
hnolo
gie

s
IB Gold Distribution Stack       

User’s Manual

Rev 1.70
Mellanox Technologies

Mell
an

ox
 Te

c



2

Mell
an

ox
 Te

ch
nolo

gie
s

© Copyright 2005. Mellanox Technologies, Inc. All Rights Reserved.

IB Gold Distribution Stack User’s Manual

Document Number: 2142UM

Mellanox Technologies, Inc.
2900 Stender Way
Santa Clara, CA 95054
U.S.A.
www.Mellanox.com

Tel: (408) 970-3400
Fax: (408) 970-3403

Mellanox Technologies Ltd 
PO Box 586 Hermon Building 
Yokneam 20692 
Israel

Tel: +972-4-909-7200
Fax: +972-4-959-3245
Mellanox Technologies
Rev 1.70

http://www.mellanox.com 


  IB Gold Distribution Stack User’s Manual
3

Mell
an

ox
 Tech

nolo
gie

s

Contents

1 Overview 5
Introduction ....................................................................................................................................5
Loading and Unloading the of Stack..............................................................................................6
Subnet Manager .............................................................................................................................6
Debugging the Stack ......................................................................................................................7

2 IP Over IB 8
Overview........................................................................................................................................8
Configuring IPoIB..........................................................................................................................8
Activating IPoIB ............................................................................................................................8
Debugging IPoIB ...........................................................................................................................8

3 Sockets Direct Protocol 10
Overview......................................................................................................................................10
Libsdp.so Library .........................................................................................................................10
Environment Variables ................................................................................................................10
Policy ...........................................................................................................................................11
Activating SDP ............................................................................................................................11
Debugging SDP............................................................................................................................12

4 SRP Initiator 13
Overview......................................................................................................................................13
Environment Setup.......................................................................................................................13
Activating SRP.............................................................................................................................13
Debugging SRP............................................................................................................................14
Additional Features ......................................................................................................................14

Persistent Target Binding......................................................................................................14
LUN Masking .......................................................................................................................16

5 uDAPL 17
Overview......................................................................................................................................17
Activating uDAPL .......................................................................................................................17
Compiling, Linking, and Running uDAPL..................................................................................17
Debugging uDAPL ......................................................................................................................17

6 kDAPL 18
Overview......................................................................................................................................18
Activating kDAPL .......................................................................................................................18
Compiling, Linking, and Running kDAPL..................................................................................18
Debugging kDAPL ......................................................................................................................18
kdapltest .......................................................................................................................................19
Mellanox Technologies
Rev 1.70



4

Mell
an

ox
 Tech

nolo
gie

s

7 MPI20
Overview20
OSU MPI20

Installation Directories and Environment Setup20
Compiling and Running MPI Programs20
Additional Documentation21

NCSA MPI21
Installation Instructions21
VMI2/MPICH-VMI Configuration Instructions22
VMI2/MPICH-VMI Usage Instructions23
Mellanox Technologies
Rev 1.70



  IB Gold Distribution Stack User’s Manual
5

Mell
an

ox
 Te

ch
nolo

gie
s

1 Overview

1.1 Introduction
The IB Gold Distribution (IBGD) stack is a full InfiniBand (IB) upper layer protocol (ULP) stack for the Linux oper-
ating system. The stack includes: IB drivers, core services, and access layer for the Host Channel Adaptor (HCA) 
hardware. It also includes the following ULPs:

• IPoIB - IP over IB driver (page 8)
• SDP - Sockets Direct Protocol (page 10)
• SRP Initiator - SCSI RDMA Protocol Initiator (page 13)
• uDAPL - User Direct Access Programming Layer (page 17)
• kDAPL - Kernel-level Direct Access Programming Layer (page 19)
• MPI - Message Passing Interface (page 21)

Figure 1 shows the IBGD stack and how ULPs interface with the hardware, and with kernel and user space.

Figure 1: IBGD Stack

The IBGD stack is composed of a verbs interface (VAPI) and core services. The core services include: management 
interface (SMI/GSI), Connection Manager (CM), Subnet Administrator (SA) interface, and Device Management 
(DM) Agent interface. The stack includes components for both user-mode and kernel applications. The core services 
run in the kernel and expose an interface to user-mode for verbs, CM and management.

User

Kernel API
(TSAPI)

InfiniBand Fabric

HCA Hardware

SDP

Sockets
Layer

OpenSMuDAPLMPI

User Access Layer (VAPI)

IB Gold CD

Linux
Applications

Kernel

HPC Data Center Embedded Legacy

HPC Apps
Benchmarks

Oracle RAC
IBM DB2

App Tier
SAP, PeopleSoft

Video
Communications

IP/LAN
Apps

IB Admin Tools

ManagementStorage

IP

Markets

Kernel VAPI Driver

OpenIB.org Access Layer

Kernel 
Bypass

IPoIB SRP

TCP UDP ICMP SCSI 
Mid Layer

libsdp

kDAPL

Block
Storage

File
Sto-
rage

User

Kernel API
(TSAPI)

InfiniBand Fabric

HCA Hardware

SDP

Sockets
Layer

OpenSMuDAPLMPI

User Access Layer (VAPI)

IB Gold CD

Linux
Applications

Kernel

HPC Data Center Embedded Legacy

HPC Apps
Benchmarks

Oracle RAC
IBM DB2

App Tier
SAP, PeopleSoft

Video
Communications

IP/LAN
Apps

IB Admin Tools

ManagementStorage

IP

Markets

Kernel VAPI Driver

OpenIB.org Access Layer

Kernel VAPI Driver

OpenIB.org Access Layer

Kernel 
Bypass

IPoIB SRP

TCP UDP ICMP SCSI 
Mid Layer

libsdp

kDAPL

Block
Storage

File
Sto-
rage
Mellanox Technologies
Rev 1.70



6

Mell
an

ox
 Te

ch
nolo

gie
s

The ULPs included in the package enable efficient communication between processes (MPI and SDP), integration 
with legacy applications (IPoIB), access to storage (SRP), and generic interface to RDMA fabric (DAPL).

This manual provides a basic description of the various software components, and covers how to operate and config-
ure the software modules.

1.2 Loading and Unloading the of Stack
The basic components of the stack are automatically loaded when the machine boots. It is also possible to control 
which of the components is to be loaded at boot, or to manually load/unload the entire stack.

Note: OpenSM is not covered in this document. For details on OpenSM, refer to OpenSM User’s Manual, 
Document no. 2277UM.

The file /etc/infiniband/openib.conf controls the load-able modules in the stack at boot time. Modify this file if you 
wish to change the settings. The following is the default configuration for X86 platforms:

# Start HCA driver upon boot
ONBOOT=yes
 
# Load IPoIB
IPOIB_LOAD=yes

# Load sdp module
SDP_LOAD=yes
 
# Load kDAPL module
KDAPL_LOAD=yes

# Load SRP module
SRP_LOAD=no

# Load SRP target module
SRP_TARGET_LOAD=no

To manually load the stack, run:        /etc/init.d/openibd start

To manually unload the stack, run:    /etc/init.d/openibd stop

Note that these load/unload operations control only the modules that are configured in openib.conf.

The files /etc/infiniband/ifcfg-ib0 and /etc/infiniband/ifcfg-ib1 control parameters (such as IP address, NetMask) of 
the ib0 and ib1 network devices. Although it is best to configure those parameters during the installation process, it is 
possible to be edit the files at any time.

1.3 Subnet Manager
All ULPs require a proper operation of a Subnet Manager (SM) running on the fabric. An SM can run on any node or 
on an IB switch. OpenSM is a Subnet Manager provided as part of the IBGD stack. For further details on OpenSM, 
refer to the OpenSM User’s Manual.

Note: The SM is required to run at all times, not only for initial fabric setup.
Mellanox Technologies
Rev 1.70



  IB Gold Distribution Stack User’s Manual
7

Mell
an

ox
 Te

ch
nolo

gie
s

1.4 Debugging the Stack
The stack contains a /proc file-system which allows status monitoring. Following is an example of such a very useful 
file. Other /proc file-system files are described in each ULP section below.

Example: To view the state of a port and its other attributes (such as the LID), enter: 
  cat /proc/infiniband/core/ca1/port1/info

     If the port is operating properly, its state should be reported as “ACTIVE”.

Error messages are logged into /var/log/messages. It is also possible to activate the stack in debug mode, where log-
ging is much more verbose. In order to control verbosity of debug log messages into /var/log/messages use the com-
mand:

echo “<mod_id> <verbosity> 0xFFFFFFFF” > /proc/infiniband/tracelevel

where: 
<mod_id> is the module number (use “cat /proc/infiniband/tracelevel” to capture the relevant module ID)
<verbosity> is a number in the range 0..5  (0- quiet, 5- very verbose)

For debug of the VAPI driver and further information, refer to:

• The README file under the IBGD installation directory (see ‘Starting and Verifying the IB Fabric’)
• VAPI (HCA Driver) Release Notes
• FW-23108 InfiniHost Firmware Release Notes
• FW-25208 InfiniHost III Ex (acting as an InfiniHost) Firmware Release Notes
• FW-25218 MemFree InfiniHost III Ex Firmware Release Notes
Mellanox Technologies
Rev 1.70



IP Over IB
8

Mell
an

ox
 Te

ch
nolo

gie
s

2 IP Over IB
2.1 Overview
The IP over IB (IPoIB) driver encapsulates IP datagrams over InfiniBand messages. The driver mimics an Ethernet 
device and behaves the same from the point of view of the operating system. The encapsulation process adds to the IP 
datagrams an encapsulation header, and sends the outcome over UD transport service. The interface supports unicast, 
multicast and broadcast.

The following two documents (drafts) cover IPoIB specification, and they can be downloaded from www.ietf.org:

• draft-ietf-ipoib-architecture-04
• draft-ietf-ipoib-ip-over-infiniband-07

2.2 Configuring IPoIB
The IPoIB configuration is similar to any other network device. Mellanox IB devices support two IPoIB ports named 
ib0 and ib1.

If the IBGD stack is configured to automatically load IPoIB upon boot and you wish to change the IP addresses of 
IPoIB ports, edit the files: /etc/infiniband/ifcfg-ib0 and /etc/infiniband/ifcfg-ib1.

2.3 Activating IPoIB
As mentioned before, it is possible to configure the IBGD stack to automatically load the IPoIB driver upon boot. It is 
also possible to manually load and unload the IPoIB driver.

To bring interfaces up, use:

 ifconfig  ib0  <IP Address> 
 ifconfig  ib1  <IP Address>    

The user can open either of these ports and use both of them.

To bring interfaces down, use:

ifconfig ib0 down
ifconfig ib1 down

2.4 Debugging IPoIB
The IPoIB driver can be easily checked by a simple ping to any other node in the subnet (using the IPoIB IP address). 
For example:

ping  <remote IPoIB IP address>

While the device is running, it is possible to get statistics from the device through the ifconfig command. Statistics 
include: Rx/Tx packets, Rx/Tx errors, Rx/Tx dropped, Rx/Tx overruns, and Rx/Tx bytes received/sent. For example:

ifconfig ib0
Mellanox Technologies
Rev 1.70



  IB Gold Distribution Stack User’s Manual
9

Mell
an

ox
 Te

ch
nolo

gie
s

Other device info can be obtained through the /proc file-system. For each port, there are two tables:

1. IPoIB Pseudo ARP table: /proc/infiniband/ipoib_arp_ibX
2. IPoIB multicast table: /proc/infiniband/ipoib_mcast_ibX
Mellanox Technologies
Rev 1.70



Sockets Direct Protocol
10
Mell
an

ox
 Te

ch
nolo

gie
s

3 Sockets Direct Protocol
3.1 Overview
Sockets Direct Protocol (SDP) is a byte-stream transport protocol that closely mimics TCP's stream semantics. SDP 
utilizes InfiniBand's advanced protocol offload, and zero copy capabilities. Because of this, SDP can have lower CPU 
and memory bandwidth utilization when compared to conventional implementations of TCP, while preserving the 
familiar byte-stream oriented semantics upon which most current network applications depend.

SDP can be used by applications and improve their performance transparently (that is, without any recompilation). 
Since SDP has the same socket semantics as TCP, an existing application are able to run using SDP. The difference is 
that its TCP socket gets replaced with an SDP socket.

It is also possible to explicitly set up the sockets of applications to be SDP. To do this it is necessary to select 
AF_INET_SDP as the socket family.

The SDP protocol is composed of a kernel module that implements the SDP as a new address-family/protocol-family, 
and a library that is used for replacing the TCP address family with SDP according to a policy. 

SDP shares the same IP address with the IPoIB driver and uses the same ARP mechanism to discover neighbors.

The SDP specification is described in “Annex A4” of the InfiniBand Architecture Specification, Volume 1, Release 
1.1.

3.2 Libsdp.so Library
Libsdp.so is a dynamically linked library, which is used for transparent integration of applications with SDP. The 
library is preloaded, and therefore takes precedence over glibc for certain socket calls. Thus, it can transparently 
replace the TCP socket family with SDP socket calls. 

The library also implements a user-level socket switch. Using a configuration file, the system administrator can set up 
the policy that selects the type of socket to be used. Libsdp also has the option to allow server sockets to listen on both 
SDP and TCP interfaces. The various configurations with SDP/TCP sockets are explained inside the ‘libsdp.conf’ 
file.

3.3 Environment Variables
For the transparent integration with SDP, two environment variables are required. The environment variables are used 
for preloading libsdp and configuring the policy:

• LD_PRELOAD - This environment variable should point to the libsdp.so library. The variable should be set by 
the system administrator to ${prefix}/lib/libsdp.so1.

• LIBSDP_CONFIG_FILE - This environment variable must point to the libsdp.conf file. By default, it points to:  
${prefix}/etc/libsdp.conf.

In order to avoid setting LD_PRELOAD, it is possible to add lbsdp.so into /etc/ld.so.preload. This causes the library 
to be preloaded into any executable.

For non-transparent integration with SDP, no special environment variable is necessary. It is only required to recom-
pile the application replacing AF_INET with AF_INET_SDP. The constant AF_INET_SDP is defined in sdp_inet.h.

1. ${prefix} is set at package installation time. By default, it is /usr/local/ibgd.
Mellanox Technologies
Rev 1.70



  IB Gold Distribution Stack User’s Manual
11
Mell
an

ox
 Te

ch
nolo

gie
s

3.4 Policy
Libsdp.conf is the policy file that controls transparent replacement of TCP sockets with SDP sockets. There are rules 
to control the server and rules to control the client side. If a rule is matched, then an SDP socket replaces the TCP 
socket.

Client rules:
match destination <ip_port>
where:
 <ip_port> is <ip_addr>[/<prefix_length>][:<start_port>[-<end_port>]] 

Server rules:
match listen <ip_port>
where:
 <ip_port> is <ip_addr>[/<prefix_length>][:<start_port>[-<end_port>]] 

General rules:
match <program_name>
where:
 <program_name> is a string representing a program name (wildcards allowed)

For example:
match listen *:5001 program ttcp

3.5 Activating SDP
SDP module can be automatically loaded when the machine boots, see Section 1.2, “Loading and Unloading the of 
Stack,” on page 6. In order to manually load the SDP module use:

modprobe ib_sdp
And to manually unload:

modprobe -r ib_sdp
When the two environment variable stated above are defined, and the configuration within libsdp.conf is set up, all 
you have to do is run any socket application that uses AF_INET sockets. According to the policy, SDP will be 
selected and the data will flow through SDP.

In short:

system administrator configures libsdp.conf
export LD_PRELOAD=${prefix}/lib/libsdp.so
export LIBSDP_CONFIG_FILE=${prefix}/etc/libsdp.conf
run application

Another option is to recompile the application using AF_INET_SDP socket, in which case application will run SDP 
socket regardless of any configuration.

Note that SDP uses the same IP address space that the IPoIB driver uses. It therefore required that the client and 
server of the SDP application will be on the same subnet where IPoIB run. If your computer has an another NIC, you 
need to make sure that the SDP runs on the IB fabric, i.e. the server address must be on the IPoIB subnet.
Mellanox Technologies
Rev 1.70



Sockets Direct Protocol
12
Mell
an

ox
 Te

ch
nolo

gie
s

3.6 Debugging SDP
In order to list the active and listening connections on SDP use:

cat /proc/infiniband/sdp/opt_conn

In order to log libsdp debug message to a file, edit libsdp.conf  and add (for example) the following:
log min-level 5 destination file <filename>

Further information about log options can be found in libsdp.conf.
Mellanox Technologies
Rev 1.70



  IB Gold Distribution Stack User’s Manual
13
Mell
an

ox
 Te

ch
nolo

gie
s

4 SRP Initiator
4.1 Overview
SRP (SCSI RDMA Protocol) is designed to take full advantage of the protocol offload and RDMA features provided 
by the InfiniBand Architecture. SRP allows a large body of SCSI software to be readily used on InfiniBand Architec-
ture, and is rapidly emerging as the protocol of choice for block-based storage.

The SRP device driver differs from traditional low-level SCSI drivers in Linux. The SRP driver does not control a 
local HBA. Instead, it controls a connection to an IO controller to provide access to remote storage devices across an 
InfiniBand fabric. The IO controller resides in an IO unit and provides storage services.

The SRP device driver is known as the SRP Initiator whereas the service on the InfiniBand IO controller is known as 
the SRP Target.

The SRP protocol provides transport services to enable a basic client-server model where an initiator presents SCSI 
tasks to a target for execution. A typical SRP IO transaction is as follows:

• The initiator builds an SRP request message that contains a SCSI command, a device logical unit number, and a 
data buffer memory descriptor (or scatter/gather list). It then sends the request to the target.

• For read requests, the target receives the SRP request, reads the data from disk/cache and performs an RDMA 
operation to transfer the data into the initiator data buffer.

• For write requests, the target receives the SRP request and performs an RDMA operation to transfer the initiator 
data buffer contents to the target, then it commits it to the disk.

• The target builds an SRP response message indicating the completion status of the request, and sends the response 
to the initiator.

SRP 1.0 specification is available at www.t10.org.

4.2 Environment Setup
For basic operations no variable needs to be set.

By default, Linux does not support SCSI devices with multiple LUNs. If SRP Target has multiple LUNs (IOC con-
tains multiple LUNs), then the kernel needs to be configured to support that. There are two options to enable multiple 
LUN support:

• Add “max_scsi_luns=n” to /etc/modules.conf and rebuild the initrd. (In Kernel 2.4 and RH distribution).
• Rebuild the kernel with CONFIG_SCSI_MULTI_LUN=y in the .config file.

4.3 Activating SRP
SRP requires an SRP Target to be attached to the InfiniBand fabric. The default setup does not automatically load the 
SRP Initiator upon boot. 

To manually load the SRP Initiator use:
modprobe ib_srp

To manually unload the SRP Initiator use:
modprobe -r ib_srp
Mellanox Technologies
Rev 1.70



SRP Initiator
14
Mell
an

ox
 Te

ch
nolo

gie
s

Once the SRP Initiator is up,SRP Target new SCSI block devices are available through:

• /dev/sdX for a device without partitions, where X stand for a letter: a,b,c, etc
• /dev/sdXY  for a device with partitions, where Y stand for a number: 1,2 etc (and defines partition number)

The drive letter (X) is allocated dynamically by Linux as the SCSI device is discovered.

It is preferred that the SRP Target will be up and running prior to loading the SRP Initiator. If the Initiator is loaded 
before the target than after the SRP Target is loaded, run : rescan-scsi-bus.sh script to detect the Target. 

4.4 Debugging SRP
There are certain tools and utilities that can be used to debug and understand the SRP Initiator attachment to the Tar-
get. These are:

• SCSI /proc file-system:
cat /proc/scsi/scsi -lists all active SCSI devices. SRP Targets are added to the list as they are discovered

The following is an example of a listed SRP Target (at channel 0, ID 1, LUN 0):
Attached devices:
Host: scsi0 Channel: 00 Id: 01 Lun: 00

Vendor: Mellanox Model: IBSRP10-TGT      Rev: 1.46
Type:   Direct-Access ANSI SCSI                  revision: 03

• SRP /proc file-system:
cat /proc/scsi/srp/x- indicates the  active connections to IO Controllers with their status. ‘x’ represents the device 

(host) number (it is incremented each time the device driver is reloaded)

• To view all SCSI devices and to create/delete partitions on the disk use fdisk:
fdisk -l               - lists all devices/partitions
fdisk /dev/sdX   - creates/deletes partitions

• To create a file-system and mount it use (this is an example):
mke2fs /dev/sdXY
mount   /dev/sdXY <directory>

• In order to load the SRP Initiator in debug mode, where various debug messages get echoed into /var/log/mes-
sages, use:

modprobe ib_srp srp_tracelevel=<level>
where <level> shall be 0 (quiet) to 5 (verbose)

4.5 Additional Features
This section presents the following features: “Persistent Target Binding” and “LUN Masking”.

4.5.1 Persistent Target Binding
Since Linux assigns SCSI device nodes dynamically as each additional SCSI logical unit is detected, the mapping 
from device nodes (e.g., /dev/sda or /dev/sdb) to SRP SCSI targets and logical units may vary.
Mellanox Technologies
Rev 1.70



  IB Gold Distribution Stack User’s Manual
15
Mell
an

ox
 Te

ch
nolo

gie
s

Variations in process scheduling and network delay may result in SRP SCSI targets being mapped to different SCSI 
device nodes each time the driver is started. Hence, if applications or operating system utilities are configured to use 
the standard SCSI device nodes to access SRP SCSI devices, it is possible for SCSI commands to address the wrong 
targets or logical units.

To provide a more reliable name-space, the SRP SCSI driver uses its own package to create persistent device naming 
for SRP SCSI devices. The SRP SCSI devices can be found under the /dev/srp/ directory in one of the following for-
mats:

srp-<IOC_GUID>-l<lun_id>
srp-<IOC_GUID>-l<lun_id>p<partition>

Examples:

/dev/srp/srp-0000c900012a3800-l0
/dev/srp/srp-0000c900012a3800-l0p1
/dev/srp/srp-0000c900012a3800-l0p2

These device names (symbolic links) point to the block devices under the /dev/scsi/ directory in the following format:

sdh<host_num>-0c0i<target_id>l<lun_id>p<partition>

By using this device naming method, it is ensured that:

1. The same SRP SCSI bus and target id number are used for a particular SRP SCSI Target name in every SRP 
SCSI session.

2. A Linux SCSI target is always mapped to the same physical storage device after each machine boot.
3. The SCSI device names used at device creation are always mapped to the same SRP SCSI target.

This method of device naming results in persistent device mapping and is termed the Persistent Target Binding fea-
ture. To avoid errors in mapping device names, the device names it creates should be used by applications and fstab 
files, and not those of direct referencing of particular SCSI device nodes.

Activation. The Persistent Target Binding feature is activated automatically upon loading the ib_srp module. Load-
ing the SRP Initiator (with the persistent binding daemon) is done using ‘modprobe ib_srp’. To unload it, see Table 1.

Table 1 - Unloading the SRP Initiator with Persistent Binding Daemon

For Kernel... Unload the SRP Initiator using...

2.6 modprobe -r ib_srp

2.4

One of two methods:
1. Run ‘remove_srp_bind_persistent.sh’ then run 
‘modprobe -r ib_srp’
2. Run ‘openib stop’
Mellanox Technologies
Rev 1.70



SRP Initiator
16
Mell
an

ox
 Te

ch
nolo

gie
s

4.5.2 LUN Masking
This feature allows binding and/or masking of specific partitions in one machine, and binding and/or masking of 
other partitions in another machine.

The srp_persistent_bind.conf configuration file acts as the vehicle for manipulating partition binds and masks. It is 
located under ${prefix}/etc/1.

By default, the SRP Initiator binds all the partitions it finds unmasked during the discovery stage.

Partition Binding: 
To bind a partition, add a line in the srp_persistent_bind.conf file with the letter ‘b’ as the line header, followed by an 
SRP partition name of the format: srp-<IOC_GUID>-l<lun>p<partition>.

Example:

b srp-0002c901093dc560-l0p2

Notes:
1. No spaces are allowed before the letter ‘b’.
2. Only one space is allowed between the letter ‘b’ and the SRP partition name.

Partition Masking: 
To mask a partition, add a line in the srp_persistent_bind.conf file with the letter ‘m’ as the line header, followed by 
an SRP partition name of the format: srp-<IOC_GUID>-l<lun>p<partition>.

Example:

m srp-0002c901093dc560-l0p2

To mask all partitions that are not bound, enter:
m srp-ALL

Notes:

1. No spaces are allowed before the letter ‘m’.
2. Only one space is allowed between the letter ‘m’ and the SRP partition name.

Example of an srp_persistent_bind.conf file: 
###################################

# Partitions to bind

b srp-0002c901093dc560-l0p2

# Partitions to mask

m srp-ALL

###################################

1. ${prefix} is set at package installation time. By default, it is /usr/local/ibgd.
Mellanox Technologies
Rev 1.70



  IB Gold Distribution Stack User’s Manual
17
Mell
an

ox
 Te

ch
nolo

gie
s

5 uDAPL
5.1 Overview
The uDAPL (User Direct Access Programming Library) is a generic programming interface to RDMA capable trans-
ports. The library exposes a well defined API for applications that require access to RDMA-capable devices. The 
specification and API are defined by the DAT Collaborative (www.datcollaborative.org) and the stack is based on the 
Source Forge DAPL code. 

The API is designed for SW applications, therefore is not as low level as other APIs such as the access layer or VAPI 
may be. It is going to remain preserved regardless of the underlying layers (HW and SW components).

The uDAPL component of the IBGD stack provides user space libraries that may be dynamically or statically loaded 
for the DAT collaborative API.

5.2 Activating uDAPL
Before running a DAT-based application, the relevant IBGD stack module should be loaded. This can be done auto-
matically by entering:  /etc/init.d/openibd start

5.3 Compiling, Linking, and Running uDAPL
• In SW code that uses uDAPL, the following DAT header should be included: 

#include <dat/dat.h>
• When compiling, the relevant include path should be listed:

gcc ...  -I${prefix}/include1 ...
• When linking the DAT and DAPL libraries, the following should be included: 
    -L${prefix}/lib -ldat -ldapl

• When running the application, the libraries are loaded from ${prefix}/lib. Therefore ${prefix}/lib must be 
included in the library path.

5.4 Debugging uDAPL
To verify that the required modules are loaded, perform the following steps:

1. Check that the ib_udapl is loaded by entering: 
/sbin/lsmod | grep ib_dapl_srv

2. Check that the InifniBand IPoIB ports are up using:
/sbin/ifconfig ib0 
/sbin/ifconfig ib1

• Set the environment variable DAPL_DEBUG to ‘1’ then compile uDAPL.
• To enable debug features, set the two environment variables DAT_DBG_TYPE and DAPL_DBG_TYPE accord-

ing to TABLE TBD below.

1. ${prefix} is set at package installation time. By default, it is /usr/local/ibgd.
Mellanox Technologies
Rev 1.70



uDAPL
18
Mell
an

ox
 Te

ch
nolo

gie
s

5.5 dapltest
The IBGD package includes the dapltest which is a uDAPL test in the SourceForge repository.

To run the test enter the command: ${prefix}1/bin/dapltest

For a full description of the test and optional flags see under ${prefix}/docs, or under the DAPL project directories in 
the SourceForge repository.

Table 2 - DAPL Debug Level Setting for dat_registry 

Debug Type DAT_DBG_TYPE = 

DAT_OS_DBG_TYPE_ERROR  0x1

DAT_OS_DBG_TYPE_GENERIC  0x2

DAT_OS_DBG_TYPE_SR   0x4

DAT_OS_DBG_TYPE_DR   0x8

DAT_OS_DBG_TYPE_PROVIDER_API  0x10

DAT_OS_DBG_TYPE_CONSUMER_API  0x20

DAT_OS_DBG_TYPE_ALL  0xFF

Table 3 - DAPL Debug Level Setting for uDAPL

Debug Type DAPL_DBG_TYPE =

DAPL_DBG_TYPE_ERR  0x0001

DAPL_DBG_TYPE_WARN   0x0002

DAPL_DBG_TYPE_EVD   0x0004

DAPL_DBG_TYPE_CM  0x0008

DAPL_DBG_TYPE_EP  0x0010

DAPL_DBG_TYPE_UTIL   0x0020

DAPL_DBG_TYPE_CALLBACK  0x0040

DAPL_DBG_TYPE_DTO_COMP_ERR  0x0080

DAPL_DBG_TYPE_API   0x0100

DAPL_DBG_TYPE_RTN   0x0200

DAPL_DBG_TYPE_EXCEPTION  0x0400

ALL    0xFFFF

1. ${prefix} is set at package installation time. By default, it is /usr/local/ibgd
Mellanox Technologies
Rev 1.70



  IB Gold Distribution Stack User’s Manual
19
Mell
an

ox
 Te

ch
nolo

gie
s

6 kDAPL
6.1 Overview
The kDAPL (Kernel Direct Access Programming) is a generic programming interface to RDMA capable transports. 
DAPL exposes a well defined API for applications that require access to RDMA-capable devices. The specification 
and API are defined by the DAT Collaborative (www.datcollaborative.org) version 1.1 and the stack is based on the 
Source Forge DAPL code. 

The API is designed for SW applications, therefore is not as low level as other APIs such as the access layer or VAPI 
may be. It is going to remain preserved regardless of the underlying layers (HW and SW components).

The kDAPL component of the IBGD stack exports the kDAPL symbols in the kernel.

6.2 Activating kDAPL
Before running a DAT-based application, the relevant IBGD stack module should be loaded. This can be done as fol-
lows:

• Edit the file /etc/infiniband/openib.conf  (see Section 1.2, “Loading and Unloading the of Stack,” on page 6) to 
have the following parameter setting: KDAPL_LOAD=yes

• Reload the IBGD stack by typing  /etc/init.d/openibd restart

6.3 Compiling, Linking, and Running kDAPL
• In SW code that uses kDAPL, the following DAT header should be included: 

#include <dat/kdat.h>
• When compiling, the relevant include path should be listed:

gcc ...  -I${KERNEL_SRC_TREE}/drivers/infinband/ulp/kdapl/dat/include...
• Before the modules that use kDAPL can be called by ‘insmod’, the following modules should be loaded: 

‘dat_registry’ and ‘ib_kdapl’. 

6.4 Debugging kDAPL
• Before installing IBGD, set the environment variable KDAPL_DEBUG to ‘1’ in order to compile kDAPL with 

debug features.
• In order to display debug prints of kDAPL (assuming that the stack was compiled with kDAPL debug prints 

enabled), unload the ‘ib_kdapl’ and ‘dat_registry’ modules.
• The debug prints will be in /var/log/messages.
• Run ‘insmod’ on the ‘dat_registry’ module with the parameter DbgLvl set according to Table 4 below.

Table 4 - kDAPL Debug Level Setting for dat_registry Module 

Debug Type DbgLvl = 

DAT_OS_DBG_TYPE_ERROR  0x1

DAT_OS_DBG_TYPE_GENERIC  0x2

DAT_OS_DBG_TYPE_SR   0x4
Mellanox Technologies
Rev 1.70



kDAPL
20
Mell
an

ox
 Te

ch
nolo

gie
s

• Run ‘insmod’ on the ‘ib_kdapl’ module with the parameter DbgLvl set according to Table 4 below.

6.5 kdapltest
The IBGD package includes the kdapltest which is a kDAPL test in the SourceForge repository.

To run the test:

1. run ‘modprobe kdapltest’ in order to load the test module to the kernel.

2. Run the test using the command: ${prefix}1/bin/kdapltest

For a full description of the test and optional flags see under ${prefix}/docs , or under the DAPL project directories in 
the SourceForge repository.

Note: After the test ends, the user needs to unload the kdapltest module using ‘modprobe -r kdapltest’.

DAT_OS_DBG_TYPE_DR   0x8

DAT_OS_DBG_TYPE_PROVIDER_API  0x10

DAT_OS_DBG_TYPE_CONSUMER_API  0x20

DAT_OS_DBG_TYPE_ALL  0xFF

Table 5 - kDAPL Debug Level Setting for ib_kdapl Module

Debug Type DbgLvl =

DAPL_DBG_TYPE_ERR  0x0001

DAPL_DBG_TYPE_WARN   0x0002

DAPL_DBG_TYPE_EVD   0x0004

DAPL_DBG_TYPE_CM  0x0008

DAPL_DBG_TYPE_EP  0x0010

DAPL_DBG_TYPE_UTIL   0x0020

DAPL_DBG_TYPE_CALLBACK  0x0040

DAPL_DBG_TYPE_DTO_COMP_ERR  0x0080

DAPL_DBG_TYPE_API   0x0100

DAPL_DBG_TYPE_RTN   0x0200

DAPL_DBG_TYPE_EXCEPTION  0x0400

ALL    0xFFFF

1. ${prefix} is set at package installation time. By default, it is /usr/local/ibgd.

Table 4 - kDAPL Debug Level Setting for dat_registry Module  (Continued)

Debug Type DbgLvl = 
Mellanox Technologies
Rev 1.70



  IB Gold Distribution Stack User’s Manual
21
Mell
an

ox
 Te

ch
nolo

gie
s

7 MPI
7.1 Overview
The Mellanox IB Gold Distribution includes two MPI packages:

1. MPI channel implementation over InfiniBand from Ohio State University (OSU)  (http://nowlab.cis.ohio-
state.edu/projects/mpi-iba/)

2. MPI channel implementation over InfiniBand from the National Center for Supercomputing Applications 
(NCSA)  (http://vmi.ncsa.uiuc.edu/)

It is possible to choose to install one or both of these packages. Both packages are described in the following sections.

7.2 OSU MPI

7.2.1 Installation Directories and Environment Setup
OSU MPI implemented over InfiniBand is installed by default under  ${prefix}/mpi/osu/mvapich-0.9.41.

The MPI applications (presta, pallas and osu_tests) can be found under ${prefix}/mpi/osu/tests/.

It is recommended to set the following environment variables to facilitate the usage of OSU MPI software:

export MICH_ROOT=${prefix}/mpi/osu/mvapich-0.9.4
export PATH=${MPICH_ROOT}/bin:${PATH}

Please note that OSU MPI is pre-configured to use "ssh" to launch MPI jobs on the cluster machines, so password-
less "ssh" should be configured from the main node to all other cluster nodes.

It is also possible to launch MPI jobs using "rsh". To do so, use mpirun_rsh with the "-rsh" option (see below). As 
above, password-less "rsh" should be configured from the main node to all other cluster nodes.

7.2.2 Compiling and Running MPI Programs  
1. Compile using mpicc or mpif77 compilers located under $MPICH_ROOT/bin. 

For example: $MPICH_ROOT/bin/mpicc -o cpi cpi.c
2. Use "mpirun_rsh" to run mpi programs: $MPICH_ROOT/bin/mpirun_rsh -np N h1 h2 ... hN a.out args 

 For example:  mpirun_rsh -np 4 node1 node2 node3 node4 ./cpi
Or mpirun_rsh -hostfile machines -np 4 ./cpi

Where "machines" is a text file defining the list of machines in the cluster. For the example above this file will 
look as follows:

node1
node2
node3
node4

1. ${prefix} is set at package installation time. By default, it is /usr/local/ibgd.
Mellanox Technologies
Rev 1.70



MPI
22
Mell
an

ox
 Te

ch
nolo

gie
s

Note that it is possible to launch MPI using rsh by adding the option "-rsh" to the mpirun_rsh command line. So 
the examples above become:

7.2.3 Additional Documentation
For additional information, see the following files:

• ${prefix}/docs/README_MVAPICH
• ${prefix}/docs/mvapich.tuning_guide
• ${prefix}/docs/mvapich.user_guide

Please email your feedback to:  mvapich_help@cis.ohio-state.edu

7.3 NCSA MPI

7.3.1 Installation Instructions
Please read these VMI2/MPICH-VMI instructions if you choose to build and install MPI from the source code pack-
ages and RPMs provided by the Mellanox IB Gold Distribution. If you choose to build and install VMI2/MPICH-
VMI with different configuration options please refer to the NCSA web site.

Prerequisites: 

VMI2 and MPICH-VMI depend on several packages to build and function properly. If these are not present on your 
system, please install them before proceeding.

The required packages: 

• autoconf 2.52 or later
• automake 1.5 or later
• libtool 1.4.2 or later
• cURL 7.8 or later 
• expect 1.95 or later 

The following is an optional package:

• Mesa (any recent version) 

Binary install via RPMs: 

If you use the binary RPMs provided on the IB Gold Distribution, it is possible to skip compiling the VMI2, MPICH-
VMI source code. However, please be advised that the RPMs cannot be relocated, and will always be installed under 
${prefix}/mpi/ncsa.

Currently VMI2 and MPICH-VMI consist of the following RPMs:

• vmi_mlx-2.0.1.i386.rpm - This RPM contains the VMI runtime/development libraries, applications and headers. 
This RPM should be installed on all the nodes in the cluster.

• mpich_mlx-ch_vmi-2.0.1.i386.rpm - This RPM contains the MPICH-VMI runtime/development libraries, support 
scripts and headers. This RPM should be installed on all the nodes in the cluster.
Mellanox Technologies
Rev 1.70



  IB Gold Distribution Stack User’s Manual
23
Mell
an

ox
 Te

ch
nolo

gie
s

There are several things to keep in mind when installing the RPMs.  It has been reported that several newer versions 
of the cURL RPMs do not link "/usr/lib/libcurl.so" to "/usr/lib/libcurl.so.1". This may cause a failure when attempting 
to run VMI binaries that come from RPMs. If this happens try adding the link manually. 

7.3.2 VMI2/MPICH-VMI Configuration Instructions
Running VMI Daemons: 

You will need to start a copy of the 'vmieyes' daemon on all the nodes that can run a MPI process. You can either do 
this via the init script bundled with the VMI runtime package (/etc/init.d/vmieyes start), or manually. The vmieyes 
daemon is installed under $VMI_INSTALL_PATH/sbin directory.

It is recommended, though not necessary, to run the vmieyes daemon as root. The vmieyes daemon is used only dur-
ing job startup and hence does not consume any significant computing resources when running. It is recommended 
that the vmieyes daemon be chkconfig to start automatically on reboot. MPICH-VMI jobs will fail to run if a node 
does not have the vmieyes daemon running on it.

MPD Ring Setup: 

There are two files which need to be propagated to every node in a given mpd ring:

1. /etc/mpd.conf
Required configuration: copy to all nodes upon installation. /etc/mpd.conf is populated with a
random password string. This needs to be common among all the nodes in an mpd ring. You can take any 
node's version of this file and copy it to all the others. It does not matter which one, as long as they 
are the same.

2. /etc/init.d/mpd
Required configuration:
   set MPD_LISTENER_HOST (default not set, must be the same on all nodes)

Optional configuration:   
set EXEC_ON_LISTENER (default = 1)

Optional configuration:
set MPD_PORT (default = 666)

Required configuration:
copy to all nodes

This is the rc init script for the mpd daemon.  In an mpd ring, all mpds are launched to connect to a "listener host". 
Whichever node you specify as the listener host will automatically be launched in the listener mode. The default set-
ting *is* to allow execution on the listener host. e.g., if your head node is operating as the listener.Any configuration 
changes need to be made before the init script is propagated of course.

Note: The order of mpd daemon start is important (unlike the vmieyes daemon). 

The "listener host" daemon must me started first, before all mpd daemons have been started. Once all mpd daemons 
are started, you can check if all the machines are connected by:  /etc/init.d/mpd hosts 

Please check that all the requested machines are listed. 

Default machines file: mpich_vmi2_dir/share/machines.list
Mellanox Technologies
Rev 1.70



MPI
24
Mell
an

ox
 Te

ch
nolo

gie
s

Optional configuration:  list hostnames

The machines.list file may be populated with a list of hosts to use when the -machinefile option is not used on the 
mpirun command line. Format of each line is one of the following:

         HOSTNAME

         -or-

         HOSTNAME:[num_procs]

Defaults in mpirun:  mpich_vmi2_dir/bin/mpirun.ch_vmi

Optional configuration: set values for custom settings at the top of the file, the following set of  variables is defined. 
Those prefixed by "DF_" are only set if the value is not set explicitly. e.g., if -specfile is not specified on the mpirun 
command line, then the value in $DF_VMI_SPECFILE is used:

         LD_LIBRARY_PATH=$VMI_INSTALL_PATH/lib:$LD_LIBRARY_PATH

         DF_rshcmd=ssh

         DF_LOG_ENABLE=0

         DF_LOGFILE=$MPIRUN_HOME/../log/mpirun.ch_vmi.log

         DF_LOG_DIRECTIVES=$MPIRUN_HOME/mpirun.ch_vmi.logger

         DF_machineFile=$MPIRUN_HOME/../share/machines.list

         DF_VMI_SPECFILE=$VMI_INSTALL_PATH/specfiles/mst.xml

         DF_VMI_SPECFILE_PATH=$VMI_INSTALL_PATH/specfiles

         DF_VMI_LAUNCHER=1          # Detected launcher overrides this value

         DF_VMI_VERBOSE=0

Logging mpirun:

By default, mpirun logging is disabled.  This can be changed globally in mpirun.ch_vmi (above), but can still be 
force-disabled on the mpirun command line with the -nolog option. The default logfile is also set at the top of
mpirun.ch_vmi (above). Logging is mainly useful to sysadmins for debugging and tracking mpirun use. It is quitever-
bose, and if enabled, the size of the logfile should be monitored.

7.3.3 VMI2/MPICH-VMI Usage Instructions
Running code with MPICH-VMI:

To compile a code with MPICH-VMI, the standard "mpicc", "mpiCC" and "mpif77" scripts should be used. 

"mpirun" is used to launch jobs. Their default location is under:  ${prefix}/mpi/ncsa/mpich-vmi-2.0.1/bin
Mellanox Technologies
Rev 1.70



  IB Gold Distribution Stack User’s Manual
25
Mell
an

ox
 Te

ch
nolo

gie
s

The mpirun that ships with MPICH-VMI supports launching jobs via VMPD/ssh/rsh. In addition to the standard 
"mpirun" options, MPICH-VMI has the following additional options to better accommodate VMI2.

        -nolog              Disables admin logging. 
        -specfile           Specifies xml specfile (Used to switch the underlying transport)
                               Examples:
                                -specfile openib
                                -specfile tcp

        -key [string]       Character string address for VMI process. Automatically allocated by mpirun.ch_vmi, except 
within grid jobs

 
        -use-ssh            Use ssh as default launch mechanism

        -force-shell        Overrides detected launch mechanism with shell (ssh)
 
        -grid-procs [#]    Overrides detected VMI_PROCS for separated cluster run time environments (grid environ-

ments)

        -debugger [gdb] [totalview]   Select debugger to run with
 
        -mmapthreshold      Allocation at which mmap is used. Default is 4 MB.
 
        -rdmachunk          Base chunk for large RDMA transfers used for Rendezvous protocol. Default is 256k
 
        -rdmapipeline       Max number of RDMA chunks in flight. Default is 3.
 
        -eagerlen           Message size at which to switch from short to rendezvous protocol. Default is 16k.
 
        -eagerrunexcount    Maximum number of unexpected short messages before allocating memory for subsequent 

receives.  Default is 16
 
        -v                  Verbose level 1 - MPIRUN verbose & VMI startup
        -vv                 Verbose level 2 - Warning messages
        -vvv                Verbose level 3 - Error messages
        -vvvv               Verbose level 10 - Excess debug (Everything)
 
If mpirun is configured fully for the local setup, NONE of these options are mandatory. 

Note: The "-specfile" option takes full paths (and URLS) or simple file prefixes (gm, tcp, etc.). When speci-
fying a prefix, mpirun assumes that you have a corresponding XML file in VMIINSTALLPATH/specfiles 
Mellanox Technologies
Rev 1.70



MPI
26
Mell
an

ox
 Te

ch
nolo

gie
s

which contains     information about the transport(s) which you wish to use. This automatically supports new 
XML files added to that directory, for example if the site administrator adds a XML specfile called 
"newtransport.xml", mpirun will support "-specfile newtransport".

Profiling data is used for self-tuning subsequent runs of an application. The data collected includes 

    - Job duration 

    - Job size (MPI world size) 

    - Executable name 

    - Transport used 

    - One-way hash of userid (i.e. NOT the userid) 

    - Communications stats (send/receive counters per rank)
Mellanox Technologies
Rev 1.70


	IB Gold Distribution Stack User’s Manual
	Contents
	1 Overview
	1.1 Introduction
	1.2 Loading and Unloading the of Stack
	1.3 Subnet Manager
	1.4 Debugging the Stack

	2 IP Over IB
	2.1 Overview
	2.2 Configuring IPoIB
	2.3 Activating IPoIB
	2.4 Debugging IPoIB

	3 Sockets Direct Protocol
	3.1 Overview
	3.2 Libsdp.so Library
	3.3 Environment Variables
	3.4 Policy
	3.5 Activating SDP
	3.6 Debugging SDP

	4 SRP Initiator
	4.1 Overview
	4.2 Environment Setup
	4.3 Activating SRP
	4.4 Debugging SRP
	4.5 Additional Features
	4.5.1 Persistent Target Binding
	4.5.2 LUN Masking


	5 uDAPL
	5.1 Overview
	5.2 Activating uDAPL
	5.3 Compiling, Linking, and Running uDAPL
	5.4 Debugging uDAPL
	5.5 dapltest

	6 kDAPL
	6.1 Overview
	6.2 Activating kDAPL
	6.3 Compiling, Linking, and Running kDAPL
	6.4 Debugging kDAPL
	6.5 kdapltest

	7 MPI
	7.1 Overview
	7.2 OSU MPI
	7.2.1 Installation Directories and Environment Setup
	7.2.2 Compiling and Running MPI Programs
	7.2.3 Additional Documentation

	7.3 NCSA MPI
	7.3.1 Installation Instructions
	7.3.2 VMI2/MPICH-VMI Configuration Instructions
	7.3.3 VMI2/MPICH-VMI Usage Instructions




