
Netra High Availability Suite
Foundation Services 2.1 6/03 NMA

Programming Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–1771–11
September 2004

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Java, JMX, Netra, Solaris JumpStart, Solstice DiskSuite, Sun Fire,
Javadoc, JDK, Sun4U, Jini, OpenBoot, Sun Workshop, Forte, Sun StorEdge, and Solaris are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc. Adobe is a registered trademark of Adobe Systems, Incorporated.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, Java, JMX, Netra, Solaris JumpStart, Solstice DiskSuite, Sun Fire,
Javadoc, JDK, Sun4U, Jini, OpenBoot, Sun Workshop, Forte, Sun StorEdge, et Solaris sont des marques de fabrique ou des marques déposées , ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. Adobe est une marque enregistree de Adobe Systems, Incorporated.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

040812@9495

Contents

Preface 11

1 Introduction to the Node Management Agent 17
Accessing the NMA 18
Master and Node Views 19

MBean Instances on the Master Node 21
MBean Instances on Peer Nodes 21

Floating External Address 21

2 Configuration Files, Dependencies and Requirements 23
Configuration Files 23
Dependencies 24
Software Requirements 24

3 Developing an External Java Manager 25
Configuring an External Java Manager Using HTTP 25
Connecting to the NMA 26

Using the Floating Address 26
Using a Physical Node Address 26

Using Proxy MBeans 27

4 Developing a Remote SNMP Manager 29
Configuring an SNMP Agent 29
IP-Based Access Control Lists 30

Format of the acl Group 31

3

Format of the Trap Group 32
SNMPv3 User-Based Access Control 33
Configuring SNMPv3 Security 34

Engine ID 34
Context Name 34
Managing Users in Security Files 35

SNMP Manager Configuration Examples 36
SNMPv2 Configuration Example 37
SNMPv2 and SNMPv3 Hybrid Configuration Example 38
SNMPv3 Configuration Example 40

5 Manipulating the Cluster Using the NMA 43

Using the NMA to Initiate a Switchover 43
Checking Whether the Foundation Services Are Ready for Switchover 44
Initiating a Switchover 44
Example of Switchover Using an HTTP Connector Client 44
Getting the CMM Status of All Cluster Nodes 47

Manipulating Daemon Monitor Retry Settings 47

6 Carrier Grade Transport Protocol Statistics 49

Introducing CGTP Statistics 49
CGTP Master Statistics 50

CgtpMasterMBean 50
CGTP Node Statistics 50

CgtpMBean 50
CgtpEmitterStatisticsMBean 51
CgtpFilterMBean 51
CgtpReceiverStatisticsMBean 53
CgtpReliableLinkStatisticsMBean 54

7 Daemon Monitor Statistics 57

Example of Accessing Statistics Using an HTTP Client 57
Introducing Daemon Monitor Statistics 61
Daemon Monitor Master Statistics 61

PmdMasterStatisticsMBean 61
Daemon Monitor Node Statistics 62

PmdStatisticsMBean 62

4 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

PmdNameTagStatisticsMBean 62

8 Reliable NFS Statistics 65

Introducing Reliable NFS Statistics 65
Reliable NFS Master Statistics 65

RnfsMasterReplicatedSliceMBean 66
Reliable NFS Node Statistics 66

RnfsStatisticsMBean 66
RnfsMasterStatisticsMBean 67
RnfsReplicatedSliceMBean 67

9 Cluster Membership Manager Statistics 71

Introducing CMM Statistics 71
CMM Master Statistics 72

CmmMasterStatisticsMBean 72
CMM Node Statistics 73

ClusterNodeMBean 73
CmmStatisticsMBean 75

10 Receiving Notifications 79

Registering to Receive Notifications 79
NhasCmmNotification 79
NhasPmdMaxRetriesNotification 80
NhasPmdAttributeChangeNotification 80
NhasPmdNewNameTagNotification 81
NhasPmdRemoveNameTagNotification 81

Registering to Receive SNMP Traps 81

A MBean Naming Conventions 83

Nodes and Services 83
Cluster Membership Manager 84
Reliable NFS 84
Daemon Monitor 84
CGTP 84

Index 87

5

6 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Examples

EXAMPLE 4–1 Typical nma.acl File 30

EXAMPLE 4–2 Example nma.uacl.template File 33

EXAMPLE 4–3 Using the SnmpV3AppliMibRegistration API 37

EXAMPLE 4–4 Example Entries in nma.properties for SNMPv2 37

EXAMPLE 4–5 Example Entries in nma.acl for SNMPv2 38

EXAMPLE 4–6 Example Entry in nma.targets.txt for SNMPv2 38

EXAMPLE 4–7 Example Entry in nma.params.txt for SNMPv2 38

EXAMPLE 4–8 Example Entry in nma.notifs.txt for SNMPv2 38

EXAMPLE 4–9 Example Entries in nma.properties for Hybrid Configuration 39

EXAMPLE 4–10 Example Entries in nma.security for Hybrid Configuration 39

EXAMPLE 4–11 Example Entries in nma.acl for Hybrid Configuration 39

EXAMPLE 4–12 Example Entries in nma.uacl for Hybrid Configuration 39

EXAMPLE 4–13 Example Entries in nma.targets.txt for Hybrid Configuration 40

EXAMPLE 4–14 Example Entries in nma.params.txt for Hybrid Configuration 40

EXAMPLE 4–15 Example Entry in nma.notifs.txt for Hybrid Configuration 40

EXAMPLE 4–16 Example Entry in nma.security for Hybrid Configuration 40

EXAMPLE 4–17 Example Entries in nma.properties for SNMPv3 Configuration 40

EXAMPLE 4–18 Example Entries in nma.security for SNMPv3 Configuration 41

EXAMPLE 4–19 Example Entries in nma.acl for SNMPv3 Configuration 41

EXAMPLE 4–20 Example Entries in nma.uacl for SNMPv3 Configuration 41

EXAMPLE 5–1 NmaSwitchover.java 44

EXAMPLE 7–1 NmaMasterNametags.java 57

EXAMPLE 10–1 Implementation of the SnmpTrapListener Class 81

EXAMPLE 10–2 Registering a Trap Listener 82

7

8 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Figures

FIGURE 1–1 Remote Manager Communication 18

FIGURE 1–2 Cascading Information From Peer Nodes to the Master Node 19

9

10 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Preface

This book describes how to use the Node Management Agent (NMA) Java™ APIs of
the Netra™ High Availability (HA) Suite Foundation Services 2.1 6/03. This book can
be used to perform the following tasks:

� Access cluster information from a remote Java or Simple Network Management
Protocol (SNMP) management and monitoring application

� Receive SNMP traps or JMX™ notifications about changes occurring in the cluster

� Provoke a cluster mastership switchover

� Manipulate Daemon Monitor parameters

Who Should Use This Book
This book is for application developers who want to develop applications that use the
NMA.

Before You Read This Book
To program the NMA you must have working knowledge of the Java language.
Knowledge of the Java Dynamic Management Kit (DMK) 5.0 and the Solaris™
operating system is an advantage.

Before reading this book, read the Netra High Availability Suite Foundation
Services 2.1 6/03 Overview.

11

How This Book Is Organized
This book contains the following chapters:

� Chapter 1 outlines the features of the NMA.

� Chapter 2 introduces and defines the requirements and dependencies of the NMA.

� Chapter 3 describes how to access the NMA from a Java manager.

� Chapter 4 describes how to access the NMA from a SNMP manager.

� Chapter 5 explains how to use the NMA to provoke a master node switchover and
set Daemon Monitor parameters.

� Chapter 6 describes the Carrier Grade Transfer Protocol (CGTP) statistics that can
be accessed from the NMA.

� Chapter 7 describes the Daemon Monitor statistics that can be accessed from the
NMA.

� Chapter 8 describes the Reliable NFS statistics that can be accessed from the NMA.

� Chapter 9 describes the Cluster Membership Manager (CMM) statistics that can be
accessed from the NMA.

� Chapter 10 explains the NMA notification mechanism and the meaning of the
NMA notification types.

� Appendix A describes the syntax of the MBean naming conventions.

Chapter 4 refers to RFC standards. For further information, see the complete text of
RFC papers at http://www.ietf.org/.

Note – Sun is not responsible for the availability of third-party Web sites mentioned in
this document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other material on or available from such sites or resources.
Sun will not be responsible or liable for any damage or loss caused or alleged to be
caused by or in connection with use of or reliance on any such content, goods, or
services that are available on or through any such sites or resources.

Related Books
You will require some of the following books from the Foundation Services
documentation set:

� Netra High Availability Suite Foundation Services 2.1 6/03 Overview

12 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

http://www.ietf.org

� Netra High Availability Suite Foundation Services 2.1 6/03 Glossary

� What’s New in Netra High Availability Suite Foundation Services 2.1 6/03

� Netra High Availability Suite Foundation Services 2.1 6/03 Quick Start Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Hardware Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Custom Installation Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Cluster Administration Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Troubleshooting Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 CMM Programming Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Reference Manual

� Netra High Availability Suite Foundation Services 2.1 6/03 Standalone CGTP Guide

� Netra High Availability Suite Foundation Services 2.1 6/03 Release Notes

� Netra High Availability Suite Foundation Services 2.1 6/03 README

Java DMK documentation can be found on the Internet site
http://www.sun.com/products-n-solutions/nep/software/java-dynamic/.

� Getting Started with the Java Dynamic Management Kit 5.0
� Java Dynamic Management Kit 5.0 Tutorial

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Ordering Sun Documentation
Sun Microsystems offers select product documentation in print form. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

13

http://www.sun.com/products-n-solutions/nep/software/java-dynamic/
http://docs.sun.com
http://docs.sun.com

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

The command to remove a file
is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User’s
Guide.

These are called class options.

Do not save the file.

(Emphasis sometimes appears
in bold online.)

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

14 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

TABLE P–2 Shell Prompts (Continued)
Shell Prompt

Bourne shell and Korn shell superuser prompt #

15

16 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

CHAPTER 1

Introduction to the Node Management
Agent

This chapter describes how to access the Node Management Agent (NMA) and
introduces the master node view and the floating external address.

The NMA is a management agent that conforms to the Java Management Extensions
(JMX) v1.1 Maintenance Release. The NMA is based on the Java Dynamic
Management Kit (DMK) 5.0 APIs.

The NMA monitors the performance and the status of the following Foundation
Services:

� Cluster Membership Manager
� Carrier Grade Transport Protocol (CGTP)
� Daemon Monitor
� Reliable NFS

The NMA exposes this information through a Simple Network Management Protocol
(SNMP) management information base (MIB) and a JMX compliant interface. The JMX
specification defines a three-level management architecture:

� The instrumentation level makes resources manageable as Java objects called
MBeans.

� The agent level exposes these objects for management.
� The distributed services level allow remote access and security.

By programmatically accessing these MBeans, management applications can be used
to help perform tuning operations, diagnostic operations, and troubleshooting.

The NMA also provides a method for provoking a master node switchover, and emits
notifications which can be used to keep up-to-date with the current state of certain
aspects of the cluster.

The Java DMK implements the JMX specification. The NMA requires the Java DMK
runtime libraries. You can use the Java DMK to develop a remote Java manager to
access the NMA. Alternately, access the NMA MIB by using an off-the-shelf or custom
SNMP manager, or any JMX compliant Java manager.

17

This chapter contains the following sections:

� “Accessing the NMA” on page 18
� “Master and Node Views” on page 19
� “Floating External Address” on page 21

Accessing the NMA
An external manager can communicate with the NMA using any of the following
protocols:

� HTTP
� SNMP version 1 (SNMPv1)
� SNMP version 2 (SNMPv2)
� SNMP version 3 (SNMPv3)

Note – The floating external address cannot be used when you are using the SNMP
protocol. See “Floating External Address” on page 21 for more information on the
floating external address.

Use SNMPv3 to take advantage of the enhanced security mechanism introduced in
SNMPv3. Note that not all protocol interfaces are enabled by default. See
nma.properties(4) for information on how to enable, disable and configure
protocol interfaces.

HTML can be used to view the NMAs in a running cluster through an HTML browser.
By default port 8082 exports this view. To interact with the NMA on a node, access
the URL of the form http://nodeIPAddress:portNumber

See “HTML Protocol Adaptor” in the Java Dynamic Management Kit 5.0 Tutorial for
more information.

Note that if you provoke a switchover using the HTML Protocol Adaptor connected to
the floating external address, the connection to the NMA might be broken prematurely
and the information transfer will not finish. If this happens, stop the transfer and
reload the page to get the correct node information.

Figure 1–1 represents the communication paths between an external manager and the
cluster:

18 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Vice−Master
Node

Diskless Node Diskless Node

Remote Client

Cluster

Master Node

NMA NMA NMA NMA

JMX Manager or
SNMP Manager

FIGURE 1–1 Remote Manager Communication

Master and Node Views
The NMA running on the master node makes information from the NMAs running on
all nodes visible in the NMA running on the master node through a cascading
connection. The MBeans listed in “MBean Instances on the Master Node” on page 21
are available on the master node only.

Figure 1–2 shows how information is cascaded from all NMAs to the NMA on the
master node.

Chapter 1 • Introduction to the Node Management Agent 19

Master Node
(node 1)

Master Statistics

Node 1 Statistics

Node 4 Statistics

Node 3 Statistics

Node 2 Statistics

Vice−Master Node
(node 2)

Node Statistics

Diskless Peer
Node

(node 3)

Node Statistics

Diskless Peer
Node

(node 4)

Node Statistics
Peer nodes cascading statistics to the master node

FIGURE 1–2 Cascading Information From Peer Nodes to the Master Node

Note – The master view is only available to a Java manager that communicates using
the HTTP protocol.

All of the agents must use the same port number for the service used to implement
cascading. If this is not the case, the master agent will start the cascading service but
will not enable the cascading connections to NMA.

Note – After failover or switchover, there is a short period of time during which the
NMA information of other nodes is made available on the new master. If you query
this information from the master during this period, an exception will be thrown.

Cascading is controlled by the following properties, which are defined in the
nma.properties file:

com.sun.nhas.ma.cascading.enabled
Set to true to enable cascading.

com.sun.nhas.ma.cascading.retries.max
The maximum number of times that the master node tries to create a cascading
connection to an NMA on another node.

com.sun.nhas.ma.cascading.retries.delay
The time in milliseconds between each attempt to establish a cascading connection.

com.sun.nhas.ma.cascading.comm.protocol
The protocol can be http or rmi.

com.sun.nhas.ma.cascading.socket.timeout.wait
The timeout in milliseconds for a cascading connection to terminate cleanly in the
case of a communication fault. After this time has elapsed, the cascading connection
attempt will be forcibly aborted and then restarted.

20 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

MBean Instances on the Master Node
One instance of each of the following MBeans is instantiated on the master node of the
cluster.

� CmmMasterNodeMBean
� CmmMasterStatisticsMBean
� RnfsMasterStatisticsMBean
� PmdMasterStatisticsMBean
� CgtpMasterMBean

An RnfsReplicatedSliceMBean is instantiated on the master node and on the
vice-master node for each Reliable NFS partition.

MBean Instances on Peer Nodes
One instance of each of the following MBeans is instantiated on each peer node of the
cluster:

� ClusterNodeMBean
� CmmStatisticsMBean
� RnfsStatisticsMBean
� PmdStatisticsMBean
� CgtpMBean
� CgtpFilterMBean

Multiple instances of the following MBeans might be instantiated:

CgtpReliableLinkStatisticsMBean One instance for each reliable link.

PmdNameTagStatisticsMBean One instance for each group of
processes monitored by the Daemon
Monitor.

Floating External Address
An external Java manager can use the floating external address (for example,
10.250.10.1) to communicate with the master node. After failover and switchover
the floating address is reassigned to the new master node. The external Java manager
must then connect to the new master node, but can connect to the same IP address as
before. SNMP cannot use the floating external address to communicate with the
master node.

Chapter 1 • Introduction to the Node Management Agent 21

22 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

CHAPTER 2

Configuration Files, Dependencies and
Requirements

This chapter defines the NMA software requirements and dependencies.

This chapter contains the following sections:

� “Configuration Files” on page 23
� “Dependencies” on page 24
� “Software Requirements” on page 24

Configuration Files
The following table summarizes the NMA configuration files.

TABLE 2–1 NMA Configuration Files

File Description

/etc/opt/SUNWcgha/nma.properties NMA properties file. See nma.properties(4)
for more information.

/etc/opt/SUNWcgha/nma.security NMA SNMPv3 security parameter
configuration file. See nma.security(4) for
more information.

/etc/opt/SUNWcgha/nma.notifs.txt SNMP trap identification configuration file.
See Chapter 4 for more information.

/etc/opt/SUNWcgha/nma.params.txt SNMP trap parameter configuration file. See
Chapter 4 for more information.

/etc/opt/SUNWcgha/nma.targets.txt SNMP trap target configuration file. See
Chapter 4 for more information.

23

TABLE 2–1 NMA Configuration Files (Continued)
File Description

/etc/opt/SUNWcgha/nma.uacl.template Template for SNMPv3 user access
configuration file. See Chapter 4 for more
information.

/etc/opt/SUNWcgha/nma.acl.template Template for SNMPv1, SNMPv2 and SNMPv3
IP configuration file. See Chapter 4 for more
information.

SNMP applications can also manipulate SNMPv3 configuration by using the
com.sun.jdmk.snmp.rfc2573.managerSnmpV3AppliMibRegistration class.

Dependencies
To enable an external Java manager to access NMA statistics, the class path of the
external Java manager must contain the following Java Archive (JAR) files:

� installDir/SUNWcgha/lib/jcmm.jar
� installDir/SUNWcgha/lib/ma.jar
� installDir/SUNWcgha/lib/cghautil.jar
� installDir/SUNWjdmk/jdmk5.0/lib/jdmkrt.jar
� /usr/sadm/lib/snmp/jsnmpapi.jar
� installDir/SUNWcgha/lib/rfc2573mgr.jar
� installDir/SUNWcgha/lib/rfc2573.jar

These JAR files are contained in the SUNWnhmaj package, the SUNWjdrt package, and
the SUNWjsnmp package.

Software Requirements
The NMA requires the following versions of Solaris:

� Java 2 Runtime Environment v1.3.1 for Solaris 8 2/02 and Solaris 8 PSR 1
� Java 2 Runtime Environment v1.4 for Solaris 9 and Solaris 9 9/02

A Java DMK client requires the Java DMK 5.0 runtime libraries, but the usage of Java
DMK communication interfaces is configurable. Both Java DMK 4.2 clients and Java
DMK 5.0 clients are supported. To interface with Java DMK 4.2 clients, set the value of
the jmx.serial.form property to 1.0

24 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

CHAPTER 3

Developing an External Java Manager

For information about how to develop an external Java manager, see the following
sections:

� “Configuring an External Java Manager Using HTTP” on page 25
� “Connecting to the NMA” on page 26
� “Using Proxy MBeans” on page 27

Configuring an External Java Manager
Using HTTP
To use the HTTP protocol adaptor, edit the following NMA properties in the
nma.properties file:

com.sun.nhas.ma.connectors.http.enabled
Set to true to enable the HTTP protocol adaptor

com.sun.nhas.ma.connectors.http.port
Set to the number of the port to be used for HTTP communication, for example,
8081

These properties are by default true and 8081 respectively.

25

Connecting to the NMA
The procedure for connecting to the NMA, or reconnecting to the NMA in case of a
change of mastership, depends on your addressing scheme.

Using the Floating Address
If you are using the floating address to connect to the NMA running on the master
node, perform the following steps to manage a failover or switchover:

1. Use the Java DMK heartbeat mechanism to detect the loss of contact with the
master node.

Reduce the timeouts on requests if necessary in order to guarantee the timely
detection of a master node crashing abruptly. See “Heartbeat Mechanism” in the
Java Dynamic Management Kit 5.0 Tutorial for information about how to use the Java
DMK heartbeat mechanism.

2. Reconnect to the NMA.

The master floating address will be assigned to the new master node of the cluster.
Reconnect to this NMA at this address.

3. Wait until the cascading service has finished restarting and the master view has
restarted.

The cascading service queries all of the NMAs running in the cluster and makes
this information available from the NMA on the master node. During this service
restart period, not all MBeans cascading from other nodes will be available. If you
attempt to manipulate an MBean on the master node that has not yet cascaded, an
InstanceNotFound exception is thrown.

4. Reregister all notification listeners.

Notifications might be lost between when mastership changes and listeners are
reregistered. Query the NMAs in the cluster to discover the current cluster state.

Using a Physical Node Address
If you are connecting to the NMA on each node using the node’s IP address no
connections will fail after failover or switchover.

26 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Using Proxy MBeans
The statistics providers in the NMA are implemented as MBeans. A set of generated
proxy classes for the statistics MBeans is supplied with the NMA. A remote manager
can access these statistics through the exposed MBean interfaces. The Java DMK
enables predefined proxy classes of these MBeans to be instantiated in an external Java
manager, and the objects to be manipulated as if they were present locally.
Communication with the proxied MBeans is handled automatically.

For more information about using proxy MBeans, see “MBean Proxies” in the Java
Dynamic Management Kit 5.0 Tutorial.

To use the supplied proxy classes, the Java DMK Remote Manager’s class path must
contain the path to proxies_42.jar or proxies_50.jar, depending on the
version of the Java DMK runtime that you are using. The Java DMK toolkit can be
used to regenerate the proxy classes. See Appendix A for more information.

Chapter 3 • Developing an External Java Manager 27

28 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

CHAPTER 4

Developing a Remote SNMP Manager

NMA information can be accessed using the Simple Network Management Protocol
(SNMP). This chapter explains how to configure an external SNMP manager, and
provides examples of the configuration files required for three types of SNMP
configurations.

The Java DMK can be used to develop a remote manager that communicates with the
NMA using SNMP. For information on how to use the Java DMK to develop a
manager that communicates using SNMP, see “Developing an SNMP Manager” in the
Java Dynamic Management Kit 5.0 Tutorial. Alternately, any SNMP manager can be used.

This chapter contains the following sections:

� “Configuring an SNMP Agent” on page 29
� “IP-Based Access Control Lists” on page 30
� “SNMPv3 User-Based Access Control” on page 33
� “Configuring SNMPv3 Security” on page 34
� “SNMP Manager Configuration Examples” on page 36

Configuring an SNMP Agent
The NMA offers SNMPv1, SNMPv2 and SNMPv3 interfaces via the SNMP protocol
adaptor. Edit the following values in the nma.properties file to configure the
SNMP protocol adaptor:

com.sun.nhas.ma.adaptors.snmp.enabled
Set to true to enable the SNMP protocol adaptor

com.sun.nhas.ma.adaptors.snmp.port
Set to number of the port to be used for SNMP communication, for example, 8085

com.sun.nhas.ma.adaptors.snmp.trap.port
Set to number of the port to be used to send SNMP traps, for example, 8086

29

By default the NMA uses the standard Java DMK access control configuration files.
The following templates are available for use in a default installation:

installDir/etc/opt/SUNWcgha/nma.acl.template
Used for SNMPv1, SNMPv2 and SNMPv3 IP access. For SNMPv3, IP access is only
relevant to SNMP traps.

installDir/etc/opt/SUNWcgha/nma.uacl.template
Used for SNMPv3 user access only.

Use these templates to create configuration files for customized access control
configuration. Edit the jdmk.acl.file and jdmk.uacl.file properties in the
nma.properties file to reflect the paths to your access control configuration files.

The following three files are included for SNMP traps and security configuration, in
accordance with the Internet Engineering Task Force RFC 2573.

installDir/etc/opt/SUNWcgha/nma.targets.txt
SNMP trap target configuration file.

installDir/etc/opt/SUNWcgha/nma.params.txt
SNMP trap security parameter configuration file.

installDir/etc/opt/SUNWcgha/nma.notifs.txt
SNMP trap identification configuration file.

The NMA MIB is located at /opt/SUNWcgha/etc/ma/nhasmib.txt in a default
installation.

Note – SNMPv1 does not support 64–bit counters. Retrieval of CGTP statistics that use
64–bit counters is not possible when using SNMPv1.

IP-Based Access Control Lists
In SNMPv1 and SNMPv2, access control is provided on the basis of the IP address and
community of the manager’s host machine.

EXAMPLE 4–1 Typical nma.acl File

acl = {
{
communities = public
access = read-only
managers = yourmanager
}
{

30 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

EXAMPLE 4–1 Typical nma.acl File (Continued)

communities = private
access = read-write
managers = yourmanager
}
}

trap = {
{
trap-community = public
hosts = yourmanager
}

}

Format of the acl Group
The acl group contains one or more access configurations.

acl = {
access1
access2
...

accessN
}

Each access configuration has the following format:

{
communities = communityList
access = accessRights
managers = hostList

}

The communityList is a list of SNMP community names to which this access control
applies. The community names in this list are separated by commas.

The accessRights specifies the rights to be granted to all managers connecting from the
hosts specified in the hostList. There are two values: either read-write or
read-only.

The hostList specifies the hosts of the managers to be granted the access rights. The
hostList is a comma-separated list of hosts, each of which can be expressed as any one
of the following:

� A host name
� An IP address
� A subnet mask

The set of all access configurations defines the access policy of the SNMP agent. A
manager whose host is specified in a hostList and that identifies itself in one of the
communities of the same configuration will be granted the permissions defined by the

Chapter 4 • Developing a Remote SNMP Manager 31

corresponding accessRights. A manager’s host can appear in several access
configurations provided it is associated with a different community list. This will
define different access communities with different rights from the same manager.

A manager whose host-community identification pair does not appear in any of the
access configurations will be denied all access. This means that protocol data units
(PDU) from this manager will be dropped without being processed.

Format of the Trap Group
The trap group specifies the hosts to which the agent will send traps if the
InetAddressAcl mechanism is used. This group contains one or more trap
community definitions.

trap = {
community1
community2
...
communityN

}

Each community definition defines the association between a set of hosts and the
SNMP community string in the traps to be sent to them. Each trap definition has the
following format:

{
trap-community = trapCommunityName
hosts = trapHostList

}

The trapCommunityName item specifies a single SNMP community string. It will be
included in the traps sent to the hosts specified in the hosts item. SNMPv3 does not
use the community string, so use IP addresses or the context name instead.

The trapHostList item specifies a comma-separated list of hosts. Each host must be
identified by its name or complete IP address.

When the SNMP protocol adaptor is instructed to send a trap using the
InetAddressAcl mechanism, it will send a trap to every host listed in the trap
community definitions. If a host is present in more than one list, it will receive more
than one trap, each one identified by its corresponding trap community.

32 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

SNMPv3 User-Based Access Control
The user-based access control implemented by SNMPv3 is based on contexts and user
names. The users, contexts and associated security information controlling access to
the agents in an SNMP session are defined in the nma.uacl file.

EXAMPLE 4–2 Example nma.uacl.template File

acl = {
{
context-names = TEST-CONTEXT
access = read-write
security-level = authNoPriv
users = defaultUser
}

}

In the nma.uacl file, you define the following:

� A list of context names, separated by commas. You can define a null context by
declaring context-names = null

� The access level, which can be either read-write or read-only

� The security level, as follows:

noAuthNoPriv No security mechanisms activated

authNoPriv Authentication activated, with no privacy

authPriv Both authentication and privacy activated

� A list of authorized users, separated by commas; an asterisk (*) opens access to all
users.

By uncommenting the acl block in Example 4–2, you would limit access to MIBs in
the TEST-CONTEXT context only, and grant read-write access to the user
defaultUser. The security level in the file must also match that of user
defaultUser. Therefore, any non-authenticated requests, any request with different
security levels, or any requests from a user other than defaultUser, would be
rejected.

Chapter 4 • Developing a Remote SNMP Manager 33

Configuring SNMPv3 Security
Under SNMPv1 and SNMPv2, agents act as information servers, and IP-based access
control is used to protect this information from unauthorized access. The SNMPv3
protocol provides much more sophisticated security mechanisms, implementing a
user-based security model (USM). This model allows both authentication and
encryption of the requests sent between agents and their managers, as well as
user-based access control.

Note – The default NMA configuration is an example of an SNMPv3 configuration.
Modify the security parameters to fit your security requirements.

You can add and remove users in the nma.security file as specified in “Managing
Users in Security Files” on page 35.

Engine ID
Secure SNMPv3 communication requires that the SNMP engine ID, which is generated
by the NMA for each node, is used to communicate with the NMA. The SNMP engine
ID is unique for the SNMP domain. It is a hexadecimal string calculated from a
concatenation of the following properties of the NMA on each node:

� Node CGTP address
� Communication port number
� IANA number. By default this is 42.

The engine ID is stored in the nma.security file of each NMA. The engine ID may
be substituted for another engine ID.

Context Name
The NMA MIB is not registered under the scope of any context.

34 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Managing Users in Security Files
Every user that has access to an agent is represented by a userEntry line in each of
the agent’s security files.

You configure the userEntry as follows, with the parameters separated commas:

userEntry=engine ID,user name,security name,authentication algorithm,authentication
key, privacy algorithm,privacy key,storage type,template

The only mandatory parameters are the engine ID and the user name. All the other
parameters are optional.

The possible values for the parameters are as follows:

Engine ID A local or remote SNMP engine, defined in one of the
following ways:

� The string localEngineID, to denote the local
engine

� A hexadecimal string, for example,
0x8000002a05819dcb6e00001f95

� A human-readable string used to generate an engine
ID, providing any or all of the host name, port, and
IANA number.

User name Any human-readable string

Security name Any human-readable string

Authentication algorithm The following algorithms are permitted:

� usmHMACMD5AuthProtocol
� usmHMACSHAAuthProtocol
� usmNoAuthProtocol

Authentication key Any text password or any hexadecimal key starting with
0x; for example,
0x0098768905AB67EFAA855A453B665B12, of size:

� 0 to 32 inclusive for HMACMD5
� 0 to 40 inclusive for HMACSHA

Privacy algorithm The following algorithms are permitted:

� usmDESPrivProtocol

� usmNoPrivProtocol

If no algorithm is specified, the default is
usmNoPrivProtocol.

Chapter 4 • Developing a Remote SNMP Manager 35

Any text password or any hexadecimal key starting with
0x; for example,
0x0098768905AB67EFAA855A453B665B12, of size 0
to 32 inclusive

If a hexadecimal string is provided, it must be a
localized key

Storage type A value of 3 denotes non-volatile, meaning that the user
entry is flushed in the security file; any value other than
3 will be rejected, throwing an
IllegalArgumentException

template Can be either true or false:

If true, the row is a template, not seen from USM MIB.
This kind of user is used when cloning users.

The default is false.

Users can also be managed through USM MIB access.

SNMP Manager Configuration Examples
This section contains three examples of SNMP configurations. The NMA implements
the Notification MIB module specified by the Internet Engineering Task Force in RFC
2573, which is accessible from http://www.ietf.org/rfc/rfc2573.txt.

By default the NMA authorizes localhost to access its MIB using SNMPv1 or
SNMPv2 on port 8085. SNMP traps are sent using the mechanism described in the
RFC 2573. Traps are sent by default to localhost on port 8086 using SNMPv2
parameters, as defined in the default RFC 2573 configuration files:

� nma.params.txt
� nma.notifs.txt
� nma.targets.txt

The RFC 2573 configuration files can be manually edited. Alternately, use the
com.sun.jdmk.snmp.rfc2573.manager.SnmpV3AppliMibRegistration
class, found in the rfc2573mgr.jar file. Use this class to dynamically register or
unregister SNMP managers at runtime. Example 4–3 is a code snippet that uses this
class to register a trap target on trap port trapPort of the host localHost. Traps are
received using SNMPv3 parameters.

36 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

http://www.ietf.org

EXAMPLE 4–3 Using the SnmpV3AppliMibRegistration API

//Register the manager/params to the NMA
try {

System.out.println("Register the Manager to receive Traps using SNMPv3 " +
parameters");

// Register the SNMP Parameters V3
SnmpV3AppliMibRegistration.registerParams(session,

"manager_paramsv3",
3,
3,
"defaultUser",
2);

// Register the Manager to receive traps with SNMPv3 parameters
SnmpV3AppliMibRegistration.registerTarget(session,

"manager_targetv3",
"1.3.6.1.6.1.1",
localHost + "/"+ trapPort,
10000,
2,
"trap",
"manager_paramsv3");

}
catch(SnmpStatusException e) {
System.out.println("ERROR in registration " + e.getMessage());

}

SNMPv2 Configuration Example
In this configuration the NMA MIB is accessed using SNMPv2 on port number 8085.
The SNMP manager is authorized to access the MIB located on host 10.8.1.253.
Traps are sent to the manager on port 8086 using SNMPv2, using the Notification
MIB described in RFC 2573.

Example 4–4, Example 4–5, Example 4–6, Example 4–7, and Example 4–8 list the
entries in the NMA configuration files that support this SNMP configuration.

EXAMPLE 4–4 Example Entries in nma.properties for SNMPv2

com.sun.nhas.ma.adaptors.snmp.enabled=true
com.sun.nhas.ma.adaptors.snmp.port=8085
com.sun.nhas.ma.adaptors.snmp.rfc2573.enabled=true
com.sun.nhas.ma.adaptors.snmp.rfc2573.v1v2set.enabled=true
com.sun.nhas.ma.adaptors.snmp.rfc2573.target.addr.file=\
/etc/opt/SUNWcgha/nma.targets.txt
com.sun.nhas.ma.adaptors.snmp.rfc2573.target.params.file=\

Chapter 4 • Developing a Remote SNMP Manager 37

EXAMPLE 4–4 Example Entries in nma.properties for SNMPv2 (Continued)

/etc/opt/SUNWcgha/nma.params.txt
com.sun.nhas.ma.adaptors.snmp.rfc2573.notification.file=\
/etc/opt/SUNWcgha/nma.notifs.txt

jdmk.acl.file=/etc/opt/SUNWcgha/nma.acl

EXAMPLE 4–5 Example Entries in nma.acl for SNMPv2

acl = {
{
communities = public, private
access = read-only
managers = 10.8.1.253
}
{
communities = public, private
access = read-write
managers = 10.8.1.253
}

}

EXAMPLE 4–6 Example Entry in nma.targets.txt for SNMPv2

targetsEntry=managerV2,snmpUDPDomain,10.8.1.253/8086,10000,2,trap,snmpV2,3

EXAMPLE 4–7 Example Entry in nma.params.txt for SNMPv2

paramsEntry=snmpV2,1,2,public,1,3

EXAMPLE 4–8 Example Entry in nma.notifs.txt for SNMPv2

notificationEntry=notif1,trap,1,3

SNMPv2 and SNMPv3 Hybrid Configuration
Example
In this configuration the NMA is located at the CGTP address 10.8.3.18. The NMA
MIB can be accessed through SNMPv2 and SNMPv3 using port number 8085. The
manager that authorizes access to the MIB in SNMPv2 is located on host 10.8.1.253.
The user defaultUser is authorized to access the MIB through SNMPv3 using the
security parameters described in the nma.security file. Traps are sent to the
manager on port 8086 using SNMPv2 and on port 8095 using SNMPv3. The
notification MIB described in the RFC 2573 is used.

38 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Example 4–9, Example 4–10, Example 4–11, Example 4–12, Example 4–13, Example
4–14, Example 4–15, and Example 4–16 list the entries in the NMA configuration files
that support this SNMP configuration.

EXAMPLE 4–9 Example Entries in nma.properties for Hybrid Configuration

com.sun.nhas.ma.adaptors.snmp.enabled=true
com.sun.nhas.ma.adaptors.snmp.port=8085
com.sun.nhas.ma.adaptors.snmp.rfc2573.enabled=true
com.sun.nhas.ma.adaptors.snmp.rfc2573.v1v2set.enabled=true
com.sun.nhas.ma.adaptors.snmp.rfc2573.target.addr.file=\
/etc/opt/SUNWcgha/nma.targets.txt
com.sun.nhas.ma.adaptors.snmp.rfc2573.target.params.file=\
/etc/opt/SUNWcgha/nma.params.txt
com.sun.nhas.ma.adaptors.snmp.rfc2573.notification.file=\
/etc/opt/SUNWcgha/nma.notifs.txt
jdmk.acl.file=/etc/opt/SUNWcgha/nma.acl

jdmk.uacl.file=/etc/opt/SUNWcgha/nma.uacl

EXAMPLE 4–10 Example Entries in nma.security for Hybrid Configuration

userEntry=localEngineID,defaultUser,null,usmHMACMD5AuthProtocol,mypasswd
localEngineBoots=23

localEngineID=0x8000002a050a08031200001f95

EXAMPLE 4–11 Example Entries in nma.acl for Hybrid Configuration

acl = {
{
communities = public, private
access = read-only
managers = 10.8.1.253
}
{
communities = public, private
access = read-write
managers = 10.8.1.253
}

}

EXAMPLE 4–12 Example Entries in nma.uacl for Hybrid Configuration

acl = {
{
context-names = null
access = read-write
security-level=authNoPriv
users = defaultUser
}

}

Chapter 4 • Developing a Remote SNMP Manager 39

EXAMPLE 4–13 Example Entries in nma.targets.txt for Hybrid Configuration

targetsEntry=managerV2,snmpUDPDomain,10.8.1.253/8086,10000,2,trap,snmpV2,3

targetsEntry=managerV3,snmpUDPDomain,10.8.1.253/8095,10000,2,trap,snmpV3,3

EXAMPLE 4–14 Example Entries in nma.params.txt for Hybrid Configuration

paramsEntry=snmpV2,1,2,public,1,3

paramsEntry=snmpV3,3,3,defaultUser,2,3

EXAMPLE 4–15 Example Entry in nma.notifs.txt for Hybrid Configuration

notificationEntry=notif1,trap,1,3

EXAMPLE 4–16 Example Entry in nma.security for Hybrid Configuration

userEntry=10.8.3.18:8085,defaultUser,defaultUser,usmHMACMD5AuthProtocol,\
mypasswd
userEntry=localEngineID,defaultUser,defaultUser,usmHMACMD5AuthProtocol,\
mypasswd
localEngineBoots=26

localEngineID=0x8000002a05000000ef6540c3f9

SNMPv3 Configuration Example
In this configuration, the NMA MIB is accessed using SNMPv3 on port number 8085.
The manager authorized to access the MIB is located on host 10.8.1.253. Traps are
sent to the manager on trap port 8086. In this case, the notification MIB is not used.
Traps are always sent to trap port 8086 as defined in the nma.properties file and
use only SNMPv2. The nma.targets.txt, nma.params.txt, and
nma.notifs.txt files are not used in this configuration.

Example 4–17, Example 4–18, Example 4–19, and Example 4–20 list the entries in the
NMA configuration files that support this SNMP configuration.

EXAMPLE 4–17 Example Entries in nma.properties for SNMPv3 Configuration

com.sun.nhas.ma.adaptors.snmp.enabled=true
com.sun.nhas.ma.adaptors.snmp.port=8085
com.sun.nhas.ma.adaptors.snmp.trap.port=8086
com.sun.nhas.ma.adaptors.snmp.rfc2573.enabled=false
com.sun.nhas.ma.adaptors.snmp.rfc2573.v1v2set.enabled=false
com.sun.nhas.ma.adaptors.snmp.rfc2573.target.addr.file=\
/etc/opt/SUNWcgha/nma.targets.txt
com.sun.nhas.ma.adaptors.snmp.rfc2573.target.params.file=\
/etc/opt/SUNWcgha/nma.params.txt
com.sun.nhas.ma.adaptors.snmp.rfc2573.notification.file=\
/etc/opt/SUNWcgha/nma.notifs.txt
jdmk.acl.file=/etc/opt/SUNWcgha/nma.acl

40 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

EXAMPLE 4–17 Example Entries in nma.properties for SNMPv3 Configuration
(Continued)

jdmk.uacl.file=/etc/opt/SUNWcgha/nma.uacl

EXAMPLE 4–18 Example Entries in nma.security for SNMPv3 Configuration

userEntry=localEngineID,defaultUser,null,usmHMACMD5AuthProtocol,mypasswd
localEngineBoots=23

localEngineID=0x8000002a050a08031200001f95

EXAMPLE 4–19 Example Entries in nma.acl for SNMPv3 Configuration

acl = {
{
communities = public, private
access = read-only
managers = 10.8.1.253
}
{
communities = public, private
access = read-write
managers = 10.8.1.253
}
}

trap = {
{
trap-community = public
hosts = 10.8.1.253
}
{
trap-community = private
hosts = 10.8.1.253
}

}

EXAMPLE 4–20 Example Entries in nma.uacl for SNMPv3 Configuration

acl = {
{
context-names = null
access = read-write
security-level=authNoPriv
users = defaultUser
}

}

Chapter 4 • Developing a Remote SNMP Manager 41

42 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

CHAPTER 5

Manipulating the Cluster Using the
NMA

The Node Management Agent (NMA) exposes methods for causing a switchover and
manipulating the retry count for processes and process groups monitored by the
Daemon Monitor.

This chapter contains the following sections:

� “Using the NMA to Initiate a Switchover” on page 43
� “Manipulating Daemon Monitor Retry Settings” on page 47

Using the NMA to Initiate a Switchover
Methods of the CmmMasterNodeMBean can be used to check whether a switchover is
possible, initiate the switchover, and then gauge the success of the switchover. The
switchover is performed by the Cluster Membership Manager (CMM).

Because it is possible to set a timeout value for CMM operations, it is also possible that
CMM operations might not be completed during the time allowed. If the timeout
value is too short, some or all CMM operations will fail. For more information about
this CMM behavior, see cmm_connect(3CMM).

Note – To disable the ability to perform remote operations on a cluster, set the
com.sun.nhas.ma.operation.flag property in nma.properties to false.

43

Checking Whether the Foundation Services Are
Ready for Switchover
To check whether a switchover is possible, invoke the isSwitchOverReady method.
The isSwitchOverReady method takes no parameters, and returns a boolean.

Note – Even if the isSwitchOverReady method returns true, this does not
guarantee that switchover will succeed. Switchover may not succeed, for example, if
cluster readiness changes between the time when the isSwitchOverReady is
invoked and the switchOver method is invoked.

Initiating a Switchover
To initiate a switchover, invoke the switchOver method. The switchOver method
takes no parameters, and returns a void. Note that if this method is invoked using the
floating external address the connection to the NMA might be broken prematurely and
the switchOver method will never finish executing. Write code to detect and handle
this eventuality.

Example of Switchover Using an HTTP Connector
Client
The NmaSwitchover class, the code of which is listed below, can be used to provoke
a switchover of the current master node. The mechanism used below (the invoke()
method of the HTTPConnectorClient class) can be used to invoke the methods of
the NMA MBeans.

EXAMPLE 5–1 NmaSwitchover.java

// java import
//
import java.net.InetAddress;

// jmx import
//
import javax.management.ObjectName;
import javax.management.MBeanException;

// jdmk import
//
import com.sun.jdmk.TraceManager;
import com.sun.jdmk.comm.HttpConnectorClient;
import com.sun.jdmk.comm.HttpConnectorAddress;
import com.sun.jdmk.comm.CommunicationException;

44 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

EXAMPLE 5–1 NmaSwitchover.java (Continued)

import com.sun.jdmk.comm.UnauthorizedSecurityException;

/**
* This java client uses an HTTP connector client to establish a connection
* to the NMA and perform a mastership switchover.
*
* To compile the client:
*
* javac NmaSwitchover.java
*
* Note: First ensure that the jar files specified in the chapter
* ’Configuration Files, Dependencies and Requirements’ of the
* "Netra High Availability Suite Foundation Services 2.1 6/03
* NMA Programming Guide" are in your CLASSPATH.
*
* To run the client:
*
* java NmaSwitchover <domain_name> <master_IP_address>
* <HttpConnectorServer_port>
*
* For example: java NmaSwitchover cluster_8 10.8.1.18 8081
*
* Note: This example must be run on a machine with access to the
* cluster, for example, the cluster install server.
*
*/
public class NmaSwitchover {

public static void main(String argv[]) {

try {

/**
* Debug
* To activate the debug or trace mechanism from the command
* line, use the syntax: java -DLEVEL_DEBUG NmaSwitchover
* <arguments> or java -DLEVEL_TRACE NmaSwitchover <arguments>
*
* For example:
* java -DLEVEL_DEBUG NmaSwitchover cluster_6 10.6.1.1 8081
*
*/

TraceManager.parseTraceProperties();

// Set the domain name of the cluster
//
String domain = "DefaultDomain";
if (argv.length >=1) domain = argv[0];

// Set the host name of the remote MBean server.
//
String agentHost = InetAddress.getLocalHost().getHostName();

Chapter 5 • Manipulating the Cluster Using the NMA 45

EXAMPLE 5–1 NmaSwitchover.java (Continued)

if (argv.length >= 2) agentHost = argv[1];

// Set the port number of the remote connector server.
//
int agentPort = 8081;
if (argv.length >= 3)

agentPort = Integer.decode(argv[2]).intValue();

System.out.println(">>> Connecting to " + agentHost +
" using port number " + agentPort);

// Set up the HTTP Connector Client.
//
HttpConnectorClient connector = new HttpConnectorClient();
try {
// Initialize communication with the remote MBean server.
//

HttpConnectorAddress hca =
new HttpConnectorAddress(agentHost,agentPort);

connector.connect(hca);
} catch (IllegalArgumentException e)
{
System.out.println("Connection exception! " +

e.getMessage());
} catch (CommunicationException e)
{
System.out.println("Connection exception! " +

e.getMessage());
} catch (UnauthorizedSecurityException e)
{
System.out.println("Connection exception! " +

e.getMessage());
}

String[] iargs = {};
String[] isig = {};

String instanceName = domain +
".master:nhas-object=cluster_node";

ObjectName node = new ObjectName(instanceName);
// Invoke the isSwitchOverReady() method to check that the
// cluster is in a condition to support switchover successfully.
// If this method returns true, invoke the switchover method.
// Note that this does not guarantee that the switchover operation
// will be successfully invoked, because the readiness of the
// cluster may change before the switchover can be performed.
//
try {
if (connector.invoke(node, "isSwitchOverReady",

iargs, isig).equals(new Boolean(true)))
{
System.out.println("Performing switchover");

// Switchover

46 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

EXAMPLE 5–1 NmaSwitchover.java (Continued)

//
connector.invoke(node, "switchOver", iargs, isig);

} else
{
System.out.println("Cluster not ready for switchover");

}
} catch (MBeanException e)
{
System.out.println("Got an exception invoking switchover! " +
e.getTargetException().getMessage());

}

// Terminate communication with the remote MBean server.
//
connector.disconnect();

// Exit program
//
System.exit(0);

} catch (Exception e) {
System.out.println("Got an exception !" + e.getMessage());
e.printStackTrace();
System.exit(1);
}

}

}

Getting the CMM Status of All Cluster Nodes
To get the CMM status of all cluster nodes, invoke the getAllNodeInfo method. The
getAllNodeInfo method takes no parameters, and returns a CmmMemberInfo[].

Manipulating Daemon Monitor Retry
Settings
The Daemon Monitor controls groups of processes and attempts to restart these
processes if they fail. The number of times that the Daemon Monitor attempts to
restart a group of failed processes can be set using the updateMaxRetryCount
method of the PmdNameTagStatisticsMBean. When this method is invoked, the
current count of the number of times that the Daemon Monitor has attempted to
restart the process group is reset. When a group of processes has been successfully
restarted, invoke the resetRetryCount method to ensure that the stipulated
number of retries are attempted if the process group fails again.

Chapter 5 • Manipulating the Cluster Using the NMA 47

48 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

CHAPTER 6

Carrier Grade Transport Protocol
Statistics

For information about the Carrier Grade Transfer Protocol (CGTP) statistics that can be
accessed from the NMA, see the following sections:

� “Introducing CGTP Statistics” on page 49
� “CGTP Master Statistics” on page 50
� “CGTP Node Statistics” on page 50

Introducing CGTP Statistics
The CGTP statistics collected by the NMA can be used to ascertain the degree of
success with which CGTP is operating in a running cluster. Network traffic conditions
might slow down or prohibit the arrival of duplicate packets, or a bottleneck might
occur at the local or remote end of the CGTP link. CGTP statistics provide a measure
of the success with which CGTP is operating. These statistics are also useful for
diagnosing the source of bad performance or failure. Using the CGTP statistics
collected by the NMA it is possible to measure the success of packet duplication and
filtering, redundant link by redundant link, and pinpoint the source of slow
performance or packet loss.

For more information about CGTP, see the Netra High Availability Suite Foundation
Services 2.1 6/03 Overview.

Set the com.sun.nhas.ma.cgtp.polling property to specify the interval in
milliseconds between sequential updates of CGTP information in the NMA.

49

CGTP Master Statistics

CgtpMasterMBean
The CgtpMasterMBean MBean exposes the CGTP master node view. This MBean
provides lists of local and remote CGTP addresses. One MBean implementing the
CgtpMasterMBean interface is instantiated on the cluster master node.

Getting All Local CGTP Addresses for Which Statistics are
Available
To return the list of all local CGTP addresses for which statistics are available, invoke
the getLocalCgtpAddresses method. The getLocalCgtpAddresses method
takes no parameters, and returns a String[]. If statistics are not available, the
method returns null.

Getting All Remote CGTP Addresses for Which Statistics
are Available
To return the list of remote CGTP addresses for which statistics are available, invoke
the getRemoteCgtpAddresses method. The getRemoteCgtpAddresses method
takes no parameters, and returns a String[]. If statistics are not available, the
method returns null.

CGTP Node Statistics

CgtpMBean
One instance of the CgtpMBean is instantiated on each node.

50 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Getting All Local CGTP Addresses for Which Statistics Are
Available
To return the list of all local CGTP addresses for which statistics are available, invoke
the getLocalCgtpAddresses method. The getLocalCgtpAddresses method
takes no parameters, and returns a String[]. If statistics are not available, the
method returns null.

Getting All Remote CGTP Addresses for Which Statistics
Are Available
To return the list of remote CGTP addresses for which statistics are available, invoke
the getRemoteCgtpAddresses method. The getRemoteCgtpAddresses method
takes no parameters, and returns a String[]. If statistics are not available, the
method returns null.

CgtpEmitterStatisticsMBean
The CgtpEmitterStatisticsMBean MBean provides statistics about the packets a
node has sent through the local subinterface, in the reliable link operated by CGTP
from a local CGTP address to a remote CGTP address.

Getting the Number of Packets Sent Through Each
Subinterface
To get the number of packets sent through each local subinterface taking part in the
reliable link, invoke the getSubInterfaceSentCount method. The subinterfaces
are placed in the same order as that used in
CgtpReliableLinkStatisticsMBean.getSubInterfaceAddresses(). The
getSubInterfaceSentCount method takes no parameters, and returns an int[].

CgtpFilterMBean
This MBean interface exposes the statistics available on the CGTP filter. There is one
MBean per node which provides information on the CGTP filter.

Getting the Number of Packets Not Received in Duplicate
To get the number of packets that have not been duplicated, invoke the
getFilterFailure method. The getFilterFailure method takes no parameters,
and returns a long.

Chapter 6 • Carrier Grade Transport Protocol Statistics 51

Getting the Amount of Memory Currently Used by the
Filter Module
To get the amount of memory used by the filter module, invoke the
getFilterMemory method. The getFilterMemory method takes no parameters,
and returns a long.

Getting the Number of Packets Successfully Received
To get the number of packets successfully received and successfully filtered, invoke
the getFilterSuccess method. The getFilterSuccess method takes no
parameters, and returns a long.

Getting the Number of Filter Tables Used by the Filter
Module
To get the current number of filter tables used by the filter module, invoke the
getFilterTables method. The getFilterTables method takes no parameters,
and returns an int.

Getting the Number of Hash Table Collisions
To get the number of collisions that have occurred in the hash table, invoke the
getHashCollisions method. The getHashCollisions method takes no
parameters, and returns an int.

Getting the Number of Direct Hash Table Entries
To get the number of direct entries in the hash table, invoke the getHashDirect
method. The getHashDirect method takes no parameters, and returns an int.

Getting the Number of Hash Table Entries
To get the number of entries in the hash table, invoke the getHashEntries method.
The getHashEntries method takes no parameters, and returns an int.

Getting the Number of Packets Not Received
To get the number of packets for which filtering has failed on the local node for each
interface, invoke the getInterfaceFilterFailure method. The
getInterfaceFilterFailure method takes no parameters, and returns a long[].

52 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Getting the Maximum Amount of Memory Used by the
Filter Module
To get the highest amount of memory used by the filter, invoke the
getMaxFilterMemory method. The getMaxFilterMemory method takes no
parameters, and returns a long.

Getting the Maximum Number of Filter Tables Used by
the Filter Module
To get the maximum number of filter tables used by the filter module, invoke the
getMaxFilterTables method. The getMaxFilterTables method takes no
parameters, and returns an int.

Getting the Maximum Number of Ticks Allowed Before
Duplicate Arrives
To get the maximum number of ticks allowed until the duplicate of a packet is
received and the packet is validated as successfully filtered, invoke the
getMaxTickPremiumToDuplicate method. The
getMaxTickPremiumToDuplicate method takes no parameters, and returns an
int. If the duplicate packet does not arrive within the tick period, the package will
not be validated as successfully filtered.

Getting the Number of Packets Waiting for Duplicate
Reception
To get the number of packets for which no duplicate has yet been received, invoke the
getPremiumPacket method. The getPremiumPacket method takes no parameters,
and returns an int.

CgtpReceiverStatisticsMBean
The CgtpReceiverStatisticsMBean MBean provides statistics about the packets
received by this node through the reliable link operated by CGTP from a remote CGTP
address to a local CGTP address.

Getting the Number of Packets Not Successfully Filtered
To return the number of packets not successfully filtered on reception, invoke the
getFilterFailureCount method. The getFilterFailureCount method takes
no parameters, and returns an int.

Chapter 6 • Carrier Grade Transport Protocol Statistics 53

Getting the Number of Packets Successfully Filtered
To return the number of packets successfully filtered on reception, invoke the
getFilterSuccessCount method. The getFilterSuccessCount method takes
no parameters, and returns an int.

Getting the Number of Packets Received Through Each
Subinterface
To return the number of packets received through each local subinterface taking part
in the reliable link, invoke the getSubInterfaceReceivedCount method. The
subinterfaces are placed in the same order as that used in
CgtpReliableLinkStatisticsMBean.getSubInterfaceAddresses(). The
getSubInterfaceReceivedCount method takes no parameters, and returns an
int[].

CgtpReliableLinkStatisticsMBean
The CgtpReliableLinkStatisticsMBean MBean lists the addresses of the
subinterfaces, and the reliable link addresses currently in use by the Reliable Transport
Service.

Getting the Remote Subinterface Addresses
To get the remote interface addresses used by CGTP to send and receive packets,
invoke the getGatewayAddresses method. The number of redundant links making
up the reliable link is limited to two. The array elements are ordered identically to the
subinterface. The getGatewayAddresses method takes no parameters, and returns
a String[].

Getting Local End Reliable Link CGTP Addresses
To get the local CGTP address at the local end of the reliable link for which these
statistics are provided, invoke the getLocalCgtpAddress method. The
getLocalCgtpAddress method takes no parameters, and returns a String.

Getting Remote End Reliable Link CGTP Addresses
To return the remote CGTP address at the remote end of the reliable link for which
these statistics are provided, invoke the getRemoteCgtpAddress method. The
getRemoteCgtpAddress method takes no parameters, and returns a String.

54 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Getting Local Subinterface Addresses
To return the underlying local subinterface addresses used by CGTP to send and
receive packets, invoke the getSubInterfaceAddresses method. The
getSubInterfaceAddresses method takes no parameters, and returns a
String[]. The number of redundant links making up the reliable link is limited to
two. The array elements are ordered identically to those of the gateway.

Chapter 6 • Carrier Grade Transport Protocol Statistics 55

56 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

CHAPTER 7

Daemon Monitor Statistics

This chapter describes the Daemon Monitor statistics that can be accessed from the
NMA.

This chapter contains the following sections:

� “Example of Accessing Statistics Using an HTTP Client” on page 57
� “Introducing Daemon Monitor Statistics” on page 61
� “Daemon Monitor Master Statistics” on page 61
� “Daemon Monitor Node Statistics” on page 62

Example of Accessing Statistics Using an
HTTP Client
The NmaMasterNametags example, the code of which is listed in Example 7–1,
queries the PmdMasterStatisticsMBean for the list of daemon monitor nametags
active on the master node. The mechanism used below (the invoke() method of the
HTTPConnectorClient class) can be used to invoke the methods of the NMA
MBeans and query the NMA for statistics and information.

EXAMPLE 7–1 NmaMasterNametags.java

/*
* @(#)file NmaMasterNametags.java
* @(#)author Sun Microsystems, Inc.
* @(#)version 1.2
* @(#)date 02/06/06
*
* Copyright 2002 Sun Microsystems, Inc. All rights reserved.
* This software is the proprietary information of Sun Microsystems, Inc.
* Use is subject to license terms.

57

EXAMPLE 7–1 NmaMasterNametags.java (Continued)

*
* Copyright 2002 Sun Microsystems, Inc. Tous droits réservés.
* Ce logiciel est proprieté de Sun Microsystems, Inc.
* Distribué par des licences qui en restreignent l’utilisation.
*/

// java import
//
import java.net.InetAddress;

// jmx import
//
import javax.management.ObjectName;
import javax.management.MBeanException;

// jdmk import
//
import com.sun.jdmk.TraceManager;
import com.sun.jdmk.comm.HttpConnectorClient;
import com.sun.jdmk.comm.HttpConnectorAddress;
import com.sun.jdmk.comm.CommunicationException;
import com.sun.jdmk.comm.UnauthorizedSecurityException;

/**
* This java client uses an HTTP connector client to establish a connection
* to the Master NMA and retrieve all Nametags.
*
* To compile the client:
*
* javac NmaMasterNametags.java
*
* Note: First ensure that the jar files specified in the chapter
* ’Configuration Files, Dependencies and Requirements’ of the
* "Netra High Availability Suite Foundation Services 2.1 6/03
* NMA Programming Guide" are in your CLASSPATH.
*
* To run the client:
*
* java NmaMasterNametags <domain_name> <master_IP_address>
* <HttpConnectorServer_port>
*
* For example: java NmaMasterNametags cluster_8 10.8.1.18 8081
*
* Notes:
* 1) This example must be run on a machine with access to the
* cluster, for example, the cluster install server.
* 2) The second parameter can also be the master floating address, for
* example, 10.8.1.1
*
*/

public class NmaMasterNametags {

58 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

EXAMPLE 7–1 NmaMasterNametags.java (Continued)

public static void main(String argv[]) {

try {

/**
* Debug
* To activate the debug or trace mechanism from the command
* line, use the syntax:
* java -DLEVEL_DEBUG NmaMasterNametags <arguments> or
* java -DLEVEL_TRACE NmaMasterNametags <arguments>
*
* For example:
* java -DLEVEL_DEBUG NmaMasterNametags cluster_6 10.6.1.1 8081
*
*/

TraceManager.parseTraceProperties();

// Set the domain name of the cluster
//
String domain = "DefaultDomain";
if (argv.length >=1) domain = argv[0];

// Set the host name of the remote MBean server.
//
String agentHost = InetAddress.getLocalHost().getHostName();
if (argv.length >= 2) agentHost = argv[1];

// Set the port number of the remote connector server.
//
int agentPort = 8081;
if (argv.length >= 3)

agentPort = Integer.decode(argv[2]).intValue();

System.out.println(">>> Connecting to " + agentHost +
" using port number " + agentPort);

// Set up the HTTP Connector Client.
//
HttpConnectorClient connector = new HttpConnectorClient();

try {
// Initialize communication with the remote MBean server.
//
HttpConnectorAddress hca =
new HttpConnectorAddress(agentHost,agentPort);
connector.connect(hca);

} catch (IllegalArgumentException e) {
System.out.println("Connection exception! " +
e.getMessage());

} catch (CommunicationException e) {
System.out.println("Connection exception! " +

Chapter 7 • Daemon Monitor Statistics 59

EXAMPLE 7–1 NmaMasterNametags.java (Continued)

e.getMessage());
} catch (UnauthorizedSecurityException e) {

System.out.println("Connection exception! " +
e.getMessage());

}

// Get Nametags
//

String[] iargs = {};
String[] isig = {};

String instanceName = domain + ".master:nhas-object=pmd_stats";
ObjectName node =
new ObjectName(instanceName);
try {

// Attempt to invoke getNameTags()
//
String[] nt = (String[])
connector.invoke(node, "getNameTags", iargs, isig);

System.out.println("Node " + argv[0] +
" is running process groups:");
// Print each element of the array returned by getNameTags()
// to the standard output. Each element is a nametag
// managed by the daemon monitor
//
for (int i = 0; i < nt.length; i++) {

System.out.println(nt[i]);
}

} catch (MBeanException e) {
System.out.println("Got an exception invoking " +
"getNameTags()! " + e.getTargetException().getMessage());

}

// Terminate communication with the remote MBean server.
//
connector.disconnect();

// Exit program
//
System.exit(0);

} catch (Exception e) {
System.out.println("Got an exception !" + e.getMessage());
e.printStackTrace();
System.exit(1);

}
}

}

60 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Introducing Daemon Monitor Statistics
The Daemon Monitor statistics are useful in maintaining awareness of processes that
fail, and processes that are unable to restart within the allowed number of retries.
Access to the PIDs of the processes allows for the monitoring of these processes using
standard Solaris operating system commands.

Note – Daemon Monitor statistics are cached. The
com.sun.nhas.ma.pmd.cache.validity and
com.sun.nhas.ma.pmd.polling properties in the nma.properties file control
the Daemon Monitor polling interval and cache data validity period. If the values of
these properties are set too low, the cache might be refreshed before all statistics
cached in the previous polling period are read. The default values should be sufficient
in most cases.

See “Daemon Monitor” in Netra High Availability Suite Foundation Services 2.1 6/03
Overview for more information about the Daemon Monitoring service.

Daemon Monitor Master Statistics
This section describes the Daemon Monitor statistics available from the NMA on the
master node.

PmdMasterStatisticsMBean
The PmdMasterStatisticsMBean MBean provides the nametags of all daemons
currently being monitored.

Getting All Nametags
To return all the nametags managed by the NMA, invoke the getNameTags method.
The getNameTags method takes no parameters, and returns a String[].

Chapter 7 • Daemon Monitor Statistics 61

Daemon Monitor Node Statistics
This section describes the Daemon Monitor statistics collected by the NMA on each
peer node.

PmdStatisticsMBean
The PmdStatisticsMBean provides a list of all the nametags monitored by the
Daemon Monitor.

Getting All Nametags
To return all the nametags managed by the Daemon Monitor, invoke the
getNameTags method. The getNameTags method takes no parameters, and returns
a String[].

PmdNameTagStatisticsMBean
The PmdNameTagStatisticsMBean MBean provides information about the number
of attempts that can be made to restart a daemon, and the number of attempts that
have already been made. This MBean is the source of:

� A NhasPmdMaxRetriesNotification, which is sent whenever the maximum
allowed number of retry attempts is exceeded.

� A AttributeValueChangeNotification, which is sent whenever the number
of allowed retry attempts is changed.

� A NhasPmdNewNameTagNotification, which is sent whenever the Daemon
Monitor creates a new nametag.

� A NhasPmdNewNameTagNotification, which is sent whenever the Daemon
Monitor removes a nametag from the collection.

One instance of this MBean is instantiated for each Daemon Monitor by the Daemon
Monitor service.

Getting the Daemon Monitor Nametag
To get the nametag that the PmdNameTagStatisticsMBean MBean is providing
data on, invoke the getNameTag method. The getNameTag method takes no
parameters, and returns a String.

62 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Getting the PIDs Associated With a Nametag
To get the list of process IDs associated with this nametag, invoke the getPidList
method. The getPidList method takes no parameters, and returns an int[].

Getting the Daemon Monitor Maximum Retries
To get the maximum number of restart retries allowed for this nametag, invoke the
getMaxRetryCount method. The getMaxRetryCount method takes no parameters,
and returns an int.

Getting the Number of Retries for a Nametag
To number of restart retries already attempted for this nametag, invoke the
getRetryCount method. The getRetryCount method takes no parameters, and
returns an int.

Chapter 7 • Daemon Monitor Statistics 63

64 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

CHAPTER 8

Reliable NFS Statistics

This chapter describes the Reliable NFS statistics that can be accessed from the NMA.

This chapter contains the following sections:

� “Introducing Reliable NFS Statistics” on page 65
� “Reliable NFS Master Statistics” on page 65
� “Reliable NFS Node Statistics” on page 66

Introducing Reliable NFS Statistics
The Reliable NFS statistics collected by the NMA provide a view on the current state
of replication in the cluster, node by node, reliable link by reliable link. Reliable NFS
statistics are available only on the master node and the vice master node.

See “File Sharing and Data Replication” in the Netra High Availability Suite Foundation
Services 2.1 6/03 Overview for more information.

Reliable NFS Master Statistics
This section describes the Reliable NFS statistics collected by the NMA running on the
master node.

65

RnfsMasterReplicatedSliceMBean
The RnfsMasterReplicatedSliceMBean MBean models a Reliable NFS replicated
slice. Each slice is composed of a primary partition and a secondary partition. One
instance of this MBean is instantiated for each replicated slice mounted on either the
master or the vice master node.

Getting the Completed Recovery Percentage
To get the percentage of segments of the slice that has been resynchronized, invoke the
getCompletedRecoveryPercentage method. The
getCompletedRecoveryPercentage method takes no parameters, and returns a
float. This information is meaningful if the primary slice of this MBean is mounted
on the host running the agent. No statistics are provided for distant primary MBean.

Getting the Percentage of Segments Requiring Recovery
To get the percentage of segments of the slice that require recovery, invoke the
getNeededRecoveryPercentage method. The
getNeededRecoveryPercentage method takes no parameters, and returns a
float which indicates the percentage of segments that require recovery. This
information is meaningful if the primary slice of this MBean is mounted on the host
running the agent. No statistics are provided for distant primary MBean.

Reliable NFS Node Statistics
This section describes the Reliable NFS statistics collected by the NMA running on
each peer node.

RnfsStatisticsMBean
The RnfsStatisticsMBean MBean provides global Reliable NFS statistics. One
instance of this MBean is instantiated on each master eligible node in the cluster. This
MBean only provides statistics about Reliable NFS on the node on which it is running.

Getting the Primary Slice
To return the primary dual copy slice file name and slice name, invoke the
getPrimarySlice method. The getPrimarySlice method takes no parameters,
and returns a Slice.

66 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Getting the Secondary Slice
To return the secondary dual copy slice file name and slice name, invoke the
getSecondarySlice method. The getSecondarySlice method takes no
parameters, and returns a Slice.

RnfsMasterStatisticsMBean
The RnfsMasterStatisticsMBean MBean provides Reliable NFS statistics on the
master node.

Getting the Names of All Primary Files on the Local Host
To get an array of the names of the primary slices mounted on the local host, invoke
the getPrimaryFiles method. The getPrimaryFiles method takes no
parameters, and returns a String[].

Getting the Names of All Secondary Files on the Local
Host
To return an array of the names of the secondary slices mounted on the local host,
invoke the getSecondaryFiles method. The getSecondaryFiles method takes
no parameters, and returns a String[].

RnfsReplicatedSliceMBean
The RnfsReplicatedSliceMBean MBean models a Reliable NFS slice. One instance
of this MBean is instantiated for each replicated slice mounted on each master-eligible
node.

Getting the Completed Recovery Percentage
To get the percentage of segments of the partition that has been resynchronized,
invoke the getCompletedRecoveryPercentage method. The
getCompletedRecoveryPercentage method takes no parameters, and returns a
float. This information is meaningful if the primary slice of this MBean is mounted
on the host running the agent. No statistics are provided for a distant primary MBean.

Chapter 8 • Reliable NFS Statistics 67

Getting the Dual Copy Status
To get the current status of the dual copy as a DualCopyStatusEnum value, invoke
the getDualCopyStatus method. The getDualCopyStatus method takes no
parameters, and returns a DualCopyStatusEnum. This information is meaningful if
the primary slice of this MBean is mounted on the host running the agent. No statistics
are provided for a distant primary MBean.

Getting the Link Status
To find out if replication is enabled, disabled, or in progress, invoke the
getLinkStatus method. The getLinkStatus method takes no parameters, and
returns a LinkStatusEnum.

The LinkStatusEnum can have one of the following values:

ENABLED Replication is enabled.

RESYNC A synchronization is in progress.

Getting the Percentage of Segments Requiring Recovery
To indicates the percentage of segments of the partition that require recovery, invoke
the getNeededRecoveryPercentage method. The
getNeededRecoveryPercentage method takes no parameters, and returns a
float. This information is meaningful if the primary slice of this MBean is mounted
on the host running the agent. No statistics are provided for a distant primary MBean.

Getting the Primary Slice
To returns the primary dual copy slice file name and slice name, invoke the
getPrimarySlice method. The getPrimarySlice method takes no parameters,
and returns a Slice.

Getting the Secondary Slice
To return the secondary dual copy slice file name and slice name, invoke the
getSecondarySlice method. The getSecondarySlice method takes no
parameters, and returns a Slice.

68 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Getting the Names of All Primary Files on the Local Host
To get an array of the names of the primary slices mounted on the local host, invoke
the getPrimaryFiles method. The getPrimaryFiles method takes no
parameters, and returns a String[].

Getting the Names of All Secondary Files on the Local
Host
To return an array of the names of the secondary slices mounted on the local host,
invoke the getSecondaryFiles method. The getSecondaryFiles method takes
no parameters, and returns a String[].

Chapter 8 • Reliable NFS Statistics 69

70 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

CHAPTER 9

Cluster Membership Manager
Statistics

This chapter describes the Cluster Membership Manager (CMM) statistics that can be
accessed from the NMA.

This chapter contains the following sections:

� “Introducing CMM Statistics” on page 71
� “CMM Master Statistics” on page 72
� “CMM Node Statistics” on page 73

Introducing CMM Statistics
The CMM statistics collected by the NMA provide the role and status of each node in
the cluster.

When a direct link is configured between the master-eligible nodes the NMA can
monitor the following statistics:

� The number of times that the vice-master node has requested to become the master
node.

� The state of the direct link. The state can be up or down.

For information about the direct link, see the Netra High Availability Suite Foundation
Services 2.1 6/03 Overview.

Because it is possible to set a timeout value for CMM operations, it is also possible that
CMM operations may not be completed during the time allowed. If the timeout value
is too short, some or all CMM operations will fail. For more information about this
CMM behavior, see cmm_connect(3CMM).

71

CMM Master Statistics

CmmMasterStatisticsMBean
The CmmMasterStatisticsMBean MBean interface makes master state information
available. One MBean implementing the CmmMasterStatisticsMBean interface is
instantiated on the CMM cluster master node.

Getting the Average Time Between Node Starts
To get the average time in seconds between nodes when starting the CMM, invoke the
getAverageElectionDelay method. This information can be used for tuning the
master election mechanism. The getAverageElectionDelay method takes no
parameters, and returns an int.

Getting the Number of CMM Clients
To get the number of CMM clients currently connected, invoke the getClientCount
method. The getClientCount method takes no parameters, and returns an int.
This information is available on all nodes.

Getting the CMM Lifetime
To get the lifetime of the CMM on this node, expressed in the number of seconds since
boot, invoke the getCmmUpTime method. The getCmmUpTime method takes no
parameters, and returns an int. This information is available on all nodes.

Getting the Number of Node Elections
To get the number of elections processed on the platform, invoke the
getElectionCount method. The getElectionCount method takes no parameters,
and returns an int.

Getting the Longest Interval Between Node Starts
To get the maximum time in seconds between nodes when starting the CMM, invoke
the getMaxElectionDelay method. The getMaxElectionDelay method takes no
parameters, and returns an int. This information can be used for tuning the election
mechanism.

72 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Getting the Shortest Interval Between Node Starts
To get the minimum time in seconds between nodes when starting the CMM, invoke
the getMinElectionDelay method. The getMinElectionDelay method takes no
parameters, and returns an int. This information can be used for tuning the election
mechanism.

Getting the Number of Nodes in the Cluster
To get the number of nodes acknowledged by the master node as being present in the
cluster, invoke the getPresentNodeCount method. The getPresentNodeCount
method takes no parameters, and returns an int.

Getting the Number of Outstanding CMM Requests
To get the number of requests currently outstanding, invoke the getRequestCount
method. The getRequestCount method takes no parameters, and returns an int.
This information is available on all nodes.

Getting the Switchover Count
To get the number of switchovers performed, invoke the getSwitchOverCount
method. The getSwitchOverCount method takes no parameters, and returns an
int.

CMM Node Statistics

ClusterNodeMBean
The ClusterNodeMBean MBean interface exposes the CMM view of the local node
on which the agent runs. This MBean interface makes the CMM state information of
the current node available. One MBean implementing the ClusterNodeMBean
interface is instantiated in each management agent in the cluster. The MBean that
implements this interface is the emitter of the
java.com.sun.nhas.ma.cmm.NhasCmmNotification.

Chapter 9 • Cluster Membership Manager Statistics 73

Getting a Node’s CGTP Address
To return the CGTP address of a node, invoke the getCgtpAddress method. The
getCgtpAddress method takes no parameters, and returns a String. This is not a
symbolic name for the node. Having the IP address in dot-notation makes it possible
to avoid translation into IP format.

Getting the Domain ID of the Cluster that a Node is
Eligible to Join
To return the domain ID of the cluster that a node is eligible to join, invoke the
getDomainId method. The getDomainId method takes no parameters, and returns
an int. The domain ID identifies the cluster that the node can join. A cluster is
composed of nodes that have the same domain ID. Two nodes running incompatible
versions of a software package must have different domain IDs. Nodes can only
belong to one cluster. The ID of that cluster is the domain ID of the current node as
defined in the CMM configuration. Because the CMM is only aware of what occurs in
its own cluster, the domain ID field will be the same for all nodes reachable from this
node. This information is useful when interpreting CMM debug traces, which will
refer to this domain ID when necessary.

Getting the Time Since Node Was Last Rebooted
To return the incarnation number, invoke the getIncarnationNumber method. The
incarnation number is computed locally by each node. The value of the incarnation
number is the time of the last reboot expressed in the number of seconds since epoch
(01/01/1970). The getIncarnationNumber method takes no parameters, and
returns a long.

Getting the CMM Membership Role of a Node
To get the membership role of this node, invoke the getMembershipRole method.
This information is extracted from the CmmStateFlag. The getMembershipRole
method takes no parameters, and returns a
com.sun.nhas.ma.cmm.CmmMembershipRoleEnum, which is one of the following
values:

MASTER The node is the current cluster master node

VICEMASTER The node is the current vice-master node

IN_CLUSTER The node is a regular node in the cluster

OUT_OF_CLUSTER The node is down

74 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Getting the Node ID
To return the unique ID that identifies this node within the cluster, invoke the
getNodeId method. This information is useful when interpreting CMM debug traces,
which refer to this ID. The getNodeId method takes no parameters, and returns an
int.

Getting the Node Name
To get a human-readable String that uniquely identifies this node within the cluster,
invoke the getNodeName method. The name is not intended to be a parameter to be
passed to system calls. It is intended to be used to format display messages. For
instance, this name could be formatted so as to refer to the position of the card on a
shelf so as to make it easy for an operator to locate and replace it in case of failure. The
getNodeName method takes no parameters, and returns a String.

Getting the Node Boot Image ID
To return the ID of the current boot image used by this node, invoke the
getSoftwareLoadId method. Since CMM is only aware of the domain ID, if two
nodes run two incompatible boot images they must have different domain IDs and
different software load IDs. The getSoftwareLoadId method takes no parameters,
and returns a String.

Getting the CMM State Flags of a Node
To return the membership state flags of a node, invoke the getStateFlags method.
These flags are a concatenation of the administrative attributes, the membership roles
and the qualification as seen from the CMM’s perspective. The getStateFlags
method takes no parameters, and returns a CmmStateFlag.

CmmStatisticsMBean
The CmmStatisticsMBean MBean provides statistics about the service performed by
the CMM. Some of these statistics will only be available on the master node. Others
will be available on each node in the cluster. One MBean instance is instantiated for
each NMA on the cluster.

Chapter 9 • Cluster Membership Manager Statistics 75

Getting the Average Time Taken To Start CMM Services
To get the average time in seconds between nodes when starting the CMM, invoke the
getAverageElectionDelay method. The getAverageElectionDelay method
takes no parameters, and returns an int. This information can be used for tuning the
election mechanism. This information is available on the master node only.

Getting the Number of Master Elections Performed on a
Node
To get the number of elections processed on the platform, invoke the
getElectionCount method. The getElectionCount method takes no parameters,
and returns an int. This information is available on the master node only.

Getting the Maximum Time Taken to Elect a Master Node
To get the maximum time in seconds between nodes when starting the CMM, invoke
the getMaxElectionDelay method. The getMaxElectionDelay method takes no
parameters, and returns an int. This information can be used for tuning the election
mechanism. This information is available on the master node only.

Getting the Minimum Time Taken to Elect a Master Node
To get the minimum time in seconds between nodes when starting the CMM, invoke
the getMinElectionDelay method. The getMinElectionDelay method takes no
parameters, and returns an int. This information can be used for tuning the election
mechanism. This information is available on the master node only.

Getting the Number of Nodes Present
To get the number of nodes acknowledged by the master node as being present in the
cluster, invoke the getPresentNodeCount method. The getPresentNodeCount
method takes no parameters, and returns an int. This information is available on the
master node only.

Getting the Number of Switchovers Performed
To get the number of switchovers performed, invoke the getSwitchOverCount
method. The getSwitchOverCount method takes no parameters, and returns an
int. This information is available on the master node only.

76 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Getting the Number of Currently Connected CMM Clients
To get the number of CMM clients currently connected, invoke the getClientCount
method. The getClientCount method takes no parameters, and returns an int.
This information is available on all nodes.

Getting the Number of Outstanding Requests
To get the number of requests currently outstanding, invoke the getRequestCount
method. The getRequestCount method takes no parameters, and returns an int.
This information is available on all nodes.

Getting the Lifetime of the CMM on a Node
To get the lifetime of the CMM on this node, expressed in the number of seconds since
boot, invoke the getCmmUpTime method. The getCmmUpTime method takes no
parameters, and returns an int. This information is available on all nodes.

Chapter 9 • Cluster Membership Manager Statistics 77

78 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

CHAPTER 10

Receiving Notifications

This chapter explains the NMA notification mechanism and describes the NMA
notifications in detail.

This chapter contains the following sections:

� “Registering to Receive Notifications” on page 79
� “Registering to Receive SNMP Traps” on page 81

Registering to Receive Notifications
For information and instructions about writing and registering a notification listener,
see the Java Dynamic Management Kit 5.0 Tutorial. Note that this information applies to
the NMA only and is separate from the process of registering for notifications sent by
the CMM. For information on these, see “Receiving and Handling Change
Notifications” in the Netra High Availability Suite Foundation Services 2.1 6/03 CMM
Programming Guide.

NhasCmmNotification
A NhasCmmNotification notification is sent by the ClusterNodeMBean when a
node leaves or joins the cluster, or when a failover or switchover occurs. In addition to
the standard notification information, this notification contains the following
information:

type The possible types for this notification are listed below.

source The ObjectName of the node.

The notification type is one of the following:

79

MASTER The node is now the cluster master node

VICEMASTER The node is now the cluster vice-master node

IN_CLUSTER The node is now part of the cluster

OUT_OF_CLUSTER The node is no longer part of the cluster

NhasPmdMaxRetriesNotification
A NhasPmdMaxRetriesNotification notification is sent by the
PmdStatisticsMBean when the maximum number of retries has been reached for a
nametag. In addition to the standard notification information, this notification contains
the following information:

source The PmdStatisticsMBean ObjectName.

maxRetry The maximum retry number that was exceeded.

The MAX_RETRIES field of this notification contains the name of the nametag that
reached its maximum number of retries limit.

NhasPmdAttributeChangeNotification
A javax.management.AttributeChangeNotification is sent by the
PmdNameTagStatisticsMBean when either of the following conditions is true:

� The number of allowed retries changes
� The retry counter is reset

In addition to the standard notification information, this notification contains the
following information:

type ATTRIBUTE_CHANGE

source PmdNameTagStatisticsMBean

attributeName Either RetryCount if the retry counter has been reset, or
MaxRetryCount if the maximum number of retries allowed has
changed.

oldValue The old number of retries allowed

newValue The new number of retries allowed

The nametag field contains the name of the nametag that has been affected.

80 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

NhasPmdNewNameTagNotification
A NhasPmdNewNameTagNotification is sent whenever the Daemon Monitor
creates a new nametag. This notification contains the field NEW_NAMETAG which
contains the name of the new nametag.

NhasPmdRemoveNameTagNotification
A NhasPmdRemoveNameTagNotification is sent whenever the Daemon Monitor
removes a nametag from the collection. This notification contains the field
REMOVE_NAMETAG which contains the name of the nametag that was removed.

Registering to Receive SNMP Traps
For a Java DMK SNMP manager to receive SNMP traps, an implementation of the
SnmpTrapListener class must be registered on the SNMP trap port. Example 10–1 is
an implementation of the SnmpTrapListener that listens for SNMPv1, SNMPv2 and
SNMPv3 traps. Example 10–2 is a code snippet that registers the TrapListenerImpl
class as a trap listener on trap port trapPort. The TrapListenerImpl class prints
the details of all the traps it receives to the standard output.

EXAMPLE 10–1 Implementation of the SnmpTrapListener Class

class TrapListenerImpl implements SnmpTrapListener {

public void processSnmpTrapV1(SnmpPduTrap trap) {
System.out.println("NOTE: TrapListenerImpl received trap V1:");
System.out.println("\tGeneric " + trap.genericTrap);
System.out.println("\tSpecific " + trap.specificTrap);
System.out.println("\tTimeStamp " + trap.timeStamp);
System.out.println("\tAgent adress " + trap.agentAddr.stringValue());

}

public void processSnmpTrapV2(SnmpPduRequest trap) {
System.out.println("NOTE: TrapListenerImpl received trap V2:");

SnmpPdu pdu = trap.getResponsePdu();
System.out.println("\tFrom Address" + pdu.address.getHostAddress());

}

public void processSnmpTrapV3(SnmpScopedPduRequest trap) {
System.out.println("NOTE: TrapListenerImpl received trap V3:");
System.out.println("\tContextEngineId : " +
SnmpEngineId.createEngineId(trap.contextEngineId));

Chapter 10 • Receiving Notifications 81

EXAMPLE 10–1 Implementation of the SnmpTrapListener Class (Continued)

System.out.println("\tContextName : " + new String(trap.contextName));
System.out.println("\tVarBind list :");
for (int i = 0; i < trap.varBindList.length; i++) {
System.out.println("oid : " + trap.varBindList[i].getOid() +
" val : " + trap.varBindList[i].getSnmpValue());

}

}

The following code snippet registers the TrapListenerImpl class as a trap listener
on trap port trapPort.

EXAMPLE 10–2 Registering a Trap Listener

System.out.println("Creating the trap listener on trapPort = " + trapPort);

// Create the Trap listener
TrapListenerImpl trapListener = new TrapListenerImpl();
SnmpEventReportDispatcher trapAgent = null;

try{
trapAgent = new SnmpEventReportDispatcher(trapPort);

} catch (SocketException e) {
System.out.println("ERROR Creating the trapListener " + e.getMessage());

}

// Start the Event Report dispatcher
new Thread(trapAgent).start();

// Add the trap listener on the Event report dispatcher
trapAgent.addTrapListener(trapListener);

System.out.println("Created the trap listener");

82 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

APPENDIX A

MBean Naming Conventions

This appendix describes the syntax of the MBean naming conventions.

All NMA MBeans are named according to conventions to allow easy location and
manipulation. To identify an MBean, use an ObjectName in the format
domainID:MBeanName. The NodeID is the unique ID given to each node in the cluster.

This appendix contains the following sections:

� “Nodes and Services” on page 83
� “Cluster Membership Manager” on page 84
� “Reliable NFS” on page 84
� “Daemon Monitor” on page 84
� “CGTP” on page 84

Nodes and Services
ClusterNodeMBean

nhas-object=cluster_node,node=NodeID

CmmMasterNodeMBean
nhas-object=cluster_node

NhasSwitchOverService
nhas-object=switchover,node=NodeID

83

Cluster Membership Manager
CmmMasterStatisticsMBean

nhas-object=cmm_stats

CmmStatisticsMBean
nhas-object=cmm_stats,node=NodeID

Reliable NFS
RnfsStatisticsMBean

nhas-object=rnfs_stats,node=NodeID

RnfsMasterStatisticsMBean
nhas-object=rnfs_stats

RnfsReplicatedSliceMBean
nhas-object=rnfs_stats,node=NodeID,file=SliceName

Daemon Monitor
PmdMasterStatisticsMBean

nhas-object=pmd_stats

PmdStatisticsMBean
nhas-object=pmd_stats,node=NodeID

PmdNameTagStatisticsMBean
nhas-object=pmd_stats,node=NodeID,nametag=tag

CGTP
CgtpMasterMBean

nhas-object=cgtp_stats

84 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

CgtpMBean
nhas-object=cgtp_stats,node=NodeID

CgtpFilterMBean
nhas-object=cgtp_stats,node=NodeID,cgtp=filtering

CgtpReliableLinkStatisticsMBean
nhas-object=cgtp_stats,node=NodeID,alias=AliasNumber0,address=IPaddress

Appendix A • MBean Naming Conventions 85

86 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

Index

A
access control

IP-based, 30-32
SNMPv1, 30-32
SNMPv2, 30-32
SNMPv3, 33
template configuration files, 30

accessing statistics
CGTP, 49
CMM, 71
Daemon Monitor, 57-63

example, 57
Reliable NFS, 65

ACL, See access control
acl group, 31
authentication, SNMPv3, 34

B
browsers, web, using to view the NMA, 18

C
cascading service, 19

properties, 20
requirement to use same port, 20

cghautil.jar file, 24
CGTP

addresses, accessing, 50
master node statistics, accessing, 50
MBean naming conventions, 84-85

CGTP (Continued)
peer node statistics, accessing, 50-55
statistics, 49

CgtpEmitterStatisticsMBean MBean, 51
CgtpFilterMBean MBean, 51
CgtpMasterMBean MBean, 50
CgtpMBean MBean, 50
CgtpReceiverStatisticsMBean MBean, 53
CgtpReliableLinkStatisticsMBean

MBean, 54
class path

NMA, 24
remote managers, 27

Cluster Membership Manager, See CMM
ClusterNodeMBean MBean, 73
CMM

master node statistics, accessing, 72-73
MBean naming conventions, 84
peer node statistics, accessing, 73-77
statistics, 71
status of peer nodes, 47

CmmMasterNodeMBean MBean, 43
CmmMasterStatisticsMBean MBean, 72
CmmStatisticsMBean MBean, 75
configuration files

access control, 30
paths, 23
SNMP manager examples, 36

configuring
cascading service, 20
IP-based access control, 30-32
nma.acl file, 30-32
nma.security file, 34

87

configuring (Continued)
nma.uacl file, 33
RFC 2573 configuration files, 36
SNMP agents, 29-30
SNMP engine ID, 34
SNMP managers

examples, 36
SNMPv1 and SNMPv2 access control, 30-32
SNMPv2 and SNMPv3 managers, 38
SNMPv2 managers, 37
SNMPv3 access control, 33
SNMPv3 managers, 40
SNMPv3 security, 34
user-based access control, 33

connecting, Java manager, 26

D
Daemon Monitor

accessing nametags, 61, 62
master node statistics, accessing, 61
MBean naming conventions, 84
nametag change notifications, 81
peer node statistics, accessing, 62
processes, restarting, 47
statistics, 57-63

daemons
nametag change notifications, 81
restart statistics, 62

dependencies, NMA, 24
documentation

related to this book, 11, 12-13

E
encryption, SNMPv3, 34
external addresses

floating
See floating external addresses

external managers
Java managers, 25-27
protocols used, 18
SNMP managers, 29-41

configuring, 36

F
failover

notification, 79
reconnecting Java manager, 26

files
configuration

See configuration files
floating external addresses

failover procedure with Java manager, 26
Java manager, using with, 21
SNMP, warning not to use with, 18
switchover procedure with Java manager, 26
using with switchOver method, 44

Foundation Services, checking if switchover is
possible, 44

H
HTTP adaptor, configuring NMA for, 25

I
InetAddressAcl mechanism, 32
initiating a switchover, 43, 44
IP addresses, using for access control, 30-32

J
JAR files, 24
Java Archive files, See JAR files
Java Dynamic Management Kit

external Java managers, 25-27
external SNMP managers, 29-41
heartbeat mechanism, using, 26

Java managers, external, 25-27
class path, 24
connecting and reconnecting, 26
external floating addresses, using, 26
HTTP, using, 25
physical addresses, using, 26
proxy MBeans, using, 27

jcmm.jar file, 24
jdmkrt.jar file, 24
jmx.serial.form property, 24
JMX specification, 17-21

88 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

JMX specification (Continued)
implementation by Java DMK, 25-27

jsnmpapi.jar file, 24

M
ma.jar file, 24
managers, external

Java managers, 25-27
protocols used, 18
SNMP managers, 29-41

configuring, 36
managing a cluster, 43-47
manipulating a cluster, 43-47
master view, 19, 20
MBeans

naming conventions, 83-85
CGTP, 84-85
Cluster Membership Manager, 84
Daemon Monitor, 84
Reliable NFS, 84

proxies, 27
MIB, default location of NMA MIB file, 30

N
nametags, daemon

accessing, 61, 62
nhasmib.txt file, 30
nma.acl file, 30-32

SNMPv2 and SNMPv3 manager,
configuring, 39

SNMPv2 manager, configuring, 38
SNMPv3 manager, configuring, 41
template, 24, 30

nma.notifs.txt file, 23, 30
SNMPv2 and SNMPv3 manager,

configuring, 40
SNMPv2 manager, configuring, 38

nma.params.txt file, 23, 30
SNMPv2 and SNMPv3 manager,

configuring, 40
SNMPv2 manager, configuring, 38

nma.properties file, 23
access control properties, 30
cascading, specifying properties for, 20

nma.properties file (Continued)
configuring for HTTP adaptor, 25
disabling remote operations, 43
SNMP agents, configuring, 29-30
SNMP managers, configuring, 36
SNMPv2 and SNMPv3 manager,

configuring, 39
SNMPv2 manager, configuring, 37-38
SNMPv3 manager, configuring, 40-41

nma.security file, 23, 34
SNMPv2 and SNMPv3 manager,

configuring, 39, 40
SNMPv3 manager, configuring, 41
userEntry line, 35

nma.targets.txt file, 23, 30
SNMPv2 and SNMPv3 manager,

configuring, 40
SNMPv2 manager, configuring, 38

nma.uacl file
SNMPv2 and SNMPv3 manager,

configuring, 39
SNMPv3 manager, configuring, 41
template, 24, 30, 33

node view, 19
using HTTP protocol, 20

notifications, 79-82
losses during failover or switchover, 26
maximum number of retries, 80
nametag changes, 81
NhasCmmNotification, 79
NhasPmdAttributeChangeNotification, 80
NhasPmdMaxRetriesNotification, 80
NhasPmdNewNameTagNotification, 81
NhasPmdRemoveNameTagNotification, 81
nodes joining or leaving cluster, 79
retry changes, 80

P
packages

SUNWjdrt, 24
SUNWjsnmp, 24
SUNWnhmaj, 24

packet duplication, measuring success of, 49
packet filtering, measuring success of, 49
performance, monitoring with CGTP

statistics, 49

89

physical addresses, switchover or failover with
a Java manager, 26

PmdMasterStatisticsMBean MBean, 61
PmdNameTagStatisticsMBean MBean, 62
PmdStatisticsMBean MBean, 62
prerequisites, for NMA, 24
processes

monitoring, 61
restarting with Daemon Monitor, 47

properties
configuring

See nma.properties file
protocols, for communicating with the

NMA, 18
proxies, MBeans, 27
proxies.jar file, 27

R
reconnecting, Java manager, 26
Reliable NFS

master node statistics, accessing, 65
MBean naming conventions, 84
peer node statistics, accessing, 66
statistics, 65

remote managers
class path, 27
Java managers, 25-27
SNMP managers, 29-41

remote operations, disabling, 43
restarting processes, Daemon Monitor, 47
RFC standards

RFC 2573, 30
configuration files, editing, 36

web site, 12
rfc2573.jar file, 24
rfc2573mgr.jar file, 24
RnfsMasterReplicatedSliceMBean

MBean, 66
RnfsMasterStatisticsMBean MBean, 67
RnfsReplicatedSliceMBean MBean, 67
RnfsStatisticsMBean MBean, 66

S
security, configuring for SNMPv3, 34

security parameters
configuring

See nma.security file
services, monitored by the NMA, 17-21
Simple Network Management Protocol, See

SNMP
SNMP

access control lists, 30-32
access policy, 31
access rights, 31
acl group, 31
community names, 31
configuration files, 23, 30
configuring access control, 30
configuring an agent, 29-30
configuring an SNMPv2 and SNMPv3

manager, 38
configuring an SNMPv2 manager, 37
configuring an SNMPv3 manager, 40
context names, 34
engine ID, 34
floating external addresses, incompatibility

with, 18
host list, 31
InetAddressAcl mechanism, 32
protocol adaptor, 29-30
registering trap listeners, 81
remote managers, 29-41

registering at runtime, 36
trap group, 32
traps, receiving, 81
user-based access control, 33
user-based security model, 34

SnmpTrapListener class, 81
SnmpV3AppliMibRegistration class, 36
software requirements, 24
statistics, 77

CGTP, 49
CMM, 71
Daemon Monitor, 57-63

example, 57
Reliable NFS, 65

SUNWjdrt package, 24
SUNWjsnmp package, 24
SUNWnhmaj package, 24
switchover, 76

checking if switchover is possible, 44
checking success, 47

90 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

switchover (Continued)
initiating, 43, 44
notification, 79
reconnecting Java manager, 26

T
trap group, 32

U
user-based access control, 33
user-based security model, 34
USM, See user-based security model

V
views

master view, 19
using HTTP protocol, 20

node view, 19

W
web browsers, using to view the NMA, 18

91

92 Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide • September 2004

	Netra High Availability Suite Foundation Services 2.1 6/03 NMA Programming Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Books
	Accessing Sun Documentation Online
	Ordering Sun Documentation
	Typographic Conventions
	Shell Prompts in Command Examples

	Introduction to the Node Management Agent
	Accessing the NMA
	Master and Node Views
	MBean Instances on the Master Node
	MBean Instances on Peer Nodes

	Floating External Address

	Configuration Files, Dependencies and Requirements
	Configuration Files
	Dependencies
	Software Requirements

	Developing an External Java Manager
	Configuring an External Java Manager Using HTTP
	Connecting to the NMA
	Using the Floating Address
	Using a Physical Node Address

	Using Proxy MBeans

	Developing a Remote SNMP Manager
	Configuring an SNMP Agent
	IP-Based Access Control Lists
	Format of the acl Group
	Format of the Trap Group

	SNMPv3 User-Based Access Control
	Configuring SNMPv3 Security
	Engine ID
	Context Name
	Managing Users in Security Files

	SNMP Manager Configuration Examples
	SNMPv2 Configuration Example
	SNMPv2 and SNMPv3 Hybrid Configuration Example
	SNMPv3 Configuration Example

	Manipulating the Cluster Using the NMA
	Using the NMA to Initiate a Switchover
	Checking Whether the Foundation Services Are Ready for Switchover
	Initiating a Switchover
	Example of Switchover Using an HTTP Connector Client
	Getting the CMM Status of All Cluster Nodes

	Manipulating Daemon Monitor Retry Settings

	Carrier Grade Transport Protocol Statistics
	Introducing CGTP Statistics
	CGTP Master Statistics
	CgtpMasterMBean
	Getting All Local CGTP Addresses for Which Statistics are Available
	Getting All Remote CGTP Addresses for Which Statistics are Available

	CGTP Node Statistics
	CgtpMBean
	Getting All Local CGTP Addresses for Which Statistics Are Available
	Getting All Remote CGTP Addresses for Which Statistics Are Available

	CgtpEmitterStatisticsMBean
	Getting the Number of Packets Sent Through Each Subinterface

	CgtpFilterMBean
	Getting the Number of Packets Not Received in Duplicate
	Getting the Amount of Memory Currently Used by the Filter Module
	Getting the Number of Packets Successfully Received
	Getting the Number of Filter Tables Used by the Filter Module
	Getting the Number of Hash Table Collisions
	Getting the Number of Direct Hash Table Entries
	Getting the Number of Hash Table Entries
	Getting the Number of Packets Not Received
	Getting the Maximum Amount of Memory Used by the Filter Module
	Getting the Maximum Number of Filter Tables Used by the Filter Module
	Getting the Maximum Number of Ticks Allowed Before Duplicate Arrives
	Getting the Number of Packets Waiting for Duplicate Reception

	CgtpReceiverStatisticsMBean
	Getting the Number of Packets Not Successfully Filtered
	Getting the Number of Packets Successfully Filtered
	Getting the Number of Packets Received Through Each Subinterface

	CgtpReliableLinkStatisticsMBean
	Getting the Remote Subinterface Addresses
	Getting Local End Reliable Link CGTP Addresses
	Getting Remote End Reliable Link CGTP Addresses
	Getting Local Subinterface Addresses

	Daemon Monitor Statistics
	Example of Accessing Statistics Using an HTTP Client
	Introducing Daemon Monitor Statistics
	Daemon Monitor Master Statistics
	PmdMasterStatisticsMBean
	Getting All Nametags

	Daemon Monitor Node Statistics
	PmdStatisticsMBean
	Getting All Nametags

	PmdNameTagStatisticsMBean
	Getting the Daemon Monitor Nametag
	Getting the PIDs Associated With a Nametag
	Getting the Daemon Monitor Maximum Retries
	Getting the Number of Retries for a Nametag

	Reliable NFS Statistics
	Introducing Reliable NFS Statistics
	Reliable NFS Master Statistics
	RnfsMasterReplicatedSliceMBean
	Getting the Completed Recovery Percentage
	Getting the Percentage of Segments Requiring Recovery

	Reliable NFS Node Statistics
	RnfsStatisticsMBean
	Getting the Primary Slice
	Getting the Secondary Slice

	RnfsMasterStatisticsMBean
	Getting the Names of All Primary Files on the Local Host
	Getting the Names of All Secondary Files on the Local Host

	RnfsReplicatedSliceMBean
	Getting the Completed Recovery Percentage
	Getting the Dual Copy Status
	Getting the Link Status
	Getting the Percentage of Segments Requiring Recovery
	Getting the Primary Slice
	Getting the Secondary Slice
	Getting the Names of All Primary Files on the Local Host
	Getting the Names of All Secondary Files on the Local Host

	Cluster Membership Manager Statistics
	Introducing CMM Statistics
	CMM Master Statistics
	CmmMasterStatisticsMBean
	Getting the Average Time Between Node Starts
	Getting the Number of CMM Clients
	Getting the CMM Lifetime
	Getting the Number of Node Elections
	Getting the Longest Interval Between Node Starts
	Getting the Shortest Interval Between Node Starts
	Getting the Number of Nodes in the Cluster
	Getting the Number of Outstanding CMM Requests
	Getting the Switchover Count

	CMM Node Statistics
	ClusterNodeMBean
	Getting a Node's CGTP Address
	Getting the Domain ID of the Cluster that a Node is Eligible to Join
	Getting the Time Since Node Was Last Rebooted
	Getting the CMM Membership Role of a Node
	Getting the Node ID
	Getting the Node Name
	Getting the Node Boot Image ID
	Getting the CMM State Flags of a Node

	CmmStatisticsMBean
	Getting the Average Time Taken To Start CMM Services
	Getting the Number of Master Elections Performed on a Node
	Getting the Maximum Time Taken to Elect a Master Node
	Getting the Minimum Time Taken to Elect a Master Node
	Getting the Number of Nodes Present
	Getting the Number of Switchovers Performed
	Getting the Number of Currently Connected CMM Clients
	Getting the Number of Outstanding Requests
	Getting the Lifetime of the CMM on a Node

	Receiving Notifications
	Registering to Receive Notifications
	NhasCmmNotification
	NhasPmdMaxRetriesNotification
	NhasPmdAttributeChangeNotification
	NhasPmdNewNameTagNotification
	NhasPmdRemoveNameTagNotification

	Registering to Receive SNMP Traps

	MBean Naming Conventions
	Nodes and Services
	Cluster Membership Manager
	Reliable NFS
	Daemon Monitor
	CGTP

	Index

