
Rev 1.0 Draft 4.0 (March 1995) Company Confidential 31

Chapter 4
Memory Pool Services

Memory Pool Introduction . 32

Memory Pool Overview . 32

Memory Pool Details . 35
Configuring the Memory Pool . 36
Data Structures of the Memory Pool 36

MemoryPoolHandle . 36
Other Definitions . 37

Functions Calls of the Memory Pool 37

NetWare Client NIOS Design Specification

32 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

Memory Pool Introduction

This chapter describes a memory cache interface and its intended
use in the NIOS Client-32 project. The interface is designed after
the VCache management facility in Windows 95.

The memory cache described here is a pool of memory with an
associated set of functions which are available for cached data
objects, as desired by different components of the NIOS Client.
While the actual implementation of the memory pool may differ
between operating environments, the API and its use remain the
same in order to provide a layer of independence to the consumers
of this API.

The memory pool and its associated functions are referred to in this
chapter as the memory pool, or the system. The users of the memory
pool are referred to as the applications.

Memory Pool Overview

Multiple modules may wish to allocate a chunk of memory for a
short period of time. Rather than returning the memory
immediately to the system, the application may prefer holding on
to the memory, in case it is needed again. Since memory is a
limited resource, the solution is either to have the module wait a
period of time before returning the memory to the system, or to
have the system ask for the memory back when it is needed.

The first solution is limited because the module is unaware of the
memory needs of other modules. The memory pool represents an
implementation of the latter solution.

A module that wishes to access memory in a memory pool must
take several steps. First, the memory must be allocated from the
pool. When this occurs, the application provides a callback
function which can be called by the system. The system uses this
callback to request the memory be flushed, returned, and so on.

However, allocating the memory block is not enough in some
systems. Consequently, the application must hold the memory
before accessing it. The hold serves at least two purposes. First, it
makes sure that the memory address is physically available and
will not be moved. It also prevents the system from requesting that

Memory Pool Services

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 33

block of memory be returned until the memory is unlocked.
During the time the hold is active, the memory is available for read
or write purposes.

When the application finishes accessing the memory, it removes
the hold by performing an unhold request. The unhold does not
mean that the system will immediately request the memory be
returned, but rather it returns the block to the system queue of
memory blocks. Thus, when another application makes a memory
allocation request, the system requests the block which has not
been accessed for the longest period of time.

The system keeps track of memory block access through an LRU
(least recently used) list. This means that on one end of this list is
the block that has been accessed most recently, while on the other
end of the list is the block that has not been accessed for the
greatest period of time. The block on the LRU end of the list will be
the first one requested when an allocation request is made which
requires memory to be returned to the system. (See Figure 4.1.)

Memory Pool

 Handles

Memory Pool

 Blocks

MRU

LRU

NetWare Client NIOS Design Specification

34 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

Figure 4.1: Mempool handles point to memory blocks.

An application that desires fair treatment by the memory pool
must make a call to the system to make a block the most recently
used (MRU) when accessing it. This call is made in addition to the
hold and unhold request required when accessing the memory.

Memory Pool

 Handles

MRU

LRU

Key 1

Key 2

User Info ...

Memory Pool Services

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 35

The function of making a block MRU or LRU and holding or
unholding it is maintained separately to allow applications to
browse through their blocks without causing them to become MRU
or LRU.

Memory Pool Details

The memory pool uses an LRU algorithm to implement a linked list
of memory blocks controled by memory handles. See Figure 4.2.
While the application is given pointers to the memory handles,
only certain portions of the handles are defined for the
application's use. Applications should leave the unexposed fields
alone.

Figure 4.2: Mempool Handles

Much of the memory pool's design is modeled after Microsoft's
VCache system. Thus the memory pool passes calls from
applications directly through to the VCache when Windows is
active, achieving system-wide sharing of memory resources. In a
DOS only configuration, memory sharing is limited to NIOS Client
modules.

NetWare Client NIOS Design Specification

36 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

Configuring the Memory Pool

While the memory pool is designed to snap directly into
Microsoft's VCache in Windows 95 and MS Windows 3.11, under
DOS it is necessary to allocate a block of system memory which
acts as the source for the memory pool. To control this allocation
you can add a configuration parameter to the configuration
database (typically the NET.CFG file).

Memory Pool Services use one configuration parameter to allow
the user to specify the amount of memory (in kilobytes) to allocate
for the pool. If no parameter is specified, memory pool uses 10%
of the available memory when the client registers. The
configuration parameter is specified as follows:

NIOS
MEM POOL SIZE = <value>

<value> specifies the amount of memory in kilobytes desired for
the memory pool. Each block allocated in the memory pool uses
4K plus 74 bytes.

Data Structures of the Memory Pool

The following data structures and definitions are used to define the
memory pool.

MemoryPoolHandle

Although much of the memory block handle is not defined for the
application, some areas are made available in order to give the
application some convenience in working with the memory block.
Following are the fields which are defined in the memory pool
handle:

UINT32 Key1; offset 0x08 (08) // Set by block owner when it is allcated.

UINT32 Key2; offset 0x0C (12) // Set by block owner when it is allcated.

void *buffPtr; offset 0x10 (16)

UINT32 appData[7]; offset 0x14 (20) // Can be used freely by the memory block owner.

UINT8 dirty; offset 0x32 (50) // Memory block owner should set this to non-zero

when block is dirty. Otherwise, set to zero.

Memory Pool Services

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 37

Other Definitions

BLOCK_SIZE 0x4096
MP_CREATE 0x01
MP_HOLD 0x02
MP_MAKE_MRU 0x04
MP_LOW_PRIORITY 0x08
MP_MUST_CREATE 0x10

When a block is allocated, the truth table below explains what may
happen according to the status of a given memory block.

Memory block flags Flags needed to reuse this block
Alloc Dirty Held
0 0 0 MP_LOW_PRIORITY, MP_CREATE or

MP_MUST_CREATE
0 0 1 invalid state
0 1 0 invalid state
0 1 1 invalid state
1 0 0 MP_CREATE or MP_MUST_CREATE
1 0 1 Unusable
1 1 0 MP_MUST_CREATE
1 1 1 Unusable

Functions Calls of the Memory Pool

The following functions are provided as part of the memory pool
system. For detailed information, see Chapter 6.

NiosMemPoolGetVersion
NiosMemPoolRegister
NiosMemPoolGetSize
NiosMemPoolCheckAvail
NiosMemPoolFindBlock
NiosMemPoolFreeBlock
NiosMemPoolMakeMRU
NiosMemPoolHold
NiosMemPoolTestHold
NiosMemPoolUnhold
NiosMemPoolEnum
NiosMemPoolMakeLRU

NetWare Client NIOS Design Specification

38 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

