

WOSA

(Windows�symbol 228 \f "Symbol" \s 10 \h�� Open Services Architecture)

Extensions for Financial Services

A Client-Server Architecture for �Financial Enterprise Computing under Microsoft® Windows

Check Reader/Scanner Device Class Interface

–––––––––––––––––––––––––––––––––––

Programmer’s Reference

Revision 1.11

February 3, 1995

Developed by the members of the Banking Solutions Vendor Council

�Revision History:

	1.0		May 24, 1993		Initial release of API and SPI specification

	1.01		June 11, 1993		Minor updates to BSVC member contact list

	1.1		April 14, 1994		Major updates and additions

	1.11		February 3, 1995		Separation of specification into separate documents�						for API/SPI and service class definitions; with updates

						NOTE: Changes from Revision 1.1 are marked.

The information in this document was contributed by members of the Banking Solutions Vendor Council and represents its current views on the issues discussed as of the date of publication. It is furnished for informational purposes only and is subject to change without notice. The Banking Solutions Vendor Council makes no warranty, express or implied, with respect to this document.

Microsoft is a registered trademark, and Windows and Windows NT are trademarks of Microsoft Corporation.

Apple and Macintosh are registered trademarks of Apple Computer, Inc.

IBM and NetView are registered trademarks of International Business Machines Corporation.

UNIX is a registered trademark of UNIX Systems Laboratories.

�Table of Contents

� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc316394837 � PAGEREF _Toc316394837 �1��

1.1 WOSA/XFS Service-Specific Programming	� GOTOBUTTON _Toc316394838 � PAGEREF _Toc316394838 �1��

2. Check Readers and Scanners	� GOTOBUTTON _Toc316394839 � PAGEREF _Toc316394839 �2��

3. Info Commands	� GOTOBUTTON _Toc316394840 � PAGEREF _Toc316394840 �3��

3.1 WFS_INF_CHK_STATUS	� GOTOBUTTON _Toc316394841 � PAGEREF _Toc316394841 �3��

3.2 WFS_INF_CHK_CAPABILITIES	� GOTOBUTTON _Toc316394842 � PAGEREF _Toc316394842 �4��

3.3 WFS_INF_CHK_FORM_LIST	� GOTOBUTTON _Toc316394843 � PAGEREF _Toc316394843 �5��

3.4 WFS_INF_CHK_QUERY_FORM	� GOTOBUTTON _Toc316394844 � PAGEREF _Toc316394844 �5��

3.5 WFS_INF_CHK_QUERY_FIELD	� GOTOBUTTON _Toc316394845 � PAGEREF _Toc316394845 �6��

4. Execute Commands	� GOTOBUTTON _Toc316394846 � PAGEREF _Toc316394846 �7��

4.1 WFS_CMD_CHK_READ_FORM	� GOTOBUTTON _Toc316394847 � PAGEREF _Toc316394847 �7��

4.2 WFS_CMD_CHK_MULTICOMMAND	� GOTOBUTTON _Toc316394848 � PAGEREF _Toc316394848 �9��

4.3 WFS_CMD_CHK_READ_IMAGE	� GOTOBUTTON _Toc316394849 � PAGEREF _Toc316394849 �11��

4.4 WFS_CMD_CHK_MODE_SWITCH	� GOTOBUTTON _Toc316394850 � PAGEREF _Toc316394850 �12��

5. Pragmatics of using the commands	� GOTOBUTTON _Toc316394851 � PAGEREF _Toc316394851 �13��

6. Execute Events, Results, Codes	� GOTOBUTTON _Toc316394852 � PAGEREF _Toc316394852 �13��

6.1 WFS_EXEE_CHK_NOMEDIA	� GOTOBUTTON _Toc316394853 � PAGEREF _Toc316394853 �13��

6.2 WFS_EXEE_CHK_MEDIAINSERTED	� GOTOBUTTON _Toc316394854 � PAGEREF _Toc316394854 �13��

7. Forms Language Usage	� GOTOBUTTON _Toc316394855 � PAGEREF _Toc316394855 �14��

��Introduction

This is Revision 1.11 of the service class specifications for check readers and scanners; part of the Windows Open Services Architecture, Extensions for Financial Services (WOSA/XFS). The other relevant specifications are the overall API/SPI specification and the other four service class specifications (banking printers, magnetic stripe readers/writers, PIN pads and cash dispensers) that have been defined thus far. These specifications are part of the Software Development Kit (SDK), which supplies the components and tools to allow the implementation of compliant applications and services. These specifications are distributed to the financial services community for continuing review and comment, to allow them to provide input to the ongoing enhancement of WOSA/XFS.

The members of the Banking Solutions Vendor Council encourage banks and other financial services companies world-wide, as well as their technology suppliers, to get updated information on the status of the project, and to submit comments, questions, and requests for the specification and SDK. This may be done via one of the Council members or on CompuServe—see the WOSA/XFS message section and library in the Windows Extensions forum (“GO WINEXT”). Note that the most recent versions of the WOSA/XFS specifications may be downloaded from this library.

The Banking Solutions Vendor Council is accepting applications for affiliate membership; interested parties should contact one of the Council members, post a message in the WOSA/XFS message section on CompuServe, or send email to bsvc@microsoft.com.

WOSA/XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes, messages, etc. These commands are used to request functions that are specific to one or more classes of service providers, but not all of them, and therefore are not in included in the common API for basic or administration functions.

When a service-specific command is common among two or more classes of service providers, the syntax of the command is as similar as possible across all services, since a major objective of the WOSA Extensions for Financial Services is to standardize command codes and structures for the broadest variety of services. For example, using the WFSExecute function, the commands to read data from various services are as similar as possible to each other in their syntax and data structures.

In general, the specific command set for a service class is defined as the union of the sets of specific capabilities likely to be provided by the developers of the services of that class; thus any particular device will normally support only a subset of the command set defined for the class.

There are three cases in which a service provider may receive a service-specific command that it does not support:

�symbol 183 \f "Symbol" \s 10 \h��	The requested capability is defined for the class of service providers by the WOSA/XFS specification, the particular vendor implementation of that service does not support it, and the unsupported capability is not considered to be fundamental to the service. In this case, the service provider returns a successful completion, but does no operation. An example would be a request from an application to turn on a control indicator on a passbook printer; the service provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the service provider does no operation and returns a successful completion to the application.

�symbol 183 \f "Symbol" \s 10 \h��	The requested capability is defined for the class of service providers by the WOSA/XFS specification, the particular vendor implementation of that service does not support it, and the unsupported capability is considered to be fundamental to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error is returned to the calling application. An example would be a request from an application to a cash dispenser to dispense coins; the service provider recognizes the command but, since the cash dispenser it is managing dispenses only notes, returns this error.

�symbol 183 \f "Symbol" \s 10 \h��	The requested capability is not defined for the class of service providers by the WOSA/XFS specification. In this case, a WFS_ERR_INVALID_COMMAND error is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error returns to make decisions as to how to use the service.

Check Readers and Scanners

This specification describes the WOSA/XFS service class of check readers and scanners. Check image scanners are treated as a special case of check readers, i.e., image-enabled instances of the latter. This class includes devices with a range of features, from small hand-held read-only devices through which checks are manually swiped one at a time, to much larger devices (i.e., tabletop) which automatically feed checks by the batch past a reader, an encoder, an endorser, an optional image scanner, to be sorted into one of several pockets. The high end device of this class usually found in bank branches shares many capabilities with the still larger devices usually found only in a bank's central data processing site (i.e., high-speed reader/sorters), but the latter are not explicitly addressed here. The specification of this service class includes definitions of the service-specific commands that can be issued, using the WFSAsyncExecute, WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions.

In the U.S., checks are always encoded in magnetic ink for reading by Magnetic Ink Character Recognition (MICR), and a single font is always used. In Europe some countries use MICR and some use Optical Character Recognition (OCR) character sets, with different fonts, for their checks.

In all countries, typical fields found encoded on a check include the bank ID number and the account number. Part of the processing done by the bank is to also encode the amount on the check, usually done by having an operator enter the handwritten or typewritten face amount on a numeric keypad.

�Info Commands

WFS_INF_CHK_STATUS

Description	This function is used to query the status of the device and the service.

Input Param	None.

Output Param	LPWFSCHKSTATUS

		struct _wfs_chk_status�			{�			WORD	fwDevice;	�			WORD	fwMedia; �			WORD	fwInk; �			DWORD	dwMode;	�			WORD	fwLamp;	�			LPSTR	lpszExtra;

		} WFSCHKSTATUS, * LPWFSCHKSTATUS;

fwDevice

Specifies the state of the check reader device as one of:

WFS_CHK_DEVONLINE	Device is online.

WFS_CHK_DEVOFFLINE	Device is offline.

WFS_CHK_DEVPOWEROFF	Device is powered off.

WFS_CHK_DEVNODEVICE	No device is connected.

fwMedia

Specifies the status of the media in the check reader as one of:

WFS_CHK_MEDIANOTPRESENT	No media is inserted in device.

WFS_CHK_MEDIAREQUIRED	Insertion of media required.

WFS_CHK_MEDIAPRESENT	Media inserted in device.

WFS_CHK_MEDIAJAMMED	Media jam in device.

fwInk

Specifies the status of the ink in the check reader as one of:

WFS_CHK_INKFULL	Ink supply in device is full.

WFS_CHK_INKLOW	Ink supply in device is low.

WFS_CHK_INKOUT	Ink supply in device is empty.

dwMode	

Specifies the autofeed status of the check reader as one of:

WFS_CHK_MODEMANUAL	Device is in manual mode.

WFS_CHK_MODEAUTOFEED	Device is in autofeed mode.

fwLamp

Specifies the status of the check reader imaging lamp as one of:

WFS_CHK_LAMPOK	The lamp is OK.

WFS_CHK_LAMPFADING	The lamp should be changed.

lpszExtra	

Points to a list of vendor-specific, or any other extended information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Error Code	There are no additional error codes generated by this command.

Comments 	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

�WFS_INF_CHK_CAPABILITIES

Description	This function is used to request device capability information.

Input Param	None.

Output Param	LPWFSCHKCAPS

	typedef struct _wfs_chk_caps

		{

		WORD	wClass;

		WORD	fwType;

		BOOL	bCompound;

		BOOL	fMICR;

		BOOL	fOCR;

		BOOL	fAutoFeed;

		BOOL	fEndorser;

		BOOL	fEncoder;

		WORD	fwStamp;

		WORD	wImageCapture;

		USHORT	nPockets;

		LPSTR	lpszFontNames;

		LPSTR	lpszEncodeNames;

		LPSTR	lpszExtra;

		} WFSCHKCAPS, * LPWFSCHKCAPS

fwClass �Specifies the logical service; value is WFS_SERVICE_CLASS_CHK.

fwType�Specifies the type of the physical device; only current value is WFS_CHK_TYPECHK.

bCompound�TRUE if the logical device is part of a compound device.

fMICR�Can read MICR on checks.

fOCR�Can read OCR on checks.

fAutoFeed�Has autofeed capability; if FALSE has only manual feed.

fEndorser�A programmable endorser is present.

fEncoder�An encoder is present.

fwStamp�One of:

WFS_CHK_STAMPNONE�WFS_CHK_STAMPFRONT�WFS_CHK_STAMPREAR�WFS_CHK_STAMPBOTH

wImageCapture�Same values as wStamp

nPockets�Number of pockets; if 0 or 1, device has no pockets.

lpszFontNames �The names of the fonts supported for reading; each is terminated with a NULL and the string is terminated with two NULLs.

lpszEncodeNames�The names of the fonts supported for encoding; each is terminated with a NULL and the string is terminated with two NULLs.

lpszExtra�Points to a list of vendor-specific, or any other extended information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Error Code	There are no additional error codes generated by this command.

Comments 	The font names are standardized so that applications can check for standard literals, e.g.: CMC7, E13B. Reserved OCR font names are TBD due to numerous local variants. (i.e. OCRA and OCRB are not enough).

	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

WFS_INF_CHK_FORM_LIST

Description	This function is used to retrieve the list of forms available to the service.

Input Param	None.

Output Param	LPSTR		lpszFormList;

	lpszFormList�Points to a list of null-terminated form names, with the final name terminating with two null characters.

Error Codes	There are no additional error codes generated by this command.

WFS_INF_CHK_QUERY_FORM

Description	This function is used to retrieve the details on the definition of a specified form.

Input Param	LPSTR		lpszFormName;

	lpszFormName�Specifies the null-terminated name of the form on which to retrieve details.

Output Param	LPWFSFRMHEADER

	See section 7.1.4.5 WFS_INF_PTR_QUERY_FORM, for details of this structure.

Error Codes	The following additional error code can be generated by this command:

Value	Meaning

WFS_ERR_CHK_FORMNOTFOUND	The specified form cannot be found.

�WFS_INF_CHK_QUERY_FIELD

Description	This function is used to retrieve details on the definition of a single or all fields on a specified form.

Input Param	LPWFSCHKQUERYFIELD, as defined below.

typedef struct _wfs_chk_query_field�	{�	LPSTR				lpszFormName;�	LPSTR				lpszFieldName;�	} WFSCHKQUERYFIELD, * LPWFSCHKQUERYFIELD;

	lpszFormName�Points to the null-terminated form name.

	lpszFieldName�Points to the null-terminated name of the field about which to retrieve details. If this value is NULL, then retrieve details for all fields on the form.

Output Param	LPWFSFRMFIELD		* lpFields;

	See Section 7.1.4.7, WFS_PTR_QUERY_FIELD for details of this structure.

Error Codes	The following additional error codes can be generated by this command:

Value	Meaning

WFS_ERR_CHK_FORMNOTFOUND	The specified form cannot be found.

WFS_ERR_CHK_FIELDNOTFOUND	The specified field cannot be found.

�Execute Commands

WFS_CMD_CHK_READ_FORM

Description	This function returns the data from the current check. The contents of all the fields within the form are returned to the application. For small hand-held check readers, this command might be the only one used.

Input Param	LPWFSCHKINREADFORM

	typedef struct _wfs_chk_in_read_form

		{

		LPSTR	lpszFormName;

		LPSTR	lpszFieldNames;

		DWORD	dwOptions;

		LPSTR	lpszExtra;

		} WFSCHKINREADFORM, * LPWFSCHKINREADFORM;

lpszFormName�Points to the null-terminated name of the form.

lpszFieldNames�Points to a list of NULL-terminated field names from which to read input data, with the final name terminating with two NULLs.

dwOptions�WFS_CHK_OPTAUTOFEED

lpszExtra

Points to a list of vendor-specific, or any other extended information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Output Param	LPWFSCHKOUTREADFORM

	typedef struct _wfs_chk_out_read_form

		{

		WORD	hDoc;

		LPSTR	lpszFields;

		} WFSCHKOUTREADFORM, * LPWFSCHKOUTREADFORM;

hDoc�Handle to this check.

lpszFields�Points to a list of field data returneds. See Comments.

Error Code	The following additional error codes can be generated by this command:

Value	Meaning

WFS_ERR_CHK_REQDFIELDMISSING	The check was blank.

WFS_ERR_CHK_FORMNOTFOUND	Invalid form name.

WFS_ERR_CHK_FIELDSPECFAILURE	The syntax of the lpszFields member is invalid.

WFS_ERR_CHK_INCOMPLETEREAD	Read errors occurred and an incomplete code line is available. Question marks are returned in place of any numbers which could not be read. A code line will always be returned when this error occurs, and the application may choose different behavior depending on the number of question marks returned, e.g., prompt the operator to enter missing numbers.

Execute Events	WFS_EXEE_CHK_NOMEDIA	No check has been inserted in the (manual mode) check reader; to be used by the application to generate a message to the operator to insert a check.

WFS_EXEE_CHK_MEDIAINSERTED	A check was inserted; this is only issued following the above event.

	

Comments.	At the end of a successful WFS_CMD_CHK_READ_FORM, the string pointed to by lpsFields will contain a sequence such as (given a U.S. personal check):

	ROUTETRANS=021203501\0ACCOUNT=370361\0TRANCODE=2199\0AMOUNT=0000001000\0\0

Each fieldname=value pair is terminated by a NULL; the end of the buffer is marked with an additional NULL. Any embedded space characters (0x20) are significant; trailing spaces are not.

The timeout parameter (dwTimeOut) in the WFSExecute request that passes this command should always be large enough to accomodate prompting the operator to insert a check, having the operator do so, and processing the check. If the timeout expires before these operations are completed, the WFSExecute will be canceled, possibly leaving an application-generated prompt on the operator's screen.

�WFS_CMD_CHK_MULTICOMMAND

Description	This function is used to encode the amount field of the check, optionally stamp and endorse the check, and select a pocket to which the check will be sorted if the device supports these capabilities.

Input Param	LPWFSCHKMULTICOMMAND

typedef struct _wfs_in_multicommand

	{

	WORD	hDoc;	

	DWORD	dwOptions;

	BYTE	pocket;

	LPSTR	lpszEncodeFormName;

	LPSTR	lpszEncodeFields;

	LPSTR	lpszEndorserFormName;

	LPSTR	lpszEndorserFields;

	LPSTR	lpszExtra;

	} WFSCHKMULTICOMMAND, * LPWFSCHKMULTICOMMAND;

hDoc�handle to the check to be processed; NULL means "current" check.

dwOptions�Command options, as a combination of the following flags:�WFS_CHK_OPTSTAMPFRONT�WFS_CHK_OPTSTAMPBACK�WFS_CHK_OPTENDORSEFRONT�WFS_CHK_OPTENDORSEBACK�WFS_CHK_OPTSORTONLY�WFS_CHK_OPTTAKEIMAGE

pocket�Ignored if no sorter present.

lpszEncodeFormName�Name of form defining encoder fields.

lpszEncodeFields�List of fieldname/value pairs for encoder.

lpszEndorserFormName�Name of form defining endorser fields.

lpszEndorserFields�List of fieldname/value pairs for endorser.

lpszExtra	

Points to a list of vendor-specific, or any other extended information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Output Param	None.

Error Codes	The following additional error codes can be generated by this command:

Value	Meaning

WFS_ERR_CHK_FORMNOTFOUND	Invalid form name.

WFS_ERR_CHK_FIELDNOTFOUND	Invalid field name.

WFS_ERR_CHK_REQDFIELDMISSING	A field required by the form is not supplied.

WFS_ERR_CHK_EXTRAFIELD	A field supplied by the application does not exist in this form (warning).

WFS_ERR_CHK_FIXEDOVERWRITE	The application passed a field which is marked as fixed in the form description (warning).

WFS_ERR_CHK_FIELDSPECFAILURE	The syntax of the lpszFields member is invalid.

WFS_ERR_CHK_UNSUPPORTEDCAP	The service does not have a capability requested in this command (i.e. a pocket sort was requested on a device with zero pockets). This is a warning; the requested capability is ignored.

Execute Events	WFS_EXEE_CHK_NOMEDIA	No check has been inserted in the (manual mode) check reader.

WFS_EXEE_CHK_MEDIAINSERTED	A check was inserted; this is only issued following the above event.

Comments	The contents of the lpszFields parameter is as follows:

fieldname=value\0fieldname=value\0.......fieldname=value\0\0

Each fieldname=value pair is terminated with a NULL; the end of the buffer is marked with an additional NULL.

If an extra field is passed to the command verb a warning message will be returned. If a required field is missing an error message is returned and the form is not printed. Missing optional fields don't cause a problem. Overwriting of a fixed field results in an error and the print operation does not occur.

The lpszEncodeFormName parameter should be the same as the form name used previously to read the encode line with WFS_CMD_CHK_READ_FORM. Results are unpredictable if a different form name is used.

�WFS_CMD_CHK_READ_IMAGE

Description	This function returns image data from the current check in TIFF 6.0 format.

Input Param	LPWFSCHKINREADIMAGE

	typedef struct _wfs_in_read_image

		{

		WORD	hDoc;

		DWORD	dwOptions;

		LPSTR	lpszExtra;

		} WFSCHKINREADIMAGE, * LPWFSCHKINREADIMAGE;

hDoc�Handle to the check whose image is to be returned.

DwOptions�[No options have been defined as of this revision.]

lpszExtra	

Points to a list of vendor-specific, or any other extended information. The information is returned as a series of “key=value” strings so that it is easily extensible by service providers. Each string is null-terminated, with the final string terminating with two null characters.

Output Param	LPWFSCHKOUTREADIMAGE

	struct wfs_out_read_image

		{

		WORD	cbImage;

		LPSTR	lpImage;

		} WFSCHKOUTREADIMAGE, * LPWFSCHKOUTREADIMAGE;

cbImage�Count of bytes of image data.

lpImage�Points to the image data.

Error Code	The following additional error codes can be generated by this command:

Value	Meaning

WFS_ERR_CHK_INVALIDHDOC	hDoc is required but the value input does not correspond to a previously read document.

WFS_ERR_CHK_IMAGENOTAVAIL	The check referred to by hDoc does not have an image available.

Execute Events	None.

Comments.	Applications which require or expect specific information to be present in the lpszExtra parameter may not be device or vendor-independent.

�WFS_CMD_CHK_MODE_SWITCH

Description	This function is used to turn the autofeed mechanism off if it is running, or to turn it on if it is not.

Input Param	struct _wfs_in_mode_switch

		{

			DWORD	dwMode;			# WFS_CHK_MODEMANUAL

								# WFS_CHK_MODEAUTOFEED

		}

Output Param	None.

Error Codes	The following additional error code can be generated by this command:

Value	Meaning

WFS_ERR_CHK_INVALIDCOMMAND	The device does not support a mode switch.

Execute Events	None.

Comments	None.

�Pragmatics of using the commands

This section discusses how the WFSExecute commands above map to the variety of check readers used in branch banking.

Small hand-held devices which contain only a MICR or an OCR reader, and through which checks are manually swiped, will normally be managed using only the WFS_CMD_CHK_READ_FORM command. Applications written for such devices can make sure that the check readers to which they are configured to attach are suitable by using the WFS_INF_CHK_CAPABILITIES command in WFSGetInfo to make sure that fAutoFeed is FALSE, nPockets is zero, and so on.

Applications written for table-top check readers with autofeed and/or sorting capability should ensure that the services to which they connect have the appropriate capabilities. The error WFS_ERR_UNSUPP_CATEGORY will be returned if the service does not have these capabilities. In many cases, the applications for such devices will have to run on the workstation to which the check reader is directly attached in order that the commands be able to keep up with the track through which the checks are moving.

Execute Events, Results, Codes

WFS_EXEE_CHK_NOMEDIA

Description	This event specifies that the physical check must be inserted into the device in order for the execute command to proceed.

Event Param	LPSTR	lpszUserPrompt;

	lpszUserPrompt�Points to a null-terminated string which identifies the prompt string which is configured for the form (the USERPROMPT attribute of the XFSFORM section).

Comments	The application may use the lpszUserPrompt in any manner it sees fit. For example, it might display the string to the operator, along with a message that the check should be inserted.

WFS_EXEE_CHK_MEDIAINSERTED

Description	This event specifies that the physical check has been inserted into the device.

Event Param	None.

Comments	The application may use this event to, for example, remove a message box from the screen telling the user to insert the next check.

�Forms Language Usage

This section covers the usage of the forms language to accomodate check readers. The WOSA/XFS forms language is defined in section 7.1.

The forms language contains the FORMAT attribute in the XFSFIELD section. For check readers, the formatstring is used to generate the delimiters for the check fields; its usage is not application-defined. The usage is the same for the check readers service class. For forms intended for use with check readers, the FORMAT attribute is required:

	field Amount				FORMAT ":NNNNNNNNNN:"

	field AccountNum			FORMAT "0000NNNNNN<"

	field RouteTransit			FORMAT ";NNNNNNNNN;"

using punctuation in place of the standard field separators. A capital N means a number to be read and returned. A zero (“0”) means an optional number which, if present, is read and returned. Note that all fields on a check encoder line that have optional numbers should place the zeros on the same end of the format string as an aid to the Service Provider in parsing the code line (for instance, most check readers read the MICR line right to left, so optional numbers should always be on the left side of fields which have them.).

Normally, the format string, which gives the starting delimiter for each field, and the FOLLOWS clause, allow the service to parse the fields from the check's code line. The position attributes are used to specify the minimum and maximum starting locations for each field, so that a misread delimiter character can be detected and the parsing corrected (if the service is sophisticated enough to do this).

If the device supports reading multiple fonts, the FONT attribute of the XFSFIELD section might be significant. The name of the font (e.g. CMC7, E13B, etc), given here, will cause the check reader to use the appropriate font.

For endorsing checks, the field description specifies the “front” or “back” of the check using the SIDE attribute, and position relative to the trailing or (usually) leading edge of the check.

�PAGE �

�PAGE �iv�

WOSA/XFS Check Reader/Scanner Device Class Specification, Revision 1.11	February 3, 1995	

WOSA/XFS Check Reader/Scanner Device Class Specification, Revision 1.11	February 3, 1995	� PAGE �14�

