
SRC Technical Note
1997 - 025

October 27, 1997

Recursive object types in a logic of
object-oriented programs

K. Rustan M. Leino

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright cDigital Equipment Corporation 1997. All rights reserved

Abstract

This paper formalizes a small object-oriented programming notation. The no-
tation features imperative commands where objects can be shared (aliased), and is
rich enough to allow subtypes and recursive object types. The syntax, type check-
ing rules, axiomatic semantics, and operational semantics of the notation are given.
A soundness theorem, showing the consistency between the axiomatic and opera-
tional semantics is stated and proved. A simple corollary of the soundness theorem
demonstrates the soundness of the type system. Because of the way types, fields,
and methods are declared, no extra effort is required to handle recursive object
types.

0

0 Introduction

It is well known that C.A.R. Hoare’s logic of the basic commands of imperative, pro-
cedural languages [8] has been useful in understanding imperative languages. Object-
oriented programming languages being all the rage, one is surprised that the literature
has not produced a corresponding logic for modern object-oriented programs. The con-
trol structures of object-oriented programs are similar to those treated by Hoare, but
the data structures of object-oriented programs are more complicated, mainly because
objects are (possibly shared) references to data fields.

This paper presents a logic for an object-oriented programming notation. In an early
attempt at such a logic, Leavens gave an axiomatic semantics for an object-oriented
language [10]. However, the language he used differs from popular object-oriented lan-
guages in that it is functional rather than imperative, so the values of the fields of objects
cannot be changed. America and de Boer have given a logic for the parallel language
POOL [3]. This logic applies to imperative programs with object sharing (sometimes
called aliasing), but without subtyping and method overriding. In a logic that I will refer
to as logic AL, Abadi and I defined an axiomatic semantics for an imperative, object-
oriented language with object sharing [1], but it does not permit recursive object types.
The present logic deals with imperative features, subtyping, and recursive object types.

The literature has paid much attention to the type systems of object-oriented lan-
guages. Such papers tend to define some notion of types, the commands of some lan-
guage, the type rules and operational semantics for the commands, and a soundness
theorem linking the type system with the operational semantics. (Several examples of
this are found in Abadi and Cardelli’s book on objects [0].) But after all that effort,
one still doesn’t know how toreasonabout the programs that can be written with the
provided commands, since no axiomatic semantics is given. In addition to giving a pro-
gramming notation and its axiomatic semantics, this paper, like the paper describing
logic AL, gives an operational semantics and a soundness theorem that links the opera-
tional semantics with the axiomatic semantics. The soundness theorem directly implies
the soundness of the type system.

A complication with type systems is that types can berecursive, that is, an object
type T may contain a field of typeT or a method whose return type isT . The literature
commonly treats recursive data types by introducing some sort of fix-point operator
into the type system, good examples of which are a paper by Amadio and Cardelli on
recursive types and subtypes [2] and the book by Abadi and Cardelli. By treating types
in a dramatically different way, the present logic supports recursive object types without
the need for any special mechanism like fix-points. The inclusion of recursive object
types is the main advantage of the present logic over logic AL, which does not allow

1

them. Because the given soundness theorem implies the soundness of the type system,
the present work contributes also to the world of type systems.

In difference to the paper by Amadio and Cardelli, which considers unrestricted
recursive types, the type system in the present paper uses a restriction along the lines
of name matching. In particular, types are simply identifiers, and the subtype relation
is simply a given partial order among those identifiers. This is much like the classes
in Java [7] or the branded object types in Modula-3 [14]. But in contrast to languages
like Java or Modula-3, fields and methods are declared separately from types in the
language considered in this paper. (This is also done in Cecil [4] and Ecstatic [12].) Not
only does this simplify the treatment without loss of applicability to languages like Java
and Modula-3, but it also makes explicit the separation of concerns. For example, as the
logic shows, having to know all the fields of a particular object type is necessary only
for the allocation of a new object.

Furthermore, when a field or method is declared at some typeT , each subtype of
T automatically acquires, orinherits, that field or method. Consequently, one gets be-
havioral subtyping for free, something that can also be achieved by the inheritance dis-
cipline considered by Dhara and Leavens [5]. In contrast, subtype relations frequently
found in the literature (including the subtype relation used in logic AL), involves the
fields and methods of types. In such treatments of types, one often encounters words
like “co-variant”; there will be no further occurrence of such words in this paper.

The rest of this paper is organized as follows. Section 1 relates the present logic to
some work that has influenced it. Section 2 describes the declarations that can be used in
program environments, and Section 3 describes the commands: their syntax, axiomatic
semantics, and operational semantics. Then, Section 4 states the soundness theorem,
whose proof is given in the appendix. Section 5 discusses some limitations of the logic,
and the paper concludes with a brief summary.

1 Sources of influence

My work with Abadi has inculcated the present logic with its style and machinery. The
present logic also draws from other sources with which I am quite familiar: my the-
sis [11], my work on an object logic with Nelson [13], and the Ecstatic language [12].
This section compares the features of these sources of influence with the features of the
present logic.

My thesis includes a translation of common object-oriented language constructs into
Dijkstra’sguarded commands, an imperative language whose well-known axiomatic se-
mantics is given in terms ofweakest preconditions[6]. My attempt at an object logic

2

with Nelson is also based on guarded commands, and Ecstatic is a richer object-oriented
programming language defined directly in terms of weakest preconditions. Types, fields,
and methods in these three sources are declared in roughly the same way as in the present
logic. While these sources do provide a way to reason about object-oriented programs,
they take for granted the existence of an operational semantics that implements the ax-
iomatic semantics. The present paper includes an operational semantics for the given
commands, and establishes the correctness of the operational semantics with respect to
the axiomatic semantics by proving a soundness theorem.

Like logic AL, the present logic has few and simple commands. Each command in
logic AL operates on an object store and produces a value placed in a special register
called r . In the present logic, commands are allowed to refer to the initial value of
that register, which simplifies many of the rules. (It also makes the commands “cute”.)
Another difference is that the present logic splits logic AL’slet command into two
commands: sequential composition and binding. The separation works well because
the initial value of registerr can be used. Perhaps surprisingly, another consequence
of using the initial value ofr is that the present logic manages fine without Abadi and
Cardelli’s ς binder that appears in logic AL to bind a method’s self parameter.

2 Environments

This section starts defining the logic by describing program environments and the dec-
larations that a program environment can contain.

A program environmentis a list of declarations. A declaration introduces a type, a
field, or a method.

An identifier is said to be declared in an environment if it is introduced by a type,
field, or method declaration in the environment, or if it is one of the built-in types. I
write x 6∈ E to denote that identifierx is not declared in environmentE .

The judgementE ` � says thatE is a well-formed environment. The empty list,
written ∅ , is a valid environment.

Empty environment

∅ ` �
The next three subsections describe types, fields, and methods, and give the remaining
rules for well-formed environments.

3

2.0 Types

A typeis an identifier. There are two built-in types,Booleanand Object. (Other types,
like integers, can easily be added, but I omit them for brevity.) Types other thanBoolean
are calledobject types. A new object type is introduced by asubtyping pair, which has
the form T<:U , where T is identifier that names the new type, andU is an object
type. Like in Java,Object denotes the root of the class hierarchy. The analogue of a
subtyping pairT<:U in Java is a classT declared as a subclass of a classU :

class T extends U{ . . . } .

A type is said to be declared in an environment if it isBoolean, Object, or if it oc-
curs as the first component of a subtyping pair. To express this formally, the judgement
E `type T says thatT is a type in environmentE , and the judgementE `obj T says
that T is an object type inE . The rules for these judgements are as follows. Here and
throughout this paper, I useT and U , possibly subscripted, to denote types.

Types in environments

E `obj U T 6∈ E

(E,T<:U) ` �

Declared types (`type, `obj)

E ` �
E `obj Object

(E,T<:U,E′) ` �
(E,T<:U,E′) `obj T

E ` �
E `type Boolean

E `obj T

E `type T

The reflexive, transitive closure of the subtyping pairs forms a partial order called
thesubtyping order. The judgementE ` T <: U says thatT and U are types inE
that are ordered by the subtyping order. TypeT is then said to be asubtypeof U . The
rules are:

Subtyping order (` <:)

E `type T

E ` T <: T

(E,T<:U,E′) ` �
(E,T<:U,E′) ` T <: U

E ` T0 <: T1 E ` T1 <: T2

E ` T0 <: T2

4

2.1 Fields

A field is a map from an object type to another type. A field f is introduced by afield
triple, written f:T → U , where f is the identifier that names the field,T is an object
type called theindex typeof f , and U is a type called therange typeof f . The analogue
of a field triple f:T→ U in Java is an instance variable f of typeU declared in a class
T :

class T{ . . . U f; . . . } .

An environment can contain field triples. A field f is said to be declared in an
environmentE if it occurs in some field triple f:T → U in E . This is expressed by
the judgementE fìeld f: T→ U . The rules for these judgements are as follows. Here
and throughout, I use f , possibly subscripted, to denote field names.

Fields in environments

E `obj T E`type U f 6∈ E

(E, f: T→ U) ` �
Declared fields (fìeld)

(E, f: T→ U,E′) ` �
(E, f: T→ U,E′) fìeld f: T→ U

For a typeT0 declared in an environmentE , theset of fields of T0 in E , written
Fields(T0,E) , is the set of all field triples f:T → U such thatE fìeld f: T → U and
E ` T0 <: T .

2.2 Methods and relations

A method quadruplehas the form m:T→ U : R, where m is an identifier denoting a
method, T is an object type,U is a type, andR is arelation. The analogue of a method
quadruple m:T→ U : R in Java is a method m with return typeU declared in a class
T and given a specificationR:

class T{ . . . U m() {. . .} . . . } .

Note that the Java language does not have a place to write down the specification of a
method. In the present language, the declaration of a method includes a specification,
which specifies the effect of the method as a relation on the pre- and post-state of each
method invocation. Note also that methods take no parameters (other than the object

5

on which the method is invoked, an object commonly referred to asself). This simpli-
fies the logic without losing theoretical expressiveness, since parameters can be passed
through fields.

An environment can contain method quadruples. A method m is said to be declared
in an environmentE if it occurs in some method quadruple m:T→ U : R in E . This
is expressed by the judgementE `method m:T → U : R. Formally, the rules are as
follows. I use m , possibly subscripted, to denote methods.

Methods in environments

E `obj T E`type U E,∅ `rel R m 6∈ E

(E,m:T→ U : R) ` �

Declared methods (`method)

(E,m:T→ U : R,E′) ` �
(E,m:T→ U : R,E′) `methodm:T→ U : R

The judgementE,∅ `rel R, which will be described in more detail in Section 3.1,
essentially says thatR is a relation that may mention fields declared inE but doesn’t
mention any local program variables.

For a typeT0 declared in an environmentE , theset of methods of T0 in E , written
Methods(T0,E) , is the set of all method quadruples m:T→ U : R such thatE `method

m:T→ U : R and E ` T0 <: T .
I now describe relations in more detail. Arelation is an untyped first-order formula,

made up only of:

• the constantsfalse, true, and nil ;

• constants for field names, and the special field alloc ;

• the special variables̀r , ŕ , σ̀ , σ́ ;

• other variables (I will writev to denote a typical variable);

• equality between terms;

• applications of the functionsselectand store;

• the usual logical connectives¬ , ∧ , and ∀ .

6

The grammar for relations is thus:

R ::= e0 = e1 | ¬R | R0 ∧ R1 | 〈 ∀ x :: R 〉
e ::= false | true | nil | f

| r̀ | ŕ | σ̀ | σ́ | v
| select(e0,e1,e2) | store(e0,e1,e2,e3) .

It will be convenient to also allow6= , ∨ , ⇒ , ⇐ , ≡ , and ∃ as the usual
abbreviations of the operators above.

The semantics of a command (program statement) is defined in terms of a relation
on aregisterand a(data) store, together called astate. The variables̀r and ŕ denote the
register in the pre- and post-states of the command, respectively, andσ̀ and σ́ denote
the store in those respective states. The value of a field f for an objecte in a store
σ is denotedselect(σ,e, f) . The expressionstore(σ,e0, f,e1) represents the store that
results from setting the f field of objecte0 in storeσ to the valuee1 . The relationship
betweenselectand store is defined as follows.

〈 ∀ σ,e0,e1, f0, f1,e ::
select(store(σ,e0, f0,e),e0, f0) = e ∧
(e0 6= e1 ∨ f0 6= f1 ⇒

select(store(σ,e0, f0,e),e1, f1) = select(σ,e1, f1)) 〉
(0)

The special field alloc is used to record which objects in the data store have been allo-
cated; the alloc field of an object isfalse until the object is allocated, and istrue from
there on. The valuesfalse and true are distinct:

false 6= true . (1)

Formulas (0) and (1) are axioms that can be used in rewriting logical expressions, as we
shall see later.

3 Commands

This section describes commands: their syntax, their axiomatic semantics, and their
operational semantics.

7

3.0 Syntax

A commandhas a form dictated by the following grammar.

a ::= c constant
| v local variable
| a0 GF a1 conditional
| a0 ; a1 composition
| with v: T do a binding
| [T: f i = ci

i∈I , mj = aj
j∈J] object construction

| f field selection
| f := v field update
| m method invocation

c ::= false | true | nil

Informally, the semantics of the language is as follows. (Recall from the previous
section that commands operate on a register and a store.)

• The constantsfalse, true, and nil evaluate to themselves. That is, they have the
effect of setting the register to themselves.

• A local variable is an identifier introduced via a binding command. Every local
variable is immutable: once bound (usingwith , see below), the value of a local
variable cannot be changed. A local variable evaluates to its value.

• The conditional command evaluatesa0 if the register is initiallyfalse, and eval-
uatesa1 is the register is initiallytrue. Note that the guard of the conditional
is not shown explicitly in the command; rather, the initial value of the register is
used as the guard.

• The sequential composition ofa0 anda1 first evaluatesa0 and then evaluatesa1 .
The final values of the register and store in the evaluation ofa0 are used as the
initial values of the register and store in the evaluation ofa1 . Composition is usu-
ally written a0 ; a1 , but to keep the language looking like popular object-oriented
languages, I also allow the alternative syntaxa0 . a1 (see examples below).

• The binding commandwith v: T do a introduces a local variablev for use ina .
Its evaluation consists in evaluatinga with v bound to the initial value of the
register.

8

• The command [T: f i = ci
i∈I , mj = aj

j∈J] constructs a new object of typeT ,
and sets the register to (a reference to the fields and methods of) the object. The
command must list every field fi from the set of fields ofT . The initial value
for field fi is the given constantci . The command must also list every method
mj from the set of methods ofT . The implementation of method mj for the new
object is given as the commandaj , which receives self as the initial value of the
register and returns the method result value as the final value of the register. The
commandaj cannot reference local variables other than those it declares.

• A field can be selected (f) and updated (f := v). Both operate on the object
referenced by the initial value of the register. Selection sets the register to the f
field of the object. Update sets the f field of the object to the value ofv , leaving
the register unchanged.

• The method invocation m finds the implementation of method m for the object
referenced by the initial value of the register, and then proceeds to evaluate that
implementation. The evaluation of the implementation begins with the initial reg-
ister and store values of the invocation, and the invocation ends with the final
register and store values of the evaluation of the implementation. Other than the
initial and final register values (which encode self and the result value, respec-
tively), a method does not have explicit parameters; instead, parameters can be
passed via the fields of the object.

Here are some examples that compare the present commands with programs written
in other languages. The Modula-3 program statementif b then S else T endis written
as the command

b ; (T GF S) .

The Modula-3 expressionnew(T, f := true).f , whereT is an object type with one field
f and no methods, is written as the command

[T : f = true] ; f ,

or with the alternative syntax for composition, the command is written

[T : f = true].f .

The Modula-3 programx.f := true is written

true ; with v: Boolean do x.f := v .

9

As an example of object sharing, the command

[T: f = c] ; with v: T do with w: T do(v.f := y ; w.f)

allocates a newT object whose f field is set toc , creates two references to the object
(v and w), updates the object’s f field viav , and reads f back viaw , returningy .

The following example shows the construction of aT object whose method or
computes the disjunction of fields x and y :

[T: x = false, y = false, or= with self: T do(x ; (self.y GF true))] .

Note that although primitive, the programming notation is expressive enough to ad-
mit common object-oriented languages features like object construction, method invoca-
tion, and object sharing. The programming notation is kept minimal in order to simplify
the associated rules.

3.1 Axiomatic semantics

This subsection gives the axiomatic semantics of the commands. The judgement

E,V ` a : T→ U : R

says that commanda in command environment(E,V) can be started in a state where
the register contents has typeT , and terminates in a state where the register contents
has typeU . The execution ofa is such that its pre- and post-states satisfy the relation
R. The rules of the axiomatic semantics double as type checking rules, because with a
trivial R (such asr̀ = r̀), the judgement expresses what it means for commanda to be
well-typed.

Before giving the axiomatic semantics, some other definitions and rules pertaining
to constants, local variables, and command environments are in order.

There are three constants:false, true, and nil . The judgementE `const c: T ex-
presses that constantc has typeT .

Type of constants

E ` �
E `const false: Boolean

E ` �
E `const true: Boolean

E `obj T

E `const nil: T

A local variable declarationhas the formv: T , wherev is an identifier denoting a
local variableand T is a type. Acommand environmentis a pair (E,V) , whereE is
a program environment andV is a list of local variable declarations. A local variable

10

v is said to be declared in a command environment(E,V) if it occurs in some local
variable declarationv: T in V . This is expressed by the judgementE,V `var v: T .
Thus, in a command environment(E,V) , E contains declarations of types, fields, and
methods, whereasV contains declarations of local variables. This separation allows a
simple characterization of a command environment without local variable declarations:
(E,∅) . We saw this in the “Methods in environments” rule in Section 2.2, and we will
see it in the “Object construction” rule below and in Theorems 0, 1, and 2 in Section 4.

The judgement

E,V `rel R

says thatR is a relation whose free variables are fields or local variables declared in
(E,V) , or are among the special fields and variables alloc ,r̀ , ŕ , σ̀ , and σ́ . The
obvious formal rules for this judgement are omitted. Thus, the judgementE,∅ `rel R
used in the hypothesis of the “Methods in environments” rule in Section 2.2 implies that
R does not mention local variables.

I write x 6∈ (E,V) to denote that identifierx is not declared in command environ-
ment (E,V) . The formal rules of the above are then:

Well-formed command environment
E ` �

E,∅ ` �
E,V ` � v 6∈ (E,V) E `type T

E, (V,v: T) ` �
Declared local variables

E, (V,v: T,V′) ` �
E, (V,v: T,V′) `var v: T

Now for the rules of the axiomatic semantics. There is one rule for each command,
and one subsumption rule.

Subsumption

E,V ` a : T1→ T2 : R
E ` T0 <: T1 E ` T2 <: T3 f̀ol R ⇒ R′ E,V `rel R′

E,V ` a : T0→ T3 : R′

The judgement̀ fol P represents provability in first-order logic, under axioms (0) and
(1) from Section 2.2.

Constant
E,V ` � E `const c: T E`type U

E,V ` c : U→ T : ŕ = c ∧ σ̀ = σ́

11

Local variable
E,V `var v: T E`type U

E,V ` v : U→ T : ŕ = v ∧ σ̀ = σ́
Conditional

E,V ` a0 : Boolean→ T : R0

E,V ` a1 : Boolean→ T : R1

E,V ` a0 GF a1 : Boolean→ T : (r̀ = false⇒ R0) ∧ (r̀ = true ⇒ R1)

Composition

E,V ` a0 : T0→ T1 : R0

E,V ` a1 : T1→ T2 : R1

ř andσ̌ do not occur free inR0 or R1

E,V ` a0 ; a1 : T0→ T2 : 〈 ∃ ř, σ̌ :: R0[ŕ, σ́ := ř, σ̌] ∧ R1[r̀, σ̀ := ř, σ̌] 〉
Binding

E, (V,v: T) ` a : T→ U : R

E,V ` with v: T do a: T→ U : R[v := r̀]

Object construction

E,V ` � E `type U E `obj T
f i: Ti → Ui

i∈I are the elements ofFields(T,E)
mj: Tj → Uj : Rj

j∈J are the elements ofMethods(T,E)
E `const ci: Ui

i∈I E,∅ ` aj : T→ Uj : Rj
j∈J

E,V ` [T: f i = ci
i∈I , mj = aj

j∈J] : U→ T :
ŕ 6= nil ∧ select(σ̀ , ŕ ,alloc) = false∧
σ́ = store(· · · (store(σ̀ , ŕ,alloc, true), ŕ, f i,ci)

i∈I

Field selection
E,V ` � E fìeld f: T→ U

E,V ` f : T→ U : r̀ 6= nil ⇒ ŕ = select(σ̀ , r̀, f) ∧ σ̀ = σ́
Field update

E fìeld f: T0→ U0 E ` T1 <: T0

E,V `var v: U1 E ` U1 <: U0

E,V ` f := v : T1→ T1 : r̀ 6= nil ⇒ r̀ = ŕ ∧ σ́ = store(σ̀ , r̀, f,v)

12

Method invocation
E,V ` � E `methodm:T→ U : R

E,V ` m : T→ U : r̀ 6= nil ⇒ R

3.2 Operational semantics

The operational semantics is defined by the judgement

r, σ,µ,S` a; r ′, σ ′,µ′ .

It says that given an initialoperational state(r, σ,µ) andstack S, executing command
a terminates in operational state(r ′, σ ′,µ′) . Operational states are triples whose first
two components correspond to the register and data store components of states, as de-
fined above. The third component is amethod store. To define stacks and method stores,
I first give some definitions.

For a partial functionf from A to B , a ∈ A , and b ∈ B , I write f .(a 7→ b) to
denote the function that is likef except possibly ata , which it maps tob . A function
f ′ is called anextensionof a function f , written f ≤ f ′ , if dom(f) ⊆ dom(f ′) and, for
every a ∈ dom(f) , f (a) = f ′(a) . When ai ∈ A i∈I are distinct andbi ∈ B i∈I , I write
(ai 7→ bi

i∈I) for the partial function fromA to B that mapsai to bi for i ∈ I and is
otherwise undefined. The partial function whose domain is empty is written∅ .

Let H denote a set of givenobject names. I assumeH ∩ {false, true,nil} = ∅ . A
stackis a partial function from local variables toH ∪ {false, true,nil} . A method store
is a partial functionµ from H , such that

• µ(h)(type) is the allocated type of objecth , and

• µ(h)(m) , if defined, is the implementation of method m of objecth .

A store pairis a pair (σ,µ) whereσ is a data store andµ is a method store.
In addition to keeping the method implementations of objects, the method store

keeps the allocated type of objects. The operational semantics records this informa-
tion as it allocates a new object, but doesn’t use it subsequently. The information is used
only to state and prove the soundness theorem. By conveniently recording this informa-
tion in the operational semantics, where it causes no harm, one avoids the use of astore
type(cf. [1]). The result is a simpler statement and proof of soundness.

The rest of this subsection gives the rules of the operational semantics.

Constant

r, σ,µ,S` c; c, σ,µ

13

Local variable

r ′ = S(v)

r, σ,µ,S` v; r ′, σ,µ

Conditional

false, σ,µ,S` a0; r ′, σ ′,µ′

false, σ,µ,S` a0 GF a1; r ′, σ ′,µ′
true, σ,µ,S` a1; r ′, σ ′,µ′

true, σ,µ,S` a0 GF a1; r ′, σ ′,µ′

Composition

r, σ,µ,S` a0; r ′, σ ′,µ′ r ′, σ ′,µ′,S` a1; r ′′, σ ′′,µ′′

r, σ,µ,S` a0 ; a1; r ′′, σ ′′,µ′′

Binding

r, σ,µ,S.(v 7→ r) ` a; r ′, σ ′,µ′

r, σ,µ,S` with v: T do a; r ′, σ ′,µ′

Object construction

h ∈ H select(σ,h,alloc) = false
σ ′ = store(· · · (store(σ,h,alloc, true), h, f i,ci)

i∈I

µ′ = µ.(h 7→ (type 7→ T, mj 7→ aj
j∈J))

r, σ,µ,S` [T: f i = ci
i∈I , mj = aj

j∈J] ; h, σ ′,µ′

Field selection

r ∈ H r ′ = select(σ, r, f)

r, σ,µ,S` f ; r ′, σ,µ

Field update

r ∈ H σ ′ = store(σ, r, f,S(v))

r, σ,µ,S` f := v; r, σ ′,µ

Method invocation

r ∈ H a= µ(r)(m) r, σ,µ,∅ ` a; r ′, σ ′,µ′

r, σ,µ,S` m; r ′, σ ′,µ′

14

4 Soundness

This section states a soundness theorem, which proves the correctness of the operational
semantics with respect to the axiomatic semantics. I first motivate the soundness the-
orem, and then state it together with an informal explanation. The appendix provides
some additional formal definitions and gives the proof.

As a gentle step in presenting the full soundness theorem, consider the following
theorem.

Theorem 0. If one can derive bothE,∅ ` a : Object→ Boolean: ŕ = true and
nil, σ0,∅,∅ ` a; r, σ,µ , then r = true.

Here and in the next two theorems,σ0 denotes a data store that satisfies

〈 ∀h ∈ H :: select(σ0,h,alloc) = false〉 .

The theorem says that if in an environmentE one can prove that a commanda satisfies
the transition relatiońr = true, then any terminating execution of commanda from a
“reset” state ends with a register value oftrue.

A simple theorem about the result type of a command is the following.

Theorem 1. If one can deriveE,∅ ` a : Object→ T : R and E `obj T and
nil, σ0,∅,∅ ` a; r, σ,µ , then the valuer has typeT , that is, eitherr = nil or
E ` µ(r)(type) <: T .

This theorem says that if one can prove, using the axiomatic semantics, that a command
a has final typeT , whereT is an object type, and one can show that, operationally, the
program terminates with a register value ofr , then r is a value of typeT (that is, it is
nil or its allocated type is a subtype ofT). This theorem shows the soundness of the
type system’s treatment of object types.

An interesting theorem that says something about the final object store of a program
is the following.

Theorem 2. If one can derive bothE,∅ ` a : Object→ T : R and nil, σ0,∅,∅ `
a; r, σ,µ , then R[r̀, σ̀ , ŕ , σ́ := nil, σ0, r, σ] holds as a first-order predicate.

This theorem says that if one can prove the two judgements abouta , then relationR
actually describes the relation between the initial and final states.

To prove the theorems above, one needs to prove something stronger. I call the
stronger theorem, of which the theorems above are corollaries, the main theorem. The
theorem is stated as follows.

15

Main Theorem. If

(2) E,V ` a : T→ U : R , and
(3) r, σ,µ,S` a; r ′, σ ′,µ′ , and
(4) E, σ,µ r : T , and
(5) E σ,µ , and
(6) E,V, σ,µ S ,

then

(7) r, σ, r ′ , σ ′,S R , and
(8) (σ,µ) � (σ ′,µ′) , and
(9) E, σ ′,µ′ r ′ : U , and
(10) E σ ′,µ′ .

In the antecedent of this theorem, (2) and (3) express the judgements that have been
derived for some commanda . One can hope to say something interesting in the con-
clusion of the theorem only if the execution under consideration is from a “reasonable”
state(r, σ,µ) and uses a “reasonable” stackS. Therefore, judgement (4) states thatr
is a value of typeT , judgement (5) says that store pair(σ,µ) matchesthe environment
E , and judgement (6) says thatS is awell-typed stack.

In the conclusion of the theorem, (7) expresses thatR does indeed describe the
relation between the initial and final states of the execution, and (9) expresses thatr ′

has typeU . In addition, to use the theorem as a sufficiently strong induction hypothesis
in the proof, (8) says that(σ,µ) is continued by(σ ′,µ′) . This property expresses a
kind of monotonicity that holds between two store pairs, the first of which precedes the
other in some execution. Also, judgement (10) says that(σ ′,µ′) , like the initial store
pair, matches the environment.

By removing (7) from the conclusion of the main theorem, one gets a corollary that
expresses that the type system is sound with respect to the operational semantics. Such
a corollary follows directly from the main theorem, but could also be proved directly in
the same way that I prove the main theorem in the appendix.

5 Limitations of the logic

In this section, I discuss some limitations of the logic.
The object construction command is rather awkward. Because it lists method imple-

mentations, a method cannot directly construct objects whose type and method imple-
mentations are the same as for self. Instead, one can declare object types representing

16

classes, as is done, for example, by Abadi and Cardelli [0]. As an example, consider
an object typeSeq representing sequences of elements as a linked list. IfSeq has a
method extend that appends a node to the end of the linked list, then one cannot write:

[Seq: . . . ,
extend= with self: Seq do. . . [Seq: . . .] . . .

] ,

because the inner object construction command must textually contain whatever the
outer one does. Rather, what works is to introduce an object typeSeqClasswith a
method new that returns a new instance of typeSeq, and add a field class toSeq. One
can then write:

[SeqClass: new= with selfclass: SeqClass do
[Seq: class= nil, . . . ,

extend= with self: Seq do. . . self.class.new . . .

].class := selfclass
].new .

One can consider modifying the present logic to remove the limitation from the ob-
ject construction command. For example, like in common class-based object-oriented
languages, one can extend the program environment to include method implementa-
tions. One must then have a “link-time” check that ensures that every method that
may be called by the program at run-time has an implementation. Or, like in common
object-based languages, one can add a construct for cloning objects or their method
implementations.

Another omission from the present logic is the ability to directly test whether or not
a field is nil . To work around this omission, one can introduce a boolean field fIsNil
for each object-valued field f , and then program so as to maintain the invariant

fIsNil = true ≡ f = nil .

Alternatively, a straightforward change in the logic would add a command that tests for
nil , or add more general expression commands.

A logic of programs provides a connection between programs and their specifica-
tions. In the present logic, method declarations contain specifications that are given
simply as transition relations. Transition relations are not practically suited for writing
down method specifications, because they are painfully explicit. Specification features
like modifies clauses and abstract fields would remedy the situation, but lie outside the
scope of this paper. To mention some work in this area, Lano and Haughton [9] have

17

surveyed object-oriented specifications, and my thesis [11] shows how to deal with mod-
ifies clauses and data abstraction in modular, object-oriented programs. The logic for
POOL [3] includes some specification features that can be used to state properties of
recursive data structures.

6 Summary

I have presented a sound logic for object-oriented programs whose commands are im-
perative and whose objects are references to data fields. The programming notation
requires that types, fields, and methods be declared in the environment before they can
be used in a program. The main contributions of the paper are the logic itself, the sound-
ness theorem, and the way that types are handled, which makes the subtype relation and
the admission of recursive object types trivial.

Acknowledgements

I am grateful to Mart´ın Abadi, Luca Cardelli, Greg Nelson, and Raymie Stata for helpful
comments on the logic and the presentation thereof.

18

A Proof of the main soundness theorem

A.0 Definitions

This subsection gives the definitions of the judgements used in the soundness theorem.

Definition of holds. Judgementr, σ, r ′, σ ′,S R says thatR is a relation that,
when interpreted usingr , σ , r ′ , σ ′ , and S, is a provable first-order formula. The
judgement is defined as̀fol R[r̀, σ̀ , ŕ, σ́ := r, σ, r ′, σ ′][S] , where [S] denotes the fol-
lowing substitution: for everyv ∈ dom(S) , every free occurrence of variablev is
replaced by the result of the function applicationS(v) . I assume throughout that the
domain of S does not contain values fromH ∪ {false, true,nil} (which I will denote
h , c , or r , possibly primed), field names (like f or alloc), nor data stores (which I will
denoteσ , possibly primed).

For example, to deriver, σ, r ′, σ ′,S select(σ́ , r̀, f) = v , where v ∈ dom(S) ,
one must establish̀ fol select(σ ′, r, f) = x , whereS(v) = x (I will often write simply

f̀ol select(σ ′, r, f) = S(v)). Here, I assumed that none ofσ ′ , r , or f is in the domain
of S.

Definition of � . A store pair (σ,µ) is said to becontinued bya store pair
(σ ′,µ′) , written (σ,µ) � (σ ′,µ′) , when

C0 for every h ∈ H , select(σ,h,alloc) = true ⇒ select(σ ′,h,alloc) = true, and

C1 µ ≤ µ′ .

Condition C0 says that any object allocated inσ remains allocated inσ ′ , and C1 says
that µ′ contains the same type information and method implementations asµ does
for those objects indom(µ) , but µ′ may also contain information about objects not in
dom(µ) .

Note that� is reflexive and transitive.

Definition of has-type. For any environmentE , store pair(σ,µ) , value r , and
type T , the judgement

E, σ,µ r : T

says thatT is a type in E and that r is allocated and has typeT in (σ,µ) . The
judgement is derived using the following rules:

H0
E `constc: T

E, σ,µ c : T

19

H1
E `obj T select(σ, r,alloc) = true µ(r)(type) = T

E, σ,µ r : T

H2
E, σ,µ r : U E ` U <: T

E, σ,µ r : T .

Note that the judgementE, σ,µ r : T is monotonic in(σ,µ) with respect to the
� ordering: fromE, σ,µ r : T and (σ,µ) � (σ ′,µ′) , it follows that E, σ ′,µ′
r : T . The judgement is also monotonic inT with respect to the<: ordering: from
E, σ,µ r : T and E ` T <: U , it follows that E, σ,µ r : U .

Observe that any derivation ofE, σ,µ r : T consists of exactly one application
of H0 or H1, followed by some number of applications of H2. For any object typeT ,
rule H1 (not H0) is applied whenr ∈ H , sinceH does not containnil . We arrive at
the following lemma, which will show to be useful in the proof:

Lemma about has-type.If E `obj T , E, σ,µ r : T , and r ∈ H , then
select(σ, r,alloc) = true and E ` µ(r)(type) <: T .

Definition of matching. For any environmentE and store pair(σ,µ) , the judge-
ment E σ,µ says that(σ,µ) matchesenvironmentE . The matching judgement
holds when all of the following hold:

M0 for every h ∈ H , select(σ,h,alloc) = true ≡ h ∈ dom(µ)

M1 for every h ∈ dom(µ) , µ(h)(type) is defined

M2 for all h , f , T , U , such thath ∈ H , select(σ,h,alloc) = true, and f:T→ U ∈
Fields(µ(h)(type),E) ,

E, σ,µ select(σ,h, f) : U

M3 for all h , m , T , U , R, such thath ∈ H , select(σ,h,alloc) = true, and m:T→
U : R∈ Methods(µ(h)(type),E) ,

E,∅ ` µ(h)(m) : T→ U : R .

Rule M0 states that the objects allocated inσ are the objects about whichµ contains
information, and M1 states thatµ contains type information for each of those objects.
Rule M2 says that every declared field of an allocated object has the appropriate type.

20

Rule M3 says that every declared method of an allocated object has an implementation
in µ that satisfies the declared method specification.

Definition of well-typed stack. The definition of a well-typed stack uses a func-
tion ids. For V a list of local variable declarations (likev: T), ids(V) denotes the set
of identifiers (that is,v) of those declarations.

For any environment(E,V) , store pair(σ,µ) , and stackS, the judgementE,V,
σ,µ S says thatS is well-typedwith respect toV . The judgement holds when

S0 dom(S) = ids(V) , and

S1 E, σ,µ S(v) : T holds for everyv: T pair in V .

Note that, because has-type is monotonic in(σ,µ) , so is the well-typed stack judge-
ment.

A.1 Proof

This subsection gives the proof of the main soundness theorem. The proof is by in-
duction on the lexicographic pair(d,e) , where d is the derivation of the operational-
semantics judgement about commanda , and e is the axiomatic-semantics derivation
of the judgement abouta . The proof is a case study of the last rule applied in derivation
e.

Subsumption. We’re given

E,V ` a : T0→ T3 : R′ r, σ,µ,S` a; r ′, σ ′,µ′

E, σ,µ r : T0 E σ,µ E,V, σ,µ S .

Since this case considers subsumption, we are given that the first of these formulas has
been derived from

E,V ` a : T1→ T2 : R
E ` T0 <: T1 E ` T2 <: T3 f̀ol R ⇒ R′ E,V `rel R′ .

We attempt to invoke the induction hypothesis withT,U,R := T1,T2,R. To do so, we
must first establish

E, σ,µ r : T1 ,

which follows from E, σ,µ r : T0 , E ` T0 <: T1 , and the monotonicity of has-type.
By the induction hypothesis, we then have

r, σ, r ′, σ ′,S R (σ,µ) � (σ ′,µ′) E, σ ′,µ′ r ′ : T2 E σ ′,µ′ .

21

Now for our proof obligations:

• r, σ, r ′ , σ ′,S R′ . Follows from r, σ, r ′, σ ′,S R, f̀ol R ⇒ R′ , and the
monotonicity of holds.

• (σ,µ) � (σ ′,µ′) . Follows directly from induction hypothesis.

• E, σ ′,µ′ r ′ : T3 . Follows from E, σ ′,µ′ r ′ : T2 , E ` T2 <: T3 , and the
monotonicity of has-type.

• E σ ′,µ′ . Follows directly from induction hypothesis.

Constant. In this case and all remaining cases, the axiomatic semantics rule consid-
ered in the case determines the shape of the command, which in turn determines which
kind of operational semantics rule has been applied.

We’re given

E,V ` c : U→ T : ŕ = c ∧ σ̀ = σ́ r, σ,µ,S` c; c, σ,µ
E, σ,µ r : U E σ,µ E,V, σ,µ S ,

derived from

E,V ` � E `const c: T E`type U .

We prove:

• r, σ,c, σ,S ŕ = c ∧ σ̀ = σ́
= f definition of holds g

f̀ol (ŕ = c ∧ σ̀ = σ́)[r̀, σ̀ , ŕ, σ́ := r, σ,c, σ][S]
= f substitution g

f̀ol c= c ∧ σ = σ ,

which is a tautology.

• (σ,µ) � (σ,µ) . � is reflexive.

• E, σ,µ c : T . Follows fromE `constc: T and H0 of the definition of has-type.

• E σ,µ . Given.

22

Local variable. We’re given

E,V ` v : U→ T : ŕ = v ∧ σ̀ = σ́ r, σ,µ,S` v; r ′, σ,µ
E, σ,µ r : U E σ,µ E,V, σ,µ S ,

where the axiomatic-semantics judgement has been derived from

E,V `var v: T E`type U

and the operational-semantics judgement has been derived from

r ′ = S(v) .

We prove:

• r, σ, r ′, σ,S ŕ = v ∧ σ̀ = σ́
= f definition of holds g

f̀ol (ŕ = v ∧ σ̀ = σ́)[r̀, σ̀ , ŕ, σ́ := r, σ, r ′ , σ][S]
= f substitution g

f̀ol r ′ = S(v) ∧ σ = σ ,

which follows from r ′ = S(v) .

• (σ,µ) � (σ,µ) . � is reflexive.

• E, σ,µ r ′ : T . Follows from r ′ = S(v) , E,V `var v: T , and the definition of
E,V, σ,µ S.

• E σ,µ . Given.

Conditional. There are two subcases, because the operational-semantics judgement
can be derived from one of two rules. I show the proof for thefalse-rule; the true-rule
is similar. We’re given

E,V ` a0 GF a1 : Boolean→ T : (r̀ = false⇒ R0) ∧ (r̀ = true ⇒ R1)

false, σ,µ,S` a0 GF a1; r ′, σ ′,µ′

E, σ,µ false: Boolean E σ,µ E,V, σ,µ S ,

derived from

E,V ` a0 : Boolean→ T : R0 E,V ` a1 : Boolean→ T : R1

23

and

false, σ,µ,S` a0; r ′, σ ′,µ′ .

By the induction hypothesis applied ona0 , we have:

false, σ, r ′, σ ′,S R0 (σ,µ) � (σ ′,µ′)
E, σ ′,µ′ r ′ : T E σ ′,µ′ .

We prove:

• false, σ, r ′, σ ′,S (r̀ = false ⇒ R0) ∧ (r̀ = true ⇒ R1)

= f definition of holds g

f̀ol ((r̀ = false ⇒ R0) ∧ (r̀ = true ⇒ R1))

[r̀, σ̀ , ŕ, σ́ := false, σ, r ′, σ ′][S]
= f substitution g

f̀ol (false= false ⇒ R0[r̀, σ̀ , ŕ , σ́ := false, σ, r ′, σ ′][S]) ∧
(false= true ⇒ R1[r̀, σ̀ , ŕ, σ́ := false, σ, r ′, σ ′][S])

= f propositional calculus, using axiom (1):false 6= true g

f̀ol R0[r̀, σ̀ , ŕ , σ́ := false, σ, r ′, σ ′][S]
= f definition of holds g

false, σ, r ′, σ ′,S R0 ,

which comes directly from the induction hypothesis.

• (σ,µ) � (σ ′,µ′) . Directly from induction hypothesis.

• E, σ ′,µ′ r ′ : T . Directly from induction hypothesis.

• E σ ′,µ′ . Directly from induction hypothesis.

Composition. We’re given

E,V ` a0 ; a1 : T0→ T2 : 〈 ∃ ř, σ̌ :: R0[ŕ, σ́ := ř, σ̌] ∧ R1[r̀, σ̀ := ř, σ̌] 〉
r, σ,µ,S` a0 ; a1; r ′′, σ ′′,µ′′

E, σ,µ r : T0 E σ,µ E,V, σ,µ S ,

derived from

E,V ` a0 : T0→ T1 : R0 E,V ` a1 : T1→ T2 : R1

ř andσ̌ do not occur free inR0 or R1

24

and

r, σ,µ,S` a0; r ′, σ ′,µ′ r ′, σ ′,µ′,S` a1; r ′′, σ ′′,µ′′ .

Applying the induction hypothesis ona0 , we get:

r, σ, r ′, σ ′,S R0 (σ,µ) � (σ ′,µ′)
E, σ ′,µ′ r ′ : T1 E σ ′,µ′ .

We wish to invoke the induction hypothesis also ona1 . This requires that we first
establish

E, σ ′,µ′ r ′ : T1 E σ ′,µ′ E,V, σ ′ ,µ′ S .

The first two of these judgements come directly from the application of the induction
hypothesis ona0 ; the third follows fromE,V, σ,µ S, (σ,µ) � (σ ′,µ′) , and the
monotonicity of well-typed stacks. By the induction hypothesis applied toa1 , we now
have:

r ′, σ ′, r ′′, σ ′′,S R1 (σ ′,µ′) � (σ ′′,µ′′)
E, σ ′′,µ′′ r ′′ : T2 E σ ′′,µ′′ .

Now for the proof obligations:

• r, σ, r ′′, σ ′′,S 〈 ∃ ř, σ̌ :: R0[ŕ, σ́ := ř, σ̌] ∧ R1[r̀, σ̀ := ř, σ̌] 〉
= f definition of holds g

f̀ol 〈 ∃ ř, σ̌ :: R0[ŕ, σ́ := ř, σ̌] ∧ R1[r̀, σ̀ := ř, σ̌] 〉
[r̀, σ̀ , ŕ, σ́ := r, σ, r ′′, σ ′′][S]

⇐ f instantiateř, σ̌ := r ′, σ ′ , since substitution is monotonicg
f̀ol (R0[ŕ, σ́ := ř, σ̌] ∧ R1[r̀, σ̀ := ř, σ̌])[ř, σ̌ := r ′, σ ′]

[r̀, σ̀ , ŕ, σ́ := r, σ, r ′′, σ ′′][S]
= f substitution, sinceR0 and R1 are free ofř and σ̌ g

f̀ol R0[r̀, σ̀ , ŕ , σ́ := r, σ, r ′, σ ′][S] ∧ R1[r̀, σ̀ , ŕ, σ́ := r ′, σ ′, r ′′, σ ′′][S]
= f satisfiability distributes over∧ g

f̀ol R0[r̀, σ̀ , ŕ , σ́ := r, σ, r ′, σ ′][S]
f̀ol R1[r̀, σ̀ , ŕ , σ́ := r ′, σ ′, r ′′, σ ′′][S]

= f definition of holds, twice g
r, σ, r ′, σ ′,S R0

r ′, σ ′, r ′′, σ ′′,S R1 ,

which come directly from the induction hypotheses.

25

• (σ ′,µ′) � (σ ′′,µ′′) . Follows from (σ,µ) � (σ ′,µ′) and (σ ′,µ′) � (σ ′′,µ′′) ,
and transitivity of� .

• E, σ ′′,µ′′ r ′′ : T2 . Follows directly from the induction hypothesis applied to
a1 .

• E σ ′′,µ′′ . Follows directly from the induction hypothesis applied toa1 .

Binding. We’re given

E,V ` with v: T do a: T→ U : R[v := r̀]
r, σ,µ,S` with v: T do a; r ′, σ ′,µ′

E, σ,µ r : T E σ,µ E,V, σ,µ S ,

derived from

E, (V,v: T) ` a : T→ U : R

and

r, σ,µ,S.(v 7→ r) ` a; r ′, σ ′,µ′ .

We’d like to apply the induction hypothesis on commanda , transition relationR, com-
mand environment(E, (V,v: T)) , and stackS.(v 7→ r) . In order to do so, we must first
establish

E, (V,v: T), σ,µ S.(v 7→ r) ,

which follows from E,V, σ,µ S, E, σ,µ (S.(v 7→ r))(v) : T , and the definition
of well-typed stacks, since(S.(v 7→ r))(v) = r and we’re givenE, σ,µ r : T .
Invoking the induction hypothesis as planned, we obtain:

r, σ, r ′, σ ′,S.(v 7→ r) R (σ,µ) � (σ ′,µ′)
E, σ ′,µ′ r ′ : U E σ ′,µ′ .

Now:

• r, σ, r ′, σ ′,S R[v := r̀]
= f definition of holds g

f̀ol R[v := r̀][r̀, σ̀ , ŕ, σ́ := r, σ, r ′ , σ ′][S]
= f v does not occur free inR[v := r̀][r̀, σ̀ , ŕ, σ́ := r, σ, r ′, σ ′] , the

argument to [S] g

26

f̀ol R[v := r̀][r̀, σ̀ , ŕ, σ́ := r, σ, r ′ , σ ′][S.(v 7→ r)]
⇐ f substitution is weakening and monotonicg

f̀ol R[r̀, σ̀ , ŕ, σ́ := r, σ, r ′, σ ′][S.(v 7→ r)]
= f definition of holds g

r, σ, r ′, σ ′,S.(v 7→ r) R ,

which comes directly from the induction hypothesis.

• (σ,µ) � (σ ′,µ′) . Directly from induction hypothesis.

• E, σ ′,µ′ r ′ : U . Directly from induction hypothesis.

• E σ ′,µ′ . Directly from induction hypothesis.

Object construction. We’re given

E,V ` [T: f i = ci
i∈I , mj = aj

j∈J] : U→ T :
ŕ 6= nil ∧ select(σ̀ , ŕ ,alloc) = false∧
σ́ = store(· · · (store(σ̀ , ŕ,alloc, true), ŕ, f i,ci)

i∈I

r, σ,µ,S` [T: f i = ci
i∈I , mj = aj

j∈J] ; h, σ ′,µ′

E, σ,µ r : U E σ,µ E,V, σ,µ S ,

derived from

E,V ` � E `type U E `obj T
f i: Ti → Ui

i∈I are the elements ofFields(T,E)
mj: Tj → Uj : Rj

j∈J are the elements ofMethods(T,E)
E `const ci: Ui

i∈I E,∅ ` aj : T→ Uj : Rj
j∈J

and

h ∈ H select(σ,h,alloc) = false
σ ′ = store(· · · (store(σ,h,alloc, true), h, f i,ci)

i∈I

µ′ = µ.(h 7→ (type 7→ T, mj 7→ aj
j∈J)) .

We prove:

• r, σ,h, σ ′,S ŕ 6= nil ∧ select(σ̀ , ŕ,alloc) = false∧
σ́ = store(· · · (store(σ̀ , ŕ,alloc, true), ŕ, f i,ci)

i∈I

= f definition of holds g

27

f̀ol (ŕ 6= nil ∧ select(σ̀ , ŕ,alloc) = false ∧
σ́ = store(· · · (store(σ̀ , ŕ,alloc, true), ŕ, f i,ci)

i∈I)

[r̀, σ̀ , ŕ, σ́ := r, σ,h, σ ′][S]
= f substitution g

f̀ol h 6= nil ∧ select(σ,h,alloc) = false ∧
σ ′ = store(· · · (store(σ,h,alloc, true), h, f i,ci)

i∈I ,

which follows directly fromnil 6∈ H and the way the hypothesis is derived.

• (σ,µ) � (σ ′,µ′) . Re C0: For anyk ∈ H , select(σ,k,alloc) differs from
select(σ ′,k,alloc) only for k = h , and we’re givenselect(σ,h,alloc) = false.
Re C1: To proveµ ≤ µ′ , it suffices to showh 6∈ dom(µ) , which follows from
select(σ,h,alloc) = false and M0 in the definition of the given judgementE

σ,µ .

• E, σ ′,µ′ h : T . Follows from the factsE `obj T , select(σ ′,h,alloc) = true,
µ′(h)(type) = T , and H1 in the definition of has-type.

• E σ ′,µ′ . Follows from E σ,µ and the following observations. Re M0:
We haveselect(σ ′,h,alloc) = true and h ∈ dom(µ′) . Re M1: µ′(h)(type) is
defined. Re M2: For each appropriate fi , we haveselect(σ ′,h, f i) = ci , so we
need to showE, σ ′,µ′ ci : Ui , which follows from H0 andE `const ci : Ui .
Re M3: For each appropriate mj , we haveµ′(h)(mj) = aj , and we’re given
E,∅ ` aj : T→ Uj : Rj .

Field selection. We’re given

E,V ` f : T→ U : r̀ 6= nil ⇒ ŕ = select(σ̀ , r̀, f) ∧ σ̀ = σ́
r, σ,µ,S` f ; r ′, σ,µ
E, σ,µ r : T E σ,µ E,V, σ,µ S ,

derived from

E,V ` � E fìeld f: T→ U

and

r ∈ H r ′ = select(σ, r, f) .

Now:

28

• r, σ, r ′, σ,S r̀ 6= nil ⇒ ŕ = select(σ̀ , r̀, f) ∧ σ̀ = σ́
= f definition of holds g

f̀ol (r̀ 6= nil ⇒ ŕ = select(σ̀ , r̀ , f) ∧ σ̀ = σ́)[r̀, σ̀ , ŕ , σ́ := r, σ, r ′, σ][S]
= f substitution g

f̀ol r 6= nil ⇒ r ′ = select(σ, r, f) ∧ σ = σ ,

which holds becauser ∈ H , nil 6∈ H , and r ′ = select(σ, r, f) .

• (σ,µ) � (σ,µ) . � is reflexive.

• E, σ,µ r ′ : U . From the wayE fìeld f: T → U was derived, we have
E `obj T . Thus, fromE, σ,µ r : T , r ∈ H , and the lemma about has-type,
we haveselect(σ, r,alloc) = true and E ` µ(r)(type) <: T . Thus by M2 in the
definition of the givenE σ,µ , we haveE, σ,µ select(σ, r, f) : U . Since
r ′ = select(σ, r, f) , the proof obligation follows.

• E σ,µ . Given.

Field update. We’re given

E,V ` f := v : T1→ T1 : r̀ 6= nil ⇒ r̀ = ŕ ∧ σ́ = store(σ̀ , r̀, f,v)
r, σ,µ,S` f := v; r, σ ′,µ
E, σ,µ r : T1 E σ,µ E,V, σ,µ S ,

derived from

E fìeld f: T0→ U0 E ` T1 <: T0

E,V `var v: U1 E ` U1 <: U0

and

r ∈ H σ ′ = store(σ, r, f,S(v)) .

Now:

• r, σ, r, σ ′ ,S r̀ 6= nil ⇒ r̀ = ŕ ∧ σ́ = store(σ̀ , r̀, f,v)
= f definition of holds g

f̀ol (r̀ 6= nil ⇒ r̀ = ŕ ∧ σ́ = store(σ̀ , r̀, f,v))[r̀, σ̀ , ŕ , σ́ := r, σ, r, σ ′][S]
= f substitution g

f̀ol r 6= nil ⇒ r = r ∧ σ ′ = store(σ, r, f,S(v)) ,

which follows from the way the hypothesis is derived.

29

• (σ,µ) � (σ ′,µ) . Follows from the fact that, for allh , select(σ,h,alloc) =
select(σ ′,h,alloc) .

• E, σ ′,µ r : T1 . Follows from E, σ,µ r : T1 , (σ,µ) � (σ ′,µ) , and the
monotonicity of has-type.

• E σ ′,µ . Because ofE σ,µ and the observation above that no alloc field
has changed betweenσ and σ ′ , it suffices to showE, σ ′,µ select(σ ′, f , f) :
U0 , which we do by the following calculation that starts from two givens:

E,V, σ,µ S E,V `var v: U1

⇒ f definition of well-typed stackg
E, σ,µ S(v) : U1

⇒ f E ` U1 <: U0 and H2 g

E, σ,µ S(v) : U0

⇒ f (σ,µ) � (σ ′,µ) and monotonicity of has-typeg
E, σ ′,µ S(v) : U0

= f select/ store axiom (0) g

E, σ ′,µ select(store(σ, r, f,S(v)), r, f) : U0

= f σ ′ = store(σ, r, f,S(v)) g

E, σ ′,µ select(σ ′, r, f) : U0 .

Method invocation. We’re given

E,V ` m : T→ U : r̀ 6= nil ⇒ R r, σ,µ,S` m; r ′, σ ′,µ′

E, σ,µ r : T E σ,µ E,V, σ,µ S ,

derived from

E,V ` � E `methodm:T→ U : R

and

r ∈ H a= µ(r)(m) r, σ,µ,∅ ` a; r ′, σ ′,µ′ .

We wish to apply the induction hypothesis on commanda , relationR, and withV,S :=
∅,∅ . This requires that we first establishE,∅, σ,µ ∅ , which holds trivially, and

30

E,∅ ` a : T→ U : R
⇐ f a= µ(r)(m) , and M3 of E σ,µ g

select(σ, r,alloc) = true r ∈ H
m:T→ U : R∈ Methods(µ(r)(type),E) ,

⇐ f E `methodm:T→ U : R and definition ofMethods g

select(σ, r,alloc) = true r ∈ H
E ` µ(r)(type) <: T

⇐ f lemma about has-typeg
E, σ,µ r : T E`obj T r ∈ H .

The first of these is given, the second follows from the wayE `methodm:T→ U : R is
derived, and the third follows from the way the given operational-semantics judgement
is derived.

We now apply the induction hypothesis as planned, and get:

r, σ, r ′, σ ′,∅ R (σ,µ) � (σ ′,µ′) E, σ ′,µ′ r ′ : U E σ ′,µ′ .

Now for the proof obligations:

• r, σ, r ′, σ ′,S r̀ 6= nil ⇒ R
= f definition of holds g

f̀ol (r̀ 6= nil ⇒ R)[r̀, σ̀ , ŕ , σ́ := r, σ, r ′, σ ′][S]
⇐ f substitution is monotonicg

f̀ol R[r̀, σ̀ , ŕ, σ́ := r, σ, r ′, σ ′][S]
⇐ f the substitution function [S] is monotonic in the domain ofS g

f̀ol R[r̀, σ̀ , ŕ, σ́ := r, σ, r ′, σ ′][∅]
= f definition of holds g

r, σ, r ′, σ ′,∅ R ,

which comes directly from the induction hypothesis.

• (σ,µ) � (σ ′,µ′) . Directly from induction hypothesis.

• E, σ ′,µ′ r ′ : U . Directly from induction hypothesis.

• E σ ′,µ′ . Directly from induction hypothesis.

And that completes all cases of the proof.

31

References

[0] Martı́n Abadi and Luca Cardelli.A theory of objects. Springer-Verlag, 1996.

[1] Martı́n Abadi and K. Rustan M. Leino. A logic of object-oriented programs.
In Theory and Practice of Software Development: Proceedings / TAPSOFT ’97,
7th International Joint Conference CAAP/FASE, volume 1214 ofLecture Notes in
Computer Science, pages 682–696. Springer, April 1997.

[2] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types.ACM Transac-
tions on Programming Languages and Systems, 15(4):575–631, September 1993.

[3] Pierre America and Frank de Boer. Reasoning about dynamically evolving process
structures.Formal Aspects of Computing, 6(3):269–316, 1994.

[4] Craig Chambers. The Cecil language: Specification & rationale, version 2.1,
March 7, 1997. Available fromhttp://www.cs.washington.edu/re
search/projects/cecil/www/Papers/cecil-spec.html , 1997.

[5] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping
through specification inheritance. Technical Report TR #95-20c, Iowa State Uni-
versity, Department of Computer Science, 1997.

[6] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood
Cliffs, NJ, 1976.

[7] James Gosling, Bill Joy, and Guy Steele.The JavaTM Language Specification.
Addison-Wesley, 1996.

[8] C. A. R. Hoare. An axiomatic basis for computer programming.Communications
of the ACM, 12(10):576–580,583, October 1969.

[9] Kevin Lano and Howard Haughton.Object-Oriented Specification Case Studies.
Prentice Hall, New York, 1994.

[10] Gary Todd Leavens.Verifying Object-Oriented Programs that Use Subtypes. PhD
thesis, MIT Laboratory for Computer Science, February 1989. Available as Tech-
nical Report MIT/LCS/TR-439.

[11] K. Rustan M. Leino.Toward Reliable Modular Programs. PhD thesis, California
Institute of Technology, 1995. Available as Technical Report Caltech-CS-TR-95-
03.

32

[12] K. Rustan M. Leino. Ecstatic: An object-oriented programming language with
an axiomatic semantics. InThe Fourth International Workshop on Founda-
tions of Object-Oriented Languages, January 1997. Proceedings available from
http://www.cs.indiana.edu/hyplan/pierce/fool/ .

[13] K. Rustan M. Leino and Greg Nelson. Object-oriented guarded commands. In-
ternal manuscript KRML 50, Digital Equipment Corporation Systems Research
Center, March 1995.

[14] Greg Nelson, editor.Systems Programming with Modula-3. Series in Innovative
Technology. Prentice-Hall, Englewood Cliffs, NJ, 1991.

