Extending the Chicago Shell

Kyle Marsh�Microsoft Developer Network

Abstract

The Chicago shell, known as the Explorer, can be extended in a number of ways. By extending the shell, applications can make the task of browsing through the file system, and networks, much easier and more understandable for the user as well as giving the user easier access to tools that manipulate the objects the user finds along the way. For example a shell extension can give each file a individual icon, or add file specific command to the context menu the shell displays when the user clicks the right mouse button while selecting a file.

Applications that implement a hierarchies in their own data objects can provide name space browsers that let users browse through the contents these objects, which can be in the file system, or on the network, or somewhere else, while using the shell’s explorer view. This allows users to use an interface that already know, the explorer, to browse different types of objects. Most applications will not need to implement a name space browser. The original intent of name space browsers was for mail clients, whose hierarchies would fit together nicely with the shell. It can be used for other hierarchies, but developers should carefully consider whether their applications should implement name space browsers. For example the contents of files compressed with PKZIP are not meant to be explored with a name space browser, while a system wide address book or mail file would be. Name space browsers are discussed in another article, “Name Space Browsers for the Chicago Shell”.

This article will explain how an application creates shell extension handlers and how Chicago interacts with them. Shell extension handlers are styled after OLE 2's component object model. The shell accesses objects via interfaces; the application programs provide the implementations of those interfaces as shell extension DLLs, which are similar to In-Proc Server DLLs in OLE 2 terms.

Some terms we need to define

File Object�
A thing found with the shell. The most familiar of these things are the files and directories found in the file system. To keep this familiar feel I will refer to all objects that are seen from within the shell as file objects. However these objects may actually not be a part of the file system, but rather just appear that way. For example a folder within a file that contains a users mail can look just like a folder in the file system to a user when in fact it doesn’t exist in that context at all.�
�
File Class�
A type of file object. Each file object is a member of a file class. For example it may be a text file or a Microsoft Word document. The shell loads shell extensions based on the file class of any file object it is acting on. �
�
Handler�
A shell extension. Each way the shell can be extended is performed by a handler.�
�
Shell Extensions

Shell extensions add features to the shell by adding choices a user has for a particular file object or buy adding additional information for the user. These types of extensions are called shell extenders since they extend the basic functionality of the shell. There are 5 shell extension handlers:

Context Menu Handlers�
Add items to the context menu for a particular file object.�
�
Drag Drop Handlers�
Are actually just context menu handlers that are accessed in a different context themselves: when a user is dropping an object after dragging it.�
�
Icon Handlers�
Usually add instance specific icons for file objects, but they can also be used to add icons for file class. �
�
Property Sheet Handlers�
Add pages for a file class, or a specific file object, to the property sheet dialog the shell displays for a file object.�
�
Copy Handlers�
Allow shell extensions to prevent a file object from being copied, moved, deleted or renamed.�
�
Registering a Shell Extension

All shell extension handlers are registered as In-Proc server DLLs. Each handler must register it’s CSLID under the HKEY_CLASSES_ROOT\Clsid key in the Registry. Within it’s CSLID key, which is some not understandable string like {00020810-0000-0000-C000-000000000046}, the handler adds a InProcServer32 key that gives the location of the handler’s DLL. It is best if the complete path for the handler is given so the handler is not dependent on being in the current path.

Applications that create and maintain files, such as spreadsheets, word processors and databases usually register two additional entries in the registry. A file association entry that maps a file extension to a program identifier. For example a word processor might register the following key under HKEY_CLASSES_ROOT:

HKEY_CLASSES_ROOT

	.doc=AWordProcessor

The key name (.doc above) gives the file extension and the value of the key (AWordProcessor) denotes the key name of key in the registry that contains the information about the application that handles that file type. This is the second registry entry an application that handles files makes. For example:

HKEY_CLASSES_ROOT

	AWordProcessor = A Word Processor

 shell = open print preview

 open

 command = c:\aword\aword.exe %1

 print

 command = c:\aword\aword.exe /p %1

 printTo

 command = c:\aword\aword.exe /pt %1

 preview = Pre&view

 command = c:\aword\aword.exe /r %1

 shellex

 ContextMenuHandlers = ExtraMenu

 ExtraMenu = {00000000-1111-2222-3333-00000000000001}

 PropertySheetHandlers = SummaryInfo

 SummaryInfo = {00000000-1111-2222-3333-00000000000002}

 IconHandler = {00000000-1111-2222-3333-00000000000003}

 DefaultIcon = %1

Within the applications information there is a new key for Chicago, shellex. This key contains the information the shell uses to associate a shell extension handler to a file type.

There are also two special keys under HKEY_CLASSES_ROOT that the shell will use to look for shell extensions: The “*” key and the “folder” key.

The “*” key can be used to register context menu and property sheet handlers that the shell will call when it creates a context menu or property sheet for any file object. Thus if the following was in the registry:

HKEY_CLASSES_ROOT

	* = *

		shellex

 ContextMenuHandlers = ExtraMenu

 ExtraMenu = {00000000-1111-2222-3333-00000000000001}

 PropertySheetHandlers = SummaryInfo

 SummaryInfo = {00000000-1111-2222-3333-00000000000002}

The shell would use instances of the ExtraMenu and SummaryInfo handlers to add to the context menus and property sheets of every file object.

The shell uses the “folder” key to allow applications to register shell extension for directories in the file system. Applications can register context menu and property sheet handlers in the same way as they are registered for the “*” key. In addition there are two shell extensions that only apply to this folder key: DragDrop and CopyHook handlers. For example:

 Folder = Folder

 shellex

 DragDropHandlers = ADDHandler

 ADDHandler = {00000000-1111-2222-3333-00000000000004}

 CopyHookHandlers = ACopyHandler

 ACopyHandler = {00000000-1111-2222-3333-00000000000005}

How the Shell Accesses Shell Extension Handlers

The shell uses two interfaces to access shell extensions: IShellExtInit and IPersistFile. The shell uses the IShellExtInit interface to initialize context menu handlers, drag drop handlers, and property sheet handlers. The shell uses IPersistFile to initialize icon handlers. This interface is same as the IPersistFile interface of OLE 2.

IShellExtInit

The shell uses this interface to initialize context menu handlers, drag drop handlers, and property sheet handlers. It adds one method to the standard IUnknown interface: Initialize.

Initialize

Syntax

STDMETHOD(Initialize(LPCITEMIDLIST pidlFolder,

		 LPDATAOBJECT lpdobj, HKEY hkeyProgID)

Parameters

pidlFolder�
A pointer to a simple ID list that contains the ID of the file object selected in the shell.�
�
lpdobj�
A pointer to the data object for the file object. Normally this is the selected object in the shell. Handlers should call the objects AddRef method in the IShellExtInit Initialize method and the objects Release method in IShellExtInit Release method.�
�
hkeyProgID�
Handle to the registry key for the primary object in the shell, usually the object in the shell with the focus. This parameter may be NULL. The handler can call RegOpenKey with hkeyProgID as the hkey parameter to open the key. �
�
The handler should keep a copy of these parameters if it needs them later. For example:

//---

//

//	Shell Extension Sample's IShellExtInit Interface

//

//---

STDMETHODIMP SHE_ShellExtInit_Initialize(LPSHELLEXTINIT psxi,

		LPCITEMIDLIST pidlFolder,

		LPDATAOBJECT pdtobj, HKEY hkeyProgID)

{

	PSHELLEXTSAMPLE this = PSXI2PSMX(psxi);

 // Initialize can be called more than once.

 if (this->_pdtobj) {

		this->_pdtobj->lpVtbl->Release(this->_pdtobj);

 }

 if (this->_hkeyProgID) {

		RegCloseKey(this->_hkeyProgID);

 }

 // Duplicate the pdtobj pointer

 if (pdtobj) {

		this->_pdtobj = pdtobj;

		pdtobj->lpVtbl->AddRef(pdtobj);

 }

 // Duplicate the Registry handle

 if (hkeyProgID) {

		RegOpenKey(hkeyProgID, NULL, &this->_hkeyProgID);

 }

 return NOERROR;

}

There are three routines that each shell extension must implement: an entry point (often called LibMain), DllCanUnloadNow, DllGetClassObject.

The entry point usually needs to record the handle to the DLL for future use. For example:

//---

// LibMain

//---

BOOL APIENTRY LibMain(HANDLE hDll, DWORD dwReason, LPVOID lpReserved)

{

 switch(dwReason)

 {

 case DLL_PROCESS_ATTACH:

		g_hmodThisDll = hDll;

 	break;

 case DLL_PROCESS_DETACH:

	 break;

 case DLL_THREAD_DETACH:

 break;

 case DLL_THREAD_ATTACH:

 default:

 	break;

 } // end switch()

 return TRUE;

}

The DllCanUnloadNow and DllGetClassObject functions are essentially the same as they would be for any OLE 2 InProcServer DLL. DllCanUnloadNow is straightforward:

//---

// DllCanUnloadNow

//---

STDAPI DllCanUnloadNow(void)

{

 return ResultFromScode((g_cRefThisDll==0) ? S_OK : S_FALSE);

}

DllGetClassObject needs to expose class factory for the object in the dll. The shell extension sample SHESAMP has implemented a generic routine, CreateDefClassObject, to do this for shell extensions. This function can be found in the file DEFCLSF.C. Using this function the DllGetClassObject function is also straightforward:

STDAPI DllGetClassObject(REFCLSID rclsid,

							REFIID riid,

							LPVOID FAR* ppvOut)

{

	IID FAR * riidInst;

	if (IsEqualIID(rclsid, &CLSID_ShellExtSample))

 {

	 if (IsEqualIID(riid, &IID_IExtractIcon)

		 || IsEqualIID(riid, &IID_IPersistFile)) {

		 riidInst = (IID FAR *)&IID_IPersistFile;

	 }

	 else if (IsEqualIID(riid, &IID_IContextMenu)

				|| IsEqualIID(riid, &IID_IShellPropSheetExt)

	 		 || IsEqualIID(riid, &IID_IShellExtInit)) {

		 riidInst = (IID FAR *)&IID_IShellExtInit;

	 }

	 return CreateDefClassObject(

		 riid,		 //

		 ppvOut,		 //

			ShellExtSample_CreateInstance, // callback function

			&g_cRefThisDll, 	// reference count of this DLL

			NULL

);

 }

 return ResultFromScode(E_FAIL);

}

Context Menu Handlers

An application implements a context menu handler interface, IContextMenu, to add menu items to the drop down menu the shell displays when the user clicks the right mouse button. This has the effect of adding verbs for this file type dynamically. These additional menu items can be either class specific, that is specific to all files of a particular type, or instance specific, that is specific to an individual file.

Context menu handlers are meant to add menu items to menu, they are not meant to delete or change items that are already there. Context menu handlers can change or remove existing items, since they are passed a handle to a menu that contains the items. However this is not reliable and not a

Context menu handlers are entered in the registry under the shellex key within an applications information area. The key ContextMenuHandlers lists the names of subkeys that contain the CSLID of each context menu handler. For example:

ContextMenuHandlers = ExtraMenu

 ExtraMenu = {00000000-1111-2222-3333-00000000000001}

More then one context menu handler can be registered for a file type. In this case the order of the subkey names in the ContextMenuHandlers key determines the order of the drop down context menu’s items.

There are three methods for this interface in addition to the usual IUnknown methods:

QueryContextMenu

InvokeCommand

GetCommandString

When the user select one of those dynamic verbs, the shell calls IContextMenu::InvokeCommand member to let it process the command. Multiple context menu handlers can be registered to a file type. In such a case, the value of ContextMenuHanders key will be used to specify the order.

QueryContextMenu

Windows calls this method when it is about drop down a context menu for a file. Context menu handlers insert menu items by position (MF_POSITION) directly into the drop down menu by calling InsertMenu. Menu items must be string items (MF_STRING). As a result the fuFlags parameter to InsertMenu must be MF_POSITION | MF_STRING for each menu item the context menu handler inserts.

Syntax

QueryContextMenu (HMENU hMenu,

 UINT indexMenu,

 UINT idCmdFirst,

 UINT idCmdLast,

 INT uFlags)

Parameters

hMenu�
The handle to the drop down menu. This value should be passed as the hmenu parameter to InsertMenu�
�
indexMenu�
The index to the menu item that the first inserted menu item should be inserted before. Normally the context menu handler passes this value to InsertMenu as the idItem parameter. Normally the context menu handler increments this value each time it calls InsertMenu.�
�
idCmdFirst�
The first menu item identifier that the context menu handler should use by passing the value to InsertMenu as the idNewItem parameter. For each subsequent menu item the context menu handler should be increment the value before passing it to InsertMenu.�
�
idCmdLast�
Last menu item identifier that can be used in this menu. Context menu handlers must make sure they do not use a menu item identifier with a value higher then this value.�
�
uFlags�
CMF_DEFAULTONLY - Chicago sends this flag if the users double-clicks with the right button on a file. Context menu handlers should avoid or adding non-default menu items to the context menu when this flag is present. CMF_VERBSONLY - Context menu handlers should ignore this flag.�
�
Example:

STDMETHODIMP SHE_ContextMenu_QueryContextMenu(LPCONTEXTMENU pctm,

 HMENU hmenu,

 UINT indexMenu,

 UINT idCmdFirst,

 UINT idCmdLast,

									 UINT uFlags)

{

 UINT idCmd = idCmdFirst;

 InsertMenu(hmenu, indexMenu++, MF_STRING|MF_BYPOSITION,

					idCmd++, "Check H&DROP (menuext)");

 InsertMenu(hmenu, indexMenu++, MF_STRING|MF_BYPOSITION,

					idCmd++, "Check H&NRES (menuext)");

 return ResultFromScode(MAKE_SCODE(SEVERITY_SUCCESS,

							FACILITY_NULL, (USHORT)2));

}

InvokeCommand

Windows calls this method when the user selects a menu item added to the drop down context menu by the context menu handler.

Syntax

InvokeCommand(HWND hwndParent,

		LPCSTR pszWorkingDir,

		LPCSTR pszCmd,

		LPCSTR pszParam,

		int iShowCmd);

Parameters

hwndParent�
The window that owned the drop down menu. This can be the desktop, the file cabinet or the tray.�
�
pszWorkingDir�
This parameter is NULL for menu items inserted by a context menu handler. Context menu handlers should ignore this parameter.�
�
pszCmd�
This is a pointer to the command. If the HIWORD of pszCmd is 0, then the LOWORD contains the offset from idCmdFirst parameter that was sent to previous call to QueryGetContextMenu. Thus this parameter would be o for the first menu item the handler added, 1 for the next and so on. If the HIWORD of pszCmd in not 0, then pszCmd is a pointer to a language independent command string that could be used to execute the command. At the moment the shell does not use the command strings.�
�
pszParam�
This parameter is NULL for menu items inserted by a context menu handler. Context menu handlers should ignore this parameter.�
�
iShowCmd�
This parameter is 0 for menu items inserted by a context menu handler. Context menu handlers should ignore this parameter.�
�
Example:

STDMETHODIMP SHE_ContextMenu_InvokeCommand(LPCONTEXTMENU pctm,

 HWND hwnd,

 LPCSTR pszWorkingDir,

 LPCSTR pszCmd,

 LPCSTR pszParam,

 int iShowCmd)

{

	 PSHELLEXTSAMPLE this = PCTM2PSMX(pctm);

 HRESULT hres = ResultFromScode(E_INVALIDARG);	// assume error

 //

 // No need to support string based command.

 //

 if (!HIWORD(pszCmd))

 {

		UINT idCmd = LOWORD(pszCmd);

		switch(idCmd)

		{

			case 0:

			hres = DoHDROPCommand(hwnd, pszWorkingDir, pszCmd, pszParam,

								iShowCmd);

		 break;

			case 1:

			hres = DoHNRESCommand(hwnd, pszWorkingDir, pszCmd, pszParam,

								iShowCmd);

		 break;

		}

 }

 return hres;

}

GetCommandString

Windows calls this method to get a language independent command string for a context menu item, or the menu item’s help text.

Syntax

GetCommandString(UINT idCmd,

 UINT uFlags,

 UINT FAR * pwReserved,

 LPSTR pszName,

 UINT cchMax)

Parameters

idCmd�
The item identifier of the context menu item.�
�
uFlags�
 If this parameter is zero the handler should return the language independent command string for the menu item. If the parameter is GCS_HELPTEXT the handler should return the menu items help string, which the shell will display in it’s status bar.�
�
pwReserved�
Reserved�
�
pszName�
A pointer to a string where the method should copy the command string.�
�
cchMax�
The maximum number of characters that pszName can contain.�
�
DragDrop Handlers

DragDrop handlers implement the IContextMenu interface. In fact they are just context menu handlers that effect the menu the shell displays when a users uses the right mouse button to drag and drop a file object. Since this is called the drag drop menu, shell extensions that add items to this menu are called DragDrop handlers. Other then their name, and the menu they add items to, DragDrop handlers work in the same way as context menu handlers.

Icon Handlers

The Chicago shell allows applications to customize the icon that the shell displays for the application’s file types. The shell also uses the icon interface to allow applications to specify icons for folders and subfolders with an applications file structure, but that is covered later in this document. For now let’s look at just icons for file types.

There are two ways for an application to specify icons for it’s file types. The first, and simplest, is to specify a class icon. This icon will be used for all the files of the file type. To do this the application adds an entry to the registry under the program information called DefaultIcon. The value of this key specifies the executable, or DLL, that contains the icon, and the index of the icon with the file. For example:

DefaultIcon = c:\Mydir\Myapp.exe,1

This is the same as the default icon handling under Windows 3.1. The nicest part using a class icon is that there is no programming required for the application developer. The shell will handle displaying the icon for the class.

Chicago adds a new allowable value for the DefaultIcon key: %1. This value denotes that each instance the a file of this type can have a different icon. This requires the application supply an icon handler for the file type and add another entry to the shellex key for the application: IconHandler. There can only be one IconHandler entry for an application. The value of the IconHandler key denotes the CSLID of the icon handler. For example:

shellex

	IconHandler = {00000000-1111-2222-3333-00000000000003}

DefaultIcon = %1

To have customize icons, an application must supply a extract icon handler that implements the IExtractIcon interface. When Chicago is about to display an icon for a file type that has instance specific icons Chicago:

Gets the CLSID of the handler

Creates its instance asking for the IPersistFile interface,

Initializes the instance by calling the IPersistFiles’s Load method

Uses the QueryInterface method to get to the IExtractIcon interface.

Calls the interface’s GetIconLocation ExtractIcon methods.

There are two methods for this interface in addition to the usual IUnknown methods:

GetIconLocation

ExtractIcon

GetIconLocation

Chicago calls this method to get the location of an icon to display. Normally the icon location is a executable or DLL file name, but it can be any file.

Syntax

GetIconLocation(UINT uFlags,

 LPSTR szIconFile,

 UINT cchMax,

 int FAR * piIndex,

 UINT FAR * pwFlags)

Parameters

uFlags�
GIL_OPENICON - Chicago sends this flag to specify an open folder icon. By default, without this flag, the icon handler should return then closed version of a folder icon.�
�
szIconFile�
A pointer to a string that contains the file name of the file that contains the icon. Icon handlers copy the file name to this string.�
�
cchMax�
The maximum number of characters available in szIconFile. Icon handlers must make sure they do not put more then cchMax characters in szIconFile�
�
piIndex�
A pointer to an integer that contains the index to the icon in the file, if the value is positive, or the resource id for an icon, a negative value. Icon handlers need to put the index for the icon in the integer this parameter points to. �
�
pwFlags�
GIL_SIMULATEDOC - Use the document icon for this file type�GIL_PERINSTANCE - Icons for this file type are per instance.�GIL_PERCLASS - Icons for this file type are per class (Icons are the same for all files of this type.�
�
Example:

// First store the file name, obtained in IPersistFile’s Load method.

//

//

STDMETHODIMP SHE_PersistFile_Load(LPPERSISTFILE pPersistFile,

								LPCOLESTR lpszFileName,

								DWORD grfMode)

{

	// Get a pointer to my class

	PSHELLEXTSAMPLE this = PPSF2PSMX(pPersistFile);

	int iRet = WideCharToMultiByte(

			CP_ACP,			// CodePage

		 WC_SEPCHARS,		// dwFlags

			lpszFileName,		// lpWideCharStr

 			-1, 			// cchWideChar

			this->_szFile,		// lpMultiByteStr

			sizeof(this->_szFile),	// cchMultiByte,

			NULL, 			// lpDefaultChar,

			NULL 			// lpUsedDefaultChar

);

	// Copy the file name to my holder.

 if (iRet==0)

 {

		LPSTR psz=this->_szFile;

		while(*psz++ = (char)*lpszFileName++);

 }

 return NOERROR;

}

// Now tell the shell where to get the icon form.

//

// This sample reads the file to get the location.

//

STDMETHODIMP SHE_ExtractIcon_GetIconLocation(LPEXTRACTICON pexic,

		 UINT uFlags,

		 LPSTR szIconFile,

		 UINT cchMax,

		 int FAR * piIndex,

		 UINT FAR * pwFlags)

{

	PSHELLEXTSAMPLE this = PEXI2PSMX(pexic);

 if (this->_szFile[0])

 {

		GetPrivateProfileString("IconImage", "FileName",

				"shell32.dll",szIconFile, cchMax, this->_szFile);

		*piIndex = (int)GetPrivateProfileInt("IconImage", "Index",

						0, this->_szFile);

 }

 else

 {

		lstrcpy(szIconFile, "shell32.dll");

		*piIndex = -10;

 }

	 *pwFlags = 0;

 return NOERROR;

}

ExtractIcon

Chicago calls this method when it needs to display an icon for a file that does not reside in an executable or DLL. Usually applications have the icons for files in their executables or DLL so icon handlers can just implement this method as a return only function that returns E_FAIL. When the icon for a file is in separate .ico file, or any other type of file, the icon handler must extract the icon for the shell and return it in this method.

Syntax

ExtractIcon(LPCSTR pszFile,

	 UINT	 nIconIndex,

	 HICON FAR *phiconLarge,

	 HICON FAR *phiconSmall,

	 UINT nIcons)

Parameters

pszFile�
The file name that contains the icon. This value was set in the GetIconLocation method.�
�
nIconIndex�
The index to the icon in the file. This values was set in GetIconLocation method.�
�
phiconLarge�
A pointer to an icon handle. The icon handler set the handle pointed to the large icon for this item.�
�
phiconSmall�
A pointer to a icon handle. The icon handler set the handle pointed to the small icon for this item.�
�
nIcons�
The number of icons the shell is requesting, either large or small. This value is always 1 for current implementations of “Chicago” . �
�
Property Sheet Handlers

Another way the shell can be extended is via custom property sheets. When the user selects the properties for a file, the shell will display it’s standard property sheet which is currently the General property sheet. If there is a property sheet handler for the file type registered then the shell will also allow the user to access the additional sheets the handler provides. Property sheet handlers implement the IShellPropSheetExt interface.

Property sheet handlers are entered in the registry under the shellex key within an applications information area. The key PropertySheetHandlers lists the names of subkeys that contain the CSLID of each context menu handler. For example:

PropertySheetHandlers = SummaryInfo

 SummaryInfo = {00000000-1111-2222-3333-00000000000002}

More then one property sheet handler can be registered for a file type. In this case the order of the subkey names in the PropertrySheetHandlers key determines the order of the additional property sheets. There can be a maximum of MAXPROPPAGES (32? 24?) property sheet pages.

There is only one method in addition to the usual IUnknown methods: AddPages.

AddPages

Chicago calls this method when it is about to display a property sheet. Chicago calls each property sheet handler registered to the file type to allow the handlers to add pages to the property sheets.

Syntax

AddPages(LPFNADDPROPSHEETPAGE lpfnAddPage, LPARAM lParam)

typedef BOOL (CALLBACK FAR * LPFNADDPROPSHEETPAGE)(HPROPSHEETPAGE, LPARAM);

Parameters

lpfnAddPage�
A pointer to the function the property sheet handler calls to add a page to the property sheet. This function takes a property sheet handle and a lParam as Parameters.�
�
lParam�
The property sheet handler passes this argument to the lpfnAddPage function as it’s lParam parameter.�
�
Example:

For each page a property sheet handler wants to add to the property sheet the handler:

Fills in a PROPSHEETPAGE structure.

Calls CreatePropSheetPage.

Calls lpfnAddPage with the handle returned from CreatePropSheetPage and the lParam passed in from the shell.

STDMETHODIMP CSamplePageExt::AddPages(LPFNADDPROPSHEETPAGE lpfnAddPage,

				 LPARAM lParam)

{

		 PROPSHEETPAGE psp;

	 HPROPSHEETPAGE hpage;

	 psp.dwSize = sizeof(psp);	// no extra data.

	 psp.dwFlags = PSP_USEREFPARENT | PSP_USERELEASEFUNC;

	 psp.hInstance = (HINSTANCE)g_hmodThisDll;

	 psp.pszTemplate = MAKEINTRESOURCE(DLG_FSPAGE);

	 psp.pfnDlgProc = FSPage_DlgProc;

	 psp.pcRefParent = &g_cRefThisDll;

	 psp.pfnRelease = FSPage_ReleasePage;

	 psp.lParam = (LPARAM)hdrop;

	 hpage = CreatePropertySheetPage(&psp);

	 if (hpage) {

			if (!lpfnAddPage(hpage, lParam))

			 DestroyPropertySheetPage(hpage);

	 }

		 return NOERROR;

}

CopyHook Handlers

An application can register a CopyHook handler that the shell will call before the shell moves, copies, deletes or renames a file object. The CopyHook handler does not perform the task itself but rather as approval rights to the task. With approval from the CopyHook handler the shell performs the actual file system operation (move, copy, delete or rename). For example an application can stop the moving or removal of a DLL the application is using. CopyHook handlers are not informed about the success of the operation, so they are not able to monitor actions that occur to file object.

The shell accesses this interface directly, that is without using an IShellExtInit or IPersistFile interface first. There can be multiple CopyHook handlers for any file class. This interface has one method in addition the standard IUnknown methods: CopyCallBack.

CopyCallBack

The shell calls this method before it copies, moves, renames or deletes a file object. The method returns an integer value that indicates whether the shell should perform the operation or not. The shell will call each CopyHook handler registered for a file class until either all the handlers have been called or any handler returns IDCANCEL. The handler can also return IDYES, which specifies that the operation should be carried out, or IDNO which specifies that the handler does not want to operation to be performed.

Syntax

CopyCallback(HWND hwnd, WORD wFunc, WORD wFlags, LPCSTR pszSrcFile, DWORD dwSrcAttribs,LPCSTR pszDestFile, DWORD dwDestAttribs);

Parameters

hwnd�
Either the dialog to use as the progress dialog or the parent to create the progress dialog from if FOF_CREATEPROGRESSDLG is set. �
�
wFunc�
operation to be performed:�
�
�
FO_DELETE - Delete files in pszSrcFile�
�
�
FO_RENAME - Rename files�
�
�
FO_MOVE - Move files in pszSrcFile to pszDestFile�
�
�
FO_COPY - Copy files in pszSrcFile to pszDestFile�
�
wFlags�
Flags that control the operation�
�
�
FOF_CREATEPROGRESSDLG - Create a Progress Dialog�
�
�
FOF_CONFIRMMOUSE - �
�
�
FOF_SILENT�
�
�
FOF_RENAMEONCOLLISION�
�
�
FOF_NOCONFIRMATION�
�
pszSrcFile�
Pointer to a string containing the source file name.�
�
dwSrcAttribs�
Attributes of the source file.�
�
pszDestFile�
Pointer to a string containing the destination file name.�
�
dwDestAttribs�
Attributes of the destination file�
�
Summary

The Shell extension are a very powerful feature of the Chicago shell. Many applications will be able to add functionality for the user that will make using the shell much easier.

PRELIMINARY DRAFT

MICROSOFT CONFIDENTIAL	� PAGE �16�	�DATE�03/04/94� � TIME �1:31 AM�

