
MVAPICH 0.9.5 User and Tuning Guide

(Version 2.0)

MVAPICH Team

Network-Based Computing Laboratory
Department of Computer Science and Engineering

The Ohio State University

http://nowlab.cis.ohio-state.edu/projects/mpi-iba/

Copyright c©2002-2005
Network-Based Computing Laboratory,

headed by Dr. D. K. Panda.
All rights reserved.

http://nowlab.cis.ohio-state.edu/projects/mpi-iba/

Contents

1 Overview of the Open-Source MVAPICH Project 1

2 MVAPICH 0.9.5 Features 1

3 Installation Instructions 4

3.1 Download MVAPICH source code . 4

3.2 Prepare MVAPICH source code . 4

3.3 Apply Patches to source tree . 4

3.4 Build MVAPICH with Single-Rail Configuration 4

3.4.1 Configure MVAPICH . 4

3.4.2 make . 5

3.4.3 make install . 6

3.5 Build MVAPICH with Multi-Rail Configuration 6

3.5.1 Configure MVAPICH . 6

3.5.2 make . 7

3.5.3 make install . 7

4 Usage Instructions 8

4.1 Compile MPI applications . 8

4.2 Run MPI applications using mpirun rsh . 8

4.3 Run MPI applications using MPD . 9

4.4 Run MPI applications using InfiniBand hardware Multicast based MPI Broad-
cast support . 10

4.4.1 Usage examples: . 11

4.5 Run MPI applications using RDMA-based MPI Alltoall support 11

4.6 Run MPI applications using shared library support 12

4.7 Run MPI applications using TotalView Debugger support 12

5 Using OSU Benchmarks 14

i

6 Troubleshooting with MVAPICH 15

6.1 Cannot pass MPI Init . 15

6.2 Cannot Open HCA . 15

6.3 Cannot include vapi.h . 15

6.4 VAPI RETRY EXEC ERROR . 16

6.5 Building mvapich hangs with hardware multicast enabled 16

6.6 ld:multiple definitions of symbol calloc error on MacOS 16

6.7 No Fortran interface on the MacOS platform. 17

6.8 Other MPICH problems . 17

7 Configuration Examples 18

7.1 Configuration Examples for Single-Rail MVAPICH 18

7.1.1 A Typical Configuration without MPD and Multicast-Based Broadcast
on IA32 . 18

7.1.2 A Typical Configuration without MPD and Multicast-Based Broadcast
on MacOS . 18

7.1.3 Configuration Example with MPD Support 19

7.1.4 Configuration Example with Multicast-Based Broadcast Support . . . 20

7.1.5 Configuration Example with Shared Library Support 21

7.1.6 Configuration Example with TotalView Support 22

7.2 Configuration Examples for Multi-Rail MVAPICH 22

7.2.1 A Typical Configuration without MPD and Multicast-Based Broadcast
on IA32 . 22

7.2.2 A Typical Configuration without MPD and Multicast-Based Broadcast
on MacOS . 23

7.2.3 Configuration Example with MPD Support 24

7.2.4 Configuration Example with Multicast-Based Broadcast Support . . . 25

7.2.5 Configuration Example with Shared Library Support 26

8 Performance Tuning 27

8.1 Point-to-Point Tuning . 27

ii

8.2 Tuning Memory Usage . 27

8.3 Tuning VAPI Parameters . 28

8.4 Shared Memory Tuning . 28

8.5 InfiniBand Hardware Multicast Tuning . 29

8.5.1 MCST THRESHOLD . 29

8.5.2 VIADEV UD PREPOST DEPTH 29

8.5.3 VIADEV UD PREPOST THRESHOLD 29

8.5.4 SENDER WINDOW . 29

8.5.5 BCAST TIME OUT . 29

8.6 Multi-Rail Tuning . 30

8.6.1 STRIPING THRESHOLD . 30

9 MVAPICH Parameters 31

9.1 BCAST TIME OUT . 31

9.2 MCST THRESHOLD . 31

9.3 NDREG ENTRIES . 31

9.4 NUM PORTS . 32

9.5 NUM HCAS . 32

9.6 SMPI MAX NUMLOCALNODES . 32

9.7 SMPI LENGTH QUEUE . 32

9.8 SMP EAGERSIZE . 33

9.9 SMP RNDV . 33

9.10 SENDER WINDOW . 33

9.11 STRIPING THRESHOLD . 34

9.12 VBUF TOTAL SIZE . 34

9.13 VIADEV DEVICE . 34

9.14 VIADEV RDMA LIMIT . 35

9.15 VIADEV SQ SIZE . 35

9.16 VIADEV CQ SIZE . 35

iii

9.17 VIADEV NUM RDMA BUFFER . 35

9.18 VIADEV MAX RDMA SIZE . 36

9.19 VIADEV DEFAULT MTU . 36

9.20 VIADEV MAX FAST EAGER SIZE . 36

9.21 VIADEV DEFAULT MAX SG LIST . 36

9.22 VIADEV RENDEZVOUS THRESHOLD . 37

9.23 VIADEV VBUF POOL SIZE . 37

9.24 VIADEV VBUF SECONDARY POOL SIZE 37

9.25 VIADEV INITIAL PREPOST DEPTH . 37

9.26 VIADEV PREPOST DEPTH . 38

9.27 VIADEV CREDIT NOTIFY THRESHOLD 38

9.28 VIADEV DYNAMIC CREDIT THRESHOLD 38

9.29 VIADEV UD PREPOST DEPTH . 38

9.30 VIADEV UD PREPOST THRESHOLD . 39

iv

1 Overview of the Open-Source MVAPICH Project

InfiniBand is emerging as a high-performance interconnect delivering low latency and high
bandwidth. It is also getting widespread acceptance due to its open standard.

MVAPICH (pronounced as “em-vah-pich”) is an open-source MPI software to exploit the
novel features and mechanisms of InfiniBand and to deliver performance and scalability to
MPI applications. This software is developed in the Network-Based Computing Laboratory
(NBCL), headed by Prof. Dhabaleswar K. (DK) Panda.

Currently, there are two versions of this MPI: MVAPICH with MPI-1 semantics and MVA-
PICH2 with MPI-2 semantics. This open-source MPI software project started in 2001 and a
first high-performance implementation was demonstrated at Supercomputing ’02 conference.
After that, this software has been steadily gaining acceptance in the HPC and InfiniBand
community. As of the release date of MVAPICH 0.9.5, more than 200 organizations (National
Labs, Universities, and Industry) in 26 countries have downloaded this software from OSU’s
web site directly. In addition, many IBA vendors, server vendors, and systems integrators
have been incorporating MVAPICH/MVAPICH2 into their software stacks and distributing
it. Several InfiniBand systems using MVAPICH have obtained positions in the TOP 500
ranking. Both MVAPICH and MVAPICH2 distributions are available under BSD licensing.

More details on MVAPICH/MVAPICH2 software, users list, sample performance numbers
on a wide range of platforms and interconnect, a set of OSU benchmarks, related publications,
and other InfiniBand-related projects (parallel file systems, storage, data centers) can be
obtained from the following URL:

http://nowlab.cis.ohio-state.edu/projects/mpi-iba/

This document contains necessary information for MVAPICH users to download, install,
test, use, and tune MVAPICH 0.9.5. A text version of this document is also included in
the MVAPICH 0.9.5 software distribution. As we get feedbacks from users and take care of
bug-fixes, we introduce new patches against our released distribution and also continuously
update this document. Thus, we strongly request you to refer to our web page for updates.

2 MVAPICH 0.9.5 Features

MVAPICH (MPI-1 over VAPI for InfiniBand) is an MPI-1 implementation. Currently, the
implementation is based on Verbs Level Interface (VAPI), developed by Mellanox Technolo-
gies. An implementation on the OpenIB Gen2 layer is being developed and will be released in
the near future.

MVAPICH implementation is based on MPICH and MVICH. MVAPICH 0.9.5 is available
as a single integrated package (with the latest MPICH 1.2.6 and MVICH). MVAPICH 0.9.5
is currently available and optimized for the following architectures. Support for EM64T

1

http://nowlab.cis.ohio-state.edu
http://nowlab.cis.ohio-state.edu
http://www.cse.ohio-state.edu/~panda
http://nowlab.cis.ohio-state.edu/projects/mpi-iba/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://old-www.nersc.gov/research/FTG/mvich/index.html

platform has been optimized for PCI-Express. Support for the new generation mem-free
cards has also been tested. MVAPICH 0.9.5 supports the following platforms:

• EM64T

• G5

• IA-32

• IA-64

• Opteron

MVAPICH 0.9.5 supports several new features (compared to 0.9.4) including: multi-rail
(multiple ports per adapter and multiple adapters), optimized intra-node shared memory
support (both for bus-based and NUMA-based systems), enhanced MPI broadcast support
with IBA hardware multicast, flexible mechanisms for minimizing memory resource usage on
large scale systems, and support for TotalView debugger.

A complete set of features of MVAPICH 0.9.5 are:

• Optimized RDMA Write-based scheme for Eager protocol (short message transfer)

• Optimized implementation of Rendezvous protocol (large message transfer) with suit-
able flow control

• Efficient memory registration/de-registration schemes for RDMA-based communication

• Optimized intra-node communication support by taking advantage of shared-memory
communication

– Bus-based SMP systems

– NUMA-based SMP systems

• Multi-rail support with different message scheduling policies

– Multiple Adapters per node

– Multiple Ports per Adapter

• High performance and scalable collective communication support Broadcast support
using IBA hardware multicast mechanism

– RDMA-based Barrier support

– RDMA-based All-to-all support

• Schemes for minimizing memory resource usage on large scale systems

2

– Default tuning for small, medium, and large clusters

• Flexibility to run with different job startup schemes

– rsh/ssh based startup

– MPD support for scalable startup

• Single codebase for different architectures/platforms with single-rail or multi-rail sup-
port

– EM64T

– IA-32

– IA-64

– G5

– Opteron

• Tuned thresholds and associated optimizations for

– different architectures/platforms mentioned above

– different memory/system bus characteristics

– different network interfaces (PCI-X and PCI-Express)

• Incorporates a set of runtime tunable parameters and a set of compile time tunable
parameters for convenient tuning on

– large scale systems

– future platforms

• Shared library support for existing binary MPI application programs to run

• Support for TotalView debugger

3

3 Installation Instructions

3.1 Download MVAPICH source code

Since 0.9.4 version, the MVAPICH source code package includes the latest MPICH 1.2.6
version and also the required MVICH files from LBNL. Thus, there is no need to download
any other files except mvapich 0.9.5 source code.

You can go to the MVAPICH website to obtain the source code.

3.2 Prepare MVAPICH source code

Untar the archive you have downloaded from the web page. Given 0.9.5 version, the following
command can run on most Unix machines:

$ tar xzf mvapich-0.9.5.tgz

You will have a directory named mvapich-0.9.5.

3.3 Apply Patches to source tree

As we are enhancing and improving MVAPICH, we are also making patches available for
customers to use the enhanced support. All patches along with their descriptions are provided
in our software download website. To apply these patch files, place a downloaded copy in
your mvapich directory, and execute the following command.

$ patch -p1 < patch filename

Note: For convenience, we also make an integrated tarball with latest patches available on
our software download website.

Since MVAPICH 0.9.5 provides support for Single-Rail and Multi-Rail as two seperate
devices, they need to be appropriately built and configured. In the following section, we
indicate how to build MVAPICH with Single-Rail configuration. In section 3.5, we discuss
about building MVAPICH with Multi-Rail configuration.

3.4 Build MVAPICH with Single-Rail Configuration

3.4.1 Configure MVAPICH

There are several options to configure MVAPICH. Please select the following option based
on your need.

4

http://nowlab.cis.ohio-state.edu/projects/mpi-iba/

• Default configuration

Go to the mvapich-0.9.5 directory. For your reference, we have included several scripts
about how to configure MVAPICH. Please see mvapich.make.gcc, mvapich.make.icc,

mvapich.make.ecc, and mvapich.make.macosx in the mvapich-0.9.5 directory for de-
tails. You can customize your configuration according to the comments in these files
and then run the appropriate script directly.

• Manual configuration

If you would like to configure MVAPICH manually, do so using ./configure script in
the mvapich-0.9.5 directory. But please look at either mvapich.make.gcc,
mvapich.make.icc, mvapich.make.ecc, and mvapich.make.macosx for appropriate
configuration options. The following option is mandatory.

--with-device=vapi

Other options are reflected in the environmental variables such as CFLAGS, FFLAGS,

CXXFLAGS and F90FLAGS. For MacOS platform, MAC OSX=yes should be exported. We
strongly recommend users to read mvapich.make.macosx before their manual config-
uration on the MacOS platform. Some configuration examples on IA32 machines and
MacOS can be found in the sections 7.1.1 and 7.1.2.

• Configure MVAPICH using MPD

By default, MVAPICH is configured using mpirun rsh to launch applications. If you
want to use MPD and want to use our provided mvapich.make.gcc/mvapich.make.icc/

mvapich.make.ecc/mvapich.make.macosx files, you should customize MPD SUPPORT.
If you use your manual configuration, -DUSE MPD BASIC or -DUSE MPD RING should be
added into the above CFLAGS. In addition, make install is mandatory. An example is
shown in section 7.1.3, “Configuration Example with MPD Support”.

• Configure MVAPICH using InfiniBand hardware Multicast-based MPI Broadcast

If you want to use our InfiniBand hardware Multicast-based MPI Broadcast implemen-
tation, special configuration should be taken into account. Details can be found in
section 7.1.4, “Configuration Example with Multicast-based Broadcast”.

3.4.2 make

After configuration, type make in the mvapich-0.9.5 directory. If you use mvapich.make.gcc,
mvapich.make.icc, or mvapich.make.ecc, this step can be skipped because it is included
in the scripts.

5

3.4.3 make install

After make, type make install in the mvapich-0.9.5 directory to install MVAPICH in the
directory as specified by --prefix. Note that if you want to have MPD support, this step
is mandatory. Note that this step is also included in our provided scripts, if you want to use
our scripts, please customize the INSTALL PATH.

3.5 Build MVAPICH with Multi-Rail Configuration

3.5.1 Configure MVAPICH

There are several options to configure MVAPICH. Please select the following option based
on your need.

• Default configuration

Go to the mvapich-0.9.5 directory. For your reference we have included several
scripts about how to configure MVAPICH for your reference. Please see configura-
tion scripts multirail.make.gcc, multirail.make.icc, multirail.make.ecc, and
multirail.make.macosx in the mvapich-0.9.5 directory for details. You can cus-
tomize your configuration according to the comments in these files and then run the
appropriate script directly.

• Manual configuration

If you would like to configure MVAPICH manually, you can do that by typing ./configure
script in the mvapich-0.9.5 directory. But please look at either multirail.make.gcc,
multirail.make.icc, multirail.make.ecc, and multirail.make.macosx for ap-
propriate configuration options. The following option is mandatory.

--with-device=vapi multirail

Other options are reflected in the environmental variables such as CFLAGS, FFLAGS,

CXXFLAGS and F90FLAGS. For MacOS platform, MAC OSX=yes should be exported. We
strongly recommend users to read mvapich.make.macosx before their manual config-
uration on the MacOS platform. Some configuration examples on IA32 machines and
MacOS can be found in sections 7.2.1 and 7.2.2.

• Configure MVAPICH using MPD

By default, MVAPICH is configured using mpirun rsh to launch applications. If you
want to use MPD and want to use our provided multirail.make.gcc multirail.make.icc

/multirail.make.ecc/ multirail.make.macosx files, you should customize MPD SUPPORT.
If you use your manual configuration, -DUSE MPD BASIC or -DUSE MPD RING should be
added into the above CFLAGS. In addition, make install is mandatory. An example is
shown in section 7.2.3, “Configuration Example with MPD support”.

6

• Configure MVAPICH using InfiniBand hardware Multicast-based MPI Broadcast

If you want to use our InfiniBand hardware Multicast-based MPI Broadcast implemen-
tation, special configuration should be taken into account. Details can be found in
section 7.2.4, “Configuration Example with Multicast-based Broadcast”.

3.5.2 make

After configuration, type make in the mvapich-0.9.5 directory. If you use multirail.make.gcc,
multirail.make.icc, or multirail.make.ecc, this step can be skipped because it is in-
cluded in the scripts.

3.5.3 make install

After make, type make install in the mvapich-0.9.5 directory to install MVAPICH in the
directory as specified by --prefix. Note that if you want to have MPD support, this step
is mandatory. Note that this step is also included in our provided scripts, if you want to use
our scripts, please customize the INSTALL PATH.

7

4 Usage Instructions

4.1 Compile MPI applications

Use mvapich-0.9.5/bin/mpicc, mvapich-0.9.5/bin/mpif77, mvapich-0.9.5/bin/mpiCC,
or mvapich-0.9.5/bin/mpif90 to compile applications.

There are several options to run MPI applications. Please select one of the following
options based on your need.

4.2 Run MPI applications using mpirun rsh

Prerequisites:

• Either ssh or rsh should be enabled between the front nodes and the computing nodes.

• Configuring and installing MVAPICH without MPD support.

mpirun rsh examples:

$ mpirun rsh -np 4 n0 n1 n2 n3 ./cpi

cpi runs on n0, n1, n2 and n3 nodes, one process per each node. The default ssh is used.

$ mpirun rsh -rsh -np 4 n0 n1 n2 n3 ./cpi

cpi runs on n0, n1, n2 and n3 nodes, one process per each node. rsh is used regardless
of whether ssh or rsh is built in the installation time.

$ mpirun rsh -np 4 -hostfile hosts ./cpi

A list of nodes are in hosts, one per line.

$ mpirun rsh -np 4 -hostfile hosts ENV1=value ENV2=value ./cpi

Note that the environmental variables should be put immediately before the executable.

Other options of mpirun rsh can be obtained using

$ mpirun rsh --help

8

4.3 Run MPI applications using MPD

MVAPICH is provided with MPD support for fast process startup. To configure and build
MVAPICH with MPD support, see section 3.4.1 or section 3.5.1. Be sure to do make install

to have MPD system installed into the correct directory. This is a general requirement for
using extended features, such as MPD and TotalView, with MPICH.

To know more about MPD, please refer to the MPD documents provided along Argonne
MPICH release. This should be available as mvapich-0.9.5/doc/mpichman-chp4mpd.pdf,
section 4.9. An online document is also available from MPICH website.

Step by step instructions to setup MPD environment manually:

For an instant setup of MPD environment over two nodes node00 and node01.

• First log into node00 and then proceed with the following steps.

– Be sure you have .mpd.conf and .mpdpasswd in your home directory. They can
be a single line file like the following:
password=56rtG9

– Include MPD path into your path

$ export MPD BIN=$MVAPICH HOME/bin

$ export PATH=$MVAPICH HOME/bin:$PATH

$MVAPICH HOME is the installation path of your MVAPICH, as specified by --prefix

when you configure MVAPICH.

– run mpd on node00

– Find out the port number this daemon is exposing, i.e. typically a number from
the following trace command. In the following lines this number is assumed to be
33333.

$ mpdtrace &

– Launch another daemon on node01

$ ssh -n node01 ${MPD BIN}/mpd -h node00 -p 33333 &

– Simple Testing

$ mpirun mpd -np 4 cpi

– Cleanup

$ mpdallexit

• We provide a script in the mvapich-0.9.5 directory. You can use this script to expedite
MPD setup.

9

http://www-unix.mcs.anl.gov/mpi/mpich/docs/mpichman-chp4mpd/node53.htm#Node55

– Be sure you have .mpd.conf and .mpdpasswd in your home directory. They can
be a single line file like the following:
password=56rtG9

– Make a sample machine file, hostfile, which reads
node00
node01
node02
node03

– Startup daemons

$ mvapich.mpd.sh start hostfile $MPD BIN/mpd

– Stop daemons $ mvapich.mpd.sh stop hostfile $MPD BIN/mpd

– Cleanup daemons if you have trouble

$ mvapich.mpd.sh cleanup hostfile $MPD BIN/mpd

• Environmental variables setup using mpirun mpd in MVAPICH

mpirun mpd -np $np $prog <args> -MPDENV- ENV1=value1 ENV2=value2

Details can be referred from MPICH Website.

4.4 Run MPI applications using InfiniBand hardware Multicast
based MPI Broadcast support

In mvapich-0.9.5, we provide a hardware multicast-based MPI Broadcast. Prerequisites for
using this support are:

• Configuring and building MVAPICH with hardware multicast-based MPI Broadcast
support. Please refer to section 3.4.1 or section 3.5.1 for related configuration and
installation.

• Subnet Management (SM) Support: We have developed and tested this feature using
OpenSM. Thus, we provide instructions w.r.t. OpenSM. If you are using any other SM,
please make appropriate adjustment to the following paths and steps.

• OpenSM has to be run continuously on one node for hardware multicast to work. We
recommend to use a non-compute node as the node running Opensm. If OpenSM is not
already running on one of the nodes connected to the subnet then follow the procedure
below to run OpenSM.

• Run opensm with a GUID choice. The GUID choice is essentially the port number.
You can choose 1 or 2, which is the port you want to use. But make sure that whichever
port you choose, it must be connected to the IB subnet.

10

http://www-unix.mcs.anl.gov/mpi/mpich/docs/mpichman-chp4mpd/node13.htm#Node15

4.4.1 Usage examples:

When MVAPICH is configured and installed with hardware multicast- based MPI Broad-
cast support, MPI Bcast takes advantage of hardware multicast for broadcasting messages
reliably.

This feature can be disabled by using an environment variable, DISABLE HARDWARE MCST,
as shown below:

$ mpirun rsh -np 4 n0 n1 n2 n3 DISABLE HARDWARE MCST=1 ./cpi

MPI Bcast will use the original point-to-point based implementation in MPICH-1.2.6
when DISABLE HARDWARE MCST is set. Note that, DISABLE HARDWARE MCST=1 should be put
immediately before the executable file.

Important notes:

• If the multicast group create/join fails, restarting Opensm helps.

• If you are still facing the problem above, please create the multicast group manually
by executing the ibmcgrp command found in the $MVAPICH HOME/bin directory.

example:

$ ibmcgrp -c -g 0xff12a01cfe800000:HHHHHHHHHHHHHHHH --port num 1

• In the current implementation we support a single multicast group which includes all
the nodes. Thus MPI COMM WORLD and any communicator which includes all the
nodes can take advantage of the hardware multicast based MPI Bcast. We are working
on extending this feature to support arbitrary communicators.

4.5 Run MPI applications using RDMA-based MPI Alltoall sup-
port

In MVAPICH 0.9.5, we provide a direct-RDMA based MPI Alltoall implementation by de-
fault. When you want to disable this implementation and use the original implementation
based on MPI point-to-point communication, you can put DISABLE RDMA ALLTOALL=1 in the
command line. For example,

$ mpirun rsh -np 4 n0 n1 n2 n3 DISABLE RDMA ALLTOALL=1 ./cpi

MPI Alltoall will use point-to-point based implementation, when DISABLE RDMA ALLTOALL

is set. Note that, DISABLE RDMA ALLTOALL=1 should be put immediately before the exe-
cutable.

11

4.6 Run MPI applications using shared library support

MVAPICH provides shared library support. This feature allows you to build your application
on top of shared library support. If you chose this option, you still will be able to compile
applications with static libraries. An example of configuring and building MVAPICH with
shared library support is provided in section 7.1.5. With MVAPICH shared library support
enabled, your applications will be built on top of shared libraries by default. The following
commands provide some examples of how to build and run your application with shared
library support.

• To compile your application with shared library support. Run the following command.

$ mpicc -o cpi cpi.c

• To execute an application compiled with shared library support, you need to specify
the path to the shared library by putting
LD LIBRARY PATH=<path-to-shared-libraries> in the command line.

For example,

$ mpirun rsh -np 2 n0 n1 LD LIBRARY PATH=$MVAPICH BUILD/lib/shared ./cpi

Again, note that ”LD LIBRARY PATH=path-to-shared-libraries” should be put im-
mediately before the executable file.

• To disable MVAPICH shared library support even if you have installed MVAPICH.
Run the following command.

$ mpicc -noshlib -o cpi cpi.c

4.7 Run MPI applications using TotalView Debugger support

MVAPICH 0.9.5 provides TotalView support for the single rail device: mpid/vapi. You
need to use mpirun rsh when running TotalView. An example of configuring and building
MVAPICH with TotalView support is provided in section 7.1.6. The following commands
also provide an example of how to build and run your application with TotalView support.
Note: running TotalView demands correct setup in your environment, if you encounter any
problem with your setup, please check with your system adminstrator for help.

• Define ssh as a TVDSVRLAUNCHCMD variable in your default shell. For example, with
bashrc, you can do
$ echo "export TVDSVRLAUNCHCMD=ssh" >> /.bashrc

• Configure mvapich with the configure options --enable-debug --enable-sharedlib

in addition to the default options and then build mvapich.

12

• Compile your program with a flag -g
$ mpicc -g -o prog prog.c

• Define the correct path to TotalView as the TOTALVIEW variable. For example, under
bash shell:
$ export TOTALVIEW=<path to TotalView>

• Run your program:
$ mpirun rsh -tv -np 2 n0 n1

LD LIBRARY PATH=$MVAPICH BUILD/lib/shared:$MVAPICH BUILD/lib

prog

• Trouble shooting:

– X authentication errors: check if you have enabled X Forwarding
$ cat ‘‘ForwardX11 yes’’ >> $HOME/.ssh/config

– rsh connection time out: check if you have defined TVDSVRLAUNCHCMD as ssh in
your default shell file, .bashrc, .cshrc, or the like.

– ssh authentication error: ssh to the computer node with its long form hostname,
for example, ssh i0.domain.osu.edu

13

5 Using OSU Benchmarks

If you have arrived at this point, you have successfully installed MVAPICH. Congratulations!!
In the mvapich-0.9.5/osu benchmarks directory, we provide four basic performance tests:
a one-way latency test, a uni-directional bandwidth test, a bi-directional bandwidth test and
a MPI-level broadcast latency test. You can compile and run these tests on your machines
to evaluate the basic performance of MVAPICH.

These benchmarks as well as other benchmarks (such as for one-sided operations in MPI-2)
are available on our projects’ web page. Sample performance numbers for these benchmarks
on representative platforms and IBA gears are also included on our projects’ web page. You
are welcome to compare your performance numbers with our numbers. If you see any big
discrepancy, please let us know by sending an email at mvapich-help@cse.ohio-state.edu.

14

mailto:mvapich-help@cse.ohio-state.edu

6 Troubleshooting with MVAPICH

Based on our experience and feedback we have received from our users, here we include
some of the problems a user may experience and the steps to resolve them. If you are
experiencing any other problem, please feel free to contact us by sending an email to mvapich-
help@cse.ohio-state.edu.

6.1 Cannot pass MPI Init

If your MPI application cannot pass MPI Init, please make sure of the following things:

• If you have enabled ssh based startup, make sure that you have set up ssh keys for
logging into all the nodes without any password prompt.

• If you have enabled rsh based startup, make sure that rsh, rlogin etc. are active on
all the nodes and you can log in without any password prompts.

• Please make sure you can run some InfiniBand level program on the nodes you are
trying to run MPI programs. Usually running perf main (distributed with IBGD) is
a good choice of such a program.

6.2 Cannot Open HCA

The above error reports that the InfiniBand Adapter is not ready for communication. Make
sure that the drivers are up. This can be done by executing

% locate libvapi

which gives the path at which drivers are setup.

6.3 Cannot include vapi.h

This error is generated during compilation, if the correct path to the InfiniBand library
installation is not given.

For IB Gold-0.5.0, the installation is present at:

/usr/local/ib hpc/ib/infinihost

Please setup the environment variable MTHOME as

% export MTHOME=/usr/local/ib hpc/ib/infinihost

For IB Gold-1.6.* and 1.7.0, the installation is present at:

15

mailto:mvapich-help@cse.ohio-state.edu
mailto:mvapich-help@cse.ohio-state.edu

/usr/local/ibgd/driver/infinihost

Please setup the environment variable MTHOME as

% export MTHOME=/usr/local/ibgd/driver/infinihost

If the problem persists, please contact your system administrator or send an email to
mvapich-help@cse.ohio-state.edu.

6.4 VAPI RETRY EXEC ERROR

This error usually indicates that all InfiniBand links the MPI application is trying to use are
not in the PORT ACTIVE state. Please make sure that all ports show PORT ACTIVE with the
VAPI utility vstat. If you are using Multi-Rail support, please keep in mind that all ports
of all adapters you are using need to show PORT ACTIVE.

6.5 Building mvapich hangs with hardware multicast enabled

We have found out that on some of our machines, when we build MVAPICH with hardware
multicast-based Broadcast support, the system may hang in the make step. If this hap-
pens, please provide "--disable-cxx" in your configure command or add this option in the
configure command in our scripts.

6.6 ld:multiple definitions of symbol calloc error on MacOS

Please make sure that the environmental variable "MAC OSX" is set before your configura-
tion. If you use manual configuration and not mvapich.make.macosx, you must configure
MVAPICH in the following way:

export MAC OSX=yes

./configure ..with option..

make

make install

If you encounter this problem compiling your own applications,

"ld: multiple definitions of symbol calloc

/usr/lib/libm.dylib(malloc.So) definition of calloc

/tmp/mvapich-0.9.5/mvapich/lib/libmpich.a(dreg-g5.o)

definition of calloc in section (TEXT, text)

ld: multiple definitions of symbol free

/usr/lib/libm.dylib(malloc.So) definition of free

16

file:mvapich-help@cse.ohio-state.edu

/tmp/mvapich-0.9.5/mvapich/lib/libmpich.a(dreg-g5.o)

definition of free in section (TEXT, text) "

it is likely that you have explicitly included "-lm". You should remove that.

6.7 No Fortran interface on the MacOS platform.

To enable Fortran support, you would need to install the IBM compiler located at (there is
a 60-day free trial version) available from IBM.

Once you unpack the tarball, you can customize and use mvapich.make.macosx to com-
pile and install the package or manually configure, compile and install the package.

6.8 Other MPICH problems

Several well-known MPICH related problems on different platforms and environments have
already been identified by Argonne. They are available on the MPICH patch webpage.

17

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/
http://www-unix.mcs.anl.gov/mpi/mpich/buglist-tbl.html

7 Configuration Examples

In this section, we provide a set of sample configuration examples for easy reference.

7.1 Configuration Examples for Single-Rail MVAPICH

7.1.1 A Typical Configuration without MPD and Multicast-Based Broadcast
on IA32

#!/bin/bash

export CFLAGS="-D SMP -D SMP RNDV

-DUSE INLINE -DEARLY SEND COMPLETION

-DVIADEV RPUT SUPPORT -DLAZY MEM UNREGISTER

-DRDMA FAST PATH

-D IA32 -O3

-I/usr/local/ib hpc/ib/infinihost/include"

export FFLAGS="-L/usr/local/ib hpc/ib/infinihost/lib"

export CXXFLAGS=$CFLAGS

./configure --with-device=vapi --with-arch=LINUX

--prefix="/usr/local/mvapich"

-lib="-L/usr/local/ib hpc/ib/infinihost/lib -lmtl common

-lvapi -lmosal -lmpga -lpthread"

In this example, the system architecture is IA32, indicated by "-D IA32 "; InfiniBand
installation is "/usr/local/ib hpc/ib/infinihost"; mpirun rsh is configured in which
"ssh" is used; the MVAPICH installation path is "/usr/local/mvapich", indicated by
"--prefix"; GNU compilers are used.

For using other compilers, please refer to mvapich.make.icc and mvapich.make.ecc files in
the mvapich-0.9.5 directory for details.

7.1.2 A Typical Configuration without MPD and Multicast-Based Broadcast
on MacOS

#!/bin/bash

18

export MAC OSX=yes

export CC=gcc

export CXX=g++

export FC=f77

export FFLAGS="-05"

export CFLAGS="-D SMP -D SMP RNDV

-DUSE INLINE -DEARLY SEND COMPLETION

-DVIADEV RPUT SUPPORT -DLAZY MEM UNREGISTER

-DRDMA FAST PATH

-D IA32 -O3

-I/usr/local/ib hpc/ib/infinihost/include"

export FFLAGS="-L/usr/local/ib hpc/ib/infinihost/lib"

export CXXFLAGS=$CFLAGS

./configure --with-device=vapi

--prefix="/usr/local/mvapich"

-lib="-L/usr/local/ib hpc/ib/infinihost/lib -lmtl common

-lvapi -lmosal -lmpga -lpthread

-lxlf90 -lxlfmath -L/opt/ibmcmp/xlf/8.1/lib

-multiply defined suppress"

InfiniBand installation is "/usr/local/ib hpc/ib/infinihost"; mpirun rsh is config-
ured in which "ssh" is used; the MVAPICH installation path is "/usr/local/mvapich",
indicated by "--prefix".

7.1.3 Configuration Example with MPD Support

#!/bin/bash

export CFLAGS="-D SMP -D SMP RNDV

-DUSE INLINE -DEARLY SEND COMPLETION

-DVIADEV RPUT SUPPORT -DLAZY MEM UNREGISTER

-DRDMA FAST PATH

19

-D IA32 -O3

-DUSE MPD BASIC

-I/usr/local/ib hpc/ib/infinihost/include"

export FFLAGS="-L/usr/local/ib hpc/ib/infinihost/lib"

export CXXFLAGS=$CFLAGS

./configure --with-device=vapi --with-arch=LINUX

--prefix="/usr/local/mvapich"

-lib="-L/usr/local/ib hpc/ib/infinihost/lib -lmtl common

-lvapi -lmosal -lmpga -lpthread"

You can add either "-DUSE MPD BASIC" or "-DUSE MPD RING" in the "CFLAGS" to config-
ure MVAPICH using MPD.

7.1.4 Configuration Example with Multicast-Based Broadcast Support

Our current implementation requires OpenSM and has been tested with OpenSM. For other
subnet managers, appropriate modifications are needed. OpenSM should be installed on your
system for multicast to work. In the following example, we assume your OpenSM is installed
at "/usr/local/ib hpc/ib/apps/osm/". The following things have to be done next.

In the first step, -DOSM VENDOR INTF TS -DMCST SUPPORT should be added into CFLAGS.
Second, an appropriate include path to the OpenSM header files should be included as well.
Third, a lib path for the OpenSM library files should be added into the "-lib" option in the
configure command.

#!/bin/bash

export CFLAGS="-D SMP -D SMP RNDV

-DUSE INLINE -DEARLY SEND COMPLETION

-DVIADEV RPUT SUPPORT -DLAZY MEM UNREGISTER

-DRDMA FAST PATH

-DOSM VENDOR INTF TS -DMCST SUPPORT

-D IA32 -O3

-DUSE MPD BASIC

-I/usr/local/ib hpc/ib/infinihost/include

-I/usr/local/ib hpc/ib/apps/osm/include"

20

export FFLAGS="-L/usr/local/ib hpc/ib/infinihost/lib"

export CXXFLAGS=$CFLAGS

./configure --with-device=vapi --with-arch=LINUX

--prefix="/usr/local/mvapich"

-lib="-L/usr/local/ib hpc/ib/infinihost/lib -lmtl common

-lvapi -lmosal -lmpga -lpthread

-L/usr/local/ib hpc/ib/apps/osm/lib"

Note that if you use our provided scripts, you should customize "MCST SUPPORT" in mva-
pich.make.gcc/mvapich.make.icc/mvapich.make.ecc.

7.1.5 Configuration Example with Shared Library Support

To use shared library support, you need to introduce an extra option ’--enable-sharedlib’

into any of the above sample configuration scripts for the corresponding setup. The following
provides an example of how to build shared library support for IA32 platform.

#!/bin/bash

export CFLAGS="-D SMP -D SMP RNDV

-DUSE INLINE -DEARLY SEND COMPLETION

-DVIADEV RPUT SUPPORT -DLAZY MEM UNREGISTER

-DRDMA FAST PATH

-D IA32 -O3

-I/usr/local/ib hpc/ib/infinihost/include"

export FFLAGS="-L/usr/local/ib hpc/ib/infinihost/lib"

export CXXFLAGS=$CFLAGS

./configure --with-device=vapi --with-arch=LINUX

--prefix="/usr/local/mvapich" --enable-sharedlib

-lib="-L/usr/local/ib hpc/ib/infinihost/lib -lmtl common

-lvapi -lmosal -lmpga -lpthread"

21

7.1.6 Configuration Example with TotalView Support

To prepare TotalView support, you need to introduce extra options "--enable-debug" and
"--enable-sharedlib" into your normal configuration scripts. The following provides an
example of how to build TotalView support for IA32 platform. Note:

• TotalView support is provided for the single rail device: mpid/vapi.

• mpirun rsh is needed to run TotalView.

• TotalView support is available to IA32, IA64, EM64T and Opteron platforms.

#!/bin/bash

export CFLAGS="-D SMP -D SMP RNDV

-DUSE INLINE -DEARLY SEND COMPLETION

-DVIADEV RPUT SUPPORT -DLAZY MEM UNREGISTER

-DRDMA FAST PATH

-D IA32 -O3

-I/usr/local/ib hpc/ib/infinihost/include"

export FFLAGS="-L/usr/local/ib hpc/ib/infinihost/lib"

export CXXFLAGS=$CFLAGS

./configure --with-device=vapi --with-arch=LINUX

--prefix="/usr/local/mvapich" --enable-debug --enable-sharedlib

-lib="-L/usr/local/ib hpc/ib/infinihost/lib -lmtl common

-lvapi -lmosal -lmpga -lpthread"

7.2 Configuration Examples for Multi-Rail MVAPICH

7.2.1 A Typical Configuration without MPD and Multicast-Based Broadcast
on IA32

#!/bin/bash

export CFLAGS="-D SMP -D SMP RNDV

-DUSE INLINE -DEARLY SEND COMPLETION

-DVIADEV RPUT SUPPORT -DLAZY MEM UNREGISTER

22

-DRDMA FAST PATH

-D IA32 -O3

-I/usr/local/ib hpc/ib/infinihost/include"

export FFLAGS="-L/usr/local/ib hpc/ib/infinihost/lib"

export CXXFLAGS=$CFLAGS

./configure --with-device=vapi multirail --with-arch=LINUX

--prefix="/usr/local/mvapich"

-lib="-L/usr/local/ib hpc/ib/infinihost/lib -lmtl common

-lvapi -lmosal -lmpga -lpthread

In this example, the system architecture is IA32, indicated by "-D IA32 "; InfiniBand
installation is "/usr/local/ib hpc/ib/infinihost"; mpirun rsh is configured in which
"ssh" is used; the MVAPICH installation path is "/usr/local/mvapich", indicated by
"--prefix"; GNU compilers are used.

For using other compilers, please refer to multirail.make.icc and multirail.make.ecc files
in the mvapich-0.9.5 directory for details.

7.2.2 A Typical Configuration without MPD and Multicast-Based Broadcast
on MacOS

#!/bin/bash

export MAC OSX=yes

export CC=gcc

export CXX=g++

export FC=f77

export FFLAGS="-05"

export CFLAGS="-D SMP -D SMP RNDV

-DUSE INLINE -DEARLY SEND COMPLETION

-DVIADEV RPUT SUPPORT -DLAZY MEM UNREGISTER

-DRDMA FAST PATH

-D IA32 -O3

-I/usr/local/ib hpc/ib/infinihost/include"

23

export FFLAGS="-L/usr/local/ib hpc/ib/infinihost/lib"

export CXXFLAGS=$CFLAGS

./configure --with-device=vapi multirail

--prefix="/usr/local/mvapich

-lib="-L/usr/local/ib hpc/ib/infinihost/lib -lmtl common

-lvapi -lmosal -lmpga -lpthread

-lxlf90 -lxlfmath -L/opt/ibmcmp/xlf/8.1/lib

-multiply defined suppress"

InfiniBand installation is "/usr/local/ib hpc/ib/infinihost"; mpirun rsh is config-
ured in which "ssh is used; the MVAPICH installation path is "/usr/local/mvapich",
indicated by "--prefix".

7.2.3 Configuration Example with MPD Support

#!/bin/bash

export CFLAGS="-D SMP -D SMP RNDV

-DUSE INLINE -DEARLY SEND COMPLETION

-DVIADEV RPUT SUPPORT -DLAZY MEM UNREGISTER

-DRDMA FAST PATH

-D IA32 -O3

-DUSE MPD BASIC

-I/usr/local/ib hpc/ib/infinihost/include"

export FFLAGS="-L/usr/local/ib hpc/ib/infinihost/lib"

export CXXFLAGS=$CFLAGS

./configure --with-device=vapi multirail --with-arch=LINUX

--prefix=‘‘/usr/local/mvapich"

-lib="-L/usr/local/ib hpc/ib/infinihost/lib -lmtl common

-lvapi -lmosal -lmpga -lpthread"

You can add either "-DUSE MPD BASIC" or "-DUSE MPD RING" in the "CFLAGS" to config-
ure MVAPICH using MPD.

24

7.2.4 Configuration Example with Multicast-Based Broadcast Support

Our current implementation requires OpenSM and has been tested with OpenSM. For other
subnet managers, appropriate modifications are needed. "OpenSM" should be installed on
your system for multicast to work. In the following example, we assume your OpenSM is
installed at /usr/local/ib hpc/ib/apps/osm/. The following things have to be done next.

In the first step, "-DOSM VENDOR INTF TS -DMCST SUPPORT" should be added into CFLAGS.
Second, an appropriate include path to the OpenSM header files should be included as well.
Third, a lib path for the OpenSM library files should be added into the "-lib" option in the
"configure" command.

#!/bin/bash

export CFLAGS="-D SMP -D SMP RNDV

-DUSE INLINE -DEARLY SEND COMPLETION

-DVIADEV RPUT SUPPORT -DLAZY MEM UNREGISTER

-DRDMA FAST PATH

-DOSM VENDOR INTF TS -DMCST SUPPORT

-D IA32 -O3

-DUSE MPD BASIC

-I/usr/local/ib hpc/ib/infinihost/include

-I/usr/local/ib hpc/ib/apps/osm/include"

export FFLAGS="-L/usr/local/ib hpc/ib/infinihost/lib"

export CXXFLAGS=$CFLAGS

./configure --with-device=vapi multirail --with-arch=LINUX

--prefix="/usr/local/mvapich"

-lib="-L/usr/local/ib hpc/ib/infinihost/lib -lmtl common

-lvapi -lmosal -lmpga -lpthread

-L/usr/local/ib hpc/ib/apps/osm/lib"

Note that if you use our provided scripts, you should customize "MCST SUPPORT" in mul-
tirail.make.gcc/multirail.make.icc /multirail.make.ecc.

25

7.2.5 Configuration Example with Shared Library Support

To use shared library support, you need to introduce an extra option ’--enable-sharedlib’

into any of the above sample configuration scripts for the corresponding setup. The following
provides an example of how to build shared library support for IA32 platform.

#!/bin/bash

export CFLAGS="-D SMP -D SMP RNDV

-DUSE INLINE -DEARLY SEND COMPLETION

-DVIADEV RPUT SUPPORT -DLAZY MEM UNREGISTER

-DRDMA FAST PATH

-D IA32 -O3

-I/usr/local/ib hpc/ib/infinihost/include"

export FFLAGS="-L/usr/local/ib hpc/ib/infinihost/lib"

export CXXFLAGS=$CFLAGS

./configure --with-device=vapi multirail --with-arch=LINUX

--prefix="/usr/local/mvapich" --enable-sharedlib

-lib=‘"-L/usr/local/ib hpc/ib/infinihost/lib -lmtl common

-lvapi -lmosal -lmpga -lpthread"

26

8 Performance Tuning

MVAPICH supports many different parameters for tuning performance for a wide variety of
applications. These parameters can be either compile time parameters or run time parame-
ters. Please refer to section 9 for a complete description of all the parameters.

In this section we classify these parameters depending on what you are tuning for and
provide guidelines on how to use them.

8.1 Point-to-Point Tuning

Point-to-point latency, bandwidth can be tuned very simply by using the parameters VI-
ADEV RENDEZVOUS THRESHOLD (9.22) and VIADEV NUM RDMA BUFFER (9.17).

Messages larger than VIADEV RENDEZVOUS THRESHOLD will go over the Ren-
dezvous protocol using zero copy. While this can reduce the number of copies, it can be
costly for small messages.

VIADEV NUM RDMA BUFFER indicates the number of RDMA buffers per connection.
If this parameter is increased, more outstanding messages can be transferred by using the
fast path. However, increasing this parameter also leads to increased memory usage.

8.2 Tuning Memory Usage

Memory usage often plays a significant role in application performance, and especially more
so for large scale clusters. The main parameters which decide the memory usage are :

• VBUF TOTAL SIZE (9.12)

• VIADEV NUM RDMA BUFFER (9.17)

• VIADEV VBUF POOL SIZE (9.23)

VIADEV VBUF POOL SIZE is a fixed number of pool of vbufs. These vbufs can be
shared among all different connections depending on the communication needs of each con-
nection.

On the other hand, the product of VBUF TOTAL SIZE and
VIADEV NUM RDMA BUFFER generally is a measure of the amount of memory to be
pinned down for eager message passing. These buffers are not shared across connections.

In the earlier MVAPICH versions, VBUF TOTAL SIZE was equal to the
VIADEV RENDEZVOUS THRESHOLD. From 0.9.5, this restriction has been removed. For
a given platform, these two parameters can be independently tuned.

27

To provide the best performance (latency/bandwidth) to memory ratio, we have de-
cided on a set of default values for these parameters. These parameters are often depen-
dent on the execution platform. To use preset values for small, medium and large clusters
(1-64, 64-256, 256-. . .), please use -D SMALL CLUSTER, -D MEDIUM CLUSTER and -
D LARGE CLUSTER respectively.

8.3 Tuning VAPI Parameters

In addition to the above MPI point-to-point parameters, there are some VAPI parameters
which have some impact on performance. They are:

• VIADEV SQ SIZE (9.15)

• VIADEV DEFAULT MAX SG LIST (9.21)

VIADEV SQ SIZE is the number of outstanding sends for each connection. If this is
higher, more outstanding sends can be supported. However, increasing this value leads to
bigger InfiniBand Queue Pair memory regions and overall higher memory usage.

VIADEV DEFAULT MAX SG LIST is the number of scatter-gather entries for each In-
finiBand Queue Pair. Usually, only one entry is needed. However, this parameter has an
impact on increasing the inline size supported by the Queue Pair. This can reduce latency
for small messages. However, it should not be increased too much, since it consumes more
resources per Queue Pair.

8.4 Shared Memory Tuning

MVAPICH uses shared memory communication channel to achieve high-performance message
passing among processes that are on the same physical node. The two main parameters
which are used for tuning shared memory performance are SMPI LENGTH QUEUE (9.7)
and SMP EAGERSIZE (9.8).

SMPI LENGTH QUEUE is the size of the shared memory buffer which is used to store
outstanding messages. Increasing this value leads to more buffer space being available to
store outstanding messages, at the cost of more memory usage.

From 0.9.5, we support pipelining of shared memory message passing based on packets.
The compile time flag SMP RNDV is used to enable that. We suggest that while using
shared memory support, this flag should be turned on.

SMP EAGERSIZE is the size of a message which will be copied to the shared memory
buffer as one packet. Decreasing this will lead to more pipelining, but if it is decreased too
much then the throughput might suffer.

28

Also from 0.9.5 we provide support for NUMA platforms. By default, MVAPICH will
adjust the location of shared memory buffers to provide best performance for NUMA plat-
forms.

8.5 InfiniBand Hardware Multicast Tuning

The following is the set of parameters which can be tuned to get better MPI Bcast perfor-
mance using Hardware Multicast of InfiniBand.

8.5.1 MCST THRESHOLD

MCST THRESHOLD (9.2) can be tuned depending on the size of the cluster. Currently, the
parameter is set to 8KB based on an experimentation on 32 node systems. For large scale
systems, this threshold may be increased to get the benefit of hardware-based multicast for
larger messages. For example, this threshold can be increased to 16 KB for 64-node systems,
32 KB for 128-node systems, and so on.

8.5.2 VIADEV UD PREPOST DEPTH

VIADEV UD PREPOST DEPTH (9.29) can affect the performance of an application which
issues multiple back-to-back multicasts. Increasing this parameter to a higher value e.g. 64
can help in such conditions.

8.5.3 VIADEV UD PREPOST THRESHOLD

VIADEV UD PREPOST THRESHOLD(9.30) should be less than
VIADEV UD PREPOST DEPTH(9.29). If there are many back-to-back multicasts, increas-
ing this threshold can improve performance.

8.5.4 SENDER WINDOW

Increasing SENDER WINDOW (9.10) implies buffering more messages at the root till the
Acks arrive from the receiver. On a larger cluster, where Acks can potentially arrive late,
increasing this window to larger value improves MPI Bcast thruput.

8.5.5 BCAST TIME OUT

BCAST TIME OUT (9.1) is dependent on the cluster size. On a larger sizes, this time can
be increased.

29

8.6 Multi-Rail Tuning

Multi-Rail provides the tuning parameters associated with Single-Rail configuration of MVA-
PICH. In addition, it provides following parameter.

8.6.1 STRIPING THRESHOLD

Multi-Rail provides an option to enable/disable message striping on available paths by tuning
this parameter. For messages of size greater than VIADEV RENDEZVOUS THRESHOLD
and less than STRIPING THRESHOLD, only one available path will be used.

For clusters with high number of NUM HCAS 9.5 and/or NUM PORTS 9.4, a user may
decide not to stripe the data and still go through rendezvous protocol. Please note that
STRIPING THRESHOLD value should at least be equal to
VIADEV RENDEZVOUS THRESHOLD.

30

9 MVAPICH Parameters

9.1 BCAST TIME OUT

• Class: Compile time

• Location: mpid/vapi/bcast info.h(single rail config.)
mpid/vapi multirail/bcast info.h(multi rail config.)

• Default: 1 second

This parameter indicates the time duration the root waits for the Ack before retransmit-
ting the message.

9.2 MCST THRESHOLD

• Class: Compile time

• Location: src/coll/intra fns new.c

• Default: 8KB

This threshold indicates that MPI Bcast uses hardware multicast up to MCST THRESHOLD
bytes. This parameter is currently set to 8KB based on experimentation on 32 node systems.

9.3 NDREG ENTRIES

• Class: Run time

• Default: 1000

This defines the total number of buffers that can be stored in the registration cache. It
has no effect if LAZY MEM UNREGISTER is not defined. A larger value will lead to more
infrequent lazy de-registration. However, the underlying IB layer may have some limit on the
total amount of memory a process can register. If you are experiencing memory registration
failure, please try decreasing this value.

31

9.4 NUM PORTS

• Class: Run time

• Default: 2

This parameter indicates number of ports to be used for communication per adapter on
an end node. This parameter has no effect if Multi-Rail configuration is not enabled.

9.5 NUM HCAS

• Class: Run time

• Default: 1

This parameter indicates number of adapters to be used for communication on an end
node. This parameter has no effect if Multi-Rail configuration is not enabled.

9.6 SMPI MAX NUMLOCALNODES

• Class: Compile time

• Location: mpid smpi.h

• Default: 4

This macro has no effect if macro SMP is not defined. It specifies the upper limit of
the number of processes MPI supports on a single node. Usually it can be set to be the
maximum number of physical processors on an SMP node (if you are not running more than
one processes on a single processor).

9.7 SMPI LENGTH QUEUE

• Class: Run time

• Default: 4

This has no effect if macro SMP is not defined. It defines the size of shared buffer
between every two processes on the same node. A larger value may allow more communication
without waiting for flow control. However, a smaller value can save more resources. Note
that this variable should be set in MBytes.

32

9.8 SMP EAGERSIZE

• Class: Run time

• Default: Architecture dependent (1MB for IA-32)

This has no effect if macro SMP is not defined. It defines the switch point from Eager
protocol to Rendezvous protocol for intra-node communication. If macro SMP RNDV
is defined, then for messages larger than SMP EAGERSIZE, SMP Rendezvous protocol is
used, where a message is split into smaller packets, and sent out through shared memory in a
pipelining manner. The packet size is the same as the value of SMP EAGERSIZE. If macro
SMP RNDV is not defined, then IB is used for intra-node Rendezvous protocol. In the
latter case the value of this variable should be determined by shared memory communication
performance (memory speed, cache size, . . .) and IB performance. Note that this variable
should be set in KBytes.

9.9 SMP RNDV

• Class: Compile time

• Default: equal to SMP EAGERSIZE

This has no effect if macro SMP is not defined. If macro SMP RNDV is defined, then
for messages larger than SMP EAGERSIZE, SMP Rendezvous protocol is used, where a mes-
sage is split into smaller packets, and sent out through shared memory in a pipelining manner.
The packet size is the same as the value of SMP EAGERSIZE. If macro SMP RNDV is not
defined, then IB is used for intra-node Rendezvous protocol. In the latter case the value of
this variable should be determined by shared memory communication performance (memory
speed, cache size, . . .) and IB performance. Note that this variable should be set in KBytes.

9.10 SENDER WINDOW

• Class: Compile time

• Location: mpid/vapi/bcast info.h(single rail config.)
mpid/vapi multirail/bcast info.h(multi rail config.)

• Default: 512

This parameter indicates the maximum number of outstanding MPI Bcasts allowed at
any root. After issuing these many broadcasts, the root blocks if it has not received acks for
any of these MPI Bcasts.

33

9.11 STRIPING THRESHOLD

• Class: Run time

• Default: VIADEV RENDEZVOUS THRESHOLD

For a class of messages, a user may want to use Rendezvous protocol and not stripe
the data across multiple ports/adapters. For messages of size equal and above this value,
the data is striped across multiple paths. This value should atleast be equal to the VI-
ADEV RENDEZVOUS THRESHOLD. The value of STRIPING THREHOSLD is currently
equal to VIADEV RENDEZVOUS THRESHOLD. For Optimal performance, this value may
need a change depending upon the number of ports and number of adapters in the system.

9.12 VBUF TOTAL SIZE

• Class: Compile time

• Location: vbuf.h

• Default: Architecture dependent (12 KB for IA-32)

This macro defines the size of each vbuf. Basically, vbufs store descriptors and packets
used in the underlying communication (send, receive and RDMA). In our current implemen-
tation, each eager data packet must fit into one vbuf. Therefore, it also puts an upper limit
on the size of the eager data packet. (Please note that eager data payload is even smaller
due to the size of the packet header and the descriptor.) However, a large value may lead to
more wasted memory.

In the earlier MVAPICH versions, VBUF TOTAL SIZE was equal to the
VIADEV RENDEZVOUS THRESHOLD. From 0.9.5, this restriction has been removed. For
a given platform, these two parameters can be independently tuned.

Different presets for this value are available for different sizes of clusters. Use
-D SMALL CLUSTER, -D MEDIUM CLUSTER and -D LARGE CLUSTER for cluster sizes
1-64, 64-256, 256 and beyond, respectively.

9.13 VIADEV DEVICE

• Class: Run time

• Default: First IB device found on the system

Name of the InfiniBand device. e.g. InfiniHost0, InfiniHost1, InfiniHost III Ex0.

34

9.14 VIADEV RDMA LIMIT

• Class: Run time

• Default: 2

Upper Limit of the number of outstanding RDMA operations at the InfiniBand level.
Effective only when macro VIADEV HAVE RDMA LIMIT is defined. However, it should
be set according to the capability of HCAs. For most commonly used HCAs, this option is
not required.

9.15 VIADEV SQ SIZE

• Class: Run time

• Default: 200

Upper Limit of the number of Send Queue entries at the InfiniBand level. Note that
the number of Receive Queue entries are calculated automatically in MVAPICH. This value
should be large enough to hold all outstanding send/rdma requests.

9.16 VIADEV CQ SIZE

• Class: Run time

• Default: 40000

Upper Limit of the number of Completion Queue entries at the InfiniBand Level. This
must be large enough to hold all the outstanding signaled communication operations from
all connections.

9.17 VIADEV NUM RDMA BUFFER

• Class: Run time

• Default: Architecture dependent (32 for IA-32)

The number of RDMA buffers used for the RDMA fast path. This fast path is used to
reduce latency and overhead of small data and control messages. This value is effective only
when macro RDMA FAST PATH is defined. The default value is architecture dependent.

35

Different presets for this value are available for different sizes of clusters. Please use -
D SMALL CLUSTER, -D MEDIUM CLUSTER and -D LARGE CLUSTER for cluster sizes
1-64, 64-256, 256 and beyond, respectively.

9.18 VIADEV MAX RDMA SIZE

• Class: Run time

• Default: 1 MB

The upper limit of message size when IB RDMA is used in MVAPICH. Messages such as
Rendezvous data will be divided into smaller chunks if their sizes exceed this limit.

9.19 VIADEV DEFAULT MTU

• Class: Run time

• Default: MTU1024

The internal MTU used for IB. This parameter should be a string instead of an integer.
Valid values are: MTU256, MTU512, MTU1024, MTU2048, MTU4096.

9.20 VIADEV MAX FAST EAGER SIZE

• Class: Fixed

• Default: 255

This is used to specify the maximum size of the messages which are sent using header

caching. Please note that this value cannot exceed 255 in the current implementation.

9.21 VIADEV DEFAULT MAX SG LIST

• Class: Run time

• Default: 20

This specifies the maximum number of gather/scatter entries support for each queue
pair. Currently, InfiniBand communication uses only one gather/scatter entry. However,
this parameter also affects the maximum size of data that can be sent using “inline”. Larger
messages can be sent through inline with larger VIADEV DEFAULT MAX SG LIST value.

36

9.22 VIADEV RENDEZVOUS THRESHOLD

• Class: Run time

• Default: Architecture dependent (12KB for IA-32)

This specifies the switch point between eager and rendezvous protocol in MVAPICH. If
this value is increased more than the VBUF TOTAL SIZE, then multiple packets will be
sent over the eager path using copy-based scheme.

In the earlier MVAPICH versions, VBUF TOTAL SIZE was equal to the
VIADEV RENDEZVOUS THRESHOLD. From 0.9.5, this restriction has been removed. For
a given platform, these two parameters can be independently tuned.

9.23 VIADEV VBUF POOL SIZE

• Class: Run time

• Default: 5000

The number of vbufs in the initial pool. This pool is shared among all the connections.
A large value will lead to more initial memory usage. However, a small value may lead to
memory allocation at run time and degrade performance.

9.24 VIADEV VBUF SECONDARY POOL SIZE

• Class: Run time

• Default: 500

The number of vbufs allocated each time when the global pool is running out in the
initial pool. This is also shared among all the connections. A large value may lead to waste
of memory. But if the value is too small, memory allocation may be frequent during run time
and degrade performance.

9.25 VIADEV INITIAL PREPOST DEPTH

• Class: Run time

• Default: 5

37

This defines the initial number of pre-posted receive buffers for each connection. If com-
munication happen for a particular connection, the number of buffers will be increased to
VIADEV PREPOST DEPTH.

9.26 VIADEV PREPOST DEPTH

• Class: Run time

• Default: 64

This defines the number of buffers pre-posted for each connection to handle send/receive
operations. If RDMA FAST PATH is enabled, this macro can be set to a small value (such as
32 or 64). This number should not be set to a very large value for large systems. Otherwise
the memory consumption will be large.

9.27 VIADEV CREDIT NOTIFY THRESHOLD

• Class: Run time

• Default: 5

Flow control information is usually sent via piggybacking with other messages. These
two parameters are used to determine when to send explicit flow control update messages.

9.28 VIADEV DYNAMIC CREDIT THRESHOLD

• Class: Run time

• Default: 10

Flow control information is usually sent via piggybacking with other messages. These
two parameters are used to determine when to send explicit flow control update messages.

9.29 VIADEV UD PREPOST DEPTH

• Class: Compile time

• Location: mpid/vapi/bcast info.h (single rail config.)
mpid/vapi multirail/bcast info.h (multi rail config.)

38

• Default: 32

This parameter indicates the total number of buffers preposted for UD messages.

9.30 VIADEV UD PREPOST THRESHOLD

• Class: Compile time

• Location: mpid/vapi/bcast info.h(single rail config.)
mpid/vapi multirail/bcast info.h(multi rail config.)

• Default: 16

This parameter defines a low water mark for the number of buffers posted for UD mes-
sages. If this water mark is reached, the posting of buffers will begin until the number of
buffers reaches the value defined in VIADEV UD PREPOST DEPTH.

39

	 Overview of the Open-Source MVAPICH Project
	 MVAPICH 0.9.5 Features
	Installation Instructions
	Download MVAPICH source code
	Prepare MVAPICH source code
	Apply Patches to source tree
	Build MVAPICH with Single-Rail Configuration
	Configure MVAPICH
	make
	make install

	Build MVAPICH with Multi-Rail Configuration
	Configure MVAPICH
	make
	make install

	Usage Instructions
	Compile MPI applications
	Run MPI applications using mpirun_rsh
	Run MPI applications using MPD
	Run MPI applications using InfiniBand hardware Multicast based MPI Broadcast support
	Usage examples:

	Run MPI applications using RDMA-based MPI Alltoall support
	Run MPI applications using shared library support
	Run MPI applications using TotalView Debugger support

	Using OSU Benchmarks
	Troubleshooting with MVAPICH
	Cannot pass MPI_Init
	Cannot Open HCA
	Cannot include vapi.h
	VAPI_RETRY_EXEC_ERROR
	Building mvapich hangs with hardware multicast enabled
	ld:multiple definitions of symbol _calloc error on MacOS
	No Fortran interface on the MacOS platform.
	Other MPICH problems

	Configuration Examples
	Configuration Examples for Single-Rail MVAPICH
	A Typical Configuration without MPD and Multicast-Based Broadcast on IA32
	A Typical Configuration without MPD and Multicast-Based Broadcast on MacOS
	Configuration Example with MPD Support
	Configuration Example with Multicast-Based Broadcast Support
	Configuration Example with Shared Library Support
	Configuration Example with TotalView Support

	Configuration Examples for Multi-Rail MVAPICH
	A Typical Configuration without MPD and Multicast-Based Broadcast on IA32
	A Typical Configuration without MPD and Multicast-Based Broadcast on MacOS
	Configuration Example with MPD Support
	Configuration Example with Multicast-Based Broadcast Support
	Configuration Example with Shared Library Support

	Performance Tuning
	Point-to-Point Tuning
	Tuning Memory Usage
	Tuning VAPI Parameters
	Shared Memory Tuning
	InfiniBand Hardware Multicast Tuning
	MCST_THRESHOLD
	VIADEV_UD_PREPOST_DEPTH
	VIADEV_UD_PREPOST_THRESHOLD
	SENDER_WINDOW
	BCAST_TIME_OUT

	Multi-Rail Tuning
	STRIPING_THRESHOLD

	MVAPICH Parameters
	BCAST_TIME_OUT
	MCST_THRESHOLD
	NDREG_ENTRIES
	NUM_PORTS
	NUM_HCAS
	SMPI_MAX_NUMLOCALNODES
	SMPI_LENGTH_QUEUE
	SMP_EAGERSIZE
	_SMP_RNDV_
	SENDER_WINDOW
	STRIPING_THRESHOLD
	VBUF_TOTAL_SIZE
	VIADEV_DEVICE
	VIADEV_RDMA_LIMIT
	VIADEV_SQ_SIZE
	VIADEV_CQ_SIZE
	VIADEV_NUM_RDMA_BUFFER
	VIADEV_MAX_RDMA_SIZE
	VIADEV_DEFAULT_MTU
	VIADEV_MAX_FAST_EAGER_SIZE
	VIADEV_DEFAULT_MAX_SG_LIST
	VIADEV_RENDEZVOUS_THRESHOLD
	VIADEV_VBUF_POOL_SIZE
	VIADEV_VBUF_SECONDARY_POOL_SIZE
	VIADEV_INITIAL_PREPOST_DEPTH
	VIADEV_PREPOST_DEPTH
	VIADEV_CREDIT_NOTIFY_THRESHOLD
	VIADEV_DYNAMIC_CREDIT_THRESHOLD
	VIADEV_UD_PREPOST_DEPTH
	VIADEV_UD_PREPOST_THRESHOLD

