§

Chapter 7
NIOS APIs for Windows95

Windows95 Interfacet 166
Win32InvokeCNIMApi ... 168
Win32LoadModule 169
Win32NiosFarCallHandler 172
Win32UnloadModule 173
WIN32_NIOS BEGIN_USE_API...........coiiiiiii... 175
WIN32_NIOS_ COPY MEMo 176
WIN32_NIOS_COPY_STRING ... 177
WIN32_NIOS_END_USE_API ... 178
WINB2_NIOS MAP . .o e 179
WIN32_NIOS_UNMAP ... 183
Rev 1.0 Draft 4.0 (March 1995) Company Confidential 165

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

Windows95 Interface

The NIOS Win32 API interface provides a high-performance Ring 3
(User) to Ring 0 (System) access mechanism which allows Win32
applications to invoke and use most exported NLM API functions.

This interface is not available for Windows v3.1x Win32s. The
DeviceloControl Win32 API function is not supported on Win32s.

Note: This interface will only be provided on versions of
Windows95 and above that are based on a Vxd driver
architecture. This interface is NOT and will not be
provided on Windows NT. Win32 applications that wish to
also run on NT should insulate themselves from this API by
using a DLL.

The following steps are used by a Win32 application to gain access
to the NIOS services.

Step 1: Locate the NIOS driver by using the Win32
DeviceloControl API function. This is accomplished by
first opening the NIOS device using code similiar to the
following:

devHandle = CreateFile(
"\\\\.\\NIOS",
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL) ;

if (devHandle == INVALID_FILE_HANDLE)
NIOS driver isn't loaded error

Step 2: If NIOS is present, invoke the Win32 DeviceloControl API
function to obtain two function addresses that will be used
to issue further requests to the NIOS interface. You must
provide the address of a NiosWin32EntryPoints structure
which will be filled out by NIOS on return.

An example call to DeviceloControl is:

NiosWin32EntryPoints NIOS;

166 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

NIOS APIs for Windows95

DeviceIoControl (
devHandle,
WIN32_GET_NIOS_INTERFACE,
NULL,
NULL,
&NIOS,
sizeof (NiosWin32EntryPoints),
NULL,
NULL);

Step 3: Use NiosWin32EntryPoints.Win32NiosFarCall to issue
various requests to NIOS, such as resolving the addresses of
NLM API functions, locking memory,etc. Use
NiosWin32EntryPoints.Win32InvokeCNImApi to invoke
NLM API functions.

The following is an example using this interface to
invoke the NIOS exported function NiosGetVersion:

Resolve the API function we want to call.

NiosGetVersionAddr =
NIOS.Win32NiosFarCall (
WIN32_NIOS_BEGIN_USE_API,
NiosGetVersion");

Call the NLM function.

NiosVer = NIOS.Win32InvokeCNlmApi (
NiosGetVersionAddr,
0);

Tell NIOS we're no longer using the
function.

NIOS.Win32NiosFarCall (
WIN32_NIOS_END_USE_API,
NiosGetVersionAddr) ;

For more information, see the Win32NiosFarCallHandler and
Win32InvokeCNImApi function calls in Chapter 7, NIOS APIs for
Windows95.

Rev 1.0 Draft 4.0 (March 1995)

Company Confidential 167

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

Win32InvokeCNImApi

Description

Calls (Invokes) an exported NLM function that uses the "C" calling
conventions. This function is called by Win32 applications.

Syntax UINT32
(*Win32InvokeCNImApi)(
UINT32 nlmApiAddress,
UINT32 apiParmCount,
w);

Parameters apiAddress Address of NLM API to invoke. This is a value
obtained from the WIN32_NIOS BEGIN USE_API
function.

apiParmCount Number of UINT32 stack parameters needed for
call. This value defines the number of UINT32
values that need to be copied from the application's
stack onto the Ring 0 protected mode stack prior to
invoking the specified NLM API.
Parameters to NLM APL.
Returns Return code defined by the NLM APIL
Remarks The steps required for a Win32 application to gain access to NIOS
services are listed in Chapter 2 under the heading Windows 95
Interface.
See Also
168 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

NIOS APIs for Windows95

Win32LoadModule
Description Loads an NLM when called by Win32 applications.
Syntax UINT32
Win32LoadModule (
UINT32 loadOptions,
UINT8 *modulePathSpec,
UINTS *commandLine,
UINT32 nlmFileOffset,
modHandle *retModHandle,
void (*msgHandler)(
modHandle module,
UINTS *prefix,
UINTS8 *msg));
Parameters loadOptions Bits defining loading styles. All undefined bits

must be set to 0.

LOPTION_DEBUG _INIT Executesa Int1
before the loader invokes the module's init
routine.

LOPTION_ERROR_MSGS Stdout error
messages are enabled

LOPTION_BANNER_MSGS Stdout signon
messages are enabled

modulePathSpec [path\]name of module to load (with extension).

commandLine Pointer to any parameters that will be passed to
the loading module. This is a ASCIIZ string.

nlmFileOffset Offset from the start of the modulePathSpec file
where the NLM image starts. Typically this will
be 0 for straight NLM files.

retModHandle Pointer to a modHandle that will be set to the newly
loaded module's handle on success. If NULL the
module handle will not be returned.

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 169

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

msgHandler Address of function which will be called when a
text message is displayed during the load
process. Parameters to this function are Ring-0
linear addresses, therefore the handler should
use the appropriate NIOS functions to copy the
memory.

Returns LOADER_SUCCESS

Module was loaded successfully
LOADER_NO_LOAD_FILE

Open load file failed
LOADER_IO_ERROR

File I/O error during read
LOADER_INSUFFICIENT MEMORY

Not enough memory to load module
LOADER_INVALID_MODULE

Invalid NLM module
LOADER_UNDEFINED_EXTERN

Referenced undefined external item
LOADER_DUPLICATE_PUBLIC

Exported public is already defined.
LOADER_NO_MSG_FILE

Open msg file failed
LOADER_INVALID _MSG_MODULE

Msg file is malformed
LOADER_MODULE_ALREADY_LOADED

Module cannot be loaded more than once
LOADER_BAD_REENTRANT _MODULE

Reentrant load failed because the module is not the

same version as the first module.
LOADER_MODULE_INIT_FAILED

Module failed to initialize.
LOADER_LOAD_REFUSED

A loaded NLM refuses to allow this NLM to load.

Remarks All input pointer parameters are local Win32 application memory
addresses.

Windows applications that need to load an NLM typically will use
this function instead of NiosLoadModule since they will want to

170 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

NIOS APIs for Windows95

See Also

obtain text ouput messages from the NLM and loader while the
load is taking place. It is possible to invoke NiosLoadModule with
the LOPTION_ERROR_MSGS and LOPTION_BANNER_MSGS set
to 0 from a Windows application since this causes a silent load to
take place.

All pointer parameters passed to this function do NOT need to be
mapped using the WIN32_NIOS_MAP service.

The steps required for a Win32 application to gain access to NIOS
services are listed in Chapter 2 under the heading Windows 95
Interface.

Rev 1.0 Draft 4.0 (March 1995)

Company Confidential 171

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

Win32NiosFarCallHandler

Description Invokes NIOS services. This function is called by Win32
applications.

Syntax UINT32
(*Win32NiosFarCall)(

UINT32 function,
w);

Parameters function ~ WIN32_NIOS_???? value. Refer to NLMAPIL.H and
NLMAPLINC

Other parameters as needed.

Returns Values specific to each function.
0x80000000 Invalid function request value.

Remarks The steps required for a Win32 application to gain access to NIOS
services are listed in Chapter 2 under the heading Windows 95
Interface.

See Also WIN32_NIOS_BEGIN_USE_API

WIN32_NIOS_COPY_MEM
WIN32_NIOS_COPY_STRING
WIN32_NIOS_END_USE_API
WIN32_NIOS_MAP
WIN32_NIOS_UNMAP

172 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

NIOS APIs for Windows95

Win32UnloadModule

Description

Syntax

Parameters

Returns

Unloads as NLM when called by Win32 applications.

UINT32
Win32UnloadModule (
modHandle modHand,
UINT32 unloadOptions,
void (*msgHandler)(
modHandle module
UINTS *prefix,
UINTS8 *msg));

modHandle Module to unload. This is a flat linear address of a
module handle for the NLM to unload.

unloadOptions Bits defining unload options. All undefined bits
must be set to 0.

UOPTION_ERROR_MSGS Stdout error
messages are enabled

msgHandler Address of function which will be called when a
text message is displayed during the unload
process. Parameters to this function are Ring-0
linear addresses, therefore the handler should
use the appropriate NIOS functions to copy the
memory.

UNLOAD_SUCCESS Module was unloaded
UNLOAD_MODULE_FORBIDS_UNLOAD

Module doesn't allow unload
UNLOAD_MODULE_BEING_REFERENCED

Another module is using this module.
UNLOAD_INVALID_MODULE_HANDLE

Module handle is invalid
UNLOAD_RESOURCES_NOT_FREED

Module didn't free resources

UNLOAD_MODULE_CANT_UNLOAD_NOW

Rev 1.0 Draft 4.0 (March 1995)

Company Confidential 173

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

Module is temp. unable to unload
UNLOAD_UNLOAD_REFUSED

A loaded NLM refuses to all this NLM to

load.

Remarks All input pointer parameters are local Win32 application memory
addresses.

The steps required for a Win32 application to gain access to NIOS

services are listed in Chapter 2 under the heading Windows 95
Interface.

See Also

174 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

NIOS APIs for Windows95

WIN32_NIOS_BEGIN_USE_API

Description Determines the 32-bit flat linear address of the specified NLM API
name.

Syntax UINT32
(*Win32NiosFarCall)(

UINT32 WIN32_NIOS_BEGIN_USE_AP]I,
UINTS *apiName);

Parameters apiName Name of the API you want to call. This is a case
insensitive ASCIIZ string. For example,
NiosGetVersion. This pointer does not need to be
mapped using WIN32_NIOS_MAP.

Returns Zero API does not exist.
Non-zero Linear address of API
Remarks After determining the 32-bit linear address, the returned address

can then be used with the Win32InvokeCNImApi entry point to
actually invoke the NLM function from a Win32 application. This
function records a dependency for the NLM module that the API
function exists in, therefore it is important that the Windows
application use the WIN32_NIOS_END_USE_API function before
terminating.

The steps required for a Win32 application to gain access to NIOS
services are listed in Chapter 2 under the heading Windows 95
Interface.

See Also Win32NiosFarCall
WIN32_END_USE_API

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 175

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

WIN32_NIOS_COPY_MEM

Description Copies the contents of memory at the specified Ring zero linear
address into the specified Ring three buffer for the given length.

Syntax void
(*Win32NiosFarCall)(
UINT32 WIN32_NIOS_COPY_MEM,
void *destBuffer,
UINT32 ringOBuffer,
UINT32 length);
Parameters destBuffer Ring 3 application buffer to copy to. This ptr does

not need to be mapped using WIN32_NIOS_MAP.

ringOBuffer ~ Linear address of Ring 0 buffer to copy from.

length Number of bytes to copy.

Returns Nothing

Remarks The steps required for a Win32 application to gain access to NIOS
services are listed in Chapter 2 under the heading Windows 95
Interface.

See Also

176 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

NIOS APIs for Windows95

WIN32_NIOS_COPY_STRING

Description Copies the string pointed to by the Ring zero pmBuffer address into
the specified Ring three application buffer.

Syntax void
(*Win32NiosFarCall)(
UINT32 WIN32_NIOS_COPY_STRING,
void *destBuffer,
UINT32 ringOBuffer);
Parameters destBuffer Ring 3 application buffer to copy to. This ptr does

not need to be mapped using WIN32_NIOS_MAP.

ringOBuffer ~ Linear address of Ring 0 string to copy.

Returns Nothing

Remarks The steps required for a Win32 application to gain access to NIOS
services are listed in Chapter 2 under the heading Windows 95
Interface.

See Also

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 177

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

WIN32_NIOS_END_USE_API

Description Signals that the Windows application is no longer going to use the
specified NLM API function.

Syntax void
(*Win32NiosFarCall)(
UINT32 WIN32_NIOS_END_USE_API,
UINT32 apiLinAddress);
Parameters apiLinAddress Linear address of NLM API function.
Returns Nothing
Remarks This function deletes the dependency previously created using

WIN32_NIOS_BEGIN_USE_API.

The steps required for a Win32 application to gain access to NIOS
services are listed in Chapter 2 under the heading Windows 95
Interface.

See Also Win32NiosFarCall
WIN32_BEGIN USE_API

178 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

NIOS APIs for Windows95

WIN32_NIOS_MAP

Description

Syntax

Parameters

Returns

Remarks

Converts the specified linear address local to a calling Win32
process into a globally accessible linear address range which can be
accessed int eh context of any process, including hardware
interrupt time.

void

*(*Win32NiosFarCall)(
UINT32 WIN32_NIOS_MAP,
void *appMemPointer,
UINT32 length);

length Length of memory block to map. It is important that
the proper length of the memory block be passed into
this function, otherwise portions of the memory block
may be left unlocked, and unaliased.

Zero Invalid appMemPointer, or not enough free physical
memory available to comple the operation.
Non-zero Global/locked linear address for the memory.

Tthis function also page locks the memory (makes and keeps it
present). Page locking is necessary to keep the linear address
ranges mapped to the same physical memory locations, as well as
allowing the memory to be safely accessed at interrupt time.

The returned linear address from this function can be used as a
memory pointer parameter to any exported NLM function.

In general, memory passed to an NLM API function should be
mapped using this function. However there are exceptions. To
properly take advantage of these exceptions it is necessary to
understand which catagory the NLM API function fits in.

Simple functions

These functions access memory pointer parameters synchronously.
This means that the function does not directly or indirectly (by

Rev 1.0 Draft 4.0 (March 1995)

Company Confidential 179

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

passing them to other functions) access the memory in any other
context other than the caller's process/memory context. Generally
these are simple functions that perform a primitive operation.

Examples of this type of function are: NiosGetSystemDirectory,
NiosMemCpy, NiosStrCpy, NiosPrintf, etc.

It can be difficult to qualify whether a function uses memory
parameters in this manner. In general if the NLM API function
documentation does not explicity say that memory parameters can
be application local/non-locked memory, then the Win32
application should use the WIN32_NIOS_MAP function.

Realize that most NLM API functions were written to be called at
Ring 0 with locked /global memory parameters.

Mapper functions

This type of NLM API function was developed to be callable from a
Win32 application. The NLM API developer may develop the API
in one of two ways. One is to require that the calling Ring 3
application lock and globalize memory parameters prior to
invoking the function. The other is where the NLM API function
has been developed to properly handle non-locked /local memory
parameters and performs the necessary locking/aliasing internal to
the function, therefore freeing the application from having to deal
with locking /globalizing issues.

In all cases, if a Win32 application developer wishes to skip calling
the WIN32_NIOS_MAP / WIN32_NIOS_UNMAP services for a
particular NLM API function, then the developer must ensure that
the NLM API function is capable of handling local /non-locked
memory parameters. If you don't know whether the function can
except local memory parameters, find out, otherwise always lock
and globalize memory parameters. The reason this is so important
is that if you go ahead and pass local memory to a function that
can't handle it, the function may work properly 99% of the time,
however if the system state is just right the local memory
parameter will cause a system failure.

180 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

NIOS APIs for Windows95

Block Memory Issues

If a memory block needs to be mapped using this function there
are a few other issues that need to be understood.

Because this function page locks the specified memory block
physical memory is committed to the memory block. This prevents
the system virtual memory pager from using the physical memory
for other needs to uses in the system. Therefore, it is important
that a Win32 application not keep a large amount of memory
locked down (mapped) at any one time.

Performance considerations weighed against the negative impacts
of having too much memory locked will dictate when a particular
memory block is locked and unlocked in the lifetime of the
application.

On the one extreme where the highest performance is needed,
memory blocks can be locked down (mapped) when the
application starts and unlocked (unmapped) when the application
terminates. This frees the application to use the memory blocks as
parameters to NLM API functions at anytime in the applications
lifetime without having to incur the overhead of locking and
unlocking each time the memory block is used.

The other extreme is where a memory block is locked down
(mapped) immediatelly before invoking the NLM API function,
then unlocked (unmapped) right after the NLM API function
returns.

An obvious inbetween policy to use when a memory block is used
in a set of calls to NLM API functions is to lock the memory block
at the start of the operation, invoke n number of NLM API
functions using the locked memory, then unlock the memory block
after the set of calls have completed. This minimizes the overhead
of the lock/unlock operations and also the actual time the memory
is kept locked down to reasonable levels.

It is left up to the Win32 application developer to decide which is
the best policy or mix of policies to use.

Rev 1.0 Draft 4.0 (March 1995)

Company Confidential 181

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

Unmapping Memory

Memory that is mapped using this function must be subsequently
unmapped when it's no longer going to be used, such as when the
application terminates. It is extremely important that mapped
memory be unmapped.

The appMemPointer is a Win32 application memory pointer which
needs mapped.

The steps required for a Win32 application to gain access to NIOS
services are listed in Chapter 2 under the heading Windows 95
Interface.

See Also Win32NiosFarCall
WIN32_NIOS UPMAP

182 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

NIOS APIs for Windows95

WIN32_NIOS_UNMAP

Description

Syntax

Parameters

Returns

Remarks

See Also

Unlocks the application memory block and destroys the global
linear range alias created through a previous call to the
WIN32_NIOS_MAP service.

void

*(*Win32NiosFarCall)(
UINT32 WIN32_NIOS_UNMAP,
void *globalPointer,
UINT32 length);

length Length of memory block to unmap. It is important that
this value equal the length value passed to the
WIN32_NIOS_MAP function.

Non-zero Unmap operation successful.
Zero Invalid globalPointer and/or length parameter.

The globalPointer Address was returned from a previous call to
WIN32_NIOS_MAP.

The steps required for a Win32 application to gain access to NIOS
services are listed in Chapter 2 under the heading Windows 95
Interface.

Win32NiosFarCall
WIN32_NIOS_MAP

Rev 1.0 Draft 4.0 (March 1995)

Company Confidential 183

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

184 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

