%

Chapter 9
Network Configuration
File

NETCFEG OVerviewWttt e e 206
Declaration Statements 206
Keyword Statementsl 207
Parameter Values 207
Example driver configurationblock 208
COMMENES . .ottt e 208
ParsingtheFile.............. 208
FileIO APIs . ..o 209

Configuration Definitions, 210
Return Codesot i 210
ConvFlags Parameter, 210
Maximum Read/Write Line Lengths 211
Keyword Registry Return Codes 211
Keyword Registry Attribute Types 212

NIOS Configurable Parameters 212
ALERT BEEP [ON|OFF], 212
LINE DRAW CHARS “characters” 212
MIN MEM FREE ATWINSTART 213
PHYS CONTIGUOUSMEM [ON |OFF] 213
PHYS MEM BELOW 16 MEG [ON |OFF] 214
USE VIDEO BIOS [ON |OFF]ovviiiiiiiia... 214

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 205

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

NETCFG Overview

The NIOS Client expects a configuration file named NET.CFG to be
located in the directory where NIOS was loaded. Because the
format of the configuration file is specific to the environment, the
only way for an NLM to be OS-independent is to use the NiosCfg
API functions.

The format of the system configuration file is shown in this
appendix.

The format is outlined as follows:

<section name>
<configuration keyword name> [[=] <value>]
this is comment

<configuration keyword name> [[=] <value>] ; comment
<configuration keyword name> [[=] <value>]
<configuration keyword name> [[=] <value>]
<configuration keyword name> [[=] <value>]

this is a comment at the beginning of a line

A section configuration block is a group of statements that
describes the current configuration of a driver. These configuration
statements are line-oriented: a statement cannot be continued on
another line.

Declaration Statements

The first line of a section configuration block is the section
configuration declaration statement. The declaration simply states
the name of the driver to be configured.

The declaration statement syntax is <section name> and must start
at column 1 of the line. Any section declaration which does not
start at column 1 will not be recognized. Examples of section
declaration statements are:

IPX ; declaration of driver IPX
NE2000 ; declaration of driver NE2000
LSL ; declaration of driver LSL

206

Company Confidential Rev 1.0 Draft 4.0 (March 1995)

Network Configuration File

Keyword Statements

Parameter Values

The body of the section configuration block is made up of a list of
configuration keyword statements. Keyword statements must be
indented at least one white space (space, tab) right of the driver
declaration statement. Any keyword statements starting at column
1 of a line will interpreted (incorrectly) as beginning a new driver
configuration block.

The syntax for keyword statements is
<configuration keyword name> [[=] <value>].

Keyword statements consist of a keyword name followed by an
optional assignment operator ('='), followed by zero or more
optional parameter values. Keyword names are defined by the
specific module.

The optional assignment operator ('=') can be used to indicate
assignment, but need not be present: It is equivalent to a white
space.

The parameter assigned to a keyword may be anything (such as a
string, number, or boolean value). Internally the parameter is a
string. The string can be (optionally) converted to a number of
different formats, depending on the NLM, or the NLM can convert
the value itself.

Parameter values that are string literals must have double quotes
around them. String literals are useful for case-sensitive values or
values that have an embedded '=' or ;' character. Embedding a
double quote character within a string literal is not allowed.

Whenever a parameter value string is read by the parser functions,
the value string is converted to uppercase. The only exception to
this is when lowercase characters are contained within string
literals. Uppercasing is done to save the driver from the effort of
uppercasing all strings before interpretation.

String literal values passed to a driver will have the string
delimiters (") included to help the driver distinguish a string literal
from normal string value.

Rev 1.0 Draft 4.0 (March 1995)

Company Confidential 207

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

Some keyword statements need no parameter value; the mere
presence of the keyword name indicates a feature which should be
enabled /disabled in the driver.

Example driver configuration block

X
XParam
Xparam
XParam
XParam
XParam
XParam
XParam
XParam

NetAddr FADE2300
NodeAddr 00001B31AD13

Comments

1
2
3
4
5
6
7
8

;declaration

= TRUE

23

"Wizard of 0Oz"
"CASE STRING"
"case STRING"
no case string
A B "C D" E

;parameter
;parameter
;parameter
;parameter
;parameter
;parameter
;parameter
;parameter

— driver name

assign with option '='

assign without '='

string literal

case sensitive string literal
case sensitive string literal
case insensitive string
mixed strings

no value

;parameter - example of network address
;jparameter - example of node address

In this example, parameters can have multi-word names and
multi-word values. The line "XParam 6 no case string", for example,
has a multi-word name "XParam 6" followed by a multi-word
value "no case string". These features provide a high degree of
flexibility when defining a configuration block for a driver.

Comments can be place virtually anywhere in the file. Comments
are line-oriented and are delimited by the semicolon ';' character.
Once a semicolon is encountered, the rest of the line is ignored.

Comments that start at column 1 inside a driver configuration
block will not cause block termination. For example:

Y1l TRUE

This comment does not cause block termination

Y2 FALSE

Parsing the File

When parsing the configuration file, the parser will read one line at
a time. The parser reads a physical line into a logical line buffer. A
logical line is a line which has been stripped of comments,

208

Company Confidential

Rev 1.0 Draft 4.0 (March 1995)

Network Configuration File

File I0 APIs

preceding white spaces, back-end white spaces, '=' characters, and
extra white spaces.

The format of a logical line is as follows:
<ParamName><SPACE><ParamValueStr>

The maximum length of a logical line is defined by

NC_MAX_LINE_LEN. The maximum length of the parser's logical

line buffer is NC_MAX_BUF_LEN.

NC_MAX_LINE_LEN and NC_MAX_BUF_LEN are independent
of how many white spaces physically precede <ParamName> and
<ParamValueStr> in the configuration file.

For instance, the following string
Parameter 1 = This is an example
would logically translate to
Parameter 1 This is an example
The logical line length is

strlen("Parameter 1") + 1 + strlen("This is an example")

Four APIs are used to read and write to a configuration file:

NiosCfgRead NiosCfgReadSpecific
NiosCfgWrite NiosCfgWriteSpecific

NiosCfgRead and NiosCfgWrite are simple APIs which operate on
the system configuration file. They deal only with one keyword
and driver name at a time, and will return the first match found for
the driver name and keyword combination.

NiosCfgReadSpecific and NiosCfgWriteSpecific query the
configuration file for section names and keywords that are not the
first occurrence of each. These routines take an index as a
parameter, and allow a wildcard match character (*).

Rev 1.0 Draft 4.0 (March 1995)

Company Confidential 209

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

Incrementing the index from zero allows NiosCfgReadSpecific to
return keyword strings from multiple instances of the same
keyword. If the wildcard match character is used in conjunction
with an incrementing index, the whole net configuration database
may be enumerated.

Configuration Definitions

Return Codes

NiosCfgRead

#define NC_OK 0x00000000 Operation succeeded

#define NC_LINE_OVERFLOW 0x00000001 Line overflow

#define Nc_pArRaM NOT_FounD 0x00000002 Keyword was not found

#define NC_TRUNCATED 0x00000004 Line was truncated to 255
characters

#define NC_OPEN_FAILED 0x00000008 Open of the cfg file failed

#define NC_ALLOC_FAILED 0x00000010 Allocation memory buffer(s) failed

#define NC_READ_FAILED 0x00000020 Reading the cfg file failed

NiosCfgWrite

#define NC_OK 0x00000000 Operation succeeded

#define NC_LINE_OVERFLOW 0x00000001 Line overflow

#define Nc_pArRaM _NOT_FounD 0x00000002 Keyword was not found

#define NC_TRUNCATED 0x00000004 Line was truncated to 255
characters

#define NC_OPEN_FAILED 0x00000008 Open of the cfg file failed

#define NC_ALLOC_FAILED 0x00000010 Allocation memory buffer(s) failed

#define NC_READ_FAILED 0x00000020 Reading the cfg file

#define NC_WRITE_FAILED 0x00000040 Writing the new cfg file failed

#define NC_DELETE_FAILED 0x00000100 Delete of old cfg file failed
#define NC_RENAME_FAILED 0x00000200 Rename of new cfg file failed
#define NC_CREATE_FAILED 0x00000400 Create of new cfg file failed

ConvFlags Parameter
Possible values for NiosCfgRead and NiosCfgWrite ConvFlags
parameter. These values are also used for NiosKeywordRegister

and NiosKeywordEnumerate.

Only one of the following values can be specified.

210 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

Network Configuration File

#define CFG_CONV_NONE

#define CFG_CONV_STRING

#define CFG_CONV_BOOLEAN
#define CFG_CONV_DELETE

0x00000000

0x00000001
#define CFG_CONV_DEC_UINT32
#define CFG_CONV_HEX_UINT32

0x00000002
0x00000003
0x00000004

0x00000005

Option that can be ORed into NiosCfgRead Flags parameter.

#define CFG_FLAG_ANYWHERE 0x80000000

Maximum Read/Write Line Lengths

#define NC_MAX_LINE_LEN

#define NC_MAX_BUF_LEN

Keyword Registry Return Codes

255

// Length of a keyword name string
+ one space + parameter value string

NC_MAX_LINE_LEN+1

// Length of a keyword name string + one
space + parameter value string + null
terminator

Defined return codes for modules:

NiosKeywordRegister

NiosKeywordDeRegister

NiosKeywordEnumerate
NiosKeywordSetValue

NiosKeywordResetValue
NiosKeywordUpdateNetCfg

#define NC_INVALID_MODULE_HANDLE 0x1
#define NC_OUT_OF_CLIENT_MEMORY 0x2
#define NC_INVALID_CFG_MEMORY 0x3
#define NC_NO_MORE_ENTRIES 0x4
#define NC_KEYWORD_NOT_FOUND 0x5
#define NC_KEYWORD_READ_ONLY 0x6
#define NC_CLIENT_NOT_FOUND 0x7

#define NC_KEYWORD_ALREADY_REGISTERED 0x8

#define NC_GENERAL_ERROR

0x9

#define NC_KEYWORD_INCOMPATIBLE Oxa

Rev 1.0 Draft 4.0 (March 1995)

Company Confidential

211

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

Keyword Registry Attribute Types

Defined attribute types for keyword registry:

#define KEYWORD_READ_WRITE 0x0
#define KEYWORD_READ_ONLY 0x1
#define MAX_KEYWORD_ATTRIBUTE KEYWORD_READ_ONLY

NIOS Configurable Parameters

Certain NIOS parameters are configurable in the NET.CFG file.
This section describes the NIOS configurable parameters, and gives
an example of the NET.CFG format.

All NIOS parameters are listed in NET.CFG under the NIOS section
header. (See Appendix G for a complete description of the
NET.CFG file.)

For example:

NIOS
GLOBAL V86 WIN PAGES 5
MIN MEM FREE AT WIN START 12800
USE VIDEO BIOS ON
PHYS MEM BELOW 16 MEG OFF

ALERT BEEP [ON | OFF]

Configuration parameter which configures NIOS.EXE to sound an
audible beep when displaying popup alert messages.

The default is ON.

LINE DRAW CHARS “characters”

Configuration parameter which configures NIOS.EXE to use the specified
line draw characters when displaying character mode popup messages. The
characters must be in quotes and in the specified order.

character #1 TOP_LEFT_CORNER
character #2 TOP_RIGHT_CORNER
character #3 BOTTOM_LEFT_CORNER

212 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

Network Configuration File

character #4 BOTTOM_RIGHT_CORNER
character #5 VERTICAL_LINE
character #6 HORIZONTAL_LINE

MIN MEM FREE AT WIN START

Configuration parameter which specifies the minimum amount of
NIOS free memory available when enhanced-mode MS Windows
is loaded.

If the amount of free memory is less than this value, NIOS pre-
allocates more memory from the XMS memory pool before
continuing with Windows initialization.

This parameter is used to guarantee that a certain amount of
memory is available for use by NLMs across an MS Windows
session. For example, if an NLM that exhausts the NIOS memory
pool is loaded inside of MS Windows, then NIOS must allocate
more memory from Windows to allow the NLM to load.

The memory allocated from Windows cannot be used or accessed
after Windows is exited; therefore users may not exit Windows
unless they first unload the NLM or NLMs that are using Windows
memory.

By specifying a large enough value for this parameter, NLMs can
be loaded in a Windows session and still allow the user to exit back
to DOS.

This parameter is automatically adjusted by NIOS when the user
attempts to exit Windows and the exit is denied because MS
Windows memory was allocated for NLM use during the Windows
session. The value is adjusted upward so that the next time the user
attempts the same configuration, exiting Windows will be possible.

PHYS CONTIGUOUS MEM [ON | OFF]

Determines whether memory allocated to LAN adapter drivers
must be physically contiguous. This parameter must be set to ON
when using a LAN adapter which uses any form of direct memory
access (DMA). Memory can be used more efficiently if this
parameter is set to OFF.

Rev 1.0 Draft 4.0 (March 1995)

Company Confidential 213

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

If this parameter is set to OFF, the "PHYS MEM BELOW 16 MEG"
option is forced to OFF as well.

The default is ON.

PHYS MEM BELOW 16 MEG [ON | OFF]

Determines whether memory allocated to LAN adapter drivers
must be below the 16 megabyte address boundary. This parameter
must be set to ON for using a LAN adapter which is incapable of
accessing memory above the 16 megabyte boundary.

Adapters that have this constraint are 24-bit (ISA) cards which
utilize direct memory access (DMA). Memory can be used more
efficiently if this parameter is set to OFF.

The default is ON.

USE VIDEO BIOS [ON | OFF]

Configures NIOS.EXE to use BIOS or direct video memory access
when displaying popups (for example, Alerts). If set to ON, NIOS
uses BIOS calls; otherwise NIOS uses direct video memory access.

Direct video memory access is faster and is the default. If NIOS
popups do not behave correctly on a system, setting this parameter
to ON may eliminate the problem.

214

Company Confidential Rev 1.0 Draft 4.0 (March 1995)

