
Netra High Availability Suite
Foundation Services 2.1 6/03 CMM

Programming Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–1770–11
September 2004

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, JMX, Netra, Solaris JumpStart, Solstice DiskSuite, Sun Fire,
Javadoc, JDK, Sun4U, Jini, OpenBoot, Sun Workshop, Forte, Sun StorEdge, and Solaris are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc. Adobe is a registered trademark of Adobe Systems, Incorporated.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Java, JMX, Netra, Solaris JumpStart, Solstice DiskSuite, Sun Fire,
Javadoc, JDK, Sun4U, Jini, OpenBoot, Sun Workshop, Forte, Sun StorEdge, et Solaris sont des marques de fabrique ou des marques déposées , ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. Adobe est une marque enregistree de Adobe Systems, Incorporated.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

040812@9495

Contents

Preface 13

Part I Introduction to the CMM API 17

1 The Foundation Services CMM API 19
Overview 19
Characteristics of the CMM API 20

2 Introduction to the Properties of a Node 23
Membership Roles 23
Qualification Levels 24
Administrative Attributes 25

Part II Setting Up the Development Environment 27

3 Setting up the Development Environment 29
Introduction to the Development Environment 29
Setting up the Development Host 30
Setting up a Foundation Services Cluster 31

4 Building CMM Applications 33

Installing Applications on a Cluster 33
Installing Libraries and Header Files 34

� To Install the Developer Package and Trace Package 34

3

Setting up a Makefile 35
Compiling Applications 35
Including Applications in a Startup Script 36
Running Your Applications on the Cluster 36
Application Examples 37

Part III Programming By Using the CMM API 41

5 Retrieving Node Information Using the CMM API 43
Identifying the Current Node 43
Retrieving Information About the Master Node or Vice-Master Node 44
Retrieving Information About Any Node 46
Retrieving Information About All Nodes in the Cluster 48
Identifying the Role of a Node 50
Identifying the Properties of a Node 51
Using the cmm_member_t Structure for Information About Member Nodes 53

Using the sflag Field of the cmm_member_t Structure 54

6 Understanding Change Notifications 57
Introduction to Change Notifications 57

Understanding the Structure of Notifications 58
Notification Values 59

Notifications During Changes in the Cluster State 60
Cluster Initialization Notifications 61
Vice-Master Removal Notifications 62
Vice-Master Excluded Notification 63
Peer Node Removal Notification 63
Master Node Excluded Notifications 64
Node Other Than Master Excluded Notification 64
Switchover Notifications 64
Failover Notifications 65
Stale Cluster Notification 66
Amnesia 67
Split Brain 67

7 Managing Changes in the Cluster State 69
Setting a Timeout Value for Calls to the nhcmmd Daemon 69

4 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

Reloading the Cluster Node Table 70

Receiving and Handling Change Notifications 71

Registering to Receive Notifications 72

Filtering Notifications 72

Receiving and Dispatching Notifications 72

Retrieving Change Notifications 73

Responding to Cluster Notifications by Modifying the Cluster 75

Removing or Excluding a Node 76

Setting the Qualification of a Node 77

Triggering A Switchover 79

Triggering A Failover 81

8 Debugging Applications in the Foundation Services 87

Reporting Application Errors 87

Reading Error Information for Debugging 88

Stopping the Daemon Monitor for Debugging 88

Broken Pipe Error Messages 89

Return Values of the CMM API 89

A Source Code Examples 93

CMM API Code Examples 93

Example Makefile 93

The cmm_master_getinfo() Function 95

The cmm_member_getcount() Function 96

The cmm_member_getall() Function 98

The cmm_member_getinfo() Function 99

The cmm_member_setqualif() Function 100

The cmm_node_getid() Function 102

The cmm_vicemaster_getinfo() Function 103

CMM API Extended Code Example 104

Index 111

5

6 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

Tables

TABLE 6–1 Description of Fields of the cmm_cmc_notification_t Structure 58

TABLE 6–2 Description of the Parameters of the cmm_notify_t Callback Function
59

TABLE 6–3 Change Notifications 59

TABLE 6–4 Description of the Roles of Example Nodes A and B 61

TABLE 6–5 A Master is Elected at Cluster Startup 62

TABLE 6–6 A New Node Joins the Cluster and Becomes Vice-Master 62

TABLE 6–7 A New Node Joins the Cluster 62

TABLE 6–8 A Node is Elected Vice-Master 62

TABLE 6–9 The Vice-Master Node Fails or the Vice-Master is Removed With the
cmm_membership_remove() Function 63

TABLE 6–10 The Vice-Master is Disqualified with the cmm_member_setqualif()
Function 63

TABLE 6–11 A Node Other Than Master or Vice-Master is Removed From Cluster
64

TABLE 6–12 The Master Node is Excluded From Cluster 64

TABLE 6–13 A Node Other Than Master is Excluded From Cluster 64

TABLE 6–14 A Switchover Triggered by the cmm_mastership_release()
Function 65

TABLE 6–15 A Failover Due to the Removal or Failure of the Master Node 65

TABLE 6–16 A Failover Due to the Disqualification of the Master Node 66

TABLE 6–17 The Cluster is in a Stale State 66

TABLE 6–18 Two Masters in the Cluster (Split Brain) 67

TABLE 8–1 Common Return Values of the CMM API 89

7

8 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

Figures

FIGURE 1–1 Interaction of the CMM With Your Applications Using the CMM API
19

FIGURE 3–1 Setting up the Development Environment 29

9

10 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

Examples

EXAMPLE 4–1 Mandatory Code Fragment: common.c 37
EXAMPLE 4–2 The common.h Header File 38
EXAMPLE 4–3 Example test_master.c Program 38
EXAMPLE 4–4 Makefile for the test_master.c Program 39
EXAMPLE 5–1 Retrieving the nodeid of the Current Node 43
EXAMPLE 5–2 Testing the Success of the cmm_master_getinfo() Function 44
EXAMPLE 5–3 Determining Which Node is the Vice-Master 45
EXAMPLE 5–4 Retrieving Information About the Current Node Using the

cmm_member_getinfo() Function 46
EXAMPLE 5–5 Retrieving Information About a Specific Node in the Cluster Using the

cmm_member_getinfo() Function 47
EXAMPLE 5–6 Retrieving Information About All Nodes in the Cluster 49
EXAMPLE 5–7 Determining Whether a Node Can Become Master 52
EXAMPLE 6–1 The cmm_cmc_notification_t Structure 58
EXAMPLE 7–1 Setting a Timeout Using the cmm_connect() Function 70
EXAMPLE 7–2 Retrieving Change Notifications 73
EXAMPLE 7–3 Disqualifying a Node 77
EXAMPLE 7–4 Requalifying a Node 77
EXAMPLE 7–5 Triggering a Switchover by Using the cmm_mastership_release()

Function 80
EXAMPLE 7–6 Triggering a Failover Using the cmm_membership_remove() Function

82
EXAMPLE 7–7 Triggering a Failover Using the cmm_member_setqualif() Function

83
EXAMPLE A–1 Sample Makefile 94
EXAMPLE A–2 The cmm_master_getinfo.c Program 95
EXAMPLE A–3 The smpl_cmm_member_getcount_all.c Program 96
EXAMPLE A–4 The smpl_cmm_member_get_all.c Program 98

11

EXAMPLE A–5 The smpl_cmm_member_getinfo.c Program 99

EXAMPLE A–6 The smpl_cmm_member_setqualif.c Program 100

EXAMPLE A–7 The smpl_cmm_node_getid.c Program 102

EXAMPLE A–8 The smpl_cmm_vicemaster_getinfo.c Program 103

EXAMPLE A–9 The smpl_cmm_notification.c Program 104

12 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

Preface

This book describes how to write applications that use the Cluster Membership
Manager API for the Netra™ High Availability (HA) Suite Foundation Services 2.1
6/03.

Who Should Use This Book
This book is for application developers who are writing programs for clusters running
the Foundation Services. This book describes how to perform the following tasks:

� Create and use a development environment
� Develop, compile, link, and execute applications across the cluster
� Monitor and manage nodes in the cluster by using the CMM API

Before You Read This Book
To write applications for the Foundation Services, you must have experience the C
programming language. Knowledge of using and deploying highly available
applications on a cluster, and knowledge of the developer tools offered by the
Solaris™ operating system is an advantage.

Before reading this book, read the Netra High Availability Suite Foundation
Services 2.1 6/03 Overview.

13

How This Book Is Organized
This book is divided into the following parts and chapters:

� Part I contains the following chapters:

Chapter 1 provides an overview of the basic functions and characteristics of the
CMM API.

Chapter 2 describes the roles, qualification levels, and attributes that a node can
have.

� Part II contains the following chapters:

Chapter 3 describes the requirements of a development host on which to write
applications that use the CMM API.

Chapter 4 describes how to install, compile, and run your applications.

� Part III contains the following chapters:

Chapter 5 describes how to identify and retrieve data about nodes in the cluster.

Chapter 6 describes the nhcmmd daemon, the notifications this daemon sends, and
how to interpret these notifications.

Chapter 7 describes how to retrieve and react to cluster notifications, and how to
modify the cluster if necessary.

Chapter 8 describes how to debug your applications. This chapter also describes
the return values provided by the CMM API.

� Appendix A contains the code examples provided with the Foundation Services
product.

Related Books
You will require some of the following books from the Foundation Services
documentation set:

� Netra High Availability Suite Foundation Services 2.1 6/03 Overview

� Netra High Availability Suite Foundation Services 2.1 6/03 Glossary

� What’s New in Netra High Availability Suite Foundation Services 2.1 6/03

� Netra High Availability Suite Foundation Services 2.1 6/03 Quick Start Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Hardware Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Custom Installation Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Cluster Administration Guide

14 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

� Netra High Availability Suite Foundation Services 2.1 6/03 Troubleshooting Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual

� Netra High Availability Suite Foundation Services 2.1 6/03 Standalone CGTP Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Release Notes

� Netra High Availability Suite Foundation Services 2.1 6/03 README

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Ordering Sun Documentation
Sun Microsystems offers select product documentation in print form. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes that are used in this book.

15

http://docs.sun.com
http://docs.sun.com

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

The command to remove a file
is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User’s
Guide.

These are called class options.

Do not save the file.

(Emphasis sometimes appears
in bold online.)

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

16 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

PART I

Introduction to the CMM API

This part introduces the characteristics, features, and functions of the CMM API,
described in the following chapters:

� Chapter 1 provides an overview of the characteristics of the CMM API.

� Chapter 2 the membership roles, qualification levels, and administrative attributes
of nodes.

17

18 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

CHAPTER 1

The Foundation Services CMM API

The CMM API can be used to develop programs for highly available clusters running
the Foundation Services. For more information, see the following topics:

� “Overview” on page 19
� “Characteristics of the CMM API ” on page 20

Overview
The CMM API provides a programming interface to the Cluster Membership Manager
(CMM). For information about the CMM, see the Netra High Availability Suite
Foundation Services 2.1 6/03 Overview.

The CMM API enables you to write applications that manage peer nodes in the cluster
and that monitor the role, qualification level, and state of these peer nodes. You can
use the CMM API to obtain information about which node is the master node, the
vice-master node, and a member of the cluster.

The CMM API also provides functions that modify the state of a cluster and enable a
node to receive information about changes in the state of a cluster.

This interaction of the CMM API with the Foundation Services is illustrated in Figure
1–1.

19

FIGURE 1–1 Interaction of the CMM With Your Applications Using the CMM API

Characteristics of the CMM API
The CMM API enables you to create highly available applications to determine which
nodes are in the cluster, and which of these nodes is the master node and the
vice-master node. The main functions of the CMM API are to:

� Manage the membership of peer nodes
� Determine the availability of peer nodes
� Provide a failover framework for critical applications
� Gather information about some or all peer nodes

The CMM API has the following multithreading characteristics:

� It is multithread safe: mutual exclusion among threads is guaranteed when critical
sections of the API are executed

� It is deferred-thread cancellation safe: All API functions are cancellation points.

� It is not asynchronous-thread cancellation safe.

� The CMM API calls cannot be interrupted by signals: If a signal is caught during a
call, the call runs to completion. The call is not aborted and does not return an
error in this case.

� It is not signal-handler safe: applications must not make calls to the API from
signal handlers.

� It is not fork1 safe: Applications must not make calls to the API from fork
handlers.

Examples of the CMM API are provided in the SUNWnhcmd package. These examples
are available after installation on a peer node, in the
/opt/SUNWcgha/examples/cmm_API directory. For more information, see “CMM
API Code Examples” on page 93.

20 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

The CMM API header file, cmm.h, is located in the /opt/SUNWcgha/include
directory.

The default location of the CMM API library files in the /opt/SUNWcgha/lib
directory.

To access the CMM API header file and libraries, the SUNWnhcmd package must be
installed in your development environment. See Chapter 3 and Chapter 4 for
information about creating a development environment for the Foundation Services
product.

Chapter 1 • The Foundation Services CMM API 21

22 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

CHAPTER 2

Introduction to the Properties of a
Node

This chapter introduces the roles, qualification levels and attributes of nodes. For
information about the types of nodes, see the Netra High Availability Suite Foundation
Services 2.1 6/03 Overview.

� “Membership Roles” on page 23
� “Qualification Levels” on page 24
� “Administrative Attributes” on page 25

Membership Roles
Peer nodes can be recognized by the CMM API as having the following membership
roles:

Master node A node with membership role CMM_MASTER. This node
coordinates all of the cluster membership information. The
master node has the current view of the cluster configuration
and all the nodes receive the cluster view from the master node.

Vice-master node A node with membership role CMM_VICEMASTER. The
vice-master node can take over the master role of the cluster. The
vice-master node has its own copy of the
cluster_nodes_table file. For more information, see the
cluster_nodes_table(4) man page.

Out node Any node configured to be in the cluster that has the
membership role CMM_OUT_OF_CLUSTER. This role means that
the node is not available for use, for either physical or
administrative reasons. Do not distribute tasks on an out node,
because it might be undergoing maintenance.

23

No membership role is assigned to a node running the Foundation Services services
and fully participating in cluster communication that is neither a master node nor a
vice-master node. Further information about nodes in the cluster is provided by the
cluster_nodes_table(4) man page.

For information about the definitions of the roles of nodes in the cluster, see “Cluster
Model” in the Netra High Availability Suite Foundation Services 2.1 6/03 Overview.

Membership roles are dynamic and are defined by the master node. Unless the
membership role of a node is CMM_OUT_OF_CLUSTER, the node is by default viewed
as being in the cluster. While the node has the CMM_OUT_OF_CLUSTER role, the
qualification level and CMM_FLAG_SYNCHRO_NEEDED flag are meaningless.
Information about the membership role of a node can be found in the sflag field of
the cmm_member_t structure. See “Using the sflag Field of the cmm_member_t
Structure” on page 54.

Qualification Levels
The qualification level of a node is applicable only to master-eligible nodes. On these
nodes, the qualification level determines whether the node can participate in an
election for the master role or vice-master role. A master-eligible node can be qualified
or disqualified. The qualification levels of a master-eligible node are:

CMM_QUALIFIED_MEMBER The node is qualified to be master. Only
meaningful for eligible nodes.

CMM_DISQUALIFIED_MEMBER The node is disqualified from being master. Only
meaningful for eligible nodes.

For master-eligible nodes, the qualification level is stored in the minimum
configuration file, target.conf, on the node and in the cluster node table. For more
information, see the target.conf(4) man page. The qualification level is persistent,
that is, if the node is rebooted, the node starts with the same qualification level it had
before the reboot. The qualification level of a node can be changed during runtime.
Diskless and dataless nodes are never assigned qualification levels.

To assign a new qualification level to a node, use the cmm_member_setqualif
function. For more information, see the cmm_member_setqualif(3CMM) man page.

An example in which this function is used to trigger a failover in the cluster is
provided in this book. See “Triggering a Failover by Using the
cmm_member_setqualif() Function” on page 83.

24 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

Administrative Attributes
The CMM API recognizes each node in the cluster as having an administrative
attribute. An attribute can be any of the following:

CMM_ELIGIBLE_MEMBER
The node is a member of the cluster. The node is a master-eligible node, therefore it
is diskfull and can participate in a master or vice-master election.

CMM_FLAG_DISQUALIFIED
The node is part of the cluster and is master-eligible, but this node cannot
participate currently in master elections. This flag applies only to master-eligible
nodes.

CMM_FLAG_SYNCHRO_NEEDED
The master node disk and vice-master node disk must be synchronized so that the
vice-master node can take over the role of master node if necessary. If the disks are
not synchronized, the vice-master node cannot become the master node. If the
CMM_FLAG_SYNCHRO_NEEDED flag is set, the vice-master node disk is not
up-to-date. When the master node disk and vice-master node disks are
synchronized, the flag is cleared. The flag applies only to master-eligible nodes, and
must not be set by applications.

For more information about Reliable NFS, see the Netra High Availability Suite
Foundation Services 2.1 6/03 Overview.

A master node can be demoted because of a change in its administrative attributes,
when the vice-master detects a problem on the master, or after a call to the
cmm_mastership_release() function. The master node can also be demoted in the
case of a failover. See “Failover Notifications” on page 65. A node assumes the master
role if it is sufficiently qualified.

Information about the administrative attributes of a node can be found in the sflag
field of the cmm_member_t structure. For more information, see “Using the sflag
Field of the cmm_member_t Structure” on page 54.

Chapter 2 • Introduction to the Properties of a Node 25

26 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

PART II
Setting Up the Development
Environment

This part describes how to set up your development host so that you can develop and
build applications that use the CMM API. The development environment is described
in the following chapters:

� Chapter 3 describes the software requirements of a development host.

� Chapter 4 describes the compiler, Makefile and library requirements you must
satisfy before you begin writing applications.

27

28 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

CHAPTER 3

Setting up the Development
Environment

To develop applications for the Foundation Services, you must set up a development
environment for your development host. For information, see the following topics:

� “Introduction to the Development Environment” on page 29
� “Setting up the Development Host” on page 30
� “Setting up a Foundation Services Cluster” on page 31

For general information about developing applications on the Solaris operating
system, see the Solaris 8 Software Developer Collection.

Introduction to the Development
Environment
The development environment for the Foundation Services consists of a development
host connected through an installation server to a cluster of nodes. The Foundation
Services runs on the nodes of a cluster and does not need to be installed on the
development host. Install only the developer packages of the Foundation Services on
the development host. This development host together with a cluster for testing your
applications is called the development environment. The following figure illustrates
the development environment:

29

FIGURE 3–1 Setting up the Development Environment

The development environment refers to the set-up with which you work during the
development phase, when writing and testing applications.

Setting up the Development Host
The development host must have at least 1 GBit of disk space, with a minimum of 512
MBytes RAM.

Your development host must have the following software:

Solaris 8 2/02 or above
The Solaris operating system is the recommended operating system for the
Foundation Services.

Forte™ Developer 6 Software Suite (FD6u1), or above
You can use this software to compile and debug your HA-aware applications.

You can also install Sun WorkShop™ TeamWare 6 update 2 on your development host
to manage and configure versions of your code.

30 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

Setting up a Foundation Services Cluster
To run applications, you must build them on your development host and deploy them
on a cluster that runs the Foundation Services. For information about how to set up a
build server and on how to set up a cluster that runs the Foundation Services, see the
Netra High Availability Suite Foundation Services 2.1 6/03 Hardware Guide.

To install, compile, and run your applications, see Chapter 4.

Chapter 3 • Setting up the Development Environment 31

32 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

CHAPTER 4

Building CMM Applications

For information about how to build applications that use the CMM API, see the
following sections:

� “Installing Applications on a Cluster” on page 33
� “Installing Libraries and Header Files” on page 34
� “Setting up a Makefile” on page 35
� “Compiling Applications” on page 35
� “Including Applications in a Startup Script” on page 36
� “Running Your Applications on the Cluster” on page 36
� “Application Examples” on page 37

Installing Applications on a Cluster
If your application is to be run on a master-eligible node, install the application binary
files on the node.

If your application is to be run on a diskless node, install the binaries from the master
node in:

/export/root/diskless_node_name/path

where diskless_node_name is the name of the diskless node and path is the path to the
application. For example, if the binaries are installed in the /opt/mySvc/bin/myapp
directory, the application binaries are installed in the
/export/root/NetraDiskless1/opt/mySvc/bin/myapp directory for the
NetraDiskless1 diskless node.

For definitions of the terms diskfull, diskless, and dataless nodes, see “Cluster Model”
in the Netra High Availability Suite Foundation Services 2.1 6/03 Overview.

33

Installing Libraries and Header Files
Ensure that the library contents and header files of the Foundation Services are
available in the runtime environment of your development host. This includes the
CMM header (.h) files and library (.so and .a) files. These files are delivered in the
SUNWnhcmd developer package. In this way these files can be installed on your
development host without having to install a running Foundation Services CMM. The
SUNWnhcmd developer package requires that the SUNWnhcdt trace package is present.

You can write your applications on your development host using the CMM API
libraries and header files, but you cannot successfully run your applications on your
development host. For highly available cluster-based applications, run your
applications on a cluster that is running the Foundation Services.

� To Install the Developer Package and Trace
Package
To install the developer package, follow this procedure:

1. Log into the development host as superuser.

2. Install the packages:

pkgadd -d /software-distribution-dir/Packages/ SUNWnhcmd SUNWnhcdt

Where software-distribution-dir is the location of the software distribution.

After installing the packages, the libcgha_cmm library is available in the
/opt/SUNWcgha/lib/ directory, and the header files are available in the
/opt/SUNWcgha/include/ directory.

Note – The code examples provided in this guide require you to install the library and
header files in these default locations.

The CMM API is provided by the libcgha_cmm.so library. The libcgha_cmm
library communicates with the nhcmmd daemon, which is monitored by the Daemon
Monitor, nhpmd. For further information on the nhcmmd daemon, see the nhcmmd(1M)
man page. For more information on the Daemon Monitor, see the nhpmd(1M) man
page.

You must link the libcgha_cmm library to your application. To do this, set the
LD_LIBRARY_PATH variable to the /opt/SUNWcgha/lib/ directory.

34 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

The services that these libraries use are only available when you run your applications
on the fully installed cluster running the Foundation Services. For more information
see “Setting up a Foundation Services Cluster” on page 31.

Setting up a Makefile
To enable the compiler and linker to locate the required header files and libraries,
specify the following entries in your Makefile:

CFLAGS += -I/opt/SUNWcgha/include
LDFLAGS += -L/opt/SUNWcgha/lib \

-R/opt/SUNWcgha/lib

Note – These entries apply only if the developer package header files and libraries are
installed in their default locations. For information on installing the header files and
libraries required by developers, see “Installing Libraries and Header Files” on page
34.

For an example Makefile that uses a specified code example, see Example 4–4. An
example Makefile is provided within the developer package of the Foundation
Services, and is shown in “Example Makefile” on page 93.

Compiling Applications
The applications you develop using the CMM API can be compiled using the Sun
Forte Developer 6 Software Suite compiler. For more information, refer to the
documentation that is supplied with Sun Forte Developer software.

Chapter 4 • Building CMM Applications 35

Including Applications in a Startup
Script
Applications that are to run on a deployed Foundation Services cluster can be started
automatically when the node is booted. For this, you can supply a startup script for
the application. The startup script should be located in the /etc/init.d/ directory.
Link the script to an entry in either the /etc/rc2.d/ directory or the /etc/rc3.d/
directory, and the script will be executed when the node boots. For more information,
see the init(1M) Solaris man page.

If you require fast performance from a program, ensure that shared objects linked with
the program are locked in memory at runtime. To lock shared objects in memory at
runtime, set the LD_BIND_NOW environment variable. For more information on this
variable, see the Solaris documentation on “Runtime Linker” in the Linker and Libraries
Guide.

For better performance from programs running on diskless nodes in a test cluster, you
can set the mlockall() function within your program to lock address space. For
more information, see the mlockall(3C) Solaris man page.

Running Your Applications on the
Cluster
Applications that you develop on your development host can be tested on a cluster.
For information about supported cluster configurations and how to connect your
development host to a cluster, see the Netra High Availability Suite Foundation
Services 2.1 6/03 Hardware Guide.

To transfer applications from your development host to a cluster, use one of the
following commands:

ftp The ftp command is the user interface to the Internet standard File
Transfer Protocol. For more information, see the ftp(1) man page.

rcp The rcp command is used to copy files between machines. For more
information, see the rcp(1) man page.

mount The mount command is used to mount file systems and remote resources.
For more information, see the mount(1M) man page.

36 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

Application Examples
The code fragment shown in Example 4–1 enables the API to display peer node
membership. This code fragment should be included when you run the CMM API
examples provided in this guide. This code fragment includes cmm_member_is()
functions, which are explained in Chapter 5.

EXAMPLE 4–1 Mandatory Code Fragment: common.c

void print_member(
cmm_member_t const *P_Member)

{
char L_strRole[16];
char L_strQualif[16];

if (cmm_member_ismaster(P_Member))
strcpy(L_strRole, "MASTER");

else if (cmm_member_isvicemaster(P_Member))
strcpy(L_strRole, "VICE-MASTER");

else if (cmm_member_isoutofcluster(P_Member))
strcpy(L_strRole, "OUT");

else
strcpy(L_strRole, "IN");

puts("------------------------------") ;
printf("node_id = %d\n", P_Member->nodeid) ;
printf("domain_id = %d\n", P_Member->domainid) ;
printf("name = %s\n", P_Member->name) ;
printf("role = %s\n", L_strRole) ;
printf("disqualified = %s\n",

(cmm_member_isdisqualified(P_Member))?"NO":"YES") ;
printf("synchro. = %s\n",

(cmm_member_isdesynchronized(P_Member))?"NEEDED !!!":"READY") ;
printf("frozen = %s\n",

(cmm_member_isfrozen(P_Member))?"YES":"NO") ;
printf("excluded = %s\n",

(cmm_member_isexcluded(P_Member))?"YES":"NO") ;
printf("eligible = %s\n",

(cmm_member_iseligible(P_Member))?"YES":"NO") ;
printf("incarn. = %d\n",

P_Member->incarnation_number) ;
printf("swload_id = %s\n", P_Member->software_load_id) ;
printf("CGTP @ = %s\n", P_Member->addr) ;
puts("------------------------------") ;

}

Chapter 4 • Building CMM Applications 37

The code fragment in Example 4–1 is accompanied by a common.h header file. The
code in the common.h header file is used in many of the code samples in this guide
and is shown in Example 4–2.

EXAMPLE 4–2 The common.h Header File

#ifndef __CMM_COMMON__
#define __CMM_COMMON__

#include <cmm.h>

extern void print_member(cmm_member_t const *P_Member) ;

#endif

For instructions on installing header files, see “Installing Libraries and Header Files”
on page 34.

To check that your development host and cluster are running correctly and that you
are able to compile and run code using the CMM API, an example, test_master.c,
is provided. This example uses:

� The common.h header file in Example 4–2
� The print_member() function from the common.c code fragment in Example

4–1

This worked example is shown in Example 4–3.

EXAMPLE 4–3 Example test_master.c Program

#include <stdio.h>
#include <stdlib.h>
#include <cmm.h>

#include "common.h"

int main(void)
{

cmm_member_t member_info;
cmm_error_t code;

code = cmm_master_getinfo(&member_info);
if (code != CMM_OK) {

printf("Could not get master info: %s\n", cmm_strerror(code));
exit(1);

}

print_member(&member_info);
exit(0);

}

38 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

An example Makefile is also provided in this section. This example Makefile enables
you to run the test_master.c code in Example 4–3, using:

� The common.h header file in Example 4–2
� The code fragment, common.c in Example 4–1

This example Makefile is shown in Example 4–4.

EXAMPLE 4–4 Makefile for the test_master.c Program

CFLAGS = -I/opt/SUNWcgha/include
LDFLAGS = -L/opt/SUNWcgha/lib \

-lrt -lcgha_cmm

all: master_test

master_test.o: master_test.c
$(CC) -c $(CFLAGS) master_test.c

common.o: common.c common.h
$(CC) -c $(CFLAGS) common.c

master_test: master_test.o common.o

$(CC) $(LDFLAGS) -o master_test master_test.o common.o

For more information on setting up a Makefile, see “Setting up a Makefile” on page 35.

The Foundation Services is supplied with source code examples in the SUNWnhcmd
developer package. These examples are installed in subdirectories of the
/opt/SUNWcgha/examples/ directory. For more information, see “CMM API Code
Examples” on page 93.

Chapter 4 • Building CMM Applications 39

40 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

PART III

Programming By Using the CMM API

For information about how to develop programs with the CMM API, see the following
chapters:

� Chapter 5 explains how to use the functions of the CMM API to identify a
particular node, its roles and properties, and how to retrieve information about a
node in the cluster.

� Chapter 6 describes cluster notifications that indicate changes in the membership
or state of the cluster. Notifications or groups of notifications emitted during
cluster events are explained in the context of the events.

� Chapter 7 explains how to register for, receive, and filter notifications. This chapter
provides examples on how to respond to notifications by modifying the cluster.

� Chapter 8 describes how to handle and report errors in your applications using the
CMM API, and how to stop daemons being monitored so that you can debug. This
chapter also describes the CMM API error messages and return values.

41

42 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

CHAPTER 5

Retrieving Node Information Using
the CMM API

This chapter describes how to use the functions of the CMM API to retrieve
information about nodes. For more information, see the following topics:

� “Identifying the Current Node” on page 43
� “Retrieving Information About the Master Node or Vice-Master Node” on page 44
� “Retrieving Information About Any Node” on page 46
� “Retrieving Information About All Nodes in the Cluster” on page 48
� “Identifying the Role of a Node” on page 50
� “Identifying the Properties of a Node” on page 51
� “Using the cmm_member_t Structure for Information About Member Nodes”

on page 53

Identifying the Current Node
The cmm_node_getid() function, described in the cmm_node_getid(3CMM) man
page, retrieves the nodeid of the current node, that is, the node on which your
application is currently running. The nodeid is used in other CMM calls as a parameter.

If the current node is a nonpeer node, the cmm_node_getid() function returns the
CMM_ECONN message. For further details on return values, see Table 8–1.

The following example demonstrates how to use the cmm_node_getid() function:

EXAMPLE 5–1 Retrieving the nodeid of the Current Node

#include <cmm.h>
#include <stdio.h>
#include <stdlib.h> /* for exit() */

/***/
void main(void)

43

EXAMPLE 5–1 Retrieving the nodeid of the Current Node (Continued)

{
cmm_error_t res;
cmm_nodeid_t currnode;

/* get the current node id */
if ((res = cmm_node_getid(&currnode))==CMM_OK)

printf("Current node id is: %d\n", currnode);
else

printf("Error getting info on local node: %s\n",
cmm_strerror(res));

}

Retrieving Information About the Master
Node or Vice-Master Node
The cmm_master_getinfo() function retrieves all of the available information
about the master node in the cluster. This is similar to the cmm_member_getinfo()
function, but you do not need the nodeid.

If there is no master node, the cluster is not in a valid state and the call returns the
CMM_ENOCLUSTER error. During a failover triggered by the disqualification of the
master node, there is a time during which no master exists. During this period, the
CMM_ENOCLUSTER error is returned.

For more information about return values, see “Return Values of the CMM API”
on page 89.

The following example tests for the success of a call to the cmm_master_getinfo()
function:

EXAMPLE 5–2 Testing the Success of the cmm_master_getinfo() Function

#include <cmm.h>
...
cmm_error_t res;
cmm_member_t member;
...
res = cmm_master_getinfo(&member);
if (res != CMM_OK) {

/* Handle error. */
...

}

...

For further information, see the cmm_master_getinfo(3CMM) man page.

44 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

The cmm_vicemaster_getinfo() function retrieves all of the available information
about the vice-master node in the cluster. If there is no vice-master node, the function
returns the CMM_ESRCH error. For information, see the
cmm_vicemaster_getinfo(3CMM) man page.

These functions return the cmm_member_t structure. For information about the
cmm_member_t structure, see “Using the cmm_member_t Structure for Information
About Member Nodes” on page 53.

The following example demonstrates how to test for the presence of a vice-master
node by using the cmm_vicemaster_getinfo() function.

EXAMPLE 5–3 Determining Which Node is the Vice-Master

#include <cmm.h>
#include <stdio.h>
#include <stdlib.h> /* for exit() */
#include <strings.h> /* for strcpy */
#include "common.h"

/**/
void main(void)
{

cmm_error_t res;
cmm_member_t vicemaster_info;
timespec_t time_out = { 0, 500000 /* musec */};

}

/* get info on vicemaster */
res = cmm_vicemaster_getinfo(&vicemaster_info);
switch(res) {
case CMM_ESRCH:

puts("No Vice master in current cluster");
break ;

case CMM_OK:
puts("Vice master in current cluster is");
print_member(&vicemaster_info);
break ;

default:
printf("Error getting info on vicemaster: %s\n",

cmm_strerror(res));
exit(1);

}

}

Chapter 5 • Retrieving Node Information Using the CMM API 45

Retrieving Information About Any Node
The cmm_member_getinfo() and cmm_potential_getinfo() functions retrieve
information about a specified node as explained in “Identifying the Properties of a
Node” on page 51. The node must be identified by the nodeid argument . These
functions return the cmm_member_t structure. For more information, see “Using the
cmm_member_t Structure for Information About Member Nodes” on page 53.

If the cmm_member_getinfo() function returns the CMM_ESRCH error, the node has
the CMM_OUT_OF_CLUSTER membership role. This error information can also be
obtained by using the cmm_potential_getinfo() function. For further
information about return values, see “Return Values of the CMM API” on page 89.

For more information about these functions, see the cmm_member_getinfo(3CMM)
and cmm_potential_getinfo(3CMM) man pages.

The following code example demonstrates how to retrieve information about the
current node by using the cmm_member_getinfo() function:

EXAMPLE 5–4 Retrieving Information About the Current Node Using the
cmm_member_getinfo() Function

#include <cmm.h>
#include <stdio.h>
#include <stdlib.h> /* for exit() */
#include "common.h"

/***/
void main(void)
{

cmm_error_t res;
cmm_nodeid_t currnode;
cmm_member_t currnode_info;

/* get the current node id */
if ((res = cmm_node_getid(&currnode))==CMM_OK)

printf("Current node id is: %d\n", currnode);
else {

printf("Error getting id of local node: %s\n",
cmm_strerror(res));

exit(1) ;
}
/* get the current node info */
res = cmm_member_getinfo(currnode, &currnode_info);
switch(res) {
case CMM_OK:

printf("Current node is in cluster\n");
break;

case CMM_ESRCH:
printf("Current node is *NOT* in any cluster\n");

46 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

EXAMPLE 5–4 Retrieving Information About the Current Node Using the
cmm_member_getinfo() Function (Continued)

break;
default:

printf("Error getting info on local node: %s\n",
cmm_strerror(res));

break;
}

}

The following code sample demonstrates how to retrieve information about a specific
node by using the cmm_member_getinfo() function:

EXAMPLE 5–5 Retrieving Information About a Specific Node in the Cluster Using the
cmm_member_getinfo() Function

#include <cmm.h>
#include <stdio.h>
#include <sys/types.h> /* for boolean_t */
#include <stdlib.h> /* for exit(), atoi() */
#include "common.h"

/**/
int get_id(cmm_nodeid_t *P_NodeId)
{

int success;
char str_node[10];
boolean_t go_on = B_TRUE;

while (go_on == B_TRUE) {
printf("Enter the node id
of the node you want information about [0 for abort]: ");
success = (scanf("%9s", str_node) != 0);
if (success) {

*P_NodeId = atoi(str_node);
if (*P_NodeId >= 0)

go_on = FALSE;
}

}
return (*P_NodeId==0)?B_FALSE:B_TRUE;

}

/**/
void main(void)
{

cmm_error_t res;
cmm_nodeid_t onenode;
cmm_member_t onenode_info;

if (!get_id(&onenode))
{

printf("abort\n");

Chapter 5 • Retrieving Node Information Using the CMM API 47

EXAMPLE 5–5 Retrieving Information About a Specific Node in the Cluster Using the
cmm_member_getinfo() Function (Continued)

exit(0);
}

/* get the node info */
res = cmm_member_getinfo(onenode, &onenode_info);
switch(res) {
case CMM_OK:

printf("node %d is in cluster\n", onenode);
break;

case CMM_ESRCH:
printf("node %d is *NOT* in cluster\n", onenode);
res = cmm_potential_getinfo(onenode, &onenode_info);
if (res==CMM_OK)

printf("node %d is member of the cluster\n",onenode);
else
if (res==CMM_ESRCH)

printf("node %d is *NOT* member of the cluster\n",
onenode);

else printf("Error getting info on node %d: %s",
onenode,cmm_strerror(res));

break;

default:
printf("Error getting info on node %d: %s\n",

onenode,
cmm_strerror(res));

break;
}

}

Retrieving Information About All Nodes
in the Cluster
The cmm_member_getcount() and cmm_member_getall() functions retrieve
information for all peer nodes in the cluster.

� The cmm_member_getcount() function counts the number of peer nodes in the
cluster.

� The cmm_member_getall() function fills a table with the information returned
in the cmm_member_t structure.

Using the value returned by the cmm_member_getcount() function, you can
dynamically allocate the table. For more information, see the
cmm_member_getcount(3CMM) man page.

48 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

The following example demonstrates how to retrieve information about all peer nodes
in the cluster.

EXAMPLE 5–6 Retrieving Information About All Nodes in the Cluster

#include <cmm.h>
#include <stdio.h>
#include <stdlib.h> /* for exit() */
#include <strings.h> /* for strcpy */
#include "common.h"

/**/
void main(void)
{

cmm_error_t res;
cmm_member_t *member_table;
uint32_t member_count ;
uint32_t index;
uint32_t totalitems;

res = cmm_member_getcount(&totalitems);
if (res != CMM_OK) {

fprintf(stderr,
"Failed to count nodes: error %s\n",
cmm_strerror(res));
exit(1) ;
}

member_table = (cmm_member_t *) malloc (totalitems * sizeof(cmm_member_t));

if (member_table == NULL) {
printf("Failed to allocate memory for data -> abort\n");
exit(1);

}

res = cmm_member_getall(totalitems,member_table,&member_count)
if (res != CMM_OK) {

fprintf(stderr,
"Failed to get all nodes: error %s\n",
cmm_strerror(res));

free(member_table);
exit(1) ;

}

for (index=0 ; index<member_count ; index++)
print_member(&(member_table[index])) ;

free(member_table) ;

}

Following is an example output for a two node cluster:

node_id = 12
domain_id = 28

Chapter 5 • Retrieving Node Information Using the CMM API 49

EXAMPLE 5–6 Retrieving Information About All Nodes in the Cluster (Continued)

name = one_node
role = MASTER
qualified = YES
synchro. = READY
frozen = NO
excluded = NO
eligible = YES
incarn. = 998590675
swload_id = 1
CGTP @ = 10.28.13.12

node_id = 14
domain_id = 28
name = another_node
role = VICE-MASTER
qualified = YES
synchro. = READY
frozen = NO
excluded = NO
eligible = YES
Incarn. = 998923673
swload id = 1
CGTP @ = 10.28.13.14

Identifying the Role of a Node
The cmm_potential_getinfo() and cmm_member_getinfo() functions retrieve
information about a node identified by its nodeid. For details on the roles that a node
can have, see “Membership Roles” on page 23.

To find the nodeid of a node, see Example 5–1.

The following functions retrieve specific information about the role of a node:

cmm_member_ismaster() This function tests whether the node
identified by the cmm_member_t structure is
master. See the
cmm_member_ismaster(3CMM) man page.

cmm_member_isvicemaster() This function tests whether the node
identified by the cmm_member_t structure is
vice-master. See the
cmm_member_isvicemaster(3CMM) man
page.

cmm_member_isoutofcluster() This function tests whether a node is out of
the cluster. See the

50 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

cmm_member_isoutofcluster(3CMM)
man page.

If the tested condition is false, the functions in the preceding list return 0. Otherwise,
these functions return a value other than 0. These functions are used in Example 4–1.

You can also find the role of a node from the command line by using the nhcmmrole
command on the node. For details about this command, see the nhcmmrole(1M) man
page.

Note – The role of a node is also specified in the sflag field of the cmm_member_t
structure returned by these functions. See “Using the sflag Field of the
cmm_member_t Structure” on page 54. To get node information, it is better to use the
CMM API. Do not to attempt direct extraction of node information from the sflag
field of the cmm_member_t structure.

Identifying the Properties of a Node
The eligibility of a node to become master is determined by properties such as its
master-eligibility, qualification level, and synchronization state. The qualification level
of a node, relevant only for master-eligible nodes, determines if the node can
participate in a master or vice-master election. For information about qualification
levels that a node can have, see “Qualification Levels” on page 24. The following
functions retrieve information about the eligibility and qualification level of a node:

� cmm_member_iseligible()
� cmm_member_isdesynchronized()
� cmm_potential_getinfo()
� cmm_member_isqualified()
� cmm_member_isdisqualified()

If a node is disqualified, it cannot become master or vice-master until it is requalified.
Further information can be found in the relevant man pages, such as
cmm_member_iseligible(3CMM). For an example that demonstrates how to
requalify a node, see Example 7–4.

The function cmm_member_isdesynchronized() tests if the master and
vice-master nodes are synchronized. If the master and vice-master nodes are not
synchronized, the vice-master node cannot become the master if the master fails.
Similarly, at cluster startup, a desynchronized node cannot be elected master even if it

Chapter 5 • Retrieving Node Information Using the CMM API 51

is master-eligible and qualified. For more information about synchronization, see the
definition of CMM_FLAG_SYNCHRO_NEEDED in “Administrative Attributes” on page
25. For more information about the cmm_member_isdesynchronized() function,
see the cmm_member_isdesynchronized(3CMM) man page.

The cmm_member_getinfo() function returns information for any peer node that is
master, vice-master, or in the cluster.

The cmm_potential_getinfo() function returns information for all peer nodes,
even if the node has the CMM_OUT_OF_CLUSTER role and might not yet have entered
the cluster.

The cmm_member_getinfo() and cmm_potential_getinfo() functions retrieve
information about a node identified by nodeid. To find the nodeid, see Example 5–1.
Both functions retrieve this information from the cmm_member_t structure. For
information about these functions, see the cmm_member_getinfo(3CMM) and
cmm_potential_getinfo(3CMM) man pages.

Example 5–7 demonstrates how to obtain information about the eligibility of the
current node to become master. This example uses the following functions:

� cmm_potential_getinfo()
� cmm_member_isdesynchronized()
� cmm_member_iseligible()
� cmm_member_isdisqualified()

EXAMPLE 5–7 Determining Whether a Node Can Become Master

#include <cmm.h>
#include <stdio.h>
#include <stdlib.h> /* for exit() */
#include "common.h"

/**/
void main(void)
{

cmm_error_t res;
cmm_nodeid_t currnode;
cmm_member_t currnode_info;

/* get the current node id */
if ((res = cmm_node_getid(&currnode))==CMM_OK)

printf("Current node id is: %d\n", currnode);
else {

printf("Error getting info on local node: %s\n",
cmm_strerror(res));

exit(1);
}
/* Get the node info */
if ((res = cmm_potential_getinfo(currnode, &currnode_info))!=CMM_OK) {

printf("Failed to get info on current node -> abort") ;
exit(1);

52 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

EXAMPLE 5–7 Determining Whether a Node Can Become Master (Continued)

}

if (!cmm_member_iseligible(&currnode_info)) {
puts("Local node cannot be master (it is not eligible)");
exit(0) ;

}

if (cmm_member_isdisqualified(&currnode_info)) {
puts("Local node cannot be master (it is not qualified)");
exit(0) ;

}

if (!cmm_member_isdesynchronized(&currnode_info)) {
puts("Local node can be master");
exit(0) ;

}

/* Here we know the current node is eligible, not disqualified,
* desynchronized */
if (!cmm_member_ismaster(&currnode_info))

puts("Local node can be Vice-master only");
else

puts("Local node can be master (and it is)");

}

Using the cmm_member_t Structure for
Information About Member Nodes
The cmm_member_t structure, contained within the CMM API, is an important source
of information about member nodes. This structure contains the following fields:

nodeid The unique identifier of a node.

name The user-visible string that identifies a node and is used to
format display messages.

addr Stores the dotted-decimal notation of the node Carrier Grade
Transport Protocol (CGTP) address in a string that can be used
as a parameter on any architecture. The size of this string is
sufficient for IPv4 and IPv6 addresses.

Chapter 5 • Retrieving Node Information Using the CMM API 53

incarnation_number The instant of the last reboot expressed as the number of
seconds elapsed since 00:00:00 UTC, January 1, 1970. The
incarnation_number is computed locally by every node and sent
to the master node, which dispatches it. Nodes use this field to
detect whether another node has rebooted within an interval of
time.

sflag State information about the node. This is a concatenation of the
administrative attributes, membership role, and qualification
levels. For more detailed information about the sflag field,
see “Using the sflag Field of the cmm_member_t Structure”
on page 54.

domainid The unique ID of the cluster that the node can join or has
joined. All peer nodes in a cluster have the same domainid. A
node can belong to only one cluster and the ID of this cluster is
the cluster domainid of the current node.

software_load_id This field is set at 1.

Using the sflag Field of the cmm_member_t
Structure
As explained in “Using the cmm_member_t Structure for Information About Member
Nodes” on page 53, the sflag part of the cmm_member_t structure stores
information about a node’s administrative attributes, membership role, and
qualification levels. This information is stored in a bit mask in the sflag. The
following functions extract information from the sflag field:

cmm_member_isdesynchronized() Determines whether a master-eligible node
is desynchronized. While the node has the
CMM_OUT_OF_CLUSTER role, the
qualification level and
CMM_FLAG_SYNCHRO_NEEDED flag are
meaningless.

cmm_member_isdisqualified() Determines whether a master-eligible node
has the CMM_DISQUALIFIED_MEMBER
qualification level. While the node has the
CMM_OUT_OF_CLUSTER role, the
qualification level and
CMM_FLAG_SYNCHRO_NEEDED flag are
meaningless.

cmm_member_isqualified () Determines whether a master-eligible node
has the CMM_QUALIFIED_MEMBER
qualification level. While the node has the

54 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

CMM_OUT_OF_CLUSTER role, the
qualification level and
CMM_FLAG_SYNCHRO_NEEDED flag are
meaningless.

cmm_member_iseligible () Determines whether a node has the
CMM_ELIGIBLE_MEMBER attribute.

cmm_member_isexcluded() Determines whether a node has the
CMM_EXCLUDED_MEMBER attribute.

cmm_member_isfrozen() Determines whether a node has a
CMM_FROZEN_MEMBER attribute.

cmm_member_isoutofcluster() Determines whether a node has the
CMM_OUT_OF_CLUSTER role. While a node
has the CMM_OUT_OF_CLUSTER role, the
qualification level and synchronization flag
of the node are meaningless.

cmm_member_isvicemaster() Determines whether a node has the
CMM_VICEMASTER role.

cmm_member_ismaster() Determines whether a node has the
CMM_MASTER role.

Note – It is safer to use the cmm_member_is...() functions than to rely on direct
extraction of node information from these extract flags.

For more information about the cmm_member_is...() functions, see “Identifying
the Current Node” on page 43, and “Identifying the Role of a Node” on page 50 . See
also the cmm_member_iseligible(3CMM) and cmm_member_ismaster(3CMM)
man pages.

Chapter 5 • Retrieving Node Information Using the CMM API 55

56 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

CHAPTER 6

Understanding Change Notifications

This chapter describes how the CMM API indicates changes in the state of the cluster
by sending notifications to system services and applications. For more information, see
the following topics:

� “Introduction to Change Notifications” on page 57
� “Notifications During Changes in the Cluster State” on page 60

Introduction to Change Notifications
Notifications are information messages sent by the nhcmmd daemon on a node to
services or applications registered to receive them. Notifications are sent when there is
a change in the membership of the cluster.

In a cluster, the master node is aware of all changes in the state of peer nodes. The
cluster state information held by the nhcmmd daemon on the master node is
propagated to all peer nodes.

Cluster notifications enable a service or application to maintain an accurate view of
the state of the cluster and of the state of any peer node. An application or service can
use notifications to coordinate changes in system services when a peer node joins or
leaves the cluster.

A single change in the cluster state can cause an application or service to receive
several associated cluster change notifications. This can be due to the fact that a
change in the membership of one node can effect changes in the membership of
several other nodes.

A cluster change notification does not contain any information about the previous role
of a node. Therefore, for example, when a callback is invoked with the
CMM_MEMBER_LEFT notification, the indicated node could have been in the cluster
with no role, or could have had the CMM_MASTER or CMM_VICE_MASTER role.

57

Several scenarios in which there are changes in the state of the cluster, and the
associated notifications sent during these changes, are described in “Notifications
During Changes in the Cluster State” on page 60.

For an example of how to retrieve notifications about changes in the cluster state, see
Example 7–2.

To verify that the nhcmmd daemon is running on your peer nodes, see the Netra High
Availability Suite Foundation Services 2.1 6/03 Cluster Administration Guide. For
information about the nhcmmd daemon, see the nhcmmd(1M) man page.

Understanding the Structure of Notifications
Applications that you write can register a callback function to handle notification
messages. The cmm_notify_t callback receives the cluster membership change (cmc)
callback function. The cmm_cmc_register() function takes the service or
application data and this callback function. You must provide relevant data when
registering. The code in Example 6–1 details the related structure, called the
cmm_cmc_notification_t structure.

EXAMPLE 6–1 The cmm_cmc_notification_t Structure

typedef struct {
cmm_cmchanges_t cmchange;
cmm_nodeid_t nodeid;

} cmm_cmc_notification_t;

The fields in this structure detail the cluster change and specify the node concerned.
These fields are described in Table 6–1.

TABLE 6–1 Description of Fields of the cmm_cmc_notification_t Structure

Field Description

nodeid This field represents the node on which the
change occurs if the notification is made for each
node.

cmchange This field indicates the type of change that occurs.

This structure is used by the cmm_notify_t callback function. The cmm_notify_t
callback function contains the parameters described in Table 6–2.

58 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

TABLE 6–2 Description of the Parameters of the cmm_notify_t Callback Function

Parameter Description

change_notification This parameter is a pointer to a structure
describing the specific membership change and
the affected cluster member’s identity. This is
either the nodeid of a specific node, or 0 when the
change affects all peer nodes.

client_data This parameter is a service or application-defined
value given to the cmm_cmc_register()
function. The CMM API does not use this
parameter internally.

If change notification data is required for longer than the duration of the callback, it
must be handled by the client application or service.

Notification Values
Change notification messages contain the nodeid of the affected node and a
cmm_cmchanges_t data type. The cmm_cmchanges_t data type describes the
change notification. The following table lists the notifications of the
cmm_cmchanges_t structure:

TABLE 6–3 Change Notifications

Value Description

CMM_INVALID_CLUSTER A critical problem occurred. For example, there are two
master nodes. One node must be rebooted as soon as
possible. The nodeid field is not useful in this case.

CMM_MASTER_DEMOTED The nodeid represents a previous master node that has
been demoted. For more information, see
“Administrative Attributes” on page 25.

CMM_MASTER_ELECTED The nodeid is that of the newly elected master node. A
cluster election has selected a new master and the
previous master (if any) quits its role. The new node
might have just joined the cluster and there might not
have been a previous master.

CMM_MEMBER_JOINED A peer node has joined the cluster. The nodeid is that of
the new peer node.

CMM_MEMBER_LEFT A peer node has the CMM_OUT_OF_CLUSTER role.

Chapter 6 • Understanding Change Notifications 59

TABLE 6–3 Change Notifications (Continued)
Value Description

CMM_STALE_CLUSTER The master node sends a membership frame every 4
seconds to inform other nodes of the current state of the
cluster. If no frames are received by a node for more
than 10 seconds, the CMM on this node notifies the local
applications. The CMM_STALE_CLUSTER notification
means that, even if the CMM API is available, the
returned information from a node might not reflect the
current state of the cluster. Operations involving the
master, such as a new node joining the cluster, might fail
because the master is unreachable. This situation is
abnormal and recovery actions must be taken. The
nodeid field is not useful in this case. Calls that return the
CMM_OK value before this notification return
CMM_EAGAIN after it while the cluster is in a stale state.

CMM_VICEMASTER_DEMOTED The nodeid represents a previous vice-master node that
has been demoted. This is only sent if the vice-master
node is disqualified.

CMM_VICEMASTER_ELECTED A new vice-master is elected. The node no longer has its
previous role. The previous vice-master (if any) is
demoted. The nodeid is that of the newly elected
vice-master node.

CMM_VALID_STATE The state of the cluster is now valid and running
correctly. The nodeid field is not useful for this
notification.

Notifications During Changes in the
Cluster State
There are many scenarios in which the state of a cluster changes and registered
applications and services receive notifications of changes in the cluster state.

A change in the state of a single node can cause the states of other nodes to change.
For example, if a new master node is elected, the roles of both the new master node
and the former master node change. When a scenario involves a change in the state of
more than one node, several notifications can be sent. When several notifications are
sent, the notifications are sent in the order in which the changes occur. The nhcmmd
daemon sends the minimum number of notifications that describe a new cluster
situation. Instead of sending a notification for each change of state for each node, the
nhcmmd daemon bundles the information into the minimum number of notifications.

60 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

If peer nodes are communicating correctly, the same notification is sent to all nodes,
regardless of their membership role.

In each of the scenarios described in this section, there are two example peer nodes:
node A and node B. The roles of these nodes are shown in Table 6–4. The transition
from one role to another is represented as (Role_A) —> (Role_B).

TABLE 6–4 Description of the Roles of Example Nodes A and B

Node Role Description

in A peer node with a role other than the
CMM_OUT_OF_CLUSTER role.

master A node has the CMM_MASTER role.

vice-master A node has the CMM_VICEMASTER role.

out A node has the CMM_OUT_OF_CLUSTER role.

For a summary of the membership roles that a node can have, see “Membership
Roles” on page 23.

This section describes scenarios of cluster state change and these related notifications:

� “Cluster Initialization Notifications” on page 61.
� “Vice-Master Removal Notifications” on page 62.
� “Vice-Master Excluded Notification” on page 63.
� “Peer Node Removal Notification” on page 63.
� “Master Node Excluded Notifications” on page 64.
� “Node Other Than Master Excluded Notification” on page 64.
� “Switchover Notifications” on page 64.
� “Failover Notifications” on page 65.
� “Stale Cluster Notification” on page 66.
� “Amnesia” on page 67.
� “Split Brain” on page 67.

Cluster Initialization Notifications
When neither node A nor B is currently running the Foundation Services, nodes A and
B are out. When node A becomes the master node, a MASTER_ELECTED notification is
sent to the registered applications and services. At cluster startup, this is the first step
in the creation of a cluster. The notification sent for this scenario is shown in Table 6–5.

Chapter 6 • Understanding Change Notifications 61

TABLE 6–5 A Master is Elected at Cluster Startup

Transition (node A, node B) Notifications Sent

(out, out) —> (master, out) CMM_MASTER_ELECTED(A)

The following scenario describes the election of a qualified node to the vice-master
role at cluster initialization. This takes place in one step, when the
CMM_VICEMASTER_ELECTED notification is sent. The notification sent for this scenario
is shown in Table 6–6.

TABLE 6–6 A New Node Joins the Cluster and Becomes Vice-Master

Transition (node A, node B) Notifications Sent

(master, out) —> (master,
vice-master)

CMM_VICEMASTER_ELECTED (B)

The following scenario describes when a new node joins the cluster. This node does
not take the master or vice-master role and could be a diskless node or a dataless
node. The notification sent for this scenario is shown in Table 6–7. This scenario can
occur at cluster initialization or when a new node is added to a running cluster.

TABLE 6–7 A New Node Joins the Cluster

Transition (node A, node B) Notifications Sent

(master, out) —> (master, in) CMM_MEMBER_JOINED (B)

The following scenario describes the situation where a node that is in becomes
vice-master. This scenario can occur if a node is in the cluster but does not
immediately declare itself as master-eligible. When its eligibility to be a master node
or a vice-master node is known, the node is elected vice-master. This scenario can also
occur if a master-eligible node is disqualified. When the node is requalified, the node
becomes that vice-master. The notification sent for this scenario is shown in Table 6–8.

TABLE 6–8 A Node is Elected Vice-Master

Transition (node A, node B) Notifications Sent

(master, in) —> (master, vice-master) CMM_VICEMASTER_ELECTED (B)

Vice-Master Removal Notifications
Provided that there is a running vice-master node, if the master node stops being
master because its role has been removed, there is a failover, as explained in “Failover
Notifications” on page 65.

62 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

If the vice-master node stops being vice-master due to a failure, or because its role has
been removed, there is no backup for the master node and the cluster loses its 2N
redundancy.

If the vice-master role is removed because of a failure or by using the
cmm_membership_remove() function, the notification is shown in Table 6–9.

TABLE 6–9 The Vice-Master Node Fails or the Vice-Master is Removed With the
cmm_membership_remove() Function

Transition (node A, node B) Notifications Sent

(master, vice-master) —> (master,
out)

CMM_VICEMASTER_DEMOTED (B)
CMM_MEMBER_LEFT (B)

Vice-Master Excluded Notification
The vice-master node can be disqualified if you use the cmm_member_setqualif()
function. The notification sent for this scenario is shown in Table 6–10.

TABLE 6–10 The Vice-Master is Disqualified with the cmm_member_setqualif() Function

Transition (node A, node B) Notifications Sent

(master, vice-master) —> (master,
in)

CMM_VICEMASTER_DEMOTED (B)

For more information about disqualifying a node by using the
cmm_member_setqualif() function, see “Setting the Qualification of a Node”
on page 77. Care must be taken with the use of the cmm_member_setqualif()
function. Do not trigger a failover. For more information, see “Triggering a Failover by
Using the cmm_member_setqualif() Function” on page 83. See also the
cmm_member_setqualif(3CMM) man page.

Peer Node Removal Notification
If a peer node other than the master or vice-master loses its role in the cluster, it
becomes temporarily out of the cluster. This occurs if you use the
cmm_membership_remove() function on the peer node. The notification sent in this
scenario is shown in Table 6–11.

Chapter 6 • Understanding Change Notifications 63

TABLE 6–11 A Node Other Than Master or Vice-Master is Removed From Cluster

Transition (node A, node B) Notifications Sent

(master, in) —> (master, out) CMM_MEMBER_LEFT(B)

Master Node Excluded Notifications
If the master node fails, the node can be excluded from the cluster as described in
“Removing or Excluding a Node” on page 76. The notification sent in this scenario is
shown in Table 6–12.

TABLE 6–12 The Master Node is Excluded From Cluster

Transition (node A, node B) Notifications Sent

(master, vice-master) —> (out,
master)

CMM_MEMBER_LEFT(A) CMM_MASTER_ELECTED
(B)

Node Other Than Master Excluded Notification
If a node other than the master fails it can be excluded from the rest of the cluster as
described in “Removing or Excluding a Node” on page 76. The notification sent is
shown in Table 6–13.

TABLE 6–13 A Node Other Than Master is Excluded From Cluster

Transition (node A, node B) Notifications Sent

(master, in) —> (master, out) CMM_MEMBER_LEFT(B)

The notification sent for this scenario can also be sent for a diskless node.

Switchover Notifications
A switchover is the scheduled transfer of the CMM_MASTER role from the master node
to the vice-master node. A switchover is not a failure and does not change the
qualification level of the master node. A switchover is not a persistent change. A
switchover is usually triggered by the cluster administrator for the maintenance of a
node. For more information about the maintenance of nodes, see “Starting and
Stopping Services, Nodes, and Clusters” in the Netra High Availability Suite Foundation
Services 2.1 6/03 Cluster Administration Guide.

The notifications sent in the case of a switchover from the master to the vice-master
node, triggered by calling the cmm_mastership_release() function, are shown in
Table 6–14.

64 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

TABLE 6–14 A Switchover Triggered by the cmm_mastership_release() Function

Transition (node A, node B) Notifications Sent

(master, vice-master) —>
(vice-master, master)

CMM_MASTER_ELECTED (B)
CMM_VICEMASTER_ELECTED (A)

For further information and an example that uses the cmm_mastership_release()
function to trigger a switchover, see “Triggering A Switchover” on page 79.

Failover Notifications
A failover is the unscheduled transfer of the CMM_MASTER role from the master node
to the vice-master node. A failover is a response to the removal or failure of the master
node or disqualification of the master node. This section describes two failover
scenarios:

� “Failover Due to the Removal or Failure of the Master Node” on page 65.
� “Failover Due to Master Disqualification” on page 66.

Failover Due to the Removal or Failure of the Master
Node
If master node is removed from the cluster by using the cmm_membership_remove
() function, the node takes CMM_OUT_OF_CLUSTER role. This role indicates that the
node is out of the cluster, but is configured to be in the cluster, and has access to
cluster information. This is described in “Membership Roles” on page 23.

The notification sequence is the same, whether a master failover occurs because the
master node fails or because the master role is removed. The master node is excluded
from the cluster and the vice-master becomes the master. The notifications sent for this
scenario are shown in Table 6–15.

TABLE 6–15 A Failover Due to the Removal or Failure of the Master Node

Transition (node A, node B) Notifications Sent

(master, vice-master) —> (out,
master)

CMM_MASTER_DEMOTED (A) CMM_MEMBER_LEFT
(A) CMM_MASTER_ELECTED (B)

The nhcmmd daemon issues notifications of this failover, described in “Introduction to
Change Notifications” on page 57.

For an example of how to trigger a failover using thecmm_membership_remove()
function, see Example 7–6.

Chapter 6 • Understanding Change Notifications 65

Failover Due to Master Disqualification
In this scenario, the failover of the master node is due to the use of the
cmm_member_setqualif() function. The master node is no longer able to be either
master or vice-master, but is in the cluster as a peer node. The vice-master becomes the
master node. Because there is no other master-eligible node to take the vice-master
role, the cluster loses its 2N redundancy. The former master node must be requalified
to restore 2N redundancy. The notifications sent for this scenario are shown in Table
6–16.

TABLE 6–16 A Failover Due to the Disqualification of the Master Node

Transition (node A, node B) Notifications Sent

(master, vice-master) —> (in,
master)

CMM_MASTER_DEMOTED (A)
CMM_MASTER_ELECTED (B)

The nhcmmd issues notifications of this failover, described in “Introduction to Change
Notifications” on page 57.

The cmm_member_setqualif() function is used during the process of peer node
reboot and is called from the node that is being rebooted by the service coordinating
the node reboot.

For an example of how to trigger a failover using the cmm_member_setqualif()
function, see “Triggering a Failover by Using the cmm_member_setqualif()
Function” on page 83.

Stale Cluster Notification
When information received by a peer node from the master node is more than 10
seconds old, the information is considered to be stale. A stale cluster does not
guarantee that there is no change in the cluster. A stale cluster means that information
held by the master node is not reaching a peer node. This can happen if the master
node is not functioning correctly and does not send information to the peer node. A
stale cluster can also occur if the master node does send information but it does not
reach the peer node, due for example to a problem in the network. The notification
sent for this scenario is shown in Table 6–17.

TABLE 6–17 The Cluster is in a Stale State

Transition (node A, node B) Notifications Sent

(master, any) —> (stale cluster) CMM_STALE_CLUSTER(0)

66 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

Amnesia
Amnesia is an error condition in which a cluster restarts with stale cluster
configuration data. This can happen when a cluster is restarted from a node that was
not previously part of the most recent cluster membership list.

Split Brain
Split brain is an error condition in which there are two master nodes. This can be
caused by interconnect failure between peer nodes.

During split brain, each master node assumes that it is the only master node in the
cluster. A split brain can begin with any combination of roles for nodes A and B. The
notification sent for this scenario is shown in Table 6–18.

TABLE 6–18 Two Masters in the Cluster (Split Brain)

Transition (node A, node B) Notifications Sent

(any, any) —> (master, master) CMM_INVALID_CLUSTER

For information about how to recover from a split brain error condition, see theNetra
High Availability Suite Foundation Services 2.1 6/03 Troubleshooting Guide.

Chapter 6 • Understanding Change Notifications 67

68 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

CHAPTER 7

Managing Changes in the Cluster State

This chapter describes how to receive and react to notifications about changes in the
cluster state, with examples on how to respond to these notifications by modifying the
state of the cluster. For more information, see the following topics:

� “Setting a Timeout Value for Calls to the nhcmmd Daemon” on page 69
� “Reloading the Cluster Node Table” on page 70
� “Receiving and Handling Change Notifications” on page 71
� “Responding to Cluster Notifications by Modifying the Cluster” on page 75

Setting a Timeout Value for Calls to the
nhcmmd Daemon
The timeout parameter is used globally by the CMM API to signify the maximum
amount of time a call can block. A different timeout can be set for each client.

Using the cmm_connect() function, you can:

� Call the nhcmmd daemon.

� Set the timeout value for subsequent calls to the nhcmmd daemon. The default
value is five seconds.

Note – The cmm_connect() function is called implicitly by the first call to the CMM
API. You do not need to call the cmm_connect() function to create a connection
between an application and the nhcmmd daemon on a node. If you do not set the
timeout, it remains at the default value of five seconds.

The new value of the timeout is not used by the call with which you set it.

69

The cmm_connect() function can be called from any node, even a node that has been
excluded from the cluster for administrative reasons. The cmm_connect() function
does not use information provided by the CMM API. For further information, see the
cmm_connect(3CMM) man page.

The cmm_disconnect() function closes the connection between the current calling
process and the nhcmmd daemon. For more information about this, see the
nhcmmd(1M) and nhfs.conf(4) man pages. This frees the resources allocated to the
client connection. If notifications were registered, they are no longer sent. For
information about notifications, see Chapter 6.

The cmm_connect() and cmm_disconnect() functions cannot be called within a
callback function.

The following example demonstrates how to use the cmm_connect() function to set
a timeout:

EXAMPLE 7–1 Setting a Timeout Using the cmm_connect() Function

#include <cmm.h>
#include <stdio.h>
#include <stdlib.h> /* for exit() */
#include <strings.h> /* for strcpy */
#include "common.h"

/**/
void main(void)
{

cmm_error_t res;
timespec_t time-out = { 1 /*seconds*/, 500000000 /* nanoseconds */};

/* test connection and set time-out */
if ((res = cmm_connect(timeout))!= CMM_OK) {

printf("problem to connect to local CMM: %s -> abort\n",
cmm_strerror(res));

exit(1);
}
exit(0) ;

}

Reloading the Cluster Node Table
The cmm_config_reload() function can be called from the master node to make
the nhcmmd daemon reload the cluster node table. Use this function when a node is
added to or removed from the cluster node table.

70 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

The only permitted operations here are addition and removal of a node. For more
information about adding and removing a node, see the Netra High Availability Suite
Foundation Services 2.1 6/03 Cluster Administration Guide.

You cannot use the cluster node table to edit a node’s attributes. Use the CMM API to
do this. For example, use the cmm_member_setqualif(3CMM)function.

For more information, see the cmm_config_reload(3CMM),
cluster_nodes_table(4), and nhcmmd(1M) man pages.

Caution – If you want to add a node make sure it is powered on before you reload the
cluster node table. If you want to remove a node make sure it is powered off before
you reload the cluster node table. This ensures that you cannot remove the master
node from the table.

Receiving and Handling Change
Notifications
You can use the CMM API to register and unregister for notifications that indicate a
change in the cluster. You can also configure your applications to filter, receive, and
dispatch these notifications.

This information applies to the CMM API only and is separate from the process of
registering for notifications sent by the Node Management Agent (NMA). For more
information, see “Registering to Receive Notifications” in the Netra High Availability
Suite Foundation Services 2.1 6/03 NMA Programming Guide.

You can manage the handling of notifications in general by using the following
functions:

� cmm_cmc_register()
� cmm_cmc_unregister()
� cmm_cmc_filter()
� cmm_notify_getfd()
� cmm_notify_dispatch()

This section contains the following topics:

� “Registering to Receive Notifications” on page 72.
� “Filtering Notifications” on page 72.
� “Receiving and Dispatching Notifications” on page 72.
� “Retrieving Change Notifications” on page 73.

Chapter 7 • Managing Changes in the Cluster State 71

Registering to Receive Notifications
To receive notifications, applications or services can use the cmm_cmc_register()
function to register a callback with the nhcmmd daemon. When a membership change
occurs in the cluster, the nhcmmd daemon notifies the application or service through
the callback function by sending a notification. Applications or services receive
notifications by polling, using a function such as the poll() function. For more
information, see the poll(2) man page.

To change a registration, an application or service must first cancel the existing
registration by using the cmm_cmc_unregister() function, and then register a new
notification by using the cmm_cmc_register() function.

For an example of how to use these functions, see Example 7–2. For further
information, see the cmm_cmc_register(3CMM) and
cmm_cmc_unregister(3CMM) man pages.

Filtering Notifications
By default, when an application registers to receive notifications, the application
receives a notification for every change in the cluster state. These notifications can be
filtered by using the cmm_cmc_filter() function.

For each notification present in the filter, as selected by using the
cmm_cmc_filter() function, the registered callback is invoked. The defined filter is
applied for further calls to the cmm_notify_dispatch() function.

For an example of how to use these functions, see Example 7–2. For further
information about how to use the cmm_cmc_filter() function, see the
cmm_cmc_filter(3CMM) man page.

Receiving and Dispatching Notifications
Applications or services that are registered to receive notifications can use the
cmm_notify_getfd() function. This function returns the file descriptor through
which the notifications are delivered.

An application uses a polling function, such as poll(), to monitor the file descriptors
returned by cmm_notify_getfd(). When the polling function indicates activity on
this file descriptor, cmm_notify_dispatch() must be called. For each pending
notification, before invoking the callback, the CMM API checks that this notification is
present in the filter (as selected with cmm_cmc_filter()).

The callback is invoked with the notification and the client_data argument passed to
the cmm_cmc_register() function.

72 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

For an example of how to use these functions, see Example 7–2. For further
information see the cmm_cmc_register(3CMM), cmm_notify_getfd(3CMM),
cmm_notify_dispatch(3CMM) and poll(2) man pages.

Retrieving Change Notifications
The following example demonstrates how to use the functions that enable you to filter,
receive and dispatch notifications:

EXAMPLE 7–2 Retrieving Change Notifications

#include <cmm.h>
#include <stdio.h>
#include <stdlib.h> /* for exit() */
#include <strings.h> /* for strcpy */
#include "common.h"

/***/
/*~~~*/
void CMM_notify_cb(const cmm_cmc_notification_t *change_notification,

void *client_data)
{

cmm_member_t member ;

switch (change_notification->cmchange)
{

case CMM_MASTER_ELECTED:
printf("[USER CB] master elected = %d\n",

change_notification->nodeid) ;
if (cmm_master_getinfo(&member) == CMM_OK)

print_member(&member) ;
break ;

case CMM_MASTER_DEMOTED:
printf("[USER CB] master demoted = %d\n",

change_notification->nodeid) ;
break ;

case CMM_VICEMASTER_ELECTED:
printf("[USER CB] vicemaster elected = %d\n",

change_notification->nodeid) ;
break ;

case CMM_VICEMASTER_DEMOTED:
printf("[USER CB] vicemaster demoted = %d\n",

change_notification->nodeid) ;
break ;

case CMM_MEMBER_JOINED:
if (cmm_member_getinfo(change_notification->nodeid,

&member) == CMM_OK)
print_member(&member) ;

break ;
case CMM_MEMBER_LEFT:

printf("[USER CB] member left cluster = %d\n",
change_notification->nodeid) ;

Chapter 7 • Managing Changes in the Cluster State 73

EXAMPLE 7–2 Retrieving Change Notifications (Continued)

break ;
case CMM_INVALID_CLUSTER:

printf("[USER CB] INVALID CLUSTER\n") ;
break ;

case CMM_STALE_CLUSTER:
printf("[USER CB] STALE CLUSTER\n") ;
break ;

case CMM_VALID_CLUSTER:
printf("[USER CB] VALID CLUSTER\n") ;
break ;

}
}

/**/
/**/
/**/
/**/
int main(int P_argc, char *P_argv[])
{

uint32_t L_node_count ;
cmm_error_t result ;
struct pollfd fifo_poll ;

boolean_t go_on_poll = B_TRUE ;

/* FILTERING PART */
cmm_cmchanges_t L_notify[2] = { CMM_MASTER_ELECTED,

CMM_INVALID_CLUSTER } ;

cmm_cmc_filter(CMM_CMC_NOTIFY_SET, L_notify, 2) ;

result = cmm_cmc_register(CMM_notify_cb, (void *) NULL) ;
if (result != CMM_OK)
{

fprintf(stderr,
" register error (%s) => EXIT\n",
cmm_strerror(result)) ;

exit(1) ;
}

result = cmm_notify_getfd(&fifo_poll.fd) ;
if (result != CMM_OK) {

fprintf(stderr,
" getfd error (%s) => EXIT\n",
cmm_strerror(result)) ;

exit(1) ;
}

printf("file descriptor to poll = %d\n", fifo_poll.fd) ;
fifo_poll.events

= (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI);
fifo_poll.revents = 0 ;

74 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

EXAMPLE 7–2 Retrieving Change Notifications (Continued)

while (1) {
/* this loop ends when exit asked or poll succeeded */
go_on_poll = B_TRUE ;
while (go_on_poll == B_TRUE) {

result = cmm_notify_getfd(&fifo_poll.fd) ;
switch (poll(&fifo_poll, 1, 2500))
{
case -1:

puts("error on poll") ;
break ;

case 0:
/* time-out */
break ;

default:
go_on_poll = B_FALSE ;

}

if ((fifo_poll.revents & POLLHUP) ||
(fifo_poll.fd == -1))

{
printf("reconnection required\n") ;
result = cmm_cmc_unregister() ;
result = cmm_cmc_register(CMM_notify_cb,

(void *) NULL) ;
result = cmm_notify_getfd(&fifo_poll.fd) ;
poll(NULL, 0 , 500) ;

}
}
cmm_notify_dispatch() ;

}
}

Responding to Cluster Notifications by
Modifying the Cluster
You can use the CMM API to respond to notifications received from the nhcmmd
daemon that indicate a change in the cluster. In response to these notifications, it
might be necessary to remove or disqualify a node or to trigger a switchover or a
failover.

This section contains these topics:

� “Removing or Excluding a Node” on page 76
� “Setting the Qualification of a Node” on page 77
� “Triggering A Switchover” on page 79

Chapter 7 • Managing Changes in the Cluster State 75

� “Triggering A Failover” on page 81

Removing or Excluding a Node
A node can be removed from the cluster by using the cmm_membership_remove()
function. The cmm_membership_remove() function temporarily takes the current
node out of the cluster by giving it the CMM_OUT_OF_CLUSTER role and all other peer
nodes learn that it is not an active peer node.

A node with this role is not actually excluded from the cluster. It is still configured to
be in the cluster. For an explanation of this role, see “Membership Roles” on page 23.

If you want to exclude a node completely from the cluster, first use the
cmm_membership_remove() function to remove the role from the cluster. Then
remove the entry for this node from the cluster node table. It is better to remove the
node completely from the cluster node table instead of attributing the node with an
excluded value (X) in the cluster_nodes_table file. For more information, see the
cluster_nodes_table(4) man page.

The nhcmmd issues notifications of the node’s exclusion. For more information, see
“Triggering a Failover by Using the cmm_membership_remove() Function” on page
81.

Removing the Master Node
Removing the master node must be done in two stages so as to avoid triggering a
failover. First, the node that is master should be released from the role of master by
using the cmm_mastership_release() function. This triggers a switchover. Only
then should the node be removed from the cluster. The node is removed from the
cluster by calling the cmm_membership_remove() function from the node. This
gives the node the CMM_OUT_OF_CLUSTER role, effectively taking the node out of the
cluster. For more information about how to trigger a switchover, see “Triggering A
Switchover” on page 79. For an explanation of the notifications sent when you trigger a
switchover, see “Switchover Notifications” on page 64.

If the cmm_membership_remove() function is called directly from the master node,
without first triggering a switchover to a qualified vice-master node, then a failover is
triggered.

Caution – Triggering a failover should be done for test purposes only.

For more information about how to trigger a failover, see “Triggering A Failover”
on page 81.

76 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

For an explanation of the notifications sent when you remove the master role with the
cmm_membership_remove() function, see Table 6–15. For an explanation of the
notifications sent when you trigger a failover, see “Failover Notifications” on page 65.

Removing the Vice-Master Node
When the cmm_membership_remove() function is called by a system service on the
vice-master node, the function removes the vice-master node from the cluster. If the
vice-master is removed from the cluster, the cluster no longer has 2N redundancy.

You can remove the vice-master node for maintenance purposes. If you want to
perform maintenance on both master-eligible nodes, remove the vice-master and carry
out the maintenance. Then trigger a switchover, remove the new vice-master and
perform the maintenance tasks on this node. For more information, see the Netra High
Availability Suite Foundation Services 2.1 6/03 Cluster Administration Guide.

For an explanation of the notifications sent when you remove the vice-master node
with the cmm_membership_remove() function, see Table 6–9.

Removing a Diskless Node
If the cmm_membership_remove() function is called by a system service on a
diskless node, the function removes the diskless node from the cluster. This action has
no effect on the role of other nodes in the cluster.

Setting the Qualification of a Node
The cmm_member_setqualif() function sets the qualification of a node.
Qualification level is only relevant for master-eligible nodes. This function can only be
called from the master node. The nodeid and the qualification level must be provided
as input parameters to this function. The nodeid of the current node can be retrieved by
using the cmm_node_getid() function.

The following example demonstrates how to use the cmm_member_setqualif()
function to disqualify a node with the nodeid 12.

EXAMPLE 7–3 Disqualifying a Node

if (cmm_member_setqualif (12, CMM_DISQUALIFIED_MEMBER) != CMM_OK)

/* handle the error */;

The following example demonstrates how to use the cmm_node_getid() and
cmm_member_setqualif() functions.

EXAMPLE 7–4 Requalifying a Node

#include <cmm.h>
#include <stdio.h>

Chapter 7 • Managing Changes in the Cluster State 77

EXAMPLE 7–4 Requalifying a Node (Continued)

#include <sys/types.h> /* for boolean_t */
#include <stdlib.h> /* for exit(), atoi() */
#include "common.h"

/**/
int get_id(cmm_nodeid_t *P_NodeId)
{

int success;
char str_node[10];
boolean_t go_on = B_TRUE;

while (go_on == B_TRUE) {
printf("Your node [0 for abort]: ");
success = (scanf("%9s", str_node) != 0);
if (success) {

*P_NodeId = atoi(str_node);
if (*P_NodeId >= 0)

go_on = FALSE;
}

}
return (*P_NodeId==0)?FALSE:TRUE;

}
/***/
/***/
int ask_for_qualif(cmm_qualif_t *P_NewQualif)
{

char L_Choice[20] ;

puts("Your qualif: o Q qualif") ;
puts(" o D disqualif")
printf("your choice: ") ;
scanf("%6s", L_Choice) ;
if (strcasecmp(L_Choice,"Q") == 0)

*P_NewQualif = CMM_QUALIFIED_MEMBER ;
else if (strcasecmp(L_Choice,"D") == 0)

*P_NewQualif = CMM_DISQUALIFIED_MEMBER ;
else
{

printf("bad qualif: [%s]",L_Choice) ;
return FALSE ;

}
return TRUE ;

}

/***/
void main(void)
{

cmm_error_t res;
cmm_nodeid_t onenode;
cmm_qualif_t newqualif;

if (!get_id(&onenode)) {
printf("abort\n");

78 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

EXAMPLE 7–4 Requalifying a Node (Continued)

exit(0);
}

if (!ask_for_qualif(&newqualif)) {
printf("abort\n");
exit(0);

}

if ((res = cmm_member_setqualif(onenode, newqualif)) != CMM_OK) {
fprintf(stderr,

"ERROR: Failed to set qualif (Error: %s)\n",
cmm_strerror(res));

}

}

You can trigger a failover by calling the cmm_member_setqualif() function from
the master node. For more information, see “Triggering a Failover by Using the
cmm_member_setqualif() Function” on page 83.

Triggering A Switchover
A switchover is usually triggered by the system administrator for maintenance of a
node. There are two ways to trigger a switchover:

� By calling the cmm_mastership_release() function.
� By using the nhcmmstat tool.

For information about the nhcmmstat tool, see the nhcmmstat(1M) man page.

Triggering a Switchover Using
cmm_mastership_release()

The cmm_mastership_release() function enables a calling process to trigger a
switchover. This function must be called from the master node. If the vice-master node
is qualified to be master when the cmm_mastership_release() function is called,
it becomes the master node. If there is no node qualified to become master when the
cmm_mastership_release() function is called, the function does not release the
mastership from the current master and the function fails.

After the cmm_mastership_release() function is called, the calling node remains
master until the vice-master node has taken the master role. When this happens, the
nhcmmd daemon issues a notification of the switchover. For information about
notifications during a switchover, see “Switchover Notifications” on page 64. For more
information about the nhcmmd daemon and notifications, see “Introduction to Change
Notifications” on page 57.

Chapter 7 • Managing Changes in the Cluster State 79

The cmm_mastership_release() call is synchronous, that is, it only returns when
the switchover has been completed or has failed, or when a timeout occurs.

Example 7–5 demonstrates how to use the cmm_mastership_release() function to
trigger a switchover:

EXAMPLE 7–5 Triggering a Switchover by Using the cmm_mastership_release()
Function

#include <cmm.h>
#include <stdio.h>
#include "common.h"

/**/
void main(void)
{

cmm_error_t res;
cmm_member_t master_info;
cmm_nodeid_t currnode;

/* get the current node id */
if ((res = cmm_node_getid(&currnode))==CMM_OK)

printf("Current node id is: %d\n", currnode);
else {

printf("Error getting info on local node: %s\n",
cmm_strerror(res));

exit(1) ;
}

/* get the master information */
if ((res = cmm_master_getinfo(&master_info)) != CMM_OK) {

printf("Error getting info on master: %s\n",
cmm_strerror(res));

exit(1);
}

print_member(&master_info);
/* get the current node id */

if (master_info.nodeid != currnode)
{

printf("you must be on master to execute this command\n") ;
exit(1);

}

/* note that cmm_mastership_release internally checks that
* the command is executed on master node */
res = cmm_mastership_release();
if (res != CMM_OK) {

printf("Error to release masterhsip: %s\n",
cmm_strerror(res));

exit(1) ;
}
printf("Switch-over completed successfully\n") ;
exit(0) ;

80 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

EXAMPLE 7–5 Triggering a Switchover by Using the cmm_mastership_release()
Function (Continued)

}

Note – Do not trigger a switchover with the cmm_mastership_release() function
if you are running a separate Netra HA Suite Framework product on your cluster.

Triggering A Failover
A failover can be triggered by removing the master node by using the
cmm_membership_release() function, or by disqualifying the master node by
using the cmm_member_setqualif() function.

This section contains information about these topics:

� “Triggering a Failover by Using the cmm_membership_remove() Function”
on page 81.

� “Triggering a Failover by Using the cmm_member_setqualif() Function”
on page 83.

Caution – Trigger a failover only for test purposes.

Triggering a Failover by Using the
cmm_membership_remove() Function
The cmm_membership_remove() function removes from the cluster the node from
which the cmm_membership_remove() function is called. If you call this function
from the master when the vice-master is synchronized, you trigger a failover. When
the cmm_membership_remove() function is called from the master node, the master
node stops sending heartbeat information to other nodes in the cluster, which triggers
a failover. The notifications sent for this scenario are shown in “Failover Due to the
Removal or Failure of the Master Node” on page 65.

If there is no vice-master, or the master-eligible nodes are desynchronized, the
CMM_ECANCELLED error is returned. If a node is not configured to be in any cluster,
any subsequent call to the CMM API returns the CMM_ENOCLUSTER error. For further
information about these and other return values, see “Return Values of the CMM API”
on page 89.

Chapter 7 • Managing Changes in the Cluster State 81

The only way for a removed node to rejoin the cluster is to restart the nhprobed
daemon and the CMM service.

For further information, see the cmm_membership_remove(3CMM) man page and
the nhprobed(1M) man page.

An example that demonstrates how to trigger a failover by using the
cmm_membership_remove() function is shown in Example 7–6.

EXAMPLE 7–6 Triggering a Failover Using the cmm_membership_remove() Function

#include <cmm.h>
#include <stdio.h>
#include "common.h"

/**/
void main(void)
{

cmm_error_t res;
cmm_member_t master_info;
cmm_nodeid_t currnode;

/* get the current node id */
if ((res = cmm_node_getid(&currnode))==CMM_OK)

printf("Current node id is: %d\n", currnode);
else {

printf("Error getting info on local node: %s\n",
cmm_strerror(res));

exit(1) ;
}

/* get the master information */
if ((res = cmm_master_getinfo(&master_info)) != CMM_OK) {

printf("Error getting info on master: %s\n",
cmm_strerror(res));

exit(1);
}

print_member(&master_info);
/* get the current node id */

if (master_info.nodeid != currnode)
{

printf("you must be on master to trigger a failover
using the cmm_membership_remove command\n") ;
exit(1);

}

res = cmm_membership_remove();
if (res != CMM_OK) {

printf("Error in triggering a failover: %s\n",
cmm_strerror(res));

exit(1) ;
}

82 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

EXAMPLE 7–6 Triggering a Failover Using the cmm_membership_remove() Function
(Continued)

printf("Failover successful\n") ;
exit(0) ;

}

Triggering a Failover by Using the
cmm_member_setqualif() Function
A failover can be triggered by calling the cmm_member_setqualif() function on
the master node. The notifications sent for this scenario are shown in Table 6–16. An
example that demonstrates how to trigger a failover using the
cmm_member_setqualif() function is shown in Example 7–7.

EXAMPLE 7–7 Triggering a Failover Using the cmm_member_setqualif() Function

#include <stdio.h>
#include <unistd.h>
#include <cmm.h>
#include "common.h"

/**/
int main(int argc , char ** argv) {

cmm_error_t cmm_diag;
cmm_nodeid_t curr_node_id;
cmm_member_t master;
cmm_member_t vicemaster;

cmm_diag = cmm_node_getid(&curr_node_id);
if (cmm_diag != CMM_OK) {

fprintf(stderr,
"An error occurred during cmm_node_getid() call \n");

exit(1);
}

printf("My id is %d\n",curr_node_id);

/* get master/vice master id */
cmm_diag = cmm_master_getinfo(&master);
if (cmm_diag != CMM_OK) {

fprintf(stderr,
"An error occurred during cmm_master_getinfo call, CR=%d\n",
cmm_diag);

exit(1);
}

cmm_diag = cmm_vicemaster_getinfo(&vicemaster);
if (cmm_diag != CMM_OK) {

fprintf(stderr,
"An error occurred during cmm_vicemaster_getinfo call, CR=%d\n",

Chapter 7 • Managing Changes in the Cluster State 83

EXAMPLE 7–7 Triggering a Failover Using the cmm_member_setqualif() Function
(Continued)

cmm_diag);
exit(1);

}

printf("master node id is %d\n",master.nodeid);
printf("vice-master node id is %d\n",vicemaster.nodeid);

/* the role could be verified by cmm_member_ismaster() */
if (curr_node_id == master.nodeid) {

printf("We are the master of the cluster, launch Failover\n");
} else {

printf("We are not master, operation will be cancelled\n");
exit(1);

}

/* launch the failover (disqualify the master) */
cmm_diag = cmm_member_setqualif(curr_node_id,CMM_DISQUALIFIED_MEMBER);
if (cmm_diag != CMM_OK) {

fprintf(stderr,
"An error occurred during cmm_member_setqualif, CR=%d\n",
cmm_diag);

exit(1);
}

/*the failover is running*/
/* ... */

/* on the new master we should run this command to
* qualify the ex-master to make it the vice-master of the cluster
*
* cmm_diag = cmm_member_setqualif(curr_node_id,CMM_QUALIFIED_MEMBER);
* if (cmm_diag != CMM_OK) {
* fprintf(stderr,
* "An error occurred during cmm_member_setqualif, CR=%d\n",
* cmm_diag);
* exit(1);
* }
*/
exit(0);

}

When the master node fails, if the vice-master node cannot take over the master role,
another master-eligible node must be qualified to become master.

The vice-master node cannot take over the master role if, for example, the vice-master
node is not synchronized with the master node. If this is the case, and if no other node
in the cluster is qualified to become the master, a master-eligible node must be
qualified using the cmm_member_seizequalif() function. For more information
about the cmm_member_seizequalif() function, see the
cmm_member_seizequalif(3CMM) man page.

84 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

The cmm_member_seizequalif() function is used by the
cmm_member_setqualif command and the squalif command of the nhcmmstat
tool.

Chapter 7 • Managing Changes in the Cluster State 85

86 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

CHAPTER 8

Debugging Applications in the
Foundation Services

For information about how to report and check errors caused by applications and how
to debug application, see the following sections:

� “Reporting Application Errors” on page 87
� “Reading Error Information for Debugging” on page 88
� “Stopping the Daemon Monitor for Debugging” on page 88
� “Broken Pipe Error Messages” on page 89
� “Return Values of the CMM API” on page 89

For debugging purposes configure remote IP access to all nodes in the cluster. For
more information, see “Cluster Addressing and Networking” in Netra High Availability
Suite Foundation Services 2.1 6/03 Overview.

You can use standard Solaris operating system commands in the Foundation Services
environment. For debugging applications that interact with the Foundation Services
nodes use the debugging software provided with the Forte Developer 6 Software
Suite.

Reporting Application Errors
Configure applications to report errors and their causes. This information can be used
during troubleshooting to reduce the risk of the re-occurrence of similar errors. To
facilitate recovery from an error, you can provide the following information:

� The return value of the function call that returned the error
� The context in which the error occurred
� An indication of the severity of the error

The standard return values for CMM API errors are summarized in Table 8–1.

87

Reading Error Information for
Debugging
In the Foundation Services, standard error and alert messages are sent to system log
files. In error scenarios, you can refer to the system log files to determine the history of
a process. Critical errors are written on the console in addition to being logged in the
system log files.

While it is true that errors can cause notifications to be sent, notifications are events
and are not errors in themselves. For information on notifications, see Chapter 6.

The NMA enables you to receive information on notifications. Statistics are available
to diagnose the cause of errors received. See the Netra High Availability Suite Foundation
Services 2.1 6/03 NMA Programming Guide.

For information about using and configuring system log files, see the Netra High
Availability Suite Foundation Services 2.1 6/03 Cluster Administration Guide.

Stopping the Daemon Monitor for
Debugging
You cannot debug critical services, such as the CMM or Reliable NFS, on a running
cluster. Debugging would interrupt the regular messages that these services send
between nodes. Debugging tools, such as the truss command, cannot be used on
daemons while they are being monitored by the Daemon Monitor.

Before debugging a Foundation Services daemon or a monitored Solaris daemon, stop
the Daemon Monitor from monitoring the daemon that you want to debug. When you
have finished debugging, restart the Daemon Monitor.

For information about how to stop and restart the Daemon Monitor, see the Netra High
Availability Suite Foundation Services 2.1 6/03 Cluster Administration Guide. For a list of
monitored daemons, see the nhpmd(1M) man page.

88 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

Broken Pipe Error Messages
If one of the applications you are running on your cluster terminates suddenly, CMM
notification pipes that this application opened are kept on the nhcmmd side. You can
be left with a broken pipe from the CMM to the dead application. If the CMM later
sends a notification to this dead application, the CMM realizes that the application is
dead and closes the broken pipe. Alternatively, the CMM frequently checks to see if a
client application is dead and if necessary, closes associated pipes.

If many of your applications die suddenly, without notifying the CMM, the following
can happen:

� Many pipes are broken.

� Unless the CMM has a notification to emit, neither the dead applications nor the
broken pipes, are identified by the CMM.

� Each broken pipe is associated to a file descriptor. This can lead to a file descriptor
shortage as the quantity of file descriptors increases, which can saturate the CMM.

If one of your applications has died suddenly, you receive a system log message such
as this:

Dec 23 09:56:07 machine_name CMM[839]: S-CMM

notif to /var/run/CMM_884 fails: Broken pipe

The CMM detects the problem and closes the notification pipe. For further information
on accessing system log files, see “Accessing and Maintaining System Log Messages”
in the Netra High Availability Suite Foundation Services 2.1 6/03 Cluster Administration
Guide and the syslog.conf(4) Solaris man page.

Return Values of the CMM API
The CMM API provides extensive return values for errors and successful function
calls. They are listed in Table 8–1.

TABLE 8–1 Common Return Values of the CMM API

Return Value Result Possible Responses

CMM_OK The function call succeeded. None required.

Chapter 8 • Debugging Applications in the Foundation Services 89

TABLE 8–1 Common Return Values of the CMM API (Continued)
Return Value Result Possible Responses

CMM_EAGAIN Returned information is based on a
cluster view that has not been updated
by the master node for more than 10
seconds.

Retry the function call.

CMM_EBADF An identifier or descriptor that
corresponds to a file descriptor is invalid.
The connection to the CMM is no longer
valid. Perhaps the CMM is dead.

Verify that data in your program is not corrupted.
Call the cmm_cmc_register() and the
cmm_notify_getfd() functions to fetch a new
connection.

CMM_EBUSY � For all functions: The CMM API
server is temporarily out of resources
to respond to the requested
operation.

� For cmm_cmc_unregister(): An
attempt to unregister a callback, that
is, a call to the
cmm_cmc_unregister() function,
failed because the caller’s callback
function is active.

See the cmm_cmc_unregister(3CMM)
man page.

Wait, then retry the function call. You can decide
the length of wait, based on the application’s
characteristics.

CMM_ECANCELED A switchover operation was cancelled.
For example, when trying to demote the
master, no vice-master can take over the
master role.

Continue.

CMM_ECONN The local CMM API process is
unreachable.

Check that the process is currently running.
Perhaps it is not running yet. Retry the function
call.

CMM_EEXIST Only one function can be registered at a
time. An attempt to call the
cmm_cmc_register() function when a
callback is already registered returns this
message.

The calling process has already registered a
callback. Verify that the existing function is
required for the purpose of your program.

CMM_EINVAL A function parameter has an invalid
value.

Ensure that the type of each parameter matches
the type in the function prototype. For example
the nodeid is not a master-eligible node.

Cast variables to the expected type if necessary
and verify that the area of memory that stores the
parameter is valid.

90 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

TABLE 8–1 Common Return Values of the CMM API (Continued)
Return Value Result Possible Responses

CMM_ENOCLUSTER One of the following has occurred:
� The local node is not configured in an

active cluster. This occurs, for
example, when the cluster election is
in progress.

� The local node has been removed
from the cluster node table on the
master node. For more information,
see the cluster_nodes_table(4)
man page.

� There is more than one master node.
� The master node has been

disqualified and no vice-master node
has taken over the master role.

� A failover has been triggered by the
disqualification of the master node.
During the failover, there is a brief
time when there is no master node.
The CMM_ENOCLUSTER error was
returned during this time.

Any combination of the following:
� Add an entry for the node to the cluster node

table.
� Requalify the node.
� Assign only one master.

CMM_ENOENT An attempted operation on an item failed
because the item does not exist. For
example, when calling the
cmm_cmc_unregister() function, no
callback has been registered. Not critical.

Any combination of the following:
� Verify that the area of memory that stores the

item is valid.
� If you want to delete the item, continue.

CMM_ENOMSG An attempt to dispatch an event failed
because there are no events to be
dispatched.

Continue.

CMM_ENOTSUP The operation could not be correctly
executed. This error can be the result of a
system problem such as a file that cannot
be created or a problem with Remote
Procedure Call (RPC) services.

Examine the system log files.

CMM_EPERM The call tried to execute on a node other
than the master node, but it can execute
only on the master node. For more
information, see the
cmm_mastership_release(3CMM),
cmm_member_setqualif(3CMM), and
cmm_member_seizequalif(3CMM)
man pages.

Execute the function only on the master node.

Chapter 8 • Debugging Applications in the Foundation Services 91

TABLE 8–1 Common Return Values of the CMM API (Continued)
Return Value Result Possible Responses

CMM_ERANGE The number of cells in the table is
smaller than the number of nodes in the
cluster. Returned by the
cmm_member_getall() function. See
the cmm_member_getall(3CMM) man
page.

Add an entry in the table for each potential peer
node.

CMM_ESRCH � Using the cmm_member_getinfo()
function to obtain information about
a node that is either not in the local
cluster node table, or is in the local
cluster node table but currently has
the CMM_OUT_OF_CLUSTER role.

� Using the
cmm_potential_getinfo()

function to obtain information about
a node that is not in the local cluster
node table.

� Using the
cmm_vicemaster_getinfo()

function while the cluster has no
vice-master.

Any combination of the following:
� Examine why the master-eligible node is

down or isolated.
� Add an entry for this node to the cluster node

table. See the cluster_nodes_table(4)
man page.

� Change the node’s role to master or
vice-master.

CMM_ETIMEDOUT No response even when an operation is
retried, until the delay has expired. The
function call was timed out.

Any combination of the following:
� Retry the function call.
� Reduce the load on the system.

92 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

APPENDIX A

Source Code Examples

The Foundation Services product provides a set of source code examples in the
SUNWnhcmd developer package. The examples are described in detail in the following
sections:

� “Example Makefile” on page 93
� “The cmm_master_getinfo() Function” on page 95
� “The cmm_member_getcount() Function” on page 96
� “The cmm_member_getall() Function” on page 98
� “The cmm_member_getinfo() Function” on page 99
� “The cmm_member_setqualif() Function” on page 100
� “The cmm_node_getid() Function” on page 102
� “The cmm_vicemaster_getinfo() Function” on page 103
� “CMM API Extended Code Example” on page 104

CMM API Code Examples
The examples in this section use the functions of the CMM API. These examples are
located in subdirectories of the /opt/SUNWcgha/examples/ directory. You can
compile these examples on your development host and test the programs on your
cluster.

Before running these code examples, create the following Makefile:

Example Makefile
The Makefile given in Example A–1 is provided with the SUNWcgha package for use
with the examples provided within this appendix.

93

EXAMPLE A–1 Sample Makefile

#
Copyright (c) 2002 by Sun Microsystems, Inc.
All rights reserved.
#
#
ident "@(#)Makefile.ex 1.4 02/06/05 SMI"
#
#

##
Path to the directory where SUNWnhcmd package is installed
##
NHCMMD_PKG_INSTALL_DIR=/opt/SUNWcgha

LDFLAGS= -L"$(NHCMMD_PKG_INSTALL_DIR)/lib" \
-lcgha_cmm \
-R"$(NHCMMD_PKG_INSTALL_DIR)/lib" \
-lpthread

CFLAGS= -I"/usr/local/include" \
-I$(NHCMMD_PKG_INSTALL_DIR)/include/

CC=cc

COMPILE=$(CC) $(CFLAGS) $(LDFLAGS)

BINS= smpl_cmm_node_getid \
smpl_cmm_member_getinfo \
smpl_cmm_master_getinfo \
smpl_cmm_vicemaster_getinfo \
smpl_cmm_member_getcount_all \
smpl_cmm_member_getcount_all_2 \
smpl_cmm_notification \
smpl_cmm_member_setqualif

all:$(BINS)

smpl_cmm_node_getid:smpl_cmm_node_getid.c
@echo "CC smpl_cmm_node_getid.c"
@$(COMPILE) smpl_cmm_node_getid.c -o smpl_cmm_node_getid

smpl_cmm_member_getinfo:smpl_cmm_member_getinfo.c
@echo "CC smpl_cmm_member_getinfo.c"
@$(COMPILE) smpl_cmm_member_getinfo.c -o smpl_cmm_member_getinfo

smpl_cmm_master_getinfo:smpl_cmm_master_getinfo.c
@echo "CC smpl_cmm_master_getinfo.c"
@$(COMPILE) smpl_cmm_master_getinfo.c -o smpl_cmm_master_getinfo

smpl_cmm_vicemaster_getinfo:smpl_cmm_vicemaster_getinfo.c
@echo "CC smpl_cmm_vicemaster_getinfo.c"

94 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

EXAMPLE A–1 Sample Makefile (Continued)

@$(COMPILE) smpl_cmm_vicemaster_getinfo.c -o smpl_cmm_vicemaster_getinfo

smpl_cmm_member_getcount_all:smpl_cmm_member_getcount_all.c
@echo "CC smpl_cmm_member_getcount_all.c"
@$(COMPILE) smpl_cmm_member_getcount_all.c
-o smpl_cmm_member_getcount_all

smpl_cmm_member_getcount_all_2:smpl_cmm_member_getcount_all_2.c
@echo "CC smpl_cmm_member_getcount_all_2.c"
@$(COMPILE) smpl_cmm_member_getcount_all_2.c
-o smpl_cmm_member_getcount_all_2

smpl_cmm_notification:smpl_cmm_notification.c
@echo "CC smpl_cmm_notification.c"
@$(COMPILE) smpl_cmm_notification.c -o smpl_cmm_notification

smpl_cmm_member_setqualif:smpl_cmm_member_setqualif.c
@echo "CC smpl_cmm_member_setqualif.c"
@$(COMPILE) smpl_cmm_member_setqualif.c -o smpl_cmm_member_setqualif

clean:
rm -f core *~

cleanall:clean

rm -f $(BINS)

The cmm_master_getinfo() Function
The code provided by Example A–2 gets information about master node by using the
cmm_master_getinfo() function.

EXAMPLE A–2 The cmm_master_getinfo.c Program

/**
* Copyright (c) 2002 by Sun Microsystems, Inc.
* All rights reserved.
*
*
* ident "@(#)smpl_cmm_master_getinfo.c 1.2 02/06/05 SMI"
*
***/

#include <stdio.h>
#include <cmm.h>

int main(int argc , char **argv) {
cmm_error_t cmm_diag;
cmm_member_t nodeInfo;

Appendix A • Source Code Examples 95

EXAMPLE A–2 The cmm_master_getinfo.c Program (Continued)

cmm_diag = cmm_master_getinfo(&nodeInfo);

if (cmm_diag != CMM_OK) {
fprintf(stderr,"An error occured during
cmm_member_getinfo call, CR=%d\n",cmm_diag);
fprintf(stderr,"Details: %s\n",cmm_strerror(cmm_diag));
exit(1);

}

printf("Infornation on Master:\n");
printf("\tName: %s\n",nodeInfo.name);
printf("\tAdress: %s\n",nodeInfo.addr);
printf("\tDomain Id: %d\n",nodeInfo.domainid);
printf("\tIncarnation number: %d\n",nodeInfo.incarnation_number);
printf("\tSoftwareLoad id: %s\n",nodeInfo.software_load_id);

exit(0);

}

The cmm_member_getcount() Function
The code provided by Example A–3 gets information about all nodes in the cluster by
using the cmm_member_getcount() function.

EXAMPLE A–3 The smpl_cmm_member_getcount_all.c Program

/**
* Copyright (c) 2002 by Sun Microsystems, Inc.
* All rights reserved.
*
*
* ident "@(#)smpl_cmm_member_getcount_all.c 1.3 02/09/25 SMI"
*
***/

#include <stdio.h>
#include <stdlib.h>
#include <cmm.h>

int main(int argc , char ** argv) {
cmm_error_t L_Status;
uint32_t L_NodesNumber;
cmm_member_t *L_Table = NULL;
uint32_t L_TableSize;
int i;

/*Getting node count with cmm_member_getcount() */

96 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

EXAMPLE A–3 The smpl_cmm_member_getcount_all.c Program (Continued)

L_Status = cmm_member_getcount(&L_NodesNumber);
if (L_Status != CMM_OK) {
fprintf(stderr,"cmm_member_getcount() error: %s\n",
cmm_strerror(L_Status));
exit(1);

}

printf("Number of nodes in cluster: %d\n",L_NodesNumber);

/*Getting information on all nodes in cluster*/
L_TableSize = L_NodesNumber + 3; /* "+3" to be safer */

L_Table = (cmm_member_t *) malloc(L_TableSize * sizeof(cmm_member_t));
if (L_Table == NULL) {
fprintf(stderr,"Memory allocation error\n");
exit(1);

}

L_Status = cmm_member_getall(L_TableSize,L_Table,&L_NodesNumber);

if (L_Status != CMM_OK) {
fprintf(stderr,"cmm_member_getall() error %s\n",
cmm_strerror(L_Status));
free(L_Table);
exit(1);

}

printf("Information on cluster:\n");
for (i = 0 ; i < L_NodesNumber ; i++) {
printf("Infornation on node: %d\n",L_Table[i].nodeid);
printf("\tName: %s\n",L_Table[i].name);
printf("\tAdress: %s\n",L_Table[i].addr);
printf("\tDomain Id: %d\n",L_Table[i].domainid);
printf("\tIncarnation number: %d\n",L_Table[i].incarnation_number);
printf("\tSoftwareLoad id: %s\n",L_Table[i].software_load_id);
printf("\tRole: ");
if (cmm_member_ismaster(&L_Table[i])) printf("MASTER\n");
else if (cmm_member_isvicemaster(&L_Table[i]))

printf("VICE-MASTER\n");
else printf("IN CLUSTER\n");

printf("\tQualification: ");
if (cmm_member_isqualified(&L_Table[i])) printf("QUALIFIED\n");
else if (cmm_member_isdisqualified(&L_Table[i]))

printf("DISQUALIFIED\n");

}

free(L_Table);

exit(0);

}

Appendix A • Source Code Examples 97

The cmm_member_getall() Function
The code provided by Example A–4 gets information about all nodes in the cluster by
using the cmm_member_get_all() function.

EXAMPLE A–4 The smpl_cmm_member_get_all.c Program

/***
* Copyright (c) 2002 by Sun Microsystems, Inc.
* All rights reserved.
*
*
* ident "@(#)smpl_cmm_member_getcount_all_2.c 1.2 02/06/05 SMI"
*
**/

#include <stdio.h>
#include <stdlib.h>
#include <cmm.h>

#define MAX_NODE_IN_CLUSTER 256

int main(int argc , char ** argv) {
cmm_error_t cmm_diag;
uint32_t nbNodeInCluster;
cmm_member_t *NodeTable = NULL;
int i;

/*allocate space for the maximum number of nodes*/
NodeTable =
(cmm_member_t *)malloc(MAX_NODE_IN_CLUSTER*sizeof(cmm_member_t));
if (NodeTable == NULL) {
fprintf(stderr,"Memory allocation error\n");
exit(1);

}

/*Getting information on all nodes in cluster*/

cmm_diag =
cmm_member_getall(MAX_NODE_IN_CLUSTER,NodeTable,&nbNodeInCluster);

if (cmm_diag != CMM_OK) {
fprintf(stderr,"An error occured during
cmm_member_getall() call CR=%d\n",cmm_diag);
fprintf(stderr,"Details: %s\n",cmm_strerror(cmm_diag));
free(NodeTable);
exit(1);

}

/*free useless space*/

98 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

EXAMPLE A–4 The smpl_cmm_member_get_all.c Program (Continued)

NodeTable =
(cmm_member_t *)realloc(NodeTable,nbNodeInCluster*sizeof(cmm_member_t));
if (NodeTable == NULL) {
fprintf(stderr,"Memory allocation error\n");
exit(1);

}

printf("Information on cluster:\n");
for (i = 0 ; i < nbNodeInCluster ; i++) {
printf("Infornation on node: %d\n",NodeTable[i].nodeid);
printf("\tName: %s\n",NodeTable[i].name);
printf("\tAdress: %s\n",NodeTable[i].addr);
printf("\tDomain Id: %d\n",NodeTable[i].domainid);
printf("\tIncarnation number: %d\n",NodeTable[i].incarnation_number);
printf("\tSoftwareLoad id: %s\n",NodeTable[i].software_load_id);
printf("\tRole: ");
if (cmm_member_ismaster(&NodeTable[i])) printf("MASTER\n");
else if (cmm_member_isvicemaster(&NodeTable[i]))
printf("VICE-MASTER\n");
else printf("IN CLUSTER\n");

printf("\tQualification: ");
if (cmm_member_isqualified(&NodeTable[i]))
printf("QUALIFIED\n");
else if (cmm_member_isdisqualified(&NodeTable[i]))
printf("DISQUALIFIED\n");

}

free(NodeTable);

exit(0);

}

The cmm_member_getinfo() Function
The code provided by Example A–5 gets information about a named node, in this case
node 10, by using the cmm_member__getinfo() function.

EXAMPLE A–5 The smpl_cmm_member_getinfo.c Program

/**
* Copyright (c) 2002 by Sun Microsystems, Inc.
* All rights reserved.
*
*
* ident "@(#)smpl_cmm_member_getinfo.c 1.2 02/06/05 SMI"
*
***/

Appendix A • Source Code Examples 99

EXAMPLE A–5 The smpl_cmm_member_getinfo.c Program (Continued)

#include <stdio.h>
#include <cmm.h>

int main(int argc , char **argv) {
cmm_error_t cmm_diag;
cmm_nodeid_t node;
cmm_member_t nodeInfo;

node = 10;

/*getting info for node 10*/

cmm_diag = cmm_member_getinfo(node,&nodeInfo);

if (cmm_diag != CMM_OK) {
fprintf(stderr,"An error occured during
cmm_member_getinfo call, CR=%d: %s\n",cmm_diag,cmm_strerror(cmm_diag));
exit(1);

}

printf("Infornation on node: %d\n",node);
printf("\tName: %s\n",nodeInfo.name);
printf("\tAdress: %s\n",nodeInfo.addr);
printf("\tDomain Id: %d\n",nodeInfo.domainid);
printf("\tIncarnation number: %d\n",nodeInfo.incarnation_number);
printf("\tSoftwareLoad id: %s\n",nodeInfo.software_load_id);
printf("\tRole: ");
if (cmm_member_ismaster(&nodeInfo)) printf("MASTER\n");
else if (cmm_member_isvicemaster(&nodeInfo)) printf("VICE-MASTER\n");
else printf("IN CLUSTER\n");

printf("\tQualification: ");
if (cmm_member_isqualified(&nodeInfo)) printf("QUALIFIED\n");
else if (cmm_member_isdisqualified(&nodeInfo)) printf("DISQUALIFIED\n");

exit(0);

}

The cmm_member_setqualif() Function
The code provided by Example A–6 performs a switchover by disqualifying the
master node by using the cmm_member_setqualif() function.

EXAMPLE A–6 The smpl_cmm_member_setqualif.c Program

/**
* Copyright (c) 2002 by Sun Microsystems, Inc.
* All rights reserved.

100 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

EXAMPLE A–6 The smpl_cmm_member_setqualif.c Program (Continued)

*
*
* ident "@(#)smpl_cmm_member_setqualif.c 1.2 01/12/14 SMI"
***/

#include <stdio.h>
#include <unistd.h>

#include <cmm.h>

/*
* get master ID
* test if we are on master
* dequalify ourself
*
*/

int main(int argc , char ** argv) {
cmm_error_t cmm_diag;
cmm_nodeid_t CurrentNodeid;
cmm_member_t MasterNodeInfo;
cmm_member_t ViceMasterNodeInfo;

cmm_diag = cmm_node_getid(&CurrentNodeid);
if (cmm_diag != CMM_OK) {
fprintf(stderr,"An error occured during cmm_node_getid() call \n");
fprintf(stderr,"Details: %s\n",cmm_strerror(cmm_diag));
exit(1);

}

printf("My id is %d\n",CurrentNodeid);

/*get master/vice master id*/
cmm_diag = cmm_master_getinfo(&MasterNodeInfo);
if (cmm_diag != CMM_OK) {
fprintf(stderr,"An error occured during
cmm_master_getinfocall, CR=%d\n",cmm_diag);
fprintf(stderr,"Details: %s\n",cmm_strerror(cmm_diag));
exit(1);

}

cmm_diag = cmm_vicemaster_getinfo(&ViceMasterNodeInfo);
if (cmm_diag != CMM_OK) {
fprintf(stderr,"An error occured during
cmm_master_getinfocall, CR=%d\n",cmm_diag);
fprintf(stderr,"Details: %s\n",cmm_strerror(cmm_diag));
exit(1);

}

printf("master node id is %d\n",MasterNodeInfo.nodeid);
printf("vice-master node id is %d\n",ViceMasterNodeInfo.nodeid);

Appendix A • Source Code Examples 101

EXAMPLE A–6 The smpl_cmm_member_setqualif.c Program (Continued)

/*the role could be verified by cmm_member_ismaster()*/
if (CurrentNodeid == MasterNodeInfo.nodeid) {
printf("We are the master of the cluster, launch the SO\n");

} else {
printf("We are not master, operation will be cancelled\n");
exit(1);

}

/*disqualify the master*/
cmm_diag =
cmm_member_setqualif(CurrentNodeid,CMM_DISQUALIFIED_MEMBER);
if (cmm_diag != CMM_OK) {
fprintf(stderr,"An error occured during
cmm_member_setqualif, CR=%d\n",cmm_diag);
fprintf(stderr,"Details: %s\n",cmm_strerror(cmm_diag));
exit(1);

}

/*the switch over is running*/
/* ... */

/* the master (ex master) is now disqualified */
/* We need to be on the new master to be allowed to qualify a node */
/* on the new master we should run this command to */
/* qualify the ex-master to make it the vice-master of the cluster */
/* */
/* cmm_diag =
/* cmm_member_setqualif(CurrentNodeid,CMM_QUALIFIED_MEMBER); */
/* if (cmm_diag != CMM_OK) { */
/* fprintf(stderr,"An error occured during
cmm_member_setqualif, CR=%d\n",cmm_diag); */
/* exit(1); */
/* } */

exit(0);

}

The cmm_node_getid() Function
The code provided by Example A–7 displays information about the current node by
using the cmm_node_getid() function.

EXAMPLE A–7 The smpl_cmm_node_getid.c Program

/***
* Copyright (c) 2002 by Sun Microsystems, Inc.

102 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

EXAMPLE A–7 The smpl_cmm_node_getid.c Program (Continued)

* All rights reserved.
*
*
* ident "@(#)smpl_cmm_node_getid.c 1.2 02/06/05 SMI"
*
**/

#include <stdio.h>
#include <cmm.h>

int main(int argc , char **argv) {
cmm_nodeid_t nodeid;
cmm_error_t cmm_diag;

cmm_diag = cmm_node_getid(&nodeid);
switch (cmm_diag) {
case CMM_OK:
{
printf("The node id of this node is: %d\n",nodeid);
exit(0);

}
case CMM_ETIMEDOUT:
{
fprintf(stderr,"Cmm didn’t give us reponse within delay\n");
exit(1);

}
case CMM_ECONN:
{
fprintf(stderr,"Cannot reach the CMM\n");
exit(1);

}
default:
fprintf(stderr,"call returned an error. CR=%d\n",cmm_diag);
exit(1);

}

/*NOTREACHED*/
exit(0);

}

The cmm_vicemaster_getinfo() Function
The code provided by Example A–8 displays information about the vice-master node
by using the cmm_vicemaster_getinfo() function.

EXAMPLE A–8 The smpl_cmm_vicemaster_getinfo.c Program

/***
* Copyright (c) 2002 by Sun Microsystems, Inc.
* All rights reserved.

Appendix A • Source Code Examples 103

EXAMPLE A–8 The smpl_cmm_vicemaster_getinfo.c Program (Continued)

*
*
* ident "@(#)smpl_cmm_vicemaster_getinfo.c 1.2 02/06/05 SMI"
*
**/

#include <stdio.h>
#include <cmm.h>

int main(int argc , char **argv) {
cmm_error_t cmm_diag;
cmm_member_t nodeInfo;

cmm_diag = cmm_vicemaster_getinfo(&nodeInfo);

if (cmm_diag != CMM_OK) {
fprintf(stderr,"An error occured during
cmm_member_getinfo call, CR=%d: %s\n",cmm_diag,cmm_strerror(cmm_diag));
exit(1);

}

printf("Infornation on vice-master:\n");
printf("\tName: %s\n",nodeInfo.name);
printf("\tAdress: %s\n",nodeInfo.addr);
printf("\tDomain Id: %d\n",nodeInfo.domainid);
printf("\tIncarnation number: %d\n",nodeInfo.incarnation_number);
printf("\tSoftwareLoad id: %s\n",nodeInfo.software_load_id);

exit(0);

}

CMM API Extended Code Example
In addition to the examples and Makefile outlined in “CMM API Code Examples”
on page 93, the developer package subdirectory opt/SUNWcgha/examples/
provides an extended code example, which uses many of the function calls of the
CMM API. This program reacts to the CMM_MASTER_ELECTED and
CMM_MASTER_DEMOTED notifications, as demonstrated in the Example A–9.

EXAMPLE A–9 The smpl_cmm_notification.c Program

/**
* Copyright (c) 2002 by Sun Microsystems, Inc.
* All rights reserved.

104 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

EXAMPLE A–9 The smpl_cmm_notification.c Program (Continued)

*
*
* ident "@(#)smpl_cmm_notification.c 1.2 02/06/05 SMI"
*
**/

#include <stdio.h>
#include <unistd.h>

#include <pthread.h>
#include <cmm.h>

/*
* create a pthread to receive events from CMM
* the thread will be activated on vice-master election
*/

typedef struct thrArg {
int FilterChange;
cmm_cmcfilter_t cmcFilter;
cmm_cmchanges_t cmcChangeList[5];
uint32_t cmcChangeCount;

} thrArg_t;

void notification_thread_cb
(const cmm_cmc_notification_t * change_notification,void *client_data);

void CleanHandler(void *arg) {
fprintf(stderr,"%d: I was cancelled\n",pthread_self());
pthread_exit((void*)arg);

}

void *notification_thread(void*args) {
struct pollfd pfd;
int diag;
cmm_error_t cmm_diag;

thrArg_t *TArgs = (thrArg_t *)args;

diag = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE,NULL);
if (diag != 0) {
fprintf(stderr,"%d:
call of pthread_setcancelstate failed\n",pthread_self());
pthread_exit((void*)NULL);

}

Appendix A • Source Code Examples 105

EXAMPLE A–9 The smpl_cmm_notification.c Program (Continued)

diag = pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED,NULL);
if (diag != 0) {
fprintf(stderr,"%d:
call of pthread_setcanceltype failed\n",pthread_self());
pthread_exit((void*)NULL);

}

pthread_cleanup_push(CleanHandler,NULL);

/*register the callback, called after event are received*/

diag = cmm_cmc_register(notification_thread_cb,NULL);
if (diag != CMM_OK) {
fprintf(stderr,"%d: error in
cmm_cmc_register CR:%d:
%s\n",pthread_self(),diag,cmm_strerror(cmm_diag));
pthread_exit((void*)NULL);

}

diag = cmm_notify_getfd(&(pfd.fd));
if (diag != CMM_OK) {
fprintf(stderr,"%d: error in
cmm_notify_getfd CR:%d:
%s\n",pthread_self(),diag,cmm_strerror(cmm_diag));
cmm_cmc_unregister();
pthread_exit((void*)NULL);

}

pfd.events = POLLIN;

while(1) {
diag = poll(&pfd,1,1000);
if (diag < 0) {
fprintf(stderr,"%d:
error during polling CR:%d\n",pthread_self(),diag);
cmm_cmc_unregister();
pthread_exit((void*)NULL);

}

/*we receive something*/
if (pfd.revents == POLLIN) {
cmm_diag = cmm_notify_dispatch();
if (cmm_diag != CMM_OK) {

fprintf(stderr,"%d: error during
call of dispatch() CR:%d\n",pthread_self(),cmm_diag);
fprintf(stderr,"Details: %s\n",cmm_strerror(cmm_diag));
cmm_cmc_unregister();
pthread_exit((void*)NULL);
}

}
if (TArgs->FilterChange) {
/*we have to change the filter*/

106 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

EXAMPLE A–9 The smpl_cmm_notification.c Program (Continued)

printf("%d: we have to update the filter\n",pthread_self());
cmm_diag =
cmm_cmc_filter(TArgs->cmcFilter,TArgs->
cmcChangeList,TArgs->cmcChangeCount);
if (cmm_diag != CMM_OK) {

fprintf(stderr,"%d: error during
filter change CR:%d\n",pthread_self(),cmm_diag);
fprintf(stderr,"Details: %s\n",cmm_strerror(cmm_diag));
cmm_cmc_unregister();
pthread_exit((void*)NULL);
}
TArgs->FilterChange = 0;

}

pthread_testcancel();
}

/*NOTREACHED*/

pthread_cleanup_pop(0);

/*NOTREACHED*/
pthread_exit((void*)NULL);

}

/*callback activated when event received*/

void notification_thread_cb
(const cmm_cmc_notification_t * change_notification,void *client_data) {

printf("%d: notif thread received event (%d) for node %d\n",
pthread_self(),
change_notification->cmchange,
change_notification->nodeid);

}

int main(int argc , char ** argv) {
int diag;
pthread_attr_t attr;
cmm_error_t cmm_diag;
pthread_t NotificationThread;
thrArg_t targ;

/*initialize notification thread*/
diag = pthread_attr_init(&attr);
if (diag != 0) {

Appendix A • Source Code Examples 107

EXAMPLE A–9 The smpl_cmm_notification.c Program (Continued)

fprintf(stderr,"%d: attr init error\n",pthread_self());
exit(1);

}

diag = pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_JOINABLE);
if (diag != 0) {
fprintf(stderr,"%d:
pthread_attr_setdetachstate error\n",pthread_self());
exit(1);

}

/*clear event filter*/
targ.cmcFilter = CMM_CMC_NOTIFY_NONE;
targ.cmcChangeCount = 0;

cmm_diag =
cmm_cmc_filter(targ.cmcFilter,targ.cmcChangeList,targ.cmcChangeCount);
if (cmm_diag != CMM_OK) {
fprintf(stderr,"%d: error during
filter change CR:%d\n",pthread_self(),cmm_diag);
fprintf(stderr,"Details: %s\n",cmm_strerror(cmm_diag));
exit(1);

}

targ.FilterChange = 0;

/*add "vice-master elected" event*/
targ.cmcFilter = CMM_CMC_NOTIFY_ADD;
targ.cmcChangeCount = 1;
targ.cmcChangeList[0] = CMM_VICEMASTER_ELECTED;

cmm_diag =
cmm_cmc_filter(targ.cmcFilter,targ.cmcChangeList,targ.cmcChangeCount);
if (cmm_diag != CMM_OK) {
fprintf(stderr,"%d: error during
filter change CR:%d\n",pthread_self(),cmm_diag);
fprintf(stderr,"Details: %s\n",cmm_strerror(cmm_diag));
exit(1);

}

/*launch notification thread*/

diag = pthread_create
(&NotificationThread,&attr,notification_thread,(void*)&targ);
if (diag != 0) {
fprintf(stderr,"pthread_create error\n");
exit(1);

108 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

EXAMPLE A–9 The smpl_cmm_notification.c Program (Continued)

}

/*
*
*/

sleep(20);

/*We can only register once, tha same thread has to be used*/
/*to catch all events*/

/*add CMM_MASTER_DEMOTED and CMM_MASTER_ELECTED events*/

printf("%d: adding CMM_MASTER_ELECTED and
CMM_MASTER_DEMOTED events..\n",pthread_self());

targ.cmcFilter = CMM_CMC_NOTIFY_ADD;
targ.cmcChangeCount = 2;
targ.cmcChangeList[0] = CMM_MASTER_ELECTED;
targ.cmcChangeList[1] = CMM_MASTER_DEMOTED;

/*ask the notification thread to update the filter*/
/*we don’t want to stop it*/
targ.FilterChange = 1;

sleep(20);

/*stop the notification thread*/

pthread_cancel(NotificationThread);
pthread_join(NotificationThread,NULL);

exit (0);

}

Appendix A • Source Code Examples 109

110 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

Index

Numbers and Symbols
2N redundancy

loss of, 62, 77, 83
synchronization flag, 25

A
address space, locking, 36
administrative attributes, 25, 54

CMM_ELIGIBLE_MEMBER, 25, 55
CMM_EXCLUDED_MEMBER, 55
CMM_FLAG_DISQUALIFIED, 25
CMM_FLAG_SYNCHRO_NEEDED, 25
CMM_FROZEN_MEMBER, 55

amnesia, 67
APIs

development environment, 19-21
for managing peer nodes, 19

examples of use, 20, 37-39
applications

connecting to nhcmmd daemon, 69
debugging, 30, 87
development environment for, 29
disconnecting from nhcmmd daemon, 70
registering for notifications, 72
starting automatically, 36
testing, 34, 36

attributes
administrative

See administrative attributes

B
binary files, location for cluster, 33
broken pipes, 89

C
callback functions

cluster membership change, 58, 59, 60
unregistering failure, 90

cancelled operations, failures due to, 90
CFLAGS entry, 35
cgha_cmm library, 34
change notifications, 57, 58, 59, 60
cluster, 36

identifying using domainid, 54
invalid, 59, 67
location of binary files, 33
stale, 60, 66, 67
state, 57

valid, 60
Cluster Management Service, programming

interface, 19
cluster node table, 24

entries
removing, 76

errors, 91, 92
reloading, 70

CMM API
changing the state of nodes, 75
connection failure, 90
examples of use, 20
function calls, 20

111

CMM API (Continued)
header files

accessing, 21
introduction to, 19
libraries

accessing, 21
multithreading characteristics, 20
notifications, 57-67
prerequisites for use, 17
return values, 89
usage, 20

cmm_cmc_filter() function, 58, 71, 72
cmm_cmc_register() function, 58, 71, 72
cmm_cmc_unregister() function, 71, 72
cmm_cmchanges_t structure, 59
cmm_config_reload() function, 70
cmm_connect() function, 69, 70
cmm_disconnect() function, 70
CMM_DISQUALIFIED_MEMBER level, 24, 54
CMM_EAGAIN error, 90
CMM_EBADF error, 90
CMM_EBUSY error, 90
CMM_ECANCELED error, 90
CMM_ECONN error, 90
CMM_EEXIST error, 90
CMM_EINVAL error, 90
CMM_ELIGIBLE_MEMBER attribute, 25, 55
CMM_ENOCLUSTER error, 91
CMM_ENOENT error, 91
CMM_ENOMSG error, 91
CMM_ENOTSUP error, 91
CMM_EPERM error, 91
CMM_ERANGE error, 92
CMM_ESRCH error, 92
CMM_ETIMEDOUT error, 92
CMM_EXCLUDED_MEMBER attribute, 55
CMM_FLAG_DISQUALIFIED attribute, 25
CMM_FLAG_SYNCHRO_NEEDED attribute, 25
CMM_FROZEN_MEMBER attribute, 55
CMM_INVALID_CLUSTER notification, 59, 67
CMM_MASTER_DEMOTED notification, 59, 65, 66,

83
CMM_MASTER_ELECTED notification, 59, 83
cmm_master_getinfo() function, 44

example in source code, 95
CMM_MASTER role, 23, 55
cmm_mastership_release() function, 64,

79

cmm_member_getall() function, 48
example in source code, 98

cmm_member_getcount() function, 48
example in source code, 96

cmm_member_getinfo() function, 46
example in source code, 99

cmm_member_is*() functions, code
example, 37

cmm_member_isdesynchronized()
function, 51, 54

cmm_member_isdisqualified()
function, 51, 54

cmm_member_iseligible() function, 51, 55
cmm_member_isexcluded() function, 55
cmm_member_isfrozen() function, 55
cmm_member_ismaster() function, 50, 55
cmm_member_isoutofcluster()

function, 50, 55
cmm_member_isqualified() function, 51,

54
cmm_member_isvicemaster() function, 50,

55
CMM_MEMBER_JOINED notification, 59, 62
CMM_MEMBER_LEFT notification, 59, 76
cmm_member_seizequalif() function, 84
cmm_member_setqualif() function, 63, 77,

83
example in source code, 100

cmm_member_t structure
fields, 53
returned by functions, 46
sflag field, 54
usage, 53

cmm_membership_release() function, 65,
66

cmm_membership_remove() function, 63, 76,
77, 81

cmm_node_getid() function, 43
example in source code, 102

cmm_notify_dispatch() function, 71, 72
cmm_notify_getfd() function, 71, 72
cmm_notify_t structure, 58, 60
CMM_OK return value, 89
CMM_OUT_OF_CLUSTER role, 23, 55, 76
cmm_potential_getinfo() function, 46, 52
CMM_QUALIFIED_MEMBER level, 24, 54
CMM_STALE_CLUSTER notification, 60, 66, 67
CMM_VALID_STATE notification, 60

112 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

CMM_VICEMASTER_DEMOTED notification, 60,
62, 63

CMM_VICEMASTER_ELECTED notification, 60,
62, 64

cmm_vicemaster_getinfo() function, 45
example in source code, 103

CMM_VICEMASTER role, 23, 55
commands, nhcmmrole, 51
common.h library file, code example, 38
compiling

HA-aware applications, 30
programs, 35

D
Daemon Monitor, monitoring the nhcmmd

daemon, 34
daemons

issues when debugging, 88
nhcmmd, 69, 89

sending notifications, 57
nhprobed, 70

data transfer, 30
debugging applications, 87

HA-aware applications, 30
development environment, 19-21, 29
development host

disk space, 30
operating system, 30
requirements, 29-31
software requirements, 30
transferring data, 30

diskless nodes, exclusion from cluster, 77
disks, space on development host, 30
display messages, formatting, 53
documentation, related, 14-15

E
elections

notifications of, 59, 83
participation in, 25, 51

eligibility, retrieving information, 52
environment variables, LD_BIND_NOW, 36
errors

checking, 87

errors (Continued)
CMM_EAGAIN, 90
CMM_EBADF, 90
CMM_EBUSY, 90
CMM_ECANCELED, 90
CMM_ECONN, 90
CMM_EEXIST, 90
CMM_EINVAL, 90
CMM_ENOCLUSTER, 91
CMM_ENOENT, 91
CMM_ENOMSG, 91
CMM_ENOTSUP, 91
CMM_EPERM, 91
CMM_ERANGE, 92
CMM_ESRCH, 92
CMM_ETIMEDOUT, 92
displaying, 37
from function calls, 87
log files, 88
logging, 87
reporting by the NMA, 88
return values, 88, 89

event, nonexistent, 91
example source code, 20, 37-39, 93
examples

extended
example in source code, 104

location in source code, 20
using the CMM API, 46, 47

F
failover, 65, 83

caution about triggering, 81
provision for critical applications, 20
qualification levels, 84

failures
amnesia, 67
callback functions, 90
due to cancelled operations, 90
node, 62, 63
of the active node, 19
provision of a standby node, 19
return values, 89
split brain, 67
unregistering callbacks, 90

113

file descriptors
invalid, 90
shortage of, 89

file systems, mounting, 36
files

copying, 36
transferring, 36

flags
compiler

See Makefiles
frozen nodes, identifying, 55
ftp command, 36
function calls

return values, 88
successful, 89

H
HA-aware applications, compiling, 30
hardware requirements, 29

development host, 29
header files

in SUNWnhcmd package, 34
locating, 35

I
installation server, transferring data, 30
invalid cluster, 59, 67
invalid file descriptors, 90

L
LD_BIND_NOW environment variable, 36
LDFLAGS entry, 35
libcgha_cmm.so library, 34

linking to your application, 34
location, 34

libraries, 34
cgha_cmm, 34
common.h library file

code example, 38
libcgha_cmm.so, 34

linking to your application, 34
locating, 35

libraries (Continued)
required for development host, 34

linking programs, 35
locking address space, 36

M
Makefiles

CFLAGS entry, 35
LDFLAGS entry, 35
sample Makefile

source code Makefile, 93
master-eligible nodes

See also master node
See also qualification levels
See also vice-master node
identifying, 55

master node
definition, 23
demotion, 59, 65, 66, 83
eligibility to become master, 52
exclusion from cluster, 76
identifying, 50, 55
notification of election, 59, 83
qualification level, 24
reloading cluster node table, 70
retrieving information, 44, 45
state information, 57

membership roles, 54
change notifications, 57, 58, 59, 60
CMM_MASTER, 23, 55
CMM_OUT_OF_CLUSTER, 23, 55, 76
CMM_VICEMASTER, 23, 55
displaying, 37
identifying at command line, 51
managing, 20
retrieving information about, 24, 50

memory, locking shared objects in, 36
messages, formatting, 53
mlockall() function, 36
mount command, 36
multithreading, characteristics of CMM API, 20

114 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

N
nhcmmd daemon

communicating with libcgha_cmm.so
library, 34

connecting to applications, 69
disconnecting from applications, 70
notification pipes, 89
sending notifications, 57
setting timeout for calls, 69
state changes, 75

nhcmmrole command, 51
nhcmmstat tool, 79
nhprobed daemon, 70
nodes

adding, 70
addr field, 53
administrative attributes, 25, 54
availability in cluster, 20
CGTP address, 53
changing state, 75
diskless

exclusion from cluster, 77
improving performance, 36

domainid field, 54
eligibility, 51
eligibility to become master, 51, 52
exclusion from cluster, 55, 64, 76
failover, 65
failure, 63
failures, 19, 62
frozen nodes

identifying, 55
gathering information, 20
identifying, 43, 53
identifying properties, 51
identifying roles, 50, 51
in nodes, 48
incarnation_number field, 54
information about, 46, 52, 53
joining the cluster, 57, 59, 62
last reboot, 54
leaving the cluster, 57, 62, 76
master, 23, 44
master-eligible

identifying, 55
membership of cluster, 25
membership roles, 23, 54
name field, 53

nodes (Continued)
nodeid field, 43, 53
out nodes, 23

identifying, 50, 55
qualification levels, 24, 51, 54, 77
removing, 70
removing role, 62
retrieving information, 46, 48, 52, 53
roles, 23-25
sflag field, 54
software_load_id field, 54
standby, 19
state change notifications, 60
state information, 57
switchover, 64, 79
synchronization, 25, 51, 54
vice-master, 23, 45

nonexistent items, 91
notifications

accessing, 71, 75
broken pipes, 89
callback functions, 58, 59, 60
change, 57, 58, 59, 60
CMM_INVALID_CLUSTER, 59, 67
CMM_MASTER_DEMOTED, 59, 65, 66, 83
CMM_MASTER_ELECTED, 59, 83
CMM_MEMBER_JOINED, 59, 62
CMM_MEMBER_LEFT, 59, 76
CMM_STALE_CLUSTER, 60, 66, 67
CMM_VALID_STATE, 60
CMM_VICEMASTER_DEMOTED, 60, 62, 63
CMM_VICEMASTER_ELECTED, 60, 62, 64
code example, 73
dispatching, 72
filtering, 72
messages, 59
receiving, 72
registering for, 71, 72, 75
sent by nhcmmd daemon, 57
of state changes, 60
unregistering for, 71, 75

O
operating system, development host, 30

115

P
packages

prerequisites for CMM API, 21
SUNWnhcmd, 34

parameters, invalid, 90
peer nodes, retrieving information, 52
performance, enhancing, 36
pipes, broken, 89
poll() function, 72
programs

compiling, 35
enhancing performance, 36
linking, 35

Q
qualification levels, 24, 54, 77

CMM_DISQUALIFIED_MEMBER, 24, 54
CMM_QUALIFIED_MEMBER, 24, 54
failover, 84
location stored, 51

R
rcp command, 36
Reliable NFS, synchronization flag, 25
return values, 88, 89

CMM_EAGAIN, 90
CMM_EBADF, 90
CMM_EBUSY, 90
CMM_ECANCELED, 90
CMM_ECONN, 90
CMM_EEXIST, 90
CMM_EINVAL, 90
CMM_ENOCLUSTER, 91
CMM_ENOENT, 91
CMM_ENOMSG, 91
CMM_ENOTSUP, 91
CMM_EPERM, 91
CMM_ERANGE, 92
CMM_ESRCH, 92
CMM_ETIMEDOUT, 92
CMM_OK, 89

S
server, out of resources, 90
shared objects, locking in memory, 36
software requirements, development host, 30
Solaris operating system, 30
source code

examples, 20, 37-39
split brain, 67
stale cluster, 60, 66, 67
startup scripts, 36
state changes, 75

notifications, 60
Sun WorkShop TeamWare, 35
SUNWnhcmd package, 21, 34

contents, 20, 37-39
SUNWnhhad package, 21
switchover, 64, 79
synchronization, 25, 51, 54

T
Teamware, Sun WorkShop, 30
timeouts

responding to, 92
setting for nhcmmd daemon, 69

transfer of data, 30

V
vice-master node

definition, 23
demotion, 60, 62, 63
election, 60, 62, 64
exclusion from cluster, 77
identifying, 50, 55

116 Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide • September 2004

	Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Books
	Accessing Sun Documentation Online
	Ordering Sun Documentation
	Typographic Conventions
	Shell Prompts in Command Examples

	Introduction to the CMM API
	The Foundation Services CMM API
	Overview
	Characteristics of the CMM API

	Introduction to the Properties of a Node
	Membership Roles
	Qualification Levels
	Administrative Attributes

	Setting Up the Development Environment
	Setting up the Development Environment
	Introduction to the Development Environment
	Setting up the Development Host
	Setting up a Foundation Services Cluster

	Building CMM Applications
	Installing Applications on a Cluster
	Installing Libraries and Header Files
	Setting up a Makefile
	Compiling Applications
	Including Applications in a Startup Script
	Running Your Applications on the Cluster
	Application Examples

	Programming By Using the CMM API
	Retrieving Node Information Using the CMM API
	Identifying the Current Node
	Retrieving Information About the Master Node or Vice-Master Node
	Retrieving Information About Any Node
	Retrieving Information About All Nodes in the Cluster
	Identifying the Role of a Node
	Identifying the Properties of a Node
	Using the cmm_member_t Structure for Information About Member Nodes
	Using the sflag Field of the cmm_member_t Structure

	Understanding Change Notifications
	Introduction to Change Notifications
	Understanding the Structure of Notifications
	Notification Values

	Notifications During Changes in the Cluster State
	Cluster Initialization Notifications
	Vice-Master Removal Notifications
	Vice-Master Excluded Notification
	Peer Node Removal Notification
	Master Node Excluded Notifications
	Node Other Than Master Excluded Notification
	Switchover Notifications
	Failover Notifications
	Failover Due to the Removal or Failure of the Master Node
	Failover Due to Master Disqualification

	Stale Cluster Notification
	Amnesia
	Split Brain

	Managing Changes in the Cluster State
	Setting a Timeout Value for Calls to the nhcmmd Daemon
	Reloading the Cluster Node Table
	Receiving and Handling Change Notifications
	Registering to Receive Notifications
	Filtering Notifications
	Receiving and Dispatching Notifications
	Retrieving Change Notifications

	Responding to Cluster Notifications by Modifying the Cluster
	Removing or Excluding a Node
	Removing the Master Node
	Removing the Vice-Master Node
	Removing a Diskless Node

	Setting the Qualification of a Node
	Triggering A Switchover
	Triggering a Switchover Using cmm_mastership_release()

	Triggering A Failover
	Triggering a Failover by Using the cmm_membership_remove() Function
	Triggering a Failover by Using the cmm_member_setqualif() Function

	Debugging Applications in the Foundation Services
	Reporting Application Errors
	Reading Error Information for Debugging
	Stopping the Daemon Monitor for Debugging
	Broken Pipe Error Messages
	Return Values of the CMM API

	Source Code Examples
	CMM API Code Examples
	Example Makefile
	The cmm_master_getinfo() Function
	The cmm_member_getcount() Function
	The cmm_member_getall() Function
	The cmm_member_getinfo() Function
	The cmm_member_setqualif() Function
	The cmm_node_getid() Function
	The cmm_vicemaster_getinfo() Function

	CMM API Extended Code Example

	Index

