
285

INTRODUCTION
This is a tech note on how to embed assembly instructions

inside C source code. It is targeted towards programmers who
have some knowledge of C-language and R3000 assembly
language.

In IDT/C 5.0, assembly instructions can be inlined inside
any genuine block of C-code. A genuine block of C-code is a
section of C-code enclosed by open and closed curly braces.
The inlined assembly may include synthetic assembly instruc-
tions. These instructions are expanded during compile/as-
sembly phase of the compiler. The format agreed by the IDT/
C 5.0 compiler depends on whether or not the inlined assem-
bly lines require arguments, and whether these arguments are
read, written, or both.
Specifically there are 4 cases to consider:
- inline without any parameters
- inline with read only parameters
- inline with write only parameters
- inline with read and write parameters

These four cases will be discussed elaborately in the
following sections.

INLINE ASSEMBLY LINES WITHOUT ANY
PARAMETERS

Format:
asm("<asm instrct1> ; <asm istrct2> ; <asm instrct2>;
... <asm instrctn>")

e.g:
unsigned int get_addr()
{
asm("li $2,0x80020000 ; lui $3, 0");
}

Description:
1. "get_addr" is a function that takes no arguments and

returns an unsigned integer.
2. The inlined portion of the function body computes the

return value == (0x80020000) that is saved at $2 (or) v0
and initializes $3 (or) v1 with zero.

Constraints:
All assembly instructions including synthetic instructions

are allowed.
All register names should have hardware mnemonics.
i.e.:

General registers are $0, $1, .. , $31
Coprocessor 0 registers (has TLB, configuration

specific registers) are $0,$1, ... , $31
Coprocessor 1 registers (has Floating Point Accelerator
specific registers) are $0, $1, ... , $31
Coprocessor 2 registers are $0, $1, ... , $31
Coprocessor 3 registers are $0, $1, ... , $31

INLINE ASSEMBLY LINES WHICH USE
WRITE-ONLY PARAMETERS

Format:
asm("<asm instrct1> ; <asm istrct2> ; <asm instrct2>; ...

<asm instrctn>"
: "=<write-only_param1 format>" (<write-only_param1
name>),
"=<write-only_param2 format>" (<write-only_param2
name>),
... "=<write-only_paramk format>" (<write-only_paramk
name>));

e.g: int i,j;
void main()
{
Intialize_Globals();
printf("value of i = %d and j =

%d\n",i,j);
}
void Initialize_Globals()
{
asm("ori %0,$0,3 ; ori %1, $0, 4"
: "=r" (i), "=r" (j));
}

Description:
1. "Initialize_Globals" is a function that takes no arguments

and returns nothing.
2. The inlined portion of the function body initializes the

global variables "i" and "j". Uses "i" and "j" as write-only
parameters. Parameter "i" is referenced by %0 and "j" is
referenced by %1. "=r" is the format for both "i" and "j".
"=r" specifies that the following write-only parameter has
a general register associated with it.

Constraints:
All assembly instructions including synthetic instructions

are allowed.
All register names should have hardware mnemonics.

In R3000, the following are the possible hardware
mnemonic:
General registers are $0, $1, .. , $31
(has TLB, configuration specific registers)

EMBEDDING ASSEMBLY
INSTRUCTIONS INSIDE
C-SOURCE CODE

Integrated Device Technology, Inc.

The IDT logo is a registered trademark and IDT/C is a trademark of Integrated Device Technology, Inc.
R3000 is a trademark of MIPS Computer Systems, Inc.

TECHNICAL
NOTE
TN-18

By Sugan Subramanian

1996 Integrated Device Technology 3123/- 2/96

286

Coprocessor 0 registers are $0, $1, ... , $31
(has Floating Point Accelerator specific registers)
Coprocessor 1 registers are $0, $1, ... , $31
Coprocessor 2 registers are $0, $1, ... , $31
Coprocessor 3 registers are $0, $1, ... , $31
Write-only parameters can be either global or local vari-

ables. Write-only parameters are indexed from 0 to n-1, where
n is the number of parameters used in the inlined code. Inside
the inlined code, write_only_parameter1 is accessed by %0,
write_only_parameter2 is accessed by %1, and so on. These
are the formats that are allowed for write-only parameters:

"=r" ___ Specifies that the write-only parameter has a
general register assigned to it.
"=f" ___ Specifies that the write-only parameter has a
floating point register assigned to it.

INLINE ASSEMBLY LINES WHICH USES
READ-ONLY PARAMETERS
Format: asm("<asm instrct1> ; <asm istrct2> ; <asm

instrct2>; ... <asm instrctn>"
:: "<read-only_param1 format>" (<read-only_param1
name>),
 "<read-only_param2 format>" (<read-only_param2
name>),
..."<read-only_paramk format>" (<read-only_paramk
name>));

e.g:
void main()
{
print("INLINE VAL = %d\n", return_3());
}

int return_3()
{
asm("ori $2,$0,%0 ; ori $3, $0, %1"
:: "n" (3), "n" (4));
}

Description:
1."return_3" is a function that takes no arguments and

returns integer value 3.
2. The inlined portion of the function computes the return

value.
3. Whenever we use read only parameters without write

only parameters, we have to use two colons "::" preced-
ing them to specify that there are no write only param-
eters.

Constraints:
All assembly instructions including synthetic instructions

are allowed.
All register names should have hardware mnemonics.
i.e.

General registers are $0, $1, .. , $31

Coprocessor 0 registers (has TLB, configuration specific
registers) are $0, $1, ... , $31
Coprocessor 1 registers (has Floating Point Accelerator
specific registers) are $0, $1, ... , $31
Coprocessor 2 registers are $0, $1, ... , $31
Coprocessor 3 registers are $0, $1, ... , $31
Read-only parameters are indexed from 0 to n-1, where n

is the number of parameters used in the inlined code. Inside
the inlined code, Read-only_parameter1 is accessed by %0,
Read-only_parameter2 is accessed by %1, and so on. These
are the formats that are allowed for read-only parameters:

"r" ___ Specifies that the parameter has a general
register assigned to it.
"f" ___ Specifies that the parameter has a floating point
register assigned to it.
"n" ___ Specifies that the parameter is an immediate
value.
"m"___ Specifies that the parameter is a memory ad-
dress.
"o" ___ Specifies that the parameter is an offsettable
memory address.
"X" ___ Specifies that the parameter can be any of the
above.

INLINE ASSEMBLY LINES THAT USES
WRITE-ONLY AND READ-ONLY PARAM-
ETERS

Format:
asm("<asm instrct1> ; <asm istrct2> ; <asm instrct2>; ...

<asm instrctn>"
: "=<output_var1 format>" (<output_var1 name>),
"=<output_var2 format>" (<output_var2 name>),
... "=<output_vark format>" (<output_vark name>)
: "<input_var1 format>" (<input_var1 name>),
"<input_var2 format>" (<input_var2 name>),
..."<input_vark format>" (<input_vark name>));

e.g:
#define ARRAY_SIZE_IN_BYTES 40
int b[20];
void main()
{
int a[10];
int i,j,k;
{asm (
"
.set noreorder

li $11,%2;
addiu %0,%3;

1:;
sw $11,0(%0);
addiu $11,-4;
bnez $11,1b;
addiu %0,-4;
li %1,%4;

.set reorder"

EMBEDDING ASSEMBLY INSTRUCTIONS INSIDE C-SOURCE CODE TECHNICAL NOTE TN-18

287

:: "r" (a), "r" (j), "n"
(ARRAY_SIZE_IN_BYTES),

"n" (10*4), "m" (b)
: "$11");}

printf ("return val = %d\n",j);
i=-1;

while (++i < 10)
printf("a[%d] = %d\n",i,a[i]);

}

Description:
1. This program initializes an integer array of 10 with values

starting from 0 through 36 by an increment of 4 and
displays the array.

2. The inlined portion not only initializes the array but
demonstrates one peculiar inline feature, how to use
read-write parameter.

3. We are allowed to use registers inside inlined assembly
lines as long as we declare that they will be clobbered.
This is done by giving register name(s) preceded by
three colons (":::") if there are no write-only and read-only
parameters, a colon (":") following the read only
parameter(s) if there are read-only parameters, and two
colons ("::") following the write only parameter(s) if there
are only write-only parameters.

Constraints:
All assembly instructions including synthetic instructions

are allowed.
All register names should have hardware mnemonics.

i.e.
General registers are $0, $1, .. , $31
Coprocessor 0 registers (has TLB, configuration specific
registers) are $0, $1, ... , $31
Coprocessor 1 registers (has Floating Point Accelerator
specific registers) are $0, $1, ... , $31
Coprocessor 2 registers are $0, $1, ... , $31
Coprocessor 3 registers are $0, $1, ... , $31
Whenever a parameter is used for reading and writing,

declare such parameters to be either read-only or write-only
and not both. This convention eliminates a lot of confusion. In
the previous example, parameter "j" and "a" are declared to be
read-only and used for both reading and writing. It is appropri-
ate because both "j" and "a" are of type "r" (have general
registers associated with them). Only read-only parameters
that have registers associated with them are writable.

GENERAL RULES WHILE INLINING ASSEM-
BLY LINES

Always enclose your inlined assembly lines by a block of
".set noreorder" and ".set reorder" directives so that compiler
leaves the inlined assembly lines untouched even if the entire
code is optimized. However, some harmless warning mes-
sages are generated by the assembler (IDT/C 5.0) when the
synthetic assembly instructions are expanded; they can sim-
ply be ignored.

Declare all your variables that are read from and the
immediate values that are used inside inlined assembly to be
read-only parameters. Declare all variables that are written to
as write-only parameters. Whenever a temporary register is
used inside inlined assembly code always make sure it gets
declared as clobbered.

SUMMARY
Inlining assembly lines inside of c-code is a boon in itself if

the only way of optimizing your c-code is through having
different sections of it in assembly. In IDT/C 5.0, inlining
assembly lines is complemented by the ability to use local and
global variable names as aliases to the registers assigned to
them.

EMBEDDING ASSEMBLY INSTRUCTIONS INSIDE C-SOURCE CODE TECHNICAL NOTE TN-18

