When installing an archive as an update to an existing installation consider the following.

• Some insurance on the directory tree is recommended in case the update should fail or
otherwise be unusable or problematic (of course, this is good advice whenever about to
make major changes to anything!) This may be in the format of a regular site backup,
special pre-update backup, or special pre-update ZIP archive of the directory tree. The
latter two could be accomplished using commands similar to the following:

$ BACKUP HT_ROOT:[000000...] location:HTROOT.BCK/SAVE/VERIFY

$ ZIP "-V" location:HTROOT.ZIP device:[HT_ROOT...]*.*
$ ZIP "-T" location:HTROOT.ZIP

If using ZIP then ensure that a previous version of the target ZIP file does not already
exist. If it does then that version is updated, a new version is not created.

• For existing files a new version is created (the first time this is about to occur the
UNZIPper requests permission - either ‘‘A’’ for all, or ‘‘y’’ or ‘‘n’’ or a per-file basis).

• It is possible to selectively extract portions of a tree if something has become damaged.
This would be accomplished by specifying what needs to be extracted from the archive
(instead of the default all), as illustrated by the following example where only the Alpha
object modules are extracted.

$ SET DEFAULT device:[000000]
$ UNZIP device:[dir]archive-AXP.ZIP ht_root/src/httpd/obj_axp/*.*

4.2 ODS-5 Volumes
The WASD package can be installed on and used from ODS-5 (extended file specification)
volumes. Note that the installation procedures and file system organisation of the package
tree has been designed for ODS-2 compliance. (Of course the issue of installing WASD on
an ODS-5 volume is completely separate from the ability to serve the contents of an ODS-5
volume!)

Installation and Update 4–3

4.3 Accessible Volume
Unlikely as it might be to install the package on a private or otherwise protected volume,
the server and scripting accounts being unprivileged in themselves, require access sufficient
to read, write and delete files from the volume (disk). The following illustrates how to check
this and what the protections should look like. Generally any device that an unprivileged
user can use the server accounts can use.

$ SHOW SECURITY /CLASS=VOLUME 1DKA0:

ALPHASYS object of class VOLUME
Owner: [1,1]
Protection: (System: RWCD, Owner: RWCD, Group: RWCD, World: RWCD)
Access Control List: <empty>

4.4 Package Directory Structure
The package directories and content are organised as follows. Note that only some of these can
be accessed by the server account (and therefore seen in server-generated directory listings)
due to directory and file protections (Section 7.1).

Package Directory Structure

Directory Description

[AXP-BIN] Alpha executable script files

[AXP] Alpha build and utility area

[CGI-BIN] architecture-neutral script files

[DOC] package documentation

[EXAMPLE] package examples

[EXERCISE] package test files

[HTTP$NOBODY] scripting account default home area

[HTTP$SERVER] server account default home area

[IA64-BIN] Itanium executable script files

[IA64] Itanium build and utility area

[INSTALL] installation, update and security procedures

[LOCAL] site configuration files

[LOG] site access logs

[LOG_SERVER] server process (SYS$OUTPUT) logs

[RUNTIME] graphics, help files, etc.

[SCRATCH] working file space for scripts

4–4 Installation and Update

Directory Description

[SCRIPT] example architecture-neutral scripts

[SRC] package source files

[STARTUP] package startup procedures

[VAX-BIN] VAX executable script files

[VAX] VAX build and utility area

4.5 TCP/IP Infrastructure
The WASD installation assumes that the system’s TCP/IP infrastructure is correctly installed and
configured, and is operating normally. For example, it is not unknown for a freshly built system to
experience host name resolution problems preventing its own host name from being resolved and
making even elementary server startup impossible.

4.6 SYSUAF and RIGHTSLIST WARNING!
The WASD installation procedure does, and to a lesser degree the update procedure can, make
additions and/or modifications to SYSUAF.DAT and RIGHTLIST.DAT, for default
server and scripting accounts and to facilitate their access to the package directory tree.

Also, when the server image begins execution it may add an identifier, required for script
process management, to RIGHTSLIST.DAT.

These behaviours must be considered in site environments where such changes are prohibited
or closely controlled.

4.7 Installation DCL Procedure
The INSTALL.COM procedure assists with the first installation of WASD. It provides a vanilla
setup, using the standard directories and account environment described in this document.
All sections prompt before performing any action and generally default to ‘‘no’’. Read the
information and questions carefully!

After UNZIPing the package do the following:

$ SET DEFAULT device:[HT_ROOT]
$ @INSTALL

It performs the following tasks:

1. Build Executables - Either compile sources and link, or just link package object code
to produce images for the local version of VMS. If the system has a suitable SSL toolkit
the installer is requested whether an SSL enabled version be built.

2. Check Package - Executes a procedure that runs up the HTTPd in demonstration mode.
Allows evaluation/checking of the basic package (Section 4.9).

Installation and Update 4–5

3. Create Server and Scripting Accounts - Create two, independent accounts, one for
executing the server, the other for executing scripts (Section 5.1). If quotas are enabled
on the target disk provides an ambit allocation for these accounts. Review this at some
stage.

4. Set Package Security - This section traverses the newly installed tree and sets all
package directories and files to required levels of access. For directory settings see
Section 7.1.

5. Copy Support and Configuration Files - Copy the example server support and
configuration files (Section 5.3).

6. Install Scripts - Selectively copy groups of scripts from package build directories into
the scripting directories.

Support files to consider when customizing startup, etc. (see Section 5.3 for further detail):

STARTUP.COM
STARTUP_LOCAL.COM
STARTUP_SERVER.COM

4.8 Update DCL Procedure
The UPDATE.COM procedure assists with subsequent updates of WASD. It assumes a vanilla
setup, using the standard directories and account environment described in this document.
All sections prompt before performing any action and generally default to ‘‘no’’. Read the
questions carefully!

Of course it is best (read mandatory) for the server to be shut down during an update!

$ HTTPD/DO=EXIT/ALL

After UNZIPing the updated package do the following:

$ SET DEFAULT HT_ROOT:[000000]
$ @UPDATE

It provides the following functions:

1. Build Executables - Either compile sources and link, or just link package object code
to produce images for the local version of VMS. If the system has a suitable SSL toolkit
the installer is requested whether an SSL enabled version be built.

2. Server Quick-Check - Executes a procedure that runs up the HTTPd in demonstration
mode. Allows evaluation/checking of the basic package (Section 4.9).

3. Server Support/Configuration Files - Copies changed example HTTP server configu-
ration and support files from the [EXAMPLE] directory to the [HTTP$SERVER], [LOCAL]
and [STARTUP] directories.

4. Update Scripts - Selectively copy groups of scripts from package build directories into
the scripting directories.

5. Reapply Package Security - This section traverses the updated tree and sets all
package directories and files to required levels of access. For directory settings see
Section 7.1.

4–6 Installation and Update

6. Post-Update Cleanup - Prompts for permission to execute the post-update procedure
described below.

7. Purge Files - Prompts for permission to purge the entire HT_ROOT:[000000...] tree.

If declined during the update procedure the post-update steps 6 and 7 can be performed at
any subsequent time using

$ SET DEFAULT HT_ROOT:[000000]
$ @UPDATE CLEANUP
$ PURGE [...]

4.9 Quick-Check
Once installed or updated it is possible to check the basic package at any time using the
[INSTALL]DEMO.COM procedure. This invokes the server image using the /DEMO qualifier
allowing some behaviours not possible under general use. Follow the displayed instructions.
Basically, the server should start and become reachable via port number 7080. So, to test
availability, using your prefered browser enter the URL listed on line starting with ‘‘%HTTPD-
I-SERVICE’’ and the WASD welcome page should be displayed.

$ @HT_ROOT:[INSTALL]DEMO.COM

* WASD PACKAGE DEMONSTRATOR *

If you have the SSL package then just add "SSL" as parameter 1!

When finished using demonstrator abort server execution using control-Y
(a subprocess will be spawned to preserve current process environment)

Use a browser to access the "%HTTPD-I-SERVICE" shown when the server starts.

The server will be running in promiscuous mode!
Any username with the password specified below can be used for authentication.
Enter a string to use as a password when later prompted by your browser.

Password (for demo authentication)? []: anyoldpassword

Installation and Update 4–7

%DCL-S-SPAWNED, process SYSTEM_50032 spawned
%DCL-S-ATTACHED, terminal now attached to process SYSTEM_50032
%HTTPD-I-SOFTWAREID, HTTPd-WASD/9.2.1 OpenVMS/AXP
WASD VMS Hypertext Services, Copyright (C) 1996-2007 Mark G.Daniel.
This package (all associated programs), comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under the conditions of the GNU GENERAL PUBLIC LICENSE, version 2.
%HTTPD-I-STARTUP, 28-OCT-2007 01:04:28
%HTTPD-I-SYSTEM, Digital Personal WorkStation VMS V8.3
%HTTPD-W-SYSPRV, operating with implicit SYSPRV (UIC group 1)
%HTTPD-I-TCPIP, HP TCPIP$IPC_SHR V5.6-9 (22-JUN-2006 20:21:19.28)
%HTTPD-I-MODE, INTERACTIVE
%HTTPD-I-ODS5, supported by Alpha VMS V8.3
%HTTPD-I-GMT, +09:30
%HTTPD-I-INSTANCE, supervisor
%HTTPD-I-GBLSEC, created global section of 16 page(let)s
%HTTPD-I-INSTANCE, 1 process
%HTTPD-I-INSTANCE, process name HTTPd:7080
%HTTPD-W-AUTH, 1 informational, 1 warning, 0 errors at load
1.w PROMISCUOUS authenticating any username with specified password!
2.i Cache for 32 records of 768 bytes in local storage of 49 page(let)s
%HTTPD-W-MAP, 1 informational, 0 warning, 0 errors at load
1.i ODS-5 processing enabled
%HTTPD-I-SCRIPTING, as HTTP$NOBODY
%HTTPD-I-DCL, subprocess scripting
%HTTPD-I-ACTIVITY, created global section of 992 page(let)s
%HTTPD-I-SERVICE, http://klaatu.private.net:7080
%HTTPD-I-DEMO, demonstration mode
1.i subprocess scripting
2.i promiscuous authentication
3.i directory access control files ignored
4.i [DirAccess] enabled
5.i [DirMetaInfo] enabled
6.i [DirWildcard] enabled
7.i [Logging] disabled
8.i [ReportBasicOnly] disabled
9.i [ReportMetaInfo] enabled
%HTTPD-I-BEGIN, 28-OCT-2007 01:04:28, accepting requests

When http://the.host.name:7080 is accessed the browser should display something resem-
bling

-
/-- / \
/W A S D\ Welcome to "WASD VMS Hypertext Services" version 9.2

Empowered by VMS
\/---\ /

--

Note
The WASD server which is started by the [INSTALL]DEMO.COM procedure does
not have the full environment setup at that time. It is deliberately limited to the
single process context. For instance, do not try to execute the command-line directives
described in this document.

4–8 Installation and Update

4.10 ‘‘Clone’’ Procedure
The [INSTALL]CLONE.COM procedure assists in creating a ZIP archive of an existing WASD
installation suitable for recreating the server on another system without the necessity of a full
installation. This could be used to populate a series of systems with pre-configured servers.

4.11 Re-Linking
After a major update to the operating system the package may refuse to start, reporting a
message like:

%DCL-W-ACTIMAGE, error activating image WHAT$EVER
-CLI-E-IMGNAME, image file DKA0:[SYS0.SYSCOMMON.][SYSLIB]WHAT$EVER_SHR.EXE
-SYSTEM-F-SHRIDMISMAT, ident mismatch with shareable image

This implies the executables require re-linking for your particular version of VMS. This can
be accomplished quite simply, perform the linking section only of the update DCL procedure,
Section 4.8.

4.12 VMS 6.0 and 6.1
Persona scripting requires a minimum VMS V6.2 to provide the $PERSONA services required
for this functionality. If unsure about persona scripting please consult the ‘‘Scripting
Overview’’ document. Equivalent functionality on earlier versions of VAX VMS is available
using the PERSONA_MACRO build option. This will be prompted for by the INSTALL.COM
and UPDATE.COM procedures if VAX VMS V6.0 or V6.1 is detected. It is completely optional
functionality, the default for these versions is merely to report that persona scripting is
unavailable.

A kernel-mode MACRO module is used to provide sufficient functionality to support non-
server account scripting. This module makes a momentary modification to the server process
username in kernel data structures allowing a detached (scripting) process to be created under
that account. The standard WASD server STARTUP.COM procedure will detect whether
the MACRO module has been compiled into the executable and INSTALL the image with
CMKRNL privilege if required.

Note
Although this approach has been used by a number of tools and applications and has
proved quite reliable it is still a mechanism unsupported by the operating system
proper and so may have a (potentially) undesirable impact on system integrity.

An alternative is to run the server as a NETWORK mode process.

4.13 VMS 5.5-n
WASD is only officially supported for VMS V6.0 or greater. However pre-7.n versions have
been known to successfully build and run under VMS V5.5-n. It will, in all probability, require
the AACRTL060 kit (which is part of DECC for this version of VMS, or can be obtained and
installed separately).

Installation and Update 4–9

One issue was a difficulty in using the CGI-BIN logical. This was isolated to the hyphen
it contains and resolved by changing the definition of this in STARTUP.COM, using instead
‘‘CGI-BIN’’. This is now the default for the example startup procedure, allowing both 5.5-n
and later VMS versions to function correctly.

4.14 Local Setup Suggestions
Package updates will never contain anything in these directories:

HT_ROOT:[HTTP$NOBODY]
HT_ROOT:[HTTP$SERVER]
HT_ROOT:[LOCAL]
HT_ROOT:[STARTUP]

To prevent the overwriting of local configuration files it is suggested these be placed in the
HT_ROOT:[LOCAL] directory. Local authentication databases could also be placed in the
[LOCAL] directory. Startup files can be placed where-ever the local site manages system
startup. These could be placed in the HT_ROOT:[STARTUP] directory.

4.15 Reporting Problems
This package, as is generally the case with freeware, is mainly developed and supported
outside of the author’s main occupation and working hours. Reports of problems and bugs
(while not necessarily welcome :-), as well as general queries, are responded to as soon as
practicable. If the documentation is inaccurate or could benefit from clarification in some
area please advise of this also (the better the documentation the less queries you have to field
personally . . . or so the theory goes).

With all reports please include the version of the server or script, and the hardware platform,
operating system and TCP/IP package and version in use.

If a server error message is being generated please examine the HTML source of the error
page. The ‘‘<META...>’’ information contains version information as well as valuable source
code module and line information. Include this with the report.

If the server is exiting with a server-generated error message this information also contains
module and line information. Please include this with the report.

The WATCH facility (Chapter 20) is often a powerful tool for problem investigation. It is also
very useful when supplying details during problem resolution. When supplying WATCH
output as part of a problem report please ZIP the file and include it an an e-mail
attachment. Mailers often mangle the report format making it difficult to interpret.

Image crash dumps may also be generated, although these are of less value than the case of
the previous two.

Reports may be e-mailed to
Mark.Daniel@wasd.vsm.com.au

Should the above address present problems or provide no response for an extended period
then use
Mark.Daniel@dsto.defence.gov.au

4–10 Installation and Update

Chapter 5

Server Account and Environment

The HTTP server account should be a standard account, preferably in a group of its own
(definitely at least a non-system, non-user group), with sufficient quotas to handle the
expected traffic.

Process Quotas!
Server process quotas must be sufficient to support the expected traffic load. In
particlular PRCLM must support expected script usage. BYTLM, BIOLM, DIOL,
FILLM and PGFLQUO are all significant considerations.

Symptoms of insufficient process quotas include:

• Textual pages OK, but pages with a significant number of images having some or all
‘‘broken’’.

• Scripts failing mysteriously, particularly when multiple in use concurrently.

• Server and associated scripts all apparently waiting MWAIT or RWAST states.

A general rule is more is better, after all, it will only use as much as it needs! To assist with
setting a reasonable BYTLM quota the WATCH report provides some feedback on server
BYTLM usage. See Chapter 20 for further details.

TCP/IP Agent Resources!
On an associated topic; some TCP/IP agents require particular internal resources to
be adjusted against given loads (e.g. buffer space allocations). Symptoms of resource
starvation may be TCP/IP services, including WASD, ‘‘pausing’’ for significant periods
or associated processes entering miscellaneous wait states, etc., during processing.
Please ensure such TCP/IP agents are appropriately dimensioned for expected loads.

Later versions of TCP/IP Services for OpenVMS seem to have large default values
for socket send and receive buffers. MultiNet and TCPware are reported to improve
transfer of large responses by increasing low default values for send buffer size.
The WASD global configuration directives [SocketSizeRcvBuf] and [SocketSizeSndBuf]
allow default values to be adjusted. WATCH can be used to report network connection
buffer values.

Server Account and Environment 5–1

5.1 VMS Server Account
The following provides a guide to the account.

Username: HTTP$SERVER Owner: WASD Server
Account: HTTPD UIC: [077,001] ([HTTP$SERVER])
CLI: DCL Tables: DCLTABLES
Default: HT_ROOT:[HTTP$SERVER]
LGICMD: LOGIN
Flags: Restricted DisNewMail
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
Primary 000000000011111111112222 Secondary 000000000011111111112222
Day Hours 012345678901234567890123 Day Hours 012345678901234567890123
Network: ##### Full access ###### ##### Full access ######
Batch: ##### Full access ###### ##### Full access ######
Local: ----- No access ------ ----- No access ------
Dialup: ----- No access ------ ----- No access ------
Remote: ----- No access ------ ----- No access ------
Expiration: (none) Pwdminimum: 6 Login Fails: 0
Pwdlifetime: 90 00:00 Pwdchange: (pre-expired)
Last Login: (none) (interactive), 11-MAY-1995 08:44 (non-interactive)
Maxjobs: 0 Fillm: 300 Bytlm: 5000000
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 2048 JTquota: 1024
Prclm: 100 DIOlm: 1024 WSdef: 1000
Prio: 4 ASTlm: 2000 WSquo: 5000
Queprio: 0 TQElm: 100 WSextent: 20000
CPU: (none) Enqlm: 256 Pgflquo: 500000
Authorized Privileges:
NETMBX TMPMBX

Default Privileges:
NETMBX TMPMBX

5.2 VMS Scripting Account
The following provides a guide to the account.

5–2 Server Account and Environment

Username: HTTP$NOBODY Owner: WASD Scripting
Account: HTTPD UIC: [076,001] ([HTTP$NOBODY])
CLI: DCL Tables: DCLTABLES
Default: HT_ROOT:[HTTP$NOBODY]
LGICMD: LOGIN
Flags: Restricted DisNewMail
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
Primary 000000000011111111112222 Secondary 000000000011111111112222
Day Hours 012345678901234567890123 Day Hours 012345678901234567890123
Network: ##### Full access ###### ##### Full access ######
Batch: ##### Full access ###### ##### Full access ######
Local: ----- No access ------ ----- No access ------
Dialup: ----- No access ------ ----- No access ------
Remote: ----- No access ------ ----- No access ------
Expiration: (none) Pwdminimum: 6 Login Fails: 0
Pwdlifetime: 90 00:00 Pwdchange: (pre-expired)
Last Login: (none) (interactive), 11-MAY-1995 08:44 (non-interactive)
Maxjobs: 0 Fillm: 300 Bytlm: 500000
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 2048 JTquota: 1024
Prclm: 100 DIOlm: 1024 WSdef: 1000
Prio: 4 ASTlm: 2000 WSquo: 5000
Queprio: 0 TQElm: 100 WSextent: 20000
CPU: (none) Enqlm: 256 Pgflquo: 500000
Authorized Privileges:
NETMBX TMPMBX

Default Privileges:
NETMBX TMPMBX

5.3 Account Support Files
Note

Support procedures often change between versions. It is always advisable to check
the versions documentation before installing or updating. Examples may be found in
HT_ROOT:[EXAMPLE].

online hypertext link

HTTPd Executables

Two server executables can be built by the package.

• HTTPD.EXE - basic server

• HTTPD_SSL.EXE - SSL-enabled server (Chapter 18).

Privileged Image

As this image is to be installed with privileges unauthorized use should be prevented by
applying an ACL similar to the following against the executable image:

$ SET SECURITY HT_EXE:HTTPD.EXE -
/ACL=((IDENT=HTTP$SERVER,ACCESS=R+E),(IDENT=*,ACCESS=NONE))

Server Account and Environment 5–3

This can be done once, at installation, or for peace-of-mind (a.k.a. VMS-ish paranoia) at each
server startup.

As the HTTP$SERVER account should be completely unprivileged, and the HTTPd image
requires CMKRNL, NETMBX, TMPMBX, PRMGBL, PRMMBX, PSWAPM, SHMEM (VAX
only), SYSGBL, SYSLCK, SYSNAM, SYSPRV and WORLD privileges (see the ‘‘Nuts and
Bolts’’ document for a description of how and why the server uses these privileges). It must
be installed using a command similar to the following:

$ INSTALL = "SYSSYSTEM:INSTALL/COMMAND_MODE"
$ INSTALL ADD HT_EXE:HTTPD.EXE -
/PRIVILEGE=(ALTPRI,CMKRNL, PRMGBL,PRMMBX,PSWAPM,SHMEM,-

SYSGBL,SYSLCK,SYSNAM,SYSPRV,WORLD)

STARTUP.COM

Putting all this together the HTTP server startup procedure becomes something similar to the
supplied example. It should be called from SYSTARTUP_VMS.COM or the site’s equivalent.

This procedure will support simple and quite complex sites. It works closely with STARTUP_
SERVER.COM (see below). It is designed to accept parameters from the command-line or as
pre-assigned symbols. Operating in this fashion should mean that no modifications will need
to be made to the procedure itself. Startup characteristics are essentially determined by DCL
symbol values. Some symbols are booleans, switching functionality off and on, others require
string values. When relevant startup values are not assigned a reasonable default will be
applied. See the following examples.

Startup characteristics can be determined by supplying symbol assignment values as
command-line parameters when calling the procedure.

$ @1DKA0:[HT_ROOT.LOCAL]STARTUP WASD_DECNET=1 WASD_SSL=1 -
WASD_SSL_CERTIFICATE="HT_ROOT:[LOCAL]ALPHA.PEM"

Startup characteristics can also be determined by assigning the symbol values before calling
the procedure itself.

$ WASD_DECNET = 1
$ WASD_SSL = 1
$ WASD_SSL_CERTIFICATE = "HT_ROOT:[LOCAL]ALPHA.PEM"
$ @1DKA0:[HT_ROOT.LOCAL]STARTUP

On version of VAX VMS prior to 6.2 the startup uses a system batch queue. By default
SYS$BATCH is used. If a node does not have a SYS$BATCH then one must be created. If a
clustered node’s SYS$BATCH is configured to run on a cluster-common batch queue (i.e. not
necessarily on the startup node) then a node-specific queue must be specified.

$ @1DKA0:[HT_ROOT.LOCAL]STARTUP WASD_DECNET=1 WASD_BATcr_QUEUE=THIS$BATCH

Check the procedure itself for detail on symbol names and functionality.

See HT_ROOT:[EXAMPLE]STARTUP.COM

5–4 Server Account and Environment

STARTUP_LOCAL.COM

This file is automatically executed by the STARTUP.COM procedure immediately before the
server is actually started. It is provided to supply all the local site’s additional startup
requirements. Place site-specific server environment startup in here, leaving STARTUP.COM
alone as much as possible.

See HT_ROOT:[EXAMPLE]STARTUP_LOCAL.COM

STARTUP_SERVER.COM

This procedure serves two purposes.

1. Server startup:

• If on VAX VMS V6.0 or V6.1 it is submitted to the SYS$BATCH queue during startup.
The batch portion creates a detached process, which then again uses this procedure
as input, supporting the executing HTTPd.

• With more modern versions and architectures of VMS the procedure becomes
SYS$COMMAND for a detached process created directly during the execution of
STARTUP.COM.

2. The procedure then controls the activation of the HTTPd executable image during normal
restarts and exits, and exits after fatal server error.

See HT_ROOT:[EXAMPLE]STARTUP_SERVER.COM

It is recommended to pass server startup command-line parameters using the HTTPD$SERVER_
STARTUP logical name that this procedure checks for and uses if present. If this is defined
in the system table the contents are applied to the server image when executed. It can be
explicitly defined before WASD startup.

$ DEFINE /SYSTEM /EXECUTIVE HTTPD$STARTUP_SERVER "/SYSUAF=ID"
$ @1DKA0:[HT_ROOT.LOCAL]STARTUP

The value can also be passed to the main startup procedure in a symbol. The startup
procedure then defines a system logical name with that value (note that any quotes used
must be escaped).

$ WASD_DECNET = 1
$ WASD_SSL = 1
$ WASD_SSL_CERTIFICATE = "HT_ROOT:[LOCAL]ALPHA.PEM"
$ WASD_STARTUP = "/SYSUAF=ID"
$ @1DKA0:[HT_ROOT.LOCAL]STARTUP

It can also be manually redefined at any time and the server restarted to apply different
startup parameters to the running server.

$ DEFINE /SYSTEM /EXECUTIVE HTTPD$STARTUP_SERVER "/SYSUAF=(SSL,ID)"
$ HTTPD /DO=RESTART=NOW

Server Account and Environment 5–5

5.4 Other Resources
Other resources required or consumed by the package.

Global Pages/Sections

Accounting and request data made available to the server monitor utility (HTTPDMON) is
provided by shared global memory. This requires one global section (SYSGEN parameter
GBLSECTIONS) and 16 global pages (SYSGEN parameter GBLPAGES). The activity statis-
tics available from the Server Admininistration facility requires one global section and 816
global pages. These two global sections are permanent.

If multiple server instances are to be employed one more global section is required for a
standard server (a shared authentication cache), or two more for an SSL server (a shared
session cache), with another if reverse proxy verify is enabled, plus a variable number (some
tens) of global pages. These global sections are temporary.

If there are insufficient global sections or pages the server will fail to start for all requirements
except the activity statistics, this will just be disabled. Startup messages advise on current
usage.

As permanent, system-accessible global sections are deployed it may be necessary to explicitly
delete them after ad hoc server experimentation, etc. (Section 5.5). The startup qualifier
/GBLSEC=NOPERM disables the creation of permanent global sections eliminating this
requirement.

Logical Names

The following logical names are used in the operation of the HTTPd server and most must be
defined before startup (system-wide, or in the job table if server-specific). These are usually
created by STARTUP.COM during server startup.

Package Logical Names

Logical Name Description

HTTPD$AUTH Location of the authentication/authorization configuration file.

HTTPD$CONFIG Location of the configuration file.

HTTPD$MAP Location of the mapping rule file.

HTTPD$MSG Location of the message file.

HTTPD$SERVICE Location of the optional service (virtual host) configuration file.

HTTPD$SITELOG Location of the optional plain-text site log file (Section 19.5).

HTTPD$GMT Offset from GMT (e.g. ‘‘+10:30’’, ‘‘-01:15’’). For systems supporting
DTSS (e.g. DECnet-Plus) this logical may be left undefined,
with server time being calculated using the SYS$TIMEZONE_
DIFFERENTIAL logical.

5–6 Server Account and Environment

Logical Name Description

HTTPD$LOG If logging is enabled and no log file name specified on the
command line, this logical must be defined to locate the file.
When a logging period is in use this logical need only contain the
directory used to store the logs.

HTTPD$SSL_CERT When using the SSL executable this logical locates the default
certificate.

HTTPD$STARTUP_SERVER Can be used to pass parameters to the server image startup
command line.

AXP_BIN Directory containing Alpha script executables.

CGI-BIN System logical defining a search list with the architecture-specific
executable directory first, local script directory second, then the
common script directory, as a concealed device.

CGI_BIN Directory containing archtecture-neutral script files.

CGI_EXE Directory containing architecture-specific script executables.

HT_AXP Directory containing Alpha executable images.

HT_AUTH Directory containing authentication/authorization databases
(files).

HT_EXE Directory containing the executable images.

HT_IA64 Directory containing Itanium executable images.

HT_LOGS Optional definition, for convenient log file specification.

HT_SCRATCH Location of an optional directory that scripts can use for tempo-
rary storage. Must be read+write+delete accessible to the server
account. The HTTPD$CONFIG [DclCleanupScratchMinutes-
Max] directive controls whether automatic cleanup scans of this
area delete any files that are older than [DclCleanupScratchMin-
utesOld].

HT_SERVER_LOGS Optional definition, for convenient detached server process log file
specification.

HT_VAX Directory containing VAX executable images.

IA64_BIN Directory containing Itanium script executables.

VAX_BIN Directory containing VAX script executables.

5.5 Server Startup
When starting up the server several characteristics of the server may be specified using qual-
ifiers on the command line. If not specified appropriate defaults are employed. For recom-
mended methods of passing parameters to the executable at server startup see STARTUP_
SERVER.COM.

Server Account and Environment 5–7

Server Image Command-Line Parameters

Parameter/Qualifier Description

/ACCEPT= Comma-separated list of hosts/domains allowed to connect to the
server.

/ALL[=string] Has two roles. When starting a server up assigns that server to
a specific, non-default group of servers (for cluster-wide server
control and proxy cache management). When using the server
control /DO= using /ALL specifies to do the action to all servers in
the group.

/AUTHORIZATION=[SSL,ALL] The ‘‘SSL’’ keyword causes all authentication (both SYSUAF
and HTA database) to be available only via ‘‘https:’’ requests
(Chapter 18). The ‘‘ALL’’ keyword forces the server to deny access
to any path that does not have authorization in place against it
(Section 16.2).

/CGI_PREFIX= The prefix to the CGI symbol names created for a script (defaults
to ‘‘WWW_’’, similar to the CERN VMS HTTPd, see ‘‘Scripting
Environment’’ document).

/CLUSTER Apply control /DO= to all instances in the cluster (default is to
per-node instances only).

/DEMO Places the server into demonstration mode designed to allow
full package capabilities to be demonstrated. Used by the
[INSTALL]DEMO.COM procedure.

/DETACH= For VMS 6.2 and later this qualifier allows a DCL procedure to
be specified as input to a directly detached process (in conjunction
with /USER).

/DO= Command to be performed by the executing server (Section 19.7).

/FILBUF= Number of bytes in the read buffer for files open for processing
(i.e. menu files, image mapping configuration files, pre-processed
HTML files, etc., not direct file transfers).

/FORMAT= Overrides the configuration parameter [LogFormat].

/GBLSEC=DELETE Allows a monitor-associated permanent global section to be
explicitly deleted. When a server starts it creates system-
accessible, permanent global sections in which to store accounting
and request data. As this is permanent it would be possible for
a site, perhaps experimenting with servers over a range of ports,
to consume significant amounts of global pages and sections.
This qualifier allows such sections to be deleted. See also the
/GBLSEC=NOPERM described immediately below.

/GBLSEC=NOPERM Disables the creation of permanent global sections. They are
automatically deleted when the server image exits.

5–8 Server Account and Environment

Parameter/Qualifier Description

/REJECT= Comma-separated list of hosts/domains not allowed to connect to
the server.

/[NO]LOG[=name] Either disables logging (overrides configuration directive), or
enables logging and optionally specifies the log file name (also see
section Logical Names, logging is disabled by default). If the file
specification is ‘‘SYS$OUTPUT’’ the server issues log entries to
<stdout>, allowing user-defined log formats to be easily checked
and refined.

/NOMONITOR Allows the update of the data read by HTTPDMON to be disabled.

/NETBUF= Minimum number of bytes in the network read buffer.

/NETWORK Run the server and any scripting processes as NETWORK mode
rather than the default detached OTHER mode.

/OUTBUF= Number of bytes in the output buffer (for direct file transfers,
buffered output from menu interpretation, HTML-preprocessing,
etc.)

/PERIOD= Overrides the configuration parameter [LogPeriod].

/PERSONA[=ident-name,
RELAXED,AUTHORIZED,
RELAXED=AUTHORIZED]

Enables detached process scripting. When used without the ident-
name all non-privileged accounts (appropriately mapped of course)
may have scripts executed under them. If the optional ident-
name is supplied it specifies the name of a rights identifier the
account must be granted before scripts can be activated under it.
The RELAXED, AUTHORIZED and RELAXED=AUTHORIZED
further control the use of persona functionality with privileged
accounts. See ‘‘Scripting Overview, Introduction’’ for further
detail.

/PORT= Overrides the configuration parameter [Port] BUT is in turn
overridden by the [Service] configuration parameter and
/SERVICE= qualifier (is really only useful for use with the /DO=
qualifier).

/PRIORITY= Server process priority (default is 4).

/[NO]PROFILE Allows SYSUAF-authenticated username security profiles to be
used for file access (Section 16.10).

/PROMISCUOUS[=password] Server will accept any authentication username/password pair
(used for testing, demonstrations, etc.)

/PROXY=string Allows proxy maintainance activitied to be executed from the
command line (e.g. from batch jobs, etc.). See Section 17.2.3.

/SCRIPT=AS= Specifies the username of the default scripting account.

/SERVICE= Comma-separated, list of server services (overrides the [Service]
configuration parameter).

Server Account and Environment 5–9

Parameter/Qualifier Description

/SOFTWARE= An arbitrary string that can be used to override the server
software identification (i.e. ‘‘HTTPd-WASD/9.0.0 OpenVMS/AXP
SSL’’).

/[NO]SSL[=version] Controls Secure Sockets Layer protocol behaviour. The version
can be any of ‘‘2’’, ‘‘3’’ or ‘‘23’’ (i.e. both 2 and 3, and the default)
specifying which SSL protocol version the server will service.

/SUBBUF= Number bytes in a (sub)process’ SYS$OUTPUT buffer.

/[NO]SWAP Controls whether the server process may be swapped out of the
balance set (default is swapping disabled).

/[NO]SYSUAF[=ID,
PROXY,SSL,WASD]

Allows or disallows (D) username authentication using the server
system’s SYSUAF (Section 16.10), the optional ‘‘SSL’’ keyword
causes SYSUAF authentication to be available only via ‘‘https:’’
requests (Chapter 18), the optional ‘‘PROXY’’ keyword allows
SYSUAF proxying, and the optional ‘‘ID’’ keyword makes SYSUAF
authentication only available to account possessing a specific
identifier (Section 16.10). The ‘‘WASD’’ keyword makes the
deprecated, "hard-wired" WASD identifier environment available
to this server. See Section 16.10.3.

/USER For VMS 6.2 and later this qualifier allows the /DETACH qualifier
to directly create a detached process executing as the specified
username.

/VALBLK[=16 | 64] For server to (try) to use either pre-VMS V8.2 16 byte lock value
block or the VMS V8.2 and later 64 byte lock value block.

/VERSION Displays the executable’s version string and the copyright notice.

/[NO]WATCH= Controls the use of the WATCH reporting facility. See Chapter 20
for further details.

5–10 Server Account and Environment

Chapter 6

Configuration Considerations

WASD has a global configuration, which applies characteristics to the entire running server, as
well as per-service (virtual server) and conditional configuration, which applies characteristics
or behaviours to specific requests. All configuration is provided via files located by logical
names.

Configuration Files

Name Scope Description

HTTPD$AUTH loadable request authorization control

HTTPD$CONFIG global server configuration

HTTPD$MAP loadable request processing control

HTTPD$MSG global provides server messages

HTTPD$SERVICE global specifies services (virtual servers)

Simple editing of these files change the configuration. Comment lines may be included by
prefixing them with the hash ‘‘#’’ character. Configuration file directives are not case-sensitive.
Any changes to global configuration file can only be enabled by restarting the HTTPd process
using the following command on the server system.

$ HTTPD /DO=RESTART

Changes to request mapping or authorization configuration files also can be dynamically
reloaded into the running server using the administration command-line interface.

$ HTTPD /DO=MAP=LOAD
$ HTTPD /DO=AUTH=LOAD

A server’s currently loaded configuration can be interrogated. See Chapter 19 for further
information.

Configuration Considerations 6–1

6.1 Site Organisation
Here are a few ‘‘Mother’s Truths’’ about site organisation. These are only basic and obvious
suggestions (after a little step back from the sometimes initially overwhelming feeling of
‘‘what do I do now with this brand new toy?’’). There are lots of general documents of Web
site organisation and design that are applicable to all server environments. Above all, bring
your own software system design experience to the Web-specific environment, it’s not all that
different to any other transaction-based, user-interactive environment.

It is recommended that the server distribution tree and any document and other
web-specific data areas be kept separate and distinct.

The former in HT_ROOT:[000000], the latter perhaps in something like WEB:[000000]. This
logical device could be provided with the following DCL introduced into the site or server
startup procedures:

$ DEFINE /SYSTEM /TRANSLATION=CONCEALED WEB DSA811:[WEB.]

Note that logical device names like this need not appear in in the structure of the Web site.
The root of the Web-accessible path can be concealed using a final mapping rule similar to
the following

pass /* /web/*

which simply defaults anything else to that physical area. Of course if that anything else
needs to exist then it must be located in that physical area.

Mapping rules are the tools used to build a logical structure to a site from the physical area,
perhaps multiple areas, used to house the associated files. The logical organisation of served
data is largely hierarchical, organised under the Web-server path root, and is achieved via
two mechanisms.

1. The natural tree structure provided by a hierarchical file system.

2. The logical hierarchy possible using rules within the mapping file to place disparate
physical areas into a single logical structure.

Physically distinct areas are used for good physical reasons (e.g. the area can best be hosted
on a task-local disk), for historical reasons (e.g. the area existed before any Web environment
existed) or for reasons of convenience (e.g. lets put this where access controls already allow
the maintainers to manage it).

There are no good reasons for having site-specific documents integrated into the
package directory structure!

All site-served files should be located in an autonomous, dedicated area or areas. The only
reason to place script files into HT_ROOT:[CGI-BIN] or HT_ROOT:[architecture_BIN] is that
the script script is traditionally accessible via a /cgi-bin/ path or that the site is a small and/or
low usage environment where this directory is conveniently available for the few extra scripts
being made available.

For any significant site (size that as best suits your perception), or for when a specific software
system or systems is being built or exists and it is being ‘‘Web-ified’’, design that software
system as you would be any other. That is place the documentation in one directory are,
executables and support procedures in their own, management files in another, data in yet
another area, etc. Then make those portions that are required to be accessible via the

6–2 Configuration Considerations

Web interface accessible via the logical associations afforded through the use of the server’s
mapping rules (Chapter 14). Of course existing areas that are to be now made available via
the Web can be mapped in the same way. This includes the active components - executable
scripts. There is no reason (apart from historical) why the /cgi-bin/ path should be used to
activate scripts associated with a dedicated software system. Use a specific and unique path
for scripts associated with each such system.

When making a directory structure available via the Web care must be taken that only the
portions required to be accessed can be. Other areas should or must not be accessible. The
server process can only access files that are world-accessible, it is specifically granted access
via VMS protection mechanisms (e.g. ACLs), or that the individual SYSUAF-authorized
accessor can access and which have specifically been made available via server authorization
rules. Use the recommendations in Section 7.1 as guidlines when designing your own site’s
protections and permissions.

Document Root

A particular area of the file system may be specified as the root of a particular (virtual) sites
documents. This is done using the HTTPD$MAP SET map=root=<string> mapping rule.
After this rule is applied all subsequent rules have the specified string prefixed to mapped
strings before file-system resolution.

For example, the following HTTPD$MAP rule set

[[the.virtual.site:*]]

pass /*/-/* /ht_root/runtime/*/*
/ht_root/* /ht_root/*

set * map=root=/dka0/the_site

exec /cgi-bin/* /cgi-bin/*
pass /* /*
fail *

when applied to the following request URLs results in the described mappings being applied.

http://the.virtual.site/doc/example.txt

access to the document represented by file

DKA0:[THE_SITE.DOC]EXAMPLE.TXT

With the request for a directory icon using

http://the.virtual.site/-/httpd/file.gif

access to the image represented by file

HT_ROOT:[RUNTIME.HTTPD]FILE.GIF

And a request for a script using

http://the.virtual.site/cgi-bin/example.php

activation of the script represented by the file

DKA0:[THE_SITE.CGI-BIN]EXAMPLE.PHP

Configuration Considerations 6–3

Care must be taken in getting the sequence of mapping rules correct for access to non-site
resources before actually setting the document root which then ties every other resource to
that root.

6.2 Server Instances
The term instance is used by WASD to describe an autonomous server process. WASD will
support multiple server processes running on a single system, alone or in combination with
multiple server processes running across a cluster. This is notthe same as supporting multiple
virtual servers (see Section 6.3). When multiple instances are configured on a single system
they cooperate to distribute the request load between themselves and share certain essential
resources such as accounting and authorization information.

WARNING
Versions earlier than Compaq TCP/IP Services v5.3 and some TCPware v5.n (at
least) have a problem with socket listen queuing that can cause services to ‘‘hang’’
(should this happen just disable instances and restart the server). Ensure you
have the requisite version/ECO/patch installed before activating multiple instances
on production systems!

VMS Clustering Comparison

The approach WASD has used in providing multiple instance serving may be compared in
many ways to VMS clustering.

A cluster is often described as a loosely-coupled, distributed operating environment where
autonomous processors can join, process and leave (even fail) independently, participating
in a single management domain and communicating with one another for the purposes of
resource sharing and high availability.

Similarly WASD instances run in autonomous, detached processes (across one or more
systems in a cluster) using a common configuration and management interface, aware of
the presence and activity of other instances (via the Distributed Lock Manager and shared
memory), sharing processing load and providing rolling restart and automatic ‘‘fail-through’’
as required.

Load Sharing

On a multi-CPU system there are performance advantages to having processing available
for scheduling on each. WASD employs AST (I/O) based processing and was not originally
designed to support VMS kernel threading. Benchmarking has shown this to be quite fast
and efficient even when compared to a kernel-threaded server (OSU) across 2 CPUs. The
advantage of multiple CPUs for a single multi-threaded server also diminishes where a site
frequently activates scripts for processing. These of course (potentially) require a CPU each
for processing. Where a system has many CPUs (and to a lesser extent with only two and
few script activations) WASD’s single-process, AST-driven design would scale more poorly.
Running multiple WASD instances addresses this.

Of course load sharing is not the only advantage to multiple instances . . .

6–4 Configuration Considerations

Restart

When multiple WASD instances are executing on a node and a restart is initiated only one
process shuts down at a time. Others remain available for requests until the one restarting
is again fully ready to process them itself, at which point the next commences restart. This
has been termed a rolling restart. Such behaviour allows server reconfiguration on a busy
site without even a small loss of availability.

Fail-Through

When multiple instances are executing on a node and one of these exits for some reason
(resource exhaustion, bugcheck, etc.) the other(s) will continue to process requests. Of course
requests in-progress by the particular instance at the time of instance failure are disconnected
(this contrasts with the rolling restart behaviour described above). If the former process has
actually exited (in contrast to just the image) a new server process will automatically be
created after a few seconds.

The term fail-through is used rather than failover because one server does not commence
processing as another ceases. All servers are constantly active with those remaining
immediately and automatically taking all requests in the absence any one (or more) of them.

Considerations

Of course ‘‘there is no such thing as a free lunch’’ and supporting multiple instances is no
exception to this rule. To coordinate activity between and access to shared resources, multiple
instances use low-level mutexes and the VMS Distributed Lock Manager (DLM). This does add
some system overhead and a little latency to request processing, however as the benchmarks
indicate (Chapter 21) increases in overall request throughput on a multi-CPU system easily
offset these costs. On single CPU systems the advantages of rolling restart and fail-through
need to be assessed against the small cost on a per-site basis. It is to be expected many low
activity sites will not require multiple instances to be active at all.

When managing multiple instances on a single node it is important to consider each process
will receive a request in round-robin distribution and that this needs to be considered when
debugging scripts, using the Server Administration page and the likes of WATCH, etc.

Configuration

If not explicitly configured only one instance is created. The configuration directive [Instance-
Max] allows multiple instances to be specified (Chapter 10). When this is set to an integer
that many instances are created and maintained. If set to ‘‘CPU’’ then one instance per sys-
tem CPU is created. If set to ‘‘CPU-integer’’ then one instance for all but one CPU is created,
etc. The current limit on instances is eight, although this is somewhat arbitrary. As with
all requests, Server Administration page access is automatically shared between instances.
There are occasions when consistent access to a single instance is desirable. This is provided
via an admin service (Chapter 11).

Configuration Considerations 6–5

6.3 Virtual Services
A single WASD server process is capable of concurrently supporting the same host name on
different port numbers and a number of different host names (DNS aliased or multi-homed)
using the same port number. This capability is generally known as a virtual server. There is
no design limitation on the number of these services that WASD will concurrently support.
Virtual services offer versatile and powerful multi-site capabilities using the one system and
server. Service determination is based on the contents of the request’s ‘‘Host:’’ header field.
If none is present it defaults to base service for the interface’s IP address and port.

HTTPD$SERVICE

If the logical name HTTPD$SERVICE is defined the deprecated HTTPD$CONFIG [Service]
directive is not used (see below).

See Chapter 11 for further detail.

HTTPD$CONFIG [Service] (Deprecated)

Using the [Service] HTTPD$CONFIG configuration parameter or the /SERVICE qualifier the
server creates an HTTP service for each specified. If the host name is omitted it defaults
to the local host name. If the port is omitted it defaults to 80. The first port specified in
the service list becomes the ‘‘administration’’ port of the server, using the local host name,
appearing in administration reports, menus, etc. This port is also that specified when sending
control commands via the /DO= qualifier (Section 19.7).

This rather contrived example shows a server configured to provide four services over two
host names.

[Service]
alpha.wasd.dsto.defence.gov.au
alpha.wasd.dsto.defence.gov.au:8080
beta.wasd.dsto.defence.gov.au
beta.wasd.dsto.defence.gov.au:8000

Note that both the HTTPD$SERVICE configuration file (see Chapter 11 and the /SERVICE=
command-line qualifier (Section 19.7) override this directive.

[[virtual-server]]

The essential profile of a site is established by its mapped resources and any authorization
controls, the HTTPD$MAP and HTTPD$AUTH configuration files respectively, and these two
files support directives that allow configuration rules to be applied to all virtual services (i.e.
a default), to a host name (all ports), or to a single specified service (host name and specific
port).

To restrict rules to a specified server (virtual or real) add a line containing the server host
name, and optionally a port number, between double-square brackets. All following rules will
be applied only to that service. If a port number is not present it applies to all ports for that
service name, otherwise only to the service using that port. To resume applying rules to all
services use a single asterisk instead of a host name. In this way default (all service) and
server-specific rules may be interleaved to build a composite environment, server-specific yet

6–6 Configuration Considerations

with defaults. Note that service-specific and service-common rules may be mixed in any order
allowing common rules to be shared. This descriptive example shows a file with one rule per
line.

just an example
this rule applies to all services
so does this
and this one
[[alpha.wasd.dsto.defence.gov.au]]
this one however applies only to ALPHA, but to all ports
as indeed does this
[[beta.wasd.dsto.defence.gov.au:8000]]
now we switch to the BETA service, but only port 8000
another one only applying to BETA
and a third
[[*]]
now we have a couple default rules
that again apply to all servers

Both the mapping and authorization modules report if rules are provided for services that are
not configured for the particular server process (i.e. not in the server’s [Service] or /SERVICE
parameter list). This provides feedback to the site administrator about any configuration
problems that exist, but may also appear if a set of rules are shared between multiple
processes on a system or cluster where processes deliver differing services. In this latter
case the reports can be considered informational, but should be checked initially and then
occasionally for misconfiguration.

Note
There is a difference when specifying virtual services during service creation and when
using them to apply mapping, etc. When creating a service the scheme (or protocol,
e.g. ‘‘http:’’, ‘‘https:’’) needs to be specified so the server can apply the correct protocol
to connections accepted at that service. Once a service is created however, it becomes
defined by the host-name and port supplied when created. Only one scheme (protocol)
can be supported on any one host-name/port instance and so it becomes unnecessary
to provide it with mapping rules, etc. The server will complain in instances where it
is redundant.

Unknown Virtual Server

If a service is not configured for the particular host address and port of a request one of two
actions will be taken.

1. If the configuration directive [ServiceNotFoundURL] is set the request will be redirected
to the specified URL. This should contain a specific host name, as well as message page.
For the default page use:

[ServiceNotFoundURL] //server.host.name/httpd/-/servicenotfound.html

2. If the above directive is not set the request is mapped using the default rules (e.g. [[*]]).
It is possible to specify a rule set containing a default rule for each virtual server. The
unmatched request is then handled by a fallback rule, as illustrated in the following.

Configuration Considerations 6–7

pass /*/-/admin/*
pass /*/-/* /ht_root/runtime/*/*
exec /cgi-bin/* /cgi-bin/*
[[virtual1.host.name]]
/* /web/virtual1/*
/ /web/virtual1/
[[virtual2.host.name]]
/* /web/virtual2/*
/ /web/virtual2/
[[virtual3.host.name]]
/* /web/virtual3/*
/ /web/virtual3/
[[*]]
/* /web/servicenotfound.html

This applies to dotted-decimal addresses as well as alpha-numeric. Therefore if there is a
requirement to connect via a numeric IP address such a service must have been configured.

Note also that the converse is possible. That is, it’s possible to configure a service that the
server cannot ever possibly respond to because it does not have an interface using the IP
address represented by the service host.

6.4 Request Throttling
Request ‘‘throttling’’ is a term adopted to describe controlling the number of requests that can
be processing against any specified path at any one time. Requests in excess of this value are
First-In-First-Out (FIFO) queued, up to an optional limit, waiting for a currently processing
request to conclude allowing the next queued request to resume processing. This is primarily
intended to limit concurrent resource-intensive script execution but could be applied to any
resource path. Here’s one dictionary description.

throttle n 1: a valve that regulates the supply of fuel to the engine [syn: accelerator, throttle
valve] 2: a pedal that controls the throttle valve; ‘‘he stepped on the gas’’ [syn: accelerator,
accelerator pedal, gas pedal, gas, gun] v 1: place limits on; ‘‘restrict the use of this parking
lot’’ [syn: restrict, restrain, trammel, limit, bound, confine] 2: squeeze the throat of; ‘‘he tried
to strangle his opponent’’ [syn: strangle, strangulate] 3: reduce the air supply; of carburetors
[syn: choke]

This is applied to a path (or paths) using the HTTPD$MAP mapping SET THROTTLE= rule
(Section 14.4.5). The general format is

set path throttle=n1[/u1][,n2,n3,n4,t/o1,t/o2]
set path throttle=from[/per-user][,to,resume,busy,t/o-queue,t/o-busy]

where

• n1 sets the number of concurrent requests before queuing begins (the number of process-
ing requests becomes static and the number of queued requests increases)

• u1 is separated from the n1 value by a forward-slash and limits the concurrent request
any one authenticated user can process. Even though the n1 value may allow processing
if u1 would be exceeded the request is queued.

6–8 Configuration Considerations

• n2 is the concurrent requests before FIFO queuing begins, meaning each new request
is put onto the queue but at the same the first-in request is taken off the queue for
processing (the number of queued requests becomes static and the number of processing
requests increases)

• n3 puts a limit on FIFO queuing (the number of queued requests again increases and the
number of processing requests becomes static)

• n4 is an absolute limit for concurrent requests against the path (a 503 ‘‘server too busy’’
status is immediately generated)

• t/o1 is the maximum period for queued requests before they are processed (if not
constrained by n3)

• t/o2 is the maximum period for queued requests before a 503 ‘‘server too busy’’ response
is returned, it begins immediately or following the expiry of any t/o1

One way to read a throttle rule is ‘‘begin to throttle (queue) requests from the n1 value up to
the n2 value, after which the queue is FIFOed up to the n3 value when it resumes queuing-
only, up until the busy n4 value’’.

Each integer represents the number of concurrent requests against the throttle rule path.
Parameters not required may be specified as zero or omitted in a comma-separated list. The
schema of the rule requires that each successive parameter be larger than that preceding it.
This basic consistency check is performed when the rule is loaded.

For any rule the possible maximum number of requests that can be processed at any one time
may be simply calculated through the addition of the n1 value to the difference of the n3 and
n2 values (i.e. max = n1 + (n3 - n2)). The maximum concurrently queued as the difference of
the n4 and the maximum concurrently processed.

A comprehensive throttle statistics report is available from the Server Administration page
(Chapter 19).

Per-User Throttle

If the concurrent processing value (n1) has a second, slash-delimited integer, this serves
to limit the number of authenticated user-associated requests that can be concurrently
processing.

When a request is available for processing the associated remote user name is checked for
activity against the queue. The u1 (or per-user throttle value) is a limit on that user name’s
concurrent processing. If it would exceed the specified value the request is queued until the
number of requests processing drops below the u1 value. All other values in the throttle rule
are applied as for non-per-user throttling.

Note
The user name used for comparison purposes is the authenticated remote user (same
as the CGI variable value REMOTE_USER). This can be for any realm. Of course the
same string can be used to represent different users within different authentication
realms and so care should be exercised that per-user throttling does not span realms
otherwise unexpected (and incorrect) throttling may occur for distinct users.

Configuration Considerations 6–9

If an unauthenticated request is matched against the throttle rule (i.e. there is no authoriza-
tion rule matching the request path) the client has a 500 (server error) response returned.
Obviously per-user throttling must have a remote user name to throttle against and this is a
configuration issue.

Examples

1. throttle=10

Requests up to 10 are concurrently processed. When 10 is reached futher requests are
queued to server capacity.

2. throttle=10,20

Concurrent requests to 10 are processed immediately. From 11 to 20 requests are queued.
After 20 all requests are queued but also result in a request FIFOing off the queue to be
processed (queue length is static, number being processed increases to server capacity).

3. throttle=15,30,40

Concurrent requests up to 15 are immediately processed. Requests 16 through to 30 are
queued, while 31 to 40 requests result in the new requests being queued and waiting
requests being FIFOed into processing. Concurrent requests from 41 onwards are again
queued, in this scenario to server capacity.

4. throttle=10,20,30,40

Concurrent requests up to 10 are immediately processed. Requests 11 through to 20 will
be queued. Concurrent requests from 21 to 30 are queued too, but at the same time
waiting requests are FIFOed from the queue (resulting in 10 (n1) + 10 (n3-n2) = 20 being
processed). From 31 onwards requests are just queued. Up to 40 concurrent requests
may be against the path before all new requests are immediately returned with a 503
"busy" status. With this scenario no more than 20 can be concurrently processed with 20
concurrently queued.

5. throttle=10,,,30

Concurrent requests up to 10 are processed. When 10 is reached requests are queued up
to request 30. When request 31 arrives it is immediately given a 503 "busy" status.

6. throttle=10,20,30,40,00:02:00

This is basically the same as scenario 4) but with a resume-on-timeout of two minutes.
If there are currently 15 (or 22 or 28) requests (n1 exceeded, n3 still within limit) the
queued requests will begin processing on timeout. Should there be 32 processing (n3 has
reached limit) the request will continue to sit in the queue. The timeout would not be
reset.

7. throttle=15,30,40,,,00:03:00

This is basically the same as scenario 3) but with a busy-on-timeout of three minutes.
When the timeout expires the request is immediately dequeued with a 503 "busy" status.

8. throttle=10/1

6–10 Configuration Considerations

Concurrent requests up to 10 are processed. The requests must be of authenticated users.
Each authenticated user is allowed to execute at most one concurrent request against this
path. When 10 is reached, or if less than 10 users are currently executing requests, then
further requests are queued to server capacity.

9. throttle=10/1,,,,,00:03:00

This is basically the same as scenario 8) but with a busy-on-timeout of three minutes.
When the timeout expires any requests still queued against the user name is immediately
dequeued with a 503 "busy" status.

Mapping Reload

Throttling is applied using mapping rules. The set of these rules may be changed within an
executing server using map reload functionality. This means the number of, and/or contents
of, throttle rules may change during server execution. The throttle functionality needs to
be independent of the the mapping functionality (requests are processed independently of
mapping rules once the rules have been applied). After a mapping reload the contents of the
throttle data structures may be at variance with the constraints currently executing requests
began processing under.

This should have little deleterious effect. The worst case is mis-applied constraints on the
execution limits of changed request paths, and slightly confusing data in the Throttle Report.
This quickly passes as requests being processed under the previous throttle constraints
conclude and an entirely new collection of requests created using the constraints of the
currently loaded rules are processed.

6.5 GZIP Encoding
WASD can apply GZIP compression (gzip, deflate) to any suitable response body and
can accept similarly compressed request bodies. It dynamically maps required functions
from a ZLIB shareable image. Based on the ZLIB v1.2.1 port by Jean-François Piéronne
(jf.pieronne@laposte.net). This or any later package should be suitable.

http://www.pi-net.dyndns.org/anonymous/kits/

Requires this package to be installed and started on the runtime system for dynamic
activation. The shareable image must be INSTALLed (without any particular privileges)
before it can be activated by the privileged WASD HTTPd image (the WASD startup will
automatically do this if necessary). The server process log and the Server Administration
page, Statistics Report panel named Environment contains the version activated or a VMS
status message if an error was encountered.

6.5.1 Response Encoding

The HTTPD$CONFIG directive [GzipResponse] controls whether this feature is enabled
for the gzip content-encoding of suitable response bodies. This directive requires at least
one parameter, the compression level in the range 1..9. Smaller values provide faster but
poorer compression ratios while larger values better compression at the cost of more CPU
cycles and latency. This corresponds to the GZIP utility’s -1..-9 CLI switches. Two optional
parameters could allow ZLIB’s ’memLevel’ and ’windowBits’ to be adjusted by ZLIB afficiendos

Configuration Considerations 6–11

(level[,memory,window]). A small amount of experimentation by this author indicates minor
changes in memory usage and compression ratio by fiddling with these.

Be aware that GZIP encoding is memory intensive. From 132kB to 265kB has been observed
per compressing request (WATCH provides this in a summary line). These values apply
across a wide range of transfer sizes (from kilobytes to tens of megabytes). It also is very
CPU intensive and adds response latency, though that might be well be offset by significant
reductions in transfer time on the Internet or other slower, non-intranet infrastructures. Text
content compression has been observed from 30% to 10% of the original file size (even down to
1% in the case of the extremely redundant content of [EXAMPLE]64K.TXT). VMS executables
(for want of another binary test case) at around 40%. In other words, GZIP encoding may not
be suitable or efficient for every site or every request! The other issue is a "Content-Encoding:
gzip" header necessarily disables the "Content-Length:" header and this affects the potential
for persistent connection maintenance.

Once enabled WASD will GZIP the responses for all suitable contents provided the client
accepts the encoding and the response is not one of the following:

• less than 512 bytes (no point in the overhead)

• already content-encoded script output

• a compressed image (e.g. GIF, JPEG, PNG, etc)

• a video stream (presumably already compressed, e.g. MPEG)

• a compressed audio stream

• an obviously compressed application stream (e.g. GZIP, ZIP, JAR)

Additional control may be exercised with the following path SETings:

• ‘‘response=GZIP=all’’, matching paths will always have GZIP encoding performed (the
above constraints still apply)

• ‘‘response=GZIP=none’’, matching paths will never have GZIP encoding

• ‘‘response=GZIP=<integer>’’, responses with content-lengths greater than the specified
number of kilobytes will be GZIP content-encoded (if the content-length cannot be
determined it will NOT not encoded and the above constraints still apply)

Using path settings GZIP compression may be disabled for specified file types (apart from
those already suppressed as described above).

set **.myzip response=gzip=none

A script using the Script-Control: X-content-encoding-gzip=0 CGI response header can sim-
ilarly suppress GZIP compression of its output if required. See ‘‘Scripting Overview’’ for
further detail.

6–12 Configuration Considerations

Flush Period

By default GZIP encoding flushes the internal buffer only when full. Most commonly this
is not an issue because of high rates of output. However with slow output sources, such
as from some classes of script, this can result in considerable latency before a client sees
an initial response, and then between transmission of further output. By default output is
initially flushed after 5 seconds and thereafter at a maximum interval of 15 seconds. The
HTTPD$CONFIG directive [GzipFlushSeconds] allows this period to be adjusted.

6.5.2 Request Encoding

Decoding of GZIP content-encoded request bodies is enabled using the HTTPD$CONFIG
directive [GzipAccept]. Enabling this using a value 15 (or 1) results in the server advertising
its acceptance of GZIPed requests using the "Accept-Encoding: gzip, deflate" response header.
Requests containing bodies GZIP compressed will have these decoded as they are read from
the client and before further processing, such as the upload of files into server accessible
file-system space. This decoding is optional and not the default with DCL and DECnet script
processing. That is, a request body will be passed to the script still encoded unless specific
mapping directs otherwise. Decoding by the server into the original data prior to transfering
to the script can be enabled for all or selected scripts using the following path settings:

• ‘‘script=body=decode’’, script gets the decoded stream

• ‘‘script=body=NOdecode’’, script gets the raw, encoded stream (default)

Note that scripts need to be specially aware of both GZIP encoded bodies and those already
decoded by the server. In the first case the stream must be read to the specified content-
length and then decoded. In the second case, a content-length cannot be provided by the
server (without unencoding the entire stream ahead of time it cannot predict the final size).
Where the server is to decode the request body before transfering it to the script it changes
the CGI variable CONTENT_LENGTH to a single question-mark ("?"). Scripts may use this
to detect the server’s intention and then must ignore any transfer-encoding and/or content-
encoding header information and read the request body until end-of-file is received.

GZIP decoding (decompression) is understandably much less memory and CPU intensive.
Experimentation indicates it does not contribute significantly to latency either.

6.6 Client Concurrency
The ‘‘client_connect_gt:’’ mapping conditional (Chapter 9) attempts to allow some measure-
ment of the number of requests a particular client currently has being processed. Using this
decision criterion appropriate request mapping for controlling the additional requests can be
undertaken. It is not intended to provide fine-grained control over activities, rather just to
prevent a single client using an unreasonable proportion of the resources.

For example. If the number of requests from one particulat client looks like it has got out
of control (at the client end) then it becomes possible to queue (throttle) or reject further
requests. In HTTPD$MAP

if (client_connect_gt:15) set * throttle=15

if (client_connect_gt:15) pass * "503 Exceeding your concurrency limit!"

Configuration Considerations 6–13

While not completely foolproof it does offer some measure of control over gross client
concurrency abuse or error.

6.7 Content-Type Configuration
HTTP uses an implementation of the MIME (Multi-purpose Internet Mail Extensions)
specification for identifying the type of data returned in a response. A MIME content-type
consists of a plain text string describing the data as a type and slash-separated subtype, as
illustrated in the following examples:

text/html
text/plain
image/gif
image/jpeg
application/octet-stream

The content-type is returned to the client as part of the HTTP response, the client then using
this information to correctly process and present the data contained in that response.

6.7.1 Adding Content-Types

In common with most HTTP servers WASD uses a file’s suffix (extension, type, e.g. ‘‘.HTML,
‘‘.TXT’’, ‘‘.GIF’’’’ to identify the data type within the file. The [AddType] directive is used during
configuration to bind a file type to a MIME content-type. To make the server recognise and
return specific content-types these directives map file types to content-types.

With the VMS file system there is no effective file characteristic or algorithm for identifying
a file’s content without an exhaustive examination of the data contained there-in . . . a very
expensive process (and probably still inconclusive in many cases), hence the reliance on the
file type.

Note
When adding a totally new content-type to the configuration be sure also to bind an
icon to that type using the [AddIcon] directive (see below). If this is not done the
default icon specified by [AddDefaultIcon] is displayed. If that is not defined then a
directory listing shows ‘‘[?]’’ in place of an icon.

Mappings using [AddType] look like these.

[AddType]
.html text/html HyperText Markup Language
.txt text/plain plain text
.gif image/gif image (GIF)
.hlb text/x-script /Conan VMS Help library
.decw$book text/x-script /HyperReader Bookreader book
* internal/x-unknown application/octet-stream

6–14 Configuration Considerations

6.7.2 MIME.TYPES

To allow the server to share content-type definitions with other MIME-aware applications,
and for WASD scripts to be able to perform their own mapping on a shared understanding of
MIME content it is possible to move the file suffix to content-type mapping from a collection of
[AddType]s in HTTPD$CONFIG to an external file. This file is usually named MIME.TYPES
and is specified in HTTPD$CONFIG using the [AddMimeTypesFile] directive.

Mappings using MIME.TYPES look like these.

MIME type Extension
application/msword doc
application/octet-stream bin dms lha lzh exe class
application/oda oda
application/pdf pdf
application/postscript ai eps ps
application/rtf rtf

A leading content-type is mapped to single or multiple file suffixes. A general MIME.TYPES
file commonly has content-types listed with no corresponding file suffix. These are ignored
by WASD. Where a file suffix is repeated during configuration the latter version completely
supercedes the former (with the Server Administration page showing an italicised and struck-
through content-type to help identify duplicates).

To allow the configuration information used by the server to generate directory listings
with additional detail, WASD-specific extensions to the standard MIME.TYPES format are
provided. These are ‘‘hidden’’ in comment structures so as not to interfere with non-WASD
application use. All begin with a hash then an exclamation character (‘‘#!’’) then another
reserved character indicating the purpose of the extension. Existing comments are unaffected
provided the second character is anything but an exclamation mark!

• #! file description
A space reserved character indicates following free-form text, used as the file type
description displayed on the far right of directory listings.

• #!/cgi-bin/script
A forward-slash introduces an auto-script specification. An auto-script is automatically
activated by the server to process and display a corresponding file’s contents. These are
sometimes refered to as presentation scripts.

• #![alt] /path/to/icon.gif
A left-square-bracket is used for icon specifications. These are actually mapped against
the following content-type, not file suffix, and so only need to be specified once for
each content-type in the file. This behaves in a similar fashion to [AddIcon], only the
components are reversed.

• #!!
The two exclamation marks can be used to indicate a MIME type intended for WASD
only. The can be ignored by non-WASD applications.

• #!+
An exclamation mark then a plus symbol indicates an FTP transfer mode directive. One
of three characters may follow the plus. An ‘‘A’’ indicates that this file type should be
FTP transfered in ASCII mode. An ‘‘I’’ or a ‘‘B’’ indicates that this file type should be FTP
transfered in Image (binary) mode.

Configuration Considerations 6–15

• #!%
A percentage is ignored by WASD. This is reserved for local (non-WASD) viewers.

These directives are placed following the MIME-type entry they apply to. An example of
the contents of a MIME.TYPES file with various WASD extensions.

MIME type Extension
application/msword doc
#! MS Word document
#![DOC] /httpd/-/doc.gif
application/octet-stream bin dms lha lzh exe class
#! binary content
#![BIN] /httpd/-/binary.gif
application/oda oda
application/pdf pdf
application/postscript ai eps ps
#! Adobe PostScript
#![PS.] /httpd/-/postscript.gif
#!+A
application/rtf rtf
#! Rich Text Format
#![RTF] /httpd/-/rtf.gif
application/x-script bks decw$bookshelf
#! DEC Bookshelf
#!/cgi-bin/hypershelf
application/x-script bkb decw$book
#![BKR] /httpd/-/script.gif
#! DEC Book
#!/cgi-bin/hyperreader

Other reserved characters have been specified for development purposes but are not (perhaps
currently) employed by the HTTP server.

• #!< html marked-up text
A less-than symbol indicates HTML marked-up text.

• #!# blah blah blah
##! rhubarb rhubarb
Two combinations of hash and exclamation characters provide for WASD-specific com-
ments.

6.7.3 Unknown Content-Types

If a file type is not recognised (i.e. no [AddType] or [AddMimeTypesFile] mapping correspond-
ing to the file type) then by default WASD identifies its data as application/octet-stream (i.e.
essentially binary data). Most browsers respond to this content-type with a download dialog,
allowing the data to be saved as a file. Most commonly these unknown types manifest them-
selves when authors use ‘‘interesting’’ file names to indicate their purpose. Here are some
examples the author has encountered:

README.VMS
README.1ST
READ-ME.FIRST
BUILD.INSTRUCTIONS
MANUAL.PT1 (.PT2, . . .)

6–16 Configuration Considerations

If the site administrator would prefer another default content-type, perhaps ‘‘text/plain’’ so
that any unidentified files default to plain text, then this may be configured by specifying
that content-type as the description of the catch-all file type entry. Examples (use one of):

[AddType]
* internal/x-unknown
* internal/x-unknown application/octet-stream
* internal/x-unknown text/plain
* internal/x-unknown something/else-entirely

It is the author’s opinion that unidentified file types should remain as binary downloads, not
‘‘text’’ documents, which they are probably more often not, but it’s there if wanted.

6.7.4 Explicitly Specifying Content-Type

When accessing files it is possible to explicitly specify the identifying content-type to be
returned to the browser in the HTTP response header. Of course this does not change
the actual content of the file, just the header content-type! This is primarily provided to
allow access to plain-text documents that have obscure, non-‘‘standard’’ or non-configured file
extensions.

It could also be used for other purposes, ‘‘forcing’’ the browser to accept a particular file as a
particular content-type. This can be useful if the extension is not configured (as mentioned
above) or in the case where the file contains data of a known content-type but with an
extension conflicting with an already configured extension specifying data of a different
content-type.

Enter the file path into the browser’s URL specification field ("Location:", "Address:"). Then,
for plain-text, append the following query string:

?httpd=content&type=text/plain

For another content-type substitute it appropriately. For example, to retrieve a text file in
binary (why I can’t imagine :-) use

?httpd=content&type=application/octet-stream

This is an example:

online demonstration

It is posssible to "force" the content-type for all files in a particular directory. Enter the path
to the directory and then add

?httpd=index&type=text/plain

(or what-ever type is desired). Links to files in the listing will contain the appropriate
‘‘?httpd=content&type=...’’ appended as a query string.

This is an example:

Configuration Considerations 6–17

6.8 Language Variants
Language-specific variants of a document may be configured to be served automatically and
transparently. This is organized as a basic file and name with language-specific variant
indicated by an additional ‘‘tag’’, one of ISO language abbreviations used by the ‘‘Accept-
Language:’’ request header field, e.g. en for English, fr for French, de for German, ru for
Russian, etc.

Two variants of the basic file specification are possible; file name (the default) and file type.
Hence if the basic file name is EXAMPLE.HTML then specifically German, English, French
and Russian language versions in the directory would be either

EXAMPLE.HTML
EXAMPLE_DE.HTML
EXAMPLE_EN.HTML
EXAMPLE_FR.HTML
EXAMPLE_RU.HTML

or

EXAMPLE.HTML
EXAMPLE.HTML_DE
EXAMPLE.HTML_EN
EXAMPLE.HTML_FR
EXAMPLE.HTML_RU

A path must be explicitly SET using the accept=lang mapping rule as containing language
variants. As searching for variants is a relatively expensive operation the rule(s) applying
this functionality should be carefully crafted. The accept=lang rule accepts an optional default
language representing the contents of the basic, untagged files. This provides an opportunity
to more efficiently handle requests with a language first preference matching that of the
default. In this case no variant search is undertaken, the basic file is simply served. The
following example sets a path to contain files with a default language of French and possibly
containing other language variants.

set /web/doc/* accept=lang=(default=fr)

In this case the behaviour would be as follows. With the default language set to ‘‘fr’’ a request’s
‘‘Accept-Language:’’ field is initially processed to check if the first preference is for ‘‘fr’’. If it
is then there is no need for further accept language processing and the basic file is returned
as the response. If not then the directory is searched for other files matching the EXAMPLE_
.HTML specification. All files matching this wildcard have the ‘‘’’ portion (e.g. ‘‘EN’’, ‘‘FR’’,
‘‘DE’’, ‘‘RU’’) added to a list of variants. When the search is complete this list is compared
to the request’s ‘‘Accept-Language:’’ list. The first one to be matched has the contents of the
corresponding file returned. If none are matched the default version would be returned.

This example of the behaviour is based on the contents of the directory described above. A
request that specifies

Accept-Language: fr,de,en

will have EXAMPLE.HTML returned (without having searched for any other variants). For
a request specifying

6–18 Configuration Considerations

Accept-Language: ru,en

then the EXAMPLE_RU.HTML file is returned, and if no ‘‘Accept-Language:’’ is supplied
with the request EXAMPLE.HTML would be returned. One or other file is always returned,
with the default, non-language file always the fallback source of data. If it does not exist and
no other language variant is selected the request returns a 404 file-not-found error.

Content-Type

When using the accept=lang=(variant=type) form of the rule (i.e. the variant is placed on the
file type rather than the default file name) each possible file extension must also must have
its content-type made known to the server. Using the example above the variants would need
to be configured in a similar way to the following.

[AddType]
.HTML "text/html; charset=ISO-8859-1" HyperText Markup Language
.HTML_DE "text/html; charset=ISO-8859-1" HTML (German)
.HTML_EN "text/html; charset=ISO-8859-1" HTML (English)
.HTML_FR "text/html; charset=ISO-8859-1" HTML (French)
.HTML_RU "text/html; charset=koi8-r" HTML (Russian)

Non-Text Content

Normally only files with a content-type of ‘‘text/..’’ are subject to variant searching. If the rule
path includes a file type then those files matching the rule are also variant-searched. In this
way images, audio files, etc., may also have language-specific versions supplied transparently.
The following illustrates this usage

set /web/doc/*.jpg accept=lang=(default=fr)
set /web/doc/*.wav accept=lang=(default=fr)

6.9 Character Set Conversion
The default character set sent in the response header for text documents (plain and HTML)
is set using the [CharsetDefault] directive and/or the SET charset mapping rule. English
language sites should specify ISO-8859-1, other Latin alphabet sites, ISO-8859-2, 3, etc.
Cyrillic sites might wish to specify ISO-8859-5 or KOI8-R, and so on.

Document and CGI script output may be dynamically converted from one character set to
another using the standard VMS NCS conversion library. The [CharsetConvert] directive
provides the server with character set aliases (those that are for all requirements the same)
and which NCS conversion function may be used to convert one character set into another.

document-charset accept-charset[,accept-charset..] [NCS-function-name[=factor]]

When this directive is configured the server compares each text response’s character set (if
any) to each of the directive’s document charset string. If it matches it then compares each of
the accepted charset (if multiple) to the request ‘‘Accept-Charset:’’ list of accepted characters
sets.

At least one doc-charset and one accept-charset must be present. If only these two are present
(i.e. no NCS-conversion-function) it indicates that the two character sets are aliases (i.e. the
same set of characters, different name) and no conversion is necessary.

Configuration Considerations 6–19

If an NCS-conversion-function is supplied it indicates that the document doc-charset can be
converted to the request ‘‘Accept-Charset:’’ preference of the accept-charset using the NCS
conversion function name specified.

A factor parameter can be appended to the conversion function. Some conversion functions
require more than one output byte to represent one input byte for some characters. The ’factor’
is an integer between 1 and 4 indicating how much more buffer space may be required for
the converted string. It works by allocating that many times more output buffer space than
is occupied by the input buffer. If not specified it defaults to 1, or an output buffer the same
size as the input buffer.

Multiple comma-separated accept-charsets may be included as the second component for either
of the above behaviours, with each being matched individually. Wildcard ‘‘*’’ and ‘‘%’’ may be
used in the doc-charset and accept-charset strings.

[CharsetConvert]
windows-1251 windows-1251,cp-1251
windows-1251 koi8-r windows1251_to_koi8r
koi8-r koi8-r,koi8
koi8-r windows-1251,cp-1251 koi8r_to_windows1251
koi8-r utf-8 koi8r_to_utf8=2

6.10 Error Reporting
By default the server provides its own internal error reporting facility. These reports may be
configured as basic or detailed on a per-path basis, as well as determining the basic ‘‘look-
and-feel’’. For more demanding requirements the [ErrorReportPath] configuration directive
allows a redirection path to be specified for error reporting, permitting the site administrator
to tailor both the nature and format of the information provided. A Server Side Include
document, CGI script or even standard HTML file(s) may be specified. Generally an SSI
document would be recommended for the simplicity yet versatility.

6.10.1 Basic and Detailed

Internally generated error reports are the most efficient. These can be delivered with two
levels of error information. The default is more detailed.

ERROR 404 - The requested resource could not be found.
Document not found ... /ht_root/index.html
(document, bookmark, or reference requires revision)
Additional information: 1xx, 2xx, 3xx, 4xx, 5xx, Help

WASD/7.0.0 Server at wasd.dsto.defence.gov.au Port 80

There is also the more basic.

ERROR 404 - The requested resource could not be found.
Additional information: 1xx, 2xx, 3xx, 4xx, 5xx, Help

WASD/7.0.0 Server at wasd.dsto.defence.gov.au Port 80

These can be set per-server using the [ReportBasicOnly] configuration directive, or on a
per-path basis in the HTTPD$MAP configuration file. The basic report is intended for
environments where traditionally a minimum of information might be provided to the user
community, both to reduce site configuration information leakage but also where a general

6–20 Configuration Considerations

user population may only need or want the information that a document was either found or
not found. The detailed report often provides far more specific information as to the nature
of the event and so may be more appropriate to a more technical group of users. Either way
it is relatively simple to provide one as the default and the other for specific audiences. Note
that the detailed report also includes in page <META> information the code module and line
references for reported errors.

To default to a basic report for all but selected resource paths introduce the following to the
top of the HTTPD$MAP configuration file.

default is basic reports
set /* report=basic
set /internal-documents/* report=detailed
set /other/path/* report=detailed

To provide the converse, default to a detailed report for all but selected paths use the following.

default is detailed reports
set /web/* report=basic

Other Customization

The additional reference information included in the report may be disabled using the
appropriate HTTPD$MSG [status] message item. Emptying this message results in an error
report similar to the following.

ERROR 404 - The requested resource could not be found.

WASD/7.0.0 Server at wasd.dsto.defence.gov.au Port 80

The server signature may be disabled using the HTTPD$CONFIG [ServerSignature] config-
uration directive. This results in a minimal error report.

A simple approach to providing a site-specific ‘‘look-and-feel’’ to server reports is to customize
the [ServerReportBodyTag] HTTPD$CONFIG configuration directive. Using this directive
report page background colour, background image, text and link colours, etc., may be specified
for all reports. It is also possible to more significantly change the report format and contents
(within some constraints), without resorting to the site-specific mechansims refered to below,
by changing the contents of the appropriate HTTPD$MSG [status] item. This should be
undertaken with care.

ERROR 404 - The requested resource could not be found.

6.10.2 Site Specific

Customized error reports can be generated for all or selected HTTP status status associ-
ated with errors reported by the server using the HTTPD$CONFIG [ErrorReportPath] and
HTTPD$SERVER [ServiceErrorReportPath] configuration directives. To explicitly handle all
error reports specify the path to the error reporting mechanism (see description below) as in
the following example.

[ErrorReportPath] /httpd/-/reporterror.shtml

Configuration Considerations 6–21

To handle only selected error reports add the HTTP status codes following the report path. In
this example only 403 and 404 errors are explicitly handled, the rest remain server-generated.
This is particularly useful for static error documents.

[ErrorReportPath] /httpd/-/reporterror.shtml 403 404

To exclude selected error reports (and handle all others by default) add the HTTP status
codes preceded by a hyphen following the report path. In this example 401 and 500 errors
are server-generated.

[ErrorReportPath] /httpd/-/reporterror.shtml -401 -500

Site-specific error reporting works by internal redirection. When an error is reported the
original request is concluded and the request reconstructed using the error report path before
internally being reprocessed. For SSI and CGI script handlers error information becomes
available via a specially-built query string, and from that as CGI variables in the error report
context. One implication is the original request path and query string are no longer available.
All error information must be obtained from the error information in the new query string.

It is suggested with any use of this facility the reporting document(s) be located somewhere
local, probably HT_ROOT:[RUNTIME.HTTPD], and then enabled by placing the appropriate
path into the [ErrorReportPath] configuration directive.

[ErrorReportPath] /httpd/-/reporterror.shtml

Note that virtual services can subsequently have this path mapped to other documents (or
even scripts) so that some or all services may have custom error reports. For instance the
following arrangement provides each host (service) with an customized error report.

HTTPD$CONFIG
[ErrorReportPath] /errorreport.shtml

HTTPD$MAP
[[alpha.wasd.dsto.gov.au]]
pass /errorreport.shtml /httpd/-/alphareport.shtml
[[beta.wasd.dsto.gov.au]]
pass /errorreport.shtml /httpd/-/betareport.shtml
[[gamma.wasd.dsto.gov.au]]
pass /errorreport.shtml /httpd/-/gammareport.shtml

Using Static HTML Documents

Static HTML documents are a good choice for site-specific error messages. They are very
low overhead and are easily customizable. One per possible response error status code is
required. When providing an error report path including a ‘‘!UL’’ introduces the response
status code into the file path, providing a report path that includes a three digit number
representing the HTTP status code. A file for each possible or configured code must then be
provided, in this example for 403 (authorization failure), 404 (resource not found) and 502
(bad gateway/script).

[ErrorReportPath] /httpd/-/reporterror!UL.html 403 404 502

6–22 Configuration Considerations

This mapping will generate paths such as the following, and require the three specified to
respond to those errors.

/httpd/-/reporterror403.html
/httpd/-/reporterror404.html
/httpd/-/reporterror502.html

Using an SSI Document

SSI documents provide the versatility of dynamic report generation for but they do take time
and CPU for processing, and this may be a significant consideration on busy sites.

Three example SSI error report documents are provided. See HT_ROOT:[EXAMPLE]REPORTERROR*.SHTML
The first providing a report identical with those internally generated, the second a small varia-
tion on this, and the third considerably different and with much less specific error information
(which some administrator’s may consider advantageous).

The following SSI variables are available specifically for generating error reports. The <!–
#printenv –> statement near the top of the file may be uncommented to view all SSI and CGI
variables available.

Error Variables

Variable Description

ERROR_LINE The HTTPd source code line from where the error was generated.

ERROR_MODULE The HTTPd source code module corresponding to the line
described above.

ERROR_REPORT A single HTML string providing a detailed error message.

ERROR_REPORT2 A single HTML comment providing more detailed VMS error
information if available

ERROR_REPORT3 A server-generated HTML string providing a brief explanation of
the error if available

ERROR_STATUS_CLASS Essentially the single hundreds digit from the status code (e.g. 4).

ERROR_STATUS_CODE The HTTP response status code representing the error (e.g. 404).

ERROR_STATUS_
EXPLANATION

The HTTP response status code descriptive meaning (e.g. ‘‘The
requested resource could not be found.’’)

ERROR_STATUS_TEXT The HTTP response status code abbreviated meaning (e.g. ‘‘Not
Found’’).

ERROR_STATUS_TYPE ‘‘basic’’ or ‘‘detailed’’.

FORM_ERROR_ . . . A series of CGI variables providing the sources for the above SSI
variables, as well as other general environment information.

Configuration Considerations 6–23

Using a Script

It is also possible to report using a script. The same error information is available via
corresponding CGI variables. The source code HT_ROOT:[SRC.MISC]REPORTERROR.C
provides such an implementation example.

6.11 OPCOM Logging
Significant server events may be optionally displayed via a selected operator’s console and
recorded in the operator log. Various categories of these events may be selectively enabled
via HTTPD$CONFIG directives (Chapter 10).

• Server Administration page directives

• authentication/authorization (e.g. failures)

• CLI HTTPd control directives

• HTTPd events (e.g. startup, exit, SSL private key password requests)

• proxy file cache maintenance

Some significant server events are always logged to OPCOM if any one of the above categories
is enabled.

6.12 Access Logging
WASD provides a versatile access log, allowing data to be collected in Web-standard common
and combined formats, as well as allowing customization of the log record format. It is also
possible to specify a log period. If this is done log files are automatically changed according
to the period specified.

Where multiple access log files are generated with per-instance, per-period and/or per-service
logging (see below) these can be merged into single files for administrative or archival
purposes using the CALOGS utility (Section 23.6).

The Quick-and-Dirty LOG STATisticS utility (Section 23.10) can be used to provide elemen-
tary ad hoc log analysis from the command-line or CGI interface.

Exclude requests from specified hosts using the [LogExcludeHosts] configuration parameter.

6.12.1 Log Format

The configuration parameter [LogFormat] and the server qualifier /FORMAT specifies one of
three pre-defined formats, or a user-definable format. Most log analysis tools can process the
three pre-defined formats. There is a small performance impost when using the user-defined
format, as the log entry must be specially formatted for each request.

• COMMON - This is the most common, base logging format for Web servers. COMMON
is the default log format.

• COMMON_SERVER - This is an optional format used, for one, by the NCSA server. It
is basically the common format, with the server host name appended to the line (used for
multi-homed servers, see Section 6.3).

6–24 Configuration Considerations

• COMBINED - This is an optional format used, for one again, by the NCSA server. It too
is basically the common format, with the HTTP referer and user agent appended.

User-Defined

The user-defined format allows customised log formats to be specified using a selection of
commonly required data. The specification must begin with a character that is used as a
substitute when a particular field is empty (use "\0" for no substitute, as in the "windows log
format" example below).

Two different "escape" characters introduce the following parameters:

A ‘‘!’’ followed by

Characters Description

AR authentication realm (if any)

AU authenticated user name (if any)

BB bytes in body (excludes response header)

BQ quadword bytes in response (includes header)

BY bytes in response (includes header)

CA client address

CN client host name (or address if DNS lookup disabled)

EM request elapsed time in milliseconds

ES request elapsed time in fractional seconds

ID session track ID

ME request method

PA request path (not to be confused with ‘‘RQ’’)

PR request URL (includes protocol scheme)

QS request query string (if any)

RF referer (if any)

RQ complete request string (see below)

RS response status code

SN server host name

SC script name (if any)

SM request scheme (http: or https:)

SP server port

Configuration Considerations 6–25

Characters Description

TC request time (common log format)

TG request time (GMT)

TV request time (VMS format)

UA user agent

A ‘‘\’’ followed by

Character Description

0 a null character (used to define the empty field character)

! insert an ‘‘!’’

\ insert a ‘‘\ ’’

n insert a newline

q insert a quote (so that in DCL the quotes won’t need escaping!)

t insert a TAB

Any other character is directly inserted into the log entry.

‘‘PA’’ and ‘‘RQ’’
The ‘‘PA’’ and ‘‘RQ’’ have distinct roles. In general the ‘‘RQ’’ (request) directive will
always be used as this is the full request string; script component (if any), path string
and query string component (if any). The ‘‘PA’’ directive is merely the path string after
any script and query string components have been removed.

Examples

1. The equivalent of the common log format is:

-!CN - !AU [!TC] \q!RQ\q !RS !BY

2. The combined log format could be specified as:

-!CN - !AU [!TC] \q!RQ\q !RS !BY \q!RF\q \q!UA\q

3. The O’Reilly WebSite ‘‘windows log format’’ would be created by:

\0!TC\t!CA\t!SN\t!AR\t!AU\t!ME\t!PA\t!RQ\t!EM\t!UA\t!RS\t!BB\t

4. The common log format with appended request duration in seconds could be provided
using:

-!CN - !AU [!TC] \q!RQ\q !RS !BY !ES

6–26 Configuration Considerations

6.12.2 Log Per-Period

The access log file may have a period specified against it, producing an automatic generation
of log file based on that period. This allows logs to be systematically named, ordered and
kept to a managable size. The period specified can be one of

• HOURLY

• DAILY

• weekly as . . .
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
SUNDAY

• MONTHLY

The log file changes on the first request after the entering of the new period.

When using a periodic log file, the file name specified by HTTPD$LOG or the configuration
parameter [LogFile] is partially ignored, only partially because the directory component of it
is used to located the generated file name. The periodic log file name generated comprises

• server host name

• server port

• year (YYYY)

• month (MM)

• day (DD)

• hour (HH, only present when HOURLY period is configured)

as in the following example

HT_LOGS:WASD_80_19971013_ACCESS.LOG

For the daily period the date represents the request date. For the weekly period it is the date
of the previous (or current) day specified. That is, if the request occurs on the Wednesday for
a weekly period specified by Monday the log date show the last Monday’s. For the monthly
period it uses the first.

6.12.3 Log Per-Service

By default a single access log file is created for each HTTP server process. Using the
[LogPerService] configuration directive a log file for each service provided by the HTTPd
is generated (Section 6.3). The [LogNaming] format can be any of "NAME" (default) which
names the log file using the first period-delimited component of the IP host name, "HOST"
which uses as much of the IP host name as can be accomodated within the maximum 39
character filename limitation (of ODS-2), or "ADDRESS" which uses the full IP host address
in the name. Both HOST and ADDRESS have hyphens substituted for periods in the string.

Configuration Considerations 6–27

If these are specified then by default the service port follows the host name component. This
may be suppressed using the [LogPerServiceHostOnly] directive, allowing a minimum extra
3 characters in the name, and combining entries for all ports associated with the host name
(for example, a standard HTTP service on port 80 and an SSL service on port 443 would have
entries in the one file).

6.12.4 Log Per-Instance

To reduce physical disk activity, and thereby significantly improve performance, the RMS
characteristics of the logging stream are set to buffer records for as long as possible and only
write to disk when buffer space is exhausted (a periodic flush ensures records from times of
low activity are written to disk). However when multiple server processes (either in the case
of multiple instances on a single node, single instance on each of multiple clustered nodes,
or a combination of the two) have the same log files open for write then this buffering and
defered write-to-disk is disabled by RMS, it insisting that all records must be flushed to disk
for correct serialization and coherency.

This introduces measuraable latency and a potentially significant bottleneck to high-demand
processing. Note that it only becomes a real issue under load. Sites with a low load should
not experience any impact.

Sites that may be affected by this issue can revert to the original buffered log stream by
enabling the [LogPerInstance] configuration directive. This ensures that each log stream has
only one writer by creating a unique log file for each instance process executing on the node
and/or cluster. It does this by appending the node and process name to the file type. This
would change the log name from something like

HT_LOGS:131-185-250-202_80_ACCESS.LOG

to, in the case of a two-instance single node,

HT_LOGS:131-185-250-202_80_ACCESS.LOG_KLAATU_HTTPD-80
HT_LOGS:131-185-250-202_80_ACCESS.LOG_KLAATU_HTTPE-80

Of course the number-of and naming-of log files is beginning to become a little
itimidating at this stage! To assist with managing this seeming plethora of access log files
is the calogs utiltiy (Section 23.6), which allows multiple log files to be merged whilst keeping
the records in timestamp order.

6.12.5 Log Naming

When per-period or per-service logging is enabled the access log file has a specific name
generated. Part of this name is the host’s name or IP address. By default the host name is
used, however if the host IP address is specified the literal address is used, hyphens being
substituted for the periods. Accepted values for the [LogNaming] configuration directive are:

• ADDRESS

• HOST

• NAME (default)

6–28 Configuration Considerations

Examples of generated per-service (non-per-period) log names:

HT_LOGS:131-185-250-202_80_ACCESS.LOG
HT_LOGS:WASD-DSTO-DEFENCE-GOV-AU_80_ACCESS.LOG
HT_LOGS:WASD_80_ACCESS.LOG

Examples of generated per-period (with/without per-service) log names:

HT_LOGS:131-185-250-202_80_19971013_ACCESS.LOG
HT_LOGS:WASD-DSTO-DEFENCE-GO_80_19971013_ACCESS.LOG
HT_LOGS:WASD_80_19971013_ACCESS.LOG

Examples of generated per-instance (per-service and per-period) log names:

HT_LOGS:131-185-250-202_80_ACCESS.LOG_KLAATU_HTTPD-80
HT_LOGS:WASD-DSTO-DEFENCE-GOV-AU_80_ACCESS.LOG_KLAATU_HTTPD-80
HT_LOGS:WASD_80_ACCESS.LOG_KLAATU_HTTPD-80
HT_LOGS:131-185-250-202_80_19971013_ACCESS.LOG_KLAATU_HTTPD-80
HT_LOGS:WASD-DSTO-DEFENCE-GO_80_19971013_ACCESS.LOG_KLAATU_HTTPD-80
HT_LOGS:WASD_80_19971013_ACCESS.LOG_KLAATU_HTTPD-80

6.12.6 Access Tracking

The term access tracking describes the ability to follow a single user’s accesses through a
particular site or group of related sites. This is accomplished by setting a unique cookie in
a user’s browser. This cookie is then sent with all requests to that site. The site detects the
cookie’s unique identifier, or token, and includes it the access log, allowing the user’s route
through the site or sites to be reviewed. Note that a browser must have cookies enabled for
this mechanism to operate.

WASD access tracking is controlled using the [Track...] directives. The tracking cookie uses
an opaque, nineteen character string as the token (e.g. ‘‘ORoKJAOef8sAAAkuACc’’). This
token is spatially and temporally completely unique, generated the first time a user’s browser
accesses the site. This token is by default added to the server access log in the common format
‘‘remote-ID’’ location. It can also be placed into custom logs. From this identifier in the logs a
session’s progress may be easily tracked. Note that the token contains nothing related
to the user’s actual identity! It is merely a unique identifier that tags a single browser’s
access trail through a site.

The [Track] directive enables access tracking on a per-server basis. By default all non-proxy
services will then have tracking enabled. Individual services may be then be disabled (or
enabled in the case of proxy services) using the per-service ‘‘;notrack’’ and ‘‘;track’’ parameters.

By default a session track token expires when the user closes the browser. To encourage
the browser to keep this token between uses enable multi-session tracking using the [Track-
MultiSession] directive. Note that browsers may dispose of any cookie at any time resources
become scarce, and that users can also remove them.

Session tracking can be extended from the default of the local server (virtual if applicable) to
a group of servers within a local domain. This means the same, initial identifier appears in
the logs of all WASD servers in a related group of hosts. Of course tracking must be enabled
on all servers. The host grouping is specified using the [TrackDomain] directive (this follows
the general rules governing cookie domain behaviour - see RFC2109). Most host grouping
require a minimum of three dots in the specification. For example (note the leading dot)

.site.org.domain

Configuration Considerations 6–29

which would match the following servers, ‘‘curly.site.org.domain’’, ‘‘larry.site.org.domain’’,
‘‘moe.site.org.domain’’, etc. Sites in top-level domains (e.g. ‘‘edu’’, ‘‘com’’, ‘‘org’’) need only
specify a minimum of two periods.

6.12.7 Access Alert

It is possible to mark a path as being of specific interest. When this is accessed by a request
the server puts a message into the the server process log and perhaps of greater immediate
utility the increase in alert hits is detected by HTTPDMON and this (optionally) provides an
audible alert allowing immediate attention. This is enabled on a per-path basis using the
SET mapping rule. Variations on the basic rule allow some control over when the alert is
generated.

ALERT - at the conclusion of the request
ALERT=MAP - immediately after mapping (early)
ALERT=AUTH - when (any) authorization has been performed
ALERT=END - at the conclusion of the request (default)
ALERT=integer - see below
NOALERT - suppress alert for this path

The special case ALERT=integer allows a path to be alerted if the final response HTTP status
is the same as the integer specified (e.g. 501, 404) or within the category specified (599, 499).

6.13 Include File Directive
WASD uses multiple configuration files for a server and its site, each one providing for a
different functional aspect . . . configuration, virtual services, path mapping, authorization,
etc. Generally these configuration files are ‘‘flat’’, with all required directives included in a
single file. This provides a simple and straight-forward approach suitable for most sites and
allows for the provision of Server Administration page online configuration of several aspects.

It is also possible to build site configurations by including the contents of referenced files.
This may provide a structure and flexibility not possible using the flat-file approach. All
WASD configuration files allow the use of an [IncludeFile] directive. This takes a VMS file
specification parameter. The file’s contents are then loaded and processed as if part of the
parent configuration file. These included files are allowed to be nested to a depth of two (i.e.
the configuration file can include a file which may then include another file).

The following is an example used to build up the mapping rules for four virtual services
supported on the one server.

HTTPD$MAP

[[alpha.site.com]]
[IncludeFile] HT_ROOT:[LOCAL]MAP_ALPHA_80.CONF
[[alpha.site.com:443]]
[IncludeFile] HT_ROOT:[LOCAL]MAP_ALPHA_443.CONF

[[beta.site.com]]
[IncludeFile] HT_ROOT:[LOCAL]MAP_BETA_80.CONF
[[beta.site.com:443]]
[IncludeFile] HT_ROOT:[LOCAL]MAP_BETA_443.CONF

6–30 Configuration Considerations

[[*]]
[IncludeFile] HT_ROOT:[LOCAL]MAP_COMMON.CONF

Note
Such configurations cannot be managed using Server Administration page interfaces.
Files containing [IncludeFile] directives are noted during server startup and if an
Server Administration page configuration interface is accessed where this would be a
problem an explanatory message and warning is provided. A configuration can still
be saved but the resulting configuration will be a flat-file representation of the server
configuration, not the original hierarchical one.

Configuration Considerations 6–31

Chapter 7

Security Considerations

This section does not pretend to be a complete guide to keeping the ‘‘bad guys’’ out. It does
provide a short guide to making a site more-or-less liberal in the way the server supplies
information about the site and itself. The reader is also strongly recommended to a number
of hard copy and Web based resources on this topic.

The WASD package had its genesis in making the VMS operating system and associated
resources, in a development environment, available via Web technology. For this reason
configurations can be made fairly liberal, providing information of use in a technical envi-
ronment, but that may be superfluous or less-than-desirable in other, possibly commercial
environments. For instance, directory listings can contain VMS file system META informa-
tion, error reports can be generated with similar references along with reporting source code
module and line information.

The example configuration files contain a fairly restrictive set of directives. When relaxing
these recommendations keep in mind that the more information available about the under-
lying structure of the site the more potential for subversion. Do not enable functionality that
contributes nothing to the fundamental usefulness of the site, or that has the real potential to
compromise any given site. This section refers to configuration directives discussed in more
detail in later chapters.

It is established wisdom that the only secure computing system is one with no users and no
access, that system security is inversely proportional to system usability, and that making
something idiot-proof results in only idiots using it. So there are some trade-offs but . . .

don’t think it can’t happen to you!
A systematic investigation of installed WASD packages by well-known IT professional
Jean-loup Gailly during September 2002 revealed a couple of significant implementa-
tion flaws which compounded by notable instances of sloppy management practices on
two public sites resulted in site compromise (one was mine).

• HT_ROOT:[DOC.MISC]WASD_ADVISORY_020925.TXT

• http://online.securityfocus.com/archive/1/293229

Security Considerations 7–1

This research has resulted in these server flaws being closed and package security
considerations being extensively reviewed. As a result WASD v8.1 was much more
resistent to such penetration than previous releases (and slightly less easy to use, but
that’s one of those trade-offs). My assessment would be that if Gailly did not find it
then it wasn’t there to find!

Of course any given site’s security is a function of the underlying package’s security
profile, with the site’s implementation of that, AND other considerations such as local
authorization and script implementations. Pay particular and ongoing attention to
site security and integrity.

7.1 Recommended Package Security
The following table provides recommended file protection settings for package top-level
directories. Subdirectories share their parents’ settings. The package tree is owned by the
SYSTEM account. Directories with world READ access have no ACLs. Other directories,
not accessible to the world, but sometimes having other degress of access to one or more
accounts always have rights identifiers (see below) and associated ACLs to control directory
access, and to propagate required access to files created beneath them. The server selectively
enables SYSPRV to provide access to some of these areas (e.g. for log creation).

Some pre-v8.1 directories are not included in this table. These are not significant in versions
from 8.1 onwards and may be deleted. They can continue to exist however and the security
procedures described below ensure that they comply to the general post-8.1 security model.
The file access permissions indicated below are for directory contents. The directory files
themselves have settings appropriate for content access.

Package Access

Directory
Access
World

Access
Other Description

[AXP-BIN] none script:RE Alpha executable script files

[AXP] none none Alpha build and utility area

[CGI-BIN] none script:RE architecture-neutral script files

[DOC] read (world) package documentation

[EXAMPLE] read (world) package examples

[EXERCISE] read (world) package test files

[HTTP$NOBODY] none script:RWED scripting account default home area

[HTTP$SERVER] none server:RWED server account default home area

[IA64-BIN] none script:RE Itanium executable script files

[IA64] none none Itanium build and utility area

7–2 Security Considerations

Directory
Access
World

Access
Other Description

[INSTALL] read (world) installation, update and secuity
procedures

[LOCAL] none none site configuration files

[LOG] none none site access logs

[LOG_SERVER] none server:RWED server process (SYS$OUTPUT) logs

[RUNTIME] read (world) graphics, help files, etc.

[SCRATCH] none script:RWED working file space for scripts

[SCRIPT] none none example architecture-neutral
scripts

[SRC] none (world) package source files

[STARTUP] none server:RE package startup procedures

[VAX-BIN] none script:RE VAX executable script files

[VAX] none none VAX build and utility area

It is recommended site-specific directories have settings applied appropriate to their function
in comparison to similar package directories. See below for tools to assist in this.

Three rights identifiers provide selective access control to the directory tree. Identifiers were
used to allow maximum flexibility for a site in allowing required accounts access to either
execute the server or execute scripts. Non-default account names only need to be granted one
of these identifiers to be provided with that role’s access. Installation, update and/or security
utilities create and maintain these identifiers appropriately.

Rights Identifiers

Identifier Description

WASD_HTTP_SERVER Indicates the default server account.

WASD_HTTP_NOBODY Indicates the default scripting account.

WASD_IGNORE_THIS Looked for by the SECHAN utility to avoid it changing security on site-
specific files.

These rights identifiers are applied to directories and files to provide the required level of
access. The following example shows the security setting of the top-level CGI-BIN.DIR and
one of it content files.

Security Considerations 7–3

$ DIRECTORY /SECURITY CGI-BIN.DIR

Directory HT_ROOT:[000000]

CGI-BIN.DIR;1 [SYSTEM] (RWED,RWED,,)
(IDENTIFIER=WASD_HTTP_SERVER,ACCESS=EXECUTE)
(IDENTIFIER=WASD_HTTP_NOBODY,ACCESS=EXECUTE)
(IDENTIFIER=*,ACCESS=NONE)
(IDENTIFIER=WASD_HTTP_NOBODY,OPTIONS=DEFAULT,ACCESS=READ+EXECUTE)
(IDENTIFIER=*,OPTIONS=DEFAULT,ACCESS=NONE)
(DEFAULT_PROTECTION,SYSTEM:RWED,OWNER:RWED,GROUP:,WORLD:)

Total of 1 file.
$ DIRECTORY /SECURITY [CGI-BIN]CGI_SYMBOLS.COM

Directory HT_ROOT:[CGI-BIN]

CGI_SYMBOLS.COM;1 [SYSTEM] (RWED,RWED,,)
(IDENTIFIER=WASD_HTTP_NOBODY,ACCESS=READ+EXECUTE)
(IDENTIFIER=*,ACCESS=NONE)

Total of 1 file.

7.2 Maintaining Package Security
As noted above, WASD version 8.1 and later is much more conservative in what it makes
generally available from the package tree, and a site administrator now has to take extraor-
dinary measures to open up certain sections, making it a much more difficult and deliberate
action. The package installation, update and security procedures and their associated utili-
ties should always be used to ensure that the installed package continues to conform to the
security baseline.

Package security may be ‘‘refreshed’’ or reapplied at any time, and this should be done
periodically to ensure that an installed package has not inadvertantly been opened to access
where it shouldn’t have. Of course this is not a guarantee that any given site is secure. Site
security is a function of many factors; package vulnerabilities, site configuration, deployed
scripts, cracker determination and expertise, etc., etc. What refreshing the security baseline
does is provide a known secure (and WASD-community scrutinized) starting point. It should
be used as part of a well considered site security maintenance program.

SECURE.COM

The following DCL procedure resets the package security baseline.

$ @HT_ROOT:[INSTALL]SECURE.COM

It guides the administrator through a number of stages

• introductory notes

• server account

• scripting account

• package tree security settings

7–4 Security Considerations

of which each one may be declined. After all of these steps it searches for and executes if
found the DCL procedure HT_ROOT:[INSTALL]SECURE.COM. The intent of this file is to
allow a site to automatically update any site-specific security settings (and of course modify
any set by the main procedure).

SECHAN Utility

The SECHAN utility (pronounced ‘‘session’’) is used by SECURE.COM and the associated
procedures to make file system security settings. It is also available for direct use by the site
administrator (Section 23.11).

One of the more useful functions of SECHAN is applied using the /IGNORE qualifier.

• /IGNORE - It adds an ACE containing the rights identifier WASD_IGNORE_THIS to
the target file(s) which results in security settings not being applied in the future. When
applying settings the SECHAN utility first checks whether a file has this ACE and if
so ignores the file. This is an effective method for isolating site-specific settings from
changes by this utility.

$ SECHAN /IGNORE HT_ROOT:[CGI-BIN]MY_SCRIPT.COM
$ SECHAN /IGNORE HT_ROOT:[LOCAL]*.DAT
$ SECHAN /IGNORE WEB:[DATA...]*.*
$ SECHAN /IGNORE WEB:[000000]DATA.DIR

This ACE can be removed from a file (leaving other entries of any ACL intact) using the
/NOIGNORE qualifier. This returns the file(s) subject again to the SECHAN utility.

$ SECHAN /NOIGNORE HT_ROOT:[CGI-BIN]MY_SCRIPT.COM
$ SECHAN /NOIGNORE HT_ROOT:[LOCAL]*.DAT

• /ALL - This overrides the default behaviour of ignoring files that have been tagged using
the /IGNORE qualifier. It causes the setting to be applied to ALL files.

Other functionality may prove useful when applied to local parts of the package or web
structure.

• /PACKAGE - Used alone this qualifier results in the entire HT_ROOT:[000000...] tree
being traversed and the default package security settings applied to all package files.
Top-level directories that the utility does not recognise as belonging to the package are
ignored.

$ SECHAN /PACKAGE
$ SECHAN /PACKAGE /ALL

• /ASIF=<name> - Set the supplied file specification as if it was the specified, top-level
WASD directory. This allows a site-specific directory to have the same security settings
applied as the specified WASD package directory.

$ SECHAN /ASIF=LOCAL WEB:[DATA...]*.*
$ SECHAN /ASIF=LOCAL WEB:[000000]DATA.DIR
$ SECHAN /ASIF=CGI-BIN WEB:[SCRIPTS]*.*
$ SECHAN /ASIF=CGI-BIN WEB:[000000]SCRIPTS.DIR
$ SECHAN /ASIF=DOC WEB:[HTML...]*.*
$ SECHAN /ASIF=DOC WEB:[000000]HTML.DIR

Security Considerations 7–5

• /NOSCRIPT - Modifies the default behaviour of the /PACKAGE qualifier. This changes
the default rights identifiers applied to ACEs on files in the [CGI-BIN] and [AXP-
BIN]/[VAX-BIN] directories to disallow scripting until manually changed by site admin-
istration.

$ SECHAN /PACKAGE /NOSCRIPT

This section provides only a basic description. More detail may be found in the prologue to
the source code.

7.3 Independent Package and Local Resources
Not only does it make it easier to manage site content but is also good security practice to
keep server package and site content completely separate (Section 6.1).

This can also be applied to scripts, both source and build areas. Keep your business logic out
of the package source tree and potentially prying eyes. The script executables themselves
can be placed into the package scripting directories but should be built independently from
these and copied using locally maintained DCL procedures from build into scripting areas
(the HT_ROOT:[INSTALL]SECURE.COM procedures described above may be useful here).

7.4 Configuration
Various configuration and mapping directives can be used to make the site environment more
or less liberal in the information it implicitly can provide.

7.4.1 Directory Listings

Published guidelines for securing a Web site generally advise against automatic directory
listing generation. Where a home page is not available this may leak information on other
directory contents, provide parent and child directory access, etc. Compounding this is the
WASD facility to force a listing by providing a directory URL with file wildcards (not to decry
the usefulness in some environments).

• [DirAccess] - Make ‘‘disabled’’ to completely remove the ability to generate directory
listings under any circumstances. Setting to ‘‘selective’’ means a directory listing is
only available if the directory contains a file named .WWW_BROWSABLE. When made
‘‘enabled’’ a directory listing may be produced anytime it contains no home (welcome)
page.

• [DirWildcard] - Make ‘‘disabled’’ so that requests cannot force a directory listing by
supplying a URL containing a wildcard file part (when enabled this is provided regardless
of whether a home page exists or not).

• [DirMetaInfo] - Make ‘‘disabled’’ to prevent directory listing pages contain as HTML
<META> tags information about the directory, most significantly the VMS file specifica-
tion for the URL path!

The mapping rule ‘‘SET DIR=keyword’’ can be used to change this on a per-path basis
(Section 14.4.5).

Conservative recommendation: Set ‘‘[DirAccess] selective’’ allowing listing for directories
containing a file named ‘‘.WWW_BROWSABLE’’, disable [DirMetaInfo] and [DirWildcard].

7–6 Security Considerations

7.4.2 Server Reports

Reports are pages generated by the server, usually to indicate an error or other non-
success condition, but sometimes to indicate success (e.g. after a successful file upload).
Reports provide either basic or detailed information about the situation. Sometimes the
detailed information includes VMS file system details, system status codes etc. To limit this
information to a minimum indication adjust the following directives.

• [ReportBasicOnly] - Make ‘‘enabled’’ to limit the quantity of information to the
minimum required to advise of the situation. Such reports give only the HTTP status
code and brief explanation of the code’s meaning. Note that this can also be done on a
per-path basis using mapping rules.

• [ReportMetaInfo] - Make ‘‘disabled’’ to exclude information on the server software,
source code module and line number initiating the report. META information may also
contain VMS file or system specific information.

• [ServerSignature] - Make ‘‘disabled’’ to prevent the inclusion of server software, host
and port information as a footer to a report.

The mapping rule ‘‘SET REPORT=keyword’’ can be used to change some of these on a per-path
basis (Section 14.4.5).

Conservative recommendation: Provide minimal error information by enabling [Report-
BasicOnly] and disabling [ReportMetaInfo]. Enable [ServerSignature] to provide a slightly
more friendly report (server software can easily be obtained from the response header any-
way).

7.4.3 Scripting

If a static site is all that’s required this source of compromise can simply be avoided.

• [Scripting] - Setting this to ‘‘disabled’’ prevents all scripting entirely. This includes
subprocess CGI and CGIplus, DECnet-based OSU and CGI, and SSI subprocess DCL
(<–#dcl –>, <–#exec –>, etc.).

Conservative recommendation: Only deploy scripts your site will actually be using. Re-
move all the files associated with any other scripts. Do not allow obsolete script environments
to remain active. Be proactive.

Also see Section 7.5.

7.4.4 Server Side Includes

SSI documents are pages containing special markup directives interpreted by the server and
replaced with dynamic content. This can include detail about the server, the file or files
making up the document, and can even include DCL commands and procedure activation for
supplying content into the page. All this by anyone who can author on the site.

• [SSI] - Setting this to ‘‘disabled’’ prevents all Server Side Include processing completely.

• [SSIexec] - Setting this to ‘‘disabled’’ disallows pages from invoking subprocess DCL to
supply content for the page. WASD provides a number of levels of this and the reader is
refered elsewhere in this and other documents for further infromation of what can and
cannot be done, and by whom, in these subprocesses.

Security Considerations 7–7

The mapping rule ‘‘SET SSI=keyword’’ can be used to change some of this on a per-path basis
(Section 14.4.5).

Conservative recommendation: Disable [SsiExec].

7.5 Scripting
Scripting has been a notorious source of server compromise, particularly within Unix environ-
ments where script process shell command-line issues require special attention. The WASD
CGI scripting interface does not pass any arguments on the command line, and is careful
not to allow substitution when constructing the CGI environment. Nevertheless, script be-
haviours cannot be guaranteed and care should be exercised in their deployment (ask me!)

It is strongly recommended to execute scripts in an account distinct from that executing the
server. This should also mean that the accounts are not members of the same group nor
should it be a member of any other group. This minimises the risk of both unintentional and
malicious interference with server operation through either Inter-Process Communication
(IPC) or scripts manipulating files used by the server. The PERSONA facility can be used to
further differentiate script activities. See ‘‘Scripting Overview’’ for further detail.

The default WASD installation creates two such accounts, with distinct UICs, usernames
and home directory space. Nothing should be assumed or read into the scripting account
username - it’s just a username.

Default Accounts

Username Description

HTTP$SERVER Server Account

HTTP$NOBODY Scripting Account

During startup the server checks for the existence of the default scripting account and
automatically configures itself to use this for scripting. If it is not present it falls-back
to using the server account. Other account names can be used if the startup procedures
are modified accordingly. The default scripting username may be overridden using the
/SCRIPT=AS=<username> qualifier (also see the ‘‘Scripting Overview’’).

7.6 Authorization
Authorization issues imply controlling access to various resources and actions and therefore
require careful planning and implementation if compromise is to be avoided. WASD has a
quite capable and versatile authorization and authentication environment, with a significant
number of considerations. The reader refered to the chapter on this topic, Chapter 16.

WASD authorization cannot be enabled without the administrator configuring at least three
resources, and so therefore cannot easily be ‘‘accidentally’’ activated. One of these is the
addition of a startup qualifier controlling where authentication information may be sourced.
Another the server configuration file. The third, mapping paths against authorization
configuration.

7–8 Security Considerations

For sites that may be particularly sensitive about inadvertant access to some resources it is
possible to use the authorization configuration file as a type of cross-check on the mapping
configuration file. The server /AUTHORIZATION=ALL startup qualifier forces all access to
be authorized (even if some are marked ‘‘none’’). This means that if something ‘‘escapes’’ via
the mapping file it will very likely be ‘‘caught’’ by an absence in the authorization file.

7.7 Miscellaneous Issues
Although it is of limited usefulness because server identity may be deduced from behaviour
and other indicators the exact server and version may be obscured by using the otherwise
undocumented /SOFTWARE= qualifier to change the server identification string to (basically)
whatever the administrator desires. This identification is included as part of all HTTP
response headers.

Historically and by default server configuration and authorization sources are contained
within the server package tree. There is no reason why they cannot be located anywhere
the site prefers. Generally all that is required is a change to logical name definition and
server startup.

Package Tree

Version 8.1 and later is much more conservative in what it makes available of the package tree
via the server. The package installation, update and security procedures and their associated
utilities should always be used to ensure that the installed package continues to conform to
the security baseline. See Section 7.2.

Furthermore, with many sites there may be little need to access the full, or any of the WASD
package tree. A combination of mapping and/or authorization rules can relatively simply
block or control access to it. These examples can be easily tailored to suit a site’s specific
requirements.

This example shows blocking all access to the /ht_root/ tree, except for documentation, source
code, examples and exercise (performance results) areas.

HTTPD$MAP
pass /ht_root/doc/*
pass /ht_root/src/*
pass /ht_root/example/*
pass /ht_root/exercise/*
fail /ht_root/*

The next example forbids all access to the package tree unless authorized (the authorization
detail would vary according to the site). It also allows modify access for the Server
Administration page and to the /ht_root/local/ area.

HTTPD$MAP
pass /ht_root/*

Security Considerations 7–9

HTTPD$AUTH
[WASD_WEB_ADMIN=id]
/httpd/-/admin/* r+w
/ht_root/local/* r+w
/ht_root/* r

Be careful!
There are often multiple paths to a single resource. For instance, it is of little
significance blocking access to say /ht_root/doc/ if it’s also possible to access it via
/doc/.

The following example shows how this might occur.

HTTPD$MAP
fail /ht_root/doc/*
pass /* /ht_root/*

Authorization rules can be used to effectively block access to any VMS file specification
(it cannot be done during mapping because the translation from path to file system is not
performed until mapping is complete).

HTTPD$AUTH
if (path-translated:HT_ROOT:[DOC]*) * none

or to selectively allow access

HTTPD$AUTH
[[WASD_VMS_RW=id]]
if (path-translated:HT_ROOT:[DOC]*) * read

7.8 Site Attacks
This is not a treatise on Web security and the author is not a security specialist. This is some
general advice based on observation. There is little one can do at the server itself to reduce a
concerted attack against a site. Common objectives of such attacks include the following (not
an exhaustive list).

Platform Vulnerabilities

Where a general attack is launched directed against a specific platform (a combination of
operating system and Web server software). Often these can be due to wide-spread infection
of systems, meaning many attacks are being launched from a large number of systems (often
without the system owners’ knowlege or cooperation).

WASD, and OpenVMS in particular, are generally immune to such attacks because they are
not Microsoft or Unix based. The impact of the attack becomes one of the nuisance-value
traffic as the site is probed by the (sometimes very large number of) source systems.

7–10 Security Considerations

Site Vulnerabilities

Where a specific attack is made against a site in an attempt to exploit a known vulnerability
associated with that platform or environment.

These are perhaps the most worrying, although the security-by-obscurity element works in
favour of WASD and OpenVMS in this case. Neither are as common as other platforms and
therefore do not receive as much attention.

Denial of Service

(DOS) Usually comprise flooding a site with requests in an effort to consume all available
network or server resources making it unavailable for legitimate use.

These can be insidious, flooding network equipment as well as systems. Attempts at control
are best undertaken at the periphery of the network (routers) although concerted attacks can
succeed against the best prepared network.

Password Cracking

Where a systematic attempt to break into one or more accounts is undertaken. These are
often repeated, dictionary-based password-guessing attacks.

WASD’s authentication functionality notes successive password validation failures and after
a reasonable number disables all access via the username for a constantly extended period.
Passwords stop being checked and so a dictionary-based attack cannot succeed. Password
validation failures can be recorded via OPCOM.

Authorization Holes

Knowing of or searching for resources that should be controlled by authorization but are not.

WASD’s /AUTHORIZATION=ALL functionality may assist here (Section 7.6).

Strategies

There are a few strategies for reducing the load on a server experiencing a generalized attack
or probing. These can also be used to ‘‘discourage’’ the source from considering the site an easy
target. Unfortunately most require request acceptance and at least some processing before
taking action. The general idea is to identify either the source site or some characteristic of
the request that indicates it could not possibly be legitimate. Most platform-specific attacks
have such a signature. For instance attacks against Microsoft platforms often involve probes
for backdoors into non-server executables. These can be identified by the path containing
strings such as ‘‘/winnt/’’, ‘‘/system32/’’, ‘‘/cmd.exe’’ or variations on them. This style will be
used in examples below.

• If the source IP address is known then the [Reject] (and/or [Accept]) configuration
directives can be used to reject the request connection very early in the processing. The
source agent receives a message about access being rejected.

[Reject]
131.185.250.*
the.host.name

Security Considerations 7–11

• Mapping rules in combination with conditionals may be used to redirect the request. This
redirection could be to another, non-existent site, in the hope that the source agent will
use the supplied URL and thus divert some activity away from the local site.

if (remote-host:the.host.name)
redirect * http://the.host.name/*

endif

redirect **/winnt/** http://does.not.exist/

• Mapping rule redirection can also be used to just ‘‘drop’’ the connection without any
further interaction or processing. The source agent receives no response, just a broken
connection.

if (remote-addr:131.185.250.*)
pass * "000 just drop it!"

endif

pass **/system32/** "000 just drop it!"

• The hiss facility (Section 23.2) returns a stream of random alpha-numeric characters
(a sort of white-noise). No response header is provided. Such a response might cause
the source agent at best some distress (perhaps disabling it) or at least disuade it from
continuing with more probes (as the target is obviously not a Web server ;-)

if (remote-addr:131.185.250.*) map * /hiss/*
script /hiss/* /hiss/*

map **/cmd.exe** /hiss/*/cmd.exe*
script /hiss/* /hiss/*

7–12 Security Considerations

Chapter 8

String Matching

Matching of strings is a pervasive and important function within the server. Two types
are supported; wildcard and regular expression. Wildcard matching is generally much less
expensive (in CPU cycles and time) than regular expression matching and so should always be
used unless the match explicitly requires otherwise. WASD attempts to improve the efficiency
of both by performing a preliminary pass to make simple matches and eliminate obvious
mismatches using a very low-cost comparison. This either matches or doesn’t, or encounters
a pattern matching meta-character which causes it to undertake full pattern matching.

To assist with the refinement of string matching patterns the Server Administration facility
(Chapter 19) has a report item named ‘‘Match’’. This report allows the input of target
and match strings and allows direct access to the server’s wildcard and regular expression
matching routines. Successful matches show the matching elements and a substitution field
(Section 8.4) allows resultant strings to be assessed.

To determine what string match processing is occuring during request processing in the
running server use the match item available from the Server Administration WATCH Report
(Chapter 20).

8.1 Wildcard Patterns
Wildcard patterns are simple, low-cost mechanisms for matching a string to a template. They
are designed to be used in path and authorization mapping to compare a request path to the
root (left-hand side) or a template expression.

Wildcard Operators

Expression Purpose

* Match zero or more characters (non-greedy)

** Match zero or more characters (greedy)

String Matching 8–1

Expression Purpose

% Match any one character

Wildcard matching uses the ’*’ and ’%’ symbols to match any zero or more, or any one character
respectively. The ’*’ wildcard can either be greedy or non-greedy depending on the context
(and for historical reasons). It can also be forced to be greedy by using two consecutive (’**’).
By default it is not greedy when matching request paths for mapping or authentication, and
is greedy at other times (matching strings within conditional testing, etc.)

Greedy and Non-Greedy

Non-greedy matching attempts to match an asterisk wildcard up until the first character that
is not the same as the character immediately following the wildcard. It matches a minimum
number of characters before failing. Greedy matching attempts to match all characters up
until the first string that does not match what follows the asterisk.

To illustrate; using the following string

non-greedy character matching compared to greedy character matching

the following non-greedy pattern

*non-greedy character*matching

does not match but the following greedy pattern

*non-greedy character**matching

does match. The non-greedy one failed as soon as it encountered the space following the first
‘‘matching’’ string, while the greedy pattern continued to match eventually encountering a
string matching the string following the greedy wildcard.

8.2 Regular Expressions
Regular expression matching is case insensitive (in line with other WASD behaviour) and
uses the Posix EGREP pattern syntax and capabilities. Regular expression matching offers
significant but relatively expensive functionality. One of those expenses is expression
compilation. WASD attempts to eliminate this by pre-compiling expressions during server
startup whenever feasable. Regular expression matching must be enabled using the [RegEx]
HTTPD$CONFIG directive and are then differentiated from wildcard patterns by using a
leading ‘‘^’’ character.

A detailed tutorial on regular expression capabilities and usage is well beyond the scope of
this document. Many such hard-copy and on-line documents are available.

http://en.wikipedia.org/wiki/Regular_expression

This summary is only to serve as a quick mnemonic. WASD regular expressions support the
following set of operators.

8–2 String Matching

Operator Overview

Description Usage

Match-self Operator Ordinary characters.

Match-any-character Operator .

Concatenation Operator Juxtaposition.

Repetition Operators * + ? {}

Alternation Operator |

List Operators [...] [^...]

Grouping Operators (...)

Back-reference Operator \digit

Anchoring Operators ^ $

Backslash Operator Escape meta-character; i.e. \ ^ . $ | [(

The following operators are used to match one, or in conjunction with the repetition operators
more, characters of the target string. These single and leading characters are reserved
meta-characters and must be escaped using a leading backslash (‘‘\ ’’) if required as a literal
character in the matching pattern.

Matching Operators

Expression Purpose

^ Match the beginning of the line

. Match any character

$ Match the end of the line

| Alternation (or)

[abc] Match only a, b or c

[^abc] Match anything except a, b and c

[a-z0-9] Match any character in the range a to z or 0 to 9

Repetition operators control the extent, or number, of whatever the matching operators match.
These are also reserved meta-characters and must be escaped using a leading backslash if
required as a literal character.

Repetition Operators

String Matching 8–3

Expression Function

* Match 0 or more times

+ Match 1 or more times

? Match 1 or zero times

{n} Match exactly n times

{n,} Match at least n times

{n,m} Match at least n but not more than m times

8.3 Examples
The following provides a series of examples as they might occur in use for server configuration.

1. Equivalent functionality using wildcard and regular expression patterns. Note that
‘‘Mozilla’’ must be at the start of the string, with the regular expression using the start-
of-string anchor resulting in two consecutive ‘‘^’’s, one indicating to WASD a regular
expression, the other being part of the expression itself.

if (user-agent:Mozilla*Gecko*)
if (user-agent:^^Mozilla.*Gecko)

2. This shows path matching using equivalent wildcard and regular expression matching.
Note the requirement to use the regular expression grouping parentheses to provide the
substitution elements, something provided implicitly with wildcard matching.

map /*/-/* /ht_root/runtime/*/*
map ^/(.+)/-/(.+) /ht_root/runtime/*/*

3. This rather contrived regular expression example has no equivalent capability available
with wildcard matching. It forbids the use of any path that contains any character other
than alpha-numerics, the hyphen, underscore, period and forward-slash.

pass ^[^-_./a-z0-9]+ "403 Forbidden character in path!"

8.4 Expression Substitution
Expression substitution is available during path mapping (Chapter 14). Both wildcard
(implicitly) and regular expressions (using grouping operators) note the offsets of matched
portions of the strings. These are then used for wildcard and specified wildcard substitution
where result strings provide for this (e.g. mapping ’pass’ and ’redirect’ rules). A maximum of
nine such wildcard substitutions are supported (one other, the zeroeth, is the full match).

8–4 String Matching

Wildcard Substitution

With wildcard matching each asterisk wildcard contained in the pattern (template string)
has matching characters in the target string noted and stored. Note that for the percentage
(single character) wildcard no such storage is provided. These characters are available for
substitution using corresponding wildcards present in the result string. For instance, the
target string

this is an example target string

would be matched by the pattern string

* is an example target *

as containing two matching wildcard strings

this
string

which could be substituted using the result string

* is an example result *

producing the resultant string

this is an example result string

Regular Expression Substitution

With regular expression matching the groups of matching characters must be explicitly
specified using the grouping parenthesis operator. Hence with regular expression matching
it is possible to match many characters from the target string without retaining them for
later substitution. Only if that match is designated as a subsitution source do the matching
characters become available for substituion via any result string. Using two possible target
strings as an example

this is an example target string
this is a contrived target string

would both be matched by the regular expression

^^([a-z]*) is [a-z]* target ([a-z]*)$

which though it contains three regular expressions in the pattern, only two have the grouping
parentheses, and so make their matching string available for substitution

this
string

which could be substituted using the result string

* is the final result *

producing the resultant string

this is the final result string

String Matching 8–5

Specified Substitution

By default the strings matched by wildcard or grouping operators are substituted in the
same order in which they are matched. This order may be changed by specifying which
wildcard string should be substituted where. Not all matched (and stored) strings need to be
substituted. Some may be omitted and the contents effectively ignored.

The specified substitution syntax is a result wildcard followed by a single-apostrophe (’) and
a single digit from zero to nine (0 . . . 9). The zeroeth element is the full matching string.
Element one is the first matching part of the expression, on through to the last. Specifying
an element that had no matching string substitutes an empty string (i.e. nothing is added).
Using the same target string as in the previous previous example

this is an example target string

and matched by the wildcard pattern string

* is an example target *

when substituted by the result string

*’2 is an example result

would produce the resultant string

string is an example result

with the string represented by the first wildcard effectively being discarded.

8–6 String Matching

Chapter 9

Conditional Configuration

Request processing (HTTPD$MAP) and authorization (HTTPD$AUTH) rules may be condi-
tionally applied depending on request, server or other charactersistics. These include

server host name, port
client IP address and host name
browser-accepted content-types, character sets, languages, encodings
browser identification string
scheme (‘‘http:’’ or ‘‘https:’’, i.e. is it a secure request?)
HTTP method (GET, POST, etc.)
request path, query string, cookie data, refering page
virtual host:port specified in request header
system information (hardware, Alpha/VAX, node name, VMS version, etc.)
local time
random number generation

Conditionals may be nested up to a maximum depth of eight, are not case sensitive and
generally match via string comparison, although some tests are performed as boolean
operations, by converting the conditional parameter to a number before comparison, and
IP address parameters will accept a network mask as well as a string pattern.

String Matching

The basis of much conditional decision making is string pattern matching. Both wildcard and
regular expression based pattern matching is available (Chapter 8). Wildcard matching in
conditional tests is greedy. Regular expression matching, in common with usage throughout
WASD, is differentiated from wildcard patterns using a leading ‘‘^’’ character.

Conditional Configuration 9–1

9.1 Conditional Syntax
Conditional expressions and processing flow structures may be used in the following formats.
Conditional and rule text may be indented for clarifying structure.

if (condition) then apply rest of line

if (condition)
then apply one
or more rules
up until the corresponding . . .

endif

if (condition)
then apply one
or more rules

else
apply one or more other rules
up until the corresponding . . .

endif

if (condition)
then apply one
or more rules

elif (condition)
apply one or more other rules
in a sort or case statement

else
a possible default rule or rules
up until the delimiting

endif

Logical operators are also supported, in conjunction with precedence ordering parentheses,
allowing moderately complex compound expressions to be applied in conditionals.

! logical negation
&& logical AND
| | logical OR

There are two more conditional structures that allow previous decisions to be reused. These
are unif and the ifif. The first unconditionally includes rules regardless of the current state
of execution. The second resumes execution only if the previous if or elif expression was true.
The else statement may also be used after an unif to continue only if the previous expression
was false. The purpose of these constructs are to allow a single decision statement to include
both conditional and unconditional rules.

9–2 Conditional Configuration

if (condition)
then apply one
or more rules

unif
apply this block of rules
unconditionally

ifif
applied only if the original
if expression was evaulated as true

unif
apply another block of rules
unconditionally

else
and this block of rules
only if the original was false

endif

CAUTION
Conditional syntax is checked at rule load time (either server startup or reload). Basic
errors such as unknown keywords and unbalanced parentheses or structure statements
will be detected and reported to the corresponding Admin Menu report and to the server
process log. Unless these reports are checked after modifying rule sets syntax errors
may result in unexpected mappings or access. Although the server cannot determine
the correct intent of an otherwise syntactically correct conditional, if it encounters an
unexpected but detectable condition during processing it aborts the request, supplying
an appropriate error message.

9.2 Conditional Keywords
The following keywords provide a match between the corresponding request or other value
and a string immediately following the delimiting colon. White space or other reserved
characters may not be included unless preceded by a backslash. The actual value being
used in the conditional matching may be observed using the mapping item of the WATCH
facility (Chapter 20).

Conditional Keywords

Keyword Description

accept: Browser-accepted content types as listed in the ‘‘Accept:’’ request header field.
Same string as provided in CGI variable HTTP_ACCEPT.

accept-charset: Browser-accepted character sets as listed in the ‘‘Accept-Charset:’’ request
header field. CGI variable HTTP_ACCEPT_CHARSET.

accept-encoding: Browser-accepted content encoding as listed in the ‘‘Accept-Encoding:’’ request
header field. CGI variable HTTP_ACCEPT_ENCODING.

accept-language: Browser language preferences as listed in the ‘‘Accept-Language:’’ request
header field. CGI variable HTTP_ACCEPT_LANGUAGE.

Conditional Configuration 9–3

Keyword Description

authorization: The raw authorization string from the request header, if any supplied. This
could be simply used to test whether it has been supplied or not.

callout: Simple boolean value. If a script callout is in progress (see ‘‘Scripting
Overview, CGI Callouts’’.) it is true, otherwise false.

client_connect_gt: An integer representing the current network connections (those currently
being processed plus those currently being ‘‘kept alive’’) for the particular
client represented by the current request. If greater than this value returns
true, otherwise false. See Section 6.6.

cluster_member: If the supplied node name is (perhaps currently) a member of the cluster (if
any) the server may be executing on.

command_line: The command line qualifiers and parameters used when the server image was
activated.

cookie: Raw cookie data as the text string provided in ‘‘Cookie:’’ request header field.
CGI variable HTTP_COOKIE.

decnet: Whether DECnet is active on the system and which version is available. This
value will be 0 if not active, 4 if PhaseIV or 5 is PhaseV.

document_root: The DOCUMENT_ROOT CGI variable SET using the map=root=<string>
mapping rule.

forwarded: Proxy/gateway host(s) request forwarded by, as specified in request header
field ‘‘Forwarded:’’. CGI variable HTTP_FORWARDED.

host: The host (and optionally port) specified in request header ‘‘Host:’’ field. This
is used by all modern browsers to provide virtual host information to the
server. CGI variable HTTP_HOST.

instance: Used to check whether a particular, clustered instance of WASD is available.
See Section 9.2.4.

jpi_username: The account username the server is executing as.

mapped_path: The path resulting from mapping (phase 2 if script path involved) from which
the path-translated is derived.

multihome: Somewhat specialised conditional that becomes non-null when a client used a
different IP address to connect to the service than the is bound to. Is set to
the IP address the client used and may be matched using wildcard matching
or as a network mask.

note: Ad hoc information (string) provided by the server administrator using the
/DO=NOTE= facility (and online equivalent) that can be used to quickly and
easily modify rule processing on a per-system or per-cluster basis.

notepad: Information (strings) stored using the SET notepad= mapping rule. See
Section 9.2.1.

9–4 Conditional Configuration

Keyword Description

ods: Specified as 2 or 5 (Extended File System), or as SRI file name encoding
(MultiNet NFS and others) PWK encoding (PATHWORKS 4/5), ADS encoding
(Advanced Server / PATHWORKS 6), SMB encoding (Samba - same as ADS).

pass: A numeric value, 1 or 2, representing the first or second pass (if a script
component was parsed) through the path mapping rules. Will be zero at other
times.

path-info: Path specified in the request line. CGI variable PATH_INFO.

path-translated: VMS translation of path-info. Available after rule mapping (i.e. during
authorization rule processing).

query-string: Query string specified in request line. Same information as provided in CGI
variable QUERY_STRING.

rand: Value from a random number generator. See Section 9.2.2.

redirected: If a request has been internally redirected (Section 14.4.2) this conditional
will be non-zero. Can be used as a boolean or with a digit specified.

referer: URL of refering page as provided in ‘‘Referer:’’ request header field. CGI
variable HTTP_REFERER.

regex: Simple boolean value. If configuration directive [RegEx] is enabled (and hence
regular expression string matching, Chapter 8) this will be true.

remote-addr: Client IP address. Same as provided as CGI variable REMOTE_ADDR. As
with all IP addresses used for conditional testing this may be wildcard string
match or network mask expressed as address/mask-length (see Section 9.2.7).

remote-host: Client host name if name resolution enabled, otherwise the IP address (same
as remote-addr). CGI variable REMOTE_HOST.

request: Detect the presence of specific or unknown request fields. See Section 9.2.3.

request-method: HTTP method (‘‘GET’’, ‘‘POST’’, etc.) specified in the request line. CGI
variable REQUEST_METHOD.

request-scheme: Request protocol as ‘‘http:’’ or ‘‘https:’’. CGI variable REQUEST_SCHEME.

restart: A numeric value, zero to maximum, representing the number of times path
mapping has been SET map=restart. Can be used as a boolean or with a digit
specified.

robin: Used to check whether a particular, clustered instance of WASD is available
and distribute requests to it using a round-robin algorithm. See Section 9.2.4.

script-name: After the first pass of rule mapping (script component resolution), or during
authorization processing, any script component of the request URI.

server-addr: The service IP address. CGI variable SERVER_ADDR. This may be wildcard
string match or network mask expressed as address/mask-length.

Conditional Configuration 9–5

Keyword Description

server_connect_gt: An integer representing the current server network connections (those
currently being processed plus those currently being ‘‘kept alive’’). If greater
than this value returns true, otherwise false.

server_process_gt: An integer representing the current server requests in-progress. If greater
than this value returns true, otherwise false.

server-name: The (possibly virtual) server name. This may or may not exactly match any
string provided via the host keyword. CGI variable SERVER_NAME.

server-port: The (possibly virtual) server port number. CGI variable SERVER_PORT.

server-protocol: ‘‘1.1’’, ‘‘1.0’’, ‘‘0.9’’ representing the HTTP protocol used by the request.

server-software: The server identification string, including the version. For example ‘‘HTTPd-
WASD/8.0.0 OpenVMS/AXP SSL’’. CGI variable SERVER_SOFTWARE.

service: This is the composite server name plus port as server-name:port. To match
gainst an unknown service use ‘‘?’’.

ssl: Simple boolean value. If request is via Secure Sockets Layer then this will be
true.

syi_arch_name: System information; CPU architecture of the server system, ‘‘Alpha’’,
‘‘Itanium’’ or ‘‘VAX’’.

syi_hw_name: System information; hardware identification string, for example ‘‘AlphaSta-
tion 400 4/233’’.

syi_nodename: System information; the node name, for example ‘‘KLAATU’’.

syi_version: System information; VMS version string, for example ‘‘V7.3’’.

tcpip: A string derived from the UCX$IPC_SHR shareable image. It looks
something like this ‘‘Compaq TCPIP$IPC_SHR V5.1-15 (11-JAN-2001
02:28:33.95)’’ and comprises the agent (Compaq, MultiNet, TCPware,
unknown), the name of the image, the version and finally the link date.

time: Compare to current system time. See Section 9.2.5.

trnlnm: Translate a logical name. See Section 9.2.6.

user-agent: Browser identification string as provided in ‘‘User-Agent:’’ request header
field. CGI variable HTTP_USER_AGENT.

x-forwarded-for: Proxied client name or address as provided in ‘‘X-Forwarded-For:’’ request
header field. CGI variable HTTP_X_FORWARDED_FOR.

9.2.1 Notepad: Keyword

The request notepad is a string storage area that can be used to store and retrieve ad hoc infor-
mation during path mapping and subsequent authorization processing. The notepad contents
can be changed using the SET notepad=<string> or appended to using SET notepad=+<string>
(Section 14.4.5). These contents then can be subsequently detected using the notepad: condi-
tional keyword (or the obsolescent ’NO’ mapping conditional) and used to control subsequent
mapping or authorization processing.

9–6 Conditional Configuration

Note
Notepad information persists across internal redirection processing (Section 14.4.2)
and so may be used when the regenerated request is mapped and authorized. To
prevent such information from unexpectedly interfering with internally redirected
requests a notepad=‘‘’’ can be used to empty the storage area.

9.2.2 Rand: Keyword

At the commencement of each pass a new pseudo-random number is generated (and therefore
remains constant during that pass). The rand: conditional is intended to allow some sort of
distribution to be built into a set of rules, where each pass (request) generates a different one.
The random conditional accepts two parameters, a modulas number, which is used to modulas
the base number, and a comparison number, which is compared to the modulas result.

Hence the following conditional rules

if (rand:3:0)
do this

elif (rand:3:1)
do this

else
do this

endif

would pseudo-randomly generate base numbers of 0, 1, 2 and perform the appropriate
conditional block. Over a sufficient number of usages this should produce a relatively even
distribution of numbers. If the modulas is specified as less than two (i.e. no distribution
factor at all) it defaults to 2 (i.e. a distribution of 50%). Hence the following example should
be the equivalent of a coin toss.

if (rand:)
heads

else
tails

endif

9.2.3 Request: Keyword

Looks through each of the lines of the request header for the specified request field and/or
value. This may be used to detect the presence of specific or unknown (to the server) request
fields. When detecting a specified just field the name can be provided

if (request:"Keep-Alive:*")

matching any value, or specific values can also be matched for

if (request:"User-Agent:*Opera*")

Note that all request fields known to the server have a specific associated conditional keyword
(i.e. ‘‘user-agent:’’ for the above example). To determine whether any request fields unknown
to the server have been supplied use the request: keyword as in the following example.

if (request:?)
map * /cgi-bin/unknown_request_notify.com*

endif

Conditional Configuration 9–7

9.2.4 Instance: and Robin: Keywords

Both of these conditionals are designed to allow the redistribution of requests between
clustered WASD services. They are WASD-aware and so allow a slightly more tailored
distribution than perhaps an IP package round-robin implementation might. Each tests
for the current operation of WASD on a particular node (using the DLM) before allowing
the selection of that node as a target. This can allow some systems to be shutting down or
starting up, or have WASD shutdown for any reason, without requiring any extraordinary
procedures to allow for the change in processing environment.

Instance:

The instance: directive allows testing for a particular cluster member having a WASD
instance currently running. This can allow requests to be redirected or reverse-proxied to
a particular system with the knowlege that it should be processed (of course there is a small
window of uncertainty as events such as system shutdown and startup occur asynchronously).
The behaviour of the conditional block is entirely determinate based on which node names
have a WASD instance and the order of evaluation. Compare this to a similar construct using
the robin: directive, as described below.

This conditional is deployed in two phases. In the first, it contains a comma-separated list
of node names (that are expected to have instances of WASD instantiated). In the second,
containing a single node name, allowing the selected node to be tested. For example.

if (instance:NODE1,NODE2,NODE3)
if (instance:NODE1) redirect /* http://node1.domain.name/*?
if (instance:NODE2) redirect /* http://node2.domain.name/*?
if (instance:NODE3) redirect /* http://node3.domain.name/*?
pass * "500 Some sort of logic error!!"

endif
pass * "503 No instance currently available!"

If none of the node names specified in the first phase is currently running a WASD instance the
rule returns false, otherwise true. If true the above example has conditional block processed
with each of the node names successively tested. If NODE1 has a WASD instance executing it
returns true and the associated redirect is performed. The same for NODE2 and NODE3. At
least one of these would be expected to test true otherwise the outer conditional established
during phase one would have been expected to return false.

Robin:

The robin: conditional allows rules to be applied sequentially against specified members of
a cluster that currently have instances of WASD running. This is obviously intended to
allow a form of load sharing and/or with redundancy (not balancing, as no evaluation of the
selected target’s current workload is performed, see below). As with the instance: directive
above, there is, of course, a small window of potential uncertainty as events such as system
shutdown and startup occur asynchronously and may impact availability between the phase
one test and ultimate request distribution.

9–8 Conditional Configuration

This conditional is again used in two phases. The first, containing a comma-separated list
of node names (that are expected to have instances of WASD instantiated). The second,
containing a single node name, allowing the selected node (from phase one) to have a rule
applied. For example.

if (robin:VAX1,ALPHA1,ALPHA2,IA64A)
if (robin:VAX1) redirect /* http://vax1.domain.name/*?
if (robin:ALPHA1) redirect /* http://alpha1.domain.name/*?
if (robin:ALPHA2) redirect /* http://alpha2.domain.name/*?
if (robin:IA64A) redirect /* http://ia64a.domain.name/*?
pass * "500 Some sort of logic error!!"

endif
pass * "503 No round-robin node currently available!"

In this case round-robining will be made through four node names. Of course these do not have
to represent all the systems in the cluster currently available or having WASD instantiated.
The first time the ’robin:’ rule containing multiple names is called VAX1 will be selected. The
second time ALPHA1, the third ALPHA2, and the fourth IA64A. With the fifth call VAX1 is
returned to, the sixth ALPHA1, etc. In addition, the selected nodename is verified to have
a instance of WASD currently running (using the DLM and WASD’s instance awareness). If
it does not, round-robining is applied again until one is found (if none is available the phase
one conditional returns false). This is most significant as it ensures that the selected node
should be able to respond to a redirected or (reverse-)proxied requested. This is the selection
set-up phase.

Then there is the selection application phase. Inside the set-up conditional other conditionals
apply the selection made in the first phase (through simple nodename string comparison).
The rule, in the above example a redirect, is applied if that was the node selected.

During selection set-up unequal weighting can be applied to the round-robin algorithm by
including particular node names more than once.

if (robin:VAX1,ALPHA,VAX2,ALPHA)

In the above example, the node ALPHA will be selected twice as often as either of VAX1 and
VAX2 (and because of the ordering interleaved with the VAX selections).

9.2.5 Time: Keyword

The time: conditional allows server behaviour to change according to the time of day, week,
or even year. It compares the supplied parameter to the current system time in one of three
ways.

1. The supplied parameter is in the form ‘‘1200-1759’’, which should be read as ‘‘twelve noon
to five fifty-nine PM’’ (i.e. as a time range in minutes, generalized as hhmm-hhmm),
where the first is the start time and the second the end time. If the current time is
within that range (inclusive) the conditional returns true, otherwise false. If the range
doesn’t look correct false is always returned.

Conditional Configuration 9–9

if (time:0000-0000)
it’s midnight

elif (time:0001-1159)
it’s AM

elif (time:1200-1200)
it’s noon

else
it’s PM

endif

2. If the supplied parameter is a single digit it is compared to the VMS day of the week
(1-Monday, 2-Tuesday . . . 7-Sunday).

if (time:6 || time:7)
it’s the weekend

else
it’s the working week

endif

3. If the supplied string is not in either of the formats described above it is treated as a
string match with a VMS comparision time (i.e. yyyy-mm-dd hh-mm-ss.hh).

if (time:%%%%-05-*)
it’s the month of May

endif

9.2.6 Trnlnm: Keyword

The trnlnm: conditional dynamically translates a logical name and uses the value. One
mandatory and up to two optional parameters may be supplied.

trnlnm:logical-name[;name-table][:string-to-match]

The logical-name must be supplied; without it false is always returned. If just the logical-
name is supplied the conditional returns true if the name exists or false if it does not. The
default name-table is LNM$FILE_DEV. When the optional name-table is supplied the lookup
is confined to that table. If the optional string-to-match is supplied it is matched against the
value of the logical and the result returned.

9.2.7 Host Addresses

Host names or addresses can be an alpha-numeric string (if DNS lookup is enabled)
or dotted-decimal network address, a slash, then a dotted-decimal mask. For example
‘‘131.185.250.0/255.255.255.192’’. This has a 6 bit subnet. It operates by bitwise-ANDing
the client host address with the mask, bitwise-ANDing the network address supplied with
the mask, then comparing the two results for equality. Using the above example the host
131.185.250.250 would be accepted, but 131.185.250.50 would be rejected. Equivalent nota-
tion for this rule would be ‘‘131.185.250.0/26’’.

9–10 Conditional Configuration

9.3 Examples
The following provides a collection of examples of conditional mapping and authorization rules
illustrating the use of wildcard matching, network mask matching and the various formats
in which the rules may be blocked.

1. This first example shows an EXEC mapping rule being applied to a path if the request
query string contains the string ‘‘example’’.

if (query-string:*example*) exec /* /cgi-bin/example/*

2. In this example a block of mapping statements is processed if the virtual service of
the request matches that in the conditional, otherwise the block is skipped. Note the
indentation to help clarify the structure.

if (service:the.host.name:80)
pass /web/* /dka0/the_host_name_web/*
pass /graphics/* /dka100/graphics/*
pass * "404 Resource not found."

endif

3. This example a series of tests allow a form of case processing where the first to match
will be processed and terminate the matching process. In this case if a match does not
occur rule processing continues after the endif.

if (service:the.host.name:80)
pass /web/* /dka0/the_host_name_web/*

elif (service:next.host.name:80)
pass /web/* /dka0/next_host_name_web/*

elif (service:another.host.name:80)
pass /web/* /dka0/another_host_name_web/*

endif
pass /graphics/* /dka100/graphics/*
pass * "404 Resource not found."

4. In this (somewhat contrived) example a nested test is used to check (virtual) server name
and that the request is being handled via Secure Sockets Layer (SSL) for security. If it is
not an informative message is supplied. The else and the quotes are not really required
but included here for illustration.

if (server-name:the.host.name)
if (scheme:"https")

pass /secure/* /dka0/the_host_name_web/secure/*
else

pass * /dka0/the_host_name_web/secure/only-via-SSL.html
endif

endif

5. This would be another way to accomplish a similar objective to example 4. This uses a
negation operator to exclude access to successive mappings if not requesting via SSL.

Conditional Configuration 9–11

if (server-name:the.host.name)
if (!SSL:)

pass * /web/secure/only-via-SSL.html
endif
pass /secure/* /web/secure/*
pass /other/* /web/other/*
pass /web/* /web/web/*
pass * "404 Resource not found."

endif

6. This example shows the use of a compound conditional using the AND and OR operators.
It also illustrates the use of a network mask. It will exclude all access to the specified path
unless the request is originating from within a specified network (perhaps an intranet)
or via SSL.

if (path:/sensitive/* && !(remote-addr:131.185.250.0/24 || SSL:))
pass * 404 "Access denied (SSL only)."

endif

7. This example illustrates restricting authentication to SSL.

[[*]]
["Your VMS password"=VMS]
if (!request-scheme:https)

* r+w,#0
endif

8. Logical name translation may be used to dynamically alter the flow of rule interpretation.

if (trnlnm:HTTPD_EXAMPLE)
pass /* /example/*

else
pass /* /*

endif

9. Using a site administrator’s /DO=NOTE= entry to modify rule processing. In this example
the contingency of a broken back-end processor has been prepared for and a document
advising clients of the temporary problem is redirected to once the administrator enters

$ HTTPD /DO=NOTE=PROBLEM /ALL

at the command-line (or via the online equivalent). Note that in this example external
clients are provided with the problem advice document while internal clients may still
access the back-end for troubleshooting purposes.

if (note:PROBLEM && !remote-addr:131.185.0.0/16)
pass /* /problem_with_backend.html

else
pass /* /backend/*

endif

Of course there are a multitude of possibilities based on this idea!

Note
The noted data persists across server startups but does not persist across system
startups!

9–12 Conditional Configuration

Chapter 10

Global Configuration

The example configuration file can be used as a template.

online hypertext link

By default, the system-table logical name HTTPD$CONFIG locates a global configuration
file, unless a per-server file is specified using a job-table logical name. Simple editing
of the configuration file changes the rules. Alternatively the Server Administration page
configuration interface may be used.

The [IncludeFile] is a directive common to all WASD configuration, allowing a separate file
to be included as a part of the current configuration. See Section 6.13.

Some directives take a single parameter, such as an integer, string or boolean value. Other
directives can/must have multiple parameters. The version 4 configuration requires the
directive to be placed on a line by itself and each separate parameter on a separate line
following it. All parameter lines apply to the most recently encountered directive.

Note that all boolean directives are disabled (OFF) by default. This is done so that there can
be no confusion about what is enabled and disabled by default. To use directive controlled
facility it must be explicitly enabled.

10.1 Functional Groupings

Authentication/Authorization

[AuthBasic] enable BASIC method

[AuthCacheEntriesMax] maximum concurrent authentication cache entries

[AuthCacheEntrySize] maximum authentication cache entry size in bytes

[AuthCacheMinutes] minutes before explicitly reauthorizing user from sources

[AuthDigest] enable DIGEST method

Global Configuration 10–1

[AuthDigestGetLife] DIGEST method GET lifetime

[AuthDigestPutLife] DIGEST method PUT lifetime

[AuthFailureLimit] retries allowed before username is marked as intruder

[AuthFailurePeriod] period during which failure limit is applied

[AuthFailureTimeout] period during which a recognised authentication failure is
applied

[AuthRevalidateLoginCookie] helps prevent redundant authorization requests when
user revalidation is enabled

[AuthRevalidateUserMinutes] minutes before use needs to reenter password

[AuthSysUafAcceptExpPwd] accept expired SYSUAF passwords

[AuthSysUafPwdExpURL] redirection URL is SYSUAF password if expired

[AuthSysUafUseAcme] Obsolete for WASD V9.3 and following.

Buffer Sizes

[BufferSizeDclCgiHeader] number of bytes allocated to when processing a CGI
response header

[BufferSizeDclCgiPlusIn] number of bytes allocated to scripting subprocess
CGIPLUSIN mailbox

[BufferSizeDclCommand] bytes allocated to scripting subprocess SYS$COMMAND
mailbox

[BufferSizeDclOutput] bytes allocated to scripting subprocess SYS$OUTPUT
mailbox

[BufferSizeNetRead] bytes allocated to client request read buffer, and to the
scripting subprocess SYS$INPUT mailbox

[BufferSizeNetWrite] bytes allocated to client output buffer

[SocketSizeRcvBuf] bytes allocated to a network connection receive buffer

[SocketSizeSndBuf] bytes allocated to network connection send buffer

Content-Type

[AddType] add a content-type

[AddMimeTypesFile] add the contents of a standard MIME.TYPES file

[CharsetConvert] conversion of one character set to another

[CharsetDefault] default character set for text responses

[StreamLF] enable and set maximum size of automatic Stream-LF
conversion

10–2 Global Configuration

Directory Listing

[AddIcon] path to icon for a specified content-type

[AddBlankIcon] path to blank icon

[AddDefaultIcon] path to default icon

[AddDirIcon] path to directory icon

[AddParentIcon] path to parent icon

[AddUnknownIcon] path to icon for unknown content-type

[DirAccess] enable and form of listing

[DirBodyTag] specify HTML body tag of listing pages

[DirDescriptionLines] number of HTML file lines searched for document title

[DirLayout] layout of the various listing components

[DirMetaInfo] add server and VMS directory information

[DirNoImpliedWildcard] do not add wildcards to request if not present in path

[DirNoPrivIgnore] ignore, do not report, privilege violations on
files/directories

[DirOwner] allow owner of file to be included in layout directive

[DirPreExpired] pre-expire listing responses

[DirReadMeFile] specify read-me files

[DirWildcard] allow wildcards to be specified at all

File Cache

[CacheChunkKBytes] memory block allocation size

[CacheEntriesMax] maximum number of files allowed in cache

[CacheFileKBytesMax] maximum size of a file

[CacheFrequentHits] identify active files

[CacheFrequentPeriod] identify active file

[CacheGuardPeriod] prevent early reloads

[CacheTotalKBytesMax] maximum memory to be consumed by cache

[CacheValidatePeriod] maximum period before the cache checks for file
modification

Logging

[Logging] enable logging

Global Configuration 10–3

[LogExcludeHosts] hosts to be excluded from log

[LogExtend] default allocation/extend in blocks

[LogFile] provides part or all of log file name

[LogFormat] nature and layout of log contents

[LogNaming] how the log name is be constructed

[LogPeriod] period at which new logs are created

[LogPerInstance] create a separate log for each instance process

[LogPerService] create a separate log for each configured service

[LogPerServiceHostOnly] suppress service port number as component of log name

[LogWriteFail503] generate 530 responses if the access log cannot be written

[Track] enable session tracking

[TrackMultiSession] track across sessions

[TrackDomain] host or hosts it applies to

Operator Console and Log

[OpcomAdmin] Server Administration directives

[OpcomAuthorization] authentication/authorization messages, e.g. failures

[OpcomControl] CLI HTTPd control directives

[OpcomHTTPd] HTTPd events (e.g. startup, exit, SSL private key
password requests)

[OpcomProxyMaint] proxy file cache maintenance

[OpcomTarget] target operator for online messages

Miscellaneous

[Accept] restrictive list of host from which to accept requests

[ActivityDays] activity graph duration

[ConnectMax] maximum number of concurrent connections

[DNSLookupClient] enable client host name lookup

[DNSLookupLifeTime] host name lookup cache entry lifetime

[DNSLookupRetry] number two second attempts to resolve client host name

[EntityTag] provide a strong validator for file-system based resources

[GzipAccept] advertise acceptance of GZIUP (deflated) request bodies

[GzipFlush] period between GZIP buffer flushes

10–4 Global Configuration

[GzipResponse] enable GZIP (deflated) response bodies

[InstanceMax] number of per-node server processes to maintain

[InstancePassive] start multiple instances already in passive mode

[Monitor] enable HTTPDMON data exchange

[PipelineRequests] check for and process pipelined requests

[Port] default port

[ProcessMax] maximum number of concurrent requests being processed

[PutMaxKBytes] maximum size of a POST or PUT

[PutVersionLimit] maximum RMS file versions retained in a POST or PUT

[RegEx] enable regular expression matching

[Reject] proscriptive list of hosts from which request will be
rejected

[RequestHistory] number of requests kept for request report

[SearchScript] path to default search script

[SearchScriptExclude] list of file extensions excluded from implied keyword
search

[Service] list of host names and/or port to create services for

[ServiceNotFoundURL] redirection URL when a request service is not configured

[Welcome] list of file names that are checked for as home pages

Proxy Serving

[ProxyCache] enable proxy caching

[ProxyCacheFileKBytesMax] maximum size of response for caching

[ProxyCacheDeviceCheckMinutes] minutes between check of cache device usage

[ProxyCacheDeviceDirOrg] flat 256 or 64x64 directory organization

[ProxyCacheDeviceMaxPercent] maximum percentage of cache device used before purge

[ProxyCacheDevicePurgePercent] during purge reduce by this many percent

[ProxyConnectPersistMax] connection persistence for this number of connections

[ProxyConnectPersistSeconds] connections persist for this number of seconds

[ProxyConnectTimeoutSeconds] the proxy to origin server connect times-out after this
number of seconds

[ProxyNegativeSeconds] cache negative (failure) responses for this period

[ProxyCacheNoReloadSeconds] prevent pragma reloads for this period

Global Configuration 10–5

[ProxyCachePurgeList] list of file ages used during purge

[ProxyCacheReloadList] list of file ages before realod from source

[ProxyCacheRoutineHourOfDay] hour of day routine cache purge occurs

[ProxyForwarded] add ‘‘Forwarded:’’ to requests

[ProxyHostLookupRetryCount] DNS resolution retry count

[ProxyReportLog] report failures to process log

[ProxyReportCacheLog] report cache failures to process log

[ProxyServing] enable proxy server

[ProxyVerifyRecordMax] enable proxy verification

[ProxyXForwardedFor] add ‘‘X-Forwarded-For:’’ to requests

Reports

[ErrorReportPath] path to script, SSI or ‘‘flat’’ error document

[ErrorRecommend] for server generated error include probable cause

[ReportBasicOnly] only ever generate reports containing basic details

[ReportMetaInfo] add server information to directory listings, etc.

[ServerAdmin] email address for server-related contact

[ServerAdminBodyTag] specify HTML body tag of Server Administration (menu)
pages

[ServerReportBodyTag] specify HTML body tag of error and other report pages

[ServerSignature] add server information to the foot of error and other
report pages

Request Timeout

[TimeoutInput] period a connection can wait before sending request

[TimeoutNoProgress] period a response can continue without data transfer
progress

[TimeoutOutput] period a response can continue to output

[TimeoutPersistent] period a connection is kept active after request conclusion

Scripting

[CgiStrictOutput] script output must be CGI compliant

[DclBitBucketTimeout] period a script continues after a client prematurely
disconnects

10–6 Global Configuration

[DclCgiPlusLifeTime] period of non-use before CGIplus subprocess is deleted

[DclCleanupScratchMinutesMax] maximum minutes between HT_SCRATCH cleanups

[DclCleanupScratchMinutesOld] cleanup files older than this

[DclDetachProcess] use detached scripting processes rather than subprocesses

[DclGatewayBG] enable raw TCP/IP socket for scripts

[DclHardLimit] maximum number of concurrent subprocesses

[DclScriptRunTime] script execution environment

[DclSoftLimit] maximum number of subprocesses before proactive
deletion begins

[DclSpawnAuthPriv] spawn subprocesses with account’s authorized privileges

[DclZombieLifeTime] period of non-use before a CGI/CLI subprocess is deleted

[DECnetReuseLifeTime] period of non-use before a DECnet process is released

[DECnetConnectListMax] maximum number of DECnet processes

[Scripting] enables and disables all scripting

Server Side Includes

[SSI] enable Server Side Includes (SSI)

[SSIaccesses] allow access counting

[SSIexec] allow DCL commands

[SSIsizeMax] maximum source file size

10.2 Alphabetic Listing

1. [Accept] host/domain name (default: all)

One or more (comma-separated if on the same line) internet host/domain names, with
‘‘*’’ wildcarding for host/subdomain matching, to be explicitly allowed access. If DNS
lookup is not enabled hosts must be expressed using literal addresses (see [DNSLookup]
directive). Also see the [Reject] directive. Reject directives have precedence over Accept
directives. The Accept directive may be used multiple times.

Examples:

[Accept]
*.wasd.dsto.defence.gov.au
131.185.250.*

2. [ActivityDays] integer (default: 0)

Specifies the number of days to record activity statistics, available in report form from
the Server Administration page (Section 19.4). Zero disables this data collection. The
maximum is 28 days. 11520 bytes per day, and 80640 per week, is required to store the
per-minute data.

Global Configuration 10–7

3. [AddIcon] icon-URL ALT-text template (no default)

Specifies a directory listing icon and alternative text for the mime content type specified
in the template.

Examples:

[AddIcon]
/icon/-/doc.gif [HTM] text/html
/icon/-/text.gif [TXT] text/plain
/icon/-/image.gif [IMG] image/gif

4. [AddBlankIcon] icon-URL

[AddDefaultIcon] icon-URL ALT-text

[AddDirIcon] icon-URL ALT-text

[AddParentIcon] icon-URL ALT-text

[AddUnknownIcon] icon-URL ALT-text (no defaults)

Specifies a directory listing icon for these non-content-type parts of the listing.

Examples:

[AddBlankIcon] /icon/-/blank.gif _____
[AddDefaultIcon] /icon/-/file.gif [FIL]
[AddDirIcon] /icon/-/dir.gif [DIR]
[AddParentIcon] /icon/-/back.gif [<--]
[AddUnknownIcon] /icon/-/unknown.gif [???]

5. [AddMimeTypesFile] file specification (no default)

Add the content-types of a (de facto) standard MIME.TYPES file to the already configured
[AddType] content-types. This binds a file suffix (extension, type) to a MIME content-
type. Any specification in this file will supercede any previously defined via [AddType].
A MIME.TYPES file looks something like

MIME type Extension
application/msword doc
application/octet-stream bin dms lha lzh exe class
application/oda oda
application/pdf pdf
application/postscript ai eps ps
application/rtf rtf

The WASD server uses a number of extensions to provide additional information. See
Section 6.7.

6. [AddType] .suffix content-type [script-name] [description] (no default)

Binds a file suffix (extension, type) to a mime content type. The script name is used to
auto-script against a specified file type. Use a hyphen as a place-holder and to indicate
no auto-script. The description is used as documentation for directory listings.

10–8 Global Configuration

[AddType]
.html text/html HyperText Markup Language
.txt text/plain plain text
.gif image/gif image (GIF)
.hlb text/x-script /Conan VMS Help library
.decw$book text/x-script /HyperReader Bookreader book
* internal/x-unknown application/octet-stream
#* internal/x-unknown text/plain

The content-type string may include a specific character set. In this way non-default sets
(which is usually ISO-8859-1) can be specified for any particular site or any particular
file type. Enclose the content-type string with double-quotation marks.

[AddType]
.html "text/html; charset=ISO-8859-1" HTML (ISO-8859-1)
.html_5 "text/html; charset=ISO-8859-5" Cyrillic HTML (ISO-8859-5)
.html_r "text/html; charset=KOI8-R" Cyrillic HTML (KOI8-R)
.txt "text/plain; charset=ISO-8859-1" plain text (ISO-8859-1)
.txt_5 "text/plain; charset=ISO-8859-5" Cyrillic text (ISO-8859-5)
.txt_r "text/plain; charset=KOI8-R" Cyrillic text (KOI8-R)

To provide additional information for correct handling of FTP transfers the content-type
may have an FTP transfer mode indicated. This is provided by appending the mode
directly after the content type (allow no white-space). One of three characters is used.
An ‘‘A’’ indicates that this file type should be FTP transfered in ASCII mode. An ‘‘I’’ or
a ‘‘B’’ indicates that this file type should be FTP transfered in Image (binary) mode. The
following example provides the syntax.

[AddType]
.ps application/postscript(ftp:A) Postscript document

7. [AuthBasic] ENABLED | DISABLED (default: DISABLED)

Enables or disables BASIC username authentication. See Chapter 16.

8. [AuthCacheEntriesMax] integer (default: 32)

Maximum concurrent authentication cache entries. This needs to be sized adequately to
prevent the cache from thrashing (too many attempted entries causing each to spend very
little time in the cache before being replaced, only to need to be inserted again with the
next attempted access).

9. [AuthCacheEntrySize] integer (default: 768)

Maximum size of an authentication cache entry. The only reason where this may need to
be increased is where a site is using the /PROFILE functionality and one or more accounts
have a particularly large number of rights identifiers.

10. [AuthCacheMinutes] integer (default: 60)

The number of minutes authentication information is cached before being revalidated from
the authentication source. Zero disables caching (with a resultant impact on performance
as each request requiring authentication is validated directly from the source).

11. [AuthDigest] ENABLED | DISABLED (default: DISABLED)

Enables or disables Digest username authentication. See Chapter 16.

12. [AuthDigestGetLife] integer (default: 0)

Global Configuration 10–9

The number of seconds a digest nonce for a GET request (read) can be used before
becoming stale.

13. [AuthDigestPutLife] integer (default: 0)

The number of seconds a digest nonce for a PUT (/POST/DELETE ... write) request can
be used before becoming stale.

14. [AuthFailureLimit] integer (default: 0)

The number of unsuccessful attempts at authentication before the username is disabled.
Once disabled any subsequent attempt is automatically refused without further reference
to the authentication source. A disabled username can be reenabled by simply purging
the cache. Parallels the purpose of SYSGEN parameter LGI_BRK_LIM. See Section 16.2.

15. [AuthFailurePeriod] hh:mm:ss (default: 00:00:00)

The period during which [AuthFailureLimit] is applied. Parallels the purpose of SYSGEN
parameter LGI_BRK_TMO. See Section 16.2.

16. [AuthFailureTimeout] hh:mm:ss (default: 00:00:00)

The period during which which any intrusion aversion is applied. Parallels the purpose
of SYSGEN parameter LGI_HID_TIM. See Section 16.2.

17. [AuthRevalidateLoginCookie] ENABLED | DISABLED (default: DISABLED)

When user revalidation is in effect (see immediately below), after having previously closed
the browser initial authentication of a resource is immediately followed by another if a
cached entry on the server indicated revalidation was required. This prevents this second
request.

18. [AuthRevalidateUserMinutes] integer (default: 60)

The number of minutes between authenticated requests that user authentication remains
valid before the user is forced to reenter the authentication information (via browser
dialog). Zero disables the requirement for revalidation.

19. [AuthSysUafAcceptExpPwd] ENABLED | DISABLED (default: DISABLED)

If a SYSUAF authenticated password has expired (password lifetime has been reached)
accept it anyway (in much the same way network logins are accepted in similar circum-
stances). This is very different to account expiry, after which authentication is always
rejected.

20. [AuthSysUafPwdExpURL] string (default: none)

If a SYSUAF authenticated password is/has expired the request is redirected to this URL
to change the password. See Section 16.14

21. [AuthSysUafUseAcme]

Obsolete for WASD V9.3 and following.

22. [BufferSizeDclCgiHeader] integer (default: 2048)

The number of bytes allocated to store and process a script CGI response header.

23. [BufferSizeDclCgiPlusIn] integer (default: 2048)

10–10 Global Configuration

The number of bytes (and hence BYTLM quota) permanently allocated to each scripting
subprocess CGIPLUSIN mailbox.

24. [BufferSizeDclCommand] integer (default: 3072)

The number of bytes (and hence BYTLM quota) permanently allocated to each scripting
subprocess SYS$COMMAND mailbox.

25. [BufferSizeDclOutput] integer (default: 4096)

The number of bytes (and hence BYTLM quota) permanently allocated to each scripting
subprocess SYS$OUTPUT mailbox.

26. [BufferSizeNetRead] integer (default: 2048)

The number of bytes allocated to the network read buffer (used for request header, POST
body, etc.). Also the number of bytes (and hence BYTLM quota) permanently allocated to
each scripting subprocess SYS$INPUT mailbox (allowing a script to read a request body).

27. [BufferSizeNetWrite] integer (default: 4096)

Number of bytes allocated to the network write buffer. This buffer is used as the basic
unit when transfering file contents (from cache or the file system), as an output buffer
during SSI pocessing, directory listing, etc. During many activities multiple outputs are
buffered into this storage before being written to the network.

28. [Cache] ENABLED | DISABLED (default: DISABLED)

File cache control.

29. [CacheChunkKBytes] integer (default: 0)

Granularity of memory blocks allocated to file data, in kilobytes.

30. [CacheEntriesMax] integer (default: 0)

Maximum number of files loaded into the cache before entries are reused removing the
original contents from the cache.

31. [CacheFileKBytesMax] integer (default: 0)

Maximum size of a file before it is not a candidate for being cached, in kilobytes.

32. [CacheFrequentHits] integer (default: 0)

Minimum, total number of hits an entry must sustain before being a candidate for
[CacheFrequentPeriod] assessment.

33. [CacheFrequentPeriod] hh:mm:ss (default: 00:00:00)

If a file has been hit at least [CacheFrequentHits] times in total and the last was within
the period here specified it will not be a candidate for reuse. See Chapter 13.

34. [CacheGuardPeriod] integer (default: 15)

During this period subsequent reloads (no-cache) requests will not result in the entry
being revalidated or reloaded. This can guard period can help prevent unnecessary file
system activity.

35. [CacheEntriesMax] integer (default: 0)

Global Configuration 10–11

Obsolete for WASD V8.0 and following.

36. [CacheTotalKBytesMax] integer (default: 0)

Maximum memory allocated to the cache, in kilobytes.

37. [CacheValidatePeriod] hh:mm:ss (default: 00:00:00)

The interval after which a cache entry’s original, content revision time is revalidated
against the file’s current revision time. If not the same the contents are declared invalid
and reloaded.

38. [CharsetConvert] string (default: none)

Document and CGI script output can be dynamically converted from one character set
to another using the standard VMS NCS conversion library. This directive provides the
server with character set aliases (those that are for all requirements the same) and which
NCS conversion function may be used to convert one character set into another. The
general format is

document-charset accept-charset[,accept-charset..] [NCS-function-name]

When this directive is configured the server compares each text response’s character set
(if any) to each of the directive’s document charset string. If it matches it then compares
each of the accepted charset (if multiple) to the request ‘‘Accept-Charset:’’ list of accepted
characters sets. If the same is is either accepted as-is or if a conversion function specified
converted by NCS as the document is transfered.

windows-1251 windows-1251,cp-1251
windows-1251 koi8-r koi8r_to_windows1251_to_koi8r
koi8-r koi8-r,koi8
koi8-r windows-1251,cp-1251 koi8r_to_windows1251

39. [CharsetDefault] string (default: none)

The default character set sent in the response header for text documents (plain and
HTML). English language sites should specify ISO-8859-1, other Latin alphabet sites,
ISO-8859-2, 3, etc. Cyrillic sites might wish to specify ISO-8859-5 or KOI8-R, and so on.

40. [CgiStrictOutput] ENABLED | DISABLED (default: DISABLED)

A script must output a full HTTP or CGI-compliant response. If a plain-text stream is
output an error is reported (being the more common behaviour for servers). Errors in
output can be disagnosed using the WATCH facility.

41. [ConnectMax] integer (default: 200)

The maximum number of concurrent client connections before a ‘‘server too busy right
now ... try again shortly’’ error is returned to the client.

42. [DclBitBucketTimeout] hh:mm:ss (default: 0)

Period a script is allowed to continue processing before being terminated after a client
prematurely disconnects. An approptiate setting allows most scripts to conclude elegantly
and be available for further use. This improves scripting efficiency significantly. Setting
this period to zero terminates scripts (and their associated processes) immediately a client
is detected as having disconnected.

10–12 Global Configuration

43. [DclCleanupScratchMinutesMax] integer (default: 0)

Whenever the last scripting process is removed from the system, or this number of
minutes maximum (whichever occurs first), scan the HT_SCRATCH directory (if logical
defined and it exists) deleting all files that are older than [DclCleanupScratchMinutesOld]
minutes. Setting to zero disables HT_SCRATCH scans.

44. [DclCleanupScratchMinutesOld] integer (default: 0)

When performing a [DclCleanupScratchMinutesMax] scan delete files that are older than
this value (or the value specified by [DclCleanupScratchMinutesMax], whichever is the
larger).

45. [DclCgiPlusLifeTime] hh:mm:ss (default: 0)

If this value is zero CGIplus subprocess may persist indefinitely (excluding explicit and
proactive server purging). If non-zero the CGIplus subprocess is terminated the specified
period after it last processed a request. This helps prevent sporadically used scripts from
clogging up a system.

46. [DclDetachProcess] ENABLED | DISABLED (default: DISABLED)

By default scripts are executed within server subprocesses. When enabled this instructs
the server to create detached processes. This side-steps the issues of having pooled process
quotas and also allows non-server-account scripting (Section 19.7, User Account Scripting
and in particular ‘‘Scripting Overview, Introduction’’.

47. [DclDetachProcessPriority] integer[,integer] (default: same as server)

When detached scripting processes are created it is possible to assign them base priorities
lower that the server itself. This directive takes one or two (comma-separated) integers
that determine how many priorities lower than the server scripting processes are created.
The first integer determines server processes. A second, if supplied, determines user
scripts. User scripts may never be a higher priority that server scripts.

[DclDetachProcessPriority] 1
[DclDetachProcessPriority] 0,1
[DclDetachProcessPriority] 1,2

The first of these examples would set both server and user script processes one below the
server process. The second, server scripts at the same priority and user scripts one below.
The last, server scripts one below, and user scripts two below.

48. [DclGatewayBG] ENABLED | DISABLED (default: DISABLED)

When enabled, non-SSL, subprocess script CGI environments have a CGI variable WWW_
GATEWAY_BG created containing the device name (BGnnnn:) of the TCP/IP socket
connected to the client. This socket may be accessed by the script for transmission of
data directly to the script bypassing the server entirely. This is obviously much more
efficient for certain classes of script. For purposes of accurate logging the server does
need to be informed of the quantity of data transfered using a CGI callout. See ‘‘Scripting
Environment’’ document.

49. [DclHardLimit] integer (default: 0)

The maximum number of DCL/CGI script processing subprocesses that may ever exist
concurrently (works in conjunction with [DclSoftLimit].

Global Configuration 10–13

50. [DclScriptRunTime] string (default: none)

One or more file type (extension) specification and scripting verb pairs. See ‘‘Scripting
Overview, Runtime’’.

51. [DclSoftLimit] integer (default: 0)

The number of DCL/CGI script processing subprocesses after which idle subprocesses
are deleted to make room for new ones. The [DclHardLimit] should be approximately
25% more than the [DclSoftLimit]. The margin exists to allow for occasional slow run-
down of deleted/finishing subprocesses. If these limits are not set (i.e. zero) they are
calculated with [ProcessMax] using ‘‘[DclSoftLimit] = [ProcessMax]’’ and ‘‘[DclHardLimit]
= [DclSoftLimit] + [DclSoftLimit] / 4’’.

52. [DclSpawnAuthPriv] ENABLED | DISABLED (default: DISABLED)

By default, when a DCL/scripting subprocess is spawned it inherits the server’s currently
enabled privileges, which are none, not even TMPMBX or NETMBX. If this parameter is
enabled the subprocess is created with the server account’s SYSUAF-authorized privileges
(which should never be other than NETMBX and TMPMBX). Use with caution.

53. [DclZombieLifeTime] hh:mm:ss (default: 00:00:00)

If this value is zero the use of persistant DCL subprocesses is disabled. If non-zero the
zombie subprocess is terminated the specified period after it last processed a request. This
helps prevent zombie processes from clogging up a system. See ‘‘Scripting Environment’’
document.

54. [DECnetReuseLifeTime] hh:mm:ss (default: 00:00:00)

Period a DECnet scripting connection is maintained with the network task. Zero disables
connection reuse.

55. [DECnetConnectListMax] integer (default: 0)

The size of the list used to manage connections for DECnet scripting. Zero effectively
allows the server to use as many DECnet scripting connections as demanded.

56. [DirAccess] ENABLED | DISABLED | SELECTIVE (default: DISABLED)

Controls directory listings. SELECTIVE allows access only to those directories containing
a file .WWW_BROWSABLE. The WASD HTTPd directory access facility always ignores
directories containing a file named .WWW_HIDDEN. Also see the [DirWildcard] directive.

57. [DirBodyTag] string (default: <BODY>)

Specifies the HTML <BODY> tag for directory listing pages. This allows some measure
of site ‘‘look-and-feel’’ in page colour, background, etc. to be employed.

58. [DirDescriptionLines] integer (default: 0)

Non-Zero enables HTML file descriptions during listings. Generating HTML descrip-
tions involves opening each HTML file and searching for <TITLE>...</TITLE> and
<H1>...</H1> text to generate the description. This is an obviously resource-intensive
activity and on busy servers or systems may be disabled. Any non-zero number specifies
the number of lines to be searched before quitting. Set to a very high number to search
all of files’ contents (e.g. 999999).

10–14 Global Configuration

59. [DirLayout] string (default: I_ _L_ _R_ _S_ _D)

Allows specification of the directory listing layout. This is a short, case-insensitive string
that specifies the included fields, relative placement and optionally the width of the fields
in a directory listing. Each field is controlled by a single letter and optional leading
decimal number specifying its width. If a width is not specified an appropriate default
applies. An underscore is used to indicate a single space and is used to separate the fields
(two consecutive works well).

C - creation date
D - description (generally best specified last)

D:L - for files, make a link out of the description text
I - icon (takes no field-width attribute)

L - link (highlighted anchor using the name of the file)
L:F - file-system name (for ODS-5 displays spaces, etc.)
L:N - name-only, do not display the extension
L:U - force name to upper-case

N - name (no link, why bother? who knows!)
O - owner (can be disabled)
R - revision date
S - size

S:B - in bytes (comma-formatted)
S:D - decimal kilos (see below)
S:F - kilo and mega are displayed to one decimal place
S:K - in kilo-bytes (and fractions thereof)
S:M - in mega-bytes (and fractions thereof)

U - upper-case file and directory names (must be the first character)

The following shows some examples:

[DirLayout] I__L__R__S__D
[DirLayout] I__L__R__S:b__D
[DirLayout] I__15L__S__D
[DirLayout] UI__15L__S__D
[DirLayout] 15L__9R__S
[DirLayout] 15N_9C_9R_S
[DirLayout] I__L__R__S:d__D
[DirLayout] 25D:l__S:b__C__R

The size of files is displayed by default as 1024 byte kilos. When using the ‘‘S:k’’, ‘‘S:m’’
and ‘‘S:f’’ size modifiers the size is displayed as 1000 byte kilos. If it is prefered to have
the default display in 1000 byte kilos then set the directory listing layout using:

[DirLayout] I__L__R__S:d__D

If unsure of the kilo value being used check the ‘‘<META>’’ information in the directory
listing.

60. [DirMetaInfo] ENABLED | DISABLED (default: DISABLED)

Includes, as <META> information, the software ID of the server and any relevant VMS
file information.

61. [DirNoImpliedWildcard] ENABLED | DISABLED (default: DISABLED)

Global Configuration 10–15

When a directory is accessed having no file or type component and there is no welcome
page available a directory listing is generated. By default any other directory accessed
from this listing has the implied wildcards "*.*" added, consequently forcing directory
listings. If enabled, this directive ensures no wildcards are added, so subsequent
directories accessed with welcome pages display the pages, not a forced listing.

62. [DirNoPrivIgnore] ENABLED | DISABLED (default: DISABLED)

To prevent browsing through directories (perhaps due to inadvertant mapping) that have
file permissions allowing no WORLD access the server stops listing and reports the error
the first time a protection violation occurs. This behaviour may be changed to ignore the
violation, listing only those files to which it has access.

63. [DirOwner] ENABLED | DISABLED (default: DISABLED)

Allows specification and display of the RMS file owner information.

64. [DirPreExpired] ENABLED | DISABLED (default: DISABLED)

Directory listings and trees may be pre-expired. That is, the listing is reloaded each
time the page is referenced. This is convenient in some environments where directory
contents change frequently, but adds considerable over-head and so is disabled by default.
Individual directory listings may have the default behaviour over-ridden using syntax
similar to the following examples:

/dir1/dir2/*.*?httpd=index?expired=yes
/dir1/dir2/*.*?httpd=index?expired=no
/tree/dir2/?httpd=index?expired=yes
/tree/dir1/dir2/?httpd=index?expired=no

65. [DirReadme] TOP | BOTTOM | OFF (default: DISABLED)

If any of the files provided using the [DirReadMeFile] directive are located in the directory
the contents are included at the top or bottom of the listing (or not at all). Plain-text
are included as plain-text, HTML are included as HTML allowing markup tags to be
employed.

66. [DirReadMeFile] FILE.SUFFIX (no default)

Specifies the names and order in which a directory is checked for read-me files. This
can be enabled or disabled using the [DirReadme] directive. Plain-text are included as
plain-text, HTML are included as HTML allowing markup tags to be employed.

Examples:

[DirReadMeFile]
readme.html
readme.htm
readme.
readme.txt
readme.1st

67. [DirWildcard] OFF | ON (default: DISABLED)

This enables the facility to force the server to provide a directory listing by providing a
wildcard file specification, even if there is a home (welcome) document in the directory.
This should not be confused with the [DirAccess] directive which controls directory listing
itself.

10–16 Global Configuration

68. [DNSLookupClient] ENABLED | DISABLED (default: DISABLED)

Enables or disables connection request host name resolution. This functionality may
be expensive (in terms of processing overhead) and make serving granularity coarser if
DNS is involved. If not enabled and logging is, the entry is logged against the literal
internet address. If not enabled any [Accept], [Reject] or conditional directive, etc., must
be expressed as a literal address.

69. [DNSLookupLifetime] hh:mm:ss default 00:10:00

The period for which a host name/address is cached (applies to both client lookup and
proxy host lookup).

70. [DNSLookupRetry] integer (default: 2)

The number of attempts, at two second intervals, made to resolve a host name/address
(applies to both client lookup and proxy host lookup).

71. [EntityTag] ENABLED | DISABLED (default: ENABLED)

An entity tag is a client-opaque string used in strong cache validation. WASD generates
this using the on-disk file identification (FID) and binary last-modified date-time (RDT).
This is then used as a definitive identifier for a specified on-disk resource fixed in file-
system space-time (hmmm, sounds like an episode of Star Trek).

72. [ErrorReportPath] string [status...] (default: none)

Specifies the URL-format path to an optional, error reporting SSI document or script.
See Section 6.10. This path can subsequently be remapped during request processing.
Optional, space-separated HTTP status codes restrict the path to those codes, with the
remainder handled by server-internal reporting.

73. [ErrorRecommend] ENABLED | DISABLED (default: DISABLED)

Provides a short message recommending action when reporting an error to a client. For
example, if a document cannot be found it may say:

(document, or bookmark, requires revision)

74. [GzipAccept] integer (default: 0)

Enables GZIP encoding of request bodies. See Section 6.5.

75. [GzipFlushSeconds] integer (default: 0)

Adjusts the maxiumum period period between GZIP buffer flushes. See Section 6.5.

76. [GzipResponse] integer[integer,integer] (default: 0)

Enables GZIP encoding (deflation) for suitable requests and responses. Valid values are
1 for minimum compression (and minimum resource usage) through to 9 for maxiumum
compression (and maximum resource usage). The value 9 is recommended. See Sec-
tion 6.5.

77. [InstanceMax] integer | CPU (default: 1)

Number of per-node server processes to create and maintain. If set to ‘‘CPU’’ once instance
per CPU is created.

Global Configuration 10–17

78. [InstancePassive] ENABLED | DISABLED (default: DISABLED)

Start a multiple instance server already in passive mode. See Section 20.1.

79. [Logging] ENABLED | DISABLED (default: DISABLED)

Enables or disables the request log. Logging can slow down request processing and adds
overhead. The log file name must be specified using the /LOG qualifier or HTTPD$LOG
logical name (Logical Names).

80. [LogExcludeHosts] string (default: none)

One or more (comma-separated if on the same line) internet host/domain names, with ‘‘*’’
wildcarding for host/subdomain matching, requests from which are not placed in any log
files. If DNS lookup is not enabled hosts must be expressed using literal addresses (see
[DNSLookup] directive). Use for excluding local or web-maintainer’s host from logs.

Example:

[LogExcludeHosts]
*.wasd.dsto.defence.gov.au
131.185.250.*

81. [LogExtend] integer (default: 0)

Number of blocks allocated when when a log file is opened or extended. If set to zero it
uses the process default (SET RMS_DEFAULT /EXTEND_QUANTITY).

82. [LogFile] string (default: none)

Provides some or all of the access log file name. See Section 6.12.2.

83. [LogFormat] string (default: COMMON)

Specifies one of three pre-defined formats, or a user-definable format. See Section 6.12.1.

84. [LogGlobal] integer (default: 0)

Number of global buffers to use when multiple instances are configured. This directive
improves performance (by delaying write-to-disk) of multi-instance configurations by
using RMS global buffering for shared write access to log files. As each log file has a
multiblock count of 127 this is probably best specified as 1 or some other small number.
It consumes global sections and global pages from system-wide resources.

85. [LogNaming] string (default: none)

When [LogPeriod] or [LogPerService] directives are used to generate multiple log files
this directive may be used to modify the naming of the file. See Section 6.12.5.

86. [LogPeriod] string (default: none)

Specifies a period at which the log file is changed. See Section 6.12.2.

87. [LogPerInstance] ENABLED | DISABLED (default: DISABLED)

When multiple instances are configured (Section 6.2) create a separate log for each. This
has significant performance advantages. See Section 6.12.4.

88. [LogPerService] ENABLED | DISABLED (default: DISABLED)

10–18 Global Configuration

When multiple services are specified (Section 6.3) a separate log file will be created for
each if this is enabled. See Section 6.12.3.

89. [LogPerServiceHostOnly] ENABLED | DISABLED (default: DISABLED)

When generating a log name do not make the port number part of it. This effectively
provides a single log file for all ports provided against a host name (e.g. a standard
HTTP service on port 80 and an SSL service on port 443 would have entries in the one
file). See Section 6.12.3.

90. [LogWriteFail503] ENABLED | DISABLED (default: DISABLED)

After an access log record fails to write all subsequent requests return a 503 service
unavailable response until records can be successfully written again. This can be used to
prevent access to server resources unless an access audit log is available.

91. [Monitor] ENABLED | DISABLED (default: DISABLED)

Allows monitoring via the HTTPDMON utility (Section 23.8. Adds slight request process-
ing overhead.

92. [OpcomAdmin] ENABLED | DISABLED (default: DISABLED)

Report to operator log and any enabled operator console (see [OpcomTarget]) server
administration directives originating from the Server Administration Menu, for example
path map reload, server restart, etc.

93. [OpcomAuthorization] ENABLED | DISABLED (default: DISABLED)

Report events related to authentication/authorization. For example username-password
validation failures.

94. [OpcomControl] ENABLED | DISABLED (default: DISABLED)

Report HTTPD/DO=directive control events, both the command-line directive and the
server’s response.

95. [OpcomHTTPd] ENABLED | DISABLED (default: DISABLED)

Report events concerning the server itself. For example, server startup and exit (either
normally or with error status).

96. [OpcomProxyMaint] ENABLED | DISABLED (default: DISABLED)

Report events related to proxy server cache maintenance. For example, the commence-
ment of file cache reactive and proactive purging, the conclusion of this purge, both with
cache device statistics.

97. [OpcomTarget] string (default: DISABLED)

This enables OPCOM messaging and specifies the target for the OPCOM reports.
This must be set to a target to enable OPCOM messages, irrespective of the set-
ting of any of the other [Opcom...] directives. These messages are added to
SYS$MANAGER:OPERATOR.LOG and displayed at the specified operator’s console if
enabled (using REPLY/ENABLE=target). The operator log provides a ‘‘permanent’’
record of server events. Possible settings include CENTRAL, NETWORK, SECURITY,
OPER1 . . . OPER12, etc.

Global Configuration 10–19

98. [PipelineRequests] ENABLED | DISABLED (default: ENABLED)

Pipelining refers to multiple requests being sent over an assumed persistent connection
without waiting for the response from previous requests. Such behaviour with capable
clients and servers can significantly reduce response latency.

99. [Port] integer (default: 80)

IP port number for server to bind to. For anything other than a command-line server
control (Section 19.7) this parameter is overridden by anything supplied via the [Service]
directive.

100. [ProcessMax] integer (default: 100)

The maximum number of concurrent client request being processed before a ‘‘server too
busy right now ... try again shortly’’ error is returned to the client. If not explicitly set
this defaults to the same value as [ConnectMax]. This directive allows a larger number
of persistent connections to be maintained than are concurrently being processed at any
given moment.

101. [ProxyCache] ENABLED | DISABLED (default: DISABLED)

Enables or disables proxy caching on a whole-of-server basis, irrespective of any proxy
services that might be configured for caching.

102. [ProxyCacheFileKBytesMax] integer (default: 256)

Maximum size of a cache file in kilobytes before it will not be cached.

103. [ProxyCacheNegativeSeconds] hh:mm:ss (default: 00:05:00)

Negative (unsuccessful) responses are cached for this period.

104. [ProxyCacheRoutineHourOfDay] integer (default: 0)

Hour of day for routine cache purge (00-23).

105. [ProxyCacheDeviceCheckMinutes] integer (default: 15)

Interval in minutes between checking space availablility on cache device. If space is not
available a reactive purge is initiated.

106. [ProxyCacheDeviceDirOrg] FLAT256 | 64X64 (default: FLAT256)

Organization of directories on the proxy cache device. The first provides a single level
structure with a possible 256 directories at the top level and files organized immediately
below these. For versions of VMS prior to V7.2 exceeding 256 files per directory, or a total
of approximately 65,000 files, incurs a significant performance penalty for some directory
operations. The second organization involves two levels of directory, each with a maximum
of 64 directories. This allows for approximately 1,000,000 files before encountering the
256 files per directory issue.

107. [ProxyCacheDeviceMaxPercent] integer (default: 85)

The maximum percentage in use on the cache device before a reactive purge is scheduled.
If device usage exceeds this limit no more cache files are created.

108. [ProxyCacheDevicePurgePercent] integer (default: 1)

10–20 Global Configuration

The percentage by which the cache device usage is attempted to be reduced when a reactive
purge is initiated.

109. [ProxyCacheNoReloadSeconds] integer (default: 0)

Prevents pragma reloads actually retrieving the file from the source host again until the
period expires. This is designed to limit concurrent or repeated reloads of files into the
cache unecessarily. Thirty seconds is probably an adequate period balancing effect against
a user legitimately needing to recache the document.

110. [ProxyCachePurgeList] string (default: 168,48,24,8,0)

A list of comma-separated integers representing the sequence of last accessed period in
hours used during a progressive reactive purge.

111. [ProxyCacheReloadList] string (default: 1,2,4,8,12,24,48,96,168)

A list of comma-separated integers representing the sequence of age in hours used when
determining whether a cache file’s contents should be reloaded.

112. [ProxyConnectPersistMax] integer (default: 100)

The maximum number of established connections that are maintained to remote servers.

113. [ProxyConnectPersistSeconds] hh:mm:ss (default: 00:00:30)

Period for which the established connections persist. At expiry the connection is closed.

114. [ProxyConnectTimeoutSeconds] hh:mm:ss (default: 00:00:30)

Period for which the proxy server will attempt to establish a network connection to the
origin (remote) server.

115. [ProxyForwarded] BY | DISABLED | FOR | ADDRESS (default: DISABLED)

BY enables the addition of a proxy request header line providing information that
the request has been forwarded by another agent. The added header line would
look like ‘‘Forwarded: by http://server.name.domain (HTTPd-WASD/n.n.n OpenVMS/AXP
Digital-TCPIP SSL)’’. If the FOR variant is used the field included the host name
(or ADDRESS) the request is being forwarded on behalf of, as in ‘‘Forwarded: by
http://server.name.domain (HTTPd-WASD/n.n.n OpenVMS/AXP Digital-TCPIP SSL) for
host.name.domain’’.

116. [ProxyHostLookupRetryCount] integer (default: 0)

When the server is resolving the name of a remote host the request may timeout due
to up-stream DNS server latencies. This parameter allows a number of retries, at five
second intervals, to be enabled.

117. [ProxyReportLog] ENABLED | DISABLED (default: DISABLED)

Enables or disables the server process log reporting siginificant proxy processing events,
such as cache maintenance activity.

118. [ProxyReportCacheLog] ENABLED | DISABLED (default: DISABLED)

Enables or disables the server process log reporting of proxy caching activity.

119. [ProxyServing] ENABLED | DISABLED (default: DISABLED)

Global Configuration 10–21

Enables or disables proxy serving on a whole-of-server basis, irrespective of any proxy
services that might be configured.

120. [ProxyUnknonwRequestFields] ENABLED | DISABLED (default: DISABLED)

When enabled propagates all request fields provided by the client through to the proxied
server. When disabled only propagates fileds that WASD recognises.

121. [ProxyVerifyRecordMax] integer (default: 0)

Obscure functionality; see Authorization Verification.

122. [ProxyXForwardedFor] ADDRESS | DISABLED | ENABLED | UNKNOWN (default: DISABLED)

Enables the addition of a proxy request header line providing the host name on behalf of
which the request is being proxied. The added header line would look like ‘‘X-Forwarded-
For: host.name.domain’’. THE ADDRESS variant provides the IP address, and the
UNKNOWN variant substitutes ‘‘unknown’’ for the host. This field is degined to be
compatible with the Squid de facto standard field of the same name. Any request with an
existing ‘‘X-Forwarded-For:’’ field has the local information appended to the existing as a
comm-separated list. The first host in the field should be the original requesting client.

123. [PutMaxKBytes] integer (default: 250)

Maximum size of an HTTP POST or PUT method request in Kilobytes.

124. [PutVersionLimit] integer (default: 3)

File created using the POST or PUT methods have the specified version limit applied.

125. [RegEx] ENABLED | DISABLED (default: DISABLED)

Enable regular expression matching. With the possibility of the reserved character ‘‘^’’
being used in existing mapping rules regular expression string matching (Chapter 8) is
only available after enabling this directive.

126. [Reject] host/domain name (default: none)

One or more (comma-separated if on the same line) internet host/domain names, with ‘‘*’’
wildcarding for host/subdomain matching, to be explicitly denied access. If DNS lookup is
not enabled hosts must be expressed using literal addresses (see [DNSLookup] directive).
Also see the [Accept] directive. Reject directives have precedence of Accept directives.
The Reject directive may be used multiple times.

Example:

[Reject]
*.wasd.dsto.defence.gov.au
131.185.250.*

127. [ReportBasicOnly] ENABLED | DISABLED (default: DISABLED)

Only ever supply basic information in a report (Section 6.10).

128. [ReportMetaInfo] ENABLED | DISABLED (default: DISABLED)

Includes in detailed reports, as <META> information, the software ID of the server and
any relevant VMS file information.

129. [RequestHistory] integer (default: 0)

10–22 Global Configuration

The server can keep a list of the most recent requests accessible from the Server
Administration page. This value determines the number kept. Zero disables the facility.
Each retained request consumes 256 bytes and adds a small amount of extra processing
overhead.

130. [Scripting] ENABLED | DISABLED (default: ENABLED)

Enables and disables all scripting mechanisms. This includes subprocess CGI and
CGIplus, DECnet-based OSU and CGI, and SSI directives that DCL subprocesses to
provide <–#dcl –>, <–#exec –>, etc.

131. [SearchScript] path (no default)

Specifies the URL-format path to the default query-string keyword search script. This
path can subsequently be remapped during request processing.

Example:

[SearchScript] /ht_root/script/query

132. [SearchScriptExclude] list (no default)

Provides a list of file types that are excluded from an implied keyword search. This is
useful for client-side (browser-side) active processing that may require a query string to
pass information. This query string would normally be detected by the server and if not in
a format to be meaningful to itself is then considered as an implied (HTML <ISINDEX>)
keyword search, with the approriate script being activiated.

Example:

[SearchScriptExclude] .HTA,.HTL

133. [ServerAdmin] string (no default)

Specifies the contact email address for server administration issues. Included as a
‘‘mailto:’’ link in the server signature if [ServerSignature] is set to email.

134. [ServerAdminBodyTag] string (default: <BODY>)

Specifies the HTML <BODY> tag for server administration and administration report
pages. This allows some measure of control over the ‘‘look-and-feel’’ of page and link
colour, etc.. for the administrator.

135. [ServerReportBodyTag] string (default: <BODY>)

Specifies the HTML <BODY> tag for server error and other report pages. This allows
some measure of site ‘‘look-and-feel’’ in page colour, background, etc. to be maintained.

136. [ServerSignature] ENABLED | EMAIL | DISABLED (default: DISABLED)

The server signature is a short identifying string added to server generated error and
other report pages. It includes the server software name and version, along with the host
name and port of the service. Setting this to email makes the host name a mailto: link
containing the address specified by the [ServerAdmin] directive.

137. [Service] string (no default)

This parameter allows SSL, multi-homed hosts and multiple port serving to be specified,
see Section 18.3 and Section 6.3.

Global Configuration 10–23

138. [ServiceNotFoundURL] string (no default)

Provides a default path for reporting a virtual host does not exist, see Unknown Virtual
Server.

139. [SocketSizeRcvBuf] integer (no default)

Number of bytes allocated at the device-driver level for a network connection receive
buffer. See Chapter 5.

140. [SocketSizeSendBuf] integer (no default)

Number of bytes allocated at the device-driver level for a network connection send buffer.
Later versions of TCP/IP Services seem to have large default values for this. MultiNet and
TCPware are reported to improve transfers of large responses by increasing low default
values. See Chapter 5.

141. [SSI] ENABLED | DISABLED (default: DISABLED)

Enables or disables Server Side Includes (HTML pre-processing).

142. [SSIaccesses] ENABLED | DISABLED (default: DISABLED)

Enables or disables Server Side Includes (HTML pre-processing) file access counter.

143. [SSIexec] ENABLED | DISABLED (default: DISABLED)

Enables or disables Server Side Includes (HTML pre-processing) DCL execution function-
ality.

144. [SSIsizeMax] integer (default: 0 (128kB))

SSI source files a completely read into memory before processing. This allows the
maximum size to be expanded beyond the default.

145. [StreamLF] integer (default: 0 (disabled))

Enables or disables automatic conversion of VARIABLE record format documents (files) to
STREAM-LF, which are much more efficient with this server. The integer is the maximum
size of a file in kilobytes that the server will attempt to convert. Zero disables any
conversions. See File Record Format.

146. [StreamLFpaths] string (no default)

(Retired in v5.3, mapping SET rule provides this now, see Section 14.4.5).

147. [TimeoutInput] hh:mm:ss (default: 00:01:00)

Period allowing a connection request to be in progress without submitting a complete
request header before terminating it.

148. [TimeoutPersistent] hh:mm:ss (default: 0)

The period a persistent connection with the client is maintained after the conclusion of
a request. Connection persistence improves the overall performance of the server by
reducing the number of discrete TCP/IP connections that need to be established.

149. [TimeoutNoProgress] hh:mm:ss (default: 00:02:00)

10–24 Global Configuration

Period allowing request output to continue without any increase in the number of bytes
transfered. This directive is targeted at identifying and eliminating requests that have
stalled.

150. [TimeoutOutput] hh:mm:ss (default: 00:10:00)

Period allowing a request to be output before terminating it. This directive sets an
absolute maximum time a request can continue to receive output.

151. [Track] ENABLED | DISABLED (default: DISABLED)

Enables session (user) tracking.

152. [TrackMultiSession] ENABLED | DISABLED (default: DISABLED)

By default the tracking cookie is discarded by the browser when it is closed. This setting
directs the browser to keep it between sessions.

153. [TrackDomain] file.suffix (no default)

User tracking applies only to the originating (virtual) server by default. This directive
allows it to applied to all a particular domain’s sites. Top-level sites (e.g. those in ‘‘.com’’,
‘‘.edu’’ etc.) would specify this as something like organization.domain (i.e. two dots), while
other would use organization.group.domain (i.e. three dots).

154. [Welcome] file.suffix (no default)

Specifies the names and order in which a directory is checked for home page files. If no
home page is found a directory listing is generated.

[Welcome]
index.html
index.htm
home.html
home.htm

Dynamic home pages (script or interpreter engine driven, e.g. Perl, PHP) may be deployed
using a combination of the [Welcome] and [DclScriptRunTime] directives.

[Welcome]
index.html
index.htm
index.php
index.pl

[DclScriptRunTime]
.PHP $CGI-BIN:[000000]PHPWASD.EXE
.PL $CGI-BIN:[000000]PERLRTE

Global Configuration 10–25

Chapter 11

Service Configuration

By default, the system-table logical name HTTPD$SERVICE locates a common service
configuration file. The service configuration file is optional. If the HTTPD$SERVICE logical is
not defined or the file does not exist service configuration is made using the HTTPD$CONFIG
[Service] directives. For simple sites, those containing one or two services, the use of a
separate service configuration file is probably not warranted. Once the number begins to
grow this file offers a specific management interface for those services.

Precedence of service specifications:

1. /SERVICE= command line qualifier

2. HTTPD$SERVICE configuration file (if logical defined and file exists)

3. HTTPD$CONFIG [Service] directive

WASD services are also known as virtual servers or virtual hosts and can provide multiple,
autonomous sites from the one HTTP server. Services can each have an independent IP
address or multiple virtual sites share a single or set of multiple IP addresses. Whichever
the case, the host name entered into the browser URL must able to be resolved to the IP
address of an interface configured on the HTTP server system. There is no design limit to
the number of services that WASD can support. It can listen on any number of IP ports and
for any number of virtual services for any given port.

The server must be able to resolve its own host name/address. It is not unknown for
completely new systems to have TCP/IP configuration overlooked. The server must also be
able to resolve the IP addresses of any configured virtual services (Section 6.3). Failure to do
so will result in the service not being configured. To avoid startup issues in the absence of
a usable DNS it is suggested that for fundamental, business-critical or otherwise important
services, static entries be provided in the system TCP/IP agent’s local database.

Service Configuration 11–1

Specific Services

In common with other configuration files, directives associated with a specific virtual services
are introduced using a double-bracket delimited host specification (Section 6.3). When
configuring a service the following three components specify the essential characteristics.

• scheme - HTTP scheme (sometimes refered to as protocol). If http: (or omitted) it is a
standard HTTP service. If https: an SSL service is configured.

• host - Host name or dotted-decimal address. If omitted, or specified as an asterisk (‘‘*’’),
defaults to the system’s IP host name.

• port - IP port the service is offered on. If omitted it defaults to 80 for an http: service,
and to 443 for an https: (SSL) service.

These HTTPD$SERVICE examples illustrate the directive.

[[http://alpha.domain.name:80]]
[[http://alpha.domain.name:8080]]

Generic Services

A generic service is one that specifies a scheme and/or port but no specific host name. This is
useful in a cluster where multiple systems all provide a basic service (e.g. a port 80 service).
If the host name is omitted or specified as an asterisk the service substitutes the system’s IP
host name.

[[http://*:80]]
[[http://*:8080]]

SSL Services

Multiple virtual SSL services (https:) sharing the same certificate can essentially be con-
figured against any host name (unique IP address or alias) and/or port in the same way as
standard services (http:). Services requiring unique certificates can only be configured for
the same port number against individual and unique IP addresses (i.e. not against aliases).
This is not a WASD restriction, it applies to all servers for significant SSL technical reasons
(Chapter 18).

For example, unique certificates for https://www.company1.com:443/ and https://www.company2.com:443/
can be configured only if COMPANY1 and COMPANY2 have unique IP addresses. If COM-
PANY2 is an alias for COMPANY1 they must share the same certificate. During startup ser-
vice configuration the server checks for such conditions and issues a warning about ‘‘sharing’’
the service with the first configured.

[[https://alpha.domain.name]]
[[https://*:443]]

11–2 Service Configuration

Administration Services

When multiple instances are configured Server Administration page access, in common with
all request processing, is automatically shared between those instances. There are occasions
when consistent access to a single instance is desirable. The [ServiceAdmin] directive
indicates that the service port number should be used as a base port and all instances create
their own service with unique port for access to that instance alone. The first instance
to create an administration service uses the specified port, or the next successive if it’s
already in use, the next instance will use the next available port number, and so on. A
high port number should be specified. The Server Administration page lists these services
for all server instances in the cluster. This port configuration is not intended for general
request activity, although with appropriate mapping and other configuration there is nothing
specifically precluding the use (remembering that the actual port in use by any particular
instance may vary across restarts). In all other respects the services can (and should) be
mapped, authorized and otherwise configured as any other.

[[https://alpha.domain.name]]
[ServiceAdmin] enabled

11.1 IPv4 and IPv6
Both IP version 4 and 6 are concurrently supported by WASD. All networking functionality,
service creation, SSL, proxy HTTP, proxy FTP and RFC1413 authorization is IPv6 enabled.
If system TCP/IP services do not support IPv6 the expected error would be

%SYSTEM-F-PROTOCOL, network protocol error

during any attempted IPv6 service creation. Of course IPv4 service creation would continue
as usual.

Server configuration handles the standard dotted-decimal addresses of IPv4, as well as
‘‘normal’’ and ‘‘compressed’’ forms of standard IPv6 literal addresses, and a (somewhat)
standard variation of these that substitutes hyphens for the colons in these addresses to
allow the colon-delimited port component of a ‘‘URL’’ to be resolved.

IPv6 Literal Addresses

Normal Compressed

1070:0:0:0:0:800:200C:417B 1070::800:200C:417B

0:0:0:0:0:0:13.1.68.3 ::13.1.68.3

0:0:0:0:0:FFFF:129.144.52.38 ::FFFF:129.144.52.38

hyphen-variants

1070-0-0-0-0-800-200C-417B 1070–800-200C-417B

0-0-0-0-0-0-13.1.68.3 –13.1.68.3

0-0-0-0-0-FFFF-129.144.52.38 –FFFF-129.144.52.38

Service Configuration 11–3

In common with all virtual services, if a connection can be established with the system and
service port the HTTPd can respond to that request. If a service needs to be bound to a
specific IP address then that can be specified using the [ServiceBind] directive using any of
the literal address formats described above.

[[http://alpha.domain.name:80]]
[ServiceBind] 168.192.0.3

[[https://alpha6.domain.name:80]]
[ServiceBind] fe80::200:f8ff:fe24:1a22

11.2 Service Directives
Where a service directive has an equivalent configuration directive (e.g. error report path) the
service directive takes precedence. This allows specific virtual services to selectively override
the generic configuration.

Service Directives

[[virtual-service]] scheme://host:port

[ServiceAdmin] an instance Server Administration page service

[ServiceBind] if different to host’s

[ServiceBodyTag] <BODY> tag for server reports., etc

[ServiceClientSSLcert] proxy SSL connect client certificate file

[ServiceClientSSLkey] proxy SSL connect client private key file

[ServiceClientSSLcipherList] proxy SSL connect ciphers

[ServiceClientSSLverifyCA] verify CA of proxied requests

[ServiceClientSSLverifyCAfile] location of proxy CA file

[ServiceClientSSLversion] proxy SSL version to use

[ServiceErrorReportPath] path to script, SSI or ‘‘flat’’ error document

[ServiceNoLog] suppress logging

[ServiceNoTrack] suppress user tracking

[ServiceProxy] proxy service

[ServiceProxyAffinity] make origin server ‘‘sticky’’

[ServiceProxyAuth] require proxy authorization

[ServiceProxyCache] proxy caching

[ServiceProxyChain] chained proxy service host

[ServiceProxySSL] provide proxy of SSL (connect:)

[ServiceProxyTrack] user track proxy access

11–4 Service Configuration

[ServiceProxyTunnel] enable tunnelling of octets

[ServiceSSLcert] SSL service certificate

[ServiceSSLcipherList] list of accepted SSL ciphers

[ServiceSSLkey] SSL service private key

[ServiceSSLverifyPeer] access only using verified peer certificate

[ServiceSSLverifyPeerCAfile] location of CA file

[ServiceSSLversion] SSL version to use

Configuration keywords equivalent to many of these HTTPD$SERVICE directives but usable
against the deprecated HTTPD$CONFIG [Service] directive and the /SERVICE qualifier are
available for backward compatibility. See section Command Line Parameters in source file
[SRC.HTTPD]SERVICE.C for a list of these keywords.

11.3 Directive Detail
Some of these directives control the behaviour of proxy services. Refer to Chapter 17 for
further detail. Other directive are Secure Sockets Layer (SSL) specific. This is an optional
package described in Chapter 18.

1. [[virtual-service]] (default: none)

Specifies the scheme, host name (or asterisk) and port of a service.

2. [ServiceAdmin] ENABLED | DISABLED (default: DISABLED)

Marks the port as administration service (Administration Services).

3. [ServiceBind] literal address (default: none)

If the system has a multi-homed network interface this binds the service to the specific
IP address and not to INADDR_ANY. Generally this will not be necessary. The literal
address may be in IPv4 dotted-decimal or IPv6 normal or compressed hexdecimal.

4. [ServiceBodyTag] string (default: <BODY>)

Specifies the HTML <BODY> tag for server error and other report pages. This allows
some measure of site ‘‘look-and-feel’’ in page colour, background, etc. to be maintained.

5. [ServiceClientSSL] ENABLED | DISABLED (default: DISABLED)

Enables a proxy service to originate HTTP-over-SSL requests. This is different to the
CONNECT service enabled using [ServiceProxySSL]. It allows requests to be gatewayed
between standard HTTP and Secure Sockets Layer (see Section 17.5).

6. [ServiceClientSSLcert] string (default: none)

Location of client certificate file if required to authenticate client connection.

7. [ServiceClientSSLkey] string (default: none)

Location of client private key file if required to authenticate client connection.

8. [ServiceClientSSLcipherList] string (default: none)

Service Configuration 11–5

A comma-separated list of SSL ciphers to be used by the gateway to connect to SSL
services. The use of this parameter might allow the selection of stronger ciphers to be
forced to be used or the connection not allowed to procede.

Note
These ServiceClientSSL.. directives are used to control behaviour when outgoing
SSL connections are established (as with HTTP-to-SSL gatewaying). This should
not be confused with verification of client certificates, which is better refered to
as peer verification. See [ServiceSSLverifyPeer] and [ServiceSSLverifyPeerCAfile]
directives.

9. [ServiceClientSSLverifyCA] ENABLED | DISABLED (default: DISABLED)

Unless this directive is enabled the Certificate Authority (CA) used to issue the service’s
certificate is not verified. Requires that a CA file be provided. See note in [Service-
ClientSSLcipherList] above.

10. [ServiceClientSSLverifyCAfile] string (default: none)

Specifies the location of the collection of Certificate Authority (CA) certificates used
to verify the connected-to server’s certificate (VMS file specification). See note in
[ServiceClientSSLcipherList] above.

11. [ServiceClientSSLversion] string (default: SSLV2/V3)

The abbreviation for the SSL protocol version to be used to connect to the SSL service.
See note in [ServiceClientSSLcipherList] above.

12. [ServiceErrorReportPath] string (default: none)

Specifies the URL-format path to an optional, error reporting SSI document or script
(Section 6.10). This path can subsequently be remapped during request processing.

13. [ServiceNoLog] ENABLED | DISABLED (default: DISABLED)

When request logging is enabled then by default all services are logged. This directive
allows logging to be suppressed for this service.

14. [ServiceNoTrack] ENABLED | DISABLED (default: DISABLED)

When use tracking is enabled then by default all requests on non-proxy services are
tracked. This directive allows tracking to be suppressed for this service.

15. [ServiceProxy] ENABLED | DISABLED (default: DISABLED)

Enables and disables proxy request processing for this service (Chapter 17).

16. [ServiceProxyAffinity] ENABLED | DISABLED (default: DISABLED)

Uses cookies to allow the proxy server to make every effort to relay successive requests
from a given client to the same origin host. This is also known as client to origin affinity
or proxy affinity capability (see Section 17.1.2).

17. [ServiceProxyAuth] NONE CHAIN | LOCAL | NONE | PROXY (default: none)

11–6 Service Configuration

Makes a proxy service require authorization before a client is allowed access via it
(Section 17.1.5). CHAIN allows an up-stream proxy server to request authorization. LOCAL

enables standard server authorization. NONE disables authorization (default). PROXY

enables HTTP proxy authorization. authentication.

18. [ServiceProxyCache] ENABLED | DISABLED (default: DISABLED)

Enables and disables proxy caching for a proxy service.

19. [ServiceProxyChain] string (default: none)

Specifies the next proxy host if chained.

20. [ServiceProxyTrack] ENABLED | DISABLED (default: DISABLED)

When user tracking is enabled only non-proxy services have it applied by default. This
directive allows proxy service usage tracking to be enabled.

21. [ServiceProxyTunnel] CONNECT | FIREWALL | RAW (default: none)

Transfers octets through the proxy server (Section 17.6). FIREWALL accepts a host and
port specification before connecting. CONNECT is the traditional CONNECT protocol. RAW

connects to a configured host an port.

22. [ServiceProxySSL] ENABLED | DISABLED (default: DISABLED)

Specifies the service as providing proxying of SSL requests. This is sometimes refered as a
‘‘CONNECT’’ service. This proxies ‘‘https:’’ requests directly and is different to the HTTP-
to-SSL proying described in Section 17.3 and enabled using [ServiceProxyHttpSSL].

23. [ServiceSSLcert] string (default: none)

Specifies the location of the SSL certificates (VMS file specification) (Section 18.3).

24. [ServiceSSLcipherList] string (default: none)

A comma-separated list of SSL ciphers allowed to be used by clients to connect to SSL
services. The use of this parameter might allow the selection of stronger ciphers to be
forced to be used or the connection not allowed to procede.

25. [ServiceSSLkey] string (default: none)

Specifies the location of the SSL private key (VMS file specification).

26. [ServiceSSLverifyPeer] ENABLED | DISABLED (default: DISABLED)

To access this service a client must provide a verified CA client certificate (Section 18.3.7).

27. [ServiceSSLverifyPeerCAfile] string (default: none)

Specifies the location of the collection of Certificate Authority (CA) certificates used to
verify a peer certificate (VMS file specification, Section 18.3.7).

28. [ServiceSSLversion] string (default: SSLV2/V3)

The abbreviation for the SSL protocol version allowed to be used to connect to an SSL
service. Using the directive a service may select prefered (read stronger) protocols.

Service Configuration 11–7

11.4 Administration
A service configuration file can be maintained using a simple text editor and HTTPD$SERVICE.

Alternatively the Server Administration page may be used (Chapter 19). When using this
interface for the first time ensure the HTTPD$SERVICE logical is correctly defined. If the file
did not exist at server startup any services will have been created from the HTTPD$CONFIG
[Service] directive. These will be displayed as the existing services and will be saved to the
configuration file the first time it is saved.

The [IncludeFile] is a directive common to all WASD configuration, allowing a separate file
to be included as a part of the current configuration (Section 6.13).

Not all configuration directives may be shown depending on the type of service. For instance,
unless a service is configured to provide proxy, only the [ServiceProxy] directive is displayed.
To fully configure such a service enable it as proxy, save the file, then reload it. The additional
directives will now be available.

There is always one empty service displayed each time the configuration menu is generated.
This information may be changed appropriately and then saved to add new services to the
configuration (of course, these will not be available until the server is restarted). To configure
multiple new services add one at a time, saving each and reloading the file to provide a new
blank service.

11.5 Examples

1. The following example shows three services being configured. The first is standard HTTP
on the default (and well-known) port 80. The second is a proxy service on port 8080. This
service provides both standard HTTP (with response caching enabled), SSL (connect:)
access and proxy authorization required. The third service is SSL, with a host-specific
certificate and key.

[[http://alpha.domain.name:80]]

[[http://alpha.domain.name:8080]]
[ServiceProxy] enabled
[ServiceProxyAuth] PROXY
[ServiceProxyCache] enabled
[ServiceProxySSL] enabled

[[https://alpha.domain.name:443]]
[ServiceSSLcert] ht_root:[local]alpha.pem

2. This example shows a generic service service being configured on the well-known port 80.

[[http://*:80]]

If a cluster of four systems, ALPHA, BETA, GAMMA and DELTA all use this configuration
each will have a service accessible via the following four URLs.

http://alpha.domain.name/
http://beta.domain.name/
http://gamma.domain.name/
http://delta.domain.name/

11–8 Service Configuration

3. The following example show two services configured against specific IP addresses. The
first is an IPv4 and the second a compressed IPv6.

[[http://alpha.domain.name:80]]
[ServiceBind] 168.192.0.3

[[https://alpha6.domain.name:80]]
[ServiceBind] fe80::200:f8ff:fe24:1a22

4. An administration port is a special configuration used to support the Server Administra-
tion page (Chapter 19) when multiple per-node instances are configured (Section 6.2). See
description above.

[[https://alpha.domain.name:44443]]
[ServiceAdmin] enabled
[ServiceSSLcert] ht_root:[local]alpha.pem
[ServiceSSLkey] ht_root:[local]alpha.pem

Service Configuration 11–9

Chapter 12

Message Configuration

By default, the system-table logical name HTTPD$MSG locates the global message configu-
ration file.

Message configuration is provided for two purposes.

1. Some sites would prefer to customize or extend the basic information provided to clients
when an error or other event occurs.

2. Sites that do not use English as a first language may wish to provide some or all of the
defined messages using a prefered language.

Not all messages provided by the WASD server are customizable, only those generated for
non-administrative content. As the WASD server can also report using information derived
from the standard VMS message service (via sys$getmsg()) it is assumed a language-local
implementation of this is in use as well. Unfortunately for the non-first-language-English
Web and system administrators, the menus and messages used for administration purposes,
etc., are still only in English. The intent of this facility is to provide non-administration
clients only with a more familiar language environment.

Also note that the message database only applies to messages generated by the server, not to
any generated by scripts, etc.

12.1 Behaviour
When an error, or other message or string, needs to be provided for the client the message
database is accesssed using the following algorithm.

1. If the client request has specified a list of prefered languages using the ‘‘Accept-Language:’’
HTTP header field the message database is checked for support of that/those languages.
If one is found then that language is used to access the message.

2. If none is found, or the client has not specified a prefered language, the client host address
is checked against any list of hosts/domains provided against the language (see below).
If a match occurs the specified language is used.

Message Configuration 12–1

3. If neither of the above results in a message language the base language is used (the
highest numbered language). This must have a complete set of messages or the server
will not start!

12.2 Message File Format
By default, the system-table logical name HTTPD$MSG locates a common message file, unless
an individual message file is specified using a job-table logical name. Simple editing of the
message file changes the messages (after a server restart, of course). Comment lines may
be included by prefixing them with the hash character (‘‘#’’), and lines continued by ensuring
the last character is a backslash (‘‘\ ’’). The server will concurrently support an additional 3
languages to the base English (although this can be increased by recompilation :-)

Note

Care must be taken with the message file or the server may refuse to start!
Worst-case; the HTTPD$MSG.CONF message file may be copied from [EXAMPLE].

As illustrated below the message file comprises a series of sections. Directives enclosed by
square-brackets provide information to the message loader.

this is a comment

[version] 9.0
[language] 1 en

[general]

en 01 Sanity check failure.
en 02 String overflow.
en 03 Heap allocation failed.
en 04 calloc() failed
en 05 Request calloc() failed.
en 06 Server too busy.
en 07 Server access denied.
en 08 Facility is disabled.
en 09 Wildcard not permitted.
en 10 Directory layout problem.

[next-section, etc.]

The square-bracketed section headings have the following functions.

• [version] - Ensures the correct database version is available for the server version
attempting to use it. The message file always needs checking for this version number
being changed at server updates, although the version may remain fixed at a previous
server version number if there have been no changes to the message database during
subsequent server versions. This must be the first directive in the file.

• [language] - Creates space for assigning the new language’s messages. The number
specifies an order within the languages, each must be different, but only the lowest
and highest (prefered and base respectively) have operational significance. The highest
number should always be English to provide a fall-back message. A short string provides
an identifier for the language. This identifier should be the same as the identifying string
in the browser request ‘‘Accept-Language:’’ header field (e.g. ‘‘en’’, ‘‘se’’, ‘‘de’’, ‘‘fr’’, etc.)
Multiple, comma-separated languages may be specified. The first is the primary language

12–2 Message Configuration

of that list and messages must be specified using that. The subsequent languages are
equivalents that might be specified by the client. A wildcard may be used to match all
possibilities (e.g. ‘‘de,de-*’’, ‘‘es,es-*’’). Following the language identifier is an optional
host/domain list. Multiple hosts/domains may be specified by separating each with a
comma. The specifications may contain wildcards. All the [language] directives should be
grouped at the start of the file immediately following the [version] directive. A character
set may be associated with a particular language by specifying a charset= following the
language string (e.g. ‘‘ru charset=koi8-r’’). Setting the language’s ordering number to zero
disables the language completely. All messages associated with it will then be ignored.

• [group-name] - The messages are divided into groupings to make them easier to manage.
Each group begins with the group name directive.

• en 01 message - Each message in a group is assigned using using this format. The string
identifying the language, then the message number (the leading zero just improves the
format, strictly it is not required), then the actual message itself. The message can be
of arbitrary length. Long messages may be continued on following lines using the ‘‘\ ’’
continuation character.

The base language (the highest numbered, which should always be English) must have
precisely the right number of messages required by the server, too few or too many and
the server will not start! Additional languages do not have to reassign every message!
The base language will supply any not assigned. A message number of zero is disabled and
completely ignored.

If messages contain HTML tags that markup must not interfere with the general HTML page
it is used within.

Some messages are a composite of multiple strings each of which is used on a different part
of the one page (e.g. for the [upd] edit-page). Each of the strings is delimited by the vertical
bar ‘‘ | ’’. Care must be taken when customizing these strings that the overall number stays
the same and that the length of each does not become excessive. Although it will not disrupt
the server it may significantly disrupt the page layout.

All message numbers must be included. To provide an empty string for any one message (not
recommended) provide the line with nothing following the message number.

12.3 Multiple Language Specifications
Multiple language messages can be specified in two ways:

• within the one file

• in multiple files specified by a multivalued logical name

Message Configuration 12–3

Within The One File

Language availability is specified through the use of [Language] directives. These must be
numbered from 1 to the count of those supplied. The highest numbered language must have
the complete set of messages for this is the fallback when obtaining any message (this would
normally be ‘‘en’’). The [Language] may be specified as a comma-separated list of equivalent
or similar specifications, which during request processing will be matched against a client
specified list of accepted-languages one at a time in specified order. A wildcard may be
specified which matches all fitting the template. In this manner a single language can be
used also to match minor variants or language specification synonyms.

[Version] 9.0
[Language] 1 es,es-ES
[Language] 2 de,de-*
[Language] 3 en

[auth]
es 01 Habla Espanol
de 01 Sprechen Sie Deutsches
en 01 Do you speak English
.
.
.(full set of messages)

In the above (rather contrived) example a client request with

Accept-Language: es-ES,de;q=0.6,en;q=0.3

would have language 1 selected, a client with

Accept-Language: de-ch,es;q=0.6,en;q=0.3

language 2 selected, with

Accept-Language: pt-br,de;q=0.6,en;q=0.3

also language 2 selected, with

Accept-Language: pt

language 3 (the default) selected, etc.

Note that the messages for each language must use the *first* language specification provided
in the [Language] list. In the example above all messages for language 1 would be introduced
using ’es’, for language 2 with ’de’ and for language 3 with ’en’.

Multiple Files - Multivalued Logical Name

With this approach a logical name containing multiple file names is defined (more commonly
described as a logical search list). The final file specified must contain the full message set.
Files specified prior to this, can contain as many or as few of the full set as is desired. A
[Language] number does not need to be specified as they are processed in the order the logical
name specifies them in. Other language file directives are required.

12–4 Message Configuration

The following is an example of a logical name providing the same three languages in the
examples above.

$ DEFINE /SYSTEM HTTPD$MSG HT_ROOT:[LOCAL]HTTPD$MSG_ES.CONF, -
HT_ROOT:[LOCAL]HTTPD$MSG_DE.CONF, -
HT_ROOT:[LOCAL]HTTPD$MSG.CONF

The file contents would be as follows (very contrived examples :-)

HTTPD$MSG_ES.CONF
[Version] 9.0
[Language] 0 es,es-ES
[auth]
es 01 Habla Espanol
es 02 Habla Inglesi
[dir]
es 03 Habla Espanol
es 04 Habla Inglesi

HTTPD$MSG_DE.CONF
[Version] 9.0
[Language] 0 de,de-*
[auth]
de 01 Sprechen Sie Deutsches
de 02 Sprechen Sie Englisch
[dir]
de 03 Sprechen Sie Deutsches
de 04 Sprechen Sie Englisch

HTTPD$MSG.CONF
[Version] 9.0
[Language] 0 en
[auth]
.
.
.(full set of messages)

The major advantage of maintaining multiple files in this way is there is no need to
merge files when a new revision is required. Just update the version number and add any
new required messages to the existing secondary file.

12.4 Supplied Message Files
Any non-English message files that are provided to the author will be included for general
use (please take the time to support this endeavour) in the HT_ROOT:[EXAMPLE] directory.

online hypertext link

Note that message files can become out-of-date as server versions change, requiring modifica-
tions to the message database. Check the version information and/or comments at the top of
candidate message files, however even slightly dated files may serve as a good starting point
for a locale-specific message base.

Message Configuration 12–5

Chapter 13

Cache Configuration

WASD HTTPd provides an optional, configurable, monitorable file data and revision time
cache. File data, so that requests for documents can be fulfilled without reference to the
underlying file system, potentially reducing request latency and more importantly improving
overall server performance and system impact, and file revision time, so that requests
specifying an ‘‘If-Modified-Since:’’ header can also benefit from the above. Files are cached
using a hash derived from the VMS file-system path equivalent generated during the mapping
process (i.e. represents the file name) but before any actual RMS activity. WASD can also
cache the content of responses from non-file sources. This can be useful for reducing the
system impact of frequently accessed, dynamically generated, but otherwise relatively static
pages. These sources are cached using a hash derived from virtual service connected to and
the request URI.

Why Implement Caching?

Caching, in concept, attempts to improve performance by keeping data in storage that is
faster to access than the usual location. The performance improvement can be assessed in
three basic ways; reduction of

• response when accessing the data (latency and transfer time)

• processing involved (CPU cycles)

• impact on the usual storage location (file system I/O)

This cache is provided to address all three. Where networks are particularly responsive a
reduction in request latency can often be noticeable. It is also suggested a cache ‘‘hit’’ may
consume less CPU cycles than the equivalent access to the (notoriously expensive) VMS file
system. Where servers are particularly busy or where disk subsystems particularly loaded a
reduction in the need to access the file system can significantly improve performance while
simultaneously reducing the impact of the server on other system activities.

A comparison between cached and non-cached performance is provided in Chapter 21.

Cache Configuration 13–1

Terminology

Term Description

hit Refers to a request path being found in cache. If the data is still valid the
request can be supplied from cache.

flushing Occurs when the cache becomes full, with older, less frequently used cache
entries being removed from the cache and replaced by other files.

loading Refers to reading the contents of a file into cache memory.

permanent These entries are loaded once and remain in the cache until it is explicitly
purged by the administrator or the the server is restarted. They are not
flushed or revalidated.

revalidate Compare the cache entrys size and modification date-time to the file it
represents in the file-system. Obviously a difference indicates the content
has changed.

valid The file from which the cached data was originally read has not had its revision
date changed (the implication being the file contents have not changed).

volatile Entries have the original file periodically checked for modification and are
reloaded if necessary. They can also be flushed if demand for space requires it.

13.1 Non-File Content Caching
The WASD cache was originally provided to reduce file-system access (a somewhat expensive
activity under VMS). With the expansion in the use of dynamically generated page content
(e.g. PHP, Perl, Python) there is an obvious need to reduce the system impact of some of
these activities. While many such responses have content specific to the individual request a
large number are also generated as general site pages, perhaps with simple time or date
components, or other periodic information. Non-file caching is intended for this type of
dynamic content.

Revalidation of non-file content is fraught with a number of issues and so is not provided.
Instead the cache entry is flushed on expiry of the [CacheValidateSeconds], or as otherwise
specified by path mapping, and the request is serviced by the content source (script, PHP, Perl,
etc.) with the generated response being freshly cached. All of the considerations described in
Section 13.4 apply equally to file and non-file content.

Controlling Non-File Content Caching

Determining which non-file content is cached and which not, and how long before flushing,
is done using mapping rules (Section 14.4.5). The source of non-file cache content is specified
using one or a combination of the following SET rules against general or specific paths.

cache=[no]cgi from Common Gateway Interface (CGI) script response
cache=[no]file from the file system (default and pre-8.4 cache behaviour)
cache=[no]net caches the full data stream irrespective of the source
cache=[no]nph full stream from Non-Parse Header (NPH) script response
cache=[no]query cache requests with query strings (use with care)

13–2 Cache Configuration

cache=[no]script both CGI and NPH script responses
cache=[no]ssi from Server-Side Includes (SSI) documents

A good understanding of site requirements and dynamic content sources, along with consid-
erable care in specifying cache path SETings, is required to cache dynamic content effectively.
It is especially important to get the content revalidation period appropriate to the content of
the pages. This is specified using the following path SETings.

cache=expires=0 cancels any expiry
cache=expires=DAY expires when the day changes
cache=expires=HOUR when the clock hour changes
cache=expires=MINUTE when the clock minute changes
cache=expires=<hh:mm:ss> expires after the specified period in the cache

For example. To cache the content of PHP-generated home pages that contain a time-of-day
clock, resolving down to the minute, would require a mapping rule similar to the following.

set /**/index.php cache=cgi cache=expires=minute

13.2 Permanent and Volatile
The WASD file cache provides for some resources to be permanently cached while others are
allowed to be moved into and out of the cache according to demand. Most sites have at least
some files that are fundamental components of the site’s pages, are rarely modified, commonly
accessed, and therefore should be permanently available from cache. Other files are modified
on a regular or ad hoc basis and may experience fluctuations in demand. These more volatile
resources should be cached based on current demand.

Volatile caching is the default with the site administrator using mapping rules to indicate to
the server which resources on which paths should be permanently cached (Section 13.5).

Although permanent and volatile entries share the same cache structure and are therefore
subject to the configuration’s maximum number of cache entries, the memory used store the
cached file data is derived from separate pools. The total size of all volatile entries data is
constrained by configuration. In contrast there is no configuration limit placed on the quantity
of data that can be cached by permanent entries. One of the purposes of the permanent aspect
of the cache is to allow the site administrator considerable discretion in the configuration of
the site’s low-latency resources, no matter how large or small that might be. Of course there
is the ultimate constraint of server process and system virtual memory limits on this activity.
It should also be kept in mind that unless sufficient physical memory is available to keep
such cached content in-memory the site may only end up trading file-system I/O for page file
I/O.

13.3 Cache Suitability Considerations
A cache is not always of benefit! the cost may outweigh the return.

Any cache’s efficiencies can only occur where subsets of data are consistently being demanded.
Although these subsets may change slowly over time a consistent and rapidly changing
aggregate of requests lose the benefit of more readily accessible data to the overhead of
cache management, due to the constant and continuous flushing and reloading of cache data.
This server’s cache is no different, it will only improve performance if the site experiences
some consistency in the files requested. For sites that have only a small percentage of files

Cache Configuration 13–3

being repeatedly requested it is probably better that the cache be disabled. The other major
consideration is available system memory. On a system where memory demand is high there
is little value in having cache memory sitting in page space, trading disk I/O and latency for
paging I/O and latency. On memory-challenged systems cache is probably best disabled.

To help assessment of the cache’s efficiency for any given site monitor the Server Adminis-
tration facility’s cache report.

Two sets of data provide complementary information, cache activity and file request profile.

• Activity Data

This summarizes the cache search behaviour, in particular that of the hash table.

The ‘‘searched’’ item, indicates the number of times the cache has been searched. Most
importantly, this may include paths that can never be cached because they represent non-
file requests (e.g. directory listings). Requests involving scripts, and some others, never
attempt a cache search.

The ‘‘hit’’ item, indicates the number of times the hash table directly provided a cached
path. This is very efficient.

The ‘‘miss’’ item, indicates the number of times the hash table directly indicated a path
was not cached. This is decisive and is also very efficient.

The ‘‘collision’’ item, indicates the number of times multiple paths resolved to the same
hash table entry. Collisions require further processing and are far less efficient. The
sub-items, ‘‘collision hits’’ and ‘‘collision misses’’ indicate the number of times that further
processing resulted in a found or not-found cache item.

A large number of cache misses compared to searches may only indicate a large number
of non-cacheable requests and so depending on that further datum is not of great concern.
A large proportion of collisions (say greater than 12.5%) is however, indicating either the
hash table size needs increasing (1024 should be considered a minimum) or the hashing
algorithm in the software need reviewing :-)

• Files Data

This summarizes the site’s file request profile.

With the ‘‘loads not hit’’ item, the count represents the cumulative number of files loaded
but never subsequently hit. If this percentage is high it means most files loaded are never
hit, indicating the site’s request profile is possibly unsuitable for caching.

The item ‘‘hits’’ respresents the cumulative, total number of hits against the cumulative,
total number of loads. The percentage here can range from zero to many thousands of
percent :-) with less than 100% indicating poor cache performance and from 200% upwards
better and good performance. The items ‘‘1-9’’, ‘‘10-99’’ and ‘‘100+’’ show the count and
percentage of total hits that occured when a given entry had experienced hits within
that range (e.g. if an entry has had 8 previous hits, the ninth increments the ‘‘1-9’’ item
whereas the tenth and eleventh increments the ‘‘10-99’’ item, etc.)

13–4 Cache Configuration

Other considerations also apply when assessing the benefit of having a cache. For
example, a high number and percentage of hits can be generated while the percentage of
‘‘loads not hit’’ could be in the also be very high. The explanation for this would be one
or two frequently requested files being hit while most others are loaded, never hit, and
flushed as other files request cache space. In situations such as this it is difficult to judge
whether cache processing is improving performance or just adding overhead.

13.4 Cache Content Validation
The cache will automatically revalidate the volatile entry file data after a specified number
of seconds ([CacheValidateSeconds] configuration parameter), by comparing the original file
revision time to the current revision time. If different the file contents have changed and
the cache contents declared invalid. If found invalid the file transfer then continues outside
of the cache with the new contents being concurrently reloaded into the cache. Permanent
entries are not subject to revalidation and the associated reloading.

Cache validation is also always performed if the request uses ‘‘Cache-Control:’’ with no-
cache, no-store or max-age=0 attributes (HTTP/1.1 directive), or if a ‘‘Pragma: no-cache’’ field
(HTTP/1.0 directive). These request directives are often associated with a browser agent
reload page function. Hence there is no need for any explicit flushing of the cache under
normal operation. If a document does not immediately reflect any changes made to it (i.e.
validation time has not been reached) validation (and consequent reload) can be ‘‘forced’’ with
a browser reload. Permanent entries are also not subject to this source of revalidation. The
configuration directive [CacheGuardPeriod] limits this form of revalidation when used within
the specified period since last revalidated. It has a default value of fifteen seconds.

If a site’s contents are relatively static the validation seconds could be set to an extended
period (say 3600 seconds, one hour) and then rely on an explicit ‘‘reload’’ to force validation
of a changed file.

The entire cache may be purged of cached data, both volatile and permanent entries, either
from the Server Administration facility or using command line server control.

$ HTTPD /DO=CACHE=PURGE

13.5 Cache Configuration
The cache is controlled using HTTPD$CONFIG configuration file and HTTPD$MAP mapping
file directives. A number of parameters control the basics of cache behaviour.

• [Cache] enables and disables caching.

• [CacheEntriesMax] and [CacheTotalKBytesMax] provide growth limits to cache
expansion. Maximum entries limits the number of files loaded into the cache before
entries begin to be reused (flushing the original contents). Maximum total kilobytes
allocated to the cache provides a ceiling on the memory consumed. These parameters
operate to limit each other (i.e. if one reaches its limit before the other, the other will not
grow further either).

• [CacheFileKBytesMax] provides a limit on file size (in kilobytes). Files larger than
the specified limit will not be cached. This may be overridden on a per-path basis using
the set cache=max=<integer> mapping rule (see below).

Cache Configuration 13–5

• [CacheFrequentHits] and [CacheFrequentSeconds] attempt to reduce unproductive
reuse of cache entries by providing the cache with some indication of what constitutes
a frequently hit entry. If it is frequently hit then it should not be immediately reused
when there is a demand for cache space. The first parameter sets the number of hits an
entry must sustain before being a candidate for CacheFrequentSeconds assessment. If a
file has been hit at least CacheFrequentHits times in total and the last hit was within the
number of seconds set by CacheFrequentSeconds it will not be flushed and reused. If it
has not been hit within the specified period it will be reused.

• [CacheGuardPeriod] prevents browser initiated content revalidation described above
(Section 13.4). It is provided to help limit unnecessary file-system activity. The default is
fifteen seconds.

• [CacheEntriesMax] (obsolete)

• [CacheValidateSeconds] The interval after which a cache entry’s original, content
revision time is revalidated against the file’s current revision time. If not the same the
contents are declared invalid and reloaded. Setting this to a greater period reduces disk
I/O but revised files may not be obvious within an acceptable timer unless a revalidation
is forced with a reload. Permanent entries are not subject to validation.

Mapping Rules

Mapping rules (Section 14.4.5) allow further tailoring of cache behaviour based on request
(file) path. Those files that should be made permanent entries are indicated using the
cache=perm directive. In the following example all files in the WASD runtime directories
(directory icons, help files, etc.) are made permanent cache entries at the same time the path
is mapped.

pass /*/-/* /ht_root/runtime/*/* cache=perm

Of course, specified file types as well as specific paths can be mapped in this way. Here
all files in the site’s /help/ path are made permanent entries except those having a .PS type
(PostScript documents).

set /help/* cache=perm
set /help/*.ps cache=noperm

The configuration directive [CacheFileKBytesMax] puts a limit on individual file size. Those
exceeding that limit are considered too large and not cached. It is possible to override this
general constraint by specifying a maximum size (in kilobytes) on a per-path basis.

set /help/examples*.jpg cache=max=128
set /cai/*.mpg cache=max=2048 cache=perm

Caching may be disabled and/or enabled for specified paths and subpaths.

set /web/* cache=none
set /web/icons/* cache

13–6 Cache Configuration

13.6 Cache Control
The cache may be enabled, disabled and purged from the Server Administration facility
(Chapter 19). In addition the same control may be exercised from the command line
(Section 19.7) using

$ HTTPD /DO=CACHE=ON
$ HTTPD /DO=CACHE=OFF
$ HTTPD /DO=CACHE=PURGE

If cache parameters are altered in the configuration file the server must be restarted to put
these into effect. Disabling the cache on an ad hoc basis (from menu or command line) does
not alter the contents in any way so it can merely be reenabled with use of the cache’s previous
contents resuming. In this way comparisions between the two environments may more easily
be made.

13.7 Circumventing The Cache
There are often good reasons for bypassing or avoiding the cache. For instance, where a docu-
ment is being refreshed within the cache revalidation period specified by [CacheValidateSec-
onds] (Section 13.4). There are two mechanisms available for bypassing or invalidating the
file cache.

1. This directs the server to always get the file from the file-system.

SET /path/not/to/cache/* cache=none

2. Specify a version component when requesting the file. WASD never caches a file if the
request contains a version component. It does not need to be a full version number, a
semi-colon is sufficient. For example:

/ht_root/robots.txt;

Cache Configuration 13–7

Chapter 14

Request Processing Configuration

By default, the system-table logical name HTTPD$MAP locates a common mapping rule
file. Simple editing of the mapping file and reloading into the running server changes the
processing rules. The [IncludeFile] is a directive common to all WASD configuration, allowing
a separate file to be included as a part of the current configuration (Section 6.13).

Mapping rules are used for a number of different request processing purposes.

1. To map a request path onto the VMS file system.

2. To process a request path according to specified criteria resulting in an effective path that
is different to that supplied with the request.

3. To identify requests requiring script activation and to parse the script from the path
portion of that request. The path portion is then independently re-mapped.

4. To conditionally map to different end-results based on one or more criteria of the request.

5. To provide differing virtual sites depending on the actual service accessed by the client.

Mapping is basically for server-internal purposes only. The only time the path information
of the request itself is modified is when a script component is removed. At all other times
the path information remains unchanged. Path authorization is always applied to the path
supplied with the request.

Rules are given a basic consistency check when loaded (i.e. server startup, map reload, etc.)
If there is an obvious problem (unknown rule, missing component, etc., path not absolute)
a warning message is generated and the rule is not loaded into the database. This will not
cause the server startup to fail. These warning messages may be found in the server process
log.

Checking Mapping Rules
A server’s currently loaded mapping rules may be interrogated. See Chapter 19 for
further information. Also the Server Administration facility allows realm and arbitrary
paths to be checked against the rule database in real-time using the WATCH facility
(Chapter 20). In this way the rule database may be checked against test or even live
requests.

Request Processing Configuration 14–1

14.1 Rule Interpretation
The rules are scanned from first towards last, until a matching final rule is encountered
(PASS, EXEC, SCRIPT, FAIL, REDIRECT, UXEC and USER) when the mapping pass
concludes. Non-final rules (MAP and SET) perform the appropriate action and continue to
the next rule. One, two or more passes through the rules may occur due to implicit processing
(if the path contains a script component) or by explicit restart (SET map=restart).

String Matching

The basis of path mapping is string pattern matching, comparing the request specified
path, and optionally other components of the request when using configuration conditionals
(Chapter 9), to a series of patterns, usually until one of the patterns matches, at which stage
some processing is performed. Both wildcard and regular expression based pattern matching
is available. All rules have a template (string pattern to match against the path). Some rules
have a result (how to restructure the components matching from the template).

• The template may contain one or more asterisk (‘‘*’’) wildcard symbols, or a regular
expression with optional grouping operators. This is pattern matched against the request
path (Chapter 8). If neither is present then the path must match the template exactly.

• The result may contain one or more asterisk (‘‘*’’) substitution symbols. The result
wildcards are expanded to replace the matching strings of the respective template
wildcards or pattern groups. Specified wildcard substitution is available (Section 8.4).
Characters represented by wildcards in the template not represented by a corresponding
wildcard in the result are ignored. Non-wildcard result characters are directly inserted
in reconstructed path. Non-wildcard characters in the template are ignored. If the result
contains no wildcards it completely replaces the URL path.

Virtual Servers

As described in Section 6.3 virtual service syntax may be used with mapping rules to selec-
tively apply rules to one specific service. If virtual services are configured rule interpretation
sees only rules common to all services and those specific to its own service (host address and
port). In all other aspects rule interpretation applies as described above.

Processing Overhead

Naturally, each rule that needs to be processed adds a little to consumed CPU, introduces some
latency, and ultimately reduces throughput. The test-bench has shown this to be acceptably
small compared to the overall costs of responding to a request. Using the ApacheBench
tool on a Digital Personal Workstation 500 with 512MB, VMS V8.3, TCP/IP Service 5.6
and WASD v9.2, with a simple access to /ht_root/exercise/0k.txt showed approximately 393
requests/second throughput using the following mapping file.

pass /ht_root/exercise/*

14–2 Request Processing Configuration

After adding various quantities of the same intervening rule

pass /ht_root/example/*
pass /ht_root/example/*
.
.
.

pass /ht_root/example/*
pass /ht_root/exercise/*

the following results were derived.

Mapping Overhead

Intervening Rules Requests/S Throughput

0 393 baseline

100 358 -8.9%

200 339 -13.7%

500 286 -27.2%

1000 225 -42.7%

Although this is a fairly contrived set-up and actual real-world rule-sets are more complex
than this, even one hundred rules is a very large set, and it does indicate that for all intents
and purposes mapping rules may be used to achieve desired objectives without undue concern
about impact on server throughput.

14.2 VMS File System Specifications
The VMS file system in mapping rules is always assumed to begin with a device or
concealed device logical. Specifying a Master File Directory (MFD) component, the [000000]
is completely optional, although always implied. The mapping functions will always insert
one if required for correct file system syntax. That is, if the VMS file system mapping of a
path results in a file in a top-level directory an MFD is inserted if not explicitly present in
the mapping. For example, both of the following paths

/dka100/example.txt
/dka100/000000/example.txt

would result in a mapping to

DKA100:[000000]EXAMPLE.TXT

The MFD is completely optional when both specifying paths in mapping rules and when
supplying paths in a request. Similarly, when supplying a path that includes directory
components, as in

/dka100/dir1/dir2/example.txt
/dka100/000000/dir1/dir2/example.txt

both mapping to

Request Processing Configuration 14–3

DKA100:[DIR1.DIR2]EXAMPLE.TXT

LOGICAL NAMES
When using logical names in file system mappings they must be able to be used as
concealed devices and cannot be logical equivalents of directory specifications. You
must be able to perform a

$ DIRECTORY logical-name:[000000]
to be able to use the specification as a WASD mapping rule.

Concealed device logicals are created using the following syntax:

$ DEFINE LOGICAL_NAME device:[dir1.dir2.]
$ DEFINE LOGICAL_NAME /TRANSLATION=CONCEALED physical_device:[dir1.dir2.]

For ODS-2 volumes (Section 14.3 immediately below), when during rule mapping of a path to
a VMS file specification an RMS-invalid character (e.g. ‘‘+’’) or syntax (e.g. multiple periods)
is encountered a dollar symbol is substituted in an attempt to make it acceptable. This func-
tionality is often useful for document collections imported to the local web originating from,
for instance, a Unix site that utilizes non-RMS file system syntax. The default substitution
character may be changed on a per-path basis using the SET rule (Section 14.4.5).

14.3 Extended File Specifications (ODS-5)
OpenVMS Alpha V7.2 introduced a new on-disk file system structure, ODS-5. This brings to
VMS in general, and WASD and other Web servers in particular, a number of issues regarding
the handling of characters previously not encountered during (ODS-2) file system activities.
It is necessary to distinguish paths to ODS-5, extended specification volumes from the default
ODS-2 ones (Section 14.4.5).

14.3.1 Characters In Request Paths

There is a standard for characters used in HTTP requests paths and query strings (URLs).
This includes conventions for the handling of reserved characters, for example ‘‘?’’, ‘‘+’’, ‘‘&’’,
‘‘=’’ that have specific meanings in a request, characters that are completely forbidden, for
example white-space, control characters (0x00 to 0x1f), and others that have usages by
convention, for example the ‘‘~’’, commonly used to indicate a username mapping. The request
can otherwise contain these characters provided they are URL-encoded (i.e. a percentage
symbol followed by two hexadecimal digits representing the hexadecimal-encoded character
value).

There is also an RMS standard for handling characters in extended file specifications, some of
which are forbidden in the ODS-2 file naming conventions, and others which have a reserved
meaning to either the command-line interpreter (e.g. the space) or the file system structure
(e.g. the ‘‘:’’, ‘‘[’’, ‘‘]’’ and ‘‘.’’). Generally the allowed but reserved characters can be used
in ODS-5 file names if escaped using the ‘‘^’’ character. For example, the ODS-2 file name
‘‘THIS_AND_THAT.TXT’’ could be named ‘‘This^_^&^_That.txt’’ on an ODS-5 volume. More
complex rules control the use of character combinations with significance to RMS, for instance
multiple periods. The following file name is allowed on an ODS-5 volume, ‘‘A-GNU-zipped-
TAR-archive^.tar.gz’’, where the non-significant period has been escaped making it acceptable
to RMS.

14–4 Request Processing Configuration

The WASD server will accept request paths for file specifications in both formats, URL-
encoded and RMS-escaped. Of course characters absolutely forbidden in request paths must
still be URL-encoded, the most obvious example is the space. RMS will accept the file name
‘‘This^ and^ that.txt’’ (i.e. containing escaped spaces) but the request path would need to be
specified as ‘‘This%20and%20that.txt’’, or possibly ‘‘This^%20and^%20that.txt’’ although the
RMS escape character is basically redundant.

Unlike for ODS-2 volumes, ODS-5 volumes do not have ‘‘invalid’’ characters, so no processing
is performed to ensure RMS compliance.

14.3.2 Characters In Server-Generated Paths

When the server generates a path to be returned to the browser, either in a viewable page
such as a directory listing or error message, or as a part of the HTTP transaction such as
a redirection, the path will contain the URL-encoded equivalent of the canonical form of
an extended file specification escaped character. For example, the file name ‘‘This^_and^_
that.txt’’ will be represented by ‘‘This%20and%20that.txt’’.

When presenting a file name in a viewable page the general rule is to also provide this URL-
equivalent of the unescaped file name, with a small number of exceptions. The first is a
directory listing where VMS format has been requested by including a version component
in the request file specification. The second is in similar fashion, but with the tree facility,
displaying a directory tree. The third is in the navigation page of the UPDate menu. In all
of the instances the canonical form of the extended file specification is presented (although
any actual reference to the file is URL-encoded as described above).

14.4 Rules
These are the categories of mapping rules.

• Map paths to the file system, and to other paths:

MAP
PASS
FAIL
REDIRECT
USER

• Provide access to scripting:

EXEC
SCRIPT
UXEC

• Sets characteristics against particular paths:

SET

Request Processing Configuration 14–5

14.4.1 MAP, PASS, FAIL Rules

1. map template result

If the URL path matches the template, substitute the result string for the path and use
that for further rule processing. Both template and result paths must be absolute (i.e.
begin with ‘‘/’’).

2. pass template

pass template result

pass template ‘‘999 message text’’

If the URL path matches the template, substitute the result if present (if not just use the
original URL path), processing no further rules.

The result should be a either a physical VMS file system specification in URL format or
an HTTP status-code message (see below). If there is a direct correspondance between
the template and result the result may be omitted.

Note
The PASS directive is also used to reverse-map VMS file specifications to the URL
path format equivalent.

An HTTP status-code message can be provided as a result. The server then generates
a response corresponding to that status code containing the supplied message. Status-
code results should be enclosed in one of single or double quotes, or curly braces. See
examples. A 3nn status results in a redirection response with the message text comprising
the location. Codes 4nn and 5nn result in an error message. Other code ranges (e.g. 0,
1nn, 2nn, etc.) simply cause the connection to be immediately dropped, and can be used
for that purpose (i.e. no indication of why!)

3. fail template

If the URL path matches the template, prohibit access, processing no further rules. The
template path must be absolute (i.e. begin with ‘‘/’’).

14.4.2 REDIRECT Rule

1. redirect template result

If the URL path matches the template, substitute the result string for the path. Process
no further rules. Redirection rules can provide result URLs in one of a number of formats,
each with a slightly different behaviour.

1. The result can be a full URL (‘‘http://host.domain/path/to/whatever’’). This is used to
redirect requests to a specific service, usually on a another host. A result may or may
not contain a fixed query string (‘‘/path/to/whatever?one=two’’).

2. If the scheme (e.g. ‘‘http:’’) is omitted the scheme of the current request is substituted.
This allows HTTP requests to be transparently redirected via HTTP and HTTPS (SSL)
requests via HTTPS (e.g. ‘‘//host.domain/path/to/whatever’’, note the leading double-
slash).

14–6 Request Processing Configuration

3. In a similar fashion both the scheme and the host name may be omitted (e.g.
‘‘///path/to/whatever’’, note the leading triple-slash). The server then substitutes the
appropriate request scheme and host name before returning the redirection to the
client.

4. If the scheme is provided but no host component the current request’s host information
is substituted and the redirection made using that (e.g. ‘‘https:///secure/path/to/whatever’’.
This effectively allows a request to be redirected from standard to SSL, or from SSL
to standard HTTP on the same server.

5. Alternatively, it may be just a path (‘‘/path/to/whatever’’, a single leading slash), which
will cause the server to internally generate an entire new request structure to process
the new path (i.e. request redirection is not returned to the client).

Note
Internal redirection (as this is termed) is a fundamental mechanism available
with WASD to completely change the request path and/or query string compo-
nents for the request - transparently to the client. It is essentially a complete
rewrite of the request.

6. Only if the last character in the result is a question mark (‘‘?’’) will any query string
in the original be propagated into the redirection URL (that is the original request
‘‘/original/test.txt?plus=query’’ is mapped using ‘‘redirect /original/* /path/to/*?’’ does
the resulting URL become ‘‘/path/to/test.txt?plus=query’’).

14.4.3 USER Rule

The USER rule maps a VMS user account default device and directory (i.e. home directory)
into a request path. That is, the base location for the request is obtained from the VMS
systems SYSUAF file. This is usually invoked by a request path in the form ‘‘/~username/’’,
see Section 14.8 for more detailed information.

1. user template result

If the path matches the template then the result is substituted, with the following
conditions. At least one wildcard must be present. The first wildcard in the result
substitutes the username’s home directory into the path (in place of the ‘‘~username’’).
Any subsequent wildcard(s) substitute corresponding part(s) of the original path.

If the user DANIEL’s default device and directory were

USER$DISK:[DANIEL]

the following rule

user /~*/* /*/www/*

would result in the following path being mapped and used

/user$disk/daniel/www/

Note
Accounts that possess SYSPRV, are CAPTIVE, have been DISUSERED or that have
expired passwords will not be mapped. A ‘‘directory not found’’ error report is returned.

Request Processing Configuration 14–7

14.4.4 EXEC/UXEC and SCRIPT, Script Mapping Rules

Also see ‘‘Scripting Environment’’ document for further information.

The EXEC/UXEC and SCRIPT directives have the variants EXEC+/UXEC+ and SCRIPT+.
These behave in exactly the same fashion and simply mark the rule as representing a CGIplus
script environment.

The EXEC/UXEC rules maps script directories.

The SCRIPT rules maps script file names. It behaves a little differently to the EXEC rule,
essentially supplying in a single rule the effect of a MAP then an EXEC rule.

Both rules must have a template and result, and both must end in a wildcard asterisk. The
placement of the wildcards and the subsequent functionality is slightly different however.
Both template and result paths must be absolute (i.e. begin with ‘‘/’’).

1. exec template result

The EXEC rule requires the template’s asterisk to immediately follow the slash terminat-
ing the directory specification containing the scripts. The script name follows immediately
as part of the wildcard-matched string. For example:

exec /htbin/* /ht_root/script/*

If the URL path matches the template, the result, including the first slash-terminated part
of the wildcard-matched section, becomes the URL format physical VMS file specification
the script to be executed. What remains of the original URL path is used to create the
path information. Process no further rules.

Hence, the EXEC rule will match multiple script specifications without further rules,
the script name being supplied with the URL path. Hence any script (i.e. procedure,
executable) in the specified directory is accessible, a possible security concern if script
management is distributed.

2. exec template (run-time-environment)result

A variation on the ‘‘exec’’ rules allows a Run-Time Environment (RTE) to be mapped. An
RTE is a persistant scripting environment not unlike CGIplus. The essential difference
is an RTE provides an environment in which a variety of scripts can be run. It is often an
interpreter, such as Perl, where the advantages of persistance (reduced response latency
and system impact) are available. For more information on RTEs and how they operate
see the ‘‘WASD Scripting Environment’’ document.

The RTE executable is specified in parentheses prefixed to the mapping result, as show
in this example:

exec /pl-bin/* (cgi-bin:[0000000]perlrte.exe)/ht_root/src/perl/*

3. script template result

The SCRIPT rule requires the template’s asterisk to immediately follow the unique string
identifying the script in the URL path. The wildcard-matched string is the following path,
and supplied to the script. For example:

script /conan* /ht_root/script/conan*

14–8 Request Processing Configuration

If the URL path matches the template, the result becomes the URL format physical
VMS file specification for the DCL procedure of the script to be executed (the default file
extension of ‘‘.COM’’ is not required). What remains of the original URL path is used to
create the path information. Process no further rules.

Note
The wildcard asterisk is best located immediately after the unique script identifier.
In this way there does not need to be any path supplied with the script. If even
a slash follows the script identifier it may be mapped into a file specification that
may or may not be meaningful to the script.

Hence, the SCRIPT rule will match only the script specified in the result, making for
finely-granular scripting at the expense of a rule for each script thus specified. It also
implies that only the script name need precede any other path information.

It may be thought of as a more efficient implementation of the equivalent functionlity
using two CERN rules, as illustrated in the following example:

map /conan* /script/conan*
exec /cgi-bin/* /cgi-bin/*

4. uxec template result

The UXEC rule is an analog to the EXEC rule, except it is used to map user scripts.
It requires two mapping asterisks, the first for the username, the second for the script
name. It must be used in conjunction with a SET script=as=~ rule. For example:

SET /~*/www/cgi-bin/* script=as=~
UXEC /~*/cgi-bin/* /*/www/cgi-bin/*

For further information see User Account Scripting and the ‘‘Scripting Overview, Intro-
duction’’.

Script Location

It is conventional to locate script images in HT_ROOT:[AXP-BIN] or HT_ROOT:[VAX-BIN]
(depending on the platform), and procedures, etc. in HT_ROOT:[CGI-BIN]. These multiple
directories are accessible via the single search list logical CGI-BIN.

Script files can be located in area completely outside of the HT_ROOT tree. Two approaches
are available.

1. Modify the search list CGI-BIN to include the additional directories. Only should be done
with extreme care.

2. Use mapping rules to make the script accessible. This can be done by using the EXEC or
SCRIPT rule to specify the directory directly as in these examples

exec /mycgi-bin/* /site_local_scripts/bin/*
script /myscript* /web/myscripts/bin/myscript.exe*

or by using the MAP rules to make a hierarchy of script locations obvious and accessible,
as in this example

map /cgi-bin/myscripts/* /cgi-bin_myscripts/*
exec /cgi-bin_myscripts/* /web/myscripts/bin/*

Request Processing Configuration 14–9

EXEC Directories and EXEC Files

Generally directories are specified as locations for script files. This is the more common
application, with the EXEC rules used as in this example

exec /cgi-bin/* /cgi-bin/*

Mapping a file type into an EXEC behaviour is also supported. This allows all files within
the specified path and with the matching file suffix (extension) to be activated as scripts. Of
course a script runtime must be available for the server to be able activate it. The following
example demonstrates mapping all files ending in .CGI in the /web/ tree as executable scripts.

exec /web/*.cgi* /web/*.cgi*

WARNING
Remember scripts are executables. Enabling scripting in a general user area allows
any user to write and execute any script, by default under the server account. Deploy
with discretion.

14.4.5 SET Rule

The SET rule does not change the mapping of a path, it just sets one or more characteristics
against that path that affect the subsequent processing in some way. It is a general purpose
rule that conveniently allows the administrator to tell the server to process requests with
particular paths in some ad hoc and generally useful fashion. Most SET parameters are
single keywords that act as boolean switches on the request, some require parameter strings.
Multiple space-separated parameters may be set against against the one path in a single SET
statement.

• ACCEPT=LANG=<parameter> - Allows a path to be marked for language-variant
document processing.

• ‘‘ACCEPT=LANG=DEFAULT=language’’ sets the default language

• ‘‘ACCEPT=LANG=CHAR=character’’ sets the delimiting character

• ‘‘ACCEPT=LANG=VARIANT=name | type’’ allows the alternate file-type variant to be
specified

• ‘‘ACCEPT=LANG=(DEFAULT=language,CHAR=character)’’ sets both (etc.)

• ‘‘NOACCEPT=LANG’’ disables language variant processing (on a subtree for example)

For detailed configuration information see Section 6.8.

• ALERT[=<keyword>] - Marks a path as being of specific interest. When a request
containing this path is detected by the server it puts a message into the the server process
log and perhaps of greater immediate usefulness the increase in alert hits is detected by
HTTPDMON and this (optionally) provides an audible alert. The following is ordered
according to how early in processing the alert is signalled.

• ‘‘ALERT=MAP’’ generates this alert immediately after path mapping (i.e. before the
request actually begins being processed).

• ‘‘ALERT=AUTH’’ after authorization (i.e. when any remote username has been
resolved).

14–10 Request Processing Configuration

• ‘‘ALERT=END’’ at the conclusion of process (the default).

• ‘‘ALERT=integer’’ if the response HTTP status matches the specific integer.

• ‘‘NOALERT’’ cancels alerts on this path (perhaps subpath).

• AUTH=<keyword> - Changes the specified characteristic during subsequent authoriza-
tion processing.

• ‘‘[NO]AUTH=ALL’’ All requests matching this path must have been subject to autho-
rization or fail with a forbidden status. This is a per-path requivalent of implement-
ing the per-server /AUTHORIZE=ALL policy (Section 16.13), and is a little ‘‘belt and
braces’’ in a certain sense, but does permit a site to further avoid unintended informa-
tion leakage (in this case through the failure ensure a given path has authorization).

• ‘‘[NO]AUTH=ONCE’’ If a request path contains both a script component and a
resource component by default the WASD server makes sure both parts are authorized
before allowing access (Chapter 16). This can be disabled using this path setting.
When this is done only the original request path undergoes authorization.

• ‘‘AUTH=REVALIDATE=<hh:mm:ss>’’ Authorization is cancelled and the client re-
quested to reenter the username and password if this period expires between au-
thorized requests. Overrides configuration directive [AuthRevalidateUserMinutes].

• ‘‘AUTH=SYSUAF=PWDEXPURL=<string>’’ Parallels the [AuthSysUafPwdExpURL]
configuration directive, allowing it to be set on a per-path or virtual service basis
(Section 16.14).

• CACHE=<keyword> - The default is to cache files (when caching is enabled, Chapter 13).

• ‘‘CACHE=NONE’’ disables caching of files matching this rule

• ‘‘CACHE=EXPIRES=0’’ cancels previous mapped expiry

• ‘‘CACHE=EXPIRES=DAY’’ expires on change of day

• ‘‘CACHE=EXPIRES=HOUR’’ expires on change of hour

• ‘‘CACHE=EXPIRES=MINUTE’’ expires on change of minute

• ‘‘CACHE=EXPIRES=<period>’’ sets the expiry period for the entry

• ‘‘CACHE=GUARD=<period>’’ sets the guard period (no reload) for the cache entry

• ‘‘CACHE=MAX=<integer>’’ cache files up to this many kilobytes (overrides [CacheFileK-
BytesMax]))

• ‘‘CACHE=[NO]CGI’’ cache CGI-compliant (script) responses

• ‘‘CACHE=[NO]FILE’’ cache files matching this rule (the default)

• ‘‘CACHE=[NO]NET’’ cache any network output

• ‘‘CACHE=[NO]NPH’’ cache NPH (non-parse-header script) responses

• ‘‘CACHE=[NO]SCRIPT’’ cache both CGI and NPH responses

• ‘‘CACHE=[NO]SSI’’ cache SSI document responses

• ‘‘CACHE=[NO]QUERY’’ cache (script) regardless of containing a query string

Request Processing Configuration 14–11

• ‘‘CACHE=[NO]PERM’’ permanently cache these files

• CGIPLUSIN=<keyword> - Provides control over how CGIplus records on the CGI-
PLUSIN stream are carriage controlled and how the stream is terminated. A little esoteric
certainly; ask Alex Ivanov ;-)

• ‘‘CGIPLUSIN=CC=NONE’’ no carriage control

• ‘‘CGIPLUSIN=CC=LF’’ each record has a trailing line feed (0x0a)

• ‘‘CGIPLUSIN=CC=CR’’ a trailing carriage return (0x0d)

• ‘‘CGIPLUSIN=CC=CRLF’’ a trailing line feed then carriage return (0x0d0a)

• ‘‘CGIPLUSIN=[NO]EOF’’ the end of the record stream is indicated using an end-of-file

• CGIPREFIX=<string> - CGI environment variable names are by default prefixed with
‘‘WWW_’’. This may be changed on a per-path basis using this SET rule. To remove the
prefix altogether for selected scripts use ‘‘CGIprefix=’’.

• CHARSET=<string> - This setting allows overriding of the server default ([CharsetDe-
fault] configuration parameter) content-type character set (in the response header) for text
files (plain and HTML). A string is required as in the following example, ‘‘charset=ISO-
8859-5’’.

• CONTENT=<string> - The content-type of a file is normally determined by the file’s
type (extension). This setting allows files matching the template to be returned with
the specified content-type. The content-type must be specified as a parameter, e.g.
‘‘content=application/binary’’.

• DIR=<keyword> - Allows directory listing to be controlled on a per path basis. These
parallel the coresponding configuration [Dir..] directives.

• ‘‘DIR=[NO]ACCESS’’ allows directory listing

• ‘‘DIR=ACCESS=SELECTIVE’’ allows directory listing if the directory contain the file
.WWW_BROWSABLE

• ‘‘DIR=[NO]IMPLIEDWILDCARD’’ add wildcards if not in path

• ‘‘DIR=STYLE=’’ set the style of a directory listing

• ‘‘ANCHOR’’ the current and default WASD style (post-v8.2)

• ‘‘DEFAULT’’ the current WASD style (post-v8.2)

• ‘‘ORIGINAL’’ the traditional (pre-v8.2)

• ‘‘HTDIR’’ Alex Ivanov’s HTdir style

• ‘‘DIR=[NO]WILDCARD’’ allow a directory listing to be ‘‘forced’’ by including wildcards
in the path

For detailed configuration information see Section 6.8.

• [NO]EXPIRED - This setting allows files in the specified paths to be sent pre-expired.
The browser should always then reload them whenever accessed.

14–12 Request Processing Configuration

• HTML=<keyword>=<string> - Allows the <BODY> tag, and header and/or footer char-
acteristics and text to be added to selected server generated pages such as directory
listings and error messages.

• ‘‘HTML=BODYTAG=’’ specifies the page <BODY> tag characteristics (e.g. html=bodytag=‘‘BGCOLOR=#ffffff’

• ‘‘HTML=HEADER=’’ the page header text

• ‘‘HTML=HEADERTAG=’’ the <TD> tag characteristics of the header table (e.g.
html=headertag=‘‘BGCOLOR=#cccccc’’)

• ‘‘HTML=FOOTER=’’ the page footer text

• ‘‘HTML=FOOTERTAG=’’ the <TD> tag characteristics of the footer table

The headertag and footertag directives also allow the full table tag to be specified, allowing
greater flexibility with these parts of the page (e.g. html=footertag=‘‘<TABLE BORDER=1
CELLPADDING=10 CELLSPACING=0><TR><TD BGCOLOR=#cccccc>’’.

• HTTP=<parameter> - Explicitly sets an aspect of the HTTP request header.

• ‘‘HTTP=ACCEPT-CHARSET=<string>’’ the ‘‘Accept-Charset:’’ field

• ‘‘HTTP=ACCEPT-LANGUAGE=<string>’’ the ‘‘Accept-Language:’’ field

• INDEX=<string> - This setting provides the ‘‘Index of’’ (directory listing) format string
for directory paths matching the template. It uses the same formatting as can be supplied
with a URL and overrides any query string passed via any URL.

• [NO]LOG - When server access logging is enabled the default is to log all requests. The
NOLOG setting suppresses logging for requests involving the specified path template.

• MAP=<parameter> - Controls aspects of the mapping processing itself (from that point
in the rules onwards of course).

• ‘‘[NO]MAP=ELLIPSIS’’ By default the use of the VMS file specification ellipsis wilcard
(‘‘...’’) is not allowed. This enables this for the path specified. Use with caution.

• ‘‘[NO]MAP=ONCE’’ Normally, when a script has been identified during mapping, the
resultant path information is also mapped in a second pass. This can be suppressed
by SETing the path as MAP=ONCE. The resultant path is then given to the script
without further processing.

• ‘‘MAP=RESTART’’ Causes an immediate change to the order of rule processing.
Instead of the next rule, the first rule in the configuration is processed. This is
intended to remove the need for copious repetition in the rule set. A common or set
of common processing blocks can be established near the start of the rule set and be
given requests from processing points further down in the rules. It is intended to be
used only once or perhaps twice and will abort the request if it occurs too often. Can
be detected using the restart: conditional (Section 9.2). Use with caution! Injudicious
use would make unexpected mappings expected!

• ‘‘[NO]MAP=ROOT=<string>’’ Prefixes the results of following rules with the specified
path so that they are all subordinate to it. This also populates the DOCUMENT_
ROOT CGI variable. See Document Root.

Request Processing Configuration 14–13

• ‘‘[NO]MAP=SET=IGNORE’’ All path SETings following an IGNORE are completely
ignored (not applied to the mapping or request characteristics) until a subsequent
NOINGORE is encountered.

• ‘‘[NO]MAP=SET=REQUEST’’ All path SETings following a NOMAP=SET=REQUEST
are only applied to the mapping and not to the request’s characteristics until a
subsequent MAP=SET=REQUEST is encountered. Intended for use during callouts.
These can be detected using the callout: conditional (Section 9.2).

• NOTEPAD=[+]<string> - The request notepad is a string storage area that can be used to
store and retrieve ad hoc information during path mapping and subsequent authorization
processing. Multiple notepad=string set against the one request override previous settings
unless preceded by a leading plus symbol, when it appends. These contents then can
be subsequently detected using the notepad: conditional keyword (Section 9.2.1) or the
obsolescent ’NO’ mapping conditional.

• ODS=<keyword> - Directs the server on how to process file names for naming conventions
other than ODS-2 (the default). Be sure to add an asterisk at the end of the specific ODS
path otherwise only the top-level will set!

• ‘‘ODS=2’’ is basically redundant, because if a path is not indicated as anything else it
is assumed to be ODS-2. This can be used for clarity in the mapping rules if required.

• ‘‘ODS=5’’ is used to indicate that a particular path maps to files on an ODS-5 (EFS)
volume and so the names may comply to extended specifications. This changes the
way file names are processed, including for example the replacement of invalid RMS
characters (see below).

• ‘‘ODS=ADS’’ is used to process file names that are encoded using the Advanced Server
(PATHWORKS 6) schema.

• ‘‘ODS=PWK’’ is used for processing file names encoded using the PATHWORKS 4/5
schema.

• ‘‘ODS=SMB’’ is a synonym for ODS=ADS and makes clear the path is also being served
by Samba.

• ‘‘ODS=SRI’’ for file names encoded using the SRI schema (used by MultiNet and
TCPware NFS, FTP and other utilities).

• QUERY-STRING=<string> - Set the request’s query string to that specified in the
directive. Overloads any current query string. Specify URL-encoded if the characters
require it.

• PROXY=<parameter> - Sets an aspect of proxy request processing.

• ‘‘PROXY=[NO]AFFINITY’’ sets client to origin server affinity (see Section 17.1.2).

• ‘‘PROXY=BIND=<IP-address>’’ makes outgoing proxy requests appear to originate
from this IP address. Must be an address that the media can be bound to.

• ‘‘PROXY=CHAIN=<host:port>’’ makes outgoing proxy requests chain to this up-stream
proxy server.

14–14 Request Processing Configuration

• ‘‘PROXY=FORWARDED’’ controls generatation a proxy ‘‘Forwarded:’’ request field.
This optional field contains information on the proxy server and as a further option
the client name or IP address.

• ‘‘PROXY=NOFORWARDED’’ disables

• ‘‘PROXY=FORWARDED[=BY]’’ contains the by component.

• ‘‘PROXY=FORWARDED=FOR’’ contains by and the for components (client host
name)

• ‘‘PROXY=FORWARDED=ADDRESS’’ contains by and the for components (client
host address)

• ‘‘PROXY=REVERSE=[NO]AUTH’’ suppresses propogation of any ‘‘Authorize’’ header.

• ‘‘PROXY=REVERSE=LOCATION=string’’ rewrites the matching ‘‘Location:’’ header
field URL of a 302 response from an internal, reverse-proxied server.

• ‘‘PROXY=REVERSE=[NO]VERIFY’’ sets a specialized authorization capability.
See HT_ROOT:[SRC.HTTPD]PROXYVERIFY.C for further information.

• ‘‘PROXY=UNKNOWN’’ causes the server to propagate all request field provided by
the client to the proxied server (by default WASD only propagates those it recognises)

• ‘‘PROXY=XFORWARDEDFOR=’’ controls generation of a proxy ‘‘X-Forwarded-For:’’
request field. This optional field (a defacto standard originally from the Squid caching
package) contains the name or IP address of the proxied client.

• ‘‘PROXY=NOXFORWARDEDFOR’’ disables

• ‘‘PROXY=XFORWARDEDFOR[=ENABLED]’’ enables

• ‘‘PROXY=XFORWARDEDFOR=ADDRESS’’ field contains client host address

• ‘‘PROXY=XFORWARDEDFOR=UNKNOWN’’ field contains unknown for the
client host name

• [NO]PROFILE - When using the server /PROFILE qualifier enable or disable the
authentication profile when assessing access for a specific path.

• REPORT=<parameter> - This setting allows error and other server-generated reports
for any specified path to changed between detailed and basic (Section 6.10.1).

• ‘‘REPORT=BASIC’’ include less detail in error message

• ‘‘REPORT=DETAILED’’ includes more detail

• ‘‘REPORT=TUNNEL’’ brief, non-HTML error messages suitable for proxy tunnel
(Section 17.6)

• ‘‘REPORT=4nn=nnn’’ maps one 400 class HTTP status to another (to conceal the true
origins of some error messages)

• RMSCHAR=<character> - This setting applies to ODS-2 paths (the default) only. Paths
SET as ODS-5 do not have this applied. During rule mapping of a path to a VMS file
specification, if an RMS-invalid character (e.g. ‘‘+’’) or syntax (e.g. multiple periods) is
encountered a dollar symbol is substituted in an attempt to make it acceptable. This
setting provides an alternate substitution character. Any general RMS-valid character

Request Processing Configuration 14–15

may be specified (e.g. alpha-numeric, ’$’, ’-’ or ’_’, although the latter three are probably
the only REAL choices). A single character is required as in the following example,
‘‘RMSchar=_’’.

• RESPONSE=HEADER=<parameter> - changes the way in which a response header is
generated by the server.

• ‘‘RESPONSE=GZIP=’’ controls generation of GZIPed response bodies (Section 6.5)

• ‘‘ALL’’ suitable responses

• ‘‘NONE’’ of the responses

• ‘‘integer’’ kilobytes, responses known to be this size or greater

• ‘‘RESPONSE=HEADER=BEGIN’’ suppresses the response header terminating empty
line so that the file or other resource can supply additional header fields. It, of
course, must supply the header-terminating empty line before beginning to supply
the response body.

• ‘‘RESPONSE=HEADER=FULL’’ reverts to normal response header generation be-
haviour.

• ‘‘RESPONSE=HEADER=NONE’’ suppresses the normal response header generation.
It is considered the file or other resource contains and will supply the full HTTP
response (in a non-parse-header script fashion).

• ‘‘RESPONSE=HEADER=ADD=<string>’’ appends the specified string to the response
header. Of course the string should be a legitimate HTTP response field and value
line. This mapping can be used to add a particular response directive to matching
requests.

• SCRIPT=<parameter> - Provides controls over various aspects of the scripting envi-
ronment.

• ‘‘SCRIPT=AS=<parameter>’’ for non-server account scripting this rule allows the user
account to be either explicitly specified or substituted through the use of the tilde
character ‘‘~’’ or the dollar ‘‘$’’. For further detail see the ‘‘Scripting Overview,
Introduction’’.

• ‘‘SCRIPT=BIT-BUCKET=<hh:mm:ss>’’ specifies the period for which a script contin-
ues to execute if the client disconnects. Overrides the HTTPD$CONFIG [DclBitBuck-
etTimeout] configuration directive. For further detail see the ‘‘Scripting Overview,
Introduction’’.

• ‘‘[NO]SCRIPT=BODY=DECODE’’ instructs the server to decode (un-chunk and/or un-
GZIP) an encoded request body before transfering it to the script. The script must be
aware of this and change its processing accordingly. See Section 6.5.

• ‘‘SCRIPT=CONTROL=<string>’’ Supply the specified string to the CGI processor as
if the a script had provided it using a ‘‘Script-Control:’’ response header field (see
‘‘Scripting Overview, CGI’’).

14–16 Request Processing Configuration

• ‘‘SCRIPT=COMMAND=<string>’’ allows additional parameters and qualifiers to be
passed to the script activation command line. First parameter must be an asterisk
to use the server resolved script command. If the first parameter is not an asterisk
it substitutes for the script activation verb. Subsequent parameters must be as they
would be used on the command line. The following setting

set /cgi-bin/example* script=command="* /ONE /TWO=THREE FOUR"

would result in the hypothetical script being command-line activated

$ EXAMPLE /ONE /TWO=THREE FOUR

• ‘‘SCRIPT=CPU=<hh:mm:ss>’’ specifies that the server should not allow the script to
use more than the specified quantity of CPU time. This is approximate, due to the
way the server administers scripting. It can serve to prevent scripts from consuming
indefinite quantities of system resources.

• ‘‘SCRIPT=DEFAULT=<string>’’ sets the default directory for the script environment
(a SET DEFAULT immediately prior to script activation). This can be suppressed (for
backward compatibility purposes) using a ‘‘#’’ as the target directory. This string
is reflected in CGI variable SCRIPT_DEFAULT so that CGIplus script and RTE
engines can be informed of this setting for a particular script’s environment. Unix
syntax paths may also be specified. If the default begins with a ‘‘/’’ character the SET
DEFAULT is not performed but the SCRIPT_DEFAULT variable is set appropriately
allowing the equivalent of a chdir() to be performed by the scripting environment.

• ‘‘[NO]SCRIPT=FIND’’ by default the server always confirms the existance and ac-
cessability of a script file by searching for it before attempting to activate it. If it
does not exist it reports an error. It may be possible a Run-Time Environment (RTE)
may require to access its own script file via a mechanism available only to itself.
The server script search may be disabled by SETing the path as nofind, for example
‘‘script=nofind’’. The script path and filename is directly passed to the RTE for it to
process and activate.

• ‘‘SCRIPT=PARAM=(<name=value>)’’ allows non-CGI environment variables to be
associated with a particular script path. The name component becomes a variable
containing the specified value passed to the script. Multiple, comma-separated
name=value pairs may be specified. The value may be quoted. The following path
setting

set /cgi-bin/example* script=params=(first=one,second="Two (and Three)")

would result in additional CGI variables available to the script

WWW_FIRST == "one"
WWW_SECOND == "Two (and Three)"

Multiple script=params set against the one request override previous settings unless
the parameters are specified with a leading plus symbol, as in

set /cgi-bin/example* script=params=+(third=three,fourth="number 4")

For futher information see the ‘‘Scripting Overview, CGI’’.

Request Processing Configuration 14–17

• ‘‘[NO]SCRIPT=PATH=FIND’’ directs the server to check for and report if the file
specified in the path does not exist before activating the script process. Normally
this would be left up to the script.

• ‘‘[NO]SCRIPT=QUERY=NONE’’ saves a small amount of overhead by suppressing the
decomposition of any query string into key or form fields for those environments that
do this for themselves.

• ‘‘[NO]SCRIPT=QUERY=RELAXED’’ normally when the CGI variables are being pre-
pared for a script and the query string is parsed an error is reported if it uses x-www-
form-urlencoded format and the encoding contains an error. However some scripts
use non-strict encodings and this rule allows those scripts to receive the query strings
without the server complaining first.

• ‘‘[NO]SCRIPT=SYNTAX=UNIX’’ provides the SCRIPT_FILENAME and PATH_TRANSLATED
CGI variables in Unix file-system syntax rather than VMS file-system syntax (i.e.
/DEVICE/dir1/dir2/file.type rather than DEVICE:[DIR1.DIR2]FILE.TYPE). For more
detailed information see the ‘‘Scripting Overview’’).

• ‘‘[NO]SCRIPT=SYMBOL=TRUNCATE’’ allows otherwise aborted script processing to
continue. Script CGI variables are provided using DCL symbols. With VMS V7.3-
2 and later symbol capacity is in excess of 8000 characters. For VMS V7.3-1 and
earlier it has a limit of around 1000 characters. If a symbol is too large the server
by default aborts the request generating a 500 HTTP status. If the above mapping is
made (against the script path) excessive symbol values are truncated and such symbol
names placed into a special CGI variable named SERVER_TRUNCATE.

• [NO]SEARCH=NONE - Do not activate the automatic document search script for any
query strings associated with this path.

• SSI=<parameter> - Controls aspects of Server-Side Include engine behaviour.

• ‘‘[NO]SSI=PRIV’’ SSI documents cannot contain privileged directives (e.g. <–#exec ...
–>) unless owned by SYSTEM ([1,4]) or are in path set as allowing these directives.
Use SSI=priv to enable this, NOSSI=priv to disable. Caution: these SSI directives
are quite powerful, use great care when allowing any particular document author or
authors to use them.

• ‘‘SSI=EXEC=<string>’’ where <string> is a comma-separated list of the #dcl parame-
ters permitted for the path allows fine-grained control of what capabilities are enabled.
The parameter ‘‘#’’ enables SSI on a per-path basis.

ssi=exec=say,show
ssi=exec=#

• SSLCGI=<keyword> - Enables and sets the type of CGI variables used to represent a
Secure Sockets Layer (SSL) CGI variables.

• ‘‘NOSSLCGI’’ disables the facility

• ‘‘SSLCGI=none’’ disables the facility

• ‘‘SSLCGI=Apache_mod_SSL’’ provides Apache mod_ssl style variables

• ‘‘SSLCGI=Purveyor’’ provides Purveyor style variables

14–18 Request Processing Configuration

When enabling these variables it is advised to increase the HTTPD$CONFIG [Buffer-
SizeDclCommand] and [BufferSizeCgiPlusIn] directives by approximately 2048.

• [NO]STMLF - Specify files to be automatically converted to Stream-LF format. The
default is to ignore conversion. STMLF allows selected paths to be converted. See File
Record Format.

• THROTTLE=<parameter> - Controls the concurrent number of scripts being processed
on the path.

• ‘‘THROTTLE=n[/u][,n,n,n,hh:mm:ss,hh:mm:ss]’’

• ‘‘THROTTLE=FROM=n’’

• ‘‘THROTTLE=USER=u’’

• ‘‘THROTTLE=TO=n’’

• ‘‘THROTTLE=RESUME=n’’

• ‘‘THROTTLE=BUSY=n’’

• ‘‘THROTTLE=TIMEOUT=QUEUE=hh:mm:ss’’

• ‘‘THROTTLE=TIMEOUT=BUSY=hh:mm:ss’’

See Section 6.4.

• TIMEOUT=<parameter> - Sets the appropriate timeout period on a per-path basis.

• ‘‘TIMEOUT=hh:mm:ss,hh:mm:ss,hh:mm:ss’’

• ‘‘TIMEOUT=KEEPALIVE=hh:mm:ss’’

• ‘‘TIMEOUT=NOPROGRESS=hh:mm:ss’’

• ‘‘TIMEOUT=OUTPUT=hh:mm:ss’’

The composite directive has the order keep-alive then no-progress then output. These
parallel the respective configuration timeout periods. See Section 10.2.

Of course, as with all mapping rules, paths containing file types (extensions) may be specified
so it is quite easy to apply settings to particular groups of files. Multiple settings may be
made against the one path, merely separate set directives from each other with white-space.
If a setting string is required to contain white-space enclose the string with single or double
quotes, or curly brackets. The following example gives a small selection of potential uses.

Request Processing Configuration 14–19

examples of SET rule usage

disable caching for selected paths
set /ht_root/src/* NOcache
set /sys$common/* NOcache
enable stream-LF conversion in selected directory trees
set /web/* stmlf
set /ht_root/* stmlf
respond with Cyrillic character set(s) from relevant directories
set /*/8859-5/* charset=ISO-8859-5
set /*/koi8-r/* charset=KOI8-R
the Sun Java tutorial when UNZIPped contains underscores for invalid characters
set /vms/java/tutorial/* RMSchar=_
if a request has "/plain-text/" in its path then ALWAYS return as plain-text!
set /*/plain-text/* content=text/plain
map /*/plain-text/* /*/*
same for "/binary/"
set /*/binary/* content=text/plain
map /*/binary/* /*/*
indicate extended file specifications on this path
set /Documents/* ODS=5
pass /Documents/* /ods5_device/Documents/*
throttle this script’s execution, 5 executing, unlimited waiting
set /cgi-bin/big_script* throttle=5
disable server script search for this RTE
set /onerte/* script=nofind
exec /onerte/* (CGI-BIN:[000000]ONERTE.EXE)/ht_root/src/one/*

Postfix SET Rule

Path SETings may appended to any rule that contains both a template and result. This
makes it possible to apply path SETings using matching final rules. For example a matching
PASS rule does not require a separate, preceding SET rule containing the same path to also
apply required SETings. This is more efficient (requiring less pattern matching) and tends
to make the rule set less cluttered.

examples of postfix SET rule usage

if a request has "/plain-text/" in its path then ALWAYS return as plain-text!
map /*/plain-text/* /*/* content=text/plain
same for "/binary/"
map /*/binary/* /*/* content=text/plain
indicate extended file specifications on this path
pass /Documents/* /ods5_device/Documents/* ODS=5
throttle this script’s execution, 5 executing, unlimited waiting
script /big_script* /cgi-bin/big_script* throttle=5

14.5 Mapping Examples
The example mapping rule file for the WASD HTTP server can be viewed.

online hypertext link

14–20 Request Processing Configuration

Example of Map Rule

The result string of these rules may or may not correspond to to a VMS physical file system
path. Either way the resulting rule is further processed before passing or failing.

1. The following example shows a path ‘‘/web/unix/shells/c’’ being mapped to ‘‘/web/software/unix/scripts/c’’,
with this being used to process further rules.

map /web/unix/* /web/software/unix/*

Examples of Pass Rule

1. This example shows a path ‘‘/web/rts/home.html’’ being mapped to ‘‘/user$rts/web/home.html’’,
and this returned as the mapped path.

pass /web/rts/* /user$rts/web/*

2. This maps a path ‘‘/icon/bhts/dir.gif’’ to ‘‘/web/icon/bhts/dir.gif’’, and this returned as the
mapped path.

pass /icon/bhts/* /web/icon/bhts/*

3. This example illustrates HTTP status code mapping. Each of these does basically the
same thing, just using one of the three possible delimiters according to the characters
required in the message. The server generates a 403 response with has as its text the
following message. (Also see the conditional mapping examples.)

pass /private/* "403 Can’t go in there!"
pass /private/* ’403 "/private/" is off-limits!’
pass /private/* {403 Can’t go into "/private/"}

Examples of Fail Rule

1. If a URL path ‘‘/web/private/home.html’’ is being mapped the path would immediately be
failed.

fail /web/private/*

2. To ensure all access fails, other than that explicitly passed, this entry should be included
the the rules.

fail /*

Examples of Exec and Script Rules

1. If a URL path ‘‘/htbin/ismap/web/example.conf’’ is being mapped the ‘‘/ht_root/script/’’ must
be the URL format equivalent of the physical VMS specification for the directory locating
the script DCL procedure. The ‘‘/web/example.conf’’ that followed the ‘‘/htbin/ismap’’ in
the original URL becomes the translated path for the script.

exec /cgi-bin/* /cgi-bin/*

Request Processing Configuration 14–21

2. If a URL path ‘‘/pl-bin/example/this/directory/and-file.txt’’ is being mapped the script
name and filename become ‘‘/pl-bin/example’’ and ‘‘HT_ROOT:[SRC.PERL]EXAMPLE.PL’’
respectively, the path information and translated become ‘‘/this/directory/and-file.txt’’
and ‘‘THIS:[DIRECTORY]AND-FILE.TXT’’, and the interpreter (run-time environment)
activated to interpret the script is CGI-BIN:[000000]PERLRTE.EXE.

exec /pl-bin/* (cgi-bin:[000000]perlrte.exe)/ht_root/src/perl/*

3. If a URL path ‘‘/conan/web/example.hlb’’ is being mapped the ‘‘/ht_root/script/conan’’ must
be the URL format equivalent of the physical VMS specification for the DCL procedure.
The ‘‘/web/example.hlb’’ that followed the ‘‘/conan/’’ in the original URL becomes the
translated path for the script.

script /conan* /ht_root/script/conan*

Example of Redirect Rule

1. If a URL path ‘‘/AnotherGroup/this/that/other.html’’ is being mapped the URL would be
redirected to ‘‘http://host/this/that/other.html’’

redirect /AnotherGroup/* http://host/group/*

14.6 Virtual Servers
As described in Section 6.3, virtual service syntax may be used with mapping rules to
selectively apply rules to one specific service. This example provides the essentials of using
this syntax. Note that service-specific and service-common rules may be mixed in any order
allowing common mappings (e.g. for scripting) to be shared.

a mapping rule example of virtual servers
[[alpha.domain.name:80]]
ALPHA is the only service allowing access to VMS help directory
pass /sys$common/syshlp/*
[[beta.domain.name:80]]
good stuff is only available from BETA
pass /good-stuff/*
BETA has its own error report format, the others share one
pass /errorreport /httpd/-/errorreportalpha.shtml
[[gamma.domain.name:80]]
gamma responds with documents using the Cyrillic character set
set /* charset=ISO-8859-5
[[*]]
common file and script mappings
exec /cgi-bin/* /cgi-bin/*
exec+ /cgiplus-bin/* /cgi-bin/*
script+ /help/* /cgiplus-bin/conan/*
pass /errorreport /httpd/-/errorreport.shtml
now the base directories for all documents
[[alpha.domain.name:80]]
/* /web/alpha/*
[[beta.domain.name:80]]
/* /web/beta/*
[[gamma.domain.name:80]]
/* /web/gamma/*
[[*]]
catch-all rule (just in case :-)

14–22 Request Processing Configuration

pass /* /web/*

The Server Administration page WATCH report (Section 19.4) provides the capability to view
the rule databse as well as rule mapping during actual request processing, using the WATCH
facility.

14.7 Conditional Mapping

(Somewhat) Deprecated and Discouraged
There is now a more versatile approach to achieving the same functionality described
in this section, see Chapter 9. Conditional mapping will be retained for the foreseeable
future with this documentation available for reference by older site configurations. The
two approaches may be used concurrently as required.

The purpose of conditional mapping is to apply rules only after certain criteria other than
the initial path match are met.

THIS OFFERS A POWERFUL TOOL TO THE SERVER ADMINISTRATOR!

Conditional mapping can be applied on the following criteria:

client internet address
browser-accepted languages
browser-accepted character sets
browser-accepted content-types
browser identification string
cookie data
host and port specified in request header
HTTP method (GET, POST, etc.)
proxy/gateway host(s) request forwarded by
refering page
request scheme (protocol . . . ‘‘http:’’ or ‘‘https:’’)
query string
server name
server port

Conditionals must follow the rule and are delimited by ‘‘[’’ and ‘‘]’’. Multiple, space-separated
conditions may be included within one ‘‘[...]’’. This behaves as a logical OR (i.e. the condition
only needs one matched to be true). Multiple ‘‘[...]’’ conditionals may be included against a
rule. These act as a logical AND (i.e. all must have at least one condition matched). If a
condition begins with a ‘‘!’’ it acts as a negation operator (i.e. matched strings result in a
false condition, unmatched strings in a true condition). The result of an entire conditional
may also be negated by prefixing the ‘‘[’’ with a ‘‘!’’.

If a conditional, or set of conditionals, is not met the rule is completely ignored.

Both wildcard and regular expression pattern matching is available (Chapter 8). Characters
reserved for delimiting the conditional must be backslash-escaped (spaces, TABs, wildcards
and the delimiting ‘‘[’’ and ‘‘]’’).

Request Processing Configuration 14–23

Mapping Conditionals

Conditional Description

ac: browser-accepted content types (‘‘Accept:’’ request header field)

al: browser-accepted languages (‘‘Accept-Language:’’ request header field)

as: browser-accepted character sets (‘‘Accept-Charset:’’ request header field)

ck: cookie data (‘‘Cookie:’’ request header field)

ex: extended file specification (boolean)

fo: request forwarded by proxy/gateway host(s) (‘‘Forwarded:’’ request header field)

ho: browser host internet name or address

hm: browser host internet address compare to dotted-decimal and mask

me: request HTTP method

mp: derived map path (after SCRIPT or MAP rule)

no: ‘‘notepad’’ contents

pa: first or second pass (after script resolution), as ’1’ or ’2’

pi: path information

qs: query string

rc: internally redirected count, as ’0’, ’1’, ’2’ ..

rf: refering page (‘‘Referer:’’ request header field)

ru: request URI (non-URL-decoded path)

sc: request scheme (protocol), ‘‘http’’, and if SSL is in use ‘‘https’’ (Chapter 18)

sn: server name

sp: server port

st: script name (after first pass script resolution)

ua: browser (‘‘User-Agent:’’ request header field)

vs: virtual host and port request directed to (‘‘Host:’’ request header field)

xf: proxied client (‘‘X-Forwarded-For:’’ request header field)

Examples
Note

It is possible to spoof (impersonate) internet host addresses. Therefore any controls ap-
plied using host name/address information cannot be used for authorization purposes
in the strictest sense of the term.

14–24 Request Processing Configuration

1. The following example shows a rule being applied only if the client host is within a
particular subnet. This is being used to provide a ‘‘private’’ home page to those in the
subnet while others get a ‘‘public’’ page by the second rule.

pass / /web/internal/ [ho:131.185.250.*]
pass / /web/

2. This is a similar example to the above, but showing multiple host specifications and
specifically excluding one particular host using the negation operator ‘‘!’’. This could be
read as pass if ((host OR host) AND (not host)).

pass / /web/internal/ [ho:*.fred.com ho:*.george.com] [!ho:you.fred.com]
pass / /web/

3. The next example shows how to prevent browsing of a particular tree except from specified
host addresses.

pass /web/internal/* /web/SorryNoAccess.html [!ho:131.185.250.*]
pass /web/internal/*

This could be used to prevent browsing of the server configuration files (an alternative to
this sort of approach is to use the authorization file, see Chapter 16).

pass /httpd/-/* /web/SorryNoAccess.html [!ho:131.185.250.201]

4. This example performs much the same task as the previous one, but uses whole condi-
tional negation to prevent browsing of a particular tree except from specified addresses
(as well as using the continuation character to provide a more easily comprehended lay-
out . . . note the trailing spaces as required). This could be read as pass if not (host OR
host OR host).

pass /web/internal/* /web/SorryNoAccess.html \
![\
ho:131.185.250.* \
ho:131.185.251.* \
ho:131.185.45.1 \
ho:ws2.wasd.dsto.gov.au\
]
pass /web/internal/*

5. This example demonstrates mapping pages according to geography or language preference
(it’s a bit contrived, but . . .)

pass /doc/* /web/doc/french/* [ho:*.fr al:fr]
pass /doc/* /web/doc/swedish/* [ho:*.se al:se]
pass /doc/* /web/doc/english/*

6. How to exclude specific browsers from your site (how many times have we seen this!)

I had to pick on a well-known acronym, no offence Bill!
pass /* /web/NoThankYou.html [ua:*MSIE*]

7. This example allows excluding certain requests from specific addresses. This could be
read as pass if ((method is POST) AND (not host)).

pass /* /web/NotAllowed.html [me:POST] [!ho:*.my.net]

Request Processing Configuration 14–25

8. The following illustrates using the server name and/or server port to conditionally map
servers executing on clustered nodes using the same configuration file, or for multi-
homed/multi-ported hosts. Distinct home pages are maintained for each system, and
on BETA two servers execute, one on port 8000 that may only be used by those within
the specified network address range.

pass / /web/welcome_to_Alpha.html [sn:alpha.*]
pass / /web/welcome_to_Beta.html [sn:beta.*] [sp:80]
pass /* /sorry_no_access.html [sn:beta.*] [sp:8000] [!ho:*.my.sub.net]
pass / /web/welcome_to_Beta_private.html [sn:beta.*] [sp:8000]

9. Each of these three do basically the same thing, just using the three possible delimiters
according to the characters required in the message. The server generates a 403 response
with has as its text the following message.

pass /private/* "403 Can’t go in there!" [!ho:my.host.name]
pass /private/* ’403 "/private/" is off-limits!’ [!ho:my.host.name]
pass /private/* {403 Can’t go into "/private/"} [!ho:my.host.name]

10. This example illustrates the use of a host network mask, the ‘‘HM:’’ conditional.

pass /private/* "403 Can’t go in there!" [!hm:131.185.250.128/255.255.255.192]

The mask is a dotted-decimal network address, a slash, then a dotted-decimal mask. This
example shows a 6 bit subnet. Network mask conditionals operate by bitwise-ANDing the
client host address with the mask, bitwise-ANDing the network address supplied with
the mask, then comparing the two results for equality. Using the above example the host
131.185.250.250 would be accepted, but 131.185.250.50 would be rejected.

Note that rule processing for any particular path may be checked using the WATCH
facility from the Server Administration page. See Chapter 20 for details.

14.8 Mapping User Directories (tilde character (‘‘~’’))
The convention for specifying user web areas is ‘‘/~username/’’. The basic idea is that the user’s
web-available file-space is mapped into the request in place of the tilde and username.

14.8.1 Using The SYSUAF

The USER rule maps a VMS user account default device and directory (i.e. home directory)
into a request path (Section 14.4.3). That is, the base location for the request is obtained from
the VMS systems SYSUAF file. A user’s home directory information is cached, to reduce load
on the authorization databases. As this information is usually quite static there is no timeout
period on such information (although it may be flushed to make room for other user’s). Cache
contents is include in the Mapping Rules Report (Section 19.4) and is implicitly flushed when
the server’s rules are reloaded (Section 19.6).

The following is a typical usage of the rule.

USER /~*/* /*/www/*

Note the ‘‘/www’’ subdirectory component. It is stongly recommended that users never be
mapped into their top-level, but into a web-specific subdirectory. This effectively ‘‘sandboxes’’
Web access to that subdirectory hierarchy, allowing the user privacy elsewhere in the home
area.

14–26 Request Processing Configuration

To accomodate request user paths that do not incorporate a trailing delimiter after the
username the following redirect may be used to cause the browser to re-request with a more
appropriate path (make sure it follows the USER rule).

REDIRECT /~* ///~*/

WASD also ‘‘reverse maps’’ VMS specifications into paths and so requires additional rules to
provide these mappings. (Reverse mapping is required during directory listings and error
reporting.) For the continuing example the following rules would be required (and in the
stated order).

USER /~*/* /*/www/*
REDIRECT /~* ///~*/
PASS /~*/* /user$disk/*/www/*

Where user home directories are spread over multiple devices (physical or concealed logical)
a reverse-mapping rule would be required for each. Consider the following situation, where
user directories are distributed across these devices (concealed logicals)

USER$GROUP1:
USER$GROUP2:
USER$GROUP2:
USER$OTHER:

This would require the following mapping rules (in the stated order).

USER /~*/* /*/www/
PASS /~*/* /user$group1/*/www/*
PASS /~*/* /user$group2/*/www/*
PASS /~*/* /user$group3/*/www/*
PASS /~*/* /user$other/*/www/*

Accounts with a search list as a default device (e.g. SYS$SYSROOT) present particular
complications in this schema and should be avoided.

Note
Accounts that possess SYSPRV, are CAPTIVE, have been DISUSERED or that have
expired passwords will not be mapped. A ‘‘directory not found’’ error report is returned.
This error was chosen to make it to make more difficult to probe the authorization
environment, determining whether accounts exist or not.

Of course vanilla mapping rules may be used to provide for special cases. For instance, if
there is requirement for a particular, privileged account to have a user mapping that could
be provided as in the following (rather exagerated) example.

PASS /~system/* /sys$common/sysmgr/www/*
USER /~*/* /*/www/
PASS /~*/* /user$disk/*/www/*

Request Processing Configuration 14–27

User Account Scripting

In some situations it may be desirable to allow the average Web user to experiment with
or implement scripts. With WASD 7.1 and later, and VMS V6.2 and later, this is possible.
Detached scripting must be enabled, the /PERSONA startup qualifier used, and appropriate
mapping rules in place. If the SET ‘‘script=as=’’ mapping rule specifies a tilde character then
for a user request the mapped SYSUAF username is substituted.

The following example shows the essentials of setting up a user environment where access to
a subdirectory in the user’s home directory, [.WWW] with script’s located in a subdirectory of
that, [.WWW.CGI-BIN].

SET /~*/www/cgi-bin/* script=as=~
UXEC /~*/cgi-bin/* /*/www/cgi-bin/*
USER /~*/* /*/www/*
REDIRECT /~* /~*/
PASS /~*/* /dka0/users/*/*

For more detailed information see the ‘‘Scripting Overview, Introduction’’.

14.8.2 Without Using The SYSUAF

Deprecated and Discouraged
There are now ‘‘better’’ approaches to achieving the same functionality as described
in this section. This documentation is retained only for reference by older site
configurations.

The server is also able to map user directories using the same mechanisms as for any other.
No reference needs to be made to the SYSUAF, user support can be accomplished via a
combination of mapping rule and logical name. This approach relies on a correspondance
between the username and the home directory name. Hence users are made known by the
HTTPd using the name of their top-level directory. User scripts can also be supported using
WASD’s DECnet scripting environment.

The ‘‘PASS’’ rule provides a wildcard representation of users’ directory paths. As part of this
mapping a subdirectory specifically for the hypertext data should always be included. Never
map users’ top-level directories. For instance if a user’s account home directory was located in
the area USER$DISK:[DANIEL] the following rule would potentially allow the user DANIEL
to provide web documents from the home subdirectory [.WWW] (if the user has created it)
using the accompanying URL:

pass /~*/* /user$disk/*/www/*

http://host/~daniel/

It is recommended that a separate logical name be created for locating user directories. This
helps hide the internal organisation of the file system. The following logical name definition
and mapping rule illustrate this point.

$ DEFINE /SYSTEM /EXEC /TRANSLATION=CONCEALED WWW_USER device:[USER.]

pass /~*/* /www_user/*/www/*

14–28 Request Processing Configuration

Where users are grouped into different areas of the file system a logical search list may be
defined.

$ DEFINE /SYSTEM /EXEC /TRANSLATION=CONCEALED -
WWW_USER -
DISK1:[GROUP1.], -
DISK1:[GROUP2.], -
DISK2:[GROUP3.], -
DISK2:[GROUP4.]

pass /~*/* /www_user/*/www/*

As logical search lists have specific uses and some complications (e.g. when creating files)
this is the only use for them recommended with this server, although it is specifically coded
to allow for search lists in document specifications.

If only a subset of all users are to be provided with WWW publishing access either their
account directories can be individually mapped (best used only with a small number) or a
separate area of the file system be provided for this purpose and specifically mapped as user
space.

Of course, user mapping is amenable to all other rule processing so it is a simple matter to
redirect or otherwise process user paths. For instance, the published username does not need
to, or need to continue to, correspond to any real user area, or the user’s actual name or home
area:

redirect /~doej/* http://a.nother.host/~doej/*
pass /~doej/* /www/messages/deceased.html
pass /~danielm/* /specialwwwarea/danielm/*
pass /~Mark.Daniel/* /user$disk/danielm/www/*
pass /~*/* /www_user/*/www/*

A user directory is always presented as a top-level directory (i.e. no parent directory is shown),
although any subdirectory tree is accesssable by default.

Request Processing Configuration 14–29

Chapter 15

Authorization Quick Guide

WASD offers a comprehensive and versatile authentication and authorization environment. A
little too comprehensive, often leaving the new administrator wondering where to begin. The
role of this chapter is to provide a starting place, especially for sources of authentication, along
with some basic configurations. Chapter 16 contains a detailed explanation of all aspects. All
examples here assume a standard installation and environment.

Just to clarify. Authentication is the verification of a user’s identity, usually through
username/password credentials. Authorization is allowing a certain action to be applied
to a particular path based on that identity.

15.1 SYSUAF/Identifier Authentication
This setup allows any active account to authenticate using the local VMS username and
password. By default not every account may authenticate this way, only those holding
specified VMS rights identifiers. See Section 16.10.2. The examples provided in this section
allows access to the WASD online Server Administration facility, and so may be followed
specifically for that purpose, as well as serve as a general guide.

• Define the following logical before calling the server startup procedure. To make such a
definition permanent add it to the system or Web environment startup procedures. This
logical contains a startup qualifier that configures the server to allow authentication from
the SYSUAF, using VMS rights identifiers (Section 16.2).

$ DEFINE /SYSTEM HTTPD$STARTUP_SERVER "/SYSUAF=ID"
$ @device:[HT_ROOT.LOCAL]STARTUP.COM

After a change to a command-line qualifier of the server such as the above it needs to be
restarted using the following directive.

$ HTTPD/DO=RESTART

• Decide on an identifier name. This can be an existing identifier, or one created for the
purpose. For this example the identifier will be ‘‘WASD_WEBADMIN’’. Any identifier can
be created using actions similar to the following example.

Authorization Quick Guide 15–1

$ SET DEFAULT SYS$SYSTEM
$ MCR AUTHORIZE
UAF> ADD /IDENTIFIER WASD_WEBADMIN

• Modify the authorization configuration file, accessed by the server using the system logical
HTTPD$AUTH, to contain the following. This allows full access to the online Server
Administration facility and [.LOCAL] directory (and no world access). Additional paths
may be added as required, and of course multiple identifiers may be created and used for
multiple realms and paths.

["Web Admin"=WASD_WEBADMIN=id]
/httpd/-/admin/* r+w
/ht_root/local/* r+w

• The identifier must then be granted to those accounts allowed to authenticate in this way.

$ SET DEFAULT SYS$SYSTEM
$ MCR AUTHORIZE
UAF> GRANT /IDENTIFIER WASD_WEBADMIN SYSTEM

• Using this approach useful discrimination may be exercised. For instance, one identifier
for Web administrators, another (or others) for different authentication requirements.

["Web Admin"=WASD_WEBADMIN=id]
/ht_root/local/* r+w
/httpd/-/admin/* r+w
["Area Access"=area-identifier-name=id]
/web/area/* r+w ; r

Of course the one account may hold multiple identifiers and so may have access to various
areas.

UAF> GRANT /IDENTIFIER WASD_WEBADMIN SYSTEM
UAF> GRANT /IDENTIFIER area-identifier-name SYSTEM

Using VMS rights identifiers allows significant granularity in providing access.

After Changes

If the HTTPD$AUTH configuration file is changed, or rights identifiers are granted or
revoked from accounts, the server should be directed to reload the file and purge any cached
authorization information.

$ HTTPD/DO=AUTH=LOAD
$ HTTPD/DO=AUTH=PURGE

15.2 Other Authentication
Other sources of authentication are available, either by themselves or used in the same
configuration file (different realms and paths) as those already discussed (Section 16.5). Non-
SYSUAF sources do not require any startup qualifier to be enabled.

• ACME DOIs (Authentication and Credential Management Extension, Domains of Inter-
pretation) may be used to authenticate requests.

["Whatever you want to call it!"=doi=ACME]
/web/area/* r+w

15–2 Authorization Quick Guide

• Simple lists contain usernames and unencrypted passwords. These are plain-text files,
created and modified using any desired editor.

["Whatever you want to call it!"=list-name=list]
/web/area/* r+w

This is a very simple arrangement, with little inherent security. Lists are more useful
when grouping names together for specifying which group may do what to where.

• HTA databases are WASD-specific, binary repositories of usernames, encrypted pass-
words, capabilities, user and other detail.

["Whatever you want to call it!"=HTA-database-name=HTA]
/web/area/* r+w

These databases may be administered using the online Server Administration facility
(Section 19.5) or the HTAdmin command-line utility (Section 23.7), are quite secure and
versatile.

• External agents are authentication and authorization scripts executed on demand,
under the control-of but external to the server. It is possible for a site to write its own,
custom authorization agent.

["Whatever you want to call it!"=agent-name=agent]
/web/area/* r+w

Two variations on a versatile LDAP authenticator and a CEL-compatible authenticator,
along with example code is available in the HT_ROOT:[SRC.AGENT] directory.

• X.509 establishes identity based on Public Key Infrastructure (PKI) authentication
certificates. This is only available for SSL transactions.

[X509]
/web/area/* r+w

• RFC1413 IETF document describes an identification protocol that can be used as a form
of authentication within this realm.

["Whatever you want to call it!"=RFC1413;A_PROJECT=list]
/web/area/* r+w ; r

15.3 Read and Write Groupings
WASD allows separate sources for groups of usernames to control read and write access
in a particular realm (Section 16.6). These groups may be provided via simple lists, VMS
identifiers, HTA databases and authorization agents. The following example shows an
identifier authenticated realm with full and read-only access controlled by two simple lists.
For the first path the world has no access, for the second read-only access (with the read-only
grouping becoming basically redundant information).

["Realm Name"=identifier_name=id;full_access_name=list;read-only_name=list]
/web/area/* r+w ;
/web/another-area/* r+w ; r

Authorization Quick Guide 15–3

15.4 Considerations
Multiple authentication sources (realms) may be configured in the one HTTPD$AUTH file.

Multiple paths may be mapped against a single authentication source.

Any path may be mapped only once (for any single virtual service).

Paths may have additional access restrictions placed on them, including client host name,
username, etc (Access Restriction Keywords).

The configuration file is loaded and stored by the server at startup. If changed it must be
reloaded to take effect. This can be done manually using

$ HTTPD/DO=AUTH=LOAD

Authentication information is cached. Access subsequently removed or modified will not take
effect until the entry expires, or is manually purged using

$ HTTPD/DO=AUTH=PURGE

Failed attempts to authenticate against a particular source are limited. When this is exceeded
access is always denied. If this has happened the cache must be manually purged before a
user can successfully authenticate

$ HTTPD/DO=AUTH=PURGE

15–4 Authorization Quick Guide

Chapter 16

Authentication and Authorization

Authentication is the verification of a user’s identity, usually through username/password
credentials. Authorization is allowing a certain action to be applied to a particular path
based on authentication of the originator.

Generally, authorization is a two step process. First authentication, using a user-
name/password database. Second authorization, determining what the username is allowed
to do for this transaction.

Authentication environments can get complex very quickly, don’t forget to ‘‘keep it simple,
stupid’’, see Section 16.8.1.

Overview

By default, the system-table logical name HTTPD$AUTH locates a common authorization
rule file. Simple editing of the file and reloading into the running server changes the
processing rules.

Server authorization is performed using a configuration file, authentication source, and op-
tional full-access and read-only authorization grouping sources, and is based on per-path
directives. There is no user-configured authorization necessary, or possible! In the configu-
ration file paths are associated with the authentication and authorization environments, and
so become subject to the HTTPd authorization mechanism. Reiterating . . . WASD HTTPd
authorization administration involves those two aspects, setting authorization against paths
and administering the authentication and authorization sources.

Authorization is applied to the request path (i.e. the path in the URL used by the
client). Sometimes it is possible to access the same resource using different paths.
Where this can occur care must be exercised to authorize all possible paths.

Where a request will result in script activation, authorization is performed on both
script and path components. First script access is checked for any authorization, then
the path component is independently authorized. Either may result in an authorization chal-
lenge/failure. This behaviour can be disabled using a path SETting rule, see Section 14.4.5.

Authentication and Authorization 16–1

The authentication source name is refered to as the realm, and refers to a collection of
usernames and passwords. It can be the system’s SYSUAF database.

The authorization source is refered to as the group, and refers to a collection of usernames
and associated permissions.

16.1 Rule Interpretation
The configuration file rules are scanned from first towards last, until a matching rule is
encountered. Generally a rule has a trailing wildcard to indicate that all sub-paths are
subject to the same authorization requirements.

String Matching

Rule matching is string pattern matching, comparing the request specified path, and op-
tionally other components of the request when using configuration conditionals (Chapter 9),
to a series of patterns, until one of the patterns matches, at which stage the authorization
characteristics are applied to the request and authentication processing is undertaken. If a
matching pattern (rule) is not found the path is considered not to be subject to authorization.
Both wildcard and regular expression based pattern matching is available (Chapter 8).

16.2 Authentication Policy
A policy regarding when and how authorization can be used may be established on a per-server
basis. This can restrict authentication challenges to ‘‘https:’’ (SSL) requests (Chapter 18),
thereby ensuring that the authorization environment is not compromised by use in non-
encrypted transactions. Two server qualifiers provide this.

• /AUTHORIZE=

• ALL restricts all requests to authorized paths. If a path does not have authorization
configured against it it is automatically denied access. This is an effective method of
preventing inadvertant access to areas in a site (Section 16.13).

• SSL restricts all authentication/authorization transactions to the SSL environment.

• (SSL,ALL) combines the above two.

• /SYSUAF=

• Used without any keywords, this qualifier allows all current (non-expired, non-
disusered, etc.), non-privileged accounts to be used for authentication purposes.

• ID restricts SYSUAF authenticated account to those possessing a specific VMS
resource identifier (Section 16.10.2).

• PROXY allows non-SYSUAF to SYSUAF username proxying (Section 16.10.4).

• RELAXED allows any current account to be authorized via the SYSUAF. This is not
recommended, use rights identifiers to allow some discrimination to be exercised.

• SSL restricts only SYSUAF authenticated transactions to the SSL environment.

16–2 Authentication and Authorization

• VMS allows a combination of all current (non-expired, non-disusered, etc.), non-
privileged accounts to be used for authentication purposes (the /SYSUAF without
keywords behaviour), with the behaviours provided by the ID keyword.

• WASD enables the deprecated, "hard-wired" WASD identifier environment available
to this server. See Section 16.10.3.

• (VMS,ID,SSL) would allow these multiple keywords to be applied, etc.

Note also that individual paths may be restricted to SSL requests using either the mapping
conditional rule configuration or the authorization configuration files. See Section 14.7 and
Access Restriction Keywords.

In addition, the following configuration parameters have a direct role in an established
authorization policy.

• [AuthFailureLimit] [AuthFailurePeriod] [AuthFailureTimeout] provide a similar
break-in detection and evasion as with VMS. These three directives parallel the func-
tions of SYSGEN parameters LGI_BRK_LIM, LGI_BRK_TMO, LGI_HID_TIM. A single
authentication failure marks the particular username in the particular realm as suspect.
Repeated failures up to [AuthFailureLimit] attempts within the [AuthFailurePeriod] pe-
riod puts it into break-in evasion mode after which the period [AuthFailureTimeout] must
expire before further attempts have authentication performed and so have any chance to
succeed. (This is a change in behaviour to versions earlier than 8.3.) If any of the above
three parameters are not specified they default to the corresponding SYSGEN parameter.

• [AuthRevalidateLoginCookie] When user revalidation is in effect (see immediately
below), after having previously closed the browser initial authentication of a resource is
immediately followed by another if a cached entry on the server indicated revalidation was
required. This prevents this second request. Requires that browser cookies be enabled.

• [AuthRevalidateUserMinutes] sets the number of minutes between successive au-
thentication attempts before the user is forced to reenter the authentication data (via a
browser dialog). Zero disables this function. When enabling this feature is is inevitable
that [AuthRevalidateLoginCookie] will need to be enabled as well (described immediately
above). This is used to suppress an unavoidable second username/password prompt from
the browser.

Authentication Cache and Revalidation
User revalidation relies on an entry being maintained in the authentication cache.
Each time the entry is flushed, for whatever reason (cache congestion, command-
line purge, server restart, etc.), the user will be prompted for credentials. It may
be necessary to increase the size of the cache by adjusting [AuthCacheEntriesMax]
when this facility is enabled.

Authentication and Authorization 16–3

Authentication Failures

Details of authentication failures are logged to the server process log.

• %HTTPD-W-AUTHFAIL indicates a failure to authenticate (incorrect username/password).
The number of failures, the realm name, the user name and the originating host are pro-
vided. Isolated instances of this are only of moderate interest. Consecutive instances may
indicate a user thrashing about for the correct password, but they usually give up before
a dozen attempts.

• %HTTPD-I-AUTHFAILOK advises that a previous failure to authenticate has now
successfully done so. This is essentially informational.

• %HTTPD-W-AUTHFAILIM indicates the number of failures have exceeded the [Auth-
FailureLimit], after which automatic refusal begins. This message should be of concern
and the circumstances investigated, especially if the number of attempts becomes exces-
sive.

Failures may also be directed to the OPCOM facility (Section 6.11).

16.3 Permissions, Path and User
Both paths and usernames have permissions associated with them. A path may be
specified as read-only, read and write, write-only (yes, I’m sure someone will want this!), or
none (permission to do nothing). A username may be specified as read capable, read and write
capable, or only write capable. For each transaction these two are combined to determine
the maximum level of access allowed. The allowed action is the logical AND of the path and
username permissions.

The permissions may be described using the HTTP method names, or using the more concise
abbreviations R, W, and R+W.

HTTP Methods

Path/User DELETE GET HEAD POST PUT

READ or R no yes yes no no

WRITE or W yes no no yes yes

R+W yes yes yes yes yes

NONE no no no no no

DELETE yes yes no no no

GET no yes no no no

HEAD no no yes no no

POST no no no yes no

PUT no yes no no yes

16–4 Authentication and Authorization

16.4 Authorization Configuration File
Requiring a particular path to be authorized in the HTTP transaction is accomplished by
applying authorization requirements against that path in a configuration file. This is an
activity distinct from setting up and maintaining any authentication/authorization databases
required for the environment.

By default, the system-table logical name HTTPD$AUTH locates a common authorization
configuration file, unless an individual rule file is specified using a job-table logical name.
Simple editing of the file changes the configuration. Comment lines may be included by
prefixing them with the hash ‘‘#’’ character, and lines continued by placing the backslash
character ‘‘\ ’’ as the last character on a line.

The [IncludeFile] is a directive common to all WASD configuration, allowing a separate file
to be included as a part of the current configuration. See Section 6.13.

Configuration directives begin either with a ‘‘[realm]’’, ‘‘[realm;group]’’ or ‘‘[realm;group-
r+w;group-r]’’ specification, with the forward-slash of a path specification, or with a ‘‘[Auth-
Proxy]’’ or ‘‘[AuthProxyFile]’’ introducing a proxy mapping. Following the path specification
are HTTP method keywords controlling group and world permissions to the path, and any
access-restricting request scheme (‘‘https:’’) and/or host address(es) and/or username(s).

• REALM

Square brackets are used to enclose a [realm;group;group] specification, introducing a
new authentication grouping. Within these brackets is specified the realm name (au-
thentication source), and then optional group (authorization source) names separated by
semi-colons. All path specifications following this are authenticated against the speci-
fied realm database, and permissions obtained from the group ‘‘[realm;group]’’ database
(or authentication database if group not specified), until the next [realm;group;group]
specification.

The following shows the format of an authentication source (realm) only directive.

[authentication-source]

This one, the format of a directive using both authentication and authorization sources
(both realm and group).

[authentication-source ; authorization-source]

The third variation, using an authentication, full-access (read and write) and read-only
authorization sources (realm and two grouping).

[authentication-source ; full-access-source ; read-only-source]

The authentication source may also be given a description. This is the text the browser
dialog presents during password prompting. See Realm Description in Section 16.5.

• PATH

Paths are usually specified terminated with an asterisk wildcard. This implies that any
directory tree below this is included in the access control. Wildcards may be used to match
any portion of the specified path, or not at all. Following the path specification are control
keywords representing the HTTP methods or permissions that can be applied against the
path, and optional access-restricting list of host address(es) and/or username(s), separated

Authentication and Authorization 16–5

using commas. Access control is against either or both the group and the world. The
group access is specified first followed by a semi-colon separated world specification. The
following show the format of the path directive, see the examples below to further clarify
the format.

/root/path/ group-access-list,group-permissions ; \
world-access-list,world-permissions

• PROXY

The [AuthProxy] and [AuthProxyFile] directives introduces one or more SYSUAF proxy
mappings (Section 16.10.4).

The same path cannot be specified against two different realms for the same virtual
service. The reason lies in the HTTP authentication schema, which allows for only one
realm in an authentication dialog. How would the server decide which realm to use in
the authentication challenge? Of course, different parts of a given tree may have different
authorizations, however any tree ending in an asterisk results in the entire sub-tree being
controlled by the specified authorization environment, unless a separate specification exists
for some inferior portion of the tree.

There is a thirty-one character limit on authentication source names.

Reserved Names

The following names are reserved and have special functionality.

• EXTERNAL - Any authentication and authorization will be done in some way by an
external CGI script. None is attempted by the server. The server does pre-processs the
supplied "Authorization:" field however and ensures that any request against a path with
this realm supplies authorization credentials before any further request processing (script
activation) occurs.

• NONE - This refers to any request, is not authenticated in a any way, and just marks
the path as having been authorized for access (Section 16.13).

• OPAQUE - Allows a script generating its own challenge/response and doing all its own
"Authorization:" field processing (a little like EXTERNAL but the server does absolutely
nothing).

• PROMISCUOUS - This realm is only available while the /PROMISCUOUS qualifier is
in use (Chapter 19).

• RFC1413 - This IETF document describes an identification protocol that can be used as
a form of authentication within this realm.

• WORLD - This refers to any request and is not authenticated in any way, only the
permissions associated with the path are applied to the request. The reserved username
‘‘WORLD’’ becomes the authenticated username.

• VMS - Use the server system’s SYSUAF database to authenticate the username. For
‘‘http:’’ requests the username/password pairs are transmitted encoded but not encrypted,
this is not recommended. For ‘‘https:’’ requests, using the implicit security offered by
SSL (Chapter 18) the use of SYSUAF authentication is considered viable.

16–6 Authentication and Authorization

By default accounts with SYSPRV authorized are always rejected to discourage the use
of potentially significant usernames (e.g. SYSTEM). Accounts that are disusered, have
passwords that have expired, or that are captive or restricted are also automatically
rejected.

The authentication source may be disguised by giving it a specific description. This will
the text the browser dialog presents during password prompting. See Realm Description
in Section 16.5.

See Section 16.10 for further information on these topics.

• X509 - Uses X.509 v3 certificates (browser client certificates) to establish identity (au-
thentication) and based on that identity control access to server resources (authorization).
This is only available for SSL transactions. See Chapter 18 for further information on
SSL, and Section 18.3.7 on X509 realm authorization.

Reserved Username

The following username is reserved.

• WORLD - If a path is authorized using the WORLD realm the pseudo-authenticated
username becomes ‘‘WORLD’’. Any log will reflect this username and scripts will access
a WWW_REMOTE_USER containing this value. Although not forbidden, it is not
recommended this string be used as a username in other realms.

Access Restriction Keywords

If a host name, protocol identifier or username is included in the path configuration directive it
acts to further limit access to matching clients (path and username permissions still apply).
If more than one are included a request must match each. If multiple host names and/or
usernames are included the client must match at least one of each. Host and username
strings may contains the asterisk wildcard, matching one or more consecutive characters.
This is most useful when restricting access to all hosts within a given domain, etc. In addition
a VMS security profile may be associated with the request.

• Host Names - may be specified as either alphabetic (if DNS name resolution is enabled,
see [DNSlookup] configuration directive) or literal addresses. When a host restriction
occurs there is never an attempt to authenticate any associated username. Hence
applying host restrictions very effectively prevents an attack from outside the allowed
addresses. The reserved word #localhost refers to the host name the server is executing
on.

• Network Mask - The mask is a dotted-decimal network address, a slash, then a dotted-
decimal mask or VLSM (variable-length subnet mask). A network mask operates by
bitwise-ANDing the client host address with the mask, bitwise-ANDing the network
address supplied with the mask, then comparing the two results for equality.

• Request Scheme - (protocol) either ‘‘http:’’ or secured via ‘‘https:’’ (SSL)

• User Names - are indicated by a leading tilde, the ‘‘~’’ character (similar or username
URL syntax).

Authentication and Authorization 16–7

• Profile - a SYSUAF-authenticated username can have its VMS security profile associated
with the request. When applied to a path this profile is used to determine access to the file
system. The HTTPD$AUTH configuration file can have the keyword ‘‘profile’’ added to the
restriction list (Section 16.10.7). In a manner-of-speaking this keyword lifts a restriction.

For example

/web/secret/* *.three.stooges,~Moe,~Larry,~Curly,read

restricts read access to Curly, Larry and Moe accessing from within the three.stooges network,
while

/web/secret/* https:,*.three.stooges,~Moe,~Larry,~Curly,read

applies the further restriction of access via ‘‘https:’’ (SSL) only.

These examples show the use of a network mask to restrict based on the source network of
the client. The first, four octets supplied as a mask. The second a VLSM used to specify the
length of the network component of the address.

/web/secret/* https:,#131.185.250.128/255.255.255.192,~Moe,~Larry,~Curly,read

/web/secret/* https:,#131.185.250.128/26,~Moe,~Larry,~Curly,read

These examples both specify a 6 bit subnet. With the above examples the host 131.185.250.250
would be accepted, but 131.185.250.50 would be rejected.

Note that it more efficient to place protocol and host restrictions at the front of a list.

16.5 Authorization Sources
Username authorization information may be derived from several sources, each with different
characteristics.

• VMS Rights Identifier

An identifier is indicated by appending a ‘‘=ID’’ to the name of the realm or group. Also
refer to Section 16.10.2.

Whether or not any particular username is allowed to authenticate via the SYSUAF may
be controlled by that account holding or not holding a particular rights identifier. Placing
‘‘=ID’’ against realm name implies the username must exist in the SYSUAF and hold the
specified identifier name.

[PROJECT_A=id]

When (and only when) a username has been authenticated via the SYSUAF, rights
identifiers associated with that account may be used to control the level-of-access within
that realm. This is in addition to any identifier controlling authentication itself.

[PROJECT_A=id;PROJECT_A_LIBRARIAN=id;PROJECT_A_USER=id]

In this example a username would need to hold the PROJECT_A identifier to be able
to authenticate, PROJECT_A_LIBRARIAN to write the path(s) (via POST, PUT) and
PROJECT_A_USER to be able to read the path(s).

• VMS Authentication

16–8 Authentication and Authorization

The server system SYSUAF may be used to authenticate usernames using the VMS
account name and password. The realm being VMS may be indicated by using the name
‘‘VMS’’, by appending ‘‘=VMS’’ to another name making it a VMS synonym, or by giving it a
specific description (Realm Description in Section 16.5). Further information on SYSUAF
authentication may be found in Section 16.10. These examples illustrate the general idea.

[VMS]
[LOCAL=vms]
[ANY_NAME_AT_ALL=vms]

• ACME

Three Authentication and Credential Management Extension (ACME) agents are cur-
rently available (as at WASD v9.3), "VMS" (SYSUAF), "MSV1_0" (Microsoft domain au-
thentication used by Advanced Server) and an LDAP kit. There is also an API that will
allow local or third-party agents to be developed. WASD ACME authentication is com-
pletely asynchronous and so agents that make network or other relatively latent queries
will not add granularity into server processing. By default ACME is used to authenti-
cate requests against the SYSUAF on Alpha and Itanium running VMS V7.3 or later
(Section 16.10.1).

For authorization rules explicitly specifying ACME the Domain Of Interpretation (DOI)
becomes the realm name, interposed between the relam description and the ACME
authentication source keyword. In this first example the DOI is VMS and so all WASD
SYSUAF authentication capabilities are available.

["ACME Coyote"=VMS=ACME;JIN_PROJECT=id]
/a/path/* r+w,https:

In the second example authentication is performed using the same credentials as Ad-
vanced Server running on the local system.

["PC Users"=MSV1_0=ACME]
/a/nuther/path/* r+w,https:

In this final example the DOI is a third-party agent.

["More ACME"=THIRD-PARTY=ACME]
/a/different/path/* r+w,https:

• Simple List

A plain-text list may be used to provide usernames for group membership. The format
is one username per line, at the start of the line, with optional, white-space delimited
text continuing along the line (which could be used as documentation). Blank lines and
comment lines are ignored. A line may be continued by ending it with a ‘‘\ ’’ character.
These files may, of course, be created and maintained using any plain text editor. They
must exist in the HT_AUTH: directory, have an extension of ‘‘.$HTL’’, and do not need to
be world accessible.

the stooges
curley Jerome Horwitz
larry Louis Feinberg
moe Moses Horwitz
shemp Samuel Horwitz
JoeBesser
JoeDeRita

Authentication and Authorization 16–9

Simple lists are indicated in the configuration by appending a ‘‘=LIST’’ to the name.

[VMS;STOOGES=list]

It also possible to use a simple list for authentication purposes. The plain-text password
is appended to the username with a trailing equate symbol. Although in general this is
not recommended as everything is stored as plain-text it may be suitable as an ad hoc
solution in some circumstances. The following example shows the format.

silly example
fred=dancesalittle Guess who?
ginger=rogers No second prizes!

• HTA Database

These are binary, fixed 512 byte record files, containing authentication and authorization
information. HTA databases may be used for authentication and group membership
purposes. The content is much the same, the role differs according to the location in
the realm directive. These databases may be administered using the online Server
Administration facility (Section 19.5) or the HTAdmin command-line utility (Section 23.7).
They are located in the HT_AUTH: directory and have an extension of ‘‘.$HTA’’.

(Essentially for historical reasons) HTA databases are the default sources for authoriza-
tion information. Therefore, using just a name, with no trailing ‘‘=something’’, will config-
ure an HTA source. Also, and recommended for clearly showing the intention, appending
the ‘‘=HTA’’ qualifier specifies an HTA database. The following example show some of the
variations.

[VMS;PROJECT_A=hta]
[DEVELOPERS=hta;PROJECT_A=hta]

• X.509 Client Certificate

Uses X.509 v3 certificates (browser client certificates) to establish identity (authentication)
and based on that identity control access to server resources (authorization). This is only
available for SSL transactions. See Chapter 18 for further information on SSL, and
Section 18.3.7 on X509 realm authorization.

• RFC1413 Indentification Protocol

From RFC1413 (M. St.Johns, 1993) . . .

The Identification Protocol (a.k.a., ‘‘ident’’, a.k.a., ‘‘the Ident Protocol’’) provides a means
to determine the identity of a user of a particular TCP connection. Given a TCP port
number pair, it returns a character string which identifies the owner of that connection on
the server’s system.

and . . .

The information returned by this protocol is at most as trustworthy as the host providing
it OR the organization operating the host. For example, a PC in an open lab has few if
any controls on it to prevent a user from having this protocol return any identifier the
user wants. Likewise, if the host has been compromised the information returned may be
completely erroneous and misleading.

16–10 Authentication and Authorization

The Identification Protocol is not intended as an authorization or access control protocol.
At best, it provides some additional auditing information with respect to TCP connections.
At worst, it can provide misleading, incorrect, or maliciously incorrect information.

Nevertheless, RFC1413 may be useful for some purposes in some heterogeneous environ-
ments, and so has been made available for authentication purposes.

[RFC1413]
["Descriptions can be used!"=RFC1413;A_PROJECT=list]

The RFC1413 realm generates no browser username/password dialog. It relies on the
system supporting the client to return a reliable identification of the user accessing the
HTTP server by looking-up the user of the server connection’s peer port.

• Authorization Agent

An authorization agent is a CGI-compliant CGIplus script that is specially activated
during the authorization processing. Using CGI environment variables it gets details of
the request, makes an assessment based on its own internal authentication/authorization
processing, and using the script callout mechanism returns the results to the server, which
then acting on these, allows or denies access.

Such agents allow a site to develop local authentication/authorization mechnisms rela-
tively easily, based on CGI principles. A discussion of such a development is not within
the scope of this section, see the ‘‘WASD Scripting Environment’’ document for information
on the use of callouts, and the example and working authorization agents provided in the
HT_ROOT:[SRC.AGENT] directory. The description at the beginning of these programs
covers these topics in some detail.

An authorization agent would be configured using something like the following, where
the ‘‘AUTHAGENT’’ is the actual script name doing the authorization. This has the the
path ‘‘/cgiauth-bin/’’ prepended to it.

["Example Agent"=AUTHAGENT_EXAMPLE=agent]
/some/path/or/other/* r+w

It is possible to supply additional, per-path information to an agent. This can be any
free-form text (up to a maximum length of 63 characters). This might be a configuration
file location, as used in the example CEL authenticator. For example

["CEL Authenticator"=AUTHAGENT_CEL=agent]
/some/path/or/other/* r+w,param=HT_ROOT:[LOCAL]CEL1.LIS
/a/nother/path/* r+w,param=HT_ROOT:[LOCAL]CEL2.LIS

Generally authorization agent scripts use 401/WWW-Authorize: transactions to establish
identity and credentials. It is possible for an agent to establish identity outside of this
using mechanisms available only to itself. In this case it is necessary suppress the usually
automatic generation of username/password dialogs using a realm of agent+opaque

[AUTHAGENT_PAPI=agent+opaque]
/papi/path/or/other/* r+w
/a/nother/papi/path/* r+w

Authentication and Authorization 16–11

An older mechanism required a leading parameter of ‘‘/NO401’’. It is included here only
for reference. The agent+opaque realm should now always be used.

["Another Authenticator"=AUTHAGENT_ANOTHER=agent]
/some/path/or/other/* r+w,param="/NO401 MORE PARAMETERS CAN BE SUPPLIED"
/a/nother/path/* r+w,param="/NO401 OTHER PARAMETERS CAN BE SUPPLIED"

It is necessary to have the following entry in the HTTPD$MAP configuration file:

exec+ /cgiauth-bin/* /cgi-bin/*

This allows authentication scripts to be located outside of the general server tree if desired.

• Host Group

Instead of a list of usernames contained in a database, a group within a realm (either
or both full-access-source or read-only-source, see Section 16.4) may be specified as a
host, group of hosts or network mask. This acts to restrict all requests from clients not
matching the IP address specification. Unlike the per-path access restrict list (Access
Restriction Keywords) this construct applies to all paths in the realm. It also offers
relative efficiencies over restriction lists and lends itself to some environments based on
per-host identification (e.g. the RFC1413 realm). Note that IP addresses can be spoofed
(impersonated) so this form of access control should be deployed with some caution.

[RFC1413;131.185.250.*]
/path1/to/be/authorized/* r+w

[RFC1413;131.185.250.0/24]
/path2/to/be/authorized/* r+w

[RFC1413;131.185.250.0/255.255.255.0]
/path3/to/be/authorized/* r+w

The examples of realm specifications above all act to restrict read-write access via the
RFC1413 realm to hosts within the 131.185.250.nnn subnet.

Multiple Source Types

A realm directive may contain one or more different types of authorization information source,
with the following restrictions.

• Rights identifiers may only be used with SYSUAF authenticated requests. The following
combinations would therefore not be allowed.

[DEVELOPERS;PROJECT_A=id]
[DEVELOPERS=hta;LIBRARIAN=id;PROJECT_A=list]
[STOOGES=list;MOE_HOWARD=id]

• WASD rights identifiers (deprecated) may only be used for group membership when the
/AUTHORIZE=WASD server qualifier has been specified at startup, and the username
has been authenticated using a WASD identifier. See Section 16.10.3.

16–12 Authentication and Authorization

Realm Description

It is possible to supply text describing the authentication realm to the browser user that
differs from the actual source name. This may be used to disguise the actual source or to
provide a more informative description than the source name conveys.

Prefixing the actual realm source name with a double-quote delimited string (of up to 31
characters) and an equate symbol will result in the string being sent to a browser as the
realm description during an authentication challenge. Here are some examples.

["the local host"=VMS]
["Social Club"=SOCIAL_CLUB_RW=id]
["Finance Staff"=FINANCE=list]
["Just Another Database"=DBACCESS=hta]

Note
The Digest authentication scheme uses the realm description at both server and
browser in the encrypted password challenge and response. When passwords are
stored in an HTA file this realm synonym cannot be changed without causing these
passwords to be rendered invalid.

16.6 Realm, Full-Access, Read-Only
WASD authorization offers a number of combinations of access control. This is a summary.
Please note that when refering to the level-of-access a particular username may be allowed
(read-only or full, read-write access), that it is always moderated by the level-of-access
provided with a path configured within that realm. See Section 16.3.

• Authentication Only

When a path is controlled by a realm that comprises an authentication source only, as in
this example

[authentication-source]

usernames authenticated using that are granted full (read and write) access.

• Authentication and Group

Where a group membership source is provided following the authentication source, as
illustrated in this example

[authentication-source;group-source]

the level-of-access depends on the source of the group membership. If from a simple-list
of usernames or via a VMS rights identifier the username receives full (read and write)
access. If from an HTA database the access is dependent on what is set against that user
in the database. It can be either full or read-only.

• Authentication and Two Groups

When a second group is specified, as in

Authentication and Authorization 16–13

[authentication-source;group-source;group-source]

the authentication is interpreted in a fixed fashion. The first group specified contains
usernames to be granted full (read and write) access. The second group read-only access.
Should a username occur in both groups full access takes precedence.

16.7 Virtual Servers
As described in Section 6.3, virtual service syntax may be used with authorization mapping
to selectively apply rules to one specific service. This example provides the essentials of using
this syntax. Note that service-specific and service-common rules may be mixed in any order
allowing common authorization environments to be shared.

authorization rules example for virtual servers
[[alpha.wasd.dsto.defence.gov.au:443]]
ALPHA SSL is the only service permitting VMS (SYSUAF) authentication
[LOCAL=vms]
/web/* https:,r+w ; r
/httpd/-/admin/* ~daniel,https:,r+w
[[beta.wasd.dsto.defence.gov.au:80]]
BETA has its own HTA database
[BETA_USER=hta]
/web/* r+w ; r
[[gamma.wasd.dsto.defence.gov.au:80]]
GAMMA likewise
[GAMMA_DEVELOPER=id;PROJECT-A=list]
/web/project/a/* r+w ; r
[GAMMA_DEVELOPER=id;PROJECT-B=list]
/web/project/b/* r+w ; r
[[*]]
allow anyone from the local subnet to upload to here
[WORLD]
/web/unload/* 131.185.200.*,r+w

The online Server Administration facility path authorization report (Section 19.4) provides a
selector allowing the viewing and checking of rules showing all services or only one particular
virtual server, making it simpler to see exactly what any particular service is authorizing
against.

16.8 Authorization Configuration Examples
Mixed case is used in the configuration examples (and should be in configuration files) to
assist in readability. Rule interpretation however is completely case-insensitive.

1. In the following example the authentication realm is ‘‘WASD’’, a synonym for SYSUAF
authentication, and the permissions group ‘‘SOCIALCLUB’’, a simple list of usernames.
The directive allows those authenticated from the WASD realm and in the SOCIALCLUB
group full access (read and write), and the world read-only.

[WASD=vms;SOCIALCLUB=list]
/web/socialclub/* r+w ; read

16–14 Authentication and Authorization

2. This example illustrates restricting access according internet address. Both the group and
world restriction is identical, but the group address is being specified numerically, while
the world access is being specified alphabetically (just for the purposes of illustration).
This access check is done doing simple wildcard comparison, and makes numerical
specifications potentially more efficient because they are usually shorter. The second
line restricts that path’s write access even further, to one username, ‘‘BLOGGS’’.

[WASD=vms;SOCIALCLUB=list]
/web/socialclub/* 131.185.45.*,get,post; *.dsto.defence.gov.au,get
/web/socialclub/accounts/* 131.185.45.*,~BLOGGS,get,post; *.dsto.defence.gov.au,get

3. Three sources for authorization are specified in the following example. As the authen-
tication source is VMS (by rights identifier), the full-access group and read-only group
can also be determined by possessing the specified identifiers. The first path can only be
written to by those holding the full-access identifier (librarian), the second path can only
be read by both. The world has no access to these paths.

[DEVELOPER=id;PROJECT_A_LIBRARIAN=id;PROJECT_A_USER=id]
/web/projects/a/* r+w
/web/projects/* r

4. In the following example the authentication realm and group are a single HTA database,
‘‘ADMIN’’. The first directive allows those in the ADMIN group to read and write, and
the world to read (‘‘get,post;get’’). The second line restricts write and even read access to
ADMIN group, no world access at all (‘‘get,post’’).

[ADMIN=hta]
/web/everyone/* get,post;get
/web/select/few/* get,post

5. With this example usernames are used to control access to the specified paths. These
usernames are authenticated from the COMPANY database. The world has read access
in both cases. Note the realm description, ‘‘The Company’’.

["The Company"=COMPANY=hta]
/web/docs/* ~Howard,~George,~Fred,r+w ; r
/web/accounts/* ~George,r+w ; r

6. The following example shows a path specifying the local system’s SYSUAF being used
to authenticate any usernames. Whenever using SYSUAF authentication it is strongly
recommended to limit the potential hosts that can authenticate in this way by always
using a host-limiting access restriction list. The world gets read access.

[VMS]
/web/local/area/* 131.185.250.*,r+w ; r

7. To restrict server administration to browsers executing on the server system itself
and the SYSUAF-authenticated username DANIEL use a restriction list similar to the
following. It also shows the use of SYSUAF-authentication being hidden by using a realm
description.

["not the VMS SYSUAF"=VMS]
/httpd/-/admin/* #localhost,~daniel,r+w

Authentication and Authorization 16–15

8. This example uses the RFC1413 identification protocol as the authentication source and
a host group to control full access to paths in the realm.

["Ident Protocol"=RFC1413;131.185.250.0/24]
/web/local/* r+w

9. The following example illustrates providing a read and writable area (GET, POST and
PUTable) to hosts in the local network without username authentication (careful!).

[WORLD]
/web/scratch/* *.local.hosts.only,r+w

16.8.1 KISS

WASD authorization allows for very simple authorization environments and provides the
scope for quite complex ones. The path authentication scheme allows for multiple,
individually-maintained authentication and authorization databases that can then be admin-
istered by autonomous managers, applying to widely diverse paths, all under the ultimate
control of the overall Web administrator.

Fortunately great complexity is not generally necessary.

Most sites would be expected to require only an elementary setup allowing a few selected Web
information managers the ability to write to selected paths. This can best be provided with
the one authentication database containing read and write permissions against each user,
with and access-restriction list against individual paths.

For example. Consider a site with three departments, each of which wishes to have three
representatives capable of administering the departmental Web information. Authentication
is via the SYSUAF. Web administrators hold an approriate VMS rights identifier, ‘‘WEBAD-
MIN’’. Department groupings are provided by three simple lists of names, including the Web
administrators (whose rights identifier would not be applied if access control is via a simple
list), a fourth lists those with read-only access into the Finance area. The four grouping files
would look like:

Department 1 # Department 2
WEB1 WEB1
WEB2 WEB2
JOHN RINGO
PAUL CURLY
GEORGE LARRY

Department 3 # Finance (read access)
WEB1 PAUL
WEB2 GEORGE
MOE JOHN
SHEMP RINGO
MAC

The authorization configuration file then contains:

16–16 Authentication and Authorization

###

allow web masters (!) to use the server administration facility
to revise web configuration files
world has no access (read or write)
access is only allowed from a browser in the same subnet as the HTTPd
["Hypo Thetical Corp."=HYPOTHETICAL=vms;WEBADMIN=id]
/httpd/-/admin/* #150.15.30.*,r+w
/ht_root/local/* #150.15.30.*,r+w

allows Department 1 representatives to maintain their web
this may only be done from within the company subnet
world has read access
["Hypo Thetical Corp."=HYPOTHETICAL=vms;DEPARTMENT1=list]
/web/dept/general/* 150.15.30.*,r+w ; r

and so on for the rest of the departments

["Hypo Thetical Corp."=HYPOTHETICAL=vms;DEPARTMENT2=list;FINANCE=list]
no world read access into finance, only those in the FINANCE list
/web/dept/finance/* 150.15.30.*,r+w

["Hypo Thetical Corp."=HYPOTHETICAL=vms;DEPARTMENT3=list]
/web/dept/inventory/* 150.15.30.*,r+w ; r
/web/dept/production/* 150.15.30.*,r+w ; r
(the next uses line continuation just for illustration)
/web/dept/marketing/* 150.15.30.*,\

r+w ;\
read

we need an area for general POSTing (just for illustration :-)
[WORLD]
/web/world/* r+w

###

16.9 Authorization Cache
Access to authentication sources, SYSUAF, simple lists and HTA databases, are relatively
expensive operations. To reduce the impact of this activity on request latency and general
server performance, authentication and realm-associated permissions for each authenticated
username are stored in a cache. This means that only the initial request needs to be checked
from appropriate databases, subsequent ones are resolved more quickly and efficiently from
cache.

Such cached entries have a finite lifetime associated with them. This ensures that authoriza-
tion information associated with that user is regularly refreshed. This period, in minutes,
is set using the [AuthCacheMinutes] configuration parameter. Zero disables caching with a
consequent impact on performance.

Implication

Where-ever a cache is employed there arises the problem of keeping the contents current. The
simple lifetime on entries in the authentication cache means they will only be checked for
currency whenever it expires. Changes may have occured to the databases in the meantime.

Authentication and Authorization 16–17

Generally there is are other considerations when adding user access. Previously the user
attempt failed (and was evaluated each time), now the user is allowed access and the result
is cached.

When removing or modifying access for a user the cached contents must be taken into account.
The user will continue to experience the previous level of access until the cache lifetime
expires on the entry. When making such changes it is recommended to explicitly purge the
authentication cache either from the command line using /DO=AUTH=PURGE (Section 19.7)
or via the Server Administration facility (Chapter 19). Of course the other solution is just to
disable caching, which is a less than optimal solution.

16.10 SYSUAF-Authenticated Users
The ability to authenticate using the system’s SYSUAF is controlled by the server
/SYSUAF[=keyword] qualifier. By default it is disabled.

WARNING!
SYSUAF authentication is not recommended except in the most secure of LAN
environments or when SSL is employed.

HTTP (‘‘http:’’) authentication is transmitted encoded but not encrypted, making it vulnerable
to evesdropping.

By default accounts with SYSPRV authorized are always rejected to discourage the use of
potentially significant usernames (e.g. SYSTEM). This behaviour can be changed through
the use of specific identifiers, see Section 16.10.2 immediately below. Accounts that are
disusered, have passwords that have expired or that are captive or restricted are always
rejected. Accounts that have access time restricting REMOTE or NETWORK access will
have those restrictions honoured (see Section 16.10.2 for a workaround for this).

Also see Section 16.10.5.

16.10.1 ACME

By default the Authentication and Credential Management Extension (ACME) is used to au-
thenticate SYSUAF requests on Alpha and Itanium running VMS V7.3 or later (Section 16.5).
VAX and earlier versions of VMS use WASD’s own SYSUAF authentication routines. The ad-
vantage of ACME is with the processing of the (rather complex) authentication requirements
by a vendor-supplied implementation. It also allows SYSUAF password change to be made
subject to the full site policy (password history, dictionary checking, etc.) which WASD does
not implement.

16.10.2 Rights Identifiers

Whether or not any particular username is allowed to authenticate via the SYSUAF may be
controlled by that account holding or not holding a particular VMS rights identifier. When
a username has been authenticated via the SYSUAF, rights identifiers associated with that
account may be used to control the level-of-access within that realm.

Use of identifiers for these purposes are enabled using the /SYSUAF=ID server startup
qualifier.

16–18 Authentication and Authorization

The first three reserved identifier names are optional. A warning will be reported during
startup if these are not found. The fourth must exist if SYSUAF proxy mappings are used in
a /SYSUAF=ID environment.

• WASD_HTTPS_ONLY - restricts accounts holding it to authenticating using SSL
(https:). Authentication via a standard ‘‘http:’’ will always be denied.

• WASD_NIL_ACCESS - allows accounts with access time restrictions to authenticate via
the SYSUAF. This is particularly intended to support the use of nil-access accounts, see
Section 16.10.5.

• WASD_PASSWORD_CHANGE - allows an account to modify its SYSUAF password, if
this is configured for the server, see Section 16.14.

• WASD_PROXY_ACCESS - allows an account to be used for proxy access if /SYSUAF=ID
is in effect, see Section 16.10.4.

Identifiers may be managed using the following commands. If unsure of the security impli-
cations of this action consult the relevant VMS system management security documentation.

$ SET DEFAULT SYS$SYSTEM
$ MCR AUTHORIZE
UAF> ADD /IDENTIFIER WASD_HTTPS_ONLY
UAF> ADD /IDENTIFIER PROJECT_USER
UAF> ADD /IDENTIFIER PROJECT_DEVELOPER
UAF> ADD /IDENTIFIER PROJECT_LIBRARIAN

They can then be provided to desired accounts using commands similar to the following:

UAF> GRANT /IDENTIFIER PROJECT_USER <account>

and removed using:

UAF> REVOKE /IDENTIFIER PROJECT_USER <account>

Be aware that, as with all successful authentications, and due to the WASD internal
authentication cache, changing database contents does not immediately affect access. Any
change in the RIGHTSLIST won’t be reflected until the cache entry expires or it is explicitly
flushed (Section 16.9).

16.10.3 WASD ‘‘Hard-Wired’’ Identifiers

Deprecated and Discouraged
There are now ‘‘better’’ approaches to achieving the same functionality as described
in this section. This documentation is retained only for reference by older site
configurations.

This description is included for reasons of backward compatibility. As of version
6.0 the WASD identifiers must be enabled using the /SYSUAF=WASD qualifier.

When SYSUAF authentication is enabled, by default all non-privileged, active accounts are
capable of authentication. Restriction of this to those actually requiring such a capability is
provided using VMS rights identifiers. When the /SYSUAF=WASD qualifier is employed a
VMS account must possess one of two specific identifiers before it is allowed to be used for
server authentication. Note that this mechanism can also allow privileged accounts to be so

Authentication and Authorization 16–19

used . . . deploy with discretion! Note also that the use of access identifiers with this facility
allows a much finer control of which accounts may be used for authentication and so is also
the prefered mechanism for deploying SYSUAF authentication.

1. WASD_VMS_R

This identifier provides at most read access.

2. WASD_VMS_RW

This identifier provides read and write access (path protections still apply of course).

Other identifiers provide further control for the way in which the authenticated account may
be used.

1. WASD_VMS_HTTPS

Use of the authenticated account is restricted to ‘‘https:’’ (SSL) requests.

2. WASD_VMS_PWD

The account is allowed to change its SYSUAF password (!!). It is recommended this
facility only be employed with SSL in place.

Password modification is enabled by including a mapping rule to the internal change
script.

pass /httpd/-/change/* /httpd/-/change/*

The authorization configuration file must provide authenticated access.

[VMS;VMS]
/httpd/-/change/vms/* https:,r+w

Also see Section 16.14.

3. WASD_VMS_ _<group-name>

This form allows a suitably named identifier to be created for use in providing group-
membership via the SYSUAF. Note the double-underscore separating the fixed from
the locally specified portion. Using these identifiers it is possible to limit paths to
SYSUAF-authenticated accounts possessing the requisite identifier in manner similar to
non-SYSUAF-authentication groups. An account possessing the WASD_VMS_ _TESTING
identifier is allowed write access to the path in the following example:

[VMS;TESTING]
/web/project/testing/* r+w ; r

All four rights identifiers must exist for the /SYSUAF=ID facility to be used (even though
none may be granted to any account). The identifiers may be created using the AUTHORIZE
utility with following commands:

$ SET DEFAULT SYS$SYSTEM
$ MCR AUTHORIZE
UAF> ADD /IDENTIFIER WASD_VMS_R
UAF> ADD /IDENTIFIER WASD_VMS_RW
UAF> ADD /IDENTIFIER WASD_VMS_HTTPS
UAF> ADD /IDENTIFIER WASD_VMS_PWD

16–20 Authentication and Authorization

They can then be provided to desired accounts using commands similar to the following:

UAF> GRANT /IDENTIFIER WASD_VMS_RW <account>

and removed using:

UAF> REVOKE /IDENTIFIER WASD_VMS_RW <account>

16.10.4 VMS Account Proxying

Any authentication realm can have its usernames mapped into VMS usernames and the
VMS username used as if it had been authenticated from the SYSUAF. This is a form of
proxy access.

CAUTION
This is an extremely powerful mechanism and as a consequence requires enabling
on the command-line at server startup using the /SYSUAF=PROXY qualifier and
keyword. If identifiers are used to control SYSUAF authentication (i.e. /SYSUAF=ID)
then any account mapped by proxy access must hold the WASD_PROXY_ACCESS
identifier described in Section 16.10.2 (and server startup would be something like
"/SYSUAF=(ID,PROXY)").

When a proxy mapping occurs request user authorization detail reflects the SYSUAF user-
name characteristics, not the actual original authentication source. This includes username,
user details (i.e. becomes that derived from the owner field in the SYSUAF), constraints on the
username access (e.g. SSL only), and user capabilities including any profile if enabled. Autho-
rization source detail remains unchanged, reflecting the realm, realm description and group
of the original source. For CGI scripting an additional variable, WWW_AUTH_REMOTE_
USER, provides the original remote username.

For each realm, and even for each path, a different collection of mappings can be applied.
Proxy entries are strings containing no white space. There are three basic variations, each
with an optional host or network mask component.

1. remote[@host | @network/mask]=SYSUAF

2. *[@host | @network/mask]=SYSUAF

3. *[@host | @network/mask]=*

The SYSUAF is the VMS username being mapped to. The remote is the remote username (CGI
variable WWW_REMOTE_USER). The first variation maps a matching remote username (and
optional host/network) onto the specific SYSUAF username. The second maps all remote
usernames (and optional host/network) to the one SYSUAF username (useful as a final
mapping). The third maps all remote usernames (optionally on the remote host/network)
into the same SYSUAF username (again useful as a final mapping if there is a one-to-one
equivalence between the systems).

Proxy mappings are processed sequentially from first to last until a matching rule is
encountered. If none is found authorization is denied. Match-all and default mappings can
be specified.

[RFC1413]
[AuthProxy] bloggs@131.185.250.1=fred
[AuthProxy] doe@131.185.250.*=john system=- *@131.185.252.0/24=*
[AuthProxy] *=GUEST

Authentication and Authorization 16–21

In this example the username bloggs on system 131.185.250.1 can access as if the request had
been authenticated via the SYSUAF using the username and password of FRED, although
of course no SYSUAF username or password needs to be supplied. The same applies to the
second mapping, doe on the remote system to JOHN on the VMS system. The third mapping
disallows a system account ever being mapped to the VMS equivalent. The fourth, wildcard
mapping, maps all accounts on all systems in 131.185.250.0 8 bit subnet to the same VMS
username on the server system. The fifth mapping provides a default username for all other
remote usernames (and used like this would terminate further mapping).

Note that multiple, space-separated proxy entries may be placed on a single line. In this case
they are processed from left to right and first to last.

["Just an Example"=EXAMPLE=list]
[AuthProxy] bloggs@131.185.250.1=fred doe@131.185.250.1=doe system=- \
@131.185.252.0/24= *=GUEST

Proxy mapping rules should be placed after a realm specification and before any authorization
path rules in that realm. In this way the mappings will apply to all rules in that realm. It
is possible to change the mappings between rules. Just insert the new mappings before the
(first) rule they apply to. This cancels any previous mappings and starts a new set. This is
an example.

["A Bunch of Users"=USERS=hta]
[AuthProxy] bloggs@131.185.250.1=fred doe@131.185.250.1=john
/fred/and/johns/path/* r+w
[AuthProxy] *=GUEST
/other/path/* read

An alternative to in-line proxy mapping is to provide the mappings in one or more independent
files. In-line and in-file mappings may be combined.

["Another Bunch of Users"=MORE_USERS=hta]
[AuthProxy] SYSTEM=-
[AuthProxyFile] HT_ROOT:[LOCAL]PROXY.CONF
/path/for/proxy* r+w

To cancel all mappings for following rules use an [AuthProxy] (with no following mapping
detail). Previous mappings are always cancelled with the start of a new realm specification.
Where proxy mapping is not enabled at the command line or a proxy file cannot be loaded at
startup a proxy entry is inserted preventing all access to the path.

REMEMBER - proxy processing can be observed using the WATCH facility.

16.10.5 Nil-Access VMS Accounts

It is possible, and may be quite effective for some environments, to have a SYSUAF account
or accounts strictly for HTTP authorization, with no actual interactive or other access allowed
to the VMS system itself. This would relax the caution on the use of SYSUAF authentication
outside of SSL transactions. An obvious use would be for the HTTP server administrator.
Additional accounts could be provided for other authorization requirements, all without
compromising the system’s security.

16–22 Authentication and Authorization

In setting up such an environment it is vital to ensure the HTTPd server is started using the
/SYSUAF=ID qualifier (Section 16.2). This will require all SYSUAF-authenticated accounts
to possess a specific VMS resource identifier, accounts that do not possess the identifier cannot
be used for HTTP authentication. In addition the identifier WASD_NIL_ACCESS will need
to be held (Section 16.10.2), allowing the account to authenticate despite being restricted by
REMOTE and NETWORK time restrictions.

To provide such an account select a group number that is currently unused for any other
purpose. Create the desired account using whatever local utility is used then activate VMS
AUTHORIZE and effectively disable access to that account from all sources and grant the
appropriate access identifier (see Section 16.10.2 above).

$ SET DEFAULT SYS$SYSTEM
$ MCR AUTHORIZE
UAF> MODIFY <account> /NOINTERACTIVE /NONETWORK /NOBATCH /FLAG=DISMAIL
UAF> GRANT /IDENTIFIER WASD_VMS_RW <account>

16.10.6 SYSUAF and SSL

When SSL is in use (Chapter 18) the username/password authentication information is
inherently secured via the encrypted communications of SSL. To enforce access to be via
SSL add the following to the HTTPD$MAP configuration file:

/whatever/path/you/like/* "403 Access denied." ![sc:https]

or alternatively the following to the HTTPD$AUTH configuration file:

[REALM]
/whatever/path/you/like/* https:

Note that this mechanism is applied after any path and method assessment made by the
server’s authentication schema.

The qualifier /SYSUAF=SSL provides a powerful mechanism for protecting SYSUAF authen-
tication, restricting SYSUAF authenticated transactions to the SSL environment. The com-
bination /SYSUAF=(SSL,ID) is particularly effective.

Also see Section 16.2.

16.10.7 SYSUAF Security Profile

It is possible to control access to files and directories based on the VMS security profile of a
SYSUAF-authenticated remote user. This functionality is implemented using VMS security
system services involving SYSUAF and RIGHTSLIST information. The feature must be
explicitly allowed using the server /PROFILE qualifier. By default it is disabled.

Note
Use caution when deploying the /PROFILE qualifier. It was really designed with a
very specific environment in mind, that of an Intranet where the sole purpose was to
provide VMS users access to their normal VMS resources via a Web interface.

When a SYSUAF-authenticated user (i.e. the VMS realm) is first authenticated a VMS
security-profile is created and stored in the authentication cache (Section 16.9). A cached
profile is an efficient method of implementing this as it obviously removes the need of creating
a user profile each time a resource is assessed. If this profile exists in the cache it is attached

Authentication and Authorization 16–23

to each request authenticated for that user. As it is cached for a period, any change to a user’s
security profile in the SYSUAF or RIGHTSLIST won’t be reflected in the cached profile until
the cache entry expires or it is explicitly flushed (Section 19.6).

When a request has this security profile all accesses to files and directories are assessed
against it. When a file or directory access is requested the security-profile is employed by a
VMS security system service to assess the access. If allowed, it is provided via the SYSTEM
file protection field. Hence it is possible to be eligible for access via the OWNER field but
not actually be able to access it because of SYSTEM field protections! If not allowed, a ‘‘no
privilege’’ error is generated.

Once enabled using /PROFILE it can be applied to all SYSUAF authenticated paths, but must
be enabled on a per-path basis, using the HTTPD$AUTH profile keyword (Access Restriction
Keywords)

HTTPD$AUTH
[VMS;VMS]
/ht_root/local/* profile,https:,r+w

or the HTTPD$MAP SET profile and noprofile mapping rules (Section 14.4.5)

HTTPD$MAP
set /ht_root/local/* profile
set * noprofile

Of course, this functionality only provides access for the server, IT DOES NOT PROPAGATE
TO ANY SCRIPT ACCESS. If scripts must have a similar ability they should implement
their own scheme (which is not too difficult,) see HT_ROOT:[SRC.MISC]CHKACC.C based
on the CGI variable WWW_AUTH_REALM which would be ‘‘VMS’’ indicating SYSUAF-
authentication, and the authenticated name in WWW_REMOTE_USER.

Performance Impact

If the /PROFILE qualifier has enabled SYSUAF-authenticated security profiles, whenever a
file or directory is assessed for access an explicit VMS security system service call is made.
This call builds a security profile of the object being assessed, compares the cached user
security profile and returns an indication whether access is permitted or forbidden. This is
addition to any such assessments made by the file system as it is accessed.

This extra security assessment is not done for non-SYSUAF-authenticated accesses within
the same server.

For file access this extra overhead is negligible but becomes more significant with directory
listings (‘‘Index of’’) where each file in the directory is independently assessed for access.

16.10.8 SYSUAF Profile For Full Site Access

Much of a site’s package directory tree is inaccessible to the server account. One use of the
SYSUAF profile functionality is to allow authenticated accesss to all files in that tree. This
can accomplished by creating a specific mapping for this purpose, subjecting that to SYSUAF
authentication with /PROFILE behaviour enabled (Section 16.10.7), and limiting the access
to a SYSTEM group account. As all files in the WASD package are owned by SYSTEM the
security profile used allows access to all files.

16–24 Authentication and Authorization

The following example shows a path with a leading dollar (to differentiate it from general
access) being mapped into the package tree. The ‘‘set * noprofile’’ limits the application of
this to the /$ht_root/ path (with the inline ‘‘profile’’).

HTTPD$MAP
set * noprofile
.
.
.

pass /ht_root/* /ht_root/*
pass /$ht_root/* /ht_root/* profile

This path is then subjected to SYSUAF authentication with access limited to an SSL request
from a specific IP address (the site administrator’s) and the SYSTEM account.

HTTPD$AUTH
[["/$ht_root/ Access"=WASD_TREE_ACCESS=id]]
/$ht_root/* https,10.1.1.2,~system,read

16.11 Skeleton-Key Authentication
Provides a username and password that is authenticated from data placed into the global
common (i.e. in memory) by the site administrator. The username and password expire
(become non-effective) after a period, one hour by default or an interval specified when the
username and password are registered.

It is a method for allowing ad hoc authenticated access to the server, primarily in-
tended for non-configured access to the online Server Administration facilities (Sec-
tion 19.1) but is available for other purposes where a permanent username and pass-
word in an authentication database is not necessary. A skeleton-key authenticated request
is subject to all other authorization processing (i.e. access restrictions, etc.), and can be con-
trolled using the likes of ’~_*’, etc.

The site administrator uses the command line directive

$ HTTPD /DO=AUTH=SKELKEY=_username:password[:period]

to set the username/password, and optionally the period in minutes. This authentication
credential can be cancelled at any time using

$ HTTPD /DO=AUTH=SKELKEY=0

The username must begin with an underscore (to reduce the chances of clashing with a
legitimate username) and have a minimum of 6 other characters. The password is delimited
by a colon and must be at least 8 characters. The optional period in minutes can be from 1
to 10080 (one week). If not supplied it defaults to 60 (one hour). After the period expires the
skeleton key is no longer accepted until reset.

Note
Choose username and password strings that are less-than-obvious and a period that’s
sufficient to the task! After all, it’s your site that you might compromise!

The authentication process (with skeleton-key) is performed using these basic steps.

1. Is a skeleton-key set? If not continue on with the normal authentication process.

Authentication and Authorization 16–25

2. If set then check the request username leading character for an underscore. If not then
continue on with normal authentication.

3. If it begins with an underscore then match the request and skeleton-key usernames. If
they do not match then continue with normal authentication.

4. If the usernames match then compare the request and skeleton-key passwords. If matched
then it’s authenticated. If not it becomes an authentication failure.

Note that the authenticator resumes looking for a username from a configured authentication
source unless the request and skeleton-key usernames match. After that the passwords either
match allowing access or do not match resulting in an authentication failure.

Examples
$ HTTPD /DO=AUTH=SKELKEY=_FRED2ACC:USE82PA55

$ HTTPD /DO=AUTH=SKELKEY=_ANDY2WERP:EGGO4TEE:10

16.12 Controlling Server Write Access
The server account should have no direct write access to into any directory structure.
Files in these areas should be owned by SYSTEM ([1,4]). Write access for the server
into VMS directories (using the POST or PUT HTTP methods) should be controlled using
VMS ACLs. This is in addition to the path authorization of the server itself of
course! The recommendation to have no ownership of files and provide an ACE on required
directories prevents inadvertant mapping/authorization of a path resulting in the ability to
write somewhere not intended.

Two different ACEs implement two grades of access.

1. If the ACE grants CONTROL access to the server account then only VMS-authenticated
usernames with security profiles can potentially write to the directory. Only potentially,
because a further check is made to assess whether that VMS account in particular has
write access.

This example shows a suitable ACE that applies only to the original directory:

$ SET SECURITY directory.DIR -
/ACL=(IDENT=HTTP$SERVER,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)

This example shows setting an ACE that will propagate to created files and importantly,
subdirectories:

$ SET SECURITY directory.DIR -
/ACL=((IDENT=HTTP$SERVER,OPTIONS=DEFAULT,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL), -

(IDENT=HTTP$SERVER,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL))

2. If the ACE grants WRITE access then the directory can be written into by any authen-
ticated username for the authorized path.

16–26 Authentication and Authorization

This example shows a suitable ACE that applies only to the original directory:

$ SET SECURITY directory.DIR -
/ACL=(IDENT=HTTP$SERVER,ACCESS=READ+WRITE+EXECUTE+DELETE)

This example shows setting an ACE that will propagate to created files and importantly,
subdirectories:

$ SET SECURITY directory.DIR -
/ACL=((IDENT=HTTP$SERVER,OPTIONS=DEFAULT,ACCESS=READ+WRITE+EXECUTE+DELETE), -

(IDENT=HTTP$SERVER,ACCESS=READ+WRITE+EXECUTE+DELETE))

To assist with the setting of the required ACEs an example, general-purpose DCL procedure
is provided, HT_ROOT:[EXAMPLE]AUTHACE.COM.

16.13 Securing All Requests
Some sites may be sensitive enough about Web resources that the possibility of providing
inadvertant access to some area or another is of major concern. WASD provides a facility
that will automatically deny access to any path that does not appear in the authorization
configuration file. This does mean that all paths requiring access must have authorization
rules associated with them, but if something is missed some resource does not unexpectedly
become visible.

At server startup the /AUTHORIZE=ALL qualifier enables this facility.

For paths that require authentication and authorization the standard realms and rules apply.
To indicate that a particular path should be allowed access, but that no authorization applies
the ‘‘NONE’’ realm may be used. The following example provides some indication of how it
should be used.

allow the librarian to update this area, world to read it
[VMS;LIBRARIAN=id]
/web/library/* r+w ; read
indicate there is no authorization to be applied
[NONE]
allow access to general web areas
/web/*
allow access to the HT_ROOT tree
/ht_root/*

There is also a per-path equivalent of the /AUTHORIZE=ALL functionality, described in
Section 14.4.5. This allows a path tree to be require authorization be enabled against it.

avoid an absence of authorization allowing unintentional access
set /web/sensitive/* auth=all

16.14 User Password Modification
The server provides for users to be able to change their own HTA passwords (and SYSUAF
if required). This functionality, though desirable from the administrator’s viewpoint, is not
mandatory if the administrator is content to field any password changes, forgotten passwords,
etc. Keep in mind that passwords, though not visible during entry, are passed to the server
using clear-text form fields (which is why SSL is recommended).

Authentication and Authorization 16–27

Password modification is enabled by including a mapping rule to the internal change script.
For example:

pass /httpd/-/change/* /httpd/-/change/*

Any database to be enabled for password modification must have a writable authorization
path associated with it. For example:

[GROUP=id;GROUP=id]
/httpd/-/change/group/* r+w

[ANOTHER_GROUP=id;ANOTHER_GROUP=id]
/httpd/-/change/another_group/* r+w

Note
What looks like redundancy in specifying an identical realm and group authorization is
what allows multiple, independant identifiers to be individually controlled for password
change (i.e. one group of identifier holders allowed to change the password, another
not).

Use some form of cautionary wrapper if providing this functionality over something other
than an Intranet or SSL connection:

<H2>Change Your Authentication</H2>

<BLOCKQUOTE>
Change the password used to identify yourself to the REALM Web environment for
some actions. Note that this <U>not</U> an operating system password, nor has
it anything to do with it. Due to the inherent weaknesses of using
non-encrypted password transmissions on networks <U>DO
NOT</U> use a password you have in use anywhere else, especially an operating
system password! You need your current password to make the change. If
you have forgotten what it is contact WebAdmin,
preferably via e-mail, for the change to be made on your behalf.
</BLOCKQUOTE>

REALM realm.

Password Expiry

When using SYSUAF authentication it is possible for a password to pre-expired, or when
a password lifetime is set for a password to expire and require respecification. By default
an expired password cannot be used for access. This may be overridden using the following
global configuration directive.

[AuthSYSUAFacceptExpPwd] enabled

Expired passwords may be specially processed by specifying a URL with HTTPD$CONFIG
[AuthSysUafPwdExpURL] configuration directive (Section 10.2).

The HTTPD$MAP set auth=sysuaf=pwdexpurl=<string> rule allows the same URL to be
specified on a per-path basis. When this is set a request requiring SYSUAF authentication
that specifies a username with an expired password is redirected to the specified URL. This
should directly or via an explanatory (wrapper) page redirect to the password change path

16–28 Authentication and Authorization

described above. The password change dialog will have a small note indicating the password
has expired and allows it to be changed.

The following HTTPD$CONFIG directive

HTTPD$CONFIG
[AuthSysUafPwdExpURL] https:///httpd/-/change/

HTTPD$AUTH
[WASD_VMS_ID=id;WASD_VMS_RW=id]
/httpd/-/change/* r+w

would allow expired passwords to be changed.

It is also possible to redirect an expired password to a site-specific page for input and change.
This allows some customization of the language and content of the expired password change
dialog. An example document is provided at HT_ROOT:[EXAMPLE]EXPIRED.SHTML ready
for relocation and customisation. Due to the complexities of passing realm information
and then submitting that information to the server-internal change facility some dynamic
processing is required via an SSI document.

This example assumes the site-specific document has been located at WEB:[000000]EXPIRED.SHTML
and is accessed using SSL.

HTTPD$CONFIG
[AuthSysUafPwdExpURL] https:///web/expired.shtml?httpd=ignore&realm=vms

HTTPD$AUTH
[WASD_VMS_ID=id;WASD_VMS_RW=id]
/httpd/-/change/vms/* r+w
/web/expired.shtml r+w

16.15 Cancelling Authorization
The reason authorization information is not required to be reentered on subsequent accesses
to controlled paths is cached information the browser maintains. It is sometimes desirable to
be able to access the same path using different authentication credentials, and correspond-
ingly it would be useful if a browser had a purge authorization cache button, but this is
commonly not the case. To provide this functionality the server must be used to ‘‘trick’’ the
browser into cancelling the authorization information for a particular path.

This is achieved by adding a specific query string to the path requiring cancellation. The
server detects this and returns an authorization failure status (401) regardless of the contents
of request ‘‘Authorization:’’ field. This results in the browser flushing that path from the
authorization cache, effectively requiring new authorization information the next time that
path is accessed.

There are two variations on this mechanism.

1. The basic procedure is as follows:

• Add the query string ‘‘?httpd=logout’’ to the path in question (if there is an existing
query then replace it), as in the following example.

/the/current/path?httpd=logout

Authentication and Authorization 16–29

• The browser will respond with an authorization failure, and prompting to retry or
reenter the username and password.

• It is necessary to clear at least the password (i.e. remove any password from the
appropriate field) and reenter.

• The browser again responds with an authorization failure.

• At this stage the authorization dialog can be cancelled, resulting in a server autho-
rization failure message.

• The original path can now be returned to and reaccessed. The browser should again
prompt for authorization information at which point different credentials may be
supplied.

2. A little more functional, if using a revalidation period via [AuthRevalidateUserMinutes]
or ’SET auth=revalidate=’ (perhaps set to something like 23:59:00, or one day), when the
logout query string is supplied the server resets the entry forcing any future access to
require revalidation. A successful logout message is then generated, circumventing the
need for the username/password dialog described above.

• Add or replace the query string ‘‘?httpd=logout’’ to the path in question as in the
following example.

/the/current/path?httpd=logout

• The browser will respond with a message stating that authentication has been
cancelled. That’s it!

Also when using logout with a revalidation period a redirection URL may be appended
to the logout query string. It then redirects to the supplied URL. It is important that
the redirection is returned to the browser and not handled internally by WASD. Normal
WASD redirection functionality applies.

?httpd=logout&goto=///
?httpd=logout&goto=///help/logout.html
?httpd=logout&goto=http://the.host.name/

These examples redirect to

the local home page
a specific local page
a specific remote server

respectively.

Authentication Cache
User revalidation relies on an entry being maintained in the authentication cache.
Each time the entry is flushed, for whatever reason (cache congestion, command-
line purge, server restart, etc.), the user will be prompted for credentials. It may be
necessary to increase the size of the cache by adjusting [AuthCacheEntriesMax].

16–30 Authentication and Authorization

Chapter 17

Proxy Services

A proxy server acts as an intermediary between Web clients and Web servers. It listens
for requests from the clients and forwards these to remote servers. The proxy server then
receives the responses from the servers and returns them to the clients. Why go to this
trouble? There are several reasons, the most common being:

• To allow internal clients access to the Internet from behind a firewall. Browsers behind
the firewall have full Web access via the proxy system.

• To provide controlled access to internal resources for external clients. The proxy server
provides a managed gateway through a firewall into an organisation’s Web resources.

• Many proxy servers provide caching, or local storage, of responses. For frequent or
commonly accessed resources this can not only significantly reduce apparent network
latency but also greatly reduce the total traffic downloaded by a site.

• For anonymity. Although often related directly to firewall security considerations, it can
also sometimes be an advantage to just not reveal the exact source of Web transactions
from within your local network.

Proxy Serving Quick-Start

No additional software needs to be installed to provide proxy serving. The following steps
provide a brief outline of proxy configuration.

1. Enable proxy serving and specify which particular services are to be proxies (Sec-
tion 17.1.1 and Chapter 11).

2. If proxy caching is required (most probably, see Section 17.2)

• Decide on a cache device, create the cache root directory, modify server startup
procedures to include the HT_CACHE_ROOT logical name (Section 17.2.1).

• Enable caching on required services (Section 17.2.2).

• Adjust relevant cache management configuration parameters if required (Sec-
tion 17.2.3).

Proxy Services 17–1

• If required adjust cache retention parameter (Section 17.2.5).

3. If providing SSL tunnelling (proxy of Secure Sockets Layer transactions) add/modify a
service for that (Section 17.3).

4. Add HTTPD$MAP mapping rules for controlling this/these services (Section 17.1.5,
Section 17.3.2, and Section 17.4).

5. Restart server (HTTPD/DO=RESTART).

Error Messages

When proxy processing is enabled and HTTPD$CONFIG directive [ReportBasicOnly] is
disabled it is necessary to make adjustments to the contents of the HTTPD$MSG message
configuration file [status] item beginning ‘‘Additional Information’’. Each of the ‘‘/httpd/-
/statusnxx.html’’ links

1<I>xx</I>
2<I>xx</I>
3<I>xx</I>
4<I>xx</I>
5<I>xx</I>
Help

should be changed to include a local host component

1<I>xx</I>
2<I>xx</I>
3<I>xx</I>
4<I>xx</I>
5<I>xx</I>
Help

If this is not provided the links and any error report will be interpreted by the browser as
relative to the server the proxy was attempting to request from and the error explanation
will not be accessible.

17.1 HTTP Proxy Serving
WASD provides a proxy service for the HTTP scheme (prototcol).

Proxy serving generally relies on DNS resolution of the requested host name. DNS lookup
can introduce significant latency to transactions. To help ameliorate this WASD incorporates
a host name cache. To ensure cache consistency the contents are regularly flushed, after
which host names must use DNS lookup again, refreshing the information in the cache. The
period of this cache purge is contolled with the [ProxyHostCachePurgeHours] configuration
parameter.

When a request is made by a proxy server is is common for it to add a line to the request
header stating that it is a forwarded request and the agent doing the forwarding. With WASD
proxying this line would look something like this:

Forwarded: by http://host.name.domain (HTTPd-WASD/8.4.0 OpenVMS/IA64 SSL)

It is enabled using the [ProxyForwarded] configuration parameter.

17–2 Proxy Services

An additional, and perhaps more widely used facility, is the Squid extension field to the
proxied request header supplying the originating client host name or IP address.

X-Forwarded-For: client.host.name

It is enabled using the [ProxyXForwardedFor] configuration parameter.

17.1.1 Enabling A Proxy Service

Proxy serving is enabled on a global basis using the HTTPD$CONFIG file [ProxyServing]
configuration parameter. After that each virtual service must have proxy functionality
enabled as a per-service configuration.

WASD can configure services using the HTTPD$CONFIG [service] directive, the HTTPD$SERVICE
configuration file, or even the /SERVICE= qualifier.

HTTPD$SERVICE

Using directives listed in Chapter 11 this example illustrates configuring a non-proxy server
(the disabled is the default and essentially redudant) and a proxy service.

[[http://alpha.wasd.dsto.defence.gov.au:80]]
[ServiceProxy] disabled

[[http://alpha.wasd.dsto.defence.gov.au:8080]]
[ServiceProxy] enabled

17.1.2 Proxy Affinity

High performance/highly available proxy server configurations require more than one instance
configured and running. Whether this is done by running multiple instances on the same
host or one instance on multiple hosts, it leads to situations where successive requests will
be processed by different instances. As those instances don’t share a common name to IP
address cache, they will eventually use different IP addresses when trying to connect to an
origin server running on multiple hosts.

This may result in the following, user visible, issues:

• multiple requests for authentication (one from each origin host)

• loss of icons, images, javascripts, CSS because requests for these files, although they
return a 401 status, will not trigger a browser authentication dialog

• loss of context and performance issues where scripts/environments need to be started on
a new host (php, python, webware,...)

For these reasons, the proxy server will make every effort to relay successive requests from a
given client to the same origin host as long as this one is available (built-in failover capability
will ultimately trigger the choice of a new host). This is known as client to origin affinity or
proxy affinity capability.

Proxy to origin server affinity is enabled using the following service configuration directive.

[[http://alpha.wasd.dsto.defence.gov.au:8080]]
[ServiceProxy] enabled
[ServiceProxyAffinity] enabled

Proxy Services 17–3

Uses HTTP Cookies

Obviously the use of cookies must be enabled in the browser or this facility will not operate for
that client. After the first successful connection to an origin host, the proxy server will send
a cookie indicating the IP address used to the client browser. Upon subsequent requests,
this cookie will be used to select the same host. The cookie is named WasdProxyAffinity_
origin.host.name and the value simply the IP address in dotted decimal. This cookie is not
propagated beyond the proxy service but may be WATCHed by checking the Proxy Processing
item.

17.1.3 Proxy Bind

It is possible to make the outgoing request appear to originate from a particular source
address. The Network Interface must be able to bind to the specified IP address (i.e. it
cannot be an arbitrary address).

[[http://alpha.wasd.dsto.defence.gov.au:8080]]
[ServiceProxy] enabled
[ServiceProxyBind] 131.185.250.1

The same behaviour may be accomplished with an HTTPD$MAP mapping rule.

SET http://*.wasd.dsto.defence.gov.au proxy=bind=131.185.250.1

17.1.4 Proxy Chaining

Some sites may already be firewalled and have corporate proxy servers providing Internet
access. It is quite possible to use WASD proxying in this environment, where the WASD
server makes the proxied requests via the next proxy server in the hierarchy. This is known
as proxy chaining.

[[http://alpha.wasd.dsto.defence.gov.au:8080]]
[ServiceProxy] enabled
[ServiceProxyChain] next.proxy.host

Chaining may also be controlled on a virtual service or path basis using an HTTPD$MAP
mapping rule.

SET http://*.com proxy=chain=next.proxy.host:8080

17.1.5 Controlling Proxy Serving

Controlling both access-to and access-via proxy serving is possible.

Proxy Password

Access to the proxy service can be directly controlled through the use of WASD authorization.
Proxy authorization is distinct from general access authorization. It uses specific proxy
authorization fields provided by HTTP, and by this allows a proxied transaction to also supply
transaction authorization for the remote server. In the HTTPD$SERVICE configuration file.

[[http://alpha.wasd.dsto.defence.gov.au:8080]]
[ServiceProxy] enabled
[ServiceProxyAuth] proxy

17–4 Proxy Services

In addition to the service being specified as requiring authorization it is also necessary
to configure the source of the authentication. This is done using the HTTPD$AUTH
configuration file. The following example shows all requests for the proxy virtual service
must be authorized (GET and well as POST, etc.), although it is possible to restrict access to
only read (GET), preventing data being sent out via the server.

[[alpha.wasd.dsto.defence.gov.au:8080]]
["Proxy Access"=PROXY_ACCESS=id]
http://* read+write

Chain Password

An up-stream, chained proxy server (Section 17.1.4) may be permitted to receive proxy au-
thentication from the client via a WASD proxy server using the CHAIN keyword. Unconfigured,
WASD does not propagate HTTP proxy authorization fields. Only one proxy server in a chain
can be authenticated against.

[[http://alpha.wasd.dsto.defence.gov.au:8080]]
[ServiceProxy] enabled
[ServiceProxyAuth] chain

Local Password

It is also possible to control proxy access via local authorization, although this is less flexible
by removing the ability to then pass authorization information to the remote service. In
other repects it is set up in the same way as proxy authorization, but enabled using the
LOCAL keyword.

[[http://alpha.wasd.dsto.defence.gov.au:8080]]
[ServiceProxy] enabled
[ServiceProxyAuth] local

Access Filtering

Extensive control of how, by whom and what a proxy service is used for may be exercised using
WASD general and conditional mapping (Chapter 14 and Section 14.7) possibly in the context
of a virtual service specification for the particular connect service host and port (Section 14.6).
The following examples provide a small indication of how mapping could be used in a proxy
service context.

1. It is possible, though more often not practical, to regulate which hosts are connected to
via the proxy service. For example, the following rule forbids accessing any site with the
string ‘‘hacker’’ in it (for the proxy service ‘‘alpha . . . :8080’’.

[[alpha.wasd.dsto.defence.gov.au:8080]]
pass http://*hacker*/* "403 Proxy access to this host is forbidden."
pass http://*

2. Or as in the following example, only allow access to specific sites.

[[alpha.wasd.dsto.defence.gov.au:8080]]
pass http://*.org/*
pass http://*.digital.com/*
pass http://* "403 Proxy access to this host is forbidden."

Proxy Services 17–5

3. It is also possible to restrict access via the proxy service to selected hosts on the internal
subnet. Here only a range of literal addresses plus a single host in another subnet are
allowed access to the service.

[[alpha.wasd.dsto.defence.gov.au:8080]]
pass http://* "403 Restricted access." ![ho:131.185.250.* ho:131.185.200.10]
pass http://*

4. In the following example POSTing to a particular proxied servers is not allowed (why I
can’t imagine, but hey, this is an example!)

[[alpha.wasd.dsto.defence.gov.au:8080]]
pass http://subscribe.sexy.com/* "403 POSTing not allowed." [me:POST]
pass http://*

5. It is possible to redirect proxied requests to other sites.

[[alpha.wasd.dsto.defence.gov.au:8080]]
redirect http://www.sexy.com/* http://www.disney.com/
pass http://*

6. A proxy service is just a specialized capability of a general HTTP service. Therefore it
is quite in order for the one service to respond to standard HTTP requests as well as
proxy-format HTTP requests. To enforce the use of a particular service as proxy-only, add
a final rule to a virtual service’s mapping restricting non-proxy requests.

[[alpha.wasd.dsto.defence.gov.au:8080]]
pass http://*
pass /* "403 This is a proxy-only service."

7. This example provides the essentials when supporting reverse proxying. Note that
mappings may become quite complex when supporting access to resources across multiple
internal systems (e.g. access to directory icons).

[[main.corporate.server.com:80]]
pass /sales/* http://sales.corporate.server.com/*
pass /shipping/* http://shipping.corporate.server.com/*
pass /support/* http://support.corporate.server.com/*
pass * "403 Nothing to access here!"

Note
To expedite proxy mapping is it recommended to have a final rule for the proxy virtual
service that explicitly passes the request. This would most commonly be a permissive
pass as in example 1, could quite easily be an restrictive pass as in example 2, or a
combination as in example 6.

17.2 Caching
Caching involves using the local file-system for storage of responses that can be reused when
a request for the same URL is made. The WASD server does not have to be configured for
caching, it will provide proxied access without any caching taking place.

When a proxied request is processed, and the characteristics would allow the response to be
cached, a unique identifier generated from the URL is used to create a corresponding file
name. The response header and any body are stored in this file. This may be the data of an
HTML page, a graphic, etc.

17–6 Proxy Services

When a proxied request is being processed, and the characteristics would allow the request
to be cached, the unique identifier generated allows for a previously created cache file to be
checked for. If it exists, and is current enough, the response is returned from it, instead of
from the remote server. If it exists and is no longer current the request is re-made to the
remote server, and the response if still cacheable is re-cached, keeping the contents current.
If it does not exist the response is delivered from the remote server.

Not all responses can be cached!

The main critera are for the response to be successful (200 status), general (i.e. one not in
response to a specialized query or action), and not too volatile (i.e. the same page may be
expected to be returned more than once, preferably over an extended period).

• Proxied requests can only be cached if . . .

• uses the GET method

• does not contain a query string

• is HTTP/1.n compliant (i.e. not HTTP/0.9)

• does not contain an "Authorization:" header field

• Proxied success responses will only be cached if . . .

• is HTTP/1.n compliant (i.e. not HTTP/0.9)

• HTTP status code 200 (success), 203 (non-authoritative), 300 (multiple choice), 301
(moved permanently), 410 (gone)

• contains a Last-Modified: header field

• one or more hours since the last modification

• any Expires: date/time is still in the future

• does not contain restrictive cache control
‘‘Pragma: no-cache’’ field (HTTP/1.0)
‘‘Cache-Control: no-cache, no-store, private’’ (/1.1)

• any ‘‘Vary:’’ header field does not contain a ‘‘*’’ or ‘‘accept[-...]"’’

• does not exceed a configuration parameter in size

• Proxied negative responses will be cached if . . .

• [ProxyCacheNegativeSeconds] is non-zero

• status code 204 (no content), 305 (use proxy), 400 (bad request), 403 (forbidden), 404
(not found), 405 (method not allowed), 414 (request URI too large), 500 (internal
server error), 501 (not implemented), 502 (bad gateway), 503 (service unavailable),
504 (gateway timeout),

• does not contain restrictive cache control
‘‘Pragma: no-cache’’ field (HTTP/1.0)
‘‘Cache-Control: no-cache, no-store, private’’ (/1.1)

Proxy Services 17–7

The [ProxyCacheFileKbytesMax] configuration parameter controls the maximum size of a
response before it will not be cached. This can be determined from any ‘‘Content-Length:’’
response header field, in which case it will proactively not be cached, or if during cache load
the maximum size of the file increases beyond the specified limit the load is aborted.

Not all sites may benefit from cache!

As many transactions on today’s Web contain query strings, etc., and therefore cannot be
meaningfully cached, it should not be assumed the cost/benefit of having a proxy cache enabled
is a forgone conclusion. Each site should monitor the proxy traffic reports and decide on a
local policy.

The facilities described in Section 17.2.6 allow a reasonably informed decision to be made.
Items to be considered.

• The ratio of cache reads to network accesses.

• The number of non-cacheable requests and responses, particularly as a percentage of total
proxy traffic.

• The ratio of network to cache traffic, although this may be skewed by having a high ratio
of 304 (not-modified) responses from cache (which contain few bytes). Check the cache
304 reporting item.

Last, but by no means least, understanding the characteristics of local usage. For example,
are there a small number of requests generating lots of non-cacheable traffic? For instance,
a few users accessing streaming content.

17.2.1 Cache Device

Selection of a disk device for supporting the proxy cache should not be made without careful
consideration, doubly so if significant traffic is experienced. Here are some common-sense
suggestions.

• avoid locating it as a subdirectory of HT_ROOT:[000000]

• use a disk with as little other activity as possible (both I/O and space usage)

• use a disk with as much free space as possible

• use the fastest disk available

Initially the directory will need to be created. This can be done manually as described below,
or if using the supplied server startup procedures (STARTUP.COM) it is checked for and if it
does not exist is automatically created during startup. The directory must be owned by the
HTTP$SERVER account and have full read+write+execute+delete access. It is suggested to
name it [HT_CACHE] and may be created manually using the following command.

$ CREATE /DIR /OWN=HTTP$SERVER /PROT=(O:RWED,G,W) device:[HT_CACHE]

It is a relatively simple matter to relocate the cache at any stage. Simply create the required
directory in the new location, modify the startup procedures to reflect this, shut the server
down completely then restart it using the procedures (not a /DO=RESTART!). The contents
of the previous location could be transfered to the new using the BACKUP utility if desired.

17–8 Proxy Services

HT_CACHE_ROOT Logical

It is required to define the logical name HT_CACHE_ROOT if any proxy services are specified
in the server configuration. The server will not start unless it is correctly defined. The logical
should be a concealed device logical specifying the top level directory of the cache tree. The
following example shows how to define such a logical name.

$ DEFINE /SYSTEM /EXEC /TRANSLATION=CONCEALED HT_CACHE_ROOT device:[HT_CACHE.]

If example startup procedure is in use then it is quite straight-forward to have the logical
created during server startup (STARTUP.COM).

17.2.2 Enabling Caching

Caching may enabled on a per-service basis. This means it is possible to have a caching proxy
service and a non-caching service active on the one server. Caching is enabled by appending
the cache keyword to the particular service specification. The following example shows a
non-proxy and a caching proxy service.

[[http://alpha.wasd.dsto.defence.gov.au:80]]
[ServiceProxy] disabled

[[http://alpha.wasd.dsto.defence.gov.au:8080]]
[ServiceProxy] enabled
[ServiceProxyCache] enabled

Proxy caching may be selectively disabled for a particular site, sites or paths within sites
using the SET nocache mapping rule. This rule, used to disable caching for local requests,
also disables proxy file caching for that subset of requests. This example shows a couple of
variations.

[[alpha.wasd.dsto.defence.gov.au:8080]]
disable caching for local site’s servers that respond fairly quickly
set http://*.local.domain/* nocache
disable caching of log files
set http://*.log nocache
pass http://*

Note
It is also recommended to place the cache directory under some authorization control
to prevent casual browsing and access of the cache contents. Something local, similar
in intention to

[[alpha.wasd.dsto.defence.gov.au:8080]]
["WASD Admin"=WASD_ADMIN=id]
/ht_cache_root/* ~webadmin,131.185.250.*,r+w ;

17.2.3 Cache Management

As the proxy cache is implemented using the local file system, management of the cache
implies controlling the number of, and exactly which files remain in cache. Essentially
then, management means when and which to delete. The [ProxyReportLog] configuration
parameter enables the server process log reporting of cache management activities.

Cache file deletion has three variants.

1. ROUTINE

Proxy Services 17–9

This ensures files that have not been accessed within specified limits are periodically and
regularly deleted. The [ProxyCacheRoutineHourOfDay] configuration parameter controls
this activity.

The ROUTINE form occurs once per day at the specified hour. The cache files are scanned
looking for those that exceed the configuration parameter for maximum period since last
access, which are then deleted (the largest number of [ProxyCachePurgeList], as described
below).

2. BACKGROUND

Setting the [ProxyCacheRoutineHourOfDay] configuration parameter to 24 enables back-
ground purging.

In this mode the server continuously scans through the cache files in the same manner
as for ROUTINE purging. The difference is it is not all done a single burst once a
day, pushing disk activity to the maximum. The background purge regulates the period
between each file access, pacing the scan so that the entire cache is passed through once
a day. It adjusts this pace according the the size of the cache.

3. REACTIVE

This is a remedial action, when cache device usage is reaching its configuration limit and
files need to be deleted to free up space. The following parameters control this behaviour.

[ProxyCacheDeviceCheckMinutes]
[ProxyCacheDeviceMaxPercent]
[ProxyCacheDevicePurgePercent]
[ProxyCachePurgeList]

The cache device space usage is checked at the specified interval.

If the device reaches the specified percentage used a cache purge is initiated and by
deleting files until the specified reduction is attained, the total space in use on the disk
is reduced.

The cache files are scanned using the [ProxyCachePurgeList] parameter described below,
working from the greatest to least number of hours in the steps provided. At each scan
files not accessed within that period are deleted. At each few files deleted the device free
space is checked as having reached the lower purge percentage limit, at which point the
scan terminates.

This parameter has as its input a series of comma-separated integers representing a
series of hours since files were last accessed. In this way the cache can be progressively
reduced until percentage usage targets are realized. Such a parameter would be specified
as follows,

[ProxyCachePurgeList] 168,48,24,8,0

meaning the purge would first delete files not accessed in the last week, then not for
the last two days, then the last twenty-four hours, then eight, then finally all files. The
largest of the specified periods (in this case 168) is also used as the limit for the ROUTINE
scan and file delete.

17–10 Proxy Services

Once the target reduction percentage is reached the purge stops. During the purge
operation further cache files are not created. Even when cache files cannot be created for
any reason proxy serving still continues transparently to the clients.

Note
Cache files can be manually deleted at any time (from the command line) without
disturbing the proxy-caching server and without rebuilding any databases. When
deleting, the /BEFORE=date/time qualifier can be used, with /CREATED being
the document’s last-modified date, /REVISED being the last time it was loaded,
and /EXPIRED the last time the file was accessed (used to supply a request). Be
aware that on an active server it is quite possible some files may be locked at time
of attempted deletion.

From The Command-Line

If [ProxyCacheRoutineHourOfDay] is empty or non-numeric the automatic, once-a-day routine
purge of the cache by the server is disabled and it is expected to be performed via some other
mechanism, such as a periodic batch job. This allows routine purging more or less frequently
than is provided-for by server configuration, and/or the purge activity being performed by a
process or cluster node other than that of the HTTPd server (reducing server and/or node
impact of this highly I/O intensive activity). Progress and other messages are provided
via SYS$OUTPUT, and if configured in the [Opcom . . .] directives to the operator log and
designated operator terminal as well. If a process already has the cache locked the initiated
activity aborts.

The following example shows a routine purge being performed from the command-line. This
form uses the hours from [ProxyCachePurgeList].

$ HTTPD /PROXY=PURGE=ROUTINE

A variant on this allows the maximum age to be explicitly specified.

$ HTTPD /PROXY=PURGE=ROUTINE=168

Reactive purging and statistic scans may also be initiated from the command line. For a
reactive purge the first number can be the device usage percentage (indicated by the trailing
‘‘%’’), if not the configuration limit is used.

$ HTTPD /PROXY=PURGE=REACTIVE=80%,168,48,24,8,0
$ HTTPD /PROXY=CACHE=STATISTICS

Any in-progress scan of the cache (i.e. reactive or routine purges, or a statistics scan) can be
halted from the command line (and online Server Admininistration facility).

$ HTTPD /PROXY=STOP=SCAN

17.2.4 Cache Invalidation

For the purposes of this document, cache invalidation is defined as the determination when
a cache file’s data is no longer valid and needs to be reloaded.

Proxy Services 17–11

The method used for cache validation is deliberately quite simple in algorithm and imple-
mentation. In this first attempt at a proxy server the overriding criteria have been efficiency,
simplicity of implementation, and reliability. Wishing to avoid complicated revalidation using
behind-the-scenes HEAD requests the basic approach has been to just invalidate the cache
item upon exiry of a period related to the ‘‘Last-Modified:’’ age or upon a no-cache request,
both described further below.

• If a ‘‘Pragma: no-cache’’ request header field is present (as is generated by Netscape
Navigator when using the reload function) then the server should completely reload the
response from the remote server. (Too often the author seems to have received incomplete
responses where the proxy server caches only part of a response and has seemed to refuse
to explicitly re-request.) OK, it’s a bit more expensive but who’s to say the proxy server
is right all the time! The response is still cached ... the next request may not have the
no-cache parameter.

• When a response is cached the file creation date/time is set to the local equivalent of the
‘‘Last-Modified:’’ GMT date and time supplied with the response. In this manner the file’s
absolute age can be determined quickly and easily from the file header. This is used as
described in Section 17.2.5.

• When a file is cached, the revision and expires date/times are set to current. The revision
date/time is used when assessing when the file was last loaded/validated/reloaded. Once a
file is cached the RMS expires date/time is updated every time it is subsequently accessed.
In this way recency of usage of the item can be easily tracked, allowing the routine and
reactive purges to operate by merely checking the file header.

The revision count (automatically updated by VMS) tracks the absolute number of accesses
since the file was created (actually a maximum of 65535, or an unsigned short, but that
should be enough for informational purposes).

17.2.5 Cache Retention

The [ProxyCaheReloadList] configuration parameter is used to control when a file being
accessed is reloaded from source.

This parameter supplies a series of integers representing the hours after which an access to
a cache file causes the file to be invalidated and reloaded from the source during the proxied
request. Each number in the series represents the lower boundary of the range between it
and the next number of hours. A file with a last-loaded age falling within a range is reloaded
at the lower boundary of that particular range. The following example

[ProxyCacheReloadList] 1,2,4,8,12,24,48,96,168

would result in a file 1.5 hours old being reloaded every hour, 3.25 hours old every 2 hours, 7
hours old every 4 hours, etc. Here "old" means since last (or of course first) loaded. Files not
reloaded since the final integer, in this example 168 (one week), are always reloaded.

17–12 Proxy Services

17.2.6 Reporting and Maintenance

The HTTPDMON utility allows real-time monitoring of proxy serving activity (Section 23.8).

Proxy reports and some administrative control may be exercised from the online Server
Administration facility (Chapter 19). The information reported includes:

• some proxy serving statistics

• current cache device status

• whether cache space is available

• if a purge is in progress

• the results from the last routine and reactive purges

• the results from the last scan of the cache

• contents of the host name/address cache

The following actions can be initiated from this menu. Note that three of these relate to proxy
file cache and so may take varying periods to complete, depending on the number of files. If
the cache is particularly large the scan/purge may take some considerable time.

• generate proxy cache statistics by scanning the entire cache

• perform a routine purge

• perform a reactive purge

• purge the proxy host name/address cache

Also available from the Server Administration facility is a dialog allowing the proxy character-
istics of the running server to be adjusted on an ad hoc basis. This only affects the executing
server, to make changes to permanent configuration the HTTPD$CONFIG configuration file
must be changed.

This dialog can be used to modify the device free space percentages according to recent changes
in device usage, alter the reload or purge hour list characteristics, etc. After making these
changes a routine or reactive purge will automatically be initiated to reduce the space in use
by the proxy cache if implied by the new settings.

17.2.7 PCACHE Utility

It is often useful to be able to list the contents of the proxy cache directory or the character-
istics or contents of a particular cache file. Cache files have a specific internal format and so
require a tool capable of dealing with this. The HT_ROOT:[SRC.UTILS]PCACHE.C program
provides a versatile command-line utility as well as CGI(plus) script, making cache file infor-
mation accessible from a browser. It also allows cache files to be selected by wildcard filtering
on the basis of the contents of the associated URL or response header. For detailed informa-
tion on the various command-line options and CGI query-string options see the description
at the start of the source code file.

Proxy Services 17–13

Command-Line Use

Make the HT_EXE:PCACHE.EXE executable a foreign verb. It is then possible to

• list the basic characteristics of all/selected files in the cache directory tree

• list the characteristics plus the HTTP response header of a single file

• extract the response header

• extract the response body (text, graphic, file, etc.)

• do all of the above while filtering on URL or response header contents, number of hits,
when last accessed, last loaded, and last modified (in hours)

Script Use

To make the PCACHE script available to the server ensure the following line exists in the
HTTP$CONFIG configuration file in the [AddType] section.

.HTC application/x-script /cgiplus-bin/pcache WASD proxy cache file

The following rule needs to be in the HTTPD$MAP configuration file.

pass /ht_cache_root/*

Note
It is also recommended to place the utility and the cache directory under some
authorization control to prevent casual browsing and access of the cache contents.
Something local, similar in intention to

[[alpha.wasd.dsto.defence.gov.au:8080]]
["WASD Admin"=WASD_ADMIN=id]
/pcache/* ~webadmin,131.185.250.*,r+w ;
/ht_cache_root/* ~webadmin,131.185.250.*,r+w ;

Once available the following is then possible.

• From a directory listing (‘‘Index Of’’) access a cache file and be presented with the following
information:

• blocks used/allocated

• last modification date/time of the response

• date/time the response was (re)loaded into cache

• date/time the cache file was last accessed

• number of time since first created the cache file has been accessed

• the URL the cache file represents (as a link)

• the full response header (as received from the proxied server)

• a series of ‘‘buttons’’ allowing

• the cache content (response body) to be viewed (note that self-relative embedded
graphics, etc., probably will not be displayed in such documents)

17–14 Proxy Services

• the cache file to be VMS DUMPed

• the cache file to be VMS ANALYZE/RMSed

• the cache file to be VMS DELETEd

If the configuration changes described above have been made the following link will return
such an index.

online hypertext link

• Have the utility generate a form providing a convenient interface to the various capabil-
ities and filters available. If the configuration changes described above have been made
the following link will return this form.

online hypertext link

• The utility’s form does not have to be used. By supplying the appropriate query string
components, either from a custom form or forms, or directly embedded into links, profiles,
listings, deletion may be generated.

Note
Cache directory trees have the potential to become heavily populated, so the use of the
script to generate listings of the cache contents could return extremely large listing
documents.

17.3 CONNECT Serving
The connect service provides firewall proxying for any connection-oriented TCP/IP access.
Essentially it provides the ability to tunnel any other protocol via a Web proxy server. In the
context of Web services it is most commonly used to provide firewall-transparent access for
Secure Sockets Layer (SSL) transactions. It is a special case of the more general tunnelling
provided by WASD, see Section 17.6.

17.3.1 Enabling CONNECT Serving

As with proxy serving in general, CONNECT serving may enabled on a per-service basis
using the HTTPD$CONFIG [service] directive, the HTTPD$SERVICE configuration file, or
even the /SERVICE= qualifier.

The actual services providing the CONNECT access (i.e. the host and port) are specified on a
per-service basis. This means it is possible to have CONNECT and non-CONNECT services
deployed on the one server, as part of a general proxy service or standalone. CONNECT
proxying is enabled by appending the connect keyword to the particular service specification.
The following example shows a non-proxy and proxy services, with and without additional
connect processing enabled.

[[http://alpha.wasd.dsto.defence.gov.au:80]]

[[http://alpha.wasd.dsto.defence.gov.au:8080]]
[ServiceProxy] enabled

[[http://alpha.wasd.dsto.defence.gov.au:8081]]
[ServiceProxyTunnel] connect

Proxy Services 17–15

[[http://alpha.wasd.dsto.defence.gov.au:8082]]
[ServiceProxy] enabled
[ServiceProxyTunnel] connect

17.3.2 Controlling CONNECT Serving

The connect service poses a significant security dilemma when in use in a firewalled environ-
ment. Once a CONNECT service connection has been accepted and established it essentially
acts as a relay to whatever data is passed through it. Therefore any transaction what-
soever can occur via the connect service, which in many environments may be considered
undesirable.

In the context of the Web and the use of the connect service for proxying SSL transactions
it may be well considered to restrict possible connections to the well-known SSL port, 443.
This may be done using conditional directives, as in the following example:

[[alpha.wasd.dsto.defence.gov.au:8080]]
if (request-method:CONNECT)

pass *:443
pass * "403 CONNECT only allowed to port 443."

endif

All of the comments on the use of general and conditional mapping made in Section 17.1.5
can also be applied to the connect service.

17.4 FTP Proxy Serving
WASD provides a proxy service for the FTP scheme (prototcol). This provides the facility to
list directories on the remote FTP server, download and upload files.

The (probable) file system of the FTP server host is determined by examining the results of
an FTP PWD command. If it returns a current working directory specification containing a
‘‘/’’ then it assumes it to be Unix(-like), if ‘‘:[’’ then VMS, if a ‘‘\ ’’ then DOS. (Some DOS-based
FTP servers respond with a Unix-like ‘‘/’’ so a second level of file-system determination is
undertaken with the first entry of the actual listing.) Anything else is unknown and reported
as such. WASD (for the obvious reason) is particularly careful to perform well with FTP
servers responding with VMS file specifications.

Note that the content-type of the transfer is determined by the way the proxy server interprets
the FTP request path’s ‘‘file’’ extension. This may or may not correspond with what the remote
system might consider the file type to be. The default content-type for unknown file types is
‘‘application/octet-stream’’ (binary). When using the alt query string parameters then for any
file in a listing the icon provides an alternate content-type. If the file link provides a text
document then the icon will provide a binary file. If the link returns a binary file then the
icon will return a file with a plain-text content-type.

In addition to content-type the FTP mode in which the file transfer occurs can be determined
by either of two conditions. It the content-type is ‘‘text/..’’ then the transfer mode will be
ASCII (i.e. record carriage-control adjusted between systems). If not text then the file is
transfered in Image mode (i.e. a binary, opaque octet-stream). For any given content-type
this default behaviour may be adjusted using the [AddType] directive (Section 10.2), or the
‘‘#!+’’ MIME.TYPES directive (Section 6.7.2).

17–16 Proxy Services

Rules required in HTTPD$MAP for mapping FTP proxy. This is preferably made against the
virtual service providing the FTP proxy. The service explicitly must make the icon path used
available or it must be available to the proxy service in some other part of the mappings. Also
the general requirement for error message URLs applies to FTP proxying (Error Messages).

[[proxy.host.name:8080]
pass http://* http://*
pass ftp://* ftp://*
pass /*/-/* /ht_root/runtime/*/*

17.4.1 FTP Query String Keywords

Keywords added to an FTP request query string allow the basic FTP action to be somewhat
tailored. These case-insensitive keywords can be in the form of a query keys or query form
fields and values. This allows considerable flexibility in how they are supplied, allowing easy
use from a browser URL field or for inclusion as form fields.

FTP Query String Keywords

Keyword Description

alt Adds alternate access (complementary content-type at the icon) for directory
listings.

ascii Force the file transfer type to be done as ASCII (i.e. with carriage-control
conversion between systems with different representations).

content Explicitly specify the content type for the returned file (e.g. ‘‘content:text/plain’’, or
‘‘content=image/gif’’).

dos When generating a directory listing force the interpretation to be DOS.

email Explicitly specify the anonymous access email address (e.g. ‘‘email:daniel@wasd.vsm.com.au’’
or ‘‘email=daniel@wasd.vsm.com.au’’).

image Force the file transfer type to be done as an opaque binary stream of octets.

list Displays the actual directory plain-text listing returned by the remote FTP server.
Can be used for problem analysis.

login Results in the server prompting for a username and password pair that are then
used as the login credentials on the remote FTP server.

octet Force the content-type of the file returned to be specified as "application/octet-
stream".

text Force the content-type of the file returned to be specified as "text/plain".

unix When generating a directory listing force the interpretation to be Unix.

upload Causes the server to return a simple file transfer form allowing the upload of a file
from the local system to the remote FTP server.

vms When generating a directory listing force the interpretation to be VMS.

Proxy Services 17–17

17.4.2 ‘‘login’’ Keyword

The usual mechanism for supplying the username and password for access to a non-
anonymous proxied FTP server area is to place it as part of the request line (i.e.
‘‘ftp://username:password@the.host.name/path/’’). This has the obvious disadvantage that it’s
there for all and sundry to see.

The ‘‘login’’ query string is provided to work around the more obvious of these issues, having
the authentication credentials as part of the request URL. When this string is placed in the
request query string the FTP proxy requests the browser to prompt for authentication (i.e.
returns a 401 status). When request header authentication data is present it uses this as
the remote FTP server username and password. Hence the remote username and password
never need to appear in plain-text on screen or in server logs.

17.5 Gatewaying Using Proxy
WASD is fully capable of mapping non-proxy into proxy requests, with various limitations on
effectiveness considering the nature of what is being performed.

Gatewaying between request schemes (protocols)

HTTP to HTTP (a gateway of sorts - standard proxy)
HTTP TO HTTP-over-SSL (non-secure to secure)
HTTP to FTP
HTTP-over-SSL to HTTP (secure to non-secure)
HTTP-over-SSL to HTTP-over-SSL (secure to secure)
HTTP-over-SSL to FTP

and also gatewaying between IP versions

IPv4 to IPv6
IPv6 to IPv4

All can be useful for various reasons. One example might be where a script is required to
obtain a resource from a secure server via SSL. The script can either be made SSL-aware,
sometimes a not insignificant undertaking, or it can use standard HTTP to the proxy and
have that access the required server via SSL. Another example might be accessing an internal
HTTP resource from an external browser securely, with SSL being used from the browser to
the proxy server, which the accesses the internal HTTP resource on its behalf.

Request Redirect

The basic mechanism allowing this gatewaying is ‘‘internal’’ redirection. The redirect mapping
rule (Section 14.4.2) either returns the new URL to the originating client (requiring it to
reinitiate the request) or begins reprocessing the request internally (transparently to the
client). It is this latter function that is obviously used for gatewaying.

17–18 Proxy Services

17.5.1 Reverse Proxy

The use of WASD proxy serving as a firewall component assumes two configured network
interfaces on the system, one of which is connected to the internal network, the other to the
external network. (Firewalling could also be accomplished using a single network interface
with router blocking external access to all but the server system.) Outgoing (internal to
external) proxying is the most common configuration, however a proxy server can also be
used to provide controlled external access to selected internal resources. This is sometimes
known as reverse proxy and is a specific example of WASD’s general non-proxy to proxy request
redirection capability (Section 17.5).

In this configuration the proxy server is contacted by an external browser with a standard
HTTP request. Proxy server rules map this request onto a proxy-request format result. For
example:

redirect /sales/* /http://sales.server.com/*?

Note that the trailing question-mark is required to propagate any query string (Sec-
tion 14.4.2).

The server recognises the result format and performs a proxy request to a system on the
internal network. Note that the mappings required could become quite complex, but it is
possible. See example 7 in Section 17.1.5.

Redirection Location Field

If a reverse proxied server returns a redirection response (302) containing a ‘‘Location: url’’
field with the host component the same reverse-proxied-to server it can be rewritten to instead
contain the proxy server host. If these do not match the rewrite does not occur. Using the
redirection example above, the SET mapping rule proxy=reverse=location specifies the path
that will be prefixed to the path component in the location field URL. Usually this would be
the same path used to map the reverse proxy redirect (in this example ‘‘/sales/’’), though could
be any string (presumably detected and processed by some other part of the mapping).

set /sales/* proxy=reverse=location=/sales/
redirect /sales/* /http://sales.server.com/*?

This could be simplified a little by using a postfix SET rule along with the original redirect.

redirect /sales/* /http://sales.server.com/*? proxy=reverse=location=/sales/

If the proxy=reverse=location=<string> ends in an asterisk the entire 302 location field URL
is appended (rather than just the path) resulting in something along the lines of

Location: http://proxy.server.com/sales/http://sales.server.com/path/

which once redirected by the client can be subsequently tested for and some action made by
the proxy server according to the content (just a bell or whistle ;-).

Proxy Services 17–19

Authorization Verification

WASD can authorize reverse proxy requests locally (perhaps from the SYSUAF) and rewrite
that username into the proxied requests ‘‘Authorization: . . . ’’ field. The proxied-to server
can then verify that the request originated from the proxy server and extract and use that
username as authenticated.

This functionality is described in the HT_ROOT:[SRC.HTTPD]PROXYVERIFY.C module.

proxyMUNGE Utility

This utility (CGIplus script) can be used to rewrite HTTP response ‘‘Location:’’ fields, ‘‘Set-
Cookie:’’ path and domain components and URLs in HTML and CSS content.

This functionality is described in the prologue to the code HT_ROOT:[SRC.UTILS]PROXYMUNGE.C

Note
The proxyMUNGE Utility handles all response rewriting and so when employing it to
perform reverse-proxy processing it is unnecessary to use the proxy=reverse=location=<string>
mapping rule described in Redirection Location Field.

17.5.2 One-Shot Proxy

This looks a little like reverse proxy, providing access to a non-local resource via a standard
(non-proxy) request. The difference allows the client to determine which remote resource is
accessed. This works quite effectively for non-HTML resources (e.g. image, binary files, etc.)
but non-self-referential links in HTML documents will generally be inaccessible to the client.
This can provide provide scripts access to protocols they do not support, as with HTTP to
FTP, HTTP to HTTP-over-SSL, etc.

Mappings appropriate to the protocols to be support must be made against the proxy service.
Of course mapping rules may also be used to control whom or to what is connected.

[[the.proxy.service:port]]
support "one-shot" non-proxy to proxy redirect
redirect /http://* http://*
redirect /https://* https://*
redirect /ftp://* ftp://*
OK to process these (already, or now) proxy format requests
pass http://* http://*
pass https://* https://*
pass ftp://* ftp://*

The client may the provide the desired URL as the path of the request to the proxy service.
Notice that the scheme provided in the desired URL can be any supported by the service and
its mappings.

http://the.proxy.service:port/http://the.remote.host/path
http://the.proxy.service:port/https://the.remote.host/path
http://the.proxy.service:port/ftp://the.remote.host/pub/

17–20 Proxy Services

17.5.3 DNS Wildcard Proxy

This relies on being able to manipulate host record in the DNS or local name resolu-
tion database. If a ‘‘*.the.proxy.host’’ DNS (CNAME) record is resolved it allows any host
name ending in ‘‘.the.proxy.host’’ to be resolved to the corresponding IP address. Simi-
larly (at least the Compaq TCP/IP Services) the local host database allows an alias like
‘‘another.host.name.proxy.host.name’’ for the proxy host name. Both of these would allow a
browser to access ‘‘another.host.name.proxy.host.name’’ with it resolved to the proxy service.
The request ‘‘Host:’’ field would contain ‘‘another.host.name.proxy.host.name’’.

Using this approach a fully functioning proxy may be implemented for the browser without
actually configuring it for proxy access, where returned HTML documents contain links that
are always correct with reference to the host used to request them. This allows the client an
ad hoc proxy for selected requests. For a wildcard (CNAME) record the browser user may
enter any host name prepended to the proxy service host name and port and have the request
proxied to that host name. Entering the following URL into the browser location field

http://the.host.name.the.proxy.service:8080/path

would result in a standard HTTP proxy request for ‘‘/path’’ being made to ‘‘the.host.name:80’’.
With the URL

https://the.host.name.the.proxy.service:8443/path

an SSL proxy request. Note that normally the well-known port would be used to connect to
(80 for http: and 443 for https:). If the final, period-separated component of the wildcard host
name is all digits it is interpreted as a specific port to connect to. The example

http://the.host.name.8001.the.proxy.service:8080/path

would connect to ‘‘the.host.name:8001’’, and

https://the.host.name.8443.the.proxy.service:8443/path

to ‘‘the.host.name:8443’’.

Note
It has been observed that some browsers insist that an all-digit host name element is
a port number despite it being prefixed by a period not a colon. These browsers then
attempt to contact the host/port directly. This obviously precludes using an all-digit
element to indicate a target port number with these browsers.

This wildcard DNS entry approach is a more fully functional analogue to common proxy
behaviour but is slightly less flexible in providing gatewaying between protocols and does
require more care in configuration. It also relies on the contents of the request ‘‘Host:’’ field
to provide mapping information (which generally is not a problem with modern browsers).
The mappings must be performed in two parts, the first to handle the wildcard DNS entry,
the second is the fairly standard rule(s) providing access for proxy processing.

[[the.proxy.service:port1]]
if (host:*.the.proxy.service:port1)

redirect * /http://*
else

pass http://* http://*
endif

Proxy Services 17–21

The obvious difference between this and one-shot proxy is the desired host name is provided
as part of the URL host, not part of the request path. This allows the browser to correctly
resolve HTML links etc. It is less flexible because a different proxy service needs to be
provided for each protocol mapping. Therefore, to allow HTTP to HTTP-over-SSL proxy
gatewaying another service and mapping would be required.

[[the.proxy.service:port2]]
if (host:*.the.proxy.service:port2)

redirect * /https://*
else

pass https://* https://*
endif

17.5.4 Originating SSL

This proxy function allows standard HTTP clients to connect to Secure Sockets Layer
(Chapter 18) services. This is very different to the CONNECT service (Section 17.3), allowing
scripts and standard character-cell browsers supporting only HTTP to access secure services.

Standard username/password authentication is supported (as are all other standard HTTP
request/response interactions). The use of X.509 client certificates (Section 18.3.7) to establish
outgoing identity is not currently supported.

Enabling SSL

Unlike HTTP and FTP proxy it requires the service to be specifically configured using the
[ServiceClientSSL] directive.

There are a number of Secure Sockets Layer related service parameters that should also
be considered (Chapter 11). Although most have workable defaults unless [ServiceProxy-
ClientSSLverifyCA] and [ServiceProxyClientSSLverifyCAfile] are specifically set the outgo-
ing connection will be established without any checking of the remote server’s certificate.
This means the host’s secure service could be considered unworthy of trust as the credentials
have not been established.

[[http://alpha.wasd.dsto.defence.gov.au:8080]]
[ServiceProxy] enabled
[ServiceClientSSL] enabled

17.6 Tunnelling Using Proxy
WASD supports the CONNECT method which effectively allows tunnelling of raw octets
through the proxy server. This facility is most commonly used to allow secure SSL connections
to be established with hosts on the ’other side’ of the proxy server. This basic mechanism
is also used by WASD to provide an extended range of tunnelling services. The term raw
is used here to indicate an 8 bit, bidirectional, asynchronous exchange of octets between
two entities, as a protocol family, not necessarily as an application (but can be so). Global
proxy serving must be enabled (Section 17.1.1) and then each service must be configured and
mapped according to the desired mode of tunneling.

17–22 Proxy Services

17.6.1 [ServiceProxyTunnel] CONNECT

A service with this configuration is used as a target for CONNECT proxying (usually SSL
through a firewall). The client expects an HTTP success (200) response once the remote
connection is established, and HTTP error response if there is a problem, and once established
just relays RAW octets through the proxy server (classic CONNECT behaviour).

HTTPD$SERVICE
[[http://*:8080]]
[ServiceProxy] enabled
[ServiceProxyTunnel] connect

HTTPD$MAP
[[*:8080]]
if (request-method:connect)

pass *:443 *:443
pass * "403 CONNECT only allowed to port 443."

endif

This configuration enables CONNECT processing and limits any connect to SSL tunneling
(i.e. port 443 on the remote system).

17.6.2 [ServiceProxyTunnel] RAW

This allows any raw octet client (e.g. telnet) to connect to the port and by mapping be
tunnelled to another host and port to connect to its service (e.g. a telnet service). The usual
HTTP responses associated with CONNECT processing are not provided.

HTTPD$SERVICE
[[http://*:10023]]
[ServiceProxy] enabled
[ServiceProxyTunnel] raw

HTTPD$MAP
[[*:10023]]
if (request-method:connect)

pass *:0 raw://another.host:23
endif
pass "403"

Telnet is used in the example above but the principle equally applies to any protocol that
uses a raw 8 bit, bidirectional, asynchronous exchange of octets. Another example might be
an SMTP service (port 25).

Chaining RAW

It is possible to have a raw tunnel establish itself through a proxy chain (Section 17.1.4) by
transparently generating an intermediate CONNECT request to the up-stream proxy server.
Note that not all CONNECT proxy will allow connection to just any specified port. For
security reasons it it is quite common to restrict CONNECT to port 443.

Proxy Services 17–23

HTTPD$SERVICE
[[http://*:10025]]
[ServiceProxy] enabled
[ServiceProxyTunnel] raw

HTTPD$MAP
[[*:10025]]
if (request-method:connect)

pass *:0 raw://another.host:25 proxy=chain=proxy.host:8080
endif
pass "403"

Any error in connecting to the chained proxy, making the request, connecting to the destina-
tion, etc. (i.e. any error at all) is not reported. The network connection is just dropped. Use
WATCH to establish the cause if necessary.

17.6.3 [ServiceProxyTunnel] FIREWALL

With this configuration a service expects that the first line of text from the client contains
a host name (or IP address) and optional port (e.g. ‘‘the.host.name’’ or ‘‘the.host.name:23’’).
This allows a variable destination to be mapped. The usual HTTP responses associated with
CONNECT processing are not provided.

HTTPD$SERVICE
[[http://*:10023]]
[ServiceProxy] enabled
[ServiceProxyTunnel] FIREWALL

HTTPD$MAP
[[*:10023]]
if (request-method:connect)

pass *:* raw://*:23
pass * raw://*:23

endif
pass "403"

The pass rules force the supplied domain name (and optional port) to be mapped to the telnet
port (23). Of course the mapping rules could allow the supplied port to be mapped into the
destination if desired.

Chaining FIREWALL

As with [ServiceProxyTunnel] RAW it is possible to chain FIREWALL services to an up-stream
proxy server. See Chaining RAW.

17.6.4 Encrypted Tunnel

Up to this point the tunnels have merely been through the proxy server. It is possible to
establish and maintain ENCRYPTED TUNNELS between WASD servers. SSL is used for
this purpose. This is slightly more complex as both ends of the tunnel need to be configured.

+------------+ +------------+
<-unencrypted->| WASD proxy |<-ENCRYPTED->| WASD proxy |<-unencrypted->

+------------+ +------------+

17–24 Proxy Services

This arrangement may be used for any stream-oriented, network protocol between two WASD
systems. As it uses standard CONNECT requests (over SSL) it MAY also be possible to be
configured between WASD and non-WASD servers.

The following example is going to maintain an encrypted tunnel between WASD servers
running on systems KLAATU and GORT. It is designed to allow a user on KLAATU to connect
to a specified port using a telnet client, and have a telnet session created on GORT, tunnelled
between the two systems via an SSL encrypted connection.

Source of tunnel:

KLAATU HTTPD$SERVICE
[[http://*:10023]]
[ServiceProxy] enabled
[ServiceClientSSL] ENABLED
[ServiceProxyTunnel] RAW

KLAATU HTTPD$MAP
[[*:10023]]
if the client is on the local subnet
if (remote-addr:192.168.0.0/24 && request-method:connect)

pass *:0 https://gort.domain:10443 timeout=none,none,none
endif
pass "403"

Destination of tunnel:

GORT HTTPD$SERVICE
[[https://*:10443]]
[ServiceProxy] enabled
[ServiceProxyTunnel] CONNECT

GORT HTTPD$MAP
[[*:10443]]
limit the connection to a specific host
if (remote-addr:192.168.0.10 && request-method:connect)

pass *:0 raw://gort.domain:23 timeout=none,none,none
endif
pass "403"

When a client connects to the service provided by port 10023 on system KLAATU the
connection is immediately processed using a pseudo CONNECT request header. The service
on this port is a proxy allowed to initiate SSL connections (client SSL). This service is
mapped to system GORT port 10443, an SSL service that allows the CONNECT method
(tunnelling). KLAATU’s proxy initiates an SSL connection with GORT. When established and
the CONNECT request from KLAATU is received, it is mapped via a raw tunnel (8 bit, etc.)
to its own system port 23 (the telnet service). Telnet is in use at both ends while encrypted
by SSL inbetween! Note the use of network addresses and general fail rules used to control
access to this service, as well as the disabling of timers that might otherwise shutdown the
tunnel.

Proxy Services 17–25

17.6.5 Encrypted Tunnel With Authentication

This arrangement is essentially a variation on example 4. It provides a cryptographic
authentication of the originator (source) of the tunnel.

Source of tunnel:

KLAATU HTTPD$SERVICE
[[http://*:10023]]
[ServiceProxy] enabled
[ServiceClientSSL] enabled
[ServiceProxyTunnel] RAW
[ServiceClientSSLcert] HT_ROOT:[LOCAL]HTTPD.PEM

KLAATU HTTPD$MAP
[[*:10023]]
if the client is on the local subnet
if (remote-addr:192.168.0.0/24 && request-method:connect)

pass *:0 https://gort.domain:10443 timeout=none,none,none
endif
pass "403"

Destination of tunnel:

GORT HTTPD$SERVICE
[[https://*:10443]]
[ServiceProxy] enabled
[ServiceProxyTunnel] CONNECT
[ServiceProxyAuth] PROXY

GORT HTTPD$MAP
[[*:10443]]
we’ll be relying on X509 authentication
if (request-method:connect)

pass *:0 raw://gort.domain:23 timeout=none,none,none
endif
pass "403"

GORT HTTPD$AUTH
[[*:10443]]
[X509]
* r+w,param="[VF:OPTIONAL]",~4EAB3CBC735F8C7977EBB41D45737E37

This works by configuring the destination service to insist on proxy authorization. The
authorization realm is X509 which causes the destination to demand a certificate from the
source (Section 18.3.7). The fingerprint of this certificate is checked against the authorization
rule before the connection is a allowed to procede.

17.7 Browser Proxy Configuration
The browser needs to be configured to access URLs via the proxy server. This is done using
two basic approaches, manual and automatic.

17–26 Proxy Services

17.7.1 Manual

Most browsers allow the configuration for access via a proxy server. This commonly consists
of an entry for each of the common Web protocol schemes (‘‘http:’’, ‘‘ftp:’’, ‘‘gopher:’’, etc.).
Supply the configured WASD proxy service host name and port for the HTTP scheme. This
is currently the only one available. This would be similar to the following example:

http: www.wasd.dsto.defence.gov.au 8080

To exclude local hosts, and other servers that do not require proxy access, there is usually a
field that allows a list of hosts and/or domain names for which the browser should not use
proxy access. This might be something like:

wasd.dsto.defence.gov.au,dsto.defence.gov.au,defence.gov.au

17.7.2 Automatic

At least Netscape Navigator/Communicator and Microsoft Internet Explorer (4.n and follow-
ing) provide the facility to download a small JavaScript function for establishing proxy policy.
Information on this function and its deployment may be found at

http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html

The following is a very simple proxy configuration JavaScript function. This specifies that all
URL host names that aren’t full qualified, or that are in the ‘‘defence.gov.au’’ domain will be
connected to directly, with all other being accessed via the specified proxy server.

function FindProxyForURL(url,host)
{

if (isPlainHostName(host) ||
dnsDomainIs(host, ".defence.gov.au"))
return "DIRECT";

else
return "PROXY www.wasd.dsto.defence.gov.au:8080; DIRECT";

}

This JavaScript is contained in a file with a specific, associated MIME file type, ‘‘application/x-
ns-proxy-autoconfig’’. For WASD it is recommended the file be placed in HT_ROOT:[LOCAL]
and have a file extension of .PAC (which follows Netscape naming convention).

The following HTTPD$CONFIG directive would map the file extension to the required MIME
type:

[AddType]
.PAC application/x-ns-proxy-autoconfig - proxy autoconfig

This file is commonly made the default document available from the proxy service. The
following example shows the HTTP$MAP rules required to do this:

[www.wasd.dsto.defence.gov.au:8080]
pass http://* http://*
pass / /ht_root/local/proxy.pac
pass *

Proxy Services 17–27

All that remains is to provide the browser with the location from which load this automatic
proxy configuration file. In the case of the above set-up this would be:

http://www.wasd.dsto.defence.gov.au:8080/

A template for a proxy auto-configuration file may be found at HT_ROOT:[EXAMPLE]PROXY_
AUTOCONFIG.TXT.

17–28 Proxy Services

Chapter 18

Secure Sockets Layer

This section is not a tutorial on SSL. It contains only information relating to WASD’s use of
it. Refer to the listed references, Section 18.6, for further information on SSL technology.

The Secure Sockets Layer protocol (SSL) is designed to provide a secure channel between
two communicating applications, in the case of HTTP between the browser (client) and the
HTTPd (server). It also authenticates server and optionally client identity. SSL operates by
establishing an encrypted communication path between the two applications, ‘‘wrapping’’ the
entire application protocol inside the secure link, providing complete privacy for the entire
transaction. In this way security-related data such as user identification and password, as
well as sensitive transaction information can be effectively protected from unauthorized access
while in transit.

SSL functionality is not supplied with the basic WASD package. In part this is due
to the relative bulk of this component, but also considers potential patent issues and export
restrictions on some cryptography technology in some jurisdictions.

WASD implements SSL using a freely available software toolkit supported by the OpenSSL
Project, in particular the VMS port, to which Richard Levitte (levitte@lp.se) and Robert Byer
(ByerRA@aol.com) have been significant contributors.

OpenSSL is a continuing development of the SSLeay toolkit (pronounced ‘‘S-S-L-E-A-Y’’,
i.e. all letters spelt), authored by Eric Young and Tim Hudson. OpenSSL licensing allows
unrestricted commercial and non-commercial use. This toolkit is in use regardless of whether
the WASD OpenSSL package, HP SSL for OpenVMS Alpha, Itanium and (from late 2003)
VAX product, or other stand-alone OpenSSL environment is installed.

It is always preferable to move to the latest support release of OpenSSL as known bugs in
previous versions are progressively addressed (ignoring the issue of new bugs being introduced
;-).

Secure Sockets Layer 18–1

Cryptography Software

Be aware that export/import and/or use of cryptography software, or even just providing
cryptography hooks, is illegal in some parts of the world. When you re-distribute this
package or even email patches/suggestions to the author or other people PLEASE PAY
CLOSE ATTENTION TO ANY APPLICABLE EXPORT/IMPORT LAWS. The author of
this package is not liable for any violations you make here.

Some Thoughts From R. S. Engelschall

Ralf S. Engelschall (rse@engelschall.com) is the author of the popular Apache mod_ssl
package. This section is taken from the mod_ssl read-me and is well-worth some consideration
for this and software security issues in general.

‘‘ You should be very sensible when using cryptography software, because just running an
SSL server DOES NOT mean your system is then secure! This is for a number of reasons.
The following questions illustrate some of the problems.

• SSL itself may not be secure. People think it is, do you?

• Does this code implement SSL correctly?

• Have the authors of the various components put in back doors?

• Does the code take appropriate measures to keep private keys private? To what extent is
your cooperation in this process required?

• Is your system physically secure?

• Is your system appropriately secured from intrusion over the network?

• Whom do you trust? Do you understand the trust relationship involved in SSL certifi-
cates? Do your system administrators?

• Are your keys, and keys you trust, generated careful[ly] enough to avoid reverse engi-
neering of the private keys?

• How do you obtain certificates, keys, and the like, securely?

• Can you trust your users to safeguard their private keys?

• Can you trust your browser to safeguard its generated private key?

‘‘ If you can’t answer these questions to your personal satisfaction, then you usually have a
problem. Even if you can, you may still NOT be secure. Don’t blame the authors if it all goes
horribly wrong. Use it at your own risk! ’’

SSL Overhead

SSL adds a significant overhead to an HTTP transaction for the following reasons.

• An initial connection establishment, where the client and server exchange cryptographic
data and authorize the transaction.

• The transaction transfer, where all application data must be processed by the CPU into
an encrypted stream, and back . . . very expensive processes.

18–2 Secure Sockets Layer

• The encrypted data contains more bytes than the raw data, increasing network transfer
time.

• Other miscellaneous SSL handshaking for the life of the transaction.

For these reasons SSL HTTP is slower and has far greater impact on the server system
CPU than standard HTTP and therefore should only be used when transaction privacy is
required, not as a general HTTP service. Also, if a general HTTP and an SSL HTTP service
is provided on a multi-processor system, with one or other or both experiencing significant
traffic, then the two services should be run in separate processes.

Interoperability

WASD SSL has been used against a wide variety of browsers and certificates. Most
combinations work. Some do not, usually related to the level of encryption required by some
certificates precluding export-grade browsers from connecting.

To date OpenSSL certificates, and those from Thawte and VeriSign have been deployed on
WASD servers.

WASD supports both 40bit, USA ‘‘export-grade’’ encryption, as well as 256-bit, full-strength,
USA ‘‘domestic-grade’’ encryption. Note that as of early 2000, USA domestic-grade
encryption has been generally available due to changes in USA Federal Government export
restriction policy. Netscape Navigator 4.73 and Microsoft Internet Explorer 5.5 and later now
provide this level of encryption as standard.

The ‘‘/SSL’’ qualifier controls which version(s) of the SSL protocol the server will support;
‘‘2’’, ‘‘3’’ or ‘‘23’’ (i.e. versions 2 and 3, also the default). Using /NOSSL disables the SSL
functionality of an SSL executable. There are also per-service configuration directives for
tailoring the protocol version.

HTTP-to-SSL Gateway

The WASD proxy service can provide an HTTP-to-SSL gateway, allowing standard HTTP
clients to connect to Secure Sockets Layer services. See Section 17.5.4.

18.1 SSL Functionality Sources
Secure Sockets Layer functionality is easily integrated into WASD and is available from
one (or more) of four sources. See Section 18.2 for the basics of installing WASD SSL and
Section 18.3 for configuration of various aspects.

1. The HP SSL (Secure Sockets Layer) for OpenVMS Alpha/Itanium/VAX product

http://h71000.www7.hp.com/openvms/products/ssl/ssl.html

This is provided from the directory SYS$COMMON:[SSL] containing shared libraries,
executables and templates for certificate management, etc. If this product is installed
and started the WASD installation and update procedures should detect it and provide
the option of compiling and/or linking WASD against its shareable libraries.

2. The Jean-François Piéronne OpenSSL package

http://www.pi-net.dyndns.org/anonymous/kits/

Secure Sockets Layer 18–3

This is provided in the version dependent area, SYS$COMMON:[OPENSSLnnn], contain-
ing shared libraries, executables and templates for certificate management, etc. If this
product is installed and started the WASD installation and update procedures should
detect it and provide the option of compiling and/or linking WASD against its shareable
libraries.

3. As a separate, easily integrated WASD OpenSSL package, with OpenSSL object
libraries, OpenSSL utility object modules for building executables and WASD support
files. It requires no compilation, only linking, and is available for Alpha, Itanium and
VAX for VMS version 6.0 up to current. Obtain these from the same source as the main
package.

WASD SSL installation creates an OpenSSL directory in the source area, HT_
ROOT:[SRC.OPENSSL-n_n_n], containing the OpenSSL copyright notice, object libraries,
object modules for building executables, example certificates, and some other support files
and documentation.

4. Using a locally compiled and installed OpenSSL toolkit.

18.2 WASD SSL Quick-Start
SSL functionality can be installed with a new package, or with an update, or it can be added
to an existing non-SSL enabled site. The following steps give a quick outline for support of
SSL.

1. If using the HP SSL for OpenVMS Alpha/Itanium/VAX product or an already installed
OpenSSL toolkit go directly to step 2. To install the WASD OpenSSL package the ZIP
archive needs to be restored.

• The ZIP archive will contain brief installation instructions. Use the following
command to read this and any other information provided.

$ UNZIP -z device:[dir]archive.ZIP

• Either UNZIP the WASD SSL package into a new installation

$ SET DEFAULT [.HT_ROOT]
$ UNZIP device:[dir]archive.ZIP

• OR into an existing installation

$ SET DEFAULT HT_ROOT:[000000]
$ UNZIP device:[dir]archive.ZIP

2. It is then necessary to build the HTTPd SSL executables. This can be done in either of
two ways.

• During an original INSTALL or subsequent UPDATE of the entire package. As of
v8.1 these procedures detect a suitable SSL toolkit and prompt the user whether an
SSL enabled server should be built.

• To to add SSL functionality to an existing but non-SSL site just the SSL components
can be built using the following procedure.

$ @HT_ROOT:[INSTALL]UPDATE SSL

18–4 Secure Sockets Layer

3. Once linked the UPDATE.COM procedure will prompt for permission to execute the
demonstration/check procedure.

It is also possible to check the SSL package at any other time using the server demon-
stration procedure. It is necessary to specify that it is to use the SSL executable. Follow
the displayed instructions.

$ @HT_ROOT:[INSTALL]DEMO.COM SSL

4. Modification of server startup procedures should not be necessary. If an SSL image is
detected during startup it will be used in preference to the standard image.

5. Modify the HTTPD$CONFIG configuration file to specify an SSL service. For example
the following creates both a standard HTTP service on the default port 80 and an SSL
service on the default port 443

[Service]
the.host.name
https://the.host.name

6. Shutdown the server completely, then restart.

$ HTTPD /DO=EXIT
$ @HT_ROOT:[STARTUP]STARTUP

7. To check the functionality (on default ports) access the server via

Standard HTTP

http://the.host.name/

SSL HTTP

https://the.host.name/

8. Once the server has been proved functional with the example certificate it is recommended
that a server-specific certificate be created using the tools described in Section 18.4. This
may then be used by placing it in the appropriate local directory, assigning the WASD_
SSL_CERT symbol appropriately before startup.

18.3 SSL Configuration
The example HTTPd startup procedure already contains support for the SSL executable.
If this has been used as the basis for startup then an SSL executable will be started
automatically, rather than the standard executable. The SSL executable supports both
standard HTTP services (ports) and HTTPS services (ports). These must be configured
using the [service] parameter. SSL services are distinguished by specifying ‘‘https:’’ in the
parameter. The default port for an SSL service is 443.

WASD can configure services using the HTTPD$CONFIG [service] directive, the HTTPD$SERVICE
configuration file, or even the /SERVICE= qualifier.

Secure Sockets Layer 18–5

18.3.1 HTTPD$CONFIG [Service]

The following example illustrates creating two services using the HTTPD$CONFIG [Service]
directive; a standard HTTP service on the default port 80, and an SSL service on the default
port 443.

[Service]
alpha.host.name
https://alpha.host.name

The one further requirement of an SSL server is a certificate. By default this is located
using the HTTPD$SSL_CERT logical name during startup, however if required, each SSL
service can have an individual certificate configured against it using the syntax shown in this
example.

[Service]
alpha.host.name
https://alpha.host.name;cert=ht_root:[local]alpha.pem
https://beta.host.name;cert=ht_root:[local]beta.pem

18.3.2 HTTPD$SERVICE

SSL service configuration using the HTTPD$SERVICE configuration is slightly simpler, with
a specific configuration directive for each aspect. See Chapter 11. This example illustrates
configuring the same services as used in the previous section.

[[http://alpha.host.name:80]]

[[https://alpha.host.name:443]]
[ServiceSSLcert] ht_root:[local]alpha.pem

[[https://beta.host.name:443]]
[ServiceSSLcert] ht_root:[local]beta.pem

18.3.3 SSL Server Certificate

The server certificate is used by the browser to authenticate the server against the server
certificate Certificate Authority (CA), in making a secure connection, and in establishing
a trust relationship between the browser and server. By default this is located using the
HTTPD$SSL_CERT logical name during startup, however if required, each SSL service can
have an individual certificate configured against it as shown above.

18.3.4 SSL Private key

The private key is used to validate and enable the server certificate. A private key is enabled
using a secret, a password. It is common practice to embed this (encrypted) password within
the private key data. This private key can be appended to the server certificate file, or it can
be supplied separately. If provided separately it is by default located using the HTTPD$SSL_
KEY logical, though can be specified on a per-service basis. When the password is embedded
in the private key information it becomes vulnerable to being stolen as an enabled key. For
this reason it is possible to provide the password separately and manually.

18–6 Secure Sockets Layer

If the password key is not found with the key during startup the server will request that it
be entered at the command-line. This request is made via the HTTPDMON ‘‘STATUS:’’ line
(Section 23.8), and if any OPCOM category is enabled via an operator message (Section 6.11).
If the private key password is not available with the key it is recommended that OPCOM be
configured, enabled and monitored at all times.

When a private key password is requested by the server it is supplied using the
/DO=SSL=KEY=PASSWORD directive (Section 19.7). This must be used at the command
line on the same system as the server is executing. The server then prompts for the pass-
word.

Enter private key password []:

The password is not echoed. When entered the password is securely supplied to the server
and startup progresses. An incorrect password will be reprompted for twice (i.e. up to three
attempts are allowed) before the startup continues with the particular service not configured
and unavailable. Entering a password consisting of all spaces will cause the server to abort
the full startup and exit from the system.

18.3.5 SSL Virtual Services

Multiple virtual SSL services (https:) sharing the same certificate (and other characteristics)
can essentially be configured against any host name (unique IP address or host name alias)
and/or port in the same way as standard services (http:). Services requiring unique certificates
can only be configured for the same port number against individual and unique IP addresses
(i.e. not against aliases).

This is not a WASD restriction, it applies to all servers for significant technical reasons.
Secure Sockets Layer is designed to wrap an entire application protocol (in this case HTTP).
HTTP virtual services use the ‘‘Host:’’ field of the request header to determine which service
the client intended to use. This requires the network connection established and at least
the request header transfered and processed. For an SSL service establishing the connection
requires a complex transaction involving, amongst other things, certificate exchange. Hence,
the certificate (and all other SSL parameters) must be determined at the time the server
accepts the initial connection request. At that point the only defining characteristics can
be IP address and port, and therefore services requiring unique certificates must be unique
either by address or port. Services sharing certificates do not have this restriction and so
may be configured against host name aliases.

For example, unique certificates for https://www.company1.com:443/ and
https://www.company2.com:443/ can be configured only if COMPANY1 and COMPANY2 have
unique IP addresses. If COMPANY2 is an host name alias for COMPANY1 they must
share the same certificate. During startup service configuration the server checks for such
conditions, forces subsequent services to use the same SSL characteristsics as the first
configured, and issues a warning about this ‘‘sharing’’.

Secure Sockets Layer 18–7

18.3.6 SSL Access Control

When authorization is in place (Chapter 16) access to username/password controlled
data/functionality benefits enormously from the privacy of an authorization environment in-
herently secured via the encrypted communications of SSL. In addition there is the possibility
of authentication via client X.509 certification (Section 18.3.7). SSL may be used as part of
the site’s access control policy, as whole-of-site, see Section 16.2, or on a per-path basis, see
Section 14.7 and Access Restriction Keywords.

18.3.7 Authorization Using X.509 Certification

The server access control functionality (authentication and authorization) allows the use
of public key infrastructure (PKI) X.509 v3 client certificates for establishing identity and
based on that apply authorization constraints. See Chapter 16 for general information on
WASD authorization and Section 16.4 for configuring a X509 realm. Section 18.6 provides
introductory references on public-key cryptography and PKI.

A client certificate is stored by the browser. During an SSL transaction the server can
request that such a certificate be provided. For the initial instance of such a request the
browser activates a dialog requesting the user select one of any certificates it has installed.
If selected it is transmitted securely to the server which will usually (though optionally not)
authenticate its Certificate Authority to establish its integrity. If accepted it can then be used
as an authenticated identity. This obviates the use of username/password dialogs.

Important
Neither username/password nor certificate-based authentication addresses security
issues related to access to individual machines and stored certificates, or to password
confidentiality. Public-key cryptography only verifies that a private key used to sign
some data corresponds to the public key in a certificate. It is a user responsibility to
protect a machine’s physical security and to keep private-key passwords secret.

The initial negotiation and verification of a client certificate is a relatively resource intensive
process. Once established however, OpenSSL sessions are stored in a cache, reducing
subsequent request overheads significantly. Each cache entry has a specified expiry period
after which the client is forced to negotiate a new session. This period is adjustable using
the ‘‘[LT:integer]’’ and ‘‘[TO:integer]’’ directives described below.

18.3.8 Features

WASD provides a range of capabilities when using X.509 client certificates.

• By Service - all SSL connections to such a service will be requested to supply a client
certificate during the initial SSL handshake. This is more efficient than requesting later
in the transaction, as happens with per-resource authorization. A client cannot connect
successfully to this type of service without supplying an acceptable certificate.

• By Resource - using authorization rules in the HTTPD$AUTH file specifying a path
against an [X509] realm causes the server to suspend request processing and renegotiate
with the client to supply a certificate. If a suitable certificate is supplied the request
authorization continues with normal processing. This obviously incurs an additional
network transaction.

18–8 Secure Sockets Layer

• Optional access control - once an acceptable certificate is supplied it can be subject
to further access control by matching against its contents. The Issuer (CA) and the
Subject (client) Distinguished Name (DN) has various components including the name
of the organization providing the certificate (e.g. ‘‘VeriSign’’, ‘‘Thawte’’), location, common
name, email address, etc. Those certificates matching or not matching the parameters
are allowed or denied access.

• Certificate verification - by default supplied certificates have their CA verified by
comparing to a list of recognised CA certificates stored in a server configuration file. If
the CA component of the client certificate cannot be verified the connection is terminated
before the HTTP request can begin. Although this is obviously required behaviour for
authentication there may be other circumstances where verification is not required, a
certificate content display service for instance. WASD optionally allows non-verified
certificates to be used on a per-resource basis.

• ‘‘Fingerprint’’ REMOTE_USER - when a certificate is accepted by the server it
generates a unique fingerprint of the certificate. By default, this 32 digit hexadecimal
number is used by the server as an effective username, one that would normally be
supplied via a username/password dialog (as an alternative see the section immediately
below). This effective username becomes that available via the CGI variable REMOTE_
USER. Although a 32 digit number is not particularly site-administrator friendly it is
a unique representation (MD5 digest) of the individual certificate and can be used in
HTTPD$AUTH access-restriction directives and included in group lists and databases for
full WASD authorization control.

• DN record REMOTE_USER - provides an alternative to using a ‘‘fingerprint’’ RE-
MOTE_USER. Using the [RU:/record=] conditional (see below) is becomes possible to
specify that the remote-user string be obtained from the specified record of the client
certificate subject field. Note that there is a (fairly generous) size limitation on the user
name and that any white-space in such a record is converted to underscores. Although
any record can be used the more obvious candidates are /O=, /OU=, /CN=, /S=, /UID= and
/EMAIL=. Note that (even with the default CA verfication) the certificate CAs that this
is possible against should be further constrained through the use of a [IS:/record=string]
conditional (see example below).

18.3.9 X509 Configuration

Of course, the WASD SSL component must be installed and in use to apply client X.509
certificate authorization. There is general server setup, then per-service and per-resource
configuration.

General Setup

Client certificate authorization has reasonable defaults. If some aspect requires site refine-
ment the following /SSL= qualifier parameters can provide per-server defaults.

• (CACHE=integer) sets the session size (128 entries by default)

• (CAFILE=file-name) sets the location of the CA verification store file (also can be set via
HTTPD$SSL_CAFILE logical).

• (TIMEOUT=integer) sets the session expiry period in minutes (5 by default)

Secure Sockets Layer 18–9

• (VERIFY=integer) sets the depth to which client certificate CAs are verified (default is 2)

The location of the CA verification file can also be determined using the logical name
HTTPD$SSL_CAFILE. The order of precedence for using these specifications is

1. per-service configuration using HTTPD$SERVICE or HTTPD$CONFIG

2. per-server using /SSL=CAFILE=filename

3. per-server using HTTPD$SSL_CAFILE

By Service

To enable client certification for all requests on a per-service basis the following HTTPD$CONFIG
directive may be used. A non-default CA verification file can also optionally be supplied.

[Service]
https://the.host.name;verify
https://the.host.name;cafile=HT_ROOT:[LOCAL]CA_THE_HOST_NAME.TXT

When HTTPD$SERVICE is in use a service-specific directive is provided for both per-service
verification and per-service CA file specification (allowing different services to accept a
different mix of CAs).

[[https://the.host.name:443]]
[ServiceSSLclientVerifyRequired] enabled
[ServiceSSLclientCAfile] HT_ROOT:[LOCAL]CA_THE_HOST_NAME.TXT

By Resource

Client certificate authorization is probably most usefully applied on a per-resource (per-
request-path) basis using HTTPD$AUTH configuration file rules. Of course, per-resource
control also applies to services that always require a client certificate (the only difference is
the certificate has already been negotiated for during the initial connection handshake). The
reserved realm name ‘‘X509’’ activates client certificate authentication when a rule belonging
to that realm is triggered. The following example shows such a rule providing read access to
those possessing any verified certificate.

[X509]
/path/requiring/cert/* r

Optional directives may be supplied to the X.509 authenticator controlling what mode the
certificate is accepted in, as well a further access-restriction rules on specifically which
certificates may or may not be accepted for authorization. Such directives are passed via
the ‘‘param=’’ mechanism. The following real-life example shows a script path requiring
a mandatory certificate, but not necessarily having the CA verified. This would allow a
certificate display service to be established, the ‘‘[to:EXPIRED]’’ directive forcing the client to
explicitly select a certificate with each access.

[X509]
/cgi-bin/client_cert_details r,param="[vf:OPTIONAL][to:EXPIRED]"

18–10 Secure Sockets Layer

A number of such directives are available controlling some aspects of the certificate negoti-
ation and verification. The ‘‘[LT:integer]’’ directive causes a verified certificate selection to
continue to be valid for the specified period as long as requests continue during that period
(lifetime is reset with each access).

• [DP:integer] verify certificate CA chain to this depth (default 10)

• [LT:integer] verified certificate lifetime in minutes (disabled by default)

• [RU:/record=] derive the remote-user name from the specified certificate subject field DN
record

• [TO:integer] session cache entry timeout in minutes (default 5)

• [TO:EXPIRED] session cache entry is forced to expire (initating renegotiation)

• [VF:NONE] no certificate is required (any existing is cancelled)

• [VF:OPTIONAL] certificate is required, CA verification is not required

• [VF:REQUIRED] the certificate must pass CA verification (the default)

Optional ‘‘param=’’ passed conditionals may also be used to provide additional filtering on
which certificates may or may not be used against the particular path. This is based on
pattern matching against client certificate components.

• [CI:string] transaction cipher

• [IS:/record=string] specified Issuer (CA) DN record only

• [IS:string] entire Issuer (CA) DN

• [KS:integer] minimum key size

• [SU:/record=string] specified Subject (client) DN record only

• [SU:string] entire Subject (client) DN

These function and can be used in a similar fashion to mapping rule conditionals (Sec-
tion 14.7). This includes the logical ORing, ANDing and negating of conditionals. Aster-
isk wildcards match any zero or more characters, percent characters any single character.
Matching is case-insensitive.

Note that the ‘‘IS:’’ and ‘‘SU:’’ conditionals each have a specific-record and an entire-field
mode. If the conditional string begins with a slash then it is considered to be a match against
a specified record contents within the field. If it begins with a wildcard then it is matched
against the entire field contents. Certificate DN records recognised by WASD,

/C= countryName
/ST= stateOrProvinceName
/SP= stateOrProvinceName
/L= localityName
/O= organizationName
/OU= organizationalUnitName
/CN= commonName
/T= title
/I= initials
/G= givenName

Secure Sockets Layer 18–11

/S= surname
/D= description
/UID= uniqueIdentifier
/Email= pkcs9_emailAddress

The following (fairly contrived) examples provide an illustration of the basics of X509
conditionals. When matching against Issuer and Subject DNs some knowlege of their contents
and structure is required (see Section 18.6 for some basic resources).

[X509]
only give "VeriSign"ed ones access
/controlled/path1/* r+w,param="[IS:/O=VeriSign\ Inc.]"
only give non-"VeriSign"ed ones access
/controlled/path2/* r+w,param="[!IS:/O=VeriSign\ Inc.]"
only allow 128 bit keys using RC4-MD5 access
/controlled/path3/* r+w,param="[KS:128][CI:RC4-MD5]"
only give a "Thawte"-signed client based in Australia
with the following email address access
/controlled/path4/* r+w,param="\
[IS:*/O=Thawte\ Consulting\ cc/*]\
[SU:*/C=AU/*/Email=mark.daniel@wasd.vsm.com.au*]"
use the subject DN common-name record as the remote-user name
furthermore, restrict the CA’s allowed to be used this way
/VMS/* r+w,param="[RU:/CN=][IS:/O=WASD\ HTTPd\ CA\ Cert]"

Of course, access control via group membership is also available. The effective username
for the list is the 32 digit fingerprint of the client certificate (shown as REMOTE_USER
IN the first example of Section 18.3.11), or the Subject DN record as specified using the
[RU:/record=] directive. This may be entered into simple lists as part of a group of which
membership then controls access to the resource. The following examples show the contents
of simple list files containing the X.509 fingerprints, derived remote-user names, and the
required HTTPD$AUTH realm entries.

FINGERPRINTS.$HTL
(a file of X.509 fingerprints for access to "/path/requiring/cert/")
106C8342890A1703AAA517317B145BF7 mark.daniel@wasd.vsm.com.au
6ADA07108C20338ADDC3613D6D8B159D just.another@where.ever.com

CERT_CN.$HTL
(a file of X.509 remote-user names derived using [RU:/CN=]
Mark_Daniel mark.daniel@wasd.vsm.com.au
Just_Another just.another@where.ever.com

[X509;FINGERPRINTS=list]
/path/requiring/cert/* r+w

[X509;CERT_CN=list]
/path/requiring/cn/* r+w

In a similar fashion the effective username can be placed in an access restriction list. The
following configuration would only allow the user of the certificate access to the specified
resources. Other verified certificate holders would be denied access.

[X509]
/httpd/-/admin/* ~106C8342890A1703AAA517317B145BF7,r+w
/ht_root/local/* ~106C8342890A1703AAA517317B145BF7,r+w

/other/path/* ~Mark_Daniel,r+w,param="[ru:/cn=]"
/yet/another/path/* ~Just_Another,r+w,param="[ru:/cn=]"

18–12 Secure Sockets Layer

18.3.10 Certificate Authority Verification File

For the CA certificate component of the client certificate to be verified as being what it claims
to be (and thus establishing the integrity of the client certificate) a list of such certificates must
be provided for comparison purposes. For WASD this list is contained in a single, plain-text
file variously specified using either the HTTPD$SSL_CAFILE logical or per-service ‘‘;cafile=’’
or ‘‘[ServiceSSLclientCAfile]’’ directives.

Copies of CA certificates are available for such purposes. The PEM copies (base-64 encoded
versions of the binary certificate) can be placed into this file using any desired text editor.
Comments may be inserted by prefixing with the ‘‘#’’ or ‘‘!’’ characters. For WASD this would
be best stored in the HT_ROOT:[LOCAL] directory, or site equivalent.

An example of how such a file appears is provided below (ellipses inserted to reduce the bulk
of example). There is one of these per certificate authority.

##

Verisign Class 1 Public Primary Certification Authority
===
MD5 Fingerprint: 97:60:E8:57:5F:D3:50:47:E5:43:0C:94:36:8A:B0:62
PEM Data:
-----BEGIN CERTIFICATE-----
MIICPTCCAaYCEQDNun9W8N/kvFT+IqyzcqpVMA0GCSqGSIb3DQEBAgUAMF8xCzAJ
BgNVBAYTAlVTMRcwFQYDVQQKEw5WZXJpU2lnbiwgSW5jLjE3MDUGA1UECxMuQ2xh
c3MgMSBQdWJsaWMgUHJpbWFyeSBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTAeFw05
. . .

FvjqBUuUfx3CHMjjt/QQQDwTw18fU+hI5Ia0e6E1sHslurjTjqs/OJ0ANACY89Fx
lA==
-----END CERTIFICATE-----
Certificate Ingredients:

Data:
Version: 1 (0x0)
Serial Number:

cd:ba:7f:56:f0:df:e4:bc:54:fe:22:ac:b3:72:aa:55
Signature Algorithm: md2WithRSAEncryption
Issuer: C=US, O=VeriSign, Inc., OU=Class 1 Public Primary

. . .
35:b0:7b:25:ba:b8:d3:8e:ab:3f:38:9d:00:34:00:98:f3:d1:
71:94

##

The WASD SSL package provides an example CA verification file constructed from all the
certificates provided in Netscape Navigator CERT7.DB file. This has been generated for and
obtained from the Apache mod_ssl package, being used for the same purpose with that. The
WASD file name is CA-BUNDLE_CRT.TXT and is usually located in HT_ROOT:[LOCAL]. The
exact date and mod_ssl version it was obtained from can be found in the opening commentary
of the file itself. The contents of this file can easily be pared down to the minimum certificates
required for any given site. The more certificates in the file the greater the overhead in
verifying any given client.

Secure Sockets Layer 18–13

18.3.11 X.509 Authorization CGI Variables

CGI variables specific to client certificate authorization are always generated for use by scripts
and SSI documents. These along with the general WASD authorization variables are shown
in the example below. Note, that due to length of particular items some in this example are
displayed wrapped.

WWW_AUTH_ACCESS == "READ+WRITE"
WWW_AUTH_GROUP == ""
WWW_AUTH_REALM == "X509"
WWW_AUTH_REALM_DESCRIPTION == "X509 Client Certs"
WWW_AUTH_TYPE == "X509"
WWW_AUTH_USER == "Mark Daniel, mark.daniel@wasd.vsm.com.au"
WWW_AUTH_X509_CIPHER == "RC4-MD5"
WWW_AUTH_X509_FINGERPRINT == "10:6C:83:42:89:0A:17:03:AA:A5:17:31:7B:14:5B:F7"
WWW_AUTH_X509_ISSUER == "/O=VeriSign, Inc./OU=VeriSign Trust
Network/OU=www.verisign.com/repository/RPA Incorp. By
Ref.,LIAB.LTD(c)98/CN=VeriSign Class 1 CA Individual Subscriber-Persona Not
Validated"
WWW_AUTH_X509_KEYSIZE == "128"
WWW_AUTH_X509_SUBJECT == "/O=VeriSign, Inc./OU=VeriSign Trust
Network/OU=www.verisign.com/repository/RPA Incorp. by
Ref.,LIAB.LTD(c)98/OU=Persona Not Validated/OU=Digital ID Class 1 - Netscape
/CN=Mark Daniel/Email=mark.daniel@wasd.vsm.com.au"
WWW_REMOTE_USER == "106C8342890A1703AAA517317B145BF7"

Other CGI variables optionally may be enabled using HTTPD$MAP mapping rules. See
Section 18.5. Specific client certificate variables providing the details of such certificates
are available with SSLCGI=apache_mod_ssl. These are of course in addition to the more
general apache_mod_ssl variables described in the above section. Note that where some
ASN.1 records are duplicated (as in SSL_CLIENT_S_DN) some variables will contain newline
characters (0x10) between those elements (e.g. SSL_CLIENT_S_DN_OU). The line breaks in
this example do not necesarily reflect those characters.

18–14 Secure Sockets Layer

WWW_SSL_CLIENT_A_KEY == "rsaEncryption"
WWW_SSL_CLIENT_A_SIG == "md5WithRSAEncryption"
WWW_SSL_CLIENT_I_DN == "/O=VeriSign, Inc./OU=VeriSign Trust Network
/OU=www.verisign.com/repository/RPA Incorp. By Ref.,LIAB.LTD(c)98
/CN=VeriSign Class 1 CA Individual Subscriber-Persona Not Validated"
WWW_SSL_CLIENT_I_DN_CN == "VeriSign Class 1 CA Individual Subscriber-Persona
Not Validated"
WWW_SSL_CLIENT_I_DN_O == "VeriSign, Inc."
WWW_SSL_CLIENT_I_DN_OU == "VeriSign Trust Network
www.verisign.com/repository/RPA Incorp. By Ref.,LIAB.LTD(c)98"
WWW_SSL_CLIENT_M_SERIAL == "0BF233D4FE232A90F3F98B2CE0D7DADA"
WWW_SSL_CLIENT_M_VERSION == "3"
WWW_SSL_CLIENT_S_DN == "/O=VeriSign, Inc./OU=VeriSign Trust Network
/OU=www.verisign.com/repository/RPA Incorp. by Ref.,LIAB.LTD(c)98
/OU=Persona Not Validated/OU=Digital ID Class 1 - Netscape
/CN=Mark Daniel/Email=mark.daniel@wasd.vsm.com.au"
WWW_SSL_CLIENT_S_DN_CN == "Mark Daniel"
WWW_SSL_CLIENT_S_DN_EMAIL == "mark.daniel@wasd.vsm.com.au"
WWW_SSL_CLIENT_S_DN_O == "VeriSign, Inc."
WWW_SSL_CLIENT_S_DN_OU == "VeriSign Trust Network
www.verisign.com/repository/RPA Incorp. by Ref.,LIAB.LTD(c)98
Persona Not Validated.Digital ID Class 1 - Netscape"
WWW_SSL_CLIENT_V_END == "Feb 10 23:59:59 2001 GMT"
WWW_SSL_CLIENT_V_START == "Dec 12 00:00:00 2000 GMT"

18.4 Certificate Management
This is not a tutorial on X.509 certificates and their management. Refer to the listed
references, Section 18.6, for further information on this aspect. It does provide some basic
guidelines.

Certificates identify something or someone, associating a public cryptographic key with the
identity of the certificate holder. It includes a distinguished name, identification and signature
of the certificate authority (CA, the issuer and guarantor of the certificate), and the period
for which the certificate is valid, possibly with other, additional information.

The three types of certificates of interest here should not be confused.

• CA - The Certificate Authority identifies the authority, or organization, that issues a
certificate.

• Server - Identifies a particular end-service. Its value as an guarantee of identity is
founded in the authority of the organization that issues the certificate. It is the certificate
specified to the server at startup.

• Client - Identifies a particular client to a server via SSL (client authentication). Typically,
the identity of the client is assumed to be the same as the identity of a human being.
Again, its value as an guarantee of identity is founded in the authority of the organization
that issues the certificate.

The various OpenSSL tools are available for management of all of these certificate types in
each of the three SSL environments.

• The HP SSL for OpenVMS Alpha/Itanium/VAX product provides the ‘‘SSL Certificate
Tool’’ procedure can be used to perform most required certificate management tasks from
a menu-driven interface.

Secure Sockets Layer 18–15

$ @SSL$COM:SSL$CERT_TOOL.COM

S S L C e r t i f i c a t e T o o l

Main Menu

1. View a Certificate
2. View a Certificate Signing Request
3. Create a Certificate Signing Request
4. Create a Self-Signed Certificate
5. Create a CA (Certification Authority) Certificate
6. Sign a Certificate Signing Request
7. Hash Certificates
8. Hash Certificate Revocations
9. Exit

Enter Option:

• The WASD OpenSSL kit provides elementary DCL procedures and brief notes in the
HT_ROOT:[SRC.OPENSSL-n_n_n.WASD] directory for some procedure-driven support of
these activities.

• The standard OpenSSL toolkit provides a number of command-line tools for creation and
management of X.509 certificates.

18.4.1 Server Certificate

The server uses a certificate to establish its identity during the initial phase of the SSL
protocol exchange. Each server should have a unique certificate. An example certificate is
provided with the WASD SSL package. If this is not available (for instance when using
the HP SSL for OpenVMS Alpha/Itanium/VAX product) then the server will fallback to an
internal, default certificate that allows SSL functionality even when no external certification
is available. If a ‘‘live’’ SSL site is required a unique certificate issued by a third-party
Certificate Authority is desirable.

A working alternative to obtaining one of these certificates is provided by the WASD support
DCL procedures, which are quick hacks to ease the production of certificates on an ad hoc
basis. In all cases it is preferable to directly use the utilities provided with OpenSSL, but the
documentation tends to be rather sparse.

The first requirement may be a tailored ‘‘Certificate Authority’’ certificate. As the Certificate
Authority is non-authoritative (not trying to be too oxymoronic, i.e. not a well-known CA)
these certificates have little value except to allow SSL transactions to be established with
trusting clients. More commonly ‘‘Server Certificates’’ for specific host names are required.

Loading Authority Certificates

CA certificates can be loaded into browsers to allow sites using that CA to be accessed by
that browser without further dialog. Both Netscape Navigator (v3.n & v4.n, v5.n, v6.n) and
MS Internet Explorer (v4.n, v5.n) automatically invokes a server certificate load dialog when
it encounters a site using a valid but unknown server certificate.

A manual load is accomplished by requesting the certificate in a format appropriate to the
particular browser. This triggers a browser dialog with the user to confirm or refuse the
loading of that certificate into the browser Certificate Authority database.

18–16 Secure Sockets Layer

To facilitate loading CA certificates into a browser ensure the following entries are contained
in the HTTP$CONFIG configuration file:

[AddIcon]
/httpd/-/binary.gif [BIN] application/x-x509-ca-cert

[AddType]
.CRT application/x-x509-ca-cert - DER certifcate (MSIE)
.PEM application/x-x509-ca-cert - Privacy Enhanced Mail certificate

Then just provide a link to the required certificate file(s), and click.

Navigator should be able to load using either certificate format. MSIE v3.n will load and
report on the ‘‘.CRT’’ certificate quite contentedly, but then will not allow it to be used because
it does not represent a well-known Certficate Authority. MSIE v4.n and v5.n seem able to
use the ‘‘.CRT’’ certificate.

Changing Server Certificates

If a site’s server (or CA certificate) is changed and the server restarted any executing browsers
will probably complain (Netscape Navigator reports an I/O error). In this case open the
browser’s certificate database and delete any relevant, permanently stored certificate entry,
then close and restart the browser. The next access should initiate the server certificate
dialog, or the CA certificate may be explicitly reloaded.

18.4.2 Client Certificate

As with server certificates, client certficates are best obtained from a recognised Certificate
Authority. However, for testing and experimental purposes WASD provides some elementary
CGI scripts and DCL procedures to assist in locally generating X.509 client certificates and
installing them into user browsers.

Manual Generation

The OpenSSL CA certificate generation utility can be used at the command line to process a
CSR. That CSR could have been generated via an online HTML form.

Semi-Automatic Generation

Using this approach the user generates a Certificate Signing Request (CSR) online, which
is then further processed off-line, at the discretion of the site administrator. Only Netscape
browsers are supported for what is described below.

1. Provide an HTML form with the appropriate fields for each of the required ASN.1 fields
used in X.509 certificates, plus a special, Netscape-sepcific one named <KEYGEN>, which
allows the creation of a user’s private-key. The user completes the elements of that form
and when submitted the contents are emailed to the site administrator. A CSR can be
freely transmitted as open text because it is secured by the private-key generated and
only stored on the user’s local machine.

Secure Sockets Layer 18–17

2. The site administrator receives such a CSR by email. At that person’s discretion and
availability the CSR is input (cut-and-paste to eliminate errors) to a form activating a
local CGI script requiring authorization for activation. The CGI script processes the CSR
submitted by the form and creates using the OpenSSL CA certificate signing utility to
generate a certificate (or an error if there is a problem).

3. If a client certificate is successfully generated it can either be delivered back to the user
via email, for local saving and import, or made available for a short period via the Web
for the user to collect (via a file with the content-type of ‘‘application/x-x509-user-cert’’).
Notification of such availability could be made using email.

A basic DCL procedure providing such a facility is HT_ROOT:[SRC.OPENSSL-n_n_
n].WASDCLIENT_CERT_REQUEST.COM

This semi-automatic method would probably be the author’s preference over the on-demand
approach (see below).

Generation On-Demand

Automatic, on-demand client certificate generation allows any user (subject to access controls)
to generate a client certificate automatically via an online service. While this may not
generally be a useful thing for a site to provide there may be occasions for its use. It is
a three part process. Only Netscape browsers are supported for what is described below.

1. As with the semi-automatic approach an HTML form allows a user to input and submit
certificate details.

2. The submitted form activates a CGI script which collates the form details generating the
Certificate Signing Request (CSR). The CSR is then used directly by the OpenSSL CA
certificate signing utility to generate a certificate (or an error if there is a problem).

3. If a client certificate is successfully generated it is delivered back to the browser with a
content-type of ‘‘application/x-x509-user-cert’’ which results in the browser installing it in
its certificate database.

A basic DCL procedure providing such a facility is HT_ROOT:[SRC.OPENSSL-n_n_n].WASDCLIENT_
CERT_REQUEST.COM (and yes, it’s the same procedure as used with the semi-automatic ap-
proach, just configured differently).

18.4.3 Certificate Signing Request

Recognised Certificate Authorities (CAs) such as Thawte and VeriSign publish lists of
requirements for obtaining a server certificate. These often include such documents required
to prove organisational name and the right to use the domain name being requested. Check
the particular vendor for the exact requirements.

In addition, a document containing the site’s private key is required. This is known as the
Certificate Signing Request (CSR) and must be generated digitally at the originating site.

Using the HP SSL for OpenVMS Alpha/Itanium/VAX product ‘‘SSL Certificate Tool’’ described
in Section 18.4 a CSR can easily be generated using its menu-driven interface. The alternative
is using a command-line interface tool.

18–18 Secure Sockets Layer

The following instructions provide the basics for generating a CSR at the command-line in
the WASD and generally the any OpenSSL environment (including the HP SSL for OpenVMS
Alpha/Itanium/VAX product).

1. Change to a secure directory. The following is a suggestion.

$ SET DEFAULT HT_ROOT:[LOCAL]

2. Assign a foreign verb for the OPENSSL application. The location may vary a little
depending on which OpenSSL package you have installed.

$ OPENSSL == "$HT_ROOT:[SRC.OPENSSL-version.AXP.EXE.APPS]OPENSSL.EXE"

When using the HP SSL for OpenVMS Alpha/Itanium/VAX product or other OpenSSL
toolkit the verb may already be available.

$ SHOW SYMBOL OPENSSL
OPENSSL == "$ SSL$EXE:OPENSSL"

3. Specify a source of lots of ‘‘random’’ data (can be any big file for the purposes of this
exercise).

$ RANDFILE = "HT_EXE:HTTPD_SSL.EXE"

4. Find the template configuration file. You will need to specify this location in a step
described below. Should be something like the following.

HT_ROOT:[SRC.OPENSSL-version.WASD]TEMPLATE.CNF

5. Generate your private key (RANDFILE data is used by this). The output from this looks
something like what’s shown. Notice the pass phrase prompts. This is your private
key, don’t forget it!

$ OPENSSL GENRSA -DES3 -OUT SERVER.KEY 1024

Generating RSA private key, 1024 bit long modulus
.....++++++
......++++++
e is 65537 (0x10001)
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

6. Generate the Certificate Signing Request using syntax similar to the following (this is
where you are required to specify the location of the configuration template). Note that
there are quite a few fields - GET THEM RIGHT! They need to be unique and local
- they’re your distinguishing name (DN). ‘‘Common Name’’ is the host you want the
certificate for. It can be a fully qualifier host name (e.g. ‘‘klaatu.local.net’’), or a local
wildcard (e.g. ‘‘*.local.net’’) for which you may pay more.

$ OPENSSL REQ -NEW -KEY SERVER.KEY -OUT SERVER.CSR -CONFIG -
HT_ROOT:[SRC.OPENSSL-0_9_6B.WASD]TEMPLATE.CNF

Secure Sockets Layer 18–19

Using configuration from template.cnf
Enter PEM pass phrase:
You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:AU
State or Province Name (full name) [Some-State]:South Australia
Locality Name (eg, city) []:Adelaide
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Example
Organizational Unit Name (eg, section) []:WASD
Common Name (eg, YOUR name) []:klaatu.local.net
Email Address []:Mark.Daniel@wasd.vsm.com.au
Please enter the following ’extra’ attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

7. That’s it! You should have two files in your default directory.

SERVER.CSR;1 2 14-MAR-2002 04:38:26.15
SERVER.KEY;1 2 14-MAR-2002 04:31:38.76

Keep the SERVER.KEY file secure. You’ll need it when you receive the certificate back
from the CA.

The SERVER.CSR is what you send to the CA (usually by mail or Web form). It looks
something like the following

$ TYPE SERVER.CSR
-----BEGIN CERTIFICATE REQUEST-----
MIIBPTCB6AIBADCBhDELMAkGA1UEBhMCWkExFTATBgNVBAgTDFdlc3Rlcm4gQ2Fw
ZTESMBAGA1UEBxMJQ2FwZSBUb3duMRQwEgYDVQQKEwtPcHBvcnR1bml0aTEYMBYG
A1UECxMPT25saW5lIFNlcnZpY2VzMRowGAYDVQQDExF3d3cuZm9yd2FyZC5jby56
YTBaMA0GCSqGSIb3DQEBAQUAA0kAMEYCQQDT5oxxeBWu5WLHD/G4BJ+PobiC9d7S
6pDvAjuyC+dPAnL0d91tXdm2j190D1kgDoSp5ZyGSgwJh2V7diuuPlHDAgEDoAAw
DQYJKoZIhvcNAQEEBQADQQBf8ZHIu4H8ik2vZQngXh8v+iGnAXD1AvUjuDPCWzFu
pReiq7UR8Z0wiJBeaqiuvTDnTFMz6oCq6htdH7/tvKhh
-----END CERTIFICATE REQUEST-----

You can see the details of this file using

$ OPENSSL RSA -NOOUT -TEXT -IN SERVER.CSR

After Receiving The Certificate

Once the signed certificate has been issued by the Certificate Authority it can be placed
directly into the server configuration directory, usually HT_ROOT:[LOCAL], and configured
for use from there. Using the certificate direct from the CA requires that the private key
password be given to the server each time (Section 18.3.4). It is possible to embed the
password into the certificate key so that this is not required.

18–20 Secure Sockets Layer

Remember to keep original files secure, only work on copies!

1. Assign a foreign verb for the OPENSSL application. The location may vary a little
depending on which OpenSSL package you have installed.

$ OPENSSL == "$HT_ROOT:[SRC.OPENSSL-version.AXP.EXE.APPS]OPENSSL.EXE"

When using the HP SSL for OpenVMS Alpha/Itanium/VAX product or other OpenSSL
toolkit the verb may already be available.

$ SHOW SYMBOL OPENSSL
OPENSSL == "$ SSL$EXE:OPENSSL"

2. Go to wherever you want to do the work.

$ SET DEFAULT HT_ROOT:[LOCAL]

3. Using the original key file embed your password into a copy. When prompted "Enter PEM
pass phrase:" enter the password.

$ OPENSSL rsa -in SERVER.KEY -out WORK.PEM

4. Append this password-embedded key file to your certificate file.

$ COPY CERTIFICATE.PEM,WORK.PEM CERTIFICATE.PEM;0

5. Delete the temporary file.

$ DELETE WORK.PEM;*

18.5 SSL CGI Variables
CGI variables specific to SSL transactions optionally may be enabled using HTTPD$MAP
mapping rules. See Section 14.4.5 in Chapter 14. The may be done on a specific per-path
or general CGI basis. Two variations are available, one reflecting Purveyor Secure Web
Server style variables, the other the Apache mod_ssl style. In the following examples, due to
length of particular items, some in this example are displayed wrapped. Also, where some
ASN.1 records are duplicated (as in SSL_CLIENT_S_DN), some variables will contain newline
characters (0x10) between those elements (e.g. SSL_CLIENT_S_DN_OU). The line breaks in
the examples do not necesarily reflect those characters.

set /path/* SSLCGI=purveyor

Secure Sockets Layer 18–21

WWW_SECURITY_STATUS == "SSL"
WWW_SSL_CIPHER == "RC4-MD5"
WWW_SSL_CIPHER_KEYSIZE == "128"
WWW_SSL_CLIENT_AUTHENTICATED == "TRUE"
WWW_SSL_CLIENT_CA == "/O=VeriSign, Inc./OU=VeriSign Trust Network
/OU=www.verisign.com/repository/RPA Incorp. By Ref.,LIAB.LTD(c)98
/CN=VeriSign Class 1 CA Individual Subscriber-Persona Not Validated"
WWW_SSL_CLIENT_DN == "/O=VeriSign, Inc./OU=VeriSign Trust Network
/OU=www.verisign.com/repository/RPA Incorp. by Ref.,LIAB.LTD(c)98
/OU=Persona Not Validated/OU=Digital ID Class 1 - Netscape
/CN=Mark Daniel/Email=mark.daniel@wasd.vsm.com.au"
WWW_SSL_SERVER_CA == "/C=AU/ST=SA/L=Adelaide/O=WASD HTTPd CA Cert
/OU=OpenSSL 0.9.6 Testing Only/CN=WASD VMS Hypertext Services
/Email=Mark.Daniel@wasd.vsm.com.au"
WWW_SSL_SERVER_DN == "/C=AU/ST=SA/L=Adelaide/O=WASD HTTPd Server Cert
/OU=OpenSSL 0.9.6 Testing Only/CN=WASD VMS Hypertext Services
/Email=Mark.Daniel@wasd.vsm.com.au"
WWW_SSL_VERSION == "SSLv3"

Note that this example also shows SSL_CLIENT_ . . . variables. These will only be present
if the request is X.509 certificate authenticated.

set /path/* SSLCGI=apache_mod_ssl

WWW_SSL_CIPHER == "RC4-MD5"
WWW_SSL_CIPHER_ALGKEYSIZE == "128"
WWW_SSL_CIPHER_USEKEYSIZE == "128"
WWW_SSL_PROTOCOL == "SSLv3"
WWW_SSL_SERVER_A_KEY == "rsaEncryption"
WWW_SSL_SERVER_A_SIG == "md5WithRSAEncryption"
WWW_SSL_SERVER_I_DN == "/C=AU/ST=SA/L=Adelaide/O=WASD HTTPd CA Cert
/OU=OpenSSL 0.9.6 Testing Only/CN=WASD VMS Hypertext Services
/Email=Mark.Daniel@wasd.vsm.com.au"
WWW_SSL_SERVER_I_DN_C == "AU"
WWW_SSL_SERVER_I_DN_CN == "WASD VMS Hypertext Services"
WWW_SSL_SERVER_I_DN_EMAIL == "Mark.Daniel@wasd.vsm.com.au"
WWW_SSL_SERVER_I_DN_L == "Adelaide"
WWW_SSL_SERVER_I_DN_O == "WASD HTTPd CA Cert"
WWW_SSL_SERVER_I_DN_OU == "OpenSSL 0.9.6 Testing Only"
WWW_SSL_SERVER_I_DN_ST == "SA"
WWW_SSL_SERVER_M_SERIAL == "01"
WWW_SSL_SERVER_M_VERSION == "3"
WWW_SSL_SERVER_S_DN == "/C=AU/ST=SA/L=Adelaide/O=WASD HTTPd Server Cert
/OU=OpenSSL 0.9.6 Testing Only/CN=WASD VMS Hypertext Services
/Email=Mark.Daniel@wasd.vsm.com.au"
WWW_SSL_SERVER_S_DN_C == "AU"
WWW_SSL_SERVER_S_DN_CN == "WASD VMS Hypertext Services"
WWW_SSL_SERVER_S_DN_EMAIL == "Mark.Daniel@wasd.vsm.com.au"
WWW_SSL_SERVER_S_DN_L == "Adelaide"
WWW_SSL_SERVER_S_DN_O == "WASD HTTPd Server Cert"
WWW_SSL_SERVER_S_DN_OU == "OpenSSL 0.9.6 Testing Only"
WWW_SSL_SERVER_S_DN_ST == "SA"
WWW_SSL_SERVER_V_END == "Sep 25 00:03:30 2005 GMT"
WWW_SSL_SERVER_V_START == "Sep 26 00:03:30 2000 GMT"
WWW_SSL_SESSION_ID == "344d1b01aa0636cb809eacf270279005f56cd5ebe1154569df810e56003ac70f"
WWW_SSL_VERSION_INTERFACE == "HTTPd-WASD/7.2.0 OpenVMS/AXP SSL"
WWW_SSL_VERSION_LIBRARY == "OpenSSL 0.9.6 24 Sep 2000"

18–22 Secure Sockets Layer

The Apache mod_ssl client certificate details described in Section 18.3.11 above are not shown
in the above example but would be included if the request was X.509 authenticated.

18.6 SSL References
The following provide a starting-point for investigating SSL and OpenSSL further (verified
available at time of publication).

• http://www.openssl.org/
OpenSSL Project. This site is the prime source for the full toolkit, documentation, related
links, news and support via mailing lists, etc.

• http://h71000.www7.hp.com/openvms/products/ssl/ssl.html
The HP SSL (Secure Sockets Layer) for OpenVMS Alpha/Itanium/VAX product.
The ‘‘Open Source Security for OpenVMS Alpha, Volume 2: Compaq SSL (Secure Sockets
Layer) for OpenVMS Alpha’’ guide (see next link) available in PDF or HTML from
this site (and the OpenVMS 7.3-1 and later documentation CD-ROM) is particularly
comprehensive and relevant.

• http://h71000.www7.hp.com/openvms/products/ssl/ssl_doc.html
Open Source Security for OpenVMS Alpha, Volume 2: Compaq SSL (Secure Sockets
Layer) for OpenVMS Alpha

• http://h71000.www7.hp.com/openvms/products/ips/apache/SSL_Resource_Guide.html
The CSWS SSL Resource Guide. Contains links to a broad range of subjects and
organisations.

• http://www.mozilla.org/projects/security/pki/nss/ref/ssl/
Mozilla.org’s SSL Reference

• http://docs.sun.com/source/816-6156-10/
Sun Microsystems’ Introduction to SSL

• http://docs.sun.com/source/816-6154-10/
Sun Microsystems’ Introduction to Public-Key Cryptography

• http://www.cs.auckland.ac.nz/~pgut001/links.html
‘‘Encryption and Security-related Resources’’ . . . an (almost rediculously) exhaustive list
of security and cryptography links, including some on SSL.

Secure Sockets Layer 18–23

Chapter 19

Server Administration

The online Server Administration facility provides a rich collection of functionality, including
server control, reports and configuration. Some of these are intended as general administra-
tion tools while other provide more detailed information intended for server debugging and
development purposes.

online graphic

The value of the WATCH facility Chapter 20 as a general configuration and problem-solving
tool cannot be overstated.

All server configuration files, with the execption of the authentication databases, are plain
text and may be modified with any prefered editor. However the majority of these can
also be administered online through a browser. In addition the update facility allows some
administration of file system portions of the Web. See Chapter 22.

Access to many portions of the package is constrained by file protections and directory listing
access files. See Section 16.10.8 for a method for circumventing these restrictions.

19.1 Access Before Configuration
It is often a significant advantage for the inexperienced administrator on a new and largely
unconfigured installation to be able to gain access to the facilities offered by Server Adminis-
tration, particularly the WATCH facility (Chapter 20). This can be done quite simply by using
the authentication skeleton-key (Section 16.11). This allows the site administrator to regis-
ter a username and password from the command-line that can be used to gain access to the
server. In addition, the server ensures that requesting an otherwise non-authorized Server
Administration facility generates a challenge which invokes a username/password dialog at
the browser allowing the user to enter the previously registered username and password and
gain access.

Server Administration 19–1

Method

• Register the skeleton-key username and password.

$ HTTPD == "$HT_EXE:HTTPD.EXE"
$! HTTPD == "$HT_EXE:HTTPD_SSL.EXE"
$ HTTPD /DO=AUTH=SKELKEY=_username:password

Note that the username must begin with an underscore, be at least 6 characters, is
delimited by a colon, and that the password must be at least 8 characters. By default
this username and password remains valid for 60 minutes. Choose strings that are
less-than-obvious!

• Access the server via a browser and use the server Server Administration facility.

http://the.host.name:port/httpd/-/admin/

• After use the skeleton-key may be explicitly cancelled if desired.

$ HTTPD /DO=AUTH=SKELKEY=0

19.2 Access Configuration
One established the site should make the Server Administration facility a configured facility
of the site. The value of its facilities cannot be overstated. The section Section 15.1 provides
a short guide to setting up authorization for server administration purposes.

It is also recommended that for production sites the path to these reports be controlled via
authentication and authorization, using both host and username restrictions, similar to the
following:

[WHATEVER-REALM]
/httpd/-/admin/* host.ip.addr,~WebMaster,~WhoEverElse,r+w

If a full authorization environment is not required but administration via browser is still
desired restrict access to browsers executing on the server system itself, using an appropriate
SYSUAF-authenticated username. Provision of a VMS account for server administration only
is quite feasable, see Section 16.10.5.

[VMS]
/httpd/-/admin/* #localhost,~username,r+w

If SSL is in use (Chapter 18) then username/password privacy is inherently secured via
the encrypted communications. To restrict server administration functions to this secure
environment add the following to the HTTPD$MAP configuration file:

/httpd/-/admin/* "403 Access denied." ![sc:https]

When using the revise capability of the Server Administration facility is necessary to comply
with all the requirements for Web update of files. This is discussed in general terms in
Chapter 22. Revision of server configuration files requires path permissions allowing write
access for the username(s) doing the administration, as well as the required ACL on the
target directory (in the following example HT_ROOT:[LOCAL]).

[VMS]
/httpd/-/admin/* #localhost,~username,r+w
/ht_root/local/* #localhost,~username,r+w

19–2 Server Administration

It is possible to allow general access to the Server Administration facility and reports while
restricting the ability to initiate server actions such as a restart! Using the WORLD realm
against the path is necessary, for the obvious security reason, the server administration
module will not allow itself to be used without an authenticated username, provided as a
pseudo-authenticated ‘‘WORLD’’.

[VMS]
/httpd/-/admin/control/* #localhost,~username,r+w
[WORLD]
/httpd/-/admin/* r

When GZIP compression is configured for the server (Section 6.5) it is not by default applied to
Server Admin reports or other pages. It can be applied, selectively if desired, using mapping
rules. For instance, to apply it to all requests not from the local intranet a rule similar to the
following can be added before the Server Admin path mapping itself.

if (!remote-addr:192.168.0.0/8) set /httpd/-/admin/* response=GZIP=all
pass /httpd/-/admin/* /httpd/-/admin/*

GZIP content-encoding can never be applied to WATCH reports.

19.3 Server Instances
With a single instance (Section 6.2) access to Server Administration reports, etc. is always
serviced by the one server process. If multiple instances are configured in common with
all requests administration requests will be serviced by any one of the associated processes
depending on the momentary state of the round-robin distribution.

There are many circumstances where it is preferable to access only the one server. This can
be accomplished for two differing objectives.

1. To facilitate access to a specific instance’s Server Administration page, including instance-
specific reports etc. This is provided through the use of an administration service port
(Administration Services) available from the Server Administration page.

2. The Server Administration page (Control Section) and the command-line (Section 19.7.6)
provides the capability to explicitly set the number of instances supported, overriding
any configuration directive. After explicitly setting this using either means the server
must be restarted. The explicit startup setting remains in effect until it’s changed to
‘‘max’’ allowing the HTTPD$CONFIG configuration directive [InstanceMax] to once again
determine the number of instances required.

The latter approach is particularly useful when performing detailed WATCH activities
(Chapter 20).

When multiple per-node instances are executing the Server Administration pages and reports
all include an indication of which process serviced the request. When accessing no instance
in particular the process name is presented in parentheses after the page title

HTTPd wasd.dsto.defence.gov.au:80
Server Administration (HTTPd:80)

When a particular instance’s administration service port is being used the process name is
separated from the page title by a hyphen

Server Administration 19–3

HTTPd wasd.dsto.defence.gov.au:80
Server Administration - HTTPd:80

19.4 HTTPd Server Reports
The server provides a number of internally generated reports. Some of these are of general
interest. Others are more for evaluating WASD behaviour and performance for development
purposes. These are listed in the approximate order in which they occur top-to-bottom, left-
to-right in the menu layout.

It is possible to use this facility standalone, without configuring authorization (Section 19.1).

• Statistics - Server process up-time, CPU-time and other resources consumed, number
of connections processed, number of requests of each HTTP method, type of processing
involved (HTTPd module used), number of bytes processed, etc.

• Log - Display the server process (SYS$OUTPUT) log.

• Configuration - A tabular summary of the server’s current configuration. This is a
convenient method for viewing the information from the HTTPD$CONFIG file.

• Services - A tabular report listing the current services (virtual servers) and the service-
specific parameters.

• Messages - A tabular report of the server’s current message database, multiple languages
shown if configured that way.

• Mapping - All loaded mapping rules and any cached USER rule paths. A selector allows
rules applying only to one particular virtual server to be displayed.

• Path Authorization - If authorization is in use (Chapter 16) this report lists the paths
with associated authorization and access control.

• User Authentication - List any users that have been authorized since the server was
last started, the realm authorized from, the group it applies to (if any), and what the user’s
capabilities are (allowed HTTP methods). A time-stamp and counters provide additional
information.

• Secure Sockets - The SSL report lists counts of the number of SSL transactions initiated
and completed, along with session cache statistics for the currently connected SSL service.
It also lists the ciphers available and current session information. Other reports allow
the Certificate Authority (CA) database to be view and edited, if available due to X.509
authentication being enabled.

• Cache - Allows monitoring of cache behaviour and performance, as well as the files
currently in the cache (Chapter 13).

• DCL Scripting - Provides some DCL, CGI and CGIplus scripting information.

DCL module statistics (same information as displayed in the server statistics report).
These are cumulative for the entire life of the system (unless zeroed).

Process information shows how many actual processes exist at the time of the report, as
indicated by the PID and bolded, non-zero liftime (in minutes). The soft-limit specifies
how many CGIplus scripts are allowed to continue existing before the least used is deleted
and the hard-limit show how many processes may actually exist at any one time (the

19–4 Server Administration

margin allows for process deletion latency). A count of how many times the CGIplus
processes have been explicitly purged (button available on this report page). The life-
time of zombie processes (in minutes, zero implying use of zombies is disabled) and the
number that have been purged due to expiry. CGIplus process life-time (in minutes,
zero implying indefinite), the number purged due to life-time expiry and the number of
CGIplus processes that the server has actually purged (deleted) to maintain the soft-limit
margin specified above.

Each of the allocated process data structures is listed. There may be zero up to hard-
limit items listed here depending on demand for DCL activities and the life of the server.
Items with a PID shown indicate an actual process existing. This can be a zombie process
or a CGIplus process. If no process is indicated then the other information represents
the state the last time the item’s associated process completed. Information includes the
script (URL-style path) or DCL command, total count of times the item has been used
and the last time it was. The zombie count indicates the number of time the same process
finished a request and entered the zombie state. The CGIplus column indicates it is/was
a CGIplus script and shows the total number of times that particular script has been/was
used. If the process is currently in use the client information show the client host name.

If any processes are associated with any data structure a purge button is provided that
forces all processes to be deleted. This can be useful if a new script image is compiled
and it is required all scripts now use this. If a script is currently processing a request
the process deletion occurs when that processing is complete. The purge button does not
force a process to delete, so a second button forces all processes to delete immediately.
This can be used to forceably clear errant scripts, etc., but be warned script processing is
indiscrimately stopped!

• DECnet Scripting - DECnet module information shows totals for DECnet scripting
usage and the DECnet connection list.

This list will grow, up to the specified configuration maximum, as conconurrent scripting
demand occurs. Maintained connections are indicated by the bolded, non-zero lifetime (in
minutes). When this reaches zero the task is disconnected. The current/last task for that
connection is indicated, along with the number of times the connection was reused and a
total number of uses for that list item.

Purge and force buttons allow current links to be broken after request completion or
forcibly disconnected.

• Lock - Lists the names and status of all lock resources used to manage single and
multiple instances across single systems or a cluster. This report is more relevant for
evaluating and debugging WASD behaviour.

• Match - To assist with the refinement of string matching patterns (Chapter 8) this
report allows the input of target and match strings and allows direct access to the
server’s wildcard and regular expression matching routines. Successful matches show
the matching elements and a substitution field (Section 8.4) allows resultant strings to
be assessed.

• Memory - Provides a report and does an integrity check on each of the Virtual Memory
(VM) zones employed by the WASD HTTPd.

Server Administration 19–5

• Process - Lists all processes on the current system owned by the server account. From
this list a process can be selected to have a ‘‘SHOW PROCESS /ALL’’ performed on it,
displayed on a report page.

• Proxy - If proxy serving is enabled a report providing statistics on the various HTTP
methods used, network and cache traffic, cache reads and writes, requests not cachable,
and host name lookup are provided. This may used to help guage the effectiveness of the
cache.

• Request - Lists in-progress requests (always shows at least your own connection
accessing this report :-) Additional buttons after the report allow selection of a report
that in addition displays current persistent network connections, requests currently under
throttle control, and if enabled a list (history) of the most recent requests (enabled by the
configuration parameter [RequestHistory]). Current requests may be selected for one-shot
WATCH-processing reports from this page (Chapter 20).

Two other diagnostic tools are available from the same link. The first, WATCH-peek
Report, providing a snapshot of the contents selected internal fields and data structures
of the request. This is primarily intended as a problem investiagtion and development
tool, and will be of limited value without an understanding of server internals. The second
accesses the ‘‘peek’’ internals plus a one-shot WATCH-processing report.

For servers handling a great quantity of concurrent traffic this can generate a very large
report. The Supervisor report can also provide a profile of the servers current load.

• Supervisor - Provides a simple table displaying each timer list and any associated
request count. Shows how many requests are set be scanned and evaluated for continued
processing every so-many seconds. For very busy servers this is another method for
gaining an idea of the traffic profile (this is perhaps more meaningful for those with an
understanding of WASD internals).

• System - Shows the system, all users, memory and CPU status as a single report.

• Throttle - This report provides a list of paths with throttle rules mapped against them.
It provides the throttle values along with current and history activity counters.

• Activity - Provide a graphical snapshot of server activity of a given period.

The statistics are stored in a permanent global section and so carry-over between server
restarts. Where multiple instances are executing the data represents an accumulation of
all instances’ processing. It is enabled by the configuration parameter [ActivityDays]. The
Server Administration facility provides several, represented as a period of hours before
the present time. Number of requests and bytes sent to the client are represented by a
histogram with respective means for each by a line graph. A bar across the column of the
request histogram indicates the peak number of concurrent requests during the period. A
greyed area indicates no data available for that time (i.e. before the latest server startup,
or in the future).

Server startup and shutdown events are indicated by solid, vertical lines the full height
of the graph (see example for a restart event).

startup - green
shutdown - black
restart - grey
error exit - red

19–6 Server Administration

Activity data is accumulated on a per-minute basis. This is the maximum granularity
of any report. When reports are selected that can display less than this one minute
granularity (i.e. with periods greater than four hours) the value shown is the peak of
the number of minutes sampled for display. This better represents the load on the server
than would a mean of those samples.

The graph is an image map, various regions of which allow the selection of other reports
with different periods or durations. This allows previous periods to be examined at various
levels of detail using the graph for navigation. Various sections may have no mapping as
appropriate to the current report.

For multiple hour reports the upper and lower sections have distinct functions. The
middle 50% of the upper section allows the same end time (most commonly the current
hour) to be examined over twice the current period, in this case it would be over eight
hours. The left 25% allows the previous fours hours to be viewed (if such data exists), and
for non-current reports the right 25% allows the next four hours to be viewed. The lower
half can be divided into sections representing hours or days depending on the period of
the current report. This allows that period to be viewed in greater detail. For single hour
reports this section, of course, is not mapped.

Remember that the URL of the mapped section will be displayed in the status bar of the
browser. As the URL contains time components it is not a difficult task to decipher the
URL displayed to see the exact time and period being selected.

online graphic

• WATCH - This report provides an online, real-time, in-browser-window view of request
processing on the running server. See Chapter 20 for details.

19.5 HTTPd Server Revise
The server provides a comprehensive configuration revision facility.

• Configuration - A form-driven interface allows the current configuration of the server
to be altered online. This configuration may then be saved to the on-disk file and then
the server could be restarted using the new parameters. The source of the current
configuration can be either the server itself (from its volatile, in-memory parameters)
or from the on-disk configuration file. In addition it is possible to directly edit and update
the on-disk file.

• Services - A form-driven interface allows service (virtual server) configuration. It is
also possible to directly edit and update the on-disk file. The server must be restarted for
service changes to take effect.

• Messages - A form-driven interface allows the the server messages to be modified. It is
also possible to directly edit and update the on-disk file. The server can then be restarted
to use the modified database (Section 19.6).

• Mapping - No form-driven interface is currently available for changing the mapping
rules. However it is possible to directly edit and update the on-disk file. The mapping
rules could then be reloaded, changing the current server rules (Section 19.6).

Server Administration 19–7

• Path Authorization - No form-driven interface is currently available for changing the
path authorization configuration. However it is possible to directly edit and update the
on-disk file. The path authorization directives could the be reloaded, changing the current
server authorization (Section 19.6).

• User Authentication - User authentication comprises a number of dialogues that allow
the WASD-specific (HTA) authentication databases to be administered. These include:

creating databases
deleting databases
accessing databases for administering usernames
listing usernames within databases
adding usernames
deleting usernames
modifying username permissions and other data
reseting in-server (cached) authentication information

Chapter Chapter 16 covers authentication detail.

• Site Log - This accesses a plain-text file that could be used to record server or other
significant site configuration changes if desired. Two methods of access are provided.

1. Site-Log - open the file for editing, placing a date/time/author timestamp at the top

2. Edit - open the file editing

The file name and/or location may be specified using HTTPD$SITELOG (Logical Names).

Enabling Server Access

Many of the server activites listed above require server account write access to the directory
in which the configuration files are stored. Where an autononmous scripting account is in
use (Section 7.5) this poses minimal threat to server configuration integrity.

1. Specifically map the /ht_root/local/ path and mark it as access always requiring autho-
rization (ensure this is one on the first mappings in the file and certainly before any other
/ht_root/ ones).

HTTPD$MAP
pass /ht_root/local/* auth=all

2. Add appropriate authorization rules (example from Section 15.1).

HTTPD$AUTH
["Web Admin"=WASD_WEBADMIN=id]
/httpd/-/admin/* r+w
/ht_root/local/* r+w

3. Update access to the directory can be applied using the SECHAN utility (Section 23.11).

$ SECHAN /WRITE HT_ROOT:[000000]LOCAL.DIR
$ SECHAN /WRITE HT_ROOT:[LOCAL]

19–8 Server Administration

4. Load the new mapping and authorization rules.

$ HTTPD /DO=MAP
$ HTTPD /DO=AUTH=LOAD

Alternative Using /PROFILE

If a site is using SYSUAF authentication and security profiles enabled using the /PROFILE
startup qualifier (Section 16.10.7) then a more restrictive set up is possible, retaining the
default no-access to the [LOCAL] directory. This relies on the administering account(s) having
read and write access to the [LOCAL] directory. It is then not necessary to grant that to the
server account. It is possible to limit the application of VMS user profiles. This is an example.

HTTPD$MAP
set /ht_root/local/* profile auth=all
set * noprofile

To use this approach perform steps 1, 2 and 4 from above, substituting the following for step
3.

$ SECHAN /PACKAGE HT_ROOT:[000000]LOCAL.DIR
$ SECHAN /PACKAGE HT_ROOT:[LOCAL]
$ SECHAN /CONTROL HT_ROOT:[000000]LOCAL.DIR

19.6 HTTPd Server Action
The server allows certain run-time actions to be initiated. Many of these functions can also
be initiated from the command line, see Section 19.7.

When multiple servers are executing on a single node or within a cluster a JavaScript-driven
checkbox appears in the bottom left of the administration menu. Checking that box applies
any subsequently selected action to all servers!

Control Section

• Server Restart/restartNOW/restartQuiet/Exit/exitNOW - The difference between
restart/exit and restartNOW/exitNOW is the former waits for any current requests to be
completed, while the latter does it immediately regardless of any current connections.
The restartQuiet variant continues processing until demand drops to zero for more than
one second at which point it commences restart. If the browser has JavaScript enabled a
cautionary alert requesting confirmation is generated (otherwise there is no confirmation).

• Logging On/Off/Flush - The HTTPD$LOG logical must be configured to allow access
logging to be enabled and disabled from this menu.

• Caching On/Off/Purge - Caching may be enabled and disabled in an ad hoc fashion
using these controls. When being disabled after being enabled all previous data is
retained. If subsequently reenabled that data is then again available for use. This allows
convenient assessment of the subject or even object benefits on the cahing. If purged all
entries in the cache are removed.

Server Administration 19–9

• Instance Startup - An instance value may be set that overrides the configuration
directive [InstanceMax] at next startup. This may be used to change the number of
server processes on an ad hoc basis. Reset to ‘‘max’’ to return to configuration control.
Note that this can be applied to the current node only or to all servers within a cluster,
and that a subsequent restart is required.

• /DO= Button and Field - Provides a on-line facility parallel to that provided by the
command-line /DO qualifier (Section 19.7). Any directive available via the command-line
can be entered using this interface and applied on a per-node or per-cluster basis.

Configuration Action Section

• Statistics Zeroed - All counters are zeroed (except the number-of-times-zeroed counter!)

• Mapping Rules Reload - Reloads the path mapping rules from the on-disk file into the
running server, clears the user SYSUAF mapping cache.

Caution! If changing CGIplus script mapping it is advised to restart the server rather
than reload. Some conflict is possible when using new rules while existing CGIplus scripts
are executing.

• Path Authorization Reload - Reloads the path authorization directives from the on-
disk file into the running server.

• User Authentication Cache Purge - For efficiency reasons authenticated user infor-
mation is cached for a limited period within the running server. All this cached infor-
mation may be completely purged using this action, forcing subsequent requests to be
reauthenticated from the on-disk database.

19.7 HTTPd Command Line
A foreign command for the HTTPD control functionality will need to be assigned in the
adminstration users’ LOGIN.COM, for example:

$ HTTPD == "$HT_EXE:HTTPD"

$ HTTPD == "$HT_EXE:HTTPD_SSL"

Some control of the executing server is available from the DCL command line on the system
on which it is executing. This functionality, via the /DO= qualifier, is available to the
privileged user. If a non-default server port then it will be necessary to provide a /PORT=
qualifier with any command.

These directives are communicated from the command-line (and Server Administration page
analogue - Control Section) to the per-node or per-cluster servers using the Distributed Lock
Manager. On pre-VMS V8.2 the command buffer is limited to 15 bytes. From VMS V8.2 the
buffer space available is 63 bytes. In a cluster all systems must support the larger buffer
before WASD enables it. The smaller buffer space limits some of the directives that take
free-form parameters (e.g. /DO=DCL=PURGE=USER=DANIEL).

19–10 Server Administration

Multi-Server/Cluster-Wide

If multiple servers are executing on a host or cluster it is possible to control all of them by
adding the /CLUSTER or /ALL qualifiers. Of course, these commands are available from
batch jobs as well as interactively. In a clustered WASD environment the same functionality
is available via checkboxes from the online Server Administration facility.

19.7.1 Accounting

Server counters may be zeroed. These counters are those visible from the statistics Server
Admininstration item and when using the HTTPDMON utility.

$ HTTPD /DO=ZERO

19.7.2 Authentication

See Chapter 16.

The authorization rule file (HTTP$AUTH) may be reloaded using either of these variants.

$ HTTPD /DO=AUTH
$ HTTPD /DO=AUTH=LOAD

The authentication cache may be purged, resulting in re-authentication for all subsequent
authorization-controlled accesses. This may be useful when disabling authorization or if a
user has been locked-out due to too many invalid password attempts (Section 16.9).

$ HTTPD /DO=AUTH=PURGE

A ‘‘skeleton-key’’ username and password may be entered, amongst things allowing access to
the Server Administration facility (Chapter 19).

$ HTTPD /DO=AUTH=SKELKEY=_<username>:<password>[:<period>]

19.7.3 Cache

Server cache control may also be exercised from the Server Administration page (Chapter 19).
The file cache (Chapter 13) may be enabled, disabled and have the contents purged (declared
invalid and reloaded) using

$ HTTPD /DO=CACHE=ON
$ HTTPD /DO=CACHE=OFF
$ HTTPD /DO=CACHE=PURGE

19.7.4 DCL/Scripting Processes

These commands can be useful for flushing any currently executing CGIplus applications
from the server, enabling a new version to be loaded with the next access. See ‘‘Scripting
Environment’’ document.

All scripting processes, busy with a request or not, can be deleted (this may cause the client
to lose data).

$ HTTPD /DO=DCL=DELETE

Server Administration 19–11

A gentler alternative is to delete idle processes and mark busy ones for deletion when
completed processing.

$ HTTPD /DO=DCL=PURGE

For VMS V8.2 and later, a more selective DELETE and PURGE is possible. A user name,
script name, or script file name can be supplied and only matching tasks have the specified
action peformed.

$ HTTPD /DO=DCL=PURGE=USER=username
$ HTTPD /DO=DCL=PURGE=SCRIPT=script-path
$ HTTPD /DO=DCL=PURGE=FILE=script-file-name

19.7.5 DECnet Scripting Connections

All DECnet connections, busy with a request or not, can be disconnected (this may cause the
client to lose data).

$ HTTPD /DO=DECNET=DISCONNECT

Purging is a better alternative, disconnecting idle tasks and marking busy ones for discon-
nection when complete.

$ HTTPD /DO=DECNET=PURGE

19.7.6 Instances

The number of server instances (Section 6.2) may be set from the command line. This
overrides any configuration file directive and applies at the next startup. Any configuration
directive value may be used from the command line.

$ HTTPD /DO=INSTANCE=MAX
$ HTTPD /DO=INSTANCE=CPU
$ HTTPD /DO=INSTANCE=integer

Note that the server must be restarted for this to take effect, that this can be
applied to the current node only or to all servers within a cluster, and that it remains
in effect until explicitly changed to ‘‘MAX’’ allowing the HTTPD$CONFIG configuration
directive [InstanceMax] to once again determine the number of instances required. The same
functionality is available from the Server Administration page (Section 19.6).

There are also directives to assist with WATCH activities (Section 20.1).

$ HTTPD /DO=INSTANCE=PASSIVE
$ HTTPD /DO=INSTANCE=ACTIVE

19.7.7 Logging

Server logging control may also be exercised from the server administration menu (Chap-
ter 19).

Open the access log file(s).

$ HTTPD /DO=LOG=OPEN

Close the access log file(s).

$ HTTPD /DO=LOG=CLOSE

19–12 Server Administration

Close then reopen the access log file(s).

$ HTTPD /DO=LOG=REOPEN

Unwritten log records may be flushed to the file(s).

$ HTTPD /DO=LOG=FLUSH

OBSOLETE
The following directives have been rendered obsolete due to the increasing complexity
of WASD access logging.

$ HTTPD /DO=LOG=FORMAT=string
$ HTTPD /DO=LOG=OPEN=file-name
$ HTTPD /DO=LOG=PERIOD=string
$ HTTPD /DO=LOG=REOPEN=file-name

19.7.8 Mapping

See Chapter 14.

The mapping rule file (HTTPD$MAP) may be reloaded using either of these variants.

$ HTTPD /DO=MAP
$ HTTPD /DO=MAP=LOAD

19.7.9 Shutdown and Restart

Server shutdown may also be exercised from the Server Administration page (Chapter 19).

The server may be shut down, without loss of existing client requests. Connection acceptance
is stopped and any existing requests continue to be processed until conclusion.

$ HTTPD /DO=EXIT

The server may be immediately and unconditionally shut down.

$ HTTPD /DO=EXIT=NOW

The server may be restarted, without loss of existing client requests. Connection acceptance
is stopped and any existing requests continue to be processed until conclusion. This effectively
causes the server to exit normally and the DCL wrapper procedure to restart it.

$ HTTPD /DO=RESTART

The now variant restarts the server immediately regardless of existing connections.

$ HTTPD /DO=RESTART=NOW

The when-quiet variant restarts the server whenever request processing drops to zero for
more than one second. It allows (perhaps non-urgent) changes to be put into effect through
restart when everything has gone ‘‘quiet’’ and no demands are being placed on the server.

$ HTTPD /DO=RESTART=QUIET

Server Administration 19–13

19.7.10 Secure Sockets Layer

If the optional SSL component is installed and configured these directives become effective.

If X.509 authentication is enabled the Certificate Authority (CA) verification list can be
reloaded.

$ HTTPD /DO=SSL=CA=LOAD

If a private key password is not included with the encode key it is requested by the server
during startup. The following example shows the directive and the resulting prompt. When
entered the password is not echoed.

$ HTTPD /DO=SSL=KEY=PASSWORD
Enter private key password []:

19.7.11 Throttle

Unconditionally release all queued requests for immediate processing.

$ HTTPD /DO=THROTTLE=RELEASE

Unconditionally terminate all requests queued waiting for processing. Clients receive a 503
‘‘server too busy’’ response.

$ HTTPD /DO=THROTTLE=TERMINATE

For VMS V8.2 and later, a more selective RELEASE and TERMINATE is possible. A user
name or script name can be supplied and only matching requests have the specified action
peformed.

$ HTTPD /DO=THROTTLE=TERMINATE=USER=username
$ HTTPD /DO=THROTTLE=TERMINATE=SCRIPT=script-path

19–14 Server Administration

Chapter 20

WATCH Facility

The WATCH facility is a powerful adjunct in server administration. From the Server Admin-
istration facility (Chapter 19) it provides an online, real-time, in-browser-window view
of request processing in the running server. The ability to observe live request process-
ing on an ad hoc basis, without changing server configuration or shutting-down/restarting
the server process, makes this facility a great configuration and problem resolution tool. It
allows (amongst other uses)

assessment of mapping rules
assessment of authorization rules
investigation of request processing problems
observation of script interaction
general observation of server behaviour

A single client per server process can access the WATCH facility at any one time. It can be
used in one of two modes.

• As a one-shot, one-off WATCH of a particular request. This is available from the Request
Report page of the Server Administration facility. In this case the single indicated request
is tagged to be WATCHed in all categories (see below) for the duration of the request (or
until the client stops WATCHing).

• As described in the following chapter the server and all new requests being processed are
candidates for being WATCHed. Categories are selected before initiating the WATCH and
the report can be generated for a user-specified number of seconds or aborted at any time
using the browser’s stop button.

Options immediately below the duration selector allows the WATCH output to concurrently
be included in the server process log. This allows a permanent record (at least as permanent
as server logs) to be simply produced.

WATCH Facility 20–1

20.1 Server Instances
With a single instance (Section 6.2) access to WATCH is always through the one server process.
If multiple instances are configured WATCH requests, in common with all others, will be
serviced by any one of the associated processes depending on the momentary state of the
round-robin distribution.

This is often an issue for request WATCHing. The simplest scenario involves two instances.
When the WATCH report is activated it will be serviced by the first process, when the request
wishing to be WATCHed is accessed it (in the absence of any other server activity) will be
serviced by the other process and will not be reported by WATCH on the first.

The solution is to suspend the round-robin request processing for the period of the WATCH
activity. This does not shut any instance down but instead makes all but the supervisor
instance quiescent. (Technically, it dequeues all the listening I/Os from non-supervisor
instance server sockets, making the TCP/IP network driver send all connection requests to
the one instance left with listening I/Os.) It is just a matter of making the non-supervisor
instances active again when the WATCH activity is concluded.

This may be done from the command-line using

$ HTTPD /DO=INSTANCE=PASSIVE
$ HTTPD /DO=INSTANCE=ACTIVE

or using the Server Administration facility (Chapter 19) where there are [Active] and [Passive]
buttons available when multiple instances are in use. Neither transition disrupts any
requests being established or in-progress.

20.2 Event Categories
An event is considered any significant point for which the server code has a reporting call
provided. These have been selected to provide maximum information with minimum clutter
and impact on server performance. Obvious examples are connection acceptance and closure,
request path resolution, error report generation, network reads and writes, etc. Events are
collected together into groupings to allow clearly defined areas of interest to be selected for
reporting.

online graphic

The report menu provides for the inclusion of any combination of the following categories.

Request

• Processing - Each major step in a request’s progress. For example, path resolution and
final response status.

• Header - Provides the HTTP request header as a section of blank-line terminated text.

• Body - The content (if a POST or PUT method) of the request. This is provided as a
hexadecimal dump on the left and with printable characters rendered on the right, 32
bytes per line.

20–2 WATCH Facility

Response

• Processing - Each major step in generating a response to the request. These generally
reflect calls to a major server module such as file CACHE, FILE access, INDEX-OF, SSI
processing, etc. One or more of these events may occur for each request. For instance a
directory listing will show an INDEX-OF call and then usually a FILE call as any read-me
file is accessed.

• Header - The blank-line terminated HTTP header to the response. Only server-
generated headers are included. Scripts that provide a full HTTP stream do not have
the header explicitly reported. The response body category must be enabled to observe
these (indicated by a STREAM notation).

• Body - The content of the response. This is provided as a hexadecimal dump on the left
and with printable characters rendered on the right, 32 bytes per line. Some requests also
generate very large responses which will clutter output. Generally this category would
be used when investigating specific request response body problems.

General

• Connection - Each TCP/IP connection acceptance and closure. The connect shows which
service the request is using (scheme, host name and port).

• Path Mapping - This, along with the authorization report, provides one of the most
useful aspects of the WATCH facility. It comprises an event line indicating the path to be
mapped (it can also show a VMS file specification if a reverse-mapping has been requested).
Then as each rule is processed a summary showing current path, match ‘‘Y’’/‘‘N’’ for each
path template and any conditional, then the result and conditional. Finally an event
entry shows the resulting path, VMS file specification, any script name and specification
resolved. The path mapping category allows the administrator to directly assess mapping
rule processing with live or generated traffic.

• Authorization - When authorization is deployed this category shows the rules examined
to determine if a path is controlled, any authentication events in assessing username and
password, and the consequent group, user and request capabilities (read and/or write) for
that path. No password information is displayed.

• Error - The essential elements of a request error report are displayed. This may include
a VMS status value and associated system message.

• CGI - This category displays the generated CGI variable names and values as used by
various forms of scripting and by SSI documents, as well as the processing of the response
header returned by scripts.

• DCL - Debugging scripts can sometimes present particular difficulties. This category may
help. It reports on all input/output streams with the process (SYS$INPUT, SYS$OUTPUT,
SYS$COMMAND, CGIPLUSIN).

• DECnet - For the same reason as above this category reports all DECnet scripting
input/output of the DECnet link. In particular, it allows the observation of the OSU
scripting protocol.

WATCH Facility 20–3

Network

• Activity - For each raw network read and write the VMS status code and size of the I/O
is recorded.

• Data - For each raw network read or write the contents are provided as a hexadecimal
dump on the left and with printable characters rendered on the right, 32 bytes per line.

Other

• Match - Shows a significant level of detail during string matching activities. May be
useful during mapping, authorization and conditional processing.

• Logging - Access logging events include log open, close and flush, as well as request
entries.

• SSL - If the Secure Sockets Layer image is in use this category provides a indication of
high-level activity.

• Quotas - Display available server process resource quotas with significant events.

Proxy

• Processing - Each major step during the serving of a proxied request.

• Request Header - The proxy server rebuilds the request originally received from the
client. This category shows that rebuilt request, the one that is sent to the remote server.

• Request Body - In the case of HTTP POST or PUT methods any request body is
displayed. This is provided as a hexadecimal dump on the left and with printable
characters rendered on the right, 32 bytes per line.

• Response Header - The blank-line terminated HTTP header to the response from the
remote, proxied server.

• Response Body - The content of the response sent from the remote server. This is
provided as a hexadecimal dump on the left and with printable characters rendered on
the right, 32 bytes per line.

• Cache - When proxy caching is enabled this category provides information on cache
reading (serving a request from cache) and cache loading (writing a cache file using the
response from a remote server). It will provide a reason for any request or response it
does not cache, as well as report errors during file processing.

• Cache Maintenance - This category is not related to request processing. It allows
routine and reactive cache purging activities to be watched.

20–4 WATCH Facility

Code Modules

If the server has been compiled using the WATCH_MOD=1 macro a set of module WATCHing
statements is included. These provide far more detailed processing information than available
with the generic WATCH, are intended primarily for debugging the server during development
and testing. This is considered a specialized tool, with the quantity and level of detail
produced most likely proving counter-productive in addressing general site configuration
issues. The module items are shown below the usual WATCH items.

20.3 Request Filtering
By default all requests to all services are WATCHed. Fine control may be exercised over
exactly which requests are reported, allowing only a selected portion of all requests being
processed to be concentrated on, even on a live and busy server. This is done by filtering
requests according the following criteria.

• Client - The originating host name or address. Unless server DNS host name resolution
is enabled this must be expressed in dotted-decimal notation.

• Service - The service connected to. This includes the scheme of the service (i.e. ‘‘http:’’,
‘‘https:’’), the host name (real or virtual), and the port. The host name is the official name
of the service as reported during server startup. As the port number is a essential part
of the service specification it must always be explicitly supplied or wildcarded.

• Request - This filter operates on the entire HTTP request header. All fields supplied
with the request are available to be filtered against. As this is a large, multi-line dataset
filters can become quite complex and regular expression (Section 8.2) matching may be
useful (see examples below).

• Path/Track - Either, the request path, or a specific track identifier string. A path may
be specified with a leading ‘‘/’’ for local paths or if WATCHing proxy requests with a full,
or part of a full, URL. To WATCH requests associated with a particular access track
(Section 6.12.6) enter the track’s unique identifier string preceded by a dollar symbol (e.g.
‘‘$ORoKJAOef8sAAAkuACc’’).

• Realm & User - This filters against request authentication information. As authoriza-
tion occurs relatively late in request processing some data reported earlier by WATCH
will not be available.

• HTTP Status - This allows a class of response status (1 (informational), 2 (success), 3
(redirection), 4 (client error) and 5 (server error)) or a specific response status (e.g. 200
(success), 404 (not found), 503 (service unavailable), etc.) to be filtered into the WATCH
report. As this happens very late in request processing the number of reported events
are limited but may provide some insight into particular processing problems.

In addition there are in and out selectors against each of the filters which include or exclude
the particular request based on it matching the filter.

These filters are controlled using fully-specified, wildcarded strings or using regular expres-
sion patterns (Chapter 8). In common with all WASD processing, filter matching is case-
insensitive. Of course, due to the point of application of a particular filter during request
processing, some information may or may not be displayed. When a request is into or out of
the report because of a matching filter a FILTER informational item is reported.

WATCH Facility 20–5

Examples

1. This first example shows various strings and patterns that could be applied to the client
filter.

alpha.wasd.dsto.defence.gov.au
*.wasd.dsto.gov.au
131.185.250.202
131.185.250.*
^10.68.250.*|10.68.251.*

2. This example various filters applied to the service (virtual server).

beta.wasd.dsto.defence.gov.au:8000
beta.wasd.dsto.defence.gov.au:*
http://*
https:*
*:80

3. The request filter contains the entire HTTP request header. This includes multiple,
newline-delimited fields. Filtering can be simple or quite complex. These examples filter
all POST requests (either in or out of the report depending on the respective selector),
and all POSTs to the specified script respectively.

POST *
POST /cgi-bin/example*

These are the equivalent regular expressions but also will stop comparing at the end of
the initial request line. The second, in this case, will also only filter against HTTP/1.1
version requests (note the final period matching the <CR> of the <CR><LF> carriage
control).

^^POST .*$
^^POST */cgi-bin/example *HTTP/1\.1.$

This example uses a regular expression to constrain the match to a single header field
(line, or newline-delimited string), matching all requests where the user agent reports
using the ‘‘Gecko’’ browser component (Mozilla, Firefox, etc.)

^^User-agent:.*Gecko.*$

4. The path and track filter. The path contains a proxied origin server request and so can
be used to filter proxy requests to specific sites.

/ht_root/src/*
/cgi-bin/*
/web/*/cyrillic/*
$ORoKJAOef8sAAAkuACc
http://proxied.host.name/*

5. The authentication filters, realm and user, can be used to select requests for a particular
authenticated user, all authenticated requests or all non-authenticated requests, amongst
other application. The realm field allows the authenticated user to be further narrowed
as necessary. All of the following examples show only the user field with the default in
selector set.

Authenticated requests for user DANIEL.

DANIEL

20–6 WATCH Facility

All authenticated requests.

%*

20.4 Report Format
The following example illustrates the format of the WATCH report. It begins with multi-line
heading. The first two record the date, time and official server name, with underline. The
third provides the WASD server version. The fourth provides some TCP/IP agent information.
Lines following can show OpenSSL version (if deployed), system information, server startup
command-line, and then current server process quotas. The last three lines of the header
provide a list of the categories being recorded, the filters in use, and the last, column headings
described as follows:

time the event was recorded
the module name of the originating source code
the line in the code module
a unique item number for each thread being WATCHed
event category name
free-form, but generally interpretable event data

online graphic

Note that some items also include a block of data. The request header category does
this, providing the blank-line terminated text comprising the HTTP header. Rule mapping
also provides a block of information representing each rule as it is interpreted. Generally
WATCH-generated information can be distinguished from other data by the uniform format
and delimiting vertical bars. Initiative and imagination is sometimes required to interpret
the free-form data but a basic understanding of HTTP serving and a little consideration
is generally all that is required to deduce the essentials of any report. (Report manually
wrapped for completeness.)

WATCH Facility 20–7

24-OCT-2006 02:57:34 WATCH REPORT slim.vsm.com.au:80
--
HTTPd-WASD/9.2.0 OpenVMS/AXP SSL (5-OCT-2006 07:48:11.06)
Multinet UCX$IPC_SHR V51A-013 (23-AUG-2005 10:43:55.13)
OpenSSL 0.9.8c 05 Sep 2006 (22-SEP-2006 02:43:10.37)
$ CC (V7.3/60490008) /DECC /STAND=RELAXED_ANSI /PREFIX=ALL /OPTIMIZE /NODEBUG\
/WARNING=(NOINFORM,DISABLE=(PREOPTW))/FLOAT=D_FLOAT /DEFINE=(WASD_VMS_V6,WATCH\
_CAT=1,WATcr_MOD=0,WASD_ACME=1)
COMPAQ AlphaServer DS10L 466 MH with 1 CPU and 512MB running VMS V7.3 (ODS-5 \

enabled, VMS NAML, VMS FIB, ZLIB 1.2.2, lksb$b_valblk[16])
$ HTTPD /PRIORITY=4 /SYSUAF=RELAXED /PERSONA/SCRIPT=AS=HTTP$NOBODY
AST:1980/2000 BIO:1985/2000 BYT:278624/499424 DIO:998/1000 ENQ:314/500 FIL:25\

0/300 PGFL:358112/500000 PRC:0/100 TQ:97/100
DCL Scripting: detached, /script=as=HTTP$NOBODY, PERSONA enabled
Process: HTTPd:80 OTHER HT_ROOT:[STARTUP]STARTUP_SERVER.COM;1 HT_ROOT:[LOG_SE\

RVER]SLIM_20060714183920.LOG;1
Instances: SLIDER::HTTPd:80, SLIM::HTTPd:80
Watching: connect, request, req-header, response, res-header, error (603)
Filter: NONE
|Time_______|Module__|Line|Item|Category__|Event...|
|02:57:36.20 NET 1759 0001 CONNECT MULTIHOME match for 150.101.13.15,\

443 arrived at 150.101.13.15,443|
|02:57:36.20 NET 1764 0001 CONNECT ACCEPTED 121.44.69.94,53229 on htt\

ps://150.101.13.15,443 BG4884:|
|02:57:36.24 REQUEST 2213 0001 REQ-HEADER HEADER 496 bytes|
GET /httpd/-/admin/ HTTP/1.1
Host: wasd.vsm.com.au
User-Agent: Mozilla/5.0 (X11; U; OpenVMS Digital_Personal_WorkStation_; en-US\

; rv:1.7.13) Gecko/20060506
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/p\

lain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Authorization: Basic xxxxxxxxxxxxxxxxxxxxxxxx
Cache-Control: max-age=0

20–8 WATCH Facility

|02:57:36.24 REQUEST 3641 0001 REQ-HEADER 10 fields, 0 unknown|
1. {107}Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.\

9,text/plain;q=0.8,image/png,*/*;q=0.5
2. {46}Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
3. {29}Accept-Encoding: gzip,deflate
4. {31}Accept-Language: en-us,en;q=0.5
5. {45}Authorization: Basic xxxxxxxxxxxxxxxxxxxxxxxx
6. {24}Cache-Control: max-age=0
7. {22}Connection: keep-alive
8. {21}Host: wasd.vsm.com.au
9. {15}Keep-Alive: 300
10. {104}User-Agent: Mozilla/5.0 (X11; U; OpenVMS Digital_Personal_WorkStatio\

n_; en-US; rv:1.7.13) Gecko/20060506
|02:57:36.24 SERVICE 1553 0001 CONNECT VIRTUAL wasd.vsm.com.au:443|
|02:57:36.24 REQUEST 3712 0001 REQUEST GET /httpd/-/admin/|
|02:57:36.24 ADMIN 0228 0001 RESPONSE ADMIN /httpd/-/admin/|
|02:57:36.24 NET 2110 0001 RES-HEADER HEADER 310 bytes|
HTTP/1.1 200 OK
Server: HTTPd-WASD/9.2.0 OpenVMS/AXP SSL
Date: Mon, 23 Oct 2006 17:27:36 GMT
Accept-Ranges: bytes
Expires: Mon, 23 Oct 2006 17:27:36 GMT
Cache-Control: no-cache, no-store
Pragma: no-cache
Content-Type: text/html; charset=ISO-8859-1
Content-Encoding: gzip
Transfer-Encoding: chunked

|02:57:36.24 GZIP 0572 0001 RESPONSE DEFLATE 12345->2607 bytes, 21% (26\
1kB)|

|02:57:36.25 REQUEST 0771 0001 REQUEST STATUS 200 rx:712 tx:3161 bytes 0.\
045895 seconds|
|02:57:36.25 REQUEST 0997 0001 CONNECT PERSISTENT 1 121.44.69.94,53229|
|02:57:39.68 end|

20.5 Usage Suggestions
The following provides a brief explanation on the way WATCH operates and any usage
implications.

A single client may be connected to the WATCH facility at any given time. When connecting
the client is sent an HTTP response header and the WATCH report heading lines. The request
then remains connected until the WATCH duration expires or the client overtly aborts the
connection. During this period the browser behaves as if receiving a sometimes very slow,
sometimes stalled, plain-text document. As the server processes WATCHable events the text
generated is sent to the WATCH-connected client.

If the connection is aborted by the user some browsers will consider document retrieval to be
incomplete and attempt to reconnect to the service if an attempt is made to print or save the
resulting document. As the printing of WATCH information is often quite valuable during
problem resolution this behaviour can result in loss of information and generally be quite
annoying. Appropriate use of the duration selector when requesting a report can work around
this, as at expiry the server disconnects, browsers generally interpreting this as legitimate
end-of-document (when no content-length has been specified).

WATCH Facility 20–9

During report processing some browsers may not immediately update the on-screen informa-
tion to reflect received data without some application activity. If scroll-bars are present on the
document window manipulating either the horizonal or vertical slider will often accomplish
this. Failing that minimizing then restoring the application will usually result in the most
recent information being visible.

Browser reload/refresh may be used to restart the report. A browser will quite commonly
attempt to remain at the current position in the document, which with a WATCH report’s
sustained but largely indeterminate data stream may take some time to reach. It is suggested
the user ensure that any vertical scroll-bar is at the beginning of the current report, then
refresh the report.

Selecting a large number of categories, those that generate copious output for a single event
(e.g. response body) or collecting for extended periods can all result in the receipt of massive
reports. Some browsers do not cope well with documents megabytes in size.

Note
WATCH reports are written using blocking I/O. This means when large bursts of
data are being generated (e.g. when WATCHing network data, response bodies, etc.)
significant granularity may be introduced to server processing. Also if the WATCH
client fails or blocks completely server processing could halt completely! (This has
been seen when WATCHing through a firewall.)

When supplying WATCH output as part of a problem report please ZIP the file and
include it an an e-mail attachment. Mailers often mangle the report format making it difficult
to interpret.

20.6 Command-Line Use
Although intended primarily as a tool for online use WATCH can be deployed at server
startup with a command-line qualifier and provide report output to the server process log.
This is slightly more cumbersome than the Web interface but may still be useful in some
circumstances. Full control over event categories and filters is possible.

• /NOWATCH Disables the use of the online WATCH facility.

• /WATCH= Enables the server WATCH facility, dumping to standard output (and the
server process log if detached). When in effect the online facility is unavailable. The
string supplied to the qualifier may comprise four comma-separated components. Only
the first is manadatory. Stated order is essential. It will probably be necessary to enclose
the complete string in quotation marks.

• LIST - The LIST keyword provides a list of all the categories (items) available for
WATCHing.

• NOSTARTUP - This keyword suppresses WATCH output until the server is ready
to process requests. It must be the leading keyword.

• items - A parenthesized, comma-separated list of category keywords. Available
keywords can be displayed using the LIST facility.

20–10 WATCH Facility

• filters - A client, service and path filters can be provided following the specification of
required items. They must be provided in the order listed above. Leading filters that
are not required must be provided as single, asterisk wildcards. WATCH parameter
with filters containing forward-slashes will require quoting.

The following examples illustrate the command-line WATCH specification.

/NOWATCH
/WATCH=NOSTARTUP,ITEMS=(REQUEST,RESPONSE,MAPPING)
/WATCH="ITEMS=(REQUEST,RESPONSE,ERROR),*,*,/cgi-bin/*"
/WATCH=LIST

WATCH Facility 20–11

Chapter 21

Server Performance

The server has a single-process, multi-threaded, asynchronous I/O design. On a single-
processor system this is the most efficient approach. On a multi-processor system it is
limited by the single process context (with scripts executing within their own context). For
I/O constrained processing (the most common in general Web environments) the AST-driven
approach is quite efficient.

The test system was a lightly-loaded AlphaServer 4100 4/400 (4 x 400MHz CPUs), VMS v7.3-
2 and DEC TCP/IP 5.4. No Keep-Alive: functionality was employed so each request required
a complete TCP/IP connection and disposal. DNS (name resolution) and access logging were
disabled. The server and test-bench utility were located on separate systems with 100 Mbps
Fast-Ethernet interconnection.

As of v7.1 the performance data is collected using the ‘‘ApacheBench’’ utility (Sec-
tion 23.5). DCL procedures with sets of ApacheBench calls are used to benchmark requests.
These procedures and the generated output from benchmark runs (collected via $@proce-
dure/OUTPUT=filename) are available in the HT_ROOT:[EXERCISE] directory.

These results are indicative only!
On a clustered, multi-user system too many things vary slightly all the time. Hence
the batching of accesses, interleaved between servers, attempting to provide a repre-
sentative result.

OSU/Apache Comparison

Until v5.3 a direct comparison of performance between OSU and WASD had not been made
(even to satisfy the author’s own occasional curiosity). After a number of users with experience
in both environments commented . . . WASD seemed faster, was it? . . . it was decided to make
and provide comparisons using the same metrics used on WASD for some time.

Every endeavour has been made to ensure the comparison is as equitable as possible (e.g.
each server executes at the same process priority, has a suitable cache enabled, runs on the
same machine in the same relatively quiescent environment. Each test run was interleaved
between each server to try and distribute any environment variations. Tests showing a port
7080 were to WASD, port 7777 to the OSU server, and port 8888 to Apache. All servers were

Server Performance 21–1

configured ‘‘out-of-the-box’’, minimal changes (generally just path mappings), WASD executing
via the [INSTALL]DEMO.COM procedure.

Of course performance is just one of a number of considerations in any software environment
(otherwise we wouldn’t be using VMS now would we? ;-) No specific conclusions are promoted
by the author. Readers may draw their own from the results recorded below.

For this document the results were derived using the WASD v9.0, CSWS V1.3 (based on
Apache 1.3.26), and OSU 3.10 servers. CSWS V1.3 still seems to be the most widely deployed
Apache on VMS, perhaps due to some widely discussed deployment issues with SWS V2.0
(based on Apache 2.0.47), this has remained the baseline VMS Apache comparison.

21.1 Simple File Request Turn-Around
A series of tests using batches of accesses. The first test returned an empty file measuring
response and file access time, without any actual transfer. The second requested a file of
64K characters, testing performance with a more realistic load. All were done using one and
ten concurrent requests. Note that the Apache measurement is ‘‘out-of-the-box’’ - the author
could find no hint of a file cache, let-alone how to enable/disable one.

Cache Disabled - Requests/Second

Response Concurrent WASD OSU Apache

0K 1 200 117 45

0K 10 252 125 47

64K 1 78 43 43

64K 10 93 54 27

Cache Enabled - Requests/Second

Response Concurrent WASD OSU Apache

0K 1 521 415 34

0K 10 831 522 38

64K 1 102 43 28

64K 10 134 55 32

Result file:

HT_ROOT:[EXERCISE]PERF_FILES_NOCACHE_AB_V90.TXT
HT_ROOT:[EXERCISE]PERF_FILES_AB_V90.TXT

With both WASD cached and non-cached throughput actually improves at ten concurrent
requests (undoubtably due to the latency of the serial TCP/IP connection/disconnection in
one-by-one, compared to several happening concurrently).

21–2 Server Performance

Note that the response and transfer benefits decline noticably with file size (transfer time).
The difference between cached and non-cached with the zero file size (no actual data transfer
involved) gives some indication of the raw difference in response latency, some 250-300%
improvement. This is a fairly crude analysis, but does give some indication of cache
efficiencies.

Just one other indicative metric of the two servers, CPU time consumed during the file
measurement runs. The value for Apache was not measured as it would be distributed over
an indeterminate number of child processes.

CPU Time Consumed (Seconds)

Cache WASD OSU Apache

Disabled 11.9 48.7 -

Enabled 4.6 38.1 -

File Transfer Rate

Under similar conditions results indicate a potential transfer rate well in excess of 1 Mbyte
per second. This serves to demonstrate that server architecture should not be the limiting
factor in file throughput.

Transfer Rate - MBytes/Second

Response Concurrent WASD OSU Apache

3.9MB (7700 blocks) 1 8.5 5.5 8.7

3.9MB (7700 blocks) 10 7.4 5.9 8.3

Result file:

HT_ROOT:[EXERCISE]PERF_XFER_AB_V90.TXT

The results for Apache indicate one occasion where a collection of child processes performs
very well (with assistance from generous VCC_ . . . cache settings).

File Record Format

The server can handle STREAM, STREAM_LF, STREAM_CR, FIXED and UNDEFINED
record formats very much more efficiently than VARIABLE or VFC files.

With STREAM, FIXED and UNDEFINED files the assumption is that HTTP carriage-control
is within the file itself (i.e. at least the newline (LF), all that is required required by browsers),
and does not require additional processing. With VARIABLE record files the carriage-control
is implied and therefore each record requires additional processing by the server to supply it.
Even with variable record files having multiple records buffered by the HTTPd before writing
them collectively to the network improving efficiency, stream and binary file reads are by

Server Performance 21–3

Virtual Block and are written to the network immediately making the transfer of these very
efficient indeed!

21.2 Scripting
Persistant-subprocesses are probably the most efficient solution for child-process scripting
under VMS. See ‘‘Scripting Environment’’ document. The I/O still needs to be on-served to
the client by the server.

A simple performance evaluation shows the relative merits of the four WASD scripting
environments available, plus a comparison with OSU and Apache.
HT_ROOT:[SRC.CGIPLUS]CGIPLUSTEST.C, which executes in both standard CGI and CGI-
plus environments, and an ISAPI example DLL, HT_ROOT:[SRC.CGIPLUS]ISAPIEXAMPLE.C,
which provides equivalent output. A series of accesses were made. The first test returned
only the HTTP header, evaluating raw request turn-around time. The second test requested
a body of 64K characters, again testing performance with a more realistic load.

DECnet-based scripting was tested using essentially the same environment as subprocess-
based CGI, assessing the performance of the same script being executed using DECnet to
manage the processes. Three separate environments have been evaluated, WASD-DECnet-
CGI, WASD-OSU-emulation and OSU. The OSU script used the WASD CGISYM.C utility to
generate the required CGI symbols (also see WASD/OSU Comparison). DECnet-Plus T5.0.3
was in use.

CGI Scripting - Requests/Second

Response ConcurrentCGI CGIplus ISAPI
DECnet-
CGI

OSU-
emul OSU Apache

0KB 1 25 254 249 16 15 12 4

0KB 10 63 473 351 36 30 25 5

64KB 1 21 95 85 15 14 9 4

64KB 10 27 46 45 32 27 18 5

Result file:

HT_ROOT:[EXERCISE]PERF_SCRIPTS_AB_V90.TXT

Scripting Observations

Although these results are indicative only, they do show CGIplus and ISAPI to have a potential
for improvement over standard CGI from a factor of 5 (500%) up to factors in excess of 10
(1000%) - a not inconsiderable improvement. Of course this test generates the output stream
very simply and efficiently and so excludes any actual processing time that may be required by
a ‘‘real’’ application. If the script/application has a large activation time the reduction
in response latency could be even more significant (e.g. Perl scripts and RDMS access
languages).

21–4 Server Performance

CGIplus under V7.2 has seen a dramatic increase in throughput over previous version
benchmarks . . . in excess of a factor of 2 (100%)! This is entirely due to the new ‘‘struct’’
mode available. See the Scripting Overview for further detail.

DECnet Observations

This section comments on non-persistant scripts (i.e. those that must run-up and run-down
with each request - general CGI behaviour). Although not shown here measurements of
connection reuse show significant benefits in reduced response times, consistency of response
times and overall throughput, showing a difference of some 200% over non-reuse (similar
improvements were reported with the OSU 3.3a server).

With ten simultaneous and back-to-back scripts and no connection reuse many more network
processes are generated than just ten. This is due to the NETSERVER maintenance tasks
such as log creation and purging, activating and deactivating the task, etc., adding latency
into this script environment. The throughput was generally still lower than with subprocess-
based scripting.

While earlier versions cautioned on the use of DECnet-based scripting this has been relaxed
somewhat through connection reuse.

WASD/OSU Comparison

A direct comparison of CGI performance between WASD and OSU scripting is biased in favour
of WASD, as OSU scripting is based on its own protocol with CGI behaviour layered-in above
scripts that require it. Therefore a non-CGI comparison was devised. The script is designed
to favour neither environment, merely return the plain-text string ‘‘Hello!’’ as quickly as
possible. Data for Apache is also included, although this type of scripting is not really its
forte.

$! OSU and WASD scripting face-to-face in a script that favours neither unduly
$ if f$type(WWWEXEC_RUNDOWN_STRING) .nes. ""
$ then
$ write net_link "<DNETTEXT>"
$ write net_link "200 Success"
$ write net_link "Hello!"
$ write net_link "</DNETTEXT>"
$ else
$ write sys$output "Content-Type: text/plain"
$ write sys$output ""
$ write sys$output "Hello!"
$ endif

Face-to-Face - Requests/Second

ConcurrentCGI CGIplus ISAPI
DECnet-
CGI

OSU-
emul OSU Apache

‘‘Hello!’’ 1 50 n/a n/a n/a n/a 29 5

‘‘Hello!’’ 10 123 n/a n/a n/a n/a 60 6

Result file:

Server Performance 21–5

HT_ROOT:[EXERCISE]PERF_SCRIPTS_AB_V90.TXT

WASD/Apache Scripting Comparison

CGI scripting is notoriously slow (as illustrated above), hence the effort expended by designers
in creating persistent scripting environments - those where the scripting engine (and perhaps
other state) is maintained between requests. Both WASD and Apache implement these as
integrated modules, the former as CGIplus/RTE, and in the latter as loadable modules.

The following comparison uses two of the most common scripting environments and engines
shared between WASD and Apache, Perl and PHP. The engines used in both server environ-
ments were identical. WASD 9.0 with PHPWASD123 and PERLRTE121 packages. CSWS
1.3 with CSWS_PHP-V0101 and PERL-V0506-1-1 packages.

A simple script for each engine is used as a common test-bench for the two servers.

<!-- face2face.php -->
<?php
echo "Hello!"
?>

face2face.pl
print "Content-Type: text/html\n\n
Hello!
";

These are designed to measure the script environment and its activation latencies, rather
than the time required to process script content (which should be consistent considering they
are the same engines). In addition, the standard php_info.php is used to demonstrate with a
script that actually performs some processing. No data is provided for the OSU package.

Persistent Scripting - Requests/Second

Concurrent WASD Apache

face2face.pl 1 60 15

face2face.pl 10 108 29

face2face.php 1 58 32

face2face.php 10 140 57

php_info.php 1 43 27

php_info.php 10 94 46

Result file:

HT_ROOT:[EXERCISE]PERF_PERSIST_AB_V90.TXT

21–6 Server Performance

Persistent Scripting Observations

These results demonstrate the efficiency and scalability of the WASD CGIplus/RTE technology
used to implement its persistent scripting environments. Most site-specific scripts can also
be built using the libraries, code fragments, and example scripts provided with the WASD
package, and obtain similar efficiencies and low latencies. See ‘‘Scripting Environment’’
document.

21.3 SSL
At this time there are no definitive measurements of SSL performance (Chapter 18). One
might expect that because of the CPU-intensive cryptography employed in SSL requests that
performance, particularly where concurrent requests are in progress, would be significantly
lower. In practice SSL seems to provide more-than-acceptable responsiveness.

21.4 Suggestions
Here are some suggestions for improving the performance of the server, listed in approximate
order of significance. Note that these will have proportionally less impact on an otherwise
heavily loaded system.

1. Disable host name resolution (configuration parameter [DNSLookup]). DNS latency
can slow request processing significantly! Most log analysis tools can convert literal
addresses so DNS resolution is often an unnecessary burden.

2. Later versions of TCP/IP Services for OpenVMS seem to have large default values for
socket send and receive buffers. MultiNet and TCPware are reported to improve transfer
of large responses by increasing low default values for send buffer size. The WASD global
configuration directives [SocketSizeRcvBuf] and [SocketSizeSndBuf] allow default values
to be adjusted. WATCH can be used to report network connection buffer values.

3. Enable caching (configuration parameter [Cache]).

4. Ensure served files are not VARIABLE record format (see above). Enable STREAM-LF
conversion using a value such as 250 (configuration parameter [StreamLF], and SET
against required paths using mapping rules).

5. Use persistant-subprocess DCL/scripting (configuration parameter [ZombieLifeTime])

6. Ensure script processes are given every possible chance to persist (configuration param-
eter [DclBitBucketTimeout]).

7. Use the persistent scripting capabilities of CGIplus or ISAPI whenever possible.

8. Ensure the server account’s WSQUO and WSEXTENT quotas are adequate. A constantly
paging server is a slow server!

9. Tune the network and DCL output buffer size to the Maximum Transfer Unit (MTU) of
the server’s network interface. Using Digital TCP/IP Services (a.k.a. UCX) display the
MTU.

Server Performance 21–7

TCPIP> SHOW INTERFACE
Packets

Interface IP_Addr Network mask Receive Send MTU

SE0 203.127.158.3 255.255.255.0 376960 704345 1500
LO0 127.0.0.1 255.0.0.0 306 306 0

In this example the MTU of the ethernet interface is 1500 (bytes). Set the [Buffer-
SizeNetWrite] configuration directive to be some multiple of this. In the case of 1500, say
3000, 4500 or 6000. Also set the [BufferSizeDclOutput] to the same value. Rationale:
always use completely filled network packets when transmitting data.

10. Disable logging (configuration parameter [Logging]).

11. Set the HTTP server process priority higher, say to 6 (use startup qualifier /PRIORITY=).
Do this after due consideration. It will only improve response time if the system is also
used for other, lower priority purposes. It will not help if Web-serving is the sole acitivity
of the system.

12. Reduce to as few as possible the number of mapping and authorization rules, particularly
those that have conditions that require additional evaluation. Also see Chapter 14.

13. Use a pre-defined log format (e.g. ‘‘common’’, configuration parameter [LogFormat]). User-
specified formats require more processing for each enrty.

14. Disable request history (configuration parameter [RequestHistory]).

15. Disable activity statistics (configuration parameter [ActivityDays]).

21–8 Server Performance

Chapter 22

HTTPd Web Update

The Update facility allows Web documents and file environments to be administered from
a standard browser. This capability is available to Web administrator and user alike.
Availability and capability depends on the authorization environment within the server.

It should be stressed that this is not designed as a full hypertext administration or author-
ing tool, and for document preparation relies on the editing capabilities of the <TEXTAREA>
widget of the user’s browser. It does however, allow ad-hoc changes to be made to docu-
ments fairly easily, as well as allowing documents to be deleted, and directories to be created
and deleted.

Consult the current Update documentation for usage detail.

online hypertext link

online graphic

online graphic

Update Access Permission

If SSL is in use (Chapter 18) then username/password privacy of the authorization envi-
ronment is inherently secured via the encrypted communications. To restrict web update
functionality to this secure environment add the following to the HTTPD$MAP configuration
file:

/upd/* "403 Access denied." ![sc:https]

Of course, the user must have write (POST/PUT) access to the document or area on the
server (i.e. the path) and the server account have file system permission to write into the
parent directory.

The server will report ‘‘Insufficient privilege or object protection violation ... /path/document’’
if it does not have file system permission to write into a directory.

Also see Section 16.12 for information on write access control for the server account.

HTTPd Web Update 22–1

Chapter 23

Utilities and Facilities

Foreign commands for external utilities (and the HTTPD control functionality) will need to
be assigned from the adminstration users’ LOGIN.COM either explicitly or by calling the
HT_ROOT:[EXAMPLE]WASDVERBS.COM procedure.

$ AB == "$HT_EXE:AB"
$ HTTPD == "$HT_EXE:HTTPD"
$ HTTPDMON == "$HT_EXE:HTTPDMON"
$ MD5DIGEST == "$HT_EXE:MD5DIGEST"
$ QDLOGSTATS == "$HT_EXE:QDLOGSTATS"
$ SECHAN == "$HT_EXE:SECHAN"
$ STREAMLF == "@HT_EXE:STREAMLF"
$ WB == "$HT_EXE:WB"

23.1 Echo Facility
Ever had to go to extraordinary lengths to find out exactly what your browser is sending to
the server? The server provides a request echo facility. This merely returns the complete
request as a plain-text document. This can be used for for checking the request header lines
being provided by the browser, and can be valuable in the diagnosis of POSTed forms, etc.

This facility must be enabled through a mapping rule entry.

script /echo/* /echo/*

It may then be used with any request merely by inserting ‘‘/echo’’ at the start of the path, as
in the following example.

http://wasd.dsto.defence.gov.au/echo/ht_root/

Utilities and Facilities 23–1

23.2 Hiss Facility
The hiss facility provides a response stream made up of random alpha-numeric characters
(a sort of alpha-numeric white-noise). No response header is generated and the stream will
continue (by default) up to one megabyte of output, or until the client closes the connection.

This facility must be enabled through a mapping rule entry and may then be used for specific
requests. By default the hiss facility sends a maximum of one megabyte of white-noise, or
until the client disconnects. This maximum may be controlled my appending an integer
representing the number of kilobytes maximum to the mapping.

map /**.dll* /hiss/64/*.dll*
map /**/system32/* /hiss/64/*/system32/*
map /**default.ida* /hiss/64/*default.ida*
script /hiss/* /hiss/*

Usage details are described in Section 7.8.

23.3 Where Facility
Need to locate where VMS has the HTTPd files? This simple facility maps the supplied path
then parses it to obtain a resulting VMS file specification. This does not demonstrate
whether the path actually exists!

This facility must be enabled through a mapping rule entry.

script /where/* /where/*

It may then be used with any request merely by inserting ‘‘/where’’ at the start of the path,
as in the following example.

http://wasd.dsto.defence.gov.au/where/ht_root/

23.4 Xray Facility
The Xray facility returns a request’s complete response, both header and body, as a plain
text document. Being able to see the internals of the response header as well as the contents
of the body rendered in plain text can often be valuable when developing scripts, etc.

This facility must be enabled through a mapping rule entry.

script /Xray/* /Xray/*

It may then be used with any request merely by inserting ‘‘/xray’’ at the start of the path, as
in the following example.

http://wasd.dsto.defence.gov.au/xray/ht_root/

23.5 Apache Bench
This server stress-test and benchmarking tool, as used in the Apache Distribution, is
included with the WASD package (sourced from http://webperf.zeus.co.uk/ab.c), within license
conditions.

Copyright (c) 1996 Adam Twiss, Zeus Technology Ltd.
Copyright (c) 1998 The Apache Group.

23–2 Utilities and Facilities

Apache Bench will only compile and run for Alpha, Itanium or VAX systems with
VMS 7.n or greater available. Also see the WASD analogue, Section 23.14. Apache Bench
is a simple but effective tool, allowing a single resource to be requested from a server a
specified number of times and with a specified concurrency. This can be used to benchmark a
server or servers, or be used to stress-test a server configuration’s handling of variable loads
of specific resquests (before exhausting process quotas, etc.) This utility has remained at the
1.3 release due to subsequent versions (e.g. 2.0) having Apache API dependencies.

A small addition to functionality has been made. The WASD Apache Bench displays a count
of the HTTP response categories received (i.e. the number of 2nns, 4nns, etc.) This allows
easier assessment of the relevance of results (i.e. measuring performance of some aspect only
to find the results showed the performance of 404 message generation - and yes, an annoying
experience of the author’s prompted the changes!)

The following examples illustrate its use.

$ AB -H
$ AB -C 10 -N 100 http://the.server.name/ht_root/exercise/0k.txt
$ AB -C 50 -N 500 -K http://the.server.name/ht_root/exercise/64k.txt
$ AB -C 10 -N 100 http://the.server.name/cgi-bin/cgi_symbols

23.6 CALogs
The Consolidate Access LOGS utility (pronounced similar to the breakfast cereal brand :-)
merges multiple HTTP server common and combined format access logs into a single log file
with records in time-order. Due to the granularity of HTTP server entry timestamps (one
second) the records are sorted to the one second but not within the one second.

It uses RMS and the VMS sort-merge routines to provide the basic consolidation functionality.
An RMS search uses the supplied wildcard log file specification. Matching files are opened and
each record read. The date/time field is parsed and a binary timestamp generated. Records
with formats or date/time fields that do not make sense to the utility are discarded. When all
files have been processed the sort-merge is performed using the timestamp as the key. The
sorted records are then written to the specified output file.

$ calogs <log-file-spec> [<output-file-name>] [<qualifiers>]

/HELP basic usage information
/NOPROXY discard proxy service records
/NOWASD discard WASD server status/timestamp entries
/OUTPUT= alternate method of specifying merged file name
/PROXY discard non-proxy service records
/QUIET no messages apart from errors
/VERBOSE per-file progress messages
/VERSION display the utility version and copyright message

Usage Examples
$ CALOGS == "$HT_EXE:CALOGS"
$ CALOGS HT_LOGS:*200205*.LOG 2002_MAY.LOG
$ CALOGS /VERBOSE HT_LOGS:
$ CALOGS /NOWASD HT_LOGS:*200206*.LOG_* /OUTPUT=2002_JUNE.LOG
$ CALOGS /PROXY /NOWASD HT_LOGS:*2002*.LOG 2002_PROXY.LOG

Utilities and Facilities 23–3

23.7 HTAdmin
The HTAdmin utility assists in with the command-line maintenance of $HTA authorization
databases (see Section 15.2 and Section 16.5).

$ htadmin <database> [<username>] [<qualifiers>]

/ADD add a new record
/CONFIRM confirm deletion of database
/CONTACT="<string>" contact information for record
/CREATE create a new database
/CSV[=TAB | char] comma-separated listing (optional character)
/DATABASE= database name (or as command-line parameter)
/DELETE delete a database or username record from a database
/DISABLED username record is disabled (cannot be used)
/EMAIL="<string>" email address for record
/ENABLED username record is enabled (can be used)
/FULL listing showing full details
/GENERATE generate a six character password
/HELP basic usage information
/[NO]HTTPS synonym for /SSL
/LIST listing (brief by default, see /FULL and /CSV)
/MODIFY synonym for /UPDATE
/NAME="<string>" full name for username record
/OUTPUT= alternate output for database listing
/PASSWORD[=<string>] username record password (prompts if not supplied)
/PIN generate four-digit "PIN number" for password
/[NO]READ username can/can’t read
/SORT[=<parameters>] sort the records into a new/another database
/[NO]SSL user can only authenticate via SSL (‘‘https:’’)
/[NO]WRITE username can/can’t write
/UPDATE update an existing username record
/USER=<string> username
/VERSION display version of HTADMIN

Usage Examples

• To create a new database named EXAMPLE.$HTA (in the current directory)

$ HTADMIN EXAMPLE /CREATE

• Delete an existing database

$ HTADMIN EXAMPLE /DELETE /CONFIRM

• List (briefly) the records

$ HTADMIN EXAMPLE

• List (briefly) the specific user record DANIEL

$ HTADMIN EXAMPLE DANIEL

23–4 Utilities and Facilities

• List all detail (132 colums) of the specified user record

$ HTADMIN EXAMPLE DANIEL /FULL

• To add the new record DANIEL with default read access

$ HTADMIN EXAMPLE DANIEL /ADD /NAME="Mark Daniel"

• Add the new record DANIEL with contact details and read+write access

$ HTADMIN EXAMPLE DANIEL /ADD /WRITE /CONTACT="Postal Address"

• Add the new record DANIEL and be prompted for a password, or to specify the password
on the command-line, or have the utility generate a password or four-digit PIN style
password (which is displayed after the record is sucessfully added)

$ HTADMIN EXAMPLE DANIEL /ADD /NAME="Mark Daniel" /PASSWORD
$ HTADMIN EXAMPLE DANIEL /ADD /NAME="Mark Daniel" /PASSWORD=cher10s
$ HTADMIN EXAMPLE DANIEL /ADD /NAME="Mark Daniel" /GENERATE
$ HTADMIN EXAMPLE DANIEL /ADD /NAME="Mark Daniel" /PIN

• To update an existing record

$ HTADMIN EXAMPLE DANIEL /UPDATE /EMAIL="Mark.Daniel@wasd.vsm.com.au"

• Update the specified record’s password (interactively) then to generate a four digit PIN
for a password (which is then displayed)

$ HTADMIN EXAMPLE DANIEL /UPDATE /PASSWORD
$ HTADMIN EXAMPLE DANIEL /UPDATE /GENERATE
$ HTADMIN EXAMPLE DANIEL /UPDATE /PIN

• Disable then enable an existing user record without changing anything else

$ HTADMIN EXAMPLE DANIEL /UPDATE /DISABLE
$ HTADMIN EXAMPLE DANIEL /UPDATE /ENABLE

• To list the entire database, first briefly, then in 132 column mode (with all detail), then
finally as a comma-separated listing

$ HTADMIN EXAMPLE
$ HTADMIN EXAMPLE /FULL
$ HTADMIN EXAMPLE /CSV

Sort Details

The /SORT qualifier sorts the current database records according to the /SORT= parameters.
It can be used with the /LIST qualifier to produce ordered reports or will output the records
into another authentication file. By default it sorts ascending by username. Qualifier
parameters allow a sort by DATE or COUNT. Each of these allows the further specification
of which date or count; ACCESS, CHANGE or FAILURE.

• Generating a listing with specified order

$ HTADMIN EXAMPLE /LIST /SORT=DATE=ACCESS
$ HTADMIN EXAMPLE /LIST /SORT=COUNT=FAILURE /OUTPUT=EXAMPLE.LIS

• Sort descending by username into a higher version of EXAMPLE.$HTA

$ HTADMIN EXAMPLE /SORT

Utilities and Facilities 23–5

• To sort by username into another .$HTA file

$ HTADMIN EXAMPLE /SORT /OUTPUT=ANOTHER

• List by most-recently accessed

$ HTADMIN EXAMPLE /LIST /SORT=DATE

• List by most-recently failed to authenticate

$ HTADMIN EXAMPLE /LIST /SORT=DATE=FAILURE

• Sort file into order by most frequently authenticated (accessed)

$ HTADMIN EXAMPLE /SORT=COUNT

23.8 HTTPd Monitor
The HTTP server may be monitored in real-time using the HTTPDMON utility.

online graphic

This utility continuously displays a screen of information comprising three or four of the
following sections:

1. Process Information
HTTPd process information includes its up-time, CPU-time consumed (excluding any
subprocesses), I/O counts, and memory utilization. The ‘‘Servers:’’ item shows how many
servers are currently running on the node/cluster. Changes in this count are indicated by
the second, parenthesized number.

2. General Server Counters
The server counters keep track of the total connections received, accepted, rejected, etc.,
totals for each request type (file transfer, directory listing, image mapping, etc.).

3. Proxy Serving Counters
The server counters keep track of proxy serving connections, network and cache traffic,
cache status, etc.

4. Latest Request
This section provides the response status code, and some transaction statistics, the service
being accessed, originating host and HTTP request. Note that long request strings may
be truncated (indicated by a bolded elipsis).

5. Status Message
If the server is in an exceptional condition, for example exited after a fatal error, starting
up, etc., a textual message may be displayed in place of the the request information. This
may be used to initiate remedial actions, etc.

The following shows example output:

23–6 Utilities and Facilities

SLIM:: 1/2 HTTPDMON v2.3.4 AXP Tuesday, 24-OCT-2006 02:21:03

Process: HTTPd:80 PID: 20E113DA User: HTTP$SERVER Version: 9.2.0
Up: 101 07:41:42.73 CPU: 0 04:30:49.04 Startup: 2 Exit: %X00000001

Pg.Flts: 64858 Pg.Used: 29% WsSize: 163152 WsPeak: 125488
AST: 1978/2000 BIO: 1984/2000 BYT: 278624/280544 DIO: 997/1000
ENQ: 314/500 FIL: 250/300 PRC: 0/100 TQ: 97/100

Request: 595798 Current: 1/0 Throttle: 0/0/0% Peak: 50/26
Accept: 404508 Reject: 0 Busy: 0 SSL: 35478/8% Noticed: 219
CONNECT: 1509 GET: 573143 HEAD: 12134 POST: 8887 PUT: 11 (99)
Admin: 1243 Cache: 26464/141163/20426 DECnet: 17141/1263 Dir: 19382
DCL: CLI:1454 CGI:113428 CGIplus:135334/128914 RTE:534/57 Prc:9453/0
File: 237521/30421 Proxy: 946 Put: 98 SSI: 3255 Upd: 388

0xx: 190 2xx: 438924 3xx: 98718 4xx: 54803 (403:3291) 5xx: 945
Rx: 265,122,226 (613 err) Tx: 28,285,176,125 (27945 err)

Time: 24 02:21:00 Status: 200 Rx: 851 Tx: 4,071 Dur: 0.081049
Service: https://wasd.vsm.com.au:443

Host: ppp69-94.lns3.adl2.internode.on.net (121.44.69.94)
Request: GET /httpd/-/admin/

The ‘‘/HELP’’ qualifier provides a brief usage summary.

The server counter values are carried over when a server (re)starts (provided the system has
stayed up). To reset the counters use the online Server Administration facility (Chapter 19).

If [DNSlookup] is disabled for the HTTP server the HTTPDMON utility attempts to resolve
the literal address into a host name. This may be disabled using the /NORESOLVE qualifier.

23.9 MD5digest
From RFC1321 . . .

‘‘ The [MD5] algorithm takes as input a message of arbitrary length and produces as
output a 128-bit "fingerprint" or "message digest" of the input. It is conjectured that it is
computationally infeasible to produce two messages having the same message digest, or to
produce any message having a given prespecified target message digest. ’’

The MD5DIGEST utility is primarily provided with WASD for verifying kits as unchanged
from the originals released. With the proliferation of mirror sites and other distribution
resources it has become good practice to ensure kits remain unchanged from release, to
distribution, to installation site (changes due to to data corruption or malicious intent - as
remote a possibility as that may seem). Of course it may also be used for any other purpose
where the MD5 hash is useful.

For verifying the contents of a WASD release connect to the original WASD distribution site,
refer to the download page, and make a comparison between the release MD5 hash found
against the list of all archive hashes and the MD5 hash of your archive. That can be done as
follows

$ MD5DIGEST == "$HT_EXE:MD5DIGEST"
$ MD5DIGEST device:[dir]archive.ZIP

The result will look similar to

MD5 (kits:[000000]htroot710.zip;1) = 404bbdfe0f847c597b034feef2d13d2d

Utilities and Facilities 23–7

Of course, if you have not yet installed your first WASD distribution using the MD5DIGEST
utility that is part of it is not feasable. The original site can provide kits and pre-built
executables for this purpose.

23.10 QDLogStats
Quick-and-Dirty LOG STATisticS is a utility to extract very elementary statistics from Web
server common/combined format log files. It is intended for those moments when we think
‘‘I wonder how many times that new archive has been downloaded?’’, ‘‘How much data was
transfered during November?’’, ‘‘How often is such-and-such a client using the authenticated
so-and-so service?’’, ‘‘How much has the mail service been used?’’ . . . and want the results in
a matter of seconds (or at least a few tens of seconds ;-) It is available at the command-line
and as a CGI script.

online graphic

For QDLOGSTATS to be available as a CGI script it must have authorization enabled against
it (to prevent potential ad hoc browsing of a site’s logs). The following provides some indication
of this configuration, although of course it requires tailoring for any given site.

[VMS]
/cgi-bin/qdlogstats ~webadmin,131.185.250.*,r+w ;

It could then be accessed using

http://the.host.name/cgi-bin/qdlogstats

The initial access provides a form allowing the various filters and other behaviours to be
selected. The CGI form basically parallels the command-line behaviour described below.

Filters

A number of filters allow subsets of the log contents to be selected. These filters support the
same string matching expressions as the server (Chapter 8).

A knowlege of the format and contents of the common and combined log formats will assist
in deciding which and to what purpose filters should be used. Record filtering is done in
the same order as is finally displayed, so method would be processed before user-agent for
instance. Normally a record match terminates on the first non-matched filter (to expedite
processing). To compare and report each filter for every record apply the /ALL qualifier. To
view records as they are processed use the /VIEW qualifier. This by default displays all
matched records, but the optional =ALL or =NOMATCH parameters will display all records,
or all those but the matches.

$ QDLOGSTATS log-file-spec [pattern qualifiers] [other qualifiers]

/ALL compare and report on all supplied filters
/AUTHUSER= pattern (any authenticated username)
/BEFORE= log files before this VMS date/time
/CLIENT= pattern (client host name or IP address)
/DATETIME= pattern (‘‘11/Jun/1999:14:08:49 +0930’’)
/DECODE[=keyword] URL-decode PATH, QUERY, REFERER before match
/METHOD= pattern (HTTP ‘‘GET’’, ‘‘POST’’, etc.)
/OUTPUT= file specification

23–8 Utilities and Facilities

/PATH= pattern (URL path component only)
/PROGRESS show progress during processing
(a ‘‘+’’ for each file started, a ‘‘.’’ for each 1000 records processed)
/QUERY= pattern (URL query component only)
/REFERER= pattern (HTTP ‘‘Referer:’’ field, COMBINED only)
/REMOTEID= pattern (RFC819 file)
/RESPONSE= pattern (HTTP response code)
/SINCE= log files after this VMS date/time
/SIZE[=keyword] response size (in bytes) MIN=integer MAX=integer
/USERAGENT= pattern (HTTP ‘‘User-Agent:’’ field, COMBINED only)
/VIEW[=type] display matching log records (ALL, NOMATCH, MATCH)

Usage Examples

• Records from September 1999.

$ QDLOGSTATS HT_LOGS:*1999*.LOG /DATE="*/SEP/1999*"

• Records where the browser was an X-based Netscape Navigator

$ QDLOGSTATS HT_LOGS:*.LOG /USERAGENT=*MOZILLA*X11*

• Records of POST method requests

$ QDLOGSTATS HT_LOGS:*.LOG /METHOD=POST

• Records requesting a particular path

$ QDLOGSTATS HT_LOGS:*.LOG /PATH="/cgi-bin/*"

• Select proxy records requesting (a) particular site(s)

$ QDLOGSTATS HT_LOGS:*8080*.LOG /PATH="http://*.compaq.com*"
$ QDLOGSTATS HT_LOGS:*8080*.LOG /METHOD=POST /PATH="http://*sex*.*/*" /VIEW

• Records where the request was authenticated

$ QDLOGSTATS HT_LOGS:*.LOG /AUTHUSER=DANIEL

23.11 SECHAN Utility
The SECHAN utility (pronounced ‘‘session’’) is used by [INSTALL]SECURE.COM and asso-
ciated procedures to make file system security settings. It is also available for direct use by
the site administrator. See SECHAN Utility.

23.12 Scrunch Utility (obsolete)
SCRUNCH Obsolete with 7.2

Changes with server-internal SSI document handling have made the SCRUNCH utility
obsolete for WASD versions 7.2 and later. Previously SCRUNCHed documents will
continue to be processed without needing to be explicitly UNSCRUNCHed.

Utilities and Facilities 23–9

23.13 StreamLF Utility
This simple procedure used the FDL facility to convert files to STREAM_LF format. The
WASD HTTPd server access STREAM_LF files in block/IO-mode, far more efficiently that the
record-mode required by variable-record format files.

NOTE: The server can also be configured to automatically convert any VARIABLE record
format files it encounters to STREAM_LF.

23.14 WASD Bench :^)
WASD Bench - an analogue to Apache Bench (Section 23.5) Why have it? Apache Bench
only compiles and runs on VMS 7.n and later. This version should compile and run for all
supported WASD configurations. It also has the significant performance advantage (looks like
~25%) of using the underlying $QIO services and not the socket API, and is AST event driven
rather than using the likes of select(). It is not a full implementation of AB (for instance,
it currently does not do POSTs). The CLI attempts to allow the same syntax as used by AB
(within the constraint that not all options are supported) so that it is relatively easy to switch
between the two (perhaps for comparison purposes) if desired.

The following examples illustrate its use.

$ WB -H
$ WB -C 10 -N 100 http://the.server.name/ht_root/exercise/0k.txt
$ WB -C 50 -N 500 -K http://the.server.name/ht_root/exercise/64k.txt
$ WB -C 10 -N 100 http://the.server.name/cgi-bin/cgi_symbols

WASD Bench also has an exercise option, functionality is not found in Apache Bench. It
is basically to supercede similar functionality provided by the retired WWWRKOUT. The
exercise functionality allows WASD Bench to be used to stress-test a server. This behaviour
includes mixing HEAD (~5%) with GET requests, and breaking requests during both request
and response transfers (~5%). These are designed to shake up the server with indeterminate
request types and client error behaviours. The best way to utilize this stress-testing is wrap
WASD Bench with a DCL procedure providing a variety of different requests types, quantities
and concurrencies.

$!(example "wrapper" procedure)
$ IF P1 .EQS. "" THEN P1 = F$GETSYI("NODENAME")
$ WB = "$HT_EXE:WB"
$ SPAWN/NOWAIT WB +e +s +n -n 100 -c 5 http://’p1’/ht_root/exercise/0k.txt
$ SPAWN/NOWAIT WB +e +s -k -n 50 -c 5 -k http://’p1’/ht_root/exercise/64k.txt
$ SPAWN/NOWAIT WB +e +s -n 50 -c 2 http://’p1’/cgi-bin/conan
$!(delay spawning anymore until this one concludes)
$ WB +e +s -n 100 -c 5 http://’p1’/ht_root/*.*
$ SPAWN/NOWAIT WB +e +s +n -n 100 -c 1 http://’p1’/ht_root/exercise/16k.txt
$ SPAWN/NOWAIT WB +e +s -n 10 -c 1 http://’p1’/cgi-bin/doesnt-exist
$ SPAWN/NOWAIT WB +e +s -k -n 50 -c 2 http://’p1’/cgi-bin/conan/search
$!(delay spawning anymore until this one concludes)
$ WB +e +s -n 50 -c 2 http://’p1’/ht_root/src/httpd/*.*
$!(etc.)

23–10 Utilities and Facilities

23.15 WOTSUP Utility
The ‘‘WASD Over-The-Shoulder Uptime Picket’’ is designed to monitor WASD in a production
environment for the purpose of alerting operations staff to conditions which might cause that
production to be adversely impacted.

Alert triggers include:

• server image exit and/or startup (default)

• server process non-existent or suspended (default)

• percentage thresholds on process quotas (optional)

• rates of HTTP status counter change (optional)

• maximum period without request processing (optional)

Alert reports can be delivered via any combination of:

• OPCOM message

• MAIL

• site-specific DCL command executed in a spawned subprocess

• log file entry

The utility runs in a detached process and monitors the server environment by periodically
polling various server data at a default interval is 15 seconds. As the utility requires access to
global memory accounting a per-system WOTSUP is required for each node to be monitored.

The following (somewhat contrived) example illustrates the format and content of a WOTSUP
report delivered via OPCOM. Reports delivered via other mechanisms have the same content
and similar format.

%%%%%%%%%% WOTSUP 24-OCT-2006 13:32:56.44 %%%%%%%%%%%
Message from user SYSTEM on KLAATU
Over-The-Shoulder (WASD_WOTSUP) reports:
1. server PID 001C0950 exit %X00000001 (%SYSTEM-S-NORMAL)
2. server STARTUP (10)
3. server PIDs are 0018C14F (HTTPd:80), 001C0950 (HTTPe:80)
4. pagfilcnt:395432 pgflquota:500000 79% <= 80%

For further infomation check the descriptive prologue in the HT_ROOT:[SRC.UTILS]WOTSUP.C
source code.

23.16 Server Workout (obsolete)
WWWRKOUT Obsolete with 8.0

As the WASD Bench :-) Utility now provides much of the stress-test functionality
the WWWRKOUT utility supplied with earlier version of WASD has been declared
obsolete.

Utilities and Facilities 23–11

