
Rev 1.0 Draft 4.0 (March 1995) Company Confidential 279

Chapter 8
Accessing an NLM from a
Vxd

NLMs and Vxds . 280
Vxd Init, Deinit, and Dependencies 280
Tools . 281
Debugging . 281
Examples . 281

NiosVxdBeginNlmUse . 282

NiosVxdEndNlmUse . 284

NiosVxdGetVersion . 285

Macros . 286
NlmCall . 286
NlmJmp . 286

NetWare Client NIOS Design Specification

280 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

NLMs and Vxds

This chapter details the methods a Vxd uses to access exported
NLM functions and describes the function calls and macros that are
available.

Vxd Init, Deinit, and Dependencies

During Vxd initialization you should first determine if the NIOS interfaces

are available before attempting to invoke an NLM service. This is

accomplished by calling the Vxd service NiosVxdGetVersion.

Because NLM's are unloadable, Vxd's must take care to not attempt access

to an NLM that is unloaded. This can be accomplished in two ways.

Method #1

The first method requires that the Vxd inform NIOS about the NLMs it is

going to access. Until the Vxd informs NIOS that it is no longer accessing

an NLM, NIOS will refuse to allow the NLM to unload from the system.

This is accomplished by using the NiosVxdBeginNlmUse and

NiosVxdEndNlmUse Vxd services. Typically a Vxd will call

NiosVxdBeginNlmUse during Device_Init or Init_Complete and call

NiosVxdEndNlmUse during System_Exit or Sys_Crit_Exit. It is important

that the Vxd calls NiosVxdEndNlmUse during Windows exit since the

NLM won't be allowed to unload until all external references to it have been

removed.

Dynamically loadable Vxd's should call NiosVxdEndNlmUse when the

module is unloaded.

A Vxd need not call NiosVxdBeginNlmUse or NiosVxdEndNlmUse on

NIOS.NLM since this NLM cannot be unloaded inside of Windows.

Method #2

The second method does not make use of the NiosVxdBeginNlmUse or

NiosVxdEndNlmUse services. Instead the Vxd registers with NIOS to

receive notification of when NLM modules are unloaded. This is done

using the NIOS MODULE UNLOADED NESL event and watching for the

named module. If the event occurs, the Vxd must immediately stop

accessing the NLM.

Accessing an NLM from a Vxd

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 281

Many NIOS and NLM services require a module handle parameter. A Vxd

needing to invoke such a service should first create a pseudo module handle

using the NiosCreateModuleHandle service. The Vxd must destroy the

module handle when it unloads or during system exit. This is accomplished

using the NiosDestroyModuleHandle service.

Tools

A Vxd will typically include and use the NIOSVXD.INC file. This file

contains definitions for NlmCall, NlmJmp, and so forth.

NIOSVXD.INC is compatible with both the MASM5.EXE and ML.EXE

(Masm 6.x) assemblers.

A Vxd can include most NLM include files to gain access to NLM

definitions

Debugging

NlmCall and NlmJmp expand to non-code values, specifically an Int 20h

with two 32-bit values after it. After the Int 20h is executed, NIOS replaces

the 10-bytes of information with valid code. Because of this, it is not

possible to p (proceed) over an NlmCall that hasn't been executed yet, since

this will cause an Int 3 to be inserted in the values that NIOS needs to fixup

the call. To proceed over an NlmCall set an execution breakpoint 10 bytes

after the Int 20h.

Examples

A sample Vxd called VXDTONLM.386 is available which gives examples

of how to use the services outlined in this chapter.

NetWare Client NIOS Design Specification

282 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

NiosVxdBeginNlmUse

Description Determines if the specified NOLM is present in the system, and
builds a dependency between the calling Vxd and the specified
NLM.

Syntax #include <niosvxd.inc>

void
NiosVxdBeginNlmUse (

UINT8 *nlmName);

Parameters nlmName Offset of an ASCIIZ string of the NLM that the Vxd
is no longer using. This is a case insensitive string.

Returns 0 = NLM is NOT present in the system. The Vxd may choose to
call NIOS to load the NLM.

!0 = Function successful.

“C” registers are preserved.

Remarks This function is typcially used during Vxd initailization.

As long as a dependency is present the NLM will not be allowed to unload

from the system. It is important that the Vxd invoke the

NiosVxdEndNlmUse macro as soon as it's done using the specified NLM.

A static Vxd (not dynamically loadable/unloadable) must invoke the

NiosVxdEndNlmUse macro when Windows is exiting, no later than the

Sys_Critical_Init callout. A dynamic Vxd should invoke

NiosVxdEndNlmUse when it is unloaded.

Example:
IpxNlmName db ‘IPX.NLM”,0

VxdCall NiosVxdBeginNlmUse,<OFFSET32 IpxNlmName>

test eax, eax

jz NlmIsntPrsent

See Also NiosVxdEndNlmUse

Accessing an NLM from a Vxd

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 283

NetWare Client NIOS Design Specification

284 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

NiosVxdEndNlmUse

Description Destroys the dependency between the calling Vxd and the specified
NLM allowing the NLM to be subsequently unloaded from the
system.

Syntax #include <niosvxd.inc>

void
NiosVxdEndNlmUse (

UINT8 *nlmName);

Parameters nlmName Offset of an ASCIIZ string of the NLM that the Vxd
is no longer using. This is a case insensitive string.

Returns Nothing
“C” registers are preserved

Remarks .Example:

IpxNlmName db ‘IPX.NLM”,0

VxdCall NiosVxdEndNlmUse,<OFFSET32 IpxNlmName>

See Also NiosVxdBeginNlmUse

Accessing an NLM from a Vxd

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 285

NiosVxdGetVersion

Description Returns the NIOS version information and a value that signals
whether or not NIOS has completed initialization..

On Entry Nothing

On Exit Carry flag set = NIOS is NOT loaded
AX, ECX are undefined

Carry flag clear = NIOS is loaded
AX = Major, Minor version of NIOS Vxd
ECX = 0 if NIOS has initialized, carry must be clear.

= !0 if NIOS has not completed it Device Init
initialization. All other NIOS Vxd services as well as
NlmCall services are unavailable.

Remarks Example:

VxdCall NiosVxdGetVersion

jc NiosNotPresent

test ecx, ecx

jnz NiosInitNotFinished

See Also

NetWare Client NIOS Design Specification

286 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

Macros

NlmCall

#include<niosvxd.inc>

NlmCall FuncName [,<<Cparm0>, ... ,<CparmN>>]

Used to invoke an exported NLM API function, NlmCall works

similiarly to the VxdCall macro in that you can invoke both register and

"C" based functions as well as pass "C" based stack parameters with the

macro. If "C" parameters are passed with the macro, this macro will clean

the stack before returning.

Note that "C" NLM functions preserve registers EBX,ESI,EDI,EBP with

EAX used for function return information.

Example:

NlmCall NiosGetSystemDirectory,<<OFFSET32 retBuf>,retBufLen>

test eax, eax

jnz FuncFailed

NlmJmp

#include<niosvxd.inc>

NlmJmp FuncName

Used to jump to an exported NLM API function, NlmJmp works
similiarly to the VxdJmp macro.

Example:

NlmJmp NiosGetVersion

...Doesn’t return

