AdvancedPanel

version		1.00				files 	AdvancedPanel.pas

last update	98/06/13				AdvancedPanel.dcr

written for	Borland Delphi 3.0			AdvancedPanel.doc

written by	Geir Wikran

e-mail		gwikran@online.no

Content

Description

Installing and Unistalling

Types

Classes

Licence

Description

The main reason for writing the AdvancedPanel was a need for a panel with advanced bevels, wallpaper, and som extra functionality for a derived component. The extra functionality I was looking for was a simple way for drived components to respond to size changes in the usable area of a panel resulting from changes to bevel settings. For this reason the concept of 'workspace' is introduced to refere to the usable area of the panel within the bevels. I also wanted more advanced bevels with flexibility in regard to which sides of a panel to apply them to. In the process I also made a new border with two new styles. The unit also includes a scroll box with added canvas and paint method, and a derived scroll box with wallpaper.

Installing and Unistalling

Place the files AdvancedPanel.pas and AdvancedPanel.dcr in the same directory. Select Component | Install Component... from Delphi's main menu. As Unit file name select AdvancedPanel.pas.

The components TAdvancedPanel and TAdvancedScroller will install to the page 'Installed' on the Delphi palette. To install to a different page change the name in the constant Register_AdvancedPanel in the unit file, or move the components to a different page after installation by selecting Component | Configure Palette... from Delphi's main menu.

To uninstall the components select Component | Install Packages... from Delphi's main menu. Under Design Packages select Delphi User's Components from the list and click the Edit-button. Answer Yes to open the package editor. Select AdvancedPanel from the unit list in the package editor and click the Remove-button to remove the component. Click the Compile-button to recompile the package.

Types

TPanelSides

This is a set type used to specify sides of a panel. The four absolute values psLeft, psRight, psTop, psBottom denotes the left, right, top, and bottom sides. The six relative values psAlign, psAlignOpposite, psNonAlignFirst, psNonAlignLast, psNonAlignPrev, psNonAlignNext denotes sides relative to a panels alignment (Align property). The meaning of the TPanelSide type is to be able to spesify sides relative to a panels alignment, specificaly with regard to aligment change at runtime.

The psAlign referes to the side(s) a panel is aligned to and psAlignOpposite referes to the side(s) opposite of the side a panel is aligned to. If a panel has alLeft (in it's Align property) then psAlign is left and psAlignOpposite is right. If a panel has alClient then psAlign is all four sides, and psAlignOpposite is no sides. If a panel has alNone then psAlign is no sides, and psAlignOpposite is all four sides.

The six psNonAlign values referes to the sides on the opposite plane of the alignment plane. If a panel is aligned to a vertical side (left or right) then NonAlign referes to the horizontal sides, if it is aligned to a horizontal side (top or bottom) then NonAlign referes to the vertical sides. Left and top side is First and right and bottom side is Last. So, if a panel has alLeft or alRight then psNonAlignFirst is top and psNonAlignLast is bottom, if it has alTop or alBottom then psNonAlignFirst is left and psNonAlignLast is right. The psNonAlignPrev referes to the side counter clockwards from the alignment side, and psNonAlignNext referes to the side clockwards from the alignment side. If a panel has alLeft then psNonAlignPrev is bottom and psNonAlignNext is top, if it has alBottom then psNonAlignPrev is right and psNonAlignNext is left.

Classes

TPanelBorder

Border with some new styles to be used as property for other components. This is not a true window border but is sort of a "custom draw" border which is painted within the component's client area.

procedure Paint(Canvas: TCanvas; Rect: TRect; RectSides: TPanelSides)

Paints the border on the RectSides of the Rect on Canvas. The owner component's Paint method must call TPanelBorder's Paint method in order to paint the border. Only the absolute side values of RectSides is tested for so the caller must convert any relative side values into absolute values before calling.

procedure InflateRect(var Rect: TRect; RectSides: TPanelSides)

Inflates a rectangle by the space occupyed by the border. The owner component must specify which sides of the rectangle borders should be applied to. Normaly borders are applied to a window's edge and therefore the Rect parameter should be set to the owner's ClientRect before calling this procedure - on return Rect will contain the rectagle within the border. Only the absolute side values of RectSides is tested for so the caller must convert any relative side values into absolute values before calling.

property OnChange: TNotifyEvent

The owner component must set the OnChange event in order to respond to change in style and sides. The event handler must repainting the component and realigning child controls.

property Sides: TPanelSides

The sides on which the border should be applied. (see TPanelSides)

property Style: TPanelBorderStyle

Style of the border (bsNone, bsLowered, bsRaised, bsRound).

TPanelBevel

Bevel to be used as property for other components.

procedure Paint(Canvas: TCanvas; Rect: TRect; RectSides: TPanelSides)

Paints the bevel on the RectSides of the Rect on Canvas. The owner component's Paint method must call TPanelBevel's Paint method in order to paint the bevel. Only the absolute side values of RectSides is tested for so the caller must convert any relative side values into absolute values before calling.

procedure InflateRect(var Rect: TRect; RectSides: TPanelSides)

Inflates a rectangle by the space occupyed by the bevel. The owner component must specify which sides of the rectangle bevels should be applied to. On return Rect will contain the rectagle within the bevel. Only the absolute side values of RectSides is tested for so the caller must convert any relative side values into absolute values before calling.

property OnChange: TNotifyEvent

The owner component must set the OnChange event in order to respond to change in style, depth, outer and inner space, and sides. The event handler must repainting the component and realigning child controls.

property Sides: TPanelSides

The sides on which the bevel should be applied. (see TPanelSides)

property Style: TPanelBevelStyle

Style of the bevel (bvNone, bvLowered, bvRaised, bvGroove, bvBump, bvFlatHiLight, bvFlatShadow, bvFlatDkShadow - the flat styles uses the systems 3D colors).

property Depth: TPanelBevelDepth

Specifies the depth of the bevel in pixles.

property SpaceOuter: TPanelBevelSpace

Specifies free space outside the bevel.

property SpaceInner: TPanelBevelSpace

Specifies free space inside the bevel.

TPanelWallpaper

Wallpaper to be used as property for other components.

procedure Paint(Canvas: TCanvas; Rect: TRect; Color: TColor)

Paints the wallpaper in the Rect on Canvas. The owner component's Paint method must call TPanelWallpaper's Paint method in order to paint the wallpaper. The area in the Rect that is not filled by the wallpaper will be filled with Color, so if no wallpaper is applied (the Bitmap property is empty) the whole Rect will be filled with Color.

property OnChange: TNotifyEvent

The owner component must set the OnChange event in order to respond to change in bitmap and style. The event handler must repainting the component.

property Bitmap: TBitmap

The bitmap to be used as wallpaper.

property Style: TPanelWallpaperStyle

The style in which the bitmap is to be applied when painting.

TCustomSimplePanel

Basic panel component with the same functionality as TCustomPanel, but without bevels and with some additional methods. (See TCustomPanel in Delphi's online help)

procedure PaintOutline;

Paint a dotted rectagle around the panel. The main use of this method is to give an outline of the panel at designtime if the panel has no border or bevels.

function ActiveSides(Sides: TPanelSides): TPanelSides

Returns the absolute values of all Side's values, absolute and relative, according to the current seting of the Align property. If, for example, the Align property is set to alLeft and the Sides parameter have the psLeft, psTop, psAlign, and psAlignOpposite values set, then psLeft, psTop, and psRight will be set at returne. (See TPanelSides)

procedure WorkspaceChange(Cause: TWorkspaceChange)

Virtual method which is called when a change has occured to the origin or size of the panel's workspace. Workspace referes to the usable area of a panel, within border and bevels. This method is called when the panel changes size, and may be called by derived components when the workspace has changed for other reasons. The Cause specifies if the change is a result of the panel changing size (wcSizeChange) or as a result of other changes (wcPanelChange), as for example changes in bevel style for derived components. This method does nothing but realing child controls if the change is not caused by size change (in which case realigning is handled on deeper levels of Delphi's VCL). Derived components can override this method to take other actions in respons to changes to the workspace.

function GetWorkspace: TRect

Virtual method that returns the rectagle of the panel's workspace. In TSimplePanel the GetWorkspace only returns the ClientRect of the panel. Derived components must override this function if they want to restrict the workspace, for example to define the workspace as the area within bevels. This function is called by the AlignControls method so that all child controls are aligned relative to the rectagle of the workspace.

procedure SetWorkspace(AWidth,AHeight: Integer)

This method resizes the panel so that the workspace gets the specified width and height. It uses the GetWorkspace function to determine the relation between the ClientRect and the Workspace. Derived components only have to override the GetWorkspace function, not the SetWorkspace method, in order for SetWorkspace to function properly.

TCustomAdvancedPanel

Advanced panel component derived from TCustomSimplePanel with added Border, OuterBevels, InnerBevel, and Wallpaper properties. Overrides the Paint method in order to call the border, bevels, and wallpaper's Paint methods. Overrides the GetWorkspace in order to restrict the workspace to the area of the panel within the innerbevel.

procedure PanelChange

Virtual method which is set as event handler for the border, bevels, and wallpaper's OnChange event. Calls WorkspaceChange with Cause parameter set to wcPanelChange, and provides repainting of the panel. Derived components may override this method to provide additional actions in respons to changes to border, bevels, and wallpaper.

property Border: TPanelBorder

property OuterBevel: TPanelBevel

property InnerBevel: TPanelBevel

property Wallpaper: TPanelWallpaper

TAdvancedPanel

Makes the advenced panel ready for use at designtime by publishing the properties from TCustomAdvancedPanel.

TCustomSimpleScroller

Adds Canvas property and Paint method to TScrollBox.

TCustomAdvancedScroller

Adds Wallpaper property to TCustomSimpleScroller

TAdvancedScroller

Makes the advenced scroller ready for use at designtime by publishing the Wallpaper property from TCustomAdvancedScroller.

Licence

This component and it's source code is freeware. You may use, change, and distribute without charge the source code as you like. The component can be used freely in commercial applications. However, the component may not be sold as a standalone product and the source code may not be included in a commercial product. This software is provided as is with no warrent or support.

