
Rev 1.0 Draft 4.0 (March 1995) Company Confidential 27

Chapter 4
NIOS Client DOS APIs

Global Variables . 30
UINT8 DosSwitcherActive . 30
UINT8 DosWinDebFlag . 30
UINT8 DosWinDebKernelFlag . 30
UINT8 DosWinStandardMode . 30
UINT8 DosWinFlag . 31
UINT32 DosVmIdToVmCbTable[MAX_NUM_VM] 31

DosAllocV86Callback . 32
DosAMapFlat . 34
DosBeginNestExec . 35
DosBeginNestExecWithCrs . 36
DosBeginReentrantExec . 37
DosBeginUseDos . 38
DosCancelDosAvailEvent . 39
DosCall . 40
DosCallC . 41
DosCallUseCurrSDA . 42
DosCallWhenV86IntReturns . 43
DosCallWithDTA . 45
DosClose . 47
DosCMapFlat . 48
DosConvGetInfo . 49
DosConvMemAlloc . 50
DosConvMemFree . 53
DosCreate . 54
DosDelete . 56
DosDeRegisterUserCmd . 57
DosDeRegisterV86Int2F . 58
DosDoesFileExist . 59
DosEndNestExec . 60
DosEndNestExecWithCrs . 61
DosEndReentrantExec . 62

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

DosEndUseDos . 63
DosEnumerateUserCmds . 64
DosExecuteFarRet . 65
DosExecuteIRet . 66
DosExecutePop . 67
DosExecutePush . 68
DosExecuteV86FarCall . 69
DosExecuteV86Int . 70
DosFlush . 71
DosFastExecuteFarRet . 72
DosFastExecutePop . 73
DosFastExecutePush . 74
DosFreeV86Callback . 75
DosGetCurrVmHandle . 76
DosGetExeContext . 77
DosGetFileSize . 78
DosGetNextVmHandle . 79
DosHookExceptionInterrupt . 80
DosHookPMInterrupt . 82
DosHookV86Interrupt . 84
DosIsDosBusy . 86
DosOpen . 87
DosRead . 88
DosRegisterUserCmd . 90
DosRegisterV86Int2F . 92
DosRename . 94
DosScheduleDosAvailEvent . 95
DosSearchForFile . 97
DosSeek . 98
DosSharedBufAlloc . 100
DosSharedBufFree . 102
DosSharedBufGetInfo . 103
DosUnHookExceptionInterrupt . 104
DosUnHookPMInterrupt . 105
DosUnHookV86Interrupt . 106
DosVid16DeregisterGuiCB . 107
DosVid16RegisterGuiCB . 109
DosVidCallWhenPopupOk . 111
DosVidCheckKey . 112
DosVidCursorSet . 113
DosVidEmptyTypeAhead . 114
DosVidGetKey . 115
DosVidGetPopupInfo . 116
DosVidIsPopupOk . 117
DosVidPopup . 119
DosVidPopupExt . 121
DosVidRestoreScreen . 124
DosVidSaveScreen . 125

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 29

DosVidSoundBell . 127
DosVidStdOut . 128
DosVidWriteToPopup . 129
DosWrite . 131
Win16GetProcAddress . 133
WinCallWhenPMIntReturns . 134
WinHookPMInt21 . 136
WinUnHookPMInt21 . 138

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

30 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

Global Variables

UINT8 DosSwitcherActive

#include <tasksw.h>

Global variable set to a non-zero value when a DOS task switcher is
active in the system. Possible values are:

0 No Task Switcher Active
1 Task Switcher Is Active

UINT8 DosWinDebFlag

#include <dosvmm.h>

Global variable set to a non-zero value if MS Windows is active and
a debugger compatible with MS Windows is loaded.

UINT8 DosWinDebKernelFlag

#include <dosvmm.h>

Global variable set to a non-zero value if Windows is active and the
debug version of the Windows VMM is loaded.

UINT8 DosWinStandardMode

#include <tasksw.h>

Global variable set to a value of 1 if standard-mode Windows is
active. The value is zero otherwise.

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 31

UINT8 DosWinFlag

#include <dosvmm.h>

Global variable set to a nonzero value when enhanced-mode MS
Windows is active. Possible values are:

DOSWINFLAG_DOS_ONLY equ 0 ; Only DOS is active

DOSWINFLAG_WIN_31x equ 1 ; Windows v3.1x is active

DOSWINFLAG_WIN_4x equ 2 ; Windows v4.x is active

UINT32 DosVmIdToVmCbTable[MAX_NUM_VM]

#include <dosvmm.h>

Global table that can be used to translate a VM ID into its
associated VM Control Block value.

Since an NLM should not save a VM's control block address long
term, it must instead save the VM's Id. This table assists in
translating the VM Id into the VM's control block.

0xFFFFFFFF is returned for entries that are not in use.

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

32 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosAllocV86Callback

Description DosAllocV86Callback allocates to the caller a V86 callback
address. This seg:off address can be used by V86 code to make
requests to Ring-0 modules.

Syntax #include <dosvmm.h>

UINT32
DosAllocV86Callback

(modHandle moduleHandle,
UINT32 referenceData,
void (*handler)(void));

Parameters moduleHandle Caller's module handle.

referenceData Value passed to callback handler when the V86
callback is invoked.

handler Pointer to Ring-0 procedure that is invoked when
the allocated V86 callback is called. The handler
must execute (simulate) a V86 retf instruction
before returning from its handler.

Entry and exit conditions for this handler are:

On entry:
ebx -> VM CB
ebp -> CRS
edx reference data
CLD has been executed
Interrupts are disabled in DOS only
Interrupts are enabled if MS Windows is active

On return:
CLD preserved
All registers can be destroyed
Interrupts in any state

Returns !0 V86 Seg:Off address

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 33

0 All V86 callback resources are in use

Remarks The value passed in referenceData can be anything the caller desires,
or can be ignored if not needed.

See Also DosFreeV86Callback
DosExecuteFarRet
DosFastExecuteFarRet

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

34 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosAMapFlat

Description DosAMapFlat converts a selector:offset to its flat linear address.

Assumes eax High word = Selector
Low word = Offset

Returns eax Linear address
All other registers are preserved

Remarks The selector can be either an LDT or a GDT. Passed-in LDT
selectors must exist in the active LDT.

See Also DosCMapFlat

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 35

DosBeginNestExec

Description This function allocates a new ClientRegStruc from the current stack
and initializes it for nested execution.

Assumes Interrupt state undefined

Returns ebp Pointer to CRS to use during nested execution
eax Destroyed
All other registers preserved
Interrupts same as entered

Remarks This function is callable at interrupt time if MS Windows is NOT
running. V86 code is NOT callable at interrupt time under
Windows.

This service is designed to be called from assembly code. Use
DosBeginNestExecWithCrs if calling from 'C' code.

NLMs that wish to call code in V86 mode usually use the
DosExecuteV86FarCall or DosExecuteV86Int services. These
services require the NLM to enter a nested execution block prior to
calling them.

The caller must not make any assumptions about where the
returned CRS is actually located.

Note: The caller must explicitly set the interrupt enable flag to the
desired value in the new CrsEFlags field prior to invoking
V86 code, since the new CrsEFlags are inherited from the
active CrsEFlags at the time this function is invoked.

See Also DosEndNestExec
DosBeginNestExecWithCrs
DosEndNestExecWithCrs

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

36 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosBeginNestExecWithCrs

Description This function initializes the passed-in CRS and prepares the system
for nested V86 execution.

Syntax #include <dosvmm.h>

CRS
*DosBeginNestExecWithCrs(

CRS *saveCrsBuf);

Parameters saveCrsBug Pointer to a CRS structure used to preserve the
current CRS information. The caller should not
interpret any information in this structure after
invoking this service.

Returns Pointer to CRS to use during nested execution. All register values
except CrsSS,CrsSP are undefined in this structure.

Remarks This function is callable at interrupt time if MS Windows isn't
running.

The returned CRS pointer may be different than the passed in CRS
structure; therefore the caller must use the returned value when
setting up the registers for V86 execution.

If the caller needs the original CRS register values during the
nested execution block, it should preserve the active CRS register
values into a work buffer prior to invoking this service.

See Also DosEndNestExecWithCrs
DosBeginNestExec
DosEndNestExec

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 37

DosBeginReentrantExec

Description Used in special cases where an NLM needs to invoke a service that
normally isn't callable at hardware interrupt time.

Syntax #include <dosvmm.h>

UNIT32
DosBeginReentrantExec(

void);

Parameters None

Returns Previous reentrancy level.

Remarks Although this service will allow a foreground only function to be
called, it may causes corruption or other problems since the routine
being called may be reentered.

See Also DosEndReentrantExec

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

38 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosBeginUseDos

Description This function hooks Control-C, Control-Break, and Interrupt 24h
vectors in the current VM with handlers that effectively cause
these interrupts to be ignored.

Syntax #include <dosvmm.h>

void
DosBeginUseDos(

UINT32 *savedVectInfo);

Parameters savedVectInfo Pointer to an array of three UINT32's that will be
used to save the current INT 1Bh, INT 23h, and INT
24h vector information. The caller must pass this
same buffer to DosEndUseDos when finished with
the execution block.

Returns Nothing
Interrupts same as entered

Remarks DosBeginUseDos is usually used to bracket code that will be calling
DOS using DosExecuteV86Int for which the caller wants to protect
itself from abort conditions. Users of the DosCall, DosCallC,
and/or DosCallUseCurrSDA services do not need to use this
function.

See Also DosEndUseDos

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 39

DosCancelDosAvailEvent

Description Cancels a "DOS available event" that was previously scheduled
using DosScheduleDosAvailEvent.

Syntax #include <dosvmm.h>

UINT32
DosCancelDosAvailEvent(

FEB *eventBlock);

Parameters eventBlock Pointer to a FEBStruc that was passed to
DosScheduleDosAvailEvent

Returns 0 Event was cancelled successfully
!0 Event is NOT currently scheduled

Remarks

See Also

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

40 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosCall

Description DosCall executes the specified DOS function.

Assumes ebp Points to CRS with regs set appropriate for DOS function
Interrupts in any state

Returns Carry flag equal to CRS carry flag
ebp Points to CRS
All registers preserved
Interrupts same as entered

Remarks Generally it is easier to use this function than executing the Int 21h
using the DosExecuteV86Int function, since this function takes care
of many of the issues related to calling DOS from an NLM, such as
setting up NIOS's PSP, failing critical errors, and disabling Control-
Break.

This function cannot be used if DOS is busy, unless the caller has
preserved DOS's data areas prior to invoking this function. Because
DOS is never busy inside an NLM's initialization and unload
function, this function can be used without restriction in these two
cases.

The caller must set up a nested execution ClientRegStruc prior to
calling this function. Also, the caller must set the CRS register
values appropriately for the DOS call that will be invoked.

This function yields control.

See Also DosCallC
DosCallUseCurrSDA

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 41

DosCallC

Description "C" wrapper for the DosCall service.

Syntax #include <dosvmm.h>

UINT32
DosCallC(

void);

Returns 0 Carry flag is 0 (DOS function successful)
!0 Carry flag is 1 (DOS function failed)
Interrupts same as entered

Remarks Executes the specified DOS function. Generally it is easier to use
this function than executing the Int 21h using the
DosExecuteV86Int function, since this function takes care of many
of the issues related to calling DOS from an NLM, such as setting
up NIOS's PSP, failing critical errors, and disabling Control-Break.

This function cannot be used if DOS is busy unless the caller has
preserved DOS's data areas prior to invoking this function. Because
DOS is never busy inside of an NLM's initialization and unload
functions, this function, in the context of a
DosScheduleDosAvailEvent, can be used without restrictions in
these two cases.

The caller must set up a nested execution ClientRegStruc prior to
calling this function. Also, the caller must set the CRS register
values appropriate for the DOS call that will be invoked.

This function yields control.

See Also DosCall
DosCallUseCurrSDA
DosCallWithDTA

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

42 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosCallUseCurrSDA

Description Executes the specified DOS function.

Syntax #include <dosvmm.h>

UINT32
DosCallUseCurrSDA(

void);

Returns 0 Carry flag is 0 (DOS function successful)
!0 Carry flag is 1 (DOS function failed)
Interrupts same as entered

Remarks This function is the same as DosCallC except that the current DOS
Swappable Data Area (SDA) information is used instead of
swapping NIOS's SDA information in.

Generally it is easier to use this function than to execute the Int 21h
using the DosExecuteV86Int function, since this function takes care
of many of the issues related to calling DOS from an NLM, such as
failing critical errors, and disabling Control-Break.

This function cannot be used if DOS is busy unless the caller has
preserved DOS's data areas prior to invoking this function. DOS is
never busy inside of an NLM's initialization and unload functions;
therefore this function can be used without restrictions in these two
cases.

The caller must set up a nested execution ClientRegStruc prior to
calling this function. In addition the caller must set the CRS
register values appropriate for the DOS call that will be invoked.

This function yields control.

See Also DosCall
DosCallC

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 43

DosCallWhenV86IntReturns

Description This service can be used in an NLM's V86 interrupt handler to
obtain control on the back end of a current V86 interrupt.

Assumes edx Reference data
Interrupts in any state
esi Points to callback handler. Called as follows:

On entry:
ebx -> VM CB
edx Reference data

 ebp -> CRS
Interrupts are disabled if DOS only case
Interrupts are enabled if MS Windows is active
CLD has been executed

On return:
CLD preserved
Interrupt state undefined
All registers can be destroyed

Returns Z flag cleared
Interrupt state preserved.
All registers preserved.
Nothing.

Remarks This function is callable at interrupt time if MS Windows isn't
running.

An NLM that uses this service must first call this service, then
return from its V86 interrupt handler signalling that the interrupt
was NOT consumed. This service is designed so that the NLM's
interrupt handler can simply jump to this service and this service
will return back from the handler with the Z flag cleared.

This service places a callback address on the current V86 stack such
that when the V86 interrupt handling code iret's out of the
interrupt, NLM handlers that have used this service will receive
control. This occurs in a LIFO manner, thus preserving the

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

44 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

ordering that should occur when multiple NLMs hook the back end
of the same V86 interrupt.

When the handler is invoked, the current CrsCS, CrsIP, and
CrsFlags will hold the current iret information. If the handler
needs to modify the return flags it should do so by modifying the
CrsFlags field.

See Also

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 45

DosCallWithDTA

Description Makes DOS functions calls that use the Disk Transfer Area.

Syntax #include<dosvmm.h>

UINT32
DosCallWithDTA(

UINT8 *nlmDTA);

Parameters nlmDTA Pointer to 128-byte DTA buffer that will be used as
the active DTA prior to invoking the DOS function
and will receive a copy of the DTA information after
the DOS function completes.

Returns Zero Carry flag is zero (DOS function successful).
Non-zero Carry flag is one (DOS function failed)

Interrupts same as at entry.

Remarks Examples of DOS functions calls that use the DTA are: DOS find
first and DOS find next.

Executes the specified DOS function. Generally it is easier to
use this function than executing the Int 21h using the
DosExecuteV86Int function since this function takes care of many
of the issues related to calling DOS from an NLM, such as setting
up Nios's PSP, failing critical errors, and disabling Control-Break,
etc.

This function cannot be used if DOS is busy unless the caller has
preserved DOS's data areas prior to invoking this function. DOS is
never busy inside of an NLM's initialization and unload functions,
and in the context of a DosScheduleDosAvailEvent therefore this
function can be used without restrictions in these cases.

The caller must setup a nested execution ClientRegStruc prior to
calling this function. In addition the caller must set the CRS
register values appropriate for the DOS call that will be invoked.

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

46 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

This function yields control.

See Also DosCall
DosCallC

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 47

DosClose

Description Closes the specified file.

Syntax #include <dosvmm.h>

UINT32
DosClose(

modHandle module,
UINT32 fileHandle);

Parameters module Caller's module handle

fileHandle Handle of file to close

Returns 0 Close was successful
0xFFFFFFFF Invalid file handle

Remarks DOS must be in a callable state. Generally this function can be
used inside of an NLM's initialization function as well as during an
event scheduled using the DosScheduleDosAvailEvent service.

See Also DosCreate
DosOpen
DosDelete
DosRead
DosWrite
DosSeek
DosRename
DosGetFileSize
DosDoesFileExist
DosSearchForFile

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

48 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosCMapFlat

Description DosCMapFlat converts a selector:offset to its flat linear address.

Syntax #include <dosvmm.h>

void
*DosCMapFlat(

UINT32 SelOff);

Parameters SelOff High word has selector
Low word has offset

Returns Linear address

Remarks The selector can be either an LDT or a GDT. Passed-in LDT
selectors must exist in the active LDT.

See Also DosAMapFlat

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 49

DosConvGetInfo

Description Returns the size of the largest block of conventional memory that
can be currently allocated using DosConvMemAlloc.

Syntax #include <dosvmm.h>

UINT32
DosConvGetInfo(

void);

Returns Number of bytes in largest free conventional memory block

Remarks

See Also DosConvMemAlloc

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

50 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosConvMemAlloc

Description Attemps to allocate a block of memory from conventional memory
that is globally accessible in all VMs.

Syntax #include <dosvmm.h>

UINT32
DosConvMemAlloc(

modHandle module,
UINT32 options,
UINT32 size,
UINT32 *lowAddress,
void **linAddress);

Parameters module Caller's module handle.

options Reserved for future use, must be 0.

size Number of bytes to allocate. This value is rounded
up to the next highest multiple of 16 (paragraph)
value.

lowAddress Set on return to the allocated memory below 1
megabyte address. This value is always on a
paragraph boundary. For example, if the allocated
memroy was at D000:0000 (seg:off) then
*lowAddress would be set to 000D0000h.

This address should not be used by an NLM to read
from and/or write to the conventional memory
block since there are certain times in a Windows
environment where this linear address is not valid,
instead always use the *linAddress value to access
the memory from protected mode.

linAddress Set on return to a linear address which can be used
to read from and/or write to the allocated
conventional memory block.

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 51

Returns zero Allocation successful.
non-zero Allocation FAILED.

Remarks In a DOS-only configuration, DosConvMemAlloc attempts the
following strategies:

(1) Allocate best fit, UMB.

(2) Allocate DOS memory block using first fit. This allocates the
block at the lowest possible address in the 640K address space.

There are situations where conventional memory cannot be
allocated. In the DOS-only case, this service will fail if inadequate
free UMB memory is available and/or inadequate conventional
memory below 640K is available.

In a Windows environment, this function allocates conventional
memory from the NIOS global V86 memory region. By default,
NIOS allocates 8K for this pool, but that can be changed by
specifying a different value for the GLOBAL V86 WIN PAGES
parameter in the NetWare configuration database.

Note that this pool of memory is only available during the
Windows session and becomes invalid once Windows is exited. If,
at Windows' exit, conventional memory is still allocated from this
pool, NIOS will auto free it before exiting back to DOS.

In this case, an NLM should schedule a DOS available event by
using DosScheduleDosAvailEvent during the Windows "WIN SYS
CRIT EXIT" event. When your DOS available event handler is
invoked, use DosConvMemAlloc to allocate a new block of
memory.

Conventional memory allocated prior to Windows loading is
available inside of Windows and after Windows is exited.

In the MS Windows environment, DosConvMemAlloc fails if all of
the NIOS-reserved global V86 memory region is already allocated,
or there is insufficient memory in this pool to satisfy the request.

This function yields.

See Also DosConvMemFree

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

52 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosConvGetInfo

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 53

DosConvMemFree

Description DosConvMemFree frees a block of conventional memory that was
previously allocated using the DosConvMemAlloc service. This
function yields.

Syntax #include <dosvmm.h>

UINT32
DosConvMemFree(

modHandle module,
UINT32 lowAddress);

Parameters module Caller's module handle

lowAddress Below 1 megabyte address returned from
DosConvMemAlloc.

Returns 0 Invalid lowAddress parameter
!0 Memory was freed

Remarks

See Also DosConvMemAlloc

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

54 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosCreate

Description Creates the specified file.

Syntax #include <dosvmm.h>

UINT32
DosCreate (

modHandle module,
UINT8 *filePath,
UINT32 createAttributes);

Parameters module Caller's module handle

filePath ASCIIZ string containing the full or partial path
of the file to be created

createAttributes Attribute flags for the file:
CREATE_NORMAL
CREATE_HIDDEN
CREATE_SYSTEM
CREATE_HIDDEN_SYSTEM

Returns file handle If create was successful
0xFFFFFFFF Invalid path, root directory full, existing file is

read-only, or insufficient access rights

Remarks If the file already exists, NiosCreate will truncate the file to zero
length.

DOS must be in a callable state. Generally this function can be
inside of an NLM's initialization function as well as during an
event scheduled using the DosScheduleDosAvailEvent service.

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 55

See Also DosClose
DosOpen
DosDelete
DosRead
DosWrite
DosSeek
DosRename
DosGetFileSize
DosDoesFileExist
DosSearchForFile

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

56 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosDelete

Description Deletes the specified file.

Syntax #include <dosvmm.h>

UINT32
DosDelete(

UINT8 *filePath);

Parameters filePath ASCIIZ string full or partial path of the file to be deleted

Returns 0 Delete was successful
0xFFFFFFFF Invalid path, file does not exist, file is read-only, or

insufficient access rights

Remarks DOS must be in a callable state. Generally this function can be
inside of an NLM's initialization function as well as during an
event scheduled using the DosScheduleDosAvailEvent service.

See Also DosClose
DosOpen
DosCreate
DosRead
DosWrite
DosSeek
DosRename
DosGetFileSize
DosDoesFileExist
DosSearchForFile

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 57

DosDeRegisterUserCmd

Description Deregisters a previously installed custom DOS command processor
command.

Syntax #include <cmdcom.h>

UINT32
DosDeRegisterUserCmd(

modHandle moduleHandle,
struct UserCmdStruc *userCmdInfo);

Parameters moduleHandle Caller's module handle

userCmdInfo Pointer to UserCmd structure

Returns 0 Command successfully deregistered
0xFFFFFFFF Specified command was not registered

Remarks

See Also CMDCOM.H
CMDCOM.INC
DosRegisterUserCmd
DosEnumerateUserCmds

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

58 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosDeRegisterV86Int2F

Description DosDeRegisterV86Int2F removes a previously registered Interrupt
2Fh handler.

Syntax #include <dosvmm.h>

UINT32
DosDeRegisterV86Int2F

(modHandle moduleHandle,
struct Int2FInfoStruc *int2FInfo);

Parameters moduleHandle Caller's module handle

int2FInfo Pointer to Int2FInfoStruc that was used to originally
register the handler

Returns 0 Handler was deregistered successfully
0xFFFFFFFF Handler was not registered

Remarks

See Also DosRegisterV86Int2F

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 59

DosDoesFileExist

Description Determines if the specified [path\] file exists.

Syntax #include <dosvmm.h>

UINT8
DosDoesFileExist(

UINT8 *filename);

Parameters filename Specifies the file to look for. Cannot contain
wildcards.

Returns 0 File does NOT exist
!0 File does exist

Remarks DOS must be in a callable state. Generally this function can be
inside of an NLM's initialization function as well as during an
event scheduled using the DosScheduleDosAvailEvent service.

See Also DosClose
DosOpen
DosCreate
DosGetFileSize
DosRead
DosDelete
DosSeek
DosWrite
DosSearchForFile

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

60 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosEndNestExec

Description DosEndNestExec is callable at interrupt time if MS Windows isn't
running. This function ends a previously started nested execution.
The passed-in CRS is deallocated and the previous CRS is restored.

Assumes ebp Points to CRS
Interrupt state undefined

Returns ebp destroyed
All other registers preserved
Interrupts same as entered

Remarks The ESP value coming into this routine must have the same value
as when the DosBeginNestExec function returned.

Note: Do NOT access the nested execution CRS registers after this
function has been called.

See Also DosBeginNestExec
DosBeginNestExecWithCrs
DosEndNestExecWithCrs

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 61

DosEndNestExecWithCrs

Description This function ends a previously started nested execution entered
using the DosBeginNestExecWithCrs service. Ownership of the
CRS structure provided to start the nested block is returned to the
NLM when this service is invoked.

Syntax #include <dosvmm.h>

CRS
*DosEndNestExecWithCrs(

CRS *saveCrsBuf);

Parameters saveCrsBuf Pointer to CRS structure that was used during the call to
DosBeginNestExec to preserve the current CRS

Returns Pointer to previous CRS

Remarks This function is callable at interrupt time if MS Windows isn't
running. V86 code is NOT callable at interrupt time under MS
Windows.

Note: Do NOT access the nested execution CRS registers after this
function has been called.

See Also DosBeginNestExecWithCrs
DosBeginNestExec
DosEndNestExec

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

62 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosEndReentrantExec

Description Ends a reentrant execution block.

Syntax #include <dosvmm.h>

void
DosEndReentrantExec(

UINT32 prevCount);

Parameters prevCount Value for restoring the internal interrupt nesting
level obtained from a previous call.

Returns Nothing

Remarks The internal interrupt nesting level is restored to prevCount which
should be the value obtained from a previous call to
DosBeginReentrantExec.

See Also DosBeginReentrantExec

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 63

DosEndUseDos

Description This function restores the Control-C, Control-Break, and Interrupt
24h vectors in the current VM with the previous vectors that were
preserved using DosBeginUseDos.

Syntax #include <dosvmm.h>

void
DosEndUseDos(

UINT32 *savedVectInfo);

Parameters savedVectInfo Pointer to an array of 3 UINT32's that holds the
previously saved INT 1Bh, INT 23h, and INT 24h
vectors from a call to DosBeginUseDos

Returns Nothing
Interrupts same as entered

Remarks

See Also DosBeginUseDos

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

64 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosEnumerateUserCmds

Description Allows the caller to determine which DOS custom commands have
been registered with NIOS.

Syntax #include <cmdcom.h>

UINT32
DosEnumerateUserCmds(

struct UserCmdStruc *userCmdInfo);

Parameters userCmdInfo Pointer to a UserCmdStruc structure that will be
filled with next registered command structure

Returns 0 Next command successfully found
0xFFFFFFFF No more registered commands

Remarks Note that the UCText buffer must be provided by the user of this
function and will be a copy of the actual command text.

The passed-in UserCmdStruc structure's UCText field must point
to a 10-byte buffer which will receive a copy of command's text.

To start the search, UCOwner must be set to NULL. Subsequent
calls to this function use the previously returned text in the UCText
buffer and the previous value in the UCOwner field to locate the
next registered command.

See Also CMDCOM.H
CMDCOM.INC
DosRegisterUserCmd
DosDeRegisterUserCmd

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 65

DosExecuteFarRet

Description Use DosExecuteFarRet to execute (simulate) a V86 retf instruction.

Assumes ebp Points to CRS

Returns ebp.CrsSP increased by four
ebp.CrsCS set to seg value on stack
ebp.CrsIP set to off value on stack
eax, edx destroyed
All other registers preserved

Remarks An in-line version of this function is available using the macro
DosFastExecuteFarRet.

See Also

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

66 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosExecuteIRet

Description DosExecuteIRet executes (simulates) a V86 iret instruction.

Assumes ebp Points to CRS

Returns ebp.CrsSP increased by six
ebp.CrsCS set to seg value on stack
ebp.CrsIP set to off value on stack
ebp.CrsEFlags set to flags on stack
eax, edx destroyed
All other registers preserved

Remarks NLMs should not perform a simulated V86 IRET manually.
Always use this function for proper operation under MS Windows.

See Also

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 67

DosExecutePop

Description Use DosExecutePop to execute (simulate) a V86 pop instruction.

Assumes ebp Points to CRS

Returns ax Value popped from stack
ebp.CrsSP increased by two
edx destroyed
All other registers preserved

Remarks An in-line version of this function is available using the macro
DosFastExecutePop.

See Also

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

68 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosExecutePush

Description Use DosExecutePush to execute a V86 push instruction.

Assumes ax Value to push
ebp Points to CRS

Returns ebp.CrsSP decreased by two
crs.Stack has ax value
All registers preserved

Remarks An in-line version of this function is available using the macro
DosFastExecutePush.

See Also

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 69

DosExecuteV86FarCall

Description DosExecuteV86FarCall switches to real mode and executes a far
call to a specified procedure.

Assumes eax seg:off of V86 routine to call
ebp Points to CRS
Interrupt state undefined

Returns ebp Pointer to CRS
All other pm registers destroyed
Interrupt state preserved

Remarks This function is callable at interrupt time if MS Windows isn't
running.

If called from the foreground, this function yields to any waiting
foreground events.

The caller must call DosBeginNestExec or
DosBeginNestExecWithCrs before invoking this function.

See Also DosBeginNestExec
DosBeginNestExecWithCRS

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

70 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosExecuteV86Int

Description DosExecuteV86Int switches to real mode and executes a specified
interrupt.

Assumes ebp Points to CRS
al Interrupt to execute
Interrupt state undefined

Returns ebp Pointer to CRS
All other pm registers destroyed
Interrupts state preserved

Remarks This function is callable at interrupt time if MS Windows isn't
running.

If called from the foreground, this function yields to any waiting
foreground events.

The caller must call DosBeginNestExec or
DosBeginNestExecWithCRS before invoking this function.

See Also DosBeginNestExec
DosBeginNestExecWithCrs

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 71

DosFlush

Description Flushes all disk buffers using DOS function 0Dh.

Syntax void
DosFlush(void);

Parameters None

Returns Nothing

Remarks Note: Certain disk cache programs will not flush write behind
data unless the target data files have been closed.

DOS must be in a callable state. Generally this function can be
used inside of an NLM's initialization function as well as during an
event scheduled using the DosScheduleDosAvailEvent service.

This function yields.

See Also DosCreate, DosOpen, DosClose, DosDelete, DosRead, DosWrite,
DosSeek, DosRename, DosGetFileSize, DosDoesFileExist,
DosSearchForFile

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

72 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosFastExecuteFarRet

Description DosFastExecuteFarRet executes (simulates) a V86 retf instruction.

Assumes #include dosvmm.inc

ebp Pointer to CRS

Returns ebp.CrsSP increased by four
ebp.CrsCS set to seg value on stack
ebp.CrsIP set to off value on stack
eax, edx destroyed
All other registers preserved

Remarks A non-inline version of this macro is available using the function
DosExecuteFarRet.

See Also

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 73

DosFastExecutePop

Description Use the DosFastExecutePop macro to execute (simulate) a V86 pop
instruction.

Assumes #include dosvmm.inc

ebp Points to CRS

Returns ax Value popped from stack
ebp.CrsSP increased by two
edx destroyed
All other registers preserved

Remarks A non-inline version of this macro is available using the function
DosExecutePop.

See Also

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

74 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosFastExecutePush

Description Use the DosFastExecutePush macro to execute (simulate) a V86
push instruction.

Assumes #include dosvmm.inc

ax Value to push
ebp Pointer to crs

Returns ebp.CrsSP decreased by two
crs.Stack has ax value
All registers preserved

Remarks A non-inline version of this macro is available using the function
DosExecutePush.

See Also

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 75

DosFreeV86Callback

Description DosFreeV86Callback deallocates a previously allocated V86
callback handler.

Syntax #include <dosvmm.h>

UINT32
DosFreeV86Callback(

modHandle moduleHandle,
UINT32 v86CallbackAddress);

Parameters moduleHandle Caller's module handle

v86CallbackAddress Seg:Off to free

Returns !0 Callback does not exist
0 Callback was successfully freed

Remarks

See Also

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

76 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosGetCurrVmHandle

Description DosGetCurrVmHandle returns a pointer to the currently executing
VM's control block.

Assumes #include <dosvmm.inc>

Returns EBX -> VM control block
All other registers preserved
Interrupt state preserved

Remarks Note that NLMs should not save the VM CB pointer value and use
it later in a different thread of execution, since its value can change
when the user enters and/or exits the MS Windows environment.
An NLM should use the VM ID (VMCBVmId) for this purpose.

This function is callable at interrupt time in DOS and MS Windows
environments.

See Also DosGetNextVmHandle

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 77

DosGetExeContext

Description DosGetExeContext returns whether the caller can invoke
non-interrupt-time callable APIs in the current execution context.

Syntax #include <dosvmm.h>

UINT32
DosGetExeContext(

void);

Parameters None

All registers are preserved except eax

Returns 0 Execution is foreground
!0 Execution is in the context of a hardware interrupt

Remarks This function is callable at interrupt time in DOS and MS Windows
environments.

See Also NiosScheduleForegroundEvent found in NetWare Client NIOS
Dictionary

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

78 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosGetFileSize

Description Returns the length of the specified file.

Syntax #include <dosvmm.h>

UINT32
DosGetFileSize(

UINT32 fileHandle);

Parameters fileHandle Handle of file for which to return size.

Returns Size of file
0xFFFFFFFF Error

Remarks The current seek position is preserved.

DOS must be in a callable state. Generally this function can be
inside of an NLM's initialization function as well as during as event
scheduled using the DosScheduleDosAvailEvent service.

See Also DosClose
DosOpen
DosCreate
DosRead
DosWrite
DosDelete
DosSeek
DosDoesFileExist
DosSearchForFile

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 79

DosGetNextVmHandle

Description DosGetNextVmHandle returns a pointer to the next active VM
control block. It is callable at interrupt time in DOS and MS
Windows environments.

Assumes EBX Pointer to previous VM control block

Returns EBX Pointer to VM control block
All other registers preserved
Interrupt state preserved

Remarks The list of VM's control blocks is circular; therefore the caller must
check for end of list by comparing the returned value against the
starting VM control block value to know when the last VM control
block has been returned.

Note that NLMs should not save the VM CB pointer value and use
it later in a different thread of execution since its value can change
when the user enters and/or exits the MS Windows environment.
An NLM should use the VM ID (VMCBVmId) for this purpose.

See Also DosGetCurrVmHandle

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

80 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosHookExceptionInterrupt

Description DosHookExceptionInterrupt hooks the specified protected-mode
interrupt (0,2,4-31).

Syntax #include <dosvmm.h>

UINT32
DosHookExceptionInterrupt(

modHandle moduleHandle,
UINT32 intToHook,
UINT32 referenceData,
void (*intHandler)(void));

Parameters moduleHandle Caller's module handle.

intToHook Interrupt to hook (0,2,4-31).

referenceData Value passed to intHandler. This value can be
anything the caller desires, or can be ignored if not
needed.

intHandler Pointer to routine that is called when the specified
interrupt occurs.

The entry and exit conditions are:

On entry:
edx referenceData
Interrupts are disabled
CLD has been executed
ebp -> stack frame
Stack frame

EFlags
CS
EIP
Error Code (if present)
pushad regs

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 81

On return:
Z flag set if interrupt was serviced

else pass int to next handler
CLD preserved
Interrupts are disabled
All registers can be destroyed

Returns 0 Interrupt was hooked successfully
0xFFFFFFFF Not enough free memory to hook the interrupt
0xFFFFFFFE Invalid intToHook value
0xFFFFFFFD Service not supported by NIOS environment

Remarks The intHandler is only invoked when the specified exception is
invoked while in protected mode and executing in NIOS.
Exceptions generated in real mode are not seen by the caller's
intHandler.

Callers that wish to hook one of the other processor interrupts
(1,3,32-255) should do so by using either DosHookPMInterrupt or
DosHookV86Interrupt.

See Also

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

82 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosHookPMInterrupt

Description DosHookPMInterrupt hooks the specified protected-mode
interrupt (1,3,32-255).

Syntax #include <dosvmm.h>

UINT32
DosHookPMInterrupt(

modHandle moduleHandle,
UINT32 intToHook,
UINT32 referenceData,
void (*intHandler)(void));

Parameters moduleHandle Caller's module handle.

intToHook Interrupt to hook (1,3,32-255).

referenceData Value passed to intHandler. This value can be
anything the caller desires, or can be ignored if not
needed.

intHandler Pointer to routine that is called when the specified
interrupt occurs. The entry and exit conditions are:

On entry:
edx referenceData
Interrupts are disabled
CLD has been executed
ebp -> stack frame
Stack frame

EFlags
CS
EIP
pushad regs

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 83

On return:
Z flag set if interrupt was serviced

else pass int to next handler
CLD preserved
Interrupts are disabled
All registers can be destroyed

Returns 0 Interrupt was hooked successfully
0xFFFFFFFF Not enough free memory to hook the interrupt
0xFFFFFFFE Invalid intToHook value
0xFFFFFFFD Service not supported by NIOS environment

Remarks If an interrupt is not serviced by a protected-mode handler it is
passed on to the real-mode interrupt handlers. The intHandler is
only invoked when the specified interrupt is invoked while in
protected mode and executing in NIOS. Interrupts generated in
real mode are not seen by the caller's intHandler.

Note that this function only hooks the interrupt in the context of
the DOS NIOS IDT. Therefore, if the interrupt occurs in real mode
or while Windows is active, the specified handler will not be
invoked.

Callers who wish to hook one of the processor exception interrupts
(0,2,4-31) should do so by using DosHookExceptionInterrupt.

Callers who wish to hook an interrupt regardless of the mode (real
or protected) in which the interrupt occurred should use
DosHookV86Interrupt.

See Also

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

84 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosHookV86Interrupt

Description DosHookV86Interrupt hooks the specified V86 interrupt (0-255).

Syntax #include <dosvmm.h>

UINT32
DosHookV86Interrupt(

modHandle moduleHandle,
UINT32 intToHook,
UINT32 referenceData,
void (*intHandler)(void));

Parameters moduleHandle Caller's module handle.

intToHook Interrupt to hook (0-255).

referenceData Value passed to intHandler. This value can be
anything the caller desires, or can be ignored if not
needed.

intHandler Pointer to routine that is called when the specified
interrupt occurs.

The handler's entry and exit conditions are:

On entry:
ebx -> VM CB
edx referenceData
ebp -> CRS
Interrupts are disabled in DOS-only case
Interrupts are enabled if MS Windows is active
CLD has been executed

On return:
Z flag set if interrupt was serviced

else int is passed to next handler
CLD preserved
Interrupt state undefined
All registers can be destroyed

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 85

Returns 0 Interrupt was hooked successfully.

0xFFFFFFFF Not enough internal resources to complete the
operation.

0xFFFFFFFE Invalid intToHook value.

0xFFFFFFFD 2Fh specified as intToHook which is invalid.

0xFFFFFFFC V86 interrupt was not hooked prior to MS Windows
loading. The calling NLM cannot be loaded when
MS Windows is active. The hook operation will be
scheduled and executed when MS Windows is
exited for Win 3.x.

Remarks Use this service instead of DosHookPMInterrupt if the caller is
interested in getting called whenever the specified interrupt is
invoked--whether it be from protected mode or real mode--since
the DosHookPMInterrupt service only calls the intHandler when
the interrupt is invoked while in protected mode.

Note: Interrupt 2Fh should not be hooked using this API; instead
use the DosRegisterV86Int2F function.

NLMs that need to pass a V86 interrupt down the chain and then
receive control on the back end of the interrupt can use
DosCallWhenV86IntReturns inside of their interrupt handler
function.

When the handler is invoked, the current CrsCS, CrsIP, and
CrsFlags will hold the current iret information. If the handler
needs to modify the return flags it should do so by modifying the
CrsFlags field.

See Also DosUnHookV86Interrupt
DosCallWhenV86IntReturns

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

86 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosIsDosBusy

Description Determines whether DOS is in a callable state.

Syntax #include <dosvmm.h>

UINT32
DosIsDosBusy(

void);

Parameters None

Returns 0 DOS is NOT busy
!0 DOS is busy

Remarks This service considers DOS to be callable if the InDOS and Critical
Error flags are zero. (In an MS Windows environment, this
information pertains to the currently running VM.)

DOS is always callable inside an NLM's initialization and unload
procedures, since initialization and unload always execute in a
DOS foreground context.

If this service determines that DOS is NOT callable, an NLM should
use DosScheduleDosAvailEvent to schedule a callback that will be
invoked when the current DOS function is finished or whenever an
INT 28h (Idle Interrupt) is generated with the InDOS flag set to 1.

See Also

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 87

DosOpen

Description Opens the specified file.

Syntax #include <dosvmm.h>

UINT32
DosOpen(

modHandle module,
UINT8 *pathSpec,
UINT32 openAttributes);

Parameters module Caller's module handle

pathSpec Pointer to ASCIIZ string describing the [path\]name
of file to open

openAttributes Defined in DOSVMM.H and DOSVMM.INC

Returns File handle
0xFFFFFFFF Error opening file

Remarks DOS must be in a callable state. Generally this function can be
inside of an NLM's initialization function as well as during an
event scheduled using the DosScheduleDosAvailEvent service.

See Also DosCreate
DosClose
DosDelete
DosRead
DosWrite
DosSeek
DosRename
DosGetFileSize
DosDoesFileExist
DosSearchForFile

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

88 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosRead

Description Reads data from the specified file.

Syntax #include <dosvmm.h>

UINT32
DosRead(

UINT32 fileHandle,
UINT32 readOffset,
void *readBuf,
UINT32 readSize);

Parameters fileHandle Handle of file to read from (returned by DosOpen
or DosCreate). The file must have been opened for
reading.

readOffset Offset from start of file to read from. 0xFFFFFFFF if
read occurs at current position.

readBuf Pointer to buffer to hold read data.

readSize Number of bytes to read (0 - 0xFFFFFFFC).

Returns Number of bytes read
0xFFFFFFFF Seek failed
0xFFFFFFFE I/O error during read
0xFFFFFFFD Function failure

Remarks DOS must be in a callable state. Generally this function can be
inside of an NLM's initialization function as well as during an
event scheduled using the DosScheduleDosAvailEvent service.

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 89

See Also DosClose
DosOpen
DosCreate
DosGetFileSize
DosWrite
DosDelete
DosSeek
DosDoesFileExist
DosSearchForFile

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

90 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosRegisterUserCmd

Description This function installs a new DOS command, allowing custom
commands to be added to the list of resident commands available
in the active command processor (such as COMMAND.COM).

Syntax #include <cmdcom.h>

UINT32
DosRegisterUserCmd(

modHandle moduleHandle,
struct UserCmdStruc *userCmdInfo,
UINT32 options);

Parameters moduleHandle Caller's module handle.

userCmdInfo Pointer to UserCmd structure. The memory for this
structure is owned by NIOS until the command is
deregistered. The caller must set the UCHandler
and UCText fields. UCOwner will be set by this
function.

options Reserved for future use. Must be set to zero.

Returns 0 Command installed successfully

Remarks When the user enters the registered command, the specified
callback is invoked to allow processing of the command. The
handler is invoked as follows:

UINT32 (userCmdInfo->UCHandler)(
struct UserCmdStruc *userCmdInfo,
UINT8 *cmdLine,
UINT32 argCount,
UINT8 *argVector[])

userCmdInfo Pointer to UserCmdStruc used to register the
command.

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 91

cmdLine Pointer to len-preceded string containing any
parameters entered after the command. This string
is not NULL terminated. Typically, the handler
should ignore this parameter, instead making use of
the parsed parameter information found in the next
two parameters.

argCount Count of parsed parameters found after the
command. This value will be zero if no parameters
were specified.

argVectors Pointer to array of pointers to ASCIIz string
parameters. argCount defines the number of entries
in this array.

Each entry will be stripped of leading and trailing white space
unless the information is found inside quotes. No upper/lower
case conversions are performed. Any leading '-' character will be
converted to the '/' character to allow the user to use either switch
character.

Note that the buffers used to hold the individual parameters can be
modified by the UCHandler (e.g., case conversions) as long as the
handler does not access past the end of the string.

Returns: Command completion code. The low-order byte of this
value is passed back as the ERRORLEVEL.

See Also CMDCOM.H
CMDCOM.INC
DosDeRegisterUserCmd
DosEnumerateUserCmds

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

92 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosRegisterV86Int2F

Description Installs a handler for the specified Int 2Fh AH value. The handler is
invoked when an Interrupt 2Fh is executed in real mode with AH
equal to the value in the I2FAhValue field of the passed-in
structure.

Syntax #include <dosvmm.h>

void
DosRegisterV86Int2F(

modHandle moduleHandle,
struct Int2FInfoStruc *int2FInfo);

Parameters moduleHandle Caller's module handle.

int2FInfo Pointer to Int2FInfoStruc with the I2FHandler and
I2FAhValue fields set. The entry and exit conditions
for the I2FHandler are:

On entry:
ebx -> VM CB
ecx 0 if interrupt was seen with a hook in the

V86 vector table.
!0 if interrupt was seen from a Windows

protected mode V86 hook procedure.
edx -> referenceData
ebp -> CRS
Interrupts are disabled in DOS case only
Interrupts are enabled if MS Windows is active
CLD has been executed

On return:
Z flag set if interrupt was serviced

else int is passed to next handler
CLD preserved
Interrupt state undefined
All registers can be destroyed

Returns Nothing

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 93

Remarks The memory for the int2FInfo structure is owned by NIOS until the
handler is deregistered using the DosDeRegisterV86Int2F
function.

This function should be used in place of hooking the V86 Int 2F
interrupt vector directly to allow for more efficient Int 2F
processing.

When the handler is invoked, the current CrsCS, CrsIP, and
CrsFlags will hold the current iret information. If the handler
needs to modify the return flags it should do so by modifying the
CrsFlags field.

See Also DosDeRegisterV86Int2F

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

94 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosRename

Description Renames the specified file.

Syntax #include <dosvmm.h>

UINT32
DosRename(

UINT8 *currentFilePath,
UINT8 *newFilePath);

Parameters filePath ASCIIZ string containing full or partial path of the
file to be renamed

Returns 0 If rename was successful
0xFFFFFFFF Invalid path, file does not exist, new file already

exists, new file on different disk, root directory full,
or insufficient access rights

Remarks This function will move the file to a different directory if the
newFilePath is different and is on the same disk as currentFilePath.

DOS must be in a callable state. Generally this function can be
inside of an NLM's initialization function as well as during an
event scheduled using the DosScheduleDosAvailEvent service.

See Also DosClose
DosOpen
DosCreate
DosRead
DosWrite
DosSeek
DosDelete
DosGetFileSize
DosDoesFileExist
DosSearchForFile

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 95

DosScheduleDosAvailEvent

Description This function schedules an event that will be called when the
currently executing DOS function has finished or when DOS issues
interrupt 28h (idle interrupt) with the InDOS flag set to one.

Syntax #include <dosvmm.h>

UINT32
DosScheduleDosAvailEvent(

FEB *eventBlock);

Parameters eventBlock Pointer to a FEBStruc with the FEBESR field set to point
to a valid procedure that will be invoked when DOS is
in a callable state. The FEB structure passed to this
function is owned by NIOS until either the event
completes or it is canceled.

Returns All registers can be destroyed
Interrupts in any state

Remarks If DOS is not busy when this function is called, the FEBESR is
invoked immediately. In an MS Windows environment, the event
can be serviced in a different VM than the VM that was active
when this service was called.

Note that the FEBESR handler cannot call DOS functions below
0Dh or functions 3Fh,40h with a file handle which references a
CON device since this causes stack reentrancy inside of DOS when
the FEBESR wakes up because of a DOS INT 28h (Idle interrupt).

If the event handler needs to invoke BIOS or other non-reentrant
functions, it must verify that the desired function is not busy (that
is, would be reentered). When the FEBESR is invoked, this service
guarantees that the video (Int 10h), disk (Int 13h), mouse (Int 15h),
and keyboard (Int 16h) BIOS services are NOT busy. No
guarantees are made for other BIOS services.

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

96 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

When the defined FEBESR is invoked, a nested ClientRegStruc is
already set up for the NLM to use; therefore the NLM does not
need to call DosBeginNestExec, etc., before issuing DOS calls.

The FEBESR is invoked as follows:

assumes: For "C" ESRs: void (*FEBESR)(
FEB *eventBlock,
CRS *crs)

For "asm" ESRs:
esi -> eventBlock
ebp -> Nested ClientRegStruc

CLD has been executed
Interrupts are enabled

Returns 0 DOS was not busy, event completed before this function
returned to the caller

!0 DOS was busy, event was scheduled

See Also DosCancelDosAvailEvent
DosIsDosBusy
DosCall
DosCallC

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 97

DosSearchForFile

Description Searches the PATH environmental variable for the specified file.
The current directory is tried first.

Syntax #include <dosvmm.h>

UINT8
DosSearchForFile(

UINT8 *filename);

Parameters filename Searches for the specified file. The current directory is
tried first, then the NIOS System directory, the the
PATH. This cannot contain wildcards. If successful, this
buffer is used to hold the path and filename of the
found file. This buffer must be large enough to hold the
worst-case path\filename.

Returns zero File could NOT be found
non-zero File was found (filename holds result)

Remarks DOS must be in a callable state. Generally this function can be
inside of an NLM's initialization function as well as during an
event scheduled using the DosScheduleDosAvailEvent service.
This function assumes that DOS is in a callable state. This function
yields.

See Also DosClose
DosOpen
DosCreate
DosGetFileSize
DosRead
DosDelete
DosSeek
DosWrite
DosDoesFileExist

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

98 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosSeek

Description NiosSeek moves the file's read/write file pointer to the specified
position.

Syntax #include <dosvmm.h>

UINT32
DosSeek(

UINT32 fileHandle,
UINT32 seekType,
UINT32 seekOffset);

Parameters fileHandle Handle of file in which to move pointer

seekType One of the following:
SEEK_SET Move seekOffset from beginning
SEEK_CURRENT

Move seekOffset from current
position

SEEK_END Move seekOffset from end

seekOffset Number of bytes to move pointer from specified
starting location (seekType)

Returns New pointer position
0xFFFFFFFF Seek failed

Remarks DOS must be in a callable state. Generally this function can be
inside of an NLM's initialization function as well as during an
event scheduled using the DosScheduleDosAvailEvent service.

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 99

See Also DosClose
DosOpen
DosCreate
DosRead
DosWrite
DosDelete
DosGetFileSize
DosDoesFileExist
DosSearchForFile

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

100 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosSharedBufAlloc

Description DosSharedBufAlloc must be called before using the NIOS shared
DOS buffer. This function is callable at interrupt time.

Syntax #include <dosvmm.h>

UINT32
DosSharedBufAlloc(

modHandle module);

Parameters module Caller's module handle

Returns 0 Allocation was successful.
!0 Error allocating buffer. Not enough free memory available to

preserve buffer contents.

Interrupt state preserved and not changed.

Remarks This function is callable at interrupt time in a DOS-only
environment. If called during interrupt time in a DOS-only
environment, the caller must check to see if the buffer contents
need preservation by checking the return code from
DosSharedBufGetInfo. If it does, then the caller must preserve the
contents and restore the contents before calling
DosSharedBufFree.

This buffer can be used by anyone in the system needing
temporary global DOS memory. The shared buffer must be
allocated and freed in the same execution thread.

This function uses a semaphore to ensure only one access to the
shared buffer at a time. If an attempt is made to allocate the buffer
reentrantly in the context of the same VM, then the buffer contents
will be preserved prior to returning. In this case the contents will
be restored when the caller invokes DosSharedBufFree.

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 101

The fact that the buffer contents may be swapped out in the
background could preclude its use in some situations, in which
case a private DOS buffer must be allocated by the module.

The size and location of the shared buffer can be determined using
DosSharedBufGetInfo.

See Also DosSharedBufFree
DosSharedBufGetInfo
DosGetExeContext

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

102 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosSharedBufFree

Description DosSharedBufFree must be called after using the NIOS shared
DOS buffer.

Syntax #include <dosvmm.h>

void
DosSharedBufFree(

modHandle module);

Parameters module Caller's module handle

Returns Nothing
Interrupt state preserved and not changed

Remarks If the buffer's contents had to be preserved, the contents will be
restored by this function before returning.

If the buffer was allocated during interrupt context and the buffer
was already in use, the caller must restore the contents itself prior
to invoking this function.

This function is callable at interrupt time in a DOS-only
environment.

See Also DosSharedBufAlloc

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 103

DosSharedBufGetInfo

Description DosSharedBufGetInfo returns information about the shared DOS
buffer maintained by NIOS.

Syntax #include <dosvmm.h>

UINT32
DosSharedBufGetInfo(

SDBInfo *sdbiStruc);

Parameters sdbiStruc Pointer to buffer set on return with a copy of the current
shared DOS buffer information

Returns zero Buffer is unallocated.
non-zero Buffer is currently allocated. Use of DosSharedBufAlloc

will cause the current contents to be preserved if current
execution context is not interrupt time.

Interrupt state preserved and not changed.

Remarks NIOS manages a shareable conventional memory block (< 1 Meg)
that can be allocated and used by NLMs. If an NLM only needs a
block of conventional memory for a short period of time, it can use
this service instead of allocating a block for itself, thus reducing
overall conventional memory usage.

This function is callable at interrupt time in a DOS-only
environment.

The minimum size of the Shared DOS buffer is 512 bytes. The
actual size is returned in the SDBSize field of the returned SDBInfo
structure.

See Also DosSharedBufAlloc
DosSharedBufFree
DosGetExeContext

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

104 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosUnHookExceptionInterrupt

Description Unhooks the caller from the specified exception interrupt chain.

Syntax #include <dosvmm.h>

UINT32
DosUnHookExceptionInterrupt(

modHandle moduleHandle,
UINT32 intToUnHook,
void (*intHandler)(void));

Parameters moduleHandle Caller's module handle

intToUnHook Interrupt to unhook from (0,2,4-31)

intHandler Pointer to caller's interrupt handler routine

Returns 0 Caller was unhooked successfully
0xFFFFFFFF Caller was not hooking the interrupt
0xFFFFFFFE Invalid intToUnHook value
0xFFFFFFFD Service not supported by NIOS environment

Remarks

See Also

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 105

DosUnHookPMInterrupt

Description Unhooks the caller from the specified interrupt chain.

Syntax #include <dosvmm.h>

UINT32
DosUnHookPMInterrupt(

modHandle moduleHandle,
UINT32 intToUnHook,
void (*intHandler)(void));

Parameters moduleHandle Caller's module handle

intToUnHook Interrupt to unhook from (32-255)

intHandler Pointer to caller's interrupt handler routine

Returns 0 Caller was unhooked successfully
0xFFFFFFFF Caller was not hooking the interrupt
0xFFFFFFFE Invalid intToUnHook value
0xFFFFFFFD Service not supported by NIOS environment

Remarks

See Also

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

106 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosUnHookV86Interrupt

Description Unhooks the caller from the specified V86 interrupt chain.

Syntax #include <dosvmm.h>

UINT32
DosUnHookV86Interrupt(

modHandle moduleHandle,
UINT32 intToUnHook,
void (*intHandler)(void));

Parameters moduleHandle Caller's module handle

intToUnHook Interrupt to unhook from (0-255)

intHandler Pointer to caller's interrupt handler routine

Returns 0 Caller was unhooked successfully
0xFFFFFFFF Caller was not hooking the interrupt
0xFFFFFFFE Invalid intToUnHook value

Remarks

See Also

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 107

DosVid16DeregisterGuiCB

Description Cancels a previously registered GUI callback given the function.

Syntax UINT32
DosVid16DeregisterGuiCB (

UINT32 funcNum,
UINT32 (far *callback));

Parameters funcNum Index to function list as follows:
0 = UINT32 NiosVidMessageBox (

UINT8 far *title,
UINT8 far *prompt,
UINT32 buttons);

1 = UINT32 NiosVidInputDialogBox (
UINT8 far *title,
UINT8 far *prompt,
UINT8 far *input,
UINT32 length);

2 = void far *NiosVidCreateDialogBox (
UINT8 far *title,
UINT8 far *prompt0:

3 = UINT32 NiosVidDestroyDialogBox (
void far *handle);

4 = UINT32 NiosVidUpdateDialogBox (
void far *handle,
UINT8 far *prompt,
UINT8 far *title);

callback Pointer to function address

Returns 0 Successful
0xFFFFFFFF Invalid parameters

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

108 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

Remarks

See Also DosVid16RegisterGuiCB

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 109

DosVid16RegisterGuiCB

Description Sets the address of the current GUI callback as defined by funcNum.

Syntax UINT32
DosVid16RegisterGuiCB (

UINT32 funcNum,
UINT32 (far *callback));

Parameters funcNum Index to function list as follows:
0 = UINT32 NiosVidMessageBox (

UINT8 far *title,
UINT8 far *prompt,
UINT32 buttons);

1 = UINT32 NiosVidInputDialogBox (
UINT8 far *title,
UINT8 far *prompt,
UINT8 far *input,
UINT32 length);

2 = void far *NiosVidCreateDialogBox (
UINT8 far *title,
UINT8 far *prompt0:

3 = UINT32 NiosVidDestroyDialogBox (
void far *handle);

4 = UINT32 NiosVidUpdateDialogBox (
void far *handle,
UINT8 far *prompt,
UINT8 far *title);

callback Pointer to function address

Returns 0 Successful
0xFFFFFFFF Invalid function or registry full

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

110 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

Remarks

See Also DosVid16DeregisterGuiCB

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 111

DosVidCallWhenPopupOk

Description Schedules an event that will fire when the system is capable of
displaying a popup message.

Syntax #include <dosvmm.h>

UINT32
DosVidCallWhenPopupOk(

FEB *eventBlock);

Parameters eventBlock Pointer to FEBStruc with the FEBESR field set

Returns zero Event completed before this function returned
non-zero Event was scheduled

Remarks When the callback is invoked the current VM will be the focus VM
and execution will be in the foreground sufficient for using the
DosVid popup/keyboard services.

While scheduled, the eventBlock.FEBStatus field will be set to a non-
zero value. When invoked, the FEBStatus field will be zero.

This function is callable at interrupt time in all environments.

See Also

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

112 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosVidCheckKey

Description Determines if a key is waiting in the keyboard buffer; if there is, it
is returned.

Syntax #include <dosvmm.h>

UINT16
DosVidCheckKey(

void);

Parameters None

Returns 0xFFFF No key available
else
Lower byte contains ASCII code or other translation
Upper byte contains scan code or special character ID

Remarks The key is removed from the keyboard input queue.

Returned Scan/ASCII codes are compatible with BIOS Int 16h,
functions 10h/11h. The key is NOT displayed by this service.

Keyboard BIOS must be callable.

This service is intended to be used only in the context of a popup.

See Also DosVidGetKey
DosVidEmptyTypeAhead

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 113

DosVidCursorSet

Description This service positions the cursor to the specified x,y coordinate in
the specified popup.

Syntax #include <dosvmm.h>

UINT32
DosVidCursorSet (

PopupHandle popupHandle,
UINT8 newX,
UINT8 newY);

Parameters popupHandle Specifies a handle returned from a previous call to
DosVidSaveScreen or DosVidPopup

newX Logical column within the specified popup where
cursor should be positioned

newY Logical row within the specified popup where
cursor should be positioned

Returns 0 Cursor successfully positioned
0xFFFFFFFF Invalid popupHandle parameter

Remarks The cursor can be disabled by setting newX and newY to 0xFF.

See Also

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

114 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosVidEmptyTypeAhead

Description Empties the keyboard typeahead buffer.

Syntax void
DosVidEmptyTypeAhead(

void);

Parameters None

Returns Nothing

Remarks Keyboard BIOS must be callable.

This service is intended to be used only in the context of a popup.

See Also

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 115

DosVidGetKey

Description Waits for a key press and returns the key value. While waiting this
function relinquishes control by calling NiosPoll.

Syntax #include <dosvmm.h>

UINT16
DosVidGetKey(

void);

Parameters None

Returns Lower byte contains ASCII code or other translation
Upper byte contain scan code or special character ID

Remarks Returned Scan/ASCII codes are compatible with BIOS Int 16h,
functions 10h/11h.

Keyboard BIOS must be callable.

This service is intended to be used only in the context of a popup.

See Also DosVidCheckKey
DosVidEmptyTypeAhead

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

116 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosVidGetPopupInfo

Description Obtains miscellaneous information about an active popup created
using either the DosVidSaveScreen or DosVidPopup service. This
information can be used to determine how to write text into the
popup.

Syntax #include <dosvmm.h>

UINT32
DosVidGetPopupInfo(

PopupHandle popupHandle,
PopupInfo *popInfo);

Parameters popupHandle Handle of popup about which to return info. This
handle must be a valid handle returned by
DosVidSaveScreen or DosVidPopup.

popInfo Pointer to PopupInfo structure which, on return, will be
filled with information about the specified popup.

Returns 0 Function successful
0xFFFFFFFF Invalid popupHandle parameter

Remarks

See Also

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 117

DosVidIsPopupOk

Description Determines if it is possible to display a popup message in the
current context.

Syntax #include <dosvmm.h>

SINT32
DosVidIsPopupOk(

void);

Parameters None

Returns >=0 Popup ok
<=0 Popup NOT ok

Possible Values - Popup Ok
MS Windows message mode should be used except for
DVOK_FULL_DOS_BOX_AVAIL.

DVOK_SYSTEM_VM Focus VM is system VM
DVOK_WINDOWED_DOS_BOX Focus VM is windowed DOS box
DVOK_FULL_DOS_BOX_AVAIL Focus VM is full screen DOS

box
DVOK_FULL_DOS_BOX_BUSY Focus VM is full screen DOS

box, video/keyboard BIOS is
available

DVOK_FULL_DOS_BOX_GRPH Focus VM is full screen DOS box
inside of Windows, video BIOS is
busy

Possible Values - Popup NOT Ok
DVOK_WIN_NOT_FOCUS_VM Windows active, focus VM is not

current VM
DVOK_WIN_AT_HARD_INT Windows active, at hardware

interrupt time

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

118 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DVOK_DOS_BAD_GRPH_MODE DOS only, unsupported
graphics mode

DVOK_DOS_BIOS_BUSY DOS only, video BIOS is busy

Remarks

See Also

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 119

DosVidPopup

Description Displays a popup message on the screen with the specified title,
subtitle, prompt, and message text.

Syntax #include <dosvmm.h

void
*DosVidPopup(

UINT8 *titleStr,
UINT8 *subtitleStr,
UINT8 *promptStr,
UINT8 *msg);

Parameters titleStr Title of popup. This should be a short message. If this
parameter is NULL, no title message will be displayed.

subtitleStr Subtitle of popup. This should be a short message. If
this parameter is NULL, no subtitle message will be
displayed.

promptStr Prompt message. This describes some type of user
action. If NULL, no prompt will be displayed.

msg Main popup text. This is a message describing
something to the user.

Returns zero Error creating popup
non-zero Popup handle

Remarks Control is given back to the caller once the popup is displayed. The
caller must use the DosVidRestoreScreen service to remove the
popup message and restore the previous screen contents.

Note that the size of the popup is dynamically calculated. The
actual size is based on the length of the passed-in msg string along
with the lengths of the title and prompt strings.

See Also DosVidRestoreScreen

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

120 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosVidPopupExt
DosVidWriteToPopup
DosVidGetPopupInfo

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 121

DosVidPopupExt

Description Displays a popup on the screen with the specified title, subtitle,
prompt, and message text.

Syntax #include <dosvmm.h>

UINT32
DosVidPopupExt(

PopupHandle popupHandle,
UINT8 *titleStr,
UINT8 *subtitleStr,
UINT8 *promptStr,
UINT8 *msg,
UINT8 extraLines,
UINT8 minColumns,
UINT8 minRows,
UINT8 popupStartColumn,
UINT8 popupStartRow);

Parameters popupHandle Specifies a handle returned from a previous call
to DosVidSaveScreen.

titleStr Title of popup. This should be a short message.
If this parameter is NULL, no tile message will
be displayed.

subtitleStr Subtitle of popup. This should be a short
message. If this parameter is NULL, no subtitle
message will be displayed.

promptStr Prompt message. This describes some type of
user action, such as which keys do what. If
NULL, no prompt will be displayed.

msg Main popup text. This is a message describing
something to the user.

extraLines Number of extra empty lines that should be
built after the msg string. This allows the caller
to dynamically add text to the bottom of the

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

122 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

popup using the DosVidWriteToPopup service.
If zero, no extra lines will be output.

minColumns Minimum number of user space columns in the
popup. If set to zero, the number of columns is
dynamically calculated based on the contents of
the passed-in string parameters.

minRows Minimum number of user space rows in the
popup. If set to zero, the number of rows is
dynamically calculated based on the contents of
the passed-in string parameters.

popupStartColumn Specifies the X coordinate of where the popup
will begin on the screen. If set to 0xFF, the
popup will be horizontally centered on the
screen.

popupStartRow Specifies the Y coordinate of where the popup will
begin on the screen. If set to 0xFF, the popup will be
vertically centered on the screen.

Returns 0 Popup successfully created
0xFFFFFFFF popupStartColumn is out of bounds
0xFFFFFFFE popupStartRow is out of bounds
0xFFFFFFFD minColumns is out of bounds
0xFFFFFFFC minRows is out of bounds
0xFFFFFFFB Not enough free memory to process popup
0xFFFFFFFA Invalid popupHandle parameter

Remarks Control is given back to the caller once the popup is displayed. The
caller must use the DosVidRestoreScreen service to remove the
popup message and restore the previous screen contents.

This function should be used instead of DosVidPopup when more
control over the popup's format is needed.

Note: This service requires a popupHandle as an input parameter;
therefore, the caller must invoke DosVidSaveScreen prior
to using this service.

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 123

See Also DosVidPopup
DosVidSaveScreen
DosVidRestoreScreen
DosVidWriteToPopup
DosVidGetPopupInfo

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

124 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosVidRestoreScreen

Description Restores the contents of a portion of the screen previously
preserved using the DosVidSaveScreen or DosVidPopup
functions.

Syntax #include <dosvmm.h>

void
DosVidRestoreScreen(

PopupHandle popupHandle);

Parameters popupHandle Handle of popup returned from DosVidSaveScreen

Returns 0 Screen successfully restored, popupHandle freed
0xFFFFFFFF Invalid popupHandle parameter

Remarks This function also restores the cursor to the settings present at the
time DosVidSaveScreen was called.

See Also DosVidSaveScreen

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 125

DosVidSaveScreen

Description Saves the contents of the specified rectangular portion of the screen
(including current cursor information) to a dynamically allocated
buffer.

Syntax #include <dosvmm.h>

UINT32
DosVidSaveScreen(

PopupHandle *popupHandle);

Parameters popupHandle Pointer to a pointer which will be set on return to a
handle describing the specified saved video region.
This handle is used to restore the window contents.

Returns 0 Function was successful
0xFFFFFFFF Unable to allocate save buffer
0xFFFFFFFE Bad video mode
0xFFFFFFFD Bad parameters

Remarks This function disables the cursor until DosVidRestoreScreen is
called. This function is provided for NLMs that need to access the
display directly when the DosVidPopup service does not provide
enough functionality.

Before using this service, the caller must verify that a popup is
possible by using either the DosVidIsPopupOk or
DosVidCallWhenPopupOk services.

Use of this function allows the caller to gain direct control of where
text is placed on the screen. Using the returned popupHandle, the
caller can use the DosVidWriteToPopup and/or DosVidPopupExt
services to place text anywhere on the screen.

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

126 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

See Also DosVidRestoreScreen
DosVidPopup
DosVidIsPopupOK
DosVidCallWhenPopupOk
DosVidWriteToPopup
DosVidGetPopupInfo

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 127

DosVidSoundBell

Description Rings the bell once.

Syntax #include <dosvmm.h>

void
DosVidSoundBell(

void);

Parameters None

Returns Nothing

Remarks This is a synchronous call. In other words, it does not return until
the bell is finished. This function enables interrupts and yields by
calling NiosPoll.

See Also

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

128 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

DosVidStdOut

Description Displays the specified prefix and message using DOS STDOUT.

Syntax #include <dosvmm.h>

void
DosVidStdOut(

UINT8 *prefix,
UINT8 *msg);

Parameters prefix Pointer to message prefix string. If NULL, no prefix will be
displayed.

msg Pointer to message string to display.

Returns Nothing

Remarks DOS must be callable. This function displays the strings using the
STDOUT file handle for the currently active Program Segment
Prefix (PSP). This function yields.

See Also

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 129

DosVidWriteToPopup

Description Writes the specified string contents to the specified (column, row)
position inside the popup specified by popupHandle. The output
will be truncated if the string exceeds the popup dimensions.

Syntax #include <dosvmm.h>

UINT32
DosVidWriteToPopup(

PopupHandle popupHandle,
UINT32 column,
UINT32 row,
UINT8 attribute,
UINT32 len,
UINT8 *str);

Parameters popupHandle Handle of popup returned from a previous call to
either DosVidSaveScreen or DosVidPopup

column Logical x position where string should be written to (for
example, value of 0 is the left-hand corner of the popup)

row Logical y position where string should be written to
(for instance, value of 0 is the first row of the popup)

attribute Standard color display attribute describing the
background and foreground attributes to use when
writing out string

len Number of bytes in string

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

130 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

Returns 0 String output successfully.
0xFFFFFFFF Invalid column and/or row parameters.
0xFFFFFFFE String was output; however, it exceeded the popup

size and was truncated.
0xFFFFFFFD Invalid popup handle.

Remarks

See Also DosVidSaveScreen
DosVidPopup
DosVidGetPopupInfo

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 131

DosWrite

Description Writes to the specified file.

Syntax #include <dosvmm.h>

UINT32
DosWrite(

UINT32 fileHandle,
UINT32 writeOffset,
void *writeBuf,
UINT32 writeSize);

Parameters fileHandle Handle of file to write to (returned by
DosOpen). The file must have been opened for
writing.

writeOffset Offset from start of file to write to: 0xFFFFFFFF
if write should occur at current position.

writeBuf Pointer to buffer holding data to write.

writeSize Number of bytes to write (0 - 0xFFFFFFFC).

Returns Number of bytes written
0xFFFFFFFF Seek failed
0xFFFFFFFE I/O error during write
0xFFFFFFFD Function failure

Remarks DOS must be in a callable state. Generally this function can be
inside of an NLM's initialization function as well as during an
event scheduled using the DosScheduleDosAvailEvent service.

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

132 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

See Also DosClose
DosOpen
DosCreate
DosGetFileSize
DosRead
DosDelete
DosSeek
DosDoesFileExist
DosSearchForFile

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 133

Win16GetProcAddress

Description Resolves the sel:off of an exported 16-bit Windows procedure.

Syntax #include <nlmapi.h>

UINT32
Win16GetProcAddress(

UINT8 *modName,
UINT8 *procName,
UINT32 *procSelOff);

Parameters modName Name of module, DLL, or application that exports
the procName.

procName Pointer to ASCIIZ procedure name to resolve. If the
upper 16-bits of this value is zero, the low order 16-
bits are interpreted as an ordinal value.

procSelOff UINT32 set on return to the sel:off of the resolved
Windows function if this service returns
successfully.

Returns Zero Procedure successfully resolved.

0xFFFFFFFF Unresolved procName.

0xFFFFFFFE Serice not currently available. There is a window
during MS Windows initialization that this service
isn't available. An NLM can watch for the "WIN16
GETPROCADDR AVAIL" event to know when this
service is available.

0xFFFFFFFD Current execution ontext isn't the system VM, or the
system VM isn't executing in protected mode.

Remarks This function calls the Windows function GetProcAddress to
service the request.

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

134 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

WinCallWhenPMIntReturns

Description Used in an NLM’s PM interrupt handler to obtain control on the
back end of a current PM interrupt.

Assumes edx Reference data
Interrupt in any state.
esi Points to callback handler. Called as follows:

On entry: ebx Points to VM CB
edx Reference data
ebp Points to CRS
Interrupts are enabled.
CLD has been executed.

On return: CLD preserved
Interrupts are enabled.
All registers can be destroyed.

Returns Z flag cleared.
Interrupt state preserved.
All registers can be destroyed.

Remarks This function is callable only in the context of a protected mode
(PM) interrupt under Windows Enhanced mode.

An NLM that uses this service must first call this service then return from

its PM interrupt handler signalling that the interrupt was NOT consumed.

This service is designed so that the NLM's interrupt handler can simply

jump to this service and this service will return back from the handler with

the Z flag cleared.

This service places a PM callback address on the current PM stack such

that when the PM interrupt handling code iret's out of the interrupt, NLM

handlers that have used this service will receive control. This occurs in a

LIFO manner thus preserving the ordering that should occur when multiple

NLMs hook the backend of the same PM interrupt.

When the handler is invoked, the current CrsCS, CrsIP and CrsFlags will

hold the current iret information. If the handler needs to modify the return

flags it should do so by modifying the CrsFlagas field.

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 135

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

136 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

WinHookPMInt21

Description Displays the specified prefix and message using DOS STDOUT.

Syntax #include <dosvmm.h>

UINT32
WinHookPMInt21 (

modHandle moduleHandle,
UINT32 referenceData,
UINT32 (*handler)(

VmCb *vm,
UINT32 referenceData,
CRS *crs));

Parameters moduleHandle Callers module handle.

referenceData Data to be passed to the handler.

handler Pointer to int 21h handler to install.

Parameters:
vm Current vm handle.

referenceData Data specified during
registration.

crs Pointer to client registers.

Returns:
Zero to consume the interrupt.
Non-zero to chain the interrupt.

Returns 0 on success.
0xFFFFFFFF if out of memeory.

Remarks This function can be called when Windows is not active; however, the hook

only becomes active after the NE_WIN_SYS_VM_INIT NESL event. The

hook becomes inactive once Windows destroys its PM int 21 chain, but it

NIOS Client DOS APIs

Rev 1.0 Draft 4.0 (March 1995) Company Confidential 137

will reactivate the next time Windows loads (after the

NE_WIN_SYS_VM_INIT event).

Every call to WinHookPMInt21 must be matched with a corresponding call

to WinUnHookPMInt21.

NLMs that need to pass a PM Int 21h interrupt on down the chain and then

receive control on the back end of the interrupt can use the

WinCallWhenPMIntReturns service inside of their interrupt handler

function to obtain this type of functionality.

This function is not available at interrupt time.

See Also WinUnHookPMInt21
WinCallWhenPMIntReturns

NetWare Client NIOS for DOS, MS Windows, and Windows95 Design Specification

138 Company Confidential Rev 1.0 Draft 4.0 (March 1995)

WinUnHookPMInt21

Description Displays the specified prefix and message using DOS STDOUT.

Syntax #include <dosvmm.h>

UINT32
WinUnHookPMInt21 (

modHandle moduleHandle,
UINT32 (*handler)(

VmCb *vm,
UINT32 referenceData,
CRS *crs));

Parameters moduleHandle Callers module handle.

handler Pointer to int 21h handler to uninstall.

Parameters:
vm Current vm handle.

referenceData Data specified during
registration.

crs Pointer to client registers.

Returns:
Zero to consume the interrupt.
Non-zero to chain the interrupt.

Returns 0 on success.
0xFFFFFFFF if handler is not registered by moduleHandle..

Remarks

See Also WinHookPMInt21
WinCallWhenPMIntReturns

