
v 1.0 (November 1994) Draft 0.3 Company Confidential

Chapter 4

ConnMan Design Specification

Abstract

ConnMan manages building and destroying connections, allowing
applications and to be written independent of the underlying
session protocol.

Portable Client32 Design Specification

1-2 Company Confidential Draft 0.3 v 1.0 (November 1994)

Contents
Introduction . 3

Requirements . 3
Functional Overview . 4

Design Description . 5
Checking Existing Connections for a Match 5
Resolving a Name to an Address and Session ID 5
Building a Connection Entry . 5
Calling SessMux to Establish Connection 7
Maintaining the Connection Database 7
LRUing of NCP NDS Connections . 7

ConnMan API . 10
Connection APIs . 10
Connection Database APIs . 11
VLM Compatibility APIs . 12

NESL Events . 13

Configuration . 15

Performance . 15

Deliverables . 15

MockNW

Print File Dir

Netx
VLM

Mapper

CPANORD ConnMan

Session

Multiplexor

Authentication Multiplexor Name Services Multiplexor

Bind

NS
NDS

Auth

NDS

NS

Bind

Auth

Other session protocols

Message

NCP

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential

Figure 1. ConnMan and other Client32 NLMs.

Introduction

ConnMan manages connections for the client. It works closely with
the Name Services Multiplexor (NSMux), the Authentication
Multiplexor (AuthMux), and the Session Multiplexor (SessMux) to
build connections over different session protocols and name
services.

The following diagram shows ConnMan in relation to the other
Client32 Requester NLMs:

Requirements

Like all Client32 Requester modules, ConnMan is written entirely in
C and is portable to other Intel platforms.

Connman allows session protocol modules and authentication
service modules to register and unregister dynamically. In
addition, ConnMan dynamically increases its connection table to
support more connections as needed.

Portable Client32 Design Specification

1-4 Company Confidential Draft 0.3 v 1.0 (November 1994)

Functional Overview

As a general overview of how ConnMan interacts with other
Requester NLMs in establishing a connection, consider this
example. (Each of these steps is discussed in greater detail in the
Design Description section of this chapter.)

To establish a connection, ConnMan does the following:

1. Receives from an application a request to establish a
connection with a server or tree of a given name.

2. Scans the existing connections to see if a connection to this
entity already exists.

3. Calls the Name Services Multiplexor (NSMux) to resolve the
server name to a transport address. The NSMux also returns a
sessionID.

4. Builds a connection entry for the requested connection. This
establishes a connection handle (connHandle) for the new
connection.

5. Passes the connHandle, sessionID, and transport address to

SessMux using SESSConnectByAddress. SessMux
multiplexes the request to the correct session protocol provider,
which actually establishes the connection and completes filling
out the connection entry.

6. Returns the connHandle for the new connection to the
application that requested it.

From here on, all session service requests (including file, directory,
and printing functions) are completed via the Session Multiplexor
and do not involve ConnMan, though ConnMan continues to
maintain information about the connection itself.

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential

Design Description

As seen in the Functional Overview, ConnMan coordinates the
various steps needed to establish a connection. Each of those
steps is described in detail here.

Checking Existing Connections for a Match

Before allocating a new connection, ConnMan first checks existing
connections to see if the connection requested already exists. If
such a connection does exist, ConnMan must also ascertain that
the existing connection matches the scope requested by the new
connection. That is, if the existing connection is private and the
new connection is outside the scope of that private connection, a
new connection will be established anyway.

The name used by ConnMan when checking for an existing
connection is dependent on the name service being used. For
Bindery connections, the server name is used (ceServerName in
the Conn_Info structure); for NDS connections the domain name
is used (ceDomainName). ConnMan determines which name
service provider to use by checking the NameSvcType parameter
that is passed in with the request for connection.

Resolving a Name to an Address and Session ID

The first thing ConnMan does when it receives a request for a
connection (such as CONNOpenByName) is to call NSMux using

NSMResolveNametoAddress. NSMux will return an address and
session protocol ID. (Bindery, NDS, and PNW name service
modules all return NCP_SESSION_ID for their session protocol
IDs. Other name service modules could return a different session
protocol ID, such as SMB_SESSION_ID.)

Building a Connection Entry

After retrieving an address and session ID from the NSMux,
ConnMan builds a connection entry for this connection and assigns
a connHandle. This connHandle will be used throughout the life of
the connection to retrieve information about this particular
connection; everything the Requester does with respect to this
connection will use connHandle as a reference.

One step in filling out this connection table is to establish a pointer
to the session-specific information that resides within the session
protocol provider. This pointer in the connection entry structure is

Portable Client32 Design Specification

1-6 Company Confidential Draft 0.3 v 1.0 (November 1994)

called ceSessionSpecPtr, and is set by the session service
provider when the connection is created (when
SESSConnectByAddress is called).

The only way to modify or retrieve connection entry information is
by using these ConnMan APIs:

CONNGetValue

CONNGetStructure
CONNSetValue

CONNSetStructure

CONNScanInfo

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential

The following table lists all connection information that can be
retrieved and set. (See CLIENT32.H).

 Who Who
Name Define Type Reads Writes
CONN_ENTRY_RETURN_NONE 0
CONN_ENTRY_VERSION 1 UINT32 global none
CONN_ENTRY_AUTH_SVC_ID 2 UINT32 global AuthMux
CONN_ENTRY_BROADCAST_STATE 3 UINT32 global global
CONN_ENTRY_REFERENCE 4 UINT32 global none
CONN_ENTRY_DOMAIN_NAME 5 Struct global AuthMux
CONN_ENTRY_WORKGROUP_ID 6 Struct global AuthMux
CONN_ENTRY_SECURITY 7 UINT32 global global
CONN_ENTRY_SERVER_CONN_NUM8 UINT32 global SessMux
CONN_ENTRY_AUTH_USER_ID 9 UINT32 global AuthMux
CONN_ENTRY_SERVER_NAME 10 Struct global SessMux
CONN_ENTRY_TRAN_ADDR 11 Struct global SessMux
CONN_ENTRY_NDS_ABILITY 12 Flag global SessMux
CONN_ENTRY_MAX_IO 13 UINT32 global SessMux
CONN_ENTRY_LICENSE 14 UINT32 global global
CONN_ENTRY_PUBLIC_STATE 15 UINT32 global NEVER
CONN_ENTRY_NAME_SVC_ID 16 UINT32 global SessMux, NSMux
CONN_ENTRY_ROUND_TRIP 17 UINT32 global SessMux
CONN_ENTRY_SERVER_VERSION 18 UINT32 global SessMux
CONN_ENTRY_TRAN_ADDR_OBJ 19 UINT32 global SessMux
CONN_ENTRY_SFT_LEVEL 20 UINT32 global global
CONN_ENTRY_TTS_LEVEL 21 UINT32 global global
CONN_ENTRY_SERVICE_NAME 22 Struct global AuthMux
CONN_ENTRY_PERM 23 Flag global ConnMan sets
CONN_ENTRY_AUTH 24 Flag global AuthMux sets
CONN_ENTRY_ANCHOR 25 Flag global ConnMan sets
CONN_ENTRY_SUSPENDED 26 Flag global ConnMan sets
CONN_ENTRY_RESOURCE_COUNT 27 UINT32 none Global inc/dec
CONN_ENTRY_TRAN_SVC_ID 28 UINT32 global SessMux
CONN_ENTRY_AUTH_HANDLE 29 UINT32 global AuthMux
CONN_ENTRY_AUTH_SPEC_PTR 30 UINT32 Auth AuthMux
CONN_ENTRY_SESS_SVC_ID 31 UINT32 global SessMux
CONN_ENTRY_SESS_SPEC_PTR 32 UINT32 Sess SessMux
CONN_ENTRY_ORDER_NUM 33 UINT32 global SessMux
CONN_ENTRY_MAX_RW_IO 34 UINT32 global SessMux
CONN_ENTRY_RETURN_ALL 65535 Struct global None
CONN_ENTRY_END_OF_TABLE CONN_ENTRY_MAX_RW_IO MAX VALUE

Portable Client32 Design Specification

1-8 Company Confidential Draft 0.3 v 1.0 (November 1994)

If the user requests that all connection information be returned, the
CONN_ENTRY_RETURN_ALL structure is used:

typedef struct _CONN_INFO_TYPE_ {

UINT32 connInfoVersion;

UINT32 connReference;

UINT32 connMaxDomainNameLen;

SPECT_DATA connDomainName;

UINT32 connNameSvcId;

UINT32 connSecurity;

UINT32 connServerConnNum;

UINT32 connAuthUserId;

UINT32 connAuthState;

UINT32 connMaxServerNameLen;

SPECT_DATA connServerName;

TRAN_ADDR_TYPE connTranAddr,

UINT32 connMaxIo;

UINT32 connLicense;

UINT32 connMaxServiceNameLen;

SPECT_DATA connServiceName;

UINT32 connRoundTrip;

UINT32 connServerVersion;

} CONN_INFO_TYPE;

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential

Calling SessMux to Establish Connection

ConnMan sends the request to the SessMux, which multiplexes it
to the appropriate session protocol module. The session protocol
module completes filling out the connection entry.

Maintaining the Connection Database

ConnMan maintains a database of information about each
connection.

The number of connections maintained by ConnMan is dynamic.
To begin, it's the number of Conn_Entry structures that can fit
within a 4K block. If more connections are needed, more can be
created by re-using existing connections or by allocating more
memory. The algorithm to determine which is done (reuse or
allocate new memory) will be determined later.

LRUing of NCP NDS Connections

ConnMan caches network connections. The cache is managed
with a Least-Recently-Used (LRU) algorithm. LRUing connections
allows clients with memory constraints to make the most efficient
use of memory space for connections.
Also, LRUing provides improved performance during NDS
operations.

The Conn_Entry structure includes maintaining two separate
counts, an in-use count and a resource count, to track how
connections are used and released. Also, it is still possible for
certain connections to be marked LONG_LIVED_CONNECTION,
meaning that they stay open even after their calling application
closes.

With ConnMan, connections remain cached even if they are not
currently being used, with the idea that they might be used again in
the near future. If a connection request is received by the
Requester and no unused connections are available, the least
recently used cached connection will be torn down and used to
fulfill the caller's request.

In-Use Counts. In previous Requester implementations, it was
difficult to know when an application or library finished with a
connection. The old API set (NWCALLS) gave actual connection

Portable Client32 Design Specification

1-10 Company Confidential Draft 0.3 v 1.0 (November 1994)

handles to every connection that an application even looked at,
whether or not the application actually opened and used that
connection. For example, if an application queried many
connections to look for a certain attribute, it would be given
connection handles to each connection, and there would be no way
to know which connection it finally opened and used, and which
handles were discarded.

The new API set solves this problem by giving an application only a
connection reference (alias) instead of the actual connection
handle. In order for an application to actually use a connection, the
application has to get the actual connection handle by calling
CONNOpenByReference.

By requiring an application to actively open a connection, the
Requester can track how the application uses the connection.
When the application is finished using the connection, it calls
CONNClose. Opening and closing a connection increments and
decrements a per-process in-use count in the connection entry for
that connection.

Note: The VLM Mapper is allowed to allocate a connection and
never close it. Though this is never done with the current APIs, it
used to be done with the VLMs and so must be supported. To
deal with this situation, ConnMan listens for the task terminate
event, and decrements the in-use count for the appropriate
connection when that event occurs. When the in-use count goes
to zero, the connection is closed.

Long-Lived Connections. Long-lived connections are flagged
differently depending on whether the application is a Netx/VLM
application or a Directory Services application.

! Netx/VLM. This option provides backward-compatibility with
the old API set. With the old APIs that did not use Directory
Services, there was no way (or need) to signify a connection
that needed to stay in place after an application closed. Since
that is now an option, this flag is available to support those
APIs.

An example of such an API is NWAttachToFileServer.
Though no hard resources may be allocated, it is necessary
that this connection remain alive (not LRUed) until it is
specifically closed with NWDetachFromFileServer.

To make a connection long-lived, the caller sets a flag

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential

parameter in the open and close APIs. Opening and closing a
connection with this flag will set or clear the cePermanentState
state indicator in the connection entry. This scheme has the
advantage that the connection can be marked long-lived
without using a separate call.

! Directory Services. Directory Services connections must be
careful to never throw away the DS monitored connection,
which is the connection to the DS database. This connection is
protected by the Anchor flag, which is set by NDS.NLM and
must not be manipulated by any other application.

Resource Count. Certain resources, such as mapped drives and
redirected printer ports, remain intact even after an application
terminates. Since applications can allocate these hard resources
without the connection being permanent, ConnMan needs to be
able to LRU a connection that has resources associated with it but
an in-use count of zero. This is done by closing the connection
(CONNClose) with the LONG_LIVED_CONNECTION flag. If, when
the connection is closed, there are no other applications using it,
then an event is broadcast for upper modules to free resources
associated with the connection. The process of freeing the
resources causes the resource count to go zero, and makes the
connection LRUable.

When the in-use and resource counts go to zero, ConnMan will call

the SessDisconnect routine of the appropriate session protocol
module. The session protocol can either destroy the connection or
place it on the LRU connection list. The NCP session protocol will
place NetWare 4.x server connections on the LRU connection list.
NetWare 3.x server connections will never be LRUed but instead
are destroyed when the above counters all go to zero.

Portable Client32 Design Specification

1-12 Company Confidential Draft 0.3 v 1.0 (November 1994)

ConnMan API
There are three kinds of ConnMan APIs: connection APIs,
database APIs, and VLM Compatibility APIs.

Connection APIs
These APIs establish connections with remote entities. If a
connection is already established with the remote entity and the
connection being requested is not private, the connection's "in-use"
count is incremented and the connection handle to the already-
established connection is returned.

The following connection-oriented APIs have been defined:

CONNClose
CONNOpenByAddress
CONNOpenByName
CONNOpenByRefererence

Connection Database APIs

These APIs are used to get, set, and reset connection entry fields.

CONNGetValue
CONNGetStructure
CONNSetValue
CONNSetStructure
CONNScanInfo
CONNIncInfo
CONNDecInfo

VLM Compatibility APIs

The following are miscellaneous APIs needed by system NLMs for
VLM backward compatability or to implement session protocol
independence.

CONNGetDefaultConnection
CONNGetNumConnections
CONNSetDefaultConnection

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential

NESL Events

Events Produced
ConnMan produces NESL events to inform interested NLMs of new
connections and destroyed connections. The specific events
produced by ConnMan are:

EVENT_CONN_PRE_CREATED
Syntax: NESLProduceEvent(

EVENT_CONN_PRE_CREATED, connHandle);

Description: ConnMan will produce this event before calling
SessConnectByAddress. This will inform
interested NLMs that a session connection is about
to be made to a remote host.

EVENT_CONN_CREATED
Syntax: NESLProduceEvent(EVENT_CONN_CREATED,

connHandle);

Description: ConnMan will produce this event after calling
SessConnectByAddress if it's successful in
creating a session connection to remote host.

EVENT_CONN_DESTROYED
Syntax: NESLProduceEvent(

EVENT_CONN_DESTROYED, connHandle);

Description: ConnMan will produce this event after calling
SessDisconnect.

EVENT_CONN_PRE_DESTROYED
Syntax: NESLProduceEvent(

EVENT_CONN_PRE_DESTROYED, connHandle);

Description: ConnMan will produce this event before calling
SessDisconnect.

Portable Client32 Design Specification

1-14 Company Confidential Draft 0.3 v 1.0 (November 1994)

EVENT_CONN_RENAME
Syntax: NESLProduceEvent(EVENT_CONN_RENAMED,

*conn_Rename);

Description: When ConnMan places a connection on the LRU
list, the connection handle for that connection is
changed or renamed. This causes synchronization
issues for those system NLMs that track those
connections. This callout lets them synchronize
their internal naming and tracking schemes with the
new connHandle name and number.

Events Consumed

ConnMan consumes these events:

EVENT_CONN_RECONNECTED
EVENT_PROCESS_TERMINATE
EVENT_MOBILE_STATUS_CHANGE
EVENT_AUTH_UNREGISTER_SERVICE
EVENT_NAME_UNREGISTER_SERVICE
EVENT_SESS_UNREGISTER_SERVICE

Overview to the Portable Client32 Modules

v 1.0 (November 1994) Draft 0.3 Company Confidential

Configuration

ConnMan currently has no configuration parameters that are set in
NET.CFG.

Performance
ConnMan simply stores connection information and multiplexes
requests to session protocol modules and to authentication service
modules. Hence there is no performance measure available to
measure its throughput. ConnMan should be coded efficiently so
that it can store and retrieve items in the connection table.

Deliverables
The following are the deliverables for ConnMan:

Documents
CONNT.WP Unit test plan describing tests and expected

results that the ConnMan must pass before
being accepted for cross- platform
integration testing.

Executables
CONNMAN.NLM NLM executable that implements this design

specification.

Source Code
CONNMAN.C C code that implements this design specification

CONN_INT.H Header file that defines constants/structures
defined in this design document.

CONNMAN.MAK Makefile to build CONNMAN.NLM

