
Netra High Availability Suite
Foundation Services 2.1 6/03

Reference Manual

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–1773–11
September 2004

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, JMX, Netra, Solaris JumpStart, Solstice DiskSuite, Javadoc,
JDK, Sun4U, Jini, OpenBoot, Sun Workshop, Forte, Sun StorEdge, and Solaris are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc. Adobe is a registered trademark of Adobe Systems, Incorporated.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Java, JMX, Netra, Solaris JumpStart, Solstice DiskSuite, Javadoc, JDK,
Sun4U, Jini, OpenBoot, Sun Workshop, Forte, Sun StorEdge, et Solaris sont des marques de fabrique ou des marques déposées , ou marques de
service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de
fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont
basés sur une architecture développée par Sun Microsystems, Inc. Adobe est une marque enregistree de Adobe Systems, Incorporated.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

040825@9495

Contents

Preface 7

Introduction 13
Intro(1M) 14
Intro(3CMM) 16
Intro(4) 18

Maintenance Commands 21
flconfig(1M) 22
flcreate(1M) 24
fldeploy(1M) 26
flinstall(1M) 28
nhadm(1M) 30
nhcmmd(1M) 39
nhcmmqualif(1M) 41
nhcmmrole(1M) 43
nhcmmstat(1M) 45
nhcrfsadm(1M) 52
nhcrfsd(1M) 54
nhenablesync(1M) 56
nhinstall(1M) 57
nhnsmd(1M) 60
nhpmd(1M) 62
nhpmdadm(1M) 67
nhpmdadmwrapper(1M) 70
nhprobed(1M) 71

3

nhsched(1M) 73
nhsmctsetup(1M) 75
nhwdtd(1M) 78
nma(1M) 79
slconfig(1M) 80
slcreate(1M) 81
sldelete(1M) 84
sldeploy(1M) 85
slexport(1M) 87

Netra HA Suite CMM Library Functions 89

cmm_cmc_filter(3CMM) 90
cmm_cmc_register(3CMM) 92
cmm_cmc_unregister(3CMM) 95
cmm_config_reload(3CMM) 98
cmm_connect(3CMM) 100
cmm_disconnect(3CMM) 101
cmm_master_getinfo(3CMM) 102
cmm_mastership_release(3CMM) 104
cmm_member_getall(3CMM) 106
cmm_member_getcount(3CMM) 108
cmm_member_getinfo(3CMM) 110
cmm_member_isdesynchronized(3CMM) 112
cmm_member_isdisqualified(3CMM) 114
cmm_member_iseligible(3CMM) 116
cmm_member_isexcluded(3CMM) 118
cmm_member_isfrozen(3CMM) 120
cmm_member_ismaster(3CMM) 122
cmm_member_isoutofcluster(3CMM) 124
cmm_member_isqualified(3CMM) 126
cmm_member_isvicemaster(3CMM) 128
cmm_member_seizequalif(3CMM) 130
cmm_member_setqualif(3CMM) 132
cmm_membership_remove(3CMM) 135
cmm_node_getid(3CMM) 137
cmm_notify_dispatch(3CMM) 139
cmm_notify_getfd(3CMM) 141
cmm_potential_getinfo(3CMM) 143

4 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • September 2004

cmm_strerror(3CMM) 145

cmm_vicemaster_getinfo(3CMM) 146

File Formats 149

addon.conf(4) 150

cluster.conf(4) 155

cluster_definition.conf(4) 161

cluster_nodes_table(4) 178

diskless_nodeprof.conf(4) 181

env_installation.conf(4) 182

install-server.conf(4) 186

machine.conf(4) 188

master-system.conf(4) 196

network.conf(4) 197

nhadmsync.conf(4) 200

nhfs.conf(4) 202

nhpmd.conf(4) 213

nma.notifs.txt(4) 214

nma.params.txt(4) 215

nma.properties(4) 217

nma.security(4) 222

nma.targets.txt(4) 224

nodeprof.conf(4) 226

software.conf(4) 227

target.conf(4) 231

userapp.conf(4) 232

Devices 237

cgtp(7D) 238

Index 241

5

6 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • September 2004

Preface

The Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual describes
the tools, API, configuration files, and drivers delivered in the Foundation Services.
Both novice users and those familar with Foundation Services can use online man
pages to obtain information about the system and its features. A man page is intended
to answer concisely the question “What does it do?” The man pages in general
comprise the reference manual. They are not intended to be a tutorial.

How This Book Is Organized
The following contains a brief description of each man page section and the
information it references:

� Section 1M describes, in alphabetical order, the tools and commands that are used
chiefly for installation and administration purposes.

� Section 3CMM describes, in alphabetical order, the functions in the Cluster
Membership Manager (CMM) library. The CMM API provides applications with
information about what nodes are in the cluster and the roles of nodes in the
cluster.

� Section 4 describes, in alphbetical order, the installation and Foundation Services
configuration files.

� Section 7D describes the Carrier Grade Transport Protocol (CGTP) driver.

Below is a generic format for man pages. The man pages of each manual section
generally follow this format. All headings may not appear in each man page. See the
intro pages for more information and detail about each section, and man(1) for more
information about man pages in general.

NAME This section gives the names of the command, function,
or configuration file documented, followed by a brief
description of what they do.

7

SYNOPSIS This section shows the syntax of the command,
function, or configuration file. When a command or file
does not exist in the standard path, its full path name is
shown. Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order is
required.

The following special characters are used in this
section:

[] Brackets. The option or argument enclosed
in these brackets is optional. If the brackets
are omitted, the argument must be
specified.

. . . Ellipses. Several values can be provided for
the previous argument, or the previous
argument can be specified multiple times,
for example, “filename . . .”.

| Separator. Only one of the arguments
separated by this character can be specified
at a time.

{ } Braces. The options and/or arguments
enclosed within braces are interdependent,
such that everything enclosed must be
treated as a unit.

DESCRIPTION This section defines the functionality and behavior of
the command, function, or configuration file. Thus it
describes concisely what the command does. It does
not discuss options or cite examples. Interactive
commands, subcommands, requests, macros, and
functions are described under USAGE.

OPTIONS This secton lists the command options with a concise
summary of what each option does. The options are
listed literally and in the order they appear in the
SYNOPSIS section. Possible arguments to options are
discussed under the option, and where appropriate,
default values are supplied.

OPERANDS This section lists the command operands and describes
how they affect the actions of the command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

8 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • September 2004

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes the
conditions under which they are returned. If a function
can return only constant values, such as 0 or –1, these
values are listed in tagged paragraphs. Otherwise, a
single paragraph describes the return values of each
function. Functions declared void do not return values,
so they are not discussed in RETURN VALUES.

ERRORS On failure, most functions place an error code in the
global variable errno indicating why they failed. This
section lists alphabetically all error codes a function can
generate and describes the conditions that cause each
error. When more than one condition can cause the
same error, each condition is described in a separate
paragraph under the error code.

USAGE This section lists special rules, features, and commands
that require in-depth explanations. The subsections
listed here are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how to
use a command or function. Wherever possible a
complete example including command-line entry and
machine response is shown. Whenever an example is
given, the prompt is shown as example%, or if the user
must be superuser, example#. Examples are followed
by explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the
SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE
sections.

ENVIRONMENT
VARIABLES

This section lists any environment variables that the
command or function affects, followed by a brief
description of the effect.

EXIT STATUS This section lists the values the command returns to the
calling program or shell and the conditions that cause
these values to be returned. Usually, zero is returned
for successful completion, and values other than zero
for various error conditions.

9

FILES This section lists all file names referred to by the man
page, files of interest, and files created or required by
commands. Each is followed by a descriptive summary
or explanation.

ATTRIBUTES This section lists characteristics of commands, utilities,
and device drivers by defining the attribute type and
its corresponding value. See attributes(5) for more
information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working conditions.
This is not a list of diagnostics.

NOTES This section lists additional information that does not
belong anywhere else on the page. It takes the form of
an aside to the user, covering points of special interest.
Critical information is never covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

Related Books
You will require some of the following books from the Foundation Services
documentation set:

� Netra High Availability Suite Foundation Services 2.1 6/03 Overview

� Netra High Availability Suite Foundation Services 2.1 6/03 Glossary

� What’s New in Netra High Availability Suite Foundation Services 2.1 6/03

� Netra High Availability Suite Foundation Services 2.1 6/03 Quick Start Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Hardware Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Custom Installation Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Cluster Administration Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Troubleshooting Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide

10 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • September 2004

� Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual

� Netra High Availability Suite Foundation Services 2.1 6/03 Standalone CGTP Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Release Notes

� Netra High Availability Suite Foundation Services 2.1 6/03 README

11

12 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • September 2004

Introduction

13

Intro – introduction to daemons, system maintenance commands, and installation tool
commands

This section lists the daemons, system maintenance commands, and installation tool
commands.

This section lists the daemons.

nhcmmd(1M) Cluster Membership Manager (CMM)
daemon

nhcrfsd(1M) Reliable NFS supervisory daemon

nhpmd(1M) Daemon Monitor daemon

nhprobed(1M) Probe link and node accessibility daemon

nhnsmd(1M) Node State Manager daemon

nma(1M) Node Management Agent daemon

nhwdtd(1M) Watchdog Timer daemon

This section lists the system maintenance commands.

nhadm(1M) Foundation Services administration tool

nhcmmqualif(1M) Command to qualify the current node as
master

nhcmmrole(1M) Command to obtain the role of the node

nhcmmstat(1M) Command to display information about
peer nodes, trigger a switchover, or force
the qualification of a master-eligible node

nhcrfsadm(1M) Command for Reliable NFS administration

nhenablesync(1M) Command to trigger synchronization

nhpmdadm(1M) Daemon Monitor administration tool

nhpmdadmwrapper(1M) Command to configure Daemon Monitor
values

nhsched(1M) Command to display the scheduling
parameters of the Foundation Services
processes

This section contains the nhinstall command.

nhinstall(1M) Foundation Services installation and
configuration tool

Caution – Do not use the SMCT commands with the current patch level of the
Foundation Services product.

Intro(1M)

NAME

DESCRIPTION

Daemons

Maintenance
Commands

nhinstall
Command

SMCT Commands

14 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

This section lists the Software Management and Configuration Toolkit (SMCT)
commands.

flconfig(1M) Add user defined configuration data to a
flash archive

flcreate(1M) Create a generic flash archive from the node
group software

fldeploy(1M) Generate a deployable flash archive and
Solaris JumpStart environment

flinstall(1M) Generate a Solaris JumpStart environment
for a diskfull node group

nhsmctsetup(1M) Create the SMCT environment

slconfig(1M) Add user defined configuration data to the
software load

slcreate(1M) Prepare the data for a generic flash archive

sldelete(1M) Delete a software load

sldeploy(1M) Generate configuration files for a software
load

slexport(1M) Copy software load data to an export
directory

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(1M)

ATTRIBUTES

Introduction 15

Intro – introduction to the Cluster Membership Manager API functions

This section describes the Cluster Membership Manager (CMM) Application
Programming Interface (API) functions.

cmm_cmc_filter(3CMM)
Define notification filtering

cmm_cmc_register(3CMM)
Register to receive notifications

cmm_cmc_unregister(3CMM)
Unregister to stop receiving notifications

cmm_config_reload(3CMM)
Reload the cluster node table

cmm_connect(3CMM)
Prepare or test a connection to the Cluster Membership Manager

cmm_disconnect(3CMM)
Close a connection between current calling process and the nhcmmd daemon

cmm_master_getinfo(3CMM)
Retrieve master node information

cmm_vicemaster_getinfo(3CMM)
Retrieve the vice–master node information

cmm_mastership_release(3CMM)
Trigger a switchover

cmm_member_getall(3CMM)
Retrieve cluster membership information

cmm_member_getcount(3CMM)
Retrieve number of nodes in the cluster

cmm_member_getinfo(3CMM)
Retreive information about a peer node

cmm_member_isdesynchronized(3CMM)
Interpret the synchronization status of a master-eligible node

cmm_member_isdisqualified(3CMM)
Remove peer node

cmm_member_iseligible(3CMM)
Determine if a node is master-eligible

cmm_member_isexcluded(3CMM)
Determine if a node is excluded from the cluster

cmm_member_isfrozen(3CMM)
Determine if a node is frozen

Intro(3CMM)

NAME

DESCRIPTION

LIST OF
FUNCTIONS

16 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_member_ismaster(3CMM)
Determine if a node is the master

cmm_member_isvicemaster(3CMM)
Determine if a node is the vice master

cmm_member_isoutofcluster(3CMM)
Determine if a node is not participating in the cluster

cmm_member_isqualified(3CMM)
Determine if a node is eligible to be master

cmm_membership_remove(3CMM)
Remove a peer node from the cluster

cmm_member_seizequalif(3CMM)
Force requalification of master-eligible node

cmm_member_setqualif(3CMM)
Give a new level of qualification to a node

cmm_node_getid(3CMM)
Retrieve ID of a node

cmm_notify_dispatch(3CMM)
Dispatch cluster membership change messages

cmm_notify_getfd(3CMM)
Receive cluster membership change messages by getting file descriptor associated
with registration

cmm_potential_getinfo(3CMM)
Retrieve information about a peer node even if it has the OUT_OF_CLUSTER role.

cmm_strerror(3CMM)
Get error message string

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM)

ATTRIBUTES

Introduction 17

Intro – introduction to the Foundation Services configuration files

The following types of configuration files are included in this section:

� Configuration files for the nhinstall tool
� Configuration files for the cluster
� Configuration files for the Node Management Agent (NMA)

The following files enable you to configure the nhinstall tool to install the
Foundation Services on the cluster:

addon.conf(4)
nhinstall configuration file to install additional patches and Solaris packages

cluster_definition.conf(4)
nhinstall configuration file to define the cluster

env_installation.conf(4)
nhinstall configuration file defining the installation environment

nodeprof.conf(4)
file that permits the customization of Solaris installation

diskless_nodeprof.conf(4)
file that permits the customization of Solaris installation on diskless nodes

The following are the cluster configuration files. These files are installed and
configured by the nhinstall tool. Only if you are installing the Foundation Services
manually, you must modify these files:

cluster_nodes_table(4) Node management file

nhadmsync.conf(4) List of nonreplicated files and the differences between
them

nhfs.conf(4) Foundation Services configuration file

target.conf(4) Basic node configuration file

nhpmd.conf(4) Specification of number of retries for a daemon
monitored by PMD if this number is not the default

The following files enable you to program the NMA to monitor your cluster:

nma.notifs.txt(4) NMA configuration file for SNMP trap notifications

nma.params.txt(4) NMA configuration file for SNMP parameters

nma.properties(4) NMA configuration file defining NMA properties

nma.security(4) NMA configuration file for SNMP security

nma.targets.txt(4) NMA configuration file for SNMP trap targets

Intro(4)

NAME

DESCRIPTION

LIST OF FILES

nhinstall
Configuration Files

Cluster
Configuration Files

NMA
Configuration Files

18 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

Caution – Do not use the SMCT configuration files with the current patch level of the
Foundation Services product.

The following files enable you to define your cluster configuration for the SMCT:

cluster.conf(4) SMCT file that contains a logical view of the cluster in
terms of nodes, node groups, domains and services

install-server.conf(4) SMCT file to configure installation server network

machine.conf(4) SMCT file that describes the cluster in terms of
hardware elements, disk layout, and file system
definitions.

master-system.conf(4) SMCT file to configure the prototype machine network

network.conf(4) SMCT file that describes the network parameters for
the target cluster

software.conf(4) SMCT file that describes the software packages and
patches to be deployed to each node group

userapp.conf(4) SMCT file containing a structured list of user defined
configuration data to be installed at cluster startup

See attributes(5) for a discussion of the attributes listed in this section.

Intro(4)

SMCT
Configuration Files

ATTRIBUTES

Introduction 19

Intro(4)

20 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

Maintenance Commands

21

flconfig – SMCT command to add user-defined configuration data to a flash archive

flconfig -n swl-name -v swl-version -g node-group-name -f flash-archive [-e
export-dir] [-c config-dir] [-l logfile] [-V verbosity-level] [-h]

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

The flconfig command adds user-defined configuration data to a specified flash
archive. This command uses data from the export directory to create a configuration
section that contains all the user application data and application data installation
scripts for the node group specified as a parameter. The configuration section is added
to the flash archive for the node group.

Configuration sections are also created for the diskless node groups embedded in the
master-eligible node groups.

You must be superuser to run the flconfig command.

The options that you can use with the flconfig command are:

-n swl-name Name of the software load to process. This is an ASCII
string.

-v swl-version Version of the software load to process. This is an
ASCII string.

-g node-group-name Name of the node group associated to the flash archive.
This is an ASCII string defined in the file
cluster.conf.

-f flash-archive Absolute path and file name of the flash archive. If only
the flash archive name is specified, the flash archive is
expected to be located in the default directory
SMCT_FLASH_DIR, which is defined in the smct.env
file.

-e export-dir Directory where the software load data has been copied
to by the slexport command. The default directory is
specified by the SMCT variable SMCT_EXPORT_DIR,
which is defined in the smct.env file. For more
information on the smct.env file, see the
nhsmctsetup(1M) man page.

-c config-dir Directory where the configuration files are located. This
option overrides the configuration directory specified
by the SMCT variable SMCT_DEFAULT_CONFIG_DIR,
which is defined in the smct.env file. For more
information on the smct.env file, see the
nhsmctsetup(1M) man page.

flconfig(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

22 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

-l log-file Name of the file that stores information and error
messages. By default these messages are displayed on
the console.

-V verbose-level Verbosity level. Values are 1, 2, or 3, where 1 is minimal
traces and 3 is detailed information.

-h Displays help information.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

flcreate(1M), fldeploy(1M), flinstall(1M), nhsmctsetup(1M),
slconfig(1M), slcreate(1M), sldelete(1M), sldeploy(1M), slexport(1M)

flconfig(1M)

ATTRIBUTES

SEE ALSO

Maintenance Commands 23

flcreate – SMCT command to create a generic flash archive from the node group
software

flcreate -f flash-archive -n swl-name -v swl-version -g node-group-name [-e
export-dir] [-c config-dir] [-l logfile] [-V verbosity-level] [-h]

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

The flcreate command creates a generic flash archive from the node group software
that is installed on the prototype machine. This command is run once for each
master-eligible and dataless node group, as each node group is processed individually.

The flcreate command must be run as a superuser.

The following configuration files are used by flcreate to configure the network
between the prototype machine and the installation server. They must be completed
before running the flcreate command:

� install-server.conf

For more information on the install-server.conf file, see the
install-server.conf(4) man page.

� master-system.conf

For more information on the master-system.conf file, see the
master-system.conf(4) man page.

The options that you can use with the flcreate command are:

-f flash-archive Absolute path and file name of the flash archive. If only
the name of the flash archive is provided, the flash
archive is created in the default directory specified by
the SMCT variable SMCT_FLASH_DIR. This is an ASCII
string.

-n swl-name Name of the software load to process. This is an ASCII
string.

-v swl-version Version of the software load to process. This is an
ASCII string.

-g node-group-name Name of the nodes group associated to the flash
archive. This is an ASCII string defined in the file
cluster.conf.

-e export-dir Directory where the software load data has been copied
to by the slexport command. This option overrides
the export directory specified by the SMCT variable
SMCT_EXPORT_DIR, which is defined in the smct.env
file. For more information on the smct.env file, see
the nhsmctsetup(1M) man page.

flcreate(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

24 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

-c config-dir Directory where the cluster configuration files are
located. This option overrides the configuration
directory specified by the SMCT variable
SMCT_DEFAULT_CONFIG_DIR, which is defined in the
smct.env file. For more information on the smct.env
file, see the nhsmctsetup(1M) man page.

-l log-file Name of the file that is sent information and error
messages. By default these messages are displayed on
the console.

-V verbose-level Verbosity level. Values are 1, 2, or 3, where 1 is minimal
traces and 3 is detailed information.

-h Displays help information.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

flconfig(1M), fldeploy(1M), flinstall(1M), install-server.conf(4),
master-system.conf(4), nhsmctsetup(1M), slconfig(1M), slcreate(1M),
sldelete(1M), sldeploy(1M), slexport(1M)

flcreate(1M)

ATTRIBUTES

SEE ALSO

Maintenance Commands 25

fldeploy – SMCT command to generate a deployable flash archive and Solaris
JumpStart environment

fldeploy -f flash-archive -n swl-name -v swl-version -g node-group-name [-e
export-dir] [-j jumpstart-dir] [-c config-dir] [-l logfile] [-V verbosity-level]
[-h]

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

The fldeploy command does the following:

� Creates a deployable flash archive for the node group specified by node-group-name.

� Generates a Solaris JumpStart environment for each node of the node group.

� Adds the exported data from the sldeploy command to the generic or configured
flash archive. The exported data are Foundation Services configuration files for
services such as Reliable NFS and the Cluster Membership Manager (CMM), and
includes the configuration file, nhfs.conf.

The fldeploy command must be run as a superuser.

Configure the install-server.conf configuration file before running the
fldeploy command. For more information on the install-server.conf file, see
the install-server.conf(4) man page.

The options that you can use with the fldeploy command are:

-f flash-archive Absolute path and file name of the flash archive. If only
the name of the flash archive is provided, the flash
archive is created in the default directory specified by
the SMCT variable SMCT_FLASH_DIR. This is an ASCII
string.

-n swl-name Name of the software load to process. This is an ASCII
string.

-v swl-version Version of the software load to process. This is an
ASCII string.

-g node-group-name Name of the node group for which the Solaris
JumpStart environments are created. An environment
is created for each node of the node group. The
node-group-name is an ASCII string defined in the file
cluster.conf.

-e export-dir Directory where the software load data has been copied
to by the slexport command. This option overrides
the export directory specified by the SMCT variable
SMCT_EXPORT_DIR, which is defined in the smct.env
file. For more information on the smct.env file, see
the nhsmctsetup(1M) man page.

fldeploy(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

26 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

-j jumpstart-dir Directory where the Solaris JumpStart environment
will be created. This option overrides the Solaris
JumpStart directory specified by the SMCT variable
SMCT_JUMPSTART_DIR, which is defined in the
smct.env file. For more information on the smct.env
file, see the nhsmctsetup(1M) man page.

-c config-dir Directory where the cluster configuration files are
located. This option overrides the configuration
directory specified by the SMCT variable
SMCT_DEFAULT_CONFIG_DIR, which is defined in the
smct.env file. For more information on the smct.env
file, see the nhsmctsetup(1M) man page.

-l log-file Name of the file that is sent information and error
messages. By default these messages are displayed on
the console.

-V verbose-level Verbosity level. Values are 1, 2, or 3, where 1 is minimal
traces and 3 is detailed information.

-h Displays help information.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

flconfig(1M), flcreate(1M), flinstall(1M),
install-server.conf(4)nhsmctsetup(1M), slconfig(1M), slcreate(1M),
sldelete(1M), sldeploy(1M), slexport(1M)

fldeploy(1M)

ATTRIBUTES

SEE ALSO

Maintenance Commands 27

flinstall – SMCT command to generate Solaris JumpStart environments for
master-eligible and dataless node groups

flinstall -n swl-name -v swl-version -g node-group-name [-j jumpstart-dir]
[-e export-dir] [-c config-dir] [-l logfile] [-V verbosity-level] [-h]

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

The flinstall command generates a Solaris JumpStart environment for each
master-eligible and dataless node group to be installed on the prototype machine. The
flinstall command uses the data generated by the slexport command.

The flinstall command must be run as a superuser.

The following configuration files are used by flinstall to configure the network
between the prototype machine and the installation server. They must be completed
before running the flinstall command:

� install-server.conf

For more information see the install-server.conf(4) man page.

� master-system.conf

For more information see the master-system.conf(4) man page.

The options that you can use with the flinstall command are:

-n swl-name Name of the software load to process. This is an ASCII
string.

-v swl-version Version of the software load to process. This is an
ASCII string.

-g node-group-name Name of the node group for which the Solaris
JumpStart environment is created. An environment is
created for each node of the node group. The
node-group-name is an ASCII string defined in the file
cluster.conf.

-j jumpstart-dir Directory where the Solaris JumpStart environment is
to be created. This option overrides the Solaris
JumpStart directory specified by the SMCT variable
SMCT_JUMPSTART_DIR, which is defined in the
smct.env file. For more information on the smct.env
file, see the nhsmctsetup(1M) man page.

-e export-dir Directory to which the software load data will be
exported. This option overrides the export directory
specified by the SMCT variable SMCT_EXPORT_DIR,
which is defined in the smct.env file. For more
information on the smct.env file, see the
nhsmctsetup(1M) man page.

flinstall(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

28 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

-c config-dir Directory where the configuration files are located. This
option overrides the configuration directories specified
by the SMCT variables SMCT_DEFAULT_CONFIG_DIR,
which is defined in the smct.env file. For more
information on the smct.env file, see the
nhsmctsetup(1M) man page.

-l log-file Name of the file that is sent information and error
messages. By default these messages are displayed on
the console.

-V verbose-level Verbosity level. Values are 1, 2, or 3, where 1 is minimal
traces and 3 is detailed information.

-h Displays help information.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

flconfig(1M), flcreate(1M), fldeploy(1M), install-server.conf(4),
master-system.conf(4), nhsmctsetup(1M), slconfig(1M), slcreate(1M),
sldelete(1M), sldeploy(1M), slexport(1M)

flinstall(1M)

ATTRIBUTES

SEE ALSO

Maintenance Commands 29

nhadm – cluster administration tool

/opt/SUNWcgha/sbin/nhadm [-d data-file] copy [file ...]

/opt/SUNWcgha/sbin/nhadm [-f file] [-s] [-v] check [stage]

/opt/SUNWcgha/sbin/nhadm [-f file] [-s] [-v] display

/opt/SUNWcgha/sbin/nhadm -h

/opt/SUNWcgha/sbin/nhadm [-s] [-v] confshare [
shared_package_directory]

/opt/SUNWcgha/sbin/nhadm [-s] [-v] [-y file] synccheck

/opt/SUNWcgha/sbin/nhadm [-s] [-v] [-y file] syncgen

/opt/SUNWcgha/sbin/nhadm [-z] [html | text]

The nhadm tool provides a suite of tools to check the installation and configuration of
the Foundation Services software and its prerequisite products. You must log in as
superuser to use this command.

The options that you can use with the nhadm tool are as follows:

-d | --data Specifies the name of the file that lists the files to be
copied

-f | --fsconf Specifies the name of the Foundation Services
configuration file. If this option is not used, the default
file is /etc/opt/SUNWcgha/nhfs.conf. For
information on this file, see the nhfs.conf(4) man
page.

-h Displays a help screen.

-s | --silent Runs in silent mode. When using the nhadm check
command in this mode, the tests being run are not
displayed. Only the errors encountered by these tests
are displayed.

-v | --verbose Runs in verbose mode. In this mode, traces are
displayed when performing operations. The level of
detail provided in the traces increases every time this
option is added.

-y | --syncfile Specifies the name of the file that lists the nonreplicated
files that you want to compare. The default is
/SUNWcgha/remote/etc/nhadmsync.conf. For
more information on this file, see the
nhadmsync.conf(4) man page.

-z | --err [html |
text]

Prints messages corresponding to all the error scenarios
tested by nhadm and provides explanations for these
errors in html or text form (html is the default). You can

nhadm(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

30 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

use this command to help understand error messages
generated by nhadm when you test a node or cluster.

The commands and stages available with the nhadm tool are the following:

check Verifies that the prerequisite software and hardware are
correctly installed and configured, that your cluster has
started correctly, and that all peer nodes are accessible.
The tests run by nhadm check are broken down into
the following stages. You can run an individual stage
that suits the task you are performing by typing nhadm
check stage or you can run all three stages by typing
nhadm check.

� installation

Checks that the correct version of the Solaris
operating system is installed. This command also
checks that the Foundation Services packages and
necessary patches are present and installed
correctly.

� configuration

Checks that the configuration files required before
starting up the Foundation Services are present and
of the correct format. Also checks that the
configuration has been performed successfully.

� starting

Tests the node accessibility and disk replication on a
running cluster.

Note – If a stage is not specified, all the stages are run.

confshare A file is required for patching shared packages installed
on the cluster. The confshare command creates this
file by copying
/var/sadm/system/admin/INST_RELEASE, the file
for local packages, to the shared package repository. By
default, confshare creates the
/var/sadm/system/admin/INST_RELEASE file in
the /SUNWcgha/local/export/services shared
package directory.

nhadm(1M)

COMMANDS

Maintenance Commands 31

If your shared packages are not installed in
/SUNWcgha/local/export/services, you must
alter the location where
/var/sadm/system/admin/INST_RELEASE is
created to match your shared package repository. For
example:

/opt/SUNWcgha/sbin/nhadm confshare [
shared_package_directory]

copy Copies files from the master node to the vice-master
node. Files listed can be passed as an argument or
listed in the data-file file.

display Prints information to the console of the node on which
it is run. The displayed information includes local and
shared packages installed, node and cluster IDs,
network interface information, local and mounted file
systems, mount points, and shared partition
information. This command can help you diagnose
problems by listing the current node configuration.

synccheck Uses the Solaris diff command to compare the files
listed in
/SUNWcgha/remote/etc/nhadmsync.conf and
prints a warning on the console when the files are not
identical on the master-eligible nodes. You must
include files in
/SUNWcgha/remote/etc/nhadmsync.conf that are
on the master and the vice-master but are not
replicated on a shared file system. The compared files
can include Solaris files and Foundation Services files.
For more information on the diff command, see
diff(1).

syncgen Accepts the differences between the two nodes found
by synccheck for each file listed in
/SUNWcgha/remote/etc/nhadmsync.conf.

The nhadm tool enables you to verify the status of your cluster. You should use the
nhadm tool as part of regular maintenance or after you change a cluster configuration
in any way.

The nhadm display command prints the current status of a node to the console.
Further cluster status information can be obtained by running the nhcmmstat
command, as described in nhcmmstat(1M).

nhadm(1M)

EXTENDED
DESCRIPTION

32 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

The nhadm tool displays an ok message for every check that passes. If any of the tests
performed by nhadm check fail, an error message is displayed on the console. The
error message describes the error and identifies the command that has failed, or the
likely problem area. For an explanation of the possible error messages, use the nhadm
-err option.

In a correctly functioning cluster, replicated files are the same on the master node and
the vice-master node. Some system files cannot be placed on shared file systems but
must contain the same information on both master-eligible nodes. You can list the
differences between nonreplicated files and manage the differences between these files
using the nhadm synccheck and nhadm syncgen commands.

The list of nonreplicated files compared by nhadm synccheck is shared between the
master node and the vice-master node. A template for this file is installed at
/opt/SUNWcgha/config.standard/adm/nhadmsync.conf.template. The
default location of this shared file is /SUNWcgha/remote/etc/nhadmsync.conf.
For further information on the nhadmsync.conf file, see the nhadmsync.conf(3)
man page.

This section gives examples of how to use the nhadm tool and its commands.

This section contains examples of using nhadm check installation, nhadm
check conf and nhadm check starting.

Note that the checking stages might vary, depending on the node configuration. For
example, the disk check mechanism changes if you are using the Solaris Volume
Manager. Therefore, the following examples are guidelines only.

EXAMPLE 1 To Verify Software Installation

After installing the hardware and software, log in to the machine you want to examine
and run the nhadm check installation command:

nhadm check installation

The nhadm tool verifies that:

� All required software packages and patches are installed
� The Solaris operating system and patches have the correct version
� The same MAC address is not used twice

EXAMPLE 2 To Verify Software Configuration

When the Foundation Services software has been configured, log in to the peer node
you want to examine, and run the nhadm check configuration command. This
command checks that the configuration files that are required before starting the
Foundation Services have been correctly configured.

nhadm check configuration

nhadm(1M)

EXAMPLES

Using nhadm
check

Maintenance Commands 33

EXAMPLE 2 To Verify Software Configuration (Continued)

This command tests the following:

� The cluster definition files are present and in the correct format.

� The network configuration is correctly defined in /etc/hostname and
/etc/hosts.

� The boot-device is configured to be disk for master-eligible nodes and net for
other peer nodes.

For a Netra 20 peer node, boot-device is *disk* where disk in this case cannot
match disk for the OpenBoot PROM.

� The auto-boot option is set to true.

� The local-mac-address for this node is set to true.

� The root file system is defined in /etc/vfstab and the partitions listed in
/etc/vfstab exist.

� The /etc/inet/dhcpsvc.conf file is present. This test is optional and is only
run if the Reliable Boot Service package has been installed.

EXAMPLE 3 To Verify Cluster Network and Disk Replication

Use nhadm check starting to list any cluster network, or disk replication
problems, by logging in to a peer node in a running cluster and typing:

nhadm check starting

The nhadm tool verifies that:

� Each node interface exists and is functioning correctly
� Each peer node is accessible from the current node
� The shared file systems are replicated

EXAMPLE 4 To Verify the Cluster Node Table Configuration When the Master Node Disk and
Vice-Master Node Disk Are Not Synchronized

Log in to a master-eligible node on which you want to verify the file and create the
/etc/opt/SUNWcgha/not_configured file on the node. Boot the node and type:

nhadm -c /SUNWcgha/local/export/data/etc/cluster_nodes_table check

By default, nhadm uses the shared file system to access the cluster_nodes_table
file. When Reliable NFS is not running, as in this case, the file system containing the
cluster_nodes_table file is not mounted and exported. By specifying the option
-c and the local path to the cluster_nodes_table file, you are forcing nhadm to
use the local path.

The target check can be replaced by check installation, check
configuration, or check starting.

nhadm(1M)

34 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

This section provides examples for using the nhadm synccheck and nhadm
syncgen commands.

To use these commands, both master-eligible nodes must have remote access to each
other. To enable this, make sure that the CGTP address of the other master-eligible
node is set in the .rhosts file on each master-eligible node. For example:

On node cgtp10 the /.rhosts file must contain the CGTP address of the other
master-eligible node, cgtp11:

cgtp11 root

On node cgtp11, the /.rhosts file should contain the CGTP address of the other
master-eligible node, cgtp10:

cgtp10 root

This enables Reliable NFS to perform rsh between the master eligible nodes.

To use the nhadm synccheck command, you must specify the nonreplicated files
that you want to compare. By default, you specify the list of files in
/SUNWcgha/remote/etc/nhadmsync.conf. The nhadm synccheck command
compares the copies of these files on the master and the vice-master nodes, printing
any differences to the console. You can accept the differences using nhadm syncgen.
Accepted differences are not printed to the console when you run nhadm synccheck
again.

You can change the name and location of the file that stores the list of nonreplicated
files to be compared. You can also have several files containing different lists of
nonreplicated files.

EXAMPLE 5 To Specify the Nonreplicated Files to be Compared

Create the /SUNWcgha/remote/etc/ directory. Copy the template file
/opt/SUNWcgha/config.standard/adm/nhadmsync.conf.template to
/SUNWcgha/remote/etc/nhadmsync.conf.

Add the names of the files to be compared to the nhadmsync.conf file. The files that
you add should have the following criteria:

� The files exist on both master-eligible nodes
� The files are not replicated on a shared file system

Use the following syntax for all entries in the file:

FILE=filename

For further information on the nhadmsync.conf file see the nhadmsync.conf(4)
man page.

nhadm(1M)

Comparing
Nonreplicated

Files

Maintenance Commands 35

EXAMPLE 6 To Determine the Differences Between Nonreplicated Files

Type:

nhadm synccheck

This command compares the differences between the files listed in nhadmsync.conf,
and displays a list of the files that differ. For each file name displayed to the console,
the difference that exists between the two copies of the same file is also given.

EXAMPLE 7 To Accept the Differences Between Nonreplicated Files

If you decide that the differences between the nonreplicated files displayed by nhadm
synccheck are not detrimental to your cluster, update nhadmsync.conf with the
differences by typing:

nhadm syncgen

If the nodeid of the master node and vice-master node were not entered in the
nhadmsync.conf file by a previously run nhadm syncgen command, a NODEID
parameter is generated at the top of the file using the nodeid of the master and the
vice-master nodes in the following format.

NODEID=node1 node2

Where node1 and node2 are the nodeids of the master and vice-master nodes,
respectively, when nhadm syncgen is first run.

The nodeid can be preceded by a blank line or a comment. This nodeid defines the order
of the comparison performed by synccheck. The order will remain the same even if a
switchover or failover occurs.

Any differences displayed on the console are written to the nhadmsync.conf file.
The differences for a specific file are printed under the entry for that file in the
following format:

=BEGIN
...

=END

For example, if the nhadmsync.conf file contained the following files:

FILE=/etc/ethers
FILE=/etc/hosts

FILE=/etc/netmasks

After a syncgen the nhadmsync.conf file might contain the following information:

NODEID=10 20
FILE=/etc/ethers
FILE=/etc/hosts
=BEGIN
5c5,6

nhadm(1M)

36 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

EXAMPLE 7 To Accept the Differences Between Nonreplicated Files (Continued)

< 10.250.1.10 MEN-C250-N10 loghost

> 10.250.1.20 MEN-C250-N20 loghost
> 10.250.1.10 MEN-C250-N10
8d8
< 10.250.1.20 MEN-C250-N20
=END

FILE=/etc/netmasks

The differences printed to the nhadmsync.conf file are the differences that would be
found by running diff -b on the files listed in nhadmsync.conf. For more
information on the diff command, see the diff(1) man page.

For further information on the nhadmsync.conf file, see the nhadmsync.conf(4)
man page.

EXAMPLE 8 To Check for New Differences Between Nonreplicated Files

Log in to one of the master-eligible nodes and type:

nhadm synccheck

For nonreplicated files listed in nhadmsync.conf, any differences that are not
already stored in nhadmsync.conf are displayed to the console.

EXAMPLE 9 To Change the Location of the File Listing the Nonreplicated Files Compared by
nhadm synccheck

The nhadmsync.conf file is shared by the master and vice-master nodes. To change
the name or location of the nhadmsync.conf file, use the -y option as follows:

nhadm -y pathname syncgen

This section provides an example for using the nhadm copy command to copy local
files from the master node to the vice-master node.

nhadm [-d data-file] copy [file]

where:

data-file a list of files to be copied; one file per line

file additional files to be copied, for example files that you
want to copy once only. You can include the files to be
copied repeatedly in the data-file file.

The /.rhosts files must be correctly configured on both nodes to enable remote
access via rcp.

nhadm(1M)

Copying Local
Files

Maintenance Commands 37

EXAMPLE 10 To Copy Local DHCP Configuration Files

This example shows how to copy the local DHCP configuration file, dhcp.dat from
the master node to the vice-master node. The contents of a DHCP configuration file
such as dhcp.dat could be as follows:

/var/dhcp/SUNWrbs1_10_1_1_0
/var/dhcp/SUNWrbs1_10_1_2_0

/var/dhcp/SUNWrbs1_dhcptab

To copy dhcp.dat from the master node to the vice-master node, log on to the master
node and use the nhadm command as follows:

nhadm -d dhcp.dat copy

The vice-master node now has a copy of the files listed in the dhcp.dat file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhadm

Interface Stability Evolving

diff(1), nhcmmstat(1M), nhadmsync.conf(4)

nhadm(1M)

ATTRIBUTES

SEE ALSO

38 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

nhcmmd – manage cluster membership

/opt/SUNWcgha/sbin/nhcmmd [-h] [-u URL]

The Cluster Membership Manager is implemented by the nhcmmd daemon. There is a
nhcmmd daemon on each peer node.

The nhcmmd daemon on the master node has the current view of the cluster
configuration and communicates its view to the nhcmmd daemons on the other peer
nodes. The nhcmmd daemon on the master node determines which nodes are members
of the cluster, assigns the roles and attributes to the nodes, detects the failure of nodes
and configures routes for reliable transport.

The nhcmmd daemon on the vice-master node monitors the health of the master node.
If the master node fails, the vice-master node is able to take over as the master node.

The nhcmmd daemon on each of the peer nodes do not communicate with each other.
Each nhcmmd daemon exports an API to the notify clients of changes to the cluster,
and to notify services and applications when the cluster membership or master
changes. Notification messages describe the membership change and the nodeid of the
affected node, making it possible for clients to maintain an accurate view of the peer
nodes of the cluster.

For information about the CMM API, see the Intro(3CMM) man page.

-h Displays help information.

-u URL You must specify the URL of the nhfs.conf file.

The following exit values are returned:

0 Successful completion.

255 An error occurred.

cluster_nodes_table
The file that lists the configured nodes of the cluster and describes the nodes’
attributes.

nhfs.conf
The file that contains configuration and addressing information for the different
Foundation Services.

target.conf
The file that contains the domainid, attributes, and election roles for each node in the
cluster

See attributes(5) for descriptions of the following attributes:

nhcmmd(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

FILES

ATTRIBUTES

Maintenance Commands 39

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Sparc

Availability SUNWnhcmb

Interface Stability Evolving

Intro(3CMM), cluster_nodes_table(4), nhfs.conf(4), and target.conf(4).

nhcmmd(1M)

SEE ALSO

40 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

nhcmmqualif – qualify the current node as master

/opt/SUNWcgha/sbin/nhcmmqualif [-v] [-t timeout]

The nhcmmqualif command calls the cmm_member_seizequalif(3CMM) function
to qualify the current node as master-eligible and start a new master election. This call
is only successful if there is no active master node in the cluster and if the current
node is master-eligible. If this call is not successful, a 255 exit code is returned. If this
call is successful, this command forces the qualification of the current node so that this
node becomes the master node. Use this command when no node is qualified to
become master. Note that an unsynchronized node will only be elected as master node
if its former role was master.

The nhcmmqualif command can only be called from a master-eligible node. This call
has one of two outcomes for this node; either the node becomes master, or it reverts to
the qualification level it had prior to the nhcmmqualif call.

If you attempt to call nhcmmqualif from a node that is not master-eligible, the
command exits with a 255 exit code. If a master is already running when
nhcmmqualif is called, the command exits with a 255 exit code. If nhcmmqualif
provokes a change in the status of a peer node, a notification is sent by the CMM API.

The following options are supported by nhcmmqualif:

-t timeout
Wait for a specified period of time for a MASTER ELECTED notification. If a master
is elected within this period of time, nhcmmqualif is successful and returns 0. If
no master is elected within this period of time, nhcmmqualif fails and returns
255.

-v
Verbose mode.

The following exit values are returned:

0 Successful completion.

255 The current node is not master-eligible, there is already a master in the
cluster, or no master was elected within the specified timeout (if -t was
used).

This section contains examples of how to use the nhcmmqualif command.

EXAMPLE 1 To Force Qualification of a Master-Eligible Node

When there is no current master node in the cluster and no node is qualified to be the
master node:

� Log in to a master-eligible node.

� Run:

nhcmmqualif

nhcmmqualif(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

EXAMPLES

Maintenance Commands 41

EXAMPLE 1 To Force Qualification of a Master-Eligible Node (Continued)

echo $?

0

The master-eligible node on which you ran the nhcmmqualif command is
temporarily qualified as the master node.

If you run nhcmmqualif on a master-eligible node in a cluster with a valid master
node, the node is not forced to become master and the 255 exit status is produced.

EXAMPLE 2 To Requalify a Node Synchronously

Use the timeout option to requalify a node synchronously.

� Log in to one of the master-eligible nodes.

� Run:

nhcmmqualif -t timeout

This command is synchronous. The option -t blocks the node until a MASTER
ELECTED notification is received or the timeout is reached.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Sparc

Availability SUNWnhcmb

Interface Stability Evolving

cmm_member_seizequalif(3CMM).

nhcmmqualif(1M)

ATTRIBUTES

SEE ALSO

42 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

nhcmmrole – get the role of the current node

/opt/SUNWcgha/sbin/nhcmmrole [-hv] [-t timeout]

The nhcmmrole command gets the role of the current node.

This executable can be used in scripts. Its exit code represents the current role of the
node.

The nhcmmrole command can be used with the following options:

-h
Provides information about the use of the command.

-t timeout
Sets the timeout in seconds for this call. The default timeout is 5 seconds.

-v
Verbose. This option displays the role of the node, as follows:

nhcmmrole: current role role

The value for role is one of the following: MASTER, VICEMASTER,
OUT_OF_CLUSTER, or IN_CLUSTER.

The following exit values are returned by nhcmmrole:

255 A failure has occurred or the node is not configured in the cluster node
table

0 Out of cluster node

1 Master node

2 Vice-master node

3 In cluster node that is neither master nor vice-master.

The following example shows how to run nhcmmrole to determine the role of a node.

EXAMPLE 1 Running nhcmmrole to determine if a node is the master

� Log in to a node.

� Run:

nhcmmrole

echo $?

1

In this example, the current node is the master node.

nhcmmrole(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

EXAMPLES

Maintenance Commands 43

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Sparc

Availability SUNWnhcmb

Interface Stability Evolving

nhcmmrole(1M)

ATTRIBUTES

44 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

nhcmmstat – display information about peer nodes, trigger a switchover, or force the
qualification of a master-eligible node

nhcmmstat [-h] [-c command [-t]] [-n nodeid]

The nhcmmstat tool displays information about a peer node or a group of peer nodes,
displays notifications sent by the nhcmmd daemon, and performs operations on the
cluster. Use this tool at regular intervals when you are performing tasks that might
change the status of a node.

The nhcmmstat tool provides the following information:

� The node ID of a node
� That the cluster configuration files contain coherent information
� The role of a node
� The attributes of a node
� That the master and vice-master disks contain the same shared information

You can use the nhcmmstat tool to modify the state of the cluster as shown in the
examples section below.

For information about the role and attributes of a node, see the Netra High Availability
Suite Foundation Services 2.1 6/03 CMM Programming Guide.

The following options are supported by nhcmmstat:

-c You can specify the nhcmmstat command to be executed. The specified
command is executed and nhcmmstat exits. If this option is not used, you
use the nhcmmstat command in an interactive mode. In this case, you
must exit using the exit or quit command to return to the cursor.

-h Displays help.

-n You can specify the nodeid of the node on which you want to run
nhcmmstat. This option is obligatory when using the info or potential
commands.

-t Shows the start and end times.

The following commands can be used with the nhcmmstat tool to get information
about a single node:

info Get information about a node in the cluster. You must provide the
nodeid of the node.

local Get the nodeid of the current node.

master Get information about the master node.

mynode Get information about the current node.

potential Get information about a node that is in the cluster node table but
has the CMM_OUT_OF_CLUSTER role. You must provide the nodeid
of the node.

nhcmmstat(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXTENDED
DESCRIPTION

Maintenance Commands 45

When a node has the CMM_OUT_OF_CLUSTER role, the
nhcmmstat tool gives meaningless values for the following
administrative attributes: CMM_ELIGIBLE_MEMBER,
CMM_FLAG_DISQUALIFIED, and CMM_FLAG_SYNCHRO_NEEDED.

vice Get information about the vice-master node.

The following commands can be used with the nhcmmstat tool to get information
about all peer nodes.

all Get information about all peer nodes except those with the role
CMM_OUT_OF_CLUSTER.

count Get a count of the nodes in the cluster.

The following commands can be used with the nhcmmstat tool to modify the cluster.
You must log in as superuser to use these commands.

reload Force a reload of the cluster_nodes_table configuration. This
command can be run from the master node only. The supported operations
are add and remove a node in the cluster_nodes_table file, with the
node powered off.

To add nodes that are not included in the original cluster definition, you
must consider how the cluster was installed. For information about how to
add new diskless node or dataless nodes to a cluster, see the Netra High
Availability Suite Foundation Services 2.1 6/03 Cluster Administration Guide.
You cannot add a master-eligible node to the cluster because there is a limit
of two master-eligible nodes per cluster.

so Force mastership change to the vice-master node. This command can be
used on the master node only, and when the vice-master is present and
able to take the master role.

squalif Force the requalification for the current node to make it start an election.
This command can be used on a master-eligible node when no peer node is
qualified to be master. This command displays the following warning
message:

Warning! This asynchronous command might take up to 300 s
to succeed!

Note that an unsynchronized master-eligible node can only be elected as the master
node if its former role was master.

The following commands can be used to exit from or get help with nhcmmstat:

exit Exit.

help Display help information.

nhcmmstat(1M)

46 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

quit Exit.

If an nhcmmstat command fails, an error is displayed.

When nhcmmstat is used in interactive mode, the following notifications are emitted
by the nhcmmd daemon and displayed.

CMM_INVALID_CLUSTER "[USER CB] INVALID CLUSTER" is
displayed. The cluster is not in a coherent
state. No information can be returned by
the CMM API until the cluster has been
returned to a coherent state.

CMM_VALID_CLUSTER "[USER CB] VALID CLUSTER" is
displayed. The cluster is in a coherent state.

CMM_STALE_CLUSTER "[USER CB] STALE CLUSTER" is
displayed. The cluster has not had a master
node for the preceding ten seconds.

CMM_MASTER_DEMOTED "[USER CB] master demoted = %d" is
displayed. %d is replaced by the nodeid of
the demoted master.

CMM_MASTER_ELECTED "[USER CB] master elected = %d" is
displayed. %d is replaced by the nodeid of
the new master. When this notification is
received, all available information about the
master is displayed.

CMM_MEMBER_LEFT "[USER CB] member left cluster =
%d" is displayed. %d is replaced by the
nodeid of the node that has left the cluster.

CMM_MEMBER_JOIN "[USER CB] new node in cluster =
%d" is displayed. %d is replaced by the
nodeid of the new node.

CMM_VICEMASTER_DEMOTED "[USER CB] vice-master demoted =
%d" is displayed. %d is replaced by the
nodeid of the demoted vice-master node.

CMM_VICEMASTER_ELECTED "[USER CB] vice-master elected =
%d" is displayed. %d is replaced by the
nodeid of the new vice-master. When this
notification is received, all available
information about the vice-master is
displayed.

When nhcmmstat is used in command line mode the notifications are not displayed.

nhcmmstat(1M)

Notifications

Maintenance Commands 47

When information is requested for a node, or when notifications of cluster changes are
received, the following information is displayed in the order shown:

nodeid The nodeid of the current node, followed by "[This is the
current node]" when the displayed information concerns the
current node.

domain_id The domainid of the cluster of the current node.

name The name of the node as specified in the
/SUNWcgha/remote/etc/cluster_nodes_table file.

role The role of the node in the cluster: master, vice-master, in, or
out. The master, vice-master and out roles correspond to
CMM_MASTER, CMM_VICEMASTER, and CMM_OUT_OF_CLUSTER. A
node that does not have the CMM_OUT_OF_CLUSTER role, is in.

qualified YES or NO is displayed. If YES, the node is qualified to be master. If
NO, the node is not qualified to be master. This information is
relevant for master-eligible nodes only.

synchro NEEDED or READY is displayed. If NEEDED, the master and
vice-master shared file systems do not contain the same
information. If READY, the master and vice-master node file
systems contain the same information. This information is relevant
for master-eligible nodes only.

frozen YES or NO is displayed. If YES, the node is frozen. When a node is
frozen, the master cannot change the role of this node even if
events require it. If NO, the node is not frozen.

excluded YES or NO is displayed. If YES, the node is excluded from the
cluster. An excluded node acts as if it has the
CMM_OUT_OF_CLUSTER role. If NO, the node is not excluded.

eligible YES or NO is displayed. If YES, this node can participate in an
election and be elected master if it is sufficiently qualified. If NO,
this node cannot participate in an election.

incarn The incarnation number of the time that the node was last booted.
The value is an integer (number of seconds since 00:00 universal
coordinated time Jan 1 1970) and a literal representation of this
date. For example, 1005833787 (15/11/2001 - 15:16:27).

swload_id This string indicates the Foundation Services software version. The
string 1 is displayed for the Foundation Services.

CGTP @ This is the address of the node of the cgtp0 interface

You must log in as superuser to use the so, reload, and squalif commands of the
nhcmmstat tool.

This section contains examples of how to use the nhcmmstat tool:

nhcmmstat(1M)

Node Information
Displayed

USAGE

EXAMPLES

48 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

EXAMPLE 1 To Get Information About the Master Node

� Log in to a peer node.

� Type:

nhcmmstat -c master

An output similar to the following is displayed:

node_id = 20
domain_id = 250
name = netraMEN2-cgtp0
role = MASTER
qualified = YES
synchro. = READY
frozen = NO
excluded = NO
eligible = YES
incarn. = 1015949483 (12/03/2002 - 17:11:23)
swload_id = 1
CGTP @ = 10.250.3.20

EXAMPLE 2 To Get the nodeid of the Current Node

� Log in to a peer node.

This node becomes the current node.

� Type:

nhcmmstat -c local

An output similar to the following is displayed:

Local Node id is 10

In this example the nodeid of the current node is 10.

You can also find the nodeid of a node by using the ifconfig command. The nodeid
corresponds to the host part of the nodes IP address. For more information, see the
ifconfig(1M) man page.

EXAMPLE 3 To Get Information About a Specific Node

� Log in to a peer node.

� Type:

nhcmmstat -c info -n nodeid

An output similar to the following is displayed:

nhcmmstat(1M)

Maintenance Commands 49

EXAMPLE 3 To Get Information About a Specific Node (Continued)

node_id = nodeid
domain_id = 250
name = netraMEN1-cgtp0
role = VICE-MASTER
qualified = YES
synchro. = READY
frozen = NO
excluded = NO
eligible = YES
incarn. = 1008266390 (13/12/2001 - 18:59:50)
swload_id = 1
CGTP @ = 10.250.3.10

EXAMPLE 4 To Force the Qualification of a Node Asynchronously

� Log in to a master-eligible node.

� Type:

nhcmmstat -c squalif

� The nhcmmstat and squalif tool forces the requalification of the current node to
make it the master node. This function can only be successful when there is no
active master node in the cluster and the current node is a master-eligible node.

The squalif tool is asynchronous. The tool is not blocked while qualification is
taking place.

EXAMPLE 5 To Get Information About All Peer Nodes

� Log in to any peer node.

� Type:

nhcmmstat -c all

Information about each peer node is printed to the console.

EXAMPLE 6 To Trigger a Switchover

� Log in to the master node.

� Type:

nhcmmstat -c so

An output similar to the following is displayed:

[USER CB] master elected = 10

node_id = 10
domain_id = 250

nhcmmstat(1M)

50 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

EXAMPLE 6 To Trigger a Switchover (Continued)

name = netraMEN1-cgtp0
role = MASTER
qualified = YES
synchro. = NEEDED !!!
frozen = NO
excluded = NO
eligible = YES
incarn. = 1008266390 (13/12/2001 - 18:59:50)
swload_id = 1
CGTP @ = 10.250.3.10

[USER CB] vicemaster elected = 20

node_id = 20 [This is the current node]
domain_id = 250
name = netraMEN2-cgtp0
role = VICE-MASTER
qualified = YES
synchro. = NEEDED !!!
frozen = NO
excluded = NO
eligible = YES
incarn. = 1008266566 (13/12/2001 - 19:02:46)
swload_id = 1
CGTP @ = 10.250.3.20

If there is a vice-master qualified to become master, it is elected master, the master
becomes the vice-master, and the disks are synchronized. If there is no potential
master, nhcmmstat does not perform a switchover.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmb

Interface Stability Evolving

Intro(3CMM), nhcmmd(1M), cluster_nodes_table(4), and nhinstall(1M).

nhcmmstat(1M)

ATTRIBUTES

SEE ALSO

Maintenance Commands 51

nhcrfsadm – command line tool for Reliable NFS administration

/opt/SUNWcgha/sbin/nhcrfsadm [-hv]

/opt/SUNWcgha/sbin/nhcrfsadm -a [-s server]

/opt/SUNWcgha/sbin/nhcrfsadm -r [-s server]

/opt/SUNWcgha/sbin/nhcrfsadm [-s server] -f all

/opt/SUNWcgha/sbin/nhcrfsadm [-s server] -f partition-name

The nhcrfsadm tool is a command line tool for the RNFS supervisory daemon
administration.

The nhcrfsadm tool performs the following tasks:

� Authorizes or refuses the Reliable NFS to start on the vice-master node when a
change of disk has been detected

� Performs a replication of one or all of the replicated partitions

Replication must be authorized to start on the vice-master node in the following
circumstances:

� The vice-master node has been stopped because of failure or maintenance
� A vice-master node disk containing a replicated partition has been changed

The demand for authorization ensures that the new vice-master node disk is not
corrupted.

While the vice-master node is rebooting, the master node nhcrfsd daemon asks the
operator whether the nhcrfsd daemon on the vice-master is allowed to follow the
boot procedure or not. The nhcrfsd daemon on the vice-master node does not start
until an order is given to the nhcrfsd daemon on the master node.

The following options are supported:

-a Authorize replication to start on the vice-master node.
This option can be used on the master node only.
Replication will start automatically.

-f all Perform a full replication of all partitions present in the
RNFS configuration.

-f partition-name Perform a full replication of the partition specified by
partition-name. The partition must be specified by its
name, for example, /dev/rdsk/c0t0d0s3.

-h Display help on options.

-r Refuse permission for replication to startup on the
vice-master node. This option can be used on the
master node only. The nhcrfsd daemon on the
vice-master node will stop. The vice-master disk can
then be removed, replaced, and rebooted.

nhcrfsadm(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

52 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

-s server Specify the server whose nhcrfsd is to be
administrated. The default server is localhost. The
specified machine should always be the master node.

-v Display the version and the build date of the tool.

You must be logged on as superuser to run the nhcrfsadm command.

0 Command succeeded

1 Command failed

The nhcrfsadm tool uses a catalog of messages in compliance with International
Language Environments (I18N) standards. The NLSPATH variable must contain the
pattern: /opt/SUNWcgha/lib/locale/%L/LC_MESSAGES/%N

The following file is generated by the nhcrfsadm tool:

/opt/SUNWcgha/lib/locale/C/LC_MESSAGES/CRFS_ADM.cat
Default catalog of messages.

The following examples demonstrates how nhcrfsadm is used.

EXAMPLE 1 To Start Replication

After you have changed a disk:

1. Log in to the master node as superuser.

2. Accept the start of replication by typing:

/opt/SUNWcgha/sbin/nhcrfsadm -a

EXAMPLE 2 To Resynchronize the Master Node Disk and Vice-Master Node Disk

1. Log in to the master node as superuser.

2. Resynchronize the master and vice-master disks.

nhcrfsadm -f all

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Availability SUNWnhfsa, SUNWnhfsb

nhcrfsd(1M)

nhcrfsadm(1M)

USAGE

EXIT STATUS

ENVIRONMENT
VARIABLES

FILES

EXAMPLES

ATTRIBUTES

SEE ALSO

Maintenance Commands 53

nhcrfsd – Reliable NFS supervisor daemon

/opt/SUNWcgha/sbin/nhcrfsd [-h] [-v] [-u URL]

The nhcrfsd daemon manages the Reliable NFS feature of the Foundation Services.
The nhcrfsd daemon is started when the system comes up (at init level 2). By
default, the nhcrfsd daemon is monitored by the Daemon Monitor, nhpmd(1M).

The following options are supported:

-h Display help on options and exit.

-u URL You must specify the URL of the nhfs.conf file.

-v Display the version and the build date of the daemon
and exit.

You must be logged on as superuser to run the nhcrfsd daemon.

The nhcrfsd daemon uses the nhfs.conf file and the /etc/vfstab file.

The following parameters must be set in the nhfs.conf file:

� RNFS.Slice
� RNFS.StatdAlternatePath
� RNFS.Share

For more information about these parameters, see the nhfs.conf(4) man page.

Entries in vfstab use the syntax described in vfstab(4). For each master-eligible
node, the vfstab entry must contain the following:

� Information for mounting Reliable NFS replicated slices so that they can be
exported by the NFS server.

� Information for mounting the file systems to be replicated by NFS.

The following paths are used by applications:

� Mount Reliable NFS replicated slices locally (on the master-eligible nodes).

/dev/dsk/c0t0d0s3 /dev/rdsk/c0t0d0s3 /export ufs - no logging

/dev/dsk/c0t0d0s4 /dev/rdsk/c0t0d0s4 /SUNWcgha/local ufs - no logging

This example mounts the Reliable NFS replicated slice /dev/rdsk/c0t0d0s3 on
/export and /dev/rdsk/c0t0d0s4 on /SUNWcgha/local/.

The RNFS.Share property allows /export to be exported by NFS from the
master node.

� Mount the Reliable NFS replicated slices by NFS (on the master-eligible nodes).

10.28.3.1:/SUNWcgha/local/export - /SUNWcgha/remote nfs - no fg,hard,intr,noac

nhcrfsd(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXTENDED
DESCRIPTION

The nhfs.conf File

The /etc/vfstab File

54 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

This example mounts /SUNWcgha/local/export of the master node on the
/SUNWcgha/remote mount point of the master and vice-master nodes.

The specified mount options must be selected according to the type of mount entry.

You can use the noac option if the impact on performance is acceptable. For
information about how to enable and disable the noac option, see the Netra High
Availability Suite Foundation Services 2.1 6/03 Cluster Administration Guide.

The exit status for nhcrfsd is one of the following:

0 Daemon started successfully

1 Daemon failed to start

The nhcrfsd daemon uses a catalog of messages in compliance with International
Language Environments (I18N) standards. The NLSPATH variable must contain the
pattern: /opt/SUNWcgha/lib/locale/%L/LC_MESSAGES/%N

/etc/opt/SUNWcgha/nhfs.conf
Configuration and addressing information for the different Foundation Services.
The URL for this file could be file:///etc/opt/SUNWcgha/nhfs.conf.

/opt/SUNWcgha/lib/locale/C/LC_MESSAGES/CRFS.cat
Default catalog of messages

All nhcrfsd daemon messages are logged with the Solaris™ syslog facility. This
facility uses message priorities of the facility.level form. The nhcrfsd daemon
uses the local0 facility and a level that can be alert, err, or info.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Availability SUNWnhfsa, SUNWnhfsb

nhfs.conf(4), nhcrfsadm(1M), nhpmd(1M), and syslog.conf(4).

nhcrfsd(1M)

EXIT STATUS

ENVIRONMENT
VARIABLES

FILES

NOTES

ATTRIBUTES

SEE ALSO

Maintenance Commands 55

nhenablesync – trigger disk synchronization

/opt/SUNWcgha/sbin/nhenablesync

The nhenablesync tool enables you to trigger disk synchronization. By default, disk
synchronization starts automatically during the boot sequence. You can delay the start
of synchronization by setting the RNFS.EnableSync property to False in the
nhfs.conf file. If the start of synchronization has been delayed in this way, trigger
synchonization by logging into the master node and executing the nhenablesync
command as follows:

nhenablesync

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhfsb

Interface Stability Evolving

cluster_nodes_table(4), nhfs.conf(4)

nhenablesync(1M)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

56 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

nhinstall – Foundation Services installation and configuration tool

/opt/SUNWcgha/sbin/nhinstall -h

/opt/SUNWcgha/sbin/nhinstall -r directory [-l logfile] [stage]

The nhinstall tool enables you to install and configure the Solaris operating system
and the Foundation Services on all the nodes of your cluster.

Before running the nhinstall tool, configure it using the following configuration
files:

� The env_installation.conf file to define the installation environment. See
env_installation.conf(4).

� The cluster_definition.conf file to define the cluster environment. See
cluster_definition.conf(4).

� (Optional) The addon.conf file specifying additional patches and packages that
you want to install. This file is useful for upgrading Foundation Services at a later
stage. See addon.conf(4).

� (Optional) The nodeprof.conf file permits the customization of Solaris
installation. See nodeprof.conf(4).

� (Optional) The diskless_nodeprof.conf file permits the customization of
Solaris installation on diskless nodes. See diskless_nodeprof.conf(4).

To install the Solaris operating system and the Foundation Services on the cluster, type
the following command as a superuser on the installation server:

/opt/SUNWcgha/sbin/nhinstall -r config-file-directory

where config-file-directory is the directory containing the configuration files.

The nhinstall tool also supports a recovery mechanism based on a progress
indicator. In case of a failure during installation, you can restart the installation at the
point where the failure occurred by running the same command.

-h Help.

-r directory Path to the directory containing the configuration files.

-l logfile Name of a log file. If you specify a log file, the output is recorded
in the file in addition to being displayed in the console. In case of
an error, the logfile helps to trace the error and to identify the
point at which the installation will restart.

stages Specify the action you require:

reset Reset the progress indicator to force the next
installation to restart from the beginning.

clear Unshare all the exported directories and
remove all temporary files before the next
installation. The progress indicator is also

nhinstall(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

Maintenance Commands 57

removed so that the next time you run the
nhinstall command, the installation starts
from the beginning.

add nodeID
nodeID ...

Add new diskless nodes to a cluster that is
already running. nodeID is the ID of the new
diskless node as defined in the
cluster_definition.conf file. Before you
run the add stage:

� Define the new diskless nodes in the
cluster_definition.conf file by using
the NODE parameter. For more information,
see the cluster_definition.conf(4)
man page.

Caution – Define only the new diskless
nodes that are to be added to the cluster. Do
not define nodes that do not exist and that
you may want to add to the cluster in the
future. If you do so, the nhinstall tool will
fail during installation.

� Execute the nhinstall command with the
reset or clear stage.

In the following examples, the configuration files are located in the /home/nhasconf
directory on the installation server.

EXAMPLE 1 To Run the nhinstall Command to Start an Installation

/opt/SUNWcgha/sbin/nhinstall -r /home/nhasconf

EXAMPLE 2 To Reset the Progress Indicator to Restart an Installation From the Beginning

/opt/SUNWcgha/sbin/nhinstall -r /home/nhasconf reset

EXAMPLE 3 To Clear the Installation Environment by Removing Temporary Files and
Unsharing Exported Directories

/opt/SUNWcgha/sbin/nhinstall -r /home/nhasconf clear

EXAMPLE 4 To Add a New Diskless Node to An Existing Cluster

/opt/SUNWcgha/sbin/nhinstall -r /home/nhasconf reset

/opt/SUNWcgha/sbin/nhinstall -r /home/nhasconf add 40

Where 40 is the nodeID of the new diskless node.

nhinstall(1M)

EXAMPLES

58 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhins

Interface Stability Evolving

addon.conf(4), cluster_definition.conf(4), diskless_nodeprof.conf(4),
env_installation.conf(4), nodeprof.conf(4)

nhinstall(1M)

ATTRIBUTES

SEE ALSO

Maintenance Commands 59

nhnsmd – Node State Manager daemon

/opt/SUNWcgha/sbin/nhnsmd [-u URL]

On the node holding the master role, a logical address is assigned to an interface that
is used to connect to the external network. This address is called the floating external
address. The Node State Manager (NSM) uses the Cluster Membership Manager
(CMM) notifications to determine when a node is promoted to or demoted from being
the master node. When the NSM is notified that a node has been promoted to master
node, it executes a script to configure a floating external address for one of the node’s
external interfaces. When the NSM is notified that a node has been demoted from the
master node, it executes a script to deconfigure the floating external address.

The NSM can be used for tasks other than address management but this is not its
intended function. If you configure the NSM for purposes other than to monitor the
floating external address of the master node, you must consider the effect of this
mechanism on cluster integrity.

The nhnsmd daemon takes the following option:

-u URL You must specify the URL of the nhfs.conf file.

Launch the nhnsmd manually as a superuser:

./nhnsmd -u URL

The nhnsmd daemon is started at system boot time after the nhcmmd daemon. The
nhnsmd daemon registers to receive the following notifications at cluster startup:

� CMM_MASTER_ELECTED
� CMM_MASTER_DEMOTED
� CMM_VICEMASTER_ELECTED
� CMM_VICEMASTER_DEMOTED

The nhnsmd daemon executes a response to notifications in the order in which it
receives them. It does not act upon a notification that does not pertain to the current
state of the node for which the notification is received.

The nhnsmd daemon maintains persistent state across failures so that when restarted
by the Daemon Monitor it can determine whether it has missed any notifications and
can take appropriate action. This persistent state is not maintained across a node
reboot.

The scripts executed by the nhnsmd daemon must be executable shell scripts.

The first argument of the scripts is the action parameter. The action parameter can have
two values, enter state and leave state. You can use the same script for both actions.
For an enter state action, the script passes the string enter as the first argument. For a
leave state action, the script is passed the string leave as the first argument.

nhnsmd(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXTENDED
DESCRIPTION

60 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

The second argument of the scripts is the node role parameter. The node role parameter
is passed as a lower-case character string. The node role parameter can have two
values, master and vice-master.

The scripts executed by the nhnsmd daemon should not perform actions that change
the startup behavior of the node. For any notification received, the nhnsmd daemon
executes a script that invokes a node to leave an existing state and then a script that
invokes that node to enter a new state.

The script provided with Foundation Services handles address failover if the external
master address is present on a separate external interface or on a logical interface on
the cluster network.

Scripts used by the nhnsmd daemon run as asynchronous processes and do not take
account of any changes in the cluster state. When writing your own action scripts for
the nhnsmd daemon do not write scripts that will take a long time to execute or that
depend on cluster behavior. Such scripts should not be used as a way of controlling
applications or as a replacement for a management framework.

nhfs.conf
Configuration and addressing information for the different Foundation Services.
The URL for this file could be file:///etc/opt/SUNWcgha/nhfs.conf

/opt/SUNWcgha/actions/master
This directory contains scripts for transitions to and from the master state.

/opt/SUNWcgha/actions/vicemaster
This directory contains scripts for transitions to and from the vice-master state.

The script names have the Ennxxxxxx or Lnnxxxxxx form, where E denotes an script to
enter a state and L denotes a script to leave a state, nn is a two-digit numeric code, and
xxxxxx is an arbitrary string of characters. Any files that do not use this naming
scheme will be ignored by nhnsmd.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhnsa, SUNWnhnsb

Interface Stability Evolving

nhfs.conf(4) and nhpmd(1M).

nhnsmd(1M)

FILES

ATTRIBUTES

SEE ALSO

Maintenance Commands 61

nhpmd – process monitor daemon

/opt/SUNWcgha/lib/sparcv9/nhpmd

The nhpmd daemon provides the Daemon Monitor service. The nhpmd daemon runs
at the multiuser level on all nodes in the cluster. The nhpmd daemon surveys other
Foundation Services daemons, many Solaris operating system daemons, and some
companion product daemons. If a daemon that provides a critical service fails, the
nhpmd daemon detects the failure and triggers a recovery response. The recovery
response is specific to the daemon that failed.

The nhpmd daemon operates at a higher priority than the other Foundation Services
daemons.

Foundation Services daemons and Solaris operating system daemons are launched by
a startup script. A nametag is assigned to the daemon or group of daemons that is
launched by each startup script. In some cases, such as for syslogd, a nametag is
assigned to only one daemon. In other cases, such as for nfs_client, a nametag is
assigned to a group of daemons. If one of the daemons covered by a nametag fails, the
recovery response is performed by the nhpmd daemon on all of the daemons covered
by that nametag. If the recovery response is to restart the failed daemon, all of the
daemons grouped under that nametag are killed and restarted. For a list of monitored
daemons and their associated recovery responses, see MONITORED DAEMONS.

Information about monitored daemons can be collected using the nhpmdadm
command, as described in the nhpmdadm(1M) man page.

This man page lists the Foundation Services, Solaris operating system, and companion
product daemons that are monitored by the nhpmd daemon and describes the
recovery action taken by the nhpmd daemon on the node on which the monitored
daemon failed.

Note the following before using the nhpmd daemon:

� The initialization process of the Foundation Services alters the /etc/inittab file
by replacing the rc2 and rc3 strings with rc2.HA and rc3.HA strings. Do not
modify or overwrite rc2.HA or rc3.HA.

� The nhpmd daemon server is started automatically when the system starts up at
init level 2 (multi-user mode).

� The nhpmd daemon is a 64–bit application. It cannot run on a 32–bit kernel.
� Files in the /var/run/SUNWcgha/pmd directory, and the directory itself, must not

be removed while the nhpmd daemon is running.
� The only signal to which the nhpmd daemon responds is SIGTERM. Provided that

the nhpmd daemon is started by superuser, when the SIGTERM signal is sent, the
nhpmd daemon stops all monitoring and exits. Previously monitored processes can
now be traced or debugged.

� The script provided as an action program to any nhpmdadm command must not be
removed; it must exist when the nhpmd daemon attempts to execute it. If the
system is out of main resources (memory or processes), the nhpmd daemon might

nhpmd(1M)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION

62 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

not be able to launch or relaunch any executables.

� To avoid collisions with other controlling processes, truss(1) does not allow a
process to be traced that it detects as being controlled by another process by way of
the /proc interface. The nhpmd daemon uses the /proc interface to monitor
processes and their descendents, therefore, those processes that are submitted to
the nhpmd daemon using the nhpmdadm tool cannot be traced or debugged.

� When you list the processes that are running on the Foundation Services, you see
the Foundation Services daemons. Some of the daemons delivered with the
Foundation Services are part of the Foundation Services internal subsystem and
cannot be publicly accessed. Some daemons run only on the master and
vice-master nodes, and some run on all peer nodes.

� When you list the running processes, the name of the Node Management Agent
daemon does not appear as nma. To see the process name for the Node
Management Agent daemon, use the ps command. The Process ID (PID) of this
daemon is in /var/run/SUNWcgha/nma.pid.

The following lists give the nametag and associated recovery response of the
Foundation Services, Solaris operating system, and companion product daemons that
are monitored by the nhpmd daemon. The recovery responses listed are the default
values. You can specify the number of times the nhpmd daemon tries to restart a
daemon if you create the nhpmd.conf file. For a description of these daemons, see
their man pages. For information about the nhpmd.conf file, see the nhpmd.conf(4)
man page.

The following list gives the nametag and recovery response of the monitored daemons
in the Foundation Services.

Daemon - nhcrfsd Nametag - nhcrfsd

Recovery response - relaunches the daemon up to three
times. In some cases, the nhcrfsd daemon detects a
fatal error and reboots the node.

Daemon - nhcmmd Nametag - nhcmmd

Recovery response - does not restart the daemon;
reboots the node on which it failed.

Daemon - nhprobed Nametag - cgha_probe

Recovery response - does not restart the daemon;
reboots the node on which it failed

Daemon - nma Nametag - nma

Recovery response - relaunches the daemon up to 10
times then exits

Daemon - nhwdtd Nametag - cgha_nhwdt

nhpmd(1M)

MONITORED
DAEMONS

Monitored
Daemons in the

Foundation
Services

Maintenance Commands 63

Recovery response - relaunches the daemon up to three
times then reboots the node on which it failed

The following list gives the nametag and recovery response of the monitored daemons
in the companion products.

Daemon - nskernd Nametag - sndr.nskernd

Recovery response - does not restart the daemon;
reboots the node on which it failed

Daemon - sndrd Nametag - sndr.sndrd

Recovery response - does not restart the daemon;
reboots the node on which it failed

The following list gives the nametag and recovery response of the monitored daemons
in the Solaris operating system.

Daemon - cron Nametag - cron

Recovery response - relaunches the daemon up to two
times and logs an error message if the second relaunch
fails

Daemons - dsvclokd,
in.dhcpd

Nametag - dhcpd

Recovery response - relaunches the daemon up to two
times and logs an error message if the second relaunch
fails

Daemons - fnsypd,
keyserv, nis_cachemgr,
rpcbind, rpc.nisd,
rpc.nispasswdd,
rpc.yp, ypbind,
ypserv, ypxfrd

Nametag - rpc

Recovery response - sends an error message

Daemons - inetd,
in.named

Nametag - inetsvc

Recovery response - reboots the node on which it failed

Daemon - in.routed Nametag - inetinit.routed

Recovery response - relaunches the daemon up to two
times and logs an error message if the second relaunch
fails

Daemon - in.rdisc Nametag - inetinit.rdisc

Recovery response - relaunches the daemon up to two
times and logs an error message if the second relaunch
fails

nhpmd(1M)

Monitored
Daemons in the

Companion
Products

Monitored
Daemons in the

Solaris Operating
System

64 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

Daemon - in.rdisc Nametag - nfs.client when no nhcrfsd daemon is
running on the local node

Recovery response - relaunches the daemon up to two
times and logs an error message if the second relaunch
fails

Daemon - lockd Nametag - nfs.client.lockd when a nhcrfsd
daemon is running on the local node

Recovery response - relaunches the daemon up to two
times and logs an error message if the second relaunch
fails

Daemon - mountd, nfsd,
nfslogd

Nametag - nfs.server

Recovery response - relaunches the daemon up to two
times and logs an error message if the second relaunch
fails

Daemon - nscd Nametag - nscd

Recovery response - relaunches the daemon up to two
times and logs an error message if the second relaunch
fails

Daemon - slpd Nametag - slpd

Recovery response - relaunches the daemon up to two
times and logs an error message if the second relaunch
fails

Daemon - statd Nametag - on the master node
nfs.client.statd.crfs

Nametag - on the vice-master node
nfs.client.statd

Recovery response - relaunches the daemon up to two
times and logs an error message if the second relaunch
fails

Daemon - syslogd Nametag - syslog

Recovery response - relaunches the daemon up to two
times and logs an error message if the second relaunch
fails

Daemon - utmpd Nametag - utmpd

nhpmd(1M)

Maintenance Commands 65

Recovery response - relaunches the daemon up to two
times and logs an error message if the second relaunch
fails

Daemon - xntpd Nametag - xntpd

Recovery response - relaunches the daemon up to two
times and logs an error message if the second relaunch
fails

Diagnostic messages are logged to the console or in a file, depending on the system’s
syslog local0 facility settings.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Availability SUNWnhpma, SUNWnhpmb, SUNWnhpms

nhpmdadm(1M), nhpmd.conf(4)

nhpmd(1M)

DIAGNOSTICS

ATTRIBUTES

SEE ALSO

66 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

nhpmdadm – process monitor daemon administration tool

/opt/SUNWcgha/sbin/nhpmdadm [-l nametag] [-L]

The nhpmdadm tool provides the administrative command-line interface to the process
monitor daemon, nhpmd(1M). See the nhpmd man page for more information about
this daemon.

The options with nhpmdadm that are available are -l and -L.

Note – Do not kill or stop nhpmdadm -L or nhpmdadm -l nametag commands.

The options -l and -L are supported for troubleshooting purposes. They can be used
to get information about monitored processes.

-l nametag Prints out status information about nametag. The output from this
command is useful mainly for diagnostic purposes.

-L Returns a list of all tags currently running that belong to the user
that issued the command or, if the user is superuser, all tags
running on the server.

For a list of the nametags and the daemons to which they
correspond, see the nhpmd(1M) man page.

This section provides examples of using the nhpmdadm command.

EXAMPLE 1 How to use nhpmdadm

� To get all nametags:

nhpmdadm -L

Result:

tags: utmpd sendmail nscd cron syslog nfs.client inetsvc rpc

� To get detailed information about a specific nametag, for example, cron:

nhpmdadm -l cron

Result:

nhpmdadm -c cron -n 2 -a /etc/opt/SUNWcgha/init.d/cron.HA.fail
environment:

PATH=/usr/sbin:/usr/bin
TZ=MET

...
_

retries: 0
owner: root
monitor children: all

pids: 341

nhpmdadm(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXAMPLES

Maintenance Commands 67

EXAMPLE 2 To Verify a Daemon Is Being Monitored

� Log in to a node, as superuser.

� Select a daemon to investigate.

� Confirm that the daemon is running.

$ pgrep -x daemon-name

� Note the process ID for the daemon.

� Find the nametag for the daemon:

/opt/SUNWcgha/sbin/nhpmdadm -L

Alternatively, use the tables in the nhadm(1M) man page to find the Daemon
Monitor nametag that corresponds to the daemon that you want to investigate.

� Using the daemon nametag, run:

/opt/SUNWcgha/sbin/nhpmdadm -l nametag

A list of process IDs is displayed for the Daemon Monitor nametag.

� Confirm that the process ID entry for this daemon in the list is the same as the
process ID returned by the pgrep command.

If this is the case, the daemon is being monitored. If not, the daemon is not being
monitored.

0 The command was completed successfully.

1 nametag doesn’t exist, or there was an attempt to create a nametag that
already exists.

2 The command timed out.

>2 An error occurred.

Log file outputs from the nhpmdadm tool are made through stderr.

The log files from the Foundation Services daemons are internationalized using the
SOLARIS LC_MESSAGES database. The message file for the process daemon monitor
is in /opt/SUNWcgha/lib/locale/C/LC_MESSAGES/nhpmd.mo

The following is a list of messages that are output to the log files by the nhpmdadm
daemon.

� <tagname> No such <nametag> registered

The specified nametag is not recognized.

� Missing command argument

The nametag argument is missing from the -l option.

� Too many command line arguments

There are too many options specified in the command line.

nhpmdadm(1M)

EXIT STATUS

MESSAGE LISTS

68 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

The nhpmdadm command is a 64–bit application, and cannot be run on a 32–bit kernel.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Availability SUNWnhpma, SUNWnhpmb, SUNWnhpms

nhpmd(1M)

nhpmdadm(1M)

CAUTION

ATTRIBUTES

SEE ALSO

Maintenance Commands 69

nhpmdadmwrapper – configure important values, like retry-count

/opt/SUNWcgha/sbin/nhpmdadmwrapper

The nhpmdadmwrapper command is exclusively used in HA start/stop scripts where
you need to configure important values such as retry-count for a daemon (the number
of times a daemon is restarted before calling the failure script).

By using nhpmdadmwrapper in HA scripts, retry-count no longer needs to be
hardwired in these script but can be initialized in a dedicated configuration file,
/etc/opt/SUNWcgha/nhpmd.conf.

The value specified in the script is still mandatory, and is considered the default value
for retry-count. If, however, a value is specified in this configuration file, the value
takes precedence over the default value.

The configuration file, /etc/opt/SUNWcgha/nhpmd.conf, contains lines like :

<nametag>_RetryCount = <value>

For the statd daemon:

nfs.client.statd.crfs_RetryCount = 2

Note that:

� You must insert spaces or tabs before and after “=”.

� The -n option should be present in the HA scripts for the daemon start command
so that the configuration mechanism works (the -n option will not be added if it is
not present).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Availability SUNWnhpma, SUNWnhpmb, SUNWnhpms

nhpmdadm(1M), nhpmd.conf(4)

nhpmdadmwrapper(1M)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

70 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

nhprobed – test accessibility of physical interfaces

/opt/SUNWcgha/sbin/nhprobed [-h] [-u URL]

Each peer node runs a daemon, nhprobed, that periodically sends a heartbeat in the
form of an IP packet. The nhprobed daemon sends the heartbeats by multicast.

Heartbeats are sent through each of the two physical interfaces of each peer node.
When a heartbeat is detected through a physical interface, it indicates that the node is
reachable and that the physical interface is alive. If a heartbeat is not detected for a
period of time exceeding the detection delay, the node or one of its physical interfaces
is considered to have failed. If both of the node’s physical interfaces fail, the node itself
is considered to have failed. Heartbeats are broadcast at the rate of 3 per 900
milliseconds, and at least one heartbeat must be detected each 900 milliseconds.

On the master-eligible nodes, the nhprobed daemon receives a list of nodes from the
nhcmmd daemon. The nhprobed daemon monitors the heartbeats of the nodes on the
list. On the master node, the list contains all of the master-ineligible nodes and the
vice-master node. On the vice-master node, the list contains the master node only.

On the master-eligible nodes, the nhprobed daemon notifies the nhcmmd daemon
when, for any node on its list, any of the following events occur:

� One link becomes available, indicating that the node is accessible through the link.
� One link becomes unavailable, indicating that the node is not accessible through

the link.
� The node becomes available, indicating that the first link to the node becomes

available.
� The node becomes unavailable, indicating that the last available link to the node

becomes unavailable.

The nhprobed daemon uses a kernel module, hbmod, and a kernel driver, hbdrv. The
kernel module and kernel driver manage the send and receive mechanisms of the
nhprobed daemon. Because the kernel module and kernel driver operate in the
kernel space, the nhprobed daemon is more robust against system overload.

Note – The probe heartbeat of the Foundation Services 2.1 is incompatible with that of
the Foundation Services 2.1 6/03. All nodes in a cluster must have the same probe
installation. For information about how to install the packages for the nhprobed
daemon, the kernel module and kernel driver, see the Netra High Availability Suite
Foundation Services 2.1 6/03 Custom Installation Guide.

The nhcmmd daemon and nhprobed daemon communicate through an Internet
socket, AF_INET, in connection oriented mode. The socket port number can be
configured in the /etc/services file, using the service name cmm_cgtp_probe.

The nhprobed daemon takes the following options:

-h Displays help information.

-u URL You must specify the URL of the nhfs.conf file.

nhprobed(1M)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION

OPTIONS

Maintenance Commands 71

For more information, see the nhfs.conf(4) man page.

The following exit values are returned:

0 Successful completion.

1 An error occurred.

URL Common configuration file. The file that contains
configuration and addressing information for the
individual Foundation Services.

The URL for this file could for example be
file:///etc/opt/SUNWcgha/nhfs.conf

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmb, SUNWnhhb

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), nhcmmd(1M), and nhfs.conf(4)

nhprobed(1M)

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

72 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

nhsched – Display the scheduling parameters of the Foundation Services processes

/opt/SUNWcgha/sbin/nhsched -a

/opt/SUNWcgha/sbin/nhsched -h

/opt/SUNWcgha/sbin/nhsched -i pid|process-name

/opt/SUNWcgha/sbin/nhsched -u URL

The nhsched command displays the scheduling parameters of the Foundation
Services processes.

The nhsched command can be used with the following parameters:

-a
Display the current scheduling base priority configuration.

-i pid|process-name
Display the scheduling parameters for the specified process.

-h
Display help information.

-u URL
Specify an alternative URL for the nhfs.conf file. If you do not use this option,
the URL file:///etc/opt/SUNWcgha/nhfs.conf is used.

The exit status for the nhsched command is one of the following:

0 Success

1 Error

This section gives examples of how to use the nhsched command.

EXAMPLE 1 Get Information About the Current Configuration

/opt/SUNWcgha/sbin/nhsched -a
Current base priority for FIFO class : 10 (min=0, max=20)
Current base priority for RR class : 10 (min=0, max=20)

Current base priority for OTHER class : 10 (min=0, max=20)

The maximum and minimum values are retrieved from system information.

EXAMPLE 2 Display the Scheduling Parameters for a Process

Display the scheduling parameters for the nhpmd process:

/opt/SUNWcgha/sbin/nhsched -i nhpmd
process id : 62
process name : nhpmd
scheduling policy : RR
scheduling priority : 40

time quantum : 0s:100000000ns

nhsched(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

EXIT STATUS

EXAMPLES

Maintenance Commands 73

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcdt

Interface Stability Evolving

nhfs.conf(4)

nhsched(1M)

ATTRIBUTES

SEE ALSO

74 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

nhsmctsetup – create the SMCT environment

/opt/SUNWcgha/nhsmct/bin/nhsmctsetup [-h]

/opt/SUNWcgha/nhsmct/bin/nhsmctsetup -w smct-dir -s solaris-dist [-h]

/opt/SUNWcgha/nhsmct/bin/nhsmctsetup -d -w smct-dir -s solaris-dist [-h]

/opt/SUNWcgha/nhsmct/bin/nhsmctsetup -w smct-dir -s solaris-dist -r
nhas-pkgs [-p nhas-patch][-h]

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

The nhsmctsetup command creates the SMCT environment and directories on the
build server or the installation server if it is configured as a build server.

An SMCT environment must be created for each user planning to deploy the
Foundation Services software. Use the Korn shell when creating the SMCT
environment.

You can run nhsmctsetup as a single command with the options described in the
following section. You must include the -r option to create an environment that runs
both slxxx and flxxx commands. If you do not specify this option, your environment
can only run the flxxx commands.

To run nhsmctsetup in an interactive mode, do not specify any options.

The nhsmctsetup command must be run as a superuser.

The options that you can use with the nhsmctsetup command are:

-w smct-dir Directory where the SMCT environment will be
created.

-s solaris-dist Directory where the Solaris JumpStart distribution is
located.

-r nhas-pkgs Directory where the Foundation Services runtime
packages are located. This option is necessary if you
want to run the software load commands (slxxx).

-d Reconfigures the SMCT environment with regard to the
new SMCT directory and Solaris distribution, after it
has been copied to a new location.

-p nhas-patch Directory where the Foundation Services patches are
located. This option is necessary if you want to run the
software load (slxxx) commands.

-h Displays help information.

The nhsmctsetup command creates an environment definition file, smct.env, that
is stored in the smct-dir/scripts directory. Do not manually modify this file.

nhsmctsetup(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

PARAMETERS

Maintenance Commands 75

This file contains the following environment variables:

NHAS_PKG_DIR
Foundation Services runtime packages repository

NHAS_PAT_DIR
Foundation Services runtime patches repository

NHAS_PROD_DIR
Foundation Services product installation directory

SMCT_SOL_DIR
Location of the Solaris JumpStart distribution

SMCT_VER
SMCT version

SMCT_ENV_DIR
SMCT environment root directory

SMCT_ETC_DIR
SMCT default root configuration directory

SMCT_MODELS_DIR
SMCT default model templates directory

SMCT_HARDWARE_DIR
SMCT default hardware configuration files directory.

SMCT_SERVICES_DIR
SMCT default Foundation Services configuration files directory

SMCT_DEFAULT_CONFIG_DIR
SMCT default configuration files directory

SMCT_SWLREP_DIR
SMCT software load repository

SMCT_SOFTREP_DIR
SMCT software repository

Create aliases in your environment to the slxxx and flxxx commands by running the
following command in the Korn shell:

. $SMCT_ENV_DIR/scripts/smct.env

This command must be run each time you return to your SMCT environment.

To check the values that are currently configured for the SMCT environment variables,
use the following command:

env | grep SMCT

nhsmctsetup(1M)

76 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

flconfig(1M), flcreate(1M), fldeploy(1M), flinstall(1M), slconfig(1M),
slcreate(1M), sldelete(1M), sldeploy(1M), slexport(1M)

nhsmctsetup(1M)

ATTRIBUTES

SEE ALSO

Maintenance Commands 77

nhwdtd – Watchdog Timer daemon

/opt/SUNWcgha/sbin/nhwdtd [-u URL]

The nhwdtd daemon implements the Watchdog Timer service.

The nhwdtd daemon monitors the hardware watchdog on the nodes of the cluster, at
the lights-off management (LOM) level. If you are using CompactPCI servers, do not
use the Watchdog Timer service provided by the Foundation Services. The
CompactPCI hardware watchdogs operate at the OpenBoot PROM level and are
monitored by the platform’s software.

On hardware watchdogs that operate at the LOM level, the nhwdtd daemon monitors
a node for operating system hang, but does not monitor the boot process.

The nhwdtd daemon can be configured differently on each node depending on your
requirements. For information on how to configure the nhwdtd daemon, see the
nhfs.conf(4) man page.

The nhwdtd daemon is monitored by the nhpmd daemon. If the nhwdtd fails, it is
relaunched three times. If the nhwdtd daemon fails a third time, the node is rebooted.

The nhwdtd daemon operates at a lower priority than the nhpmd daemon, but at a
higher priority than the other Foundation Services daemons.

The -u option enables you to specify the URL of the nhfs.conf file. For example:

% /opt/SUNWcgha/sbin/nhwdtd -u file:///etc/opt/SUNWcgha/nhfs.conf

The URL file:///etc/opt/SUNWcgha/nhfs.conf is the default value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhwdt

Interface Stability Evolving

nhpmd(1M), nhfs.conf(4)

nhwdtd(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

78 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

NMA – Node Management Agent daemon

/etc/opt/SUNWcgha/init.d/nma [start | stop]

The Node Management Agent (NMA) is a Java Management eXtensions (JMX)
compliant management agent based on the Java Dynamic Management Kit (DMK).
The NMA provides access to cluster statistics and operations through:

� SNMP
� RMI
� HTML over HTTP

The following options are supported:

-start Start the NMA

-stop Stop the NMA

Configure the NMA by editing the Java property file,
installDir/etc/opt/SUNWcgha/nma.properties.

Connector parameters control which Java DMK connector MBeans are instantiated,
and which port the connector uses. Edit the nma.properties file to specify the port.
Do not use the standard RMI port, 1099 because it can cause communication
breakdown if an RMI registry or Java DMK agent is running on that port while the
NMA is running.

installDir/etc/opt/SUNWcgha/nma.properties
Properties file

installDir/etc/opt/SUNWcgha/nma.security
SNMP security configuration file

installDir/etc/opt/SUNWcgha/nma.notifs.txt
Notification types and the target to which each type will be sent

installDir/etc/opt/SUNWcgha/nma.params.txt
Communication, implementation and accessibility configuration

installDir/etc/opt/SUNWcgha/nma.targets.txt
Targets to which the NMA sends SNMP traps

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Availability SUNWnhmaj, SUNWnhmal, SUNWnhmas,
SUNWnhmad

nma.notifs.txt(4), nma.params.txt(4), nma.properties(4),
nma.security(4), nma.targets.txt(4)

nma(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

USAGE

FILES

ATTRIBUTES

SEE ALSO

Maintenance Commands 79

slconfig – SMCT command to add user defined configuration data to the software load

slconfig -n swl-name -v swl-version [-c config-dir] [-l logfile] [-V
verbosity-level] [-h]

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

The slconfig command adds user defined configuration data to the software load
repository.

Configure the files for user applications before running the slconfig command. The
configuration files for user applications describe the user-defined configuration data
that is required for each node group. For more information on these files, see the
userapp.conf(4) man page.

The options that you can use with the slconfig command are:

-n swl-name Name of the software load to be configured. This is an
ASCII string.

-v swl-version Version of the software load to be configured. This is an
ASCII string.

-c config-dir Directory where the configuration files are located. This
option overrides the configuration directory specified
by the SMCT variable SMCT_DEFAULT_CONFIG_DIR,
which is defined in the smct.env file. For more
information on the smct.env file, see the
nhsmctsetup(1M) man page.

-l log-file Name of the file that is sent information and error
messages. By default these messages are displayed on
the console.

-V verbose-level Verbosity level. Values are 1, 2, or 3, where 1 is minimal
traces and 3 is detailed information.

-h Displays help information.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

flconfig(1M), flcreate(1M), fldeploy(1M), flinstall(1M),
nhsmctsetup(1M), slcreate(1M), sldelete(1M), sldeploy(1M),
slexport(1M), userapp.conf(4)

slconfig(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

80 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

slcreate – SMCT command to prepare the data for a generic flash archive.

slcreate -n swl-name -v swl-version [-f] [-c config-dir] [-l logfile] [-V
verbosity-level] [-h]

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

The slcreate command prepares the data needed to create a generic flash archive.

The slcreate command performs the following functions:

� Copies the Foundation Services packages and any user application packages into
the software repository.

� Creates a software load in the software load repository. The Solaris JumpStart files
are generated for master-eligible and dataless node groups.

If the software load that is being created already exists, you are prompted to
confirm that the current software load should be overwritten or that the operation
should be cancelled. If slcreate is run with the -f option, this prompt does not
appear.

The slcreate command is run once for each software load because all node groups
are processed in one operation.

Data is created from information in several configuration files. Configure the following
files before running the slcreate command:

� cluster.conf

The cluster.conf file contains a logical view of the cluster in terms of nodes,
node groups, and domains. For more information see the cluster.conf(4) man
page.

� machine.conf

The machine.conf file describes the cluster in terms of hardware elements, disk
layout, and file system. For more information see the machine.conf(4) man page.

Optionally, configure the following files before running the slcreate command:

� network.conf

The network.conf file describes the network parameters for the target cluster.
For more information see the network.conf(4) man page.

� Solaris JumpStart profile file

Each Solaris JumpStart profile file defines the set of Solaris operating
environment packages to be installed on each master-eligible and dataless node
group. There is one profile file for each master-eligible or dataless node group. A
profile file, named profile.proto, is provided in the
/opt/SUNWcgha/nhsmct/etc/jumpstart/Solaris_version directory. If you
want to modify this file, copy this file to the
SMCT_DEFAULT_CONFIG_DIR/jumpstart/Solaris_version directory with the file

slcreate(1M)

NAME

SYNOPSIS

DESCRIPTION

Maintenance Commands 81

name profile.proto.node-group-name.. Alternatively, you can copy it to the
config-dir/jumpstart/Solaris_version/profile.proto.node-group-name where
config-dir is specified by the -c option, which is described in the following section.

� Solaris JumpStart sysidcfg file

The Solaris JumpStart system identification configuration file contains information
for the target cluster such as name service, timezone and superuser password.
There is one sysidcfg file for each master-eligible and dataless node group. A
sysidcfg file template, named sysidcfg.proto, is provided in the
/opt/SUNWcgha/nhsmct/etc/jumpstart/ directory. If you want to modify
this file, copy this file to the SMCT_DEFAULT_CONFIG_DIR/jumpstart/
directory with the file name sysidcfg.proto or
sysidcfg.proto.node-group-name. Alternatively, you can copy it to
config-dir/jumpstart/sysidcfg.proto or
config-dir/jumpstart/sysidcfg.proto.node-group-name where config-dir is
specified by the -c option, which is described in the following section.

� Solaris JumpStart begin file

There is one begin file for each master-eligible and dataless node group. A begin
file template, named begin.proto, is provided in the
/opt/SUNWcgha/nhsmct/etc/jumpstart/ directory. If you want to modify
this file, copy this file to the SMCT_DEFAULT_CONFIG_DIR/jumpstart/
directory with the file name begin.proto or begin.proto.node-group-name.
Alternatively, you can copy it to config-dir/jumpstart/begin.proto or
config-dir/jumpstart/begin.proto.node-group-name where config-dir is
specified by the -c option, which is described in the following section.

� Software configuration files

Each software configuration file defines additional software and patches that are to
be installed for each node group. There may be a software configuration file for
each node group. For more information on software configuration files, see the
software.conf(4) man page.

The options that you can use with the slcreate command are:

-n swl-name Name of the software load to be created. This is an
ASCII string.

-v swl-version Version of the software load to be created. This is an
ASCII string.

-c config-dir Directory where the configuration files are located. This
option overrides the configuration directory specified
by the SMCT variable SMCT_DEFAULT_CONFIG_DIR,
which is defined in the smct.env file. For more
information on the smct.env file, see the
nhsmctsetup(1M) man page.

-f Removes the software load identified by swl-name and
swl-version if it already exists.

slcreate(1M)

OPTIONS

82 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

-l log-file Name of the file that is sent information and error
messages. By default these messages are displayed on
the console.

-V verbose-level Verbosity level. Values are 1, 2, or 3, where 1 is minimal
traces and 3 is detailed information.

-h Displays help information.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

cluster.conf(4), flconfig(1M), flcreate(1M), fldeploy(1M),
flinstall(1M), machine.conf(4), nhsmctsetup(1M), network.conf(4),
slconfig(1M), sldelete(1M), sldeploy(1M), slexport(1M),
software.conf(4)

slcreate(1M)

ATTRIBUTES

SEE ALSO

Maintenance Commands 83

sldelete – SMCT command to delete a software load

sldelete -n swl-name -v swl-version [-f] [-l logfile] [-V verbosity-level]
[-h]

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

The sldelete command removes a software load from the SMCT environment by
deleting the software load data from the software load repository. By default, the
related software distributions are also deleted if they do not belong to other software
loads.

You can remove all software in a software load by using the -f option. This option
must be used carefully as it can create discrepancies with the software load stored in
the software load environment.

The options that you can use with the sldelete command are:

-n swl-name Name of the software load to be removed. This is an
ASCII string.

-v swl-version Version of the software load to be removed. This is an
ASCII string.

-f Forces the removal of the software load identified by
swl-name and swl-version even if this software belongs
to other software loads.

-l log-file Name of the file that is sent information and error
messages. By default these messages are displayed on
the console.

-V verbose-level Verbosity level. Values are 1, 2, or 3, where 1 is minimal
traces and 3 is detailed information.

-h Displays help information.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

flconfig(1M), flcreate(1M), fldeploy(1M), flinstall(1M),
nhsmctsetup(1M), slconfig(1M), slcreate(1M), sldeploy(1M), slexport(1M)

sldelete(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

ATTRIBUTES

SEE ALSO

84 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

sldeploy – SMCT command to generate the Foundation Services and Solaris operating
system configuration files for a software load

sldeploy -n swl-name -v swl-version [-c config-dir] [-l logfile] [-V
verbosity-level] [-h]

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

The sldeploy command generates the Foundation Services and Solaris operating
system configuration files associated to a software load.

The configuration files generated for the Foundation Services are used to configure
services such as Reliable NFS and the Cluster Membership Manager (CMM). The
sldeploy command also generates the nhfs.conf file.

Configure the following files before running the sldeploy command:

� cluster.conf

The cluster.conf file contains a logical view of the cluster in terms of nodes,
node groups, and domains. For more information see the cluster.conf(4) man
page.

� machine.conf

The machine.conf file describes the cluster in terms of hardware elements, disk
layout, and file system. For more information see the machine.conf(4) man page.

� network.conf

The network.conf file describes the network parameters for the target cluster.
For more information see the network.conf(4) man page.

Optionally, configure the following files before running the sldeploy command:

� Solaris JumpStart sysidcfg file

The Solaris JumpStart system identification configuration file contains information
for the target cluster such as name service, timezone and superuser password.
There is one sysidcfg file for each master-eligible and dataless node group. A
sysidcfg file template, named sysidcfg.cluster, is provided in the
/opt/SUNWcgha/nhsmct/etc/jumpstart directory. It must be copied to the
SMCT_DEFAULT_CONFIG_DIR/jumpstart directory with the file name
sysidcfg.cluster or sysidcfg.cluster.node-group-name.

� Solaris JumpStart begin file

There is one begin file for each master-eligible and dataless node group. A begin
file template, named begin.cluster, is provided in
/opt/SUNWcgha/nhsmct/etc/jumpstart. If you want to modify this file, copy
this file to the SMCT_DEFAULT_CONFIG_DIR/jumpstart directory with the file
name begin.cluster or begin.cluster.node-group-name. Alternatively, you
can copy this file to config-dir/jumpstart/begin.cluster or
config-dir/jumpstart/begin.cluster.node-group-name where config-dir is
specified by the -c option, which is described in the following section.

sldeploy(1M)

NAME

SYNOPSIS

DESCRIPTION

Maintenance Commands 85

The options that you can use with the sldeploy command are:

-n swl-name Name of the software load to be deployed. This is an
ASCII string.

-v swl-version Version of the software load to be deployed. This is an
ASCII string.

-c config-dir Directory where the configuration files are located. This
option overrides the configuration directory specified
by the SMCT variable SMCT_DEFAULT_CONFIG_DIR,
which is defined in the smct.env file. For more
information on the smct.env file, see the
nhsmctsetup(1M) man page.

-l log-file Name of the file that is sent information and error
messages. By default these messages are displayed on
the console.

-V verbose-level Verbosity level. Values are 1, 2, or 3, where 1 is minimal
traces and 3 is detailed information.

-h Displays help information.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

cluster.conf(4), flconfig(1M), flcreate(1M), fldeploy(1M),
flinstall(1M), machine.conf(4), network.conf(4), nhsmctsetup(1M),
slconfig(1M), slcreate(1M), sldelete(1M), slexport(1M), nhfs.conf(4)

sldeploy(1M)

OPTIONS

ATTRIBUTES

SEE ALSO

86 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

slexport – SMCT command to copy software load data to an export directory

slexport -n swl-name -v swl-version [-e export-dir] [-r] [-f] [-l logfile]
[-V verbosity-level] [-h]

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

The slexport command copies software load data to an export directory. The export
directory interfaces directly with the SMCT flash archive commands (flxxx).

The slexport command copies the software load output from the commands
slcreate, slconfig, and sldeploy to a specified directory.

The slexport is run once at each stage of the configuration process and all node
groups are processed each time it is executed.

The options that you can use with the slexport command are:

-n swl-name Name of the software load to be exported. This is
expressed as an ASCII string.

-v swl-version Version of the software load to be exported. This is
expressed as an ASCII string.

-e export-dir Directory where the software load data will be
exported to. The use of this option enables you to use
the flash archive commands from another server. The
default directory is specified by the SMCT variable
SMCT_EXPORT_DIR, which is defined in the smct.env
file. For more information on the smct.env file, see
the nhsmctsetup(1M) man page.

-r Copy the software associated with the software load
into the export directory. This option is required if the
generic flash archive is generated on a machine other
than the build server, for example the installation
server.

-f Force the removal of the exported data if such data
exists in the export directory. By default, you are
prompted to choose whether the data is to be kept or
deleted.

-l log-file Name of the file that is sent information and error
messages. By default these messages are displayed on
the console.

-V verbose-level Verbosity level. Values are 1, 2, or 3, where 1 is minimal
traces and 3 is detailed information.

-h Displays help information.

slexport(1M)

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

Maintenance Commands 87

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

flconfig(1M), flcreate(1M), fldeploy(1M), flinstall(1M),
nhsmctsetup(1M), slconfig(1M), slcreate(1M), sldelete(1M), sldeploy(1M)

slexport(1M)

ATTRIBUTES

SEE ALSO

88 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

Netra HA Suite CMM Library
Functions

89

cmm_cmc_filter – define notification filtering

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_cmc_filter(cmm_cmcfilter_t const action,
cmm_cmchanges_t const * const notifications_list, uint32_t const
notifications_count);

The cmm_cmc_filter() function defines the list of notifications sent to an
application that is registered to receive Cluster Membership Manager notifications. An
application registers to receive notifications by calling the
cmm_cmc_register(3CMM) function. By default, when an application calls this
function, the application receives a notification for every change that occurs in the
cluster state. An application can operate when viewing a subset of the notifications. By
using the cmm_cmc_filter() function, an application defines the list of notifications
that it receives.

Note – For information on the notification sequences and the various scenarios, see the
Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide.

The cmm_cmc_filter() function takes the following parameters:

action Specifies the action to be performed on the current
filter (add, remove, set).

notifications_list An array of cmm_cmchanges_t. This array represents
the modifications to be applied to the current filter.

notifications_count Specifies the number of elements in notifications_list.

� The action parameter is set to:

CMM_CMC_NOTIFY_REM To remove some notifications from the set currently
in the filter.

CMM_CMC_NOTIFY_ADD To receive a given set of notifications in addition to
the set currently in the filter.

CMM_CMC_NOTIFY_SET To define a completely new set of notifications.

CMM_CMC_NOTIFY_ALL To receive all notifications.

CMM_CMC_NOTIFY_NONE To receive no notifications. This is not a way to
remove a registration. Use cmm_cmc_unregister
() to stop nhcmmd sending notifications.

� The notifications_list parameter is the set of notifications. In the case of
CMM_CMC_NOTIFY_ALL and CMM_CMC_NOTIFY_NONE, this argument is ignored
and not tested.

cmm_cmc_filter(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

90 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

� The notifications_count parameter is the number of elements contained in
notifications_list. This must be a positive integer. If CMM_CMC_NOTIFY_ALL and
CMM_CMC_NOTIFY_NONE are used with the action parameter, this argument is
ignored and not tested.

An application can call the cmm_cmc_filter() function as many times as needed.
The changes to the filter take effect when the call returns successfully. The filter is
evaluated in cmm_notify_dispatch(3CMM), so you must define it before calling
this dispatching function. An application calling cmm_cmc_register() after
cmm_cmc_filter() does not receive unsolicited notifications.

The cmm_cmc_filter() function returns one of the following values:

CMM_EINVAL Invalid argument such as notification_count is a NULL or
action is not valid.

CMM_OK Operation succeeds.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), nhcmmd(1M), cmm_cmc_register(3CMM),
cmm_notify_getfd(3CMM), cmm_notify_dispatch(3CMM)

cmm_cmc_filter(3CMM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 91

cmm_cmc_register, cmm_cmc_unregister – register to receive notifications; remove
registration and stop receiving notifications

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

typedef struct {
cmm_cmchanges_t cmchange;
cmm_nodeid_t nodeid;

} cmm_cmc_notification_t;

typedef void (*cmm_notify_t)
(const cmm_cmc_notification_t *change_notification,
void *client_data);

cmm_error_t cmm_cmc_register(cmm_notify_t const callback, void *
client_data);

cmm_error_t cmm_cmc_unregister ();

The cmm_cmc_register() function enables a system service or application to
receive change notifications by registering the callback function indicated.

The cmm_cmc_register() function takes the following parameters:

callback A pointer to a callback function defined by the service
or application.

client_data A parameter used by the callback function. Its type and
value are defined by the registered service or
application. It is passed as an argument to the callback
and it is valid in the calling process address space. No
sanity check is run on this parameter, as nhcmmd(1M)
does not know its meaning.

If the cmm_cmc_register() function is called while a callback is registered, a
CMM_EEXIST error is returned because only one function can be registered at a time.
To change the registration, cmm_cmc_unregister() must be called prior to
registering the new node with cmm_cmc_register().

Registration only needs to be done once to receive cluster membership change
notifications. When a process attempts to register more than once, the first callback is
kept and an error is returned.

The calling process must use the cmm_notify_getfd(3CMM) and
cmm_notify_dispatch(3CMM) functions to receive and dispatch messages from
nhcmmd(1M). An application defines the list of notifications it receives by calling
cmm_cmc_filter(3CMM).

cmm_cmc_register(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXTENDED
DESCRIPTION

92 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

Note that the order of callback notifications is the same as that of the Cluster
Membership Manager (CMM) notifications; one call to
cmm_notify_dispatch(3CMM) can lead to several calls to the callback (in fact as
many as the number of pending notifications). Within these callbacks, if functions are
invoked concerning the state of the cluster (for instance to get the number of nodes in
the cluster), the results of the functions do not refer to the state that the cluster is in
when the notification has been generated. Instead, the results of the functions refer to
the state of the cluster when the function is invoked. In the meantime, some other
modifications might have occurred in the cluster.

The callback function is invoked by the same thread as the one that calls the
cmm_notify_dispatch(3CMM) function. The function is invoked by a library
linked to the process. The library communicates with the CMM API that supplies the
membership change information passed as an argument to the callback function.

The cmm_cmc_unregister() function removes the calling process’s registration so
that no further delivery of cluster membership change notifications is made. Only the
process on which a callback is called can remove the caller’s registration. A child or a
parent process cannot do this.

If the calling process callback function is active when the unregister request is made, it
is not canceled.

In case of fork(), the created child process does not inherit the registration from its
parent. It has to make its own registration.

The cmm_cmc_register() function returns one of the following values:

CMM_EBUSY The CMM API server is temporarily out of resources to
respond to the requested operation. The recommended
action is to wait a short time and retry the operation.
The length of the waiting must be decided by the user,
depending on the application’s characteristics.

CMM_ECONN No nhcmmd is currently accessible on the local node.

CMM_ENOENT The maximum number of clients that can register with
cmm_cmc_register at any one time has been
reached.

CMM_EEXIST The calling process has already registered a callback.

CMM_ENOTSUP Unexpected service error. The cluster might be in a
critical state.

CMM_ETIMEDOUT The call timeout expired before the action was
completed.

CMM_OK Operation succeeds.

The cmm_cmc_unregister() function returns one of the following values:

cmm_cmc_register(3CMM)

RETURN VALUES

Netra HA Suite CMM Library Functions 93

CMM_EBUSY The CMM API server is temporarily out of resources to
respond to the requested operation. The recommended
action is to wait a short time and retry the operation.
The length of the waiting must be decided by the user,
depending on the application’s characteristics.

Another possible meaning of CMM_EBUSY is that a call
is made to the cmm_cmc_unregister() function
when the calling process’s callback function is active.

CMM_ECONN There is no nhcmmd currently accessible on the local
node.

CMM_ENOENT The registration does not exist.

CMM_ENOTSUP Unexpected service error. The cluster might be in a
critical state.

CMM_ETIMEDOUT The call timeout expired before the action was
completed.

CMM_OK Operation succeeds.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

nhcmmd(1M), fork(2), cmm_cmc_filter(3CMM), cmm_notify_dispatch(3CMM),
cmm_notify_getfd(3CMM)

cmm_cmc_register(3CMM)

ATTRIBUTES

SEE ALSO

94 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_cmc_register, cmm_cmc_unregister – register to receive notifications; remove
registration and stop receiving notifications

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

typedef struct {
cmm_cmchanges_t cmchange;
cmm_nodeid_t nodeid;

} cmm_cmc_notification_t;

typedef void (*cmm_notify_t)
(const cmm_cmc_notification_t *change_notification,
void *client_data);

cmm_error_t cmm_cmc_register(cmm_notify_t const callback, void *
client_data);

cmm_error_t cmm_cmc_unregister ();

The cmm_cmc_register() function enables a system service or application to
receive change notifications by registering the callback function indicated.

The cmm_cmc_register() function takes the following parameters:

callback A pointer to a callback function defined by the service
or application.

client_data A parameter used by the callback function. Its type and
value are defined by the registered service or
application. It is passed as an argument to the callback
and it is valid in the calling process address space. No
sanity check is run on this parameter, as nhcmmd(1M)
does not know its meaning.

If the cmm_cmc_register() function is called while a callback is registered, a
CMM_EEXIST error is returned because only one function can be registered at a time.
To change the registration, cmm_cmc_unregister() must be called prior to
registering the new node with cmm_cmc_register().

Registration only needs to be done once to receive cluster membership change
notifications. When a process attempts to register more than once, the first callback is
kept and an error is returned.

The calling process must use the cmm_notify_getfd(3CMM) and
cmm_notify_dispatch(3CMM) functions to receive and dispatch messages from
nhcmmd(1M). An application defines the list of notifications it receives by calling
cmm_cmc_filter(3CMM).

cmm_cmc_unregister(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXTENDED
DESCRIPTION

Netra HA Suite CMM Library Functions 95

Note that the order of callback notifications is the same as that of the Cluster
Membership Manager (CMM) notifications; one call to
cmm_notify_dispatch(3CMM) can lead to several calls to the callback (in fact as
many as the number of pending notifications). Within these callbacks, if functions are
invoked concerning the state of the cluster (for instance to get the number of nodes in
the cluster), the results of the functions do not refer to the state that the cluster is in
when the notification has been generated. Instead, the results of the functions refer to
the state of the cluster when the function is invoked. In the meantime, some other
modifications might have occurred in the cluster.

The callback function is invoked by the same thread as the one that calls the
cmm_notify_dispatch(3CMM) function. The function is invoked by a library
linked to the process. The library communicates with the CMM API that supplies the
membership change information passed as an argument to the callback function.

The cmm_cmc_unregister() function removes the calling process’s registration so
that no further delivery of cluster membership change notifications is made. Only the
process on which a callback is called can remove the caller’s registration. A child or a
parent process cannot do this.

If the calling process callback function is active when the unregister request is made, it
is not canceled.

In case of fork(), the created child process does not inherit the registration from its
parent. It has to make its own registration.

The cmm_cmc_register() function returns one of the following values:

CMM_EBUSY The CMM API server is temporarily out of resources to
respond to the requested operation. The recommended
action is to wait a short time and retry the operation.
The length of the waiting must be decided by the user,
depending on the application’s characteristics.

CMM_ECONN No nhcmmd is currently accessible on the local node.

CMM_ENOENT The maximum number of clients that can register with
cmm_cmc_register at any one time has been
reached.

CMM_EEXIST The calling process has already registered a callback.

CMM_ENOTSUP Unexpected service error. The cluster might be in a
critical state.

CMM_ETIMEDOUT The call timeout expired before the action was
completed.

CMM_OK Operation succeeds.

The cmm_cmc_unregister() function returns one of the following values:

cmm_cmc_unregister(3CMM)

RETURN VALUES

96 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

CMM_EBUSY The CMM API server is temporarily out of resources to
respond to the requested operation. The recommended
action is to wait a short time and retry the operation.
The length of the waiting must be decided by the user,
depending on the application’s characteristics.

Another possible meaning of CMM_EBUSY is that a call
is made to the cmm_cmc_unregister() function
when the calling process’s callback function is active.

CMM_ECONN There is no nhcmmd currently accessible on the local
node.

CMM_ENOENT The registration does not exist.

CMM_ENOTSUP Unexpected service error. The cluster might be in a
critical state.

CMM_ETIMEDOUT The call timeout expired before the action was
completed.

CMM_OK Operation succeeds.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

nhcmmd(1M), fork(2), cmm_cmc_filter(3CMM), cmm_notify_dispatch(3CMM),
cmm_notify_getfd(3CMM)

cmm_cmc_unregister(3CMM)

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 97

cmm_config_reload – reload the cluster node table

cc [flag...] file... lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_config_reload();

The cmm_config_reload() function forces the nhcmmd(1M) daemon to reload the
cluster node table. When a node is added to or removed from this table, the nhcmmd
daemon must be informed. There are two ways to inform the nhcmmd daemon of the
changes to the cluster node table: call the cmm_config_reload() function or type
one of the following:

pkill -HUP nhcmmd

nhcmmstat--creload

kill -HUP <CMM process Id>

This function can only be called from the master node. If it is called from a non-master
node it returns a CMM_EPERM error. As a result of this call, notifications are sent
indicating the modifications occurring in the cluster because of the new configuration
read from the cluster node table. See the Netra High Availability Suite Foundation
Services 2.1 6/03 CMM Programming Guide for information on notifications. The
supported operations are add a node and remove a node, with the node powered off.
The attributes of a node must not be changed.

To remove a node from the cluster, ensure that the node is powered off before
changing the cluster nodes table. Only after a node has been powered off should you
perform a cmm_config_reload().

The cmm_config_reload() function returns one of the following values:

CMM_EBUSY The CMM API server is temporarily out of resources to
respond to the requested operation. The recommended
action is to wait a short time and retry the operation.
The length of the waiting must be decided by the user,
depending on the application’s characteristics.

CMM_ECONN No nhcmmd is accessible on the current node.

CMM_ENOCLUSTER Calling node is not yet in a cluster.

CMM_ENOTSUP Unexpected service error.

CMM_EPERM Permission denied. The function was not called from
the master node.

CMM_ETIMEDOUT The call timeout expired before the action was
completed.

CMM_OK Operation succeeds.

cmm_config_reload(3CMM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

98 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), nhcmmd(1M)

cmm_config_reload(3CMM)

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 99

cmm_connect – prepare or test a connection to the Cluster Membership Manager
(CMM)

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_connect(const timespec_t timeout);

The cmm_connect() function is implicit in the first call to the Cluster Membership
Manager (CMM) Application Programming Interface (API). You do not need to call
this function to create a CMM connection; but use this function to test the availability
of a CMM connection, or to set the timeout value. The default timeout is five seconds.

The timeout parameter is globally used by the CMM API to signify the maximum
amount of time for which a call can block. The type of the timeout is a timespec_t and
the value must be greater than 0 seconds, 0 nanoseconds. Note that if the value of the
timeout is too short, you risk being unable to use the CMM API. This is because every
call would fail since the timeout would be expired before the call finished.

Note – This function is not related to cluster information; therefore, can be called from
any node - even a node that is not part of a cluster.

The cmm_connect() function returns one of the following values:

CMM_ECONN No nhcmmd(1M) is currently accessible on the local
node.

CMM_EINVAL The given timeout is invalid.

CMM_ENOTSUP Unexpected service error occurs.

CMM_ETIMEDOUT Fails to connect before the previous timeout expired.

CMM_OK Operation succeeds.

This call never returns CMM_ENOCLUSTER

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), nhcmmd(1M)

cmm_connect(3CMM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

100 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_disconnect – close a connection between the current calling process and the
nhcmmd daemon

cc [flag...] file... lcgha_cmm lrt

#include <cmm.h>

cmm_error_t cmm_disconnect();

The cmm_disconnect() function closes the connection between the current calling
process and the nhcmmd daemon. This frees the resources allocated to the client
connection. Notifications are no longer managed by the library. If notifications were
registered before this function was called, they are no longer sent.

The connection is automatically re-established and resources reallocated when a
function that needs the connection is called. However, the configuration of the
notifications (callback function, filters, etc) is not recreated. You must reconfigure the
notification registration.

Note – If an application or service calls cmm_disconnect() when a
cmm_notify_dispatch() call is being executed, the cmm_notify_dispatch()
call is terminated.

The cmm_disconnect() function returns one of the following values:

CMM_ENOTSUP Unexpected service error or no local nhcmmd is
accessible.

CMM_ETIMEDOUT The call timeout expired before the action was
completed.

CMM_OK Operation succeeds.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), nhcmmd(1M), cmm_connect(3CMM)

cmm_disconnect(3CMM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 101

cmm_master_getinfo, cmm_vicemaster_getinfo – retrieve information about the
master node or the vice-master node

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_master_getinfo(cmm_member_t * const member);

cmm_error_t cmm_vicemaster_getinfo(cmm_member_t * const member);

The cmm_master_getinfo() function returns information about the current master
node. The cmm_vicemaster_getinfo() function returns information about the
current vice-master node. The information returned by these two functions has the
same type and meaning as that returned by the cmm_member_getinfo() function.

The member parameter is a pointer to a member structure where the function stores the
member’s information, such as its current state.

See the Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming
Guide for information on the cmm_member_t structure.

The cmm_master_getinfo() and cmm_vicemaster_getinfo() functions return
one of the following values:

CMM_EAGAIN The information might be deprecated, because a node
has been out of communication with the master node
for a period of time.

CMM_EBUSY The CMM API server is temporarily out of resources to
respond to the requested operation. The recommended
action is to wait a short time and retry the operation.
The length of the waiting must be decided by the user,
depending on the application’s characteristics.

CMM_ECONN No nhcmmd is currently accessible on the local node.

CMM_EINVAL Invalid parameter. member is a NULL pointer.

CMM_ENOCLUSTER The calling node is not yet in a cluster.

CMM_ENOTSUP An unexpected service error occurred. The cluster
might be in a critical state.

CMM_ESRCH No such member. This return value is only applicable
for the vice-master node.

CMM_ETIMEDOUT The call timeout expired before the action was
completed.

CMM_OK Operation succeeds.

See attributes(5) for descriptions of the following attributes:

cmm_master_getinfo(3CMM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

RETURN VALUES

102 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_member_getinfo(3CMM)

cmm_master_getinfo(3CMM)

SEE ALSO

Netra HA Suite CMM Library Functions 103

cmm_mastership_release – trigger a switchover

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_mastership_release();

The cmm_mastership_release() function triggers a switchover. This function
must be called from the master node. If a service or application attempts to call this
function from another node, CMM_EPERM is returned.

If the vice-master node is qualified to be master when cmm_mastership_release()
is called, then this node becomes master. The calling node remains master until the
vice-master node has taken the master role.

If no node is qualified to become master when the cmm_mastership_release()
function is called, CMM_ECANCELED is returned.

See the Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming
Guide for information on the notifications returned in different scenarios.

Any program on the master node can execute this function. No authentication is
performed.

The cmm_mastership_release() function returns one of the following values:

CMM_EBUSY The CMM API server is temporarily out of resources to
respond to the requested operation. The recommended
action is to wait a short time and retry the operation.
The length of the waiting must be decided by the user,
depending on the application’s characteristics.

CMM_ECANCELED Operation cancelled. There was no vice-master to take
the master role.

CMM_ECONN No nhcmmd is currently accessible on the local node.

CMM_ENOCLUSTER Not in cluster.

CMM_ENOTSUP An unexpected service error occurred.

CMM_EPERM Permission denied as the function was not called from
a master node.

CMM_ETIMEDOUT The timeout expired before the action was completed.

CMM_OK Operation succeeds.

cmm_mastership_release(3CMM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

104 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_membership_remove(3CMM),
cmm_member_setqualif(3CMM)

cmm_mastership_release(3CMM)

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 105

cmm_member_getall, cmm_member_getcount – retrieve information on the cluster

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_member_getall (uint32_t const table_size,
cmm_member_t * const member_table, uint32_t * const member_count);

cmm_error_t cmm_member_getcount (uint32_t * const member_count);

The cmm_member_getall() function fills member_table with information about all
nodes in the cluster. There is a table entry for each node. The information in this table
is of the same type and meaning as that returned by cmm_member_getinfo(). If
member_table is a null pointer, cmm_member_getall() behaves like the
cmm_member_getcount()function.

The cmm_member_getcount() function returns the number of nodes in the cluster,
including the node from which the function is called. The value is stored in the area
pointed to by member_count. See the Netra High Availability Suite Foundation
Services 2.1 6/03 CMM Programming Guide for further information on the state of the
node.

The cmm_member_getall() function takes the following parameters:

table_size Specifies the maximum number of entries in
member_table. The maximum number of entries is 1024.

member_table A pointer to an array of structures where the requested
information is placed.

member_count Specifies the number of nodes in the cluster.

The process calling the cmm_member_getall() and cmm_member_getcount()
functions allocates and frees all data structures used to return membership
information, including the appropriate number of entries in the cluster node table.

If there are more peer nodes than entries in member table, the table is not modified,
member_count is updated, and a CMM_ERANGE error is returned. If there are more
member entries than peer nodes, the excess member entries are zeroed out.

If requested membership information is temporarily unavailable, as when a
switchover is taking place, a CMM_ENOCLUSTER error is returned.

The calling process is in charge of allocating the memory and indicating the number of
entries by table_size.

See the Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming
Guide for information on the cmm_member_t structure.

The cmm_member_getall() and cmm_member_getcount() functions return one
of the following values:

cmm_member_getall(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXTENDED
DESCRIPTION

RETURN VALUES

106 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

CMM_EAGAIN The information might be deprecated because the node
has been out of communication with the master for a
period of time.

CMM_EBUSY The CMM API server is temporarily out of resources to
respond to the requested operation. The recommended
action is to wait a short time and retry the operation.
The length of the waiting must be decided by the user,
depending on the application’s characteristics.

CMM_ECONN No nhcmmd is currently accessible on the local node.

CMM_EINVAL Invalid argument such as member_count is a NULL
pointer, or when table_size is greated than 1024.

CMM_ENOCLUSTER The calling node is not yet in a cluster.

CMM_ENOTSUP An unexpected service error occurred. The cluster
might be in a critical state.

CMM_ERANGE Not enough entries in the member table to provide the
requested information.

CMM_ETIMEDOUT The call timeout expired before the action was
completed.

CMM_OK Operation succeeds.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_member_getinfo(3CMM)

cmm_member_getall(3CMM)

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 107

cmm_member_getall, cmm_member_getcount – retrieve information on the cluster

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_member_getall (uint32_t const table_size,
cmm_member_t * const member_table, uint32_t * const member_count);

cmm_error_t cmm_member_getcount (uint32_t * const member_count);

The cmm_member_getall() function fills member_table with information about all
nodes in the cluster. There is a table entry for each node. The information in this table
is of the same type and meaning as that returned by cmm_member_getinfo(). If
member_table is a null pointer, cmm_member_getall() behaves like the
cmm_member_getcount()function.

The cmm_member_getcount() function returns the number of nodes in the cluster,
including the node from which the function is called. The value is stored in the area
pointed to by member_count. See the Netra High Availability Suite Foundation
Services 2.1 6/03 CMM Programming Guide for further information on the state of the
node.

The cmm_member_getall() function takes the following parameters:

table_size Specifies the maximum number of entries in
member_table. The maximum number of entries is 1024.

member_table A pointer to an array of structures where the requested
information is placed.

member_count Specifies the number of nodes in the cluster.

The process calling the cmm_member_getall() and cmm_member_getcount()
functions allocates and frees all data structures used to return membership
information, including the appropriate number of entries in the cluster node table.

If there are more peer nodes than entries in member table, the table is not modified,
member_count is updated, and a CMM_ERANGE error is returned. If there are more
member entries than peer nodes, the excess member entries are zeroed out.

If requested membership information is temporarily unavailable, as when a
switchover is taking place, a CMM_ENOCLUSTER error is returned.

The calling process is in charge of allocating the memory and indicating the number of
entries by table_size.

See the Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming
Guide for information on the cmm_member_t structure.

The cmm_member_getall() and cmm_member_getcount() functions return one
of the following values:

cmm_member_getcount(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXTENDED
DESCRIPTION

RETURN VALUES

108 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

CMM_EAGAIN The information might be deprecated because the node
has been out of communication with the master for a
period of time.

CMM_EBUSY The CMM API server is temporarily out of resources to
respond to the requested operation. The recommended
action is to wait a short time and retry the operation.
The length of the waiting must be decided by the user,
depending on the application’s characteristics.

CMM_ECONN No nhcmmd is currently accessible on the local node.

CMM_EINVAL Invalid argument such as member_count is a NULL
pointer, or when table_size is greated than 1024.

CMM_ENOCLUSTER The calling node is not yet in a cluster.

CMM_ENOTSUP An unexpected service error occurred. The cluster
might be in a critical state.

CMM_ERANGE Not enough entries in the member table to provide the
requested information.

CMM_ETIMEDOUT The call timeout expired before the action was
completed.

CMM_OK Operation succeeds.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_member_getinfo(3CMM)

cmm_member_getcount(3CMM)

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 109

cmm_potential_getinfo, cmm_member_getinfo – retrieve information about a peer
node

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_potential_getinfo (cmm_nodeid_t const nodeid,
cmm_member_t * const member);

cmm_error_t cmm_member_getinfo (cmm_nodeid_t const nodeid,
cmm_member_t * const member);

The cmm_potential_getinfo() function retrieves the information contained in the
cmm_member_t structure for a node identified by its nodeid. You can use
cmm_potential_getinfo() to get into any peer node, even if it has the
CMM_OUT_OF_CLUSTER state.

See the Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming
Guide for information about the cmm_member_t structure.

The cmm_member_getinfo() function retrieves the information in the
cmm_member_t structure for a peer node.

If the requested membership information is temporarily unavailable the operation is
retried until it succeeds or a timeout occurs.

In the case of a timeout, the CMM_ETIMEDOUT error is returned. If the nodeid specified
is not in the cluster node table, a CMM_ESRCH error is returned.

The cmm_potential_getinfo() and cmm_member_getinfo() functions take the
following parameters:

member Points to the cmm_member_t structure, which contains
information about the node.

nodeid Identifies the node on which information is requested.

The cmm_potential_getinfo() and cmm_member_getinfo() functions return
one of the following values:

CMM_EAGAIN The information might no longer be valid, as the node
has been out of communication with the master node
for a period of time.

CMM_EBUSY The CMM API server is temporarily unable to respond
to the requested operation. Wait a short time and retry
the operation. The length of the waiting must be
decided by the user, depending on the application’s
characteristics.

CMM_ECONN The nhcmmd daemon cannot be accessed on the current
node.

cmm_member_getinfo(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

110 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

CMM_EINVAL Invalid argument such as the member is a NULL pointer
or invalid nodeid.

CMM_ENOCLUSTER The calling node is not part of any cluster.

CMM_ENOTSUP Unexpected service error. The cluster might be in a
critical state.

CMM_ESRCH Returned by the cmm_member_getinfo() function if
the node is in the local cluster node table but has the
CMM_OUT_OF_CLUSTER role. Returned by both
cmm_potential_getinfo() and
cmm_member_getinfo() functions if the node is not
in the local cluster nodes table.

CMM_ETIMEDOUT The call timeout expired before the action was
completed.

CMM_OK Operation succeeds.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM)

cmm_member_getinfo(3CMM)

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 111

cmm_member_isdesynchronized, cmm_member_isdisqualified,
cmm_member_iseligible, cmm_member_isexcluded, cmm_member_isfrozen,
cmm_member_ismaster, cmm_member_isoutofcluster, cmm_member_isqualified,
cmm_member_isvicemaster – interpret the status of a member

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

int cmm_member_isdesynchronized(cmm_member_t const * member);

int cmm_member_isdisqualified(cmm_member_t const * member);

int cmm_member_iseligible(cmm_member_t const * member);

int cmm_member_isexcluded(cmm_member_t const * member);

int cmm_member_isfrozen(cmm_member_t const * member);

int cmm_member_ismaster(cmm_member_t const * member);

int cmm_member_isoutofcluster(cmm_member_t const * member);

int cmm_member_isqualified(cmm_member_t const * member);

int cmm_member_isvicemaster(cmm_member_t const * member);

These functions enable an application to obtain the status of a peer node. The status
information provided includes the membership attributes and role of the cluster as
defined in the Netra High Availability Suite Foundation Services 2.1 6/03 CMM
Programming Guide.

The cmm_member_is*() function takes the following parameter:

member A pointer to a member structure that contains the
member’s information, such as a structure filled by
cmm_member_getinfo(3CMM).

The information provided by the cmm_member_is*() functions is as follows:

cmm_member_isdesynchronized()
The node is desynchronized if !=0 is returned. The desynchronization flag is set for
this node. For the master, !=0 means that it owns the only up-to-date disk; the disks
on all other nodes are stale. Remember to check the eligibility of this node to
determine if it is a potential master.

cmm_member_isdisqualified()
The node is disqualified if !=0 is returned. A node can be disqualified by sending a
call to cmm_member_setqualif() to set the flag CMM_MEMBER_DISQUALIFIED.
Check the eligibility of the node to verify that it can become master.

cmm_member_iseligible()
The node is a master-eligible node if !=0 is returned.

cmm_member_isexcluded()
The node is excluded if !=0 is returned.

cmm_member_isdesynchronized(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXTENDED
DESCRIPTION

112 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_member_isfrozen()
The node is frozen if !=0 is returned.

cmm_member_ismaster()
The node is the master node if !=0 is returned.

cmm_member_isoutofcluster()
The node is not currently participating in cluster services.

cmm_member_isqualified()
The node is qualified if !=0 is returned.

cmm_member_isvicemaster()
The node is the vice-master if !=0 is returned.

Note – !=0 is returned if, and only if, the node is neither disqualified nor
desynchronized. A diskless node can also have this state. Check the eligibility of the
node.

The cmm_member_is*() functions return one of the following values:

TRUE (!=0) Condition is verified.

FALSE (==0) Condition is not satisfied.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_member_getinfo(3CMM)

cmm_member_isdesynchronized(3CMM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 113

cmm_member_isdesynchronized, cmm_member_isdisqualified,
cmm_member_iseligible, cmm_member_isexcluded, cmm_member_isfrozen,
cmm_member_ismaster, cmm_member_isoutofcluster, cmm_member_isqualified,
cmm_member_isvicemaster – interpret the status of a member

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

int cmm_member_isdesynchronized(cmm_member_t const * member);

int cmm_member_isdisqualified(cmm_member_t const * member);

int cmm_member_iseligible(cmm_member_t const * member);

int cmm_member_isexcluded(cmm_member_t const * member);

int cmm_member_isfrozen(cmm_member_t const * member);

int cmm_member_ismaster(cmm_member_t const * member);

int cmm_member_isoutofcluster(cmm_member_t const * member);

int cmm_member_isqualified(cmm_member_t const * member);

int cmm_member_isvicemaster(cmm_member_t const * member);

These functions enable an application to obtain the status of a peer node. The status
information provided includes the membership attributes and role of the cluster as
defined in the Netra High Availability Suite Foundation Services 2.1 6/03 CMM
Programming Guide.

The cmm_member_is*() function takes the following parameter:

member A pointer to a member structure that contains the
member’s information, such as a structure filled by
cmm_member_getinfo(3CMM).

The information provided by the cmm_member_is*() functions is as follows:

cmm_member_isdesynchronized()
The node is desynchronized if !=0 is returned. The desynchronization flag is set for
this node. For the master, !=0 means that it owns the only up-to-date disk; the disks
on all other nodes are stale. Remember to check the eligibility of this node to
determine if it is a potential master.

cmm_member_isdisqualified()
The node is disqualified if !=0 is returned. A node can be disqualified by sending a
call to cmm_member_setqualif() to set the flag CMM_MEMBER_DISQUALIFIED.
Check the eligibility of the node to verify that it can become master.

cmm_member_iseligible()
The node is a master-eligible node if !=0 is returned.

cmm_member_isexcluded()
The node is excluded if !=0 is returned.

cmm_member_isdisqualified(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXTENDED
DESCRIPTION

114 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_member_isfrozen()
The node is frozen if !=0 is returned.

cmm_member_ismaster()
The node is the master node if !=0 is returned.

cmm_member_isoutofcluster()
The node is not currently participating in cluster services.

cmm_member_isqualified()
The node is qualified if !=0 is returned.

cmm_member_isvicemaster()
The node is the vice-master if !=0 is returned.

Note – !=0 is returned if, and only if, the node is neither disqualified nor
desynchronized. A diskless node can also have this state. Check the eligibility of the
node.

The cmm_member_is*() functions return one of the following values:

TRUE (!=0) Condition is verified.

FALSE (==0) Condition is not satisfied.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_member_getinfo(3CMM)

cmm_member_isdisqualified(3CMM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 115

cmm_member_isdesynchronized, cmm_member_isdisqualified,
cmm_member_iseligible, cmm_member_isexcluded, cmm_member_isfrozen,
cmm_member_ismaster, cmm_member_isoutofcluster, cmm_member_isqualified,
cmm_member_isvicemaster – interpret the status of a member

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

int cmm_member_isdesynchronized(cmm_member_t const * member);

int cmm_member_isdisqualified(cmm_member_t const * member);

int cmm_member_iseligible(cmm_member_t const * member);

int cmm_member_isexcluded(cmm_member_t const * member);

int cmm_member_isfrozen(cmm_member_t const * member);

int cmm_member_ismaster(cmm_member_t const * member);

int cmm_member_isoutofcluster(cmm_member_t const * member);

int cmm_member_isqualified(cmm_member_t const * member);

int cmm_member_isvicemaster(cmm_member_t const * member);

These functions enable an application to obtain the status of a peer node. The status
information provided includes the membership attributes and role of the cluster as
defined in the Netra High Availability Suite Foundation Services 2.1 6/03 CMM
Programming Guide.

The cmm_member_is*() function takes the following parameter:

member A pointer to a member structure that contains the
member’s information, such as a structure filled by
cmm_member_getinfo(3CMM).

The information provided by the cmm_member_is*() functions is as follows:

cmm_member_isdesynchronized()
The node is desynchronized if !=0 is returned. The desynchronization flag is set for
this node. For the master, !=0 means that it owns the only up-to-date disk; the disks
on all other nodes are stale. Remember to check the eligibility of this node to
determine if it is a potential master.

cmm_member_isdisqualified()
The node is disqualified if !=0 is returned. A node can be disqualified by sending a
call to cmm_member_setqualif() to set the flag CMM_MEMBER_DISQUALIFIED.
Check the eligibility of the node to verify that it can become master.

cmm_member_iseligible()
The node is a master-eligible node if !=0 is returned.

cmm_member_isexcluded()
The node is excluded if !=0 is returned.

cmm_member_iseligible(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXTENDED
DESCRIPTION

116 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_member_isfrozen()
The node is frozen if !=0 is returned.

cmm_member_ismaster()
The node is the master node if !=0 is returned.

cmm_member_isoutofcluster()
The node is not currently participating in cluster services.

cmm_member_isqualified()
The node is qualified if !=0 is returned.

cmm_member_isvicemaster()
The node is the vice-master if !=0 is returned.

Note – !=0 is returned if, and only if, the node is neither disqualified nor
desynchronized. A diskless node can also have this state. Check the eligibility of the
node.

The cmm_member_is*() functions return one of the following values:

TRUE (!=0) Condition is verified.

FALSE (==0) Condition is not satisfied.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_member_getinfo(3CMM)

cmm_member_iseligible(3CMM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 117

cmm_member_isdesynchronized, cmm_member_isdisqualified,
cmm_member_iseligible, cmm_member_isexcluded, cmm_member_isfrozen,
cmm_member_ismaster, cmm_member_isoutofcluster, cmm_member_isqualified,
cmm_member_isvicemaster – interpret the status of a member

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

int cmm_member_isdesynchronized(cmm_member_t const * member);

int cmm_member_isdisqualified(cmm_member_t const * member);

int cmm_member_iseligible(cmm_member_t const * member);

int cmm_member_isexcluded(cmm_member_t const * member);

int cmm_member_isfrozen(cmm_member_t const * member);

int cmm_member_ismaster(cmm_member_t const * member);

int cmm_member_isoutofcluster(cmm_member_t const * member);

int cmm_member_isqualified(cmm_member_t const * member);

int cmm_member_isvicemaster(cmm_member_t const * member);

These functions enable an application to obtain the status of a peer node. The status
information provided includes the membership attributes and role of the cluster as
defined in the Netra High Availability Suite Foundation Services 2.1 6/03 CMM
Programming Guide.

The cmm_member_is*() function takes the following parameter:

member A pointer to a member structure that contains the
member’s information, such as a structure filled by
cmm_member_getinfo(3CMM).

The information provided by the cmm_member_is*() functions is as follows:

cmm_member_isdesynchronized()
The node is desynchronized if !=0 is returned. The desynchronization flag is set for
this node. For the master, !=0 means that it owns the only up-to-date disk; the disks
on all other nodes are stale. Remember to check the eligibility of this node to
determine if it is a potential master.

cmm_member_isdisqualified()
The node is disqualified if !=0 is returned. A node can be disqualified by sending a
call to cmm_member_setqualif() to set the flag CMM_MEMBER_DISQUALIFIED.
Check the eligibility of the node to verify that it can become master.

cmm_member_iseligible()
The node is a master-eligible node if !=0 is returned.

cmm_member_isexcluded()
The node is excluded if !=0 is returned.

cmm_member_isexcluded(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXTENDED
DESCRIPTION

118 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_member_isfrozen()
The node is frozen if !=0 is returned.

cmm_member_ismaster()
The node is the master node if !=0 is returned.

cmm_member_isoutofcluster()
The node is not currently participating in cluster services.

cmm_member_isqualified()
The node is qualified if !=0 is returned.

cmm_member_isvicemaster()
The node is the vice-master if !=0 is returned.

Note – !=0 is returned if, and only if, the node is neither disqualified nor
desynchronized. A diskless node can also have this state. Check the eligibility of the
node.

The cmm_member_is*() functions return one of the following values:

TRUE (!=0) Condition is verified.

FALSE (==0) Condition is not satisfied.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_member_getinfo(3CMM)

cmm_member_isexcluded(3CMM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 119

cmm_member_isdesynchronized, cmm_member_isdisqualified,
cmm_member_iseligible, cmm_member_isexcluded, cmm_member_isfrozen,
cmm_member_ismaster, cmm_member_isoutofcluster, cmm_member_isqualified,
cmm_member_isvicemaster – interpret the status of a member

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

int cmm_member_isdesynchronized(cmm_member_t const * member);

int cmm_member_isdisqualified(cmm_member_t const * member);

int cmm_member_iseligible(cmm_member_t const * member);

int cmm_member_isexcluded(cmm_member_t const * member);

int cmm_member_isfrozen(cmm_member_t const * member);

int cmm_member_ismaster(cmm_member_t const * member);

int cmm_member_isoutofcluster(cmm_member_t const * member);

int cmm_member_isqualified(cmm_member_t const * member);

int cmm_member_isvicemaster(cmm_member_t const * member);

These functions enable an application to obtain the status of a peer node. The status
information provided includes the membership attributes and role of the cluster as
defined in the Netra High Availability Suite Foundation Services 2.1 6/03 CMM
Programming Guide.

The cmm_member_is*() function takes the following parameter:

member A pointer to a member structure that contains the
member’s information, such as a structure filled by
cmm_member_getinfo(3CMM).

The information provided by the cmm_member_is*() functions is as follows:

cmm_member_isdesynchronized()
The node is desynchronized if !=0 is returned. The desynchronization flag is set for
this node. For the master, !=0 means that it owns the only up-to-date disk; the disks
on all other nodes are stale. Remember to check the eligibility of this node to
determine if it is a potential master.

cmm_member_isdisqualified()
The node is disqualified if !=0 is returned. A node can be disqualified by sending a
call to cmm_member_setqualif() to set the flag CMM_MEMBER_DISQUALIFIED.
Check the eligibility of the node to verify that it can become master.

cmm_member_iseligible()
The node is a master-eligible node if !=0 is returned.

cmm_member_isexcluded()
The node is excluded if !=0 is returned.

cmm_member_isfrozen(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXTENDED
DESCRIPTION

120 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_member_isfrozen()
The node is frozen if !=0 is returned.

cmm_member_ismaster()
The node is the master node if !=0 is returned.

cmm_member_isoutofcluster()
The node is not currently participating in cluster services.

cmm_member_isqualified()
The node is qualified if !=0 is returned.

cmm_member_isvicemaster()
The node is the vice-master if !=0 is returned.

Note – !=0 is returned if, and only if, the node is neither disqualified nor
desynchronized. A diskless node can also have this state. Check the eligibility of the
node.

The cmm_member_is*() functions return one of the following values:

TRUE (!=0) Condition is verified.

FALSE (==0) Condition is not satisfied.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_member_getinfo(3CMM)

cmm_member_isfrozen(3CMM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 121

cmm_member_isdesynchronized, cmm_member_isdisqualified,
cmm_member_iseligible, cmm_member_isexcluded, cmm_member_isfrozen,
cmm_member_ismaster, cmm_member_isoutofcluster, cmm_member_isqualified,
cmm_member_isvicemaster – interpret the status of a member

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

int cmm_member_isdesynchronized(cmm_member_t const * member);

int cmm_member_isdisqualified(cmm_member_t const * member);

int cmm_member_iseligible(cmm_member_t const * member);

int cmm_member_isexcluded(cmm_member_t const * member);

int cmm_member_isfrozen(cmm_member_t const * member);

int cmm_member_ismaster(cmm_member_t const * member);

int cmm_member_isoutofcluster(cmm_member_t const * member);

int cmm_member_isqualified(cmm_member_t const * member);

int cmm_member_isvicemaster(cmm_member_t const * member);

These functions enable an application to obtain the status of a peer node. The status
information provided includes the membership attributes and role of the cluster as
defined in the Netra High Availability Suite Foundation Services 2.1 6/03 CMM
Programming Guide.

The cmm_member_is*() function takes the following parameter:

member A pointer to a member structure that contains the
member’s information, such as a structure filled by
cmm_member_getinfo(3CMM).

The information provided by the cmm_member_is*() functions is as follows:

cmm_member_isdesynchronized()
The node is desynchronized if !=0 is returned. The desynchronization flag is set for
this node. For the master, !=0 means that it owns the only up-to-date disk; the disks
on all other nodes are stale. Remember to check the eligibility of this node to
determine if it is a potential master.

cmm_member_isdisqualified()
The node is disqualified if !=0 is returned. A node can be disqualified by sending a
call to cmm_member_setqualif() to set the flag CMM_MEMBER_DISQUALIFIED.
Check the eligibility of the node to verify that it can become master.

cmm_member_iseligible()
The node is a master-eligible node if !=0 is returned.

cmm_member_isexcluded()
The node is excluded if !=0 is returned.

cmm_member_ismaster(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXTENDED
DESCRIPTION

122 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_member_isfrozen()
The node is frozen if !=0 is returned.

cmm_member_ismaster()
The node is the master node if !=0 is returned.

cmm_member_isoutofcluster()
The node is not currently participating in cluster services.

cmm_member_isqualified()
The node is qualified if !=0 is returned.

cmm_member_isvicemaster()
The node is the vice-master if !=0 is returned.

Note – !=0 is returned if, and only if, the node is neither disqualified nor
desynchronized. A diskless node can also have this state. Check the eligibility of the
node.

The cmm_member_is*() functions return one of the following values:

TRUE (!=0) Condition is verified.

FALSE (==0) Condition is not satisfied.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_member_getinfo(3CMM)

cmm_member_ismaster(3CMM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 123

cmm_member_isdesynchronized, cmm_member_isdisqualified,
cmm_member_iseligible, cmm_member_isexcluded, cmm_member_isfrozen,
cmm_member_ismaster, cmm_member_isoutofcluster, cmm_member_isqualified,
cmm_member_isvicemaster – interpret the status of a member

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

int cmm_member_isdesynchronized(cmm_member_t const * member);

int cmm_member_isdisqualified(cmm_member_t const * member);

int cmm_member_iseligible(cmm_member_t const * member);

int cmm_member_isexcluded(cmm_member_t const * member);

int cmm_member_isfrozen(cmm_member_t const * member);

int cmm_member_ismaster(cmm_member_t const * member);

int cmm_member_isoutofcluster(cmm_member_t const * member);

int cmm_member_isqualified(cmm_member_t const * member);

int cmm_member_isvicemaster(cmm_member_t const * member);

These functions enable an application to obtain the status of a peer node. The status
information provided includes the membership attributes and role of the cluster as
defined in the Netra High Availability Suite Foundation Services 2.1 6/03 CMM
Programming Guide.

The cmm_member_is*() function takes the following parameter:

member A pointer to a member structure that contains the
member’s information, such as a structure filled by
cmm_member_getinfo(3CMM).

The information provided by the cmm_member_is*() functions is as follows:

cmm_member_isdesynchronized()
The node is desynchronized if !=0 is returned. The desynchronization flag is set for
this node. For the master, !=0 means that it owns the only up-to-date disk; the disks
on all other nodes are stale. Remember to check the eligibility of this node to
determine if it is a potential master.

cmm_member_isdisqualified()
The node is disqualified if !=0 is returned. A node can be disqualified by sending a
call to cmm_member_setqualif() to set the flag CMM_MEMBER_DISQUALIFIED.
Check the eligibility of the node to verify that it can become master.

cmm_member_iseligible()
The node is a master-eligible node if !=0 is returned.

cmm_member_isexcluded()
The node is excluded if !=0 is returned.

cmm_member_isoutofcluster(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXTENDED
DESCRIPTION

124 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_member_isfrozen()
The node is frozen if !=0 is returned.

cmm_member_ismaster()
The node is the master node if !=0 is returned.

cmm_member_isoutofcluster()
The node is not currently participating in cluster services.

cmm_member_isqualified()
The node is qualified if !=0 is returned.

cmm_member_isvicemaster()
The node is the vice-master if !=0 is returned.

Note – !=0 is returned if, and only if, the node is neither disqualified nor
desynchronized. A diskless node can also have this state. Check the eligibility of the
node.

The cmm_member_is*() functions return one of the following values:

TRUE (!=0) Condition is verified.

FALSE (==0) Condition is not satisfied.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_member_getinfo(3CMM)

cmm_member_isoutofcluster(3CMM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 125

cmm_member_isdesynchronized, cmm_member_isdisqualified,
cmm_member_iseligible, cmm_member_isexcluded, cmm_member_isfrozen,
cmm_member_ismaster, cmm_member_isoutofcluster, cmm_member_isqualified,
cmm_member_isvicemaster – interpret the status of a member

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

int cmm_member_isdesynchronized(cmm_member_t const * member);

int cmm_member_isdisqualified(cmm_member_t const * member);

int cmm_member_iseligible(cmm_member_t const * member);

int cmm_member_isexcluded(cmm_member_t const * member);

int cmm_member_isfrozen(cmm_member_t const * member);

int cmm_member_ismaster(cmm_member_t const * member);

int cmm_member_isoutofcluster(cmm_member_t const * member);

int cmm_member_isqualified(cmm_member_t const * member);

int cmm_member_isvicemaster(cmm_member_t const * member);

These functions enable an application to obtain the status of a peer node. The status
information provided includes the membership attributes and role of the cluster as
defined in the Netra High Availability Suite Foundation Services 2.1 6/03 CMM
Programming Guide.

The cmm_member_is*() function takes the following parameter:

member A pointer to a member structure that contains the
member’s information, such as a structure filled by
cmm_member_getinfo(3CMM).

The information provided by the cmm_member_is*() functions is as follows:

cmm_member_isdesynchronized()
The node is desynchronized if !=0 is returned. The desynchronization flag is set for
this node. For the master, !=0 means that it owns the only up-to-date disk; the disks
on all other nodes are stale. Remember to check the eligibility of this node to
determine if it is a potential master.

cmm_member_isdisqualified()
The node is disqualified if !=0 is returned. A node can be disqualified by sending a
call to cmm_member_setqualif() to set the flag CMM_MEMBER_DISQUALIFIED.
Check the eligibility of the node to verify that it can become master.

cmm_member_iseligible()
The node is a master-eligible node if !=0 is returned.

cmm_member_isexcluded()
The node is excluded if !=0 is returned.

cmm_member_isqualified(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXTENDED
DESCRIPTION

126 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_member_isfrozen()
The node is frozen if !=0 is returned.

cmm_member_ismaster()
The node is the master node if !=0 is returned.

cmm_member_isoutofcluster()
The node is not currently participating in cluster services.

cmm_member_isqualified()
The node is qualified if !=0 is returned.

cmm_member_isvicemaster()
The node is the vice-master if !=0 is returned.

Note – !=0 is returned if, and only if, the node is neither disqualified nor
desynchronized. A diskless node can also have this state. Check the eligibility of the
node.

The cmm_member_is*() functions return one of the following values:

TRUE (!=0) Condition is verified.

FALSE (==0) Condition is not satisfied.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_member_getinfo(3CMM)

cmm_member_isqualified(3CMM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 127

cmm_member_isdesynchronized, cmm_member_isdisqualified,
cmm_member_iseligible, cmm_member_isexcluded, cmm_member_isfrozen,
cmm_member_ismaster, cmm_member_isoutofcluster, cmm_member_isqualified,
cmm_member_isvicemaster – interpret the status of a member

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

int cmm_member_isdesynchronized(cmm_member_t const * member);

int cmm_member_isdisqualified(cmm_member_t const * member);

int cmm_member_iseligible(cmm_member_t const * member);

int cmm_member_isexcluded(cmm_member_t const * member);

int cmm_member_isfrozen(cmm_member_t const * member);

int cmm_member_ismaster(cmm_member_t const * member);

int cmm_member_isoutofcluster(cmm_member_t const * member);

int cmm_member_isqualified(cmm_member_t const * member);

int cmm_member_isvicemaster(cmm_member_t const * member);

These functions enable an application to obtain the status of a peer node. The status
information provided includes the membership attributes and role of the cluster as
defined in the Netra High Availability Suite Foundation Services 2.1 6/03 CMM
Programming Guide.

The cmm_member_is*() function takes the following parameter:

member A pointer to a member structure that contains the
member’s information, such as a structure filled by
cmm_member_getinfo(3CMM).

The information provided by the cmm_member_is*() functions is as follows:

cmm_member_isdesynchronized()
The node is desynchronized if !=0 is returned. The desynchronization flag is set for
this node. For the master, !=0 means that it owns the only up-to-date disk; the disks
on all other nodes are stale. Remember to check the eligibility of this node to
determine if it is a potential master.

cmm_member_isdisqualified()
The node is disqualified if !=0 is returned. A node can be disqualified by sending a
call to cmm_member_setqualif() to set the flag CMM_MEMBER_DISQUALIFIED.
Check the eligibility of the node to verify that it can become master.

cmm_member_iseligible()
The node is a master-eligible node if !=0 is returned.

cmm_member_isexcluded()
The node is excluded if !=0 is returned.

cmm_member_isvicemaster(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXTENDED
DESCRIPTION

128 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_member_isfrozen()
The node is frozen if !=0 is returned.

cmm_member_ismaster()
The node is the master node if !=0 is returned.

cmm_member_isoutofcluster()
The node is not currently participating in cluster services.

cmm_member_isqualified()
The node is qualified if !=0 is returned.

cmm_member_isvicemaster()
The node is the vice-master if !=0 is returned.

Note – !=0 is returned if, and only if, the node is neither disqualified nor
desynchronized. A diskless node can also have this state. Check the eligibility of the
node.

The cmm_member_is*() functions return one of the following values:

TRUE (!=0) Condition is verified.

FALSE (==0) Condition is not satisfied.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_member_getinfo(3CMM)

cmm_member_isvicemaster(3CMM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 129

cmm_member_seizequalif – requalify current master-eligible node

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_member_seizequalif();

The cmm_member_seizequalif() function qualifies the current node as the master
node when there is no master node.

The cmm_member_seizequalif() function must be called from a node that is
master-eligible and has the attribute CMM_ELIGIBLE_MEMBER. If there is no master in
the cluster, cmm_member_setqualif() cannot be called. If a node already exists
with the attribute CMM_QUALIFIED_MEMBER, this call returns CMM_EPERM.

There are two outcomes of calling cmm_member_seizequalif() from a
master-eligible node: either the node becomes master or it reverts to the qualification
level it had prior to the cmm_member_seizequalif() function. This function
returns a CMM_EPERM error if a master is already up and running or if the current
node is not master-eligible. Note that if the node was previously
CMM_SYNCHRO_NEEDED (flag S) it will not be elected as master if its former role was
master.

See the Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming
Guide for further information on qualification levels.

Necessary notifications are sent according to the impact of this call. See the Netra High
Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide for information
on possible notifications.

The cmm_member_seizequalif() function returns one of the following values:

CMM_EBUSY The CMM API server is temporarily out of resources to
respond to the requested operation. The recommended
action is to wait a short time and retry the operation.
The length of the waiting must be decided by the user,
depending on the application’s characteristics.

CMM_ECONN No nhcmmd is currently accessible to the local node.

CMM_ENOTSUP An unexpected service error occurred.

CMM_EPERM Permission denied. Either the function was not called
from a master-eligible node, or a master is already
running.

CMM_ETIMEDOUT The call timeout expired before the action was
completed.

CMM_OK Operation succeeds.

cmm_member_seizequalif(3CMM)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION

RETURN VALUES

130 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_member_setqualif(3CMM)

cmm_member_seizequalif(3CMM)

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 131

cmm_member_setqualif – give a new level of qualification to a node

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_member_setqualif(cmm_nodeid_t const nodeid,
cmm_qualif_t const new_qualif);

The cmm_member_setqualif() function assigns a new qualification level to a node.
A qualification level is only meaningful for a node with the administrative attribute
CMM_ELIGIBLE_MEMBER in the sflag field of the cmm_member_t structure. See the
Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide for
further information on the cmm_member_t structure.

The cmm_member_setqualif() function takes the following parameters:

nodeid Specifies the ID of the node whose qualification level is
to be changed.

new_qualif Specifies the new level of qualification assigned to the
node.

The cmm_member_setqualif() function can only be called from the master node. If
an attempt is made to call this function from a node other than the master, a
CMM_EPERM error is returned.

The nodeid given to the cmm_member_setqualif() function must be that of a node
with the CMM_ELIGIBLE_MEMBER attribute. Changing the qualification level of a node
in the cluster that does not have this attribute generates a CMM_EINVAL returned
status. Changing the qualification level of a node with the CMM_OUT_OF_CLUSTER
state will be successful as it is impossible to know whether or not the node is eligible.
If the nodeid given to this function as a parameter is that of the master node, a
failover occurs and a MASTER_DEMOTED notification is sent. CMM_ENOCLUSTER is
returned until a new master is elected.

The new_qualif parameter given to the cmm_member_setqualif() function is one of
the following parameters:

CMM_QUALIFIED_MEMBER The current node can take any role.

CMM_DISQUALIFIED_MEMBER The current node cannot participate
in a master or a vice-master
election.

CMM_SYNCHRO_READY The node’s disks are synchronized;
the vice-master node can become
master if necessary. Only
meaningful for eligible nodes. A
user application should not set this

cmm_member_setqualif(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXTENDED
DESCRIPTION

132 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

flags. CRFS is in charge of setting
them and changing them may
disrupt the cluster.

CMM_SYNCHRO_NEEDED The node’s disks are not
synchronized; the vice-master node
can not become master if necessary.
Only meaningful for eligible nodes.
A user application should not set
this flags. CRFS is in charge of
setting them and changing them
may disrupt the cluster.

The cmm_member_setqualif call is asynchronous; the call’s action is not fully
completed when the call returns. If a second cmm_member_setqualif call is made to
disqualify the master while the first call is still executing but before the master is
demoted, both calls return CMM_OK, even though the master is in the process of being
demoted. The result is not affected by the second call.

After a cmm_member_setqualif call, for a short period of time the cluster has no
master, until the vice-master becomes the new master. Any call to the Cluster
Membership Manger (CMM) Application Programming Interface (API) function in
this short period of time will return CMM_ENOCLUSTER.

Necessary notifications are sent according to the impact of this call, as described in the
Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide.

The value of sflag on the indicated node is immediately updated when a change in
the cluster state occurs, so a call to cmm_member_getinfo(3CMM) will reflect the
change.

The cmm_member_setqualif() function returns one of the following errors:

CMM_EBUSY The CMM API server is temporarily out of resources to
respond to the requested operation. The recommended
action is to wait a short time and retry the operation.
The length of the waiting must be decided by the user,
depending on the application’s characteristics.

CMM_ECONN No nhcmmd is currently accessible in the local node.

CMM_EINVAL Invalid parameter. Either the nodeid is not that of a
master-eligible node or new_qualif is incorrect.

CMM_ENOCLUSTER The calling node is not yet in a cluster.

CMM_ENOTSUP An unexpected service error occurred.

CMM_EPERM Permission denied. The function was not called from
the master node.

cmm_member_setqualif(3CMM)

RETURN VALUES

Netra HA Suite CMM Library Functions 133

CMM_ETIMEDOUT The call timeout expired before the action was
completed.

CMM_OK Operation succeeds.

Various attributes must be considered.

See attributes(5) for descriptions of the attributes described in the following table:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_member_getinfo(3CMM),
cmm_mastership_release(3CMM), cmm_membership_remove(3CMM)

cmm_member_setqualif(3CMM)

ATTRIBUTES

SEE ALSO

134 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_membership_remove – remove peer node

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_membership_remove();

The cmm_membership_remove() function removes the node from which this
function is called from the cluster. The node is still configured to be in the cluster, but
its role has changed. The CMM API is always accessible for an
CMM_OUT_OF_CLUSTER node.

When the nhcmmd daemon detects that a node is no longer part of the cluster, it
informs other applications or services that are registered to receive notification. See the
Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide for
information on the notifications returned in different scenarios.

To reintegrate a node into the cluster after the cmm_membership_remove() function
has been called on the node, restart the node’s nhcmmd daemon by rebooting the node.

Note that after the cmm_membership_remove() call, a node is still to be configured
to be in the cluster, but it has the CMM_OUT_OF_CLUSTER role. Because it is still
configured to be in the cluster, it can access cluster information:

� Functions that retrieve information on the cluster state can still be called by the
node

� Functions that modify the cluster state can no longer be called by the node

This is different from a node not being configured for any cluster. If the node is not
configured for any cluster, the CMM_ENOCLUSTER value is returned.

Any program running on the node can call cmm_membership_remove(). There is no
authentication carried out of the program making the call. Calling this function from
the master leads to a failover (or CMM_ECANCELED if no vice-master can take the
mastership role).

The cmm_membership_remove() function returns one of the following values:

CMM_EBUSY The CMM API server is temporarily out of
resources to respond to the requested
operation. The recommended action is to
wait a short time and retry the operation.
The length of the waiting must be decided
by the user, depending on the application’s
characteristics.

CMM_ECANCELED Operation canceled. The function was called
on the master node but the vice-master
node was not qualified to become master.

CMM_ECONN No nhcmmd is accessible to the current
node.

cmm_membership_remove(3CMM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Netra HA Suite CMM Library Functions 135

CMM_ENOCLUSTER The calling node is not yet in a cluster.

CMM_ENOTSUP An unexpected service error occurred. The
cluster might be in a critical state.

CMM_ETIMEDOUT The call timeout expired before the action
was completed.

CMM_OK Operation succeeds.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), nhcmmd(1M)

cmm_membership_remove(3CMM)

ATTRIBUTES

SEE ALSO

136 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_node_getid – retrieve ID of a node

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_node_getid (cmm_nodeid_t * const me);

The cmm_node_getid() function retrieves a nodeid. This value is accessible even if
no master is currently elected. Using the nodeid, the node can retrieve information on
its status in the cluster.

The me parameter is a pointer to a cmm_nodeid_t structure. If an error occurs, me
contains CMM_INVALID_NODE_ID and the returned value shows the cause of the
error.

Note – This function is not related to cluster information and so it can be called from
any peer node, even a node with the CMM_OUT_OF_CLUSTER state.

The cmm_node_getid() function returns one of the following values:

CMM_EBUSY The CMM API server is temporarily out of resources to
respond to the requested operation. The recommended
action is to wait a short time and retry the operation.
The length of the waiting must be decided by the user,
depending on the application’s characteristics.

CMM_ECONN No nhcmmd(1M) is accessible on the current node.

CMM_EINVAL Invalid parameter. me is a NULL pointer.

CMM_ENOTSUP An unexpected service error occurred. The cluster
might be in a critical state.

CMM_ETIMEDOUT The call timeout expired before the action was
completed.

CMM_OK Operation succeeds.

This call never returns CMM_ENOCLUSTER.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

cmm_node_getid(3CMM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Netra HA Suite CMM Library Functions 137

ATTRIBUTE TYPE ATTRIBUTE VALUE

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), nhcmmd(1M)

cmm_node_getid(3CMM)

SEE ALSO

138 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_notify_dispatch – dispatch cluster membership change messages

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_notify_dispatch();

The cmm_notify_dispatch() function processes a cluster membership change
control message and invokes the appropriate callback function.

The process uses the select or poll commands to detect messages arriving from the
nhcmmd daemon, with at least the file descriptor returned from the
cmm_notify_getfd() function. When the file descriptor indicates that data must be
read, the cmm_notify__dispatch() function is called, and the registered callback
function is invoked from the same thread that calls the cmm_notify_dispatch()
function.

If an error occurs on this file descriptor within poll() or if the file descriptor is no
longer valid, CMM_EBADF is returned by cmm_notify_dispatch(). Then
cmm_cmc_unregister(3CMM) must be called and the whole registration must be
performed - including calling the cmm_cmc_register(3CMM),
cmm_cmc_filter(3CMM) and cmm_notify_getfd() functions.

Note that one call to cmm_notify_dispatch() can lead to as many calls to the
callback as there are pending notifications. If within this callback, some functions are
invoked concerning the state of the cluster (for instance, to get the number of nodes),
the result of the function refers to the state of the cluster when the function was
invoked. It does not refer to the state of the cluster when the notification was
generated. In the meantime, some other modifications could have been applied to the
cluster.

The cmm_notify_dispatch() function returns one of the following values:

CMM_EBADF Bad file descriptor.

CMM_ENOENT No callback is currently registered.

CMM_ENOTSUP Unexpected service error. Cluster might be in a critical
state.

CMM_OK Operation succeeds.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

cmm_notify_dispatch(3CMM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Netra HA Suite CMM Library Functions 139

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), select(3C), poll(2), cmm_cmc_filter(3CMM),
cmm_cmc_register(3CMM), cmm_cmc_unregister(3CMM),
cmm_notify_getfd(3CMM)

cmm_notify_dispatch(3CMM)

SEE ALSO

140 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_notify_getfd – receive cluster membership change messages

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_notify_getfd(int * const fd);

The cmm_notify_getfd() function stores a file descriptor, in fd. This descriptor
detects the cluster membership change control messages sent by the nhcmmd daemon.
System services or applications that require cluster membership change notification
delivery must use the cmm_notify_getfd() and the cmm_notify__dispatch()
functions to receive and process messages from the nhcmmd daemon.

The fd parameter points to the location where the function stores the file descriptor
used to receive messages from nhcmmd.

Use the select() or poll() functions and the file descriptor returned from
cmm_notify_getfd() to detect messages arriving from nhcmmd. When the file
descriptor indicates that data must be read, cmm_notify_dispatch() must be
called. This triggers the associated callback registered through cmm_cmc_register
().

If an error occurs on this file descriptor within poll() or if the file descriptor is no
longer valid, cmm_notify_dispatch() returns a CMM_EBADF error. The thread that
received this error must call the cmm_cmc_unregister() and the whole registration
process must be performed, that is calling the cmm_cmc_register(),
cmm_cmc_filter(), and cmm_notify_getfd() functions.

If the fork command is called, the returned file descriptor is automatically closed in
the created child process. The file descriptor is only valid within the parent.

If an application calls the cmm_notify_getfd() function, it must use the returned
file descriptor. The Cluster Membership Manager (CMM) library itself does not
monitor events, so if the calling process does not call the cmm_notify_dispatch()
function when an event occurs, the events accumulate without being handled.

The cmm_notify_getfd() function returns one of the following values:

CMM_EINVAL Invalid argument.

CMM_ENOENT No callback is currently registered.

CMM_OK Operation succeeds

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

cmm_notify_getfd(3CMM)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION

RETURN VALUES

ATTRIBUTES

Netra HA Suite CMM Library Functions 141

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), select(3C), nhcmmd(1M), fork(2), poll(2),
cmm_cmc_filter(3CMM), cmm_cmc_register(3CMM),
cmm_cmc_unregister(3CMM), cmm_notify_dispatch(3CMM), select(3C),
poll(2)

cmm_notify_getfd(3CMM)

SEE ALSO

142 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_potential_getinfo, cmm_member_getinfo – retrieve information about a peer
node

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_potential_getinfo (cmm_nodeid_t const nodeid,
cmm_member_t * const member);

cmm_error_t cmm_member_getinfo (cmm_nodeid_t const nodeid,
cmm_member_t * const member);

The cmm_potential_getinfo() function retrieves the information contained in the
cmm_member_t structure for a node identified by its nodeid. You can use
cmm_potential_getinfo() to get into any peer node, even if it has the
CMM_OUT_OF_CLUSTER state.

See the Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming
Guide for information about the cmm_member_t structure.

The cmm_member_getinfo() function retrieves the information in the
cmm_member_t structure for a peer node.

If the requested membership information is temporarily unavailable the operation is
retried until it succeeds or a timeout occurs.

In the case of a timeout, the CMM_ETIMEDOUT error is returned. If the nodeid specified
is not in the cluster node table, a CMM_ESRCH error is returned.

The cmm_potential_getinfo() and cmm_member_getinfo() functions take the
following parameters:

member Points to the cmm_member_t structure, which contains
information about the node.

nodeid Identifies the node on which information is requested.

The cmm_potential_getinfo() and cmm_member_getinfo() functions return
one of the following values:

CMM_EAGAIN The information might no longer be valid, as the node
has been out of communication with the master node
for a period of time.

CMM_EBUSY The CMM API server is temporarily unable to respond
to the requested operation. Wait a short time and retry
the operation. The length of the waiting must be
decided by the user, depending on the application’s
characteristics.

CMM_ECONN The nhcmmd daemon cannot be accessed on the current
node.

cmm_potential_getinfo(3CMM)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

Netra HA Suite CMM Library Functions 143

CMM_EINVAL Invalid argument such as the member is a NULL pointer
or invalid nodeid.

CMM_ENOCLUSTER The calling node is not part of any cluster.

CMM_ENOTSUP Unexpected service error. The cluster might be in a
critical state.

CMM_ESRCH Returned by the cmm_member_getinfo() function if
the node is in the local cluster node table but has the
CMM_OUT_OF_CLUSTER role. Returned by both
cmm_potential_getinfo() and
cmm_member_getinfo() functions if the node is not
in the local cluster nodes table.

CMM_ETIMEDOUT The call timeout expired before the action was
completed.

CMM_OK Operation succeeds.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM)

cmm_potential_getinfo(3CMM)

ATTRIBUTES

SEE ALSO

144 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cmm_strerror – get error message string

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

char *cmm_strerror(cmm_error_t errnum);

The cmm_strerror() function maps the error number in errnum to an error
message string, and returns a pointer to that string. The returned string must not be
overwritten or freed by the calling process.

errnum is a string representing an error code.

The cmm_strerror() function returns one of the following values:

"No Error" errnum is equal to CMM_OK.

"Unknown Error" errnum does not correspond to any error code.

“A string equal to the error
code”

errnum is equal to the error code.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM)

cmm_strerror(3CMM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Netra HA Suite CMM Library Functions 145

cmm_master_getinfo, cmm_vicemaster_getinfo – retrieve information about the
master node or the vice-master node

cc [flag...] file... -lcgha_cmm -lrt

#include <cmm.h>

cmm_error_t cmm_master_getinfo(cmm_member_t * const member);

cmm_error_t cmm_vicemaster_getinfo(cmm_member_t * const member);

The cmm_master_getinfo() function returns information about the current master
node. The cmm_vicemaster_getinfo() function returns information about the
current vice-master node. The information returned by these two functions has the
same type and meaning as that returned by the cmm_member_getinfo() function.

The member parameter is a pointer to a member structure where the function stores the
member’s information, such as its current state.

See the Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming
Guide for information on the cmm_member_t structure.

The cmm_master_getinfo() and cmm_vicemaster_getinfo() functions return
one of the following values:

CMM_EAGAIN The information might be deprecated, because a node
has been out of communication with the master node
for a period of time.

CMM_EBUSY The CMM API server is temporarily out of resources to
respond to the requested operation. The recommended
action is to wait a short time and retry the operation.
The length of the waiting must be decided by the user,
depending on the application’s characteristics.

CMM_ECONN No nhcmmd is currently accessible on the local node.

CMM_EINVAL Invalid parameter. member is a NULL pointer.

CMM_ENOCLUSTER The calling node is not yet in a cluster.

CMM_ENOTSUP An unexpected service error occurred. The cluster
might be in a critical state.

CMM_ESRCH No such member. This return value is only applicable
for the vice-master node.

CMM_ETIMEDOUT The call timeout expired before the action was
completed.

CMM_OK Operation succeeds.

See attributes(5) for descriptions of the following attributes:

cmm_vicemaster_getinfo(3CMM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

RETURN VALUES

146 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcmd

Interface Stability Evolving

MT-Level MT-Safe

Cancel-Safety Deferred-Cancel-Safe
Asynchronous-Cancel-Unsafe

Intro(3CMM), cmm_member_getinfo(3CMM)

cmm_vicemaster_getinfo(3CMM)

SEE ALSO

Netra HA Suite CMM Library Functions 147

cmm_vicemaster_getinfo(3CMM)

148 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

File Formats

149

addon.conf – nhinstall configuration file to install additional patches and packages

addon.conf

You can configure the nhinstall tool to install additional patches and packages by
modifying the addon.conf file.

It is not mandatory to configure this file. If this file is not configured or not present in
the directory containing the configuration files, the nhinstall tool assumes there are
no additional patches or packages to be installed. This file can be used to upgrade the
Foundation Services at a later stage.

The templates for the configuration files are contained in the
/opt/SUNWcgha/config.standard directory with .template extensions.
Templates for the addon.conf file are specific to the hardware platform type. Copy
the necessary addon.conf template files to a local directory on the installation server
as follows:

mkdir config-file-directory
export NHOME=/opt/SUNWcgha/config.standard
cp $NHOME/addon.conf.*.template config-file-directory

Note – All the configuration files must be in the same local directory on the installation
server.

The addon.conf file format is ASCII. Comment lines begin with the comment mark
(#). Parameters consist of a keyword followed by an equals (=) sign followed by the
parameter value, of the form:

Keyword=Value

Within the Value, you can use a slash at the end of a line to indicate that the Value is
continued on the following line. You can also add comments within a Value. For
example:

PATCH=123456-01 \ #This is the patch number

NHAS - S USR_SPECIFIC Y Y \ #This is specific to Foundation Services

Each additional patch or package to be installed must be specified in addon.conf by
using the following parameters:

PATCH=reference dir sub_dir phase scope men diskless [- method]

PACKAGE=reference dir sub_dir phase scope men diskless

reference The patch number or the package name.

dir The directory exported from the installation server and mounted on remote
nodes.

To install additional patches or packages from the Solaris distribution on
the installation server after the Solaris operating system is installed on the
nodes, specify the dir as SOLARIS and the phase as S. The additional
patches or packages must be in the directory specified for SOLARIS_DIR in
env_installation.conf.

addon.conf(4)

NAME

SYNOPSIS

DESCRIPTION

150 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

To install additional Foundation Services patches or packages after the
installation of the Foundation Services, specify the dir as NHAS and the
phase as F. The additional patch or package must be in the directory
specified for NHAS2_PRODUCT_DIR in env_installation.conf.

sub_dir The sub_dir directory is a subdirectory of dir containing the patches or
packages. If there is no subdirectory and the package or patch is located in
the exported directory, specify “-” for the sub_dir parameter.

If you define NHAS as the value for the dir parameter, the “-” takes one of
the following values:

� NetraHAS2.1/Packages for a package
� NetraHAS2.1/Patches for a patch

If you define SOLARIS as the value for the dir parameter, the “-” takes one
of the following values:

� Solaris_x/Product for a package
� Solaris_x/Patches for a patch

Where x is 8 or 9, depending on the Solaris version installed.

phase Indicates the phase when the patch or package must be installed. The
phases are:

I The patch or package is installed during the installation of the
Solaris operating system on the master-eligible nodes, and after
the smosservices add command has run for diskless nodes.

S The patch or package is installed after the Solaris operating
system is installed on the master-eligible nodes, and after the
smdiskless add command has run for diskless nodes.

F The patch or package is installed after the Foundation Services
are installed for both the master-eligible nodes and the diskless
nodes.

scope Indicates where the package or patch will be installed.

LOCAL Install the package or patch on the root partition of
master-eligible node or the diskless node. For diskless
nodes, the root partition is
/export/root/diskless-node-name on the master node.

USR_SPECIFIC Install the package or patch in the node’s /usr
directory. For diskless nodes, the /usr directory is the
/export/Solaris_x/usr_sparc_all directory on
the master-eligible node. The basedir is the default.

addon.conf(4)

File Formats 151

USR_SOLARIS Install the package or patch in the node’s /usr
directory. For diskless nodes, the /usr directory is the
/export/Solaris_x directory on the master-eligible
node. The basedir is /usr_sparc.all.

CLONE_OPT Install the package or patch in the clone area for
diskless nodes. The /usr directory is
/export/root/clone/Solaris_x/sun4u. The
basedir is /opt.

SHARED Install the package or patch in the shared package
directory, that is,
/SUNWcgha/local/export/services

If you specify SHARED, the package or patch cannot be
installed after the Solaris installation on master-eligible
nodes because the shared directory does not exist yet.

Note – The USR_SPECIFIC, USR_SOLARIS, and CLONE_OPT parameters
are replaced by LOCAL if you are installing the software for a
master-eligible node.

men Indicates if a patch or package is to be installed on the master-eligible
nodes.

Options are Y or N.

This parameter is ignored if scope is set to SHARED.

diskless Indicates if a patch or package is to be installed for a diskless node.

Options are Y or N.

This parameter is ignored if scope is set to SHARED.

method Indicates the method used for patch installation. The method parameter is
optional. If this parameter is not present, the default method of adding
patches is either patchadd or smosservice patch. If the method
parameter is present, the default method used depends on the value of the
PATCH_WITH_SMOSSERVICE parameter. The possible methods of patch
installation are as follows:

DEFAULT Install patches using the default method

STANDARD Install patches using patchadd

SMOSSERVICE Install patches using smosservice. Note
that you cannot use this method on Solaris
9.

PATCH_WITH_PKGADD Install patch using pkgadd. This method is
reserved for special patches.

addon.conf(4)

152 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

This section provides examples of how to use the addon.conf file.

EXAMPLE 1 Sample addon.conf File

A patch located on the standard NHAS distribution about
packages located on /usr (installed after Solaris installation)
PATCH=123456-01 NHAS - S USR_SPECIFIC Y Y

A patch about shared packages located on a user’s directory
and installed after the Foundation Services installation
PATCH=789012-03 /mydir nhas2/mypatchdir F SHARED

A package located on the standard Solaris distribution and
installed on the root file system only on the diskless nodes.
PACKAGE=SUNWkvm.u SOLARIS - S LOCAL N Y

A package located on a user’s directory and installed
only on the master-eligible nodes after the Solaris installation.

PACKAGE=SUNWsiox.u /export Solaris/package S LOCAL Y N

EXAMPLE 2 A PATCH entry that uses the dir and sub_dir values

PATCH=123456-01 /export patches/Nhas F LOCAL Y Y

Where:

� The patch 123456-01 is located at /export/patches/Nhas.
� The /export directory is the directory that will be shared.

The nhinstall tool executes the following commands:

� On the installation server:

share -F nfs /export

� On remote nodes:

mount server_ip:/export /mnt

patchadd -r /mnt/patches/Nhas 123456-01

EXAMPLE 3 Example 3

To export /export/patches/Nhas, the entry will be:

PATCH=123456-01 /export/patches/Nhas - S LOCAL Y Y

Where “-” means that the mount point is where the patch directory is located and
there is no subdirectory.

See attributes(5) for descriptions of the following attributes:

addon.conf(4)

EXAMPLES

ATTRIBUTES

File Formats 153

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhins

env_installation.conf(4), cluster_definition.conf(4), nhinstall(1M)

addon.conf(4)

SEE ALSO

154 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cluster.conf – SMCT configuration file describing the cluster in terms of nodes, node
groups, domains, and services

SMCT_CONFIG_DIR/models/cluster.conf

smct-config-dir/models/cluster.conf

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

The cluster.conf configuration file describes the target cluster in terms of nodes,
node groups, domains, and the services to be run on each node group. This file uses
the configuration elements shelf, board, disk, ip, and network, which are
described in machine.conf and network.conf.

A pre-configured cluster.conf template file for each example hardware
configuration is available in the /opt/SUNWcgha/nhsmct/etc/models/ directory.

The cluster.conf configuration file contains the following sections:

� Cluster composition

The cluster INVOLVE block contains high level elements that define the cluster:

� The configuration element shelf describes the shelves that contain the cluster
nodes hardware.

� The configuration element domain describes the domain associated to the
cluster.

� The configuration element nodeGroup contains a definition of each node
group. Each node group is defined in terms of master-eligible, dataless, or
diskless, and the supported operating environment.

� Cluster domain definition

The domain INVOLVE block defines the networking parameters associated to the
cluster:

� Subnet definition
� (Optional) Default router definition

The domain USE block defines the access point to the current master node. This
consists of the floating address triplet of the master node.

� Cluster node group definitions

The nodeGroup INCLUDE block defines the set of nodes that belong to the node
group.

The nodeGroup RUN block defines the Foundation Services run by the nodes in the
node group.

� Configuration element definitions

The configuration elements define the characteristics for each of the cluster nodes.

This section describes the parameters in the cluster.conf file:

cluster.conf(4)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

File Formats 155

ELEMENT cluster name
INVOLVE {shelf name}+ {nodeGroup name}+ domain name

ELEMENT domain name [id domainid]
[USE {ip name}+]

[INVOLVE {router name}* {network name}*]

{ ELEMENT nodeGroup name type node-group-type os nodes-group-os arch arch-type
[INCLUDE {nodeGroup name}+]
RUN {service service-name}+

}+

{ ELEMENT node name [id nodeid]
USE board name {disk name}*

}+

Note – Parameters specified within square brackets ([]) in the above syntax can be
defined either in stage 1 or in stage 3 of the SMCT installation process. For more
information, see the Netra High Availability Suite Foundation Services 2.1 6/03 SMCT
Installation Guide.

� name

ASCII string.
� nodeid

The CMM node ID. The nodeid must be a decimal representation of the host part of
the IP address specified in the network.conf file. If you do not specify a value
for the nodeid, the SMCT calculates the value based on the IP address specified in
the network.conf file. For more information, see the network.conf(4) man
page.

� node-group-type

Type of node group. The type can be one of the following:

� MASTER_ELIGIBLE

A group of master-eligible nodes.
� DISKLESS

A group of diskless nodes.
� DATALESS

A group of dataless nodes.
� node-group-os

The operating system used by the node group. This must be configured to
SOLARIS.

� arch-type

The architecture type of the node group hardware. By default, this value is SPARC.
� domainid

The CMM domain ID. Define this parameter in stage three of the configuration
process. For information on the range and format of domainid, see the
nhfs.conf(4) man page.

cluster.conf(4)

156 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

� service-name

Name of the service list that determines which services are run on the node group.
The following service lists are available for each type of node group:

� Master-eligible node group

To assign services for a master-eligible node group, use the following service
list:

NHAS_MASTER_ELIGIBLE [NSM] [RBS] [WDT_MASTER_ELIGIBLE]

For the master-eligible node groups, you can assign the following services:

� NHAS_MASTER_ELIGIBLE to install the mandatory Foundation Services.

� (Optional) NSM to install the Node State Manager service.

� (Optional) RBS to install the Reliable Boot Service. The RBS option can only
be assigned to master-eligible node groups that contain diskless nodes. To
enable a diskless node to boot, you must assign the RBS option.

� (Optional) WDT_MASTER_ELIGIBLE to install the Watchdog Timer. Use the
Watchdog Timer only for Netra servers with hardware watchdogs the LOM
level. Netra servers with hardware watchdogs at the OPB level do not
require this service. These hardware watchdogs are monitored by the
server’s software.

� Dataless node group

� To assign services for a dataless node group in a cluster running the
Foundation Services, use the following service list:

NHAS_DATALESS [WDT_DATALESS]

� NHAS_DATALESS to install the mandatory Foundation Services.

� (Optional) WDT_DATALESS is the Watchdog Timer for the dataless node
group. Use the Watchdog Timer only for Netra servers with hardware
watchdogs the LOM level. Netra servers with hardware watchdogs at the
OPB level do not require this service. These hardware watchdogs are
monitored by the server’s software.

� To assign services for a dataless node group that runs only the CGTP
standalone service, use the following service list:

CGTP_STANDALONE

PATCH_DATALESS

� Diskless node group

� To assign services for a diskless node group in a cluster running the
Foundation Services, use the following service list:

NHAS_DISKLESS boot-policy [WDT_DISKLESS]

� NHAS_DISKLESS to install the mandatory Foundation Services.

� boot-policy is one of the following:

cluster.conf(4)

File Formats 157

MAC_ADDR_POLICY—DHCP static boot policy based on the Ethernet
address of the diskless nodes.

STATIC_CLIENT_ID_POLICY—DHCP client ID boot policy.

� (Optional) WDT_DISKLESS is the Watchdog Timer for the diskless node
group. Use the Watchdog Timer only for Netra servers with hardware
watchdogs the LOM level. Netra servers with hardware watchdogs at the
OPB level do not require this service. These hardware watchdogs are
monitored by the server’s software.

� To assign services for a diskless node group that runs only the CGTP
standalone service, use the following service list:

CGTP_STANDALONE
boot-policy
PATCH_DISKLESS

The following are examples of components of the cluster.conf file.

EXAMPLE 1 Defining the Cluster Composition

Example of the cluster composition section of a twelve-node cluster.

Cluster composition
#
ELEMENT cluster 12N_cluster

INVOLVE shelf shelf_1
shelf shelf_2
domain cluster_domain
nodeGroup master_el
nodeGroup dataless_T1200

nodeGroup dataless_T1105

EXAMPLE 2 Defining the Cluster Domain

Example of the cluster domain section.

Cluster domain definition
#
id -> CMM domainId
ip -> master master-nic0 master-nic1 floating addresses
#
ELEMENT domain cluster_domain id 100

INVOLVE network phys-A
network phys-B

network cgtp
network external
router default-router

USE ip master-cgtp
ip master-nic0

ip master-nic1

EXAMPLE 3 Defining the Master-Eligible Node Group

Example node group and node definition for a master-eligible node group in a
four-node cluster.

cluster.conf(4)

EXAMPLES

158 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

EXAMPLE 3 Defining the Master-Eligible Node Group (Continued)

Master-eligible node group and related nodes definitions
ELEMENT nodeGroup master_el type MASTER_ELIGIBLE os SOLARIS arch SPARC

INCLUDE nodeGroup diskless
node peerNode1-4N
node peerNode2-4N

RUN service NHAS_MASTER_ELIGIBLE
service RBS

#
Master-eligible node definitions
ELEMENT node peerNode1-4N

USE board T1105@peerNode1
disk disk1@peerNode1

#
ELEMENT node peerNode2-4N

USE board T1105@peerNode2

disk disk1@peerNode2

EXAMPLE 4 Defining a Diskless Node Group

Example of a node group and node definition for a diskless node group in a four-node
cluster.

diskless group and related nodes definitions
ELEMENT nodeGroup diskless type DISKLESS os SOLARIS arch SPARC

INCLUDE node peerNode3-4N
node peerNode4-4N

RUN service NHAS_DISKLESS
service MAC_ADDR_POLICY

#
diskless nodes definitions
ELEMENT node peerNode3-4N

USE board T1105@peerNode3
#
ELEMENT node peerNode4-4N

USE board T1105@peerNode4

EXAMPLE 5 Defining a Dataless Node Group

Example of a node group and node definition for a dataless node group in a
twelve-node cluster.

Node Groups definitions
#
Dataless group and related nodes definitions
ELEMENT nodeGroup dataless_T1200 type DATALESS os SOLARIS arch SPARC

INCLUDE node peerNode3-12N
node peerNode4-12N
node peerNode5-12N
node peerNode6-12N

RUN service NHAS_DATALESS
#
Dataless nodes definitions
ELEMENT node peerNode3-12N

cluster.conf(4)

File Formats 159

EXAMPLE 5 Defining a Dataless Node Group (Continued)

USE board T1200@peerNode3
disk disk1@peerNode3

#
ELEMENT node peerNode4-12N

USE board T1200@peerNode4
disk disk1@peerNode4

#
ELEMENT node peerNode5-12N

USE board T1200@peerNode5
disk disk1@peerNode5

#
ELEMENT node peerNode6-12N

USE board T1200@peerNode6

disk disk1@peerNode6

EXAMPLE 6 Defining CGTP Standalone in Diskless Node Group

Example of a diskless node group with CGTP standalone.

ELEMENT nodeGroup standalone_diskless type DISKLESS os SOLARIS arch SPARC
INCLUDE node peerNode3
INCLUDE node peerNode4
RUN service CGTP_STANDALONE

service MAC_ADDR_POLICY

service PATCH_DISKLESS

EXAMPLE 7 Defining CGTP Standalone for Dataless Nodes

Example of a dataless node group with CGTP standalone.

ELEMENT nodeGroup standalone_dataless type DATALESS os SOLARIS arch SPARC
INCLUDE node peerNode3
INCLUDE node peerNode4
RUN service CGTP_STANDALONE

service PATCH_DATALESS

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

cluster_nodes_table(4), nhfs.conf(4), slconfig(1M), slcreate(1M),
sldelete(1M), sldeploy(1M)

Netra High Availability Suite Foundation Services 2.1 6/03 SMCT Installation Guide

cluster.conf(4)

ATTRIBUTES

SEE ALSO

160 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

cluster_definition.conf – nhinstall configuration file to define the cluster

cluster_definition.conf

Configure the cluster_definition.conf file to define the nodes of your cluster
for the nhinstall tool. The nhinstall tool does not support the installation of
dataless nodes.

The templates for the configuration files are contained in the
/opt/SUNWcgha/config.standard directory with .template extensions. Copy
the configuration files to a local directory on the installation server as follows:

mkdir config-file-directory
export NHOME=/opt/SUNWcgha/config.standard
cd config-file-directory
cp $NHOME/cluster_definition.conf.template cluster_definition.conf

Note – All the configuration files must be in the same local directory on the installation
server.

The cluster_definition.conf file format is ASCII. Comment lines begin with the
comment mark (#). Parameters consist of a keyword followed by an equals (=) sign
followed by the parameter value, of the form:

Keyword=Value

Within the Value, you can use a slash at the end of a line to indicate that the Value is
continued on the following line. You can also add comments within a Value. For
example:

PUBLIC_NETWORK=255.255.255.0 \ #This is the netmask value

192.168.0.0 \ #This is the subnet value

The following Keyword and Value parameters are supported:

CLUSTER_ID
The cluster ID used to assign IP addresses to all the nodes in the cluster. This
parameter must be a value between 1 and 254. For example:

CLUSTER_ID=250

It is mandatory to define this parameter.

PASSWORD
The password for the superuser set for all nodes in the cluster. Set this password
even if you manually install the Solaris operating system on the master-eligible
nodes because this password is required by the nhinstall tool to execute the
commands that create the diskless environment.

By default, the password is sunrules.

MEN_INTERFACES
The network interfaces used for Carrier Grade Transfer Protocol (CGTP) on
master-eligible nodes. The parameter has the following format:

cluster_definition.conf(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 161

MEN_INTERFACES=nic0 nic1

nic0 is the name of the first network interface.
nic1 is the name of the second network interface.

It is mandatory to define this parameter.

NMEN_INTERFACES
The network interfaces used for CGTP on diskless nodes. The parameter has the
following format:

NMEN_INTERFACES=nic0 nic1

nic0 is the name of the first network interface.
nic1 is the name of the second network interface.

It is mandatory to define this parameter if diskless nodes are defined.

LOGICAL_SLICE_SUPPORT
Install the volume management feature of the Solaris operating system. Options are
YES and NO. The default is NO.

If LOGICAL_SLICE_SUPPORT is set to YES, the volume management feature of the
Solaris operating system is configured for managing replicated partitions and their
associated bitmap partitions.

The volume management feature must be used for Netra 20 hardware because the
disk scanning mechanism does not guarantee that the slot position of the disk
provides a unique and reproducible unit number, for example, when some disks are
plugged on FC-AL (Fibre Channel-Arbitrated Loop).

If you are using FC-AL disks on Netra 20 servers, you must do one of the following:

� Set SOLARIS_INSTALL to YES in the env_installation.conf file.

Set LOGICAL_SLICE_SUPPORT to YES.

Define a partition with the mount point set to replica by using the SLICE
parameter.

Complete the configuration and run the nhinstall(1M) tool.
� Set SOLARIS_INSTALL to NO in the env_installation.conf file.

Set LOGICAL_SLICE_SUPPORT to NO.

Install the Solaris operating system yourself on the master-eligible nodes
configured with the support of the Solaris Volume Manager (Solaris 9) or
Solstice DiskSuite 4.2.1 (Solaris 8).

Create a disk partition with the attribute replica. This partition is reserved for
storing the metadevice database.

Complete the configuration and run the nhinstall(1M) tool.

cluster_definition.conf(4)

162 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

SERIALIZE_SYNC
Determine how disk synchronization is performed. Values are YES and NO. The
default value is NO.

Synchronization is necessary following a switchover or the vice-master booting, or
when you request a full replication. In these circumstances, if SERIALIZE_SYNC is
set to NO, Reliable NFS starts the synchonization of all slices at the same time. If
SERIALIZE_SYNC is set to YES, slices are synchronized one slice at a time. This
reduces the network and disk overhead but increases the time it takes for the
vice-master to synchronize with the master. During this time, the vice-master is not
eligible to take on the role of master.

USE_WDT
Install and configure the Watchdog Timer packages. Options are YES and NO. The
default is NO.

Set the USE_WDT parameter to YES only if you are using Netra servers with
hardware watchdogs at the LOM level. When this parameter is set to YES, the
Watchdog Timer is installed and configured. In this case, you must install LOM
packages. You can install these packages using the addon.conf file. For more
information, see the addon.conf(4) man page.

Set the USE_WDT parameter to NO if you are using Netra servers with hardware
watchdogs at the OPB level or if you do not want to install the watchdog timer.
OPB-level hardware watchdogs are monitored by the server’s software.

EXTERNAL_ACCESS
Creates a hostname and an external IP address for the node that has the master role.
This IP address is the same for either master-eligible node when that node takes on
the master role. When a node takes on the master role, this IP address and
hostname are assigned to the master node.

The EXTERNAL_ACCESS parameter has the following format:

EXTERNAL_ACCESS=hostname IP-address INTERFACE

� hostname is the external host name given to the master node.
� IP-address is the external IP address given with the master node.
� NIC is the physical network interface to which the IP address is to be associated.

VENDOR_TYPE
List of platform names of diskless nodes to boot. This parameter can have multiple
entries. All entries will be used when the nhinstall tool configures the DHCP.

The VENDOR_TYPE parameter enables you to add a string defining the vendor type
sent by a diskless node when issuing a DHCP boot request. This enables you to
include boards for diskless nodes that are not part of the tested hardware.

The predefined platform names are:

� SUNW.UltraSPARC-IIi-cEngine
� SUNW.UltraSPARC-IIi-Netract

cluster_definition.conf(4)

File Formats 163

� SUNW.UltraSPARCengine_CP-60
� SUNW.UltraAX-i2
� SUNW.NetraCT-410
� SUNW.NetraCT-810

To add new vendor type:

VENDOR_TYPE=new_vendor_type

USE_CGTP
Install the CGTP on the cluster. Options are YES and NO. The default is YES.

If USE_CGTP is set to NO, the CGTP packages and patches are not installed. Only
the first network interface is considered in the definition of NODE. The
CGTP_POSTFIX, if specified, is ignored. In this case, you configure a single network
link and your cluster network is not redundant.

PATCH_WITH_SMOSSERVICE
Install diskless patches with smosservice. Options are YES and NO. The default is
NO.

If PATCH_WITH_SMOSSERVICE is set to YES, the smosservice patch command
installs the patches listed in the addon.conf file and installed on the diskless
environment after the Solaris installation. This installation corresponds to phase I
or S as described in the addon.conf file. The patchadd command installs all
patches applied during phase F. The patchadd command is also used to install
any temporary patches, that is patches with names prefixed T.

Note –

� Do not use PATCH_WITH_SMOSSERVICE on the Solaris 9 operating system.
� You can supersede the patch installation method set with

PATCH_WITH_SMOSSERVICE on a per patch basis. For more information, see
the addon.conf(4) man page.

IDE_SUPPORT
Configure the Sun StorEdge Network Data Replicator (SNDR) to support IDE disks.
Options are YES and NO. The default is NO. For example:

IDE_SUPPORT=YES

RESTRICT_RHOSTS
Restrict the master-eligible nodes from connecting to each other remotely. Options
are YES and NO. The default is NO.

If RESTRICT_RHOSTS is set to YES, only the installation server can connect
remotely to the master-eligible nodes with rsh and rcp commands. The
master-eligible nodes cannot connect to each other remotely. Therefore, you will not
be able to run nhadm(1M) commands such as synccheck and syncgen on the
master-eligible nodes.

If RESTRICT_RHOSTS is set to NO, the master-eligible nodes can connect to each
other remotely with the rsh and rcp commands. The installation server can also
connect to the master-eligible nodes remotely.

cluster_definition.conf(4)

164 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

DISKLESS_BOOT_POLICY
Define the boot policy of the diskless nodes based on a boot policy. Options are
DHCP_STATIC, DHCP_DYNAMIC, and DHCP_CLIENT_ID. The default is
DHCP_DYNAMIC.

To choose the DHCP dynamic boot policy, specify DHCP_DYNAMIC. In this case, the
IP addresses are attributed randomly to diskless nodes from a pool of IP addresses.

To choose the DHCP static boot policy, specify DHCP_STATIC. In this case, the IP
addresses are attributed according to the Ethernet address of the diskless nodes. If
DHCP_STATIC is selected, the MAC0 and MAC1 attributes for diskless nodes must
be set in the NODE parameter. Also, in the NODE parameter, the NIC0 and NIC1
values can be set if the default values specified by NMEN_INTERFACE need to be
superseded.

To choose the DHCP client ID boot policy, specify DHCP_CLIENT_ID. In this case,
the IP addresses are attributed to a diskless node based on its client ID. This
address assignment scheme is relevant only for CompactPCI servers.

REPLICATED_DHCP_FILES
Select the location of the DHCP configuration files. Options are YES and NO. The
default is YES.

If REPLICATED_DHCP_FILES is set to YES, the DHCP configuration files are
located on a replicated partition and are shared by the master-eligible nodes. If
REPLICATED_DHCP_FILES is set to NO, the DHCP configuration files are
duplicated on a local partition of each master-eligible node.

CLUSTER_NETWORK
Define the class of IP addresses for your cluster network. The cluster network can
have IP addresses of any class. The parameter has the following format:

CLUSTER_NETWORK=netmask nic0-subnet nic1-subnet cgtp-subnet

� netmask is the mask common to all subnets configured in the /etc/netmasks
file, for example, 255.255.0.0.

� nic0-subnet is the subnet of the first network interface, NIC0. This subnet is
configured in the /etc/netmasks file, for example, 172.15.0.0.

� nic1-subnet is the subnet of the second network interface, NIC1. This subnet is
configured in the /etc/netmasks file, for example, 172.16.0.0.

� cgtp-subnet is the subnet of the virtual network interface, cgtp0. This subnet is
configured in the /etc/netmasks file, for example, 172.17.0.0.

By default, class C IP addresses are used as follows:

CLUSTER_NETWORK=255.255.255.0 10.clusterid.1.0 10.clusterid.2.0 10.clusterid.3.0

Where clusterid is the value of the CLUSTER_ID parameter.

DISKLESS_TYPE
Define whether the diskless nodes are to be installed in a cluster or as standalone
nodes running only CGTP. Options are CLUSTER and STANDALONE. The default is
CLUSTER.

cluster_definition.conf(4)

File Formats 165

If you specify the CLUSTER option, the diskless nodes are installed with all the
Foundation Services. The nodes are configured to be part of the cluster.

If you specify the STANDALONE option, the diskless nodes are installed with the
CGTP only. The nodes are configured to run as standalone nodes that do not run all
the Foundation Services. The two master-eligible nodes are installed with the
Foundation Services so that the standalone diskless node can be booted by the
master node.

NODE
Define each node. It is mandatory to define this parameter.

There is an entry for each node and each entry has the following format:

NODE=nodeid {MAC0|client-id|-} {MAC1|-} {name|-} {NIC0|-} {NIC1|-} public-name public-IP public-NIC

� nodeid

The ID of the node used to define IP addresses for the node. This option is
mandatory.

� MAC0 | client-id | -

The Ethernet address of the first network interface of the node. This option is
mandatory.

� For master-eligible nodes, this address is required to boot the master-eligible
node from the installation server.

� For a diskless node, whether this value is required depends on the DHCP
boot policy used:

For the DHCP static boot policy, when the DISKLESS_BOOT_POLICY is set
to DHCP_STATIC, specify the Ethernet address of the first network interface
of the node.

For the DHCP dynamic boot policy, when the DISKLESS_BOOT_POLICY is
set to DHCP_DYNAMIC, the MAC0 address is ignored and you must specify a
hyphen (-).

For the DHCP client ID boot policy, when the DISKLESS_BOOT_POLICY is
set to DHCP_CLIENT_ID, specify the client ID as a string in double quotation
marks. You can insert a hexadecimal value, for example “/00999:88:05”.

Note – If you want to include the back slash character, you must include it
twice.

� MAC1

The Ethernet address of the second network interface of the node. This option is
mandatory.

� For master-eligible nodes, the MAC1 address is ignored and you must
specify a hyphen (-).

cluster_definition.conf(4)

166 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

� For a diskless node, this value is required depending on the DHCP boot
policy used:

For the DHCP static boot policy, when the DISKLESS_BOOT_POLICY is set
to DHCP_STATIC, specify the Ethernet address of the second network
interface of the node.

For the DHCP dynamic boot policy, when the DISKLESS_BOOT_POLICY is
set to DHCP_DYNAMIC, the MAC1 address is ignored and you must specify a
hyphen (-).

For the DHCP client ID boot policy, when the DISKLESS_BOOT_POLICY is
set to DHCP_CLIENT_ID, the MAC1 address is ignored and you must specify
a hyphen (-).

� name

Name of the node. By default, the names are assigned as follows:

� For a master-eligible node, MEN-Cclusterid-Nnodeid.
� For a diskless node, NMEN-Cclusterid-Nnodeid.

Do not use underscores (“_”) when naming a node. For more information,
see hosts(4).

� NIC0

Name of the first network interface. This parameter can be set for a diskless
node with the DHCP static boot policy only. If you are using the DHCP static
boot policy and you want to use the default value, which is the first value
defined by the NMEN_INTERFACES parameter, specify a hyphen (-).

For master-eligible nodes and for diskless nodes with other types of DHCP boot
policies, the NIC0 address is ignored. In these cases, you must specify a hyphen
(-).

� NIC1

Name of the second network interface. This parameter can be set for a diskless
node with the DHCP static boot policy. If you are using the DHCP static boot
policy and you want to use the default value, which is the second value defined
by the NMEN_INTERFACES parameter, specify a hyphen (-).

For master-eligible nodes and for diskless nodes with other types of DHCP boot
policies, the NIC0 address is ignored. In these cases, you must specify a hyphen
(-).

� public-name

Name of the node on the public network different from the name defined with
the name parameter. If PUBLIC_NETWORK is not defined, the public-name is
ignored.

� public-ip

cluster_definition.conf(4)

File Formats 167

IP address of the node on the public network. If PUBLIC_NETWORK is not
defined, the public-ip is ignored.

� public-nic

Network interface for the node supporting the public network. This can be
either a physical network interface or an alias. If PUBLIC_NETWORK is not
defined, the public-nic is ignored.

Example 1:

NODE=10 08:00:20:f9:c5:54 - node10
NODE=20 08:00:20:f9:a8:12 - node20
NODE=30 - - node30
NODE=40 - - node40

Example 2:

NODE=10 08:00:20:f9:c5:54 - node10 - - FSNode1 192.168.12.5 hme1:5
NODE=20 08:00:20:f9:a8:12 - node20 - - FSNode2 192.168.12.6 hme1:101
NODE=30 - - node30
NODE=40 - - node40

The first two entries must be the IDs for the master-eligible nodes. The nhinstall
tool first installs the product on the first master-eligible node defined and then on
the second master-eligible node. The remaining entries define the diskless nodes.

To add diskless nodes to a cluster that is already running, add the definitions for the
new nodes by using the NODE parameter and run the nhinstall command with
the add option. For information on the nhinstall command to add diskless
nodes to the cluster, see the nhinstall(1M) man page.

PUBLIC_NETWORK
Define the public network IP addresses and netmasks for the cluster. The parameter
has the following format:

PUBLIC_NETWORK=netmask subnet

� netmask is the mask for the subnet configured in the /etc/netmasks file. For
example: 255.255.255.0

� subnet is the public subnet configured in the /etc/netmasks file. For example:
192.168.0.0

Note – The PUBLIC_NETWORK parameter also configures the network interface of
the installation server. Therefore, the SERVER_IP in the
env_installation.conf file is an IP address that is part of the same subnet as
defined for the PUBLIC_NETWORK.

DEFAULT_ROUTER_IP
Defines the IP address of the default router for the public network. The
DEFAULT_ROUTER_IP is set to an IP address.

DEFAULT_ROUTER_IP=IP address

The default is the public IP address of the installation server.

cluster_definition.conf(4)

168 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

NIC0_POSTFIX, NIC1_POSTFIX, CGTP_POSTFIX
Defines a suffix string for each host name. These definitions can be set to change the
suffix for each host name related to a specific network interface. By default the
suffixes are:

� NIC0_POSTFIX=""

Therefore, by default, the host name for the NIC0 interface has no suffix.

� NIC1_POSTFIX="-nic1"

� CGTP_POSTFIX="-cgtp"

If you specify all the suffixes, as in the following example, the nhinstall tool
creates two host names in the /etc/hosts file—one host name with the suffix and
one host name without the suffix with respect to the NIC0 interface.

For example, if the suffixes are:

NIC0_POSTFIX="-mynic0"
NIC1_POSTFIX="-mynic1"
CGTP_POSTFIX="-mycgtp"

The resulting /etc/hosts file will include the following type of entry for each
node:

10.250.1.10 netraMEN1 netraMEN1-mynic0
10.250.1.20 netraMEN2 netraMEN2-mynic0
10.250.1.30 netraDISKLESS1 netraDISKLESS1-mynic0

Note – Do not use underscores (“_”) within a suffix. For more information, see
hosts(4).

DIRECT_LINK
You can prevent the occurence of two master nodes in one cluster, by connecting
the serial ports of the two master-eligible nodes and defining the DIRECT_LINK
parameter. By default, this parameter is not configured.

The DIRECT_LINK parameter has the following format:

DIRECT_LINK=MEN1-serial-device MEN2-serial-device speed [heartbeat-in-seconds]

� MEN1-serial-device is the serial port on the first master-eligible node to use to
connect to the second master-eligible node, for example, /dev/ttya

� MEN2-serial-device is the serial port on the second master-eligible node to use to
connect to the second master-eligible node, for example, /dev/ttya

� speed is the serial line speed. Valid values for speed are 38400, 57600, 76800, and
115200.

� heartbeat-in-seconds is the frequency of the heartbeat checking the link between
the two master-eligible nodes. The default value for heartbeat is 20 seconds.

BITMAP_IN_MEMORY
Define where the scoreboard bitmaps of the shared partitions are stored.

cluster_definition.conf(4)

File Formats 169

If you choose the option YES, the scoreboard bitmaps are configured to be stored in
memory. In this case, changes are written to the disk only when the node is shut
down. This provides better performance on the nodes. However, if both
master-eligible nodes fail, the disks must be resynchronized.

Alternatively, if you choose the option NO, the scoreboard bitmaps are configured to
write changes to the disk at each update.

For compatibility with previous releases, the default is NO:

BITMAP_IN_MEMORY=NO

NFS_USER_DIR_NOAC
Define the NFS noac option for remote mounted directories. The noac option
suppresses data and attributes caching.

If you choose YES, the noac option is configured when mounting remote
directories. In this case, all data is retrieved from the master node disk. Data and
attribute caching is suppressed.

Alternatively, if you choose NO, the noac option is not configured. In this case, data
is cached on the local node.

Use the noac option if the impact on performance is acceptable.

For compatibility with previous releases, the default is YES, for example:

NFS_USER_DIR_NOAC=YES

SLICE_SYNC_TYPE
Define how the replicated partitions are synchronized. Options are:

FS Only blocks that contain data are replicated. Choose
this option for faster synchronization.

RAW All blocks are replicated. Choose this option for
slower synchronization.

The default option for SLICE_SYNC_TYPE is FS.

SLICE_SYNC_TYPE=FS

CHECK_REPLICATED_SLICES
Define whether the replicated partition sanity check is activated. Options are YES
and NO. The default is NO.

If CHECK_REPLICATED_SLICES is set to YES, the sanity check is activated. If
CHECK_REPLICATED_SLICES is set to NO, the sanity check is not activated.

MASTER_LOSS_DETECTION
Define if the absense of a master node in the cluster must be detected by diskless
nodes. Options are YES and NO. The default is YES.

cluster_definition.conf(4)

170 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

If MASTER_LOSS_DETECTION is set to YES, the absense of a master node in the
cluster is detected by the diskless nodes and if such an absense occurs, the diskless
nodes are rebooted. If MASTER_LOSS_DETECTION is NO, the absense of a master
node in the cluster is not detected by diskless nodes.

SLICE
Defines the disk partitioning. There is an entry for every partition on the disk, and
each entry has the following format:

SLICE=name size mount-point bitmap option

� name

The name of the disk partition. For example, c0t0d0s0. The name can also be a
metadevice name if you have already installed the Solaris operating system
configured with the volume management feature. However, slice 2 is reserved.

� size

The size of the partition in Mbytes. For slice 7, the size can be set to free unless
the partition is replicated.

� mount-point

The name of the mount point of the partition. If the partition is replicated, the
mount point must be set to unnamed.

If the partition is reserved for metadevice database storage, the mount point
must be set to replica. This is because one partition is required to have the
replica attribute when LOGICAL_SLICE_SUPPORT is set to YES. See Example
3 in this man page.

� bitmap

The name of the replicated partition. If the partition is not replicated, specify a
hyphen (-).

� option

The mount option.

For further details about name, size, mount-point, and option, see the Solaris
JumpStart™ documentation.

SLICE=c0t0d0s0 2048 / - logging
SLICE=c0t0d0s1 1024 swap - -
SLICE=c0t0d0s3 2048 /export c0t0d0s5 logging
SLICE=c0t0d0s4 2048 /SUNWcgha/local c0t0d0s6 logging
SLICE=c0t0d0s5 3 unnamed - -
SLICE=c0t0d0s6 3 unnamed - -

SLICE=c0t0d0s7 free /test1 - logging

The following disk partitions are mandatory:

� The root partition, /
� The /SUNWcgha/local partition

cluster_definition.conf(4)

File Formats 171

� If diskless nodes are configured, the /export partition

EXPORTED
The directory to be created and exported on the master–eligible node. There is an
entry for every directory to be exported. Each entry has the following format:

EXPORTED=name

name is the directory to be exported. However, do not specify the following
directories:

� /SUNWcgha/local/export because the nhinstall tool automatically creates
this directory

� /export if a diskless environment is required, the nhinstall tool
automatically creates this directory

Note – Exported directories must be on a replicated partition because these
directories must be accessible regardless of the node that is master. Exporting a
non-replicated directory results in errors during a switchover.

MOUNTED
The mount point on the master–eligible node of the directory that is mounted on
the master-eligible nodes and the diskless nodes. There is an entry for each mount
point, and each entry has the following format:

MOUNTED=mounting-point remote-dir

� mounting-point

The mount point on each node.

� remote-dir

The directory name on the master-eligible node.

The following directories are automatically created by the nhinstall tool. Do not
define them.

� The /SUNWcgha/remote directory, which is the mount point for the
men_name:/SUNWcgha/local/export/data directory.

� The /SUNWcgha/services directory, which is the mount point for the
men_name:/SUNWcgha/local/export/services/ha_v1/opt.

� The /SUNWcgha/swdb directory, which is the mount point for the
men_name:/SUNWcgha/local/export/services directory.

Where men_name is the host name of the master-eligible nodes.

Caution – For remote directories, define only child directories that were previously
exported, that is, directories on a replicated partition.

Do not define /export or its subdirectories because it will conflict with the
management of diskless nodes.

cluster_definition.conf(4)

172 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

DATA_MGT_POLICY
Define how the cluster behaves when the vice-master node starts up while the
master node is down. Options are:

INTEGRITY The vice-master waits for the old master to rejoin the
cluster before it takes the master role. This ensures
that the cluster uses the most up-to-date data.

AVAILABILITY The vice-master does not wait for the old master to
rejoin the cluster before it takes the master role. Data
written to the master while the vice-master is down
is lost.

ADAPTABILITY The vice-master checks the disk synchronization
state. If the state is not synchronized, that is the state
returned by nhcmmstat is synchro:NEEDED, the
vice-master waits for the old master to rejoin the
cluster. If the state is synchronized, that is the state
returned by nhcmmstat is synchro:READY, the
vice-master is elected as the new master.

The default value for DATA_MGT_POLICY is INTEGRITY.

DATA_MGT_POLICY=INTEGRITY

SYNC_FLAG
Delays disk synchronization at startup. Options are YES and NO. The default is YES.

If SYNC_FLAG is set to NO, you delay the start of disk synchronization until you use
the nhenablesync command. For more information, see the nhenablesync(1M)
man page.

MEN_OS_REFERENCE
Defines the profile of the operating system to be used. This parameter is used when
the automatic release detection based on the /etc/release file does not enable
you to determine the correct operating system version where the Solaris
distribution has been updated but there is no change to the Solaris release
identification information. Current options are:

S8U7 Solaris 8 2/02 s28s_u7wos_08a SPARC

S8U7_108528-21 Solaris 8 2/02 s28_uwos_08a SPARC — patched
version of the Solaris operating system which is
reserved for use with Netra CT 820 hardware

S8PSR3 Solaris 8 HW 7/03 s28s_hw3wos_05a SPARC

S9HWPL3 Solaris 9 s9_58shwp13 SPARC

S9U1 Solaris 9 9/02 s9s_u1wos_08b SPARC

There is no default value for MEN_OS_REFERENCE. The option is automatically
detected based on the contents of the /etc/release file.

cluster_definition.conf(4)

File Formats 173

DISKLESS_OS_REFERENCE
Defines the profile of the Solaris operating system used in the diskless node
environment. This parameter is used when automatic release detection based on the
contents of the /etc/release file does not permit nhinstall to determine the
correct version of the operating system. This can occur when the Solaris
distribution has been updated but the release identification information has not
changed. Options are:

S8U7 Solaris 8 2/02 s28s_u7wos_08a SPARC

S8U7_108528-21 Solaris 8 2/02 s28_uwos_08a SPARC — patched
version of the Solaris operating system which is
reserved for use with Netra CT 820 hardware

S8PSR3 Solaris 8 HW 7/03 s28s_hw3wos_05a SPARC

S9HWPL3 Solaris 9 s9_58shwp13 SPARC

S9U1 Solaris 9 9/02 s9s_u1wos_08b SPARC

There is no default value for MEN_OS_REFERENCE. The option is automatically
detected based on the contents of the /etc/release file.

EXAMPLE 1 Example of a standard configuration for a cluster with two master-eligible nodes
and one diskless node

#
Copyright 2003 Sun Microsystems, Inc. All rights reserved.
#
#
The usage of shell variables is authorized.
This file is sourced by the nhinstall script.
#

#--
#
This file enables you to define the cluster
environment.
#
#--

CLUSTER_ID=250

ARCH=sun4u

MEN_INTERFACES=hme0 hme1

NMEN_INTERFACES=eri0 eri1

LOGICAL_SLICE_SUPPORT=NO

USE_CGTP=YES

RESTRICT_RHOSTS=NO

NODE=10 08:00:20:f9:b3:6a

cluster_definition.conf(4)

EXAMPLES

174 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

EXAMPLE 1 Example of a standard configuration for a cluster with two master-eligible nodes
and one diskless node (Continued)

NODE=20 08:00:20:f9:aa:66
NODE=30 - - node30

SLICE=c0t0d0s0 2048 / - logging
SLICE=c0t0d0s1 1024 swap - -
SLICE=c0t0d0s3 2048 /export c0t0d0s5 logging
SLICE=c0t0d0s4 2048 /SUNWcgha/local c0t0d0s6 logging
SLICE=c0t0d0s5 3 unnamed - -
SLICE=c0t0d0s6 3 unnamed - -

SLICE=c0t0d0s7 free /test1 - logging

EXAMPLE 2 Example of a configuration for a cluster with no diskless nodes

If you have only two master-eligible nodes in your cluster, the disk layout and disk
partitioning are different from those of a cluster with one diskless node or more.

The order of the partitions differs from the order in the preceding example as follows:

� There is no /export partition. Instead, there are two user partitions—one
replicated and one not replicated.

� There is no bitmap partition associated to the /export partition.

� The user directory is defined as exported on both partitions, and the mount points
on the user directory are accessible from both nodes.

#
Copyright 2003 Sun Microsystems, Inc. All rights reserved.
#
#
The usage of shell variables is authorized.
This file is sourced by the nhinstall script.
#

#--
#
This file enables you to define the cluster
environment.
#
#--

CLUSTER_ID=250

ARCH=sun4u

MEN_INTERFACES=hme0 hme1

NODE=10 08:00:20:f9:c5:54
NODE=20 08:00:20:f9:a8:12

SLICE=c0t0d0s0 2048 / - logging
SLICE=c0t0d0s1 1024 swap - -
SLICE=c0t0d0s3 3 unnamed - -

cluster_definition.conf(4)

File Formats 175

EXAMPLE 2 Example of a configuration for a cluster with no diskless nodes (Continued)

SLICE=c0t0d0s4 3 unnamed - -
SLICE=c0t0d0s5 2048 /SUNWcgha/local c0t0d0s3 logging
SLICE=c0t0d0s6 2048 /user1 c0t0d0s4 logging
SLICE=c0t0d0s7 free /test1 - logging

EXPORTED=/user1/export

MOUNTED=/user1_app /user1/export/app

EXAMPLE 3 Example of a configuration for a cluster with volume-managed, replicated
partitions for FC-AL disks

#
Copyright 2003 Sun Microsystems, Inc. All rights reserved.
#
#
The usage of shell variables is authorized.
This file is sourced by the nhinstall script.
#

#--
#
This file enables you to define the cluster
environment.
#
#--

CLUSTER_ID=250

ARCH=sun4u

MEN_INTERFACES=hme0 hme1

NMEN_INTERFACES=eri0 eri1

LOGICAL_SLICE_SUPPORT=YES

NODE=10 08:00:20:f9:c5:54
NODE=20 08:00:20:f9:a8:12
NODE=30 - - node30

SLICE=c0t0d0s0 2048 / - logging
SLICE=c0t0d0s1 1024 swap - -
SLICE=c0t0d0s3 2048 /export c0t0d0s5 logging
SLICE=c0t0d0s4 2048 /SUNWcgha/local c0t0d0s6 logging
SLICE=c0t0d0s5 3 unnamed - -
SLICE=c0t0d0s6 3 unnamed - -

SLICE=c0t0d0s7 free replica - logging

cluster_definition.conf(4)

176 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhins

nhinstall(1M), nhadm(1M), nhenablesync(1M), addon.conf(4),
env_installation.conf(4), hosts(4), Solaris Installation Guide

cluster_definition.conf(4)

ATTRIBUTES

SEE ALSO

File Formats 177

cluster_nodes_table – central cluster management file

/etc/opt/SUNWcgha/cluster_nodes_table

The cluster_nodes_table contains a definition for each node in the cluster. The
cluster_nodes_table is located on each master-eligible node. This file stores the
membership and configuration information for all peer nodes in a cluster including
potential future nodes. A node must have an entry in the cluster_nodes_table to
be part of a cluster.

If you install the software on the cluster manually, as described in the Netra High
Availability Suite Foundation Services 2.1 6/03 Custom Installation Guide, you must create
this file on each master-eligible node. A template of the cluster_nodes_table file
is available in /etc/opt/SUNWcgha/cluster_nodes_table.template.

By default, the cluster_nodes_table is located in the /etc/opt/SUNWcgha/
directory on each master-eligible node. You can change the path to the cluster node
table by editing the parameter CMM.LocalConfig.Dir parameter in the nhfs.conf
file. For more information on nhfs.conf, see the nhfs.conf(4) man page.

The following is an example of a cluster node table with three peer nodes:

#NodeId Domain_id Name Attributes

10 250 netraMEN1-cgtp0 -

20 250 netraMEN2-cgtp0 –

30 250 netraDISKLESS1-cgtp0 –

NodeId This is the unique node ID within the cluster. This number is the
decimal equivalent of the host part of the node’s IP address.

Domain_id This is the unique cluster ID within the cluster domain and must
be the same for each peer node. This Domain_id must be the
same as the one defined in the nhfs.conf file. For more
information see the nhfs.conf(4) man page.

Name This is the node name. The name must be the same as the one in
the nhfs.conf file on the node. See the nhfs.conf(4) man page.

Attributes Each node can be assigned the following attributes:

Note – Do not alter the role of a node by modifying the attribute
column of cluster_nodes_table file.

D Disqualified

cluster_nodes_table(4)

NAME

SYNOPSIS

DESCRIPTION

178 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

D corresponds to the CMM_DISQUALIFIED_MEMBER
attribute of the CMM API. If a node is flagged as
disqualified, it cannot be assigned a master or
vice-master role. This attribute is only applied to a
master-eligible node.

S Synchronization needed

If a node has the S flag, the disks of the master node
and vice-master nodes are not synchronized. This is a
read-only flag and must not be changed manually. This
attribute applies only to master-eligible nodes.

- Not Disqualified

If a node has this attribute, the node is not disqualified
and is in the cluster.

To check the role of a node, use the nhcmmstat command, as described in the
nhcmmstat(1M) man page.

If you want to add a new node to a cluster you must either verify that the node
already has an entry in the cluster node table or create an entry for this node in the
table. You must only modify this file during initial cluster configuration if you install
the software manually on the cluster or if you are adding or removing a node. For
more information, see the cmm_config_reload(3CMM) man page.

When editing the cluster node table file, make sure that:

1. The NodeId for each node in the cluster_nodes_table is unique. If this is not
the case, use nhcmmstat to determine the correct NodeId of the peer nodes and
modify the cluster node table.

2. The NodeId for each node in the cluster_nodes_table has a value n such that
3<n<255. If this is not the case, modify the cluster node table.

3. The master-eligible nodes have the attribute “–” in cluster_nodes_table. If
this is not the case, correct this error in the file.

All other updates are performed automatically by the nhcmmd daemon. The nhcmmd
daemon on the master node uses the cluster node table to know which nodes are in
the cluster and what attributes they are assigned.

The cluster_nodes_table is read and changed automatically by the nhcmmd
daemon as follows:

1. When the master node is elected:

a. The master node reads the cluster_nodes_table and stores it in memory.

b. The master node broadcasts this view of the cluster_nodes_table to peer
nodes in the cluster.

cluster_nodes_table(4)

EXTENDED
DESCRIPTION

File Formats 179

c. Each master-eligible node receives this view and stores this view of the
cluster_nodes_table.

2. When the cluster is running:

a. After the cluster is up and running, the cluster_nodes_table is only read
when a cmm_config_reload() is called or when the following command is
executed:

nhcmmstat -c reload

b. The master node reads and stores the new view of the
cluster_nodes_table in memory.

c. The master node broadcasts the new view to peer nodes in the cluster.

d. The vice-master node receives this view and stores this view of the
cluster_nodes_table.

3. The cluster_nodes_table is modified when an attribute of a node has been
changed through the API, for example, cmm_member_setqualif().

The preceding methods of creating and managing the cluster_nodes_table file,
ensures that the cluster_nodes_table is persistent, that is, if the cluster goes down
for any reason, the same cluster_nodes_table file is restored when the cluster
comes back up, no matter which master-eligible nodes is elected master.

Changes should not be made to the cluster node table without careful consideration
because the cluster node table maintains the central view of the cluster membership
and node status. Altering the cluster node table can result in a cluster that is not highly
available.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcma

Interface Stability Evolving

nhcmmd(1M), nhadm(1M), nhfs.conf(4), nhcmmstat(1M),
cmm_config_reload(3CMM)

cluster_nodes_table(4)

WARNINGS

ATTRIBUTES

SEE ALSO

180 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

diskless_nodeprof.conf – permit the customization of Solaris
installation on diskless nodes

diskless_nodeprof.conf

Creating the diskless_nodeprof.conf file enables you to to install a different
Solaris distribution in the diskless node environment of a cluster to the distribution
you are installing on the master-eligible nodes. To use the
diskless_nodeprof.conf file you must be installing a cluster with nhinstall.

When the diskless_nodeprof.conf file is present in the local directory on the
installation server, the file’s contents supersede the contents of both the
nodeprof.conf file and the default profile file that nhinstall uses for diskless
node installation. If the diskless_nodeprof.conf file exists, nhinstall uses the
nodeprof.conf file for details of the Solaris profile it is to install on the
master-eligible nodes and the diskless_nodeprof.conf file for the Solaris profile
it is to install in the diskless node environment.

Note – If you want to install the same Solaris profile on master-eligible and diskless
nodes, do not create a diskless_nodeprof.conf file.

The first reference to cluster in the diskless_nodeprof.conf file must refer to the
cluster parameter to be given to the smosservice add command. Any other
directives given in this file will be ignored. For more information about the
smosservice command, see the smosservice(1M) man page.

Note – You cannot use nhinstall to install software on dataless nodes.

For information about the format and contents of the diskless_nodeprof.conf
file, see the nodeprof.conf file and “Preparing Custom JumpStart Installations
(Tasks)” in the Solaris Installation Guide.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

nhinstall(1M), smosservice(1M), nodeprof.conf(4), Solaris Installation Guide

diskless_nodeprof.conf(4)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

File Formats 181

env_installation.conf – nhinstall configuration file defining the installation
environment

env_installation.conf

Configure the env_installation.conf file to define the installation environment
for the nhinstall tool.

The templates for the configuration files are contained in the
/opt/SUNWcgha/config.standard directory with .template extensions. Copy
the configuration files to a local directory on the installation server as follows:

mkdir config-file-directory
export NHOME=/opt/SUNWcgha/config.standard
cd config-file-directory
cp $NHOME/env_installation.conf.template env_installation.conf

Note – All the configuration files must be in the same local directory on the installation
server.

The env_installation.conf file format is ASCII. Comment lines begin with the
comment mark (#). Parameters consist of a keyword followed by an equals (=) sign
followed by the parameter value, of the form:

Keyword=Value

The following Keyword and Value parameters are supported:

Modify variables in the env_installation.conf file as follows:

SERVER_INTERFACE
The network interface of the installation server used to access the cluster when
installing the product, for example:

SERVER_INTERFACE=hme1

SERVER_NODE
The node ID of the installation server within the cluster. This must be a unique
value between 3 and 254, for example:

SERVER_NODE=253

SERVER_IP
The IP address of the installation server. This IP address is required only when a
public network is used, that is, the PUBLIC_MEN_INTERFACES variable is defined
in cluster_definition.conf. If you do not specify the SERVER_IP variable,
an IP address is automatically created based on the cluster ID, CLUSTER_ID, and
the node ID, SERVER_NODE. The CLUSTER_ID is specified in
cluster_definition.conf.

SERVER_IP=192.168.12.50

env_installation.conf(4)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION

182 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

Note – If you plan to configure external IP addresses for nodes in the cluster by
configuring the PUBLIC_NETWORK parameter in the cluster_definition.conf
file, make sure that the IP address specified in the SERVER_IP parameter is on the
same subnet as the one specified in the PUBLIC_NETWORK parameter. The
PUBLIC_NETWORK parameter configures the network interface of the installation
server.

AUTO_REBOOT
When launched, the nhinstall tool automatically reboots the nodes as required
during the installation process.

Options are YES and NO. The default is NO.

SOLARIS_INSTALL
Install the Solaris operating system. Options are ALL, NONE, and DISKLESS_ONLY.
The default is ALL.

If you choose NONE, the Solaris operating system is not installed on the cluster
nodes. In this case, make sure of the following before launching the nhinstall
tool:

� The Solaris operating system is already installed on the nodes.
� Java Development Kit (JDK) is not already installed on the cluster nodes.

If you choose DISKLESS_ONLY, the Solaris operating system is not installed on the
master-eligible nodes. You must make sure that the Solaris operating system is
already installed on the nodes before running the nhinstall tool. When you
launch the nhinstall tool, the Solaris services for the diskless nodes are installed.

If you are using Fibre Channel-Arbitrated Loop (FC-AL) disks on Netra 20 servers,
see “Configuring the nhinstall Tool” in Netra High Availability Suite Foundation
Services 2.1 6/03 Custom Installation Guide before setting this parameter.

NHAS2_PRODUCT_DIR
The directory containing the Foundation Services distribution, for example:

NHAS2_PRODUCT_DIR=/cdrom

WORKING_DIR
The directory on the installation server where temporary files are created during
the installation process. This directory must be writable and shared. The progress
indicator used for installation recovery is also stored in this directory. Do not
specify the /tmp directory, which is deleted in the event of a reboot.

WORKING_DIR=/export/nhtmp

SOLARIS_DIR
The location of the Solaris distribution, for example:

SOLARIS_DIR=/export/su28u7fcs

env_installation.conf(4)

File Formats 183

DISKLESS_SOLARIS_DIR
The location of the Solaris distribution for diskless nodes, if this distritbution is not
the same as that installed on the other nodes in the cluster. By default, the Solaris
distribution installed on the master-eligible nodes is used for
DISKLESS_SOLARIS_DIR.

DISKLESS_SOLARIS_DIR=$SOLARIS_DIR

EXAMPLE 1 Sample env_installation.conf File

#
Copyright 2003 Sun Microsystems, Inc. All rights reserved.
#
The usage of shell variables is authorized.
This file is sourced by the nhinstall script.
#--
#
This file enables you to define the installation
environment.
#
#--
#
Installation server network interface used to access the cluster.
#
SERVER_INTERFACE=hme1

#
The node id attributed to the installation server within the cluster.
#
SERVER_NODE=253

#
The public IP address used only when PUBLIC_MEN_INTERFACES is configured.
#
For example:
SERVER_IP=192.168.12.50
#

#
Install Solaris on the master-eligible nodes.
Options are ALL, NONE, or DISKLESS_ONLY. The default is ALL.
SOLARIS_INSTALL=ALL

#
Automatically reboot the master-eligible nodes after:
. The Foundation Services are installed
. The diskless environment is configured
#
Options are YES or NO. The default is NO.
#
AUTO_REBOOT=NO

#
IMPORTANT:
All directories mentioned below will be exported (via the share command)
Please check that they can be exported. The directories must not be the
child or parent of a directory already exported.

env_installation.conf(4)

EXAMPLES

184 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

EXAMPLE 1 Sample env_installation.conf File (Continued)

#

#
Location of the Foundation Services software distribution.
(usually the CDROM reader)
#
NHAS2_PRODUCT_DIR=/cdrom

#
Define the working directory where:
. The progress indicator file is stored.
. The JumpStart directory and files used for installing Solaris
on nodes are created.
This directory must be writable.
#
WORKING_DIR=/export/nhtmp

#
Location of the Solaris distribution on the installation server.
#

SOLARIS_DIR=/export/home/s9hwl3

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhins

nhinstall(1M), cluster_definition.conf(4), addon.conf(4)

env_installation.conf(4)

ATTRIBUTES

SEE ALSO

File Formats 185

install-server.conf – SMCT configuration file to configure the network for the
installation server

SMCT_DEFAULT_CONFIG_DIR/models/install-server.conf

config-dir/models/install-server.conf

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

The install-server.conf configuration file enables network configuration
between the prototype machine and the installation server. The prototype machine
and the installation server must be on the same subnet.

The following are the parameters in the install-server.conf file:

install-server network configuration file
name install-server-name
ip install-server-IP
netmask netmask
nic nic-name
router y/n

� install-server-name

Host name of the installation server.

� install-server-IP

IP address of the installation server.

� netmask

Netmask of the private network between the installation server and the prototype
machine.

� nic-name

Interface name of the installation server’s private network.

� y/n

By default, SMCT verifies that the installation server does not act as a router, that
is, the file /etc/notrouter exists. This avoids the broadcasting of routing
information from the private network over the public network. To enable routing,
set the parameter to y. The default value is n.

The name, ip, netmask, and nic parameters are mandatory and must be configured.
The router parameter is optional.

The following is an example of an install-server.conf file:

install-server network configuration file
name installserv1
ip 10.100.1.1
netmask 255.255.255.0
nic hme1

router n

install-server.conf(4)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXAMPLE

186 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

flcreate(1M), fldeploy(1M), flinstall(1M), master-system.conf(4)

install-server.conf(4)

ATTRIBUTES

SEE ALSO

File Formats 187

machine.conf – SMCT configuration file to define the cluster in terms of hardware
elements, disk layout, and file system

SMCT_CONFIG_DIR/models/machine.conf

smct-config-dir/models/machine.conf

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

The machine.conf configuration file enables you to define the hardware
components, disk layout for master-eligible and dataless nodes, and the file system of
the cluster.

A pre-configured machine.conf template file for each example hardware
configuration is available in the /opt/SUNWcgha/nhsmct/etc/models/ directory.
For a description of the files in this directory, see the Netra High Availability Suite
Foundation Services 2.1 6/03 README.

The machine.conf configuration file contains the following sections:

� Cluster hardware definition

This section is a hierarchical description of the cluster hardware, starting with a top
level description of the contents of the shelf, which typically contains drawers and
switches. The cluster hardware definition is referenced by the cluster definition in
the cluster.conf file.

The following configuration elements are defined by the ELEMENT keyword:

� drawer

A container that holds one or several boards and disks.

� board

The CPU board associated to a node and the network interface cards (NIC) that
it uses. Nodes are defined in the cluster.conf file.

� switch

The set of ports used to connect the NICs.

� port

The connection between the switch ports and the NICs.

� Disk layout

The disk layout section contains a description of the disk layout for the
master-eligible nodes and dataless nodes.

The following configuration elements are defined by the ELEMENT keyword:

� disk

A disk is described in terms of slices by using the slice configuration element.

� slice

machine.conf(4)

NAME

SYNOPSIS

DESCRIPTION

188 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

Each slice is described in terms of size of partition, the file system to be mapped
to the slice, and whether the slice is replicated or not, using the attributes
number, size, type, and role.

� File system definitions

The file system definition section contains definitions of the file systems on each
disk. The following configuration element is defined by the ELEMENT keyword:

� filesys

Each file system is defined in terms of root directories, read and write
permissions, if the file system is exported, and if the file system is shared.

� link

A direct link connecting the serial ports of the master-eligible nodes can be
configured to prevent a split brain situation, which is an error scenario where a
cluster has two master nodes.

The ip configuration elements referenced in the machine.conf file are defined in the
network.conf file.

This section describes the parameters in the machine.conf file:

{ ELEMENT shelf name
CONTAIN {drawer name}+ {switch name}*

}+

{ ELEMENT drawer name type drawer-type
[CONTAIN {board name}* {disk name}*]

}+

{ ELEMENT drawer name type drawer-type
[CONTAIN {board name}* {disk name}*]

}+

{ ELEMENT switch name type switch-type
[CONTAIN {port name}*]
[USE {ip name}*]

}*

{ ELEMENT port number number number-value
CONNECT nic name

}*

{ ELEMENT board name arch arch-type type board-type
[vendorType board-vendorType] [class board-class]

[clientId board-clientId]
[USE {nic name}+ [link name]

}+

{ ELEMENT nic name device nic-device type nic-type role nic-role
class nic-class [address nic-address]
[USE ip name]

}*

{ ELEMENT disk name device disk-device type disk-type size disk-size
CONTAIN {slice name}+

machine.conf(4)

PARAMETERS

File Formats 189

}*

{ ELEMENT slice name number slice-number type slice-type size slice-size
rawDev rawDev-name blockDev blockDev-name [role slice-role]
[MAP filesys name]
[USE slice name]
[MANAGE replicatedSlice name]

}*

{ ELEMENT filesys name role filesys-role type filesys-type
[size filesys-size] [fsck filesys-fsck] [mntPt filesys-mntPt]
[mntBt y/n] [mntOpt filesys-mntOpt] [remMntPt filesys-mntOpt]
[CONTAIN {exportedFileSys name}+]

}*

{ ELEMENT link name device name [speed speed-value] } *

� name

The unique name of the configuration record.
� drawer-type

The type of drawer. This can be one of the following:

� CT410
� CT810
� CT821
� NETRA_20
� NETRA_120
� T1_105
� T1_200

� switch-type

The type of switch. This must be set to GENERIC.
� board-type

The type of board. This can be one of the following:

� CP2140
� CP2160
� CP2300
� T4
� V120
� T1_105
� T1_200
� GENERIC
� sun4u

� board-class

The type of machine hardware, for example, sun4u. Configure this parameter if
you have set the board-type to GENERIC. It is not necessary to configure this
parameter for non-generic boards as it is pre-configured with the output from the
uname -m command.

� board-vendorType

machine.conf(4)

190 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

The type of hardware implementation. For example,
SUNW,UltraSPARC-IIi-cEngine. Configure this parameter if you have set the
board-type to GENERIC. It is not necessary to configure this parameter for
non-generic boards as it is pre-configured with the output from the uname -i
command.

� disk-size

The size of the disk in Gbytes.

� arch-type

The type of architecture. This must be set to SPARC.

� nic-type

The type of NIC. This can be one of the following:

� PHYSICAL

For a NIC that is not aliased. For example, eri0.

� VIRTUAL

For a NIC that is not related to a physical device. For example, cgtp0.

� LOGICAL

� For a NIC that is aliased on a physical NIC. For example, eri1:10.

� nic-class

The class of the NIC. This can be one of the following:

� PRIMARY

For a NIC using the Solaris JumpStart configuration.

� SECONDARY

For a NIC that is not using the Solaris JumpStart configuration.

� nic-role

The role of the NIC. A NIC can be assigned to the CGTP or the Node State
Manager (NSM).

For the CGTP service, you need to choose three NICs:

� A NIC associated to physical subnet A with the role CGTP_NIC0.
� A NIC associated to physical subnet B with the role CGTP_NIC1.
� A NIC associated to the virtual subnet CGTP with the role CGTP.

For the NSM service, you need to choose a NIC associated to an external subnet
with the role NSM.

� nic-address

The Ethernet address of the NIC. This parameter is needed for:

� Master-eligible nodes and dataless nodes. This parameter must be configured
for the PRIMARY NIC to configure Solaris JumpStart.

machine.conf(4)

File Formats 191

� Diskless nodes. This parameter must be configured for the PRIMARY and
SECONDARY NICs if the boot policy of the associated node group set to
MAC_ADDR_POLICY in the cluster.conf file.

� disk-type

The type of the disk. This can be one of the following:

� SCSI
� IDE
� FC (Fibre Channel-Arbitrated Loop)

� slice-number

The slice-number parameter is used with the disk device name to define the name of
the slice.

The name of the slice = disk-device+ slice-number.

For example:

c0t0d0s0 = c0t0d0 + s0

In this case, the slice-number is 0.

� slice-rawDev

The name of the raw-device family associated to the slice. For example,
/dev/rdsk.

� slice-blockDev

The name of the block-device family associated to the slice. For example,
/dev/md/dsk.

� slice-type

The type of slice. This can be one of the following:

� PHYS

A slice that is not managed by Solaris Volume Manager.

� META

A slice managed by Solaris Volume Manager that is the same size as the related
PHYS slice

� SOFT

A slice managed by Solaris Volume Manager that is less than or equal to the
related PHYS slice.

The PHYS and META slices are associated to PHYS slices by the keyword USE.

� slice-role

The role of the slice. This can be one of the following:

� META_DB

Used for Solaris Volume Management.

� BITMAP_SNDR

machine.conf(4)

192 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

Used by Sun StorEdge Network Data Replicator (SNDR) for each REPLICATED
slice. BITMAP_SNDR slices can be either PHYS slices or SOFT slices.

� REPLICATED

Slices that SNDR must manage. REPLICATED slices can either be PHYS slices or
META slices.

If a REPLICATED slice is defined, then you must define a BITMAP_SNDR slice,
linked to the previous one by the keyword MANAGE.

� slice-size

The number of cylinders multiplied by 1 Mbyte.
� y/n

This is yes or no for the mntBt option, that is, the mount at boot option.
� filesys-role

The role of the file system. This can be one of the following:

� root

Defines the root file system.
� swap

Defines the swap file system.
� export

Defines the file system containing the diskless environment.
� shared

Defines the file system that contains the software shared by all the cluster
nodes.

� user

User-defined file system
� data

NFS file system exporting cluster-wide data.
� database

NFS file system exporting shared software database.
� services

NFS file system exporting shared software.

The data, database, and services file systems are related to the shared file
system.

� filesys-type

The type of file system. This can be one of the following:

� ufs
� nfs
� swap

machine.conf(4)

File Formats 193

� filesys-size

The size of the file system in Mbytes.
� filesys-fsck

The file system to be checked. This can be either 1 or 2.
� filesys-mntPt

The mount point for the file system. The value can include the <--SWLID--> tag,
which is replaced with the software load version by the SMCT.

� filesys-mntOpt

The mount options for the file system.
� filesys-remMntPt

The exported mount point for the shared file systems.
� speed-value

The speed of the serial line. Valid values are 38400, 57600, 76800, and 115200. The
default value is 115200.

Following is an example of the disk layout section of the machine.conf file:

ELEMENT slice s0@disk1 number 0 rawDev /dev/rdsk blockDev /dev/dsk
type PHYS size 2048
MAP filesys ROOT

Swap partition
ELEMENT slice s1@disk1 number 1 rawDev /dev/rdsk blockDev /dev/dsk

type PHYS size 1024
MAP filesys SWAP

Shared software and data partition (replicated)
ELEMENT slice s3@disk1 number 3 rawDev /dev/rdsk blockDev /dev/dsk

type PHYS size 2048

ELEMENT slice d3@disk1 number 3 rawDev /dev/md/rdsk blockDev /dev/md/dsk
type META size 2048 role REPLICATED
USE slice s3@disk1
MAP filesys SHARED

ELEMENT slice d31@disk1 number 31 rawDev /dev/md/rdsk blockDev /dev/md/dsk
type SOFT size 10 role BITMAP_SNDR
USE slice s7@disk1
MANAGE replicatedSlice d3@disk1

User partition 1 (replicated)
ELEMENT slice s4@disk1 number 4 rawDev /dev/rdsk blockDev /dev/dsk

type PHYS size 2048

ELEMENT slice d4@disk1 number 4 rawDev /dev/md/rdsk blockDev /dev/md/dsk
type META size 2048 role REPLICATED
USE slice s4@disk1
MAP filesys USER1

...

The following is an example of a configuration for the direct link via a serial line
between the two master-eligible nodes:

machine.conf(4)

EXAMPLES

194 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

ELEMENT link serial-b device /dev/term/b speed 57600

ELEMENT board T1105@peerNode1 type T1_105 arch SPARC
USE nic nic0@peerNode1

nic nic1@peerNode1
nic cgtp@peerNode1

link serial-b

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

cluster.conf(4), network.conf(4), slconfig(1M), slcreate(1M),
sldelete(1M), sldeploy(1M)

machine.conf(4)

ATTRIBUTES

SEE ALSO

File Formats 195

master-system.conf – SMCT network configuation file to connect the prototype
machine and the installation server

SMCT_CONFIG_DIR/models/master-system.conf

config-dir/models/master-system.conf

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

The master-system.conf configuration file enables network configuration between
the prototype machine and the installation server.

The master-system.conf file contains the following parameters:

master system network configuration file
name prototype-machine-name
ip prototype-machine-IP
mac prototype-machine-ethernet-address

� prototype-machine-name

Host name of the prototype machine.

� prototype-machine-IP

IP address of the prototype machine.

� prototype-machine-ethernet-address

Ethernet address of the prototype machine. Do not define this parameter if
prototype-machine-name is already defined in the file /etc/ethers.

The following is an example of a master-system.conf file:

master system network configuration file
name protomachine1
ip 10.100.1.10
netmask 255.255.255.0

mac 8:0:20:f9:c2:b0

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

flcreate(1M), flinstall(1M), install-server.conf(4)

master-system.conf(4)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

EXAMPLE

ATTRIBUTES

SEE ALSO

196 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

network.conf – SMCT configuration file to define the network parameters for the
cluster

SMCT_CONFIG_DIR/models/network.conf

smct-config-dir/models/network.conf

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

Configure the network.conf file to define specific network information used by the
target cluster. This includes IP addresses, network, and netmask information for
physical and virtual cluster network interfaces, and default routes used to access the
cluster.

A pre-configured network.conf template file for each example hardware
configuration is available in the /opt/SUNWcgha/nhsmct/etc/models/ directory.

The following are the parameters of the network.conf file:

{ ELEMENT network name type network-type number network-number
netmask network-netmask
}+

{ ELEMENT ip name address ip-address type ip-type {alias name}*
BELONG_TO network name}+

{ ELEMENT router name
USE ip name}+

� name

Unique ID as an ASCII string.
� network-type

Network type. This parameter must be set to IPV4.
� network-number

IP network number in standard IP network number format (dotted notation), for
example, 10.101.1.0.

� network-netmask

IP network netmask in standard IP network netmask format (dotted notation), for
example, 255.255.255.0.

� ip-type

IP address type. This can be one of the following:

� FLOATING

The floating address triplet of the master node referenced by the configuration
element domain in cluster.conf file. Alternatively, you can specify the
floating address used by the Node State Manager, which is defined in the
cluster.conf file.

� STATIC

network.conf(4)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

File Formats 197

All IP addresses that are not of type FLOATING.
� ip-address

IP address in standard IP address format (dotted notation), for example,
10.101.1.10.

You can choose to configure IP addresses of any class for your nodes. However, the
following rules apply:

� The nodeid in the cluster.conf file must be a decimal representation of the
host part of the corresponding IP address.

� The host part of the IP address for the NIC0, NIC1, and cgtp0 interfaces of a
node must be the same.

The following is an example of a network.conf file for a four-node cluster:

ident "@(#)network.conf.4N.tmpl 1.5"

- 4 nodes reference platform network definition template -
--
#
ELEMENT network phys-A type IPV4 number 10.101.1.0 netmask 255.255.255.0
ELEMENT network phys-B type IPV4 number 10.101.2.0 netmask 255.255.255.0
ELEMENT network cgtp type IPV4 number 10.101.3.0 netmask 255.255.255.0
#
Cluster nodes IP addresses
#
ELEMENT ip peerNode1-4N-nic0 address 10.101.1.10 type STATIC alias node1

BELONG_TO network phys-A
ELEMENT ip peerNode1-4N-nic1 address 10.101.2.10 type STATIC

BELONG_TO network phys-B
ELEMENT ip peerNode2-4N-nic0 address 10.101.1.20 type STATIC alias node2

BELONG_TO network phys-A
ELEMENT ip peerNode2-4N-nic1 address 10.101.2.20 type STATIC

BELONG_TO network phys-B
ELEMENT ip peerNode3-4N-nic0 address 10.101.1.30 type STATIC alias node3

BELONG_TO network phys-A
ELEMENT ip peerNode3-4N-nic1 address 10.101.2.30 type STATIC

BELONG_TO network phys-B
ELEMENT ip peerNode4-4N-nic0 address 10.101.1.40 type STATIC alias node4

BELONG_TO network phys-A
ELEMENT ip peerNode4-4N-nic1 address 10.101.2.40 type STATIC

BELONG_TO network phys-B
#
Master floating addresses
#
ELEMENT ip master-cgtp address 10.101.3.1 type FLOATING alias master

BELONG_TO network cgtp

ELEMENT ip master-nic0 address 10.101.1.1 type FLOATING
BELONG_TO network phys-A

ELEMENT ip master-nic1 address 10.101.2.1 type FLOATING
BELONG_TO network phys-B

#

network.conf(4)

EXAMPLES

198 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

Cluster nodes CGTP addresses
#
ELEMENT ip peerNode1-4N-cgtp alias peerNode1-4N-cgtp.localdomain

address 10.101.3.10 type STATIC
BELONG_TO network cgtp

ELEMENT ip peerNode2-4N-cgtp alias peerNode2-4N-cgtp.localdomain
address 10.101.3.20 type STATIC
BELONG_TO network cgtp

ELEMENT ip peerNode3-4N-cgtp alias peerNode3-4N-cgtp.localdomain
address 10.101.3.30 type STATIC
BELONG_TO network cgtp

ELEMENT ip peerNode4-4N-cgtp alias peerNode4-4N-cgtp.localdomain
address 10.101.3.40 type STATIC
BELONG_TO network cgtp

#
Router ip addresses
#
ELEMENT ip router-4N-nic0 address 10.101.1.90 type STATIC

BELONG_TO network phys-A
ELEMENT ip router-4N-nic1 address 10.101.2.90 type STATIC

BELONG_TO network phys-B
#
Default router configuration
#
ELEMENT router default-router

USE ip router-4N-nic0
ip router-4N-nic1

#
External access to switches
#
ELEMENT ip switch1-4N-nic0 address 10.101.1.100 type STATIC

BELONG_TO network phys-A
ELEMENT ip switch2-4N-nic0 address 10.101.2.200 type STATIC

BELONG_TO network phys-B

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

cluster.conf(4), machine.conf(4), slconfig(1M), slcreate(1M),
sldelete(1M), sldeploy(1M), slexport(1M)

network.conf(4)

ATTRIBUTES

SEE ALSO

File Formats 199

nhadmsync.conf – list of nonreplicated files and the differences between them

/SUNWcgha/remote/etc/nhadmsync.conf

The nhadmsync.conf file is the configuration file for the nhadm synccheck and
nhadm syncgen commands. The nhadm synccheck command compares
nonreplicated files on the master and the vice-master nodes, printing any differences
to the console. You can accept the differences using the nhadm syncgen command.

To use these commands, both master-eligible nodes must have remote access to the
other master-eligible node. For details on how to enable this, see the nhadm(1M) man
page.

In the nhadmsync.conf, you must specify the nonreplicated files that you want to
compare. The default location of this file is
/SUNWcgha/remote/etc/nhadmsync.conf. The name and location of this file can
be changed at any time and is specified in the -y | —syncfile option, when using
the nhadm synccheck command.

You can create multiple versions of the nhadmsync.conf file. This enables you to
have lists that are specific to a feature or a group of features, as described in the
nhadm(1M) man page. The nhadm synccheck configuration files must have write
permissions if you want to use the nhadm syncgen command.

To use the nhadmsync.conf file, copy the template file
/opt/SUNWcgha/config.standard/adm/nhadmsync.conf.template to
/SUNWcgha/remote/etc/nhadmsync.conf.

Add the names of the files to be compared, to the nhadmsync.conf file. Make sure
that the filenames you add have the following criteria:

� The files exist on both master-eligible nodes
� The files are not replicated on a shared file system

The syntax of your entries in this file must be the following:

NODEID=node1 node2
FILE=filename1
=BEGIN
...
=END

FILE=filename2
=BEGIN
...

=END

NODEID
node1 and node2 are the node IDs of the master and vice-master nodes, respectively.
If these are not present, the default logical IP addresses of the master and
vice-master nodes are used.

When nhadm syncgen is executed, the NODEID parameter is generated with the
actual node IDs of both nodes to ensure the comparison is always made in the same
order. This is because the diff -b command is dependent on the order of the files.

nhadmsync.conf(4)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION

200 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

If the NODEID parameter is present, it must be the first line of the
nhadmsync.conf file and can only be preceded by a blank line.

FILE
The name of the file to be tested.

=BEGIN...=END
This contains the result of the diff -b command for the file specified by the
preceding FILE parameter.

EXAMPLE 1 Example of information added by syncgen after the file comparisons

If you defined the nhadmsync.conf file as follows:

NODEID=10 20
FILE=/etc/ethers
FILE=/etc/hosts

FILE=/etc/netmasks

After the nhadm syncgen command is executed, the nhadmsync.conf file might
contain the following information:

NODEID=10 20
FILE=/etc/ethers
FILE=/etc/hosts
=BEGIN
5c5,6
< 10.250.1.10 MEN-C250-N10 loghost

> 10.250.1.20 MEN-C250-N20 loghost
> 10.250.1.10 MEN-C250-N10
8d8
< 10.250.1.20 MEN-C250-N20
=END

FILE=/etc/netmasks

The differences printed to the nhadmsync.conf file are the differences that would be
found by running diff -b on the files listed in nhadmsync.conf. For more
information on the diff command, see the diff(1) man page.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhadm

Interface Stability Evolving

nhadm(1M), diff(1)

nhadmsync.conf(4)

EXAMPLES

ATTRIBUTES

SEE ALSO

File Formats 201

nhfs.conf – Foundation Services configuration file

/etc/opt/SUNWcgha/nhfs.conf

The nhfs.conf file contains configuration information for the Foundation Services
such as the Cluster Membership Manager, Reliable NFS, and the Node State Manager.
This file also provides cluster addressing and interface configuration information.

Configure this file on each node if you plan to install the Foundation Services
manually. To manually configure the parameters in the nhfs.conf file, uncomment
the parameters, that is, delete the comment mark (#) at the beginning of the line, and
modify the value of the parameter. A description of each parameter is provided in the
following sections.

When you have manually install the Foundation Services packages, copy the template
file /etc/opt/SUNWcgha/nhfs.conf.template to the default location
/etc/opt/SUNWcgha as nhfs.conf on each peer node. For each file, make the
necessary modifications in a text editor.

Do not re-edit the nhfs.conf file when the cluster is running.

The nhfs.conf file format is ASCII. Parameters consist of a keyword followed by an
equals (=) sign followed by the parameter value, of the form:

Keyword=Value

The following Keyword and Value parameters are supported.

Cluster.DataManagementPolicy
Define how the cluster behaves when the vice-master node starts up while the
master node is down. You can select one of three data management policies. Values
are Integrity, Availability, and Adaptability. The default value is
Integrity.

Cluster.DataManagementPolicy=Integrity | Availability | Adaptability

Integrity If there is a vice-master but no master in the cluster,
the vice-master waits for the old master to rejoin the
cluster before it takes the master role. This ensures
that the cluster has the most up-to-date data.
Choosing this value might reduce the availability of
the cluster, but it prioritizes data integrity.

Availability If there is a vice-master in the cluster but no master,
the vice-master does not wait for the old master to
rejoin the cluster before taking on the master role.
The previous master is still off-line. Any data that is
written to the new master while there is no
vice-master will be lost. When the old master node
comes back on line as the vice-master node, a full
synchronization occurs between the two
master-eligible nodes.

nhfs.conf(4)

NAME

SYNOPSIS

DESCRIPTION

COMMON
PARAMETERS

202 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

Adaptability If there is a vice-master in the cluster but no master,
the vice-master checks the disk synchronization
state. If the state is not synchronized, that is the state
returned by nhcmmstat is synchro:NEEDED, the
vice-master waits for the master to come up. This is
equivalent to the Integrity data management
policy. If the state is synchronized, that is the state
returned by nhcmmstat is synchro:READY, the
vice-master is elected the new master. This is
equivalent to the Availability data management
policy.

Cluster.Master.ID
Specify the host part of the master node’s floating IP address in decimal form. The
floating address triplet for the node with the master role is calculated from the local
network interface addresses, the netmask, and the value of this parameter. These
addresses are IPv4 address.

The default value is 1.

Cluster.Master.ID=1

If the Cluster.Master.ID is 1 and the cluster network is set up as follows:

� Netmask: 255.255.255.0
� NIC0 subnet: 192.200.168.0
� NIC1 subnet: 10.250.2.0
� cgtp0 subnet: 192.200.175.0

The floating address triplet is as follows:

� NIC0 floating address: 192.200.168.1
� NIC1 floating address: 10.250.2.1
� cgtp0 floating address: 192.200.175.1

This address is calculated similarly if you have IP addresses of any other class.

CMM.MasterLoss.Detection
Determine if the absense of a master node in the cluster must be detected by
diskless and dataless nodes. Values are True and False. The default is False.

If CMM.MasterLoss.Detection is set to False, the diskless and dataless nodes
are rebooted when they detect that there is no master node in the cluster for a
period of more then 4–5 minutes. If CMM.MasterLoss.Detection is set to True,
the diskless and dataless nodes do not reboot if there is no master node in the
cluster. However, the diskless and dataless nodes cannot access directories that
would be exported by the master node if such a node existed. You must ensure that
diskless and dataless nodes can adapt to this situation.

Node.Domainid
Specify the domainid of the cluster. You must modify this parameter. There is no
default value.

nhfs.conf(4)

File Formats 203

Node.Domainid=250

Node.NodeId
This parameter specifies the node ID of the current node. There is no default value.

Node.NIC0
The name of the first network interface, NIC0, used for CGTP. The default value is
hme0.

Node.NIC0=hme0

This parameter could be a logical network interface, for example, hme0:2.

If you have not installed the CGTP patches and packages and you want to configure
a single network link for your cluster, configure this parameter.

Node.NIC1
The name of the second network interface, NIC1, used for CGTP. The default value
is hme1.

Node.NIC1=hme1

This parameter could be a logical network interface, for example, hme1:2.

If you have not installed the CGTP patches and packages and you want to configure
a single network link for your cluster, do not configure this parameter.

Node.NICCGTP
The virtual interface used by CGTP. The default value is cgtp0.

Node.NICCGTP=cgtp0

If you have not installed the CGTP patches and packages and you want to configure
a single network link for your cluster, do not configure this parameter.

Node.UseCGTP
Specify whether the CGTP is to be used or not. Values are True or False. The
default value is True.

Node.UseCGTP=True

If you have not installed the CGTP patches and packages and you want to configure
a single network link for your cluster, set this parameter to False.

Node.Type
Specify the type of node. Defining this parameter is mandatory. When you create
the nhfs.conf file on each peer node, specify the type of node in this parameter.
The Node.Type parameter can have one of the following values:

� Diskfull—A master-eligible node
� Dataless—A dataless node
� Diskless—A diskless node

There is no default value. For more information on types of nodes, see the Netra
High Availability Suite Foundation Services 2.1 6/03 Overview.

nhfs.conf(4)

204 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

Node.RNFS.Installed
Specify whether Reliable NFS is installed on a node. Values are True or False. The
default value is False.

Node.RNFS.Installed=True

Both master-eligible nodes must have the same value for this parameter.

To prevent a split brain situation, you can connect the serial ports of the
master-eligible nodes and configure the following parameters. Split brain is a situation
where the network fails and two master nodes are elected in the same cluster.
Configure the following parameters if you have connected the serial ports of the
master-eligible nodes.

Node.Direct-Link.Serial.Device
Specify the serial device, that is, the system’s serial ports. There is no default value.

Node.Direct-Link.serial.Device=/dev/term/b

Node.Direct-Link.Serial.Speed
Specify the serial line speed. Valid values are 38400, 57600, 76800, or 115200. The
higher the value, the better the link.

There is no default value.

Node.Direct-Link.serial.Speed=115200

Cluster.Direct-Link.Backend
This parameter enables the direct link. If this parameter is not present in the
nhfs.conf file, the direct link will not be used even if you have connected the
serial ports of the master-eligible nodes.

The only value accepted by this parameter is serial:

Cluster.Direct-Link.Backend=serial

Cluster.Direct-Link.Heartbeat

Specify the number of seconds between two checks to detect a failure. Therefore, if
one master-eligible node receives no heartbeat during the specified period of
seconds, the node is alerted that there may be a problem.

There is no default value. For example, specify an interval of 20 seconds as follows:

Cluster.Direct-Link.Heartbeat=20

CMM.IsEligible
Specify whether the node is master eligible. Values are True or False. The default
value is False.

CMM.IsEligible=True

CMM.LocalConfig.Dir
Specify the directory where the configuration file, cluster_nodes_table, is
located on each master-eligible node. There is no default value.

nhfs.conf(4)

DIRECT LINK
PARAMETERS

CMM
PARAMETERS

File Formats 205

CMM.LocalConfig.Dir=/etc/opt/SUNWcgha

CMM.Miniconfig.Dir
Specify the directory where the configuration file, target.conf, is located on each
master-eligible node. There is no default value.

CMM.Miniconfig.Dir=/etc/opt/SUNWcgha

CMM.Miniconfig.File
Specify the name of the local configuration file, target.conf. There is no default
value.

CMM.Miniconfig.File=target.conf

For more information on the CMM parameters, see the nhcmmd(1M) man page.

RNFS.StatdAlternatePath
Specify the alternate statd repository. For information about statd, see the
statd(1M) man page.

You must modify this parameter. There is no default value.

RNFS.StatdAlternatePath=directory-path

where directory-path is the path to the statd directory. This directory must be on a
replicated disk partition.

RNFS.StatdAlternatePath=/SUNWcgha/local

RNFS.Slice
Define the disk partitions that must be replicated by Reliable NFS. You must
modify this parameter. The format for this parameter is:

RNFS.Slice.x=local-disk-partition local-bitmap-partition \

remote-disk-partition remote-bitmap-partition mount-flag

� x is an integer (0, 1, 2) that distinguishes each partition to be replicated.

� local-disk-partition and remote-disk-partition are the paths to the raw disk partitions
on the local and remote nodes.

� local-bitmap-partition and remote-bitmap-partition are the paths to the scoreboard
bitmaps associated to local-disk-partition and remote-disk-partition respectively.

� mount-flag is 0, 1 or 2:

0 Do not mount the partition.

1 Mandatory mount. If the partition is not mountable, stop with error.

2 Best effort mount. Try to mount the partition. If this is not possible,
log an error and continue.

There is no default value.

RNFS.Slice.0=/dev/rdsk/c0t0d0s3 /dev/rdsk/c0t0d0s5 \

/dev/rdsk/c0t0d0s3 /dev/rdsk/c0t0d0s5 1

nhfs.conf(4)

RELIABLE NFS
PARAMETERS

206 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

RNFS.Share
Describes the file systems to be shared. You must modify this parameter.

� This parameter uses the same syntax as the share command. For more
information, see the share(1M) man page.

� Each share command must be on its own line. The first string of an
RNFS.Share line must be either share or /usr/sbin/share.

� Each RNFS.Share line must contain one share command line per partition to be
exported by NFS.

� Each RNFS.Share.x represents a partition to be shared and x is an integer (0, 1,
2) that distinguishes each partition to be replicated.

To ensure that the CMM behaves correctly, you must:

� Grant superuser access for all the master-eligible nodes on the exported file
system where the cluster_nodes_table file resides.

� Use the addresses for the CGTP interface for the master-eligible nodes. If CGTP
is not installed, use the NIC0 addresses.

There is no default value. In the following example, cgtp6 and cgtp7 represent
the static CGTP addresses of the master-eligible nodes.

RNFS.Share.0=share -F nfs -o rw,root=cgtp6:cgtp7 \
-d "SUNWcgha" /SUNWcgha/local/export

RNFS.Share.1=share -F nfs -o rw -d "diskless1" -o \
rw,root=diskless1:diskless1-b:cgtp-diskless1 \

/export/root/netraDISKLESS1

If you have diskless nodes in the cluster, add the cgtp0 address of the diskless
nodes.

RNFS.Share.0=share -F nfs \
-o rw,root=cgtp6:cgtp7:cgtp8 \

-d "SUNWcgha" /SUNWcgha/local/export

RNFS.CheckReplicatedSlices
Check the status of replicated slices by continuously scanning them. This property
is disabled by default. To enable this property, set
RNFS.CheckReplicatedSlices to True:

RNFS.CheckReplicatedSlices=True

This check is only performed when the cluster is in the synchro:READY state. To
determine the synchronization state of the cluster, run the nhcmmstat command. If
you enable this property and the cluster is not in the synchro:READY state the
following action occurs:

� An error message is displayed on the master node.
� The cluster is put in the synchro:NEEDED state to prevent a switchover

occurring. If a switchover occurs, the master might not have access to the most
up to date data.

nhfs.conf(4)

File Formats 207

RNFS.CheckReplicatedSlicesInterval
Set the time between two successive reads of the replicated slices. Values are a
number of milliseconds. The default value is 10 milliseconds. The
RNFS.CheckReplicatedSlicesInterval property is ignored if the
RNFS.CheckReplicatedSlices property is not set to True.

RNFS.CheckReplicatedSlicesInterval=time in milliseconds

RNFS.EnableSync
Determine when disk synchronization occurs. Values are True and False. The
default is True.

If RNFS.EnableSync is set to True, disk synchronization is triggered at startup.

If RNFS.EnableSync is set to False, you delay the start of disk synchronization
until you use the nhenablesync command. For more information on this
command, see the nhenablesync(1M) man page.

RNFS.EnableSync=False

RNFS.SyncType
Specify the method used for synchronization between slices on master-eligible
nodes. Values are FS or RAW. The default value is FS.

If RNFS.SyncType is set to FS, this feature is enabled. The time taken for a full
slice synchronization is reduced because only the blocks used by the slice’s
file-system are replicated. If RNFS.SyncType is set to RAW, this property is
disabled.

Both master-eligible nodes must have the same value for the RNFS.SyncType
parameter. If you change the value of the RNFS.SyncType property, reboot the
master-eligible nodes one at a time. For information on rebooting cluster nodes, see
“Shutting Down and Restarting a Cluster” in the Netra High Availability Suite
Foundation Services 2.1 6/03 Cluster Administration Guide. The RNFS.SyncType
property is only valid for master-eligible nodes.

RNFS.SerializeSync
Determine how disk synchronization is performed. Values are TRUE and FALSE.
The default value is FALSE.

Synchronization is necessary following a switchover or the vice-master booting, or
when you request a full replication. In these circumstances, if
RNFS.SerializeSync is set to FALSE, Reliable NFS starts the synchonization of
all slices at the same time. If RNFS.SerializeSync is set to TRUE, slices are
synchronized one slice at a time. This reduces the network and disk overhead but
increases the time it takes for the vice-master to synchronize with the master.
During this time, the vice-master is not eligible to take on the role of master.

For more information on the Reliable NFS parameters, see the nhcrfsd(1M) man
page.

Note – Some parameters in this file require a single value while others require multiple
values.

nhfs.conf(4)

208 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

RNFS.StatdAlternatePath=/SUNWcgha/local

RNFS.Slice.0=/dev/rdsk/c0t0d0s3 /dev/rdsk/c0t0d0s5 /dev/rdsk/c0t0d0s3 \
/dev/rdsk/c0t0d0s5 1

RNFS.Slice.1=/dev/rdsk/c0t0d0s4 /dev/rdsk/c0t0d0s6 /dev/rdsk/c0t0d0s4 \
/dev/rdsk/c0t0d0s6 1

RNFS.Share.0=share -F nfs -o rw,root=b14-ct400-10-cgtp:b14-ct400-20-cgtp \
-d "SUNWcgha" /SUNWcgha/local/export

RNFS.Share.1=share -F nfs -o rw -d "Export" /export

Configure these parameters to specify the external floating address assigned to the
master node. The following parameters must be configured when you use the Node
State Manager.

NSM.Exec.MasterDir
The directory containing the scripts for the master node. There is no default value.

NSM.Exec.MasterDir=/opt/SUNWcgha/actions/master

NSM.Exec.ViceMasterDir
The directory containing the scripts for the vice-master node. There is no default
value.

NSM.Exec.ViceMasterDir=/opt/SUNWcgha/actions/vicemaster

NSM.Log.MasterDir
The log file directory for the master node. There is no default value.

NSM.Log.MasterDir=/var/run/SUNWcgha/actions/master

NSM.Log.ViceMasterDir
The log file directory for the vice-master node. There is no default value.

NSM.Log.ViceMasterDir=/var/run/SUNWcgha/actions/vicemaster

NSM.External.Master.Address
The external floating address that is always assigned to the master node.

NSM.External.Master.Address=IP-address/netmask-size

The netmask-size value is optional. There is no default value.

NSM.External.Master.Address=192.168.12.39

NSM.External.Master.Broadcast
The broadcast address. This parameter is optional. If not configured, the broadcast
address is automatically determined based on the IP address and netmask. There is
no default value.

NSM.External.Master.Broadcast=192.168.255.255

NSM.External.Master.NIC
The physical or logical network interface for the external floating address of the
master node. There is no default value.

nhfs.conf(4)

NODE STATE
MANAGER

PARAMETERS

File Formats 209

NSM.External.Master.NIC=hme0:3

NSM.External.Master.RouteAdd
Set the arguments to be passed to the route add command when a master-eligible
node becomes a master node. This parameter is optional. If not defined, no routes
are defined. There is no default value.

NSM.External.Master.RouteAdd=default 192.168.12.250

The preceding example generates the following command:

route add default 192.168.12.250

NSM.External.Master.RouteDelete
Set the arguments to be passed to the route delete command when a node loses
the master role. This parameter is optional. There is no default value.

NSM.External.Master.RouteDelete=default 192.168.12.250

The preceding example generates the following command:

route delete default 192.168.12.250

The following parameters are optional and must be configured only if you have
installed the Watchdog Timer on the nodes of your cluster.

WATCHDOG.NhasWatchdog
If this parameter is set to true, the product enables the watchdog and initiates the
patting of the watchdog.

Options are true or false. The default is false.

WATCHDOG.NhasWatchdog=false

WATCHDOG.ShutDownTimeout
The maximum number of milliseconds to wait for the system to reach init run
level 6 during a shutdown. See the init(1M) man page.

The value must be provided in milliseconds. The default value is 5000.

WATCHDOG.ShutDownTimeout=6000

WATCHDOG.OsTimeout
The maximum number of milliseconds to wait between the system boot at init
run level 2 and init run level 6. See the init(1M) man page.

The value must be provided in milliseconds. The default value is 3000.

WATCHDOG.OsTimeout=5000

WATCHDOG.PattingIntvl
The interval after which the hardware watchdog is re-enabled by the Watchdog
Timer daemon, nhwdtd. The value must be provided in milliseconds and must be
at least 1000 milliseconds less than the values of the WATCHDOG.OsTimeout and
WATCHDOG.ShutDownTimeout parameters. The default value is 2000.

nhfs.conf(4)

WATCHDOG
TIMER

PARAMETERS

210 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

patting_intvl=5000

EXAMPLE 1 Example of the nhfs.conf File on a Master-Eligible Node

Common part
Node.DomainId=69
Node.NIC0=hme0:1
Node.NIC1=hme1
Node.NICCGTP=cgtp0
Node.UseCGTP=True
Node.type=Diskfull

Cluster part
Cluster.Master.Id=1

CMM part
CMM.IsEligible=True
CMM.LocalConfig.Dir=/etc/opt/SUNWcgha

RNFS part
RNFS.StatdAlternatePath=/SUNWcgha/local

RNFS.Slice.0=/dev/rdsk/c0t0d0s3 /dev/rdsk/c0t0d0s5 /dev/rdsk/c0t0d0s3 \
/dev/rdsk/c0t0d0s5 1
RNFS.Slice.1=/dev/rdsk/c0t0d0s4 /dev/rdsk/c0t0d0s6 /dev/rdsk/c0t0d0s4 \
/dev/rdsk/c0t0d0s6 1

RNFS.Share.0=share -F nfs -o rw,root=b14-ct400-10-cgtp:b14-ct400-20-cgtp \
-d "SUNWcgha" /SUNWcgha/local/export
RNFS.Share.1=share -F nfs -o rw -d "Export" /export

RNFS.Installed=True

NSM Part
NSM.Exec.MasterDir=/opt/SUNWcgha/actions/master
NSM.Exec.ViceMasterDir=/opt/SUNWcgha/actions/vicemaster

NSM.Log.MasterDir=/var/run/SUNWcgha/actions/master
NSM.Log.ViceMasterDir=/var/run/SUNWcgha/actions/vicemaster

NSM.External.Master.Address=192.168.12.39
NSM.External.Master.NIC=hme0:3
NSM.External.Master.Broadcast=192.168.255.255

NSM.External.Master.RouteAdd=default 192.168.12.250

NSM.External.Master.RouteDelete=default 192.168.12.250

EXAMPLE 2 Example of the nhfs.conf File on a Diskless Node

Common part
Node.DomainId=250
Node.NIC0=hme0:1
Node.NIC1=hme1
Node.NICCGTP=cgtp0
Node.UseCGTP=True
Node.type=Diskless

nhfs.conf(4)

EXAMPLES

File Formats 211

EXAMPLE 2 Example of the nhfs.conf File on a Diskless Node (Continued)

CMM part
CMM.IsEligible=False
CMM.LocalConfig.Dir=/etc/opt/SUNWcgha

CMM.CurrentNodeName=netraDISKLESS1

EXAMPLE 3 Example of the nhfs.conf File on a Dataless Node

Node.NICCGTP=cgtp0
Node.UseCGTP=True
Node.NIC1=eri1
Node.NIC0=eri0
Node.DomainId=250
Node.Type=Dataless

CMM.IsEligible=False
CMM.LocalConfig.Dir=/etc/opt/SUNWcgha

CMM.CurrentNodeName=netraDATALESS1

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcdt

Interface Stability Evolving

init(1M), nhcrfsd(1M), nhcmmd(1M), share(1M), nhenablesync(1M),
nhpmd(1M), nhnsmd(1M), cluster_nodes_table(4)

nhfs.conf(4)

ATTRIBUTES

SEE ALSO

212 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

nhpmd.conf – enable you to override the number of times the PMD retries a daemon it
monitors

/etc/opt/SUNWcgha/nhpmd.conf

The nhpmd.conf file is optional file. If you create this file, you can specify the number
of times the PMD tries to restart a failed daemon (retry-count) by providing the
number as an option to the nhpmdadm command.

The retry-count values you specify in the nhpmd.conf file supersede the values
present in the HA scripts. If the nhpmd.conf file does not exist or if there is no entry
for a particular daemon, the number of retries specified in the HA scripts is used.

The line format in nhpmd.conf is:

<nametag>_RetryCount = <retry_count_value>

For example for the statd daemon the entry would be:

nfs.client.statd.crfs_RetryCount = 2

Note – You must insert spaces or tabs before and after “=”.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcma

Interface Stability Evolving

nhpmd(1M), nhpmdadm(1M), nhpmdadmwrapper(1M)

nhpmd.conf(4)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

File Formats 213

nma.notifs.txt – Node Management Agent (NMA) configuration file for SNMP trap
notifications.

nma.notifs.txt

The installDir/etc/opt/SUNWcgha/nma.notifs.txt file defines the NMA SNMP
trap notification types and the target to which each type will be sent. By default this
file is located at /etc/opt/SUNWcgha/nma.notifs.txt. Replace installDir with
the root installation directory if the root installation directory is not /.

An entry in nma.notifs.txt takes the form
notificationEntry=notifIdentifier,tag,NotifType,persistency

notifIdentifier Unique notification ID.

tag Tag of the target.

NotifType Choose 1 for trap. The NMA does not send
notifications of any other type.

persistency Storage type. Choose 3 for non-volatile storage.

The following example is the default file nma.notifs.txt.

EXAMPLE 1 Example nma.notifs.txt File

###
Please refer to the [RFC2573] for information details
###
notificationEntry = <notifIdentifier>, <tag>,\
<NotifType>, <persistency>
where :
<notifIdentifier> = Unique ID of the notification
<tag> = Tag to use to select targets
(refer to targets.txt <tagList>)
<notifType> = (1) Trap, (2) Inform
<persistency> = Persistency Type to use for the row

Trap notification must be sent to targets containing tag in taglist.

notificationEntry=notif1,trap,1,3

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhmas

Interface Stability Evolving

nma(1M), nma.params.txt(4), nma.properties(4), nma.security(4),
nma.targets.txt(4)

nma.notifs.txt(4)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

214 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

nma.params.txt – file to configure the Node Management Agent (NMA) SNMP
parameters.

nma.params.txt

The installDir/etc/opt/SUNWcgha/nma.params.txt file defines the
communication, implementation and accessibility configuration of SNMP in the NMA.
By default this file is located at /etc/opt/SUNWcgha/nma.params.txt. Replace
installDir with the root installation directory if the root installation directory is not /.

An entry in the nma.params.txt uses the following syntax:

paramsEntry=paramsIdentifier,processingModel,securityModel,securityName,\
securityLevel,persistency

paramsIdentifier ID of the SNMP parameter set.

processingModel Values can be 0, 1 or 3 for SNMPv1, SNMPv2 or
SNMPv3 repectively.

securityModel 0, 1 or 3 for SNMPv1, SNMPv2 or SNMPv3
repectively.

securityName The name of the principal to use.

securityLevel 1 for no authentication and no cyphering, 2 for
authentification with no cyphering, or 3 for
authentification and cyphering.

persistency Storage type. Choose 3 for non-volatile storage.

The following example is the default nma.params.txt file.

EXAMPLE 1 Example nma.params.txt File

###
Please refer to the [RFC2573] for information details
###
paramsEntry=<paramsIdentifier>,<processingModel>,\
<securityModel>,<securityLevel>,\
<securityName>,<securityLevel>,<persistency>
where :
<paramsIdentifier> = Unique ID of the SNMP parameters
<processingModel> = (0) SNMP V1, (1) SNMP V2c, (3) SNMP V3
<securityModel> = (0) SNMP V1, (1) SNMP V2c, (3) SNMP V3
<securityName> = Principal to use
<securityLevel> = (1) NoAuthNoPriv, (2) AuthNoPriv, (3) AuthPriv
<persistency> = Persistency type of the row

SNMP parameters V2

paramsEntry=snmpV2,1,1,public,1,3

nma.params.txt(4)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION

EXAMPLES

File Formats 215

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhmas

Interface Stability Evolving

nma(1M), nma.notifs.txt(4), nma.properties(4), nma.security(4),
nma.targets.txt(4)

nma.params.txt(4)

ATTRIBUTES

SEE ALSO

216 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

nma.properties – Node Management Agent (NMA) configuration file.

/etc/opt/SUNWcgha/nma.properties

The file .

The installDir/etc/opt/SUNWcgha/nma.properties file defines the
communication, implementation, and accessibility configuration of the NMA. By
default this file is located at /etc/opt/SUNWcgha/nma.properties. Replace
installDir with the root installation directory if the root installation directory is not /.

The nma.properties file contains configuration options for the NMA, RFC 2573,
and Java Dynamic Management Kit (Java DMK) and Java Managemetn eXtensions
(JMX).

This file is in ASCII format. Comment lines begin with the comment mark (#).
Properties consist of a keyword followed by an equals (=) sign followed by the
parameter value, of the form:

Keyword=Value

The following properties enable you to configure the NMA.

com.sun.nhas.ma.adaptors.html.enabled
Enable the HTML adaptor. Options are true or false. By default, the value is
true. For example:

com.sun.nhas.ma.adaptors.html.enabled=true

com.sun.nhas.ma.adaptors.html.port
Define the HTML adaptor port. By default, the port is 8082. For example:

com.sun.nhas.ma.adaptors.html.port=8082

com.sun.nhas.ma.adaptors.snmp.enabled
Enable the SNMP adaptor. Options are true or false. By default, the value is
true. For example:

com.sun.nhas.ma.adaptors.snmp.enabled=true

com.sun.nhas.ma.adaptors.snmp.port
Define the SNMP adaptor port number. By default, this value is 8085. For example:

com.sun.nhas.ma.adaptors.snmp.port=8085

com.sun.nhas.ma.adaptors.snmp.trap.port
Define the UDP port to which the SNMP agent sends traps if the
adaptors.snmp.rfc2573.enabled property is set to false. By deault, the
value is 8086. For example:

com.sun.nhas.ma.adaptors.snmp.trap.port=8086

com.sun.nhas.ma.connectors.rmi.enabled
Enable the RMI connector. Options are true or false. By default, the value is
true. For example:

nma.properties(4)

NAME

SYNOPSIS

DESCRIPTION

NMA Properties

File Formats 217

com.sun.nhas.ma.connectors.rmi.enabled=true

com.sun.nhas.ma.connectors.rmi.port
Define the RMI connector port. By default, the port is 1098. For example:

com.sun.nhas.ma.connectors.rmi.port=8082

com.sun.nhas.ma.connectors.http.enabled
Enable the HTTP connector. Options are true or false. By default, the value is
true. For example:

com.sun.nhas.ma.connectors.http.enabled=true

com.sun.nhas.ma.connectors.http.port
Define the HTTP connector port. By default, the port is 8081. For example:

com.sun.nhas.ma.connectors.http.port=8081

com.sun.nhas.ma.connectors.http.client
Define the maximum number of HTTP connector clients. By default, the value is
9999. For example:

com.sun.nhas.ma.connectors.http.client=9999

com.sun.nhas.ma.nhas.configuration.path
Define the path to the nhfs.conf file. By default, the path is
/etc/opt/SUNWcgha/nhfs.conf. For example:

com.sun.nhas.ma.nhas.configuration.path=/etc/opt/SUNWcgha/nhfs.conf

com.sun.nhas.ma.cgtp.polling
Define the period of CGTP information refresh, expressed in milliseconds. By
default, the value is 20000. The minimum value is 5000. Set this property to -1 to
disable polling. For example:

com.sun.nhas.ma.cgtp.polling=20000

com.sun.nhas.ma.pmd.polling
Define the period of Daemon Monitor information refresh, expressed in
milliseconds. Set to -1 to disable polling. By default, the value is 20000. For
example:

com.sun.nhas.ma.pmd.polling=20000

com.sun.nhas.ma.pmd.cache.validity
Define the time for which cached Daemon Monitor data is valid, expressed in
milliseconds. Set to -1 to disable the use of the cache. By default the value is 2000.
For example:

com.sun.nhas.ma.pmd.cache.validity=2000

com.sun.nhas.ma.operation.flag
Enable the access to the MBeans operations provided by the NMA. Options are
true or false. By default, the value is true. For example:

com.sun.nhas.ma.operation.flag=true

nma.properties(4)

218 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

com.sun.nhas.ma.cascading.enabled
Enable cascading. Options are true or false. To disable cascading, By default,
this property is disabled and cascading is enabled. To disable cascading,
uncomment this property. For example:

com.sun.nhas.ma.cascading.enabled=false

com.sun.nhas.ma.cascading.retries.max
Define the maximum number of retries to be made before aborting the attempt to
activate a cascading agent. By default, the value is 50. For example:

com.sun.nhas.ma.cascading.retries.max=50

com.sun.nhas.ma.cascading.retries.delay
Define the delay period between each retry of the attempted activation of a
cascading agent, expressed in milliseconds. By default, the value is 2000. For
example:

com.sun.nhas.ma.cascading.retries.delay=2000

com.sun.nhas.ma.cascading.comm.protocol
Define the communication protocol to be used when cascading to sub-agents. By
default, the value is rmi. For example:

com.sun.nhas.ma.cascading.comm.protocol=rmi

java.rmi.server.hostname
When using RMI to connect to the agent, set this property to the hostname or IP
address that the manager uses to communicate to the agent. RMI is normally
reserved for cascading, and the default value is the CGTP address of the node. Note
that changing this property may affect cascading. By default, this property is
disabled and there is no default value. Uncomment this line and provide an IP
address to set this property. For example:

java.rmi.server.hostname=10.250.1.10

The following properties control the NMA implementation of Internet Engineering
Task Force (IETF) RFC 2573. Details of RFC 2573 are accessible at
http://www.ietf.org/rfc/rfc2573.txt

adaptors.snmp.rfc2573.enabled
Enable RFC2573 support. Options are true or false. By default, the value is
true. For example:

adaptors.snmp.rfc2573.enabled=true

adaptors.snmp.rfc2573.v1v2set.enabled
Enable SNMPv1 or SNMPv3 requests to be made to the MIB. Options are true or
false. By default, the value is false. For example:

adaptors.snmp.rfc2573.v1v2set.enabled=false

adaptors.snmp.rfc2573.target.addr.file
Define the path to the nma.targets.txt file. By default, the value is
/etc/opt/SUNWcgha/nma.targets.txt. For example:

nma.properties(4)

RFC 2573
Properties

File Formats 219

adaptors.snmp.rfc2573.target.addr.file=/etc/opt/SUNWcgha/nma.targets.txt

See nma.targets.txt(4) for more information.

adaptors.snmp.rfc2573.target.params.file
Define the location of the nma.params.txt file. By default, the value is
/etc/opt/SUNWcgha/nma.params.txt.

See nma.params.txt(4) for more information.

adaptors.snmp.rfc2573.notification.file
Define the location of the nma.notifs.txt file. By default, the value is
/etc/opt/SUNWcgha/nma.notifs.txt. For example:

adaptors.snmp.rfc2573.notification.file=/etc/opt/SUNWcgha/nma.notifs.txt

See nma.notifs.txt(4) for more information.

The following properties define the Java DMK and JMX configuration file locations.

jdmk.security.file
Define the location of the file that defines the SNMPv3 security parameters. This
path is local to each node. By default, the value is
/etc/opt/SUNWcgha/nma.security. For example:

jdmk.security.file=/etc/opt/SUNWcgha/nma.security

See nma.security(4) for more information.

jdmk.uacl.file
Define a specific user-based ACL file for SNMPv3 requests. A template is available
at /etc/opt/SUNWcgha/nma.uacl.template. By default, this property is
disabled. To define a user-based ACL file, uncomment this property and provide
the path to the file. For example:

jdmk.uacl.file=/etc/opt/SUNWcgha/nma.uacl

jdmk.acl.file
Define a specific ACL file for trap destination and access control configuration. A
template is available at /etc/opt/SUNWcgha/nma.acl.template. By default,
this property is disabled. To define an ACL file, uncomment this property and
provide the path to the file. For example:

jdmk.acl.file=/etc/opt/SUNWcgha/nma.acl

jmx.serial.form
Enable compatibility with clients using JMX 1.0 serialization. This property is
required when using an agent or client based on Java DMK versions older than 5.0.
By default, this property is disabled. To enable compatibility, uncomment this
property and proviude a serial number. For example:

jmx.serial.form=1.0

nma.properties(4)

Java DMK and
JMX Properties

220 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhmas

Interface Stability Evolving

nma(1M), nma.notifs.txt(4), nma.params.txt(4), nma.security(4),
nma.targets.txt(4)

nma.properties(4)

ATTRIBUTES

SEE ALSO

File Formats 221

nma.security – Node Management Agent (NMA) configuration file for SNMP security.

nma.security

Configure the installDir/etc/opt/SUNWcgha/nma.security file to define user
entries which are used to identify authorised users of the NMA SNMP Management
Information Bases (MIBs). By default this file is located at
/etc/opt/SUNWcgha/nma.security. Replace installDir with the root installation
directory if the root installation directory is not /.

Modify variables in the nma.security file as follows:

localEngineID The engine ID used to configure the SNMP engine. This property
is optional. If you do not provide an engine ID, the engine ID will
be generated by the system on the basis of the CGTP address of
the node.

userEntry A comma-seperated list of the format:

userEntry=engine-ID,user-name,security-name,authentication-algorithm,authentication-key

engine-ID and the user-name are mandatory parameters. All the
other parameters are optional.

engine-ID The SNMP engine ID.

user-name The unique ID of this user.

security-name The principal on whose behalf SNMP messages
will be generated.

authentication-algorithmThe type of authentication algorithm to be used
for this user. The following algorithms are
permitted:

� usmHMACMD5AuthProtocol
� usmHMACSHAAuthProtocol
� usmNoAuthProtocol

authentication-key The user password

The following example is the default nma.security file:

EXAMPLE 1 Example nma.security file

Each SNMP V3 engine has its own security file.
You have one file on the Node management side
and one on the manager side.
Both files will have a very similar configuration.
If you don’t provide an engine id and or an engine boots,
they are computed by the NMA engine based on the
CGTP address of the node and the SNMP port configured
in the nma.properties.

localEngineID=<your engine id>

nma.security(4)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION

EXAMPLES

222 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

EXAMPLE 1 Example nma.security file (Continued)

userEntry=localEngineID,defaultUser,null,usmHMACMD5AuthProtocol,mypasswd

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhmas

Interface Stability Evolving

nma(1M), nma.notifs.txt(4), nma.params.txt(4), nma.properties(4),
nma.targets.txt(4)

nma.security(4)

ATTRIBUTES

SEE ALSO

File Formats 223

nma.targets.txt – configuration file for the Node Management Agent (NMA) SNMP
trap targets.

nma.targets.txt

The installDir/etc/opt/SUNWcgha/nma.targets.txt file defines the targets to
which the NMA sends SNMP traps. By default this file is located at
/etc/opt/SUNWcgha/nma.targets.txt. Replace installDir with the root
installation directory if the root installation directory is not /.

An entry in the nma.targets.txt file uses the syntax:

targetsEntry=targetIdentifier,domain,host/port,timeout,retry,\
tagList,paramsIdentifier,persistency

targetIdentifier Unique ID of the target

domain The OID of the UDP or TCP domain

host/port The address of the target in the format:

hostname-or-IP-address/port-number

If you are using a UDP domain, then the format is:

hostname-or-IP-address”/”port number

timeout Timeout after which requests are resent

retry The number of request send retries

tagList The list of tags that identify the targets

paramsIdentifier ID of the SNMP parameter set to be used for
communication

persistency Storage type. Choose 3 for non-volatile storage.

The follow example is the default nma.targets.txt file.

EXAMPLE 1 nma.targets.txt

##
Please Refer to the [RFC2573] for information details
##
#
targetsEntry=<targetIdentifier>,<domain>,\
<host/port>,<timeout>,<retry>,\
<tagList>,\
<paramsIdentifier>,<persistency>
where :
<targetIdentifier> = Unique ID of the targets
<domain> = Could be UDP or TCP (OID of the domain)
<host/port> = Address of the target. If UDP domain,
then the format is host"/"port
<timeout> = Timeout after which requests are sent again
<retry> = retry count number

nma.targets.txt(4)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION

EXAMPLES

224 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

EXAMPLE 1 nma.targets.txt (Continued)

<tagList> = list of tags to allow the selection of the
target
<paramsIdentifier> = Identifier of the SNMP parameter set to
use to communicate with
<persistency> = persistency type
#
Target "localhost" wants to receive traps on port 8086 using the SNMP
parameters V2

targetsEntry=managerV2,snmpUDPDomain,localhost/8086,10000,2,trap,snmpV2,3

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhxxx

Interface Stability Evolving

nma.security(4)nma(1M)

nma.targets.txt(4)

ATTRIBUTES

SEE ALSO

File Formats 225

nodeprof.conf – permit the customization of Solaris installation

nodeprof.conf

When installing a cluster with nhinstall, you can customize the Solaris installation
using the nodeprof.conf file. When the nodeprof.conf file is present in your
configuration directory, its contents supersede the default profile used by nhinstall.

The templates for the configuration files are contained in the
/opt/SUNWcgha/config.standard directory with .template extensions. Copy
the configuration files to a local directory on the installation server as follows:

mkdir config-file-directory
export NHOME=/opt/SUNWcgha/config.standard
cd config-file-directory
cp $NHOME/nodeprof.conf.template nodeprof.conf

Note – All the configuration files must be in the same local directory on the installation
server.

For information on the format of the nodeprof.conf file see “Preparing Custom
JumpStart Installations (Tasks)” in the Solaris Installation Guide. Do not define disks
and partitions in the nodeprof.conf file because nhinstall automatically adds
these configuration details to the file. This means that you must not define the
boot_device, root_device, filesys or usedisk commands because the
configuration information for the disks is defined in the
cluster_definition.conf file.

The metacluster which is defined the first time you use the cluster command in the
nodeprof.conf file is used as the metacluster for diskless nodes and is given as an
argument to the smosservice command.

If you do not want to install the same Solaris distribution on diskless nodes as you
have installed on master-eligible nodes, create a diskless_nodeprof.conf file. For
more information, see the diskless_nodeprof(4) man page.

Note – You cannot use nhinstall to install software on dataless nodes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhins

diskless_nodeprof.conf(4), nhinstall(1M), Solaris Installation Guide

nodeprof.conf(4)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

226 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

software.conf – SMCT configuration file to define the additional software packages
and patches to be deployed to each node group

SMCT_CONFIG_DIR/services/node_group_name.architecture.operating_system

config-dir/services/node_group_name.architecture.operating_system

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

The software configuration file is an optional file that defines the additional software
packages and patches to be deployed to a specific node group. There must be a
software configuration file for each node group that contains user applications.

The software configuration file must be named in the following format:

node_group_name.architecture.operating_system

� node_group_name

Name of the node group, as defined in the cluster.conf file, for example,
master_el.

� architecture

This must be set to SPARC.

� operating_system

This must be set to SOLARIS.

For example, the software configuration file for a node group called master_el
would be master_el.SPARC.SOLARIS.

Use the following syntax to describe software packages:

{ ELEMENT software software_location
type PACKAGE
mode mode_value
[name name_value]
[version version_value]
[base base_dir]
[adminFile adminFile_location]
[responseFile responsefile_location]

}*

� software_location

Location of the package expressed as a URI.

� mode_value

Package installation mode. This value can be one of the following:

� LOCAL

The installation directory relative to the node root file system.

� SHARED

software.conf(4)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS
FOR ADDING

PACKAGES

File Formats 227

The installation base directory relative to the diskless node group shared file
system, /usr, or the shared file system mount point for the master-eligible
nodes.

� name_value

Name of the package. If this parameter is defined, it must match the package name.

� version_value

Version of the package. If this parameter is defined, it must match the package
version.

� base_dir

Package installation directory. This parameter overrides the default installation
directory.

� adminFile_location

Location of the special package administration file used by the pkgadd tool.

� responsefile_location

Location of the special package response file used by the pkgadd tool.

Use the following syntax to describe the software patches:

{ ELEMENT software software-location
type type-value
mode mode-value
[name name-value]
[version version-value]

}*

� software_location

Location of the patch expressed as a URI.

� type_value

Package type. This value can be one of:

� PRE_PATCH

Installs the patch after the Solaris operating system packages have been
installed, but before the Foundation Services packages and the user-defined
applications have been installed.

� POST_PATCH

Installs the patch after the Solaris operating system packages, the Foundation
Services packages, and the user-defined applications have been installed.

� mode_value

The patch installation mode. This value can be one of the following:

� LOCAL

The installation base directory relative to the root file system of the node.

� SHARED

software.conf(4)

PARAMETERS
FOR ADDING

PATCHES

228 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

The installation base directory relative to the shared file system of the diskless
node group, /usr, or the shared file system mount point for the master-eligible
nodes.

� name_value

Name of the patch. If this parameter is defined, it must match the patch name.

� version_value

Version of the patch. if this parameter is defined, it must match the patch version.

Use the following syntax to describe the software distribution:

{ ELEMENT software software-location
[installScript install-script_location
type type-value
[name name-value]
[version version-value]

}*

� software_location

Location of the software distribution expressed as a URI.

� install_script_location

Location of the installation script expressed as a URI.

� type_value

Software distribution type. This parameter must be set to GENERIC.

� name_value

Name of the software.

� version_value

Version of the software.

The following is an example of a software configuration file
master_el.SPARC.SOLARIS, for a node group master_el:

ELEMENT software ’file:/<DS_DIR>/directory-5.1-us.sparc-sun-solaris2.8.tar.gz’
installScript ’file:/<DS_DIR>/ldap-install.sh’
type GENERIC name ldap-ds version 5.1

ELEMENT software ’file:/<APPS_PKG_DIR>/SUNWnhhad’ mode SHARED
base /<--SWLID-->/opt
type PACKAGE

ELEMENT software ’file:/<APPS_PKG_DIR>/SUNWnhccs’ mode SHARED
base /<--SWLID-->/opt
type PACKAGE

ELEMENT software ’file:/<APPS_PKG_DIR>/SUNWnhmes’ mode SHARED
base /<--SWLID-->/opt
type PACKAGE

ELEMENT software ’file:/<APPS_PKG_DIR>/SUNWnhapp’ mode LOCAL
responseFile ’file:/export/home/LDAP/SUNWnhapp.resp’

software.conf(4)

PARAMETERS
FOR ADDING

SOFTWARE
DISTRIBUTIONS

EXAMPLE

File Formats 229

type PACKAGE

ELEMENT software ’file:/<SMCT_SOL_DIR>/Solaris_9/Product/SUNWxcu4’ mode LOCAL
type PACKAGE

ELEMENT software ’file:/<SOL_PAT_DIR>/108434-06’ mode LOCAL
type POST_PATCH version 06

ELEMENT software ’file:/<SOL_PAT_DIR>/108435-06’ mode LOCAL

type POST_PATCH version 06

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

slcreate(1M)

software.conf(4)

ATTRIBUTES

SEE ALSO

230 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

target.conf – local configuration file

/etc/opt/SUNWcgha/target.conf

The local configuration file, target.conf, contains the cluster ID, attributes, and
election roles for each node in the cluster. For example, the target.conf file will
specify whether the node is a master-eligible node. The target.conf file is located
on each node on the cluster and contains a description of the node on which it is
located.

Modify this file only when you are manually fixing a problem on the cluster as
described in the cluster_nodes_table(4) man page.

The following is an example of a target.conf file:

domain_id: 128 # Cluster ID
attributes: - # Local nodes attributes
election: 5 # Election round number

role: MASTER # Role

For an explanation of the fields in the example, see the cluster_nodes_table(4)
man page.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhcma

Interface Stability Evolving

nhcmmd(1M), cluster_nodes_table(4), nhadm(1M), nhfs.conf(4)

target.conf(4)

NAME

SYNOPSIS

DESCRIPTION

WARNINGS

EXTENDED
DESCRIPTION

ATTRIBUTES

SEE ALSO

File Formats 231

userapp.conf – SMCT structured list of user-defined configuration data to be installed
at cluster installation and startup

SMCT_CONFIG_DIR/models/config.node_group_name

config-dir/models/config.node_group_name

Caution – Do not use the SMCT tool with the current patch level of the Foundation
Services product.

An SMCT configuration file for user applications is required for each cluster node
group that is to be installed with user applications during SMCT configuration stage
two. This file is used as a parameter of the slconfig command. For more
information on slconfig, see the slconfig(1M) man page.

This configuration file contains a structured list of user-defined configuration data to
be installed at specific stages of cluster startup, together with the user applications.
User-defined configuration data can be the following:

� User application data files that contain data to be added to the user application.

For example, if the user application is a database package, the user application data
file could be data to populate the database.

� Application installation scripts that add the user application data to the user
applications.

For example, you can specify a script or scripts to populate the database with the
application data to create new records and entries.

The configuration file for user applications uses the terms config and file to
describe the running order of the application installation scripts and the user
application data that are to be installed.

The configuration file contains a chain for three stages of the cluster installation and
startup. The stages are the following:

� At the final stage of the Solaris JumpStart installation of the flash archive.
� At run level 2, the Foundation Services packages are installed but they are not

started.
� At run level 3, the Foundation Services are started and running.

You can create a configuration file for each node group, using the following file
naming rules:

config.node_group_name

node_group_name is the name of the node group as defined in the file cluster.conf,
for example, soft_switch. The user application configuration file name for the node
group soft_switch would be config.soft_switch.

When creating the configuration file for user applications, consider the following:

� You cannot have more than two config element chains in a file.

userapp.conf(4)

NAME

SYNOPSIS

DESCRIPTION

232 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

� All files in a config chain must be of the same type (PRE_SCRIPT or
POST_SCRIPT).

� A config element cannot be chained to itself.

� There must not be circular dependencies between config elements.

� There must be no infinite config chains.

This section describes the parameters used in the user application configuration file:

{ ELEMENT config config-name
[next config-name]

INVOLVE {file file-name}+
}+

{ ELEMENT file file-name
location file-location
type file-type
[runLevel run-level-value] }+

}+

� config_name

The name of the config element. Each config element contains an ordered
sequence of user-defined configuration data files to be executed or installed, for
example, two user application data files and an application installation script.

� file_name

The unique file name for the user application data or the application installation
script.

� file_type

The file type of the user application data or the application installation script. This
value can be one of the following:

� DATA

A DATA file type is a user application data file that is not executed but contains
nonASCII data, such as static parameters.

� PRE_SCRIPT

A PRE_SCRIPT file type is an application installation script that is executed as
part of the final stages of the Solaris JumpStart installation.

� POST_SCRIPT

A POST_SCRIPT file type is an application installation script that is executed
after Solaris JumpStart installation at run level 2 or run level 3, that is, the
POST_SCRIPT can be run before or after the startup of the Foundation Services.
This is determined by the run_level_value.

� file_location

The location of the user application data or the application installation script,
expressed as a URI.

� run_level_value

userapp.conf(4)

PARAMETERS

File Formats 233

The run-level for the execution of the application installation script, either 2 or 3.
The default value is 3. The run level is only used for POST_SCRIPT application
installation scripts.

� next

This is an optional keyword that is used to determine the execution order of the
config elements. For example:

ELEMENT config softSwitch_3 next softSwitch_4

In this case, the application will execute the softSwitch_4 config element after
the softSwitch_3 config element.

The following is an example of a user application configuration file
config.soft_switch, for a node group soft_switch.

Configuration of node group softSwitch - first stage -
#
Script softSwitch_1.sh will be executed during Jumpstart finish stage
#ELEMENT config softSwitch_1

INVOLVE file data_1_1
file data_1_2
file script_1_3

ELEMENT file data_1_1
type DATA
location ’file://config/softSwitch_1_1.conf’

ELEMENT file data_1_2
type DATA
location ’file://config/softSwitch_1_2.conf’

ELEMENT file script_1_3
type PRE_SCRIPT
location ’file://config/softSwitch_1.sh’

#
Configuration of node group softSwitch - second stage -
#
Script softSwitch_2.sh will be executed at init run-level 2
The node will automatically reboot
#
ELEMENT config softSwitch_2

INVOLVE file data_2_1
file script_2_2

ELEMENT file data_2_1
type DATA
location ’file://config/softSwitch_2_1.conf’

ELEMENT file script_2_2
type POST_SCRIPT
runLevel 2
location ’file://config/softSwitch_2.sh’

#

userapp.conf(4)

EXAMPLE

234 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

Configuration of node group softSwitch - third stage -
#
Scripts will be executed at init run-level 3 in the following order:
1. softSwitch_3.sh
2. softSwitch_4.sh
#
ELEMENT config softSwitch_3 next softSwitch_4

INVOLVE file script_3_1

ELEMENT file script_3_1
type POST_SCRIPT
location ’file://config/softSwitch_3.sh’

ELEMENT config softSwitch_4
INVOLVE file script_4_1

ELEMENT file script_4_1
type POST_SCRIPT

location ’file://config/softSwitch_4.sh’

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhsmc

Interface Stability Evolving

slconfig(1M)

userapp.conf(4)

ATTRIBUTES

SEE ALSO

File Formats 235

userapp.conf(4)

236 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

Devices

237

cgtp – CGTP virtual device driver

/dev/cgtp

The Carrier Grade Transport Protocol (CGTP) driver is a multi-threaded, loadable,
clonable, STREAMS virtual device driver, compatible with the connectionless Data
Link Provider Interface, dlpi(7P). CGTP is not related to any particular hardware and
is purely virtual. Delivered with the Foundation Services, CGTP provides a single
point of convergence for redundant incoming data flows. CGTP IP addresses are
defined on each cluster node.

The CGTP does not send and receive data, but is instead normally used to indirectly
accumulate incoming CGTP traffic from underlying redundant interfaces through
internal IP routing. It supports most of the normal functions of a DLPI Ethernet
device, the major exception being data transfer. All data packets (DL_UNITDATA_REQ)
are rejected with an error of network down.

The cloning character-special device /dev/cgtp is used to register the Foundation
Services cluster node’s CGTP IP addresses.

The cgtp driver is a “style 2” Data Link Service provider. All messages of the
M_PROTO and M_PCPROTO types are interpreted as DLPI primitives. Valid DLPI
primitives are defined in the sys/dlpi.h file. For more information, see the
dlpi(7P) man page. Send an explicit DL_ATTACH_REQ message to associate the
opened stream with a particular device (ppa). As CGTP is purely a virtual driver,
parameter configuration using DL_INFO_REQ is unnecessary.

The ppa ID is interpreted as an unsigned long data type and indicates the
corresponding device instance (unit) number. An error (DL_ERROR_ACK) is returned
by the driver if the ppa field value does not correspond to a valid device instance
number for this system. The device is initialized on first attach and deinitialized
(stopped) at last detach.

The values returned by the driver in the DL_INFO_ACK primitive in response to the
DL_INFO_REQ from the user are as follows:

� The maximum service data unit (SDU) is 1500 (ETHERMTU - defined in
sys/ethernet.h).

� The minimum SDU is 0.

� The dlsap address length is 8.

� The MAC type is DL_ETHER. MAC address is fixed to 0:0:0:0:0:0.

� The sap length value is -2, meaning that the physical address component is
followed immediately by a 2-byte sap component within the DLSAP address.

� No optional quality of service (QOS) support is included at present, so the QOS
fields are 0.

� The provider style is DL_STYLE.

� The version is DL_VERSION_2.

cgtp(7D)

NAME

SYNOPSIS

DESCRIPTION

INTERFACE
LEVEL

238 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

� The broadcast address value is the Ethernet or IEEE broadcast address
(0xFFFFFF).

Once in the DL_ATTACHED state, the user must send a DL_BIND_REQ to associate a
particular SAP (Service Access Pointer) with the stream. The cgtp driver interprets the
sap field within the DL_BIND_REQ as an Ethernet “type”. Therefore, valid values for
the sap field are in the [0-0xFFFF] range. Only one Ethernet type can be bound to the
stream at any time.

The cgtp driver DLSAP address format consists of the 6-byte physical (Ethernet)
address component followed immediately by the 2-byte sap (type) component
producing an 8-byte DLSAP address. Applications must not hardcode to this particular
implementation-specific DLSAP address format, but instead use information returned
in the DL_INFO_ACK primitive to compose and decompose DLSAP addresses. The sap
length, full DLSAP length, and sap or physical ordering are included within
DL_INFO_ACK. The physical address length can be computed by subtracting the sap
length from the full DLSAP address length or by issuing the DL_PHYS_ADDR_REQ to
obtain the current physical address associated with the stream.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable or disable
reception of individual multicast group addresses. A set of multicast addresses can be
iteratively created and modified on a per-stream basis using these primitives. These
primitives are accepted by the driver in any state following DL_ATTACHED.

The DL_PHYS_ADDR_REQ primitive returns the 6-octet Ethernet address currently
associated (attached) to the stream in the DL_PHYS_ADDR_ACK primitive. This
primitive is valid only in states following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive does not change the 6-octet Ethernet address
currently associated (attached) to this stream.

After the cgtp virtual driver is installed, the administrator must configure the IP
address with the address mask.

For example:

example% ifconfig cgtp0 plumb
example% ifconfig cgtp0 10.128.3.4/24 broadcast 10.128.3.255 up
example% ifconfig cgtp0
cgtp0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu \
1500 index 2
inet 10.128.3.4 netmask ffffff00 broadcast 10.128.3.255
ether 0:0:0:0:0:0

Aliasing is permitted on the cgtp driver. Configuring the cgtp virtual driver is not
sufficient to access full CGTP functionalities. CGTP configuration must be done at the
same time as CGTP routes configuration using the route command. In particular,
there is a need to configure specific routes for broadcasts and multicasts by using the
route command.

cgtp(7D)

Devices 239

For instructions on how to manually install and configure CGTP on cluster nodes, see
the Netra High Availability Suite Foundation Services 2.1 6/03 Custom Installation Guide.
For instructions on how to manually install and configure CGTP on a standalone
nodes, see the Netra High Availability Suite Foundation Services 2.1 6/03 Standalone CGTP
Guide.

CGTP never actually sends or receives data. Instead, the CGTP configuration must be
done at the same time as configuration of no more than two physical interfaces of any
type that are responsible for redundancy.

When the cgtp0 virtual physical interface and the two physical interfaces are
properly configured, and all the necessary routes are correctly configured on the
cluster, data will be sent and received through the redundant interfaces. At the emitter,
cgtp is used (if specified by route command) to specify the source address of the
CGTP IP packets. Packets are then transmitted on the physical interfaces. At the
receiver, incoming CGTP packets are received by redundant interfaces, the duplicates
are filtered out at the IP level, and the remaining packets converge in the cgtp stream
to be presented to upper applications (after an optional reassembly).

Note – The use of IPv6 is not supported for use with CGTP.

Logical interfaces can be configured only after the creation and configuration of
physical interfaces. Two logical interfaces are configured on each node.

Additional logical interfaces can be created on a specified CGTP interface, provided
the CGTP interface and the logical interfaces share the same subnet address. This
means the primary CGTP address and the logical (or aliased) addresses must only
differ by their host ID. Routes to the aliased interfaces can accordingly be set up on the
other cluster nodes.

/dev/cgtp cgtp special character device.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWnhtp8, SUNWnhtu8 for Solaris 8 2/02

SUNWnhtp9, SUNWnhtu9 for Solaris 9

Interface Stability Evolving

dlpi(7P)

cgtp(7D)

Manually
Configuring CGTP

using Logical
Interfaces

FILES

ATTRIBUTES

SEE ALSO

240 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • Last Revised September 2004

Index

A
addon.conf, nhinstall configuration file for

patches and packages, 150

C
cgtp — CGTP virtual device driver, 238
cluster.conf, SMCT configuration file describing

the cluster in terms of nodes, node groups,
domains, and services, 155

cluster_definition.conf, nhinstall
configuration file to define the cluster, 161

cluster_nodes_table, central cluster
management file, 178

cmm_cmc_filter — define notification
filtering, 90

cmm_cmc_register, register to receive
notifications, remove registration and stop
receiving notifications, 92

cmm_cmc_unregister, register to receive
notifications, unregister to stop receiving
notifications, 92

cmm_connect, prepare or test a connection to
the Cluster Membership Manager
(CMM), 100

cmm_master_getinfo, retrieve information
about the master node or the vice-master
node, 102

cmm_mastership_release, trigger a
switchover, 104

cmm_member_getall, retrieve information on
the cluster, 106

cmm_member_getcount, retrieve information
on the cluster, 106

cmm_member_getinfo, retrieve information
about a peer node, 143

cmm_member_isdesynchronized, interpret the
status of a member, 112

cmm_member_isdisqualified, interpret the
status of a member, 112

cmm_member_iseligible, interpret the status of
a member, 112

cmm_member_isexcluded, interpret the status
of a member, 112

cmm_member_isfrozen, interpret the status of a
member, 112

cmm_member_ismaster, interpret the status of a
member, 112

cmm_member_isoutofcluster, interpret the
status of a member, 112

cmm_member_isqualified, interpret the status
of a member, 112

cmm_member_isvicemaster, interpret the status
of a member, 112

cmm_member_seizequalif, requalify current
master-eligible node, 130

cmm_member_setqualif, give a new level of
qualification to a node, 132

cmm_membership_remove, remove peer
node, 135

cmm_node_getid, retrieve ID of a node, 137
cmm_notify_dispatch, dispatch cluster

membership change messages, 139
cmm_notify_getfd, receive cluster membership

change messages, 141

241

cmm_potential_getinfo, retrieve information
about a peer node, 143

cmm_strerror, get error message string, 145
cmm_vicemaster_getinfo, retrieve information

about the master node or the vice-master
node, 102

D
diskless_nodeprof.conf, permits the

customization of Solaris
installation on diskless nodes, 181

E
env_installation.conf, nhinstall configuration

file defining the installation
environment, 182

environment variables, modifying, 76

F
flconfig, SMCT command to add user-defined

configuration data to a flash archive, 22
flcreate, SMCT command to create a generic

flash archive from the node group
software, 24

fldeploy, SMCT command that generates a
deployable flash archive and Solaris
JumpStart environment, 26

flinstall, SMCT command that generates Solaris
JumpStart environments for master-eligible
and dataless node groups, 28

H
hbdrv, 71
hbmod, 71

I
install-server.conf, SMCT configuration file to

configure the network for the installation
server, 186

intro, Cluster Membership Manager API
functions (3CMM), 16

introduction
daemons, system maintenance commands,

and installation tool commands (1M), 14
Foundation Services configuration files

(4), 18

K
kernel, kernel module and kernel driver, 71

M
machine.conf, SMCT configuration file to define

the cluster in terms of hardware elements,
disk layout, and file system, 188

master-system.conf, SMCT network
configuation file to connect the prototype
machine and the installation server, 196

N
network.conf, SMCT configuration file to define

the network parameters for the cluster, 197
nhadm, administration tool, 30
nhadmsync.conf, list of nonreplicated files and

differences between them, 200
nhcmmd — monitor cluster membership, 39
nhcmmqualif, qualify the current node as

master, 41
nhcmmrole, get the role of the current node, 43
nhcmmstat – displays information about peer

nodes, triggers a switchover, or forces the
qualification of a master-eligible node, 45

nhcrfsadm - command line tool for Reliable
NFS administration, 52

nhcrfsd — Reliable NFS supervisory
daemon, 54

nhenablesync, trigger disk synchronization, 56

242 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • September 2004

nhfs.conf, Foundation Services configuration
file, 202

nhinstall, initial installation and configuration
tool, 57

nhnsmd, Node State Manager daemon, 60
nhpmd, process monitor daemon, 62
nhpmd.conf, ?, 213
nhpmdadm — process monitor daemon

administration, 67
nhpmdadmwrapper — configures important

values, like retry-count, 70
nhprobed, kernel module and kernel

driver, 71
nhsched, 73
nhsmctsetup, create the SMCT environment, 75
nhwdtd, Watchdog Timer daemon, 78
NMA, Node Management Agent daemon, 79
nma.params.txt, File to configure the Node

Management Agent, 215
nma.properties

File to configure the Node Management
Agent, 214, 217

nma.security, File to configure SNMP security
for the Node Management Agent, 222

nma.targets.txt, File to configure the Node
Management Agent, 224

nodeprof.conf, permits the
customization of Solaris
installation, 226

P
probe, kernel module and kernel driver, 71

S
slconfig, SMCT command to add user defined

configuration data to the software load, 80
slcreate, SMCT command to prepare the data

for a generic flash archive., 81
sldelete, SMCT command to delete a software

load, 84
sldeploy, SMCT command to generate the

Foundation Services and Solaris operating
system configuration files for a software
load, 85

slexport, SMCT command to copy software load
data to an export directory, 87

software.conf, 227
SMCT configuration file to define the

software packages and patches to be
deployed to each node group, 227

T
target.conf, local configuration file, 231

U
userapp.conf, SMCT structured list of

user-defined configuration data to be
installed at cluster installation and
startup, 232

243

244 Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual • September 2004

	Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual
	Preface
	How This Book Is Organized
	Related Books

	Index

