
SRC Technical Note
1997 - 027a
April 1, 1998

A Simple, Intuitive Hypermedia Synchronization Model and its

Realization in the Browser/Java Environment

Jin Yu

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c©Digital Equipment Corporation 1998. All rights reserved

A Simple, Intuitive Hypermedia Synchronization Model and its
Realization in the Browser/Java Environment

Jin Yu
DEC Systems Research Center

130 Lytton Ave., Palo Alto, CA 94301
jinyu@pa.dec.com

Abstract

This paper presents a simple and intuitive hyperme-
dia synchronization model – the Media Relation Graph
(MRG), and an alternative implementation of the Hyper-
media Presentation and Authoring System (HPAS), which
is the testbed for MRG. HPAS is a system for present-
ing, integrating, and managing time-based hypermedia
documents on the Web. The underlying temporal model
of HPAS combines the power of both interval-based and
point-based synchronization mechanisms. The new Java-
based implementation exploits many rich features of com-
mercial Web browsers and reuses existing browser com-
ponents, such as plugins and Java applets. (An overview
of HPAS and its original Unix/C implementation can be
found elsewhere [18].)

1 Introduction

The exponential growth in the number and variety of Web-
oriented products and services is driven by the use of rich
media types such as image, audio, and video. The com-
bination and integration of these monomedia, or multime-
dia, is widely used for representing and exchanging infor-
mation. Used together with both content-based and time-
based navigation, the result is the merging of multimedia
and hyperlinks, or hypermedia.

Many important multimedia applications cannot be im-
plemented using today’s Web technology such as HTML
and HTTP. Scenarios like ”show image 1 for 10 seconds;
after image 1 has started for 5 seconds, play audio 1 and
show image 2 in parallel for 20 seconds” cannot be easily
expressed in current Web technology. However, this kind
of scenarios is typical in many areas, including:

• TV-like content on the Web

• Integrated streaming audio/video on the Internet

• Interactive/on-demand television/video

• Canned CD-ROM multimedia presentation

Time-based hypermedia documentsare well-suited for ap-
plications in the above areas.

Within a time-based hypermedia framework, a dis-
tinction should be made between hypermedia documents
and hypermedia objects (or simply documents and ob-
jects). Objects usually represent monomedia data, such
as MPEG videos and GIF images, which are identified by
Uniform Resource Locators (URLs) [2] and MIME types
[4]. Documents function as containers for objects. A doc-
ument describes the meta information about the enclosed
objects. The information includes the temporal, spatial,
and content relationships among a number of related ob-
jects, and the attributes of individual objects. Examples
of documents are HSL (a format implemented by our sys-
tem) and SMIL [19]. HTML files are also hypermedia
documents, except that they are not time-based. Docu-
ments can also be treated like objects; e.g. an HTML file
embedded into an HSL document is treated as an HTML
object.

The presentation of a time-based hypermedia document
can be modeled by a directed acyclic graph (DAG), as in
Figure 1. Vertices in the graph represent media objects,
and the directed edges represent the flow of time. Note
that the edges point downward, so the time flows top to
bottom in the graph. Intuitively, an edge from verticesv1

to v2 means thatv1 to v2 are played in serial, withv1 be-
forev2; ie. they do not overlap in time. At any point of a
presentation, there is a (possibly empty) set of media ob-
jects playing on the screen, which can be modelled as a set
of multiple concurrent threads, with each thread present-
ing an active object. The number of concurrent threads
changes dynamically throughout a presentation. For ex-
ample, in Figure 1, there are three concurrent threads (and
thus three active objects) at some time instant, represented
by the three blackened vertices.

1

Figure 1: Presentation graph

Our temporal synchronization model, the Media Rela-
tion Graph (MRG), is based on some further refinement
of the temporal DAG described above. To represent the
information in MRG, we have designed the Hypermedia
Synchronization Language (HSL, a SGML-conforming
format [16]). HSL documents can be interpreted and
presented by the Hypermedia Presentation and Authoring
System (HPAS), which we have developed as a testbed
for MRG and HSL. In this paper, we will describe the
Java-based implementation of HPAS, which supports a
rich subset of the features in the original Unix/C imple-
mentation [18].

The next section describes our temporal model in detail.
Sections 3 and 4 discuss the validation and presentation of
documents produced by our synchronization model, re-
spectively. Section 5 outlines the format of HSL doc-
uments. Hyperlinking is briefly explained in section 6.
Finally, section 7 describes the new browser/Java-based
implementation.

2 Synchronization model

There are two levels of multimedia synchronization,
namely intra-object synchronization and inter-object syn-
chronization [3]. The former is concerned with the time
relations within one media object, such as an MPEG
video, while the latter is concerned with time relations
between two or more media objects. There are yet two
more subtypes of synchronization within the inter-object
category: low-level “lip” synchronization and high-level
endpoints-based synchronization. In the HPAS project,
we are mainly interested in high-level endpoints-based
synchronization.

There have been numerous approaches in specify-
ing high-level media synchronizations. Most of them
bear two characteristics. First, the syntax is declarative.
Declarative syntax is easier to author and easier to convert.
On the other hand, scripting-based systems require profi-
ciency in programming, which severely limits the range
of authors. Scripts are also less portable and reusable.

Second, the specifications are relation-based; that is, each
object is described in terms of other temporally related
objects. Timeline-based (non-relational) systems require
the start/end times of objects to be fixed on the time axis;
therefore, document parts cannot be efficiently reused (re-
quires readjusting all the start/end times of the objects
to be reused); furthermore, timeline-based specifications
cannot model nondeterminism (objects with unknown du-
rations). It should also be pointed out that both the script-
ing and timeline approaches do not scale well.

The relation-based specifications can be further divided
into two major flavors: interval-based vs. point-based
[17]. In interval-based models, each media object is asso-
ciated with a temporal interval, which is characterized as a
nonzero duration of time. According to Allen, given any
two temporal intervals, there are 13 mutually exclusive
relationships [1]. The 13 temporal relations can be repre-
sented as Figure 2a [13]. The figure shows only seven of
the thirteen relations since the remaining ones are inverse
relations, by simply swapping the labels. For instance,
after is the inverse relation ofbefore. In point-based ap-
proaches, relations are based on time instants. Given two
time instants, there are 3 mutually exclusive relationships,
namelybefore(<), simultaneous to(=), andafter (>)
[17]. Few existing multimedia systems are solely based
on point-based specifications; Madeus [9] is purely based
on Allen’s interval relations; most other systems, such as
CMIF [7], ISIS [11], OCPN [13], Firefly [5], and CHIMP
[6], are based on a hybrid of the two approaches.

Our temporal synchronization model, MRG, is also
based on a hybrid of the interval-based and point-based
approaches. Media objects are modeled as temporal inter-
vals, and the start/end times of the objects are treated as
time instants. The merit of our approach is that the spec-
ification is particularly intuitive; this makes the authoring
process much easier. In the following sections, the seman-
tics of MRG will be described in greater detail.

2.1 Endpoints-based relations

Allen’s 13 interval relations cover all the possible rela-
tionships between two temporal intervals. The 13 interval
relations can efficiently describe what happened between
two temporal intervals in history (i.e. after play-out of the
two objects corresponding to the two intervals); however,
Allen’s relations are not well-suited for specifying what
should happen between two intervals in the future [10].
For example, in the relationpα overlaps pβ , pβ cannot be
started duringpα if the end time ofpα is unknown.

Unlike Allen’s purely interval-based model, our ap-
proach takes into account not only time intervals, but
also time instants. Our model is based on the observa-

2

 α Pbefore

Pα P

αP

P

βPP

P
P

Pα

α

β α

β

meets

starts

βP

PPα P α
β

Pα Pβduring

β
β

equals P

Pα Poverlaps β

P α
τ

P

Pα β
finishes P

β

δ

Pα
τ δ

P β

δσ

δσ
P β

τ δ

δε
P α

δσ

a) Allen’s interval relations

P α

P α

P β

P α

b) Corresponding MRG

P β

Pα

P β

αPDτ

P α

P β

Dτ Dσ

Dσ

P α

D P β

Dσ

Dε

P β

Dτ βP

τ

P β
τ δ

Figure 2: Allen’s relations and MRG

tion that there are 12 relations between the 4 endpoints
of 2 temporal intervals. The 12 relations are listed in Ta-
ble 1. Note that there are two implicit relations that always
hold between the endpoints, namely “a.start<a.end” and
“b.start<b.end”.

For the purpose of defining multimedia synchroniza-
tion operators, it is useful to collapse the relations
“a.end<b.start” and “a.end=b.start” into one relation
“a.end≤b.start”, and the relations “a.start=b.end” and
“a.start>b.end” into one relation “a.start≥b.end”. There-
fore, we have reduced the 12 relations into 10 relations,
which are listed in Table 2.

Note that the 10 relations are not mutually exclu-
sive (Allen’s relations are). The interrelations of the 10
relations are shown in the implication table (Table 3).
The Venn diagram (Figure 3) illustrates the relationships
graphically.

From the Venn diagram, we can see that some relations
are disjoint, some of them have subset relationship, and
yet others intersect but do not form subset relationship.

2.2 Media Relation Graph

Obviously, not all the 10 relations are needed to spec-
ify time relations in multimedia. Therefore, we define
the most useful and intuitive 3 out of the 10 relations
as MRG operators. The 3 relations are “a.end≤b.start”,

a.end<b.start
a.end=b.start
a.end>b.start
a.start<b.end
a.start=b.end
a.start>b.end
a.start<b.start
a.start=b.start
a.start>b.start
a.end<b.end
a.end=b.end
a.end>b.end

Table 1: 12 endpoints-based relations

a.end≤b.start
a.end>b.start
a.start<b.end
a.start≥b.end
a.start<b.start
a.start=b.start
a.start>b.start
a.end<b.end
a.end=b.end
a.end>b.end

Table 2: 10 reduced endpoints-based relations

“a.start=b.start”, and “a.end=b.end”; they are named
SerialLink, StartSync, and EndSync, respec-
tively. For (a SerialLink b), we call a the parent andb
the child; for (a StartSync b) and (a EndSync b), we call
a andb peers. Each of the 3 operators forms a temporal
constraint between its operands.

The combination of the 3 MRG operators can express
all the 10 relations. With the help of an intermediate in-
tervali , we can express the remaining 7 relations, as illus-
trated below.

• (a EndSync i StartSync b)⇒ a.end>b.start

• (a StartSync i EndSync b)⇒ a.start<b.end

• (b SerialLink a)⇒ a.start≥b.end

• (a StartSync i SerialLink b)⇒ a.start<b.start

• (b StartSync i SerialLink a)⇒ a.start>b.start

• (a SerialLink i EndSync b)⇒ a.end<b.end

• (b SerialLink i EndSync a)⇒ a.end>b.end

3

a.end≤b.start ⇒ a.start<b.end,a.start<b.start,a.end<b.end
a.end>b.start ⇒ no info
a.start<b.end ⇒ no info
a.start≥b.end ⇒ a.end>b.start,a.start>b.start,a.end>b.end
a.start<b.start ⇒ a.start<b.end
a.start=b.start ⇒ a.end>b.start,a.start<b.end
a.start>b.start ⇒ a.end>b.start
a.end<b.end ⇒ a.start<b.end
a.end=b.end ⇒ a.end>b.start,a.start<b.end
a.end>b.end ⇒ a.end>b.start

Table 3: Implication table of the 10 relations

a.e>b.sa.s<b.e

a.s<b.s a.e>b.e

a.e<b.e a.s>b.s

a.e<=b.s a.s>=b.e

a.e=b.e a.s=b.s

Figure 3: Venn diagram of the 10 relations

Intuitively speaking, (a SerialLink b) means objects
a and b occur in sequence; and (a StartSync b) and (a
EndSync b) mean objectsa andb start and end at the same
time, respectively.

In graph context, the three operators are represented by
three kinds of edges in MRG. As shown in Figure 4a, a
one-way arrow denotes theSerialLink operator, where
the left hand side operand is the vertex at the starting
end of the arrow and the right hand side operand is the
vertex being pointed to by the arrow. Similarly, the
StartSyncoperator is denoted by a solid line segment,
and theEndSyncoperator is represented by a dashed line
segment. Note that the DAG we introduced in section 1
(Figure 1) is a simplified version of MRG; the DAG lacks
the constraintsStartSyncandEndSync.

There are two kinds of vertices in MRG. A rectangu-
lar vertex represents a regular media object and a round
vertex represents a delay object, which does not have me-
dia type, content, or spatial layout. Finally, for an MRG

c

b f

a

g

d
c.s d.s a.s

a.ec.e d.e

b.s f.s

b.e

g.s

g.e f.e

b) TVG

root.s

root.e

root

a) MRG

Figure 4: MRG vs. TVG

to model a complete HSL document, we also need aroot
vertex, which denotes the starting point of the hyperme-
dia presentation defined by the HSL document. Since an
object in an HSL document has an associated temporal in-
terval and is represented by a vertex in MRG, the operands
of the three MRG operators can be “object”, “interval”, or
“vertex”, depending on the context.

SerialLink is a best-effort operator. It tries its best
to make the transition between its two operands instan-
taneous (the “=” part of SerialLink). The “<” part of
SerialLink models nondeterministic delay, which is al-
ways minimized. For (a SerialLink b), what can cause
b.start to be delayed? First, if we have (c SerialLink b)
anda.end<c.end, then the start time ofb will be delayed
to the end time ofc. We call this “V”-shape, asa, b, c,
and the twoSerialLinkedges form a “V”. This scenario
can be extended to “W”-shape or “M”-shape, involving
any number of parents and children. In general, the start
time of an object is the latest end time (which is nondeter-
ministic) of its parents. Second, if we have (f StartSync b)
anda.end< f .start, then the start time ofb will be delayed
from the end time ofa to the start time off . Both situa-
tions are shown in Figure 4a. Note that the quantitative as-
pect (e.g.a.end<c.end anda.end< f .start) is not captured
in MRG. On the whole, if an MRG is a tree (no multiple
parents) and contains noStartSyncs, allSerialLinks are
instantaneous; i.e. “≤” becomes “=”. SerialLinkis tran-
sitive.

4

Both the StartSyncand EndSyncoperators behave
like rendezvous points. That is, if (a StartSync b), the
start time ofa andb is the greater ofstar ta andstar tb,
wherestar ta andstar tb are the start times ofa andb
without theStartSyncconstraint. The same rule applies
to EndSync. Note thatEndSyncnever affects the start
times of its operands.StartSyncandEndSyncare tran-
sitive and symmetric.

In addition to the visible components (vertices and
edges) of MRG, which are qualitative, each object may
optionally define a quantitative attributettl (time to live),
which specifies the lifetime of the object. For a text or
image object,ttl specifies how long the object will be dis-
played; for an audio or video object, it enforces how long
the object will be played, regardless of the object’s natural
content length; for a delay object, it specifies the amount
of delay time introduced by the object. Ifttl is unspeci-
fied, a text or image object will be displayed forever, and
an audio or video object will be played until the end of its
natural content.

With the definitions of SerialLink, StartSync,
EndSync, ttl , and delay object, we can now use MRG
to express Allen’s 13 interval relations. This is illustrated
in Figure 2b.

The MRG operatorsSerialLink, StartSync, and
EndSyncare generally called synchronization arcs, or
simply sync-arcs. The generalized sync-arc relates two
time instants, called source and destination. In CMIF
[14], the sync-arc modifies the destination; in the W3C
multimedia standard SMIL [19], the sync-arc modifies
the source. Both of them allow a delay to be specified
on the arc. The former delays the destination, and the
latter delays the source. TheSerialLink operator is a
sync-arc from the end point of the first object to the start
point of the second object, with a minimized nondeter-
ministic delay applied to the destination. The above three
types of sync-arcs are all binary operators.StartSync
and EndSyncoperators aren-ary sync-arcs; i.e. they
can be applied to a group of objects. This significantly
reduces the amount of specification effort required. Al-
though delays cannot be directly specified on the arcs,
they can be emulated by a combination of delay objects
andSerialLinks. For example, to specifyf starts 5 sec-
onds afterc starts, we add a delay objectd with ttl equal
to 5 seconds, and relatec, f , andd by (c StartSync d) and
(d SerialLink f) (Figure 4a).

3 Validation of MRG specifications

Temporal inconsistencies are easily introduced when au-
thoring complicated multimedia documents. There are

two major categories of inconsistencies, namely quali-
tative and quantitative. Qualitative inconsistencies are
caused by conflicting temporal relations, while quantita-
tive inconsistencies are caused by incompatible durations
[12]. Due to the simplicity of MRG and its rendezvous-
based operators, quantitative inconsistencies do not exist
in our model; i.e. quantitative consistency is guaranteed
by construction. Therefore, we only need to check for
qualitative inconsistencies.

To facilitate the detection of qualitative inconsistencies,
we first transform an MRG into a Temporal Validation
Graph (TVG), which contains two types of vertices. A
TVG “start” vertex contains one or more start points of
the vertices in MRG; a TVG “end” vertex contains one or
more end points of the vertices in MRG. The transforma-
tion satisfies the following rules:

1. For each vertexa in the MRG, there are two TVG
verticesas andae containinga.start anda.end, re-
spectively; there is also a directed dashed edge from
as to ae.

2. If (a StartSync b), a.start andb.start are in one TVG
“start” vertex.

3. If (a EndSync b), a.end andb.end are in one TVG
“end” vertex.

4. If (a SerialLink b), there is a directed solid edge from
ae to bs.

Figure 4b shows the TVG corresponding to the MRG
in Figure 4a. Note that the vertices along a path in a TVG
alternate between “start” and “end” (edges from “start”
vertices to “end” vertices are dashed, while edges from
“end” vertices to “start” vertices are solid). TVG has the
following important properties:

• If there is a path fromas to bs, thena.start<b.start.

• If there is a path fromae to be, thena.end<b.end.

• If there is a path fromas to be, thena.start<b.end.

• If there is a path fromae to bs, thena.end≤b.start.

Therefore, to ensure the validity of a temporal speci-
fication represented by an MRG, we need to follow the
following procedure:

• To add (a SerialLink b), there must be no path from
bs to ae.

• To add (a StartSync b), there must be no path from
as to bs, and no path frombs to as.

5

• To add (a EndSync b), there must be no path fromae
to be, and no path frombe to ae.

The above procedure can be implemented using stan-
dard reachability analysis (depth first search), therefore,
the running time of each addition of MRG edges is linear
(in terms of number of vertices and edges in the TVG);
hence the validation of the whole MRG is a quadratic
problem.

The consistency checking procedure is applied incre-
mentally in the authoring stage (via our authoring tool).
Since we allow the creation of HSL documents using text
editors, we also need to apply the validation algorithm be-
fore presenting an HSL document. The validation proce-
dure is applied to every temporal constraint (specified by
one of the three MRG operators) in the document. If an
inconsistent constraint is detected, the user is warned and
the constraint is simply ignored.

If there is no path from either endpoint of one object
to either endpoint of another object in a TVG, then there
is no temporal relationship between the two objects. This
usually means that the author does not care about the re-
lationship between the two – which one starts first, and so
on. If the author does care, he/she will add a constraint be-
tween the two objects in the corresponding MRG, whether
implicitly (through transitivity) or explicitly.

Finally, from the properties of TVG, we can further de-
rive two temporal overlapping rules:

• If as= bs or ae= be, thena andb overlap in time.

• If there is a path fromaeto bs, or frombeto as, then
a andb do not overlap in time.

4 Presentation scheduling

In order to ensure that media objects are presented in the
specified order, a presentation scheduler needs to be de-
veloped. There are two types of hypermedia schedulers,
namely compile-time scheduler and run-time scheduler
[5]. A compile-time scheduler is static. It fixes the start
and end times of objects, according to the temporal in-
formation specified in the hypermedia document; an opti-
mum schedule may be generated by some form of quan-
titative analysis. The compile-time scheduler may also
help prefetching, resource allocation and detection. A so-
phisticated compile-time scheduler may use heuristics and
statistics to pre-arm hyperlinks [14]. On the other hand, a
run-time scheduler is dynamic, and well-adapted to han-
dling unpredictable behaviors (such as user interactions).
It also constantly adjusts itself to match the changes in its
execution environment.

Before proceeding further with presentation schedul-
ing, let us make a distinction between various kinds of
media objects in hypermedia systems, based on their start
and end behavior:

• Bounded object
The start and end times (or the start time and dura-
tion) of the object are known. For example, text and
images withttl specified, pre-recorded (stored) au-
dio/video clips, etc. We call audio/video continuous
objects and text/image discrete objects.

• Unterminated object
The start time of the object is known, but the end
time is unknown. For example, a live feed without
a scheduled end time, a program execution (such as
simulations and CGI scripts), etc.

• Unpredictable object
The object may be started by a hyperlink and termi-
nated by another hyperlink.

For most multimedia documents, the durations (ttl) of
stored audio/video objects are not specified, so we can-
not obtain their end times at the document level. First, if
an audio/video object is remote, we could try to retrieve
the meta information through a network protocol – using a
special purpose video server which implements a protocol
call that returns the intrinsic duration of a media object.
However, we cannot rely on special protocols, as the Web
is built on top of generic protocols like HTTP. We could
also try to read the header of the media object to determine
its timing information, but this is highly media-dependent
(such as how many bytes we need to read). Moreover,
there are media types whose headers do not have the nec-
essary meta information (e.g. AVI). Even if we managed
to obtain the intrinsic duration of a stored media object,
the real play-out duration will likely vary under environ-
mental conditions, such as slow or bursty network access
and lack of client processing power. Second, if the au-
dio/video object is local, we must obtain the timing in-
formation by reading the header of the media file. As
described above, this is not always achievable. Further-
more, environmental constraints such as the speed of the
client CPU also make the duration of the stored object a
variable.

Because of the volatile nature of the Internet and the
large variety of media types, all bounded objects that do
not havettl explicitly specified become unterminated ob-
jects. Hence, multimedia presentations on the Web are
inherently nondeterministic.

Our conclusion is that the compile-time scheduler is
only useful in a closed environment, such as where me-
dia objects are all stored locally and media types are all

6

well understood by the system. Since our target environ-
ment is the Web, we choose to implement a run-time only
scheduler, which handles unterminated and unpredictable
objects, as well as bounded continuous and discrete ob-
jects.

Now let us proceed with the presentation algorithm.
First, we need to describe the states of hypermedia objects
in HPAS:

• Activated
A visual object has appeared on the screen; an aural
object has occupied an audio resource (such as an
audio channel).

• Playing
A continuous object is in progress.

• Paused
A continuous object is temporarily paused.

• Content end
A continuous object has reached the end of its natural
content.

• ttl expired
The author-specified lifetime of an object has been
reached.

• Finished
If ttl is defined, this state is the same as “ttl expired”;
otherwise, it is the same as “content end”.

• Deactivated
A visual object has disappeared from the screen; an
aural object has released its audio resource.

If the lifetime (ttl) of an object has expired before the
end of its natural content, the object is immediately cut off
from playing. What is the behavior of an object between
the finished and deactivated states? For a discrete object,
it stays on the screen until entering the deactivated state;
for a video object, its last frame stays on the screen; for
an audio object, it keeps its visual components (such as
volume controls) visible, if any.

The activation of objecta is governed by the following
rules:

1. a’s parents and the parents’EndSyncpeers have all
entered the deactivated state; and for eachb, where
b is one ofa’s StartSyncpeers,b’s parents and the
parents’EndSyncpeers have all entered the deacti-
vated state.

2. a and all of itsStartSyncpeers enter the activated
state at the same time, once Rule 1 is satisfied.

The deactivation of objecta is governed by the follow-
ing rules:

1. a and all of itsEndSyncpeers have entered the fin-
ished state.

2. a and all of itsEndSyncpeers enter the deactivated
state at the same time, once Rule 1 is satisfied.

The object activation/deactivation policies translate to
the following event-driven presentation algorithm, which
is the core of our run-time scheduler.

onContentEnd() {
if ttl unspecified

onFinished()
}

onTTLExpired() {
onFinished()

}

onFinished() {
set this object’s state to finished

for p in (EndSync peers of this object)
if p is not in the finished state

return
// now all EndSync peers are
// in the finished state

// deactivate this object
// and all of its EndSync peers,
// and activate their children if appropriate
for o in (this object and its EndSync peers) {

deactivate o

for c in (children of o)
if c satisfies the activation policy {

// implies that c’s StartSync peers
// also satisfy the activation policy
activate c and c’s StartSync peers
play c and c’s StartSync peers

}
}

}

Either one of the “onContentEnd” and “onTTLEx-
pired” event handlers may invoke “onFinished”, depend-
ing on whetherttl is defined. The event handler “onFin-
ished” tries to satisfy the deactivation policy in the first
“for” loop; it then deactivates the object and itsEndSync
peers, and activates their children if they satisfy the acti-
vation policy. Essentially, the “onFinished” event handler
traverses the MRG in a stepwise, breadth-first fashion.

Besides common functions like “play” and “pause”,
our presentation scheduler also implements the “skip” and
“jump” operations. The “skip” operation allows a user to
deactivate all currently activated objects, and activate their
children, if the children satisfy the activation policy. With

7

“skip”, the user can step through a presentation at a faster
pace. The user may also use hyperlinks to “jump” to a
future or past object in the presentation. When jumping
to a future object, the scheduler first traverses the MRG
until it finds the object, then it activates the object and its
StartSyncpeers. For a past object, the whole presen-
tation is first reset to its startup state, then the scheduler
treats the past object as a future object and advances to it.
The “jump” operation can also be used to start a presen-
tation from the middle of a document. In that case, the
starting point of the presentation is addressed by an object
ID. The scheduler simply advances to the object and starts
the presentation from there.

5 HSL document

HSL (Hypermedia Synchronization Language) is a
SGML-conforming descriptive format. Its declarative
syntax provides a simple yet powerful way to describe hy-
permedia presentations.

Let’s consider the following sample code from an HSL
document:

...
<comp> ... </comp>

<obj .../>

<comp id="Bird">
<obj id="BirdShow" src="bshow.mpg"/>
<obj id="BirdWalk" src="bwalk.mpg"/>
<obj id="delay1" ttl="4s"

seriallink=’BirdIntro’/>
<obj id="BirdIntro" src="bintro.html"

ttl="20"/>

<comp id="Seagull" seriallink=’BirdSong’/>
...

</comp>
<obj id="BirdSong" src="bsong.wav"/>

<startsync>
BirdShow BirdWalk delay1

</startsync>
<endsync>

BirdShow BirdWalk
</endsync>

</comp>
...

The<obj> element represents a (atomic) media object;
it cannot be nested. The<comp> element represents a
composite object; it groups a set of objects (atomic or
composite) together.<comp> may be nested to an ar-
bitrary depth; therefore an HSL document has a tree-like
document structure. Upon the activation of a<comp>,
the first lexical element (<obj> or <comp>) within the
<comp> will be activated. The top level construct of an

HSL document (<body>) is modelled as an implicit com-
posite object, so the presentation of the HSL document
starts with the first lexical<obj> or<comp> in the doc-
ument.

Each composite object represents exactly one MRG,
with the vertices corresponding to the immediate children
of the<comp>. The MRG may be disconnected. In that
case, it is the union of two or more connected subgraphs.
One of them is the subgraph containing the first lexical
element of the<comp>; this subgraph represents the de-
fault or main presentation; all other subgraphs represent
atemporal[8] presentations. The atemporal presentations
can only be activated by hyperlinks (see section 6). Es-
sentially, atemporal presentations allow users to choose
among different paths (alternative presentations) within a
document. In the HSL code segment above, “BirdShow”,
“BirdWalk”, “delay1”, and “BirdIntro” form the default or
main presentation, while “Seagull” and “BirdSong” form
an atemporal presentation.

6 Hyperlink

A hypermedia system must support extensive user inter-
actions throughhyperlinks. In HPAS, a hyperlink defines
a relationship between two entities, namely the source
anchor and the destination anchor. The source anchor
is denoted by a hypermedia object within an HSL doc-
ument; the destination anchor is much more flexible – it
can be any entity addressable by a URL [2]. An author
can specify the effect on the source when a hyperlink is
followed. The default behavior is “overlay”, which means
the presentation containing the source is terminated im-
mediately and replaced with the destination presentation.
Alternatively, “spawn” means the system should start an-
other window to present the destination, while keeping the
source intact; “coexist” means the system should present
the destination and the source side by side, if possible.

The destination of a hyperlink may be a future or past
object in the current presentation, as we have described
in the “jump” operation from section 4. In addition, the
destination may represent an object in an atemporal pre-
sentation. The activation of such a hyperlink starts the
atemporal presentation from the object represented by the
destination anchor.

What we have described so far is the document level
hyperlinks, which are defined by HSL. There is another
level of hyperlinks, namely object level links. Examples
include hyperlinks within a video stream, and the<a>
element within an HTML object which has been embed-
ded into an HSL document. Object level links require the
knowledge of specific media types, so their behaviors are

8

solely controlled by media handlers [18]; object level hy-
perlinks are not visible in the document layer.

7 Implementation

Advances in browser technology allow many new inter-
esting applications to be written. Plugins and ActiveX
controls extend browsers’ capabilities seamlessly, and
Java applets allow rapid development of platform inde-
pendent applications. By exploiting features in LiveCon-
nect [23] and Dynamic HTML [22], HPAS is able to reuse
existing software components such as plugins and applets
as media handlers. Continuous objects (audio/video) are
played by the Java Media Player [21] (wrapped in an
applet) and the RealPlayer [24] plugin; discrete objects
(text/image) are rendered directly in the HTML browser.

To control the browser, applets, and plugins, HPAS
uses the Java class “netscape.javascript.JSObject”, which
provides a handle to the JavaScript interpreter. Dy-
namic HTML allows HTML elements to be created,
deleted, and modified by JavaScript on the fly. There-
fore, to activate a media object, HPAS simply directs the
JavaScript interpreter to output the appropriate HTML el-
ement, and the browser will either render the HTML ele-
ment directly, or launch the appropriate plugin or applet to
render it. Here are some example HTML elements emit-
ted by HPAS:

<!-- text object -->
<object id="gold"
style="position:absolute;left:4;top:200;

width:320;height:240"
data="fish.html">
</object>

<!-- image object -->
<img id="silver"
style="position:absolute;..."
src="flower.jpg">

<!-- audio/video object -->
<object id="copper"
style="position:absolute;..."
classid="java:hpas.mhandler.jmf">
<param name="MediaFile" value="run.mpg">
</object>

<!-- RealAudio/RealVideo -->
<object id="iron"
style="position:absolute;..."
data="realworld.rpm">
</object>

To deactivate a media object, HPAS asks the JavaScript
interpreter to delete the HTML element with the corre-
sponding ID. To control a media handler (applet or plu-
gin), HPAS gets the Java object representing the media

handler from JavaScript, and then calls whatever public
methods are available (such as “play” and “pause”) from
that Java object.

HPAS is implemented as a Java applet with a set of Java
classes, which can be either stored locally or downloaded
on the fly before presenting an HSL document. Running
as a Java applet also allows multiple HSL documents to
be played in multiple browser windows at the same time.
Because HPAS runs inside HTML browsers, to present an
HSL document, an HTML wrapper is needed:

<html><head>...</head><body>
<applet name="hpas" code="hpas.AppletMain"
mayscript width="0" height="0">

<param name="src"
value="http://www.goldfish.com/demo.hsl">

</applet>

<div id="layout"
style="position:absolute;

left:100;top:200;
width:640;height:480"></div>

<!-- other HTML goes here -->
</body></html>

The<applet> element contains the invisible HPAS ap-
plet. It is invisible because HPAS controls are displayed as
popup windows, thus leaving all the space in the browser
window for media rendering. The<div> element defines
the area in which an HSL presentation will be displayed.
Typically the<div> occupies the whole browser window,
but in the above example, it starts from (100, 200) and
has the size 640×480. The<div> element must have the
ID “layout”, so that the HPAS applet may access it from
JavaScript. An author can also define other static HTML
elements in the HTML wrapper, which will have nothing
to do with HPAS.

The HTML wrapper approach also facilitates the use
of external layout. Instead of the single<div> element
with ID “layout”, the author defines a series of<div>
elements, each corresponds to an HSL object (with the
same ID). Those<div> elements define the geometry of
the corresponding HSL objects; therefore, no layout in-
formation is needed in the HSL document itself. This ex-
ternal layout mechanism allows a single HSL document
to be reused with different spatial layouts. The idea is
analogous to applying different stylesheets to an HTML
document.

Since HPAS is in the form of a Java applet, it can be
controlled by JavaScript code embedded in HTML docu-
ments. For example, to start playing an HSL presentation,
the following JavaScript statement can be used:

document.applets[’hpas’].play();

9

Figure 5: A scene from an HSL presentation

As a consequence, an author may choose to create his/her
own user interface (using a combination of HTML and
JavaScript) instead of HPAS’ default Java AWT interface.

Figure 5 shows a running HSL presentation (the sur-
rounding Netscape browser window frames and borders
are cropped out).

The W3C multimedia standard SMIL [19] addresses
many similar issues in hypermedia synchronization;
therefore, a converter has been implemented (within
HPAS applet) to present SMIL documents in the HPAS
environment. Since SMIL and HSL use different tempo-
ral models, a few SMIL features will be missing after the
conversion.

The current browser/Java-based implementation con-
sists of less than 10,000 lines of Java code, while the origi-
nal Unix/C-based implementation has around 30,000 lines
of C/C++ code. Why is there such a big difference? First,
we are now reusing existing software as media handlers;
second, Java provides many useful utilities, such as Vector
and Hashtable, which saved us from rewriting them from
scratch.

The Java version of HPAS is available at

http://www.research.digital.com/SRC/HPAS/.

8 Conclusions and future work

In the past two and a half years we have been working
on the HPAS project to support the presentation and com-
position of time-based hypermedia documents. The cur-
rent implementation provides services for integrating and
reusing pluggable components such as Java applets and
browser plugins. Hypermedia objects rendered by those
software components are synchronized both temporally
and spatially during the presentation stage of HSL doc-
uments.

The system is well suited for presenting dynamic
and interactive information on the Web, such as prod-
uct/service advertisements, distance learning and self-
guided course work, entertainment information, etc.

Currently, the authoring tool is still based on Unix/C, so
we are planning to rewrite it as a standalone Java applica-
tion. In the near future, we would like to implement Doc-
ument Object Model (DOM) [20] for HSL/SMIL. Apply-
ing DOM on top of HSL/SMIL will allow authors to cre-
ate highly interactive time-based hypermedia documents.

10

9 Acknowledgment

I am indebted to Monika Henzinger, for her suggestion on
graph transformation (from MRG to TVG), and to Yuan
Yu, for the tireless discussion on the temporal model. Fi-
nally, I would like to give special thanks to the reviewers
Paul McJones, Marc Najork, and Krishna Bharat for their
timely advice on the content and structure of the paper.

References

[1] J.F. Allen. Maintaining Knowledge about
Temporal Intervals.Communications of the
ACM, vol.26. no.11, pp. 832-843, November
1983.

[2] T. Berners-Lee, L. Masinter, and M. Mc-
Cahill. Uniform Resource Locators (URL),
RFC1738. December 1994.

[3] G. Blakowski and R. Steinmetz. A Media
Synchronization Survey: Reference Model,
Specification, and Case Studies.IEEE Jour-
nal on Selected Areas in Communications,
vol.14, no.1, pp. 5-35, January 1996.

[4] N. Borenstein and N. Freed. MIME (Multi-
purpose Internet Mail Extensions), RFC1341.
June 1992.

[5] M.C. Buchanan and P.T. Zellweger. Auto-
matic Temporal Layout Mechanisms.Pro-
ceedings of ACM Multimedia’93, pp. 341-
350, August 1993.

[6] K.S Candan, B. Prabhakaran, and V.S. Sub-
rahmanian. CHIMP: A Framework for Sup-
porting Distributed Multimedia Document
Authoring and Presentation.Proceedings of
ACM Multimedia’96, pp. 329-340, November
1996.

[7] L. Hardman, G. van Rossum, and D.C.A.
Bulterman. Structured Multimedia Author-
ing. Proceedings of ACM Multimedia’93, pp.
283-289, August 1993.

[8] L. Hardman, D.C.A. Bulterman, and G.
van Rossum. The Amsterdam Hypermedia
Model.Communications of the ACM, vol.37.
no.2, pp. 50-62, February 1994.

[9] M. Jourdan, N. Layaida, and L. Sabry-Ismail.
Time Representation and Management in

MADEUS: an Authoring Environment for
Multimedia Documents.Proceedings of Mul-
timedia Computing and Networking 1997, pp.
68-79, February 1997.

[10] C. Keramane and A. Duda. Interval Expres-
sions - a Functional Model for Interactive
Dynamic Multimedia Presentations.Proceed-
ings of IEEE ICMCS’96, pp. 283-286, June
1996.

[11] M.Y. Kim and J. Song. Multimedia Doc-
uments with Elastic Time.Proceedings of
ACM Multimedia’93, pp. 143-154, August
1993.

[12] N. Layaida and L. Sabry-Ismail. Maintaining
Temporal Consistency of Multimedia Docu-
ments Using Constraint Networks.Proceed-
ings of Multimedia Computing and Network-
ing 1996, pp. 124-135, January 1996.

[13] T.D.C. Little and A. Ghafoor. Synchroniza-
tion and Storage Models for Multimedia Ob-
jects. IEEE Journal on Selected Areas in
Communications, vol.8, no.3, pp. 413-427,
April 1990.

[14] G. van Rossum, J. Jansen, K.S. Mullender,
D.C.A. Bulterman. CMIFed: A Presentation
Environment for Portable Hypermedia Docu-
ments.Proceedings of ACM Multimedia’93,
pp. 183-188, August 1993.

[15] J. Schnepf, J.A. Konstan, and D.H.C. Du. Do-
ing FLIPS: FLexible Interactive Presentation
Synchronization.IEEE Journal on Selected
Areas in Communications, vol.14, no.1, pp.
114-125, January 1996.

[16] B. Travis and D. Waldt.The SGML Imple-
mentation Guide. Springer-Verlag, 1995.

[17] T. Wahl and K. Rothermel. Representing
Time in Multimedia Systems.Proceedings of
IEEE ICMCS’94, pp. 538-543, May 1994.

[18] J. Yu and Y. Xiang. Hypermedia Presenta-
tion and Authoring System.Proceedings of
the 6th International WWW Conference, pp.
153-164, April 1997.

[19] W3C SYMM Working Group. Synchronized
Multimedia Integration Language (SMIL).
http://www.w3.org/TR/REC-smil/.

11

[20] W3C DOM Working Group. Document Ob-
ject Model Specification.
http://www.w3.org/TR/WD-DOM/.

[21] Intel Media for Java.
http://www.intel.com/ial/jmedia/.

[22] Dynamic HTML in Netscape Communicator.
http://developer.netscape.com/library/
documentation/communicator/dynhtml/.

[23] LiveConnect, in Netscape JavaScript Guide,
chapter 5.
http://developer.netscape.com/library/
documentation/communicator/jsguide4/livecon.htm.

[24] RealPlayer 4.0.
http://www.real.com/products/player/.

12

