Novell
Developer Kit

www.novell.com

‘ MULTIPLE AND INTER-FILE
October 2007 SERVICES

Novell.

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 1993-2007 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products,
and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products,
see www.novell.com/documentation.

Novell Trademarks

For a list of Novell trademarks, see Trademarks (http://www.novell.com/company/legal/trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

About This Guide

1 Data Migration Concepts

1.1 Support Module Information
1.2 Volume Information
1.3 Data Migration FUNCLiONS.

2 Data Migration Functions

NWGetDataMigratorinfo.
NWGetDefaultSupportModule e
NWGetDMFIleInfo
NWGetDMVolumelnfo
NWGetSupportModulelnfo e
NWMoveFileFromDM
NWMoVEFIIeTODM e
NWSetDefaultSupportModule e

3 Data Migration Structures

SUPPORT_MODULE_IDS. . . e e v e et e
SUPPORT_MODULE_INFOottt e e

4 Deleted File Concepts

41 Deleted File on NetWare 3.11 and above Servers iiiiiininnn.
4.2 Deleted File FUNCtions

5 Deleted File Functions

NWPurgeDeletedFile e
NWRecoverDeletedFile e
NWRecoverDeletedFileEXt. e
NWScanForDeletedFiles
NWScanForDeletedFilesEXt.

6 Deleted File Structures

NWDELETED _INFO. .. .
NWDELETED _INFO _EXT .. . e e

7 File Engine Functions

CountCOMPONENES
FEConvertDirectoryNumber
FECrEat. . .
FEFIUShWIIte

15

17

17
18
18

19

20
22
24
27
30
32
34
37

39

40
41

43

43
43

45

46
49
52
54
57

59

60
64

67

68
70
72
74

Contents

5

6

FEGEetCW DNUM 75

FEGetC WV NUM. . . . 76
FEGetENtryVersion e 77
FEGetOpenFilelnfo 79
FEGetOpenFilelnfoForNS 82
FEGetOriginatingNameSpace. 85
FEMapConnsHandleToVolANdDIr. e e 87
FEMapHandleToVolumeAndDirectory e e e e 89
FEMapPathVolumeDirToVolumeDir e et 90
FEMapVolumeAndDirectoryToPath 92
FEMapVolumeAndDirectoryToPathFOrNS e 94
FEMapVolumeNumberToName e e 96
FEQUICKCIOSEot e e e 97
FEQuIckFileLength 99
FEQUICKODEN . . oo 101
FEQUICKREAd 103
FEQUICKWIItE . . . o 105
FERegisterNSPathParser e e e 107
FESEtC W DNUMo e 109
FESetCWVandCWDNUMS.ottt e e e e e e e e e e e e 110
FESetC WV NUM . . . e e 111
FESetOriginatingNameSpace i 112
FESOPEN . .ot e e e 114
File System Concepts 117
8.1 Directory Entries. 117

8.1.1 Directory Entry Information 117

8.1.2 Directory Entry Information Access 118

8.1.3 Directory Entry Attributes L 118

8.1.4 Directory Entry Functions. 119

8.1.5 Directory Information Functions. 119
8.2 Directory Handles. e 120

8.2.1 Directory Handle Functions 120
8.3 Fileand Directory Paths e 120

8.3.1 Wildcard Characters. 121

8.3.2 Search Attributes e 121

8.3.3 UTF-8 Pathand Filenames e 121
8.4 File ACCESSot 123
8.5 File /O . 123
8.6 Inheritance 123
8.7 Effective Rights. 124
8.8 Trustees e 124

8.8.1 Trustee Rights 124

8.8.2 Trustee Functions e 125
8.9 NLMFile Information e 126

8.9.1 File Attributes 127

8.9.2 Extended File Attributes. 128

8.9.3 Directory Entry Table 128

8.9.4 VolumeTable. e 129
8.10 Directory Task Functions 129
8.11 Directory Space FUNCHiONS 129
8.12 File Handle Conversion Functions e 129
8.13 File Information FUNCLIONS e 129

NDK: Multiple and Inter-File Services

8.14 File Task Functions
8.15 File Usage Functions.

9 File System Tasks

9.1

9.2

9.3

9.4

9.5

Directory-Based Tasks i
9.11 Allocating a Directory Handle
9.1.2 AccessingaDirectoryHandle.
9.1.3 Combining a Path and DirectoryHandle.
9.1.4 Accessing File Information for 3.11and Above.
File-Based Tasks.
9.2.1 Locating Files e
9.22 ConvertingFileHandles i
9.2.3 Deleting Files. e
Disk Space Management Tasks i e
9.3.1 Limiting Directory Space
9.3.2 Monitoring File Usage e
Trustee Tasks o
9.41 Adding and Deleting File System Trustees
9.4.2 Scanning File System Trustees. i
NLM-Based Tasks

9.5.1 Accessing Files on

aServer (NLM).

9.5.2 Purging and Salvaging Files (NLM).

10 File System Functions

10.1

10.2

10.3

closedir
FileServerFileCopy
getewd
GetExtendedFileAttributes.
_makepath.............
mkdir,
NWA*-NWF* Functions . . .
NWAddTrustee
NWAddTrusteeExt.
NWAddTrusteeToDirectory

NWAddTrusteeToDirectoryEXt. o e
NWAIllocPermanentDirectoryHandle
NWAIllocTemporaryDirectoryHandle

NWConvertFileHandle. . . .
NWConvertHandle.
NW(CreateDirectory

NWDeallocateDirectoryHandle

NWDeleteDirectory
NWDeleteTrustee
NWDeleteTrusteeExt.

NWDeleteTrusteeFromDirectory
NWDeleteTrusteeFromDirectoryExt

NWFileServerFileCopy . ..
NWGet* Functions..

NWGetCompressedFileLengths i
NWGetDirectoryEntryNumber

NWGetDirectoryHandlePath

131

131
131
131
131
132
132
132
132
133
133
133
133
133
134
134
134
134
135

137

137
138
140
141
143
144
146
147
149
151
151
153
156
158
161
164
166
169
171
173
176
178
180
182
184
186
188
190
191
193
196

Contents

7

8

10.4

10.5

10.6

NWGetDirectoryHandlePathExt 198

NWGetDirSpacelnfo. e 200
NWGetDirSpaceLimitList 202
NWGetDirSpaceLimitList2 204
NWGetDisklOSPending 206
NWGetEffectiveRights e 207
NWGetEffectiveRightsExt. 210
NWGetExtendedFileAttributes2 213
NWGetFileConnectionID e 216
NWGetFileDirEntryNumber 218
NWGetSparseFileBitMap 221
NWGetVolumeFlags.o 223
NWI-NWR* FUNCLIONS e e 224
NWINtEraseFiles. e 225
NWintFileSearchContinue 228
NWintFileSearchlnitialize 231
NWINtMoveDIrENtry e 233
NWintScanDirectorylnformation2. 236
NWIntScanDirEntryInfo 239
NWintScanExtendedInfo 242
NWintScanFilelnformation2 245
NWiIntScanFilelnformation2Ext 248
NWINtScanForTrustees 251
NWIntScanForTrusteesEXt. 255
NWModifyMaximumRightsMask. 258
NWRenameDIirectoryo 261
NWRenameFile 263
NWS*-NWZ* FUNCHONS e e e e 265
NWScanConnectionsUsingFile 267
NWScanDirectoryForTrustees2 e e 269
NWScanOpenFilesByConn2 e e 272
NWSetCompressedFileLengths 274
NWSetCompressedFileSize. 276
NWSetDirectoryHandlePath. 278
NWSetDirectorylnformation 281
NWSetDIrEntryInfo e 284
NWSetDirSpacelimit e 288
NWSetExtendedFileAttributes2 290
NWSetFileAttributes e 293
NWSetFilelnformation2 296
NWSetVolumeFlagso 299
NWVOoIUMEISCDROM e e e e e 301
OF-Z* FUNCHIONS . . . e 302
OPENAIN . . e 303
PurgeErasedFile. e 305
readdir . ..o 307
FEMOVE . . oottt ettt et e e e e e e e 309
[T =T 013 311
TN . 313
SalvageErasedFile e 314
ScanErasedFiles 316
SetExtendedFileAttributes 318
SetFilelnfo 320
SetReaddirAttribute 323
Csplitpath ... 325
Stat L e 327
MPNAM. .. 329
UMASK . . .o 330

NDK: Multiple and Inter-File Services

UnAUgmMeENtAStEriSKo
UNDINK . L e
UseAccurateCaseForPaths
L1 1 =

11 File System Structures

CONN_USING _FILE . ..
CONNS_USING_FILE

DIR _SPACE INFO. . .o e e
ModifyStruCtUre e
NW_EXT _FILE INFO ... e e e e e e e
NW FILE INFO2 . . e e e e e
NW _FILE INFO2 EXT ..ttt e e e e e e e e
N LIMIT L ST . . . e e e
NWDIR INF O . . e e e e
NWENTRY _INFO. . .. e e e e
NWET INFO .. e e e
NWET INFO EXT ..o e e e e e e e e
NWEILE _INFO . . e e e
OPEN _FILE _CONN . . o e e e e e
OPEN_FILE _CONN_CTRL . .o\ttt e e e e e e e e
SEARCH_DIR _INFO . ..o
SEARCH _FILE INFO ... e e e

VOLUME ST AT S . . .
VOLUME _INFO . .

12 File System Monitoring Concepts

12.1
12.2

12.3

12.4

Registering for Callback.
File Monitoringo
12.2.1 Pre-Execution and Post-Execution Monitoring
12.2.2 Pre-Execution Callbacks
12.2.3 Post-Execution Callbacks
12.2.4 Callback Structures e
Potential Uses e
12.3.1 HOtBackupo e e
12.3.2 Version Control
File System Monitoring Functions

13 File System Monitoring Tasks

13.1

Writing a File System Monitor NLM

14 File System Monitoring Functions

NWAAAFSMoNItorHOOK
NWRemoveFSMonitorHOOK

337

338
340
342
345
347
349
353
355
357
359
361
363
364
365
367
370
371
374
376
379
380
381
383

385

385
385

386
387
387
387
388

389
389
389

391
391

393

394
397

Contents

9

15 File System Monitoring Structures 399

CloseFileCallBackStruct 400
CreateDirCallBackStruct 401
CreateFileCallBackStruct 403
CreateAndOpenCallBackStruct. 405
DeleteDirCallBackStruct e 407
EraseFileCallBackStruct 408
GenericEraseFileCBStruct 410
GenericModifyDOSINfoCBStruct. e 412
GenericModifyNSInfoCBStruct 414
GenericOpenCreateCBStruct 416
GenericPurgeDeletedCBStruCt e 419
GenericRenameCBStruct 420
GenericSalvageDeletedCBStruct 422
ModifyDirEntryCallBackStruct 423
OpenFileCallBackStruct 426
PurgeDeletedCallBackStruct. 429
RenameMoveEntryCallBackStruct e 430
RenameNSEntryCallBackStruct e 432
SalvageDeletedCallBackStruct 434
16 Name Space Concepts 435
16.1 Naming Conventions e 435
16.2 Default Name Space i e 436
16.3 Primary Entry Information. 436
16.3.1 Primary Entry Information Functions 438

16.4 Name Space Specific Information 438
16.4.1 Name Space Entry BitMask 439

16.4.2 Name SpaceBitMask 439

16.4.3 DOS Name Space BitMask. 439

16.4.4 Name Space Specific Information Functions 440

16.5 Longto DOS CONVEISIONSttt e e e e e 440
16.5.1 NetWare 4.Xo 440
16.5.2 NetWare 5.xand 6.X e 442

16.6 General Name Space Functions i 442
17 Name Space Tasks 445
17.1 Accessing Huge Name Space Information. 445
18 Name Space Functions 447
18.1 Get*and Set* Functions. 447
GetDataStreamName 448
GetNameSpaceName e 450
SetCurrentNameSpace e 452
SetTargetNameSpace i e 454

18.2 NWA™ through NWI* Functions. e e 454
NWAddTrustee TONSDIrectory e e e e 456
NWAddTrusteeTONSDirectoryEXt e 459
NWAIllocTempNSDirHandle2 462
NWAIllocTempNSDirHandIe2Ext e 464

10 NDK: Multiple and Inter-File Services

18.3

NWDeleteNSENtry 466

NWDeleteNSENtryEXto e 468
NWDeleteTrusteeFromNSDirectory. i e e 470
NWDeleteTrusteeFromNSDirectoryExt. i 472
NWGetDirectoryBaset 474
NWGetDirectoryBaseEXt 477
NWGetHUgeNSINfO e 479
NWGetLongName 481
NWGetLongNameEXt 483
NWGetNameSpaceEntryName 485
NWGetNSENtryInfoo 487
NWGetNSENtryInfo2 e 490
NWGetNSENtryInfoEXt e 492
NWGetNSENtryInfo2EXt e 494
NWGetNSFileDirEntryNumber. 496
NWGEtNSINTO 498
NWGetNSINfo (NLM) . . .o e e e 500
NWGetNSLoadedList 502
NWGetNSLoadedList (NLM)o e 504
NWGetNSPath. 506
NWGetNSPathEXto 508
NWGetOwnINngNameSpacet 510
NWISLNSSupportedOnVolume e 512
NWN* through NWW* Functions e 513
NWNSGetDefaultNS 515
NWNSGetMiscInfo. e 517
NWNSRename e 519
NWNSRenameEXt. 522
NWOpenCreateNSENtry e e e e e 525
NWOpenCreateNSENtryEXt. e e e 527
NWOpenDataStream. e 529
NWOPENNSENIrY. . . .o 533
NWOPEenNSENrYEXto e 536
NWQueryNSInfoFormat. 539
NWReadExtendedNSInfo 541
NWReadNSINfo 543
NWReadNSINfOEXt e 545
NWScanNSDirectoryForTrusteest e 547
NWScanNSDirectoryForTrusteesExt. 550
NWScanNSENtrylnfo e 553
NWScanNSEnNtrylnfoEXt 556
NWScanNSENtryInfo2 558
NWScanNSEnNtrylnfoSet e 561
NWScanNSEntrylnfoSet2 564
NWScanNSEntryInfoSet2Ext. e 567
NWScanNSEntrylnfoSetExt. e 570
NWSetHugeNSINfo e 573
NWSetlongName e e 575
NWSetNameSpaceEntryName e 578
NWSetNSENtryDOSINfOo 580
NWSetNSENntryDOSINfOEXE.o 583
NWSEetNSINfO 586
NWWriteExtendedNSInfo 588
NWWIRENSINTO . . . o 590
NWWIteNSINfOEXto 592

Contents

1"

19 Name Space Structures

MODIFY DOS_INFO ...ttt e e e e
NW_DATA_STREAM FAT INFO.\ttt e e
NW_DATA_STREAM SIZE_INFOottt et
NW_ENTRY _INFO . . oottt e e e e e e e
NW_ENTRY _INFO_EXT. . ..ottt e e
NW_ENTRY INFO2 . ..ottt e
NW DX ot e e e
NW MAC TIME © ..ottt
NW NS INFO. . oot et e e e
NW NS OPENttt e e e e e e e
NW_NS_OPENCREATE.\ttt
NW NS PATH © ottt e e e e e e e
SEARCH_SEQUENCE\ttt e e e e e

20 Name Space Values

201
20.2
20.3
204
20.5
20.6
20.7
20.8
20.9

Access Right Values.
Attribute Values e
Date Values e
Inherited Rights Mask Values.
Name Space Flag Values. i e
Basic Return Mask Values e
Extended Return Mask Values. e
Search Attributes Values e
TimMe Values e

21 Path and Drive Concepts

211
21.2

Path Parameters. e
Network Drive FUNCtionNs

22 Path and Drive Tasks

221
22.2

Listing Network Drives e
Mapping Network Drives
22.2.1 Mapping a Network Drive Example

23 Path and Drive Functions

ConvertNameToFullPath.
ConvertNameToVolumePath e e e
NWDeleteDriveBase
NWGetDirBaseFromPath
NWGetDrivelnformation e
NWGetDriveStatus
NWGetDriveStatusConnRef e
NWGEtFIrstDriVE
NWGetPathFromDirectoryBase i e e e e
NWParseNetWarePath
NWParsePath e e
NWSetDrVEBASE i e e

12 NDK: Multiple and Inter-File Services

595

596
599
600
601
605
608
613
614
615
617
618
621
622

623

623
623
624
624
625
625
626
627
627

629

629
630

631

631
631
631

NWSetlnitDrive (obsolete 7/99) 659

NWSTtripServerOffPath 661
ParsePath. 662
SetWildcardTranslationMode e 664
StripFileServerFromPath 665
24 Server-Based Data Migration Concepts 667
24,1 Advantages of Data Migration Applications. i 667
24.2 Server-Based Data Migration Functions 668
25 Server-Based Data Migration Functions 669
NWGetDataMigratorinfo. 670
NWGetDefaultSupportModule e 671
NWGetDMFIleInfo 672
NWGetDMVolumelnfo 674
NWGetSupportModulelnfo 675
NWisDataMigrationAllowed 677
NWMoveFileFromDM 678
NWMoVEFIleTODM e 679
NWPeekFileData 680
NWSetDefaultSupportModule 682
26 Server-Based File System Functions 683
AddSpaceRestrictionForDirectory 684
AdATIUSEEE o 686
AddUserSpaceRestriCtion e 689
ChangebirectoryEntry e 691
DeleteTrustee e 695
DeleteUserSpaceRestriction. e 697
GetAvailableUserDiskSpace. 698
GetDiskSpaceUsedByODbjecCtot 700
GetEffectiveRights 702
GetMaximumUserSpaceRestriction 705
ModifylnheritedRightsMask 707
PurgeTrusteeFromVolume 710
ReturnSpaceRestrictionForDirectory 711
SCaANTTUSEEES oo 713
ScanUserSpaceRestriCtions.t 715
SetDirectorylnfo 717
UpdateDirectoryEntry o e 720
A Revision History 721

Contents 13

14 NDK: Multiple and Inter-File Services

About This Guide

This documentation describes services that generally deal with interactions among files or functions
that operate on more than one file at a time. This guide includes the following functions:

¢ Chapter 2, “Data Migration Functions,” on page 19

¢ Chapter 5, “Deleted File Functions,” on page 45

¢ Chapter 7, “File Engine Functions,” on page 67

¢ Chapter 10, “File System Functions,” on page 137

¢ Chapter 14, “File System Monitoring Functions,” on page 393

¢ Chapter 18, “Name Space Functions,” on page 447

¢ Chapter 23, “Path and Drive Functions,” on page 635

¢ Chapter 25, “Server-Based Data Migration Functions,” on page 669

¢ Chapter 26, “Server-Based File System Functions,” on page 683

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Documentation Updates

For the most recent version of this guide, see NLM and NetWare Libraries for C (including CLIB
and XPlat) (http://developer.novell.com/ndk/clib.htm).

Additional Information
For information about other CLib and XPlat interfaces, see the following guides:

¢ NDK: NLM Development Concepts, Tools, and Functions
* NDK: Program Management

¢ NDK: NLM Threads Management

¢ NDK: Connection, Message, and NCP Extensions

¢ NDK: Single and Intra-File Services

¢ NDK: Volume Management

¢ NDK: Client Management

¢ NDK: Network Management

¢ NDK: Server Management

¢ NDK: Internationalization

¢ NDK: Unicode

¢ NDK: Sample Code

¢ NDK: Getting Started with NetWare Cross-Platform Libraries for C

About This Guide

15

http://developer.novell.com/ndk/clib.htm
http://developer.novell.com/ndk/clib.htm

¢ NDK: Bindery Management
For CLib source code projects, visit Forge (http://forge.novell.com).

For help with CLib and XPlat problems or questions, visit the Developer Support Forums for NLM
and NetWare Libraries for C (including CLIB and XPlat) (http://developer.novell.com/ndk/
devforums.htm). There are two for NLM development (XPlat and CLib) and one for Windows XPlat
development.

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, ™, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

16 NDK: Multiple and Inter-File Services

http://forge.novell.com
http://developer.novell.com/ndk/devforums.htm
http://developer.novell.com/ndk/devforums.htm

Data Migration Concepts

This documentation describes Data Migration, its functions, and features.

Data Migration enables client applications to move NetWare® files to supplementary nearline
storage devices. Nearline storage devices include another volume, another server, another media
type, another file system, a tape or even a jukebox. Migrated files are still readily accessible,
although the files themselves are remote. When the files are accessed, they are de-migrated in real
time to primary storage. The files remain in the file system’s directory structure and all file
information stays intact.

Retrieval time for migrated files varies, depending on the nearline storage device. Retrieval from a
CD ROM or disk subsystem is nearly as fast as retrieval from a NetWare volume.

Files migrated are still accessed through the NetWare file system. For example, files migrated to a
jukebox remain visible in the NetWare directory and when a user attempts to access one of these
files, the system retrieves the data from the jukebox.

A Data Migrator NLM application administers data migration and is available from Novell®.
Support module NLM applications register with the Data Migrator to provide access to specific
storage schemas. The Novell Data Migrator can register up to 32 support modules.

Users and administrators determine the criteria for migrating files. These criteria typically specify
seldom accessed files or files that require excessive storage space, such as large database files. Users
can migrate an unlimited number of files.

1.1 Support Module Information

All available support modules are registered with the Data Migrator under a support module ID. Call
NWGetSupportModulelnfo (page 30) to receive a list of support modules. After receiving the IDs,
use the same function to receive information about individual support modules.

The support module list is returned as a SUPPORT MODULE _IDS (page 40) structure. It contains
an array of support module IDs.

Information about individual modules is returned as a SUPPORT MODULE INFO (page 41)
structure.

* J/O status
+ Block size
¢ Available space

+ Space in-use

Information specific to the module can also be returned as a length-preceded string.

Data Migration Concepts

17

1.2 Volume Information

NWGetDM Volumelnfo (page 27) returns information about the Data Migrator NLM on a volume.
Data migration volume information includes:

+ Number of migrated files

+ Total size of migrated data

¢ Size of data on the migration media

*

Amount of limbo space

Limbo space refers to migrated files that have been restored to the file system but not removed from
remote storage. Generally, files are retained in remote storage after they have been migrated until the
file is either deleted or re-migrated.

1.3 Data Migration Functions

These functions move files to and from remote storage, return data migration information for files
and volumes, and return information about the Data Migrator and support modules.

NWMoveFileToDM Moves a file’s data to an online, long term storage media
but leaves the file visible on the NetWare® volume.

NWMoveFileFromDM Moves a file’s data from an online, long term storage media
to a NetWare volume.

NWGetDataMigratorinfo Returns version numbers for the Data Migrator NLM. Use
this function to test whether the Data Migrator is loaded.

NWGetDefaultSupportModule Returns the default support module for reading and writing
migrated data.

NWGetDMFilelnfo Returns information about migrated files.

NWGetDMVolumelnfo Returns information about the data that has been migrated

in relation to the specified volume.

NWGetSupportModulelnfo Can return either a list of data migration support module
IDs or information about a specific support module.

NWSetDefaultSupportModule Sets the default support module for reading and writing
migrated data.

18 NDK: Multiple and Inter-File Services

Data Migration Functions

This documentation alphabetically lists the Data Migration functions and describes their purpose,
syntax, parameters, and return values.

*

*

*

*

“NWGetDataMigratorInfo” on page 20
“NWGetDefaultSupportModule™ on page 22
“NWGetDMFilelnfo” on page 24
“NWGetDM VolumeInfo” on page 27
“NWGetSupportModuleInfo” on page 30
“NWMoveFileFromDM” on page 32
“NWMoveFileToDM” on page 34
“NWSetDefaultSupportModule” on page 37

Data Migration Functions

19

NWGetDataMigratorinfo

Returns information about the data migrator

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT*, Windows* 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Data Migration

Syntax

#include <nwmigrat.h>
or
#include <nwcalls.h>

NWCCODE N _API NWGetDataMigratorInfo (
NWCONN_HANDLE conn,

pnuint32 DMPresentFlag,
pnuint32 majorVersion,
pnuint32 minorVersion,
pnuint32 DMSMRegistered) ;

Delphi Syntax
uses calwin32
Function NWGetDataMigratorInfo

(conn : NWCONN_ HANDLE;
DMPresentFlag : pnuint32;

majorVersion : pnuint32;
minorVersion : pnuint32;
DMSMRegistered : pnuint32

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare® server connection handle.

DMPresentFlag

(OUT) Points to a flag. If equal to -1, the DM NLM has been loaded and is running; if equal to
0, the DM NLM is not loaded.

majorVersion

(OUT) Points to the data migrator major version number.

20 NDK: Multiple and Inter-File Services

minorVersion

(OUT) Points to the data migrator minor version number.

DMSMRegistered

(OUT) Points to a flag indicating if the support module has been registered with the data
migrator: non-zero = support module was registered, zero = support module was not registered.

Return Values

These are common return values; see Return Values for C for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
0x897E NCP_BOUNDARY_CHECK_FAILED
0x89FB Data Migration is not supported
NCP Calls

0x2222 90 131 Migrator Status Info

See Also

NWGetDM Volumelnfo (page 27), NWGetDMFilelnfo (page 24)

Data Migration Functions

21

NWGetDefaultSupportModule

Returns the default read/write Support Module ID for data migration
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Data Migration

Syntax

#include <nwmigrat.h>
or
#include <nwcalls.h>

NWCCODE N _API NWGetDefaultSupportModule (

NWCONN_HANDLE conn,
pnuint32 supportModulelID) ;

Delphi Syntax

uses calwin32

Function NWGetDefaultSupportModule
(conn : NWCONN_ HANDLE;

supportModuleID : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

supportModuleID
(OUT) Points to the currently supported module ID.

Return Values

These are common return values; see Return Values for C for more information.

0x0000 SUCCESSFUL
0x00FO0 ERR_INVALID_SM_ID
0x8801 INVALID_CONNECTION

22 NDK: Multiple and Inter-File Services

0x890A

NLM_INVALID_CONNECTION

Ox897E NCP_BOUNDARY_CHECK_FAILED
0x89EC NO_SUCH_SEGMENT

0Ox89FB NO_SUCH_PROPERTY

NCP Calls

0x2222 90 134 Get/Set Default Read-Write Support Module 1D

See Also

NWSetDefaultSupportModule (page 37), NWGetSupportModulelnfo (page 30)

Data Migration Functions

23

NWGetDMFilelnfo

Returns information about data migrated files

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Data Migration

Syntax
#include <nwmigrat.h>

or
#include <nwcalls.h>

NWCCODE N API NWGetDMFileInfo (

NWCONN_HANDLE conn,

NWDIR HANDLE dirHandle,

const nstr8 N _FAR *path,

nuint8 nameSpace,
pnuint32 supportModulelID,
pnuint32 restoreTime,
pnuint32 dataStreams) ;

Delphi Syntax
uses calwin32

Function NWGetDMFileInfo
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const path : pnstr§;

nameSpace : nuint8;
supportModuleID : pnuint32;
restoreTime : pnuint32;
dataStreams : pnuint32

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle associated with the desired name space (optional).

24 NDK: Multiple and Inter-File Services

path
(IN) Points to a valid path that points to a file.

nameSpace

(IN) Specifies the name space of the path (see Section 20.5, “Name Space Flag Values,” on

page 625).

supportModuleID
(OUT) Points to the ID of the Support Module containing the migrated data.

restoreTime

(OUT) Points to an estimate of the time (in ticks) needed to retrieve the data.

dataStreams

(OUT) Points to an array of supported data streams.

Return Values

These are common return values; see Return Values for C for more information.

0x0000 SUCCESSFUL

0x00F0 ERR_INVALID_SM_ID

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x897E NCP_BOUNDARY_CHECK_FAILED
0x8998 VOLUME_DOES_NOT_EXIST
0x899B Bad AFP Entry ID

0x899E INVALID_FILENAME

0x89A8 ERR_ACCESS_DENIED
0x89BF INVALID_NAME_SPACE
Remarks

The time returned in the restoreTime parameter represents the estimated number of ticks
needed. There are 18.2 ticks in one second.

NCP Calls

0x2222 87 06 Obtain File or Subdirectory Information
0x2222 90 129 DM File Information

Data Migration Functions

25

See Also

NWGetSupportModulelnfo (page 30), NWMoveFileFromDM (page 32), NWMoveFileToDM
(page 34)

26 NDK: Multiple and Inter-File Services

NWGetDMVolumelnfo

Returns information about the Data Migrator NLM on a NetWare volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Data Migration

Syntax

#include <nwmigrat.h>
or
#include <nwcalls.h>

NWCCODE N _API NWGetDMVolumeInfo (
NWCONN_ HANDLE conn,

nuintlo volume,

nuint32 supportModulelD,
pnuint32 numberOfFilesMigrated,
pnuint32 totalMigratedSize,
pnuint32 spaceUsedOnDM,
pnuint32 limboSpaceUsedOnDM,
pnuint32 spaceMigrated,
pnuint32 filesInLimbo) ;

Delphi Syntax
uses calwin32

Function NWGetDMVolumeInfo
(conn : NWCONN_ HANDLE;
volume : nuintlé6;
supportModuleID : nuint32;
numberOfFilesMigrated : pnuint32;
totalMigratedSize : pnuint32;
spaceUsedOnDM : pnuint32;
limboSpaceUsedOnDM : pnuint32;
spaceMigrated : pnuint32;
filesInLimbo : pnuint32

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Data Migration Functions

27

volume

(IN) Specifies the volume number having the migrated files.

supportModuleID
(IN) Specifies the currently supported module ID.

numberOfFilesMigrated

(OUT) Points to the migrated number of files from the selected volume.

totalMigratedSize
(OUT) Points to the total number of bytes needed to recover all the data on the selected
volume.

spaceUsedOnDM
(OUT) Points to the size of the data on the migrator media.

limboSpaceUsedOnDM
(OUT) Points to the size of the demigrated data on the migrator area. Since the data is generally
Read Only, the file will be kept on the migrator until the file is either deleted or remigrated with
changes.

spaceMigrated
(OUT) Points to the total size of the migrated data for the volume (includes the limbo space
used).

filesInLimbo

(OUT) Points to the number of files that are in limbo or were demigrated with
SAVE KEY WHEN FILE IS DEMIGRATED and have not been migrated back to the data
migrator.

Return Values

These are common return values; see Return Values for C for more information.

0x0000 SUCCESSFUL

0x00F0 ERR_INVALID_SM_ID

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
0x8978 ERR_VOLUME_FLAG_NOT_SET
0x897E NCP_BOUNDARY_CHECK_FAILED
0x8998 VOLUME_DOES_NOT_EXIST
NCP Calls

0x2222 90 130 Get Volume DM Status

28 NDK: Multiple and Inter-File Services

See Also

NWGetDefaultSupportModule (page 22), NWGetDataMigratorInfo (page 20),
NWGetSupportModulelnfo (page 30)

Data Migration Functions 29

NWGetSupportModulelnfo

Returns information about the Data Migrator NLM support modules or a list of all loaded support
module IDs

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5., 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Data Migration

Syntax

#include <nwmigrat.h>
or
#include <nwcalls.h>

NWCCODE N API NWGetSupportModuleInfo (
NWCONN HANDLE conn,

nuint32 informationLevel,
nuint32 supportModulelID,
pnuints8 returnInfo,
pnuint32 returnInfolen) ;

Delphi Syntax
uses calwin32

Function NWGetSupportModuleInfo
(conn : NWCONN_ HANDLE;

informationLevel : nuint32;
supportModuleID : nuint32;
returnInfo : pnuint8;
returnInfolen : pnuint32

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

informationLevel

(IN) Specifies the level of information to be returned. If information Level = 0, returns
information about the DM NLM support module; if information Level = 1, returns a list of all
loaded support module IDs.

30 NDK: Multiple and Inter-File Services

supportModuleID
(IN) Specifies the assigned ID number of the support module migrating the data.

returnInfo

(OUT) Points to the area in which to store the information.

returnInfolen

(OUT) Points to the size of the data area the user allocated in which to return information.

Return Values

These are common return values; see Return Values for C for more information.

0x0000 SUCCESSFUL

0x00F0 ERR_INVALID_SM_ID

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89A8 ERR_ACCESS_DENIED

O0x89FF Failure, Invalid Info Level, or Invalid Parameter
Remarks

Ifthe informationLevel parameter contains 0 (zero), the SUPPORT MODULE INFO
(page 41) structure will be used to return information about the DM NLM support module to the
returnInfo parameter. If the informationLevel parameter contains 1, the

SUPPORT MODULE IDS (page 40) structure will be used to return a list of all loaded support
module IDs to the returnInfo parameter.

NCP Calls

0x2222 90 132 DM Support Module Information

See Also

NWGetDefaultSupportModule (page 22), NWGetDataMigratorInfo (page 20),
NWGetDM Volumelnfo (page 27)

Data Migration Functions

31

NWMoveFileFromDM

Moves file data from an on-line, long term storage medium to a NetWare volume
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Data Migration

Syntax
#include <nwmigrat.h>
or

#include <nwcalls.h>

NWCCODE N _API NWMoveFileFromDM (

NWCONN_HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N _FAR *path,
nuint8 nameSpace) ;

Delphi Syntax
uses calwin32

Function NWMoveFileFromDM
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const path : pnstr§;
nameSpace : nuint8

) : NWCCODE;

Parameters
conn
(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle associated with the desired name space (optional).

path
(IN) Points to a valid path that points to a file.

32 NDK: Multiple and Inter-File Services

nameSpace

(IN) Specifies the name space of the path (see Section 20.5, “Name Space Flag Values,” on
page 625).

Return Values

These are common return values; see Return Values for C for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
0x8978 ERR_VOLUME_FLAG_NOT_SET
0x897E NCP_BOUNDARY_CHECK_FAILED
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x899E INVALID_FILENAME

0x89A8 ERR_ACCESS_DENIED

0x89FB Invalid Namespace (abends the server)
NCP Calis

0x2222 87 06 Obtain File or Subdirectory Information
0x2222 90 133 Move File Data From DM

See Also

NWMoveFileToDM (page 34), NWSetDefaultSupportModule (page 37), NWGetDMFilelnfo
(page 24)

Data Migration Functions

33

NWMoveFileToDM

Moves file data to an online, long term storage medium but leaves the file visible on a NetWare
volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5., 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Data Migration

Syntax
#include <nwmigrat.h>

or
#include <nwcalls.h>

NWCCODE N API NWMoveFileToDM (

NWCONN HANDLE conn,

NWDIR HANDLE dirHandle,

const nstr8 N FAR *path,

nuint8 namesSpace,
nuint32 supportModulelID,
nuint32 saveKeyFlag) ;

Delphi Syntax
uses calwin32

Function NWMoveFileToDM
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const path : pnstr§;
nameSpace : nuint8;
supportModuleID : nuint32;
saveKeyFlag : nuint32

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle associated with the desired name space (optional).

34 NDK: Multiple and Inter-File Services

path
(IN) Points to a valid path, which points to a directory or file.

nameSpace

(IN) Specifies the name space of the path (see Section 20.5, “Name Space Flag Values,” on

page 625).

supportModuleID
(IN) Specifies the assigned ID number of the support module migrating the data.

saveKeyFlag
(IN) Specifies if the migrator key will be saved when the file is demigrated:

0 Migrator key will not be saved
1 Migrator key will be saved

Return Values

These are common return values; see Return Values for C for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x897E NCP_BOUNDARY_CHECK_FAILED
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899E INVALID_FILENAME

0x899C INVALID_PATH

0x89A8 ERR_ACCESS_DENIED
0x89FB Invalid Namespace
Remarks

If saveKeyFlag equals SAVE KEY WHEN FILE IS DEMIGRATED, the key will be saved
when the file is demigrated. This saves time because the file will not be deleted from the migrated

media and will be checked for changes before subsequent migrations.

NCP Calls

0x2222 87 06 Obtain File or Subdirectory Information
0x2222 90 128 Move File Data To DM

Data Migration Functions

35

See Also

NWMoveFileFromDM (page 32), NWSetDefaultSupportModule (page 37), NWGetDMFilelnfo
(page 24)

36 NDK: Multiple and Inter-File Services

NWSetDefaultSupportModule

Sets the default Read/Write support module ID

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Data Migration

Syntax

#include <nwmigrat.h>
or
#include <nwcalls.h>

NWCCODE N _API NWSetDefaultSupportModule (
NWCONN_ HANDLE conn,
pnuint32 supportModulelID) ;
Delphi Syntax

uses calwin32

Function NWSetDefaultSupportModule
(conn : NWCONN_ HANDLE;
supportModuleID : pnuint32

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

supportModuleID
(IN) Points to the support module ID.

Return Values

These are common return values; see Return Values for C for more information.

0x0000 SUCCESSFUL
0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION

Data Migration Functions 37

0x897E NCP_BOUNDARY_CHECK_FAILED

Ox89EC NO_SUCH_SEGMENT
0Ox89FB NO_SUCH_PROPERTY or INVALID_PARAMETERS
NCP Calls

0x2222 90 134 Get/Set Default Read Write Support Module ID

38 NDK: Multiple and Inter-File Services

Data Migration Structures

This documentation alphabetically lists the Data Migration structures and describes their purpose,
syntax, and fields.

¢+ “SUPPORT MODULE IDS” on page 40
¢ “SUPPORT MODULE INFO” on page 41

Data Migration Structures 39

SUPPORT_MODULE_IDS

Returns a list of support module IDs (level 1 information) by NWGetSupportModulelnfo
Service: Data Migration

Defined In: nwmigrat.h

Structure

typedef struct

{

nuint32 numberOfSMs ;

nuint32 SMIDs [MAX NUM OF SM];
} SUPPORT MODULE IDS;

Delphi Structure

uses calwin32

SUPPORT MODULE IDS = packed Record

numberOfSMs : nuint32;

SMIDs : Array[0..MAX NUM OF SM-1] Of nuint32
End;

Fields

numberOfSMs
Specifies the number of valid support module IDs returned by the Data Migrator.

SMIDs
Specifies the list of support module IDs.

40 NDK: Multiple and Inter-File Services

SUPPORT_MODULE_INFO

Returns (level 0) support module information by NWGetSupportModulelnfo
Service: Data Migration

Defined In: nwmigrat.h

Structure

typedef struct

{
nuint32 IOStatus ;
nuint32 InfoBlockSize ;

nuint32 AvailSpace ;
nuint32 UsedSpace ;
nuints8 SMInfo [MAX SIZE OF SM STRING + MAX SIZE OF SM INFO];

} SUPPORT MODULE INFO;

Delphi Structure

uses calwin32

SUPPORT MODULE INFO = packed Record

IOStatus : nuint32;

InfoBlockSize : nuint32;

AvailSpace : nuint32;

UsedSpace : nuint32; (*A length preceded string is followed by
SMInfo data¥*)

SMInfo : Array[0..MAX SIZE OF SM STRING + MAX SIZE OF SM INFO - 1]
Of nuint8

End;

Fields

IOStatus

Specifies the 10 read and write access status of the associated storage device .

InfoBlockSize

Specifies the information block size on the associated storage device.

AvailSpace

Specifies the amount of space available on the associated storage device.

UsedSpace

Specifies the amount of used space on the associated storage device. This length-preceded
string is followed by SMInfo data.

SMInfo
Specifies the support-module specific data in the form of a length-preceded string.

Data Migration Structures

4

42 NDK: Multiple and Inter-File Services

Deleted File Concepts

This documentation describes Deleted File, its functions, and features.

NetWare® servers retain deleted files in a recoverable state. The final deallocation of a deleted file
is called purging. Deleted File Services include functions for purging and recovering deleted files.

NetWare contains important changes to the file system in versions after 2.15. These changes
primarily affect trustee rights, file attributes, and purgeable files.

Although differences between overlapping functions are noted, developers need to be aware of
compatibility issues affecting specific functions.

4.1 Deleted File on NetWare 3.11 and above
Servers

When a client erases a file on a NetWare 3.11 or above server, the server moves the file to a holding
area in the directory structure of the volume. You can scan this area for deleted files by calling
NWScanForDeletedFiles (page 54) using a search pattern. Scanning deleted files returns file
information for all recoverable files in a specified directory. No prior knowledge of file names is
necessary.

When you purge files on a NetWare 3.11 or above server, only the specified files are removed from
the holding area. Other deleted files are not affected. Deleted files can remain on the server for an
indefinite period. However, if the server must reclaim disk space, the files can be purged, after
which they cannot be recovered.

4.2 Deleted File Functions

These functions handle the purging and recovery of deleted NetWare® files:

NWPurgeDeletedFile Removes recoverable files from a NetWare server.
NWRecoverDeletedFile Recovers deleted files from the NetWare server.
NWScanForDeletedFiles Scans the specified directory for any deleted (salvageable) files.

Deleted File Concepts

43

44 NDK: Multiple and Inter-File Services

Deleted File Functions

This documentation alphabetically lists the Deleted File functions and describes their purpose,
syntax, parameters, and return values.

+ “NWPurgeDeletedFile” on page 46

+ “NWRecoverDeletedFile” on page 49

+ “NWRecoverDeletedFileExt” on page 52

¢ “NWScanForDeletedFiles” on page 54

+ “NWScanForDeletedFilesExt” on page 57

Deleted File Functions 45

NWPurgeDeletedFile

Removes recoverable files from a NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT*, Windows* 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Deleted File

Syntax
#include <nwdel.h>
or

#include <nwcalls.h>

NWCCODE N API NWPurgeDeletedFile (

NWCONN_HANDLE conn,

NWDIR HANDLE dirHandle,
nuint32 iterHandle,
nuint32 volNum,
nuint32 dirBase,

const nstr8 N _FAR *fileName);

Delphi Syntax
uses calwin32

Function NWPurgeDeletedFile
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
iterHandle : nuint32;
volNum : nuint32;
dirBase : nuint32;
fileName : pnstr8

) : NWCCODE;

Parameters
conn
(IN) Specifies the NetWare server connection handle to purge.

dirHandle

(IN) Specifies the directory handle for the directory containing the file to purge (valid for 3.x
and above only).

46 NDK: Multiple and Inter-File Services

iterHandle
(IN) Specifies the sequence number returned by NWScanForDeletedFiles (valid for 3.x and
above only).

volNum
(IN) Specifies the volume number returned by NWScanForDeletedFiles (valid for 3.11 and
above only).

dirBase
(IN) Specifies the directory base number returned by NWScanForDeletedFiles (valid for 3.11
and above only).

fileName

(IN) Points to the name of the file to purge (valid for 3.0 and 3.1 only).

Return Values

These are common return values; see Return Values for C for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
0x8985 NO_CREATE_DELETE_PRIVILEGES
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

Remarks

For 3.x servers, only the specified file is purged.

For 3.x servers, NWPurgeDeletedFile is used in connection with NWScanForDeletedFiles.
iterHandle, volNum, and dirBase are returned by NWScanForDeletedFiles and should not
be modified prior to calling NWPurgeDeletedFile.

Although parameters may only be valid for some servers, each parameter must be filled. Valid
parameters for NWPurgeDeletedFile on each platform are listed below:

3.0 and 3.1 3.1

conn conn

dirHandle dirHandle

sequence iterHandle
volNum
dirBase

Deleted File Functions

47

3.0 and 3.1

31

fileName

NCP Calls

0x2222 22 16 Purge Deleted File

0x2222 23 17 Get File Server Information
0x2222 87 18 Purge Salvageable File
0x2222 22 29 Purge Salvageable File

See Also

NWScanForDeletedFiles (page 54)

48 NDK: Multiple and Inter-File Services

NWRecoverDeletedFile

Recovers deleted files from the NetWare server
Local Servers: blocking
Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Deleted File

Syntax

#include <nwdel.h>
or
#include <nwcalls.h>

NWCCODE N API NWRecoverDeletedFile
NWCONN_ HANDLE conn,

NWDIR HANDLE dirHandle,
nuint32 iterHandle,
nuint32 volNum,
nuint32 dirBase,
pnstr8 delFileName,
pnstr8 rcvrFileName) ;

Delphi Syntax
uses calwin32
Function NWRecoverDeletedFile

(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;

iterHandle : nuint32;
volNum : nuint32;
dirBase : nuint32;
delFileName : pnstr8;
rcvrFileName : pnstr8
) : NWCCODE;
Parameters
conn

(IN) Specifies the NetWare server connection handle containing the deleted file.

dirHandle

(IN) Specifies the directory handle of the directory containing the file to recover.

Deleted File Functions

49

iterHandle
(IN) Specifies the number returned by NWScanForDeletedFiles.

volNum
(IN) Specifies the number returned by NWScanForDeletedFiles.

dirBase
(IN) Specifies the number returned by NWScanForDeletedFiles.

delFileName
(OUT) Points to the name of the erased file.

rcvrFileName

(OUT) Points to the name to use in recovering the file.

Return Values

These are common return values; see Return Values for C for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x8984 NO_CREATE_PRIVILEGES
0x8996 SERVER_OUT_OF_MEMORY
0x89A1 DIRECTORY_IO_ERROR
0x89FD BAD_STATION_NUMBER
Ox89FE File name already exists in this directory
O0x89FF Failure

Remarks

For 3.x-6.x servers, files deleted by a client are moved to a holding area on the volume until they are
either purged, restored (by calling NWRecoverDeletedFile), or replaced by other deleted files.

For 3.11 servers, the recovery is performed one file at a time. NWRecoverDeletedFile can also
recover the deleted file and give it a new name. This feature alleviates problems with recovering a
file when a new file exists with the same name.

For 3.x, the application must specify the file name in rcvrFileName, not the path. No wildcards
are allowed.

50 NDK: Multiple and Inter-File Services

NOTE: Due to earlier support for 14 character names in NetWare, both de1FileName and
rcvrFileName buffers must be at least 15 bytes long.

Although parameters may only be valid for some servers, each parameter must be filled. Valid

parameters for NWRecoverDeletedFile on each platform are listed below:

3.0 and 3.1 3.11 and above

conn conn

dirHandle dirHandle

sequence iterHandle
volNum
dirBase

deletedFileName (passed in)

recoverFileName (passed in) rcvrFileName

NCP Calls

0x2222 22 17 Recover Erased File (old)
0x2222 22 28 Recover Salvageable File
0x2222 23 17 Get File Server Information
0x2222 87 17 Recover Salvageable File

See Also

NWScanForDeletedFiles (page 54)

Deleted File Functions

51

NWRecoverDeletedFileExt

Recovers deleted files from the NetWare server, using UTF-8 strings.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Deleted File

Syntax

#include <nwdel.h>
or
#include <nwcalls.h>

NWCCODE N _APT NWRecoverDeletedFileExt (
NWCONN_HANDLE conn,

NWDIR HANDLE dirHandle,
nuint32 iterHandle,
nuint32 volNum,
nuint32 dirBase,
pnstr8 delFileName,
pnstr8 rcvrFileName) ;

Parameters

conn

(IN) Specifies the NetWare server connection handle containing the deleted file.

dirHandle
(IN) Specifies the directory handle of the directory containing the file to recover.

iterHandle
(IN) Specifies the number returned by NWScanForDeletedFilesExt.

volNum

(IN) Specifies the number returned by NWScanForDeletedFilesExt.

dirBase
(IN) Specifies the number returned by NWScanForDeletedFilesExt.

delFileName
(OUT) Points to the name of the erased file, using UTF-8 characters.

52 NDK: Multiple and Inter-File Services

rcvrFileName

(OUT) Points to the name to use in recovering the file, using UTF-8 characters.

Return Values

These are common return values; see Return Values for C for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x88F0 UTF8_CONVERSION_FAILED
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x8984 NO_CREATE_PRIVILEGES
0x8996 SERVER_OUT_OF_MEMORY
0x89A1 DIRECTORY_IO_ERROR
0x89FD BAD_STATION_NUMBER
Ox89FE File name already exists in this directory
O0x89FF Failure

Remarks

Files deleted by a client are moved to a holding area on the volume until they are either purged,
restored (by calling NWRecoverDeletedFileExt), or replaced by other deleted files.

NWRecoverDeletedFileExt can recover the deleted file and give it a new name. This feature

alleviates problems with recovering a file when a new file exists with the same name. The

application must specify the file name in rcvrFileName, not the path. No wildcards are allowed.

NCP Calls

0x2222 22 17 Recover Erased File (old)
0x2222 22 28 Recover Salvageable File
0x2222 23 17 Get File Server Information
0x2222 87 17 Recover Salvageable File
0x2222 89 17 Recover Salvageable File

See Also

NWScanForDeletedFilesExt (page 57)

Deleted File Functions

53

NWScanForDeletedFiles

Scans the specified directory for any deleted (salvageable) files
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Deleted File

Syntax
#include <nwdel.h>

or
#include <nwcalls.h>

NWCCODE N API NWScanForDeletedFiles (

NWCONN_HANDLE conn,

NWDIR HANDLE dirHandle,
pnuint32 iterHandle,
pnuint32 volNum,
pnuint32 dirBase,

NWDELETED INFO N _FAR *entryInfo);

Delphi Syntax
uses calwin32

Function NWScanForDeletedFiles
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
iterHandle : pnuint32;
volNum : pnuint32;
dirBase : pnuint32;

Var entryInfo : NWDELETED INFO

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle of the directory to scan.

54 NDK: Multiple and Inter-File Services

iterHandle

(IN) Points to the address of the search sequence number. Must be initially set to -1.

volNum

(OUT) Points to the volume’s number index (valid for 3.11 and above only).

dirBase

(OUT) Points to the directory’s number index (valid for 3.11 and above only).

entryInfo
(OUT) Points to NWDELETED_INFO, containing the deleted file information.

Return Values

These are common return values; see Return Values for C for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
0x899B BAD_DIRECTORY_HANDLE
Ox89FF No more salvageable files in directory
Remarks

NWScanForDeletedFiles replaces NWScanSalvageableFiles.

Initially, i terHandle needs to be set to -1. The server maintains the sequence number once a
match has been found. No file names or wildcards are allowed in the search.

If iterHandle and entryInfo are NULL or dirHandle is zero, NWScanForDeletedFiles
returns -1.

volNum and dirBase are used only when scanning NetWare 3.11 and above. These two numbers
are indices used by the server to speed up the location of a deleted file. They should not be modified
by an application.

Although parameters may only be valid for some servers, each parameter must be filled. The valid
parameters for NWScanForDeletedFiles on each platform follow:

3.0 and 3.1 3.1

conn conn

dirHandle dirHandle

sequence iterHandle
volNum
dirBase

Deleted File Functions

3.0 and 3.1 31

entryInfo entryInfo

NCP Calls

0x2222 22 27 Scan Salvageable Files
0x2222 23 17 Get File Server Information
0x2222 87 16 Scan Salvageable Files

See Also
NWPurgeDeletedFile (page 46), NWRecoverDeletedFile (page 49)

56 NDK: Multiple and Inter-File Services

NWScanForDeletedFilesExt

Scans the specified directory for any deleted (salvageable) files, using UTF-8 strings.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Deleted File

Syntax
#include <nwdel.h>
or

#include <nwcalls.h>

NWCCODE N API NWScanForDeletedFilesExt (

NWCONN_ HANDLE conn,
NWDIR HANDLE dirHandle,
pnuint32 iterHandle,
pnuint32 volNum,
pnuint32 dirBase,

NWDELETED INFO EXT N _FAR *entryInfo);

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle of the directory to scan. This parameter cannot be zero.

iterHandle

(IN) Points to the address of the search sequence number. Must be initially set to -1.

volNum

(OUT) Points to the volume’s number index.

dirBase

(OUT) Points to the directory’s number index.

entryInfo
(OUT) Points to NWDELETED_INFO_EXT, containing the deleted file information.

Deleted File Functions 57

Return Values

These are common return values; see Return Values for C for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x88F0 UTF8_CONVERSION_FAILED
0x890A NLM_INVALID_CONNECTION
0x899B BAD_DIRECTORY_HANDLE
Ox89FF No more salvageabile files in directory
Remarks

Initially, i terHandle needs to be set to -1. The server maintains the sequence number once a
match has been found. No file names or wildcards are allowed in the search.

IfiterHandle and entryInfo are NULL or di rHandle is zero, NWScanForDeletedFilesExt
returns -1.

volNum and dirBase are indices used by the server to speed up the location of a deleted file.
They should not be modified by an application.

NCP Calls

0x2222 22 27 Scan Salvageable Files
0x2222 23 17 Get File Server Information
0x2222 87 16 Scan Salvageable Files
0x2222 89 16 Scan Salvageable Files

See Also

NWRecoverDeletedFileExt (page 52)

58 NDK: Multiple and Inter-File Services

Deleted File Structures

This documentation alphabetically lists the Deleted File structures and describes their purpose,
syntax, and fields.

+ “NWDELETED INFO” on page 60
¢+ “NWDELETED INFO EXT” on page 64

Deleted File Structures 59

NWDELETED_INFO

Returns information on a deleted file

Service: Deleted File

Defined In: nwdel.h

Structure

typedef struct

{
nuint32
nuint32
nuint32
nuint8
nuint8
nuint8
nuint8
nuint8
nuint32
nuint32
nuint32
nuint32
nuint32
nuint32
nuint32
nuint8
nuintlo
nuintlo6
nuint32
nuint32
nuint32
nuint8

sequence ;
parent ;

attributes ;

uniquelD ;

flags ;

namesSpace ;
namelLength ;

name [256];
creationDateAndTime ;
ownerID ;
lastArchiveDateAndTime ;
lastArchiverID ;
updateDateAndTime ;
updatorID ;

fileSize ;

reserved [44];
inheritedRightsMask ;
lastAccessDate ;
deletedTime ;
deletedDateAndTime ;
deletorID ;

reserved3 [1l6];

} NWDELETED_ INFO;

Delphi Structure

uses calwin32

NWDELETED INFO = packed Record

sequence
parent
attributes
uniquelID

flags

name

creationDateAndTime
ownerIlD
lastArchiveDateAndTime
lastArchiverID

nuint32;
nuint32;

nuint32;
nuint8;

nuint8;
nameSpace

nameLength
Array[0..255] Of nuint8;

nuint8;
nuint8;

nuint32;
nuint32;

nuint32;
nuint32;

60 NDK: Multiple and Inter-File Services

updateDateAndTime : nuint32;

updatorID : nuint32;

fileSize : nuint32;

reserved : Array[0..43] Of nuint8;

inheritedRightsMask : nuintlé6;

lastAccessDate : nuintl6;

deletedTime : nuint32;

deletedDateAndTime : nuint32;

deletorID : nuint32;

reserved3 : Array[0..15] Of nuint8
End;

Fields

sequence

Specifies the sequence number of the associated information.

parent

Specifies the ID of the owning subdirectory.

attributes

Specifies the attributes of the associated file.

uniqueID
Specifies the entry number of the file.

flags
Specifies the DOS attributes of the deleted file.

nameSpace
Specifies the name space of the associated file:
I NW_NS MAC
0NW_NS DOS
2 NW_NS NFS
3NW_NS FTAM
4 NW_NS 0S2
4 NW_NS LONG
nameLength

Specifies the length of the file name.

name

Specifies the file name.

creationDateAndTime

Specifies the date and time the file was created.

ownerID

Specifies the object which created the file.

Deleted File Structures

61

lastArchiveDateAndTime

Specifies the date and time the file was last archived.

lastArchiverID
Specifies the object which last archived the file.

updateDateAndTime
Specifies the date and time the file was last updated.

updatorID
Specifies the object which last updated the file.

fileSize

Specifies the size of the file in bytes.

reserved

Is reserved for future use.

inheritedRightsMask
Specifies a bit mask of the following:

0x0000 TR_NONE
0x0001 TR_READ

0x0002 TR_WRITE

0x0004 TR_OPEN

0x0004 TR_DIRECTORY
0x0008 TR_CREATE
0x0010 TR_DELETE
0x0010 TR_ERASE

0x0020 TR_OWNERSHIP
0x0020 TR_ACCESS_CTRL
0x0040 TR_FILE_SCAN
0x0040 TR_SEARCH
0x0040 TR_FILE_ACCESS
0x0080 TR_MODIFY
0x01FB TR_ALL

0x0100 TR_SUPERVISOR
0x00FB TR_NORMAL

lastAccessDate

Specifies the date the file was last accessed.

deletedTime
Specifies the time the file was deleted.

deletedDateAndTime
Specifies the date and time the file was deleted.

62 NDK: Multiple and Inter-File Services

deletorID
Specifies the object who deleted the file.

reserved3

Is reserved for future use.

Deleted File Structures 63

NWDELETED_INFO_EXT

Returns information on a deleted file, using UTF-8 strings.
Service: Deleted File

Defined In: nwdel.h

Structure

typedef struct
{

nuint32 sequence ;

nuint32 parent ;

nuint32 attributes ;

nuint8 uniquelD ;

nuint8 flags ;

nuint8 nameSpace ;

nuint8 namelLength ;

nuint8 name [766];

nuint32 creationDateAndTime ;
nuint32 ownerID ;

nuint32 lastArchiveDateAndTime ;

nuint32 lastArchiverID ;
nuint32 updateDateAndTime ;
nuint32 updatorID ;

nuint32 fileSize ;

nuint8 reserved [44];
nuintlé inheritedRightsMask ;
nuintlo6 lastAccessDate ;

nuint32 deletedTime ;
nuint32 deletedDateAndTime ;
nuint32 deletorlID ;
nuint8 reservedl3 [16];

} NWDELETED INFO_ EXT;

Fields

sequence

Specifies the sequence number of the associated information.

parent

Specifies the ID of the owning subdirectory.

attributes

Specifies the attributes of the associated file.

uniqueID
Specifies the entry number of the file.

flags
Specifies the DOS attributes of the deleted file.

64 NDK: Multiple and Inter-File Services

nameSpace
Specifies the name space of the associated file:
1 NW_NS MAC
0NW_NS DOS
2 NW_NS NFS
3NW_NS FTAM
4 NW_NS OS2
4 NW_NS LONG
nameLength

Specifies the length of the file name.

name

Specifies the file name, using UTF-8 characters.

creationDateAndTime

Specifies the date and time the file was created.

ownerID

Specifies the object which created the file.

lastArchiveDateAndTime

Specifies the date and time the file was last archived.

lastArchiverID
Specifies the object which last archived the file.

updateDateAndTime
Specifies the date and time the file was last updated.

updatorID
Specifies the object which last updated the file.

fileSize

Specifies the size of the file in bytes.

reserved

Is reserved for future use.

inheritedRightsMask
Specifies a bit mask of the following:

0x0000 TR_NONE
0x0001 TR_READ
0x0002 TR_WRITE
0x0004 TR_OPEN
0x0004 TR_DIRECTORY
0x0008 TR_CREATE
0x0010 TR_DELETE

Deleted File Structures 65

0x0010 TR_ERASE

0x0020 TR_OWNERSHIP
0x0020 TR_ACCESS_CTRL
0x0040 TR_FILE_SCAN
0x0040 TR_SEARCH
0x0040 TR_FILE_ACCESS
0x0080 TR_MODIFY
0x01FB TR_ALL

0x0100 TR_SUPERVISOR
0x00FB TR_NORMAL

lastAccessDate

Specifies the date the file was last accessed.

deletedTime
Specifies the time the file was deleted.

deletedDateAndTime
Specifies the date and time the file was deleted.

deletorID
Specifies the object who deleted the file.

reserved3

Is reserved for future use.

66 NDK: Multiple and Inter-File Services

File Engine Functions

This documentation alphabetically lists the File Engine functions and describes their purpose,

syntax, parameters, and return values.

¢ “CountComponents” on page 68

+ “FEConvertDirectoryNumber” on page 70

+ “FEcreat” on page 72

¢ “FEFlushWrite” on page 74

¢ “FEGetCWDnum” on page 75

+ “FEGetCWVnum” on page 76

+ “FEGetEntryVersion” on page 77

+ “FEGetOpenFilelnfo” on page 79

+ “FEGetOpenFilelnfoForNS” on page 82

+ “FEGetOriginatingNameSpace” on page 85

¢ “FEMapConnsHandleToVolAndDir” on page 87
¢ “FEMapHandleToVolumeAndDirectory” on page 89
+ “FEMapPathVolumeDirToVolumeDir” on page 90
+ “FEMapVolumeAndDirectoryToPath” on page 92

¢ “FEMapVolumeAndDirectoryToPathForNS” on page 94

+ “FEMapVolumeNumberToName” on page 96
+ “FEQuickClose” on page 97

+ “FEQuickFileLength” on page 99

+ “FEQuickOpen” on page 101

¢ “FEQuickRead” on page 103

¢ “FEQuickWrite” on page 105

+ “FERegisterNSPathParser” on page 107

¢ “FESetCWDnum” on page 109

+ “FESetCWVandCWDnums” on page 110

¢ “FESetCWVnum” on page 111

+ “FESetOriginatingNameSpace” on page 112
+ “FEsopen” on page 114

File Engine Functions

67

CountComponents

Returns the number of components contained in a NetWare® pathname
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileio.h>

int CountComponents (
BYTE “*pathString,
int len);

Parameters
pathString
(IN) Points to the string containing the NetWare pathname.

len

(IN) Specifies the length (in bytes) of the pathString.

Return Values

This function returns the number of components in pathString.

Remarks

This function works only with NetWare path names, which can consist of a directory path, file name,
and file name extension.

A NetWare path consists of a path string and a path count. The path string does not use any type of
delimiter character between components of the path. Instead, the length of each path component is
specified in the byte immediately preceding each component of the path string. The path count tells
how many path components there are in a path. This is the number returned by CountComponents.

For example, a normal path might look like this:
serverName/vol2:first/second/third/file.dat

If serverName is assigned file server ID 1, and vol2 is assigned volume number 2, then the
corresponding NetWare path format would be:

fileServerID = 1 volumeNumber = 2 pathString =
5firstésecond5bthird8file.dat pathCount = 4

68 NDK: Multiple and Inter-File Services

The fileServerID and volumeNumber are not actually part of the pathString, but are
kept as separate numeric values. The numbers that are part of the pathString are actual binary
values, not their ASCII equivalents. The pathString is the entity that would be passed to
CountComponents (with a length of 28, which is the total length of pathString), and the
returned component count would be 4 (the number of component parts in pathString).

See Also

_makepath (page 149), splitpath (page 325)

File Engine Functions 69

FEConvertDirectoryNumber

Converts a directory number in one name space to the comparable directory number in another name
space

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x
Platform: NLM

Service: File Engine

Syntax
#include <nwfileng.h>

int FEConvertDirectoryNumber (

int sourceNameSpace,

LONG volumeNumber,

LONG sourceDirectoryNumber,

int destinationNameSpace,

LONG *destinationDirectoryNumberP) ;
Parameters
sourceNameSpace

(IN) Specifies the name space of the directory number to be converted (see Section 20.5,
“Name Space Flag Values,” on page 625).

volumeNumber

(IN) Specifies the volume number of the directory number to be converted.

sourceDirectoryNumber

(IN) Specifies the directory number that is to be converted.

destinationNameSpace

(IN) Specifies the name space to which the directory number is to be converted (see
Section 20.5, “Name Space Flag Values,” on page 625).

destinationDirectoryNumberP

(OUT) Points to the converted directory number which corresponds to the destination name
space.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns a nonzero value. See Return
Values for Cfor more information.

70 NDK: Multiple and Inter-File Services

Remarks

A single directory entry has a different directory number for each name space that is supported on a
volume. This function converts a directory number in one name space to the comparable directory
number in another name space.

See Also

FEMapHandleTo VolumeAndDirectory (page 89), FEMapPathVolumeDirToVolumeDir (page 90)

File Engine Functions 71

FEcreat

Creates a file

Local Servers: blocking

Remote Servers: blocking
NetWare Server: 3.x, 4.x, 5.x, 6.x
Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

int FEcreat (
char “*name,

int permission,
int flagBits);
Parameters
name

(IN) Points to the name of the file to be opened.

permission

(IN) Specifies the file permission (if the file is being created).

flagBits
(IN) Specifies the special flags that allow more file flexibility.

Return Values

When there is no error opening the file, the function returns a file handle. When an error occurs, it
returns a value of -1, and errno and NetWareErrno are set to the appropriate error codes. See
Return Values for C for more information.

Remarks

This function also works on the DOS partition.
This is a special version of creat.
If the specified file does not exist, FEcreat creates the file with the specified file permission.

The permission mode is established as a combination of bits found in the SYS\STAT.H file. The
following bits are defined:

S _IWRITE The file is writeable.

72 NDK: Multiple and Inter-File Services

S_IREAD The file is readable.

A value of 0 can be specified to indicate that the file is readable and writeable.

The flag bits can be found in nwfattr.h and are defined as follows:

DELETE_FILE_ON_CREATE_BIT

NO_RIGHTS_CHECK_ON_OPEN_BIT

NO_RIGHTS_CHECK_ON_CREATE_BIT

FILE_WRITE_THROUGH_BIT

ENABLE_IO_ON_COMPRESSED_DATA_BIT

LEAVE_FILE_COMPRESSED_DATA_BIT

If the file already exists, it is deleted. This allows the

file to be created again.

The user’s rights to the file are not checked when
the file is opened.

The user’s rights to the file are not checked when
the file is created.

When a file write is performed, the write function
does not return until the data is actually written to
the disk.

Any subsequent I/O on this entry is compressed
(NetWare 4.x, 5.x, and 6.x)

Atfter all I/O has been done, leave this file
compressed (NetWare 4.x, 5.x, and 6.x)

See Also

close

File Engine Functions

73

FEFlushWrite

Flushes all pending writes for a file
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x
Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

int FEFlushWrite (
int handle) ;

Parameters

handle
(IN) Specifies handle of the file to be flushed.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns a NetWare error code. See
Return Values for C for more information.

Remarks

When this function returns, all writes associated with the file specified by the file handle are
complete.

74 NDK: Multiple and Inter-File Services

FEGetCWDnNnum

Returns the current working directory (CWD) number
Local Servers: nonblocking

Remote Servers: nonblocking

NetWare Server: 3.x, 4.X, 5.x, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

LONG FEGetCWDnum (void) ;

Return Values

This function returns the CWD number (the default directory) for the current thread group.

Remarks

This function can be used by a registered path parsing function to get the CWD number when the

path being parsed is a relative path.

See Also

FESetCWDnum (page 109), FESetCW VandCWDnums (page 110), FESetCW Vnum (page 111)

File Engine Functions

75

FEGetCWVnum

Returns the current working volume (CWV) number
Local Servers: nonblocking

Remote Servers: nonblocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

LONG FEGetCWVnum (void) ;

Return Values

This function returns the CWV number (the default volume) for the current thread group.

Remarks

This function can be used by a registered path parsing function to get the CWV number when the
path being parsed does not include a volume name.

See Also

FEGetCWDnum (page 75), FESetCWDnum (page 109), FESetCW VandCWDnums (page 110),
FESetCWVnum (page 111)

76 NDK: Multiple and Inter-File Services

FEGetEntryVersion

Returns the version number for a directory entry (files or directories)
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

LONG FEGetEntryVersion (

LONG volumeNumber,
LONG directoryNumber,
BYTE *pathString,
LONG pathCount,
WORD *version) ;
Parameters
volumeNumber

(IN) Specifies the volume number on which the entry is located.

directoryNumber
(IN) Specifies the directory number used by the directory entry.

pathString

(IN) Points to a NetWare style path string relative to the volume/directory number. This is the

name of the directory entry.

pathCount
(IN) Specifies the number of elements in the path string.

version

(OUT) Points to the version number for the entry.

Return Values

See Return Values for C for more information.

0 (0x00) Success
255 (OxFF) Failure

File Engine Functions

77

Remarks

This function returns the version number for a specified directory entry. The version number of a
directory entry is incremented once each time the entry is modified.

See Also

readdir (page 307), stat (page 327)

78 NDK: Multiple and Inter-File Services

FEGetOpenFilelnfo

Returns directory entry information for a given connection's file handle
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

int FEGetOpenFileInfo (
LONG connection,
LONG handle,
LONG *volume,
LONG *directoryNumber,
LONG *dataStream
LONG *flags) ;

Parameters

connection

(IN) Specifies the connection number of the object that has the file open.

handle

(IN) Specifies the file handle for which to return volume or directoryNumber.

volume

(OUT) Points to the number of the volume on which the directory entry is located.

directoryNumber
(OUT) Points to the directory entry number of the entry.

dataStream

(OUT) Points to the data stream with which the handle is associated.

flags
(OUT) Points to the status of the handle (see Remarks section).

Return Values

See Return Values for C for more information.

0 Success

File Engine Functions

79

OxFF Failure

Remarks

When given a connection number and a NetWare file handle, FEGetOpenFilelnfo returns the
information in the output parameters. The file handle for the handle parameter must be an OS file
handle such as the £ileHandle field returned in various FS Hooks return structures defined in
nwfshook.h.

FEGetOpenFilelnfo is useful if you are using FS Hooks because it gives the status/flags for an open
file. However, keep in mind that £i1eHandle may not be populated by some callbacks—for
example FSHOOK PRE OPENFILE if the file has not yet been opened. Also keep in mind that
FEGetOpenFilelnfo is a blocking function and cannot be used in a POST FS Hooks routine. In that
case callback information would have to be passed to another routine to call FEGetOpenFilelnfo.

The f1ags parameter is a composition of three fields from the file control block (FCB): f1ags,
extraFlags, and extraExtraFlags (defined in fileio.h):

flags bits:

0x00000001 NotReadableBit

0x00000002 NotWritableBit

0x00000004 WrittenBit

0x00000008 DetachedBit

0x00000010 SwitchingToDirectFileSystemModeBit
0x00000020 DirectFileSystemModeBit
0x00000040 FileWriteThroughBit

0x00000080 HasFileWritePrivilegeBit

extraFlags bits:

0x00010000
0x00020000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000
0x00800000

extraExtraFlags bits:

0x01000000
0x02000000
0x04000000

DiskBlockReturnedBit
IAmOnTheOpenFileListBit
FileReadAuditBit
FileWriteAuditBit
FileCloseAuditBit
DontFileWriteSystemAlertBit
ReadAheadHintBit

NotifyCompressionOnCloseBit

IsWritingCompressedBit
HasTimeDateBit

DoingDeCompressionBit

80 NDK: Multiple and Inter-File Services

0x08000000
0x10000000
0x20000000
0x40000000
0x80000000

NoSubAllocBit
IsATransactionFileBit
HasFileWritePrivilegeBit
TTSReadAuditBit
TTSWriteAuditBit

File Engine Functions

81

FEGetOpenFilelInfoForNS

Returns name space specific directory entry information for a given connection's file handle
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

int FEGetOpenFileInfoForNS (
LONG connection,
LONG handle,
LONG *volume,
LONG *DOSDirectoryNumber,
LONG *directoryNumber,
LONG *nameSpace,
LONG *dataStream
LONG *flags);

Parameters

connection

(IN) Specifies the connection number of the object that has the file open.

handle

(IN) Specifies the file handle for which to return volume or directoryNumber.

volume

(OUT) Points to the number of the volume on which the directory entry is located.

DOSDirectoryNumber
(OUT) Points to the DOS directory entry number of the entry.

directoryNumber
(OUT) Points to the directory entry number of the entry corresponding with nameSpace.

nameSpace

(OUT) Points to the name space corresponding with directoryNumber (see Section 20.5,
“Name Space Flag Values,” on page 625).

dataStream

(OUT) Points to the data stream with which the handle is associated.

82 NDK: Multiple and Inter-File Services

flags
(OUT) Points to the status of the handle.

Return Values

See Return Values for C for more information.

0 Success

OxFF Failure

Remarks

When given a connection number and a NetWare file handle, FEGetOpenFileInfoForNS returns the
information in the output parameters.

FEGetOpenFileInfoForNS is useful if you are using FS Hooks because it gives the status/flags for
an open file as well as some name space specific directory entry information.

The f1lags parameter is a composition of three fields from the file control block (FCB): f1ags,
extraFlags, and extraExtraFlags (defined in fileio.h):

flags bits:

0x00000001 NotReadableBit

0x00000002 NotWritableBit

0x00000004 WrittenBit

0x00000008 DetachedBit

0x00000010 SwitchingToDirectFileSystemModeBit
0x00000020 DirectFileSystemModeBit
0x00000040 FileWriteThroughBit

0x00000080 HasFileWritePrivilegeBit

extraFlags bits:

0x00010000 DiskBlockReturnedBit
0x00020000 IAmOnTheOpenFileListBit
0x00040000 FileReadAuditBit

0x00080000 FileWriteAuditBit

0x00100000 FileCloseAuditBit

0x00200000 DontFileWriteSystemAlertBit
0x00400000 ReadAheadHintBit
0x00800000 NotifyCompressionOnCloseBit

extraExtraFlags bits:

File Engine Functions 83

0x01000000
0x02000000
0x04000000
0x08000000
0x10000000
0x20000000
0x40000000
0x80000000

IsWritingCompressedBit
HasTimeDateBit
DoingDeCompressionBit
NoSubAllocBit
IsATransactionFileBit
HasFileWritePrivilegeBit
TTSReadAuditBit
TTSWriteAuditBit

84 NDK: Multiple and Inter-File Services

FEGetOriginatingNameSpace

Gets the originating name space for a volume and directory number pair
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.X, 5.x, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

LONG FEGetOriginatingNameSpace (
LONG volumeNumber,
LONG directoryNumber) ;

Parameters

volumeNumber

(IN) Specifies the volume number for which the originating name space is desired.

directoryNumber

(IN) Specifies the directory number for which the originating name space is desired.

Return Values

This function returns a number indicating the originating name space for the volume and directory
number pair, if successful. Otherwise, it returns a value of - 1, and errno and NetWareErrno
contain appropriate error codes. See Return Values for C for more information.

Remarks

This function provides useful information for file backup operations. With NetWare support for
name spaces, knowing which name space created the file helps you determine the correct set of
information to back up.

FEGetOriginatingNameSpace returns one of the following name spaces (LONG name space is
equivalent to OS/2):

0 DOS

1 MACINTOSH
2 NFS

3 FTAM

File Engine Functions

85

4 LONG

See Also

SetCurrentNameSpace (page 452)

86 NDK: Multiple and Inter-File Services

FEMapConnsHandleToVolAndDir

Returns a volume number and a directory number for a given connection’s file handle
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

int FEMapConnsHandleToVolAndDir (

LONG connectionNumber,
int handle,
int *volumeNumber,

LONG *directoryNumber) ;

Parameters
connectionNumber
(IN) Specifies the connection number of the object that owns the file handle.

handle

(IN) Specifies the file handle for which to return the volume and directory numbers.

volumeNumber

(OUT) Points to the number of the volume on which the directory entry is located.

directoryNumber
(OUT) Points to the directory entry number of the entry.

Return Values

See Return Values for C for more information.

0 (0x00) Success.
255 (OxFF) Failure.

Other NetWare errors can be returned upon failure.

File Engine Functions 87

Remarks

When given a connection number and a file handle, this function returns a volume number and a
directory number. This information can be used to get other information about the directory entry.
The file handle can be obtained from normal CLIB file I/O or from the NetWare OS.

See Also

FEMapHandleToVolumeAndDirectory (page 89), FEMapVolumeAndDirectoryToPath (page 92)

88 NDK: Multiple and Inter-File Services

FEMapHandleToVolumeAndDirectory

Gets the volume and directory numbers being used by a file handle
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.X, 5.x, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

int FEMapHandleToVolumeAndDirectory (
int handle,
int *volumeNumberP,
LONG *directoryNumberP) ;

Parameters

handle
(IN) Specifies the file handle to be used to get the volume and directory numbers.

volumeNumberP
(OUT) Points to the volume number used by the file handle.

directoryNumberP
(OUT) Points to the directory number used by the file handle.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns a NetWare error code. See
Return Values for C for more information.

Remarks

FEMapHandleToVolumeAndDirectory returns the volume and directory numbers used by the file
handle.

See Also

FEMapPathVolumeDirTo VolumeDir (page 90), FEMapVolumeAndDirectoryToPath (page 92),
FEMapVolumeNumberToName (page 96)

File Engine Functions

89

FEMapPathVolumeDirToVolumeDir

Maps a path consisting of a volume number, directory number, and pathname to a path consisting of
a volume number and directory number

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x
Platform: NLM

Service: File Engine

Syntax
#include <nwfileng.h>

int FEMapPathVolumeDirToVolumeDir (

char *pathName,

int volumeNumber,
LONG directoryNumber,
int *newVolumeNumberP,

LONG *newDirectoryNumberP) ;

Parameters
pathName
(IN) Points to the pathname for which the volume and directory number are desired.

volumeNumber

(IN) Specifies the volume number on which the pathname is based.

directoryNumber
(IN) Specifies the directory number on which the pathname is based.

newVolumeNumberP

(OUT) Points to the returned volume number.

newDirectoryNumberP
(OUT) Points to the returned directory number.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns a NetWare error code. See
Return Values for C for more information.

90 NDK: Multiple and Inter-File Services

Remarks

If the pathName parameter is a full volume pathname, a new volume and directory number are
returned. If the path does not include a volume, volumeNumber is returned for
newVolumeNumberP. If the path is relative, newDirectoryNumberP is based on the
directory number and pathname.

See Also

FEMapHandleTo VolumeAndDirectory (page 89), FEMapPathVolumeDirToVolumeDir (page 90),
FEMap VolumeNumberToName (page 96)

File Engine Functions 91

FEMapVolumeAndDirectoryToPath

Maps a volume number and directory number to a NetWare style path
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

int FEMapVolumeAndDirectoryToPath (
int volumeNumber,
LONG directoryNumber,
BYTE *pathString,
LONG *pathCount) ;

Parameters

volumeNumber
(IN) Specifies the volume number of the desired path.

directoryNumber
(IN) Specifies the directory number of the desired path.

pathString
(OUT) Points to the NetWare style path string.

pathCount
(OUT) Points to the path count of the returned path string.

Return Values

See Return Values for C for more information.

0 Success
0x009C Invalid path—directory number and volume pair cannot be found
OxFFFE The directory number has become invalid

other NetWare errors

92 NDK: Multiple and Inter-File Services

Remarks

The FEMap VolumeAndDirectoryToPath function gets a NetWare style path (pathname and path
count) from a volume number and directory number.

FEMapVolumeAndDirectoryToPath relies on the current name space setting of the underlying
thread. If that name space does not match the name space of the volume and directory to be mapped,
the function returns 0x009C. This error can occur, for example, when the directory number comes
from a file system monitoring hook, and the associated name space is something other than DOS.

To avoid the 0x009C error, call FEMapVolumeAndDirectoryToPath only if the name space of the
underlying thread and the name space of the directory to be mapped can be guaranteed to be
identical. Otherwise, call FEMapVolumeAndDirectoryToPathForNS, which allows you to specify
the name space. You can also call SetCurrentNameSpace before and after calling
FEMapVolumeAndDirectoryToPath to set and restore the current name space of the underlying
thread.

OxFFFE (-2) is returned when the directory number has become invalid. This error occurs, for
example, when the directory number comes from a FSHOOK PRE CLOSE file system monitoring
hook, and a separate reporting procedure calls FEMapVolumeAndDirectoryToPath after the file has
already been deleted.

See Also

FEMapHandleToVolumeAndDirectory (page 89), FEMapPathVolumeDirToVolumeDir (page 90),
FEMap VolumeNumberToName (page 96)

File Engine Functions

93

FEMapVolumeAndDirectoryToPathForNS

Maps a volume number and directory number to a NetWare style path
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

int FEMapVolumeAndDirectoryToPathForNS (

int volumeNumber,
LONG directoryNumber,
LONG nameSpace,

BYTE *pathString,
LONG *pathCount) ;

Parameters

volumeNumber
(IN) Specifies the volume number of the desired path.

directoryNumber
(IN) Specifies the directory number of the desired path.

nameSpace

(IN) Specifies the nsame space directoryNumber isin (see Section 20.5, “Name Space
Flag Values,” on page 625).

pathString
(OUT) Points to the NetWare-style path string.

pathCount
(OUT) Points to the path count of the returned path string.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns a NetWare error code. See
Return Values for C for more information.

Remarks

The FEMap VolumeAndDirectoryToPathForNS function is useful if you are using FS Hooks.

94 NDK: Multiple and Inter-File Services

See Also

FEMapHandleToVolumeAndDirectory (page 89), FEMapPathVolumeDirToVolumeDir (page 90),
FEMapVolumeNumberToName (page 96)

File Engine Functions 95

FEMapVolumeNumberToName

Maps a volume number to a volume name
Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x
Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>
int FEMapVolumeNumberToName (

int volumeNumber,
BYTE *volumeName) ;

Parameters

volumeNumber

(IN) Specifies the volume number for which the volume name is desired.

volumeName

(OUT) Points to the name of the volume.

Return Values

Returns 0 if successful; otherwise, returns an error (see Return Values for C for more information).

Remarks

The volume name is returned as a length-preceded ASCII string.

NOTE: This function works remotely only on NetWare 3.12 and above servers.

See Also

FEMapVolumeAndDirectoryToPath (page 92), NWGetVolumeName (Volume Management)

96 NDK: Multiple and Inter-File Services

FEQuickClose

Performs a quick close on a file on the local server
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.X, 5.x, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

int FEQuickClose (
LONG connection,
LONG task,
LONG fileHandle) ;

Parameters

connection

(IN) Specifies the connection closing the file.

task

(IN) Specifies task number on the connection closing the file.

fileHandle
(IN) Specifies the handle of the file to close.

Return Values

See Return Values for C for more information.

0 Success

NetWare errors

Remarks

FEQuickClose is designated "quick" because it bypasses some of the higher I/O levels in the server
libraries.

FEQuickClose is useful only in conjunction with the File System Monitoring Hooks functions and
other FEQuick . . . functions. The lower level handle used with FEQuickClose is returned in
FEQuickOpen and is not valid for more conventional functions like read, write, or close.

File Engine Functions

97

See Also

FEQuickOpen (page 101), FEQuickFileLength (page 99), FEQuickRead (page 103), FEQuickWrite
(page 105), NWAddFSMonitorHook (page 394), NWRemoveFSMonitorHook (page 397)

98 NDK: Multiple and Inter-File Services

FEQuickFileLength

Returns the length of a file opened with FEQuickOpen.

Local Servers: blocking
Remote Servers: N/A
NetWare Server: 5.x, 6.x
Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

int FEQuickFileLength (
LONG connection,
LONG handle,
LONG *fileSize);

Parameters

connection

(IN) Specifies the connection for opening the file.

handle
(IN) Specifies the handle of the file to check.

fileSize
(OUT) Points to the size of the file.

Return Values

See Return Values for C for more information.

0 Success

NetWare errors

Remarks

FEQuickFileLength is designated "quick" because it bypasses some of the higher I/O levels in the

server libraries.

FEQuickFileLength is useful only in conjunction with the File System Monitoring Hooks functions

and other FEQuick functions.

File Engine Functions

99

See Also

FEQuickClose (page 97), FEQuickOpen (page 101), FEQuickRead (page 103), FEQuickWrite
(page 105)

100 NDK: Multiple and Inter-File Services

FEQuickOpen

Performs a quick open on a file on the local server
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.X, 5.x, 6.x

Platform: NLM

Service: File Engine

Syntax
#include <nwfileng.h>

int FEQuickOpen (
LONG connection,
LONG task,
LONG volumeNumber,
LONG directoryNumber,
BYTE “*pathString,
LONG pathCount,
LONG nameSpace,
LONG attributeMatchBits,
LONG requestedAccessRights,
LONG dataStreamNumber,
LONG *fileHandle);

Parameters

connection

(IN) Specifies the connection opening the file.

task

(IN) Specifies the task number of the connection opening the file.

volumeNumber

(IN) Specifies the volume on which the file is located.

directoryNumber

(IN) Specifies the directory number of the file to be opened.

pathString

(IN) Points to the NetWare style path that, along with volumeNumber,

directoryNumber, pathCount, and nameSpace, identifies the file to be opened.

pathCount

(IN) Specifies the number of components in pathString.

File Engine Functions 101

nameSpace

(IN) Specifies the name space in which the file resides (see Section 20.5, “Name Space Flag
Values,” on page 625).

attributeMatchBits
(IN) Specifies file attributes—open the file with file attributes that match this bit mask.

requestedAccessRights
(IN) Specifies the mode of entry for opening the file (for example, read only and read/write).

dataStreamNumber
(IN) Specifies the number identifying the data stream of the file to be opened.

fileHandle
(OUT) Points to the handle that designates the open file.

Return Values

See Return Values for C for more information.

0 Success

NetWare errors

Remarks

FEQuickOpen performs a quick open on a file specified by input parameters and returns a
designating handle in £i1leHandle. FEQuickOpen is designated "quick" because it bypasses some
of the higher I/O levels in the server libraries.

FEQuickOpen is useful only in conjunction with the File System Monitoring Hooks functions. The
handle returned is useful only for other FEQuick .. . functions.

See Also

FEQuickClose (page 97), FEQuickFileLength (page 99), FEQuickRead (page 103), FEQuickWrite
(page 105) NWAddFSMonitorHook (page 394), NWRemoveFSMonitorHook (page 397)

102 NDK: Multiple and Inter-File Services

FEQuickRead

Performs a quick read of data in a file on the local server
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.X, 5.x, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

int FEQuickRead (
LONG connection,
LONG handle,
LONG position,
LONG bytesToRead,
LONG “*bytesRead,
void “*buffer);

Parameters

connection

(IN) Specifies the connection reading the data.

handle

(IN) Specifies the handle of the file from which the data is being read.

position

(IN) Specifies the location in the file at which to start reading.

bytesToRead
(IN) Specifies the number of bytes to read.

bytesRead
(OUT) Points to number of bytes actually read.

buffer
(OUT) Points to the buffer into which the read data is stored.

Return Values

See Return Values for C for more information.

0 Success

File Engine Functions 103

NetWare errors

Remarks

FEQuickRead is designated "quick" because it bypasses some of the higher I/O levels in the server
libraries.

FEQuickRead is useful only in conjunction with the File System Monitoring Hooks functions and
other FEQuick functions. The lower level handle used with FEQuickRead is returned in
FEQuickOpen and is not valid for more conventional functions like read, write, or close.

When FEQuickRead is successful (returns 0), the number of bytes actually read is located in the
bytesRead parameter.

NOTE: It is the responsibility of the caller to keep track of and maintain the position parameter.

See Also

FEQuickClose (page 97), FEQuickFileLength (page 99), FEQuickOpen (page 101), FEQuickWrite
(page 105), NWAddFSMonitorHook (page 394), NWRemoveFSMonitorHook (page 397)

104 NDK: Multiple and Inter-File Services

FEQuickWrite

Performs a quick write of data in a file on the local server
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.X, 5.x, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

int FEQuickWrite (
LONG connection,
LONG handle,
LONG position,
LONG bytesToWrite,
void “*buffer);

Parameters

connection

(IN) Specifies the connection writing the data.

handle

(IN) Specifies the handle of the file to which the data is being written.

position

(IN) Specifies the location in the file at which to start writing.

bytesToWrite
(IN) Specifies the number of bytes to write.

buffer
(OUT) Points to the buffer into which the written data is stored.

Return Values

See Return Values for C for more information.

0 Success

NetWare errors

File Engine Functions 105

Remarks

FEQuickWrite is designated "quick" because it bypasses some of the higher I/O levels in the server
libraries.

FEQuickWrite is useful only in conjunction with the File System Monitoring Hooks functions and
other FEQuick functions. The lower level handle used with FEQuickWrite is returned in
FEQuickOpen and is not valid for more conventional functions like read, write, or close.

NOTE: It is the responsibility of the caller to keep track of and maintain the position parameter.

See Also

FEQuickClose (page 97), FEQuickFileLength (page 99), FEQuickOpen (page 101), FEQuickRead
(page 103)

106 NDK: Multiple and Inter-File Services

FERegisterNSPathParser

Registers a function to convert a pathname in a name space format to the NetWare format (volume
number, path, string, path count)

Local Servers: nonblocking
Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x
Platform: NLM

Service: File Engine

Syntax
#include <nwfileng.h>

int FERegisterNSPathParser (
T PathParseFunc parser) ;

Parameters

parser

(IN) Specifies the address of a function to be called by all other functions that require a
NetWare style pathname.

Return Values

Returns 0 if successful; otherwise, returns an error (see Return Values for C for more information).

Remarks

Before calling FERegisterNSPathParser, you must set the current name space to the appropriate
name space by calling SetCurrentNameSpace. Once the new path parser is registered, functions such
as open call the new path parser to translate the path parameter into its NetWare counterparts.

To reverse FERegisterNSPathParser, ensure that the current name space is the name space that was
in effect at the time that the parsing function was registered. Then call FERegisterNSPathParser,
passing NULL for the parser parameter. The previously registered parser will be deleted and the
default parser will be used.

When a path parse function has been registered, and conversion of a pathname to NetWare format is
required by a function, the registered name space path parser is called in place of the regular
NetWare API path parser.

The registered name space path parser must convert a pathname string into a NetWare pathname. A
NetWare pathname consists of a path string count and a string of elements (path). The count is the
number of elements that are in the path. Each element can be a length-preceded directory or
filename. The NetWare path, however, does not contain the server or volume information.

File Engine Functions 107

The following is an example of a NetWare path. The path string count is 3; it contains three elements
(dirl, dir2, and dir3).
\0x3dirl\0x3dir2\0x8filename

The prototype for the path parse function is in nwfileng.h and is defined as follows:
typedef int (*T_ PathParseFunc) (

const char *inputPath,

WORD *fileServerIDp,

int *volumeNumberP,

LONG *directoryNumberP,

BYTE *outPathStringP,

LONG *outPathCountP)
inputPath

(IN) Input path string to be parsed.

fileServerID
(OUT) File server ID of the server where the file is located.

volumeNumberP
(OUT) Volume number of the file.

directoryNumberP
(OUT) Directory number of the file.

outPathStringP
(OUT) Path string in NetWare format.

outPathCount
(OUT) Path string count.

See Also

SetCurrentNameSpace (page 452)

108 NDK: Multiple and Inter-File Services

FESetCWDNnum

Sets the current working directory (CWD) number (the default directory)
Local Servers: nonblocking

Remote Servers: nonblocking

NetWare Server: 3.x, 4.X, 5.x, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

LONG FESetCWDnum (
LONG CWDnum) ;

Parameters

CWDnum

(IN) Specifies the number of the directory that is to become the default directory for the current
thread group.

Return Values

This function returns the old CWD number.

Remarks

The FESetCWDnum function sets the directory number that is to be used as the default for parsing
pathnames that are not full pathnames.

See Also

FEGetCWDnum (page 75), FEGetCWVnum (page 76), FESetCW VandCWDnums (page 110),
FESetCWVnum (page 111)

File Engine Functions 109

FESetCWVandCWDnums

Sets the current working volume (CWV) number and the current working directory (CWD) the
default volume and directory

Local Servers: nonblocking
Remote Servers: nonblocking
NetWare Server: 3.x, 4.x, 5.x, 6.x
Platform: NLM

Service: File Engine

Syntax
#include <nwfileng.h>
LONG FESetCWVandCWDnums (

LONG CWVnum,
LONG CWDnum) ;

Parameters

CWVnum

(IN) Specifies the number of the volume that is to become the default volume for the current
thread group.

CWDnum

(IN) Specifies the number of the directory that is to become the default directory for the current
thread group.

Return Values

This function returns the old CWD number.

Remarks

The FESetCW VandCWDnums function sets the volume and directory numbers that are to be used as
the defaults for parsing pathnames that are not full volume paths.

See Also

FEGetCWDnum (page 75), FEGetCW Vnum (page 76), FESetCWDnum (page 109),
FESetCWVnum (page 111)

110 NDK: Multiple and Inter-File Services

FESetCWVnum

Sets the current working volume (CWV) number (the default volume)
Local Servers: nonblocking

Remote Servers: nonblocking

NetWare Server: 3.x, 4.X, 5.x, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

LONG FESetCWVnum (
LONG CWVnum) ;

Parameters

CWVnum

(IN) Specifies the number of the volume that is to become the default volume for the current

thread group.

Return Values

This function returns the old CWV number.

Remarks

The FESetCWVnum function sets the volume number that is to be used as the default for parsing

pathnames that are not full volume paths.

See Also

FEGetCWDnum (page 75), FESetCWDnum (page 109), FESetCW VandCWDnums (page 110)

File Engine Functions 111

FESetOriginatingNameSpace

Allows the user to set the originating name space of a directory entry
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

LONG FESetOriginatingNameSpace (
LONG volumeNumber,
LONG directoryNumber,
LONG dirNumNameSpace,
LONG newNameSpace) ;

Parameters
volumeNumber
(IN) Specifies the number of the volume on which the directory entry is located.

directoryNumber
(IN) Specifies the directory number of the entry to be changed.

dirNumNameSpace

(IN) Specifies the name space number corresponding with directoryNumber (see
Section 20.5, “Name Space Flag Values,” on page 625).

newNameSpace

(IN) Specifies the name space to be the new originating name space on the directory entry (see
Section 20.5, “Name Space Flag Values,” on page 625).

Return Values

See Return Values for more information.

0 Success
-1 Fail

other NetWare errors

112 NDK: Multiple and Inter-File Services

Remarks

FESetOriginatingNameSpace returns errors on 3.x because there is no OS support.
directoryNumber can be an entry number for any loaded name space.

dirNumNameSpace specifies in which name space the directoryNumber is located.

File Engine Functions 113

FEsopen

Opens a file for shared access
Local Servers: blocking

Remote Servers: blocking
NetWare Server: 3.x, 4.x, 5.x, 6.x
Platform: NLM

Service: File Engine

Syntax

#include <nwfileng.h>

int FEsopen (
char “*name,

int access,

int share,

int permission,
int flagBits,

BYTE dataStream) ;

Parameters

name

(IN) Points to the name of the file to be opened.

access

(IN) Specifies the access mode of the file.

share

(IN) Specifies the sharing mode of the file.

permission

(IN) Specifies the file permission (if the file is being created).

flagBits
(IN) Specifies the special flags that allow more file flexibility.

dataStream

(IN) Specifies the flag that indicates the data stream under which the file is to be opened.

Return Values

Returns a file handle upon success. Returns a value of -1, and errno and NetWareErrno are set
to the appropriate error codes if errors occur. See Return Values for C for more information.

114 NDK: Multiple and Inter-File Services

Remarks

FEsopen also works on the DOS partition and is a special version of the sopen function. Call the

sopen function if the primary data stream is requested rather than calling FEsopen.

FEsopen does not behave identically to the sopen function when only the O CREAT and

O_TRUNC bits are passed. You must also pass DELETE FILES ON_CREATE BIT to the

flagBits parameter in FEsopen which allows the file to be deleted and created again.

The access mode is established as a combination of bits found in the FCNTL.H file and valid values

follow:

O_RDONLY The file can only be read.

O_WRONLY The file can only be written.

O_RDWR The file can be read or written.

O_APPEND Records are written to the end of the file.

O_CREAT If the file does not exist, it is created.

O_TRUNC Any data in the file is truncated.

O_BINARY Data is transmitted unchanged. Text mode is not supported.

The sharing mode is established as a combination of bits found in the NWSHARE.H file and valid

values follow:

SH_COMPAT
SH_DENYRW
SH_DENYWR
SH_DENYRD
SH_DENYNO

Sets the compatibility mode.

Prevents read or write access to the file.
Prevents write access to the file.
Prevents read access to the file.

Permits both read and write access to the file.

NOTE: If a new file is created, the share flag is ignored.

If FEsopen opens a file for compressed file 1/0, the file must be opened in "exclusive mode" with
SH_DENYRW. Otherwise, FEsopen fails.

The permission mode is established as a combination of bits found in the SYS\STAT.H file and valid

values follow:

S_IWRITE
S_IREAD

The file is writeable.

The file is readable.

A value of 0 can be specified to indicate that the file is readable and writeable.

The flag bits are in nwfattr.h and valid values follow:

File Engine Functions 115

DELETE_FILE_ON_CREATE_BIT If the file already exists, it is deleted allowing the file to
be created again.

NO_RIGHTS_CHECK ON_ OPEN_BIT The rights to the file are not checked when the file is
opened.

NO_RIGHTS_CHECK_ON_ CREATE_BIT The rights to the file are not checked when the file is

created.
FILE_ WRITE_THROUGH_BIT When a write is performed, the write function does not
return until the data is actually written to disk.
ENABLE_IO_ON_COMPRESSED _ Any subsequent I/O on this entry is compressed
DATA _BIT (NetWare 4.x, 5., and 6.x).

LEAVE_FILE_ COMPRESSED_DATA BIT After all I/O has been done, leave this file compressed
(NetWare 4.x, 5.x, and 6.x).

NOTE: If the flag is set to ENABLE 10 ON COMPRESSED DATA BIT or
LEAVE FILE COMPRESSED DATA BIT (can be ORed), the share parameter must be set to
SH DENYRW or FEsopen fails.

The dataStream parameter is a constant defined in nwfattr.h indicating which of the data streams
(streams of data stored as separate files on the volume) associated with a file stored on a NetWare
3.x or above server is to be opened. The defined data streams are PrimaryDataStream,
MACResourceForkDataStream, and FTAMStructuringDataStream.

See Also

close, sopen (Single and Intra-File Services)

116 NDK: Multiple and Inter-File Services

File System Concepts

This documentation describes File System, its functions, and features.

File System functions enable developers to manipulate NetWare file system information. The
principle operations performed by File System functions include:

* Accessing files

¢ Accessing directory entry information

¢ Managing disk space

¢ Monitoring file usage

¢ Managing trustees

You need to be aware of compatibility issues affecting specific functions. To verify a function’s
compatibility, see the specific reference for that function.

Functions beginning with NWInt, such as NWIntScanFileInformation2 (page 245), support
wildcard augmentation of filename parameters. Functions ending with integers such as 2 or 3
include support for more recent file system features (such as long names).

8.1 Directory Entries

Volume Directory Entry Tables contain volume files and directories. Consequently, both files and
directories are referred to as directory entries. If additional name spaces are loaded on a volume, a
file or directory has a directory entry in each name space. However, DOS is the server’s primary
name space. Therefore, every file or directory is represented by a DOS directory entry:

¢ “Directory Entry Information” on page 117

¢ “Directory Entry Information Access” on page 118

+ “Directory Entry Attributes” on page 118

¢ “Directory Entry Functions” on page 119

¢ “Directory Information Functions” on page 119

8.1.1 Directory Entry Information

The term "directory entry information" is used loosely to refer to the DOS information associated
with a file or directory. The file system uses directory entry information to maintain the file or
directory entry. Some of the more significant items included in directory entry information are the
following:

¢ Short name

¢ Directory entry attributes

¢ Owner ID

¢ Inherited rights mask

+ Entry event dates and times

File System Concepts 117

Additional information is also included depending on whether the entry is a file or directory. For
example, file size is returned for files and maximum space is returned for directories.

8.1.2 Directory Entry Information Access

How you access directory entry information depends on which version of NetWare® is running on
the server.

NetWare 3.11 introduced multiple name space support to the NetWare file system. The set of trustee
rights was modified and additional file attributes were added. The inherited rights mask now applies

to files as well as directories.

See the “Accessing File Information for 3.11 and Above” on page 132 task.

8.1.3 Directory Entry Attributes

Directory entry attributes are commonly known as file flags (though they also can pertain to

directories). They have wide influence over the events that can or will be performed on a directory

or file entry. The following table lists the attributes and explains their function:

Table 8-1 Directory Entry Attributes

Attribute Bit Value Application Comment
A_READ_ONLY 0x00000001L Files only. Entry can’t be written, deleted or
renamed.
A_HIDDEN 0x00000002L Files and Entry doesn’t appear in a normal
directories. directory listing.
A_SYSTEM 0x00000004L Files and Entry is used by the system and
directories. is hidden.
A_EXECUTE_ONLY 0x00000008L Files only. Entry can be loaded for
execution only once.
A_DIRECTORY 0x00000010L Files and Entry is a directory, not a file.
directories.
A_NEEDS_ARCHIVED 0x00000020L Files only. Entry has been changed since
last archived.
A_SHAREABLE 0x00000080L Files only. Entry can be opened by multiple
clients.
A_DONT_SUBALLOCATE 0x00000800L Files only. Afile is stored in its own
separately allocated memory for
ease of access.
A_TRANSACTIONAL 0x00001000L Files only. A transaction on the entry is
being tracked.
A_INDEXED 0x00002000L Files and Not in use. Provided for
directories. compatibility only.
A_READ_AUDIT 0x00004000L Files and Not in use.
directories.

118 NDK: Multiple and Inter-File Services

Attribute Bit Value Application Comment
A_WRITE_AUDIT 0x00008000L Files and Not in use.
directories.
A_IMMEDIATE_PURGE 0x00010000L Files and Entry will be purged when
directories. deleted.
A_RENAME_INHIBIT 0x00020000L Files only. Entry can’t be renamed.
A DELETE_INHIBIT 0x00040000L Files and Entry can’t be deleted.
directories.
A_COPY_INHIBIT 0x00080000L Files only. Entry can’t be copied.
A_FILE_MIGRATED 0x00400000L Files only. Entry has been migrated.
A_DONT_MIGRATE 0x00800000L Files only. Entry should not be migrated.
A_IMMEDIATE_COMPRESS 0x02000000L Files only. Entry should be compressed
when written.
A_FILE_COMPRESSED 0x04000000L Files only. Entry is compressed.
A_DONT_COMPRESS 0x08000000L Files only. Entry should not be
compressed.
A_CANT_COMPRESS 0x20000000L Files only. Entry can’t be compressed.

8.1.4 Directory Entry Functions

These functions access directory entry information. Some of these functions have older versions that

are being phased out. Although both work, Novell recommends using the newer version.

NWIntMoveDirEntry

NWiIntScanDirectoryInformation2

NWiIntScanDirEntryInfo

NWIntScanExtendedInfo
NWIntScanDirEntrylnfo
NWiIntScanExtendedInfo
NWSetDirEntrylnfo

NWIntMoveDirEntry

Moves or renames a directory entry (file or directory) on the
same server.

Returns directory information for a directory specified by the
connection handle.

Obtains information about 3.x, 4.x, 5.x, and 6.x directory
entries (files or directories.

Scans directory for the extended file information.

Scans a 3.11 directory for directory entry information.
Scans a directory for extended directory entry information.
Modifies information for a directory entry.

Moves or renames a directory entry. The destination must be
on the same NetWare® server.

8.1.5 Directory Information Functions

These functions are provided to access the rest of the available information for 3.11 servers and

above:

File System Concepts

119

NWModifyMaximumRightsMask Modifies a directory’s inherited rights mask.
NWiIntScanDirectoryInformation2 Returns directory information for the specified directory.

NWSetDirectorylnformation Changes information about the specified directory.

8.2 Directory Handles

Directory Handles identify individual directories.

A NetWare® server maintains a Directory Table for each workstation connection. This table is an
array of 256 slots, each of which can point to a volume or a volume and directory path. For the DOS
client, the server allocates a directory slot for each drive the workstation maps. The workstation can
also request that the server enter a directory slot into the table without a drive mapping.

For each directory the NetWare server enters into the table, the server returns an index to the
workstation. This value (from 1 to 256) is referred to as the directory handle. The handle provides a
convenient method for referring to the associated directory.

There are several ways to acquire a directory handle for a given directory path. You can use an
existing handle as is, you can modify a handle’s associated path, or you can allocate a new handle.
See the following tasks:

¢ “Allocating a Directory Handle” on page 131

¢ “Accessing a Directory Handle” on page 131

8.2.1 Directory Handle Functions

These functions read and manipulate directory handles. Note that many of the functions work with
both regular and short directory handles.

NWAIllocPermanentDirectoryHandle Allocates a permanent directory handle and returns the
caller’s effective rights to the associated directory.

NWAIllocTemporaryDirectoryHandle Allocates a temporary directory handle and returns the
caller’s effective rights to the associated directory.

NWDeallocateDirectoryHandle Deallocates a directory handle.

NWGetDirectoryHandlePath Returns the path name of the directory associated with
the given directory handle.

NWSetDirectoryHandlePath Sets the path name of the directory associated with the
given directory handle.

8.3 File and Directory Paths

From the client point of view, a complete NetWare file path includes the names of the NetWare
server, the volume, any parent directories, and the file itself. For example, in the following file path
FS1 is the server, SYS is the volume, DOC and REPORT are directories, and CHAP1.TXT is the
filename:

FS1/SYS:DOC/REPORT/CHAPL.TXT

120 NDK: Multiple and Inter-File Services

NetWare accepts forward slashes or back slashes between the components of a file path.

WARNING: All filenames and path parameters must be consistent with the name space used to
access the directory entry. For DOS names, all characters should be upper case. Generally, directory
handles and path names are expected to follow DOS conventions unless you are running a different
OS and the corresponding name space is loaded for the specified volume.

¢ “Wildcard Characters” on page 121
¢ “Search Attributes” on page 121
¢ Section 8.3.3, “UTF-8 Path and Filenames,” on page 121

Also see the “Combining a Path and Directory Handle” on page 131 task.

8.3.1 Wildcard Characters

Many functions accept wildcard characters within a filename parameter. For example, with
NWIntEraseFiles (page 225) the file path can include wildcard characters, in which case a single
request is able to erase multiple files. The following table shows the wildcard characters supported
by NetWare®.

Asterisk: Zero or more characters.

? Question mark: Any single character.

8.3.2 Search Attributes

Functions operating on directory entries typically include a search attribute. The attribute specifies
the type of entries to include in the operation. The search attribute lets you include system and
hidden files and files in subdirectories.

For functions that can operate on both directories and files, typically do one to the exclusion of the
other. For these functions, the search attribute lets you specify whether to operate on files or
directories. Below are the possible bits defined by the search attribute:

0x0000 SA_ NORMAL
0x0002 SA_HIDDEN
0x0004 SA_SYSTEM
0x0010 SA_SUBDIR_ONLY
0x8000 SA_SUBDIR FILES
0x8006 SA_ALL

8.3.3 UTF-8 Path and Filenames

NSS volumes store file and directory names in Unicode. NetWare 6.5 SP2 has added an NCP that
allows you to access these names directly in UTF-8 (a Unicode encoding), rather than converting
them to the server's or the client's code page. This functionality prevents the potential mangling of
characters when the client and the server are using different code pages.

File System Concepts

121

To use this functionality, the following requirements must be met:

The files and directories must reside on an NSS volume.

The server operating system must be NetWare 6.5 SP2 or later. This version adds a new set of
file system NCPs: 0x2222 §89.

You must use the new file system functions and pass all path and filenames as UFT-8 strings.

For client applications, the NetWare client must be version 4.90 SP2 or later. This version is
available only for Windows 2000 and Windows XP clients

If one of these new function fails because one or more of the requirements are not met, the function
converts the strings to the local code page and tries again using the old NCPs.

The following functions have been added for obtaining file system information:

*

*

NWAIllocTempNSDirHandle2Ext (page 464)
NWDeleteNSEntryExt (page 468)
NWGetDirectoryBaseExt (page 477)
NWGetLongNameExt (page 483)
NWGetNSEntryInfoExt (page 492)
NWGetNSPathExt (page 508)
NWIntScanFileInformation2Ext (page 248)
NWNSRenameExt (page 522)
NWOpenCreateNSEntryExt (page 527)
NWOpenNSEntryExt (page 536)
NWReadNSInfoExt (page 545)
NWScanNSEntryInfoExt (page 556)
NWSetNSEntryDOSInfoExt (page 583)
NWWriteNSInfoExt (page 592)

The following functions have been added for managing trustees and effective rights:

NWAddTrusteeExt (page 156)

NWDeleteTrusteeExt (page 182)

NWGetEffectiveRightsExt (page 210)
NWGetObjectEffectiveRightsExt in the Bindery Management manual
NWIntScanForTrusteesExt (page 255)
NWScanObjectTrusteePathsExt in the Bindery Management manual

The following functions have been added for salvaging deleted files:

*

*

NWRecoverDeletedFileExt (page 52)
NWScanForDeletedFilesExt (page 57)

The following functions have been added for managing extended attributes (found in the Single and
Intra-File Services manual):

*

NWCloseEAExt

122 NDK: Multiple and Inter-File Services

¢ NWFindFirstEAExt

+ NWFindNextEAExt

¢+ NWGetEAHandleStructExt
* NWOpenEAEXxt

¢+ NWReadEAExt

* NWWriteEAExt

8.4 File Access

NetWare supports standard DOS services in addition to some specialized functions for accessing
NetWare files. Typically, the only difference between accessing a NetWare file and a DOS file is that
a NetWare file path includes server and volume names. For high level languages such as C, you can
access files using the language’s standard I/O functions. Similarly, in assembly language you can
use the standard DOS functions.

File System Services supplement standard file IO facilities with functions that perform single-server
operations. These functions can help reduce network traffic since the source and destination of the
operations are contained within a single server. For NetWare 3.11 and above these functions operate
on a file or a subdirectory:

+ NWrFileServerFileCopy (page 188) copies a file or a portion of a file to a new location on the
same server.

+ NWRenameFile (page 263) moves or renames a file on the same server.

+ NWintEraseFiles (page 225) erases NetWare system and hidden files. See “Deleting Files” on
page 133.

8.5 File l/O

File I/O functions provide the ability to perform the following tasks:

+ Convert local file handles to NetWare® file handles
+ Convert NetWare file handles to local file handles

See “Converting File Handles” on page 132 for information on how to perform these tasks.

8.6 Inheritance

Rights assigned to a trustee in the parent directory apply to all subordinate directories. This is
referred to as inheritance. The trustee does not need to appear in the trustee list of a subordinate
directory to receive these rights.

There are a few ways to block inheritance:

¢ The trustee may be assigned new rights in a subordinate directory (thus overriding the inherited
rights).
¢ The Inherited Rights Mask for the directory (or file) can be modified to include specific rights.

¢ The Maximum Rights Mask for the directory can be modified to exclude specific rights for all
users.

File System Concepts

123

When a file or directory is created, its Inherited Rights Mask includes all rights. Any rights removed
from the inherited rights mask can’t be inherited. An exception is the TR SUPERVISOR bit, which
can’t be masked by an Inherited Rights Mask.

The Inherited Rights Mask is stored with directory entry information. See “Directory Entry
Information Access” on page 118 for a description of functions that read and modify this
information.

The Maximum Rights Mask applies only to directories and affects all user's rights for a particular
directory. While the Inherited Rights Mask is usually used to assign specific rights to a trustee, the
Maximum Rights Mask is used to exclude specific rights—whether assigned or inherited—for all
users in a specified directory.

8.7 Effective Rights

Effective rights take into account a directory's maximum rights and a trustee’s assigned rights,
inherited rights, and security equivalences to find the rights a trustee can exercise for a particular file
or directory. To find the effective rights for a file or directory under your current object ID, call
NWGetEffectiveRights (page 207).

The Maximum Rights Mask affects all user's rights for a particular directory (see Section 8.6,
“Inheritance,” on page 123).

An assigned rights mask takes precedence over any inherited rights. It can remove rights that would
have been inherited or grant new rights that would not have been inherited. A trustee’s assigned
rights are not affected by an Inherited Rights Mask. Consequently, the computation of effective
rights depends on whether rights are assigned or inherited:

¢ [fa trustee has an assigned rights mask, effective rights are computed by ORing the trustee’s
rights mask with any assigned rights mask of objects that the trustee is equivalent to in the
bindery.

+ [fthe trustee does not have assigned rights (either directly or through equivalence) in a given
directory, the trustee inherits rights assigned (directly or through equivalence) in a superior
directory. These rights are limited by the Inherited Rights Mask. The effective inherited rights
are computed by ORing the trustee’s inherited rights with any equivalent inherited rights, then
ANDing the result with the Inherited Rights Mask.

8.8 Trustees

Directory trustees are network users assigned access rights to a directory or file. Trustees are
identified by their object ID. Access rights at both the directory and files level are expressed as a bit
mask.

8.8.1 Trustee Rights

The following trustee rights are defined for NetWare® 3.11 and above.

0x0001 TR_READ
0x0002 TR_WRITE
0x0004 undefined
0x0008 TR_CREATE

124 NDK: Multiple and Inter-File Services

0x0010 TR_DELETE

0x0020 TR_ACCESS_CTRL
0x0040 TR_FILE_SCAN

0x0080 TR MODIFY

0x0100 TR_SUPERVISOR

The following table compares the privileges associated with trustee rights when assigned at the
directory level and at the file level.

Table 8-2 Directory and File Trustee Rights

Right Directory Level File Level

TR_READ Trustee can open and read the Trustee can open and read the
directory. files.

TR_WRITE Trustee can open and write to the Trustee can open and write to the
directory. file.

TR_CREATE Trustee can create entries in the Trustee can salvage the file after
directory. deletion.

TR_ERASE Trustee can remove entries from the Trustee can erase the file.

TR_ACCESS_CTRL

TR_FILE_SCAN

TR_MODIFY

TR_SUPERVISOR

directory.

Trustee can grant trustee rights and
modify inheritance for the directory.

Trustee can scan for directory entries.

Trustee can modify directory attributes
and rename entries.

Trustee has all rights to the directory.

Trustee can grant trustee rights
and modify inheritance for the file.

Trustee can see the file when
scanning.

Trustee can modify the file’s
attributes (but not its content).

Trustee has all rights to the file.

8.8.2 Trustee Functions

These functions operate on directories or files and so are oriented more toward NetWare® 3.11 and
above:

¢ NWAddTrustee (page 153)
¢ NWDeleteTrustee (page 180)
¢ NWIntScanForTrustees (page 251)

These functions operate on directories only and cannot read or set the TR._SUPERVISOR bit:

+ NWAddTrusteeToDirectory (page 158)

¢+ NWDeleteTrusteeFromDirectory (page 184)
¢ NWScanDirectoryForTrustees2 (page 269)
¢ NWIntScanForTrustees (page 251)

File System Concepts

125

8.9 NLM File Information

Each network file has directory information associated with it which is stored in the server’s
Directory Entry Table (DET).

A file’s directory information consists of the file’s size, attributes, creation date, date of last access,
date and time the file was last modified, and the date and time the file was last archived. It also
includes the owner’s object ID, object IDs of up to 6 trustees, trustee rights mask for up to 6 trustees,
Inherited Rights Mask, etc:

+ “File Attributes” on page 127

¢ “Extended File Attributes” on page 128

¢ “Directory Entry Table” on page 128

+ “Volume Table” on page 129

The file attributes contains the information obtained by the NetWare® FLAG utility: read-only
versus read/write, sharable versus nonsharable, etc.

A file’s directory information can be set by calling SetFilelnfo (page 320). In addition,
GetExtendedFileAttributes (page 147) and SetExtendedFileAttributes (page 318) respectively
obtain and set a part of a file’s attributes called extended file attributes.

An application can call SetFileInfo (page 320) to set specific file information such as

¢ creationDateAndTime—Creation date of the file (DOS format; 4 bytes)
¢ fileAttributes—TFile attributes to be assigned to the file

¢ fileOwnerID—Unique Bindery object ID of the file’s owner (the name and Bindery object
type of the file owner can be obtained by calling NWGetObjectName (NDK: Bindery
Management).

¢ lastArchiveDateAndTime—Last archived date and time of the file (DOS format; 4
bytes)
¢+ lastUpdateDateAndTime—Last update date and time of the file (DOS format; 4 bytes).

The creationDateAndTime, lastAccessDate, lastArchiveDateAndTime, and
lastUpdateDateAndTime parameters require a little interpretation. ConvertTimeToDOS and
_ConvertDOSTimeToCalendar can be used to manipulate DOS times.

¢ The creationDateAndTime parameter consists of 4 bytes indicating the hour, minute,
second, year, month, and day that the file was created.

¢ The lastAccessDate parameter consists of 2 bytes indicating the year, month, and day that
the file was last accessed.

¢ The lastUpdateDateAndTime and lastArchiveDateAndTime parameters consist
of 4 bytes indicating the hour, minute, second, year, month, and day that the file was last
modified or archived, respectively. The first 2 bytes of each parameter contain the year, month,
and day fields, the same as the 1astAccessDate parameter. The hour, minute, and second
fields are in the second 2 bytes of each parameter:

The following figure illustrates which byte contains which element of the date and time information.

126 NDK: Multiple and Inter-File Services

Figure 8-1 Date and Time Format

Byte 1 Byte 0
Year Month Day
7 5|4(3]|2 0|7|86]|5 3 2110
Byte 3 | Byte2
Hour Minute Seconds x 2
7 5(4(3]2 0|7|6]|5 g 911 0

8.9.1 File Attributes

The file attributes are contained in a 4-byte field within the file’s directory entry stored in the
volume’s DET. The attributes bytes (bytes 0 to 3) consist of flag bits whose settings can be modified.

The low-order file attribute byte contains flag bits similar to the DOS attribute byte. A client must

have Modify rights to change the setting of bits in the file attribute bytes.

When set, the bits in the low-order attribute byte (byte 0) have the following meanings:

0 Read Only Bit

1 Hidden Bit

2 System Bit

3 Execute Only Bit
4 Subdirectory Bit
5 Archive Bit

6 Undefined

7 Share Bit

The following table gives the attribute bits that are set for each possible mode setting (the A
constants are defined in DIRECT.H):

Mode Attributes

None _A EXECUTE _A _NODELET _A_ NORENAM _A SYSTEM
R _A_RDONLY _A_NODELET _A_NORENAM

w _A_HIDDEN _A_NODELET _A_NORENAM

X _A_EXECUTE

RW None

RX _A_RDONLY _A_NODELET _A_NORENAM

WX _A HIDDEN _A_NODELET _A_NORENAM

RWX None

File System Concepts 127

The access and chmod functions indirectly work on the attributes in byte 0. The attribute bits in this
byte are used to emulate what is called the mode of the file under UNIX.

8.9.2 Extended File Attributes

The GetExtendedFileAttributes (page 147) and SetExtendedFileAttributes (page 318) functions
obtain and set the second file attribute byte (byte 1) by passing a file path and extended file attributes
byte.

The bits in byte 1 have the following meanings:

3 Don't suballocate bit (set this bit to disallow suballocation on this entry)
4 Transaction bit (used by TTS)

6 Read audit bit (unused)

7 Write audit bit (unused)

The Index file attribute is no longer supported since all the files are automatically indexed when they
have 64 or more regular File Allocation Table (FAT) entries and are randomly accessed.

The following bits are defined for byte 2:

0 Immediate purge bit

1 Rename inhibit bit

2 Delete inhibit bit

3 Copy inhibit bit

7 Data migration inhibit bit

NetWare 4.x, 5.X, and 6.x also definethe following attributes in byte 3:

0 Data save key (used for data migration)

1 Immediately compress file (or all files in subdirectory)
2 Data stream compressed

3 Do not compress this entry

4 Create a hard link entry (for NFS)

5 Cannot compress data stream

6 Attribute archive bit

8.9.3 Directory Entry Table

To record information about directories and files, a server maintains a Directory Entry Table (DET).
The DET consists of several types of 128-byte entries, including directory nodes, file nodes, and
trustee nodes.

A directory node includes the following information about a directory: directory name, attributes,
inherited rights mask, creation date and time, creator’s object ID, a link to the parent directory, and a
link to a trustee node (if one exists). It also includes a name space indicator, last archived date and
time, last modification date and time, up to 8 trustee object IDs, up to 8 trustee rights masks.

A file node includes the following information about a file: filename, attributes, file size, creation
date and time, deletion date and time, owner’s object ID, object ID of the object that performed the
last deletion, object IDs of up to 6 trustees, trustee rights mask for up to 6 trustees, inherited rights
mask, last-accessed date, last-updated date and time, and a link to a directory.

128 NDK: Multiple and Inter-File Services

A trustee node includes the following information: the object IDs of 2 to 16 trustees of a directory
linked to the trustee node, 2 to 16 corresponding trustee rights masks, a link to a directory, and a link
to the next trustee node (if one exists).

8.9.4 Volume Table

To record information about volumes, a server maintains a Volume Table that includes the number
of volumes mounted in the server, the name, size, and other information pertaining to each volume.
Functions that return information about volumes access the Volume Table.

8.10 Directory Task Functions

These functions create, delete, and rename directories:

NW(CreateDirectory Creates a NetWare® directory on the specified NetWare server.
NWDeleteDirectory Deletes a NetWare directory.
NWRenameDirectory Renames a NetWare directory.

8.11 Directory Space Functions

These functions access directory space limits and return directory space information:

NWGetDirSpaceLimitList Returns the actual space limitations for a directory.
NWGetDirSpacelnfo Returns directory space information.
NWSetDirSpaceLimit Limits the space available on a specified directory.

8.12 File Handle Conversion Functions

These functions provide the ability to convert between local and NetWare® file handles:

NWConvertFileHandle Converts a local file handle to a NetWare file handle.

NWConvertHandle Converts a NetWare file handle to a local file handle.

8.13 File Information Functions

These functions search for files, access file information, and monitor file usage. Some of these
functions have older versions that are being phased out. Although both work, Novell® recommends
using the newer version.

NWGetSparseFileBitMap Returns a bit map showing which blocks in a sparse file contain
data.

NWiIntFileSearchContinue Performs a search operation for files on the specified volume.

NWiIntFileSearchlinitialize Initializes a search operation for files on the specified volume.

NWGetExtendedFileAttributes2 Returns the extended attributes for the specified file.

File System Concepts

129

NWGetFileConnectionlD Returns the connection ID of the NetWare server that owns the
specified file handle.

NWiIntScanFileInformation2 Scans the specified directory for the specified file and returns
the file’s directory entry information.

NWSetCompressedFileSize Attempts to set the logical file size for a compressed file.
NWSetExtendedFileAttributes2 Modifies the extended attributes for the specified file.
NWSetFileAttributes Modifies the attributes for the specified file.
NWSetFilelnformation2 Modifies file information for the specified file.

8.14 File Task Functions

These functions erase, copy, and rename files on a NetWare® server. Some of these functions have
older versions that are being phased out. Although both work, Novell® recommends using the
newer version.

NWiIntEraseFiles Deletes NetWare files from a server.

NWFileServerFileCopy Copies from one file to another. The source and target directories
must be on the same NetWare server.

NWiIntEraseFiles Deletes NetWare files from the server.
NWiIntFileSearchContinue Iteratively retrieves all directory entries matching searchPath.
NWRenameFile Moves or renames a file.

8.15 File Usage Functions

These functions return file usage statistics:

NWScanConnectionsUsingFile Returns a list of workstation connection numbers for connections
using the specified file.

NWScanOpenFilesByConn2 Returns information for files currently opened by the specified
connection.

130 NDK: Multiple and Inter-File Services

File System Tasks

This documentation describes common tasks associated with File System.

9.1 Directory-Based Tasks

These tasks help access and manage a directory:

+ “Allocating a Directory Handle” on page 131
¢ “Accessing a Directory Handle” on page 131
¢ “Combining a Path and Directory Handle” on page 131

¢ “Accessing File Information for 3.11 and Above” on page 132

9.1.1 Allocating a Directory Handle

Directory handles can be permanent or temporary. A temporary handle is deleted as soon as the
process that allocated the handle terminates. Permanent handles persist until the connection is closed
or a process specifically deallocates them.

Separate functions allocate temporary and permanent directory handles:

¢+ NWAllocPermanentDirectoryHandle (page 164)
+ NWAIllocTemporaryDirectoryHandle (page 166)
Call NWDeallocateDirectoryHandle (page 176) to deallocate a directory handle. It is especially

important to deallocate permanent handles since they can remain after your application terminates.

9.1.2 Accessing a Directory Handle

A pair of functions read and modify the file path associated with a directory handle:

¢ NWGetDirectoryHandlePath (page 196)
+ NWSetDirectoryHandlePath (page 278)

9.1.3 Combining a Path and Directory Handle

Many functions allow you to combine a path with a directory handle to specify a file or directory. If
the directory handle parameter is a nonzero value, these functions generally interpret the path
relative to the directory associated with the handle. Including a directory handle with a file operation
can reduce the amount of space required to store the path variable.

File System Tasks

131

9.1.4 Accessing File Information for 3.11 and Above

File System Services provide access to directory entry information in the DOS name space. (Name
Space Services provide access to entry information in other name spaces.) A pair of functions read
and set directory entry information:

¢ NWIntScanDirEntryInfo (page 239) reads directory entry information.

¢+ NWSetDirEntryInfo (page 284) modifies directory entry information.
These functions operate on NetWare® 3.11 and above only. They use three structures to pass

directory entry information across the NetWare interface: NWENTRY INFO (page 361),
NWFILE INFO (page 365), and NWDIR _INFO (page 359).

The following code calls NWSetDirEntryInfo (page 284) to return some information about either a
file or a directory. The command line supplies the directory path and search string, and also indicates
whether to scan for files or directories. For example, if you want file directory entry information and
PROG is the name of the executable, FS1 is the server, DIR1 is the directory, and *.* is the search
string for files, the command line would be:

PROG FS1:\DIR1l *.*

If you want directory information the command line would be:
PROG FS1:\DIR1 * /d

NWParseNetWarePath (page 652) finds the connection handle, and
NWAIllocTemporaryDirectoryHandle (page 166) gets a directory handle to the input path.
NWSetDirEntryInfo (page 284) is then called until it returns an error. Results are displayed for each
entry found. The inherited rights mask is shown for directories, and the file attributes are shown for
files.

9.2 File-Based Tasks

These tasks help you manage NetWare files:

¢ “Locating Files” on page 132
¢ “Converting File Handles” on page 132
¢ “Deleting Files” on page 133

9.2.1 Locating Files

The beginning and ending of NetWare® files can be located using Iseek found with most C
compilers.

9.2.2 Converting File Handles

The two basic types of file handles generated in the network environment are local file handles and

NetWare® file handles. Local file handles are created and accessed by the local OS running on an

individual workstation. NetWare file handles are created for files on the network and are accessed by

the NetWare OS. Two functions convert these two types of file handles from one form to the other:
+ NWConvertFileHandle (page 169)

+ NWConvertHandle (page 171)

132 NDK: Multiple and Inter-File Services

NWConvertFileHandle (page 169) converts a file handle allocated by a local OS to a four-byte or
six-byte NetWare file handle. Along with returning the NetWare handle, this function also returns
the references of the connection containing the NetWare handle. NW ConvertFileHandle (page 169)
does not create a NetWare file handle, rather it returns an existing NetWare handle. Therefore the
function will fail if the local file handle is not associated with a NetWare file.

NWConvertHandle (page 171) creates a local file handle from a NetWare file. This function should
be called only once per file because it creates a new local file handle and allocates resources each
time it is called. The local file handle should be closed using the local OS’s close file call.

9.2.3 Deleting Files

NetWare® files can be deleted on a server using NWlntEraseFiles (page 225).

9.3 Disk Space Management Tasks

With NetWare® 3.11 and above, you can control the total amount of space available within a
directory and monitor usage for each connection.

9.3.1 Limiting Directory Space

NetWare® 3.11, 3.12, 4.x, 5.x, and 6.x servers let you restrict the amount of space allocated to a
directory. Directory space limits are specified in 4K blocks. A pair of functions read and set
directory space limits:

¢+ NWGetDirSpaceLimitList (page 202) returns the space limit for a directory.
¢ NWSetDirSpaceLimit (page 288) sets a directory’s space limit.

9.3.2 Monitoring File Usage

File System includes two functions that monitor file usage on a connection basis:

¢+ NWScanConnectionsUsingFile (page 267) scans for a list of connections using a specified file.
It returns CONNS_USING_FILE (page 340) to give the various counts for the file, such as the
use count and the open count. For each connection accessing the file, the task number, lock
status, and access control are also included.

¢+ NWScanOpenFilesByConn2 (page 272) scans for a list of files opened by a specified
connection. It returns an OPEN_FILE CONN (page 367) structure identifying the file, and
includes information such as the lock status and access control.

These functions are compatible with NetWare® 3.x and above although there are some differences
in the information returned across versions.

9.4 Trustee Tasks

Duplicate functions exist for adding, deleting, and scanning trustees. One group of functions
operates both on directories and files; the other operates only on directories.

File System Tasks

133

9.4.1 Adding and Deleting File System Trustees

To add to or delete from a file or directory’s trustee list, you supply the path specification and a
trustee object ID. When adding a trustee you also specify the trustee’s rights mask. Only static
objects can be added as trustees. If the added object is a trustee already, the trustee’s current rights
mask is replaced by the new one.

9.4.2 Scanning File System Trustees

You can scan for trustees across multiple directories. When you scan for trustees, trustee information
is returned as an array of TRUSTEE INFO (page 379). (NWIntScanForTrustees (page 251) nests
this structure within NWET INFO (page 363).) Information for up to 20 trustees can be returned per
iteration.

9.5 NLM-Based Tasks

These two tasks assist you in managing file systems with NLMs:

* “Accessing Files on a Server (NLM)” on page 134
¢ “Purging and Salvaging Files (NLM)” on page 135

9.5.1 Accessing Files on a Server (NLM)

Most NetWare® File functions identify files by a file path. The file path can be an absolute with a
volume name or it can be relative to the current working directory (CWD):

+ Absolute Path—Specify the entire path to the target directory or file as the pathName
parameter.

+ Relative Path—Specify a current working directory (CWD) using chdir. Then specify a
directory or file path as the pathName parameter. The full path to the target directory or file is
the concatenation of the CWD parameter followed by the pathName parameter.

File Services functions do not require a server name as a parameter. The target server is always the
server to which the NLM™ application is currently logged in (or connected in the case of the local
server).

File paths can be up to 255 bytes and must be NULL-terminated. When specifying a file to a File
Services function, format the file path as follows:

volume:directory\...\directory\filename

The volume name can be up to 16 characters long and must include a terminating colon (:). The
name cannot include spaces or the following characters:

* Asterisk

? Question mark
Colon

\ Backslash

/ Slash

134 NDK: Multiple and Inter-File Services

Filenames and directory names on the network are represented as strings with periods embedded as
normal characters. Filenames and directory names can be from 1 to 8 characters and can include a 1
to 3 character extension.

Some NetWare File functions accept wildcard characters in filenames. NetWare supports a larger set
of wildcard characters than does DOS.

The following wildcard characters can be used:

An asterisk matches zero or more characters. The pattern * therefore matches any string
without an extension. The pattern *.* matches anything.

The network wildcard substitution algorithm is implemented as follows:

¢ All characters except the wildcard characters are treated as normal characters.

¢ In a search pattern, the wildcard characters must match the characters recorded in the file and
directory names on the network.

9.5.2 Purging and Salvaging Files (NLM)

An application can mark files for deletion with remove (page 309) or unlink (page 332). These
functions cause files to be marked for deletion. A file marked for deletion is not automatically
erased until another file needs the space it occupies. The NetWare® 3.x and above OS saves deleted
files (and all information about those files) in their original directory until the server runs out of disk
allocation blocks on the volume or until the files marked for deletion are purged.

The SalvageErasedFile (page 314) function can be used to salvage a file that has been marked for
deletion. The PurgeErasedFile (page 305) function can be used to permanently delete a file marked
for deletion. Files deleted with PurgeErasedFile (page 305) cannot be recovered.

See Salvaging Files: Example (NDK: Sample Code).

File System Tasks 135

136 NDK: Multiple and Inter-File Services

File System Functions

This documentation alphabetically lists the File System functions and describes their purpose,
syntax, parameters, and return values.

10.1 A*-M* Functions

Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

*

*

*

*

“access” on page 138

“chdir” on page 140

“chmod” on page 141

“closedir” on page 143
“FileServerFileCopy” on page 144
“getcwd” on page 146
“GetExtendedFileAttributes” on page 147

~makepath” on page 149
“mkdir” on page 151

File System Functions 137

dCCess

Determines whether a file or directory exists and if it can be accessed
Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

Service: File System

Syntax

#include <unistd.h>

int access (
const char *path,
int mode) ;

Parameters

path

(IN) Specifies the string containing the path that includes the file or directory to be accessed
(maximum 255 characters, including the NULL terminator).

mode

(IN) Specifies the access permission mode for the file.

Return Values

Returns 0 if the file or directory exists and can be accessed with the specified mode. Otherwise, it
returns a value of -1. If an error occurs, the errno parameter is set.

Remarks

access also works on the DOS partition.

access determines if the file or directory specified by the path parameter exists and if it can be
accessed with the file permission given by the mode parameter.

When the mode parameter is 0, only the existence of the file is verified. The read and/or write and/
or execute permission for the file can be determined when the bits of the mode parameter are a
combination of the following:

0 F_OK: File existence
1 X_OK: Execute permission
2 W_OK: Write permission

138 NDK: Multiple and Inter-File Services

4 R_OK: Read permission

The result is dependent on the current connection number.

The SetCurrentNameSpace function sets the name space which is used for parsing the path input to
this function.

NOTE: For NetWare® versions before 4.x, access works with only the DOS name space for remote
servers.

See Using access(): Example (NDK: Sample Code).

See Also

chmod (page 141), fstat (Single and Intra-File Services)

File System Functions 139

chdir

Changes the current working directory to the specified path name
Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

Service: File System

Syntax

#include <unistd.h>

int chdir (
const char “*pathname);

Parameters

pathname

(IN) Specifies the buffer containing the directory path (can include a volume name).

Return Values

Returns a value of 0 if successful, nonzero otherwise. If an error occurs, errno and NetWareErrno are
set.

Remarks

chdir causes all threads in the current thread group to have a new current working directory. The
pathname parameter can be either relative to the current working directory or it can be an absolute
path name.

The SetCurrentNameSpace function sets the name space which is used for parsing the path input to
chdir.

NOTE: For NetWare versions before 4.x, chdir works with only the DOS name space for remote
servers.

See Also

getcwd (page 146), mkdir (page 151), rmdir (page 313)

140 NDK: Multiple and Inter-File Services

chmod

Changes the file access mode
Local Servers: blocking
Remote Servers: blocking
Classification: POSIX
Platform: NLM

Service: File System

Syntax

#include <stat.h>

int chmod (
const char *path,
int mode) ;

Parameters

path

(IN) Specifies the string containing the path that includes the file whose access mode is to be
modified (maximum 255 characters, including the NULL terminator).

mode

(IN) Specifies the access permission mode for the file.

Return Values

Returns a value of 0 if successful, -1 otherwise. If an error occurs, errno is set.

Remarks

To call chmod, you must meet the following requirements:

¢ The current connection must have modify permission to the specified file.

¢ The target namespace must be DOS. To set the target namespace, use
SetTargetNameSpace(NW_NS DOS).

+ For remote servers, the current name space must be DOS on NetWare versions before 4.x. See
SetCurrentNameSpace.

chmod works on all NetWare file systems, including the DOS partition.

The various mode settings are given in the SYS\STAT.H header file. The access permissions for the
file are specified as a combination of bits defined in the SYS\STAT.H header file.

S_IWRITE The file is writable

File System Functions

141

S_IREAD The file is readable

Alternatively, zero can be specified to indicate that the file is readable and writable.

See Also

fstat (Single and Intra-File Services), SetCurrentNameSpace (page 452), SetTargetNameSpace
(page 454), stat (page 327)

142 NDK: Multiple and Inter-File Services

closedir

Closes a specified directory
Local Servers: nonblocking
Remote Servers: blocking
Classification: POSIX
Platform: NLM

Service: File System

Syntax

#include <dirent.h>

int closedir (
DIR *dirP) ;

Parameters

dirP

Specifies the directory to be closed.

Return Values

0x00 ESUCCESS
0x04 EBADF
NetWare Error UNSUCCESSFUL

Remarks

closedir closes the directory specified by the dirP parameter and frees the memory allocated by the
opendir function. All open directories are automatically closed when an NLM™ application is

terminated.

See Also

opendir (page 303), readdir (page 307)

File System Functions 143

FileServerFileCopy

Copies a file, or a portion of a file, to another file
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: File System

Syntax

#include <nwfinfo.h>

int FileServerFileCopy (
int sourceFileHandle,
int destinationFileHandle,
LONG sourceFileOffset,
LONG destinationFileOffset,
LONG numberOfBytesToCopy,
LONG “*numberOfBytesCopied);

Parameters

sourceFileHandle
(IN) Specifies the file handle of the source file.

destinationFileHandle
(IN) Specifies the file handle of the destination file.

sourceFileOffset

(IN) Specifies the offset (in bytes) in the source file where copy should begin.

destinationFileOffset
(IN) Specifies the offset (in bytes) in the destination file where the data should be copied.

numberOfBytesToCopy
(IN) Specifies the number of bytes to be copied.

numberOfBytesCopied
(OUT) Points to the number of bytes actually copied.

Return Value

0 0x00 ESUCCESS
1 0x01 ERR_INSUFFICIENT_SPACE

144 NDK: Multiple and Inter-File Services

22 0x16 EBADHNDL
131 0x83 ERR_NETWORK_DISK_IO

136 0x88 ERR_INVALID_FILE_HANDLE

147 0x93 ERR_NO_READ_PRIVILEGE

148 0x94 ERR_NO_WRITE_PRIVILEGE_OR_READONLY
149 0x95 ERR_FILE_DETACHED

162 0xA3 ERR_IO_LOCKED

Remarks

An application must pass file handles in the sourceFileHandle and
destinationFileHandle parameters. A file handle can be obtained by calling the open,
sopen, creat, or fileno function.

To copy from the beginning of the source file to a new file, set the sourceFileOffset and
destinationFileOffset parameters to 0x00.

To copy the entire source file, specify a value in the numberOfBytesToCopy parameter that
matches or exceeds the file size.

The numberOfBytesCopied parameter returns the number of bytes copied between files as a
result of calling this function.

See Also

creat, fileno, open, sopen (Single and Intra-File Services)

File System Functions 145

getcwd

Returns the current working directory of the current thread group
Local Servers: cither blocking or nonblocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

Service: File System

Syntax

#include <unistd.h>

char *getcwd (

char *buffer,

size t size);
Parameters
buffer

(OUT) Specifies the buffer in which to place the current working directory.
size

(IN) Specifies the length of buffer (including space for the delimiting \O character).
Return Values

Returns the address of the string containing the name of the current working directory if successful.
Otherwise, NULL is returned and errno is set.

Remarks

When the buf fer parameter is NULL, a string is allocated to contain the current working
directory. This string must be freed (by calling the free function) or NetWare will issue a leaked
memeory error at unload time.

Blocking Information Locally, getcwd blocks when the buf fer parameter is NULL and does not
block when the buf fer parameter is not NULL.

See Also

chdir (page 140), free, mkdir (page 151), rmdir (page 313)

146 NDK: Multiple and Inter-File Services

GetExtendedFileAttributes

Returns the extended attributes for a file
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.X, 5.x, 6.x
Platform: NLM

Service: File System

Syntax

#include <nwfileio.h>
int GetExtendedFileAttributes (

char *filePath,
BYTE “*extendedFileAttributes);

Parameters

filePath

(IN) Points to a string containing the absolute path or path relative to the current working
directory of the file for which to get extended file attributes (maximum 255 characters,

including the NULL terminator).

extendedFileAttributes
(OUT) Points to the extended attributes.

Return Value

0 0x00 ESUCCESS

137 0x89 ERR_NO_SEARCH_PRIVILEGE
156 0x9C ERR_INVALID_PATH

158 O0x9F ERR_BAD_FILE_NAME

191 O0xBF ERR_INVALID_NAME_SPACE

253 OxFD ERR_BAD_STATION_NUMBER

254 OxFE ERR_SPOOL_DIRECTORY_ERROR

255 OxFF ERR_NO_FILES_FOUND—The target file does not exist.

File System Functions 147

Remarks

GetExtendedFileAttributes returns the value of the first byte of the file attributes, known as the
extended attributes byte. The following bits are defined:

3 Don't Suballocate (set this bit to disallow suballocation on this entry)
4 Transaction (used by TTS)

6 Read Audit (unused)

7 Write Audit (unused)

NOTE: Do not confuse the file attributes byte with true extended attributes, which can be
manipulated with the Extended Attribute functions.

If the transaction bit is set in the extendedFileAttributes parameter, NetWare TTS™
software tracks all writes to the file during a transaction. A transaction file cannot be deleted or
renamed until the transaction bit is turned off with the SetExtendedFileAttributes function.

An application can specify a file in several ways. For example, suppose the full path of the file
TARGET.DAT is:

SYS:ACCOUNT\DOMEST\TARGET.DAT

and the current working directory is SYS:ACCOUNT. The application can specify the partial path,
DOMEST\TARGET.DAT, or the full path in the £i lePath parameter.

GetExtendedFileAttributes requires that the current connection have See File rights to the directory
where the file resides.

The SetCurrentNameSpace function sets the name space which is used for parsing the path input to
GetExtendedFileAttributes.

NOTE: For NetWare versions before 4.x, GetExtendedFileAttributes works with only the DOS
name space for remote servers.

See Also

SetExtendedFileAttributes (page 318)

148 NDK: Multiple and Inter-File Services

_makepath

Constructs a full NetWare path name
Local Servers: blocking

Remote Servers: N/A

Platform: NLM

Service: File System

Syntax

#include <nwfileio.h>

void makepath (
char *path,
const char *volume,
const char *dir,
const char “*fname,
const char *ext);

Parameters
path
(OUT) Points to the string containing the full path name.

volume

(IN) Specifies the volume name.
dir

(IN) Specifies the directory name.

fname

(IN) Specifies the base name of the file without an extension.

ext

(IN) Specifies the file name extension.

Remarks

The NetWare path name is constructed from the components consisting of a volume name, directory
path, file name, and file name extension. The full path name is placed in the buffer pointed to by the
path parameter.

The maximum size required for each buffer is specified by the manifest constants which are defined
in the NWDIR.H file.

255 MAX PATH
16 _MAX VOLUME (volume name length)
255 MAX DIR

File System Functions 149

9 MAX FNAME
5 MAX EXT

See Using makepath and _splitpath: Example (NDK: Sample Code).

See Also

_splitpath (page 325)

150 NDK: Multiple and Inter-File Services

mkdir

Creates a new directory with a specified mode
Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

Service: File System

Syntax

#include <stat.h>

int mkdir (
const char “*path);

Parameters

path

(IN) Points to the path containing the new directory (either relative to the current working

directory or an absolute path name).

Return Values

Returns a value of 0 if successful, nonzero otherwise.

Remarks

mkdir also works on the DOS partition.

The current connection must have Create rights in the parent directory. The inherited rights mask for

the new directory is ALL rights.

The SetCurrentNameSpace function sets the name space used for parsing the path input to mkdir.

For NetWare versions before 4.x, mkdir works with only the DOS name space for remote servers.

See Also

chdir (page 140), getcwd (page 146), rmdir (page 313)

10.2 NWA*-NWF* Functions

Click on any function name in the table of contents to view the purpose, syntax, parameters, and

return values for that function.

* “NWAddTrustee” on page 153

File System Functions 151

¢ “NWAddTrusteeExt” on page 156

* “NWAddTrusteeToDirectory” on page 158

+ “NWAddTrusteeToDirectoryExt” on page 161

+ “NWAllocPermanentDirectoryHandle” on page 164
+ “NWAllocTemporaryDirectoryHandle” on page 166
+ “NWConvertFileHandle” on page 169

+ “NWConvertHandle” on page 171

+ “NWCreateDirectory” on page 173

* “NWDeallocateDirectoryHandle” on page 176

+ “NWDeleteDirectory” on page 178

¢ “NWDeleteTrustee” on page 180

¢ “NWDeleteTrusteeExt” on page 182

¢ “NWDeleteTrusteeFromDirectory” on page 184

* “NWDeleteTrusteeFromDirectoryExt” on page 186
+ “NWFileServerFileCopy” on page 188

152 NDK: Multiple and Inter-File Services

NWAddTrustee

Adds a trustee to the list of trustees in a file or directory
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT*, Windows* 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdentry.h>

or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWAddTrustee (

NWCONN_ HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N _FAR *path,
nuint32 objID,
nuintl6 rightsMask) ;

Delphi Syntax
uses calwin32

Function NWAddTrustee
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const path : pnstr§;
objID : nuint32;
rightsMask : nuintl6

) : NWCCODE;

Parameters
conn
(IN) Specifies the NetWare® server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired directory path (0 if the path
parameter contains the complete path, including the volume name).

File System Functions 153

path

(IN) Points to the absolute path (or a path relative to the di rHandle parameter) of the
directory to which a trustee is being added.

objID
(IN) Specifies the object ID for the object being added as a trustee.

rightsMask

(IN) Specifies the access rights mask being granted to the new trustee.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x898C NO_MODIFY_PRIVILEGES
0x8990 NO_FILES_AFFECTED_READ_ONLY
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x8999 DIRECTORY_FULL

0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89FC NO_SUCH_OBJECT

0x89FD BAD_STATION_NUMBER
Ox89FF HARDWARE_FAILURE
Remarks

To modify a trustee rights list, the requesting workstation must have access control rights to the
directory or to a parent of the directory.

If the object is already a trustee for the specified directory, the current access mask of the trustee is
replaced by the value contained in the r i ght sMask parameter. Otherwise, the object is added as a
trustee to the directory with rights equal to the rightsMask parameter.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 22 13 Add Trustee To Directory
0x2222 22 39 Add Extended Trustee To Directory Or File

154 NDK: Multiple and Inter-File Services

0x2222 87 10 Add Trustee Set To File Or Subdirectory

See Also

NWAddTrusteeToDirectory (page 158), NWScanNSDirectoryForTrustees (page 547)

File System Functions 155

NWAddTrusteeExt

Adds a trustee to the list of trustees in a file or directory, using UTF-8 strings.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdentry.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWAddTrusteeExt (

NWCONN_ HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N _FAR *path,
nuint32 objID,
nuintlo6 rightsMask) ;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired directory path (0 if the path
parameter contains the complete path, including the volume name).

path

(IN) Points to the absolute path (or a path relative to the di rHandle parameter) of the
directory to which a trustee is being added. The characters in the string must be UTF-8.

objID
(IN) Specifies the object ID for the object being added as a trustee.

rightsMask

(IN) Specifies the access rights mask being granted to the new trustee. For possible values, see
“Trustee Rights” on page 124

156 NDK: Multiple and Inter-File Services

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x88F0 UTF8_CONVERSION_FAILED
0x890A NLM_INVALID_CONNECTION
0x898C NO_MODIFY_PRIVILEGES
0x8990 NO_FILES_AFFECTED_READ_ONLY
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x8999 DIRECTORY_FULL

0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89FC NO_SUCH_OBJECT

0x89FD BAD_STATION_NUMBER
0x89FF HARDWARE_FAILURE
Remarks

To modify a trustee rights list, the requesting workstation must have access control rights to the
directory or to a parent of the directory.

If the object is already a trustee for the specified directory, the current access mask of the trustee is
replaced by the value contained in the right sMask parameter. Otherwise, the object is added as a
trustee to the directory with rights equal to the rightsMask parameter.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 22 13 Add Trustee To Directory

0x2222 22 39 Add Extended Trustee To Directory Or File
0x2222 87 10 Add Trustee Set To File Or Subdirectory
0x2222 89 10 Add Trustee Set To File Or Subdirectory

See Also

NWAddTrustee (page 153)

File System Functions 157

NWAddTrusteeToDirectory

Adds a trustee to the trustee list in a directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdirect.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWAddTrusteeToDirectory (

NWCONN_HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N _FAR *path,
nuint32 trusteelD,
nuint8 rightsMask) ;

Delphi Syntax
uses calwin32

Function NWAddTrusteeToDirectory
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const path : pnstr§;

trusteeID : nuint32;
rightsMask : nuint8
) : NWCCODE;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired directory path (0 if the path
parameter contains the complete path, including the volume name).

158 NDK: Multiple and Inter-File Services

path

(IN) Points to the absolute path (or a path relative to the directory handle) of the directory to
which a trustee is being added.

trusteelD
(IN) Specifies the object ID for the object being added as a trustee.

rightsMask

(IN) Specifies the access rights mask the new trustee is being granted.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x898C NO_MODIFY_PRIVILEGES
0x8990 NO_FILES_AFFECTED_READ_ONLY
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x8999 DIRECTORY_FULL

0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89FC NO_SUCH_OBJECT

0x89FD BAD_STATION_NUMBER
0x89FF HARDWARE_FAILURE
Remarks

If the object is already a trustee for the specified directory, the current access mask of the trustee is
replaced by the value contained in the t rusteeID parameter. Otherwise, the object is added as a
trustee to the directory and given a rights mask equal to the t rusteeID parameter.

To modify a trustee rights list, the requesting workstation must have access control rights to the
directory or to a parent of the directory.

The object must be static. If the object is dynamic, NWAddTrusteeToDirectory will return an error.

For Windows 32-bit platforms, di rHandle and path must be specified in the LONG namespace
format.

File System Functions 159

For NLMs, dirHandle and path must be specified in the DOS namespace format, and path
must be in upper case.

If you want to specify the name space that you are using for the parameters, use
NWAddTrusteeToNSDirectory (page 456).

NCP Calls

0x2222 22 13 Add Trustee To Directory

0x2222 22 39 Trustee Add Ext

0x2222 23 17 Get File Server Information

0x2222 87 10 Add Trustee Set To File Or Subdirectory

See Also

NWAddTrustee (page 153), NWAddTrusteeToNSDirectory (page 456), NWDeleteTrustee
(page 180), NWDeleteTrusteeFromDirectory (page 184), NWDeleteTrusteeFromNSDirectory
(page 470), NWScanNSDirectoryForTrustees (page 547)

160 NDK: Multiple and Inter-File Services

NWAddTrusteeToDirectoryExt

Adds a trustee to the trustee list in a directory using UTF-8.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdirect.h>

or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWAddTrusteeToDirectoryExt (

NWCONN_ HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N FAR *path,
nuint32 trusteelD,
nuint8 rightsMask) ;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired directory path (0 if the path
parameter contains the complete path, including the volume name).

path

(IN) Points to the absolute path (or a path relative to the directory handle) of the directory to
which a trustee is being added. Size should be sufficient to hold the volume and one
component.

trusteelD
(IN) Specifies the object ID for the object being added as a trustee.

rightsMask

(IN) Specifies the access rights mask the new trustee is being granted.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

File System Functions 161

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x898C NO_MODIFY_PRIVILEGES
0x8990 NO_FILES_AFFECTED_READ_ONLY
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x8999 DIRECTORY_FULL

0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89FC NO_SUCH_OBJECT

0x89FD BAD_STATION_NUMBER
0x89FF HARDWARE_FAILURE
Remarks

If the object is already a trustee for the specified directory, the current access mask of the trustee is
replaced by the value contained in the t rusteeID parameter. Otherwise, the object is added as a
trustee to the directory and given a rights mask equal to the t rusteeID parameter.

To modify a trustee rights list, the requesting workstation must have access control rights to the
directory or to a parent of the directory.

The object must be static. If the object is dynamic, NWAddTrusteeToDirectory will return an error.

For Windows 32-bit platforms, di rHandle and path must be specified in the LONG namespace
format.

For NLMs, dirHandle and path must be specified in the DOS namespace format, and path
must be in upper case.

If you want to specify the name space that you are using for the parameters, use
NWAddTrusteeToNSDirectory (page 456).

NCP Calls

0x2222 22 13 Add Trustee To Directory

0x2222 22 39 Trustee Add Ext

0x2222 23 17 Get File Server Information

0x2222 87 10 Add Trustee Set To File Or Subdirectory

162 NDK: Multiple and Inter-File Services

See Also

NWAddTrustee (page 153), NWAddTrusteeToNSDirectory (page 456), NWDeleteTrustee
(page 180), NWDeleteTrusteeFromDirectory (page 184), NWDeleteTrusteeFromNSDirectory
(page 470), NWScanNSDirectoryForTrustees (page 547)

File System Functions 163

NWAIllocPermanentDirectoryHandle

Allocates a permanent directory handle for a network directory
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWAllocPermanentDirectoryHandle (
NWCONN_HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N _FAR *dirPath,
NWDIR HANDLE N FAR *newDirHandle,
pnuint8 effectiveRights);

Delphi Syntax
uses calwin32

Function NWAllocPermanentDirectoryHandle
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const dirPath : pnstr8;
Var newDirHandle : NWDIR HANDLE;
effectiveRights : pnuint8

) : NWCCODE;

Parameters
conn
(IN) Specifies the NetWare server connection handle.
dirHandle
(IN) Specifies the directory handle associated with the desired directory path.

dirPath

(IN) Points to an absolute directory path (or a path relative to the di rHand1le parameter)
specifying the directory with which the new directory handle is to be associated (optional).

164 NDK: Multiple and Inter-File Services

newDirHandle

(OUT) Points to the new directory handle.

effectiveRights

(OUT) Points to the effective rights of the directory trustee connected through the
dirHandle parameter (optional).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x8999 DIRECTORY_FULL

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x899D NO_MORE_DIRECTORY_HANDLES
0x89A1 DIRECTORY_IO_ERROR

0x89FD BAD_STATION_NUMBER

0x89FF INVALID_DRIVE_NUMBER, HARDWARE_FAILURE
Remarks

To deallocate a permanent directory handle, call the NWDeallocateDirectoryHandle function.

If more than 255 handles are allocated, NWAllocPermanentDirectoryHandle may return a successful
code; however, the di rHandle parameter will be zero.

NCP Calls

0x2222 22 03 Get Effective Directory Rights
0x2222 22 18 Alloc Permanent Directory Handle
0x2222 23 17 Get File Server Information
0x2222 87 12 Allocate Short Directory Handle

See Also

NWAIllocTempNSDirHandle2 (page 462), NWAllocTemporaryDirectoryHandle (page 166),
NWDeallocateDirectoryHandle (page 176)

File System Functions 165

NWAIllocTemporaryDirectoryHandle

Assigns a temporary directory handle for the current name space
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWAllocTemporaryDirectoryHandle (
NWCONN_HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N _FAR *dirPath,
NWDIR HANDLE N FAR *newDirHandle,
pnuint8 rightsMask) ;

Delphi Syntax
uses calwin32

Function NWAllocTemporaryDirectoryHandle
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const dirPath : pnstr8;
Var newDirHandle : NWDIR HANDLE;
rightsMask : pnuint8

) : NWCCODE;

Parameters
conn
(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired directory path (or O if the
dirPath parameter points to the complete path, including the volume name).

166 NDK: Multiple and Inter-File Services

dirPath

(IN) Points to an absolute directory path (or a path relative to the NetWare directory handle)
specifying the directory with which the new directory handle is associated.

newDirHandle

(OUT) Points to the new directory handle.

rightsMask

(OUT) Points to the effective rights of the directory trustee connected through the
newDirHandle parameter (optional).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x8999 DIRECTORY_FULL

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x899D NO_MORE_DIRECTORY_HANDLES
0x89A1 DIRECTORY_IO_ERROR

0x89FD BAD_STATION_NUMBER

0x89FF INVALID_DRIVE_NUMBER, HARDWARE_FAILURE
Remarks

The directory handles allocated by NWAllocTemporaryDirectoryHandle are automatically
deallocated when the task terminates, or when the NWDeallocateDirectoryHandle function is called.

If more than 255 handles are allocated, NWAllocTemporaryDirectoryHandle may return a
successful code; however, the di rHandle parameter will be zero.

NCP Calls

0x2222 22 03 Get Effective Directory Rights
0x2222 22 19 Allocate Temporary Directory Handle
0x2222 23 17 Get File Server Information

0x2222 87 12 Allocate Short Directory Handle

File System Functions 167

See Also

NWAIllocPermanentDirectoryHandle (page 164), NWAIllocTempNSDirHandle2 (page 462),
NWDeallocateDirectoryHandle (page 176)

168 NDK: Multiple and Inter-File Services

NWConvertFileHandle

Converts a file handle to a 4- or 6-byte NetWare handle
NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwmisc.h>

or
#include <nwcalls.h>

N EXTERN_ LIBRARY (NWCCODE)NWConvertFileHandle

NWFILE HANDLE fileHandle,
nuintlé handleType,
pnuint8 NWHandle,

NWCONN_HANDLE N _FAR *conn);

Delphi Syntax
uses calwin32

Function NWConvertFileHandle
(fileHandle : NWFILE HANDLE;
handleType : nuintlé6;
NWHandle : pnuint8;

Var conn : NWCONN_ HANDLE

) : NWCCODE;

Parameters

fileHandle

(IN) Specifies the name of the local file handle to be converted to a NetWare handle.

handleType
(IN) Specifies the type of handle to create:

4 = Create a 4-byte NetWare handle
6 = Create a 6-byte NetWare handle

NWHandle

(OUT) Points to a 4- or 6-byte NetWare Handle to which the local file handle is being

converted.

conn

(OUT) Points to the connection for which the NetWare handle is valid (optional).

File System Functions 169

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x0006 INVALID_HANDLE

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8988 INVALID_FILE_HANDLE
Remarks

The handle returned by NWConvertFileHandle should not be used to call the NWConvertHandle
function. Otherwise, a new OS file handle will be created.

If NWConvertFileHandle is called with only the NETX shell running, INVALID CONNECTION
will be returned. However, the NetWare handle will still be valid and the conn parameter will be set
to zero.

If a pointer is passed in the conn parameter and the NETX shell is running, a valid NetWare handle
will be returned as well as 0x8801.

When a connection handle is obtained, a new licensed connection handle will be created. Close the
new connection handle by calling the NWCCCloseConn function.

See Also

NWConvertHandle (page 171)

170 NDK: Multiple and Inter-File Services

NWConvertHandle

Converts a NetWare handle to a local file handle
NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwmisc.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWConvertHandle

NWCONN_ HANDLE conn,
nuint8 accessMode,
const void N_FAR *NWHandle,
nuintlo handleSize,
nuint32 fileSize,

NWEFILE HANDLE N FAR *fileHandle);

Delphi Syntax
uses calwin32

Function NWConvertHandle
(conn : NWCONN_ HANDLE;

accessMode : nuint8;
const NWHandle : nptr;
handleSize : nuintl6;
fileSize : nuint32;
Var fileHandle : NWFILE HANDLE
) : NWCCODE;
Parameters
conn

(IN) Specifies the connection where the NetWare handle exists to which the local file handle is

being converted.

accessMode

(IN) Specifies the type of access the user will have to the newly created file handle.

NWHandle

(IN) Points to the 4- or 6-byte NetWare handle being converted to a local file handle.

File System Functions 171

handleSize
(IN) Specifies the number of bytes in the NetWare handle; either 4 or 6.

fileSize

(IN) Specifies the number of bytes in the file being converted.

fileHandle
(OUT) Points to the local file handle created by NWConvertHandle.

Return Values

These are common return values; see Return Values (Return Values for C)for more information.

0x0000 SUCCESSFUL

Remarks

The handle returned by the NWConvertFileHandle function should not be used to call
NWConvertHandle. Otherwise, a new OS file handle will be created.

The file handle returned is appropriate for the platform for which the function is written. The file
handle may be used for access to the attribute value including closing the file as well as reading and
writing to the file.

See Section 20.1, “Access Right Values,” on page 623 for the possible values for the accessMode
parameter.

Call the file access functions that are native to your platform.

See Also

NWConvertFileHandle (page 169)

172 NDK: Multiple and Inter-File Services

NWCreateDirectory

Creates a NetWare directory on the specified server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdirect.h>

or
#include <nwcalls.h>

N EXTERN_ LIBRARY (NWCCODE) NWCreateDirectory (

NWCONN_ HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N _FAR *dirPath,
nuint8 accessMask) ;

Delphi Syntax
uses calwin32

Function NWCreateDirectory
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const dirPath : pnstr8;
accessMask : nuint8

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle of the root directory for the new directory (0 if the
dirPath parameter points to the complete path, including the volume name).

dirPath

(IN) Points to the string containing the name and path of the new directory.

File System Functions 173

accessMask

(IN) Specifies the access rights mask for the new directory.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8984 NO_CREATE_PRIVILEGES
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x8999 DIRECTORY_FULL

0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x899E INVALID_FILENAME

0x89A1 DIRECTORY_IO_ERROR
0x89FD BAD_STATION_NUMBER
Ox89FF HARDWARE_FAILURE (directory/file already exists)
Remarks

The accessMask parameter can be set using one or more of the following:

Hex Definition

OxFB TA_ALL

0x01 TA_READ

0x02 TA_WRITE

0x04 TA_OPEN

0x08 TA_CREATE
0x10 TA_DELETE
0x20 TA_OWNERSHIP
0x40 TA_SEARCH
0x80 TA_MODIFY

NOTE: Actual rights are set according to inherited rights.

174 NDK: Multiple and Inter-File Services

NCP Calls

0x2222 22 10 Create Directory
0x2222 23 17 Get File Server Information
0x2222 87 01 Open Create File Or Subdirectory

See Also

NWDeleteDirectory (page 178)

File System Functions 175

NWDeallocateDirectoryHandle

Deallocates a directory handle allocated by NWAllocTemporaryDirectoryHandle or
NWAIllocPermanentDirectoryHandle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWDeallocateDirectoryHandle (
NWCONN HANDLE conn,
NWDIR HANDLE dirHandle) ;

Delphi Syntax

uses calwin32

Function NWDeallocateDirectoryHandle
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle to be deallocated.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL
0x8801 INVALID_CONNECTION

176 NDK: Multiple and Inter-File Services

0x890A NLM_INVALID_CONNECTION
0x899B BAD_DIRECTORY_HANDLE

Remarks

When a workstation terminates or logs out, all directory handles for the workstation are deleted.

NCP Calls

0x2222 22 20 Deallocate Directory Handle

See Also

NWAIllocPermanentDirectoryHandle (page 164), NWAllocTempNSDirHandle2 (page 462),
NWAIllocTemporaryDirectoryHandle (page 166), NWGetDirectoryHandlePath (page 196)

File System Functions 177

NWDeleteDirectory

Deletes a NetWare directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWDeleteDirectory (
NWCONN_HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N _FAR *dirPath);

Delphi Syntax
uses calwin32

Function NWDeleteDirectory
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const dirPath : pnstr8

) : NWCCODE;

Parameters

conn
(IN) Specifies the NetWare server connection handle.
dirHandle

(IN) Specifies the directory handle of the target directory root (0 if the dirPath parameter
contains the complete path, including the volume name).

dirPath

(IN) Points to the string containing the path (relative to the di rHandle parameter) of the
directory being deleted.

178 NDK: Multiple and Inter-File Services

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x898A NO_DELETE_PRIVILEGES
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

Ox899F DIRECTORY_ACTIVE

0x89A0 DIRECTORY_NOT_EMPTY
0x89A1 DIRECTORY_IO_ERROR
0x89FD BAD_STATION_NUMBER
O0x89FF Failure

NCP Calis

0x2222 22 11 Delete Directory
0x2222 23 17 Get File Server Information
0x2222 87 08 Delete A File Or Subdirectory

See Also

NWCreateDirectory (page 173)

File System Functions 179

NWDeleteTrustee

Removes a trustee from the specified directory or a trustee list for a file
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdentry.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWDeleteTrustee (

NWCONN_HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N _FAR *dirPath,
nuint32 ob3ID);
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle for the directory whose trustee list is being deleted
(0 if the di rPath parameter points to the complete path, including the volume name).

dirPath

(IN) Points to the directory from which the trustee is being removed.

objID
(IN) Specifies the object ID for the trustee being deleted.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL
0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION

180 NDK: Multiple and Inter-File Services

0x898C NO_MODIFY_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x8999 DIRECTORY_FULL

0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89FC NO_SUCH_OBJECT

0x89FD BAD_STATION_NUMBER
0x89FE TRUSTEE_NOT_FOUND
0x89FF HARDWARE_FAILURE, Failure
Remarks

NWnDeleteTrustee also revokes the rights of the trustee in the specified directory.

To delete a trustee, the requesting workstation must have access control rights in the directory or in a
parent directory.

Deleting the explicit assignment of an trustee object in a directory is not the same as assigning no
rights to the object in the directory. If no rights are assigned in a directory, the object inherits the
same rights as the parent directory.

NCP Calls

0x2222 22 14 Delete Trustee From Directory

0x2222 22 43 Trustee Remove Ext

0x2222 23 17 Get File Server Information

0x2222 87 11 Delete Trustee Set From File Or Subdirectory

See Also

NWAddTrustee (page 153), NWDeleteTrusteeExt (page 182), NWIntScanForTrustees (page 251),
NWScanNSDirectoryForTrustees (page 547), NWParseNetWarePath (page 652)

File System Functions 181

NWDeleteTrusteeExt

Removes a trustee from the specified directory or a trustee list for a file, using UTF-8 strings.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdentry.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWDeleteTrusteeExt (

NWCONN_ HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N FAR *dirPath,
nuint32 ob3jID);
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle for the directory whose trustee list is being deleted
(0 if the dirPath parameter points to the complete path, including the volume name).

dirPath

(IN) Points to the absolute path (or a path relative to the di rHandle parameter) of the
directory from which the trustee is being removed. The characters in the string must be UTF-8.

objID
(IN) Specifies the object ID for the trustee being deleted.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

182 NDK: Multiple and Inter-File Services

0x8801

INVALID_CONNECTION

0x88F0 UTF8_CONVERSION_FAILED
0x890A NLM_INVALID_CONNECTION
0x898C NO_MODIFY_PRIVILEGES
0x8996 SERVER_OUT_OF _MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x8999 DIRECTORY_FULL

0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89FC NO_SUCH_OBJECT

0x89FD BAD_STATION_NUMBER
0x89FE TRUSTEE_NOT_FOUND
0x89FF HARDWARE_FAILURE, Failure
Remarks

NWDeleteTrusteeExt also revokes the rights of the trustee in the specified directory.

To delete a trustee, the requesting workstation must have access control rights in the directory or in a
parent directory.

Deleting the explicit assignment of an trustee object in a directory is not the same as assigning no
rights to the object in the directory. If no rights are assigned in a directory, the object inherits the
same rights as the parent directory.

NCP Calls

0x2222 22 14 Delete Trustee From Directory

0x2222 22 43 Trustee Remove Ext

0x2222 23 17 Get File Server Information

0x2222 87 11 Delete Trustee Set From File Or Subdirectory
0x2222 89 11 Delete Trustee Set From File Or Subdirectory

See Also

NWDeleteTrustee (page 180)

File System Functions 183

NWDeleteTrusteeFromDirectory

Removes a trustee from a directory trustee list

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdirect.h>

or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWDeleteTrusteeFromDirectory (

NWCONN_HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N _FAR *path,
nuint32 ob3ID);

Delphi Syntax
uses calwin32

Function NWDeleteTrusteeFromDirectory
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const path : pnstr§;
objID : nuint32
) : NWCCODE;

Parameters

conn
(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle for the directory whose trustee list is being
modified (zero if the path parameter points to the complete path, including the volume name).

path

(IN) Points to an absolute path (or a path relative to the di rHandle parameter) specifying the
directory from which the trustee is being removed.

184 NDK: Multiple and Inter-File Services

objID
(IN) Specifies the object ID for the trustee being deleted.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

Remarks

NWDeleteTrusteeFromDirectory revokes the rights for a trustee in a specific directory. The
requesting workstation must have access control rights in the directory or in a parent directory to
delete a trustee.

Deleting the explicit assignment of an trustee object in a directory is not the same as assigning no
rights to the object in the directory. If no rights are assigned in a directory, the object inherits the
same rights it has in the parent directory.

If you want to specify the name space that you are using for the parameters, use
NWDeleteTrusteeFromNSDirectory (page 470).

NCP Calls

0x2222 22 14 Delete Trustee From Directory

0x2222 22 43 Trustee Remove Ext

0x2222 23 17 Get File Server Information

0x2222 87 11 Delete Trustee Set From File Or Subdirectory

See Also

NWAddTrusteeToDirectory (page 158), NWAddTrusteeToNSDirectory (page 456),
NWDeleteTrusteeFromNSDirectory (page 470), NWParseNetWarePath (page 652),
NWScanDirectoryForTrustees2 (page 269), NWScanNSDirectoryForTrustees (page 547)

File System Functions 185

NWDeleteTrusteeFromDirectoryExt

Removes a trustee from a directory trustee list using a UTf-8 path.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdirect.h>

or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWDeleteTrusteeFromDirectoryExt (

NWCONN_HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N _FAR *path,
nuint32 ob3ID);
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle for the directory whose trustee list is being
modified (zero if the path parameter points to the complete path, including the volume name).

path

(IN) Points to an absolute path (or a path relative to the di rHand1e parameter) specifying the
directory from which the trustee is being removed.

objID
(IN) Specifies the object ID for the trustee being deleted.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

186 NDK: Multiple and Inter-File Services

Remarks

NWDeleteTrusteeFromDirectory revokes the rights for a trustee in a specific directory. The
requesting workstation must have access control rights in the directory or in a parent directory to
delete a trustee.

Deleting the explicit assignment of an trustee object in a directory is not the same as assigning no
rights to the object in the directory. If no rights are assigned in a directory, the object inherits the
same rights it has in the parent directory.

If you want to specify the name space that you are using for the parameters, use
NWDeleteTrusteeFromNSDirectory (page 470).

NCP Calls

0x2222 22 14 Delete Trustee From Directory

0x2222 22 43 Trustee Remove Ext

0x2222 23 17 Get File Server Information

0x2222 87 11 Delete Trustee Set From File Or Subdirectory

See Also

NWAddTrusteeToDirectory (page 158), NWAddTrusteeToNSDirectory (page 456),
NWDeleteTrusteeFromNSDirectory (page 470), NWParseNetWarePath (page 652),
NWScanDirectoryForTrustees2 (page 269), NWScanNSDirectoryForTrustees (page 547)

File System Functions 187

NWFileServerFileCopy

Copies a file or portion of a file from a source to a destination on the same NetWare server
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include<nwfile.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWFileServerFileCopy (
NWFILE HANDLE srcFileHandle,
NWFILE HANDLE dstFileHandle,

nuint32 srcOffset,
nuint32 dstOffset,
nuint32 bytesToCopy,
pnuint32 bytesCopied) ;

Delphi Syntax
uses calwin32

Function NWFileServerFileCopy
(srcFileHandle : NWEFILE HANDLE;
dstFileHandle : NWFILE HANDLE;
srcOffset : nuint32;
dstOffset : nuint32;
bytesToCopy : nuint32;
bytesCopied : pnuint32

) : NWCCODE;

Parameters

srcFileHandle
(IN) Specifies the source file handle (index).

dstFileHandle
(IN) Specifies the destination file handle (index).

188 NDK: Multiple and Inter-File Services

srcOffset
(IN) Specifies the offset in the source file where the copying is to begin.

dstOffset
(IN) Specifies the offset in the destination file where the copying is to begin.

bytesToCopy

(IN) Specifies the maximum number of bytes to copy.

bytesCopied

(OUT) Points to the number of bytes actually copied, or the size of a new destination file
(optional).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x0006 Invalid File Handle

0x8830 NOT_SAME_CONNECTION

0x8901 ERR_INSUFFICIENT_SPACE

0x8983 I0_ERROR_NETWORK_DISK

0x8988 INVALID_FILE_HANDLE

0x8993 NO_READ_PRIVILEGES

0x8994 NO_WRITE_PRIVILEGES_OR_READONLY
0x8995 FILE_DETACHED

0x8996 SERVER_OUT_OF_MEMORY

0x89A2 READ_FILE_WITH_RECORD_LOCKED
Remarks

NWrFileServerFileCopy is very efficient since the data does not come to the workstation; the server
handles the duplication of the data internally.

If the source and destination files do not reside on the same server, NOT _SAME_CONNECTION is
returned.

You must pass OS file handles in the srcFileHandle and dstFileHandle parameters. Use
the appropriate OS functions that create and open files to return the file handles, depending on
whether the destination file is a new or an existing file.

If the destination file is new, the bytesCopied parameter points to the size of the destination file.
Otherwise, it points to the number of bytes copied.

To copy the entire source file, specify a value that matches or exceeds the file size in the
bytesToCopy parameter.

File System Functions 189

NCP Calls

0x2222 74 Copy From One File To Another

10.3 NWGet* Functions

Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

*

“NWGetCompressedFileLengths” on page 191
* “NWGetDirectoryEntryNumber” on page 193
+ “NWGetDirectoryHandlePath” on page 196

+ “NWGetDirectoryHandlePathExt” on page 198
+ “NWGetDirSpacelnfo” on page 200

+ “NWGetDirSpaceLimitList” on page 202

+ “NWGetDirSpaceLimitList2” on page 204

* “NWGetDiskIOsPending” on page 206

* “NWGetEffectiveRights” on page 207

* “NWGetEffectiveRightsExt” on page 210

+ “NWGetExtendedFileAttributes2” on page 213
+ “NWGetFileConnectionID” on page 216

* “NWGetFileDirEntryNumber” on page 218

* “NWGetSparseFileBitMap” on page 221

* “NWGetVolumeFlags” on page 223

190 NDK: Multiple and Inter-File Services

NWGetCompressedFileLengths

Returns information about the lengths of a compressed file
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.X, 5.x, 6.x

Platform: NLM

Service: File System

Syntax

#include <nwfinfo.h>

int NWGetCompressedFileLengths (
int handle,
LONG “*uncompressedLength,
LONG *compressedLength;

Parameters

handle
(IN) Specifies the file handle for which to return the lengths.

uncompressedLength

(OUT) Points to the length of the file in an uncompressed state.

compressedLength

(OUT) Points to the length of the file after being compressed.

Return Values

0 Success
OxFF Failure
Remarks

NWGetCompressedFileLengths returns information about the lengths of a compressed file.
If handle represents a file that is not compressed, the lengths will be invalid.
uncompressedLength specifies the length normally seen in directory listings.

The following code will open the file and enable it to be read without decompression:

#include <nwfileng.h>
#include <nwfattr.h>

File System Functions 191

#include <fcntl.h>
#include <sys/stat.h>
#include <nwfinfo.h>void main ()
{
int handle;
LONG uncom, com;

handle=FEsopen ("sys:\\compress\\test",O RDONLY,H DENYWR,S IREAD,
ENABLE IO ON COMPRESSED DATA BIT,

PrimaryDataStream) ;
NWGetCompressedFileLengths (handle, &uncom, &com) ;
printf ("The compressed size is %d and the uncompressed size is %d.",

com,
uncom) ;
close (handle);

}

The important parameter to FEsopen is S IREAD,

ENABLE 10 ON_COMPRESSED DATA BIT. If this bit is not set,
NWGetCompressedFileLengths uncompresses the file as it is read, which causes the resulting data
to be inaccurate and leaves the file in an uncompressed state.

See Also

NWSetCompressedFileLengths (page 274)

192 NDK: Multiple and Inter-File Services

NWGetDirectoryEntryNumber

Returns file information for a specified file under DOS and the name space associated with the
specified directory handle

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwfile.h>

or

#include <nwcalls.h>

N_EXTERN

NWCONN HANDLE conn,

nuint8 dirHandle,

pnuint32 volumeNum,

pnuint32 directoryEntry,
pnuint32 DOSDirectoryEntry,
pnuint32 nameSpace,

pnuint32 parentDirEntry,
pnuint32 parentDOSDirEntry) ;

Delphi Syntax

uses calwin32

Function NWGetDirectoryEntryNumber

)

(conn : NWCONN_ HANDLE;

dirHandle : nuint8;

volumeNum : pnuint32;
directoryEntry : pnuint32;
DOSDirectoryEntry : pnuint32;
nameSpace : pnuint32;
parentDirEntry : pnuint32;
parentDOSDirEntry : pnuint32
NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server conneciton handle.

dirHandle

(IN) Specifies the one byte directory handle.

_ LIBRARY (NWCCODE) NWGetDirectoryEntryNumber

(

File System Functions 193

volumeNum

(OUT) Points to the volume number of the directory handle.

directoryEntry
(OUT) Points to the directory entry number in the name space associated with the di rHandle
parameter.

DOSDirectoryEntry
(OUT) Points to the directory entry number in the DOS name space.

nameSpace
(OUT) Points to the name space associated with the directoryEntry and
parentDirEntry parameters.

parentDirEntry
(OUT) Points to the parent directory entry number of the directory handle in the name space
associated with the dirHandle parameter.

parentDOSDirEntry

(OUT) Points to the parent directory entry number of the directory handle in the DOS name
space.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0Ox890A NLM_INVALID_CONNECTION
Remarks

NWGetDirectoryEntryNumber returns the volume number, directory entry numbers, parent
directory entry numbers in the DOS name space, and the name space associated with the directory
handle.

One way to create the directory handle is to call the NWAllocTempNSDirHandle2 function. If you
specify a long directory name, the created directory handle will be associated with the LONG name
space. If a DOS directory name is specified, the created directory handle will be associated with the
DOS name space.

The nameSpace parameter can have the following values:

0NW_NS_DOS

I NW NS MAC
2NW_NS_NFS

3NW _NS_FTAM
4NW_NS_LONG

194 NDK: Multiple and Inter-File Services

NCP Calls

87 31 Get File Information

See Also

NWAIllocTempNSDirHandle2 (page 462)

File System Functions 195

NWGetDirectoryHandlePath

Returns the path name of the directory associated with the given directory handle
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWGetDirectoryHandlePath (
NWCONN_HANDLE conn,
NWDIR HANDLE dirHandle,
pnstr8 dirPath) ;

Delphi Syntax
uses calwin32

Function NWGetDirectoryHandlePath
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
dirPath : pnstr8

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle for the directory whose path is to be reported.

dirPath
(OUT) Points to the directory path name associated with the di rHand1e parameter.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

196 NDK: Multiple and Inter-File Services

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8996 SERVER_OUT_OF_MEMORY
0x899B BAD_DIRECTORY_HANDLE
0x89A1 DIRECTORY_IO_ERROR
Remarks

NWGetDirectoryHandlePath allows a client to retrieve the full directory path of the directory
indexed by the dirHandle parameter. The string accessed by the dirPath parameter contains a
path name in the following format:

Volume Name:Directory\Subdirectory\....

The string accessed by the dirPath parameter does not contain the name of the server. Its
maximum length is 255 bytes.

Under NETX, if an invalid connection handle is passed to the conn parameter,
NWGetDirectoryHandlePath will return 0x0000. An error will never be returned by NETX since
NETX always chooses a default connection handle if the connection handle cannot be resolved.

NETX tries to resolve the connection ID through the preferred server first. If a preferred server does
not exist, the request is directed to the default server (or the server implied by the default drive). If
the default drive is mapped to a local drive, the shell directs the request to the primary server as the
lowest connection priority.

NCP Calls

0x2222 22 01 Get Directory Path

See Also

NWAIllocTemporaryDirectoryHandle (page 166), NWDeallocateDirectoryHandle (page 176)

File System Functions 197

NWGetDirectoryHandlePathExt

Returns the UTF-8 path name of the directory associated with the given directory handle
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWGetDirectoryHandlePathExt (
NWCONN_HANDLE conn,

NWDIR HANDLE dirHandle,

pnstr8 dirPath); (dirOath 766 bytes)
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle for the directory whose path is to be reported.

dirPath
(OUT) Points to the directory path name associated with the di rHand1e parameter.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8996 SERVER_OUT_OF_MEMORY
0x899B BAD_DIRECTORY_HANDLE
0x89A1 DIRECTORY_IO_ERROR

198 NDK: Multiple and Inter-File Services

Remarks

NWGetDirectoryHandlePath allows a client to retrieve the full directory path of the directory
indexed by the dirHandle parameter. The string accessed by the di rPath parameter contains a
path name in the following format:

Volume Name:Directory\Subdirectory\....

The string accessed by the di rPath parameter does not contain the name of the server. Its
maximum length is 255 bytes.

Under NETX, if an invalid connection handle is passed to the conn parameter,
NWGetDirectoryHandlePath will return 0x0000. An error will never be returned by NETX since
NETX always chooses a default connection handle if the connection handle cannot be resolved.

NETX tries to resolve the connection ID through the preferred server first. If a preferred server does
not exist, the request is directed to the default server (or the server implied by the default drive). If
the default drive is mapped to a local drive, the shell directs the request to the primary server as the
lowest connection priority.

NCP Calls

0x2222 22 01 Get Directory Path

See Also

NWAIllocTemporaryDirectoryHandle (page 166), NWDeallocateDirectoryHandle (page 176)

File System Functions 199

NWGetDirSpacelnfo

Returns information on space usage for a volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdirect.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWGetDirSpaceInfo (

NWCONN_HANDLE conn,
NWDIR HANDLE dirHandle,
nuintlo volNum,

DIR _SPACE INFO N FAR *spacelInfo);

Delphi Syntax
uses calwin32
Function NWGetDirSpacelInfo

(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;

volNum : nuintl6;

Var spacelInfo : DIR SPACE INFO
) : NWCCODE;
Parameters
conn

(IN) Specifies the NetWare server connection handle (nuint16).

dirHandle

(IN) Specifies the directory handle associated with the desired directory path (0 if volume
information is to be returned).

volNum

(IN) Specifies the volume number to return space information for (0 if directory information is
to be returned).

200 NDK: Multiple and Inter-File Services

spacelInfo
(OUT) Points to the DIR_SPACE_INFO structure.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

Remarks

If the di rHandle parameter is zero, NWGetDirSpacelnfo returns the volume information to the
DIR_SPACE_INFO structure. Pass the volume number in vo1Num, which is obtained from calling
NWGetVolumeNumber.

purgeableBlocks and nonYetPurgeableBlocks are set to 0 if the di rHandle
parameter contains a nonzero value.

The availableBlocks field is the only field that returns information when disk space
restrictions are in effect. The rest of the structure fields contain volume-wide information. If disk
space restrictions are not in effect, the availableBlocks field will contain the number of blocks
available for use on the entire volume.

One block equals the size of the block size for the specified volume, which is obtained by
multiplying sectorsPerBlock by 512 bytes.

You can call NWGetExtendedVolumelnfo (Volume Services) to return the block size (in bytes).

NCP Calls

0x2222 22 44 Get Volume Purge Information
0x2222 22 45 Get Dir Info

See Also

NWGetVolumeNumber (Volume Management)

File System Functions 201

NWGetDirSpaceLimitList

Determines the actual space limitations for a directory
NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWGetDirSpaceLimitList (
NWCONN_HANDLE conn,
NWDIR HANDLE dirHandle,
pnuint8 returnBuf) ;

Delphi Syntax
uses calwin32

Function NWGetDirSpacelLimitList
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
returnBuf : pnuint8

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle pointing to the desired directory.

returnBuf

(OUT) Points to a 512-byte buffer containing the returned space list.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

202 NDK: Multiple and Inter-File Services

Remarks

To find the actual amount of space available to a directory, scan all of the current fields and use
the smallest one. You must omit values of Ox7FFFFFFF and convert values that are larger than
Ox7FFFFFFF to zero. If no entries are returned, no space restrictions exist for the specified directory.

NOTE: All restrictions are returned in units of 4K blocks.

returnBuf points to a buffer holding the space limit information for the directory specified by
dirHandle. This information is given in the order specified by the NW_LIMIT_LIST (page 357)
structure.

IMPORTANT: returnBuf is not directly type compatible with the NW_LIMIT LIST structure.
It is highly recommended that instead of calling NWGetDirSpaceLimitList, applications now call
NWGetDirSpaceLimitList2 (page 204), which uses a pointer to an NW_LIMIT LIST structure.

See Also

NWGetDirSpaceLimitList2 (page 204), NWSetDirSpaceLimit (page 288)

File System Functions 203

NWGetDirSpaceLimitList2

Returns the actual space limitations for a directory.
NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N EXTERN_ LIBRARY (NWCCODE)NWGetDirSpacelLimitList2 (
NWCONN_HANDLE conn,
NWDIR HANDLE dirHandle,
NW LIMIT LIST N FAR *limitList);

Delphi Syntax
uses calwin32

Function NWGetDirSpacelLimitList2
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;

Var limitList : NW LIMIT LIST

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle pointing to the desired directory.

limitList
(OUT) Points to NW_LIMIT LIST.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

204 NDK: Multiple and Inter-File Services

Remarks

To find the actual amount of space available to a directory, scan all of the current fields and use
the smallest one. You must omit values of Ox7FFFFFFF and convert values that are larger than
Ox7FFFFFFF to zero. If no entries are returned, no space restrictions exist for the specified directory.

All restrictions are returned in units of 4K blocks.

NOTE: If you use this function in a loop on an NSS volume, server utilization can rise to 100%
which causes a denial of service to connections. You need to limit the number of quick calls to this
function to under 200 and then let the server utilization drop before calling another set.

Server utilization is not affected by numerous quick calls to this function on traditional volumes.

NCP Calls

0x2222 22 35 Get Directory Disk Space Restriction

See Also

NWSetDirSpaceLimit (page 288)

File System Functions 205

NWGetDisklOsPending

Returns the number of pending disk 10s the server has at the specified point in time
Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: File System

Syntax

#include <nwfinfo.h>

int NWGetDiskIOsPending (
void) ;

Return Values

Returns the number of pending disk 10s the server has upon successful completion.

Remarks

The value returned by NWGetDisklOsPending is the same as the value for "Current disk requests"
as reported by the MONITOR.NLM file.

206 NDK: Multiple and Inter-File Services

NWGetEffectiveRights

Returns effective rights for the specified directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdentry.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWGetEffectiveRights

NWCONN_ HANDLE conn,

NWDIR HANDLE dirHandle,

const nstr8 N _FAR *path,

pnuintlo6 effectiveRights);

Delphi Syntax
uses calwin32

Function NWGetEffectiveRights
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const path : pnstr§;
effectiveRights : pnuintlé6

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle associated with the directory path for which the
effective rights are desired (0 if the path parameter points to the complete path, including the

volume name).

path

(IN) Points to the absolute path (or a path relative to the di rHand1e parameter) of the

directory whose effective rights mask is being returned.

File System Functions 207

effectiveRights
(OUT) Points to the effective rights mask for the directory.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89FD BAD_STATION_NUMBER
Ox89FF Failure

Remarks

To determine the effective rights of the requesting workstation, NWGetEffectiveRights performs a
logical AND between the maximum rights mask of the directory and the current trustee rights of the
workstation.

The current trustee rights are obtained by performing a logical OR between a trustee access mask
and the trustee access mask of any object to which the process is security equivalent.

The current trustee rights can be explicitly listed in the directory or inherited from the parent
directory. The maximum rights masks of parent directories do not affect inherited trustee rights.

The ef fectiveRights parameter returned to the client indicates which of the eight possible
directory rights the client has in the targeted directory. An ef fectiveRights parameter of zero
indicates the client has no rights in the target directory.

The maximum rights mask bits are defined in the table below:

C Value Delphi Value Value Description
0x0001 $0001 TR_READ
0x0002 $0002 TR_WRITE
0x0008 $0008 TR_CREATE
0x0010 $0010 TR_DELETE
0x0010 $0020 TR_OWNERSHIP
0x0040 $0040 TR_FILE_SCAN

208 NDK: Multiple and Inter-File Services

C Value Delphi Value Value Description

0x0080 $0080 TR_MODIFY

NWGetEffectiveRights works on files as well as directories.

See effright.c (../../../samplecode/clib_sample/file/effright/eftright.c.html) for sample code.

NCP Calls

0x2222 22 3 Get Effective Directory Rights
0x2222 22 42 Get Effective Rights

0x2222 23 17 Get File Server Information
0x2222 87 29 Get Effective Directory Rights

File System Functions 209

../../../samplecode/clib_sample/file/effright/effright.c.html

NWGetEffectiveRightsExt

Returns effective rights for the specified directory
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP
Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdentry.h>

or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWGetEffectiveRightsExt (

NWCONN_ HANDLE conn,

NWDIR HANDLE dirHandle,

const nstr8 N _FAR *path,

pnuintl6 effectiveRights);
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle associated with the directory path for which the
effective rights are desired (0 if the path parameter points to the complete path, including the
volume name).

path

(IN) Points to the absolute path (or a path relative to the di rHandle parameter) of the
directory whose effective rights mask is being returned. The characters in the string must be
UTF-8.

effectiveRights
(OUT) Points to the effective rights mask for the directory. (See Remarks for a list of values.)

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

210 NDK: Multiple and Inter-File Services

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x88F0 UTF8_CONVERSION_FAILED
0x890A NLM_INVALID_CONNECTION
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89FD BAD_STATION_NUMBER
Ox89FF Failure

Remarks

To determine the effective rights of the requesting workstation, NWGetEffectiveRightsExt performs
a logical AND between the maximum rights mask of the directory and the current trustee rights of
the workstation.

The current trustee rights are obtained by performing a logical OR between a trustee access mask
and the trustee access mask of any object to which the process is security equivalent.

The current trustee rights can be explicitly listed in the directory or inherited from the parent
directory. The maximum rights masks of parent directories do not affect inherited trustee rights.

The ef fectiveRights parameter returned to the client indicates which of the eight possible
directory rights the client has in the targeted directory. An ef fectiveRights parameter of zero
indicates the client has no rights in the target directory.

The maximum rights mask bits are defined in the table below:

C Value Value Description
0x0001 TR_READ
0x0002 TR_WRITE
0x0008 TR_CREATE
0x0010 TR_DELETE
0x0010 TR_OWNERSHIP
0x0040 TR_FILE_SCAN
0x0080 TR_MODIFY

NWGetEffectiveRightsExt works on files as well as directories.

File System Functions 211

NCP Calls

0x2222 22 3 Get Effective Directory Rights
0x2222 22 42 Get Effective Rights

0x2222 23 17 Get File Server Information
0x2222 87 29 Get Effective Directory Rights
0x2222 89 29 Get Effective Directory Rights

212 NDK: Multiple and Inter-File Services

NWGetExtendedFileAttributes2

Returns the NetWare extended file attributes for the specified file
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include<nwfile.h>

or
#include<nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWGetExtendedFileAttributes2 (

NWCONN_ HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N _FAR *path,
pnuint8 extAttrs);

Delphi Syntax
uses calwin32

Function NWGetExtendedFileAttributes?2
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const path : pnstr§;
extAttrs : pnuint$8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.
dirHandle

(IN) Specifies the directory handle of the new root directory.

path

(IN) Points to the string containing the name and path of the new directory.

extAttrs
(OUT) Points to the extended attributes of the file.

File System Functions 213

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8988 INVALID_FILE_HANDLE
0x8989 NO_SEARCH_PRIVILEGES
0x8993 NO_READ_RRIVILEGES
0x8994 NO_WRITE_PRIVILEGES_OR_READONLY
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89FD BAD_STATION_NUMBER
0x89FF NO_FILES_FOUND_ERROR
Remarks

NWGetExtendedFileAttributes2 requires Search rights to the directory where the file resides.

The path parameter can specify the complete path name or a path relative to the current working
directory. For example, if the complete path name is SYS:ACCOUNT/DOMEST/TARGET.DAT
and the directory handle mapping is SYS:ACCOUNT, the path parameter could be the following:

SYS:ACCOUNT/DOMEST/TARGET.DAT or
DOMEST/TARGET .DAT

The information accessed by the extAttrs parameter is interpreted as follows:

-2 Search mode bits
Transaction bit
Index bit
Read audit bit

N o o~ O

Write audit bit

NCP Calls

0x2222 23 15 Scan File Information

214 NDK: Multiple and Inter-File Services

See Also

NWSetExtendedFileAttributes2 (page 290)

File System Functions 215

NWGetFileConnectionlID

Returns the connection handle of the server owning the specified file handle
NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWGetFileConnectionID (

NWFILE HANDLE fileHandle,
NWCONN_HANDLE N _FAR *conn);

Delphi Syntax

uses calwin32

Function NWGetFileConnectionID
(fileHandle : NWFILE HANDLE;

Var conn : NWCONN_ HANDLE
) : NWCCODE;

Parameters

fileHandle
(IN) Specifies the file handle.

conn

(OUT) Points to the connection handle.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL
0x8801 INVALID_CONNECTION
0x89FD UNKNOWN_REQUEST

216 NDK: Multiple and Inter-File Services

Remarks
The server connection handle identifies a specific NetWare server to workstation connection.

NWGetFileConnectionID only works with VLMs loaded; it will not work with NETX. If NETX is
loaded, UNKNOWN_REQUEST will be returned.

File System Functions 217

NWGetFileDirEntryNumber

Returns file information for a specified file under DOS and the name space associated with the

specified file handle

NetWare Server: 4.x, 5.

X, 6.X

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwfile.h>

or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWGetFileDirEntryNumber
NWFILE HANDLE fileHandle,
pnuint32 volumeNum,
pnuint32 directoryEntry,
pnuint32 DOSDirectoryEntry,
pnuint32 namesSpace,
pnuint32 dataStream,
pnuint32 parentDirEntry,
pnuint32 parentDOSDirEntry) ;

Delphi Syntax

uses calwin32

Function NWGetFileDirEntryNumber

(fileHandle NWFILE HANDLE;
volumeNum pnuint32;
directoryEntry pnuint32;
DOSDirectoryEntry pnuint32;
nameSpace pnuint32;
dataStream pnuint32;
parentDirEntry pnuint32;
parentDOSDirEntry pnuint32

) : NWCCODE;

Parameters

fileHandle

(IN) Specifies the file handle.

volumeNum

(OUT) Points to the volume number of the file handle.

218 NDK: Multiple and Inter-File Services

(

directoryEntry
(OUT) Points to the directory entry number in the name space associated with the
fileHandle parameter.

DOSDirectoryEntry
(OUT) Points to the directory entry number in the DOS name space.

nameSpace

(OUT) Points to the name space associated with the directoryEntry and
parentDirEntry parameters.

dataStream
(OUT) Points to the data stream number if the name space is NW_NS MAC:

1 Data fork
0 Resource fork and anything else

parentDirEntry

(OUT) Points to the parent directory entry number of the file handle in the name space
associated with the fi1eHandle parameter.

parentDOSDirEntry
(OUT) Points to the parent directory entry number of the file handle in the DOS name space.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x0006 INVALID_HANDLE

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8988 INVALID_FILE_HANDLE
Remarks

NWGetFileDirEntryNumber returns the volume number, directory entry numbers, parent directory
entry numbers in the DOS name space, and the name space associated with the file handle.

One way to create the file handle is to call the NWOpenNSEntry function. If you specify a long file
name, the created file handle will be associated with the LONG name space. If a DOS file name is
specified, the created file handle will be associated with the DOS name space.

The nameSpace parameter can have the following values:

0NW_NS_DOS
I NW NS MAC
2NW_NS_NFS

File System Functions

219

3NW_NS_FTAM
4NW_NS_LONG

NCP Calls

87 31 Get File Information

See Also

NWOpenNSEntry (page 533)

220 NDK: Multiple and Inter-File Services

NWGetSparseFileBitMap

Returns a bit map showing which blocks in a sparse file contain data
NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWGetSparseFileBitMap
NWCONN_ HANDLE conn,

nuint32 fileHandle,
nintlé6 flag,
nuint32 offset,
pnuint32 blockSize,
pnuint8 bitMap) ;

Delphi Syntax
uses calwin32

Function NWGetSparseFileBitMap
(conn : NWCONN_ HANDLE;
fileHandle : NWFILE HANDLE;
flag : nintlé6;
offset : nuint32;
blockSize : pnuint32;
bitMap : pnuint8

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

fileHandle

(

(IN) Specifies the 4-byte OS or NetWare file handle. If a NetWare file handle is used, a

connection handle must be passed.

flag

(IN) Specifies whether the £i1leHandle parameter contains an OS or NetWare handle.

File System Functions 221

offset
(IN) Specifies the starting offset of the bit map in bytes.

blockSize
(OUT) Points to the size of the allocation block.

bitMap
(OUT) Points to a 512-byte array to receive the bit map (1 bit for each block).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8988 INVALID_FILE_HANDLE
Remarks

NWGetSparseFileBitMap contains one bit for each block in the sparse file. A one indicates there is
data in the block; a zero indicates there isn’t any data in the block.

Use the conn parameter when NETX is running or the £i leHandle parameter contains a
NetWare handle (otherwise ignored).

If the £1ag parameter is 0, the £i1eHandle parameter contains a 4-byte OS file handle. If the
f1lag parameter is nonzero, the fileHandle parameter contains a 6-byte NetWare handle.

The bitMap parameter must point to an array of 512 bytes.

NCP Calls

0x2222 85 Get Sparse File Data Block Bit Map

222 NDK: Multiple and Inter-File Services

NWGetVolumeFlags

Returns the flags currently set on the specified volume
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM

Service: File System

Syntax

#include <nwfileio.h>

LONG NWGetVolumeFlags (
LONG volume,
LONG *flags);

Parameters

volume

(IN) Specifies the volume to return attributes for.

flags

(OUT) Points to a the flags set for the specified volume.

Return Values

If NWGetVolumeFlags is successful, a pointer to the set flags is returned. Otherwise, -1 is returned.

Remarks

flags can have the following values:

0x02 SUB_ALLOCATION_FLAG: If set, sub allocation units are valid on this volume.

0x04 FILE_ COMPRESSION_FLAGS: If set, file compression is enabled on this volume.

0x08 DATA_MIGRATION_FLAG: If set, data migration is allowed on this volume.

0x40 VOLUME_IMMEDIATE_PURGE_FLAG: If set, this volume's deleted files will be purged
immediately.

See Also

NWSetVolumeFlags (page 299)

File System Functions 223

10.4 NWI*-NWR* Functions

Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

¢ “NWIntEraseFiles” on page 225

¢ “NWIntFileSearchContinue” on page 228

+ “NWIntFileSearchlnitialize” on page 231

¢ “NWIntMoveDirEntry” on page 233

+ “NWIntScanDirectorylnformation2” on page 236
¢ “NWIntScanDirEntryInfo” on page 239

+ “NWIntScanExtendedInfo” on page 242

¢ “NWIntScanFileInformation2” on page 245

¢ “NWIntScanFileInformation2Ext” on page 248

+ “NWIntScanForTrustees” on page 251

+ “NWIntScanForTrusteesExt” on page 255

+ “NWModifyMaximumRightsMask” on page 258
+ “NWRenameDirectory” on page 261

* “NWRenameFile” on page 263

224 NDK: Multiple and Inter-File Services

NWIntEraseFiles

Deletes NetWare files from the server

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwfile.h>

or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWIntEraseFiles

NWCONN_ HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N _FAR *path,

nuint8 searchAttrs,
nuintlé augmentFlagqg) ;

Delphi Syntax
uses calwin32

Function NWIntEraseFiles
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const path : pnstr§;

searchAttrs : nuint8;
augmentFlag : nuintl6
) : NWCCODE;
Parameters
conn

(IN) Specifies the NetWare server connection handle containing the file to erase.

dirHandle

(IN) Specifies the directory handle of the file to be erased (0 if the path parameter contains the

complete path including the volume name).

path

(IN) Points to the string containing the file path (including the file name) of the file to be

erased.

searchAttrs

(IN) Specifies the search attributes.

File System Functions 225

augmentFlag

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented
nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x898A NO_DELETE_PRIVILEGES

0x898D SOME_FILES_AFFECTED_IN_USE
0x898E NO_FILES_AFFECTED_IN_USE
0x898F SOME_FILES_AFFECTED_READ_ONLY
0x8990 NO_FILES_AFFECTED_READ_ONLY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89FF NO_FILES_FOUND_ERROR
Remarks

The searchAttrs parameter includes system and/or hidden files. If only the system bit is set in
the searchAttrs parameter, all files are affected except hidden files. If only the hidden bit is set,
all files are affected except system files. When neither bit is set (0x00), only files that are not
designated either hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file attribute is set.

Search attributes to use in finding a file follow:
0x00 none

0x02 FA HIDDEN

0x04 FA SYSTEM

0x06 both

The path parameter can specify either a complete path name or a path relative to the current
working directory. For example, if the complete path name is SYS:ACCOUNT/DOMEST/
TARGET.DAT and the directory handle mapping is SYS:ACCOUNT, the value of the path
parameter could be either of the following:

SYS:ACCOUNT/DOMEST/TARGET.DAT or DOMEST/TARGET.DAT

The path parameter can point to wildcards in the file name only. Wildcard matching uses the
method defined by the application when it passes a wildcard character.

226 NDK: Multiple and Inter-File Services

The client must have file deletion privileges in the target directory or NWIntEraseFiles will fail.

If a file has the immediate purge attribute set, the file cannot be recovered.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 68 Erase File
0x2222 87 08 Delete A File Or Subdirectory

See Also

NWPurgeDeletedFile (page 46), NWRecoverDeletedFile (page 49), NWRenameFile (page 263)

File System Functions 227

NWintFileSearchContinue

Iteratively retrieves all directory entries matching the searchPath parameter in the DOS name
space

NetWare Server: 3.11,3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwfile.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWIntFileSearchContinue (

NWCONN HANDLE conn,

nuint8 volNum,
nuintlé6 dirID,

nuintlé6 searchContext,
nuint8 searchAttr,
const nstr8 N FAR *searchPath,
pnuint8 retBuf,
nuintlé6 augmentFlaqg) ;

Delphi Syntax
uses calwin32

Function NWIntFileSearchContinue
(conn : NWCONN_ HANDLE;
volNum : nuint8;
dirID : nuintl6;
searchContext : nuintlé6;
searchAttr : nuint8;
const searchPath : pnstr§;
retBuf : pnuint8;
augmentFlag : nuintl6

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number returned by the initialize function.

228 NDK: Multiple and Inter-File Services

dirID

(IN) Specifies the directory ID returned by the initialize function.

searchContext

(IN) Specifies the sequence number returned by the NWIntFileSearchInitialize function.

searchAttr

(IN) Specifies the attributes to apply to the search.

searchPath

(IN) Points to the path (file name, directory name, or wildcard).

retBuf

(OUT) Points to the information returned by the server.

augmentFlag

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented
nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x89FF NO_FILES FOUND_ERROR
Remarks

NWiIntFileSearchContinue returns two different search structures depending on whether the match
is a directory or a file. The application is responsible for determining the type of match, or for
limiting the search to files or directories only. The two search structures are SEARCH_FILE INFO

(page 374) and SEARCH_DIR_INFO (page 371).

On the first iteration, use the sequence number returned by the NWIntFileSearchlnitialize function.
For subsequent iterations, use the sequenceNumber field from the SEARCH_FILE INFO or

SEARCH DIR INFO structure.

Valid search attributes follow:

C Value Delphi Value Value Name
0x00 $00 FA_NORMAL
0x02 $02 FA_HIDDEN
0x04 $04 FA_SYSTEM

File System Functions 229

C Value Delphi Value Value Name

0x10 $10 FA_DIRECTORY

If other values are used for search attributes, each will be treated as FA' NORMAL.

NCP Calls

0x2222 63 File Search Continue

230 NDK: Multiple and Inter-File Services

NWintFileSearchlinitialize

Searches for files on a server

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwfile.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWIntFileSearchInitialize

NWCONN_ HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N _FAR *path,

pnuint8 volNum,
pnuintlo6 dirID,
pnuintlo6 iterHnd,
pnuint8 accessRights,
nuintlé augmentFlagqg) ;

Delphi Syntax
uses calwin32

Function NWIntFileSearchInitialize
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
path : pnstr8;
volNum : pnuint8;
dirID : pnuintlé6;
iterhandle : pnuintlé6;

accessRights : pnuint8;
augmentFlag : nuintl6

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the base directory handle to search.

File System Functions 231

path
(IN) Points to the path (relative to dirHandle) on which to initialize the search.

volNum
(OUT) Points to the corresponding volume number.
dirID
(OUT) Points to the directory ID corresponding to the specified path.

iterHnd

(OUT) Points to a sequence number to be used in calling NWIntFileSearchContinue (initially -

1).
accessRights

(OUT) Points to the access rights of the workstation to the specified directory.

augmentFlag

(IN) Is reserved (pass in zero).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

Remarks

A value of 0 should be passed to the di rHandle parameter if the directory handle is not known. In
the absence of the directory handle, the path parameter needs to specify the volume as well.

NCP Calls

0x2222 62 File Search Initialize

See Also

NWIntFileSearchContinue (page 228)

232 NDK: Multiple and Inter-File Services

NWIintMoveDirEntry

Moves or renames a directory entry (file or directory) on the same server (same volume)

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwdentry.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWIntMoveDirEntry

NWCONN_ HANDLE conn,

nuint8 searchAttrs,

NWDIR HANDLE srcDirHandle,

const nstr8 N _FAR *srcPath,

NWDIR HANDLE dstDirHandle,

const nstr8 N _FAR *dstPath,

nuintlé augmentFlagqg) ;

Delphi Syntax
uses calwin32

Function NWIntMoveDirEntry
(conn : NWCONN_ HANDLE;

searchAttrs : nuint8;
srcDirHandle : NWDIR HANDLE;
const srcPath : pnstr8;

dstDirHandle : NWDIR HANDLE;
const dstPath : pnstr8;
augmentFlag : nuintl6

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

searchAttrs

(IN) Specifies the attributes to use in searching for the source entries.

srcDirHandle

(

(IN) Specifies the directory handle for the source directory (not optional, cannot be zero).

File System Functions 233

srcPath
(IN) Points to the source path (wildcards are allowed).

dstDirHandle
(IN) Specifies the NetWare directory handle for the destination directory.

dstPath
(IN) Points to the path name to use for the destination entry.

augmentFlag

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented
nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8987 WILD_CARDS_IN_CREATE_FILE_NAME
0x898B NO_RENAME_PRIVILEGES

0x898D SOME_FILES_AFFECTED_IN_USE

0x898E NO_FILES_AFFECTED_IN_USE "All files in use"
0x898F SOME_FILES_AFFECTED_READ_ONLY
0x8990 NO_FILES_AFFECTED_READ_ONLY "Read-only access to volume"
0x8991 SOME_FILES_RENAMED_NAME_EXISTS
0x8992 NO_FILES_RENAMED_NAME_EXISTS

0x899A RENAMING_ACROSS_VOLUMES

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89A4 ERR_RENAME_DIR_INVALID

0x89FF NO_FILES_FOUND_ERROR

Remarks

To call NWIntMoveDirEntry, you must have file modification privileges in both the source and the
target directories.

The specified paths are relative to the specified directory handles. NetWare 3.11 and above accepts
paths relative to the directory handle, as well as full paths that include the volume. If full names are

234 NDK: Multiple and Inter-File Services

used, be careful that the maximum request length is not exceeded. Path names larger than 255 are
not supported.

The searchAttrs parameter specifies the kind of entry to look for (hidden, system, etc.). If only
the system bit is set, all files are affected except hidden files. If only the hidden bit is set, all files are
affected except system files. When neither bit is set (0x00), only files that are not designated either
hidden or system are affected.

The searchAttrs parameter can have the following values:

C Value Delphi Value Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY
0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED
0x80 $80 FA_SHAREABLE

A file is designated hidden or system if its corresponding file attribute is set.

The advantage of calling NWIntMoveDirEntry is its speed and efficiency. Since the move is within
the server, the entry in the file system is simply deleted from the source and inserted in the
destination. Moving directory entries occurs only on the file system level. There is no physical
transfer of data between the source and the destination.

NWIntMoveDirEntry will move files within the same volume only. If you attempt to move a file
across different volumes, RENAMING ACROSS VOLUMES is returned.

NOTE: If the mac namespace has been enabled on the volume, do not use NWIntMoveDirEntry to
move files or directories.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 69 Rename File
0x2222 87 04 Rename Or Move A File Or Subdirectory

File System Functions 235

NWIntScanDirectorylnformation2

Returns directory information for a directory specified by the connection handle, directory handle,
and directory path

NetWare Server: 3.11,3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdirect.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWIntScanDirectoryInformation2 (

NWCONN HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N _FAR *srchPath,
pnuint8 sequence,
pnstr8 dirName,
pnuint32 dirDateTime,
pnuint32 ownerlD,
pnuint8 rightsMask,
nuintlé6 augmentFlaqg) ;

Delphi Syntax
uses calwin32

Function NWIntScanDirectoryInformation?
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
searchPath : pnstr8;

sequence : pnuint8;
dirName : pnstr8;
dirDateTime : pnuint32;
ownerID : pnuint32;

rightsMask : pnuint8;
augmentFlag : nuintl6
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

236 NDK: Multiple and Inter-File Services

dirHandle
(IN) Specifies the NetWare directory handle for the directory being scanned.

srchPath

(IN) Points to an absolute directory path with a maximum length of 255 (or a path relative to
the directory handle) and a search pattern (optional).

sequence

(IN/OUT) Points to a 9-byte sequence number to be used for subsequent calls (the first 4 bytes
should be OxFF initially).

dirName

(OUT) Points to the directory name found (256 bytes, optional).

dirDateTime

(OUT) Points to the creation date and time of the directory (4 bytes, optional) in the DOS date
and time format.

ownerID

(OUT) Points to the object ID of the owner for the directory (optional).

rightsMask
(OUT) Points to the maximum rights mask for the directory found (optional).

augmentFlag

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented
nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89FF NO_FILES_FOUND_ERROR
Remarks

All parameter fields must be filled. However, NULL may be substituted in parameters where no
information is desired.

The dirHandle parameter can be zero if the srchPath parameter points to the complete path,
including the volume name.

File System Functions 237

The string accessed by the srchPath parameter can include wildcard characters. If wildcards are
used, only the directory information for the first matching directory is returned.

The rightsMask parameter can have the following values:

0x00 = TA_ NONE

0x01 = TA READ

0x02 = TA WRITE
0x04 = TA_OPEN

0x08 = TA CREATE
0x10 = TA DELETE
0x20 = TA OWNERSHIP
0x40 = TA_ SEARCH
0x80 = TA MODIFY
O0xFB = TA ALL

NOTE: TA_OPEN is obsolete in NetWare 3.x and above.

NCP Calls

0x2222 22 01 Get Directory Path

0x2222 22 02 Scan Directory Information

0x2222 23 17 Get File Server Information

0x2222 87 02 Initialize Search

0x2222 87 03 Search For File Or Subdirectory

0x2222 87 06 Obtain File Or Subdirectory Information

See Also

NWParseNetWarePath (page 652)

238 NDK: Multiple and Inter-File Services

NWIntScanDirEntrylnfo

Obtains information about NetWare 3.x, 4.x, 5.x, and 6.x directory entries (files or directories) in the
DOS name space

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdentry.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWIntScanDirEntryInfo (

NWCONN HANDLE conn,
NWDIR HANDLE dirHandle,
nuintlé attrs,
pnuint32 iterHandle,

const nuint8 N FAR *searchPattern,
NWENTRY INFO N _FAR “*entrylInfo,
nuintlé6 augmentFlaqg) ;

Delphi Syntax
uses calwin32

Function NWIntScanDirEntryInfo
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
attrs : nuintl6;
iterHandle : pnuint32;
searchPattern : pnuint8;

Var entryInfo : NWENTRY INFO;
augmentFlag : nuintl6

) : NWCCODE ;

Parameters
conn
(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare DOS directory handle indexing the directory to scan (not optional,
cannot be 0).

File System Functions 239

attrs

(IN) Specifies the attributes to be used for the scan.

iterHandle

(IN/OUT) Points to an nuint32 buffer to receive the search sequence from the server.

searchPattern

(IN) Points to the name of the entry for which to scan (wildcards are allowed).

entryInfo
(OUT) Points to the NWENTRY _INFO structure (zeroed out initially).

augmentFlag

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented
nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8989 NO_SEARCH_PRIVILEGES
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89FF NO_FILES_FOUND_ERROR
Remarks

NWIntScanDirEntryInfo can only be called with non-augmented wildcards if the augmentFlag
parameter is set to 0. For example, *.* will match anything with a period, while * will match any
string.

NWIntScanDirEntryInfo will support augmented wildcard characters if the augmentFlag
parameter is set to 1 or if the high-order bits have been manually set. For example, * will now match
zero or more characters up to a period or an end-of-string.

On the first call, the 1 terHandle parameter should point to OXFFFFFFFF. After that, the server
manages the information. All scanning is complete when the server returns 0x89FF.

The searchPattern parameter cannot point to any path elements and the dirHandle
parameter must index the complete path.

240 NDK: Multiple and Inter-File Services

NWIntScanDirEntryInfo can also be used to scan for information about other directories, including
the root directory. In this mode, the dirHandle parameter needs to index the root or a directory,
and the searchPattern parameter needs to point to NULL.

NWIntScanDirEntrylnfo works with the DOS name space only. Path and file names must be upper
cased. To scan using alternate name spaces, convert the path to a DOS name space by calling either
the NWGetNSPath or NWScanNSEntryInfo function. You can also scan the Macintosh name space
by calling the NWAFPScanFileInformation function.

The attrs parameter can have the following values:

C Value Delphi Value Value Name

0x00 $00 FA_NORMAL
0x02 $02 FA_HIDDEN
0x04 $04 FA_SYSTEM
0x10 $10 FA_DIRECTORY

The NWENTRY _INFO structure should be initialized to 0 before NWIntScanDirEntryInfo is called
for the first time.

NCP Calls

0x2222 22 01 Get Directory Path
0x2222 22 30 Scan A Directory
0x2222 22 31 Get Directory Entry

See Also

NWAFPScanFilelnformation (Single and Intra-File Management), NWGetNSInfo (page 498),
NWIntScanExtendedInfo (page 242), NWScanNSEntryInfo (page 553)

File System Functions 241

NWiIntScanExtendedinfo

Scans a directory for the extended file information
NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdentry.h>

or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWIntScanExtendedInfo (

NWCONN_HANDLE conn,

NWDIR HANDLE dirHandle,
nuint8 attrs,
pnuint32 iterHandle,
const nstr8 N_FAR *searchPattern,
NW EXT FILE INFO N FAR *entryInfo,
nuintlé augmentFlag) ;

Delphi Syntax
uses calwin32

Function NWIntScanExtendedInfo
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
attrs : nuint8;
iterHandle : pnuint32;
const searchPattern : pnstr8;
Var entryInfo : NW_EXT FILE INFO;
augmentFlag : nuintl6
) : NWCCODE ;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the NetWare directory handle for the directory to be scanned.

attrs

(IN) Specifies the search attributes.

242 NDK: Multiple and Inter-File Services

iterHandle

(IN/OUT) Points to the search sequence number (-1 initially).

searchPattern

(IN) Points to the pattern for which to search (no wildcards are allowed).

entryInfo
(OUT) Points to the NW_EXT _ FILE INFO structure containing the extended file information.

augmentFlag

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented
nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8989 NO_SEARCH_PRIVILEGES
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89FF NO_FILES_FOUND_ERROR
Remarks

NWIintScanExtendedInfo works only on files, not on directories.
All scanning is complete when the server returns 0x89FF.

NWIntScanExtendedInfo is synonymous with the NWIntScanDirEntryInfo function and uses an
extension of the information structure.

The iterHandle parameter should point to OXFFFFFFFF for the first call.

The attrs parameter is used to include system and/or hidden files. If only the system bit is set in
the attrs parameter, all files are affected except hidden files. If only the hidden bit is set, all files
are affected except system files. When neither bit is set (0x00), only files designated either hidden or
system are affected.

NOTE: A file is designated hidden or system if its corresponding file attribute is set.

The attrs parameter can have the following values:

File System Functions 243

C Value Delphi Value Value Name

0x00 $00 FA_NORMAL
0x02 $02 FA_HIDDEN
0x04 $04 FA_SYSTEM
0x10 $10 FA_DIRECTORY

The extended file information contains the information returned by the NWIntScanDirEntryInfo
function plus the sizes of the data and resource forks. NWIntScanExtendedInfo also returns the
physical size of a file.

NOTE: In the case of sparse files, the logical size may be much larger than the physical size.

NCP Calls

0x2222 22 40 Scan Directory Disk Space

See Also

NWIntScanDirEntryInfo (page 239), NWScanNSEntryInfo (page 553)

244 NDK: Multiple and Inter-File Services

NWiIntScanFilelnformation2

Scans the specified directory for the specified file (or directory) and returns the associated directory
entry information in the DOS name space

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwfile.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)

NWIntScanFileInformation2

NWCONN HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N _FAR *filePattern,
nuint8 searchAttrs,
pnuint8 iterHandle,

NW FILE INFO2 N _FAR *info,

nuintlo6

Delphi Syntax

uses calwin32

augmentFlaqg) ;

Function NWIntScanFileInformation2

(conn : NWCONN_ HANDLE;

dirHandle NWDIR HANDLE;
const filePattern pnstr8;
searchAttrs nuint8;
iterHandle pnuint8;
Var info NW FILE INFO2;
augmentFlag nuintlé6;

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(

(IN) Specifies the NetWare directory handle relative to the £ilePattern parameter (or 0 if
the filePattern parameter points to the complete path, including the volume name).

File System Functions 245

filePattern

(IN) Points to the string containing the file name or wildcard pattern to use in the search.

searchAttrs

(IN) Specifies the attributes to use for searching.

iterHandle

(IN/OUT) Inputs a pointer to the sequence number (set the first 4 bytes to OXFF initially).

Outputs a pointer to the 9-byte sequence number to be used for subsequent iterations.
info

(OUT) Points to the NW_FILE INFO2 structure containing the file information.
augmentFlag

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented

nonzero = wildcards are augmented

Note that if the high-order bit of a wildcard character is 1, NetWare interprets that character as
being a DOS wildcard (which is also called an augmented wildcard) and uses DOS rules for
interpretation of that wildcard.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8989 NO_SEARCH_PRIVILEGES
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89FF NO_FILES_FOUND_ERROR
Remarks

The searchAttrs parameter includes system and/or hidden files. If only the system bit is set in
the searchAttrs parameter, all files are affected except hidden files. If only the hidden bit is set,
all files are affected except system files. When neither bit is set (0x00), only files that are not
designated either hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file attribute is set.

The searchAttrs parameter can have the following values:

246 NDK: Multiple and Inter-File Services

C Value Delphi Value Value Name

0x00 $00 FA_NORMAL
0x02 $02 FA_HIDDEN
0x04 $04 FA_SYSTEM
0x10 $10 FA_DIRECTORY

The iterHandle parameter points to a 9-byte identifier the server uses as an index for searching.
In the first call to NWIntScanFileInformation2, the first 4 bytes of the number need to be set to OxFF
accomplished by typecasting the pointer to an nuint32, and assigning -1, or OXFFFFFFFF to it.
Every time NWIntScanFileInformation2 is called, the sequence number for the next iteration is
returned.

NCP Calls

0x2222 23 15 Scan File Information

0x2222 23 17 Get File Server Information
0x2222 87 02 Initialize Search

0x2222 87 03 Search For File Or Subdirectory

File System Functions 247

NWiIintScanFileInformation2Ext

Scans the specified directory for the specified file (or directory) and returns the associated directory
entry information in the DOS name space, using UTF-8 strings

NetWare Server: 6.5 SP2 or later

Platform: Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwfile.h>
or

#include <nwcalls.h>

N EXTERN_ LIBRARY (NWCCODE) NWIntScanFileInformationZExt (

NWCONN_HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N_FAR *filePattern,
nuint8 searchAttrs,
pnuint8 iterHandle,
NW FILE INFO2 EXT N _FAR *info,
nuintl6 augmentFlag) ;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle relative to the £ilePattern parameter (or 0 if
the £ilePattern parameter points to the complete path, including the volume name).

filePattern

(IN) Points to the string containing the file name or wildcard pattern to use in the search. The
characters in the string must be UTF-8.

searchAttrs

(IN) Specifies the attributes to use for searching. See Remarks for possible values.

iterHandle

(IN/OUT) Inputs a pointer to the sequence number (set the first 4 bytes to OxFF initially).
Outputs a pointer to the 9-byte sequence number to be used for subsequent iterations.

info

(OUT) Points to the NW_FILE INFO2 structure containing the file information.

248 NDK: Multiple and Inter-File Services

augmentFlag

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented
nonzero = wildcards are augmented

Note that if the high-order bit of a wildcard character is 1, NetWare interprets that character as
being a DOS wildcard (which is also called an augmented wildcard) and uses DOS rules for

interpretation of that wildcard.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x88F0 UTF8_CONVERSION_FAILED
0x8989 NO_SEARCH_PRIVILEGES
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

Ox89FF NO_FILES FOUND_ERROR
Remarks

The searchAttrs parameter includes system and/or hidden files. If only the system bit is set in
the searchAttrs parameter, all files are affected except hidden files. If only the hidden bit is set,
all files are affected except system files. When neither bit is set (0x00), only files that are not

designated either hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file attribute is set.

The searchAttrs parameter can have the following values:

C Value Value Name

0x00 FA_NORMAL
0x02 FA_HIDDEN
0x04 FA_SYSTEM
0x10 FA_DIRECTORY

The iterHandle parameter points to a 9-byte identifier the server uses as an index for searching.
In the first call to NWIntScanFileInformation2Ext, the first 4 bytes of the number need to be set to
OxFF accomplished by typecasting the pointer to an nuint32, and assigning -1, or OXFFFFFFFF to it.

File System Functions 249

Every time NWIntScanFileInformation2Ext is called, the sequence number for the next iteration is
returned. You should not modify this returned sequence number.

NCP Calls

0x2222 23 15 Scan File Information

0x2222 23 17 Get File Server Information
0x2222 87 02 Initialize Search

0x2222 87 03 Search For File Or Subdirectory
0x2222 89 02 Initialize Search

0x2222 89 03 Search For File Or Subdirectory

250 NDK: Multiple and Inter-File Services

NWiIntScanForTrustees

Scans a directory entry or file for trustees under the specified directory handle and path
NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdentry.h>

or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWIntScanForTrustees (

NWCONN_ HANDLE conn,

NWDIR HANDLE dirHandle,

const nstr8 N_FAR *path,

pnuint32 iterHandle,
pnuintlo6 numOfEntries,
NWET INFO N _FAR *entryTrusteelInfo,
nuintlé augmentFlagqg) ;

Delphi Syntax
uses calwin32

Function NWIntScanForTrustees
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const path : pnstr§;
iterHandle : pnuint32;
numOfEntries : pnuintl6;
Var entryTrusteeInfo : NWET INFO;
augmentFlag : nuintl6
) : NWCCODE;

Parameters
conn
(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the NetWare directory handle pointing to the directory or file to scan.

File System Functions 251

path

(IN) Points to an absolute directory or file path (if the dirHandle parameter is not specified)
or one relative to the di rHandle parameter (an absolute path must not be more than 255
bytes long).

iterHandle

(IN/OUT) Points to the server maintained sequence number (set to 0 initially).

numOfEntries

(OUT) Points to the buffer to receive the number of entries returned by
NWIntScanForTrustees.

entryTrusteelnfo
(OUT) Points to the NWNET _INFO structure.

augmentFlag

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented
nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x899C NO_MORE_TRUSTEES
Remarks

NWIntScanForTrustees works for both files and directories.

Directories can have any number of objects as trustees. Trustees are returned in groups of 20
TRUSTEE_INFO structures. To obtain a complete list, set the sequence parameter to OL for the
initial call. NWIntScanForTrustees should then be called (for example in a while or do loop) until it
returns 0x899C (NO_MORE_TRUSTEES). Because 0x899C also indicates INVALID PATH,
ensure the dirHandle/path parameter combination is correct.

Due to subtle differences in operation, trustees may remain after an iteration, even though not all 20
positions are filled. If a position is not filled, the olbjectID parameter is set to OL. Check the
objectID parameter before printing each value in the objectRights parameter.

Both the dirHandle and path parameters must be in the default name space.

252 NDK: Multiple and Inter-File Services

The default name space is the name space that matches the OS and the loaded name spaces on that
volume. For example, Windows 95 on a volume with LONG name space will set LONG name space
as the default name space.

The dirHandle parameter can be zero if the path parameter points to the complete path,
including the volume name. The path parameter can point to wildcard characters. However, only
the first matching directory is scanned.

NOTE: Call the NWAIllocTemporaryDirectoryHandle function with the path parameter to check
for a valid path.

The NWET _INFO structure receives trustee information. However, only the TRUSTEE INFO
structure is valid for servers 3.x and later. The sequenceNumber field should always be ignored.

NCP Calls

0x2222 22 12 Scan Directory For Trustees

0x2222 22 38 Scan File Or Directory For Extended Trustees
0x2222 23 17 Get File Server Information

0x2222 87 05 Scan File Or Subdirectory For Trustees

Example

The following snippet of code shows how to use a do/while loop to repeatedly scan the trustee list
for multiple entries. Before displaying the list to a user, the objectID and objectRights need to be
mapped to something easier to read.
void PrintTrustees (NWCONN HANDLE conn, const char *path)
{

nuint32 iterHandle;

nuintl6é numOfEntries;

NWET INFO trusteelInfo;

NWCCODE ccode;

int index;

printf ("Trustees for %s:\n", path);
iterHandle = 0;
do
{
ccode = NWIntScanForTrustees (conn, 0, path, &iterHandle,
snumOfEntries,
&trusteelInfo, 0);
if (ccode == NO MORE TRUSTEES)
break;

if (ccode == 0)
{
for (index = 0; index < 20; index++)
{
if (trusteelInfo.trusteelist[index].objectID != 0)

{
printf (" 0x%08X: 0x%04X\n",

File System Functions 253

trusteeInfo.trusteelist[index] .objectID,
trusteeInfo.trusteelist[index] .objectRights) ;

}

} while (ccode == 0);

254 NDK: Multiple and Inter-File Services

NWiIntScanForTrusteesExt

Scans a directory entry or file for trustees of the specified directory handle and path,
UTF-8 strings

NetWare Server: 6.5 SP2 or later

Platform: Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdentry.h>
or

#include <nwcalls.h>

N _EXTERN_ LIBRARY (NWCCODE) NWIntScanForTrusteesExt (

NWCONN_HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N_FAR *path,
pnuint32 iterHandle,
pnuintlo6 numOfEntries,
NWET INFO EXT N_FAR *entryTrusteelnfo,
nuintl6 augmentFlag) ;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle pointing to the directory or file to scan.

path

(IN) Points to an absolute directory or file path (if the di rHandle parameter is 0) or one
relative to the di rHand1e parameter. An absolute path must not be more than 255 bytes long.

The characters in the string must be UTF-8.

iterHandle

(IN/OUT) Points to the server maintained sequence number (set to 0 initially).

numOfEntries
(OUT) Points to the buffer to receive the number of entries returned by
NWIntScanForTrusteesExt.

entryTrusteelInfo
(OUT) Points to the NWNET _INFO_EXT structure.

File System Functions 255

augmentFlag

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented
nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x88F0 UTF8_CONVERSION_FAILED
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x899C NO_MORE_TRUSTEES
Remarks

NWIntScanForTrusteesExt works for both files and directories on NSS volumes.

Directories can have any number of objects as trustees. Trustees are returned in groups of 100
TRUSTEE_INFO structures. To obtain a complete list, set the i terHandle parameter to 0 for the
initial call. NWIntScanForTrusteesExt should then be called (for example in a while or do loop)
until it returns 0x899C (NO_MORE_TRUSTEES). Because 0x899C also indicates
INVALID_PATH, ensure the dirHandle/path parameter combination is correct.

Due to subtle differences in operation, trustees may remain after an iteration, even though not all
100 positions are filled. If a position is not filled, the object ID parameter is set to OL. Check the
objectID parameter before printing each value in the objectRights parameter.

Both the dirHandle and path parameters must be in the default name space.

The default name space is the name space that matches the OS and the loaded name spaces on that
volume. For example, Windows 95 on a volume with LONG name space will set LONG name space
as the default name space.

The dirHandle parameter can be zero if the path parameter points to the complete path,
including the volume name. The path parameter can point to wildcard characters. However, only
the first matching directory is scanned.

The NWET _INFO_EXT structure receives trustee information. The sequenceNumber field
should always be ignored.

NCP Calls

0x2222 22 12 Scan Directory For Trustees

256 NDK: Multiple and Inter-File Services

0x2222 22 38 Scan File Or Directory For Extended Trustees
0x2222 23 17 Get File Server Information

0x2222 87 05 Scan File Or Subdirectory For Trustees
0x2222 89 05 Scan File Or Subdirectory For Trustees

Example

The following snippet of code shows how to use a do/while loop to repeatedly scan the trustee list
for multiple entries. Before displaying the list to a user, the objectID and objectRights need to be
mapped to something easier to read.
void PrintTrustees (NWCONN HANDLE conn, const char *path)
{

nuint32 iterHandle;

nuintl6 numOfEntries;

NWET INFO EXT trusteelInfo;

NWCCODE ccode;

int index;

printf ("Trustees for %s:\n", path);
iterHandle = 0;
do
{
ccode = NWIntScanForTrusteesExt (conn, 0, path, &iterHandle,
&snumOfEntries, &trusteelInfo, 0);
if (ccode == NO MORE TRUSTEES)
break;

if (ccode == 0)
{
for (index = 0; index < 100; index++)
{
if (trusteelInfo.trusteelist[index].objectID != 0)
{
printf (" 0x%08X: 0x%04X\n",
trusteeInfo.trusteelist[index] .objectID,
trusteeInfo.trusteelist[index] .objectRights) ;

}
} } while (ccode != 0);}

File System Functions 257

NWModifyMaximumRightsMask

Modifies the maximum rights mask of a directory
NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdirect.h>

or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWModifyMaximumRightsMask (

NWCONN_HANDLE conn,

NWDIR HANDLE dirHandle,

const nstr8 N _FAR *path,

nuint8 revokeRightsMask,
nuint8 grantRightsMask) ;

Delphi Syntax
uses calwin32

Function NWModifyMaximumRightsMask
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const path : pnstr§;
revokeRightsMask : nuint8;
grantRightsMask : nuint$8

) : NWCCODE;

Parameters

conn
(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle for the directory whose maximum rights mask is being
modified (or 0 if the path parameter points to the complete path, including the volume name).

path

(IN) Points to the absolute directory path (or a path relative to the directory handle) of the
directory whose maximum rights mask is being modified.

revokeRightsMask
(IN) Specifies the rights being revoked.

258 NDK: Multiple and Inter-File Services

grantRightsMask
(IN) Specifies the rights being granted.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x898C NO_MODIFY_PRIVILEGES
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89FD BAD_STATION_NUMBER
Ox89FF Failure

Remarks

To modify the maximum rights mask for a directory, the requesting workstation must have access
control rights to the directory.

The maximum rights mask follows:

Hex Bit Definition

0x01 TA_READ

0x02 TA_WRITE

0x08 TA_CREATE
0x10 TA_DELETE
0x20 TA_OWNERSHIP
0x40 TA_SEARCH
0x80 TA_MODIFY

The rights specified by the revokeRightsMask parameter are deleted from the maximum rights
mask for the directory, and the rights specified by the grantRightsMask parameter are added.

The maximum rights mask can be completely reset by setting the revokeRightsMask parameter
to OxFF and then setting the grantRightsMask parameter to the desired maximum rights mask.
Maximum rights affect the specified directory only and are not inherited by subdirectories.

To return the current rights value, call NWIntScanDirectorylnformation2 (page 236).

File System Functions 259

NCP Calls

0x2222 22 04 Modify Maximum Rights Mask
0x2222 23 17 Get File Server Information
0x2222 87 07 Modity File or SubDirectory DOS Information

See Also

NWGetEffectiveRights (page 207)

260 NDK: Multiple and Inter-File Services

NWRenameDirectory

Renames a NetWare directory

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWRenameDirectory (
NWCONN_ HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N _FAR *oldName,
const nstr8 N _FAR *newName);

Delphi Syntax
uses calwin32

Function NWRenameDirectory
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
oldName : pnstr8;
newName : pnstr8

) : NWCCODE;

Parameters

conn
(IN) Specifies the NetWare server connection handle.
dirHandle

(IN) Specifies the directory handle for the directory being deleted (or 0 if the o 1dName
parameter points to the complete path, including the volume name).

oldName

(IN) Points to the string containing the name of the directory to be renamed.

newName

(IN) Points to the string containing the new directory name.

File System Functions 261

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8836 NWE_PARAM_INVALID
0x8980 FILE_IN_USE_ERROR
0x898B NO_RENAME_PRIVILEGES
0x8992 NO_FILES_RENAMED_NAME_EXISTS
0x8996 SERVER_OUT_OF MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x899E INVALID_FILENAME

0x89A1 DIRECTORY_IO_ERROR
0x89FD BAD_STATION_NUMBER
Ox89FF Failure

Remarks

The newName parameter should only include the new name of the directory without listing the
volume or directory path. Otherwise, NWRenameDirectory will return NWE_PARAM INVALID.

NCP Calls

0x2222 22 15 Rename Directory

0x2222 23 17 Get File Server Information

0x2222 87 04 Rename Or Move A File Or Subdirectory
0x2222 87 22 Generate Directory Base and Volume Number

See Also

NWCreateDirectory (page 173), NWDeleteDirectory (page 178)

262 NDK: Multiple and Inter-File Services

NWRenamefFile

Allows a client to rename a file

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwfile.h>

or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWRenameFile

NWCONN_ HANDLE conn,

NWDIR HANDLE oldDirHandle,
const nstr8 N _FAR *oldFileName,
nuint8 searchAttrs,
NWDIR HANDLE newDirHandle,

const nstr8 N _FAR *newFileName);

Delphi Syntax
uses calwin32

Function NWRenameFile
(conn : NWCONN_ HANDLE;
oldDirHandle : NWDIR HANDLE;
oldFileName : pnstr8;

searchAttrs : nuint8;
newDirHandle : NWDIR HANDLE;
newFileName : pnstr8

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle containing the file.

oldDirHandle

(IN) Specifies the directory handle containing the file (or 0 if the 01dFileName parameter

points to the complete path, including the volume name).

oldFileName

(IN) Points to a string containing the original name of the file being renamed.

File System Functions 263

searchAttrs

(IN) Specifies the attributes to use in searching for the specified file.

newDirHandle

(IN) Specifies the new directory handle to contain the specified file.

newFileName

(IN) Points to a string containing the new name of the file.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8987 WILD_CARDS_IN_CREATE_FILE_NAME or CREATE_FILENAME_ERROR
0x898B NO_RENAME_PRIVILEGES

0x898D SOME_FILES_AFFECTED_IN_USE
0x898E NO_FILES_AFFECTED_IN_USE

0x898F SOME_FILES_AFFECTED_READ_ONLY
0x8990 NO_FILES_AFFECTED_READ_ONLY
0x8991 SOME_FILES_ RENAMED_NAME_EXISTS
0x8992 NO _FILES RENAMED NAME_EXISTS
0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899A RENAMING_ACROSS_VOLUMES

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR
Remarks

The source directory (where the file resides) and the target directory (where the renamed file is to be
deposited) do not need to be the same directory. However, the two files must reside on the same
server. NWRenameFile cannot move a file from one server to another or from one volume to
another.

The searchAttrs parameter is used to include system and/or hidden files. If only the system bit
is set in the searchAttrs parameter, all files are affected except hidden files. If only the hidden

264 NDK: Multiple and Inter-File Services

bit is set, all files are affected except system files. When neither bit is set (0x00), only files that are
not designated either hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file attribute is set.

The searchAttrs parameter can have the following values:

C Value Delphi Value Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY
0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED
0x80 $80 FA_SHAREABLE

Since the path length is restricted to 256 bytes, applications must call the
NWAIllocTemporaryDirectoryHandle function to allocate the dirHandle parameter for path
lengths greater than 256 bytes.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 69 Rename File
0x2222 87 04 Rename Or Move A File Or Subdirectory

See Also

NWAIllocTemporaryDirectoryHandle (page 166)

10.5 NWS*-NWZ* Functions

Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

+ “NWScanConnectionsUsingFile” on page 267

* “NWScanDirectoryForTrustees2” on page 269

+ “NWScanOpenFilesByConn2” on page 272

+ “NWSetCompressedFileLengths” on page 274

+ “NWSetCompressedFileSize” on page 276

+ “NWSetDirectoryHandlePath” on page 278

* “NWSetDirectoryInformation” on page 281

File System Functions 265

* “NWSetDirEntryInfo” on page 284

* “NWSetDirSpaceLimit” on page 288

+ “NWSetExtendedFileAttributes2” on page 290
* “NWSetFileAttributes” on page 293

+ “NWSetFileInformation2” on page 296

+ “NWSetVolumeFlags™ on page 299

+ “NWVolumelsCDROM” on page 301

266 NDK: Multiple and Inter-File Services

NWScanConnectionsUsingFile

Scans all connections using a specified file

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwfile.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWScanConnectionsUsingFile (

NWCONN_ HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N _FAR *filePath,
pnintlo6 iterHandle,
CONN USING FILE N_FAR *fileUse,

CONNS USING FILE N_FAR *fileUsed) ;

Delphi Syntax
uses calwin32

Function NWScanConnectionsUsingFile
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
filePath : pnstr8;
iterhandle : pnintl6;
Var fileUse : CONN USING FILE;
Var fileUsed : CONNS USING FILE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired directory path. Use the DOS
namespace as input parameter for the full path of filename, when the directory handle is 0.

filePath

(IN) Points to a full file path (or a path relative to dirHandle) specifying the file to be
checked (wildcards are not allowed).

File System Functions 267

iterHnd
(IN/OUT) Points to the next record to be scanned (0 initially).

fileUse
(OUT) Points to the CONN_USING_FILE structure.

fileUsed
(OUT) Points to the CONNS_USING_FILE structure.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

O0x88FF NWE_REQUESTER_FAILURE: Scan Completed
0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89A8 ERR_ACCESS_DENIED

0x89C6 NO_CONSOLE_PRIVILEGES

Remarks

You must have console operator rights to call NWScanConnectionsUsingFile.

Upon each subsequent call, the number of the next record to be scanned is returned in the i terHnd
parameter. This value should not be changed during the scan. NWScanConnectionsUsingFile
returns OXFFFFFFFF upon completion.

If no connections are using the specified file, the structure returned by the £i1eUsed parameter
will contain zeroes. Check the connCount parameter in the returned structure to see the number of
connections actually using the file.

If the £11eUse parameter is NULL, the records are returned in the £i1eUsed parameter in
groups, instead of one at a time.

Use the DOS namespace as input parameter for the full path of filename, when the directoryhandle
is 0.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 23 236 Get Connections Using A File
0x2222 23 244 Convert Path To Dir Entry

268 NDK: Multiple and Inter-File Services

NWScanDirectoryForTrustees2

Scans a directory for trustees using the specified path and directory handle
NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWScanDirectoryForTrustees2
NWCONN_ HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N_FAR *srchPath,
pnuint32 iterHandle,
pnstr8 dirName,
pnuint32 dirDateTime,
pnuint32 ownerID,

TRUSTEE INFO N FAR *trusteelist);

Delphi Syntax
uses calwin32

Function NWScanDirectoryForTrustees?2
(conn : NWCONN_ HANDLE;

dirHandle NWDIR HANDLE;
searchPath pnstr8;
iterHandle pnuint32;
dirName pnstr8;
dirDateTime pnuint32;
ownerID pnuint32;
Var trusteelist TRUSTEE INFO
) : NWCCODE;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle for the directory being scanned (0 if the
srchPath parameter points to the complete path, including the volume name).

(

File System Functions 269

srchPath

(IN) Points to an absolute directory path (or a path relative to the directory handle) and a search
pattern.

iterHandle

(IN/OUT) Points to the sequence number to be used for subsequent calls (0 initially).

dirName

(OUT) Points to the directory name found (optional, up to 256 bytes).

dirDateTime

(OUT) Points to the creation date and time of the directory (optional).

ownerID

(OUT) Points to the object ID of the directory owner (optional).

trusteelist
(OUT) Points to an array of 20 TRUSTEE INFO structures.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x898C NO_MODIFY_PRIVILEGES
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C NO_MORE_TRUSTEES
Remarks

The srchPath parameter can include wildcard characters.

Directories can have any number of objects as trustees. The directory trustees are stored and
retrieved in groups on the server. To obtain a complete list, use the i terHandle parameter.

NWScanDirectoryForTrustees2 increments the value referenced by the 1 terHandle parameter to
the next appropriate value. For subsequent calls, pass in the new value of the iterHandle
parameter.

Trustees are returned in groups of 20 TRUSTEE_INFO structures. Due to subtle differences in
operation, trustees may remain after an iteration, even though not all 20 positions are filled. If a
position is not filled, the objectID field of TRUSTEE INFO points to a value of OL.

270 NDK: Multiple and Inter-File Services

NWScanDirectoryForTrustees2 should be called until it returns 0x899C
(NO_MORE_TRUSTEES). Because 0x899C also means INVALID PATH, ensure the
dirHandle/pbstrSrchPath parameter combination is correct.

NULL can be substituted for all optional items. However, all parameter positions must be filled.

NCP Calls

0x2222 22 1 Get Directory Path

0x2222 22 2 Scan Directory Information

0x2222 22 12 Scan Directory For Trustees

0x2222 22 38 Trustees Scan Ext

0x2222 23 17 Get File Server Information

0x2222 87 02 Initialize Search

0x2222 87 03 Search For File or Subdirectory

0x2222 87 05 Scan File Or Subdirectory For Trustees
0x2222 87 06 Obtain File or Subdirectory Information

See Also

NWScanNSDirectoryForTrustees (page 547)

File System Functions 271

NWScanOpenFilesByConn2

Scans information about the files opened by a specified connection
NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwfile.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWScanOpenFilesByConn2 (

NWCONN_HANDLE conn,
NWCONN_NUM connNum,
pnintlo6 iterHandle,
OPEN_ FILE CONN CTRL N FAR *openCtrl,
OPEN_FILE CONN N_FAR *openFile) ;

Delphi Syntax
uses calwin32

Function NWScanOpenFilesByConn2
(conn : NWCONN_ HANDLE;
connNum : NWCONN_ NUM;
iterHandle : pnintl6;
Var openCtrl : OPEN FILE CONN CTRL;
Var openFile : OPEN FILE CONN
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

connNum

(IN) Specifies the connection number of the logged-in object to be scanned.

iterHandle
(IN/OUT) Points to the next record to be scanned (0 initially).

openCtrl
(OUT) Points to the OPEN_FILE CONN_CTRL structure.

272 NDK: Multiple and Inter-File Services

openFile
(OUT) Points to the OPEN_FILE CONN structure.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
O0x88FF Scan Completed

0x89FD BAD_STATION_NUMBER
Remarks

For 3.x, you must have console operator rights to call NWScanOpenFilesByConn2 or
NO_CONSOLE_PRIVILEGES will be returned.

For 4.x, 5.x, and 6.x, you can call NWScanOpenFilesByConn2 to return information about the
connection without needing console operator privileges. To return information about other
connection numbers, you must have console rights. A client with console privileges can pass any
valid connection number to NWScanOpenFilesByConn2 and receive information about that
connection.

Upon each subsequent call, the i terHandle parameter returns the number of the next record to be
scanned and points to OXFFFFFFFF upon completion. It should not be changed during the scan.

The OPEN_FILE _CONN_CTRL structure is used internally and should not be written to.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 23 235 Get Connection’s Open Files

See Also

NWGetPathFromDirectoryBase (page 650)

File System Functions 273

NWSetCompressedFileLengths

Sets the uncompressed and compressed lengths of a file
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: File System

Syntax

#include <nwfinfo.h>

int NWSetCompressedFileLengths (
int handle,
LONG uncompressedLength,
LONG compressedLength ;

Parameters

handle
(IN) Specifies the handle of the file for which to set the lengths.

uncompressedLength

(IN) Specifies the length of the file in an uncompressed state.

compressedLength

(IN) Specifies the length of the file after being compressed.

Return Values

0x00 Success
OxFF Failure
Remarks

NWSetCompressedFileLengths sets the compressed and uncompressed lengths of a file.

NWSetCompressedFileLengths is useful for restoring directory entry information about files that
have previously been backed up.

The uncompressedLength parameter is the length normally seen in normal directory listings.

274 NDK: Multiple and Inter-File Services

See Also

NWGetCompressedFileLengths (page 191)

File System Functions 275

NWSetCompressedFileSize

Attempts to set the logical file size for a compressed file
NetWare Server: 4.x, 5.X, 6.x

Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWSetCompressedFileSize (
NWCONN_HANDLE conn,

nuint32 fileHandle,
nuint32 regFileSize,
pnuint32 resFileSize);

Delphi Syntax
uses calwin32
Function NWSetCompressedFileSize

(conn : NWCONN_ HANDLE;
fileHandle : nuint32;

regFileSize : nuint32;
resFileSize : pnuint32
) : NWCCODE;
Parameters
conn

(IN) Specifies the connection handle of the associated NetWare server.

fileHandle
(IN) Specifies an OS or NetWare file handle.

reqFileSize

(IN) Specifies the requested file size.

resFileSize

(OUT) Points to the size actually assigned by the OS.

276 NDK: Multiple and Inter-File Services

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8988 INVALID_FILE_HANDLE
0Ox89A8 ERR_ACCESS_DENIED
Remarks

The logical file size is the true size of the file as reported by the client operating systems. When a
file is compressed, it shrinks in physical size. However, its logical size should remain the same. In
cases where the client forces the creation of a compressed file (by opening a file in compressed
mode), the NetWare OS gets the actual size of the file by calling NWSetCompressedFileSize.

If the fileHandle parameter contains a NetWare handle, the conn parameter contains the
connection handle of the associated server. I[f NETX is running and a DOS file handle is passed, the
conn parameter must also contain a valid connection ID. In all other circumstances, the conn
parameter is ignored.

NCP Calls

0x2222 90 12 Set Compressed File Size

File System Functions 277

NWSetDirectoryHandlePath

Sets the target directory handle for the specified directory handle and path
NetWare Server: 3.11,3.12,3.2,4.x, 5.x, 6.x

Platform: Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdirect.h>

or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWSetDirectoryHandlePath (

NWCONN_HANDLE conn,

NWDIR HANDLE sourceDirHandle,
const nstr8 N _FAR *dirPath,

NWDIR HANDLE destDirHandle) ;

Delphi Syntax
uses calwin32

Function NWSetDirectoryHandlePath
(conn : NWCONN_ HANDLE;
sourceDirHandle : NWDIR HANDLE;
dirPath : pnstr8;
destDirHandle : NWDIR HANDLE

) : NWCCODE;

Parameters

conn
(IN) Specifies the NetWare server connection handle.

sourceDirHandle

(IN) Specifies the source directory handle (index number) identifying the volume or directory
on a NetWare server being reassigned (1-255).

dirPath
(IN) Points to the source directory path (optional).

destDirHandle

(IN) Specifies the target directory handle (index number) to become the new directory handle
for the specified directory.

278 NDK: Multiple and Inter-File Services

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89FA TEMP_REMAP_ERROR
0x89FD BAD_STATION_NUMBER
Ox89FF Failure

Remarks

If NWSetDirectoryHandlePath fails, the destDirHandle parameter remains unchanged.

In cases where multiple NetWare servers are being used, the sourceDirHandle and
destDirHandle parameters must have the same server connection handle identifier.

NWSetDirectoryHandlePath assigns the destDirHandle parameter to a directory path defined
by combining the sourceDirHandle parameter and the string accessed by the dirPath
parameter.

A NetWare server maintains a Directory Handle Table for each workstation that is logged in.

The destDirHandle parameter is another index number from the Directory Handle Table for the
NetWare server.

The dirPath parameter can identify a full or partial directory path. A full directory path defines a
volume or a directory on a given NetWare server in the format VOLUME:DIRECTORY?/.../
DIRECTORY. A partial directory path specifies at least a directory and one or more parent
directories.

Applications frequently combine a directory handle and a directory path to specify a target directory.
For example, if the specified directory handle points to SYS: and the specified directory path is
PUBLIC/WORDP, the specified directory is SYS:PUBLIC/WORDP.

When an application defines a target directory using only a directory handle, the application must set
the di rPath parameter to a NULL string. When an application defines a directory using only a
directory path, the application must set the sourceDirHandle parameter to zero.

NCP Calls

0x2222 22 00 Set Directory Handle
0x2222 23 17 Get File Server Information

File System Functions 279

0x2222 87 09 Set Short Directory Handle

See Also

NWGetDirectoryHandlePath (page 196)

280 NDK: Multiple and Inter-File Services

NWSetDirectorylnformation

Changes information about a directory including the creation date and time, owner object ID, and
maximum rights mask

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdirect.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWSetDirectoryInformation (

NWCONN HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N FAR *path,
nuint32 dirDateTime,
nuint32 ownerlD,
nuint8 rightsMask) ;

Delphi Syntax
uses calwin32

Function NWSetDirectoryInformation
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
path : pnstr8;

dirDateTime : nuint32;
ownerID : nuint32;
rightsMask : nuint8

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle (index number from 1-255) pointing to the
directory, partial directory, or volume whose information is being set (0 if the path parameter
points to the complete path, including the volume name).

path
(IN) Points to the directory path of the directory being changed.

File System Functions 281

dirDateTime

(IN) Specifies the new creation date and time.

ownerID

(IN) Specifies the object ID of the owner who created the directory.

rightsMask

(IN) Specifies the new maximum rights mask for the directory.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x898C NO_MODIFY_PRIVILEGES
0x8996 SERVER_OUT_OF _MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89F0 WILD_CARD_NOT_ALLOWED
0x89FF Failure, NO_FILES FOUND_ ERROR
Remarks

NWSetDirectoryInformation defines the target directory by passing a directory handle and a
directory path.

A NetWare server maintains a Directory Handle Table for each logged in workstation.

The path parameter cannot contain wild card characters or NWSetDirectoryInformation will return
WILD CARD NOT ALLOWED.

The path parameter can identify a full or partial directory path. A full directory path defines a
volume or a directory on a given NetWare server in the format VOLUME:DIRECTORY?/.../
DIRECTORY. A partial directory path specifies at least a directory, and possibly one or more parent
directories.

Applications frequently combine a directory handle and a directory path to specify a target directory.
For example, if the specified directory handle points to SYS: and the specified directory path is
PUBLIC/WORDP, the specified directory is SYS:PUBLIC/WORDP.

The dirDateTime parameter appears in standard DOS format. The first two bytes contain the
year (7 bits), month (4 bits), and day (5 bits) fields, and the second two bytes contain the hour (5
bits), minute (6 bits), and second (5 bits) fields.

282 NDK: Multiple and Inter-File Services

NWSetDirectoryInformation sets the date and time in ascending order (byte 1, byte 2, byte 3, byte
4). The date and time values are defined as follows:

Type Value

Year 0=1980, 1=1981, ..., 119=2099
Month 1t0 12

Day 1to 31

Hour 0to 23

Minute 0to 59

Second 0 to 29 (in units of 2 seconds)

The rightsMask parameter contains the maximum rights mask for the subdirectory. The bits in
the maximum rights mask are defined as follows:

0x00 = TA NONE

0x01 = TA READ

0x02 = TA WRITE
0x04 = TA OPEN

0x08 = TA CREATE
0x10 = TA DELETE
0x20 = TA OWNERSHIP
0x40 = TA SEARCH
0x80 = TA MODIFY
OxFB = TA ALL

NOTE: TA_OPEN is obsolete in version 3.x and above.

To change information for a directory, the requesting workstation must have access control rights
and modify rights to the directory’s parent. Only a workstation with SUPERVISOR rights can
change the owner of a directory.

NCP Calls

0x2222 22 25 Set Directory Information
0x2222 23 17 Get File Server Information
0x2222 87 07 Modity File Or Subdirectory DOS Information

See Also

NWParseNetWarePath (page 652)

File System Functions 283

NWSetDirEntryinfo

Changes information about a directory entry (file or directory)
NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwdentry.h>
or

#include <nwcalls.h>

N EXTERN_ LIBRARY (NWCCODE) NWSetDirEntryInfo (

NWCONN_HANDLE conn,

NWDIR HANDLE dirHandle,
nuint8 searchAttrs,
nuint32 iterHandle,
nuint32 changeBits,

const NWENTRY INFO N FAR *newEntryInfo);

Delphi Syntax
uses calwin32

Function NWSetDirEntryInfo
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;

searchAttrs : nuint8;
iterHandle : nuint32;
changeBits : nuint32;
Var newEntryInfo : NWENTRY INFO
) : NWCCODE;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle.

searchAttrs

(IN) Specifies the search attribute to use in searching for the directory entry.

284 NDK: Multiple and Inter-File Services

iterHandle

(IN) Is currently unused and ignored for NetWare 3.11 and later. For NetWare versions prior to
3.11, it can be used iteratively to find all files that match a specified search criteria.

changeBits

(IN) Specifies the set of bits to indicate which attributes to change.

newEntryInfo
(IN) Points to the NWENTRY _INFO structure.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

Remarks

NWSetDirEntryInfo only works with 3.11 and above servers.

For files, the di rHand1le parameter must point to parent directory. For directories, it should follow
the same conventions as for the NWIntScanDirEntryInfo function.

The searchAttrs parameter specifies the kind of entry to look for (hidden, system, etc.). For
example, if only the system bit is set in the searchAttrs parameter, all files except hidden files
are affected. If only the hidden bit is set, all files except system files are affected. If neither bit is set
(0x00), only files not designated either hidden or system are affected. On NetWare versions previous
to 3.11, you might need to use i terHandle to call this function iteratively to eventually affect all
files that fit a particular search attribute since NWSetDirEntryInfo affects only one file or directory
at a time.

NOTE: A file is designated hidden or system if its corresponding file attribute is set.

searchAttrs can have the following values:

C Value Delphi Value Value Name

0x00 $00 FA_NORMAL
0x02 $02 FA_HIDDEN
0x04 $04 FA_SYSTEM
0x10 $10 FA_DIRECTORY

File System Functions

285

changeBits can have the following values:

C Value Delphi Value Value Name

0x0001L $0001 MModifyNameBit
0x0002L $0002 MFileAttributesBit
0x0004L $0004 MCreateDateBit
0x0008L $0008 MCreateTimeBit
0x0010L $0010 MOwnerIDBit

0x0020L $0020 MLastArchivedDateBit
0x0040L $0040 MLastArchivedTimeBit
0x0080L $0080 MLastArchivedIDBit
0x0100L $0100 MLastUpdatedDateBit
0x0200L $0200 MLastUpdatedTimeBit
0x0400L $0400 MLastUpdatedIDBit
0x0800L $0800 MLastAccessedDateBit
0x1000L $1000 MinheritedRightsMaskBit
0x2000L $2000 MMaximumSpaceBit

The NWENTRY _INFO structure must be initialized to 0 before calling the NWSetDirEntryInfo
function.

To change information for a directory, the requesting workstation must have access control and
modify rights. Only a workstation with SUPERVISOR rights can change the owner of a directory.
The lastModifyDateAndTime field in the NWDIR_INFO structure cannot be changed for
volumes. Otherwise, the last modified date and time will be set to the current date and time.

For files, the dirHandle parameter must point to the parent directory. The nameLength and
name fields in the NWENTRY INFO structure must contain the specific file information.

For directories, if the di rHandle parameter points to the parent directory, the nameLength and
name fields in the NWENTRY _INFO structure must contain the specific directory information.

For directories, if the dirHandle parameter points to the specific directory itself, the
nameLength field must be set to 0.

For each name space, the di rHandle parameter and the nameSpace, name and nameLength
fields must be synchronized to indicate the correct name space.

NCP Calls

0x2222 22 37 Set Directory Entry Information
0x2222 23 17 Get File Server Information
0x2222 87 07 Modify File Or Subdirectory DOS Information

286 NDK: Multiple and Inter-File Services

See Also

NWintScanDirEntryInfo (page 239), NWSetNSEntryDOSInfo (page 580)

File System Functions 287

NWSetDirSpaceLimit

Specifies a space limit (in 4 KB blocks) on a particular subdirectory
NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWSetDirSpacelLimit (
NWCONN_HANDLE conn,
NWDIR HANDLE dirHandle,
nuint32 spacelimit) ;

Delphi Syntax

uses calwin32

Function NWSetDirSpacelimit
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
spacelimit : nuint32

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the NetWare directory handle pointing to the directory to scan.

spacelimit

(IN) Specifies the directory space limit (in 4 KB sizes).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL
0x8801 INVALID_CONNECTION

288 NDK: Multiple and Inter-File Services

0x8901 ERR_INSUFFICIENT_SPACE

0x898C NO_MODIFY_PRIVILEGES
0Ox89BF INVALID_NAME_SPACE
Remarks

If the space limit is set to 0, space limit restrictions are lifted. If the restriction is OXFFFFFFFF, the
space limit on the directory is set to 0.

Before space limit restrictions can be lifted, they must previously have been set. If 0 is passed to the
spaceLimit parameter when no restrictions are set, NWSetDirSpaceLimit fails and returns
0x89FF.

NOTE: All restrictions are set in units of 4K blocks.

NSS volumes and traditional volumes have very different architectures, so this function behaves
differently, depending upon the volume the directory resides on. For example, traditional volumes
take a long time to mount because as the volume mounts, all entries are placed in memory and disk
space usage information is calculated and kept current. NSS volumes mount quickly because the
entire file system is not scanned and thus disk space usage information must be calculated when a
request comes in. For a few disk space requests, you will not see a great deal of difference between
an NSS volume and a traditional volume. However, if you send through 3000 requests at the same
time to an NSS volume, utilization can spike to 100%, causing the server to drop connections.

NCP Calls

0x2222 22 36 Set Directory Disk Space Restrictions

See Also

NWGetDirSpaceLimitList (page 202), NWGetDirSpaceLimitList2 (page 204)

File System Functions 289

NWSetExtendedFileAttributes2

Sets the extended attributes of a file

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwfile.h>

or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWSetExtendedFileAttributes2 (

NWCONN_HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N _FAR *path,
nuint8 extAttrs);

Delphi Syntax
uses calwin32

Function NWSetExtendedFileAttributes?2
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
path : pnstr8;
extAttrs : nuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the connection handle.
dirHandle

(IN) Specifies the directory handle of the root directory of the new directory..

path

(IN) Points to the string containing the name and path of the new directory.

extAttrs
(IN) Specifies the extended attributes for the file.

290 NDK: Multiple and Inter-File Services

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x898C NO_MODIFY_PRIVILEGES

0x898D SOME_FILES_AFFECTED_IN_USE
0x898E NO_FILES AFFECTED_IN_USE
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89FD BAD_STATION_NUMBER

0x89FF Failure, NO_FILES_FOUND_ERROR
Remarks

NWSetExtendedFileAttributes2 requires Search rights to the directory where the file resides.

The path parameter can specify either the complete path name for a file or a path relative to the
current working directory.

For example, if the complete path name is SYS:ACCOUNT/DOMEST/TARGET.DAT and the
directory handle mapping is SYS:ACCOUNT, the path parameter could point to either of the
following:

SYS:/ACCOUNT/DOMEST/TARGET.DAT or DOMEST/TARGET.DAT

The bit map for the ext At trs parameter follows:

0-2 Search mode bits

4 Transaction bit

6 Read audit bit (not yet implemented)
7 Write audit bit (not yet implemented)

Setting the transaction bit prompts TTS™ to track all Writes to the file during a transaction. A
transaction file cannot be deleted or renamed until the transaction bit is turned off by calling
NWSetExtendedFileAttributes?2.

Setting the index bit prompts NetWare to index the File Allocation Tables for the file, thereby
reducing the time required to access files. Files larger than 2 MB should have this bit set.

NOTE: To modify further extended file attributes, use NWSetNSEntryDOSInfo (page 580).

File System Functions 291

NCP Calls

0x2222 79 Set File Extended Attribute

See Also

NWGetExtendedFileAttributes2 (page 213), NWSetNSEntryDOSInfo (page 580)

292 NDK: Multiple and Inter-File Services

NWSetFileAttributes

Modifies a file’s original attributes

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwfile.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWSetFileAttributes

NWCONN_ HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N _FAR *fileName,
nuint8 searchAttrs,
nuint8 newAttrs) ;

Delphi Syntax
uses calwin32

Function NWSetFileAttributes
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
fileName : pnstr8;
searchAttrs : nuint8;
newAttrs : nuint8

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle containing the file.

dirHandle

(IN) Specifies the NetWare directory handle (0 if the £i 1eName parameter points to the

complete path, including the volume name).

fileName

(IN) Points to the string containing a path name, relative to dirHandle.

searchAttrs

(IN) Specifies the attributes to use in searching for a file.

File System Functions 293

newAttrs

(IN) Specifies the new attributes to be applied to the file designated by the dirHandle and
fileName parameters.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x898C NO_MODIFY_PRIVILEGES

0x898D SOME_FILES_AFFECTED_IN_USE
0x898E NO_FILES_AFFECTED_IN_USE
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89FD BAD_STATION_NUMBER

Ox89FF Failure, NO_FILES_FOUND_ERROR
Remarks

The £ileName parameter can specify either a complete path name or a path relative to the current
working directory. For example, if the complete path name is SYS:ACCOUNT/DOMEST/
TARGET.DAT and the directory handle mapping is SYS:ACCOUNT, the £i1leName parameter
could point to either of the following:

SYS:ACCOUNT/DOMEST/TARGET.DAT or

DOMEST/TARGET . DAT

The searchAttrs parameter includes system and/or hidden files. If only the system bit is set in
the searchAttrs parameter, all files are affected except hidden files. If only the hidden bit is set,
all files are affected except system files. When neither bit is set (0x00), only files that are not
designated either hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file attribute is set.

The searchAttrs parameter can have the following values:

C Value Delphi Value Value Name
0x00 $00 FA_NORMAL
0x01 $01 FA_READ_ONLY

294 NDK: Multiple and Inter-File Services

C Value Delphi Value Value Name

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY
0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED
0x80 $80 FA_SHAREABLE
NCP Calls

0x2222 23 17 Get File Server Information
0x2222 70 Set File Attributes
0x2222 87 07 Modify File Or Subdirectory DOS Information

See Also

NWGetExtendedFileAttributes2 (page 213), NWIntScanFileInformation2 (page 245),
NWSetFileInformation2 (page 296), NWSetNSEntryDOSInfo (page 580)

File System Functions 295

NWSetFileInformation2

Updates file information

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwfile.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWSetFileInformation2 (

NWCONN_HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N _FAR *fileName,
nuint8 searchAttrs,

NW _FILE INFO2 N_FAR *info);

Delphi Syntax
uses calwin32

Function NWSetFileInformation?2
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
fileName : pnstr8;

searchAttrs : nuint8;
Var info : NW_FILE INFO2
) : NWCCODE;
Parameters
conn

(IN) Specifies the NetWare server connection handle containing the file to be modified.

dirHandle

(IN) Specifies the NetWare directory handle (0 if the £i 1eName parameter points to the
complete path, including the volume name).

fileName

(IN) Points to the name of the file to modify. The name, or complete path, must be in the long
name space to work on Windows workstations.

searchAttrs

(IN) Specifies the search attributes.

296 NDK: Multiple and Inter-File Services

info

(IN) Points to NW_FILE INFO2.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8988 INVALID_FILE_HANDLE

0x898C NO_MODIFY_PRIVILEGES

0x898E NO_FILES_AFFECTED_IN_USE
0x8994 NO_WRITE_PRIVILEGES_OR_READONLY
0x8996 SERVER_OUT_OF _MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED
0x89FC NO_SUCH_OBJECT

0x89FD BAD_STATION_NUMBER

0x89FE DIRECTORY_LOCKED

0x89FF Failure, NO_FILES_FOUND_ERROR
Remarks

NWSetFileInformation2 handles long names (up to 256 bytes).
NWSetFileInformation2 sets the file information defined by the NW_FILE INFO2 structure.

The £ileName parameter can specify either a complete path name or a path relative to the current
working directory. For example, if the complete path name is SYS:ACCOUNT/DOMEST/
TARGET.DAT, and the directory handle mapping is SYS:ACCOUNT, the £ileName parameter
could be either of the following:

SYS:ACCOUNT/DOMEST/TARGET.DAT or

DOMEST/TARGET.DAT

The searchAttrs parameter is used to include system and/or hidden files. If only the system bit
is set in the searchAttrs parameter, all files are affected except hidden files. If only the hidden
bit is set, all files are affected except system files. When neither bit is set (0x00), only files that are
not designated hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file attribute is set.

File System Functions 297

The searchAttrs parameter can have the following values:

C Value Delphi Value Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY
0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED
0x80 $80 FA_SHAREABLE
NCP Calls

0x2222 23 16 Set File Information
0x2222 23 17 Get File Server Information
0x2222 87 07 Modify File Or Subdirectory DOS Information

See Also

NWGetExtendedFileAttributes2 (page 213), NWIntScanFileInformation2 (page 245),
NWSetFileAttributes (page 293),

298 NDK: Multiple and Inter-File Services

NWSetVolumeFlags

Sets the specified flags on a volume
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM

Service: File System

Syntax

#include <nwfileio.h>

LONG NWSetVolumeFlags (
LONG volume,
LONG flags);

Parameters

volume

(IN) Specifies the volume to set attributes on.

flags
(IN) Specifies the flags to set for the specified volume.

Return Values

0 Success
-1 Failure
Remarks

flags can have the following values:

0x02 SUB_ALLOCATION_FLAG: If set, sub allocation units are valid on this volume.
0x04 FILE_COMPRESSION_FLAGS: If set, file compression is enabled on this volume.
0x08 DATA_MIGRATION_FLAG: If set, data migration is allowed on this volume.

0x40 VOLUME_IMMEDIATE_PURGE_FLAG: If set, this volume's deleted files will be

purged immediately.

File System Functions 299

See Also

NWGetVolumeFlags (page 223)

300 NDK: Multiple and Inter-File Services

NWVolumelsCDROM

Determines whether a given volume is a CD-ROM or a read-only volume
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM

Service: File System

Syntax

#include <nwdir.h>

int NWVolumeIsCDROM (
LONG volumeNumber,
LONG *isCDROM ;

Parameters

volumeNumber

(IN) Specifies the number of the volume to be queried.

isCDROM

(OUT) Points to either TRUE or FALSE, indicating whether the volume is a CD-ROM volume

for NetWare 4.x or a read-only volume for NetWare 5.x and 6.x.

Return Values

0 ESUCCESS
OxFFFF Failure—NWETrrno is set with the appropriate error code.
Remarks

NWVolumelsCDROM allows you to determine if the given volume is a CD-ROM volume(for
NetWare 4.x and if it is a read-only volume for NetWare 5. All CD-ROM volumes are also read-only

volumes.

NWVolumelsCDROM fails if the given volume is not mounted.

See Also

NWGetExtended Volumelnfo, NWGetVolumeName (Volume Management)

File System Functions 301

10.6 O*-Z* Functions

Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

¢ “opendir” on page 303

¢ “PurgeErasedFile” on page 305

+ “readdir” on page 307

+ “remove” on page 309

¢ “rename” on page 311

+ “rmdir” on page 313

+ “SalvageErasedFile” on page 314

¢ “ScanErasedFiles” on page 316

+ “SetExtendedFileAttributes” on page 318

+ “SetFilelnfo” on page 320

+ “SetReaddirAttribute” on page 323

* “ gplitpath” on page 325

* “stat” on page 327

+ “tmpnam” on page 329

+ “umask” on page 330

+ “UnAugmentAsterisk” on page 331

¢ “unlink” on page 332

+ “UseAccurateCaseForPaths” on page 333

¢ “utime” on page 334

302 NDK: Multiple and Inter-File Services

opendir

Opens a directory for reading with the attributes set by calling SetReaddirAttribute and the next
matching file found by calling readdir functions

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

Service: File System

Syntax

#include <dirent.h>

DIR * opendir (
const char *pathname) ;

Parameters

pathname

(IN) Can be either relative to the current working directory or it can be an absolute path name
(must include file specification—accepts wild cards).

Return Values

Returns a pointer to the DIR structure (required for subsequent calls to the readdir function)
containing the file names matching the pattern specified by the pathname parameter.

Returns NULL if the path name is not valid or if there are no files matching the path name. If an
error occurs, errno and NetWareErrno are set.

Remarks

The last part of the path name can contain the characters *?” and "*’ for matching multiple files, as in
the following example:
odir = opendir ("sys:\\public*.*");

More than one directory can be read at the same time by calling the opendir, readdir, and closedir
functions.

opendir calls the malloc function to allocate memory for a DIR structure. The closedir function frees
the memory.

Information about the first file or directory matching the specified path name is not placed in the
DIR structure until after the first call to the readdir function.

Beginning with Release 9 of NW SDK, opendir returns long names in the d name field of the
dirent structure if the target namespace is previously set to something other than DOS by calling

File System Functions 303

SetTargetNameSpace. To have use of this long name functionality, you must compile with the
dirent.h file included with Release 9 or later. In addition, with NetWare versions lower than 5, you
might need CLIBAUX.NLM loaded on the server for symbol resolution. (Currently opendir support
for spaces other than DOS is availible only on calls to the local server.)

NOTE: The position in the structure of the d name field prior to Release 9 has been assumed by
the new d_nameDOS field to ensure backward compatibility, and the d name field has been
moved to the end of the structure. The new code puts the DOS name space name at the d nameDOS
field offset so old code will still work. This can all be done with relative ease because CLIB
allocates the memory.

By default, opendir returns all file and directory names when the pattern *.* is specified for the DOS
name space only (only names with one dot are returned for the long name space). To use *.* to
return all names for the long name space, call UnAugmentAsterisk before calling opendir. You can
also call SetCurrentNameSpace(0) to set the name space to DOS, call opendir, then call
SetCurrentNameSpace(4) to reset the name space to long.

See Also

closedir (page 143), readdir (page 307), SetReaddirAttribute (page 323), UnAugmentAsterisk
(page 331)

304 NDK: Multiple and Inter-File Services

PurgeErasedFile

Permanently deletes a file that has been marked for deletion
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.X, 5.x, 6.x

Platform: NLM

Service: File System

Syntax

#include <nwfinfo.h>

int PurgeErasedFile (
char “*pathname,

long sequenceNumber) ;
Parameters
pathname

(IN) Specifies the string containing either the absolute path (including the volume name) or the
relative path name of the file to purge (maximum 255 characters, including the NULL
terminator).

sequenceNumber

(IN) Identifies which version of the specified file to purge.

Return Values

0 0x00 ESUCCESS
NetWare Error UNSUCCESSFUL
Remarks

An application marks a file for deletion with the remove or unlink function. However, the server
does not permanently delete a file until the server needs the disk space occupied by the file marked
for deletion. A file marked for deletion with the remove or unlink functions can be recovered by
calling the SalvageErasedFile function.

PurgeErasedFile permanently deletes a file marked for deletion. It frees the disk space that the
deleted file occupied. A file deleted with PurgeErasedFile cannot be recovered.

NOTE: The sequenceNumber parameter must be obtained from the ScanErasedFiles function.
The current connection must have Delete rights to the file.

File System Functions 305

There is no need to call the ScanErasedFiles function to get a sequence number on remote 286
servers. PurgeErasedFile can be called without regard to the validity of the path name or sequence
number on 286 servers. 286 servers do not retain files that have been marked for deletion but not yet
purged. PurgeErasedFile purges all files that have been deleted recently (since the last file system
operation.

The SetCurrentNameSpace function sets the name space that is used for parsing the path input to
PurgeErasedFile.

NOTE: PurgeErasedFile currently works only in the DOS name space. However, you can purge a
file in other name spaces in the following way. Call the SetCurrentNameSpace function to change to
the DOS name space and then call the ScanErasedFiles function to get the DOS names of the files
you want to purge. These are returned in the structure that the ScanErasedFiles function uses. You
can then purge the files, supplying their DOS names as specified by the pathname parameter.

See Also

SalvageErasedFile (page 314), ScanErasedFiles (page 316)

306 NDK: Multiple and Inter-File Services

readdir

Obtains information about the next matching file using the attributes set by calling
SetReaddirAttribute

Local Servers: blocking
Remote Servers: blocking
Classification: POSIX
Platform: NLM

Service: File System

Syntax
#include <dirent.h>

DIR *readdir (
DIR *dirP) ;

Parameters

dirP

(IN/OUT) Specifies the structure to receive information about the next matching file.

Return Values

Returns a pointer to an object of the DIR structure type containing information about the next
matching file or directory.

If an error occurs, such as when there are no more matching file names, NULL is returned and errno
and NWErrno are set. (Unless NULL is returned, ignore values in errno and NWErmo.)

Remarks

readdir can be called repeatedly to obtain the list of file and directory names contained in the
directory specified by the path name given to the opendir function.

The closedir function must be called to close the directory and free the memory allocated by the
opendir function.

The date and time fields are not in the DOS date/time format. It is easily put in the DOS format by
swapping the high word with the low word.

Beginning with Release 9 of the NW SDK, readdir returns long names in the d name field of the
dirent structure if the target namespace is previously set to something other than DOS by calling
SetTargetNameSpace. To have use of this long name functionality, you must compile with the
dirent.h file included with Release 9 or later. In addition, with NetWare versions lower than 5, you
might need CLIBAUX.NLM loaded on the server for symbol resolution. (Currently readdir support
for spaces other than DOS is availible only on calls to the local server.)

File System Functions

307

NOTE: The position in the structure of the d_name field prior to Release 9 has been assumed by
the new d_nameDOS field to ensure backward compatibility, and the d name field has been
moved to the end of the structure. The new code puts the DOS name space name at the d nameDOS
field offset so old code will still work. This can all be done with relative ease because CLIB
allocates the memory.

NOTE: To have readdir return all files for the pattern *.* for the long name space, call
UnAugmentAsterisk before calling opendir. See opendir (page 303) or UnAugmentAsterisk
(page 331) for details.

See Using readdir(): Example (NDK: Sample Code).

See Also

closedir (page 143), opendir (page 303), SetReaddirAttribute (page 323), UnAugmentAsterisk
(page 331)

308 NDK: Multiple and Inter-File Services

remove

Deletes a specified file
Local Servers: blocking
Remote Servers: blocking
Classification: ANSI
Platform: NLM

Service: File System

Syntax

#include <stdio.h>
#include <unistd.h>

int remove (
const char *filename) ;

Parameters

filename

(IN) Specifies the string containing the full or relative path of the file to be deleted (maximum
255 characters, including the NULL terminator).

Return Values

Returns a value of 0 if successful, nonzero otherwise. When an error has occurred, errno contains a
value indicating the type of error that has been detected.

Remarks

remove also works on the DOS partition.

remove causes a file to be marked for deletion. A file marked for deletion is not actually erased until
the space it occupies is needed by another file. The current connection must have Delete rights to the
file.

Wildcard specifiers are allowed for the £i1lename parameter.

The SalvageErasedFile function can be used to salvage a file that has been marked for deletion but
not yet purged.

The SetCurrentNameSpace function sets the name space which is used for parsing the path input to
remove.

NOTE: For NetWare versions before 4.x, remove works only with the DOS name space for remote
servers.

File System Functions 309

See Also

PurgeErasedFile (page 305), SalvageErasedFile (page 314), unlink (page 332)

310 NDK: Multiple and Inter-File Services

rename

Renames a specified file
Local Servers: blocking
Remote Servers: blocking
Classification: ANSI
Platform: NLM

Service: File System

Syntax

#include <stdio.h>
#include <unistd.h>

int rename (
const char *old,
const char “*new);

Parameters

old

(IN) Points to a string containing the full or relative path of the name of the file to be renamed
(maximum 255 characters, including the NULL terminator).

new

(IN) Points to a string containing the full or relative path of the new file name to replace the old
file name (maximum 255 characters, including the NULL terminator).

Return Values

Returns a value of 0 if successful, nonzero otherwise.

Remarks

NOTE: rename works only with the DOS and LONG name spaces. However,
NWSetNameSpaceEntryName (page 578) can rename files in other name spaces.

Wildcard specifiers are allowed for the o1d and new parameters.

rename can also rename directories. However, if a wildcard is specified, only matching files (not
directories) are renamed.

The current connection number must have Modify privileges. If a wildcard is specified, the current
connection must also have See File rights. To move a file, the current connection must have Delete
and Read rights for the file to be moved and Create rights in the destination.

File System Functions 311

To move a directory requires Delete rights to the directory to be moved and Create in the destination.
The above-mentioned rights are also required for all directories and files in the subdirectory tree.
Additionally, Create, See File, and Read rights are required to move deleted files; without these
rights, deleted files are purged.

See Also
FileServerFileCopy (page 144), NWGetNameSpaceEntryName (page 485),

NWSetNameSpaceEntryName (page 578), SetCurrentNameSpace (page 452),
SetTargetNameSpace (page 454)

312 NDK: Multiple and Inter-File Services

rmdir

Removes (deletes) the specified directory
Local Servers: blocking

Remote Servers: blocking
Classification: POSIX

Platform: NLM

Service: File System

Syntax

#include <unistd.h>

int rmdir (
const char “*pathname);

Parameters

pathname

(IN) Specifies either the absolute or relative directory path containing the directory to delete.

Return Values

Returns a value of 0 if successful, nonzero otherwise. If an error occurs, errno and NetWareErrno are

set.

Remarks

rmdir also works on the DOS partition.

The directory must not contain any files or directories.

The SetCurrentNameSpace function sets the name space which is used for parsing the path input to

rmdir.

NOTE: For NetWare versions before 4.x, rmdir works with only the DOS name space for remote

SCrvers.

See Also

chdir (page 140), getcwd (page 146), mkdir (page 151)

File System Functions 313

SalvageErasedFile

Salvages a file that has been marked for deletion
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: File System

Syntax

#include <nwfinfo.h>

int SalvageErasedFile (
char “*pathname,
long sequenceNumber,
char *newFileName) ;

Parameters

pathname

(IN) Specifies the string containing the path name of the erased file to be salvaged (maximum
255 characters, including the NULL terminator).

sequenceNumber

(IN) Specifies which version of the specified file to restore.

newFileName

(IN) Points to a NULL-terminated string containing the name to give the erased file when it is
restored (maximum 13 characters, including the NULL terminator).

See Salvaging Files: Example (NDK: Sample Code).

Return Values

0 0x00 ESUCCESS
NetWare Error UNSUCCESSFUL
Remarks

A file marked for deletion with the remove or unlink function can be recovered by calling the
SalvageErasedFile function.

The pathname parameter can be an absolute path with a volume name, or it can be relative to the
current working directory.

314 NDK: Multiple and Inter-File Services

The sequenceNumber parameter is obtained from the ScanErasedFiles function.

The newFileName parameter can be from 1 to 8 characters long and can also include an extension
of from 1 to 3 characters. All letters must be uppercase and the string must be NULL-terminated.

The current connection must have Create rights in the specified directory.

The SetCurrentNameSpace function sets the name space that is used for parsing the path input to
rmdir.

NOTE: rmdir currently works only in the DOS name space. However, you can salvage a file in
other name spaces in the following way. Call the SetCurrentNameSpace function to change to the
DOS name space. Then call the ScanErasedFiles function to get the DOS names of the files you
want to salvage. The DOS names are returned in the structure that the ScanErasedFiles function
uses. You can then salvage the files, supplying their DOS names to the pathname parameter. After
you have salvaged the files, they still have directory entries in the other name spaces that are loaded
just as they did before they were deleted.

See Also

PurgeErasedFile (page 305), ScanErasedFiles (page 316)

File System Functions 315

ScanErasedFiles

Returns information about deleted files
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x
Platform: NLM

Service: File System

Syntax

#include <nwfinfo.h>

int ScanErasedFiles (
char “*pathname,
long *nextEntryNumber,
DIR *deletedFilelInfo);

Parameters

pathname

(IN) Specifies the string containing the path specification of the directory to view (maximum
255 characters, including the NULL terminator).

nextEntryNumber
(IN/OUT) Points to the entry number of the next file (-1 initially).

deletedFileInfo
(OUT) Points to the DIR structure.

Return Values

0 0x00 ESUCCESS
NetWare Error UNSUCCESSFUL
Remarks

ScanErasedFiles can be called repeatedly to obtain the list of file names contained in the directory
specified by the pathname parameter. Files marked for deletion can be scanned to obtain
information about who deleted the files and when they were deleted.

The pathname parameter can be an absolute path with a volume name or it can be relative to the
current working directory. Do not include a wildcard character at the end of the path. In the
following example, the erased files in the DIR1 directory on the SYS volume are scanned:

316 NDK: Multiple and Inter-File Services

SYS:DIR1
The current connection must have See File rights in the specified directory.

The SetCurrentNameSpace function sets the name space that is used for parsing the path input to
ScanErasedFiles.

NOTE: ScanErasedFiles currently works only in the DOS name space. However, you can scan
erased files for another name space. Call the SetCurrentNameSpace function to change to the DOS
name space. Then call ScanErasedFiles, supplying a DOS path name.

ScanErasedFiles returns DOS names for the files that have been erased. You can then use those
names to either salvage the files by calling the SalvageErasedFile function or purge them by calling
the PurgeErasedFile function.

See Also

PurgeErasedFile (page 305), SalvageErasedFile (page 314)

File System Functions 317

SetExtendedFileAttributes

Sets the extended attributes byte for a file
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x
Platform: NLM

Service: File System

Syntax

#include <nwfinfo.h>

int SetExtendedFileAttributes (
char *filePath,
BYTE extendedFileAttributes);

Parameters

filePath

(IN) Specifies the string containing the relative or absolute (including the volume name) path
specification of the file whose extended attributes are being changed (maximum 255
characters, including the NULL terminator).

extendedFileAttributes
(IN) Specifies the new extended attributes for the file.

Return Values

0 0x00 ESUCCESS

254 OxFE ERR_INCORRECT_ACCESS_ PRIVILEGES
255 OxFF ERR_NO_FILES_FOUND

Remarks

SetExtendedFileAttributes sets the extended file attributes for a file by passing a file path and an
extended file attributes byte. The current connection must have Modify rights to the file.

SetExtendedFileAttributes overwrites the first byte of the existing file attributes with the value in the
extendedFileAttributes parameter. The byte definition follows:

3 Don't Suballocate (set this bit to disallow suballocation on this entry)
4 Transaction (used by TTS)
6 Read Audit (unused)

318 NDK: Multiple and Inter-File Services

7 Write Audit (unused)

If the Transaction bit is set in the extendedFileAttributes parameter byte, TTS tracks all
writes to the file during a transaction. A transaction file cannot be deleted or renamed until the
transaction bit is turned off by calling SetExtendedFileAttributes.

NOTE: Do not confuse the first attributes byte with true extended attributes, which can be
manipulated by calling the Extended Attribute functions.

The SetCurrentNameSpace function sets the name space which is used for parsing the path input to
SetExtendedFileAttributes.

NOTE: For NetWare versions before 4.x, SetExtendedFileAttributes works only with the DOS
name space for remote servers.

See Also

GetExtendedFileAttributes (page 147)

File System Functions 319

SetFilelnfo

Sets file information for a file
Local Servers: blocking

Remote Servers: blocking
NetWare Server: 3.x, 4.x, 5.x, 6.x
Platform: NLM

Service: File System

Syntax

#include <nwfinfo.h>

int SetFileInfo (
char *filePath,
BYTE searchAttributes,
LONG fileAttributes,
char “*creationDateAndTime,
char *lastAccessDate,
char *lastUpdateDateAndTime,
char *lastArchiveDateAndTime,
LONG fileOwnerID) ;

Parameters

filePath

(IN) Points to the string containing the path specification of the file to be changed (maximum
255 characters, including the NULL terminator).

searchAttributes

(IN) Specifies the type of the file for which to set file information.

fileAttributes
(IN) Specifies the file attributes to be assigned to the file.

creationDateAndTime

(IN) Points to the creation date and time to be assigned to the file (DOS format, 4 bytes).

lastAccessDate

(IN) Points to the last access date to be assigned to the file (DOS format, bytes 1 and 2).

lastUpdateDateAndTime
(IN) Points to the last update date and time to be assigned to the file (DOS format, 4 bytes).

lastArchiveDateAndTime
(IN) Points to the last archived date and time to be assigned to the file (DOS format, 4 bytes).

320 NDK: Multiple and Inter-File Services

fileOwnerID

(IN) Specifies the unique object ID to be assigned as the new owner.

Return Values

0 0x00 ESUCCESS
NetWare Error UNSUCCESSFUL
Remarks

SetFilelnfo sets file information by passing the file path, the search attributes byte, and specific file
information. File information includes file attributes, extended file attributes, creation date and time,
last access date, last update date and time, file owner, and last archived date and time.

SetFileInfo expects the date and time to be in DOS format. The date and time field from readdir is
not in the DOS date/time format but can be used by swapping the high word with the low word.

SetFilelnfo requires that the requesting workstation have Supervisor rights to the file(s) being
modified.

The £ilePath parameter can specify an absolute or a relative path. An absolute file path appears
in the following format:
volume: directoryl\...\directory\file name

A relative file path includes a file name and (optionally) one or more antecedent directory names.

A file name can be from 1 to 8 characters long and can include a 1- to 3-character extension. All
letters must be upper case. The last item in the £i1lePath parameter must be a valid file name
specification. No wildcard specifiers are allowed.

The searchAttributes parameter can have the following values:

0x00 Normal files

0x02 Normal and hidden files

0x04 Normal and system files

0x06 Normal, hidden, and system files

SetFileInfo can assign file attributes to a specified file by passing a new value in the
fileAttributes parameter. The following bits are defined for byte 0:

0 Read Only

1 Hidden

2 System

3 Execute Only
4 Subdirectory
5 Archive

6 Undefined

File System Functions

321

7 Share
The following bits are defined for byte 1, the extended attributes byte:

3 Don't Suballocate (set this bit to disallow suballocation on this entry)
4 Transaction (used by TTS)

6 Read Audit (unused)

7 Write Audit (unused)

In NetWare 3.0 and above, you can set four file attributes in byte 2, bits 0, 1, 2, and 4. In NetWare
4.x, 5.x, and 6.x, you can set bit 7:

0 Immediate Purge

1 Rename Inhibit

2 Delete Inhibit

3 Copy Inhibit

7 Data Migration Inhibit

NetWare 4.x, 5.x, and 6.x also allow you to set file attributes in an additional byte, byte 3:

0 Data Save Key (used for data migration)

1 Immediately Compress File (or all files in subdirectory)
2 Data Stream Compressed

3 Do Not Compress This Entry

4 Create a Hard link Entry (for NFS)

5 Cannot Compress Data Stream

6 Attribute Archive Bit

The creationDateAndTime, lastUpdateDateAndTime, and
lastArchiveDateAndTime parameters occupy bytes 0, 1, 2, and 3.

The application can change the owner of the file by passing the object ID number of the new owner
in the £i1leOwnerID parameter.

The SetCurrentNameSpace function sets the name space which is used for parsing the path input to
SetFilelnfo.

See Also

NWSetDirEntryInfo (page 284), readdir (page 307)

322 NDK: Multiple and Inter-File Services

SetReaddirAttribute

Sets the attributes that are to be used when searching for files and directories by calling the readdir

function

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x
Platform: NLM

Service: File System

Syntax

#include <nwfileio.h>

int SetReaddirAttribute (

DIR *dirp,

unsigned long newAttribute) ;
Parameters
dirP

(IN) Points to the DIR structure obtained by calling opendir or readdir.

newAttribute

(IN) Specifies the new attribute.

Return Values

Returns a value of 0 if successful, nonzero otherwise.

Remarks

SetReaddirAttribute can be called any time after the DIR structure has been obtained from the
opendir function. The modified search attributes are in effect for calling the readdir function.

The following search attributes are defined:

A NORMAL Normal file; read/write permitted
_A_RDONLY Read-only file

_A_HIDDEN Hidden file

_A _SYSTEM System file

_A_VOLID Volume ID entry

_A SUBDIR Subdirectory

File System Functions 323

_A_ARCH Archive file

See Also

closedir (page 143), opendir (page 303), readdir (page 307)

324 NDK: Multiple and Inter-File Services

_splitpath

Splits a full path name into four components consisting of a server/volume name, directory path, file
name, and file name extension

Local Servers: blocking
Remote Servers: N/A
Platform: NLM

Service: File System

Syntax

#include <nwfileio.h>

void _splitpath (
const char *path,

char *drive,
char *dir,
char *fname,
char *ext);
Parameters
path

(IN) Specifies the string containing the full path name to split.

drive

(OUT) Points to the server/volume name or drive letter. The maximum string length is 64.
dir
(OUT) Points to the directory path. The maximum string length is 254.

fname

(OUT) Points to the base name of the file without an extension. The maximum string length is
8.

ext

(OUT) Points to the file name extension, including the leading period. The maximum string
length is 4.

Remarks

_splitpath returns the drive letter in the drive parameter. If you pass it a NetWare path, _splitpath
returns the NetWare server/volume in the drive parameter.

This function is coded to work only with the DOS namespace (8.3).

File System Functions 325

The drive, dir, fname, and ext parameters are not filled in if they are NULL. For each

component of the full path name that is not present, its corresponding buffer is set to an empty
string.

See Using makepath and _splitpath: Example (NDK: Sample Code).

See Also

_makepath (page 149)

326 NDK: Multiple and Inter-File Services

stat

Retrieves the status of a specified file or directory
Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

Service: File System

Syntax
#include <stat.h>
int stat (
const char *path,

struct stat *statblk);

Parameters

path

(IN) Points to a string containing the path of the directory or file for which status is to be
obtained (maximum 255 characters, including the NULL terminator).

statblk
(OUT) Points to the stat (page 376) containing information about the file.

Return Values

Returns a value of 0 when the information is successfully obtained. Otherwise, a value of -1 is
returned and errno is set to indicate the type of error that occurred.

Remarks

stat (Function) returns information in the stat (Structure) located at the address indicated by the
statblk parameter.

The SYS\STAT.H header file contains definitions for the stat (Structure) and describes the contents
of the fields.

The time and date in the stat (Structure) are in calendar format.

Beginning with Release 9 of the NW SDK, stat (Function) returns long names in the d_name field
of the stat (Structure) if the st name field is set to something other than DOS. You must compile
with the stat.h file included with Release 9 or later and link with the new nwpre.obj and is valid only
when calling stat (Function) on the local server.

The current connection must have See File rights.

File System Functions 327

The SetCurrentNameSpace function sets the name space which is used for parsing the path input to
stat (Function).

NOTE: For NetWare versions before 4.x, stat (Function) works only with the DOS name space for
remote servers.

See Also

fstat (Single and Intra-File Services)

328 NDK: Multiple and Inter-File Services

tmpnam

Generates a unique string for use as a valid temporary file name
Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

Service: File System

Syntax

#include <stdio.h>
#include <unistd.h>

char *tmpnam (
char “*buffer);

Parameters

buffer

(OUT) Points to the buffer to receive the generated temporary file name.

Return Values

If you pass a NULL pointer, tmpnam leaves the temporary file name in an internal static buffer and

returns a pointer to that buffer.

Remarks

Be aware that the internal static buffer is modified every time tmpnam is called, whether or not you
pass a NULL pointer. If you want to preserve the temporary file name currently stored in the internal
static buffer, copy it to another buffer (by calling the strcpy function) before calling tmpnam again.

If you pass a pointer to your created array, tmpnam leaves the temporary file name in that array and
returns a pointer to it. tmpnam simply returns the pointer you have supplied. It does no error
checking to ensure that your array is big enough to accommodate the file name. The array should be
at least L _tmpnam characters in length, where L_tmpnam is 13 characters (12 for the DOS 8.3

characters plus one for the NULL terminator).

See Using tmpnam: Example (NDK: Sample Code).

See Also

access (page 138)

File System Functions 329

umask

Sets the file permission mask (part of the thread group context)
Local Servers: blocking

Remote Servers: N/A

Platform: NLM

Service: File System

Syntax

#include <stat.h>

int umask (
int permission) ;

Parameters

permission

(IN) Specifies the file permission mask to be used to update the permission of the current
process.

Return Values

Returns the previous value of the permi ssion parmeter.

Remarks

The file permission mask is used to modify the permission setting of new files created by the creat,
open, or sopen function. If a bit in the mask is on, the corresponding bit in the requested permission
value for the file is disallowed.

The permission parameter is a constant expression involving the constants S IREAD and
S _IWRITE as defined in SYS\STAT.H.

S_IWRITE Write permission
S _IREAD Read permission

See Also

chmod (page 141), creat, open, sopen (Single and Intra-File Services)

330 NDK: Multiple and Inter-File Services

UnAugmentAsterisk

Makes the *.* pattern return all files and subdirectory names for the long (OS/2) name space
Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 5.x, 6.x

Platform: NLM

Service: File System

Syntax

#include <nwfileio.h>

void UnAugmentAsterisk (

int yesno) ;
Parameters
yesno

(IN) Specifies whether to return all files and subdirectory names for the long name space:

TRUE The *.* pattern returns all file and subdirectory names for the long name space.

FALSE (default) The *.* pattern does not return file and directory names in the long name
space that contain more than one dot.

Remarks

The default behavior for opendir and readdir is to interpret a pattern of *.* to return only those file
and directory names that contain only one dot. Therefore, the pattern *.* guarantees that all files are
returned for the DOS name space only. Calling UnAugmentAsterisk allows you to use *.* to return
all file and directory names for the long name space as well.

NOTE: The name of the function refers to the fact that the high bit for the asterisk character in the
pattern is set by default. This function reverses this setting.

See Also

opendir (page 303), readdir (page 307)

File System Functions

331

unlink

Deletes the specified file
Local Servers: blocking
Remote Servers: blocking
Classification: ANSI
Platform: NLM

Service: File System

Syntax

#include <unistd.h>

int unlink (
const char *filename);

Parameters

filename

(IN) Points to a string containing the absolute or relative path of the file to delete (maximum
255 characters, including the NULL terminator).

Return Values

Returns a value of 0 if successful, nonzero otherwise. When an error has occurred, errno contains a
value indicating the type of error that has been detected.

Remarks

unlink also works on the DOS partition.

A file marked for deletion is not actually erased by unlink until the space it occupies is needed by
another file.

Wildcard specifiers are allowed for the £i1lename parameter.

The SalvageErasedFile function can be called to salvage a file that has been marked for deletion but
not yet purged.

The current connection must have Delete rights to the file.

See Using unlink(): Example (NDK: Sample Code).

See Also

PurgeErasedFile (page 305), remove (page 309), SalvageErasedFile (page 314)

332 NDK: Multiple and Inter-File Services

UseAccurateCaseForPaths

Changes the case-specific manipulation behavior of file and path CLIB functions.
Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM

Service: File System

Syntax

#include <nwfileio.h>

void UseAccurateCaseForPaths (

int yesno) ;
Parameters
yesno

(IN) Specifies whether new NetWare file or directory names should be converted to uppercase
characters:

FALSE (default value) Convert the specified file or directory name to uppercase characters.
TRUE Do not convert the specified file or directory name to uppercase characters.

Remarks

UseAccurateCaseForPaths is most useful in the LONG name space and has no effect on the DOS
name space.

See Also

SetCurrentNameSpace (page 452)

File System Functions 333

utime

Updates the modification time for the specified file
Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

Service: File System

Syntax

#include <utime.h>

int utime (

const char *filename,
const struct utimbuf *times) ;
Parameters
filename

(IN) Points to a string containing the name of the file whose modification time is to be updated
(maximum 255 characters, including the NULL terminator).

times

(IN) Points to the structure containing the modification time.

Return values

Returns a value of 0 when the time was successfully recorded. A value of -1 indicates an error
occurred. If an error occurs, errno is set.

Remarks

If the £i11lename parameter specifies a directory, the modification time and date are updated and
the last accessed date is ignored (since directories do not have a last accessed date).

If the t imes parameter is NULL, the current time is used for the update. Otherwise, the times
parameter must point to an object of the struct utimbuf type.

The modification time is taken from the modt ime field in the utimbuf structure, and the last
accessed date is taken from the actime field. (DOS has no notion of "accessed time." Therefore
when time is being set on the DOS partition, the value in the act ime field is undefined, and only
the modt ime field is of concern.)

The current connection must have Modify rights or Write rights to update the last modification time.
It must also have Modify or Read rights to update the last accessed date.

334 NDK: Multiple and Inter-File Services

The SetCurrentNameSpace function sets the name space which is used for parsing the path input to
utime.

NOTE: For NetWare versions before 4.x, utime works only with the DOS name space for remote
servers.

File System Functions 335

336 NDK: Multiple and Inter-File Services

File System Structures

This documentation alphabetically lists the File System structures and describes their purpose,
syntax, and fields.

*

*

*

*

“CONN_USING_FILE” on page 338
“CONNS_USING_FILE” on page 340
“DIR” on page 342
“DIR_SPACE_INFO” on page 345
“ModifyStructure” on page 347
“NW_EXT FILE INFO” on page 349
“NW_FILE INFO2” on page 353
“NW_FILE INFO2 EXT” on page 355
“NW_LIMIT LIST” on page 357
“NWDIR _INFO” on page 359
“NWENTRY _ INFO” on page 361
“NWET _INFO” on page 363

“NWET _INFO_EXT” on page 364
“NWFILE_INFO” on page 365
“OPEN_FILE CONN” on page 367
“OPEN_FILE CONN_CTRL” on page 370
“SEARCH_DIR_INFO” on page 371
“SEARCH_FILE INFO” on page 374
“stat” on page 376
“TRUSTEE_INFO” on page 379
“utimbuf” on page 380

“VOLUME STATS” on page 381
“VOLUME INFO” on page 383

File System Structures 337

CONN_USING_FILE

Defines file information for a file opened by a connection
Service: File System

Defined In: nwfile.h

Structure

typedef struct {
NWCONN_NUM connNumber ;

nuintlo6 taskNumber ;
nuint8 lockType ;
nuint8 accessControl ;
nuint8 lockFlag ;

} CONN _USING FILE;

Delphi Structure

uses calwin32

CONN_USING FILE = Record
connNumber : NWCONN_ NUM;
taskNumber : nuintlé6;
lockType : nuint8;

accessControl : nuint8;
lockFlag : nuint8
End;
Fields
connNumber

Specifies the logical connection number of a workstation using the file.

taskNumber

Specifies the number of the task which opened the file. A given connection may have several
task numbers associated with the same file.

lockType
Specifies how the file is locked.

accessControl

Specifies how the file is accessed.

lockFlag
Specifies whether the file is locked.

Remarks

The 1ockType field can have the following values:

338 NDK: Multiple and Inter-File Services

0x01 Locked

0x02 Open shareable
0x04 Logged

0x08 Open Normal

0x40 TTS holding

0x80 Transaction flag set

The accessControl field can have the following values:

0x01 Open for read by this client
0x02 Open for write by this client
0x04 Deny read requests from others
0x08 Deny write requests from others
0x10 File detached

0x20 TTS holding detach

0x40 TTS holding open

The 1ockFlag field can have the following values:

0x00 Not locked
OxFE Locked by a file lock
OxFF Locked by begin share file set

File System Structures 339

CONNS_USING_FILE

Returns a list of connections having a specified file open
Service: File System

Defined In: nwfile.h

Structure

typedef struct {
nuintlé nextRequest ;
nuintlé useCount ;
nuintlé openCount ;
nuintlé openForReadCount ;
nuintlé openForWriteCount ;
nuintlé denyReadCount ;
nuintlé denyWriteCount ;
nuint8 locked ;
nuint8 forkCount ;
nuintlé connCount ;

CONN_USING FILE connInfo [707];
} CONNS USING FILE;

Delphi Structure

uses calwin32

CONNS_USING FILE = Record
nextRequest : nuintl6;
useCount : nuintlé;
openCount : nuintl6;
openForReadCount : nuintl6;
openForWriteCount : nuintl6;
denyReadCount : nuintl6;
denyWriteCount : nuintl6;

locked : nuint8;
forkCount : nuint8;
connCount : nuintlé6;
connInfo : Array[0..69] Of CONN USING FILE
End;
Fields
nextRequest

Specifies the sequence in subsequent calls to the NWScanConnectionsUsingFile function.

useCount

Specifies the number of tasks having the file opened or logged.

340 NDK: Multiple and Inter-File Services

openCount
Specifies the number of tasks having opened or logged the file.

openForReadCount

Specifies the number of logical connections having the file open for reading.

openForWriteCount

Specifies the number of logical connections having the file open for writing.

denyReadCount

Specifies the number of logical connections having denied other connections access to the file.

denyWriteCount

Specifies the number of logical connections having denied other connections read access to the
file.

locked

Specifies whether the file is locked exclusively (O=not locked exclusively).

forkCount

Specifies the number of forks associated with the file.

connCount

Specifies the number of connections using the file.

connlInfo

Specifies an array of CONN_USING_FILE structures specifying how each connection is using
the file.

File System Structures 341

DIR

Holds information about a directory entry

Service: File System

Defined In: dirent.h

Structure

typedef struct dirent {

unsigned
unsigned
unsigned
long
ino_t
dev t
unsigned
unsigned
unsigned
long
unsigned
unsigned
char
unsigned
unsigned
unsigned
unsigned
char
} DIR;

Fields

d attr

long
short
short

long
long
long

long
long

short
char
long
long

d attr ;

d time ;

d date ;

d size ;

d ino ;

d dev ;

d cdatetime ;

d adatetime ;

d bdatetime ;

d uid ;

d archivedID ;

d updatedID ;

d nameDOS [13];

d inheritedRightsMask ;
d originatingNameSpace ;
d ddatetime ;

d deletedID ;

d name [255+1];

Specifies the attribute as defined in NWFATTR.H.

d_time

Specifies the modification time in DOS format.

d date

Specifies the modification date in DOS format.

d size

Specifies the size (files only).

d_ino

Specifies the serial number.

d_dev

Specifies the volume number.

342 NDK: Multiple and Inter-File Services

d cdatetime

Specifies the creation date and time in DOS format.

d_adatetime

Specifies the last access date (files only) in DOS format.

d bdatetime

Specifies the last archive date and time in DOS format.
d uid

Specifies the owner ID (object ID).

d_archivedID
Specifies the object ID that last archived the file.

d_updateID
Specifies the object ID that last updated the file.

d _nameDOS

Specifies the DOS name space name.

d_inheritedRightsMask
Specifies the inherited rights mask.

d originatingNameSpace

Specifies the creating name space.

d ddatetime
Specifies the date and time the entry was deleted (used by the ScanErasedFiles function only).

d_deletedID
Specifies the object ID that deleted the file (used by the ScanErasedFiles function only).

d _name
Specifies the name space name of the entry.
Remarks

The stack size might need to be increased (by using a link directive) when using the DIR structure
especially in functions where the structure is used recursively such as: opendir (page 303), readdir
(page 307), and ScanErasedFiles (page 316).

Date and time fields use standard DOS format as explained in the following graphic:

File System Structures 343

Figure 11-1 Date and Time Fields

Byte 1

The year bits contain the number of years elasped since 1980. That value is added to 1980 and thus
provides an accurate count to the year 2000 and beyond.

The seconds are calculated in 2-second intervals, so the value in the seconds bits must be multiplied
by 2 to get the accurate number of seconds. For example a value of 15 means that 30 seconds have
elapsed toward the next minute.

d_time uses bytes two and three.
d_date uses bytes 0 and 1.

d cdatetime,d adatetime,and d bdatetime use all four bytes.

344 NDK: Multiple and Inter-File Services

DIR_SPACE_INFO

Returns directory space information
Service: File System

Defined In: nwdirect.h

Structure

typedef struct {
nuint32 totalBlocks ;
nuint32 availableBlocks ;
nuint32 purgeableBlocks ;
nuint32 notYetPurgeableBlocks ;

nuint32 totalDirEntries ;

nuint32 availableDirEntries ;

nuint32 reserved ;

nuint8 sectorsPerBlock ;

nuint8 volLen ;

nuint8 volName [NW MAX VOLUME NAME LEN];

} DIR_SPACE_INFO;

Delphi Structure

uses calwin32

DIR SPACE INFO = packed Record
totalBlocks : nuint32;
availableBlocks : nuint32;
purgeableBlocks : nuint32;
notYetPurgeableBlocks : nuint32;

totalDirEntries : nuint32;

availableDirEntries : nuint32;

reserved : nuint32;

sectorsPerBlock : nuint8;

volLen : nuint8;

volName : Array[0..NW MAX VOLUME NAME LEN-1] Of nuint8
End;
Fields
totalBlocks

Specifies the total blocks in the volume.

availableBlocks

Specifies the number of available blocks.

purgeableBlocks

Specifies the number of recoverable blocks recovered by purging (0 if the NWGetDirSpacelnfo
function is called with a directory handle of 0).

File System Structures 345

notYetPurgeableBlocks

Specifies the number of blocks not yet purgeable (0 if the NWGetDirSpacelnfo function is
called with a directory handle of 0).

totalDirEntries

Specifies the number of entries in the directory.

availableDirEntries

Specifies the number of available entries remaining.

reserved

Is reserved for future use.

sectorsPerBlock

Specifies the number of sectors per block.

volLen

Specifies the length of the volName field.

volName

Specifies the name of the volume.

Remarks

All sizes are returned based on the block size of the volume (64 KB).

346 NDK: Multiple and Inter-File Services

ModifyStructure

Holds information used in changing a directory entry
Service: File System

Defined In: nwdir.h

Structure

typedef struct {
BYTE *MModifyName ;
LONG MFileAttributes ;
LONG MFileAttributesMask ;
WORD MCreateDate ;
WORD MCreateTime ;
LONG MOwnerID ;
WORD MLastArchivedDate ;
WORD MLastArchivedTime ;
LONG MLastArchivedID ;
WORD MLastUpdatedDate ;
WORD MLastUpdatedTime ;
LONG MLastUpdatedID ;
WORD MLastAccessedDate ;
WORD MInheritanceGrantMask ;
WORD MInheritanceRevokeMask ;
int MMaximumSpace ;
LONG MLastUpdatedInSeconds ;
} ModifyStructure;

Fields

MModi fyName

Points to the new directory name.

MFileAttributes

Specifies new file attributes.

MFileAttributesMask

Specifies new file attribute mask.

MCreateDate

Specifies new creation date.

MCreateTime

Specifies new creation time

MOwnerID

Specifies new owner ID.

File System Structures 347

MLastArchivedDate
Specifies the last archived date.

MLastArchivedTime

Specifies the last archived time.

MLastArchivedID
Specifies the last archived ID.

MLastUpdatedDate
Specifies the last updated date.

MLastUpdatedTime
Specifies the last updated time.

MLastUpdatedID
Specifies the last updated ID.

MLastAccessedDate

Specifies the last accessed date.

MInheritanceGrantMask

Specifies the inheritance grant mask.

MInheritanceRevokeMask

Specifies the inheritance revoke mask.

MMaximumSpace

Specifies the maximum space.

MLastUpdatedInSeconds

Specifies the last update in seconds.

348 NDK: Multiple and Inter-File Services

NW_EXT_FILE_INFO

Returns extended file information
Service: File System

Defined In: nwdentry.h

Structure
typedef struct {
nuint32 sequence ;
nuint32 parent ;
nuint32 attributes ;
nuint8 uniquelD ;
nuint8 flags ;
nuint8 nameSpace ;
nuint8 namelLength ;
nuint8 name [12];
nuint32 creationDateAndTime
nuint32 ownerID ;
nuint32 lastArchiveDateAndTime

nuint32 lastArchiverID ;

nuint32 updateDateAndTime ;

nuint32 lastUpdatorID ;
nuint32 dataForkSize ;

nuint32 dataForkFirstFAT ;
nuint32 nextTrusteeEntry ;
nuint8 reserved [36];
nuintlé inheritedRightsMask ;
nuintlo lastAccessDate ;
nuint32 deletedFileTime ;
nuint32 deletedDateAndTime ;
nuint32 deletorlID ;

nuint8 reserved2 [16];
nuint32 otherForkSize [2];

} NW_EXT FILE INFO;

Delphi Structure

uses calwin32

NW_EXT FILE INFO = packed Record

sequence : nuint32;
parent : nuint32;
attributes : nuint32;
uniqueID : nuint8;
flags : nuint8;
nameSpace : nuint8;
namelLength : nuint8;

name : Array[0..11] Of nuint8;
creationDateAndTime : nuint32;

ownerID : nuint32;

File System Structures 349

lastArchiveDateAndTime : nuint32;
lastArchiverID : nuint32;
updateDateAndTime : nuint32;
lastUpdatorID : nuint32;
dataForkSize : nuint32;
dataForkFirstFAT : nuint32;
nextTrusteeEntry : nuint32;
reserved : Array[0..35] Of nuint8;
inheritedRightsMask : nuintlé6;
lastAccessDate : nuintl6;
deletedFileTime : nuint32;
deletedDateAndTime : nuint32;
deletorID : nuint32;
reserved?2 : Array[0..15] Of nuint8;
otherForkSize : Array[0..1] Of nuint32
End;

Fields
sequence
Specifies the sequence for iteratively scanning entries (-1 initially).

parent

Specifies the directory entry ID of parent directory.

attributes

Specifies the attributes of the entry.

uniqueID
Specifies the unique entry ID.

flags

Is reserved for future use.

nameSpace

Specifies the name space creating the entry.

nameLength

Specifies the maximum number of characters in the name.

name

Specifies the entry name.

creationDateAndTime

Specifies when the entry was created.

ownerID

Specifies the object ID of the owner.

lastArchiveDateAndTime

Specifies when the entry was last archived.

350 NDK: Multiple and Inter-File Services

lastArchiverID
Specifies the ID of the object last archiving the entry.

updateDateAndTime

Specifies the date and time when the entry was last modified.

lastUpdatorID
Specifies the ID of the object that last modified the entry.

dataForkSize
Specifies the number of bytes in the file.

dataForkFirstFAT
Specifies the first file allocation table (FAT) entry for the indicated file.

nextTrusteeEntry

Specifies the next trustee of the entry.

reserved

Is reserved for future use.

inheritedRightsMask
Specifies the Inherited Rights Mask for the entry.

lastAccessDate

Specifies the date when the entry was last accessed.

deletedFileTime

Specifies the time when the file was deleted.

deletedDateAndTime

Specifies the date and time when the entry was deleted.

deletorID
Specifies the ID of the object deleting the entry.

reserved2

Is reserved for future use.

otherForkSize

Specifies a two-part array, which specifies the file size for the data stream supported by the
given name space and the first FAT entry for the name space-specific data stream respectively.

Remarks

See Section 20.2, “Attribute Values,” on page 623 for the possible values for the attributes
field.

The nameSpace field can have the following values:

0NW_NS_DOS

File System Structures 351

| NW_NS_MAC
2 NW_NS_NFS
3NW_NS_FTAM
4NW_NS_LONG

The inheritedRightsMask field can have the following values:

C Value Delphi Value Value Description
0x0000 $0000 TR_NONE

0x0001 $0001 TR_READ

0x0002 $0002 TR_WRITE

0x0004 $0004 TR_OPEN

0x0004 $0004 TR_DIRECTORY
0x0008 $0008 TR_CREATE
0x0010 $0010 TR_DELETE
0x0010 $0010 TR_ERASE
0x0010 $0020 TR_OWNERSHIP
0x0020 $0020 TR_ACCESS_CTRL
0x0040 $0040 TR_FILE_SCAN
0x0040 $0040 TR_SEARCH
0x0040 $0040 TR_FILE_ACCESS
0x0080 $0080 TR_MODIFY
0x01FB $01FB TR_ALL

0x0100 $0100 TR_SUPERVISOR
0x00FB $00FB TR_NORMAL

352 NDK: Multiple and Inter-File Services

NW_FILE_INFO2

Holds file information
Service: File System

Defined In: nwfile.h

Structure
typedef struct {
nuint8 fileAttributes ;
nuint8 extendedFileAttributes ;
nuint32 fileSize ;
nuintlo6 creationDate ;
nuintlo6 lastAccessDate ;

nuint32 lastUpdateDateAndTime ;
nuint32 fileOwnerID ;
nuint32 lastArchiveDateAndTime ;
nstr8 fileName [260];

} NW FILE INFO2;

Delphi Structure

uses calwin32

NW _FILE INFO2 = packed Record
fileAttributes : nuint8;
extendedFileAttributes : nuint8;
fileSize : nuint32;
creationDate : nuintl6;
lastAccessDate : nuintl6;
lastUpdateDateAndTime : nuint32;
fileOwnerID : nuint32;
lastArchiveDateAndTime : nuint32;
fileName : Array[0..259] Of nstr8

End;

Fields

fileAttributes

Specifies the file attributes (for values, see Remarks).

extendedFileAttributes

Specifies the file extended attributes (for values, see Remarks).

fileSize

Specifies the size of the file.

creationDate

Specifies when the file was created.

File System Structures 353

lastAccessDate

Specifies when the file was last accessed.

lastUpdateDateAndTime
Specifies when the file was last updated.

fileOwnerID
Specifies the object ID of the owner.

lastArchiveDateAndTime

Specifies when the file was last archived.

fileName

Specifies the name of the file (long names are supported).

Remarks

The fileAttributes field can have the following values:

C Value Delphi Value Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY
0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED
0x80 $80 FA_SHAREABLE

The extendedFileAttributes field can have the following values:

C Value Delphi Value Value Name

0x10 $10 FA_TRANSACTIONAL
0x20 $20 FA_INDEXED

0x40 $40 FA_READ_AUDIT
0x80 $80 FA_WRITE_AUDIT

354 NDK: Multiple and Inter-File Services

NW_FILE_INFO2_EXT

Holds file information
Service: File System

Defined In: nwfile.h

Structure
typedef struct {
nuint8 fileAttributes ;
nuint8 extendedFileAttributes ;
nuint32 fileSize ;
nuintlo6 creationDate ;
nuintlo6 lastAccessDate ;

nuint32 lastUpdateDateAndTime ;
nuint32 fileOwnerID ;
nuint32 lastArchiveDateAndTime ;
nstr8 fileName [766];

} NW _FILE INFO2 EXT;

Fields

fileAttributes

Specifies the file attributes (for values, see Remarks).

extendedFileAttributes

Specifies the file extended attributes (for values, see Remarks).

fileSize

Specifies the size of the file.

creationDate

Specifies when the file was created.

lastAccessDate

Specifies when the file was last accessed.

lastUpdateDateAndTime
Specifies when the file was last updated.

fileOwnerID
Specifies the object ID of the owner.

lastArchiveDateAndTime

Specifies when the file was last archived.

fileName

Specifies the name of the file (long names are supported), using UTF-8 characters.

File System Structures 355

Remarks

The fileAttributes field can have the following values:

C Value Value Name

0x00 FA_NORMAL

0x01 FA_READ_ONLY

0x02 FA_HIDDEN

0x04 FA_SYSTEM

0x08 FA_EXECUTE_ONLY
0x10 FA_DIRECTORY

0x20 FA_NEEDS_ARCHIVED
0x80 FA_SHAREABLE

The extendedFileAttributes field can have the following values:

C Value Value Name

0x10 FA_TRANSACTIONAL
0x20 FA_INDEXED

0x40 FA_READ_AUDIT
0x80 FA_WRITE_AUDIT

356 NDK: Multiple and Inter-File Services

NW_LIMIT_LIST

Returns disk space information about the restrictions along the directory path

Service: File System

Defined In: nwdirect.h

Structure
typedef struct {
nuint8 numEntries ;
struct {
nuint8 level ;

nuint32 max ;
nuint32 current ;
} list[102];
} NW LIMIT LIST

Delphi Structure

uses calwin32

NW LIMIT LIST = Packed Record

numEntries : nuint8 ;
list : Array[0..101] of Record
level : nuint8 ;
max nuint32 ;
current : nuint32 ;
End;
End;
Fields
numEntries

Specifies the number of entries returned in the structure.

level
Specifies the distance from the directory to the root for each entry.

max

Specifies the maximum amount of space (in 4 KB sizes) assigned to a directory for each entry.

current

Specifies the amount of space (in 4 KB sizes) assigned to a directory minus the amount of

space used by a directory and its subdirectories for each entry.

File System Structures 357

Remarks

level specifies to which directory max and current refer. The specified directory is always the
first entry. For other entries, to find out what parent directory is being referred to, parse the directory
path to match the level of each entry after the first one in the list. (The root of the volume is zero.)

If the max field for a directory is Ox7FFFFFFF, there is no restriction for the entry. If the max field
is greater than Ox7FFFFFFF, the limit is zero. For all other values, max represents the restriction in
4K increments. You can multiply max by 4 to get the restrictions in KB. The same is true for the
current field. The max and current fields are allowed to be negative so a valid space-in-use
value may be calculated.

current is equal to max minus the space that is already in use by the directory and its
subdirectories, which can be obtained by subtracting current from max. When max is set to a
value greater than Ox7FFFFFFF, the space in use is equal to zero minus current. (current will
be negative so the answer will be positive.) Do not directly use current in this case because it
might be a negative number.

The space-in-use value can be calculated by subtracting the value of the current field from the
value of the max field.

358 NDK: Multiple and Inter-File Services

NWDIR_INFO

Defines entry information for directories
Service: File System

Defined In: nwdentry.h

Structure

typedef struct {
nuint32 lastModifyDateAndTime ;

nuint32 nextTrusteeEntry ;
nuint8 reserved [48];
nuint32 maximumSpace ;
nuintlé inheritedRightsMask ;
nuint8 reserved2 [14];
nuint32 volObjectID ;

nuint8 reservedl3 [8];

} NWDIR INFO;

Delphi Structure

uses calwin32

NWDIR INFO = packed Record
lastModifyDateAndTime : nuint32;
nextTrusteeEntry : nuint32;
reserved : Array[0..47] Of nuint8;
maximumSpace : nuint32;
inheritedRightsMask : nuintlé6;

reserved?2 : Array[0..13] Of nuint8;

volObjectID : nuint32;
reserved3 : Array[0..7] Of nuint8
End;

Fields

lastModifyDateAndTime
Specifies when the directory was last updated.

nextTrusteeEntry

Specifies the next trustee entry in the subdirectory.

reserved

Is reserved for future use.

maximumSpace

Specifies the maximum space available in the subdirectory.

File System Structures 359

inheritedRightsMask
Specifies the Inherited Rights Mask.

reserved2

Is reserved for future use.

volObjectID
Specifies the volume object ID.

reserved3

Is reserved for future use.

Remarks

The inheritedRightsMask field can have the following values:

C Value Delphi Value Value Description
0x0000 $0000 TR_NONE

0x0001 $0001 TR_READ

0x0002 $0002 TR_WRITE
0x0004 $0004 TR_OPEN

0x0004 $0004 TR_DIRECTORY
0x0008 $0008 TR_CREATE
0x0010 $0010 TR_DELETE
0x0010 $0010 TR_ERASE
0x0020 $0020 TR_OWNERSHIP
0x0020 $0020 TR_ACCESS_CTRL
0x0040 $0040 TR_FILE_SCAN
0x0040 $0040 TR_SEARCH
0x0040 $0040 TR_FILE_ACCESS
0x0080 $0080 TR_MODIFY
0x01FB $01FB TR_ALL

0x0100 $0100 TR_SUPERVISOR
0x00FB $00FB TR_NORMAL

360 NDK: Multiple and Inter-File Services

NWENTRY_INFO

Defines directory entry information
Service: File System

Defined In: nwdentry.h

Structure
typedef struct {
nuint32 sequence ;
nuint32 parent ;
nuint32 attributes ;
nuint8 uniquelD ;
nuint8 flags ;
nuint8 nameSpace ;
nuint8 namelLength ;
nuint8 name [12];
nuint32 creationDateAndTime ;
nuint32 ownerID ;
nuint32 lastArchiveDateAndTime ;
nuint32 lastArchiverID ;
union {
NWFILE INFO file ;
NWDIR INFO dir ;
} info;

} NWENTRY INFO;

Delphi Structure

uses calwin32

NWENTRY INFO = packed Record
sequence : nuint32;
parent : nuint32;
attributes : nuint32;
uniqueID : nuint8;
flags : nuint8;
nameSpace : nuint8;
namelLength : nuint8;
name : Array[0..11] Of nuint8;
creationDateAndTime : nuint32;
ownerID : nuint32;
lastArchiveDateAndTime : nuint32;
lastArchiverID : nuint32;
case Integer of
l:(filel: NWFILE INFO);
2:(dir : NWDIR INFO) ;

End;

File System Structures 361

Fields

sequence

Specifies the sequence for iteratively scanning entries (-1 initially).

parent

Specifies the directory handle to parent directory.

attributes

Specifies the entry attributes.

uniquelD

Specifies the unique entry ID.
flags

Is reserved.

nameSpace

Specifies the name space creating the entry.

nameLength

Specifies the length of the name field.

name

Specifies the entry name.

creationDateAndTime

Specifies when the entry was created.

ownerID

Specifies the object ID of the owner.

lastArchiveDateAndTime

Specifies when the entry was last archived.

lastArchiverID
Specifies the ID of the object last archiving the entry.

Remarks

See Section 20.2, “Attribute Values,” on page 623 for the possible values for the attributes
field.

The nameSpace field can have the following values:

0NW_NS_DOS

1 NW_NS MAC
2NW_NS_NFS
3NW_NS_FTAM
4NW _NS_LONG

362 NDK: Multiple and Inter-File Services

NWET_INFO

Returns directory entry trustee information
Service: File System

Defined In: nwdentry.h

Structure

typedef struct {
nstr8 entryName [16];
nuint32 creationDateAndTime ;
nuint32 ownerID ;
nuint32 sequenceNumber ;

TRUSTEE INFO trusteelist [20];
} NWET INFO;

Delphi Structure

uses calwin32

NWET INFO = packed Record
entryName : Array[0..15] Of nstr§;

creationDateAndTime : nuint32;
ownerID : nuint32;
sequenceNumber : nuint32;
trusteelist : Array[0..19] Of TRUSTEE INFO
End;
Fields
entryName
Set to zero.

creationDateAndTime

Set to zero.

ownerID

Set to zero.

sequenceNumber

Specifies the sequence for iteratively scanning entries.

trusteelist
Specifies an array of up to 20 TRUSTEE_INFO structures.

File System Structures 363

NWET_INFO_EXT

Returns directory entry trustee information
Service: File System

Defined In: nwdentry.h

Structure

typedef struct {
nstr8 entryName [16];
nuint32 creationDateAndTime ;
nuint32 ownerID ;
nuint32 sequenceNumber ;

TRUSTEE INFO trusteelist [100];
} NWET INFO EXT;

Fields
entryName
Set to zero.

creationDateAndTime

Set to zero.

ownerID

Set to zero.

sequenceNumber

Specifies the sequence for iteratively scanning entries.

trusteelist
Specifies an array of up to 100 TRUSTEE INFO structures.

364 NDK: Multiple and Inter-File Services

NWFILE_INFO

Defines entry information for files
Service: File System

Defined In: nwdentry.h

Structure

typedef struct {
nuint32 updateDateAndTime ;
nuint32 updatorID ;

nuint32 fileSize ;

nuint8 reserved [44];
nuintlé inheritedRightsMask ;
nuintlo lastAccessDate ;
nuint8 reserved2 [28];

} NWFILE INFO;

Delphi Structure

uses calwin32

NWFILE INFO = packed Record
updateDateAndTime : nuint32;
updatorID : nuint32;
fileSize : nuint32;
reserved : Array[0..43] Of nuint8;
inheritedRightsMask : nuintlé6;

lastAccessDate : nuintl6;
reserved?2 : Array[0..27] Of nuint8
End;
Fields
updateDateAndTime

Specifies when the file was last updated.

updatorID
Specifies the ID of the object that last updated the file.

fileSize

Specifies the size of the file.

reserved

Is reserved for future use.

inheritedRightsMask
Specifies the Inherited Rights Mask for the file.

File System Structures 365

lastAccessDate

Specifies when the file was last accessed

reserved2

Is reserved for future use.

Remarks

The inheritedRightsMask field can have the following values:

C Value Delphi Value Value Description
0x0000 $0000 TR_NONE

0x0001 $0001 TR_READ

0x0002 $0002 TR_WRITE

0x0004 $0004 TR_OPEN

0x0004 $0004 TR_DIRECTORY
0x0008 $0008 TR_CREATE
0x0010 $0010 TR_DELETE
0x0010 $0010 TR_ERASE
0x0020 $0020 TR_OWNERSHIP
0x0020 $0020 TR_ACCESS_CTRL
0x0040 $0040 TR_FILE_SCAN
0x0040 $0040 TR_SEARCH
0x0040 $0040 TR_FILE_ACCESS
0x0080 $0080 TR_MODIFY
0x01FB $01FB TR_ALL

0x0100 $0100 TR_SUPERVISOR
0x00FB $00FB TR_NORMAL

366 NDK: Multiple and Inter-File Services

OPEN_FILE_CONN

Returns information about the open files for a connection
Service: File System

Defined In: nwfile.h

Structure

typedef struct {
nuintlo taskNumber ;
nuint8 lockType ;
nuint8 accessControl ;
nuint8 lockFlag ;
nuint8 volNumber ;
nuint32 parent ;
nuint32 dirEntry ;
nuint8 forkCount ;
nuint8 nameSpace ;
nuint8 namelLen ;
nstr8 fileName [255];

} OPEN_FILE CONN;

Delphi Structure

uses calwin32

OPEN_FILE CONN = packed Record
taskNumber : nuintl6;
lockType : nuint8;

accessControl : nuint8;
lockFlag : nuint8;
volNumber : nuint8;
parent : nuint32;
dirEntry : nuint32;
forkCount : nuint8;
nameSpace : nuint8;
namelen : nuint8;
fileName : Array[0..254] Of nstr8
End;
Fields
taskNumber
Specifies the number of the task which has this file opened (each file can have multiple task
numbers).
lockType

Specifies how the file is locked.

File System Structures 367

accessControl

Specifies how the file is being accessed.

lockFlag
Specifies whether the file is locked.

volNumber

Specifies the volume number (SYS is always 0).

parent

Specifies the ID number for the parent directory.

dirEntry
Specifies the directory entry number.

forkCount

Specifies the number of forks associated with the file.

nameSpace

Specifies the name space creating the file.

namelen

Specifies the number of bytes in the filename.

fileName

Specifies the name of file (long names are supported).

Remarks

The first four fields contain information similar to their counterparts in the CONN USING FILE
(page 338) structure. The remaining fields identify the file and its name space.

The 1ockType field can have the following values:

0x01 Locked

0x02 Open shareable
0x04 Logged

0x08 Open Normal

0x40 TTS holding

0x80 Transaction flag set

The accessControl field can have the following values:

0x01 Open for read by this client
0x02 Open for write by this client
0x04 Deny read requests from others
0x08 Deny write requests from others
0x10 File detached

0x20 TTS holding detach

0x40 TTS holding open

368 NDK: Multiple and Inter-File Services

The 1ockFlag field can have the following values:

0x00 Not locked
O0xFE Locked by a file lock
OxFF Locked by begin share file set

The nameSpace field can have the following values:

0NW_NS_DOS
I NW NS MAC
2NW_NS_NFS

3NW _NS_FTAM
4NW_NS_LONG

File System Structures 369

OPEN_FILE_CONN_CTRL

Returns a list of files a specified connection has open
Service: File System

Defined In: nwfile.h

Structure

typedef struct {
nuintlé nextRequest ;
nuintlé openCount ;
nuint8 buffer [512];
nuintlé curRecord ;

} OPEN FILE CONN_CTRL;

Delphi Structure

uses calwin32

OPEN_ FILE CONN CTRL = packed Record

nextRequest : nuintl6;
openCount : nuintl6;
buffer : Array[0..511] Of nuint$8;
curRecord : nuintl6
End;
Fields
nextRequest

Specifies an iterator.

openCount
Specifies the number of OPEN_FILE CONN structures contained in the buf fer field.

buffer
Specifies the returned OPEN_FILE CONN structure.

curRecord

Specifies the offset in the buf fer field of the next record to return and is used internally by
the NWScanOpenFilesByConn2 function to track the next record to return in the
OPEN_FILE CONN structure.

370 NDK: Multiple and Inter-File Services

SEARCH_DIR_INFO

Service: File System

Defined In: nwfile.h

Structure

typedef struct {
nuintlé sequenceNumber ;
nuintlé reservedl ;
nstr8 directoryName [15];
nuint8 directoryAttributes ;
nuint8 directoryAccessRights ;
nuintlé createDate ;
nuintlé createTime ;
nuint32 owningObjectID
nuintlé reserved? ;

nuintlé directoryStamp ;
} SEARCH DIR INFO;

Delphi Structure

uses calwin32

SEARCH DIR INFO = packed Record
sequenceNumber : nuintlé6;
reservedl : nuintl6;
directoryName : Array[0..14] Of nstr8;
directoryAttributes : nuint8;
directoryAccessRights : nuint8;
paddl : nuint8;
createDate : nuintl6;
createTime : nuintl6;
padd2 : nuintlé6;
owningObjectID : nuint32;

reserved2 : nuintl6;
directoryStamp : nuintlé6
End;
Fields
sequenceNumber

Is reserved for future use.

reservedl

Is reserved for future use.

File System Structures 371

directoryName

Specifies the short name of the directory.

directoryAttributes
Specifies the attributes for the directory.

directoryAccessRights

Specifies the access rights.

createDate

Specifies the time the directory was created.

createTime

Specifies the date the directory was created.

owningObjectID
Specifies the ID of the object owning the directory.

reserved2

Is reserved for future use.

directoryStamp
Specifies 0xD1D1 when returned.

Remarks

The directoryAttributes field can have the following values:

C Value Delphi Value Value Name

0x00 $00 FA_NORMAL
0x02 $02 FA_HIDDEN
0x04 $04 FA_SYSTEM
0x10 $10 FA_DIRECTORY

FA_DIRECTORY will always be in the bit mask for a directory.

The directoryAccessRights field can have the following values:

C Value Delphi Value Value Name

0x00 $00 TA_NONE

0x01 $01 TA_READ

0x02 $02 TA_WRITE

0x04 $04 TA_OPEN Obsolete in 3.x and above.
0x08 $08 TA_CREATE

372 NDK: Multiple and Inter-File Services

C Value Delphi Value Value Name

0x10 $10 TA_DELETE
0x20 $20 TA_OWNERSHIP
0x40 $40 TA_SEARCH
0x80 $80 TA_MODIFY
OxFB $FB TA_ALL

File System Structures 373

SEARCH_FILE_INFO

Service: File System

Defined In: nwfile.h

Structure

typedef struct {
nuintlé sequenceNumber ;
nuintlo6 reserved ;
nstr8 fileName [15];
nuint8 fileAttributes ;
nuint8 fileMode ;
nuint32 fileLength ;
nuintlo createDate ;
nuintlo6 accessDate ;
nuintlé updateDate ;
nuintlé updateTime ;

} SEARCH_FILE INFO;

Delphi Structure

uses calwin32

SEARCH FILE INFO = packed Record
sequenceNumber : nuintlé6;
reserved : nuintl6;
fileName : Array[0..14] Of nstr8;
fileAttributes : nuint8;
fileMode : nuint8;
fileLength : nuint32;
createDate : nuintlé6;
accessDate : nuintlé6;
updateDate : nuintlé6;
updateTime : nuintl6

End;

Fields

sequenceNumber

Is reserved.

reserved

Is reserved for future use.

fileName

Specifies the short name of the file.

374 NDK: Multiple and Inter-File Services

fileAttributes
Specifies the attributes for the file.

fileMode

Specifies the access rights.

fileLength
Specifies the size of the file in bytes.

createDate

Specifies the date when the file was created.

accessDate

Specifies the date when the file was last accessed.

updateDate

Specifies the date when the file was last modified.

updateTime

Specifies the time when the file was last modified.

Remarks

The fileAttributes field can have the following values (may be ORed):

C Value Delphi Value Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY
0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED
0x80 $80 FA_SHAREABLE

The £ileMode field can have the following values:

0x01 Open for read by this client
0x02 Open for write by this client
0x04 Deny read requests from others
0x08 Deny write requests from others
0x10 File detached

0x20 TTS holding detach

0x40 TTS holding open

File System Structures 375

stat

Holds information about the status of a file or directory
Service: File System

Defined In: sys\stat.h

Structure

struct stat {
dev t st _dev ;
ino_t st _ino ;
unsigned short st mode ;
short st nlink ;
unsigned long st _uid ;
short st _gid ;
dev t st _rdev ;
off t st _size ;
time t st _atime ;
time t st mtime ;
time t st _ctime ;
time t st _btime ;
unsigned long st _attr ;
unsigned long st _archivedID ;
unsigned long st updatedID ;
unsigned short st inheritedRightsMask ;
unsigned char st originatingNameSpace ;
unsigned char st name [255+1];
size t st blksize ;
size t st blocks ;
unsigned int st _flags ;
unsigned long st spare [4];

bi

Fields

st_dev

Specifies the volume number.
st_ino
Specifies the directory entry of the st_name.

st_mode

Specifies the emulated file mode.

st_nlink

Specifies the count of hard links (always 1).
st_uid

Specifies the object ID of the owner.

376 NDK: Multiple and Inter-File Services

st_gid
Specifies the group ID (always 0).
st_rdev
Specifies the device type (always 0).
st_size
Specifies the total file size (files only).
st_atime
Specifies the last access date/time (files only) in calendar time (seconds since the Jan.1, 1970
(UTO)).
st_mtime

Specifies the last modify date/time and time in calendar time.
st_ctime

Specifies the date/time in calendar time that the file or directory was created.
st_btime

Specifies the time in calendar time since the entry was last archived.

st_attr
Specifies the file attribute as defined in NWFATTR.H.

st_archivedID

Specifies the ID of the user/object that last archived the entry.

st_updatedID
Specifies the ID of the user/object that last updated the entry.

st_inheritedRightsMask
Specifies the NDS inherited rights mask.

st_originatingNameSpace
Specifies the name space in which the file or directory was created (see Section 20.5, “Name
Space Flag Values,” on page 625).

st _name
Specifies the name of the file or directory according to the set target name space (see
Section 20.5, “Name Space Flag Values,” on page 625).

st_blksize

Specifies the block size for allocation (files only).

st_blocks
Specifies the count of blocks allocated to the file.

st_flags
Specifies user-defined flags.

File System Structures 377

st_spare

Reserved for future use.

378 NDK: Multiple and Inter-File Services

TRUSTEE_INFO

Contains a directory trustee with the object rights
Service: File System

Defined In: nwdirect.h

Structure

typedef struct {
nuint32 objectID ;
nuintlé objectRights ;
} TRUSTEE INFO;

Delphi Structure

uses calwin32

TRUSTEE INFO = packed Record
objectID : nuint32;
objectRights : nuintl6;
reserved : nuintlé6;

End;

Fields

objectID
Specifies the ID of the object.

objectRights

Specifies the rights the object has on a directory.

File System Structures 379

utimbuf

Contains when the file was last accessed and modified
Service: File System

Defined In: utime.h

Structure

struct {
time t actime ;
time t modtime ;

}s

Fields

actime

Specifies the last time the file was accessed.

modtime

Specifies the last time the file was modified.

380 NDK: Multiple and Inter-File Services

VOLUME_STATS

Holds volume information
Service: File System

Defined In: nwdir.h

Structure

typedef struct tagVOLUME STATS {
long systemElapsedTime ;
BYTE volumeNumber ;
BYTE logicalDriveNumber ;
WORD sectorsPerBlock ;
long startingBlock ;
WORD totalBlocks ;
WORD availableBlocks ;
WORD totalDirectorySlots ;
WORD availableDirectorySlots ;
WORD maxDirectorySlotsUsed ;
BYTE isHashing ;
BYTE isRemovable ;
BYTE isMounted ;
char volumeName [17];
LONG purgeableBlocks ;
LONG notyetPurgeableBlocks ;
} VOLUME STATS;

Fields

systemElapsedTime

Specifies the time in seconds since the system was brought up.

volumeNumber

Specifies the volume number (same as the Volume Table number for the server).

logicalDriveNumber

Specifies the logical drive number.

sectorsPerBlock

Specifies the number of 512-byte sectors in a block for the volume.

startingBlock
Specifies the starting block of the volume.

totalBlocks

Specifies the total number of blocks in the volume.

availableBlocks

Specifies the number of available blocks on the volume.

File System Structures 381

totalDirectorySlots

Specifies the total number of directory slots on the volume.

availableDirectorySlots

Specifies the number of available directory slots on the volume.

maxDirectorySlotsUsed

Specifies the maximum number of directory slots used on the volume.

isHashing

Specifies whether the volume is hashing.

isRemovable

Specifies whether the volume is removable (always non-zero for NetWare 3.x and 4.x):

non-zero Volume can be removed
0x00 Volume cannot be removed

isMounted

Specifies whether the volume is mounted.

volumeName

Specifies the volume name (2-15 characters plus the NULL terminator).

purgableBlocks
Specifies the number of purgeable blocks

notYetPurgableBlocks
Specifies the number of blocks not yet purgeable.

Remarks

The volumeName field cannot contain spaces or the following characters:

* Asterisk

? Question mark
Colon

/ Slash

\ Backslash

382 NDK: Multiple and Inter-File Services

VOLUME_INFO

Contains volume information
Service: File System

Defined In: nwdir.h

Structure

typedef struct tagVOLUME INFO {
long systemElapsedTime ;
BYTE volumeNumber ;
BYTE logicalDriveNumber ;
WORD sectorsPerBlock ;
short startingBlock ;
LONG totalBlocks ;
LONG availableBlocks ;
LONG totalDirectorySlots ;
LONG availableDirectorySlots ;
BYTE isHashing ;
BYTE isRemovable ;
BYTE isMounted ;
char volumeName [17];
LONG purgableBlocks ;
LONG notyetPurgableBlocks ;
} VOLUME INFO;

Fields

systemElapsedTime

Specifies the time in seconds since the system was brought up.

volumeNumber

Specifies the volume number (same as the Volume Table number).

logicalDriveNumber

Specifies the logical drive number.

sectorsPerBlock

Specifies the number of 512-byte sectors in a block for the volume.

startingBlock
Specifies the starting block of the volume.

totalBlocks

Specifies the total number of blocks in the volume.

availableBlocks

Specifies the number of available blocks on the volume.

File System Structures 383

totalDirectorySlots

Specifies the total number of directory slots on the volume.

availableDirectorySlots

Specifies the number of available directory slots on the volume.

isHashing

Specifies whether the volume is hashing.

isRemovable

Specifies whether the volume is removable (always non-zero for NetWare 3.x and 4.x):

non-zero Volume can be removed
0x00 Volume cannot be removed

isMounted

Specifies whether the volume is mounted.

volumeName

Specifies the volume name (2-15 characters plus the NULL terminator).

purgableBlocks
Specifies the number of purgeable blocks

notYetPurgableBlocks
Specifies the number of blocks not yet purgeable.

Remarks

The volumeName field cannot contain spaces or the following characters:

* Asterisk

? Question mark
Colon

/ Slash

\ Backslash

384 NDK: Multiple and Inter-File Services

File System Monitoring Concepts

This documentation describes File System Monitoring, its functions, and features.

File System Monitoring allows your NLM application to "hook" the file system functions that
correspond to the list below. Before any of these functions that your NLM has registered for callback
are executed by the NetWare OS, your NLM has the option of changing it, failing it, or simply
making a record of its execution.

File System Monitoring allows you to:

¢ erase, open, create, rename, move, and close files

¢ create and delete directories

+ modify directory entries

¢ rename name space entries

+ salvage, purge, open, create, rename, and erase generic entities

+ modify generic DOS information and generic name space information

12.1 Registering for Callback

The NetWare® OS transfers control to your NLM whenever it receives a request from any of its
clients for a function that you have registered for monitoring.

Control is transferred to a function in your NLM that has restrictions imposed on it by the NetWare
OS. This "callback function" is required to have parameters that the OS is expecting and can fill out.
Your NLM or a system administrator can then use the information passed to the callback function by
the OS to decide what action to take, if any, before or after the request is filled.

It’s as if, when you call NWAddFSMonitorHook (page 394), your NLM is given a window through
which the NetWare OS looks at every request for a file system function that you have registered for
monitoring. Your NLM can then test each one against a selected set of conditions, such as the
presence of a virus. In the event your NLM detects something suspicious, it can alter or fail the
request or make a record of it for the system administrator to act upon later.

12.2 File Monitoring

What your monitoring function returns depends on whether it is a pre-execution callback or a post-
execution callback:

+ “Pre-Execution and Post-Execution Monitoring” on page 386

¢ “Pre-Execution Callbacks” on page 387

+ “Post-Execution Callbacks” on page 387

¢ “Callback Structures” on page 387

File System Monitoring Concepts

385

12.2.1 Pre-Execution and Post-Execution Monitoring

When registering a callback function, you specify in the callBackNumber parameter whether the
callback is made before or after the OS executes the function. Possible values for the
callBackNumber include both a "pre" and "post" version for every OS function that can be
monitored. The "pre" versions callback to your function before the OS function executes, whereas
the "post" versions callback to your function after the OS function executes. If the callback occurs
before the OS executes the function, your NLM can fail that function. Call NWAddFSMonitorHook
(page 394) once for each function you want to be monitored.

The name space entry changing hooks and all generic hooks are used for monitoring functions called
from other than DOS clients. These non-DOS hooks are supported only on NetWare® versions 3.12
and higher, while the remaining hooks are also supported on version 3.11. The following table lists

the values for callBackNumber for each OS function:

Table 12-1 Callback Functions for Monitoring File Operations

OS Function to
Monitor

Callback before OS Execution

Callback after OS Execution

file erasing
file opening
file creating

file creating/
opening

file renaming/
moving

file closing
directory creating
directory deleting

directory entry
modification

salvaging
purging

name space entry
renaming

generic salvaging

generic purging

generic opening/
creating

generic renaming

generic file erasing

FSHOOK_PRE_ERASEFILE
FSHOOK_PRE_OPENFILE
FSHOOK_PRE_CREATEFILE
FSHOOK_PRE_CREATE_OPENFILE

FSHOOK_PRE_RENAME_OR_MOVE

FSHOOK_PRE_CLOSEFILE
FSHOOK_PRE_CREATEDIR
FSHOOK_PRE_DELETEDIR
FSHOOK_PRE_MODIFY_DIRENTRY

FSHOOK_PRE_SALVAGE_DELETED
FSHOOK_PRE_PURGE_DELETED
FSHOOK_PRE_RENAME_NS_ENTRY

FSHOOK_PRE_GEN_SALVAGE_DELE
TED

FSHOOK_PRE_GEN_PURGE_DELET
ED

FSHOOK_PRE_GEN_OPEN_CREATE

FSHOOK_PRE_GEN_RENAME
FSHOOK_PRE_GEN_ERASEFILE

FSHOOK_POST_ERASEFILE
FSHOOK_POST_OPENFILE
FSHOOK_POST_CREATEFILE
FSHOOK_POST_CREATE_OPENFILE

FSHOOK_POST_RENAME_OR_MOVE

FSHOOK_POST_CLOSEFILE
FSHOOK_POST_CREATEDIR
FSHOOK_POST DELETEDIR
FSHOOK_POST_MODIFY_DIRENTRY

FSHOOK_POST_SALVAGE_DELETED
FSHOOK_POST_PURGE_DELETED

FSHOOK_POST_RENAME_NS_ENTR
Y

FSHOOK_POST_GEN_SALVAGE_DEL
ETED

FSHOOK_POST_GEN_PURGE_DELE
TED

FSHOOK_POST_GEN_OPEN_CREAT
E

FSHOOK_POST_GEN_RENAME
FSHOOK_POST_GEN_ERASEFILE

386 NDK: Multiple and Inter-File Services

OS Function to

Moni Callback before OS Execution Callback after OS Execution

onitor

generic DOS FSHOOK_PRE_GEN_MODIFY_ FSHOOK_POST_GEN_MODIFY_DOS_
information DOS_INFO INFO

modification

generic name FSHOOK_PRE_GEN_MODIFY_NS_IN FSHOOK_POST_GEN_MODIFY_NS_|I
space information FO NFO

modification

12.2.2 Pre-Execution Callbacks

If you are registering a pre-execution function, it should return one parameter, a pointer to the
structure returned for the OS function you are monitoring.

In the case of pre-execution callbacks, you have the option of failing the OS function and returning
an error. If your NLM decides to fail a request, it should return one of the OS standard error codes
(see NITERROR.H).

12.2.3 Post-Execution Callbacks

If you are registering a post-execution function, it should return 2 parameters, a pointer to the
structure returned for the OS function and a completion code indicating whether or not the OS
function completed successfully.

NOTE: The post-execution callback function must not sleep, because the fields in the return
structure are subject to change.

12.2.4 Callback Structures

The following table summarizes the structures returned by file system monitoring callbacks:

FSHOOK_PRE_ERASEFILE EraseFileCallBackStruct (page 408)
FSHOOK_POST_ERASEFILE

FSHOOK_PRE_OPENFILE OpenFileCallBackStruct (page 426)
FSHOOK_POST_OPENFILE

FSHOOK_PRE_CREATEFILE CreateFileCallBackStruct (page 403)
FSHOOK_POST_CREATEFILE

FSHOOK_PRE_CREATE_OPENFILE CreateAndOpenCallBackStruct (page 405)
FSHOOK_POST_CREATE_OPENFILE

FSHOOK_PRE_RENAME_OR_MOVE RenameMoveEntryCallBackStruct (page 430)
FSHOOK_POST_RENAME_OR_MOVE

FSHOOK_ PRE_CLOSEFILE CloseFileCallBackStruct (page 400)
FSHOOK_POST_CLOSEFILE

File System Monitoring Concepts 387

FSHOOK_PRE_CREATEDIR
FSHOOK_POST_CREATEDIR
FSHOOK_PRE_DELETEDIR
FSHOOK_POST DELETEDIR
FSHOOK_PRE_MODIFY_DIRENTRY
FSHOOK_POST _MODIFY_DIRENTRY
FSHOOK_PRE_SALVAGE_DELETED
FSHOOK_POST_SALVAGE_DELETED
FSHOOK_PRE_PURGE_DELETED
FSHOOK_POST_PURGE_DELETED
FSHOOK_PRE_RENAME_NS_ENTRY
FSHOOK_POST RENAME_NS_ENTRY
FSHOOK_PRE_GEN_ SALVAGE_DELETED
FSHOOK_POST_GEN_ SALVAGE_DELETED
FSHOOK_PRE_GEN_PURGE_DELETED
FSHOOK_POST_GEN_PURGE_DELETED
FSHOOK_PRE_GEN_OPEN_CREATE
FSHOOK_POST_GEN_OPEN_CREATE
FSHOOK_PRE_GEN_RENAME
FSHOOK_POST_GEN_RENAME
FSHOOK_PRE_GEN_ERASEFILE
FSHOOK_POST_GEN_ERASEFILE
FSHOOK_PRE_GEN_MODIFY_DOS_INFO
FSHOOK_POST_GEN_MODIFY_DOS_INFO
FSHOOK_PRE_GEN_MODIFY_NS_INFO
FSHOOK_POST_GEN_MODIFY_NS_INFO

CreateDirCallBackStruct (page 401)

DeleteDirCallBackStruct (page 407)

ModifyDirEntryCallBackStruct (page 423)

SalvageDeletedCallBackStruct (page 434)

PurgeDeletedCallBackStruct (page 429)

RenameNSEntryCallBackStruct (page 432)

GenericSalvageDeletedCBStruct (page 422)

GenericPurgeDeletedCBStruct (page 419)

GenericOpenCreateCBStruct (page 416)

GenericRenameCBStruct (page 420)

GenericEraseFileCBStruct (page 410)

GenericModifyDOSInfoCBStruct (page 412)

GenericModifyNSInfoCBStruct (page 414)

12.3 Potential Uses

Novell® originally created File System Monitoring to fill a demand for a virus detection/protection
hook. Because viruses can infect mission-critical files, this is a vitally important use of the service,
but not the only one. File System Monitoring could also be used for any other network service that
relies on monitoring file system requests. A couple of these are hot backup and version control.

388 NDK: Multiple and Inter-File Services

12.3.1 Hot Backup

A hot backup NLM could register functions that create and modify files, putting the results in a
special log file. Then, from time to time, it could back up all the new material to a specified medium.
This would eliminate the need for humanly-executed backup.

12.3.2 Version Control

A version control NLM could keep a record of .obj files that have been created or modified and store
a copy of the last one, along with all pertinent information, in a specified place.

12.4 File System Monitoring Functions

These are the two functions associated with File System Monitoring:

NWAddFSMonitorHook Begin monitoring the file system

NWRemoveF SMonitorHook Stop monitoring the file system

File System Monitoring Concepts 389

390 NDK: Multiple and Inter-File Services

File System Monitoring Tasks

This documentation describes common tasks associated with File System Monitoring.

13.1 Writing a File System Monitor NLM

The four steps below are the essential parts of writing a file system monitor NLM. They are taken
from the example NLM, FSHOOK.C, in the EXAMPLES directory.

1 Create your callback functions.
int openFileCallBackFunc (OpenFileCallBackStruct *ofcbs)

static int cnt = 0;
char user[48];
int ccode;

WORD objType;
long objID;
BYTE loginTime[7];
LONG pc;
BYTE ps[255];
BYTE volName [16];
LONG prevThreadGrouplID;
prevThreadGroupID = SetThreadGroupID (mainThreadGroupID) ;
ccode = GetConnectionInformation (ofcbs->connection, user,
&objType, &objID, loginTime);
if (ccode != 0)
return OxFF;
printf ("%$dth OPEN request. by %s (connNum %d), ", ++cnt, user,
ofcbs->connection) ;
FEMapVolumeNumberToName (ofcbs->volume, volName) ;
for (pc = 1; pc <= volName[0]; pc++)
putchar (volName [pc]) ;
putchar(’:’);
FEMapVolumeAndDirectoryToPath (ofcbs->volume,
ofcbs->dirBase, ps, &pc);
if (ps[0])
printNetWareStr (pc, ps);
printNetWareStr (ofcbs->pathComponentCount, ofcbs->pathString);
putchar (“\n’);
SetThreadGrouplID (prevThreadGrouplID) ;
return 0;

}

Registering your callback functions tells the OS to transfer control to your NLM whenever a
specified file system event is triggered. These callback functions can be thought of as
"windows" to the file system, which are opened by calling NWAddFSMonitorHook (page 394).

openFileCallBackFunc receives the OpenFileCallBackStruct pointer and prints out some of its
field values for informational purposes.

2 To begin monitoring, call NWAddFSMonitorHook (page 394).

File System Monitoring Tasks 391

Register your callback functions and start monitoring. openFileCallBackFunc has been
registered to be called back after the OS executes the file opening function (by specifying
FSHOOK POST OPENFILE).
ccode = NWAddFSMonitorHook (FSHOOK PRE OPENFILE,
openFileCallBackFunc, &preOpenFileHandle);
if (ccode != 0)

{

printf ("nwaddfsmonitorhook error. ccode: %$#x, hook:
openFile\n", ccode);
}
3 Wait for callbacks from the OS.

while (1)

ThreadSwitchWithDelay (1000) ; //sleep forever...until unloaded
Provide a mechanism, like sleeping forever (above), for keeping the NLM inactive but loaded
and ready to respond to a callback from the OS.

4 Stop monitoring.
void ExitandRemoveMonitorHooks ()

{
NWRemoveFSMonitorHook (FSHOOK PRE OPENFILE,

openFileCallBackFunc) ;
}

Deregister the callback by calling NWRemoveFSMonitorHook (page 397).

392 NDK: Multiple and Inter-File Services

File System Monitoring Functions

This documentation alphabetically lists the File System Monitoring functions and describes their
purpose, syntax, parameters, and return values.

+ “NWAddFSMonitorHook” on page 394
+ “NWRemoveFSMonitorHook™ on page 397

File System Monitoring Functions 393

NWAddFSMonitorHook

Allows the application to monitor ("hook") various OS file system routines
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM

Service: File System Monitoring

Syntax

#include <nwfshook.h>

LONG NWAddFSMonitorHook (
LONG callBackNumber,
void *callBackFunc,
LONG *callBackHandle) ;

Parameters

callBackNumber
(IN) Specifies which type of OS file system routine you want to hook.

callBackFunc

(IN) Points to the function that you want the OS to call (pass control to) when the hooked file
system routine is going to be or has been called by a client or any NLM application on the local
server.

callBackHandle

(OUT) Points to a handle that identifies the file system monitor hook. This handle is passed to
NWRemoveFSMonitorHook when removing the hook.

Return Values

If NWAddFSMonitorHook succeeds, it returns 0 if the OS routine corresponding to
callBackNumber was successfully "hooked." Otherwise, it returns errors.

Remarks

The callBackNumber parameter specifies the OS file system routine that you want to hook, and
whether the cal1BackFunc is called before (a "pre OS call hook™) or after (a "post OS call hook")
the OS routine executes. The last eight sets of hooks (FSHOOK PRE/

POST RENAME NS ENTRY and all generics) are used for tracking routines called from other
than DOS clients (note that non-DOS hooks are available for use only with NetWare versions 3.12
and higher.) Hooks cannot be ORed, so you must call NWAddFSMonitorHook once for each routine

394 NDK: Multiple and Inter-File Services

you want to be monitored. Values for callBackNumber and the OS routines that they hook are

defined in nwfshook.h and

Table 14-1 File System Hooks

listed below:

Functionality

Constant

Valid Versions

file erasing

file opening

file creating

file creating/opening

file renaming/moving

file closing

directory creating

directory deleting

directory entry modification

salvaging

purging

name space entry

renaming

generic salvaging

generic purging

FSHOOK_PRE_ERASEFILE
FSHOOK_POST ERASEFILE
FSHOOK_PRE_OPENFILE
FSHOOK_POST_OPENFILE
FSHOOK_PRE_CREATEFILE
FSHOOK_POST CREATEFILE
FSHOOK_PRE_CREATE_OPENFILE
FSHOOK_POST CREATE_OPENFILE
FSHOOK_PRE_RENAME_OR_MOVE
FSHOOK_POST_RENAME_OR_MOVE
FSHOOK_PRE_CLOSEFILE
FSHOOK_POST_CLOSEFILE
FSHOOK_PRE_CREATEDIR
FSHOOK_POST CREATEDIR
FSHOOK_PRE_DELETEDIR
FSHOOK_POST DELETEDIR
FSHOOK_PRE_MODIFY_DIRENTRY
FSHOOK_POST _MODIFY_DIRENTRY
FSHOOK_PRE_SALVAGE_DELETED
FSHOOK_POST SALVAGE_DELETED
FSHOOK_PRE_PURGE_DELETED
FSHOOK_POST_PURGE_DELETED
FSHOOK_PRE_RENAME_NS_ENTRY
FSHOOK_POST RENAME_NS_ENTRY
FSHOOK_PRE_GEN_SALVAGE_DELETED
FSHOOK_POST GEN_SALVAGE_DELETED
FSHOOK_PRE_GEN_PURGE_DELETED
FSHOOK_POST_GEN_PURGE_DELETED

3.11 and higher

3.11 and higher

3.11 and higher

3.11 and higher

3.11 and higher

3.11 and higher

3.11 and higher

3.11 and higher

3.11 and higher

3.11 and higher

3.11 and higher

3.12,4.x, 5., 6.x

3.12,4.x, 5., 6.x

3.12,4.x, 5., 6.x

File System Monitoring Functions 395

Functionality Constant Valid Versions

generic opening/creating FSHOOK_PRE_GEN_OPEN_CREATE 3.12,4.x,5.x, 6.x
FSHOOK_POST_GEN_OPEN_CREATE

generic renaming FSHOOK_PRE_GEN_RENAME 3.12,4.x, 5.x, 6.x
FSHOOK_POST_GEN_RENAME

generic file erasing FSHOOK_PRE_GEN_ERASEFILE 3.12,4.x, 5., 6.x
FSHOOK_POST_GEN_ERASEFILE

generic DOS information = FSHOOK_PRE_GEN_MODIFY_DOS_INFO 3.12,4.x, 5.x, 6.x

modification FSHOOK_POST_GEN_MODIFY_DOS_INFO

generic name space FSHOOK_PRE_GEN_MODIFY_NS_INFO 3.12,4.x, 5.x, 6.x

information modification
FSHOOK_POST_GEN_MODIFY_NS_INFO

The callBackFunc parameter points to the callback function you have created. The number of
parameters you should declare in callBackFunc varies depending on when the OS calls back the
function.

The first parameter for both types of callback function is a pointer to the structure returned by the
OS for the OS file system routine that is being monitored (for example, if you are monitoring file
opens, the OS would return an OpenFileCallBackStruct). These callback structures are defined in
nwfshook.h.

If you have specified a pre OS call back hook, this is the only parameter for the callBackFunc. If
you have specified a post OS call back hook, the callBackFunc receives a second parameter, a
pointer to a LONG value which is the completion code of the OS routine that you have hooked. The
following illustrates what these functions would look like if you are monitoring file opens:

int PreCallBackFunc (OpenFileCallBackStruct const *structure);

void PostCallBackFunc (OpenFileCallBackStruct const *structure, LONG
ccode) ;

Definitions of the structures returned by the callback function are described in “File System
Monitoring Structures” on page 399.

NOTE: If you specify a post OS call back hook, your callback function must not go to sleep,
because the values in the callback structure can change before your thread wakes up again.

See Also

NWRemoveFSMonitorHook (page 397)

396 NDK: Multiple and Inter-File Services

NWRemoveFSMonitorHook

Removes a "hook" that is monitoring an OS file system routine
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 4.x, 5.X, 6.x

Platform: NLM

Service: File System Monitoring

Syntax

#include <nwfshook.h>
LONG NWRemoveFSMonitorHook (

LONG callBackNumber,
LONG callBackHandle) ;

Parameters

callBackNumber

(IN) Specifies the OS file system routine that you want to remove a hook from. See
NWAddFSMonitorHook (page 394) for possible values for this parameter.

callBackHandle

(IN) Specifies the handle that was returned when the hook was added by calling

NWAdJdFSMonitorHook.

Return Values

If NWRemoveFSMonitorHook succeeds, it returns 0 if the hook corresponding to

callBackNumber was successfully removed. Otherwise, it returns errors.

See Also

NWAddFSMonitorHook (page 394)

File System Monitoring Functions 397

398 NDK: Multiple and Inter-File Services

File System Monitoring Structures

This documentation alphabetically lists the File System Monitoring structures and describes their
purpose, syntax, and fields.

*

*

*

*

“CloseFileCallBackStruct” on page 400
“CreateDirCallBackStruct” on page 401
“CreateFileCallBackStruct” on page 403
“CreateAndOpenCallBackStruct” on page 405
“DeleteDirCallBackStruct” on page 407
“EraseFileCallBackStruct” on page 408
“GenericEraseFileCBStruct” on page 410
“GenericModifyDOSInfoCBStruct” on page 412
“GenericModifyNSInfoCBStruct” on page 414
“GenericOpenCreateCBStruct” on page 416
“GenericPurgeDeletedCBStruct” on page 419
“GenericRenameCBStruct” on page 420
“GenericSalvageDeletedCBStruct” on page 422
“ModifyDirEntryCallBackStruct” on page 423
“OpenFileCallBackStruct” on page 426
“PurgeDeletedCallBackStruct” on page 429
“RenameMoveEntryCallBackStruct” on page 430
“RenameNSEntryCallBackStruct” on page 432
“SalvageDeletedCallBackStruct” on page 434

File System Monitoring Structures 399

CloseFileCallBackStruct

Contains information about a close file operation
Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {
LONG connection ;
LONG task ;
LONG fileHandle ;

} CloseFileCallBackStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

fileHandle
Contains the NetWare file handle of the file.

400 NDK: Multiple and Inter-File Services

CreateDirCallBackStruct

Contains information about a create directory operation
Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {

LONG connection ;

LONG volume ;

LONG dirBase ;

BYTE “*pathString ;

LONG pathComponentCount ;

LONG namesSpace ;

LONG directoryAccessMask ;
} CreateDirCallBackStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory:

0DOS

1 MACINTOSH
2 NFS

3 FTAM

4 LONG

SNT

directoryAccessMask

Contains a bit mask by which the directory is to be accessed subsequently. This is the same bit

mask used by ModifyInheritedRightsMask, as follows:

File System Monitoring Structures 401

0 Read (file reads allowed)

1 Write (file writes allowed)

2 Reserved

3 Create (files can be created)

4 Delete (files can be deleted)

5 Access control (trustee rights can be assigned)
6 See files (files can be seen in directory scans)
7 Modify (files can be modified)

8 Supervisor (all rights are granted)

402 NDK: Multiple and Inter-File Services

CreateFileCallBackStruct

Contains information about a create file operation

Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {
LONG connection ;
LONG task ;
LONG volume ;
LONG dirBase ;
BYTE “*pathString ;

LONG pathComponentCount

LONG namesSpace ;

LONG createAttributeBits

LONG createFlagBits ;

LONG dataStreamNumber ;

} CreateFileCallBackStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory:

0 DOS

1 MACINTOSH
2 NFS

3 FTAM

4 LONG

File System Monitoring Structures 403

SNT

createAttributeBits

Contains the file attributes that the file is to have when it is created.

createFlagBits

Contains flags that can be set to allow more flexibility in the create operation. These bits are
listed in the following table.

DELETE_FILE_ON_CREATE_BIT If the file already exists, it is deleted. This
allows the file to be created again.

NO_RIGHTS_CHECK_ON_OPEN_BIT The user’s rights to the file are not checked
when the file is opened.

NO_RIGHTS_CHECK_ON_CREATE_BIT The user’s rights to the file are not checked
when the file is created.

FILE_WRITE_THROUGH_BIT When a file write is performed, the write
function does not return until the data is
actually written to the disk.

ENABLE_IO_ON_COMPRESSED_DATA_BIT Any subsequent I/O on this entry is
compressed

LEAVE_FILE_COMPRESSED_DATA BIT Atfter all I/O has been done, leave this file
compressed

dataStreamNumber

Contains a number identifying the data stream type of the file or directory:

0 Primary Data Stream (DOS)
1 Macintosh Resource Fork
2 FRAM Extra Data Fork

404 NDK: Multiple and Inter-File Services

CreateAndOpenCallBackStruct

Contains information about a create/open operation
Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {

LONG connection ;

LONG task ;

LONG volume ;

LONG dirBase ;

BYTE “*pathString ;

LONG pathComponentCount ;
LONG namesSpace ;

LONG createAttributeBits ;
LONG requestedAccessRights ;
LONG createFlagBits ;

LONG dataStreamNumber ;

} CreateAndOpenCallBackStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString
Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory:

0 DOS

1 MACINTOSH
2 NFS

3 FTAM

File System Monitoring Structures 405

4 LONG
S5NT

createAttributeBits

Contains the file attributes that the file is to have when it is created.

requestedAccessRights

Indicates how the entry is to be opened, such as Read Only, Read Write, Compatibility mode,
and so on. The bits in this mask are defined in the following figure.

0 Read only mode

1 Write only mode

2 Deny read mode

3 Deny write mode

4 Compeatibility mode

6 File write through mode

8 Enable I/O on compressed data (NetWare 4.x)
9 Leave this file compressed (NetWare 4.x)

12 Always read ahead

13 Never read ahead

createFlagBits

Contains flags that can be set to allow more flexibility in the create operation. These bits are
listed in the following table.

DELETE_FILE_ON_CREATE_BIT If the file already exists, it is deleted. This
allows the file to be created again.

NO_RIGHTS _CHECK ON_OPEN_BIT The user’s rights to the file are not checked
when the file is opened.

NO_RIGHTS CHECK ON_CREATE_BIT The user’s rights to the file are not checked
when the file is created.

FILE_ WRITE_THROUGH_BIT When a file write is performed, the write
function does not return until the data is
actually written to the disk.

ENABLE_IO_ON_COMPRESSED_DATA_BIT Any subsequent I/O on this entry is
compressed

LEAVE_FILE_COMPRESSED_DATA BIT Atfter all I/0O has been done, leave this file
compressed

dataStreamNumber

Contains a number identifying the data stream type of the file or directory:

0 Primary Data Stream (DOS)
1 Macintosh Resource Fork
2 FRAM Extra Data Fork

406 NDK: Multiple and Inter-File Services

DeleteDirCallBackStruct

Contains information about a delete directory operation
Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {
LONG connection ;
LONG volume ;
LONG dirBase ;
BYTE “*pathString ;
LONG pathComponentCount ;
LONG namesSpace ;
} DeleteDirCallBackStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString
Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory:

0DOS

1 MACINTOSH
2 NFS

3 FTAM

4 LONG

SNT

File System Monitoring Structures 407

EraseFileCallBackStruct

Contains information about an erase file operation
Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {

LONG connection ;

LONG task ;

LONG volume ;

LONG dirBase ;

BYTE “*pathString ;

LONG pathComponentCount ;

LONG namesSpace ;

LONG attributeMatchBits ;
} EraseFileCallBackStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString
Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory:

0 DOS

1 MACINTOSH
2 NFS

3 FTAM

4 LONG

5NT

408 NDK: Multiple and Inter-File Services

attributeMatchBits

Contains a bit mask of the file attributes that are affected by this operation. That is, entries that
have file attributes matching this bit mask are affected. For more about the file attributes mask,
see “File Attributes” on page 127. The bits of the first byte of the file attributes mask is as
follows:

0 Read Only

1 Hidden

2 System

3 Execute Only
4 Subdirectory
5 Archive

6 Undefined

7 Share

File System Monitoring Structures 409

GenericEraseFileCBStruct

Contains information about a generic erase file operation
Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {
LONG connection ;
LONG task ;
LONG volume ;
LONG pathComponentCount ;
LONG dirBase ;
BYTE “*pathString ;
LONG namesSpace ;
LONG searchAttributes ;
} GenericEraseFileCBStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString
Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory:

0 DOS

1 MACINTOSH
2 NFS

3 FTAM

4 LONG

5NT

410 NDK: Multiple and Inter-File Services

searchAttributes

Contains a bit mask of the file attributes that are affected by this operation. That is, entries that
have file attributes matching this bit mask are affected.

File System Monitoring Structures 411

GenericModifyDOSInfoCBStruct

Contains information about a generic modify DOS information operation

Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {

LONG connection ;

LONG task ;

LONG volume ;

LONG pathComponentCount
LONG dirBase ;

BYTE “*pathString ;

LONG namesSpace ;

LONG searchAttributes ;
LONG modifyMask ;

void *modifyInfo ;

’

} GenericModifyDOSInfoCBStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory:

0 DOS

1 MACINTOSH
2 NFS

3 FTAM

4 LONG

412 NDK: Multiple and Inter-File Services

SNT

searchAttributes

Contains field contains a bit mask of the file attributes that are affected by this operation. That
is, entries that have file attributes matching this bit mask are affected.

modifyMask

Contains a bit mask that defines the items to be modified by this operation:

0 Name

1 Attributes

2 Creation Date

3 Creation Time

4 Creator ID

5 Archive Date

6 Archive Time

7 Archive ID

8 Modify Date

9 Modify Time

10 Modify ID

11 Last Access

12 Restrict (inheritance rights)
13 Maximum Space Allowed
14 Last Modified (in seconds)

modifyInfo
Contains the data that is to replace the old data for this entry.

File System Monitoring Structures 413

GenericModifyNSInfoCBStruct

Contains information about a generic modify name space information operation
Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {
LONG connection ;
LONG task ;
LONG datalength ;
LONG srcNameSpace ;
LONG dstNameSpace ;
LONG volume ;
LONG dirBase ;
LONG modifyMask ;
void “*modifyInfo ;
} GenericModifyNSInfoCBStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

dataLength
Contains the size of the data in the modifyInfo field.

srcNameSpace

Contains the name space of the source:

0 DOS

1 MACINTOSH
2 NFS

3 FTAM

4 LONG

S5NT

dstNameSpace

Contains the name space of the destination (see above).

volume

Contains the number of the volume that the directory entry is on.

414 NDK: Multiple and Inter-File Services

dirBase

Contains the directory base (directory number) of the file or directory.

modifyMask

Contains a bit mask that defines the items to be modified by this operation (see the following
figure). Note that this bit mask differs slightly from the modify mask for the generic modify
DOS information structure, in that it does not contain the "Last modified" bit:

0 Name

1 Attributes

2 Creation Date

3 Creation Time

4 Creator ID

5 Archive Date

6 Archive Time

7 Archive ID

8 Modify Date

9 Modify Time

10 Modity ID

11 Last Access

12 Restrict (inheritance rights)
13 Maximum Space Allowed

modifyInfo
Contains the data that is to replace the old data for this entry.

File System Monitoring Structures 415

GenericOpenCreateCBStruct

Contains information about a generic open/create operation
Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {
LONG connection ;
LONG task ;
LONG volume ;
LONG pathComponentCount ;
LONG dirBase ;
BYTE “*pathString ;
LONG namesSpace ;
LONG dataStreamNumber ;
LONG openCreateFlags ;
LONG searchAttributes ;
LONG createAttributes ;
LONG requestedAccessRights ;
LONG returnInfoMask ;
LONG *fileHandle ;
BYTE “*openCreateAction ;

} GenericOpenCreateCBStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

pathComponentCount

Contains the number of components in the path.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString
Contains the NetWare-internal path string of the file or directory.

nameSpace

Contains the name space of the file or directory:

416 NDK: Multiple and Inter-File Services

0 DOS

1 MACINTOSH
2 NFS

3 FTAM

4 LONG

SNT

dataStreamNumber

Contains a number identifying the data stream type of the file or directory:

0 Primary Data Stream (DOS)
1 Macintosh Resource Fork
2 FRAM Extra Data Fork

openCreateFlags

Contains the operation requested, such as opening a file, creating a file, etc.:

0x01 Open
0x02 Truncate
0x08 Create

searchAttributes

Contains a bit mask of the file attributes that are affected by this operation. That is, entries that
have file attributes matching this bit mask are affected.

createAttributes

Contains the attributes that are to be set when the entry is created.

requestedAccessRights

Indicates how the entry is to be opened, such as Read Only, Read Write, Compatibility mode,
and so on. The bits in this mask are defined as follows:

0 Read only mode

1 Write only mode

2 Deny read mode

3 Deny write mode

4 Compatibility mode

6 File write through mode

8 Enable I/0 on compressed data (NetWare 4.x)
9 Leave this file compressed (NetWare 4.x)

12 Always read ahead

13 Never read ahead

returnInfoMask

Contains a bit mask defining the information that is requested for this operation. This bit mask
is defined as follows:

0 Entry name
1 Entry size

File System Monitoring Structures 417

2 File attributes

3 Data stream information

4 Total data stream size

5 Extended attributes (EA) information
6 Archive information

7 Modify information

8 Creation information

9 Name space information

10 Directory information

11 Rights

12 Data stream size in sectors
13 Data stream logical size

fileHandle
Contains the NetWare file handle of the entry to be created.

openCreatelAction

Contains the results of the requested action:

0x01 Open

0x02 Created

0x04 Truncated

0x08 Compressed (NetWare 4.0 only)
OxFF Bad Action

418 NDK: Multiple and Inter-File Services

GenericPurgeDeletedCBStruct

Contains information about a generic purge deleted operation

Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {

LONG
LONG
LONG
LONG
LONG

connection ;
namesSpace ;
sequence ;
volume ;
dirBase ;

} GenericPurgeDeletedCBStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

nameSpace

Contains the name space of the file or directory:

0 DOS

1 MACINTOSH

2 NFS

3 FTAM
4 LONG
SNT

sequence

Contains the NetWare-internal number that was generated while scanning for deleted files.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

File System Monitoring Structures 419

GenericRenameCBStruct

Contains information about a generic rename operation
Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {
LONG connection ;
LONG task ;
LONG namesSpace ;
LONG renameFlag ;
LONG searchAttributes ;
LONG srcVolume ;
LONG srcPathComponentCount ;
LONG srcDirBase ;
BYTE “*srcPathString ;
LONG dstVolume ;
LONG dstPathComponentCount ;
LONG dstDirBase ;
BYTE *dstPathString ;
} GenericRenameCBStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

nameSpace

Contains the name space of the file or directory:

0DOS

1 MACINTOSH
2 NFS

3 FTAM

4 LONG

SNT

renameFlag

Contains values defining rename options:

0x01 Allow renames to same name
0x02 Rename incompatibility mode
0x04 Only change names for the specified name space

420 NDK: Multiple and Inter-File Services

searchAttributes

Contains field contains a bit mask of the file attributes that are affected by this operation. That

is, entries that have file attributes matching this bit mask are affected.

srcVolume

Contains the volume number of the entry to be renamed.

srcPathComponentCount

Contains the number of path components for the source path.

srcDirBase

Contains the source directory base.

srcPathString

Contains the path string of the source.

dstVolume

Contains the volume number of the renamed entry.

dstPathComponentCount

Contains the number of path components for the destination path.

dstDirBase

Contains the destination directory base.

dstPathString

Contains the path string of the destination.

File System Monitoring Structures 421

GenericSalvageDeletedCBStruct

Contains information about a generic salvage deleted operation
Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {
LONG connection ;
LONG namesSpace ;
LONG sequence ;
LONG volume ;
LONG dirBase ;
BYTE *newName ;
} GenericSalvageDeletedCBStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

nameSpace

Contains the name space of the file or directory:

0 DOS

1 MACINTOSH
2 NFS

3 FTAM

4 LONG

SNT

sequence

Contains the NetWare-internal number that was generated while scanning for deleted files.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

newName

Contains the new name of the file or directory.

422 NDK: Multiple and Inter-File Services

ModifyDirEntryCallBackStruct

Contains information about a modify directory operation
Service: File System Monitoring

Defined In: nwfshook.h

Structure
typedef struct {
LONG connection ;
LONG task ;
LONG volume ;
LONG dirBase ;
BYTE *pathString ;
LONG pathComponentCount ;
LONG nameSpace ;
LONG attributeMatchBits ;
LONG targetNameSpace ;
struct ModifyStructure “*modifyVector ;
LONG modifyBits ;
LONG allowWildCardsFlag ;

} ModifyDirEntryCallBackStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString
Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory:

0 DOS
1 MACINTOSH
2 NFS

File System Monitoring Structures 423

3 FTAM
4 LONG
SNT

attributeMatchBits

Contains a bit mask of the file attributes that are affected by this operation. That is, entries that
have file attributes matching this bit mask are affected. For more about the file attributes mask,
see “File Attributes” on page 127. The bits of the first byte of the file attributes mask is defined
as follows:

0 Read Only

1 Hidden

2 System

3 Execute Only
4 Subdirectory
5 Archive

6 Undefined

7 Share

targetNameSpace

Contains the name space of the entry that is to be changed (see the values for nameSpace,
above).

modifyVector

Contains the modify vector used in the operation. See the discussion of ModifyStructure
(page 347).

modifyBits

Contains the modify bits used in the operation:

0x0001L MModifyNameBit

0x0002L MFileAtrributesBit
0x0004L MCreateDateBit

0x0008L MCreateTimeBit

0x0010L MOwnerIDBit

0x0020L MLastArchivedDateBit
0x0040L MLastArchivedTimeBit
0x0080L MLastArchivedIDBit
0x0100L MLastUpdatedDateBit
0x0200L MLastUpdatedTimeBit
0x0400L MLastUpdatedIDBit
0x0800L MLastAccessedDateBit
0x1000L MInheritanceRestrictionMaskBit
0x2000L MMaximumSpaceBit
0x4000L MLastUpdatedInSecondsBit

allowWildcardsFlag

Indicates whether wildcards are allowed in the path name:

424 NDK: Multiple and Inter-File Services

Nonzero = Wildcards allowed
0 = No wildcards allowed.

See Also

NWSetDirEntryInfo (page 284)

File System Monitoring Structures 425

OpenFileCallBackStruct

Contains information about an open file operation
Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {
LONG connection;
LONG task;
LONG volume;
LONG dirBase;
BYTE “*pathString;
LONG pathComponentCount;
LONG namesSpace;
LONG attributeMatchBits;
LONG requestedAccessRights;
LONG dataStreamNumber;
LONG *fileHandle;

} OpenFileCallBackStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory. The value is this field is valid
for the callback routine. Once the routine is called, the value is no longer valid. If you need this
information outside of your callback routine, you need to copy and save the information.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory:

0 DOS
1 MACINTOSH

426 NDK: Multiple and Inter-File Services

2 NFS

3 FTAM
4 LONG
SNT

attributeMatchBits

Contains a bit mask of the file attributes that are affected by this operation. That is, entries that
have file attributes matching this bit mask are affected. For more about the file attributes mask,
see “File Attributes” on page 127. The bits of the first byte are defined as follows:

0 Read Only

1 Hidden

2 System

3 Execute Only
4 Subdirectory
5 Archive

6 Undefined

7 Share

requestedAccessRights

Indicates how the entry is to be opened, such as Read Only, Read Write, Compatibility mode,
and so on. The bits in this mask are defined as follows:

0 Read only mode

1 Write only mode

2 Deny read mode

3 Deny write mode

4 Compeatibility mode

6 File write through mode

8 Enable I/0 on compressed data (NetWare 4.x)
9 Leave this file compressed (NetWare 4.x)

12 Always read ahead

13 Never read ahead

dataStreamNumber

Contains a number identifying the data stream type of the file or directory:

0 Primary Data Stream (DOS)
1 Macintosh Resource Fork
2 FRAM Extra Data Fork

fileHandle
Points to the file handle.

Remarks

fileHandle is not valid in the PRE open. If the file was successfully opened or created by the
file system, it should be valid in the POST _ open.

File System Monitoring Structures 427

All other fields are valid in the PRE _open because they are fields that must be specified by the
client to open the file. (Of course, the client does not specify the file handle.) You can get a pretty
good idea as to which fields are valid by looking at the coordinating request/reply NCP structures.

Generally, items found in the request NCP structures are provided by the client and will be valid in
the PRE_hook. Items to be returned to the client are not valid until the POST .

428 NDK: Multiple and Inter-File Services

PurgeDeletedCallBackStruct

Contains information about a purge deleted operation

Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {

LONG
LONG
LONG
LONG
LONG

connection ;

volume ;

dirBase ;
toBePurgedDirBase ;
namesSpace ;

} PurgeDeletedCallBackStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the directory from which the entry is to be

purged.

toBePurgedDirBase

Contains the directory base (number) that was generated while scanning for deleted files.

nameSpace

Contains

0DOS

the name space of the file or directory:

1 MACINTOSH

2 NFS

3 FTAM
4 LONG
SNT

File System Monitoring Structures 429

RenameMoveEntryCallBackStruct

Contains information about a rename or move operation
Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {
LONG connection ;
LONG task ;
LONG volume ;
LONG dirBase ;
BYTE “*pathString ;
LONG pathComponentCount ;
LONG namesSpace ;
LONG attributeMatchBits ;
LONG subDirsOnlyFlag ;
LONG newDirBase ;
BYTE “*newPathString ;
LONG originalNewCount ;
LONG compatibilityFlag ;
LONG allowRenamesToMyselfFlag ;
} RenameMoveEntryCallBackStruct;

Fields

connection

Specifies the connection number of the entity requesting the operation.

task

Specifies the task number of the entity requesting the operation.

volume

Specifies the number of the volume that the directory entry is on.

dirBase

Specifies the directory base (directory number) of the file or directory.

pathString
Specifies the internal path string of the file or directory.

pathComponentCount

Specifies the number of components in the path.

nameSpace

Specifies the name space of the file or directory:

0 DOS

430 NDK: Multiple and Inter-File Services

1 MACINTOSH
2 NFS

3 FTAM

4 LONG

5NT

attributeMatchBits

Specifies a bit mask of the file attributes that are affected by this operation. The first byte of the

file attributes mask is as follows (see “File Attributes” on page 127):

0 Read Only

1 Hidden

2 System

3 Execute Only
4 Subdirectory
5 Archive

6 Undefined

7 Share

subDirsOnlyFlag

Specifies whether this operation is being done on a subdirectory:
TRUE Subdirectory

newDirBase

Specifies the new directory base for the entry.

newPathString
Specifies the destination path for the directory or file.

originalNewCount

Specifies the path count for the new path string.

compatibilityFlag
Specifies whether DOS 3.x locking compatability is to be used:

TRUE Locking compatibility should be used

allowRenamesToMyselfFlag

Specifies whether this entry could be renamed to itself:

TRUE Can be renamed to itself

File System Monitoring Structures 431

RenameNSEntryCallBackStruct

Contains information about a rename name space entry operation
Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {
LONG connection ;
LONG task ;
LONG volume ;
LONG dirBase ;
BYTE *pathString ;
LONG pathComponentCount ;
LONG namesSpace ;
LONG matchBits ;
BYTE *newName ;
} RenameNSEntryCallBackStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString
Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory:

0 DOS

1 MACINTOSH
2 NFS

3 FTAM

4 LONG

432 NDK: Multiple and Inter-File Services

SNT

matchBits

Contains a bit mask of the file attributes that are affected by this operation. That is, entries that
have file attributes matching this bit mask are affected. For more about the file attributes mask,
see “File Attributes” on page 127. The bits of the first bytes of the file attributes mask is
defined as follows:

0 Read Only

1 Hidden

2 System

3 Execute Only
4 Subdirectory
5 Archive

6 Undefined

7 Share

newName

Contains the new name of the name space entry.

File System Monitoring Structures 433

SalvageDeletedCallBackStruct

Contains information about a salvage deleted operation
Service: File System Monitoring

Defined In: nwfshook.h

Structure

typedef struct {
LONG connection ;
LONG volume ;
LONG dirBase ;
LONG toBeSalvagedDirBase ;
LONG namesSpace ;
BYTE *newName ;
} SalvageDeletedCallBackStruct;

Fields

connection

Contains the connection number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (number) in which the entry is to be recovered to.

toBeSalvagedDirBase
Contains the directory base (number) that was generated while scanning for deleted files. This
number is not the directory base that the file would be salvaged to (see dirBase, above).
nameSpace
Contains the name space of the file or directory:
0 DOS
1 MACINTOSH
2 NFS
3 FTAM
4 LONG
SNT
newName

Contains the name that the entry is to have after it is salvaged.

434 NDK: Multiple and Inter-File Services

Name Space Concepts

Name space allows NetWare servers to store files in formats compatible with a workstation’s local
file system. For example, installing the Macintosh name space allows Macintosh workstations to use
Macintosh file conventions when working with network files. Although NetWare’s primary name
space is DOS, NetWare also supports name spaces for Macintosh, NFS, FTAM, and LONG files
(OS/2 and 32-bit Windows).

Name space provides a generic interface to name space entries and associated data streams. After the
NLM is loaded on a server, support for the name space must be enabled on a volume-by-volume
basis. Name space entry information can include the entry’s name, its attributes, significant dates
and times, the owner ID, and so on.

Name space provides access to three types of data:

¢ primary data—available no matter which name space you are using
¢ specific data—specific to the name space you are using

¢ actual file data
This section describes the following name space features:

+ Naming Conventions (page 435)

*

Default Name Space (page 436)
¢ Primary Entry Information (page 436)
¢ Name Space Specific Information (page 438)

*

Long to DOS Conversions (page 440)

*

General Name Space Functions (page 442)

16.1 Naming Conventions

NetWare currently supports five name spaces, identified by constant names and associated numeric
values:

0 NW_NS DOS DOS names can have up to eight upper-case characters followed by a
period and up to three more upper-case characters.

1 NW_NS MAC Macintosh names can be up to 32 characters long including all upper
and lower case printable characters, with the exception of the colon.

2 NW_NS_NFS NFS names can be up to 256 mixed-case characters long.

3 NW_NS FTAM FTAM names can be up to 256 lower-case characters long.

4 NW_NS_LONG LONG names can be up to 255 mixed-case characters long. LONG

names can be used with OS/2 and any 32-bit Windows system.

DOS names remain the same in a LONG environment. NetWare uses a shortening algorithm to
convert long names for use in a DOS environment. To avoid ambiguous names, this algorithm may
designate a DOS file name that doesn’t match the first eight characters of the long name.

Name Space Concepts

435

16.2 Default Name Space

The CLib standard file system functions, such as ANSI fopen or POSIX open, use DOS as the
default name space for the input path and filename parameters. The default name space for output
path and filename parameters is also DOS. To send and receive parameters in a namespace other
than DOS, you must set the current and target name space with the following functions:

SetCurrentNameSpace Sets the name space for the paths and filenames sent to the server.
SetTargetNameSpace Sets the name space for the paths and filenames returned by the
server.

The cross platform NLM functions, which do not allow you to specify a name space, always use the
DOS name space. The functions in the name space group allow you to specify a name space.

The cross platform client functions, which do not allow you to specify a name space, use the Long
name space if the volume supports it. If the volume does not support the Long name space, the
function uses the DOS name space. The functions in the name space group allow you to specify a
name space.

16.3 Primary Entry Information

As the primary NetWare name space, the DOS name space performs a special role in the NetWare
file system. All entries are represented in the DOS name space no matter what name space actually
"owns" them. Consequently, if you create an entry in a name space other than DOS, you can still
access the primary entry information from the DOS name space (see “Primary Entry Information
Functions” on page 438).

This primary NetWare information is extended beyond DOS to accommodate Macintosh data,
including information such as the number of data streams (forks) and extended attributes (Finder
information).

In addition to letting you read an entry’s primary information in the DOS name space, Name Space
Services enable you to read and modify this information in the name space that the entry was created
in. The primary information in the owning name space varies little from what appears in the DOS
name space. However, it does include the file’s long name, which isn’t available in the DOS name
space.

Primary name space information includes the following items:

+ Entry name

¢ Entry attributes

¢ Space allocation

¢ Data stream sizes

¢ Dates and time of events
¢ Inherited rights mask

+ Extended attribute data
¢ Reference ID

+ Volume Number

436 NDK: Multiple and Inter-File Services

NW_ENTRY INFO (page 601) contains primary name space information. The structure is filled in
by NWGetNSInfo (page 498) or NWScanNSEntryInfo (page 553). Requests for primary name
space information are accompanied by a return information mask, which allows you to specify
which portions of NW_ENTRY INFO (page 601) you want filled in. The following table shows
which fields in NW_ENTRY INFO (page 601) are affected by bit flags in the return information

mask.

Table 16-1 Return Information Mask

Value Constant Affected Fields
0x0001L IM_ENTRY_NAME namelLength
entryName
0x0002L IM_SPACE_ALLOCATED spaceAlloc
0x0004L IM_ATTRIBUTES attributes
flags
0x0008L IM_SIZE dataStreamSize
0x0010L IM_TOTAL_SIZE totalStreamSize
0x0020L IM_EA EADataSize
EAKeyCount
EAKeySize
0x0040L IM_ARCHIVE archiveTime
archiveDate
archivelD
0x0080L IM_MODIFY modifyTime
modifyDate
modifier|D
lastAccessDate
0x0100L IM_CREATION creationTime
creationDate
creatorlD
0x0200L IM_OWNING_NAMESPACE NSCreator
0x0400L IM_DIRECTORY dirEntNum
DosDirNum
volNumber
0x0800L IM_RIGHTS inheritedRightsMask

Name Space Concepts

437

16.3.1 Primary Entry Information Functions

These functions deal with primary entry information for a name space.

NWAIllocTempNSDirHandle2 Allocates a directory handle in a name space for the specified
entry. The new directory handle doesn’t need to be in the same
name space as the original entry.

NWDeleteNSEntry Erases the specified files from the server.

NWGetLongName Reads an entry’s name in the specified name space.
NWGetNSEntryInfo Returns primary information for a name space entry.
NWNSRename Renames a name space entry. Under NetWare® 4.x, 5.x, and 6.x,

this function can rename an entry in a specific name space
without affecting the name in other name spaces.

NWOpenCreateNSEntry Creates a name space entry.

NWOpenDataStream Opens or creates a data stream and returns a file handle to it.
NWOpenNSEntry Opens a name space entry.

NWScanNSEntrylnfo Performs a file scan operation returning primary information for

files matching the search mask.
NWSetLongName Renames a name space entry.

NWSetNSEntryDOSInfo Modifies the DOS information associated with an entry.

16.4 Name Space Specific Information

Name space specific information is maintained by the NLM that implements the name space. Much
of this information may not be accessible as primary information. For example, huge data
information is name space specific and must be returned by special requests

Consequently, name space includes specialized functions for accessing name space specific
information. This approach requires a detailed understanding of the particular name space and the
entry information it maintains.

Name space specific information is accessed by calling NWReadNSInfo (page 543) and
NWWriteNSInfo (page 590). Both functions refer to the entry using a NetWare entry index, which is
maintained as NW_IDX (page 613). To initialize NW _IDX (page 613), call NWGetDirectoryBase
(page 474) and pass both a DOS directory entry (handle/path) and the target name space.

The following topics contain more detailed information:

¢ “Name Space Entry Bit Mask™ on page 439
¢ “Name Space Bit Mask™ on page 439
¢ “DOS Name Space Bit Mask” on page 439

+ “Name Space Specific Information Functions” on page 440

438 NDK: Multiple and Inter-File Services

16.4.1 Name Space Entry Bit Mask

NetWare uses a generic mechanism to represent the format of name space specific entry
information. Query the NetWare server by calling NWGetNSInfo (page 498) to find the format for a
particular name space. NWGetNSInfo (page 498) returns a set of bit masks as NW_NS INFO
(page 615). The structure indicates the size and arrangement of name space specific information.

16.4.2 Name Space Bit Mask

NSInfoBitMaskin NW NS INFO (page 615) indicates all valid data items for an entry in the
name space. NWGetNSInfo (page 498) initializes the bit masks for a specific name space and
computes the value of NSInfoBitMask.

NSInfoBitMask is derived by combining the fixed and reserved masks through a logical OR
operation.

After NW_NS_INFO is initialized, use it in subsequent calls to NWReadNSInfo (page 543) and
NWWriteNSInfo (page 590) to read or modify name space specific entry information.

16.4.3 DOS Name Space Bit Mask

The interpretation of the name space bit mask depends on which name space you are querying. For
example, the DOS name space defines the following bits:

Bit Definition Type Order
0 Modify Name[13] nuint8

1 File Attributes nuint32 Lo-Hi
2 Create Date nuint16 Lo-Hi
3 Create Time nuint16 Lo-Hi
4 Owner ID nuint32 Hi-Lo
5 Archive Date nuint16 Lo-Hi
6 Archive Time nuint16 Lo-Hi
7 Archive ID nuint32 Hi-Lo
8 Modify Date nuint16 Lo-Hi
9 Modify Time nuint16 Lo-Hi
10 Modify ID nuint32 Hi-Lo
11 Last Accessed Date nuint16 Lo-Hi
12 Inheritance Rights nuint32 Lo-Hi
13 Maximum Space nuint32 Lo-Hi

14-31 Reserved

Under DOS, bit 0 represents the modify name. This is generally the case in other name spaces also.
The modify name is read-only; don’t attempt to modify it.

Name Space Concepts 439

16.4.4 Name Space Specific Information Functions

These functions deal with name-space specific information:

NWGetDirectoryBase Obtains a directory base for a name space entry.
NWGetNSInfo Returns the information format for a name space.
NWNSGetMisclnfo Obtains miscellaneous information for a name space entry.
NWReadExtendedNSInfo Reads huge information for an entry.

NWReadNSInfo Reads name space-specific information for an entry.
NWWriteExtendedNSInfo Modifies huge information for an entry.

NWWriteNSInfo Modifies name space-specific information for an entry.

16.5 Long to DOS Conversions

When a file is created on the server using a long name, the server automatically generates a
corresponding DOS name for the file as well. This section describes the different (basic)
conventions used in automatic LONG to DOS name conversions, which vary depending on the
NetWare OS version you are using:

+ “NetWare 4.x” on page 440
¢ “NetWare 5.x and 6.x” on page 442

NOTE: Since there are many circumstances in which the generated name varies (depending on the
file names that already exist in the directory), you should never assume that the generated DOS
name is equal to a predictable value.

For NetWare 5.x and 6.x, the algorithms are slightly more complex than the examples documented
here. You might see slightly different behaviors on these more recent NetWare versions, especially if
you use 8-bit ASCII characters. Also, the NSS and traditional file systems might generate slightly
different names in many situations.

16.5.1 NetWare 4.x

The NetWare 4.x OS has a convention for shortening long names without periods in the first eight
characters and another slightly different convention for shortening long names that have periods in
the first eight characters.

If a long name has no periods, the first eight valid DOS characters become the shortened DOS name.
Spaces between words of the long name are omitted. A file extension (if there is one) is retained, up
to three letters.

Duplicate short names are resolved by replacing letters of the short name (not the extension) with
ascending zero-based decimal numeric digits, beginning with the final letter. If necessary, an
increasing number of final letters are replaced, always starting with a set of zeros. The following
table illustrates the scheme:

This Is The First Long File THISISTH

440 NDK: Multiple and Inter-File Services

This Is The Second Long File THISISTO

This Is The Third Long File THISIST1
This Is The Fourth Long File THISIST2
(And so on) (And so on)
This Is The EleventhLong File THISIST9
This Is The Twelfth Long File THISIS00
This Is The Thirteenth Long File THISIS01
This Is The Fourteenth Long File THISIS02
(And so on) (And so on)
This Is The 112th Long File THISI000
This Is The 113th Long File THISI0O01

IMPORTANT: If one or more files are deleted, subsequent duplicate short names re-use the deleted
names in ascending order before new short names are generated. For example, in the table above if
"This Is The Fourth Long Name" and "This Is The Twelfth Long Name" were deleted, the next two
files with inital letters "THISISTH" would be shortened to "THISISH2" and "THISIS00" before
"THISI002" were generated.

If the eighth character of the long name is already a number, duplicate file naming begins with that
number unless it is already used. For example, files in the same directory would be shortened as
follows:

This is a 1 time offer THISISA1
This is a 1 time deal THISISA2
This is a 2-day tour THISISA3
This is a 2-week tour THISISA4
We have a 2-day pass WEHAVEA2
We have a 2-week pass WEHAVEA3
We have a 2-month pass WEHAVEA4

If a long name contains a period prior to the first eight letters, the letters preceding the first period
are the shortened name, and the first three letters following the final period become a file extension.
Duplicate long names are shortened by adding a zero to the first duplication, two zeros to the
second, and so on until letters and appended zeros make up eight characters. The next duplication
begins a counting process by replacing the final zero with the digit 1.

This.File.ls.Long THIS.LON
This.File.ls.Also.Long THISO.LON
This.File.ls.Really.Long THIS00.LON
This.File.Is.Very.Long THIS000.LON

Name Space Concepts 441

This.File.ls.Too.Long THIS0000.LON
This.File.ls.Much.Too.Long THIS0001.LON
This.File.ls.Way.Too.Long THIS0002.LON

Again, if a file is deleted, the next duplicate file is assigned the short name of the deleted file before
any new short names are generated.

16.5.2 NetWare 5.x and 6.x

With NetWare 5.x and 6.x OS long names are shortened into DOS style shorter names in a consistent
way that has very little variation. The first six characters are retained for four files, followed by a
tilde then the digits 1 through 4. Any spaces in the first six characters are replaced with underscores.
Starting with the fifth duplicate file name, only the first two characters are retained. The next four
characters are replaced with random hexadecimal digits, followed by a tilde and a zero. The
following table illustrates:

Long File Name LONG_F~1
Long File Names LONG_F~2
Long File Naming LONG_F~3
Long File Named LONG_F~4
Long File Name and Time LO4104~0

Long File Name and Number LOC5EB~0
Long File Name and Date LO7A0D~0

If the long file name contains a period in the first six characters, the first four duplicate file names

are shortened to the characters preceding the first period, followed by a tilde and the digits 1 through
4. The first three characters following the final period are retained as a file extension. Starting with
the fifth file, random numbers are generated as explained above. The following table illustrates the

renaming:

File.With.Internal.Period FILE~1.PER
File.With.Another.Internal.Period FILE~2.PER
File.With.Third.Internal.Period FILE~3.PER
File.With.Fourth.Internal.Period FILE~4.PER
File.With.Fifth.Internal.Period FI58C4~0.PER
File.With.Sixth.Internal.Period FIE95F~0.PER
File.With.Seventh.Internal.Period FI416E~0.PER

16.6 General Name Space Functions

These functions return general information concerning name spaces.

442 NDK: Multiple and Inter-File Services

NWGetNSLoadedList Returns a list of numerals identifying the name spaces loaded on a
particular volume.

NWGetOwningNameSpace Returns the name space that created the specified directory entry.

NWGetNSPath Returns the full path for an entry in a specified name space. (For
name spaces that use long names, a complete entry path could
potentially require a very large amount of space.)

NWNSGetDefaultNS Returns the default name space.

Name Space Concepts 443

444 NDK: Multiple and Inter-File Services

Name Space Tasks

This documentation describes common tasks associated with Name Space.

17.1 Accessing Huge Name Space Information

The huge information bit mask indicates large data items (between 256 and 65,535 bytes) associated
with a name space entry. Call NWReadExtendedNSInfo (page 541) and NW WriteExtendedNSInfo
(page 588) to access huge information. An operation on huge data must include the huge
information bit mask for the name space, the length of the huge data, and a huge state information
variable. This last value is maintained by the server and is used to coordinate the transmission of
huge data.

Name Space Tasks 445

446 NDK: Multiple and Inter-File Services

Name Space Functions

This documentation alphabetically lists the Name Space functions and describes their purpose,
syntax, parameters, and return values.

Get* and Set* Functions contains the following functions:

GetDataStreamName (page 448)
GetNameSpaceName (page 450)
SetCurrentNameSpace (page 452)
SetTargetNameSpace (page 454)

18.1 Get* and Set* Functions

Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

* “GetDataStreamName” on page 448

+ “GetNameSpaceName” on page 450

¢ “SetCurrentNameSpace” on page 452

¢ “SetTargetNameSpace” on page 454

Name Space Functions 447

GetDataStreamName

Returns information about data streams
Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x
Platform: NLM

Service: Name Space

Syntax

#include <nwnspace.h>

int GetDataStreamName (

int volume,

BYTE dataStream,

char *dataStreamName,

int *numberOfDataStreams) ;
Parameters
volume

(IN) Specifies the number of the volume for which the data stream name is desired.

dataStream

(IN) Specifies the number of the data stream whose name is desired.

dataStreamName
(OUT) Points to the ASCII name of the data stream.

numberOfDataStreams
(OUT) Points to the number of data streams supported by the server.

Return Values
This function returns TRUE if the name space that defines the specified data stream is loaded on the

volume. It returns FALSE if support is not loaded. If the data stream does not exist, this function
returns a value of -1.

Remarks

The name of the specified data stream is returned, as well as the total number of data streams
available. The function return also indicates whether the specified data stream has support on the
volume.

The dataStream parameter is a data stream number. The defined data streams follow:

448 NDK: Multiple and Inter-File Services

Primary Data Stream (corresponds to DOS)
Macintosh Resource Fork

FTAM Extra Data Fork

Name Space Functions 449

GetNameSpaceName

Returns the name of a specified name space and the number of name spaces currently supported by
NetWare

Local Servers: nonblocking
Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x
Platform: NLM

Service: Name Space

Syntax
#include <nwnspace.h>

int GetNameSpaceName (

int volume,

LONG nameSpace,

char *name,

int *numberOfNameSpace) ;
Parameters
volume

(IN) Specifies the volume for which name space information is desired.

nameSpace
(IN) Specifies the number of the name space whose name is desired (see Section 20.5, “Name
Space Flag Values,” on page 625).

name
(OUT) Points to the name of the name space in ASCIIZ string (buffer length should be 32
bytes).

numberOfNameSpace
(OUT) Points to the number of name spaces currently supported by NetWare.

Return Values

-1 Specified name space does not exist.

0 Name space driver is not loaded.

1 Name space driver is loaded but is not supported on the specified volume.
2 Name space driver is loaded and supported on the specified volume.

450 NDK: Multiple and Inter-File Services

Remarks

The five name spaces that are currently available are:

0 DOS

1 MACINTOSH
2 NFS

3 FTAM

4 LONG

5 NT

NOTE: For NSS volumes, GetNameSpaceName returns 2 (name space loaded and supported) for
only the DOS and LONG name spaces. For the NFS and MAC name spaces, it just returns 1 (name
space is loaded but not supported) on NSS volumes. These results conflict with the name space
information displayed by the VOLUMES command. For the correct information on NSS volumes,
please use the NWGetNSLoadedList (NLM) function.

See Also

FEGetOriginatingNameSpace (page 85), SetCurrentNameSpace (page 452), SetTargetNameSpace
(page 454)

Name Space Functions 451

SetCurrentNameSpace

Sets the name space that is to be used for parsing paths that are input to server functions
Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Name Space

Syntax

#include <nwnamspc.h>

BYTE SetCurrentNameSpace (
BYTE newNameSpace) ;

Parameters

newNameSpace

(IN) Specifies the new name space (see Section 20.5, “Name Space Flag Values,” on
page 625).

Return Values

Returns the old name space if successful. If the specified name space is not valid or is not supported
on the current working volume (CWV) and current working directory (CWD), returns error code
255 and NWErro is set to ERR_INVALID PATH.

Remarks

SetCurrentNameSpace sets the name space to be used by the current thread group for parsing paths.
This name space is used by this thread group for paths input to subsequent calls to functions from
the NetWare API (until changed by another call to this function).

SetTargetNameSpace sets the name space for output from subsequent calls to functions from the
NetWare APIL.

If you change the current name space to a non-DOS name space, CLIB will uppercase the names of
newly created files and directories by default. To modify this behavior, call
UseAccurateCaseForPaths (page 333).

See Also

FEGetOriginatingNameSpace (page 85), GetNameSpaceName (page 450), SetTargetNameSpace
(page 454), UseAccurateCaseForPaths (page 333)

452 NDK: Multiple and Inter-File Services

Example

#include <nwnspace.h>
BYTE oldNameSpace;
BYTE newNameSpace;

oldNameSpace=SetCurrentNameSpace (newNameSpace) ;

Name Space Functions 453

SetTargetNameSpace

Sets the target name space that is to be returned by server functions
Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM

Service: Name Space

Syntax

#include <nwnspace.h>

BYTE SetTargetNameSpace (
BYTE newNameSpace) ;

Parameters

newNameSpace

(IN) Specifies the new name space that is to become the target name space (see Section 20.5,
“Name Space Flag Values,” on page 625).

Return Values

Returns the old target name space.

Remarks

SetTargetNameSpace sets the target name space to be used by the current thread group. This name
space is used by this thread group for paths output from all subsequent NetWare API functions.

SetCurrentNameSpace sets the name space for input to subsequent calls to functions from the
NetWare API.

See Also

FEGetOriginatingNameSpace (page 85), SetCurrentNameSpace (page 452)

18.2 NWA* through NWI* Functions

Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

* “NWAddTrusteeToNSDirectory” on page 456
* “NWAddTrusteeToNSDirectoryExt” on page 459

454 NDK: Multiple and Inter-File Services

“NWAllocTempNSDirHandle2” on page 462

“NWAIllocTempNSDirHandle2Ext” on page 464

“NWDeleteNSEntry” on page 466
“NWDeleteNSEntryExt” on page 468

“NWDeleteTrusteeFromNSDirectory”” on page 470
“NWDeleteTrusteeFromNSDirectoryExt” on page 472

“NWGetDirectoryBase” on page 474
“NWGetDirectoryBaseExt” on page 477
“NWGetHugeNSInfo” on page 479
“NWGetLongName” on page 481
“NWGetLongNameExt” on page 483
“NWGetNameSpaceEntryName” on page 485
“NWGetNSEntrylnfo” on page 487
“NWGetNSEntryInfo2” on page 490
“NWGetNSEntryInfoExt” on page 492
“NWGetNSEntrylnfo2Ext” on page 494
“NWGetNSFileDirEntryNumber” on page 496
“NWGetNSInfo” on page 498
“NWGetNSInfo (NLM)” on page 500
“NWGetNSLoadedList” on page 502
“NWGetNSLoadedList (NLM)” on page 504
“NWGetNSPath” on page 506
“NWGetNSPathExt” on page 508
“NWGetOwningNameSpace” on page 510
“NWISsLNSSupportedOnVolume” on page 512

Name Space Functions

455

NWAddTrusteeToNSDirectory

Adds a trustee to the trustee list in a directory for the specified name space.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE NWAddTrusteeToNSDrectory (

NWCONN_HANDLE conn,
nuint8 namSpc,
NWDIR HANDLE dirHandle,
const nstr8 N _FAR *path,
nuint32 trusteelD,
nuint8 rightsMask) ;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

namSpc
(IN) Specifies the name space for the resulting trustee (see Section 20.5, “Name Space Flag
Values,” on page 625).

dirHandle

(IN) Specifies the directory handle associated with the desired directory path under the
specified name space (0 if path contains the complete path, including the volume name).

path

(IN) Points to the absolute path (or a path relative to the directory handle) of the directory to
which a trustee is being added.

trusteelD
(IN) Specifies the object ID for the object being added as a trustee.

456 NDK: Multiple and Inter-File Services

rightsMask

(IN) Specifies the access rights mask the new trustee is being granted (see “Trustee Rights” on
page 124).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x898C NO_MODIFY_PRIVILEGES
0x8990 NO_FILES _AFFECTED_READ_ONLY
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x8999 DIRECTORY_FULL

0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89FC NO_SUCH_OBJECT

0x89FD BAD_STATION_NUMBER
0x89FF HARDWARE_FAILURE
Remarks

If the object is already a trustee for the specified directory, the current access mask of the trustee is
replaced by the value contained in the t rusteeID parameter. Otherwise, the object is added as a
trustee to the directory and given a rights mask equal to the t rusteeID parameter.

If you are using an NDS object name as the trustee name, call NWDSMapNameTolD to return the
value to pass to trusteeID.

To modify a trustee rights list, the requesting workstation must have access control rights to the
directory or to a parent of the directory.

The object must be static. If the object is dynamic, NWAddTrusteeToNSDirectory will return an
error.

NCP Calls

0x2222 22 13 Add Trustee To Directory
0x2222 22 39 Trustee Add Ext
0x2222 23 17 Get File Server Information

Name Space Functions 457

0x2222 87 10 Add Trustee Set To File Or Subdirectory

See Also

NWAddTrustee (page 153), NWAddTrusteeToDirectory (page 158), NWDeleteTrustee (page 180),
NWDeleteTrusteeFromDirectory (page 184), NWDeleteTrusteeFromNSDirectory (page 470),
NWScanNSDirectoryForTrustees (page 547)

458 NDK: Multiple and Inter-File Services

NWAddTrusteeToNSDirectoryExt

Adds a trustee to the trustee list in a directory for the specified name space using a UTF-8 path.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwnamspc.h>

or
#include <nwcalls.h>

NWCCODE NWAddTrusteeToNSDrectorExty (

NWCONN_ HANDLE conn,
nuint8 namSpc,
NWDIR HANDLE dirHandle,
const nstr8 N _FAR *path,
nuint32 trusteelD,
nuint8 rightsMask) ;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

namSpc
(IN) Specifies the name space for the resulting trustee (see Section 20.5, “Name Space Flag
Values,” on page 625).

dirHandle

(IN) Specifies the directory handle associated with the desired directory path under the
specified name space (0 if path contains the complete path, including the volume name).

path

(IN) Points to the absolute path (or a path relative to the directory handle) of the directory to

which a trustee is being added.

trusteelD
(IN) Specifies the object ID for the object being added as a trustee.

Name Space Functions

459

rightsMask

(IN) Specifies the access rights mask the new trustee is being granted (see “Trustee Rights” on
page 124).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x898C NO_MODIFY_PRIVILEGES
0x8990 NO_FILES_AFFECTED_READ_ONLY
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x8999 DIRECTORY_FULL

0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89FC NO_SUCH_OBJECT

0x89FD BAD_STATION_NUMBER
0x89FF HARDWARE_FAILURE
Remarks

If the object is already a trustee for the specified directory, the current access mask of the trustee is
replaced by the value contained in the t rusteeID parameter. Otherwise, the object is added as a
trustee to the directory and given a rights mask equal to the t rusteeID parameter.

If you are using an NDS object name as the trustee name, call NWDSMapNameTolD to return the
value to pass to trusteeID.

To modify a trustee rights list, the requesting workstation must have access control rights to the
directory or to a parent of the directory.

The object must be static. If the object is dynamic, NWAddTrusteeToNSDirectory will return an
error.

NCP Calls

0x2222 22 13 Add Trustee To Directory
0x2222 22 39 Trustee Add Ext
0x2222 23 17 Get File Server Information

460 NDK: Multiple and Inter-File Services

0x2222 87 10 Add Trustee Set To File Or Subdirectory

See Also

NWAddTrustee (page 153), NWAddTrusteeToDirectory (page 158), NWDeleteTrustee (page 180),
NWDeleteTrusteeFromDirectory (page 184), NWDeleteTrusteeFromNSDirectory (page 470),
NWScanNSDirectoryForTrustees (page 547)

Name Space Functions 461

NWAIllocTempNSDirHandle2

Assigns a temporary directory handle in the specified name space
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N API NWAllocTempNSDirHandle2 (

NWCONN_HANDLE conn,

nuint8 dirHandle,
const nstr8 N _FAR *path,

nuint8 nameSpc,
pnuint8 newDirHandle,
nuint8 newNameSpace) ;

Delphi Syntax
uses calwin32

Function NWAllocTempNSDirHandle?2
(conn : NWCONN_ HANDLE;

dirHandle : nuint8;
const path : pnstr§;
namSpc : nuint8;
newDirHandle : pnuint8;
newNameSpace : nuint8

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle through which to attach.

dirHandle
(IN) Specifies the directory handle associated with the desired directory path.

462 NDK: Multiple and Inter-File Services

path

(IN) Points to an absolute path, (or relative if dirHandle is non-zero), with which
dirHandle is to be associated.

namSpc

(IN) Specifies the name space of the dirHandle/path combination (see Section 20.5,
“Name Space Flag Values,” on page 625).

newDirHandle

(OUT) Points to the new directory handle.

newNameSpc

(IN) Specifies the name space to be used for the new directory handle (see Section 20.5, “Name
Space Flag Values,” on page 625).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89BF INVALID_NAME_SPACE
NCP Calls

0x2222 23 17 Get File Server Information
0x2222 87 06 Obtain File or Subdirectory Information
0x2222 87 12 Allocate Short Directory Handle

Name Space Functions

463

NWAIllocTempNSDirHandle2Ext

Assigns a temporary directory handle in the specified name space, using UTF-8 strings
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N API NWAllocTempNSDirHandleZExt (

NWCONN_ HANDLE conn,
nuint8 dirHandle,
const nstr8 N _FAR *path,
nuint8 nameSpc,
pnuint8 newDirHandle,
nuint8 newNameSpace) ;
Parameters
conn

(IN) Specifies the NetWare server connection handle through which to attach.
dirHandle

(IN) Specifies the directory handle associated with the desired directory path.
path

(IN) Points to an absolute path, (or relative if dirHandle is non-zero), with which
dirHandle is to be associated. The characters in the string must be UTF-8.

namSpc

(IN) Specifies the name space of the dirHandle/path combination (see Section 20.5,
“Name Space Flag Values,” on page 625).

newDirHandle

(OUT) Points to the new directory handle.

464 NDK: Multiple and Inter-File Services

newNameSpc

(IN) Specifies the name space to be used for the new directory handle (see Section 20.5, “Name
Space Flag Values,” on page 625).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x88F0 UTF8_CONVERSION_FAILED
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89BF INVALID_NAME_SPACE
NCP Calls

0x2222 23 17 Get File Server Information

0x2222 87 06 Obtain File or Subdirectory Information
0x2222 87 12 Allocate Short Directory Handle
0x2222 89 12 Allocate Short Directory Handle

See Also

NWAIllocTempNSDirHandle2 (page 462)

Name Space Functions

465

NWDeleteNSEntry

Erases the specified files from the server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWDeleteNSEntry (

NWCONN_HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N _FAR *fileName,
nuint8 nameSpace,
nuintl6 searchAttr) ;

Delphi Syntax
uses calwin32

Function NWDeleteNSEntry
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;

const fileName : pnstr8;
nameSpace : nuint8;
searchAttr : nuintlé

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare connection handle.

dirHandle
(IN) Specifies the directory handle on which files to be deleted currently reside.

fileName

(IN) Points to an absolute path (or relative if di rHand1e is non-zero) that cannot exceed 255
characters in length.

466 NDK: Multiple and Inter-File Services

nameSpace

(IN) Specifies the name space of dirHandle/filePath (see Section 20.5, “Name Space

Flag Values,” on page 625).

searchAttr

(IN) Specifies the file attributes to use in finding the file (see Section 20.8, “Search Attributes

Values,” on page 627).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x898A NO_DELETE_PRIVILEGES

0x898D SOME_FILES_AFFECTED_IN_USE
0x898E NO_FILES AFFECTED_IN_USE
0x898F SOME_FILES AFFECTED_READ_ ONLY
0x8990 NO_FILES_AFFECTED_READ_ONLY
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR
Remarks

dirHandle must exist in the designated name space.

If a file has the immediate purge attribute set, the file cannot be recovered.

NCP Calls

0x2222 68 Erase File
0x2222 87 08 Delete A File Or Subdirectory

See Also

NWIntEraseFiles (page 225), NWOpenCreateNSEntry (page 525), NWRecoverDeletedFile

(page 49)

Name Space Functions

467

NWDeleteNSEntryExt

Erases the specified files from the server, using UTF-8 strings
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 and later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWDeleteNSEntry (

NWCONN_ HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N FAR *fileName,
nuint8 nameSpace,
nuintlo6 searchAttr) ;
Parameters
conn

(IN) Specifies the NetWare connection handle.

dirHandle
(IN) Specifies the directory handle on which files to be deleted currently reside.

fileName
(IN) Points to an absolute path (or relative if di rHand1e is non-zero) that cannot exceed 255
characters in length. The characters in the string must be UTF-8.

nameSpace
(IN) Specifies the name space of dirHandle/filePath (see Section 20.5, “Name Space
Flag Values,” on page 625).

searchAttr

(IN) Specifies the file attributes to use in finding the file (see Section 20.8, “Search Attributes
Values,” on page 627).

468 NDK: Multiple and Inter-File Services

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x88F0 UTF8_CONVERSION_FAILED
0x898A NO_DELETE_PRIVILEGES

0x898D SOME_FILES_AFFECTED_IN_USE
0x898E NO_FILES AFFECTED_IN_USE
0x898F SOME_FILES_AFFECTED_READ_ONLY
0x8990 NO_FILES_AFFECTED_READ_ONLY
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR
Remarks

dirHandle must exist in the designated name space.

If a file has the immediate purge attribute set, the file cannot be recovered.

NCP Calls

0x2222 68 Erase File
0x2222 87 08 Delete A File Or Subdirectory
0x2222 89 08 Delete A File Or Subdirectory

See Also

NWDeleteNSEntry (page 466)

Name Space Functions 469

NWDeleteTrusteeFromNSDirectory

Removes a trustee from a directory trustee list in the specified name space.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWDeleteTrusteeFromNSDirectory (

NWCONN_HANDLE conn,
nuint8 namSpc,
NWDIR HANDLE dirHandle,
const nstr8 N _FAR *dirPath,
nuint32 ob3jID);
Parameters
conn

(IN) Specifies the NetWare server connection handle.

namSpc

(IN) Specifies the name space in which the trustee resides (see Section 20.5, “Name Space Flag
Values,” on page 625).

dirHandle

(IN) Specifies the NetWare directory handle for the directory whose trustee list is being
modified (zero if the path parameter points to the complete path, including the volume name).

dirPath

(IN) Points to an absolute path (or a path relative to the di rHandle parameter) specifying the
directory from which the trustee is being removed.

objID
(IN) Specifies the object ID for the trustee being deleted.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

470 NDK: Multiple and Inter-File Services

0x0000 SUCCESSFUL

Remarks

NWDeleteTrusteeFromNSDirectory revokes the rights for a trustee in a specific directory. The
requesting workstation must have access control rights in the directory or in a parent directory to
delete a trustee.

Deleting the explicit assignment of an trustee object in a directory is not the same as assigning no
rights to the object in the directory. If no rights are assigned in a directory, the object inherits the
same rights it has in the parent directory.

NCP Calls

0x2222 87 11 Delete Trustee Set From File Or Subdirectory

See Also

NWAddTrusteeToDirectory (page 158), NWAddTrusteeToNSDirectory (page 456),
NWDeleteTrusteeFromDirectory (page 184), NWParseNetWarePath (page 652),
NWScanDirectoryForTrustees2 (page 269), NWScanNSDirectoryForTrustees (page 547)

Name Space Functions

471

NWDeleteTrusteeFromNSDirectoryExt

Removes a trustee from a directory trustee list in the specified name space using a UTF-8 path.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: File System

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWDeleteTrusteeFromNSDirectoryExt (

NWCONN_HANDLE conn,
nuint8 namSpc,
NWDIR HANDLE dirHandle,
const nstr8 N _FAR *dirPath,
nuint32 ob3jID);
Parameters
conn

(IN) Specifies the NetWare server connection handle.

namSpc

(IN) Specifies the name space in which the trustee resides (see Section 20.5, “Name Space Flag
Values,” on page 625).

dirHandle

(IN) Specifies the NetWare directory handle for the directory whose trustee list is being
modified (zero if the path parameter points to the complete path, including the volume name).

dirPath

(IN) Points to an absolute path (or a path relative to the di rHandle parameter) specifying the
directory from which the trustee is being removed.

objID
(IN) Specifies the object ID for the trustee being deleted.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

472 NDK: Multiple and Inter-File Services

0x0000 SUCCESSFUL

Remarks

NWDeleteTrusteeFromNSDirectory revokes the rights for a trustee in a specific directory. The
requesting workstation must have access control rights in the directory or in a parent directory to
delete a trustee.

Deleting the explicit assignment of an trustee object in a directory is not the same as assigning no
rights to the object in the directory. If no rights are assigned in a directory, the object inherits the
same rights it has in the parent directory.

NCP Calls

0x2222 87 11 Delete Trustee Set From File Or Subdirectory

See Also

NWAddTrusteeToDirectory (page 158), NWAddTrusteeToNSDirectory (page 456),
NWDeleteTrusteeFromDirectory (page 184), NWParseNetWarePath (page 652),
NWScanDirectoryForTrustees2 (page 269), NWScanNSDirectoryForTrustees (page 547)

Name Space Functions

473

NWGetDirectoryBase

Retrieves information used in further calls to the name space
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N_APT NWGetDirectoryBase (

NWCONN_HANDLE conn,
nuint8 dirHandle,
const nstr8 N _FAR *path,
nuint8 dstNamSpc,
NW IDX N_FAR *idxStruct) ;

Delphi Syntax
uses calwin32

Function NWGetDirectoryBase
(conn : NWCONN_ HANDLE;
dirHandle : nuint8;
const path : pnstr§;
dstNamSpc : nuint8;

Var idxStruct : NW_IDX

) : NWCCODE;

Parameters
conn
(IN) Specifies the NetWare server connection handle.
dirHandle
(IN) Specifies the directory handle associated with the directory to search.

path
(IN) Points to a valid DOS path (pointing to a directory or a file).

474 NDK: Multiple and Inter-File Services

dstNamSpc

(IN) Specifies the destination name space (see Section 20.5, “Name Space Flag Values,” on
page 625).

idxStruct
(OUT) Points to NW_IDX.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89BF INVALID_NAME_SPACE
Remarks

The path parameter must be upper case if dirHandle contains a DOS name space directory
handle.

The path and dirHandle parameters must match the dstNamSpc parameter.

NetWare uses the 1dxStruct parameter as an index to quickly locate a directory entry (file or
directory). It is required as a calling parameter to other functions and should not be modified by the
application.

NCP Calls

0x2222 22 3 Get Directory Effective Rights

0x2222 22 19 Allocate Temporary Directory Handle
0x2222 22 20 Free Directory Handle

0x2222 23 15 Scan Files

0x2222 23 17 Get File Server Information

0x2222 68 File Erase

0x2222 87 2 Scan First

0x2222 87 3 Scan Next

0x2222 87 8 Delete Entry

0x2222 87 12 Allocate Directory Handle

0x2222 87 22 Generate Directory Base And Volume Number

Name Space Functions

475

See Also

NWNSGetMiscInfo (page 517), NWReadExtendedNSInfo (page 541), NWReadNSInfo (page 543)
, NWWriteExtendedNSInfo (page 588), NWWriteNSInfo (page 590)

476 NDK: Multiple and Inter-File Services

NWGetDirectoryBaseExt

Retrieves information used in further calls to the name space
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N API NWGetDirectoryBaseExt (

NWCONN_ HANDLE conn,
nuint8 dirHandle,
const nstr8 N FAR *path,
nuint8 dstNamSpc,
NW IDX N_FAR *idxStruct) ;
Parameters
conn

(IN) Specifies the NetWare server connection handle.
dirHandle
(IN) Specifies the directory handle associated with the directory to search.

path

(IN) Points to a valid DOS path (pointing to a directory or a file). The characters in the string
must be UTF-8.

dstNamSpc

(IN) Specifies the destination name space (see Section 20.5, “Name Space Flag Values,” on
page 625).

idxStruct
(OUT) Returns a filled in NW_IDX structure.

Name Space Functions 477

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x88F0 UTF8_CONVERSION_FAILED
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89BF INVALID_NAME_SPACE
Remarks

The path parameter must be upper case if dirHandle contains a DOS name space directory
handle.

The path and di rHandle parameters must match the dstNamSpc parameter.

NetWare uses the 1dxStruct parameter as an index to quickly locate a directory entry (file or
directory). It is required as a calling parameter to other functions and should not be modified by the
application.

NCP Calls

0x2222 22 3 Get Directory Effective Rights

0x2222 22 19 Allocate Temporary Directory Handle

0x2222 22 20 Free Directory Handle

0x2222 23 15 Scan Files

0x2222 23 17 Get File Server Information

0x2222 68 File Erase

0x2222 87 2 Scan First

0x2222 87 3 Scan Next

0x2222 87 8 Delete Entry

0x2222 87 12 Allocate Directory Handle

0x2222 87 22 Generate Directory Base And Volume Number
0x2222 89 22 Generate Directory Base And Volume Number

See Also

NWGetDirectoryBase (page 474)

478 NDK: Multiple and Inter-File Services

NWGetHugeNSInfo

Gets extended (huge) NS information for the entry specified by vo1Num, nameSpace and
dirBase

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.12, 3.2, 4.x, 5.x, 6.x
Platform: NLM

Service: Name Space

Syntax
#include <nwnspace.h>

int NWGetHugeNSInfo (

BYTE volNum,

BYTE nameSpace,
LONG dirBase,

LONG hugeInfoMask,

BYTE *hugeStatelInfo,

BYTE *hugeData,

LONG *hugeDatalen,

BYTE *nextHugeStateInfo);

Parameters

volNum

(IN) Specifies the volume number for which huge NS information is to be obtained.

nameSpace

(IN) Specifies the name space for which huge information is being returned (see Section 20.5,
“Name Space Flag Values,” on page 625).

dirBase

(IN) Specifies the directory base (or number) for the entry for which information is being
obtained.

hugeInfoMask

(IN) Specifies the bit map that indicates which types of information the user wants returned.
(Corresponds to the extendedBitMask inthe NW_NS_INFO struct that can be retrieved by
calling NWQueryNSInfoFormat.)

hugeStatelInfo

(IN) Points to the first time calling this function, this should be set to zeroes. On succeeding
calls, the nextHugeStateInfo should be passed in this parameter.

Name Space Functions

479

hugeData
(OUT) Points to data returned as specified in the hugeInfoMask.

hugeDatalLen
(OUT) Points to length of the huge data the name space returned.

nextHugeStateInfo

(OUT) Points to huge state information that should be passed in on the next call to this
function. It is zero-filled when reading is done.

Return Values

ESuccess or NetWare errors

Remarks

This function retrieves extended NS information for name Space and returns it in hugeData.

See Also

NWGetDirBaseFromPath (page 640), NWQueryNSInfoFormat (page 539), NWSetHugeNSInfo
(page 573)

480 NDK: Multiple and Inter-File Services

NWGetLongName

Retrieves a filename for the specified name space.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWGetLongName (

NWCONN_ HANDLE conn,
nuint8 dirHandle,
const nstr8 N _FAR *path,
nuint8 srcNamSpc,
nuint8 dstNamSpc,
pnstr8 longName) ;

Delphi Syntax
uses calwin32

Function NWGetLongName
(conn : NWCONN_ HANDLE;

dirHandle : nuint8;
const path : pnstr§;
srcNamSpc : nuint8;

dstNamSpc : nuint8;
longName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the directory to scan. It can be 0 if path

contains a fully specified path.

Name Space Functions

481

path
(IN) Points to a valid path. This can either be a fully specified path (vol:path), or it can be
relative to dirHandle.

srcNamSpc
(IN) Specifies the name space referred to by dirHandle/path (see Section 20.5, “Name
Space Flag Values,” on page 625).

dstNamSpc
(IN) Specifies the name space for the return name (see Section 20.5, “Name Space Flag
Values,” on page 625).

longName

(OUT) Points to a buffer returning the corresponding name space’s name (up to 256 bytes).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

Remarks

longName includes only the name of the last component in the path. NWGetLongName does not
translate the entire path to a new name in the designated name space.

The name returned is the same name returned by NWGetNSEntryInfo.

NCP Calls

0x2222 87 06 Obtain File or Subdirectory Information

See Also

NWGetNSEntrylnfo (page 487), NWGetNSPath (page 506), NWSetLongName (page 575)

482 NDK: Multiple and Inter-File Services

NWGetLongNameExt

Retrieves a filename for the specified name space, using UTF-8 strings
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWGetLongNameExt (

NWCONN_ HANDLE conn,
nuint8 dirHandle,
const nstr8 N FAR *path,
nuint8 srcNamSpc,
nuint8 dstNamSpc,
pnstr8 longName) ;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle associated with the directory to scan. It can be 0 if path
contains a fully specified path.

path
(IN) Points to a valid path. This can either be a fully specified path (vol:path), or it can be
relative to dirHandle. The characters in the string must be UTF-8.

srcNamSpc
(IN) Specifies the name space referred to by di rHandle/path (see Section 20.5, “Name
Space Flag Values,” on page 625).

dstNamSpc

(IN) Specifies the name space for the return name (see Section 20.5, “Name Space Flag
Values,” on page 625).

Name Space Functions 483

longName

(OUT) Points to a buffer returning the corresponding name space’s name (up to 256 bytes). The
returned name is UTF-8.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x88F0 UTF8_CONVERSION_FAILED
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

Remarks

longName includes only the name of the last component in the path. NWGetLongNameExt does
not translate the entire path to a new name in the designated name space.

The name returned is the same name returned by NWGetNSEntryInfoExt.

NCP Calls

0x2222 87 06 Obtain File or Subdirectory Information
0x2222 89 06 Obtain File or Subdirectory Information

See Also

NWGetNSEntryInfoExt (page 492), NWGetLongName (page 481)

484 NDK: Multiple and Inter-File Services

NWGetNameSpaceEntryName

Returns the name of a file or directory in the specified name space
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM

Service: Name Space

Syntax

#include <nwnspace.h>

int NWGetNameSpaceEntryName (
BYTE *path,
LONG nameSpace,
LONG maxNameBufferlength,
BYTE *nameSpaceEntryName) ;

Parameters

path
(IN) Points to the path to the file system entry to get a name space entry name.

nameSpace

(IN) Specifies the name space to get the file or directory name for (see Section 20.5, “Name
Space Flag Values,” on page 625).

maxNameBufferLength

(IN) Specifies the maximum length of a name that can be stored in the buffer specified by
nameSpaceEntryName.

nameSpaceEntryName

(IN) Points to a buffer in which to store the name.

Return Values

ESuccess or NetWare errors

Remarks

If you know the name of a file or directory in one name space—DOS, Macintosh, NFS—you can
find out its name in other name spaces by calling NWGetNameSpaceEntryName.

The path specified in the path parameter must be in your current name space. For more
information, see Section 16.2, “Default Name Space,” on page 436.

Name Space Functions 485

See Also

NWSetNameSpaceEntryName (page 578)

486 NDK: Multiple and Inter-File Services

NWGetNSEntrylnfo

Returns name space entry information for the entry referred to by the dirHandle and path

combination
Local Servers: blocking
Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWGetNSEntryInfo (

NWCONN HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N FAR *path,

nuint8 srcNamSpc,
nuint8 dstNamSpc,
nuintlé6 searchAttrs,
nuint32 retInfoMask,

NW_ENTRY INFO N FAR *entryInfo);

Delphi Syntax
uses calwin32

Function NWGetNSEntryInfo
(conn : NWCONN_ HANDLE;
dirHandle : nuint8;
const path : pnstr§;

srcNamSpc : nuint8;
dstNamSpc : nuint8;
searchAttrs : nuintlé6;

retInfoMask : nuint32;
Var entryInfo : NW_ENTRY INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Name Space Functions

487

dirHandle
(IN) Specifies the directory handle associated with the desired name space (optional).

path
(IN) Points to the valid DOS path (pointing to a directory or file).

srcNamSpc
(IN) Specifies the name space of dirHandle/path (see Section 20.5, “Name Space Flag
Values,” on page 625).

dstNamSpc
(IN) Specifies the name space for the return information (see Section 20.5, “Name Space Flag
Values,” on page 625).

searchAttrs
(IN) Specifies the search attributes to use (see Section 20.8, “Search Attributes Values,” on
page 627).

retInfoMask
(IN) Specifies the information to return (see Section 20.6, “Basic Return Mask Values,” on
page 625).

entryInfo
(OUT) Points to NW_ENTRY _INFO. Only fields related to ret InfoMask are valid.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89BF INVALID_NAME_SPACE
O0x89FF Bad Parameter—no constant
Remarks

dirHandle can be zero if path contains the complete path, including the volume name.
dirHandle and/or path contains the entry name according to srcNamSpc. This information is
returned for dstNamSpc.

To request information from a server, a client sets the appropriate bit or bits of ret InfoMask and
sends a request packet to the server.

488 NDK: Multiple and Inter-File Services

NCP Calls

0x2222 87 06 Obtain File Or Subdirectory Information

See Also

NWGetOwningNameSpace (page 510), NWGetLongName (page 481)

Name Space Functions 489

NWGetNSEntrylnfo2

Returns name space extended entry information for the entry referred to by the dirHandle and
path combination

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N API NWGetNSEntryInfo2 (

NWCONN HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N _FAR *pbstrPath,
nuint8 buNamSpc,
nuint8 buDstNamSpc,
nuintlé6 suSrchAttrs,
nuint32 luRetMask,

NW_ENTRY INFO2 N FAR *pEntryInfo);

Parameters

conn
(IN) Specifies the NetWare server connection handle.
dirHandle
(IN) Specifies the directory handle associated with the desired name space (optional).

pbstrPath
(IN) Points to the valid DOS path (pointing to a directory or file).

buNamSpc

(IN) Specifies the name space of dirHandle/path (see Section 20.5, “Name Space Flag
Values,” on page 625).

buDstNamSpc

(IN) Specifies the name space for the return information (see Section 20.5, “Name Space Flag
Values,” on page 625).

490 NDK: Multiple and Inter-File Services

suSrchAttrs

(IN) Specifies the search attributes to use (see Section 20.8, “Search Attributes Values,” on
page 627).

luRetMask

(IN) Specifies the information to return(see Section 20.6, “Basic Return Mask Values,” on

page 625 and Section 20.7, “Extended Return Mask Values,” on page 626).

pEntryInfo
(OUT) Points to NW_ENTRY _INFO. Only fields related to ret InfoMask are valid.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89BF INVALID_NAME_SPACE
O0x89FF Bad Parameter—no constant
Remarks

dirHandle can be zero if path contains the complete path, including the volume name.
dirHandle and/or path contains the entry name according to srcNamSpc. This information is

returned for d

stNamSpc.

To request information from a server, a client sets the appropriate bit or bits of ret InfoMask and
sends a request packet to the server.

NCP Call

0x2222 87 06 Obtain File Or Subdirectory Information

See Also

NWGetOwningNameSpace (page 510), NWGetLongName (page 481)

S

Name Space Functions

491

NWGetNSEntrylnfoExt

Returns name space entry information for the specified entry, using UTF-8 strings
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 and later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWGetNSEntryInfoExt (

NWCONN_ HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N_FAR *pbstrPath,
nuint8 buNamSpc,
nuint8 buDstNamSpc,
nuintlé6 suSrchAttrs,
nuint32 luRetMask,
NW_ENTRY INFO EXT N_FAR *entryInfo);
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle associated with the desired name space (optional).

pbstrPath

(IN) Points to the valid DOS path (pointing to a directory or file). The characters in the string
must be UTF-8.

buNamSpc

(IN) Specifies the name space of dirHandle/path (see Section 20.5, “Name Space Flag
Values,” on page 625).

buDstNamSpc

(IN) Specifies the name space for the return information (see Section 20.5, “Name Space Flag
Values,” on page 625).

492 NDK: Multiple and Inter-File Services

suSrchAttrs

(IN) Specifies the search attributes to use (see Section 20.8, “Search Attributes Values,” on
page 627).

luRetMask

(IN) Specifies the information to return (see Section 20.6, “Basic Return Mask Values,” on
page 625).

pEntryInfo
(OUT) Points to NW_ENTRY INFO_EXT. Only fields related to ret InfoMask are valid.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000
0x8801

0x88F0
0x890A
0x8998
0x899B
0x899C
0x89BF
Ox89FF

SUCCESSFUL
INVALID_CONNECTION
UTF8_CONVERSION_FAILED
NLM_INVALID_CONNECTION
VOLUME_DOES_NOT_EXIST
BAD_DIRECTORY_HANDLE
INVALID_PATH
INVALID_NAME_SPACE

Bad Parameter—no constant

Remarks

dirHandle can be zero if path contains the complete path, including the volume name.
dirHandle and/or path contains the entry name according to srcNamSpc. This information is
returned for dstNamSpc.

To request information from a server, a client sets the appropriate bit or bits of ret InfoMask and
sends a request packet to the server.

NCP Calls

0x2222 87 06 Obtain File Or Subdirectory Information
0x2222 89 06 Obtain File Or Subdirectory Information

See Also

NWGetLongNameExt (page 483)

Name Space Functions

493

NWGetNSEntrylnfo2Ext

Returns name space entry information for the specified entry, using UTF-8 strings
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 and later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N API NWGetNSEntryInfoZExt (

NWCONN_ HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N_FAR *path, (1506 bytes)
nuint8 srcNamSpc,
nuint8 dstNamSpc,
nuintlé6 searchAttrs,
nuint32 retInfoMask,
NWGetNSEntryInfo2Ext N_FAR *entryInfo);
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle associated with the desired name space (optional).

path

(IN) Points to the valid DOS path (pointing to a directory or file). The characters in the string
must be UTF-8.

srcNamSpc

(IN) Specifies the name space of dirHandle/path (see Section 20.5, “Name Space Flag
Values,” on page 625).

dstNamSpc

(IN) Specifies the name space for the return information (see Section 20.5, “Name Space Flag
Values,” on page 625).

494 NDK: Multiple and Inter-File Services

searchAttrs

(IN) Specifies the search attributes to use (see Section 20.8, “Search Attributes Values,” on
page 627).

retInfoMask

(IN) Specifies the information to return (see Section 20.6, “Basic Return Mask Values,” on

page 625 and Section 20.7, “Extended Return Mask Values,” on page 626).

entryInfo

(OUT) Points to NW_ENTRY INFO_EXT. Only fields related to ret InfoMask are valid.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000
0x8801

0x88F0
0x890A
0x8998
0x899B
0x899C
0x89BF
Ox89FF

SUCCESSFUL
INVALID_CONNECTION
UTF8_CONVERSION_FAILED
NLM_INVALID_CONNECTION
VOLUME_DOES_NOT_EXIST
BAD_DIRECTORY_HANDLE
INVALID_PATH
INVALID_NAME_SPACE

Bad Parameter—no constant

Remarks

dirHandle can be zero if path contains the complete path, including the volume name.
dirHandle and/or path contains the entry name according to srcNamSpc. This information is
returned for dstNamSpc.

To request information from a server, a client sets the appropriate bit or bits of ret InfoMask and
sends a request packet to the server.

NCP Calls

0x2222 87 06 Obtain File Or Subdirectory Information
0x2222 89 06 Obtain File Or Subdirectory Information

See Also

NWGetLongNameExt (page 483)

Name Space Functions

495

NWGetNSFileDirEntryNumber

Returns file information for a specified file under DOS and the name space associated with the
specified file handle

NetWare Server: 4.x, 5.X, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWGetNSFileDirEntryNumber (
NWFILE HANDLE fileHandle,

nuint8 nameSpace,
pnuint32 volumeNum,
pnuint32 directoryEntry,
pnuint32 dataStream) ;

Delphi Syntax
uses calwin32

Function NWGetNSFileDirEntryNumber
(fileHandle : NWFILE HANDLE;
nameSpace : nuint8;
volumeNum : pnuint32;
directoryEntry : pnuint32;
dataStream : pnuint32;

) : NWCCODE;

Parameters

fileHandle
(IN) Specifies the file handle.

nameSpace

(IN) Specifies the name space associated with the directoryEntry parameter (see
Section 20.5, “Name Space Flag Values,” on page 625).

volumeNum

(OUT) Points to the volume number of the file handle.

496 NDK: Multiple and Inter-File Services

directoryEntry

(OUT) Points to the directory entry number in the name space associated with the nameSpace
parameter.

dataStream
(OUT) Points to the data stream number if the name space is NW_NS MAC:

1 Data fork
0 Resource fork and anything else

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x0006 INVALID_HANDLE

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8988 INVALID_FILE_ HANDLE
Remarks

NWGetNSFileDirEntryNumber returns the volume number and directory entry numbers in the
name space specified by the name Space parameter.

Call the NWGetFileDirEntryNumber function to return the parent directory number. The
NWGetFileDirEntryNumber allows you to specify the name space in which to return the parent
directory number.

One way to create the file handle is to call the NWOpenNSEntry function. If you specify a long file
name, the created file handle will be associated with the LONG name space. If a DOS file name is
specified, the created file handle will be associated with the DOS name space.

NCP Calls

87 31 Get File Information

See Also

NWOpenNSEntry (page 533)

Name Space Functions

497

NWGetNSInfo

Returns the NW_NS INFO structure to be used in reading and writing information to the name
space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N API NWGetNSInfo (

NWCONN HANDLE conn,
const NW IDX N FAR *idxStruct,
NW NS INFO N_FAR *NSInfo) ;

Delphi Syntax
uses calwin32

Function NWGetNSInfo
(conn : NWCONN_ HANDLE;
const idxStruct : pNW_ IDX;
Var NSInfo : NW NS INFO

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

idxStruct
(IN) Points to the NW_IDX structure.

NSInfo
(OUT) Points to the NW_NS_INFO structure.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

498 NDK: Multiple and Inter-File Services

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
Remarks

NW_IDX is returned by NWNSGetMiscInfo or NWGetDirectoryBase. The dstNameSpace
parameter in each function obtains the Name Space information.

NSInfo is returned for the destination name space in idxStruct.

NCP Calls

0x2222 87 23 Query NS Information Format

See Also
NWGetDirectoryBase (page 474), NWNSGetMisclInfo (page 517), NWReadExtendedNSInfo

(page 541), NWReadNSInfo (page 543), NW WriteExtendedNSInfo (page 588), NWWriteNSInfo
(page 590)

Name Space Functions 499

NWGetNSInfo (NLM)

Returns specific NS information for the entry specified by the volNum, nameSpace and
dirBase parameters

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.12, 3.2, 4.x, 5.x, 6.X
Platform: NLM

Service: Name Space

Syntax
#include <nwnspace.h>

int NWGetNSInfo (
BYTE volNum,
BYTE srcNameSpace,
BYTE dstNameSpace,
LONG dirBase,
LONG nsInfoMask,
BYTE *nsSpecificInfo);

Parameters

volNum
(IN)

Specifies the volume number for which information is to be returned.

srcNameSpace

(IN) Specifies the name space that corresponds with the dirBase being passed.
dstNameSpace

(IN) Specifies name space in which the information is to be returned.

dirBase

(IN) Specifies the directory base (or number) for the entry for which information is being
retrieved.

nsInfoMask

(IN) Specifies the bit map that indicates which types of information the user wants returned in
the data parameter.

nsSpecificInfo

(OUT) Points to data that was asked for as indicated in the nsInfoMask.

500 NDK: Multiple and Inter-File Services

Return Values

ESuccess or NetWare errors

Remarks

If the current name space is NFS, a value of 2 (for NFS) would be passed to the srcNameSpace
parameter. However, if the returned information should be in the Macintosh name space format, a
value of 1 would be passed to the dstNameSpace parameter.

See “DOS Name Space Bit Mask™ on page 439.

See Also

NWGetDirBaseFromPath (page 640), NWQueryNSInfoFormat (page 539), NWSetNSInfo
(page 586)

Name Space Functions 501

NWGetNSLoadedList

Retrieves a list of the name spaces loaded for the specified volume
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N API NWGetNSLoadedList (
NWCONN_HANDLE conn,

nuint8 volNum,

nuint8 maxListLen,
pnuint8 NSLoadedList,
pnuint8 actuallistLen) ;

Delphi Syntax
uses calwin32

Function NWGetNSLoadedList
(conn : NWCONN_ HANDLE;

volNum : nuint8;
maxListLen : nuint8;
NSLoadedList : pnuint8;
actuallistLen : pnuint8

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number to obtain the list from.

maxListLen

(IN) Specifies the size of NSLoadedList (in bytes).

502 NDK: Multiple and Inter-File Services

NSLoadedList
(OUT) Points to a buffer (maxListLen bytes).

actuallistLen

(OUT) Points to the number of name spaces loaded (in bytes).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0Ox890A NLM_INVALID_CONNECTION
Remarks

NSLoadedList contains a nuint8 entry for every name space loaded on the server. The buffer for
NSLoadedList should be at least 5 bytes long (maxListLen should also be at least 5 bytes).

NCP Calls

0x2222 87 24 Get Name Spaces Loaded List From Volume Number

Name Space Functions 503

NWGetNSLoadedList (NLM)

Retrieves a list of the name spaces that are loaded on the specified volume
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.12,3.2,4.x, 5.x, 6.X

Platform: NLM

Service: Name Space

Syntax

#include <nwnspace.h>

int NWGetNSLoadedList (
BYTE volNum,
WORD loadListSize,
BYTE *NSLoadedList,
WORD *returnListSize);

Parameters

volNum

(IN) Specifies the volume number for which to get the list of loaded name spaces.

loadListSize
(IN) Specifies the size (in bytes) of the NSLoadedLi st buffer being passed.

NSLoadedList
(OUT) Points to a buffer to hold the loaded name spaces.

returnListSize
(OUT) Points to the number of name spaces loaded.
Return Values

ESuccess or NetWare errors

Remarks

The NSLoadedList contains a BYTE entry for every name space that is loaded on the volume.
The buffer for NSLoadedList needs to be at least MAX NAMESPACES bytes long (therefore,
loadListSize needs to be at least MAX NAMESPACES). In the case where there are more
name spaces loaded than there is space available in the NSLoadedList buffer,
returnListSize contains the number of name spaces loaded.

504 NDK: Multiple and Inter-File Services

See Also

NWQueryNSInfoFormat (page 539)

Name Space Functions 505

NWGetNSPath

Returns the full NetWare path for the desired name space associated with the specified path
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWGetNSPath (

NWCONN_HANDLE conn,

nuint8 dirHandle,
nuintlé fileFlag,
nuint8 srcNamSpc,
nuint8 dstNamSpc,

NW NS PATH N_FAR *NSPath);

Delphi Syntax
uses calwin32

Function NWGetNSPath
(conn : NWCONN_ HANDLE;

dirHandle : nuint8;
fileFlag : nuintlo6;
srcNamSpc : nuint8;

dstNamSpc : nuint8;
Var NSPath : NW NS PATH
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired name space.

506 NDK: Multiple and Inter-File Services

fileFlag

(IN) Specifies whether the source path ends with a file or a directory name:

0 = directory name
1 = file name
srcNamSpc

(IN) Specifies the name space used for srcPath in NSPath (see Section 20.5, “Name Space
Flag Values,” on page 625).

dstNamSpc

(IN) Specifies the name space for the return path (see Section 20.5, “Name Space Flag Values,”
on page 625).

NSPath
(IN/OUT) Points to NW_NS PATH.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

Remarks

A full path includes the volume name. For example:
volume:path\path

Ifthe fileF1ag parameter is set to 0 (indicating a directory name is being passed) and a file name
is passed, INVALID PARAMETER will be returned. The same error will be returned if the
fileFlag parameter is set to 1 (indicating a file name is being passed) and a directory name is
passed.

NWGetNSPath returns only the directory path name even if a file name was passed.

On NetWare server versions 3.12 and before, NWGetNSPath will return INVALID PATH when
used to return the full path of a root file.

NCP Calls

0x2222 87 28 Get Full Path String

Name Space Functions

507

NWGetNSPathExt

Returns the full NetWare path for the desired name space associated with the specified path, using
UTF-8 strings

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP
Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWGetNSPathExt (

NWCONN_HANDLE conn,

nuint8 dirHandle,
nuintl6 fileFlag,
nuint8 srcNamSpc,
nuint8 dstNamSpc,

NW NS PATH N FAR *NSPath);

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired name space.

fileFlag

(IN) Specifies whether the source path ends with a file or a directory name:

0 = directory name
1 = file name

srcNamSpc
(IN) Specifies the name space used for srcPath in NSPath (see Section 20.5, “Name Space
Flag Values,” on page 625).

dstNamSpc

(IN) Specifies the name space for the return path (see Section 20.5, “Name Space Flag Values,”
on page 625).

508 NDK: Multiple and Inter-File Services

NSPath
(IN/OUT) Points to NW_NS PATH.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x88F0 UTF8_CONVERSION_FAILED
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

Remarks

A full path includes the volume name. For example:
volume:path\path

Ifthe fileFlag parameter is set to 0 (indicating a directory name is being passed) and a file name
is passed, INVALID PARAMETER will be returned. The same error will be returned if the
fileFlag parameter is set to 1 (indicating a file name is being passed) and a directory name is
passed.

NWGetNSPathExt returns only the directory path name even if a file name was passed.

NCP Calls

0x2222 87 28 Get Full Path String
0x2222 89 28 Get Full Path String

Name Space Functions 509

NWGetOwningNameSpace

Returns the owning name space for the specified directory or file
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWGetOwningNameSpace (

NWCONN_HANDLE conn,
nuint8 dirHandle,
const nstr8 N _FAR *path,
pnuint8 nameSpace) ;

Delphi Syntax
uses calwin32

Function NWGetOwningNameSpace
(conn : NWCONN_ HANDLE;

dirHandle : nuint8;
const path : pnstr§;
namSpc : pnuint8

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle associated with the directory to search.

path
(IN) Points to a valid NetWare path (pointing to a directory or file).

510 NDK: Multiple and Inter-File Services

nameSpace

(OUT) Points to the owning name space (see Section 20.5, “Name Space Flag Values,” on
page 625).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

Remarks

The owning name space is defined as the name space under which the entry (file or directory) was

created.

Both the dirHandle and path parameters must be in the default name space.

The default name space is the name space that matches the OS and the loaded name spaces on that
volume. For example, Windows 95 on a volume with LONG name space will set LONG name space
as the default name space.

NCP Calls

0x2222 87 06 Obtain File or Subdirectory Information

Name Space Functions 511

NWIsLNSSupportedOnVolume

Queries the NetWare server and returns a nonzero if the LONG name space is supported on the
target volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

NWCCODE N _API NWIsLNSSupportedOnVolume (
NWCONN HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N FAR *path);

Delphi Syntax
uses calwin32

Function NWIsLNSSupportedOnVolume
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const path : pnstr8

) : NWCCODE;

Parameters
conn
(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the volume whose status is being checked.

path

(IN) Points to the absolute directory path (or a path relative to the directory handle) associated
with the volume whose status is being checked.

512 NDK: Multiple and Inter-File Services

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 LONG name space not supported on volume
nonzero LONG name space supported on volume
Remarks

NWISLNSSupportedOnVolume is called in a Windows 32-bit platofrm to determine whether DOS
names or LONG names should be used in paths (see Section 16.1, “Naming Conventions,” on
page 435).

In Windows 32-bit platforms, if a nonzero value is returned, use LONG names when calling
NWCalls. On 3.11 servers and above, NWCalls expects LONG names to be used on all volumes
having the LONG name space loaded.

In Windows 32-bit platforms, if the dirHandle or path parameters are invalid, 0x0000 will
always be returned. Therefore, make sure the dirHandle and path parameters are valid before
calling NWIsLNSSupportedOnVolume.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 23 234 Get Connection’s Task Information

18.3 NWN* through NWW* Functions

Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

¢ “NWNSGetDefaultNS” on page 515

* “NWNSGetMiscInfo” on page 517

¢+ “NWNSRename” on page 519

+ “NWNSRenameExt” on page 522

+* “NWOpenCreateNSEntry” on page 525

+ “NWOpenCreateNSEntryExt” on page 527
* “NWOpenDataStream” on page 529

* “NWOpenNSEntry” on page 533

¢ “NWOpenNSEntryExt” on page 536

* “NWQueryNSInfoFormat” on page 539

+ “NWReadExtendedNSInfo” on page 541

+ “NWReadNSInfo” on page 543

+ “NWReadNSInfoExt” on page 545

+ “NWScanNSDirectoryForTrustees” on page 547

Name Space Functions 513

* “NWScanNSDirectoryForTrusteesExt” on page 550
* “NWScanNSEntryInfo” on page 553

+ “NWScanNSEntryInfoExt” on page 556

+ “NWScanNSEntryInfo2” on page 558

+ “NWScanNSEntryInfoSet” on page 561

+ “NWScanNSEntryInfoSet2” on page 564

¢ “NWScanNSEntryInfoSet2Ext” on page 567
* “NWScanNSEntryInfoSetExt” on page 570

* “NWSetHugeNSInfo” on page 573

* “NWSetLongName” on page 575

+ “NWSetNameSpaceEntryName” on page 578
¢ “NWSetNSEntryDOSInfo” on page 580

* “NWSetNSEntryDOSInfoExt” on page 583

* “NWSetNSInfo” on page 586

* “NWWriteExtendedNSInfo” on page 588

+ “NWWriteNSInfo” on page 590

* “NWWriteNSInfoExt” on page 592

514 NDK: Multiple and Inter-File Services

NWNSGetDefaultNS

Returns the default name space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N _API NWNSGetDefaultNS (
NWCONN_ HANDLE conn,
NWDIR HANDLE dirHandle,
const nstr8 N _FAR *path,

pnuint8 pbuDefaultNameSpace) ;

Delphi Syntax
uses calwin32

Function NWNSGetDefaultNS
(conn : NWCONN_ HANDLE;
dirHandle : NWDIR HANDLE;
const path : pnstr§;
pbuDefaultNameSpace : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the directory for which to return the default

name space.

path

(IN) Points to a valid NetWare path (pointing to a directory or a file).

Name Space Functions 515

pbuDefaultNameSpace
(OUT) Points to the default name space.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8836 INVALID_PARAMETER
0x890A NLM_INVALID_CONNECTION
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x89FF BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

Remarks

Both the di rHandle and path parameters must be in the default name space.

The default name space is the name space that matches the OS and the loaded name spaces on that
volume. For example, Windows 95 on a volume with LONG name space will set LONG name space
as the default name space.

NCP Calls

0x2222 22 5 Get Volume Number
0x2222 22 21 Get Volume Info With Handle
0x2222 87 24 Get Name Spaces Loaded List From Volume Number

See Also

NWGetVolumelnfoWithHandle, NWGetVolumeNumber (Volume Management)

516 NDK: Multiple and Inter-File Services

NWNSGetMiscinfo

Retrieves information to be used in further calls to the name space

Local Servers: blocking
Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N API NWNSGetMiscInfo (

NWCONN_ HANDLE conn,

nuint8 dirHandle,
const nstr8 N _FAR *path,

nuint8 dstNameSpace,
NW IDX N_FAR *idxStruct) ;

Delphi Syntax
uses calwin32

Function NWNSGetMiscInfo
(conn : NWCONN_ HANDLE;

dirHandle : nuint8;
const path : pnstr§;
dstNameSpace : nuint8;
Var idxStruct : NW_IDX
) : NWCCODE;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the directory to search.

path

(IN) Points to a valid NetWare path (pointing to a directory or a file).

Name Space Functions 517

dstNameSpace

(IN) Specifies the destination name space (see Section 20.5, “Name Space Flag Values,” on
page 625).

idxStruct
(OUT) Points to NW_IDX.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x89BF INVALID_NAME_SPACE
Remarks

dirHandle / path should match dstNameSpace.
Both the di rHandle and path parameters must be in the default name space.

The default name space is the name space that matches the OS and the loaded name spaces on that
volume. For example, Windows 95 on a volume with LONG name space will set LONG name space
as the default name space.

NetWare uses NW_IDX as an index to quickly locate a directory entry (file or directory). NW_IDX
is required as a parameter for other functions and should not be modified by the application.

NCP Calls

0x2222 87 06 Obtain File or Subdirectory Information

See Also

NWGetDirectoryBase (page 474)

518 NDK: Multiple and Inter-File Services

NWNSRename

Renames an entry in the specified name space, given a path specifying the entry name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWNSRename (

NWCONN_ HANDLE conn,

nuint8 dirHandle,
nuint8 namSpc,
const nstr8 N _FAR *oldName,
nuintlé oldType,
const nstr8 N _FAR *newName,
nuint8 renameFlagqg) ;

Delphi Syntax
uses calwin32

Function NWNSRename
(conn : NWCONN_ HANDLE;
dirHandle : nuint8;
namSpc : nuint8;
const oldName : pnstr8;
oldType : nuintlé6;
const newName : pnstr8;
renameFlag : nuint8

) : NWCCODE;

Parameters
conn
(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle of the parent directory.

Name Space Functions 519

namSpc
(IN) Specifies the name space of o1dName (see Section 20.5, “Name Space Flag Values,” on
page 625).

oldName

(IN) Points to the name of the directory or file to rename.

0ldType
(IN) Specifies the type of o1 dName:

C Value Delphi Value Constant

0x8000 $0800 NW_TYPE_FILE

0x0010 $0010 NW_TYPE_SUBDIR
newName

(IN) Points to the new name (256 bytes maximum).

renameFlag

(IN) Specifies whether name conversion should be done; ignored for NetWare 3.11 and below:

C Value Delphi Value Constant
0x03 $03 NW_NAME_CONVERT
0x04 $04 NW_NO_NAME_CONVERT

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x899E INVALID_FILENAME
Remarks

A transaction file cannot be deleted or renamed.

dirHandle must point to the parent directory.

520 NDK: Multiple and Inter-File Services

oldName and newName must be valid names containing only one component. dirHandle will
specify the path.

The default operation for NWNSRename is to rename the file in all name spaces, report an error if
renaming a file as itself, and do nothing with the file compatibility mode. When

NW_NAME CONVERT is passed in the renameF1ag parameter, renaming the file to the same
name will not report an error and compatibility mode will be set for that file. If
NW_NO NAME CONVERT is passed in renameFlag, the new name is changed only in the
specified name space. When renaming is done the shortening algorithm is used for the DOS and/or
MAC name spaces when necessary.

AFP directory and file names (long names) contain 1-31 characters. A long name is a string
preceded by one byte which specifies the length of the name. Long names can contain any ASCII
character between 1 and 255 except the colon (:) but cannot be terminated by a NULL character
(character 0).

The NetWare server automatically generates DOS-style file names (short names) for all AFP
directories, as well as for created files and accessed files. The NetWare server maintains both the
long name and the short name for each AFP directory and file.

For explanation of how long names are converted to DOS style names, see “NetWare 4.x” on
page 440 and “NetWare 5.x and 6.x” on page 442.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 87 04 Rename Or Move A File Or Subdirectory

See Also

NWGetLongName (page 481)

Name Space Functions 521

NWNSRenameEXxt

Renames an entry in the specified name space, given a path specifying the entry name and using
UTF-8 strings

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP
Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>

or
#include <nwcalls.h>

NWCCODE N_API NWNSRenameExt (

NWCONN_HANDLE conn,
nuint8 dirHandle,
nuint8 namSpc,
const nstr8 N _FAR *oldName,
nuintlo6 oldType,
const nstr8 N _FAR *newName,
nuint8 renameFlaqg) ;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle of the parent directory. It cannot be zero.

namSpc
(IN) Specifies the name space of o1dName (see Section 20.5, “Name Space Flag Values,” on
page 625).

oldName

(IN) Points to the name of the directory or file to rename. The characters in the string must be
UTF-8.

0ldType
(IN) Specifies the type of o1dName:

522 NDK: Multiple and Inter-File Services

C Value Constant

0x8000 NW_TYPE_FILE
0x0010 NW_TYPE_SUBDIR
newName

(IN) Points to the new name (256 characters maximum). The characters in the string must be
UTF-8.

renameFlag

(IN) Specifies whether name conversion should be done:

C Value Constant
0x03 NW_NAME_CONVERT
0x04 NW_NO_NAME_CONVERT

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x88F0 UTF8_CONVERSION_FAILED
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x899E INVALID_FILENAME
Remarks

A transaction file cannot be deleted or renamed.
dirHandle must point to the parent directory.

oldName and newName must be valid names containing only one component. dirHandle will
specify the path.

The default operation for NWNSRenameEXxt is to rename the file in all name spaces, report an error
if renaming a file as itself, and do nothing with the file compatibility mode. When

NW_NAME CONVERT is passed in the renameF1ag parameter, renaming the file to the same
name will not report an error and compatibility mode will be set for that file. If
NW_NO NAME CONVERT is passed in renameFlag, the new name is changed only in the

Name Space Functions 523

specified name space. When renaming is done the shortening algorithm is used for the DOS and/or
MAC name spaces when necessary.

AFP directory and file names (long names) contain 1-31 characters. A long name is a string
preceded by one byte which specifies the length of the name. Long names can contain any ASCII
character between 1 and 255 except the colon (:) but cannot be terminated by a NULL character
(character 0).

The NetWare server automatically generates DOS-style file names (short names) for all AFP
directories, as well as for created files and accessed files. The NetWare server maintains both the
long name and the short name for each AFP directory and file.

For explanation of how long names are converted to DOS style names, see “NetWare 5.x and 6.x”
on page 442.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 87 04 Rename Or Move A File Or Subdirectory
0x2222 89 04 Rename Or Move A File Or Subdirectory

See Also

NWGetLongNameExt (page 483)

524 NDK: Multiple and Inter-File Services

NWOpenCreateNSEntry

Opens a file in the specified name space or creates and then opens a file if it does not already exist

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWOpenCreateNSEntry (

NWCONN_ HANDLE conn,

nuint8 dirHandle,
nuint8 namSpc,

const pnstr8 N FAR path,

NW NS OPENCREATE N FAR *NSOpenCreate,
NWFILE HANDLE N FAR *fileHandle);

Delphi Syntax
uses calwin32

Function NWOpenCreateNSEntry
(conn : NWCONN_ HANDLE;
dirHandle : nuint8;
namSpc : nuint8;
const path : pnstr§;
Var NSOpenCreate : NW NS OPENCREATE;
Var fileHandle : NWFILE HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare connection handle.

dirHandle

(IN) Specifies the directory handle on which to open/create the specified file.

Name Space Functions 525

namSpc
(IN) Specifies the name space of dirHandle/path (see Section 20.5, “Name Space Flag
Values,” on page 625).

path

(IN) Points to an absolute path (or relative if di rHandle is nonzero).

NSOpenCreate

(IN/OUT) Points to NW_NS OPENCREATE containing information needed to create the
entry on input. Points to NW_NS OPENCREATE containing the results of a successful open/
create upon output.

fileHandle

(OUT) Points to the NWFILE_ HANDLE. When you are creating subdirectories,
fileHandle returns zero.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8980 ERR_LOCK_FAIL

0x8981 NO_MORE_FILE_HANDLES
0x8982 NO_OPEN_PRIVILEGES
0x8994 NO_WRITE_PRIVILEGES_OR_READONLY
0x8996 SERVER_OUT_OF_MEMORY
0x8998 SERVER_DOES_NOT_EXIST
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89FD BAD_STATION_NUMBER
O0x89FF Failure

NCP Calls

0x2222 23 17 Get File Server Info

0x2222 66 File Close

0x2222 87 1 Open/Create Entry

0x2222 87 30 Open/Create File or Subdirectory

See Also

NWDeleteNSEntry (page 466)

526 NDK: Multiple and Inter-File Services

NWOpenCreateNSEntryExt

Opens a file in the specified name space or creates and then opens a file if it does not already exist.

Path and file names must use UTF-8 characters.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP
Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWOpenCreateNSEntryExt (

NWCONN_HANDLE conn,
nuint8 dirHandle,
nuint8 namSpc,
const pnstr8 N FAR path,
NW NS OPENCREATE N FAR *NSOpenCreate,
NWFILE HANDLE N FAR *fileHandle) ;
Parameters
conn

(IN) Specifies the NetWare connection handle.

dirHandle

(IN) Specifies the directory handle on which to open/create the specified file.

namSpc

(IN) Specifies the name space of dirHandle/path (see Section 20.5, “Name Space Flag

Values,” on page 625).

path

(IN) Points to an absolute path (or relative if dirHandle is nonzero). The characters in the

path string must be UTF-8.

NSOpenCreate

(IN/OUT) Points to NW_NS OPENCREATE containing information needed to create the
entry on input. Points to NW_NS OPENCREATE containing the results of a successful open/

create upon output.

Name Space Functions 527

fileHandle

(OUT) Points to the NWFILE_ HANDLE. When you are creating subdirectories,
fileHandle returns zero.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x88F0 UTF8_CONVERSION_FAILED
0x8980 ERR_LOCK_FAIL

0x8981 NO_MORE_FILE_HANDLES
0x8982 NO_OPEN_PRIVILEGES
0x8994 NO_WRITE_PRIVILEGES_OR_READONLY
0x8996 SERVER_OUT_OF_MEMORY
0x8998 SERVER_DOES_NOT_EXIST
0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR
0x89FD BAD_STATION_NUMBER
Ox89FF Failure

NCP Calls

0x2222 23 17 Get File Server Info

0x2222 66 File Close

0x2222 87 1 Open/Create File or Subdirectory
0x2222 87 30 Open/Create File or Subdirectory
0x2222 89 1 Open/Create File or Subdirectory
0x2222 89 30 Open/Create File or Subdirectory

See Also

NWDeleteNSEntryExt (page 468), NWOpenNSEntryExt (page 536)

528 NDK: Multiple and Inter-File Services

NWOpenDataStream

Opens a data stream associated with any supported name space on the server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax

#include <nwnamspc.h>

or

#include <nwcalls.h>

NWCCODE N _API NWOpenDataStream (

NWCONN_ HANDLE conn,
nuint8 dirHandle,
const nstr8 N _FAR *fileName,
nuintlo dataStream,
nuintlo attrs,
nuintlo6 accessMode,
pnuint32 NWHandle,

NWEFILE HANDLE N FAR *fileHandle);

Delphi Syntax

uses calwin32

Function NWOpenDataStream

)

(conn : NWCONN_ HANDLE;
dirHandle : nuint8;

const fileName : pnstr8;
dataStream : nuintlé6;

attrs : nuintl6;

accessMode : nuintlé6;

NWHandle : pnuint32;

Var fileHandle : NWFILE HANDLE

NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Name Space Functions 529

dirHandle

(IN) Specifies the directory handle associated with the directory containing the file. This must
be a DOS directory handle; if you want to read from a different namespace, use the
dataStream parameter.

fileName

(IN) Points to the name of the file containing the data stream. It must be a DOS file name (and
match dirHandle). For example, if you are opening a Macintosh file named
"alongfilename," pass a DOS dirHandle and the DOS file name "ALONGFIL."

dataStream

(IN) Specifies the data stream number. To read the primary stream of any file in any
namespace, pass 0. For example, to read the data fork of a file in the Macintosh namespace,
open a DOS handle, and pass 0. To read the resource fork of a Macintosh handle, pass the DOS
directory handle to dirHandle, and pass 1 as the data stream number.

0NW_DS DOS

I NW_DS MAC

2NW_DS FTAM
attrs

(IN) Specifies the attributes to use in searching for the file to open:

C Value Delphi Value Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY

0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED

0x80 $80 FA_SHAREABLE
accessMode

(IN) Specifies the rights to use in opening the file (see Section 20.1, “Access Right Values,” on
page 623).

NWHandle
(OUT) Points to a 4-byte NetWare handle to dataStream (optional).

fileHandle
(OUT) Points to a file handle.

530 NDK: Multiple and Inter-File Services

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x8980 ERR_LOCK_FAIL

0x8982 NO_OPEN_PRIVILEGES
0x8990 NO_FILES _AFFECTED_READ_ONLY
0x89BE INVALID_DATA_STREAM
0x89FF NO_FILES FOUND_ERROR
Remarks

NWOpenDataStream also obtains a NetWare file handle to a data stream.

If you pass a non-DOS namespace handle to dirHandle, NWOpenDataStream fails.

These constants identify trustee access rights for opening a a directory with NWOpenDataStream.

C Value Delphi Value Value Name Value Description

0x00 $00 TA_NONE Specifies no Reads or Writes are allowed.

0x01 $01 TA _READ Specifies file Reads are allowed.

0x02 $02 TA_WRITE Specifies file Writes are allowed.

0x08 $08 TA_CREATE Specifies files can be created.

0x10 $10 TA_DELETE Specifies files can be deleted.

0x20 $20 TA_OWNERSHIP Specifies subdirectories can be created or
deleted and trustee rights granted or revoked.

0x40 $40 TA_SEARCH Specifies the directory can be searched.

0x80 $80 TA_MODIFY Specifies file attributes can be modified.

OxFB $FB TA ALL Specifies the trustee has all the above rights to
the directory.

NCP Calls

0x2222 22 49 Open Data Stream

Name Space Functions

531

0x2222 66 File Close
0x2222 87 06 Obtain File or Subdirectory Information

See Also

NWAFPOpenFileFork (Single and Intra-File Management), NWConvertHandle (page 171)

532 NDK: Multiple and Inter-File Services

NWOpenNSEntry

Opens or creates a file or creates a subdirectory with a given owning name space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N _API NWOpenNSEntry (

NWCONN_ HANDLE

nuint8
nuint8
nuint8
const nstr8 N FAR
NW NS _OPEN N FAR

NWFILE HANDLE N _ FAR

Delphi Syntax
uses calwin32

Function NWOpenNSEntry
(conn : NWCONN_ HANDLE;

dirHandle : nuint8;
namSpc : nuint8;
dataStream : nuint8;

const path : pnstr§;

conn,
dirHandle,
nameSpc,
dataStream,

*path,

*NSOpen,

*fileHandle) ;

Var NSOpen : NW_NS OPEN;
Var fileHandle : NWFILE HANDLE

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the directory in which to create the file.

Name Space Functions 533

namSpc

(IN) Specifies the name space for the file creation (see Section 20.5, “Name Space Flag
Values,” on page 625).

dataStream

(IN) Specifies the data stream number if the name space is Mac OS:

0 =Resource Fork
1=Data Fork

For DOS, always pass 0.

path

(IN) Points to the name to use in creating the file. Optionally contains a volume:path
specification.

NSOpen

(IN/OUT) Points to NW_NS OPENCREATE containing the information needed to open the
entry. Results of a successful open are also returned in NW_NS OPENCREATE.

fileHandle

(OUT) Points to the OS file handle; it returns zero if you are creating subdirectories.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

Remarks

dirHandle can be zero if the path contains the complete path, including the volume name. (
dirHandle / path should match namSpc.)

If you are creating a directory, pass NULL to fileHandle.

OC_MODE _constants used in openCreateMode are listed below:

C Value Delphi Value Value Name
0x01 $01 OC_MODE_OPEN
0x02 $02 OC_MODE_TRUNCATE

534 NDK: Multiple and Inter-File Services

C Value Delphi Value Value Name

0x02 $02 OC_MODE_REPLACE
0x08 $08 OC_MODE_CREATE
0x20 $20 OC_64BIT_ACCESS allows a user to access large files (64-bit).

See Section 20.8, “Search Attributes Values,” on page 627 for the possible values for the
searchAttributes field.

See Section 20.1, “Access Right Values,” on page 623 for the possible values for the
desiredAccessRights field.

OC_ACTION _ constants used in openCreateAction are listed below:

C Value Delphi Value Value Name

0x01 $01 OC_ACTION_NONE

0x01 $01 OC_ACTION_OPEN

0x02 $02 OC_ACTION_CREATE
0x04 $04 OC_ACTION_TRUNCATE
0x04 $04 OC_ACTION_REPLACE

The file handle returned is appropriate for the platform the API is written for. This file handle may
be used for access to the attribute value through standard file I/O with the handle. This includes
closing the file as well as reading and writing to the file.

NOTE: When using this function to create a directory, the access rights field in the NSOpen
structure is used to set the IRF on the created directory. Hence a value of OxFF should be used if an
IRF of [SRWCEMFA] is required.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 66 File Close

0x2222 87 01 Open Create File Or Subdirectory
0x2222 87 30 Open/Create File Or Subdirectory

See Also

NWDeleteNSEntry (page 466)

Name Space Functions 535

NWOpenNSEntryExt

Opens or creates a file or creates a subdirectory with a given owning name space and using UTF-8
strings.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP
Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N_API NWOpenNSEntryExt (

NWCONN_HANDLE conn,
nuint8 dirHandle,
nuint8 namSpc,
nuint8 dataStream,
const nstr8 N FAR *path,

NW_NS OPEN N FAR *NSOpen,

NWFILE HANDLE N FAR *fileHandle);

Parameters

conn
(IN) Specifies the NetWare server connection handle.
dirHandle
(IN) Specifies the directory handle associated with the directory in which to create the file.
namSpc

(IN) Specifies the name space for the file creation (see Section 20.5, “Name Space Flag
Values,” on page 625).

dataStream

(IN) Specifies the data stream number if the name space is Mac OS:

0 =Resource Fork
1=Data Fork

For DOS, always pass 0.

536 NDK: Multiple and Inter-File Services

path

(IN) Points to the name to use in creating the file. Optionally, it can point to an absolute path if
dirHandle is zero. The characters in the string must be UTF-8.

NSOpen

(IN/OUT) Points to NW_NS_OPEN containing the information needed to open the entry.
Results of a successful open are also returned in NW_NS OPENCREATE.

fileHandle

(OUT) Points to the OS file handle; it returns zero if you are creating subdirectories. You can
use this handle with the OS functions for reading, writing, and closing.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x88F0 UTF8_CONVERSION_FAILED
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

Remarks

dirHandle can be zero if the path contains the complete path, including the volume name.
(dirHandle /path should match namSpc.)

If you are creating a directory, pass NULL to fileHandle.

OC_MODE _constants used in openCreateMode are listed below:

C Value Value Name

0x01 OC_MODE_OPEN

0x02 OC_MODE_TRUNCATE

0x02 OC_MODE_REPLACE

0x08 OC_MODE_CREATE

0x20 OPEN_64BIT_ACCESS allows users to access large files (64-bit).

See Section 20.8, “Search Attributes Values,” on page 627 for the possible values for the
searchAttributes field.

Name Space Functions 537

See Section 20.1, “Access Right Values,” on page 623 for the possible values for the
desiredAccessRights field.

OC_ACTION _ constants used in openCreateAction are listed below:

C Value Value Name

0x01 OC_ACTION_NONE

0x01 OC_ACTION_OPEN

0x02 OC_ACTION_CREATE
0x04 OC_ACTION_TRUNCATE
0x04 OC_ACTION_REPLACE

The file handle returned is appropriate for the platform the API is written for. This file handle may
be used for access to the attribute value through standard file I/O with the handle. This includes
closing the file as well as reading and writing to the file.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 66 File Close

0x2222 87 01 Open/Create File Or Subdirectory
0x2222 87 30 Open/Create File Or Subdirectory
0x2222 89 01 Open/Create File Or Subdirectory
0x2222 89 30 Open/Create File Or Subdirectory

See Also

NWDeleteNSEntryExt (page 468), NWOpenCreateNSEntryExt (page 527)

538 NDK: Multiple and Inter-File Services

NWQueryNSInfoFormat

Returns the NW_NS INFO structure to be used in getting and setting name space information

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM

Service: Name Space

Syntax

#include <nwnspace.h>

int NWQueryNSInfoFormat (
BYTE
BYTE

NW NS _INFO

Parameters

nameSpace

nameSpace,
volNum,
*nsInfo);

(IN) Specifies the name space to return information for (see Section 20.5, “Name Space Flag
Values,” on page 625).

volNum

(IN) Specifies the volume number to return information for.

nsInfo

(OUT) Points to an NW_NS_INFO structure.

Return Values

ESuccess or NetWare errors

Remarks

The nsInfo parameter points to an NW_NS INFO structure. This structure is defined in
nwnspace.h as follows:

typedef struct

{

LONG
LONG
LONG
LONG
WORD
WORD

nsInfoBitMask;
fixedBitMask;
reservedBitMask;
extendedBitMask;
fixedBitsDefined;
reservedBitsDefined;

Name Space Functions 539

WORD extendedBitsDefined;
LONG fieldsLenTable[32];
BYTE hugeStateInfo[l6];
LONG hugeDatalength;

} NW_NS_INFO;

See Also

NWGetNSInfo (NLM) (page 500), NWSetNSInfo (page 586)

540 NDK: Multiple and Inter-File Services

NWReadExtendedNSInfo

Reads the extended (huge) name space information for the specified name space
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>

or
#include <nwcalls.h>

NWCCODE N _API NWReadExtendedNSInfo (

NWCONN_ HANDLE conn,
const NW IDX N FAR *idxStruct,
NW NS INFO N_FAR *NSInfo,
pnuint8 data) ;

Delphi Syntax
uses calwin32

Function NWReadExtendedNSInfo
(conn : NWCONN_ HANDLE;
Var idxStruct : NW_IDX;
Var NSInfo : NW_NS INFO;
data : pnuint$8

) : NWCCODE;

Parameters
conn
(IN) Specifies the NetWare server connection handle.

idxStruct

(IN) Points to NW_IDX returned from NWNSGetMiscInfo.
NSInfo

(IN) Points to NW_NS_INFO returned from NWGetNSInfo.

data

(OUT) Points to a buffer containing the data from the name space.

Name Space Functions 541

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
Remarks

If extendedBitMaskis setin NW_NS INFO, NWReadExtendedNSInfo should be used to read
the extended information. extendedBitMask contains a Read-only information field that should
be preserved. The application must not manipulate extendedBitMask ; it must not be zero.

dstNameSpace and dstDirBase of NW_IDX are used to determine the target name space of
NWReadExtendedNSInfo.

NCP Calls

0x2222 87 26 Get Huge NS Information

See Also

NWGetDirectoryBase (page 474), NWGetNSInfo (page 498), NWNSGetMisclnfo (page 517),
NWWriteExtendedNSInfo (page 588)

542 NDK: Multiple and Inter-File Services

NWReadNSInfo

Reads name space information from the designated name space

Local Servers: blocking
Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWReadNSInfo (

NWCONN_ HANDLE conn,
const NW IDX N FAR *idxStruct,
const NW NS INFO N _FAR *NSInfo,
pnuint8 data) ;

Delphi Syntax
uses calwin32

Function NWReadNSInfo
(conn : NWCONN_ HANDLE;
Var idxStruct : NW_IDX;
Var NSInfo : NW_NS INFO;
data : pnuint$8

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

idxStruct

(IN) Points to NW_IDX returned from NWNSGetMiscInfo.

NSInfo

(IN) Points to NW_NS_INFO returned from NWGetNSInfo.

data

(OUT) Points to a 512-byte buffer receiving data from the name space.

Name Space Functions 543

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0Ox890A NLM_INVALID_CONNECTION
Remarks

NSInfoBitMask bit definitions follow:

C Value Delphi Value Constant

0x0002L $0002 DM_ATTRIBUTES

0x0004L $0004 DM_CREATE_DATE
0x0008L $0008 DM_CREATE_TIME
0x0010L $0010 DM_CREATOR_ID
0x0020L $0020 DM_ARCHIVE_DATE
0x0040L $0040 DM_ARCHIVE_TIME
0x0080L $0080 DM_ARCHIVER_ID
0x0100L $0100 DM_MODIFY_DATE
0x0200L $0200 DM_MODIFY_TIME
0x0400L $0400 DM_MODIFIER_ID
0x0800L $0800 DM_LAST_ACCESS_DATE
0x1000L $1000 DM_INHERITED_RIGHTS_MASK
0x2000L $2000 DM_MAXIMUM_SPACE
NCP Calls

0x2222 87 19 Get NS Information

See Also

NWGetNSEntrylnfo (page 487), NWWriteNSInfo (page 590)

544 NDK: Multiple and Inter-File Services

NWReadNSInfoExt

Reads name space information from the designated name space, using UTF-8 strings.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWReadNSInfoExt (

NWCONN_ HANDLE conn,
const NW IDX N FAR *idxStruct,
const NW NS INFO N _FAR *NSInfo,
pnuint8 data) ;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

idxStruct
(IN) Points to NW_IDX returned from NWGetDirectoryBaseExt (page 477).

NSInfo
(IN) Points to NW_NS_INFO returned from NWGetNSInfo (page 498).

data
(OUT) Points to a 1024-byte buffer receiving data from the name space.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL
0x8801 INVALID_CONNECTION
0x88F0 UTF8_CONVERSION_FAILED

Name Space Functions 545

0x890A NLM_INVALID_CONNECTION

Remarks

NSInfoBitMask bit definitions follow:

C Value Constant

0x0002L DM_ATTRIBUTES

0x0004L DM_CREATE_DATE
0x0008L DM_CREATE_TIME
0x0010L DM_CREATOR_ID
0x0020L DM_ARCHIVE_DATE
0x0040L DM_ARCHIVE_TIME
0x0080L DM_ARCHIVER_ID
0x0100L DM_MODIFY_DATE
0x0200L DM_MODIFY_TIME
0x0400L DM_MODIFIER_ID
0x0800L DM_LAST_ACCESS_DATE
0x1000L DM_INHERITED_RIGHTS_MASK
0x2000L DM_MAXIMUM_SPACE

NCP Calls

0x2222 87 19 Get NS Information
0x2222 89 19 Get NS Information

See Also

NWGetNSEntryInfoExt (page 492), NWGetNSInfo (page 498), NWWriteNSInfoExt (page 592)

546 NDK: Multiple and Inter-File Services

NWScanNSDirectoryForTrustees

Scans a directory for trustees using the specified path and directory handle under a specified name

space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N API NWScanNSDirectoryForTrustees

NWCONN HANDLE conn,
nuint8 namSpc,
nuint8 dirHandle,
const nstr8 N _FAR *pbstrSrchPath,
pnuint32 plulterHnd,
pnstr8 pbstrDirName,
pnuint32 pluDirDateTime,
pnuint32 pluOwnerID,
TRUSTEE INFO N FAR *trusteelist) ;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

namSpc

(

(IN) Specifies the name space of the dirHandle/srchPath combination (see Section 20.5, “Name

Space Flag Values,” on page 625).

dirHandle

(IN) Specifies the NetWare directory handle for the directory being scanned (0 if the srchPath
parameter points to the complete path, including the volume name)

pbstrSrchPath

(IN) Points to an absolute directory path (or a path relative to the directory handle) and a search

pattern

Name Space Functions 547

plulterHnd
(IN/OUT) Points to the sequence number to be used for subsequent calls (0 initially)

pbstrDirName
(OUT) Points to the directory name found (optional, up to 256 bytes)

pluDirDateTime
(OUT) Points to the creation date and time of the directory (optional)

pluOwnerID
(OUT) Points to the object ID of the directory owner (optional)

trusteelist
(OUT) Points to an array of 20 TRUSTEE _INFO structures

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL
0x8801 INVALID_CONNECTION
0x898C NO_MODIFY_PRIVILEGES
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT _EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C NO_MORE_TRUSTEES
IINVALID_PATH
Remarks

Directories can have any number of objects as trustees. The directory trustees are stored and
retrieved in groups on the server. To obtain a complete list, use the i terHandle parameter.

NWScanNSDirectoryForTrustees increments the value referenced by the iterHandle parameter
to the next appropriate value. For subsequent calls, pass in the new value of the iterHandle
parameter.

Trustees are returned in groups of 20 TRUSTEE INFO structures. Due to subtle differences in
operation, trustees may remain after an iteration, even though not all 20 positions are filled. If a
position is not filled, the objectID field of TRUSTEE INFO has to a value of OL.

NWScanNSDirectoryForTrustees should be called until iterHandle is -1 or it returns 0x899C
(NO_MORE_TRUSTEES). Because 0x899C also means INVALID PATH, ensure the
dirHandle/pbstrSrchPath parameter combination is correct.

NULL can be substituted for all optional items. However, all parameter positions must be filled.

548 NDK: Multiple and Inter-File Services

NCP Calls

0x2222 87 05 Scan File Or Subdirectory For Trustees
0x2222 87 06 Obtain File or Subdirectory Information
See Also

NWAddTrustee (page 153), NWAddTrusteeToDirectory (page 158), NWAddTrusteeToNSDirectory
(page 456), NWDeleteTrustee (page 180), NWDeleteTrusteeFromDirectory (page 184),
NWDeleteTrusteeFromNSDirectory (page 470), NWScanDirectoryForTrustees2 (page 269)

Name Space Functions 549

NWScanNSDirectoryForTrusteesExt

Scans a directory for trustees using the specified path and directory handle under a specified name
space using a UTF-8 seach path

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N API NWScanNSDirectoryForTrusteesExt (

NWCONN HANDLE conn,
nuint8 namSpc,
nuint8 dirHandle,
const nstr8 N _FAR *pbstrSrchPath,
pnuint32 plulterHnd,
pnstr8 pbstrDirName,
pnuint32 pluDirDateTime,
pnuint32 pluOwnerID,
TRUSTEE INFO N FAR *trusteelist);
Parameters
conn

(IN) Specifies the NetWare server connection handle.

namSpc
(IN) Specifies the name space of the dirHandle/srchPath combination (see Section 20.5, “Name
Space Flag Values,” on page 625).

dirHandle
(IN) Specifies the NetWare directory handle for the directory being scanned (0 if the srchPath
parameter points to the complete path, including the volume name)

pbstrSrchPath

(IN) Points to an absolute directory path (or a path relative to the directory handle) and a search
pattern

550 NDK: Multiple and Inter-File Services

plulterHnd

(IN/OUT) Points to the sequence number to be used for subsequent calls (0 initially)

pbstrDirName
(OUT) Points to the directory name found (optional, up to 256 bytes)

pluDirDateTime
(OUT) Points to the creation date and time of the directory (optional)

pluOwnerID
(OUT) Points to the object ID of the directory owner (optional)

trusteelist
(OUT) Points to an array of 20 TRUSTEE_INFO structures

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL
0x8801 INVALID_CONNECTION
0x898C NO_MODIFY_PRIVILEGES
0x8996 SERVER_OUT_OF_MEMORY
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C NO_MORE_TRUSTEES
IINVALID_PATH
Remarks

Directories can have any number of objects as trustees. The directory trustees are stored and
retrieved in groups on the server. To obtain a complete list, use the i terHandle parameter.

NWScanNSDirectoryForTrustees increments the value referenced by the i terHandle parameter
to the next appropriate value. For subsequent calls, pass in the new value of the iterHandle

parameter.

Trustees are returned in groups of 20 TRUSTEE INFO structures. Due to subtle differences in
operation, trustees may remain after an iteration, even though not all 20 positions are filled. If a

position is not filled, the objectID field of TRUSTEE INFO has to a value of OL.

NWScanNSDirectoryForTrustees should be called until iterHandle is -1 or it returns 0x899C

(NO_MORE_TRUSTEES). Because 0x899C also means INVALID PATH, ensure the
dirHandle/pbstrSrchPath parameter combination is correct.

NULL can be substituted for all optional items. However, all parameter positions must be filled.

Name Space Functions 551

NCP Calls

0x2222 87 05 Scan File Or Subdirectory For Trustees
0x2222 87 06 Obtain File or Subdirectory Information
See Also

NWAddTrustee (page 153), NWAddTrusteeToDirectory (page 158), NWAddTrusteeToNSDirectory
(page 456), NWDeleteTrustee (page 180), NWDeleteTrusteeFromDirectory (page 184),
NWDeleteTrusteeFromNSDirectory (page 470), NWScanDirectoryForTrustees2 (page 269)

552 NDK: Multiple and Inter-File Services

NWScanNSEntryinfo

Obtains directory entry information using a specific name space

Local Servers: blocking
Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWScanNSEntryInfo (

NWCONN_ HANDLE conn,

nuint8 dirHandle,
nuint8 namSpc,
nuintlo attrs,
SEARCH SEQUENCE N _FAR *sequence,
const nstr8 N _FAR *srchPattern,
nuint32 retInfoMask,
NW_ENTRY INFO N_FAR *entryInfo);

Delphi Syntax
uses calwin32

Function NWScanNSEntryInfo
(conn : NWCONN_ HANDLE;

dirHandle : nuint8;

namSpc : nuint8;

attrs : nuintl6;

Var sequence : SEARCH SEQUENCE;
const searchPattern : pnstr8;

retInfoMask : nuint32;
Var entryInfo : NW_ENTRY INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Name Space Functions 553

dirHandle

(IN) Specifies the directory handle associated with the directory to scan. Must point to the
parent directory.

namSpc
(IN) Specifies the name space of dirHandle (see Section 20.5, “Name Space Flag Values,”
on page 625).

attr

(IN) Specifies the attributes to be used for the scan (see Section 20.8, “Search Attributes
Values,” on page 627).

sequence
(IN/OUT) Points to SEARCH_SEQUENCE.

srchPattern

(IN) Points to the name of the entry for which to scan (wildcards are allowed).

retInfoMask

(IN) Specifies the information to return (see Section 20.6, “Basic Return Mask Values,” on
page 625 and don't use the Extended Return Mask Values).

entryInfo
(OUT) Points to NW_ENTRY INFO.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x890A NLM_INVALID_CONNECTION
Remarks

NWScanNSEntrylnfo can be used iteratively with wild cards. On the first call,
searchDirNumber in the SEARCH_SEQUENCE structure should be set to -1. After that, the
server manages the information.

retInfoMask is used to determine which fields of NW_ENTRY INFO to return. nameLength
and entryName are always returned in NWScanNSEntryInfo.

To request information from a server, a client sets the appropriate bit or bits of ret InfoMask and
sends a request packet to the server.

554 NDK: Multiple and Inter-File Services

NCP Calls

0x2222 87 02 Initialize Search
0x2222 87 03 Search For File Or Subdirectory

See Also

NWGetNSEntrylnfo (page 487)

Name Space Functions 555

NWScanNSEntrylnfoExt

Obtains directory entry information, using a specific name space and UTF-8 strings.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWScanNSEntryInfoExt (

NWCONN_ HANDLE conn,

nuint8 dirHandle,
nuint8 namSpc,
nuintlé6 attrs,
SEARCH SEQUENCE N FAR *sequence,
const nstr8 N FAR *srchPattern,
nuint32 retInfoMask,

NW _ENTRY INFO EXT N FAR *entryInfo);

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the directory to scan. Must point to the
parent directory.

namSpc
(IN) Specifies the name space of dirHandle (see Section 20.5, “Name Space Flag Values,”
on page 625).

attr

(IN) Specifies the attributes to be used for the scan (see Section 20.8, “Search Attributes
Values,” on page 627).

sequence
(IN/OUT) Points to SEARCH_SEQUENCE.

556 NDK: Multiple and Inter-File Services

srchPattern

(IN) Points to the name of the entry for which to scan (wildcards are allowed).

retInfoMask

(IN) Specifies the information to return (see Section 20.6, “Basic Return Mask Values,” on
page 625 and don't use the Extended Return Mask Values).

entryInfo
(OUT) Points to NW_ENTRY INFO_EXT.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x88F0 UTF8 CONVERSION_FAILED
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x890A NLM_INVALID_CONNECTION
Remarks

NWScanNSEntryInfoExt can be used iteratively with wild cards. On the first call,
searchDirNumber in the SEARCH_ SEQUENCE structure should be set to -1. After that, the
server manages the information.

retInfoMask is used to determine which fields of NW_ENTRY INFO to return. nameLength
and entryName are always returned in NWScanNSEntryInfoExt.

To request information from a server, a client sets the appropriate bit or bits of ret InfoMask and
sends a request packet to the server.

NCP Calls

0x2222 87 02 Initialize Search
0x2222 87 03 Search For File Or Subdirectory
0x2222 89 02 Initialize Search
0x2222 89 03 Search For File Or Subdirectory

See Also

NWGetNSEntryInfoExt (page 492)

Name Space Functions 557

NWScanNSEntrylnfo2

Obtains directory entry information, returning more information and using network bandwidth more
efficiently than the NWScanNSEntryInfo function.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.11, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWScanNSEntryInfo2 (

NWCONN HANDLE conn,

nuint8 dirHandle,
nuint8 namSpc,
nuintlé6 attrs,
SEARCH SEQUENCE N _FAR *sequence,
const nstr8 N _FAR *srchPattern,
nuint32 retInfoMask,

NW_ENTRY INFO2 N FAR *entryInfo);

Delphi Syntax

Function NWScanNSEntryInfo2 (
conn : NWCONN HANDLE;
dirHandle:nuint8;
namSpc: nuint8;

attrs : nuintlo6;
Var sequence : SEARCH SEQUENCE;
const srchPattern : pnstr§;

retInfoMask : nuint32;
Var entryInfo : NW_ENTRY INFOZ
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

558 NDK: Multiple and Inter-File Services

dirHandle

(IN) Specifies the directory handle associated with the directory to scan (must be valid and
cannot be zero).

namSpc
(IN) Specifies the name space of dirHandle (see Section 20.5, “Name Space Flag Values,”
on page 625).

attr

(IN) Specifies the attributes to be used for the scan (see Section 20.8, “Search Attributes
Values,” on page 627).

sequence
(IN/OUT) Points to SEARCH_SEQUENCE.

srchPattern

(IN) Points to the name of the entry for which to scan (wildcards are allowed).

retInfoMask

(IN) Specifies the information to return (see Section 20.6, “Basic Return Mask Values,” on
page 625 and Section 20.7, “Extended Return Mask Values,” on page 626).

entryInfo
(OUT) Points to the NW_ENTRY _INFO?2 structure.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8813 INVALID_DIR_HANDLE
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x890A NLM_INVALID_CONNECTION
0x89FF NO_FILES_FOUND
Remarks

NWScanNSEntrylnfo2 can be used iteratively with wildcards. On the first iteration, set
searchDirNumber in the SEARCH_SEQUENCE structure to -1. After that, the server manages
the information.

The ret InfoMask parameter is used to determine which fields of NW_ENTRY INFO?2 to return;
nameLength and entryName are always returned in NWScanNSEntryInfo2.

Name Space Functions 559

To request information from a server, a client sets the appropriate bit or bits of ret InfoMask and
sends a request packet to the server.

NCP Calls

0x2222 87 02 Initialize Search
0x2222 87 03 Search For File Or Subdirectory

See Also

NWGetNSEntrylnfo (page 487), NWScanNSEntryInfo (page 553)

560 NDK: Multiple and Inter-File Services

NWScanNSEntryinfoSet

Scans a set of directory and file entry information by using a specific name space.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT*, Windows* 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE NWScanNSEntryInfoSet (

NWCONN_ HANDLE conn,
NWDIR HANDLE dirHandle,
nuint8 buNameSpace,
nuintlo sulAttr,
SEARCH SEQUENCE N _FAR *plIterHnd,
const nstr8 N_FAR *pbstrSrchPattern,
nuint32 luRetMask,
pnuint8 pbuMoreEntriesFlag,
punintlo6 psuNumReturned,
nuintlo6 suNumItems,
NW_ENTRY INFO N_FAR *pEntryInfo) ;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the directory to be scanned (must be the

parent directory handle).

buNameSpace

(IN) Specifies the name space of dirHandle (see Section 20.5, “Name Space Flag Values,’

on page 625).

suAttr

’

(IN) Specifies the attributes to be used for the scan (see Section 20.8, “Search Attributes

Values,” on page 627).

Name Space Functions 561

pIterHnd
(IN/OUT) Points to SEARCH_SEQUENCE.

pbstrSrchPattern

(IN) Points to the name of the entry for which to scan (wildcards are allowed).

luRetMask

(IN) Specifies which information is to be returned in the array pointed to by pEntryInfo
(see Section 20.6, “Basic Return Mask Values,” on page 625-this parameter cannot take
Extended Return Mask Values).

pbuMoreEntriesFlag

(OUT) Points to a flag indicating whether more entries are avilable:

0xFF More entries are available
0 No more entries are available

psuNumReturned

(OUT) Points to a value indicating how many NW_ENTRY INFO structures were actually
returned in the pEntryInfo array.

suNumItems

(IN) Specifies the size of the array pointed to by pEntryInfo.

pEntryInfo
(OUT) Points to an array of NW_ENTRY _INFO structures.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x890A NLM_INVALID_CONNECTION
Remarks

NWScanNSEntrylnfoSet is a version of NWScanNSEntryInfo that has been enhanced to return a list
of entry information.

For the first request, the searchDirNumber field in SEARCH SEQUENCE should be set to -1.
Thereafter, the server manages the information; users should never directly change the value.

562 NDK: Multiple and Inter-File Services

NCP Calls

0x2222 87 20 Search for File or SubDirectory Set

See Also

NWGetNSEntryInfo (page 487), NWGetNSInfo (page 498), NWSetNSInfo (page 586)

Name Space Functions 563

NWScanNSEntrylnfoSet2

Scans a set of directory and file entry information by using a specific extended name space.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT*, Windows* 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE NWScanNSEntryInfoSet2 (

NWCONN_HANDLE conn,
NWDIR HANDLE dirHandle,
nuint8 buNameSpace,
nuintlo sulAttr,
SEARCH SEQUENCE N _FAR *pIterHnd,
const nstr8 N _FAR *pbstrSrchPattern,
nuint32 luRetMask,
pnuint8 pbuMoreEntriesFlag,
punintlo6 psuNumReturned,
nuintlo6 suNumItems,
NW_ENTRY INFO2 N _FAR *pEntryInfo2) ;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle associated with the directory to be scanned (must be the
parent directory handle).

buNameSpace
(IN) Specifies the name space of dirHandle (see Section 20.5, “Name Space Flag Values,”
on page 625).

suAttr

(IN) Specifies the attributes to be used for the scan (see Section 20.8, “Search Attributes
Values,” on page 627).

564 NDK: Multiple and Inter-File Services

pIterHnd
(IN/OUT) Points to SEARCH_SEQUENCE.

pbstrSrchPattern

(IN) Points to the name of the entry for which to scan (wildcards are allowed).

luRetMask

(IN) Specifies which information is to be returned in the array pointed to by pEntryInfo
(see Section 20.6, “Basic Return Mask Values,” on page 625 and Section 20.7, “Extended
Return Mask Values,” on page 626).

pbuMoreEntriesFlag

(OUT) Points to a flag indicating whether more entries are avilable:

0xFF More entries are available
0 No more entries are available

psuNumReturned

(OUT) Points to a value indicating how many NW_ENTRY INFO structures were actually
returned in the pEntryInfo array.

suNumItems

(IN) Specifies the size of the array pointed to by pEntryInfo.

pPEntryInfo2
(OUT) Points to an array of NW_ENTRY _INFO structures.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x890A NLM_INVALID_CONNECTION
Remarks

NWScanNSEntrylnfoSet is a version of NWScanNSEntryInfo that has been enhanced to return a list
of entry information.

For the first request, the searchDirNumber field in SEARCH SEQUENCE should be set to -1.
Thereafter, the server manages the information; users should never directly change the value.

Name Space Functions 565

NCP Calls

0x2222 87 20 Search for File or SubDirectory Set

See Also

NWGetNSEntryInfo (page 487), NWGetNSInfo (page 498), NWSetNSInfo (page 586)

566 NDK: Multiple and Inter-File Services

NWScanNSEntrylnfoSet2Ext

Scans a set of directory and file entry information by using a specific name space using UTF-8
strings.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT*, Windows* 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE NWScanNSEntryInfoSet2Ext (

NWCONN HANDLE conn,
NWDIR HANDLE dirHandle,
nuint8 buNameSpace,
nuintlé SuAttr,
SEARCH SEQUENCE N FAR *plIterHnd,
const nstr8 N _FAR *pbstrSrchPattern,
nuint32 luRetMask,
pnuints8 pbuMoreEntriesFlag,
punintl6 psuNumReturned,
nuintlé suNumItems,
NWScanNSEntryInfoSet2Ext N _FAR *pEntryInfo2);
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle associated with the directory to be scanned (must be the
parent directory handle).

buNameSpace
(IN) Specifies the name space of dirHandle (see Section 20.5, “Name Space Flag Values,”
on page 625).

suAttr

(IN) Specifies the attributes to be used for the scan (see Section 20.8, “Search Attributes
Values,” on page 627).

Name Space Functions 567

pIterHnd
(IN/OUT) Points to SEARCH_SEQUENCE.

pbstrSrchPattern

(IN) Points to the name of the entry for which to scan (wildcards are allowed).

luRetMask

(IN) Specifies which information is to be returned in the array pointed to by pEntryInfo
(see Section 20.6, “Basic Return Mask Values,” on page 625 and Section 20.7, “Extended
Return Mask Values,” on page 626).

pbuMoreEntriesFlag

(OUT) Points to a flag indicating whether more entries are avilable:

0xFF More entries are available
0 No more entries are available

psuNumReturned

(OUT) Points to a value indicating how many NW_ENTRY INFO structures were actually
returned in the pEntryInfo array.

suNumItems

(IN) Specifies the size of the array pointed to by pEntryInfo.

PEntryInfo2
(OUT) Points to an array of NW_ENTRY _INFO structures.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x890A NLM_INVALID_CONNECTION
Remarks

NWScanNSEntrylnfoSet is a version of NWScanNSEntryInfo that has been enhanced to return a list
of entry information.

For the first request, the searchDirNumber field in SEARCH SEQUENCE should be set to -1.
Thereafter, the server manages the information; users should never directly change the value.

568 NDK: Multiple and Inter-File Services

NCP Calls

0x2222 87 20 Search for File or SubDirectory Set

See Also

NWGetNSEntryInfo (page 487), NWGetNSInfo (page 498), NWSetNSInfo (page 586)

Name Space Functions 569

NWScanNSEntrylnfoSetExt

Scans a set of directory and file entry information by using a specific name space using UTF-8
strings.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT*, Windows* 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE NWScanNSEntryInfoSetExt (

NWCONN HANDLE conn,
NWDIR HANDLE dirHandle,
nuint8 buNameSpace,
nuintlé6 SuAttr,
SEARCH SEQUENCE N _FAR *pIterHnd,
const nstr8 N _FAR *pbstrSrchPattern,
nuint32 luRetMask,
pnuint8 pbuMoreEntriesFlag,
punintlé6 psuNumReturned,
nuintlé6 suNumItems,
NW_ENTRY INFO EXT N_FAR *pEntryInfo) ;
Parameters
conn

(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle associated with the directory to be scanned (must be the
parent directory handle).

buNameSpace
(IN) Specifies the name space of dirHandle (see Section 20.5, “Name Space Flag Values,”
on page 625).

suAttr

(IN) Specifies the attributes to be used for the scan (see Section 20.8, “Search Attributes
Values,” on page 627).

570 NDK: Multiple and Inter-File Services

pIterHnd
(IN/OUT) Points to SEARCH_SEQUENCE.

pbstrSrchPattern

(IN) Points to the name of the entry for which to scan (wildcards are allowed).

luRetMask

(IN) Specifies which information is to be returned in the array pointed to by pEntryInfo
(see Section 20.6, “Basic Return Mask Values,” on page 625-this parameter cannot take
Extended Return Mask Values).

pbuMoreEntriesFlag

(OUT) Points to a flag indicating whether more entries are avilable:

0xFF More entries are available
0 No more entries are available

psuNumReturned

(OUT) Points to a value indicating how many NW_ENTRY INFO structures were actually
returned in the pEntryInfo array.

suNumItems

(IN) Specifies the size of the array pointed to by pEntryInfo.

pEntryInfo
(OUT) Points to an array of NW_ENTRY _INFO structures.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x890A NLM_INVALID_CONNECTION
Remarks

NWScanNSEntrylnfoSet is a version of NWScanNSEntryInfo that has been enhanced to return a list
of entry information.

For the first request, the searchDirNumber field in SEARCH SEQUENCE should be set to -1.
Thereafter, the server manages the information; users should never directly change the value.

Name Space Functions 571

NCP Calls

0x2222 87 20 Search for File or SubDirectory Set

See Also

NWGetNSEntryInfo (page 487), NWGetNSInfo (page 498), NWSetNSInfo (page 586)

572 NDK: Multiple and Inter-File Services

NWSetHugeNSInfo

Sets extended (huge) NS information for the entry specified by vol1Num, nameSpace, and
dirBase

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.12, 3.2, 4.x, 5.x, 6.x
Platform: NLM

Service: Name Space

Syntax
#include <nwnspace.h>

int NWSetHugeNSInfo (

BYTE volNum,

BYTE nameSpace,
LONG dirBase,

LONG hugeInfoMask,

BYTE *hugeStatelInfo,
LONG *hugeDatalen,

BYTE *hugeData,

BYTE *nextHugeStatelInfo,
LONG *hugeDataUsed) ;

Parameters

volNum

(IN) Specifies the volume number for which to set huge NS information.

nameSpace

(IN) Specifies the name space for which to set huge information (see Section 20.5, “Name
Space Flag Values,” on page 625).

dirBase

(IN) Specifies the directory base (or number) for the entry for which to set information.

hugeInfoMask
(IN) Specifies the bit map that indicates which types of information is being set.

hugeStateInfo

(IN)Points to the information that helps the name space transfer the data across the wire. The
hugeStateInfo is information that was returned by a previous call to NWGetHugeNSInfo.

hugeDatalLen
(IN) Points to the length of the huge data to be set.

Name Space Functions 573

hugeData
(IN) Points to the data to be set as specified in the hugeInfoMask.

nextHugeStatelInfo

(OUT) Points to the huge state information that should be passed in on the next call to this
function should all the information not fit in one packet.

hugeDataUsed
(OUT) Points to the number of bytes that were actually set by the name space.

Return Values

ESuccess or NetWare errors

Remarks

This function sets extended NS information for an entry in the specified name space.

See Also

NWGetDirBaseFromPath (page 640), NWGetHugeNSInfo (page 479), NWQueryNSInfoFormat
(page 539)

574 NDK: Multiple and Inter-File Services

NWSetLongName

Renames an entry in the specified name space, given a path specifying the entry name
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWSetLongName (

NWCONN_ HANDLE conn,
nuint8 dirHandle,
nuint8 namSpc,
const nstr8 N _FAR *dstPath,
nuintlé dstType,

const nstr8 N _FAR *longName) ;

Delphi Syntax
uses calwin32

Function NWSetLongName
(conn : NWCONN_ HANDLE;
dirHandle : nuint8;
namSpc : nuint8;
dstPath : pnstr8;
dstType : nuintl6;
longName : pnstr8

) : NWCCODE;

Parameters
conn
(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle of the parent directory.

Name Space Functions 575

namSpc

(IN) Specifies the name space of dstPath (see Section 20.5, “Name Space Flag Values,” on
page 625).

dstPath

(IN) Points to the name of the directory or file to rename.

dstType
(IN) Specifies the directory or file type that dstPath points to.

longName

(IN) Points to the new name (256 bytes maximum).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x8998 VOLUME_DOES_NOT_EXIST
0x899B BAD_DIRECTORY_HANDLE
0x899C INVALID_PATH

0x899E INVALID_FILENAME
Remarks

dirHandle must point to the parent directory.

dstPath and 1ongName must be valid names containing only one component. di rHandle will
specify the path where the one component is located.

dstType can take on the following values:

C Value Delphi Value Value Name
0x8000 $0800 NW_TYPE_FILE
0x0010 $0010 NW_TYPE_SUBDIR

Resetting a filename in one name space resets the name in all name spaces. The shortening
algorithm is used for the DOS and/or Macintosh name spaces, if appropriate.

AFP directory and file names contain from 1 to 31 characters and consist of a Delphi string preceded
by one byte which specifies the length of the name. AFP names can contain any ASCII character

between 1 and 255 except the colon (:) but cannot be terminated by a NULL character (character 0).
NetWare servers automatically generate DOS-style file names (short names) for all AFP directories,

576 NDK: Multiple and Inter-File Services

as well as for created files and accessed files. NetWare servers maintain both the AFP name and the
short name for each AFP directory and file.

For explanation of how long names are converted to DOS style names, see “NetWare 4.x” on
page 440 and “NetWare 5.x and 6.x” on page 442.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 87 04 Rename Or Move A File Or Subdirectory

See Also

NWGetLongName (page 481)

Name Space Functions 577

NWSetNameSpaceEntryName

Sets the name of a file or directory in the specified name space
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.12,3.2,4.x, 5.x, 6.X

Platform: NLM

Service: Name Space

Syntax

#include <nwnspace.h>

int NWSetNameSpaceEntryName (
BYTE *path,
LONG nameSpace,
BYTE *nameSpaceEntryName) ;

Parameters

path

(IN) Points to the path of the file system entry to set a name space entry name for.

nameSpace

(IN) Specifies the name space to set the file or directory name for (see Section 20.5, “Name
Space Flag Values,” on page 625).

nameSpaceEntryName

(IN) Points to an ASCIIZ string that specifies the new file or directory name in the specified
name space.

Return Values

ESuccess or NetWare errors

Remarks

This function sets the file system entry’s name in the specified name space only. The naming change
is not reflected in the other name space entries.

See Also

NWSetNameSpaceEntryName (page 578)

578 NDK: Multiple and Inter-File Services

Example

See the example for NWGetNameSpaceEntryName (page 485).

Name Space Functions 579

NWSetNSEntryDOSInfo

Modifies information in one name space using a path from another name space
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>

or
#include <nwcalls.h>

NWCCODE N _API NWSetNSEntryDOSInfo (

NWCONN_HANDLE conn,

nuint8 dirHandle,
const nstr8 N _FAR *path,

nuint8 namSpc,
nuintlo searchAttrs,
nuint32 modifyDOSMask,

MODIFY DOS INFO N _FAR *dosInfo);

Delphi Syntax
uses calwin32

Function NWSetNSEntryDOSInfo
(conn : NWCONN_ HANDLE;
dirHandle : nuint8;
path : pnstr8;
namSpc : nuint8;
searchAttrs : nuintlé6;
modifyDOSMask : nuint32;

Var dosInfo : MODIFY DOS INFO

) : NWCCODE;

Parameters
conn
(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle of the parent directory.

580 NDK: Multiple and Inter-File Services

path
(IN) Points to the path.

namSpc

(IN) Specifies the name space of dirHandle and path (see Section 20.5, “Name Space Flag

Values,” on page 625).

searchAttrs

(IN) Specifies the search attributes to use.

modifyDOSMask

(IN) Specifies the information to set.

dosInfo

(IN) Points to MODIFY_DOS_INFO containing the information specified by
luModifyDOSMask.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL
Ox89FF NO_FILES_FOUND_ERROR
Remarks

suSrchAttr can have the following values:

C Value Delphi Value Value Name

0x0002 $0002 SA_HIDDEN
0x0004 $0004 SA_SYSTEM
0x0010 $0010 SA_SUBDIR_ONLY
0x8000 $8000 SA_SUBDIR_FILES

luModifyDOSMask can have the following values:

C Value Delphi Value Value Name

0x0002L $0002 DM_ATTRIBUTES
0x0004L $0004 DM_CREATE_DATE
0x0008L $0008 DM_CREATE_TIME
0x0010L $0010 DM_CREATOR_ID
0x0020L $0020 DM_ARCHIVE_DATE
0x0040L $0040 DM_ARCHIVE_TIME

Name Space Functions 581

C Value Delphi Value Value Name

0x0080L $0080 DM_ARCHIVER_ID

0x0100L $0100 DM_MODIFY_DATE

0x0200L $0200 DM_MODIFY_TIME

0x0400L $0400 DM_MODIFIER_ID; cannot be set for subdirectories
0x0800L $0800 DM_LAST_ACCESS_DATE; cannot be set for subdirectories
0x1000L $1000 DM_INHERITED_RIGHTS_MASK

0x2000L $2000 DM_MAXIMUM_SPACE

DM_MODIFIER ID and DM_LAST ACCESS DATE cannot be used when the suSrchAttr
parameter contains SA_SUBDIR_ONLY. The server masks off DM_MODIFIER ID and

DM _LAST ACCESS_DATE on subdirectories. If the resultant mask is 0x0000, the server will
return NO_FILES FOUND ERROR indicating DM_MODIFIER ID and

DM _LAST ACCESS DATE were not set. If the resultant mask still contains a return value other
than SUCCESSFUL, NWSetNSEntryDOSInfo will set the remaining bits and return SUCCESSFUL
even though DM_MODIFIER ID and DM_LAST ACCESS DATE were not set.

NCP Calls

0x2222 87 07 Modify File or Subdirectory DOS Information

582 NDK: Multiple and Inter-File Services

NWSetNSEntryDOSInfoExt

Modifies information in one name space using a path from another name space and
UTF-8 strings

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP
Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N _API NWSetNSEntryDOSInfoExt (

NWCONN_HANDLE conn,

nuint8 dirHandle,
const nstr8 N FAR *path,

nuint8 namSpc,
nuintlo6 searchAttrs,
nuint32 modifyDOSMask,

MODIFY DOS INFO N FAR *dosInfo);

Parameters
conn
(IN) Specifies the NetWare server connection handle.

dirHandle
(IN) Specifies the directory handle of the parent directory.

path
(IN) Points to the path. The characters in the string must be UTF-8.
namSpc

(IN) Specifies the name space of dirHandle and path (see Section 20.5, “Name Space Flag
Values,” on page 625).

searchAfttrs

(IN) Specifies the search attributes to use (see Remarks for values).

Name Space Functions 583

modifyDOSMask

(IN) Specifies the information to set (see Remarks for values).

dosInfo

(IN) Points to MODIFY_ DOS_INFO containing the information specified by
luModifyDOSMask.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x88F0 UTF8_CONVERSION_FAILED
0x89FF NO_FILES_FOUND_ERROR
Remarks

suSrchAttr can have the following values:

C Value Value Name

0x0002 SA_HIDDEN
0x0004 SA_SYSTEM
0x0010 SA_SUBDIR_ONLY
0x8000 SA_SUBDIR_FILES

luModifyDOSMask can have the following values:

C Value Value Name

0x0002L DM_ATTRIBUTES

0x0004L DM_CREATE_DATE

0x0008L DM_CREATE_TIME

0x0010L DM_CREATOR_ID

0x0020L DM_ARCHIVE_DATE

0x0040L DM_ARCHIVE_TIME

0x0080L DM_ARCHIVER_ID

0x0100L DM_MODIFY_DATE

0x0200L DM_MODIFY_TIME

0x0400L DM_MODIFIER_ID; cannot be set for subdirectories
0x0800L DM_LAST_ACCESS_DATE; cannot be set for subdirectories

584 NDK: Multiple and Inter-File Services

C Value Value Name

0x1000L DM_INHERITED_RIGHTS_MASK
0x2000L DM_MAXIMUM_SPACE

DM_MODIFIER ID and DM_LAST ACCESS DATE cannot be used when the suSrchAttr
parameter contains SA_SUBDIR_ONLY. The server masks off DM_MODIFIER ID and

DM _LAST ACCESS_DATE on subdirectories. If the resultant mask is 0x0000, the server will
return NO_FILES FOUND_ ERROR indicating DM_MODIFIER _ID and

DM_LAST ACCESS_DATE were not set. If the resultant mask still contains a return value other
than SUCCESSFUL, NWSetNSEntryDOSInfoExt will set the remaining bits and return
SUCCESSFUL even though DM_MODIFIER ID and DM_LAST ACCESS DATE were not set.

NCP Calls

0x2222 87 07 Modify File or Subdirectory DOS Information
0x2222 89 07 Modify File or Subdirectory DOS Information

Name Space Functions 585

NWSetNSinfo

Sets specific NS information for a directory entry specified by vo1Num, nameSpace, and
dirBase

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11,3.12, 3.2, 4.x, 5.x, 6.x
Platform: NLM

Service: Name Space

Syntax
#include <nwnspace.h>

int NWSetNSInfo (

BYTE volNum,

BYTE srcNameSpace,

BYTE dstNameSpace,

LONG dirBase,

LONG nsInfoMask,

LONG nsSpecificInfolen,

BYTE *nsSpecificInfo);

Parameters

volNum

(IN) Specifies the volume number for which information is being set.

srcNameSpace
(IN) Specifies the name space that corresponds with the dirBase being passed (see
Section 20.5, “Name Space Flag Values,” on page 625). The name space currently being
worked with is the default.

dstNameSpace
(IN) Specifies the name space to which information is being set (see Section 20.5, “Name
Space Flag Values,” on page 625).

dirBase

(IN) Specifies the directory base (or number) for the entry on which information is being set.

nsInfoMask

(IN) Specifies the bit map that indicates which types of information the user is setting in the
data parameter.

nsSpecificinfolen
(IN) Specifies the length of the data being set.

586 NDK: Multiple and Inter-File Services

nsSpecificInfo
(IN) Points to that is being set as indicated in the nsInfoMask.
Return Values

ESuccess or NetWare errors

Remarks

If the current name space is NFS, a value of 2 (for NFS) would be passed as srcNameSpace. If,
however, the returned information should be in another format, for example LONG, a value of 4
would be passed as the dstNameSpace.

See “DOS Name Space Bit Mask™ on page 439.

See Also

NWGetDirBaseFromPath (page 640), NWGetNSInfo (NLM) (page 500), NWQueryNSInfoFormat
(page 539)

Name Space Functions 587

NWWriteExtendedNSinfo

Writes the extended (huge) name space information for the specified name space
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N API NWWriteExtendedNSInfo (
NWCONN_HANDLE conn,
const NW IDX N FAR *idxStruct,
NW NS INFO N _FAR *NSInfo,
const nstr8 N _FAR *data) ;

Delphi Syntax
uses calwin32

Function NWWriteExtendedNSInfo
(conn : NWCONN_ HANDLE;
Var idxStruct : NW_IDX;
Var NSInfo : NW NS INFO;
data : pnuint$8

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

idxStruct
(IN) Points to NW_IDX returned by NWNSGetMiscInfo.

NSInfo
(IN) Points to NW_NS_INFO returned by NWGetNSInfo.

data

(IN) Points to a buffer containing the data to be written to the name space.

588 NDK: Multiple and Inter-File Services

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
0x898C NO_MODIFY_PRIVILEGES
Remarks

dstNameSpace and dstDirBase in NW_IDX are used to determine what entry to use for the
Write.

extendedBitMask in NW_NS INFO is a read-only information field that should be preserved
from NWReadExtendedNSInfo.

NCP Calls

0x2222 87 27 Set Huge NS Information

See Also

NWGetDirectoryBase (page 474), NWGetNSInfo (page 498), NWNSGetMiscInfo (page 517),
NWReadExtendedNSInfo (page 541), NWWriteExtendedNSInfo (page 588)

Name Space Functions 589

NWWriteNSInfo

Sets the specific name space information

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>

or
#include <nwcalls.h>

NWCCODE N API NWWriteNSInfo (

NWCONN_HANDLE conn,
const NW IDX N FAR *idxStruct,
const NW NS INFO N _FAR *NSInfo,
const nstr8 N _FAR *data) ;

Delphi Syntax
uses calwin32

Function NWWriteNSInfo
(conn : NWCONN_ HANDLE;
Var idxStruct : NW_IDX;
Var NSInfo : NW NS INFO;
data : pnuint$8

) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

idxStruct
(IN) Points to NW_IDX returned by NWNSGetMiscInfo.

NSInfo
(IN) Points to NW_NS_INFO returned by NWGetNSInfo.

data
(IN) Points to a 512-byte buffer containing the data to be written to the name space.

590 NDK: Multiple and Inter-File Services

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0x890A NLM_INVALID_CONNECTION
Remarks

For name spaces other than DOS, NW WriteNSInfo is passed to the appropriate name space NLM on
the server. For the DOS name space, the server processes the request.

The actual format of the data is determined by the NLM on the server. Unless format for the data on
the server is known, NWWriteNSInfo should not be used.

Avoid setting the first field of the name space information. This is generally the name and is
intended to be read-only. To rename a file, call NWSetLongName.

NCP Calls

0x2222 87 25 Set NS Information

See Also

NWGetDirectoryBase (page 474), NWGetNSInfo (page 498), NWNSGetMiscInfo (page 517),
NWReadNSInfo (page 543)

Name Space Functions 591

NWWriteNSInfoEXxt

Sets the specific name space information, using UTF-8 strings.
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 6.5 SP2 or later

Platform: NLM, Windows 2000, Windows XP

Client: 4.90 SP2 or later

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax
#include <nwnamspc.h>
or

#include <nwcalls.h>

NWCCODE N API NWWriteNSInfoExt (

NWCONN_HANDLE conn,
const NW IDX N FAR *idxStruct,
const NW NS INFO N _FAR *NSInfo,
const nstr8 N FAR *data);
Parameters
conn

(IN) Specifies the NetWare server connection handle.

idxStruct
(IN) Points to NW_IDX returned from NWGetDirectoryBaseExt (page 477).

NSInfo
(IN) Points to NW_NS_INFO returned by NWGetNSInfo (page 498).

data
(IN) Points to a 1024-byte buffer containing the data to be written to the name space.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL
0x8801 INVALID_CONNECTION
0x88F0 UTF8_CONVERSION_FAILED

592 NDK: Multiple and Inter-File Services

0x890A NLM_INVALID_CONNECTION

Remarks

For name spaces other than DOS, NWWriteNSInfoEXT is passed to the appropriate name space
NLM on the server. For the DOS name space, the server processes the request.

The actual format of the data is determined by the NLM on the server. Unless format for the data on
the server is known, NWWriteNSInfoEXT should not be used.

Avoid setting the first field of the name space information. This is generally the name and is
intended to be read-only. To rename a file, call NWNSRenameExt.

NCP Calls

0x2222 87 25 Set NS Information
0x2222 89 25 Enhanced Set NS Information

See Also

NWGetDirectoryBaseExt (page 477), NWGetNSInfo (page 498), NWReadNSInfoExt (page 545)

Name Space Functions 593

594 NDK: Multiple and Inter-File Services

Name Space Structures

This documentation alphabetically lists the Name Space structures and describes their purpose,
syntax, and fields.

+ “MODIFY DOS INFO” on page 596

* “NW_DATA STREAM FAT INFO” on page 599
¢+ “NW_DATA STREAM SIZE INFO” on page 600
¢ “NW_ENTRY INFO” on page 601

¢ “NW_ENTRY INFO EXT” on page 605

¢ “NW_ENTRY INFO2” on page 608

¢ “NW_IDX” on page 613

¢ “NW_MAC TIME” on page 614

+ “NW_NS INFO” on page 615

¢ “NW_NS OPEN” on page 617

+ “NW_NS OPENCREATE” on page 618

¢ “NW_NS PATH” on page 621

+ “SEARCH SEQUENCE” on page 622

Name Space Structures 595

MODIFY_DOS_INFO

Defines the parameters for modifying an entry’s DOS name space information
Service: Name Space

Defined In: nwnamspc.h

Structure

typedef struct
{

nuint32 attributes;

nuintlo createDate;

nuintlo6 createTime;

nuint32 creatorID;

nuintlé modifyDate;

nuintlé modifyTime;

nuint32 modifierID;

nuintlo6 archiveDate;

nuintlo6 archiveTime;

nuint32 archiverID;

nuintlo lastAccessDate;
nuintlo6 inheritanceGrantMask;
nuintlo6 inheritanceRevokeMask;
nuint32 maximumSpace;

} MODIFY DOS_INFO;

Delphi Structure

uses calwin32

MODIFY DOS INFO = packed Record

attributes : nuint32;
createDate : nuintlé6;
createTime : nuintlé6;
creatorID : nuint32;
modifyDate : nuintlé6;
modifyTime : nuintlé6;
modifierID : nuint32;
archiveDate : nuintl6;
archiveTime : nuintl6;
archiverID : nuint32;
lastAccessDate : nuintl6;
inheritanceGrantMask : nuintl6;
inheritanceRevokeMask : nuintl6;
maximumSpace : nuint32

End;

596 NDK: Multiple and Inter-File Services

Fields

attributes

Specifies the attributes to the value (see Section 20.2, “Attribute Values,” on page 623).

createDate

Specifies the creation date.

createTime

Specifies the creation time.

creatorID

Specifies the creator to the specified ID.

modifyDate

Specifies the date the entry was last modified.

modifyTime

Specifies the time the entry was last modified.

modifierID

Specifies the modifier to the specified ID.

archiveDate

Specifies the date the entry was last archived.

archiveTime

Specifies the time the entry was last archived.

archiverID

Specifies the archiver of the specified ID.

lastAccessDate

Specifies the date the entry was last accessed.

inheritanceGrantMask

Specifies the inherited rights mask values (see Section 20.4, “Inherited Rights Mask Values,”

on page 624).

inheritanceRevokeMask

Specifies the following TA constants:

C Value Delphi Value Value Name Value Description

0x00 $00 TA_NONE Specifies no Reads or Writes are allowed.
0x01 $01 TA_READ Specifies file Reads are allowed.

0x02 $02 TA_WRITE Specifies file Writes are allowed.

0x08 $08 TA_CREATE Specifies files can be created.

Name Space Structures 597

C Value Delphi Value Value Name Value Description

0x10 $10 TA_DELETE Specifies files can be deleted.

0x20 $20 TA_OWNERSHIP Specifies subdirectories can be created or
deleted and trustee rights granted or revoked.

0x40 $40 TA_SEARCH Specifies the directory can be searched.

0x80 $80 TA_MODIFY Specifies file attributes can be modified.

OxFB $FB TA_ALL Specifies the trustee has all the above rights
to the directory.

maximumSpace

Specifies the user disk restrictions (in 4 KB sizes) that may have been enabled by an
administrator for the given user (optional).

598 NDK: Multiple and Inter-File Services

NW_DATA_STREAM_FAT INFO

Contains the FAT information for a data stream
Service: Name Space

Defined In: nwnamspc.h

Syntax

typedef struct
{

nuint32 dataStreamNumber;
nuint32 dataStreamFATBlocksSize;
} NW DATA STREAM FAT INFO;

Delphi Structure

Type
NW DATA STREAM FAT INFO = packed Record
dataStreamNumber : nuint32;
dataStreamFATBlocksSize : nuint32;
End;

Parameters

dataStreamNumber

Specifies the number for the data stream.

dataStreamFATBlocksSize
Specifies the size of each FAT block for the data stream.

Name Space Structures 599

NW_DATA_STREAM_SIZE_INFO

Contains the size information for a data stream
Service: Name Space

Defined In: nwnamspc.h

Syntax

typedef struct

{
nuint32 dataStreamNumber;
nuint32 dataStreamSize;

} NW_DATA STREAM FAT INFO;

Delphi Structure

Type
NW_ DATA STREAM SIZE INFO = packed Record
dataStreamNumber : nuint32;
dataStreamSize ¢ nuint32;
End;
Parameters
dataStreamNumber

Specifies the number for the data stream.

dataStreamSize

Specifies the size of the data stream.

600 NDK: Multiple and Inter-File Services

NW_ENTRY_INFO

Holds standard name space information for an entry

Service: Name Space

Defined In: nwnamspc.h

Structure

typedef struct

{

nuint32 spaceAlloc;
nuint32 attributes;
nuintlé flags;

nuint32 dataStreamSize;
nuint32 totalStreamSize;
nuintlo6 numberOfStreams;
nuintlo6 creationTime;
nuintlo6 creationDate;
nuint32 creatorID;
nuintlé modifyTime;
nuintlé modifyDate;
nuint32 modifierID;
nuintlo6 lastAccessDate;
nuintlo6 archiveTime;
nuintlo6 archiveDate;
nuint32 archiverID;
nuintlé inheritedRightsMask;
nuint32 dirEntNum;
nuint32 DosDirNum;
nuint32 volNumber;
nuint32 EADataSize;
nuint32 EAKeyCount;
nuint32 EAKeySize;
nuint32 NSCreator;
nuint8 nameLength;
nstr8 entryName [256];

} NW_ENTRY INFO;

Delphi Structure

uses calwin32

NW_ENTRY INFO = packed Record
spaceAlloc : nuint32;

attribute

S : nuint32;

flags : nuintl6;
dataStreamSize : nuint32;

totalStre
numberOfS

amSize : nuint32;
treams : nuintlé6;

creationTime : nuintl6;
creationDate : nuintl6;

Name Space Structures 601

creatorID : nuint32;
modifyTime : nuintlé6;
modifyDate : nuintlé6;
modifierID : nuint32;

lastAccessDate : nuintl6;
archiveTime : nuintlé6;
archiveDate : nuintlé6;
archiverID : nuint32;

inheritedRightsMask : nuintlé6;
dirEntNum : nuint32;

DosDirNum : nuint32;

volNumber : nuint32;
EADataSize : nuint32;
EAKeyCount : nuint32;
EAKeySize : nuint32;

NSCreator : nuint32;
namelLength : nuint8;

entryName : Array[0..255] Of nstr8

End;

Fields

spaceAlloc
Specifies the space allocated to the data stream. IM_SPACE_ALLOC in returnEntryInfo
mask.

attributes

Specifies the entry’s attributes (see Section 20.2, “Attribute Values,” on page 623).
flags
Specifies data used internally.

dataStreamSize

Specifies the size of the data stream. IM_SIZE in returnEntryInfo mask.

totalStreamSize

Specifies the total size of streams associated with the entry. IM_TOTAL SIZE in
returnEntryInfo mask.

numberOfStreams

Specifies the number of streams associated with the entry.

creationTime

Specifies when the entry was created. IM_CREATION in returnEntryInfo mask (see
Section 20.9, “Time Values,” on page 627).

creationDate

Specifies the date the entry was created (see Section 20.3, “Date Values,” on page 624).

creatorID

Specifies the object creating the entry.

602 NDK: Multiple and Inter-File Services

modifyTime

Specifies the time the entry was last modified. IM_ MODIFY in returnEntryInfo mask
(see Section 20.9, “Time Values,” on page 627).

modifyDate
Specifies the date the entry was last modified (see Section 20.3, “Date Values,” on page 624).

modifierID

Specifies the ID of the object that last modified the entry.

lastAccessDate

Specifies the date the entry was last accessed (see Section 20.3, “Date Values,” on page 624).

archiveTime

Specifies the time the entry was last archived (see Section 20.9, “Time Values,” on page 627).

archiveDate

Specifies the date the entry was last archived (see Section 20.3, “Date Values,” on page 624).

archiverID

Specifies the ID of the object last archiving the entry.

inheritedRightsMask

Specifies the entry’s inherited rights mask. IM_RIGHTS in returnEntryInfo mask. A
mask of the following:

C Value Delphi Value Value Name Value Description

0x00 $00 TA_NONE Specifies no Reads or Writes are allowed.

0x01 $01 TA_READ Specifies file Reads are allowed.

0x02 $02 TA_WRITE Specifies file Writes are allowed.

0x08 $08 TA_CREATE Specifies files can be created.

0x10 $10 TA_DELETE Specifies files can be deleted.

0x20 $20 TA_OWNERSHIP Specifies subdirectories can be created or
deleted and trustee rights granted or revoked.

0x40 $40 TA_SEARCH Specifies the directory can be searched.

0x80 $80 TA_MODIFY Specifies file attributes can be modified.

OxFB $FB TA_ALL Specifies the trustee has all the above rights

to the directory.

dirEntNum
Specifies the directory entry number. IM_DIRECTORY in returnEntryInfo mask.

DosDirNum

Specifies the DOS directory entry number.

Name Space Structures 603

volNumber

Specifies the number of the volume that contains the entry.

EADataSize
Specifies the data size of the entry’s extended attribute. IM_EA in returnEntryInfo mask.

EAKeyCount

Specifies the key count for the entry’s extended attribute.
EAKeySize

Specifies the size of the entry’s extended attribute key.

NSCreator

Specifies the name space the entry was originally created in. IM_OWNING_NAMESPACE in
returnEntryInfo mask (see Section 20.5, “Name Space Flag Values,” on page 625).

nameLength

Specifies the length of the entry’s name. IM_ NAME in returnEntryInfo mask.

entryName

Specifies the entry’s name.

604 NDK: Multiple and Inter-File Services

NW_ENTRY_INFO_EXT

Holds standard name space information for an entry and uses UTF-8 strings.

Service: Name Space

Defined In: nwnamspc.h

Structure

typedef struct

{

nuint32
nuint32
nuintlo6
nuint32
nuint32
nuintlo6
nuintlo6
nuintlo6
nuint32
nuintlo6
nuintlo6
nuint32
nuintlo6
nuintlo6
nuintlo6
nuint32
nuintlo
nuint32
nuint32
nuint32
nuint32
nuint32
nuint32
nuint32
nuint8
nstr8

spaceAlloc;
attributes;
flags;
dataStreamSize;
totalStreamSize;
numberOfStreams;
creationTime;
creationDate;
creatorID;
modifyTime;
modifyDate;
modifierID;
lastAccessDate;
archiveTime;
archiveDate;
archiverID;

inheritedRightsMask;

dirEntNum;
DosDirNum;
volNumber;
EADataSize;
EAKeyCount;
EAKeySize;
NSCreator;
nameLength;
entryName [766];

} NW_ENTRY INFO EXT;

Fields

spaceAlloc

Specifies the space allocated to the data stream. IM_SPACE_ALLOC in returnEntryInfo

mask.

attributes

Specifies the entry’s attributes (see Section 20.2, “Attribute Values,” on page 623).

flags

Specifies data used internally.

Name Space Structures 605

dataStreamSize

Specifies the size of the data stream. IM_SIZE in returnEntryInfo mask.

totalStreamSize
Specifies the total size of streams associated with the entry. IM_ TOTAL SIZE in
returnEntryInfo mask.

numberOfStreams

Specifies the number of streams associated with the entry.

creationTime
Specifies when the entry was created. IM_CREATION in returnEntryInfo mask (see
Section 20.9, “Time Values,” on page 627).

creationDate

Specifies the date the entry was created (see Section 20.3, “Date Values,” on page 624).

creatorID
Specifies the object creating the entry.
modifyTime
Specifies the time the entry was last modified. IM_MODIFY in returnEntryInfo mask
(see Section 20.9, “Time Values,” on page 627).
modifyDate
Specifies the date the entry was last modified (see Section 20.3, “Date Values,” on page 624).

modifierID

Specifies the ID of the object that last modified the entry.

lastAccessDate

Specifies the date the entry was last accessed (see Section 20.3, “Date Values,” on page 624).

archiveTime

Specifies the time the entry was last archived (see Section 20.9, “Time Values,” on page 627).

archiveDate

Specifies the date the entry was last archived (see Section 20.3, “Date Values,” on page 624).

archiverID

Specifies the ID of the object last archiving the entry.

inheritedRightsMask

Specifies the entry’s inherited rights mask. IM_RIGHTS in returnEntryInfo mask. A
mask of the following:

C Value Value Name Value Description
0x00 TA_NONE Specifies no Reads or Writes are allowed.
0x01 TA_READ Specifies file Reads are allowed.

606 NDK: Multiple and Inter-File Services

C Value Value Name Value Description

0x02 TA_WRITE Specifies file Writes are allowed.

0x08 TA _CREATE Specifies files can be created.

0x10 TA_DELETE Specifies files can be deleted.

0x20 TA_OWNERSHIP Specifies subdirectories can be created or deleted and
trustee rights granted or revoked.

0x40 TA_SEARCH Specifies the directory can be searched.

0x80 TA_MODIFY Specifies file attributes can be modified.

OxFB TA_ALL Specifies the trustee has all the above rights to the directory.

dirEntNum

Specifies the directory entry number. IM_DIRECTORY in returnEntryInfo mask.
DosDirNum

Specifies the DOS directory entry number.
volNumber

Specifies the number of the volume that contains the entry.
EADataSize

Specifies the data size of the entry’s extended attribute. IM_EA in returnEntryInfo mask.
EAKeyCount

Specifies the key count for the entry’s extended attribute.
EAKeySize

Specifies the size of the entry’s extended attribute key.

NSCreator

Specifies the name space the entry was originally created in. IM_ OWNING NAMESPACE in
returnEntryInfo mask (see Section 20.5, “Name Space Flag Values,” on page 625).

nameLength

Specifies the length of the entry’s name. IM_NAME in returnEntryInfo mask.

entryName

Specifies the entry’s name, using UTF-8 characters.

Name Space Structures 607

NW_ENTRY_INFO2

Holds standard name space information for an entry
Service: Name Space

Defined In: nwnamspc.h

Structure

typedef struct
{

nuint32 spaceAlloc;

nuint32 attributes;

nuintlé flags;

nuint32 dataStreamSize;
nuint32 totalStreamSize;
nuintlo6 numberOfStreams;
nuint32 EADataSize;

nuint32 EAKeyCount;

nuint32 EAKeySize;

nuintlo6 archiveTime;

nuintlo6 archiveDate;

nuint32 archiverID;

nuintlé modifyTime;

nuintlé modifyDate;

nuint32 modifierID;

nuintlo6 lastAccessDate;
nuintlo6 creationTime;

nuintlo6 creationDate;

nuint32 creatorID;

nuint32 NSCreator;

nuint32 dirEntNum;

nuint32 DosDirNum;

nuint32 volNumber;

nuintlé inheritedRightsMask;
nuintlé6 currentReferencelD;
nuint32 NSFileAttributes;
nuint32 numberOfDataStreamFATInfo;
NW _DATA STREAM FAT INFO dataStreamFATInfo[3];
nuint32 numberOfDataStreamSizeInfo;
NW DATA STREAM SIZE INFO dataStreamSizeInfo[3];
nint32 secondsRelativeToTheYear2000;
nuint8 DOSNameLen;

nstr8 DOSName [13];

nuint32 flushTime;

nuint32 parentBaselD;

nuint8 MacFinderInfo[32];
nuint32 siblingCount;

nuint32 effectiveRights;

NW MAC TIME MacTime;

nuintlé6 lastAccessedTime;
nuint8 nameLength;

608 NDK: Multiple and Inter-File Services

nstr8 entryName [256];
} NW_ENTRY INFO2;

Delphi Structure

NW_ENTRY INFO2 = packed Record
spaceAlloc :nuint32;
attributes : nuint32;
flags : nuintle6;
dataStreamSize :nuint32;
totalStreamSize:nuint32;
numberOfStreams : nuintl6;
EADataSize :nuint32;
EAKeyCount:nuint32;
EAKeySize :nuint32;

archiveTime : nuintl6;
archiveDate : nuintl6;
archiverID : nuint32;
modifyTime : nuintl6;

modifyDate :nuintl6;
modifierID :nuint32;
lastAccessDate :nuintl6;
creationTime :nuintl6;
creationDate :nuintl6;
creatorID : nuint32;
NSCreator : nuint32;
dirEntNum :nuint32;
DosDirNum : nuint32;
volNumber :nuint32;
inheritedRightsMask :nuintl6;
currentReferenceID:nuintlo6;
NSFileAttributes : nuint32;
numberOfDataStreamFATInfo :nuint32;
dataStreamFATInfo:Array[l..3]of NW _DATA STREAM FAT INFO;
numberOfDataStreamSizeInfo :nuint32;
dataStreamSizeInfo :Array[l..3]of
NW DATA STREAM SIZE INFO;
secondsRelativeToTheYear2000 : nint32;
DOSNameLen : nuint8;
DOSName :Array[l..13] of nstr8;
flushTime : nuint32;
parentBaseID : nuint32;
MacFinderInfo :Array[l..32] of nuint8;
siblingCount : nuint32;
effectiveRights : nuint32;
MacTime : NW _MAC TIME;
lastAccessedTime :nuintl6;
nameLength : nuint8;
entryName : Array[0..255] of nstr8;
end;

Name Space Structures 609

Fields

spaceAlloc

Specifies the space allocated to the data stream (see Section 20.6, “Basic Return Mask Values,”
on page 625).

attributes

Specifies the entry’s attributes (see Section 20.2, “Attribute Values,” on page 623).
flags

Specifies data used internally.

dataStreamSize

Specifies the size of the data stream.

totalStreamSize

Specifies the total size of streams associated with the entry.

numberOfStreams

Specifies the number of streams associated with the entry.

EADataSize

Specifies the data size of the entry’s extended attribute.

EAKeyCount
Specifies the key count for the entry’s extended attribute.

EAKeySize
Specifies the size of the entry’s extended attribute key.

archiveTime

Specifies the time the entry was last archived (see Section 20.9, “Time Values,” on page 627).

archiveDate

Specifies the date the entry was last archived (see Section 20.3, “Date Values,” on page 624).

archiverID

Specifies the ID of the object last archiving the entry.

modifyTime

Specifies the time the entry was last modified (see Section 20.9, “Time Values,” on page 627).

modifyDate
Specifies the date the entry was last modified (see Section 20.3, “Date Values,” on page 624).

modifierID
Specifies the ID of the object that last modified the entry.

lastAccessDate

Specifies the date the entry was last accessed (see Section 20.3, “Date Values,” on page 624).

610 NDK: Multiple and Inter-File Services

creationTime
Specifies when the entry was created (see Section 20.9, “Time Values,” on page 627).

creationDate

Specifies the date the entry was created (see Section 20.3, “Date Values,” on page 624).

creatorID

Specifies the object creating the entry.

NSCreator

Specifies the name space the entry was originally created in (see Section 20.5, “Name Space
Flag Values,” on page 625).

dirEntNum
Specifies the directory entry number.

DosDirNum

Specifies the DOS directory entry number.

volNumber

Specifies the number of the volume that contains the entry.

inheritedRightsMask

Specifies the entry’s inherited rights mask (see Section 20.4, “Inherited Rights Mask Values,”
on page 624).

currentReferencelD

Specifies the change count information.

NSFileAttributes

Specifies the name space file attributes.

numberOfDataStreamFATInfo
Specifies the number of valid NW_DATA STREAM FAT INFO structures.

dataStreamFATInfo
Points to NW_DATA STREAM_FAT INFO.

numberOfDataStreamSizeInfo
Specifies the number of valid NW_DATA STREAM SIZE INFO structures.

dataStreamSizeInfo
Points to NW_DATA STREAM SIZE INFO.

secondsRelativeToTheYear2000

Specifies the number of seconds until (negative values) or after (positive values) 12:00 a.m. on
January 1, 2000.

DOSNameLen
Specifies the length of the DOS name.

Name Space Structures 611

DOSName
Specifies the DOS name.

flushTime

Specifies the flush time for the scanned item.

parentBaselD

Specifies the parent directory base number for a file or subdirectory.

MacFinderInfo

Specifies the MAC finder information for a scanned item.

siblingCount

Specifies the number of siblings in a subdirectory.

effectiveRights
Specifies the effective rights for a file.

MacTime
Points to NW_MAC_TIME.

lastAccessedTime

Specifies the time the file was last accessed.

nameLength

Specifies the length of the entry’s name.

entryName

Specifies the entry’s name.

612 NDK: Multiple and Inter-File Services

NW_IDX

Receives the directory base for an entry in a specified name space

Service: Name Space

Defined In: nwnamspc.h

Structure

typedef struct
{

nuint8 volNumber ;
nuint8 srcNameSpace ;
nuint32 srcDirBase ;
nuint8 dstNameSpace ;
nuint32 dstDirBase ;

} NW_IDX;

Delphi Structure

uses calwin32

NW_ IDX = packed Record

volNumber : nuint8;
srcNameSpace : nuint8;
srcDirBase : nuint32;
dstNameSpace : nuint8;
dstDirBase : nuint32
End;
Fields
volNumber

Specifies the volume number.

srcNameSpace

Specifies the name space of source (see Section 20.5, “Name Space Flag Values,” on

page 625).

srcDirBase

Specifies the directory base of source.

dstNameSpace

Specifies the name space changing to (see Section 20.5, “Name Space Flag Values,” on

page 625).

dstDirBase

Specifies the directory base of the entry in the new name space.

Name Space Structures 613

NW_MAC_TIME

Contains information about the MAC time for the scanned item
Service: Name Space

Defined In: nwnamspc.h

Syntax

typedef struct

{
nuint32 MACCreateTime;

nuint32 MACBackupTime;
} NW_MAC TIME;

Delphi Structure

Type
NW MAC TIME = packed Record
MACCreateTime : nuint32;
MACBackupTime : nuint32;
End;
Parameters
MACCreateTime

Specifies the creation time for a MAC file.

MACBackupTime
Specifies the backup time for a MAC file.

614 NDK: Multiple and Inter-File Services

NW_NS_INFO

Handles the information bit masks used to read name space-specific information
Service: Name Space

Defined In: nwnamspc.h

Structure

typedef struct

{
nuint32 NSInfoBitMask ;
nuint32 fixedBitMask ;
nuint32 reservedBitMask ;
nuint32 extendedBitMask ;
nuintlo fixedBitsDefined ;
nuintlo6 reservedBitDefined ;
nuintlo6 extendedBitsDefined ;
nuint32 fieldsLenTable [32];
nuint8 hugeStateInfo [16];
nuint32 hugeDatalength ;

} NW NS INFO;

Delphi Structure

uses calwin32

NW NS INFO = packed Record
NSInfoBitMask : nuint32;
fixedBitMask : nuint32;
reservedBitMask : nuint32;
extendedBitMask : nuint32;
fixedBitsDefined : nuintl6;
reservedBitsDefined : nuintl6;
extendedBitsDefined : nuintl6;
fieldsLenTable : Array[0..31] Of nuint32;
hugeStateInfo : Array[0..15] Of nuint8;
hugeDatalength : nuint32

End;

Fields

NSInfoBitMask

Specifies a bit mask with the following definitions:

C Value Delphi Value Value Name
0x0002L $0002 DM_ATTRIBUTES
0x0004L $0004 DM_CREATE_DATE

Name Space Structures 615

C Value Delphi Value Value Name

0x0008L $0008 DM_CREATE_TIME
0x0010L $0010 DM_CREATOR_ID
0x0020L $0020 DM_ARCHIVE_DATE
0x0040L $0040 DM_ARCHIVE_TIME
0x0080L $0080 DM_ARCHIVER_ID
0x0100L $0100 DM_MODIFY_DATE
0x0200L $0200 DM_MODIFY_TIME
0x0400L $0400 DM_MODIFIER_ID
0x0800L $0800 DM_LAST_ACCESS_DATE
0x1000L $1000 DM_INHERITED_RIGHTS_MASK
0x2000L $2000 DM_MAXIMUM_SPACE
fixedBitMask

Specifies a bit mask representing fixed (sized) information.

reservedBitMask

Specifies a bit mask representing information stored as a length-preceded array. The first byte
indicates the length.

extendedBitMask

Specifies a bit mask representing information stored as a length-preceded string with the first 2
bytes indicating the length.

fixedBitsDefined

Specifies a value indicating how many bits are defined within fixedBitMask.

reservedBitDefined

Specifies a value indicating how many bits are defined within reservedBitMask.
extendedBitsDefined

Specifies a value indicating how many bits are defined within extendedBitMask.

fieldsLenTable

Specifies the length of the information relative to any of the three bit masks.receives values that
indicate how many bits are defined within reservedBitMask.

hugeStateInfo
Is used only by NFS.

hugeDataLength
Specifies the length of the data that is returned in the reply buffer.

616 NDK: Multiple and Inter-File Services

NW_NS_OPEN

Is defined to be the same as the NW_NS OPENCREATE (page 618) structure

Service: Name Space

Defined In: nwnamspc.h

Name Space Structures 617

NW_NS_OPENCREATE

Defines the parameters for opening/creating a data stream in a specified name space
Service: Name Space

Defined In: nwnamspc.h

Structure

typedef struct
{

nuint8 openCreateMode ;
nuintlo searchAttributes ;
nuint32 reserved ;

nuint32 createAttributes ;
nuintlé accessRights ;
nuint32 NetWareHandle ;
nuint8 openCreateAction ;

} NW_NS_OPENCREATE

Delphi Structure

uses calwin32

NW NS OPENCREATE = packed Record

openCreateMode : nuint8;
searchAttributes : nuintl6;
reserved : nuint32;
createAttributes : nuint32;
accessRights : nuintl6;
NetWareHandle : nuint32;
openCreateAction : nuint8

End;

Fields

openCreateMode

Specifies whether to create, replace, or open an entry (directories can only be created). Open/
Create modes use the OC_MODE _constants listed below:

C Value Delphi Value Value Name

0x01 $01 OC_MODE_OPEN
0x02 $02 OC_MODE_TRUNCATE
0x02 $02 OC_MODE_REPLACE
0x08 $08 OC_MODE_CREATE

618 NDK: Multiple and Inter-File Services

searchAttributes

Specifies the attributes to use in the search (see Section 20.8, “Search Attributes Values,” on
page 627).

reserved

Is reserved for future use.

createAttributes

Specifies the attributes to set in the DOS name space (see Section 20.2, “Attribute Values,” on
page 623).

accessRights

Specifies the desired access rights (see Section 20.1, “Access Right Values,” on page 623).

NWHandle

Specifies a four-byte NetWare handle.

openCreatelAction

Specifies the result of a successful open/create. Uses the OC_ACTION _ constants listed below:

C Value Delphi Value Value Name

0x01 $01 OC_ACTION_NONE

0x01 $01 OC_ACTION_OPEN

0x02 $02 OC_ACTION_CREATE

0x04 $04 OC_ACTION_TRUNCATE

0x04 $04 OC_ACTION_REPLACE
Remarks

To create a file, the accessRights field is used as an access rights mask and must be set to
AR _READ and/or AR_WRITE. If neither are used, the NW_NS OPENCREATE structure sets
both. Use the AR constants listed below:

To create a directory, the accessRights field is used as an inherited rights mask and has the

following bits

o o0 b~ W N

Read Existing File Bit

Write Existing File Bit

Old Open Existing File Bit

Create New Entry Bit

Delete Existing Bit

Change Access Control Bit

See Files Bit

Name Space Structures 619

7 Modify Entry Bit
8 Supervisor Privileges Bit

9-15 not set

620 NDK: Multiple and Inter-File Services

NW_NS_PATH

Defines parameters for returning an entry’s path with in a specified name space
Service: Name Space

Defined In: nwnamspc.h

Structure

typedef struct

{
pnstr8 srcPath ;
pnstr8 dstPath ;
nuintlé dstPathSize ;
} NW NS PATH;

Delphi Structure

uses calwin32

NW NS PATH = packed Record
srcPath : pnstr8;
dstPath : pnstr8;
dstPathSize : nuintlé

End;

Fields

srcPath

Points to a valid path. When this structure used with the NWGetNSPathExt function, the
characters in the path string must be UTF-8.

dstPath

Points to a buffer to receive the full name space path. When this structure used with the
NWGetNSPathExt function, the destination path is returned in UTF-8 characters.

dstPathSize

Specifies the length of new path buffer. The new path buffer should be long enough to hold the
longest path possible for destNameSpace plus 2 extra bytes for working space.

Remarks

The NWGetNSPath (page 506) and NWGetNSPathExt (page 508) functions use this structure. The
NWGetNSPath function gets and returns strings in the local code page; the NWGetNSPathExt gets
and returns strings in UTF-8 on NSS volumes.

Name Space Structures 621

SEARCH_SEQUENCE

Defines information for managing a search operation across multiple requests
Service: Name Space

Defined In: nwnamspc.h

Structure

typedef struct
{

nuint8 volNumber ;
nuint32 dirNumber ;
nuint32 searchDirNumber ;

} SEARCH_ SEQUENCE;

Delphi Structure

uses calwin32

SEARCH SEQUENCE = packed Record

volNumber : nuint8;
dirNumber : nuint32;
searchDirNumber : nuint32
End;
Fields
volNumber

Specifies the volume number.
dirNumber
Specifies the directory entry number for the directory.

searchDirNumber

Specifies the directory number to search. Set to a OXFFFFFFFF on the first call. After that,
searchDirNumber is managed internally.

622 NDK: Multiple and Inter-File Services

Name Space Values

This documentation describes the values associated with Name Space.

20.1 Access Right Values

The following are access right values:

C Value Delphi Value Value Name

0x0001 $0001 AR_READ

0x0002 $0002 AR_WRITE

0x0001 $0001 AR_READ_ONLY

0x0002 $0002 AR_WRITE_ONLY

0x0004 $0004 AR_DENY_READ

0x0008 $0008 AR_DENY_WRITE

0x0010 $0010 AR_COMPATIBILITY
0x0040 $0040 AR_WRITE_THROUGH
0x0100 $0100 AR_OPEN_COMPRESSED

AR OPEN_COMPRESSED cannot be used with NWAFPOpenFileFork since this function only

accepts an 8-bit constant for the accessMode parameter.

20.2 Attribute Values

The following are attribute values:

C Value Delphi Value Value Name
0x00000000L $00000000 A_NORMAL
0x00000001L $00000001 A_READ_ONLY
0x00000002L $00000002 A_HIDDEN
0x00000004L $00000004 A_SYSTEM
0x00000008L $00000008 A_EXECUTE_ONLY
0x00000010L $00000010 A_DIRECTORY
0x00000020L $00000020 A_NEEDS_ARCHIVED
0x00000080L $00000080 A_SHAREABLE
0x00001000L $00001000 A_TRANSACTIONAL
0x00002000L $00002000 A_INDEXED

Name Space Values 623

C Value Delphi Value Value Name
0x00004000L $00004000 A_READ_AUDIT
0x00008000L $00008000 A_WRITE_AUDIT
0x00010000L $00010000 A_IMMEDIATE_PURGE
0x00020000L $00020000 A_RENAME_INHIBIT
0x00040000L $00040000 A_DELETE_INHIBIT
0x00080000L $00080000 A_COPY_INHIBIT
0x00400000L $00400000 A_FILE_MIGRATED
0x00800000L $00800000 A_DONT_MIGRATE
0x02000000L $02000000 A_IMMEDIATE_COMPRESS
0x04000000L $04000000 A_FILE_COMPRESSED
0x08000000L $08000000 A_DONT_COMPRESS
0x20000000L $20000000 A_CANT_COMPRESS

20.3 Date Values

From the least significant byte to the most significant byte:

The first 5 bits indicate the day, from 1-31.
The next 4 bits indicate the month, from 1-12.
The last 7 bits indicate the year, with 0 = 1980 and 20 = 2000.

20.4 Inherited Rights Mask Values

inheritanceGrantMask and inheritedRightsMask can have the following values:

C Value Delphi Value Value Name Value Description

0x00 $00 TA_NONE Specifies no Reads or Writes are allowed.

0x01 $01 TA_READ Specifies file Reads are allowed.

0x02 $02 TA _WRITE Specifies file Writes are allowed.

0x08 $08 TA_CREATE Specifies files can be created.

0x10 $10 TA_DELETE Specifies files can be deleted.

0x20 $20 TA_OWNERSHIP Specifies subdirectories can be created or deleted
and trustee rights granted or revoked.

0x40 $40 TA_SEARCH Specifies the directory can be searched.

0x80 $80 TA_MODIFY Specifies file attributes can be modified.

OxFB $FB TA _ALL Specifies the trustee has all the above rights to the

directory.

624 NDK: Multiple and Inter-File Services

20.5 Name Space Flag Values

The following table lists the values used in setting and retrieving name space information.

Value Constant Description

0 NW_NS_DOS DOS name space.

1 NW_NS_MAC Macintosh name space.

2 NW_NS_NFS NFS name space.

3 NW_NS_FTAM FTAM name space.

4 NW_NS LONG Windows 32-bit name space. This flag is the same as

NW_NS_0S2 and can be used for the OS/2 name space.

20.6 Basic Return Mask Values

See Section 20.7, “Extended Return Mask Values,” on page 626 for the extended values.

Return mask parameters can have the following values:

C Value Delphi Value Value Name

0x0001L $0001 IM_NAME (3.x and above)—corresponds to nameLength and
entryName and is always returned by NW_ENTRY_INFO2.

0x0001L $0001 IM_ENTRY_NAME

0x0002L $0002 IM_SPACE_ALLOCATED (3.x and above)—corresponds to
spaceAlloc in NW_ENTRY_INFO2.

0x0004L $0004 IM_ATTRIBUTES (3.x and above)—corresponds to attributes and
flagsin NW_ENTRY_INFO2.

0x0008L $0008 IM_SIZE (3.x and above)—corresponds to dataStreamSize in
NW_ENTRY_INFO2.

0x0010L $0010 IM_TOTAL_SIZE (3.x and above)—corresponds to
totalStreamSize and numberOfStreams in NW_ENTRY_INFO2.

0x0020L $0020 IM_EA (3.x and above)—corresponds to EADataSize, EAKeyCount,
and EAKeySize in NW_ENTRY_INFO2.

0x0040L $0040 IM_ARCHIVE (3.x and above)—corresponds to archiveTime,
archiveDate, and archiverIDin NW_ENTRY_INFO2.

0x0080L $0080 IM_MODIFY (3.x and above)—corresponds to modifyTime,
modifyDate, modifierID, and lastAccessDate in
NW_ENTRY_INFO2.

0x0100L $0100 IM_CREATION (3.x and above)—corresponds to creationTime,
creationDate, and creatorIDin NW_ENTRY_INFO2.

0x0200L $0200 IM_OWNING_NAMESPACE (3.x and above)—corresponds to
NSCreator in NW_ENTRY_INFO2.

0x0400L $0400 IM_DIRECTORY (3.x and above)—corresponds to dirEntNum,

DosDirNum, and volNumber in NW_ENTRY_INFO2.

Name Space Values

625

C Value Delphi Value Value Name

0x0800L $0800 IM_RIGHTS (3.x and above)—corresponds to
inheritedRightsMask in NW_ENTRY_INFO2.

OxOFEDL $0FED IM_ALMOST_ALL

OxOFFFL $OFFF IM_ALL

20.7 Extended Return Mask Values

See Section 20.6, “Basic Return Mask Values,” on page 625 for the basic values.

Parameters in functions with extended return mask functionality can have the values that follow in
addition to basic return mask values. Successful use of these values is limited to functions on
NetWare 4.10 or higher.

C Value Delphi Value Value Name

0x1000L $1000 IM_REFERENCE_ID (4.1x and above)—corresponds to
currentReferenceID in NW_ENTRY_INFO2.

0x2000L $2000 IM_NS_ATTRIBUTES (4.1x and above)—corresponds to
NSFileAttributes in NW_ENTRY_INFO2.

0x4000L $4000 IM_DATASTREAM_SIZES or IM_DATASTREAM_ACTUAL (4.1x and
above)—corresponds to numberOfDataStreamFATInfo and
dataStreamFATInfo[3]in NW_ENTRY_INFO2.
numberOfDataStreamFATInfo specifies how many items were
actually returned in dataStreamFATInfo[3].

0x8000L $8000 IM_DATASTREAM_LOGICAL

0x00010000 $00010000 IM_LASTUPDATEDINSECONDS (4.1x and above)—corresponds to

L secondsRelativeToTheYear2000 in NW_ENTRY_INFO2.

0x00020000 $00020000 IM_DOSNAME (4.1x and above)—corresponds to DOSNameLen and

L DOSName[13] in NW_ENTRY_INFO2.

0x00040000 $00040000 IM_FLUSHTIME (4.1x and above)—corresponds to f1ushTime in

L NW_ENTRY_INFO2.

0x00080000 $00080000 IM_PARENTBASEID (4.1x and above)—corresponds to

L parentBaseIDin NW_ENTRY_INFO2.

0x00100000 $00100000 IM_MACFINDER (4.1x and above)—corresponds to

L MacFinderInfo[32]in NW_ENTRY_INFO2.

0x00200000 $00200000 IM_SIBLINGCOUNT (4.1x and above)—corresponds to

L siblingCount[32] in NW_ENTRY_INFO2 and applies only to a
directory entry. For files, zero is returned. This is the number of entries
in the directory (excluding "." and "..").

0x00400000 $00400000 IM_EFECTIVERIGHTS (4.1x and above)—corresponds to

L effectiveRights in NW_ENTRY_INFO2.

0x00800000 $00800000 IM_MACTIME (4.1x and above)—corresponds to MacTime in

L NW_ENTRY_INFO2.

626 NDK: Multiple and Inter-File Services

C Value Delphi Value Value Name

0x01000000 $01000000 IM_LASTACCESSEDTIME (5.x and above)—corresponds to

L lastAccessedTime in NW_ENTRY_INFO2.

0x01FFF000 $01FFF000 IM_EXTENDED_ALL is used to return all the extended information
L corresponding to bits 12-24 in retInfoMask.

0x40000000 $40000000 IM_NSS_LARGE_SIZES

L

0x80000000 $80000000 IM_COMPRESSED_INFO

L

0x80000000 $80000000 IM_NS_SPECIFIC_INFO (4.1x and above)—corresponds to

L numberOfDataStreamSizeInfo and dataStreamSizeInfo[3]in

NW_ENTRY_INFO2. numberOfDataStreamSizeInfo specifies
how many items were actually returned in dataStreamSizeInfo[3].

20.8 Search Attributes Values

The following are search attribute values:

C Value Delphi Value Value Name

0x0000 $0000 SA_NORMAL
0x0002 $0002 SA_HIDDEN
0x0004 $0004 SA_SYSTEM
0x0010 $0010 SA_SUBDIR_ONLY
0x8000 $8000 SA_SUBDIR_FILES
0x8006 $8006 SA_ALL

20.9 Time Values

From the least significant byte to the most significant byte:

The first 5 bits indicate the number of 2-second intervals, from 0-29 so that 59 and 60 seconds are
both indicated by 29.

The next 6 bits indicate the minute, from 0-59.
The last 5 bits indicate the hour, from 0-23.

Name Space Values 627

628 NDK: Multiple and Inter-File Services

Path and Drive Concepts

This documentation describes Path and Drive, its functions, and features.

Path and Drive controls the workstation’s relationship to the network. Specifically, it configures the
workstation environment by managing network drive mappings. However, it does not formulate
requests for NetWare servers.

21.1 Path Parameters

NWGetDriveStatus and NWGetDriveStatusConnRef return path information in four path

parameters.

pathFormat expects one of the following four constants:

NW_FORMAT NETWARE
NW_FORMAT SERVER VOLUME
NW_FORMAT DRIVE
NW_FORMAT UNC

0

1
2
3

For the NetWare, Server Volume, and UNC constants, the value of the ful1Path parameter will
equal the value of the rootPath parameter, plus a backslash character, plus the value of the
relPath parameter. For the Drive constant, the value of the ful1Path parameter will equal the
value of the rootPath parameter plus the value of the rel1 Path parameter (without adding a
backslash character).

The following tables explain what will be returned in each of the path output parameters for each of
the pathFormat constants.

Assume you are in dir2 and drive letter Q is root mapped to the following:

server\volume:dirl

rootPath relPath fullPath
NetWare volume:dir1 dir2 volume:dir1\dir2
Server Volume server\volume:dir1 dir2 server\volume:dir1\dir2
Drive Q:\ dir2 Q:\dir1\dir2
UNC \\server\volume\dir1 dir2 \\server\volume\dir1\dir2

Assume you are in dir1\dir2 and drive letter Q is root mapped to the following:

server\volume:

rootPath relPath fullPath
NetWare volume: dir1\dir2 volume:\dir1\dir2
Server Volume server\volume: dirt\dir2 server\volume:\dir1\dir2
Drive Q:\ dirt\dir2 Q:\dir1\dir2

Path and Drive Concepts 629

rootPath relPath fullPath

UNC \\server\volume dirt\dir2 \\server\volume\dir1\dir2

The status parameter returns a bit mask indicating if a drive is a local and/or network drive:

C Value Delphi Value Value Name

0x0000 $0000 NW_UNMAPPED_DRIVE
0x0000 $0000 NW_FREE_DRIVE

0x0400 $0400 NW_CDROM_DRIVE
0x0800 $0800 NW_LOCAL_FREE_DRIVE
0x1000 $1000 NW_LOCAL_DRIVE
0x2000 $2000 NW_NETWORK_DRIVE
0x4000 $4000 NW_PNW_DRIVE

0x8000 $8000 NW_NETWARE_DRIVE

21.2 Network Drive Functions

Path and Drive services include functions that manage network drive mappings. The following are
the functions most commonly used:

+ NWGetDriveStatus (page 644) returns information about a drive mapping.

¢ NWSetDriveBase (page 657) sets a drive mapping.

¢+ NWDeleteDriveBase (page 638) deletes a drive mapping.

These functions map network drives, return drive information, perform parsing on path strings, and
access the Netx search drive vector. It is possible that a specific client supports only a subset of these

functions.

NWDeleteDriveBase Deletes a network drive mapping.

NWGetDrivelnformation Returns information about the specified drive.

NWGetDriveStatus Returns the status of the specified drive and, optionally, the
associated connection and its path in various formats.

NWGetFirstDrive Returns the first non-local drive.

NWParseNetWarePath Parses a path and returns the connection handle, directory
handle, and new path to be used by subsequent NetWare
requests.

NWParsePath Parses a path string.

NWSetDriveBase Maps the target drive to the specified directory path.

NWStripServerOffPath Parses a server or volume path, copies the server name to the
buffer specified by server, and returns a pointer to the volume
path.

630 NDK: Multiple and Inter-File Services

Path and Drive Tasks

This documentation describes common tasks associated with Path and Drive.

22.1 Listing Network Drives

The following steps allow you to determine if the specified drive is a NetWare® drive:

1 Initialize the client libraries by calling NWCallsInit (Client Management).

2 For each of the drives, 1 through 26, call NWGetDriveStatus (page 644) and check the
status parameter to determine if the drive is a NetWare drive.

22.2 Mapping Network Drives

The following steps allow you to associate a NetWare® path with a client’s drive. For an example,
see “Mapping a Network Drive Example” on page 631.
1 Determine the path to be mapped to and the drive letter that is to be associated with the path.

2 Call NWGetDriveStatus (page 644) to determine if the specified drive is available as a network
drive.

3 Call NWParsePath (page 654) to determine if a connection exists to the server specified in the
path.

4 If a connection does not exist to the specified server, establish a connection.
5 Remove the server name from the path by calling NWStripServerOffPath (page 661).
6 Map the drive by calling NWSetDriveBase (page 657).

22.2.1 Mapping a Network Drive Example

NOTE: taken from SETDRIVE.C in the \EXAMPLES directory

/

LR R R R B A I S I I I I i i b b b b b b I b b I b b b Sh Sb b I b b Ih b I b b b b I b I b I 2 b I b 2h b b b ah I 2h S a4

SETDRIVE.C

LR R B R I I I I I I i I b b b b b b b b b b b b b b Sb b b b b b b b I b b b I b I b I b I 2 b I 2 dh b b 2 b I 2h a4

SETDRIVE.C demonstrates how to map a drive to a NetWare server using
NWSetDriveBase () .

USAGE: SETDRIVE <drive number> <server name> <path>

drive number: 1=A, 2=B, etc.
server name : name of the server
path : path to map, including volume name.

Path and Drive Tasks

631

Exmpl: SETDRIVE 10 MYSERVER SYS:\DIRECTORY\SUBDIR

(maps drive J to MYSERVER\SYS:\DIRECTORY\SUBDIR)

~k~k~k~k~k~k***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <nwclxcon.h>
#include <nwcalls.h>
#include <nwnet.h>
#include <nwlocale.h>

int main(int argc, char *argvl[])

{

NWCONN_HANDLE connHandle;
NWCCODE ccode;
LCONV lconvInfo;
NWDSContextHandle dContext;
nbool8 bbDoLogout = N_FALSE;
nstr8 strUserName [NW MAX USER NAME LEN];
nstr8 strUserPassword[50];
nstr8 strServerName [NW MAX SERVER NAME LEN];
nstr8 strDriveNumber [3];
nstr8 strPath[50];
nstr8 strContext [MAX DN CHARS + 1];
if (argc != 4)
{
printf ("\nUsage: SETDRIVE <drivenumber> <server>
<directory>\n");
printf (" drivenumber : A=1, B=2, etc...\n");
printf (" server : name of server \n");
printf (" directory : path of directory, including
volume\n") ;

printf ("\nExample: SETDRIVE 10 myserver
sys:\\users\\mydir\\mysubdir\n") ;
exit (1) ;

strcpy (strDriveNumber, strupr(argv[1l]));
strcpy (strServerName, strupr(argv([2])):;
strcpy (strPath, strupr(argv([3])):

/* Initialize libraries */

ccode = NWCallsInit (NULL,NULL) ;

if (ccode)

{
printf ("\nNWCallsInit returned %04X", ccode);
exit (1) ;

NWLlocaleconv (&lconvInfo);

632 NDK: Multiple and Inter-File Services

ccode = NWInitUnicodeTables (lconvInfo.country id,
lconvInfo.code page);
if (ccode)
{
printf ("NWInitUnicodeTables () returned: %04X\n", ccode);
exit (1),

/* Create a context and authenticate to NDS if necessary */
ccode = NWDSCreateContextHandle (&dContext) ;
if (ccode)
{
printf ("NWDSCreateContextHandle returned: %041X\n", ccode);
goto FreeUnicodeTables;

ccode = NWDSGetContext (dContext, DCK NAME CONTEXT, strContext);
if (ccode)
{
printf ("\nNWDSGetContext returned %04X", ccode);
exit (1),
}

printf ("\nstrContext: $s", strContext);

/* Must authenticate if not already authenticated to NDS */
1f (!NWIsDSAuthenticated())
{

printf ("\nMust authenticate to NDS");

printf ("\nEnter User Name: ");

gets (strUserName) ;

printf ("Enter User Password: ");

gets (strUserPassword) ;

ccode = NWDSLogin (dContext, 0, strUserName, strUserPassword, O0);
if (ccode)
{
printf ("\nNWDSLogin returned %X", ccode);
goto FreeContext;
}
else
bbDoLogout = N_TRUE;

/* Open a connection to the specified server */
printf ("\nstrServerName: %s", strServerName) ;

ccode = NWCCOpenConnByName (
/* start Conn Handle */ 0,

/* name */ strServerName,

/* name format */ NWCC_NAME FORMAT BIND,
/* open state */ NWCC_OPEN UNLICENSED,
/* tran type */ NWCC_ TRAN TYPE IPX,

/* Connection Handle */ &connHandle);

Path and Drive Tasks 633

if (ccode)

{
printf ("\nNWCCOpenConnByName returned %$04x", ccode);
goto _Logout;

ccode = NWSetDriveBase (
/* drive number */ (nuintl6)atoi (strDriveNumber),
/* handle to server */ connHandle,

/* directory handle */ 0,
/* directory path */ strPath,
/* reserved */ 0);
if (ccode)
{
printf ("\nNWSetDriveBase returned %04X\n", ccode);
goto FreeConnection;

/* Successful termintation */

return (0) ;

/* Unsuccessful termination */
_FreeConnection:

NWCCCloseConn (connHandle) ;
_Logout:

if (bbDoLogout == N_TRUE)

NWDSLogout (dContext) ;

_FreeContext:
NWDSFreeContext (dContext) ;

_FreeUnicodeTables:
NWFreeUnicodeTables () ;

return(l);

634 NDK: Multiple and Inter-File Services

Path and Drive Functions

This documentation alphabetically lists the Path and Drive functions and describes their purpose,
syntax, parameters, and return values.

*

*

*

*

“ConvertNameToFullPath” on page 636
“ConvertNameToVolumePath” on page 637
“NWDeleteDriveBase” on page 638
“NWGetDirBaseFromPath” on page 640
“NWGetDrivelnformation” on page 642
“NWGetDriveStatus” on page 644
“NWGetDriveStatusConnRef” on page 646
“NWGetFirstDrive” on page 648
“NWGetPathFromDirectoryBase” on page 650
“NWParseNetWarePath” on page 652
“NWParsePath” on page 654
“NWSetDriveBase” on page 657
“NWSetlnitDrive (obsolete 7/99)”” on page 659
“NWStripServerOffPath” on page 661
“ParsePath” on page 662
“SetWildcardTranslationMode” on page 664
“StripFileServerFromPath” on page 665

Path and Drive Functions 635

ConvertNameToFullPath

Converts a path to an absolute path specification that includes a volume specification
Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Path and Drive

Syntax

#include <stdlib.h>
#include <nwdir.h>

int ConvertNameToFullPath (
char *partialPath,
char *fullPath) ;

Parameters
partialPath
(IN) Points to a string containing the partial path that is to be converted to a complete path.

fullPath

(OUT) Points to the buffer where the complete path is to be returned (maximum 255
characters).

Return Values

0 (0x00) ESUCCESS: Only fails if the partialPath parameter is not valid.
22 (0x16) EBADHNDL
Remarks

ConvertNameToFullPath accepts a file name, or any relative or absolute path, and returns the
absolute path (including a volume specification).

Call ConvertNameToFullPath when a user is entering a file name (which may or may not be entered
as a full path specification) and you want a full path specification to open the file.

ConvertNameToFullPath uses ParsePath to construct the fullPath parameter string.

See Also

ConvertNameTo VolumePath (page 637), ParsePath (page 662)

636 NDK: Multiple and Inter-File Services

ConvertNameToVolumePath

Converts a path to an absolute path specification that does not include the volume specification
Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 3.x, 4.X, 5.x, 6.x

Platform: NLM

Service: Path and Drive

Syntax
#include <nwdir.h>

int ConvertNameToVolumePath (
char *fileName,
char *path) ;

Parameters

fileName

(IN) Points to the name of the file that is to be converted to a complete path from the volume.

path

(OUT) Points to the buffer where the complete path is to be returned (maximum 255
characters).

Return Values

Value Hex Constant

0 (0x00) ESUCCESS
22 (Ox16) EBADHNDL
Remarks

ConvertNameTo VolumePath accepts a filename, or any relative or absolute path, and returns the
absolute path (not including a volume specification). The volume name is not included in the path.

Call ConvertNameToVolumePath when a user is entering a filename (which may or may not be
entered as a full path specification) and you want a full path specification to open the file.

See Also

ConvertNameToFullPath (page 636)

Path and Drive Functions 637

NWDeleteDriveBase

Deletes a network drive mapping

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT*, Windows* 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWDeleteDriveBase (

nuintlo driveNum,
nuintl6 driveScope) ;

Delphi Syntax
uses calwin32

Function NWDeleteDriveBase
(driveNum : nuintl6;
driveScope : nuintl6

) : NWCCODE;

Parameters

driveNum

(IN) Specifies the drive number whose mapping is being deleted (A=1, B=2, .. .).

driveScope

Reserved for Novell® use only; must be 0.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8804 BAD_DRIVE_BASE
0x8836 INVALID_PARAMETER
0x883C NOT_MY_RESOURCE
0x8875 INVALID_DRIVE_NUM

638 NDK: Multiple and Inter-File Services

Ox89FF INVALID_DRIVE_NUMBER

Remarks

If driveNum is zero, the current drive will be deleted if it belongs to the NetWare® OS.

Most operating systems will determine if the path is valid before NWDeleteDriveBase returns.
Under Windows 95 and Windows 98, 0x0003 Path Not Found will be returned if the path is invalid.

Under Windows NT, INVALID PARAMETER will be returned if an unmapped drive is being
referenced. INVALID DRIVE NUM will be returned if an invalid drive number is being used.

Under NLM, INVALID_SHELL CALL is always returned.

See Also

NWSetDriveBase (page 657)

Path and Drive Functions 639

NWGetDirBaseFromPath

Gets a volume number, a directory base for the specified name space, and a directory base for the
DOS name space entry

Local Servers: blocking

Remote Servers: blocking

Platform: NLM

NetWare Server: 3.12, 3.2, 4.x, 5.x, 6.

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Name Space

Syntax

#include <nwfileng.h>

N EXTERN LIBRARY (NWCCODE)NWGetDirBaseFromPath (
char *path,
BYTE nameSpace,
LONG *volNum,
LONG *NSDirBase,
LONG *DOSDirBase) ;

Parameters

path
(IN) Points to the directory path to generate a directory base (number) for.

nameSpace

(IN) Specifies the name space to generate the directory base (number) for.

volNum

(OUT) Points to the volume number that corresponds with path.

NSDirBase

(OUT) Points to a directory index for the specified name space.

DOSDirBase
(OUT) Points to a directory index for the DOS name space of the entry.

Return Values

If NWGetDirBaseFromPath succeeds, it returns zero. Otherwise, it returns a nonzero error code.

640 NDK: Multiple and Inter-File Services

Remarks

NWGetDirBaseFromPath gets a volume number, a directory base for the specified name space, and
a directory base for the DOS name space for the entry.

Path and Drive Functions 641

NWGetDrivelnformation

Returns information about the specified drive
NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWGetDriveInformation (
nuintlo driveNum,
nuintlo mode,
NWCONN_ HANDLE N FAR *conn,
NWDIR HANDLE N FAR *dirHandle,
pnuintlo6 driveScope,
pnstr8 dirPath) ;

Delphi Syntax
uses calwin32

Function NWGetDriveInformation
(driveNum : nuintl6;
mode : nuintlé6;
Var conn : NWCONN_ HANDLE;
Var dirHandle : NWDIR HANDLE;

driveScope : pnuintl6;
dirPath : pnstr8
) : NWCCODE;
Parameters
driveNum

(IN) Specifies the drive number for which to get the status (A=1, B=2, C=3, .. .); pass 0 for
current drive.

mode

Currently unused.

conn

(OUT) Points to the connection ID of the server the drive is currently mapped to.

642 NDK: Multiple and Inter-File Services

dirHandle
(OUT) Points to the directory handle associated with the specified drive.

driveScope
(OUT) Points to the drive scope (currently returns GLOBAL).

dirPath
(OUT) Points to the current directory of the specified drive.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

Ox000F DOS_INVALID_DRIVE
0x883C NOT_MY_RESOURCE
Ox89FF INVALID_DRIVE_NUMBER
Remarks

If driveNum is 0, information about the current drive is returned.
DOS_INVALID DRIVE is returned if the drive is not defined.

If VLMs are running, dirHandle returns 0. VLMs do not associate a directory handle with a
mapped drive, no directory handle can be returned. For example, if NETX version 3.32 is running,
NWGetDrivelnformation will return a valid dirHandle (non-zero) and a valid dirPath. If
VLM version 1.20 is running, NWGetDrivelnformation returns a dirHandle of zero and a valid
dirPath (the same dirPath returned when NETX was running).

Under Windows NT, a dirHandle will not be returned. Under all other platforms, if dirHandle
does not point to NULL, a di rHandle will be returned if NETX support is available. Otherwise,
NWGetDrivelnformation will return NWE_REQUESTER_FAILURE (0x88FF).

Under NLM, INVALID SHELL CALL is always returned.

See Also

NWGetFirstDrive (page 648)

Path and Drive Functions 643

NWGetDriveStatus

Returns the status of the specified drive and, optionally, the associated connection and its path in
various formats

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Path and Drive

Syntax
#include <nwdpath.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE)NWGetDriveStatus (

nuintlé6 driveNum,
nuintlé6 pathFormat,
pnuintl6 status,
NWCONN_ HANDLE N FAR *conn,
pnstr8 rootPath,
pnstr8 relPath,
pnstr8 fullPath);

Delphi Syntax
uses calwin32

Function NWGetDriveStatus
(driveNum : nuintl6;
pathFormat : nuintlé6;
status : pnuintl6;

Var conn : NWCONN_ HANDLE;
rootPath : pnstr8;
relPath : pnstr8;
fullPath : pnstr8
) : NWCCODE;

Parameters

driveNum

(IN) Specifies the drive number for which to get the status (A=1, B=2, C=3, .. .); pass 0 for
current drive.

pathFormat
(IN) Specifies the desired format for the return paths.

644 NDK: Multiple and Inter-File Services

status

(OUT) Points to a bit mask indicating if the drive is local and/or networked.

conn

(OUT) Points to the connection handle of the path driveNum is mapped to, if any (optional).

rootPath
(OUT) Points to the base path driveNum is mapped to (optional).

relPath

(OUT) Points to the path (relative to the root Path parameter) to which the drive number is
mapped (optional).

fullPath
(OUT) Points to the full path of driveNum, if it is a network drive (optional).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x000F NW_INVALID_DRIVE

0x8800 Unknown Error Occurred; Unable to Complete Request
0x883C NOT_MY_RESOURCE

Remarks

Currently, NWGetDriveStatus returns the status of local drives, but does not return path strings for
these paths to prevent critical errors from occurring on removable drives. (May change with future
releases.)

See Section 21.1, “Path Parameters,” on page 629 for input values and examples of returned
information.

NW_LOCAL_DRIVE indicates the specified drive letter is lower than the first networked drive
which usually defaults to F: and is set in the net.cfg file.

See Also

NWGetFirstDrive (page 648)

Path and Drive Functions 645

NWGetDriveStatusConnRef

Returns the status of the specified drive and, optionally, the associated connection reference and its
path in various formats

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Path and Drive

Syntax
#include <nwdpath.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWGetDriveStatusConnRef (

nuintlo6 driveNum,
nuintlé6 pathFormat,
pnuintlé6 status,
pnuint32 connRef,
pnstr8 rootPath,
pnstr8 relPath,
pnstr8 fullPath);

Delphi Syntax
uses calwin32

Function NWGetDriveStatusConnRef (
driveNum : nuintlé6;
pathFormat : nuintlé6;
status : pnuintl6;
connRef : pnuint32;
rootPath : pnstr8;
relPath : pnstr8;
fullPath : pnstr8
) : NWCCODE;

Parameters

driveNum

(IN) Specifies the drive number for which to return the satus (A=1, B=2, C=3, ...). Pass 0 for
the current drive.

646 NDK: Multiple and Inter-File Services

pathFormat
(IN) Specifies the desired format for the return paths.

status

(OUT) Points to a bit mask indicating if the drive is local and/or networked.

connRef

(OUT) Points to the connection reference of the specified drive (optional).

rootPath
(OUT) Points to the base path to which the specified drive is mapped (optional).

relPath

(OUT) Points to the path (relative to the rootPath parameter) to which the drive number is
mapped (optional).

fullPath
(OUT) Points to the full path of the specified drive if it is a network drive (optional).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL
Ox000F NW_INVALID_DRIVE
0x8836 INVALID_PARAMETER
Remarks

NWGetDriveStatusConnRef does not work with local drives.

See Section 21.1, “Path Parameters,” on page 629 for input values and examples of returned
information.

NW_LOCAL_DRIVE indicates the specified drive letter is lower than the first networked drive
which usually defaults to F: and is set in the net.cfg file.

Under NLM, INVALID SHELL CALL is always returned.

See Also

NWCCGetPrimConnRef, NWGetDriveStatus (page 644)

Path and Drive Functions 647

NWGetFirstDrive

Returns the first non-local drive

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Path and Drive

Syntax
#include <nwdpath.h>
or

#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWGetFirstDrive (
pnuintlo6 firstDrive) ;

Delphi Syntax
uses calwin32
Function NWGetFirstDrive

(firstDrive : pnuintlé6
) : NWCCODE;

Parameters

firstDrive
(OUT) Points to the first non-local drive (A=1, B=2, C=3...).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL
0x000F Unknown error occurred
Remarks

If an unknown error occurs while obtaining drive information, NWGetFirstDrive returns 0x000F;
this is very rare.

Under NLM, INVALID SHELL CALL is always returned.

648 NDK: Multiple and Inter-File Services

See Also

NWGetDriveStatus (page 644)

Path and Drive Functions 649

NWGetPathFromDirectoryBase

Returns the path name from an entry in the directory entry table for a NetWare server
NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWGetPathFromDirectoryBase (
NWCONN_HANDLE conn,

nuint8 volNum,
nuint32 dirBase,
nuint8 namSpc,
pnuint8 len,
pnstr8 pathName) ;

Delphi Syntax
uses calwin32

Function NWGetPathFromDirectoryBase
(conn : NWCONN_ HANDLE;
volNum : nuint8;
dirBase : nuint32;
namSpc : nuint8
len : pnuint8;
pathName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number.

dirBase

(IN) Specifies the directory entry number in the name space specified by the namSpc
parameter.

650 NDK: Multiple and Inter-File Services

namSpc

(IN) Specifies the name space used by the directory entry number (see Section 20.5, “Name
Space Flag Values,” on page 625).

len

(OUT) Points to the path length and specifies how much of the buffer pointed to by the
pathName parameter was used (initialize to the length of the buffer to hold the path).

pathName

(OUT) Points to the buffer containing the path name (maximum 255 characters).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
0Ox890A NLM_INVALID_CONNECTION
0x899C INVALID_PATH

Remarks

NWGetPathFromDirectoryBase maps a directory entry number to a path under a specified name
space. The path is returned as a group of components. Each directory, subdirectory, or file in the path
is considered to be a component. Each component is length preceeded and followed by the next
component.

For example, pathName returns the users/jdoe/working directory returned as:
Susers4jdoebworking

You must allocate memory for the buffer pointed to by the pathName parameter.
NWGetPathFromDirectoryBase returns the path in the pathName parameter as a length-preceded
array with generic separators.

NCP Calls

0x2222 23 243 Map Directory Number to Path

Path and Drive Functions 651

NWParseNetWarePath

Parses a path and returns the connection handle, directory handle, and new path to be used by
subsequent NetWare requests

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWParseNetWarePath (
const nstr8 N FAR *path,
NWCONN_ HANDLE N FAR *conn,
NWDIR HANDLE N FAR *dirHandle,
pnstr8 newPath) ;

Delphi Syntax
uses calwin32

Function NWParseNetWarePath
(const path : pnstr8;
Var conn : NWCONN_ HANDLE;
Var dirHandle : NWDIR HANDLE;
newPath : pnstr8

) : NWCCODE;

Parameters
path
(IN) Points to the path (in capital letters) being parsed.

conn

(OUT) Points to the NetWare server connection handle.

dirHandle
(OUT) Points to the directory handle.

652 NDK: Multiple and Inter-File Services

newPath

(OUT) Points to the new path, relative to the directory handle—this parameter should be a
buffer of at least 256 characters.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0Ox880F NO_CONNECTION_TO_SERVER
0x883C NOT_MY_RESOURCE
Remarks

NWParseNetWarePath does not check the validity of any volume or directory names in the path
string.

path must be specified in capital letters or the call to NWParseNetWarePath fails.

If the path to be parsed is relative to the current directory, NWParseNetWarePath assumes the
current drive and returns a complete path on all platforms. If the path is on a local drive,
NWParseNetWarePath returns NOT MY RESOURCE. If the path specifies a NetWare server name
and there are no connections to that NetWare server, NWParseNetWarePath returns
NO_CONNECTION _TO_SERVER.

Under all platforms, NWParseNetWarePath returns zero (0) in di rHandle and a full path
(volume:path) in newPath.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info
0x2222 104 1 Ping for NDS NCP

See Also

NWParsePath (page 654)

Path and Drive Functions 653

NWParsePath

Parses a path string

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWParsePath (
constr nstr8 N _FAR *path,

pnstr8 serverName,
NWCONN_HANDLE N _FAR *conn,
pnstr8 volName,
pnstr8 dirPath) ;

Delphi Syntax
uses calwin32

Function NWParsePath
(const path : pnstr8;

serverName : pnstr8;
Var conn : NWCONN_ HANDLE;
volName : pnstr8;
dirPath : pnstr8
) : NWCCODE;
Parameters
path

(IN) Points to the path to be parsed.

serverName

(OUT) Points to the server name (48 characters, optional).

conn

(OUT) Points to the connection handle of the server (optional).

654 NDK: Multiple and Inter-File Services

volName

(OUT) Points to the volume name (17 characters, optional).

dirPath

(OUT) Points to the directory portion of the path; this parameter should be a buffer of at least
256 characters.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL
0x880F NO_CONNECTION_TO_SERVER
Remarks

If conn is not NULL, a new connection handle will be returned by NWParsePath. You will need to
ensure this connection handle is properly closed.

If the path to be parsed is relative to the current directory, NWParsePath assumes the current drive
and path so a complete path specification is returned.

IF k: is the current drive

AND \dirl is the current directory on k:

AND dir2 is a directory in dirl

THEN calling NWParsePath with path pointing to "dir2" will cause
dirPath to return "dirl\dir2".

If the path to be parsed contains a map rooted drive, dirPath will be set to the complete directory
path from the volume level.

IF k:is map rooted to serverl/sys:dirl\

AND dir2 is a directory in dirl

THEN calling NWParsePath with path pointing to "k:dir2" will cause
dirPath to return "dirl\dir2" even though the DOS path is k:\dir2.

If the path to be parsed is relative to the current directory, the entire directory path will be returned,
without a preceding "\’ character.

IF k: is mapped to serverl/sys:

AND the current directory path for k: is dirl

AND dir2 is a directory in dirl

THEN calling NWParsePath with path pointing to "k:dir2" will cause
dirPath to return "dirl\dir2".

If the path to be parsed is on the root directory, dirPath will return with a preceding '\’ character
even if one is not included in the call. This is the only case that will return a preceding "\’ character.

IF k: is mapped to serverl/sys:

AND the current directory path on k: is the root

AND dirl is a directory on the root

THEN calling NWParsePath with path pointing to "k:dirl" will cause
dirPath to return "\dirl". Note the preceding "\’ character in this
case. This is the same for local drives and mapped drives.

Path and Drive Functions

655

serverName, conn, volName, and dirPath are optional. Substitute NULL if no returns are
desired. However, all parameter positions must be filled.

If the path is on a local drive, return information is placed in the return parameters as follows:

serverName zero-length string

conn 0

volName drive letter

dirPath directories from drive letter

NWParsePath does not guarantee the path actually exists.

If the path specifies a NetWare server name and there are no connections to that NetWare server,
NO_CONNECTION _TO_SERVER is returned. The path specification can be any of the following:

Specification Function

drive:path Drive letter is used to determine the network information, if any.

vol:path Volume and path will be assumed to be relative to the default server.
server vol:path Information is copied to the associated return buffers and, if requested, the

connection handle is obtained using the server name.

path Current drive is used to determine all the information.

If a map rooted drive is used, dirPath will be set to the complete directory path from the volume
level.

NCP Calls

0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info
0x2222 104 1 Ping for NDS NCP

See Also

NWParseNetWarePath (page 652)

656 NDK: Multiple and Inter-File Services

NWSetDriveBase

Maps the target drive to the specified directory path
NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Path and Drive

Syntax
#include <nwdpath.h>
or

#include <nwcalls.h>

N EXTERN LIBRARY (NWCCODE) NWSetDriveBase

nuintlo driveNum,
NWCONN_HANDLE conn,

NWDIR HANDLE dirHandle,
const nstr8 N FAR *dirPath,
nuintl6 driveScope) ;

Delphi Syntax
uses calwin32

Function NWSetDriveBase
(driveNum : nuintl6;
conn : NWCONN HANDLE;
dirHandle : NWDIR HANDLE;
dirPath : pnstr8;
driveScope : nuintl6

) : NWCCODE;

Parameters

driveNum

(IN) Specifies the drive number of the drive being mapped (0O=current, 1=A, 2=B,. . .).

conn

(IN) Specifies the NetWare server connection handle to which the drive is mapped.

dirHandle

(IN) Specifies the directory handle associated with dirPath.

dirPath

(IN) Points to the directory path the drive will be mapped to. dirPath is relative to

dirHandle, unless dirHandle is 0.

Path and Drive Functions 657

driveScope

Reserved for Novell use only; must be 0.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8802 DRIVE_IN_USE (Windows NT): The drive number is already mapped
0x8803 DRIVE_CANNOT_MAP

0x883C NOT_MY_RESOURCE: Trying to map a local drive

0x8875 INVALID_DRIVE_NUM

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89FF INVALID_DRIVE_NUMBER (Windows NT): An invalid drive number is being used
Remarks

If the specified drive number is zero, the current drive will be remapped to the specified path. For
other drive numbers, if the target drive is already mapped, the mapping must be deleted by calling
NWDeleteDriveBase before calling NWSetDriveBase.

Under all platforms, CD-ROM drives cannot be mapped.

The server name should not be specified in the dirPath parameter. Specify the server name in the
conn parameter. Under NETX.EXE, the server name can be parsed, but VLMs do not parse out the
server name.

Under NLM, INVALID_ SHELL CALL is always returned.

See Also

NWDeleteDriveBase (page 638), NWGetDriveStatus (page 644)

658 NDK: Multiple and Inter-File Services

NWSetlnitDrive (obsolete 7/99)

Sets the initial drive on the specified NetWare server but is now obsolete.

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Path and Drive

Syntax
#include <nwdpath.h>
or

#include <nwcalls.h>

N_EXTERN LIBRARY (NWCCODE) NWSetInitDrive
NWCONN_HANDLE conn) ;

Delphi Syntax
uses calwin32
Function NWSetInitDrive

(conn : NWCONN HANDLE
) : NWCCODE;

Parameters

conn

(

(IN) Specifies the NetWare server connection handle on which to set the initial drive.

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL
0x8801 INVALID_CONNECTION
Remarks

NWSetlnitDrive (obsolete 7/99) is used under OS/2 to set the mapping for drive L, the OS/2 drive

containing the system login for attaching to a server.

NWSetlnitDrive (obsolete 7/99) can be called from all platforms; however, it will only set the
correct drive mapping under OS/2. When called from all other platforms, NWSetInitDrive (obsolete

7/99) returns SUCCESSFUL without setting the correct drive mapping.

Path and Drive Functions 659

Under NLM, INVALID SHELL CALL is always returned.

660 NDK: Multiple and Inter-File Services

NWStripServerOffPath

Parses a server or volume path, copies the server name to the buffer specified by server, and returns
a pointer to the volume path

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x
Platform: NLM, Windows NT, Windows 95, Windows 98
Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>

N EXTERN LIBRARY (pnstr8) NWStripServerOffPath (
constr nstr8 N FAR “*path,
pnstr8 server) ;

Delphi Syntax

uses calwin32

Function NWStripServerOffPath
(path : pnstr8;
server : pnstr8

) : pnstr8;

Parameters

path

(IN) Points to a string containing a server volume path.

server

(OUT) Points to a 48-character buffer for the server name (optional).

Return Values

These are common return values; see Return Values (Return Values for C) for more information.

0x0000 path passed in was NULL

character pointer pointer to the volume path

See Also

NWParsePath (page 654), NWParseNetWarePath (page 652)

Path and Drive Functions 661

ParsePath

Separates a full path into server, volume, and directory specifications
Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Path and Drive

Syntax

#include <stdlib.h>
#include <nwdir.h>

int ParsePath (
char *path,

char *server,

char *volume,

char *directories);
Parameters
path

(IN) Points to the string containing the path to be parsed and can include a server name (255
character maximum).

server

(OUT) Points to the buffer in which to return the server name (48 character maximum).

volume

(OUT) Points to the buffer in which to return the volume name (16 character maximum).

directories

(OUT) Points to the buffer in which to return the directory specification (255 character
maximum).

Return Values

Value Hex Constant and Definition
0 (0x00) ESUCCESS: Fails if an invalid path is passed.
22 (0x16) EBADHNDL

662 NDK: Multiple and Inter-File Services

Remarks
ParsePath parses the given path and separates it into server, volume, and directory specifications.

Even if the path is not complete (or it is relative to the current working directory), ParsePath returns
the complete path specification.

Strings for the server, volume, and directories parameters are always converted to
uppercase characters.

See Also

StripFileServerFromPath (page 665)

Path and Drive Functions 663

SetWildcardTranslationMode

Specifies whether wildcard translation is to take place when parsing pathnames and filenames
Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Path and Drive

Syntax

#include <nwdir.h>

BYTE SetWildcardTranslationMode (
BYTE newMode) ;

Parameters

newMode
(IN) Specifies the new translation mode (TRUE or FALSE).

Return Values

Returns the old translation mode.

Remarks

SetWildcardTranslationMode enables (TRUE) or disables (FALSE) translation of the following
wildcards when parsing path and filenames:

* asterisk
? question mark
. period

When translation is enabled, the high-order bit is changed for all wildcard characters that are parsed
in any subsequent file or directory service function. If the high-order bit is 0, it is set to a value of 1.
If the high-order bit is 1, it is set to 0.

NetWare uses its own set of rules to interpret wildcards in pathnames. If the high-order bit of a
wildcard character is a 1, NetWare interprets that character as a DOS wildcard (this is called an
augmented wildcard) and uses DOS rules for interpretation of that wildcard.

664 NDK: Multiple and Inter-File Services

StripFileServerFromPath

Removes the name of the server from a full path specification
Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 3.x, 4.X, 5.x, 6.x

Platform: NLM

Service: Path and Drive

Syntax

#include <stdlib.h>
#include <nwdir.h>

char * StripFileServerFromPath (
char *path,

char *server) ;
Parameters
path

(IN) Points to the string containing the path from which to remove the server name.

server

(OUT) Points to the buffer in which to place the stripped server name (48 character maximum).

Return Values

Returns a pointer to a path specification stripped of the server name.

Remarks

StripFileServerFromPath removes the name of the server from a path specification. If the path
parameter does not include a server specification, StripFileServerFromPath returns the original path.
If the path parameter does include a server specification, the returned value begins with the

volume specification.

See Also

ParsePath (page 662)

Path and Drive Functions 665

666 NDK: Multiple and Inter-File Services

Server-Based Data Migration
Concepts

This documentation describes Server-Based Data Migration, its functions, and features.

NOTE: Writing a data migrator is a time-consuming project. Therefore, Server-Based Data
Migration is not designed for actually writing a migrator but for writing an NLM application that
uses a migrator that Novell or another party has already written.If you are interested in writing a
migrator, Novell Developer Relations can provide you with help and resources.

Data Migration Services give system administrators the ability to migrate (move) files from primary
storage to secondary (slower) storage. The migrated files appear to the Supervisor to be located on
primary storage; the directory structure is kept intact. When the Supervisor or user accesses a
migrated file, it is de-migrated in real time to primary storage for the user.

Some examples of secondary storage are optical jukeboxes, DAT jukeboxes, and so forth. Novell
provides a device driver for the HP 5 1/4" Optical Jukebox.

241 Advantages of Data Migration Applications

Because the NetWare® file system continues to display the files as if they were still resident on the
volume, users can migrate or de-migrate files at will. In addition, there are data migration functions
for automatic dynamic migration and de-migration.

If your NLM is a database that could grow very large, your users can benefit from being able to
migrate it when the appropriate time comes.

There is no limit to the amount of files users can migrate. Thus, a relatively small NetWare
volume—for example, one on a 100-megabyte internal hard disk—becomes a larger virtual storage
area when certain strategic files have been migrated.

CD ROMs or disk subsystems can hold huge quantities of data at the ready, so a data migration
application can optimize a networks utilization of the available storage space. For example, images
(graphics) lend themselves to being migrated because they are large files that typically are seldom
accessed. Similarly, databases can grow to large proportions and might be migratable under certain
conditions.

All things being equal (file size, file type, and so forth), a file that has been migrated to a CD ROM
or disk subsystem can be retrieved in almost the same time as it would take to retrieve it from the
NetWare volume.

Novell is providing users with three software modules that allow them to do real-time data
migration:

¢ High Capacity Storage Subsystem (HCSS): A front-end data migration application that allows
NetWare 4.x administrators to migrate data based upon a high and low water mark. The
administrator sets a high and low percentage mark that indicates when HCSS should migrate
files based on the last accessed-date. Each day HCSS migrates files to the low water mark
specification. Any time primary storage reaches the high water mark, HCSS dynamically

Server-Based Data Migration Concepts

667

begins to migrate files to secondary storage. You could write a data migration NLM to migrate
files any time a different set of conditions exists, depending on your users needs.

¢ Two support-module NLM applications: Up to 32 support modules can be written to register up
to 32 different types of storage devices—hard disk, tape, CD ROM—with NetWare data
migration NLM, the DM. Novell supplies two sample support modules with NetWare 4.x, one
for the HP 5 1/4" Optical Jukebox CD ROM and one for the hard disk.

For help writing a support module, contact Novell Developer Relations.

24.2 Server-Based Data Migration Functions

These are the server-based data migration functions and their purposes:

NWMoveFileToDM
NWMoveFileFromDM
NWPeekFileData
NWSetDefaultSupportModule

NWGetDataMigratorinfo

NWGetDefaultSupportModule

NWGetDMFilelnfo

NWGetDMVolumelnfo

NWGetSupportModulelnfo
NWIsDataMigrationAllowed

Migrate a file

De-migrate a file

Read part of a migrated file

Change the default support modules

Get version number of DM and total number of
accompanying support modules

Get the default read/write support module ID

Get file information on the DM (path, name space, and so
forth)

Get volume information (total number of files that have been
migrated to a certain volume and their total size)

Determine which support modules are currently registered

Determine if data migration is allowed on a particular volume

668 NDK: Multiple and Inter-File Services

Server-Based Data Migration
Functions

This documentation alphabetically lists the Server-Based Data Migration functions and describes
their purpose, syntax, parameters, and return values.

* “NWGetDataMigratorInfo” on page 670

* “NWGetDefaultSupportModule” on page 671

* “NWGetDMFileInfo” on page 672

* “NWGetDM Volumelnfo” on page 674

* “NWGetSupportModuleInfo” on page 675

+ “NWIsDataMigrationAllowed” on page 677

+ “NWMoveFileFromDM” on page 678

+ “NWMoveFileToDM” on page 679

* “NWPeekFileData” on page 680

* “NWSetDefaultSupportModule” on page 682
For cross-platform functionality, see Developing NLMs with Cross-Platform Functions (NDK: NLM

Development Concepts, Tools, and Functions) and call the alternative function listed with each
NLM function.

Server-Based Data Migration Functions 669

NWGetDataMigratorinfo

Obtains information about a data migration NLM application
Local Servers: blocking

Remote Servers: blocking

Classification: 4.x, 5.x, 6.x

Service: Server-Based Data Migration

Syntax

#include <\nlm\nit\nwdatamg.h>

void NWGetDataMigratorInfo (
LONG *DMPresentFlag,
LONG *majorVersion,
LONG *minorVersion,
LONG *numberOfSupportModules) ;

Parameters

DMPresentFlag
(OUT) Receives the status of the data migration NLM.

majorVersion

(OUT) Receives the major version number of the data migration NLM.

minorVersion

(OUT) Receives the minor version number of the data migration NLM.

numberOfSupportModules
(OUT) Receives the number of modules supported by the data migration NLM.

Remarks

For cross-platform functionality, call NWGetDataMigratorInfo (page 20).
This function obtains the following information about the data migration NLM:

¢ Whether it is loaded and running
¢ [ts major and minor version numbers

¢ The number of modules supported by the NLM

The DMPresentFlag receives -1 if the data migration NLM is loaded and running. If
DMPresentFlag receives 0, the data migration NLM is not loaded.

670 NDK: Multiple and Inter-File Services

NWGetDefaultSupportModule

Obtains the default read/write support module 1D
Local Servers: blocking

Remote Servers: blocking

Classification: 4.x, 5.x, 6.x

Service: Server-Based Data Migration

Syntax

#include <\nlm\nit\nwdatamg.h>

LONG NWGetDefaultSupportModule (
LONG *defaultSupportModulelID) ;

Parameters

defaultSupportModulelID

(OUT) Receives the ID number of the default support module.

Return Values

0 Successful.

Remarks

For cross-platform functionality, call NWSetDefaultSupportModule (page 37).

See Also

NWSetDefaultSupportModule (page 682)

Server-Based Data Migration Functions 671

NWGetDMFilelnfo

Obtains information about a file that has been migrated to long-term storage
Local Servers: blocking

Remote Servers: blocking

Classification: 4.x, 5.x, 6.x

Service: Server-Based Data Migration

Syntax

#include <\nlm\nit\nwdatamg.h>

LONG NWGetDMFileInfo (
char *path,
LONG namesSpace,
LONG *supportModulelD,
LONG *validDataStreams,
BYTE *estRetrievalTime,
LONG *info) ;

Parameters
path
(IN) Points to the - path of a file.

nameSpace

(IN) Specifies the name space of the path.

supportModuleID

(OUT) Receives the assigned ID number of the support module that migrated the data to long-
term storage.

validDataStreams

(OUT) Receives the data streams that are supported by the data migrator.

estRetrievalTime

(OUT) Receives an estimate of how long data retrieval will take.
info

(OUT) Points to more file information.

Return Values

0 Successful.

672 NDK: Multiple and Inter-File Services

Remarks

For cross-platform functionality, call NWGetDMFilelnfo (page 24).

Server-Based Data Migration Functions 673

NWGetDMVolumelnfo

Obtains information about the volume from which data has been migrated to long-term storage
Local Servers: blocking

Remote Servers: blocking

Classification: 4.x, 5.x, 6.x

Service: Server-Based Data Migration

Syntax

#include <\nlm\nit\nwdatamg.h>

LONG NWGetDMVolumeInfo (
LONG volume,
LONG supportModulelID,
LONG *numberOfFilesMigrated,
LONG *totalMigratedSize,
LONG *spaceUsed,
LONG *1limboUsed,
LONG *spaceMigrated,
LONG *filesLimbo) ;

Parameters
volume
(IN) Specifies the volume that contains migrated files.

numberOfFilesMigrated

(OUT) Receives the number of files on the volume that have been migrated to long-term
storage.

totalMigratedSize

(OUT) Receives the total size needed to recover all data migrated on the volume.

Return Values

0 Successful.

Remarks

For cross-platform functionality, call NWGetDM Volumelnfo (page 27).

674 NDK: Multiple and Inter-File Services

NWGetSupportModulelnfo

Obtains information about data migration support modules
Local Servers: blocking

Remote Servers: blocking

Classification: 4.x, 5.x, 6.x

Service: Server-Based Data Migration

Syntax

#include <\nlm\nit\nwdatamg.h>

LONG NWGetSupportModuleInfo (

LONG informationLevel,
LONG supportModulelD,
void *returnInfo,

LONG *returnInfolen) ;

Parameters

informationLevel

(IN) Specifies the type of information requested.

supportModuleID

(IN) Specifies the data migration support module to return information for.

returnInfo

(OUT) Points to the area where the information from this function is stored.

returnInfolen

(OUT) Receives the length of the information returned.

Return Values

0 Successful.

Remarks

For cross-platform functionality, call NWGetSupportModulelnfo (page 30).

The type of information that this function returns depends on the value specified in
informationLevel. The following indicates the type of information returned for each value of

informationLevel:

Server-Based Data Migration Functions 675

0 NWGetSupportModulelnfo returns information about the data migration support
module in the returnInfo parameter.

1 NWGetSupportModulelnfo returns a list of all loaded data migration support module
ID numbers in the returnInfo parameter.

The returnInfo parameter receives a different type of structure depending on the type of
information requested. If information about a particular data migration support module is requested,
returnInfo receives a structure of type SUPPORT _MODULE _INFO, which is defined in
\nlm\nit\nwdatamg.h as follows:
typedef struct {

LONG IOStatus;

LONG InfoBlockSize;

LONG AvailSpace;

LONG UsedSpace;

BYTE SMString;
} SUPPORT MODULE INFO;

The IOStatus field contains the read and write access for the support module.

The InfoBlockSize field contains the size of the information block containing information
about the support device. This information block follows the SMString field.

The AvailSpace field contains the amount of available space on the support module. The
UsedSpace field contains the amount of used space on the support module.

The SMString contains the name of the support module and is followed by an information block.
The size of SMString is limited to 128 bytes.

676 NDK: Multiple and Inter-File Services

NWisDataMigrationAllowed

Determines whether data migration is allowed for a given volume
Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Server-Based Data Migration

Syntax

#include <\nlm\nit\nwdatamg.h>

LONG NWIsDataMigrationAllowed (
LONG Volume) ;

Parameters

Volume

(IN) Specifies the volume number that you want information for.

Return Values

NOTE: This function does not have a cross-platform counterpart.

This function returns TRUE if data migration is allowed, or FALSE if data migration is not allowed.

Server-Based Data Migration Functions 677

NWMoveFileFromDM

Moves a file from on-line long-term storage media to a NetWare volume
Local Servers: blocking

Remote Servers: blocking

Classification: 4.x, 5.x, 6.x

Service: Server-Based Data Migration

Syntax

#include <\nlm\nit\nwdatamg.h>

LONG NWMoveFileFromDM (
char *path,

LONG NameSpace) ;
Parameters
path

(IN) Points to the path of the file.

NameSpace

(IN) Specifies the name space of the path.

Return Values

0 Successful.

Remarks

For cross-platform functionality, call NWMoveFileFromDM (page 32).

See Also

NWMoveFileToDM (page 679)

678 NDK: Multiple and Inter-File Services

NWMoveFileToDM

Moves a file to on-line long-term data storage media while leaving the file visible on the NetWare
volume

Local Servers: blocking
Remote Servers: blocking
Classification: 4.x, 5.x, 6.x

Service: Server-Based Data Migration

Syntax

#include <\nlm\nit\nwdatamg.h>

LONG NWMoveFileToDM (
char *path,

LONG NameSpace,

LONG SupportModulelID) ;
Parameters
path

(IN) Points to the path of the file.

NameSpace

(IN) Specifies the name space of the path.

SupportModuleID

(IN) Specifies the assigned ID number of the support module that is to migrate the data to long-
term storage.

Return Values

0 Successful.

Remarks
This function moves a file’s data to long-term storage while leaving the file visible on the NetWare

volume. In this way, large, seldom-used files can be moved from the NetWare volume and put into
long-term storage while not in use, yet the user can still see them on the NetWare volume.

For cross-platform functionality, call NWMoveFileToDM (page 34).

See Also

NWMoveFileFromDM (page 678)

Server-Based Data Migration Functions 679

NWPeekFileData

Enables the developer to look at data in a migrated file
Local Servers: blocking

Remote Servers: N/A

Classification: 4.x, 5.x, 6.x

Service: Server-Based Data Migration

Syntax

#include <\nlm\nit\nwdatamg.h>

LONG NWPeekFileData (
char *path,

LONG namesSpace,

LONG dataStreamNumber,
LONG startingSector,
LONG sectorsToRead,

BYTE *buffer,
LONG *sectorsRead,
LONG *bytesRead) ;

Parameters

path
(IN) Specifies the path of the file from which to read data.

nameSpace

(IN) Specifies the name space of the file (see Section 20.5, “Name Space Flag Values,” on
page 625.

dataStreamNumber
(IN) Specifies the data stream for the data.

startingSector

(IN) Specifies the sector to start reading from.

sectorsToRead

(IN) Specifies the number of sectors to read.

buffer
(OUT) Points to the buffer containing the data that was read.

sectorsRead

(OUT) Receives the number of sectors read.

bytesRead
(OUT) Receives the total number of bytes read.

680 NDK: Multiple and Inter-File Services

Return Values

0 Successful.

Remarks

NOTE: This function does not have a cross-platform counterpart.

This function allows the developer to read from a migrated file.
The nameSpace parameter can have the following values:

0 DOS

1 MACINTOSH
2 NFS

3 FTAM

4 LONG

SNT

Server-Based Data Migration Functions 681

NWSetDefaultSupportModule

Sets the default read write support module ID
Local Servers: blocking

Remote Servers: blocking

Classification: 4.x, 5.x, 6.x

Service: Server-Based Data Migration

Syntax

#include <\nlm\nit\nwdatamg.h>

LONG NWSetDefaultSupportModule (
LONG newSupportModulelID,
LONG *currentSupportModulelID) ;

Parameters

newSupportModuleID

(IN) Specifies the assigned ID number of the data migration support module to migrate the
data.

currentSupportModuleID
(IN) Specifies the ID number of the current support module.

Return Values

0 Successful.

Remarks

For cross-platform functionality, call NWSetDefaultSupportModule (page 37).

See Also

NWGetDefaultSupportModule (page 671)

682 NDK: Multiple and Inter-File Services

Server-Based File System
Functions

This documentation alphabetically lists the Server-Based File System functions and describes their

purpose, syntax, parameters, and return values.

¢ “AddSpaceRestrictionForDirectory” on page 684
¢ “AddTrustee” on page 686

+ “AddUserSpaceRestriction” on page 689

¢ “ChangeDirectoryEntry” on page 691

¢ “DeleteTrustee” on page 695

+ “DeleteUserSpaceRestriction” on page 697

+ “GetAvailableUserDiskSpace” on page 698

+ “GetDiskSpaceUsedByObject” on page 700

+ “GetEffectiveRights” on page 702

* “GetMaximumUserSpaceRestriction” on page 705
+ “ModifyInheritedRightsMask™ on page 707

¢ “PurgeTrusteeFromVolume” on page 710

¢ “ReturnSpaceRestrictionForDirectory” on page 711
¢ “ScanTrustees” on page 713

+ “ScanUserSpaceRestrictions” on page 715

¢ “SetDirectoryInfo” on page 717

¢ “UpdateDirectoryEntry” on page 720

For cross-platform functionality, see Developing NLMs with Cross-Platform Functions, use the
CALNLM32.NLM library, and call the alternative function listed with each NLM function.

Server-Based File System Functions 683

AddSpaceRestrictionForDirectory

Adds directory space restrictions
Local Servers: blocking
Remote Servers: blocking
Classification: 3.x, 4.x, 5.x, 6.
SMP Aware: No

Service: File System

Syntax

#include <nwdir.h>

int AddSpaceRestrictionForDirectory (

char *pathName,

int restriction,

LONG allowWildCardsFlaqg) ;
Parameters
pathName

(IN) Specifies the pathname of the directory to which to add space restrictions.

restriction

(IN) Specifies the number of 4K blocks that the files in the specified directory tree are allowed
to occupy.

allowWildCardsFlag

(IN) Indicates whether or not wildcards are allowed in the pathname:

Nonzero = Wildcards allowed
0 = Wildcards are not allowed

Return Values

0 ESUCCESS
NetWare Error UNSUCCESSFUL

Remarks

To be able to add space restrictions to a directory, you must have supervisory rights to the directory
or directories being modified.

684 NDK: Multiple and Inter-File Services

A restriction in a directory means that all the files in that directory plus all of the files in any
subdirectories of that directory are not allowed to occupy more space than the amount specified by
the restriction parameter. The space restriction value is rounded up to a multiple of 4K (4096).

Wildcard specifiers can be used to apply a disk space restriction to more than one directory at a time.
A space restriction can be removed from a directory by setting the restriction amount to zero.

SetCurrentNameSpace sets the name space which is used for parsing the path input to this function.

NOTE: For NetWare versions before 4.x, this function only works with DOS name space for remote
servers.

See Also

ReturnSpaceRestrictionForDirectory (page 711)

Server-Based File System Functions 685

AddTrustee

Adds a trustee to a directory’s or file’s trustee list
Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.

SMP Aware: No

Service: File System

Syntax
#include <nwdir.h>

int AddTrustee (
char *pathName,
LONG trusteeObjectID,
WORD trusteeRightsMask) ;

Parameters

pathName

(IN) Specifies the string containing the path specification (maximum 255 characters, including
the NULL terminator).

trusteeObjectID

(IN) Specifies the unique object ID of the trustee, in reverse order.

trusteeRightsMask
(IN) Specifies the trustee rights to assign to the directory or file.

Return Values

0x00 ESUCCESS

0x8C ERR_NO_MODIFY_PRIVILEGES
OxFC ERR_NO_SUCH_BINDERY_OBJECT
Remarks

This function adds a trustee to a directory’s or file’s trustee list by passing the trustee’s object ID and
an associated trustee rights mask. (Trustees can be set for files in NetWare 3.x and 4.x, unlike
NetWare 2.x.) The application can obtain an object’s ID and the user’s object ID number by using
the Directory Services function NWDSMapNameTolD .

686 NDK: Multiple and Inter-File Services

This function specifies the directory or file by passing a pathname. The pathName parameter can
identify an absolute or relative directory or file path. An absolute path includes a volume. Examples
of absolute pathnames would be:

volume:directory\...\directory\filename
volume:filename

volume: (equivalent to volume:\)

Applications can use a relative file path to specify a directory or file. The relative path, combined
with the CWD specifies an absolute file path. For example, if the CWD points to SYS:\ and the
specified pathname is PUBLIC\WORDP or PUBLIC\WORDP\ABC.TXT, then in the former case,
the resulting directory is SYS:PUBLIC\WORDP and in the latter case,
SYS:PUBLIC\WORDP\ABC.TXT.

AddTrustee expects the trustee ID in reverse order (0010000e = ¢0000100) to perform properly.

The trusteeRightsMask parameter specifies a user’s trustee rights. The bits in a trustee rights
mask are defined as follows:

0 Read (file reads allowed)

1 Write (file writes allowed)

2 Reserved

3 Create (files can be created)

4 Delete (files can be deleted)

5 Access control (trustee rights can be assigned)
6 See files (files can be viewed in directory scan)
7 Modify (files can be modified)

8 Supervisor (all rights are granted)

The following constants have been defined for each right which can be ORed (|) together for a
complete specification: TA READ, TA_ WRITE, TA CREATE, TA DELETE,
TA_ACCESSCONTROL, TA_SEEFILES, TA_ MODIFY, TA_SUPERVISOR.

For versions of NetWare previous to 3.0, the trustee rights appear in a 1-byte format as follows:

0 Read (file reads allowed)

1 Write (file writes allowed)

2 Open

3 Create (files can be created)

4 Delete (files can be deleted)

5 Parental (subdirectories can be created/deleted and trustee rights granted/revoked)
6 Search (directory can be searched)

7 Modify (file attributes can be modified)

Given the following path, where component]1 through componentn-1 are directories, and
componentn is either a file or directory:

volume:componentl\component2\...\componentn

Server-Based File System Functions 687

An object’s effective rights to a file or in a directory can be determined, using the following
algorithm:

+ Initialize an object’s effective rights to whatever rights are granted to the current connection in
the root of the specified volume.

¢ For each component (component] through componentn), the effective rights are intersected
(ANDed) with the component’s inherited rights mask.

¢ [fthe current connection is granted any rights (is a trustee) in the component, then the effective
ights are ORed (]) together with the rights granted to the current connection in the component.

To be added as a trustee, a user must exist as an object. The rights mask of a new trustee is made
equal to trusteeRightsMask . If the user is already a trustee in the specified directory or file,
the existing rights mask for the trustee is replaced by the trusteeRightsMask.

The current connection must have access control rights to the directory or file whose trustee list is
being manipulated.

SetCurrentNameSpace sets the name space which is used for parsing the path input to this function.

NOTE: For NetWare versions before 4.x, this function only works with DOS name space for remote
servers.

See Also

DeleteTrustee (page 695), NWDSMapNameTolD (NDK.: Novell eDirectory Core Services)

688 NDK: Multiple and Inter-File Services

AddUserSpaceRestriction

Adds a user space restriction
Local Servers: blocking
Remote Servers: blocking
Classification: 3.x, 4.x, 5.x, 6.
SMP Aware: No

Service: File System

Syntax

#include <nwdir.h>

int AddUserSpaceRestriction (
int volume,
LONG trusteelD,
LONG restriction);

Parameters

volume

(IN) Specifies the volume number of the volume where the restriction is to be added (-1
specifies the current volume).

trusteelD
(IN) Specifies the trustee’s object ID.

restriction

(IN) Specifies the number of 4K blocks on the disk that the user is allowed to occupy on the
volume.

Return Values

Value Hex Constant
0 (0x00) ESUCCESS
152 (0x98) ERR_INVALID_VOLUME

If trusteeID is invalid, no error code is returned.

Remarks

This function is used to add disk space restrictions to an object. The restriction parameter
specifies the total disk space that an object is to have on the volume.

Server-Based File System Functions 689

The value of restriction is a number of disk sectors. The value of restriction is a 4K multiplier.
That is, a value of 5 indicates a disk space restriction of 20K (4K X 5 = 20K).

If user A has a disk space restriction of 500 and this function is called with a value of 1000, then user
A now has a disk space restriction of 1000 not 1500.

AddUserSpaceRestriction is not supported in a NetWare 2.x environment. On remote servers
running NetWare 2.x, this function returns error code 251 (ERR_UNKNOWN_ REQUEST).

See Also

DeleteUserSpaceRestriction (page 697), GetAvailableUserDiskSpace (page 698)

690 NDK: Multiple and Inter-File Services

ChangeDirectoryEntry

Changes a directory or file entry
Local Servers: blocking
Remote Servers: blocking
Classification: 3.x, 4.x, 5.x, 6.
SMP Aware: No

Service: File System

Syntax

#include <nwdir.h>

int ChangeDirectoryEntry (

char *pathName,

struct ModifyStructure *modifyVector,

LONG modifyBits,

LONG allowWildCardsFlaqg) ;
Parameters
pathName

(IN) Specifies the directory pathname to be changed.

modifyVector

(IN) Points to a structure that specifies the new values of the directory entry’s fields.

modifyBits
(IN) Tells the function which structure fields to change.

allowWildCardsFlag

(IN) Indicates whether wildcards are allowed in the pathname:

Nonzero = Wildcards allowed
0 = No wildcards allowed.

Return Values

Value Hex Constant and Definition
0 (0x00) ESUCCESS
1 (0x01) Invalid MOwnerID, MLastUpdatedID, MLastArchivedID, or

MMaximumSpace in ModifyStructure.

NetWare Error UNSUCCESSFUL

Server-Based File System Functions 691

Remarks

This function is used to modify the fields of a file or directory entry or entries. (If wildcards are
specified, then only matching files are changed.)

To call this function, complete the following steps:

1. Indicate which fields to change out by switching on the appropriate bit in the modifyBits
parameter.

The modify bits are defined in NWFATTR.H and have the following values:

0x0001L MModifyNameBit
0x0002L MFileAttributesBit
0x0004L MCreateDateBit
0x0008L MCreateTimeBit
0x0010L MOwnerIDBit
0x0020L MLastArchivedDateBit
0x0040L MLastArchivedTimeBit
0x0080L MLastArchivedIDBit
0x0100L MLastUpdatedDateBit
0x0200L MLastUpdatedTimeBit
0x0400L MLastUpdatedIDBit
0x0800L MLastAccessedDateBit
0x1000L MInheritanceRestrictionMaskBit
0x2000L MMaximumSpaceBit
0x4000L MLastUpdatedInSecondsBit
2. Create or fill in the structure ModifyStructure. It is only necessary to fill in those fields to be

changed (with the exception of MFileAttributesMask, see below). This structure is
located in NWDIR.H and contains the following fields:

BYTE *MModi fyName;

LONG MFileAttributes;

LONG MFileAttributesMask;
WORD MCreateDate;

WORD MCreateTime;

LONG MOwnerID;

WORD MLastArchivedDate;
WORD MLastArchivedTime;
LONG MLastArchivedID;

WORD MLastUpdatedDate;

WORD MLastUpdatedTime;

LONG MLastUpdatedID:

WORD MLastAccessedDate;
WORD MIheritanceGrantMask;
WORD MInheritanceRevokeMask;
int MMaximumSpace;

LONG MLastUpdatedInSeconds;

The MMaximumSpace field contains the number of 4K blocks.
The MOwnerID, MLastArchivedID, and MLastUpdatedID must be in low-high order.

692 NDK: Multiple and Inter-File Services

The MFileAttributesMask field must be set to whatever the file’s current attributes are if
you want to retain the existing file attributes in addition to the attributes you specify in the
MFileAttributes field. Set the mask to -1 if you want to be able to set any file attribute.

3. Call the function.

The current connection must have the following access rights to change the specified directory entry
fields:

Attribute/Field Required Access Rights

ReadOnly ModifyEntry

Hidden ModifyEntry

System ModifyEntry

ExecuteOnly CreateNewEntry or ModifyEntry

Subdirectory Cannot be modified

Archive ModifyEntry

Share

Transaction ModifyEntry

ReadAudit SupervisorPrivileges (over owner of file or directory)

WriteAudit SupervisorPrivileges (over owner of file or directory)

ImmediatePurge DeleteExistingEntry

MCreateDate SupervisorPrivileges

MCreateTime SupervisorPrivileges

MOwnerID SupervisorPrivileges (over current and new owner)

MLastArchivedDate ReadExistingFile or ModifyEntry

MLastArchivedTime ReadExistingFile or ModifyEntry

MLastArchivedID ReadExistingFile or ModifyEntry to set own ID; SupervisorPrivileges
over current LastArchivedID to set ID of another object

MLastUpdatedDate ModifyEntry or WriteExistingFile

MLastUpdatedTime ModifyEntry or WriteExistingFile

MLastUpdatedID ModifyEntry or WriteExistingFile to set own ID; SupervisorPrivileges
over current LastUpdatedID to set ID of another object

MRightsGrantMask ChangeAccessControl; cannot disinherit Supervisor Privileges

MRightsRevokeMask ChangeAccessControl; cannot disinherit SupervisorPrivileges

MMaximumSpace SupervisorPrivileges

ChangeDirectoryEntry is supported in a NetWare 2.x environment for directories only, and can only
change attributes, create date and time, inherited rights, and owner ID. File entries under NetWare
2.x must still be set using SetFilelnfo .

Server-Based File System Functions 693

SetCurrentNameSpace sets the name space which is used for parsing the path input to this function.

NOTE: For NetWare versions before 4.x, this function only works with DOS name space for remote
servers.

See Also

ModifyInheritedRightsMask (page 707), SetDirectorylnfo (page 717), SetFileInfo

694 NDK: Multiple and Inter-File Services

DeleteTrustee

Removes a trustee from a directory’s or file’s trustee list
Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.

SMP Aware: No

Service: File System

Syntax

#include <nwdir.h>

int DeleteTrustee (

char *pathName,

LONG trusteeObjectID) ;
Parameters
pathName

(IN) Specifies the string containing path specification (maximum 255 characters, including the
NULL terminator).

trusteeObjectID
(IN) Specifies the unique object ID of trustee.

Return Values

Value Hex Constant

0 (0x00) ESUCCESS

152 (0x98) ERR_VOLUME_DOES_NOT_EXIST
156 (0x9C) ERR_INVALID_PATH

Remarks

The DeleteTrustee function revokes all of the rights that a trustee has been granted. This function
specifies the trustee by passing the trustee’s object ID. The function identifies the directory or file by
optionally passing a complete pathname or a partial pathname relative to the current working
directory (CWD). In order to delete a trustee, the current connection must have access control rights
to the directory or file.

This function specifies the directory or file by passing a pathname. The pathName parameter can
identify an absolute or relative directory or file path.

Server-Based File System Functions 695

An absolute path includes a volume. Examples of absolute pathnames would be:

volume:directory\...\directory\filename
volume:filename

volume: (equivalent to volume:\)

Applications might use a relative file path to specify a directory or file. The relative path, combined
with the CWD specifies an absolute file path. For example, if the CWD points to SYS:\ and the
specified pathname is PUBLIC\WORDP or PUBLIC\WORDP\ABC.TXT, then in the former case,
the resulting directory is SYS:PUBLIC\WORDP and in the latter case,
SYS:PUBLIC\WORDP\ABC.TXT.

The application can obtain an object’s ID by using NWDSMapNameToID or ScanTrustees .

SetCurrentNameSpace sets the name space which is used for parsing the path input to this function.

NOTE: For NetWare versions before 4.x, this function only works with DOS name space for remote
servers.

See Also

AddTrustee (page 686), NWDSMapNameTolD, ScanTrustees (page 713)

696 NDK: Multiple and Inter-File Services

DeleteUserSpaceRestriction

Deletes a space restriction for an object
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.X, 5.x, 6.x
Platform: NLM

SMP Aware: No

Service: Volume

Syntax

#include <nwdir.h>

int DeleteUserSpaceRestriction (
int volume,
LONG objectID);

Parameters

volume

(IN) Specifies the volume number on the volume where the user restriction is to be removed.

objectID
(IN) Specifies the user’s object ID.

Return Values

Value Hex Constant

0 (0x00) ESUCCESS
NetWare Error UNSUCCESSFUL
Remarks

This function removes a space restriction on an object.

DeleteUserSpaceRestriction is not supported in a NetWare 2.x environment. On remote servers
running NetWare 2.x, this function returns error code 251 (ERR_UNKNOWN_ REQUEST).

See Also

AddUserSpaceRestriction (page 689), AddSpaceRestrictionForDirectory (page 684),
GetVolumeNumber (Volume Management), ReturnSpaceRestrictionForDirectory (page 711)

Server-Based File System Functions 697

GetAvailableUserDiskSpace

Returns the disk space available to a user in blocks
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

SMP Aware: No

Service: Volume

Syntax

#include <nwdir.h>

int GetAvailableUserDiskSpace (
char *pathName,
LONG *availableSpace) ;

Parameters

pathName
(IN) Points to the directory pathname that the available disk space is to be returned for.

availableSpace

(OUT) Points to the remaining disk space, in blocks, available to the user in the specified
directory.

Return Values

Value Hex Constant

0 (0x00) ESUCCESS
NetWare Error UNSUCCESSFUL
Remarks

This function returns the amount of disk space (in blocks) in the specified directory for the current
connection. The disk space returned also includes purgeable blocks. The amount of space available
is limited in three ways:

+ User space restriction (the "user" is specified by the current connection)

¢ Directory space restriction

¢ Physical space left on the volume

698 NDK: Multiple and Inter-File Services

GetAvailableUserDiskSpace is not supported in a NetWare 2.x environment. On remote servers
running NetWare 2.x, this function returns error code 251 (ERR_UNKNOWN_REQUEST).

SetCurrentNameSpace sets the name space which is used for parsing the path input to this function.

NOTE: For NetWare versions before 4.x, this function only works with DOS name space for remote
servers.

See Also

DeleteUserSpaceRestriction (page 697), ReturnSpaceRestrictionForDirectory (page 711)

Server-Based File System Functions 699

GetDiskSpaceUsedByObject

Returns the disk space being used by a particular user
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

SMP Aware: No

Service: Volume

Syntax

#include <nwdir.h>

int GetDiskSpaceUsedByObject (
long trusteelD,
int volume,
LONG *usedSpace) ;

Parameters

trusteelD
(IN) Specifies the desired user object ID.

volume

(IN) Specifies the desired volume.

usedSpace

(OUT) Receives the number of 4K blocks being used by the user object.

Return Values

Value Hex Constant

0 (0x00) ESUCCESS

Nonzero Invalid volume or user object ID.
See Also

AddTrustee (page 686), DeleteTrustee (page 695), ModifylnheritedRightsMask (page 707)

700 NDK: Multiple and Inter-File Services

Example

#include <stdlib.h>
#include <nwdir.h>

main ()

{
int rc;
long objectID;
LONG usedSpace;

rc = GetBinderyObjectID("dgambill"™, 1, &objectID);

if(rc !'= 0)

{
printf ("GetBinderyObjectID() status = %$x\n", rc);
return;

}

rc = GetDiskSpaceUsedByObject (objectID, 0, &usedSpace);

if(rc !'= 0)

{
printf ("GetDiskSpaceUsedByObject () status = %$x\n", rc);
return;

}

printf ("Disk Space Used By ’dgambill’ = %d\n",

usedSpace*4096) ;

Server-Based File System Functions 701

GetEffectiveRights

Returns the current connection’s effective rights to a directory or file

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.

SMP Aware: No

Service: File System

Syntax

#include <nwdir.h>

int GetEffectiveRights (
char *pathName,
WORD *effectiveRightsMask) ;

Parameters

pathName

(IN) Specifies the string containing the path specification (maximum 255 characters, including

the NULL terminator).

effectiveRightsMask

(OUT) Returns the current connection’s rights to the specified directory or file.

Return Values

Value Hex Constant

0 (0x00) ESUCCESS

152 (0x98) ERR_VOLUME_DOES_NOT_EXIST
191 (OxBF) ERR_INVALID_NAMESPACE
Remarks

This function specifies the directory or file by passing a pathname. The pathName parameter can
identify an absolute or relative directory or file path. An absolute path includes a volume. Examples
of absolute pathnames would be:

volume:directory\...\directory\filename

volume:filename

702 NDK: Multiple and Inter-File Services

volume: (equivalent to volume:\)

Applications can use a relative file path to specify a directory or file. The relative path, combined
with the CWD specifies an absolute file path. For example, if the CWD points to SYS:\ and the
specified pathname is PUBLIC\WORDP or PUBLIC\WORDP\ABC.TXT, then in the former case,
the resulting directory is SYS:PUBLIC\WORDP and in the latter case,
SYS:PUBLIC\WORDP\ABC.TXT.

The ef fectiveRightsMask parameter returns a user’s effective rights to the specified directory
or file.

Given the following path, where component1 through componentn-1 are directories, and
componentn is either a file or directory:

volume:componentl\component2\...\componentn
A user’s effective rights to a file or in a directory can be determined using the following algorithm.

+ Initialize the user’s effective rights to whatever rights are granted to the current connection in
the root of the specified volume.

¢ For each component (component] through componentn), the effective rights are intersected
(ANDed) with the component’s inherited rights mask.

¢ Ifthe current connection is granted any rights (is a trustee) in the component, then the effective
rights are ORed (|) together with the rights granted to the current connection in the component.

For NetWare 3.x and 4.x, the bits in an effective rights mask are defined as follows:

0 Read (file reads allowed)

1 Write (file writes allowed)

2 Reserved

3 Create (files can be created)

4 Delete (files can be deleted)

5 Access control (trustee rights can be assigned)
6 See files (files can be viewed in directory scan)
7 Modify (files can be modified)

8 Supervisor (all rights are granted)

For versions of NetWare previous to 3.0, the trustee rights appear in a 1-byte format as follows:

0 Read (file reads allowed)

1 Write (file writes allowed)

2 Open

3 Create (files can be created)

4 Delete (files can be deleted)

5 Parental (subdirectories can be created/deleted and trustee rights granted/revoked)
6 Search (directory can be searched)

7 Modify (file attributes can be modified)

SetCurrentNameSpace sets the name space which is used for parsing the path input to this function.

Server-Based File System Functions 703

NOTE: For NetWare versions before 4.x, this function only works with DOS name space for remote
servers.

See Also

AddTrustee (page 686), DeleteTrustee (page 695), ModifyInheritedRightsMask (page 707)

704 NDK: Multiple and Inter-File Services

GetMaximumUserSpaceRestriction

Returns the maximum disk space restriction for a particular user
Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12,3.2,4.x, 5.x, 6.x

Platform: NLM

SMP Aware: No

Service: Volume

Syntax

#include <nwdir.h>

int GetMaximumUserSpaceRestriction (
long trusteelD,
int volume,
LONG *maxRestriction) ;

Parameters

trusteelD
(IN) Specifies the desired user object ID.

volume

(IN) Specifies the desired volume (0-63 for NetWare 3.1 and later; 0-31 for previous versions).

maxRestriction

(OUT) Receives the number of 4K blocks to which the user is restricted. If this value is 0, there

is no restriction.

Return Values

Value Hex Constant

400000000H (0x00) ESUCCESS

Nonzero Invalid volume, user object ID, or network error.
Remarks

GetMaximumUserSpaceRestriction is not supported in a NetWare 2.x environment. Remote servers
running NetWare 2.x return error code 251 (ERR_UNKNOWN_REQUEST).

Server-Based File System Functions 705

See Also

AddTrustee (page 686), DeleteTrustee (page 695), ModifyInheritedRightsMask (page 707)

Example

#include <stdlib.h>
#include <nwdir.h>

main ()
{
int rc;
long objectID;
LONG maxRestriction;
rc = GetBinderyObjectID("testuser", 1, &objectID);
if(rc !'= 0)
{
printf ("GetBinderyObjectID() status = %$x\n", rc);
return;
}
rc = GetMaximumUserSpaceRestriction(objectID, O,
&maxRestriction);

if(rc !'= 0)

{
printf ("GetMaximumUserSpaceRestriction () status = %$x\n", rc);
return;

}

printf ("Max Disk Space Restriction for ’testuser’ = %d\n",

maxRestriction*4096) ;

706 NDK: Multiple and Inter-File Services

ModifylnheritedRightsMask

Modifies the inherited rights mask of a directory or file
Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.

SMP Aware: No

Service: File System

Syntax

#include <nwdir.h>
int ModifyInheritedRightsMask (
char “*path,

WORD revokeRightsMask,
WORD grantRightsMask) ;

Parameters

path

(IN) Specifies the string containing the path specification for the directory or file to be

modified (maximum 255 characters, including the NULL terminator).

revokeRightsMask

(IN) Specifies the rights mask that specifies which rights in the directory’s inherited rights

mask are to be modified.

grantRightsMask

(IN) Specifies the rights mask to receive the modified rights.

Return Values

Value Hex Constant

0 (0x00) ESUCCESS

140 (0x8C) ERR_NO_MODIFY_PRIVILEGES
152 (0x98) ERR_VOLUME_DOES_NOT_EXIST
156 (0x9C) ERR_INVALID_PATH

Remarks

For remote server support, this function returns the maximum rights mask for NetWare 2.x.

Server-Based File System Functions 707

The ModifyInheritedRightsMask function specifies the directory or file by passing a pathname. The
path parameter can identify an absolute or relative directory or file path. An absolute path includes
a volume.

Examples of absolute pathnames would be:

volume:directory\...\directory\filename
volume:filename

volume: (equivalent to volume:\)

Applications can use a relative file path to specify a directory or file. The relative path, combined
with the CWD, specifies an absolute file path. For example, if the CWD points to SYS:\ and the
specified pathname is PUBLIC\WORDP or PUBLIC\WORDP\ABC.TXT, then in the former case,
the resulting directory is SYS:PUBLIC\WORDP and in the latter case,
SYS:PUBLIC\WORDP\ABC.TXT.

The function specifies which rights to modify by passing the revokeRightsMask .

Both the grantRightsMask and the revokeRightsMask are 1-WORD parameters with bits
defined as follows:

0 Read (file reads allowed)

1 Write (file writes allowed)

2 Reserved

3 Create (files can be created)

4 Delete (files can be deleted)

5 Access control (trustee rights can be assigned)
6 See files (files can be viewed in directory scan)
7 Modify (files can be modified)

8 Supervisor (all rights are granted)

The grantRightsMask and the revokeRightsMask parameters are both single-byte
parameters for NetWare 2.x remote server support. There is no Supervisor bit for NetWare 2.x
servers.

0 Read (file reads allowed)

1 Write (file writes allowed)

2 Open

3 Create (files can be created)

4 Delete (files can be deleted)

5 Parental (subdirectories can be created/deleted and trustee rights granted/revoked)
6 Search (directory can be searched)

7 Modify (file attributes can be modified)

The rights in the directory’s inherited rights mask are modified according to the
revokeRightsMask and are placed in the grantRightsMask . The inherited rights mask can
be completely reset by setting the revokeRightsMask to OxFF and then setting the
grantRightsMask to the desired inherited rights mask.

708 NDK: Multiple and Inter-File Services

The current connection must have access control rights to the directory or file whose inherited rights
mask is being modified.

SetCurrentNameSpace sets the name space which is used for parsing the path input to this function.

NOTE: For NetWare versions before 4.x, this function only works with DOS name space for remote
servers.

See Also

GetEffectiveRights (page 702)

Server-Based File System Functions 709

PurgeTrusteeFromVolume

Deletes a trustee from a volume
Local Servers: blocking
Remote Servers: N/A
Classification: 3.x, 4.x, 5.x, 6.
SMP Aware: No

Service: File System

Syntax

#include <nwdir.h>

int PurgeTrusteeFromVolume (
int volume,
LONG trusteelD);

Parameters

volume

(IN) Specifies the volume number of the volume from which to remove all trustee references.

trusteelD
(IN) Specifies the trustee’s object ID.

Return Values

Value Hex Constant

0 (0x00) ESUCCESS
NetWare Error UNSUCCESSFUL
Remarks

The PurgeTrusteeFromVolume function deletes all references to trustee from a volume. It does not
perform a security check based on the current connection. After this function call is made, the
trustee no longer has any rights on the specified volume.

See Also

DeleteTrustee (page 695)

710 NDK: Multiple and Inter-File Services

ReturnSpaceRestrictionForDirectory

Returns space restrictions for a directory
Local Servers: blocking

Remote Servers: blocking
Classification: 3.x, 4.x, 5.x, 6.

SMP Aware: No

Service: File System

Syntax

#include <nwdir.h>

int ReturnSpaceRestrictionForDirectory (

char *pathName,
LONG numberOfStructuresToReturn,
BYTE *answerBuffer,

LONG *numberOfStructuresReturned) ;

Parameters
pathName
(IN) Specifies the pathname of directory for which to get space restrictions.

numberOfStructuresToReturn

(IN) Specifies the number of answer structures (9-byte) that answerBuf fer can hold.

answerBuffer

(OUT) Receives the space restriction information for the directory.

numberOfStructuresReturned

(OUT) Receives the actual number of structures placed in answerBuffer .

Return Values

Value Hex Consant

0 (0x00) ESUCCESS
NetWare Error UNSUCCESSFUL
Remarks

This function returns space restrictions for a directory and all of its parent directories.

Server-Based File System Functions 711

The result placed in answerBuffer is an array of structures. Each structure has the following
format (defined in NWDIR.H):

Offset Content Type

0 ALevelNumber BYTE
1 AMaximumAmount LONG
5 ACurrentAmount LONG

The ALevelNumber field specifies the depth into the directory. For example, the level number for
the directory SYS:ONE\TWO\THREE is 3.

The AMaximumAmount field specifies the space restriction for a directory.

The ACurrentAmount field specifies the amount of space available at the time of the call. This
field receives the number of 4K restrictions.

If there is no space restriction, AMaximumAmount is 0x7FFFFFFF.

The numberOfStructuresToReturn parameter should be at least as large as the number of
levels that the directory is deep in the directory structure. The reason for this is that this function
returns the space restriction for all of the parent directories as well.

ReturnSpaceRestrictionForDirectory is not supported in a NetWare 2.x environment. Remote
servers running NetWare 2.x return error code 251 (ERR_UNKNOWN_REQUEST).

SetCurrentNameSpace sets the name space which is used for parsing the path input to this function.

See Also

AddSpaceRestrictionForDirectory (page 684)

712 NDK: Multiple and Inter-File Services

ScanTrustees

Returns information about directory or file trustees
Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x, 5.x, 6.

SMP Aware: No

Service: File System

Syntax

#include <nwdir.h>

int ScanTrustees (

char *pathName,
LONG startingOffset,
LONG vectorSize,

LONG *trusteeVector,
WORD *maskVector,
LONG *actualVectorSize);

Parameters

pathName

(IN) Specifies the string containing the path specification for the directory to be scanned
(maximum 255 characters, included the NULL terminator).

startingOffset
(IN) Specifies the starting byte.

vectorSize

(IN) Specifies the Number of t rusteeVector structures that t rusteeVector can hold.

trusteeVector

(OUT) Points to an array of structures containing the trustees of the scanned directory.

maskVector

(OUT) Points to structure that specifies the trustee rights.

actualVectorSize

(OUT) Receives the actual number of trusteeVector structures being returned.

Server-Based File System Functions 713

Return Values

Value Hex Constant

0 (0x00) ESUCCESS
NetWare Error UNSUCCESSFUL
Remarks

An application can use this function iteratively to scan a directory and return information about all
the directory trustees.

SetCurrentNameSpace sets the name space which is used for parsing the path input to this function.

NOTE: For NetWare versions before 4.x, this function only works with DOS name space for remote
servers.

It's an ID that can be converted into NWDSMapIDToName()

Example:
ScanTrustees (path, startingOffset, TRUSTEES PER SCAN, trusteeVector,
maskVector, &actualVectorSize)

for (i = 0; i < actualVectorSize; i++)
{
char name[MAX DN CHARS + 1];

LONG trustee = NWLongSwap (trusteeVector([i]):;
ccode = NWDSMapIDToName (context, conn, trustee, name);

See Also

ScanBinderyObjectTrusteePaths

714 NDK: Multiple and Inter-File Services

ScanUserSpaceRestrictions

Returns information about users’ space restrictions on a volume

Local Servers: blocking
Remote Servers: blocking
Classification: 3.x, 4.x, 5.x, 6.
SMP Aware: No

Service: File System

Syntax

#include <nwdir.h>

int ScanUserSpaceRestrictions (

int volumeNumber,

LONG *sequenceNumber,

LONG numberOfTrusteesToReturn,
LONG *answerArea,

LONG *numberOfTrusteesReturned) ;

Parameters

volumeNumber

(IN) Specifies the volume number of the volume to be searched (0-63 for NetWare 3.1 and

later; 0-31 for previous versions).

sequenceNumber

(IN/OUT) The initial search requires a 0 as input; after the initial search, the sequence number
is incremented automatically within the function so the user only needs to initialize once.

numberOfTrusteesToReturn

(IN) Specifies the number of trustees to scan for.

answerArea

(OUT) Points to the buffer in which to place the result (returned by

numberOfTrusteesReturned).

numberOfTrusteesReturned

(OUT) Returns the number of trustees for which space restriction information has been

retrieved.

Server-Based File System Functions 715

Return Values

Value Hex Constant

0 (0x00) ESUCCESS

152 (0x98) ERR_VOLUME_DOES NOT_EXIST
Remarks

An application can use this function to return information about space restrictions for trustees. The
function scans for as many trustees as specified by the numberOfTrusteesToReturn
parameter.

The answerArea parameter points to an array of structures. Each structure has the following
format:

LONG trusteelD;
LONG restriction;

The restriction field contains the space restriction in 4K blocks.

The CWV is used if the input volumeNumber is set to -1.

See Also

AddUserSpaceRestriction (page 689), DeleteUserSpaceRestriction (page 697)

716 NDK: Multiple and Inter-File Services

SetDirectoryinfo

Changes a directory’s information
Local Servers: blocking

Remote Servers: blocking
Classification: 3.x, 4.x, 5.x, 6.
SMP Aware: No

Service: File System

Syntax

#include <nwdir.h>

int SetDirectoryInfo (
char *directoryPath,
BYTE “*newCreationDateAndTime,
LONG newOwnerObjectID,
WORD newInheritedRightsMask) ;

Parameters

directoryPath

(IN) Specifies the string containing the path for the directory whose information is changed

(maximum 255 characters, including the NULL terminator).

newCreationDateAndTime

(IN) Specifies the date and time that the directory was created (standard DOS format, 4 bytes).

newOwnerObjectID

(IN) Specifies the unique object ID of the new owner of the directory.

newInheritedRightsMask

(IN) Specifies the new inherited rights mask of the directory.

Return Values

Value Hex Constant

0 (0x00) ESUCCESS

191 (OxBF) ERR_INVALID_NAME_SPACE
NetWare Error UNSUCCESSFUL

Server-Based File System Functions 717

Remarks

The newInheritedRightsMask parameter only specifies additional rights to be granted. Call
ModifyInheritedRightsMask to revoke rights.

This function specifies a creation date and time, owner object ID, and inherited rights mask. The
function defines the target directory by passing a partial or complete path.

volume:directory\...\directory\filename
volume:filename

volume: (equivalent to volume:\)

Applications can use a relative file path to specify a directory or file. The relative path, combined
with the CWD, specifies an absolute file path. For example, if the CWD points to SYS:\ and the
specified pathname is PUBLIC\WORDP or PUBLIC\WORDP\ABC.TXT, then in the former case,
the resulting directory is SYS:PUBLIC\WORDP and in the latter case,
SYS:PUBLIC\WORDP\ABC.TXT.

The creationDateAndTime parameter appears in standard DOS format as follows:

Figure 26-1 Date and Time Fields

Byte 1 Byte 0
Year Month Day

Byte 3 | Byte 2
Hour Minute Seconds x 2
7!6|5|4|3|2|1|0|7|6|5 4|82 1|0

The function returns the date and time in ascending order (byte 1, byte 2, byte 3, byte 4).
The newOwnerObjectID parameter contains the object ID of the directory owner.

The newInheritedRightsMask parameter contains the directory’s inherited rights mask. The
bits in the inherited rights mask are defined as follows:

0 Read (file reads allowed)

1 Write (file writes allowed)

2 Reserved

3 Create (files can be created)

4 Delete (files can be deleted)

5 Access control (trustee rights can be assigned)
6 See files (files can be viewed in directory scan)
7 Modify (files can be modified)

8 Supervisor (all rights are granted)

718 NDK: Multiple and Inter-File Services

NOTE: The newInheritedRightsMask parameter for NetWare 2.x remote server support is
actually the newMaximumRightsMask . The parameter is a single-byte value and there is no
Supervisor bit in the Maximum Rights Mask for a NetWare 2.x server.

The following constants have been defined for each right which can be ORed (|) together for a
complete specification:

TA_READ
TA_WRITE
TA_CREATE
TA_DELETE
TA_ACCESSCONTROL
TA_SEEFILES
TA_MODIFY
TA_SUPERVISOR

To change a directory’s information, the current connection must have access control and modify
rights to the directory’s parent.

The SUPERVISOR or supervisor equivalent are the only users that can change the owner of a
directory.

SetCurrentNameSpace sets the name space which is used for parsing the path input to this function.

NOTE: For NetWare versions before 4.x, this function only works with DOS name space for remote
servers.

Server-Based File System Functions 719

UpdateDirectoryEntry

Updates a directory entry

Local Servers: blocking
Remote Servers: N/A
Classification: 3.x, 4.x, 5.x, 6.
SMP Aware: No

Service: File System

Syntax

#include <nwdir.h>

int UpdateDirectoryEntry (
int handle) ;

Parameters

handle

(IN) Specifies a file handle obtained from an open or creat.

Return Values

Value Hex Constant

0 (0x00) ESUCCESS
NetWare Error UNSUCCESSFUL
Remarks

This function updates the target file’s file entry in the directory table with the current file size,
current date and time, and File Allocation Table (FAT) chain information. The updated information
is not actually written to disk until sometime after the function returns.

720 NDK: Multiple and Inter-File Services

Revision History

The following table outlines all the changes that have been made to the Multiple and Inter-File
Management documentation (in reverse chronological order):

October 2007

February 28, 2007
October 11, 2006

March 1, 2006
October 5, 2005
March 2, 2005

June 9, 2004

February 18, 2004

October 8, 2003

July 30, 2003

June 2003

March 2003

October 2002

Added NWAddTrusteeToDirectoryExt (page 161),
NWAddTrusteeToNSDirectoryExt (page 459),
NWDeleteTrusteeFromNSDirectoryExt (page 472),
NWDeleteTrusteeFromDirectoryExt (page 186), NWGetNSEntrylnfo2Ext

(page 494), NWGetNSEntryInfo2 (page 490), NWGetDirectoryHandlePathExt
(page 198), NWScanNSDirectoryForTrustees (page 547),
NWScanNSDirectoryForTrusteesExt (page 550), NWScanNSEntryInfoSetExt
(page 570), NWScanNSEntryInfoSet2Ext (page 567), NWScanNSEntryInfoSet2

(page 564).

Updated NWOpenNSEntry (page 533).

Updated NWIntScanForTrustees (page 251), ScanTrustees (page 713), and
NWScanConnectionsUsingFile (page 267).

Updated format.

Transitioned to revised Novell documentation standards.

Modified the documentation for Section 16.2, “Default Name Space,” on
page 436, GetExtendedFileAttributes (page 147), NWAddTrusteeToNSDirectory
(page 456), and NWDeleteTrusteeFromNSDirectory (page 470).

Added some sample code for NWIntScanForTrustees (page 251).

Added the new file system, deleted file, and name space functions that are
designed to use UTF-8 strings: NWAddTrusteeExt (page 156),
NWDeleteTrusteeExt (page 182), NWGetEffectiveRightsExt (page 210),
NWAIllocTempNSDirHandle2Ext (page 464), NWGetDirectoryBaseExt
(page 477), NWScanForDeletedFilesExt (page 57), etc.

Added Section 16.2, “Default Name Space,” on page 436. Modified the
documentation for the following functions and structures:
NWGetDirSpaceLimitList2 (page 204), NWIntMoveDirEntry (page 233), and
OpenFileCallBackStruct (page 426).

Removed the Delphi syntax for NWScanNSDirectoryForTrustees (page 547).
Delphi does not expose this function.

Fixed the Delphi syntax for SEARCH_DIR_INFO (page 371) and
TRUSTEE_INFO (page 379).

Modified the description of FEQuickFileLength (page 99). Added a note about
NSS volumes to the GetNameSpaceName (page 450) function. Fixed the
prototype for the NWScanNSEntryInfo2 (page 558) function. Fixed a typo in the
ChangeDirectoryEntry (page 691) function. Changed all Pascal references to

Delphi references.

Modified the _splitpath (page 325) function to indicate that it only works with the

DOS namespace.

Modified the Pascal syntax for the structures. Modified the documentation for
UnAugmentAsterisk (page 331) and FEQuickFileLength (page 99).

Revision History

721

September 2002

May 2002

February 2002

October 2001

September 2001

June 2001
February 2001

September 2000

Updated the documentation for the following functions: NWScanNSEntryInfo
(page 553) and NWIntMoveDirEntry (page 233)

Updated the introduction of Chapter 16, “Name Space Concepts,” on page 435.
Updated the description of iterHandle in NWSetDirEntryInfo (page 284).
Added a Pascal syntax to NWGetDirSpaceLimitList2 (page 204).

Updated the description of augmentFlag in NWIntScanFileInformation2
(page 245).

Updated the Pascal syntax of NWScanNSEntrylnfo2 (page 558) and
NW_ENTRY_INFO2 (page 608).

Updated links.

Added fileHandle to OpenFileCallBackStruct (page 426) and provided an
explanation of valid fields for the PRE_ and _POST _ hooks.

Updated Pascal syntax of NW_LIMIT_LIST (page 357) and
NW_NS_OPENCREATE (page 618). Added Pascal syntax for
NWScanNSEntrylnfo2 (page 558) and NW_ENTRY_INFO2 (page 608).

Added support for NetWare 6.x to documentation.
Added descriptions to graphics.
Added table headings.

Added documentation for FEQuickFileLength (page 99) and FEQuickWrite
(page 105).

Moved the following volume functions from Chapter 26, “Server-Based File
System Functions,” on page 683 to Volume Management:

GetNumberOfVolumes
GetVolumelnformation
GetVolumelnfoWithNumber
GetVolumeName
GetVolumeNumber
GetVolumeStatistics

Changed getcwd (page 146) to state the the allocated string must be freed.

Updated NWOpenDataStream (page 529) to clarify that a DOS namespace
directory handle must be passed to dirHandle and how this parameter and
datastream work together.

Changed "bindery object" to "object" references since these references can also
specify NDS objects.

Added cross-references to NWSetNSEntryDOSInfo (page 580) to
NWSetExtendedFileAttributes2 (page 290) and NWSetFileAttributes (page 293).

722 NDK: Multiple and Inter-File Services

July 2000

May 2000

March 2000

Added UnAugmentAsterisk (page 331) and added information about that
function to opendir (page 303) and readdir (page 307).

Added values for flags parameter in FEGetOpenFilelnfo (page 79) and
FEGetOpenFileInfoForNS (page 82).

Corrected several values in Chapter 20, “Name Space Values,” on page 623.

Corrected rename (page 311) to reflect that it works for the LONG name space
as well as the DOS name space.

Corrected header for UseAccurateCaseForPaths (page 333).
Removed the following obsolete functions from the documentation:
+ NWPurgeErasedFiles, NWRestoreErasedFile from Chapter 5, “Deleted

File Functions,” on page 45

¢ _NWConvertHandle, NWFileSearchlnitialize, NWRestoreDirectoryHandle,
NWSaveDirectoryHandle from Chapter 10, “File System Functions,” on
page 137

+ NWAIllocTempNSDirHandle from Chapter 18, “Name Space Functions,” on
page 447

+ NWGetPathFromDirectoryEntry from Chapter 23, “Path and Drive
Functions,” on page 635

Added information about calling NWGetExtendedVolumelnfo to return the block
size to NWGetDirSpacelnfo (page 200).

Added 4K block information to MODIFY_DOS_INFO (page 596).

Changed header file for _makepath (page 149) and _splitpath (page 325) to the
nwfileio.h file.

Changed ownerlD reference in Remarks section to be objectID in
TRUSTEE_INFO (page 379).

Added explanation of how to reverse FERegisterNSPathParser (page 107).

Revision History 723

January 2000 Added NWScanNSEntryInfo2 (page 558) and four corresponding structures.
Added UseAccurateCaseForPaths (page 333).
Added NWDeleteTrusteeFromNSDirectory (page 470).
Added sample code to NWGetCompressedFileLengths (page 191).

Updated Remarks section of NWGetNSPath (page 506) because this function
returns only the directory path even if a file name is passed.

Updated Remarks section of NWOpenNSEntry (page 533) because NULL
should be passed to fileHandle if a directory is being created.

Updated Remarks section of NWModifyMaximumRightsMask (page 258)
because the current rights mask value can be returned by calling
NWiIntScanDirectorylnformation2.

Updated Remarks section of NWScanForDeletedFiles (page 54) because the
function returns -2 if entryInfo and itemHandle are NULL or dirHandle is
zero.

Changed the description of NWVolumelsCDROM (page 301).

Changed the last two parameters of NWWRecoverDeletedFile (page 49) to be
OUT (rather than IN) parameters.

November 1999 Added NWScanNSEntryInfoSet (page 561).

Added functions in “Server-Based File System Functions” on page 683 to
Master API List.

Added description for newPathString in RenameMoveEntryCallBackStruct
(page 430).

Added descriptions for dataForkFirstFAT and otherForkSize in
NW_EXT_FILE_INFO (page 349).

Added descriptions for maximumSpace in MODIFY_DOS_INFO (page 596) and
hugeStatelnfo and hugeDatalLength in NW_NS_INFO (page 615).

Added library information for each function.
Updated Remarks section of NWParsePath (page 654).

Updated Remarks section of SetFileInfo (page 320) explaining that the date/time
field must be in DOS format.

Split the Return Mask Values into two topics: Section 20.6, “Basic Return Mask
Values,” on page 625 and Section 20.7, “Extended Return Mask Values,” on
page 626.

September 1999 Added NWGetDirSpaceLimitList2 (page 204).

Added an example of a length-preceded string that is returned in pathName to
NWGetPathFromDirectoryBase (page 650).

Deleted the pointer indicator from ccode in NWAddFSMonitorHook (page 394).

Updated Remarks sections of NWGetDirSpacelnfo (page 200) and
NWGetDirSpaceLimitList (page 202) and their related structures.

Replaced 0x16 EBADHNDL return value with 0x04 EBADF in closedir
(page 143).

724 NDK: Multiple and Inter-File Services

July 1999

June 1999

Obsoleted NWSetlInitDrive.

Removed NWGetSearchDriveVector and NWSetSearchDriveVector (supported
for DOS and Windows 3.1 only).

Removed NWParseConfig and NWSetNetWareErrorMode (supported for OS/2,
DOS, and Windows 3.1 only). Removed GrammarTableStruct, SetTableStruct,

TypeDefaultStruct, and PARAMETER_TABLE_TYPE (used in NWParseConfig).

Added NWGetVolumeFlags (page 223) and NWSetVolumeFlags (page 299).
Added NWAddTrusteeToNSDirectory (page 456).

Revision History 725

	NDK: Multiple and Inter-File Services
	About This Guide
	1 Data Migration Concepts
	1.1 Support Module Information
	1.2 Volume Information
	1.3 Data Migration Functions

	2 Data Migration Functions
	NWGetDataMigratorInfoReturns information about the data migrator
	NWGetDefaultSupportModuleReturns the default read/write Support Module ID for data migration
	NWGetDMFileInfoReturns information about data migrated files
	NWGetDMVolumeInfoReturns information about the Data Migrator NLM on a NetWare volume
	NWGetSupportModuleInfoReturns information about the Data Migrator NLM support modules or a list of all loaded support module IDs
	NWMoveFileFromDMMoves file data from an on-line, long term storage medium to a NetWare volume
	NWMoveFileToDMMoves file data to an online, long term storage medium but leaves the file visible on a NetWare volume
	NWSetDefaultSupportModuleSets the default Read/Write support module ID

	3 Data Migration Structures
	SUPPORT_MODULE_IDSReturns a list of support module IDs (level 1 information) by NWGetSupportModuleInfo
	SUPPORT_MODULE_INFOReturns (level 0) support module information by NWGetSupportModuleInfo

	4 Deleted File Concepts
	4.1 Deleted File on NetWare 3.11 and above Servers
	4.2 Deleted File Functions

	5 Deleted File Functions
	NWPurgeDeletedFileRemoves recoverable files from a NetWare server
	NWRecoverDeletedFileRecovers deleted files from the NetWare server
	NWRecoverDeletedFileExtRecovers deleted files from the NetWare server, using UTF-8 strings.
	NWScanForDeletedFilesScans the specified directory for any deleted (salvageable) files
	NWScanForDeletedFilesExtScans the specified directory for any deleted (salvageable) files, using UTF-8 strings.

	6 Deleted File Structures
	NWDELETED_INFOReturns information on a deleted file
	NWDELETED_INFO_EXTReturns information on a deleted file, using UTF-8 strings.

	7 File Engine Functions
	CountComponentsReturns the number of components contained in a NetWare® pathname
	FEConvertDirectoryNumberConverts a directory number in one name space to the comparable directory number in another name space
	FEcreatCreates a file
	FEFlushWriteFlushes all pending writes for a file
	FEGetCWDnumReturns the current working directory (CWD) number
	FEGetCWVnumReturns the current working volume (CWV) number
	FEGetEntryVersionReturns the version number for a directory entry (files or directories)
	FEGetOpenFileInfoReturns directory entry information for a given connection's file handle
	FEGetOpenFileInfoForNSReturns name space specific directory entry information for a given connection's file handle
	FEGetOriginatingNameSpaceGets the originating name space for a volume and directory number pair
	FEMapConnsHandleToVolAndDirReturns a volume number and a directory number for a given connection’s file handle
	FEMapHandleToVolumeAndDirectoryGets the volume and directory numbers being used by a file handle
	FEMapPathVolumeDirToVolumeDirMaps a path consisting of a volume number, directory number, and pathname to a path consisting of a volume number and directory number
	FEMapVolumeAndDirectoryToPathMaps a volume number and directory number to a NetWare style path
	FEMapVolumeAndDirectoryToPathForNSMaps a volume number and directory number to a NetWare style path
	FEMapVolumeNumberToNameMaps a volume number to a volume name
	FEQuickClosePerforms a quick close on a file on the local server
	FEQuickFileLengthReturns the length of a file opened with FEQuickOpen.
	FEQuickOpenPerforms a quick open on a file on the local server
	FEQuickReadPerforms a quick read of data in a file on the local server
	FEQuickWritePerforms a quick write of data in a file on the local server
	FERegisterNSPathParserRegisters a function to convert a pathname in a name space format to the NetWare format (volume number, path, string, path count)
	FESetCWDnumSets the current working directory (CWD) number (the default directory)
	FESetCWVandCWDnumsSets the current working volume (CWV) number and the current working directory (CWD) the default volume and directory
	FESetCWVnumSets the current working volume (CWV) number (the default volume)
	FESetOriginatingNameSpaceAllows the user to set the originating name space of a directory entry
	FEsopenOpens a file for shared access

	8 File System Concepts
	8.1 Directory Entries
	8.1.1 Directory Entry Information
	8.1.2 Directory Entry Information Access
	8.1.3 Directory Entry Attributes
	8.1.4 Directory Entry Functions
	8.1.5 Directory Information Functions

	8.2 Directory Handles
	8.2.1 Directory Handle Functions

	8.3 File and Directory Paths
	8.3.1 Wildcard Characters
	8.3.2 Search Attributes
	8.3.3 UTF-8 Path and Filenames

	8.4 File Access
	8.5 File I/O
	8.6 Inheritance
	8.7 Effective Rights
	8.8 Trustees
	8.8.1 Trustee Rights
	8.8.2 Trustee Functions

	8.9 NLM File Information
	8.9.1 File Attributes
	8.9.2 Extended File Attributes
	8.9.3 Directory Entry Table
	8.9.4 Volume Table

	8.10 Directory Task Functions
	8.11 Directory Space Functions
	8.12 File Handle Conversion Functions
	8.13 File Information Functions
	8.14 File Task Functions
	8.15 File Usage Functions

	9 File System Tasks
	9.1 Directory-Based Tasks
	9.1.1 Allocating a Directory Handle
	9.1.2 Accessing a Directory Handle
	9.1.3 Combining a Path and Directory Handle
	9.1.4 Accessing File Information for 3.11 and Above

	9.2 File-Based Tasks
	9.2.1 Locating Files
	9.2.2 Converting File Handles
	9.2.3 Deleting Files

	9.3 Disk Space Management Tasks
	9.3.1 Limiting Directory Space
	9.3.2 Monitoring File Usage

	9.4 Trustee Tasks
	9.4.1 Adding and Deleting File System Trustees
	9.4.2 Scanning File System Trustees

	9.5 NLM-Based Tasks
	9.5.1 Accessing Files on a Server (NLM)
	9.5.2 Purging and Salvaging Files (NLM)

	10 File System Functions
	10.1 A*-M* Functions
	accessDetermines whether a file or directory exists and if it can be accessed
	chdirChanges the current working directory to the specified path name
	chmodChanges the file access mode
	closedirCloses a specified directory
	FileServerFileCopyCopies a file, or a portion of a file, to another file
	getcwdReturns the current working directory of the current thread group
	GetExtendedFileAttributesReturns the extended attributes for a file
	_makepathConstructs a full NetWare path name
	mkdirCreates a new directory with a specified mode

	10.2 NWA*-NWF* Functions
	NWAddTrusteeAdds a trustee to the list of trustees in a file or directory
	NWAddTrusteeExtAdds a trustee to the list of trustees in a file or directory, using UTF-8 strings.
	NWAddTrusteeToDirectoryAdds a trustee to the trustee list in a directory
	NWAddTrusteeToDirectoryExtAdds a trustee to the trustee list in a directory using UTF-8.
	NWAllocPermanentDirectoryHandleAllocates a permanent directory handle for a network directory
	NWAllocTemporaryDirectoryHandleAssigns a temporary directory handle for the current name space
	NWConvertFileHandleConverts a file handle to a 4- or 6-byte NetWare handle
	NWConvertHandleConverts a NetWare handle to a local file handle
	NWCreateDirectoryCreates a NetWare directory on the specified server
	NWDeallocateDirectoryHandleDeallocates a directory handle allocated by NWAllocTemporaryDirectoryHandle or NWAllocPermanentDirectoryHandle
	NWDeleteDirectoryDeletes a NetWare directory
	NWDeleteTrusteeRemoves a trustee from the specified directory or a trustee list for a file
	NWDeleteTrusteeExtRemoves a trustee from the specified directory or a trustee list for a file, using UTF-8 strings.
	NWDeleteTrusteeFromDirectoryRemoves a trustee from a directory trustee list
	NWDeleteTrusteeFromDirectoryExtRemoves a trustee from a directory trustee list using a UTf-8 path.
	NWFileServerFileCopyCopies a file or portion of a file from a source to a destination on the same NetWare server

	10.3 NWGet* Functions
	NWGetCompressedFileLengthsReturns information about the lengths of a compressed file
	NWGetDirectoryEntryNumberReturns file information for a specified file under DOS and the name space associated with the specified directory handle
	NWGetDirectoryHandlePathReturns the path name of the directory associated with the given directory handle
	NWGetDirectoryHandlePathExtReturns the UTF-8 path name of the directory associated with the given directory handle
	NWGetDirSpaceInfoReturns information on space usage for a volume
	NWGetDirSpaceLimitListDetermines the actual space limitations for a directory
	NWGetDirSpaceLimitList2Returns the actual space limitations for a directory.
	NWGetDiskIOsPendingReturns the number of pending disk IOs the server has at the specified point in time
	NWGetEffectiveRightsReturns effective rights for the specified directory
	NWGetEffectiveRightsExtReturns effective rights for the specified directory
	NWGetExtendedFileAttributes2Returns the NetWare extended file attributes for the specified file
	NWGetFileConnectionIDReturns the connection handle of the server owning the specified file handle
	NWGetFileDirEntryNumberReturns file information for a specified file under DOS and the name space associated with the specified file handle
	NWGetSparseFileBitMapReturns a bit map showing which blocks in a sparse file contain data
	NWGetVolumeFlagsReturns the flags currently set on the specified volume

	10.4 NWI*-NWR* Functions
	NWIntEraseFilesDeletes NetWare files from the server
	NWIntFileSearchContinue
	NWIntFileSearchInitializeSearches for files on a server
	NWIntMoveDirEntryMoves or renames a directory entry (file or directory) on the same server (same volume)
	NWIntScanDirectoryInformation2Returns directory information for a directory specified by the connection handle, directory handle, and directory path
	NWIntScanDirEntryInfoObtains information about NetWare 3.x, 4.x, 5.x, and 6.x directory entries (files or directories) in the DOS name space
	NWIntScanExtendedInfoScans a directory for the extended file information
	NWIntScanFileInformation2Scans the specified directory for the specified file (or directory) and returns the associated directory entry information in the DOS name space
	NWIntScanFileInformation2ExtScans the specified directory for the specified file (or directory) and returns the associated directory entry information in the DOS name space, using UTF-8 strings
	NWIntScanForTrusteesScans a directory entry or file for trustees under the specified directory handle and path
	NWIntScanForTrusteesExtScans a directory entry or file for trustees of the specified directory handle and path, UTF-8 strings
	NWModifyMaximumRightsMaskModifies the maximum rights mask of a directory
	NWRenameDirectoryRenames a NetWare directory
	NWRenameFileAllows a client to rename a file

	10.5 NWS*-NWZ* Functions
	NWScanConnectionsUsingFileScans all connections using a specified file
	NWScanDirectoryForTrustees2Scans a directory for trustees using the specified path and directory handle
	NWScanOpenFilesByConn2Scans information about the files opened by a specified connection
	NWSetCompressedFileLengthsSets the uncompressed and compressed lengths of a file
	NWSetCompressedFileSizeAttempts to set the logical file size for a compressed file
	NWSetDirectoryHandlePathSets the target directory handle for the specified directory handle and path
	NWSetDirectoryInformationChanges information about a directory including the creation date and time, owner object ID, and maximum rights mask
	NWSetDirEntryInfoChanges information about a directory entry (file or directory)
	NWSetDirSpaceLimitSpecifies a space limit (in 4 KB blocks) on a particular subdirectory
	NWSetExtendedFileAttributes2Sets the extended attributes of a file
	NWSetFileAttributesModifies a file’s original attributes
	NWSetFileInformation2Updates file information
	NWSetVolumeFlagsSets the specified flags on a volume
	NWVolumeIsCDROMDetermines whether a given volume is a CD-ROM or a read-only volume

	10.6 O*-Z* Functions
	opendirOpens a directory for reading with the attributes set by calling SetReaddirAttribute and the next matching file found by calling readdir functions
	PurgeErasedFilePermanently deletes a file that has been marked for deletion
	readdirObtains information about the next matching file using the attributes set by calling SetReaddirAttribute
	removeDeletes a specified file
	renameRenames a specified file
	rmdirRemoves (deletes) the specified directory
	SalvageErasedFileSalvages a file that has been marked for deletion
	ScanErasedFilesReturns information about deleted files
	SetExtendedFileAttributesSets the extended attributes byte for a file
	SetFileInfoSets file information for a file
	SetReaddirAttributeSets the attributes that are to be used when searching for files and directories by calling the readdir function
	_splitpathSplits a full path name into four components consisting of a server/volume name, directory path, file name, and file name extension
	statRetrieves the status of a specified file or directory
	tmpnamGenerates a unique string for use as a valid temporary file name
	umaskSets the file permission mask (part of the thread group context)
	UnAugmentAsteriskMakes the *.* pattern return all files and subdirectory names for the long (OS/2) name space
	unlinkDeletes the specified file
	UseAccurateCaseForPathsChanges the case-specific manipulation behavior of file and path CLIB functions.
	utimeUpdates the modification time for the specified file

	11 File System Structures
	CONN_USING_FILEDefines file information for a file opened by a connection
	CONNS_USING_FILEReturns a list of connections having a specified file open
	DIRHolds information about a directory entry
	DIR_SPACE_INFOReturns directory space information
	ModifyStructureHolds information used in changing a directory entry
	NW_EXT_FILE_INFOReturns extended file information
	NW_FILE_INFO2Holds file information
	NW_FILE_INFO2_EXTHolds file information
	NW_LIMIT_LISTReturns disk space information about the restrictions along the directory path
	NWDIR_INFODefines entry information for directories
	NWENTRY_INFODefines directory entry information
	NWET_INFOReturns directory entry trustee information
	NWET_INFO_EXTReturns directory entry trustee information
	NWFILE_INFODefines entry information for files
	OPEN_FILE_CONNReturns information about the open files for a connection
	OPEN_FILE_CONN_CTRLReturns a list of files a specified connection has open
	SEARCH_DIR_INFO
	SEARCH_FILE_INFO
	statHolds information about the status of a file or directory
	TRUSTEE_INFOContains a directory trustee with the object rights
	utimbufContains when the file was last accessed and modified
	VOLUME_STATSHolds volume information
	VOLUME_INFOContains volume information

	12 File System Monitoring Concepts
	12.1 Registering for Callback
	12.2 File Monitoring
	12.2.1 Pre-Execution and Post-Execution Monitoring
	12.2.2 Pre-Execution Callbacks
	12.2.3 Post-Execution Callbacks
	12.2.4 Callback Structures

	12.3 Potential Uses
	12.3.1 Hot Backup
	12.3.2 Version Control

	12.4 File System Monitoring Functions

	13 File System Monitoring Tasks
	13.1 Writing a File System Monitor NLM

	14 File System Monitoring Functions
	NWAddFSMonitorHookAllows the application to monitor ("hook") various OS file system routines
	NWRemoveFSMonitorHookRemoves a "hook" that is monitoring an OS file system routine

	15 File System Monitoring Structures
	CloseFileCallBackStructContains information about a close file operation
	CreateDirCallBackStructContains information about a create directory operation
	CreateFileCallBackStructContains information about a create file operation
	CreateAndOpenCallBackStructContains information about a create/open operation
	DeleteDirCallBackStructContains information about a delete directory operation
	EraseFileCallBackStructContains information about an erase file operation
	GenericEraseFileCBStructContains information about a generic erase file operation
	GenericModifyDOSInfoCBStructContains information about a generic modify DOS information operation
	GenericModifyNSInfoCBStructContains information about a generic modify name space information operation
	GenericOpenCreateCBStructContains information about a generic open/create operation
	GenericPurgeDeletedCBStructContains information about a generic purge deleted operation
	GenericRenameCBStructContains information about a generic rename operation
	GenericSalvageDeletedCBStructContains information about a generic salvage deleted operation
	ModifyDirEntryCallBackStructContains information about a modify directory operation
	OpenFileCallBackStructContains information about an open file operation
	PurgeDeletedCallBackStructContains information about a purge deleted operation
	RenameMoveEntryCallBackStructContains information about a rename or move operation
	RenameNSEntryCallBackStructContains information about a rename name space entry operation
	SalvageDeletedCallBackStructContains information about a salvage deleted operation

	16 Name Space Concepts
	16.1 Naming Conventions
	16.2 Default Name Space
	16.3 Primary Entry Information
	16.3.1 Primary Entry Information Functions

	16.4 Name Space Specific Information
	16.4.1 Name Space Entry Bit Mask
	16.4.2 Name Space Bit Mask
	16.4.3 DOS Name Space Bit Mask
	16.4.4 Name Space Specific Information Functions

	16.5 Long to DOS Conversions
	16.5.1 NetWare 4.x
	16.5.2 NetWare 5.x and 6.x

	16.6 General Name Space Functions

	17 Name Space Tasks
	17.1 Accessing Huge Name Space Information

	18 Name Space Functions
	18.1 Get* and Set* Functions
	GetDataStreamNameReturns information about data streams
	GetNameSpaceNameReturns the name of a specified name space and the number of name spaces currently supported by NetWare
	SetCurrentNameSpaceSets the name space that is to be used for parsing paths that are input to server functions
	SetTargetNameSpaceSets the target name space that is to be returned by server functions

	18.2 NWA* through NWI* Functions
	NWAddTrusteeToNSDirectoryAdds a trustee to the trustee list in a directory for the specified name space.
	NWAddTrusteeToNSDirectoryExtAdds a trustee to the trustee list in a directory for the specified name space using a UTF-8 path.
	NWAllocTempNSDirHandle2Assigns a temporary directory handle in the specified name space
	NWAllocTempNSDirHandle2ExtAssigns a temporary directory handle in the specified name space, using UTF-8 strings
	NWDeleteNSEntryErases the specified files from the server
	NWDeleteNSEntryExtErases the specified files from the server, using UTF-8 strings
	NWDeleteTrusteeFromNSDirectoryRemoves a trustee from a directory trustee list in the specified name space.
	NWDeleteTrusteeFromNSDirectoryExtRemoves a trustee from a directory trustee list in the specified name space using a UTF-8 path.
	NWGetDirectoryBaseRetrieves information used in further calls to the name space
	NWGetDirectoryBaseExtRetrieves information used in further calls to the name space
	NWGetHugeNSInfo
	NWGetLongNameRetrieves a filename for the specified name space.
	NWGetLongNameExtRetrieves a filename for the specified name space, using UTF-8 strings
	NWGetNameSpaceEntryNameReturns the name of a file or directory in the specified name space
	NWGetNSEntryInfo
	NWGetNSEntryInfo2
	NWGetNSEntryInfoExtReturns name space entry information for the specified entry, using UTF-8 strings
	NWGetNSEntryInfo2ExtReturns name space entry information for the specified entry, using UTF-8 strings
	NWGetNSFileDirEntryNumberReturns file information for a specified file under DOS and the name space associated with the specified file handle
	NWGetNSInfoReturns the NW_NS_INFO structure to be used in reading and writing information to the name space
	NWGetNSInfo (NLM)
	NWGetNSLoadedListRetrieves a list of the name spaces loaded for the specified volume
	NWGetNSLoadedList (NLM)Retrieves a list of the name spaces that are loaded on the specified volume
	NWGetNSPathReturns the full NetWare path for the desired name space associated with the specified path
	NWGetNSPathExtReturns the full NetWare path for the desired name space associated with the specified path, using UTF-8 strings
	NWGetOwningNameSpaceReturns the owning name space for the specified directory or file
	NWIsLNSSupportedOnVolumeQueries the NetWare server and returns a nonzero if the LONG name space is supported on the target volume

	18.3 NWN* through NWW* Functions
	NWNSGetDefaultNSReturns the default name space
	NWNSGetMiscInfoRetrieves information to be used in further calls to the name space
	NWNSRenameRenames an entry in the specified name space, given a path specifying the entry name
	NWNSRenameExtRenames an entry in the specified name space, given a path specifying the entry name and using UTF-8 strings
	NWOpenCreateNSEntryOpens a file in the specified name space or creates and then opens a file if it does not already exist
	NWOpenCreateNSEntryExtOpens a file in the specified name space or creates and then opens a file if it does not already exist. Path and file names must use UTF-8 characters.
	NWOpenDataStreamOpens a data stream associated with any supported name space on the server
	NWOpenNSEntryOpens or creates a file or creates a subdirectory with a given owning name space
	NWOpenNSEntryExtOpens or creates a file or creates a subdirectory with a given owning name space and using UTF-8 strings.
	NWQueryNSInfoFormatReturns the NW_NS_INFO structure to be used in getting and setting name space information
	NWReadExtendedNSInfoReads the extended (huge) name space information for the specified name space
	NWReadNSInfoReads name space information from the designated name space
	NWReadNSInfoExtReads name space information from the designated name space, using UTF-8 strings.
	NWScanNSDirectoryForTrusteesScans a directory for trustees using the specified path and directory handle under a specified name space
	NWScanNSDirectoryForTrusteesExtScans a directory for trustees using the specified path and directory handle under a specified name space using a UTF-8 seach path
	NWScanNSEntryInfoObtains directory entry information using a specific name space
	NWScanNSEntryInfoExtObtains directory entry information, using a specific name space and UTF-8 strings.
	NWScanNSEntryInfo2Obtains directory entry information, returning more information and using network bandwidth more efficiently than the NWScanNSEntryInfo function.
	NWScanNSEntryInfoSetScans a set of directory and file entry information by using a specific name space.
	NWScanNSEntryInfoSet2Scans a set of directory and file entry information by using a specific extended name space.
	NWScanNSEntryInfoSet2ExtScans a set of directory and file entry information by using a specific name space using UTF-8 strings.
	NWScanNSEntryInfoSetExtScans a set of directory and file entry information by using a specific name space using UTF-8 strings.
	NWSetHugeNSInfo
	NWSetLongNameRenames an entry in the specified name space, given a path specifying the entry name
	NWSetNameSpaceEntryNameSets the name of a file or directory in the specified name space
	NWSetNSEntryDOSInfoModifies information in one name space using a path from another name space
	NWSetNSEntryDOSInfoExtModifies information in one name space using a path from another name space and UTF-8 strings
	NWSetNSInfo
	NWWriteExtendedNSInfoWrites the extended (huge) name space information for the specified name space
	NWWriteNSInfoSets the specific name space information
	NWWriteNSInfoExtSets the specific name space information, using UTF-8 strings.

	19 Name Space Structures
	MODIFY_DOS_INFODefines the parameters for modifying an entry’s DOS name space information
	NW_DATA_STREAM_FAT_INFOContains the FAT information for a data stream
	NW_DATA_STREAM_SIZE_INFOContains the size information for a data stream
	NW_ENTRY_INFOHolds standard name space information for an entry
	NW_ENTRY_INFO_EXTHolds standard name space information for an entry and uses UTF-8 strings.
	NW_ENTRY_INFO2Holds standard name space information for an entry
	NW_IDXReceives the directory base for an entry in a specified name space
	NW_MAC_TIMEContains information about the MAC time for the scanned item
	NW_NS_INFOHandles the information bit masks used to read name space-specific information
	NW_NS_OPEN
	NW_NS_OPENCREATEDefines the parameters for opening/creating a data stream in a specified name space
	NW_NS_PATHDefines parameters for returning an entry’s path with in a specified name space
	SEARCH_SEQUENCEDefines information for managing a search operation across multiple requests

	20 Name Space Values
	20.1 Access Right Values
	20.2 Attribute Values
	20.3 Date Values
	20.4 Inherited Rights Mask Values
	20.5 Name Space Flag Values
	20.6 Basic Return Mask Values
	20.7 Extended Return Mask Values
	20.8 Search Attributes Values
	20.9 Time Values

	21 Path and Drive Concepts
	21.1 Path Parameters
	21.2 Network Drive Functions

	22 Path and Drive Tasks
	22.1 Listing Network Drives
	22.2 Mapping Network Drives
	22.2.1 Mapping a Network Drive Example

	23 Path and Drive Functions
	ConvertNameToFullPathConverts a path to an absolute path specification that includes a volume specification
	ConvertNameToVolumePathConverts a path to an absolute path specification that does not include the volume specification
	NWDeleteDriveBaseDeletes a network drive mapping
	NWGetDirBaseFromPathGets a volume number, a directory base for the specified name space, and a directory base for the DOS name space entry
	NWGetDriveInformationReturns information about the specified drive
	NWGetDriveStatusReturns the status of the specified drive and, optionally, the associated connection and its path in various formats
	NWGetDriveStatusConnRefReturns the status of the specified drive and, optionally, the associated connection reference and its path in various formats
	NWGetFirstDriveReturns the first non-local drive
	NWGetPathFromDirectoryBaseReturns the path name from an entry in the directory entry table for a NetWare server
	NWParseNetWarePathParses a path and returns the connection handle, directory handle, and new path to be used by subsequent NetWare requests
	NWParsePathParses a path string
	NWSetDriveBaseMaps the target drive to the specified directory path
	NWSetInitDrive (obsolete 7/99)Sets the initial drive on the specified NetWare server but is now obsolete.
	NWStripServerOffPathParses a server or volume path, copies the server name to the buffer specified by server, and returns a pointer to the volume path
	ParsePathSeparates a full path into server, volume, and directory specifications
	SetWildcardTranslationModeSpecifies whether wildcard translation is to take place when parsing pathnames and filenames
	StripFileServerFromPathRemoves the name of the server from a full path specification

	24 Server-Based Data Migration Concepts
	24.1 Advantages of Data Migration Applications
	24.2 Server-Based Data Migration Functions

	25 Server-Based Data Migration Functions
	NWGetDataMigratorInfoObtains information about a data migration NLM application
	NWGetDefaultSupportModuleObtains the default read/write support module ID
	NWGetDMFileInfoObtains information about a file that has been migrated to long-term storage
	NWGetDMVolumeInfoObtains information about the volume from which data has been migrated to long-term storage
	NWGetSupportModuleInfoObtains information about data migration support modules
	NWIsDataMigrationAllowedDetermines whether data migration is allowed for a given volume
	NWMoveFileFromDMMoves a file from on-line long-term storage media to a NetWare volume
	NWMoveFileToDMMoves a file to on-line long-term data storage media while leaving the file visible on the NetWare volume
	NWPeekFileDataEnables the developer to look at data in a migrated file
	NWSetDefaultSupportModuleSets the default read write support module ID

	26 Server-Based File System Functions
	AddSpaceRestrictionForDirectoryAdds directory space restrictions
	AddTrusteeAdds a trustee to a directory’s or file’s trustee list
	AddUserSpaceRestrictionAdds a user space restriction
	ChangeDirectoryEntryChanges a directory or file entry
	DeleteTrusteeRemoves a trustee from a directory’s or file’s trustee list
	DeleteUserSpaceRestrictionDeletes a space restriction for an object
	GetAvailableUserDiskSpaceReturns the disk space available to a user in blocks
	GetDiskSpaceUsedByObjectReturns the disk space being used by a particular user
	GetEffectiveRightsReturns the current connection’s effective rights to a directory or file
	GetMaximumUserSpaceRestrictionReturns the maximum disk space restriction for a particular user
	ModifyInheritedRightsMaskModifies the inherited rights mask of a directory or file
	PurgeTrusteeFromVolumeDeletes a trustee from a volume
	ReturnSpaceRestrictionForDirectoryReturns space restrictions for a directory
	ScanTrusteesReturns information about directory or file trustees
	ScanUserSpaceRestrictionsReturns information about users’ space restrictions on a volume
	SetDirectoryInfoChanges a directory’s information
	UpdateDirectoryEntryUpdates a directory entry

	A Revision History

