
Integrated Device Technology, Inc.

APPLICATION
NOTE

AN-131

INTERRUPT HANDLER
FOR THE IDT79R3051
RISCONTROLLER FAMILY

INTRODUCTION
The reader is encouraged to refer to Chapter 5 of the

IDT79R3051 RISController Hardware User’s Manual for a
thorough description of IDT RISController exception handling.
In addition, the MIPS Programmers Handbook illustrates two
alternative methods for interrupt prioritizing. This application
note illustrates a third much faster method specific to the IDT
RISController Family, as detailed in the Appendix - ‘R3051/2
Priority Based Nested Interrupt Handler’. The corresponding
latency cycles for this example interrupt handler are quantified
in Table 1.

R3051/2 Service Latency Restart Latency

Priority 1 4 9

Priority 2 14 13

Priority 3 16 13

Priority 4 19 13

Priority 5 25 14

Priority 6 25 14

3158 tbl 01

Table 1. IDT79R3051/2 Interrupt Latency (in cycles)

The following assumptions apply to the latencies quantified
in Table 1:
• The corresponding algorithm/code is detailed in the

Appendix.
• Service Latency, Restart Latency are as defined in this

application note.
• The code and stack are resident in the R3051 on-chip

cache.
• The R3051 pipeline is in a ‘run’ state at the instant the

interrupt is detected.
• A higher priority interrupt is not already in progress.
• Service is not interrupted by a higher priority interrupt.
• Service is not interrupted by any other type of exception.
• Only 1 register is needed by PRIORITY 1,2,3,4 service

routines.
• Only 3 registers are needed by PRIORITY 5,6 service

routines.
The interrupt handler detailed in the Appendix is specific to

the R3051/2. However, much of the content detailed in this
application note equally applies to the other RISController
family members with only minor code modifications being
required. Where applicable these differences in the family
members are detailed.

R3051 EXCEPTION MODEL
External interrupts are just one class of R3051 exceptions.

The R3051 implements a ‘precise’ exception model. By
definition, precise exceptions imply that exact processor con-

by Dean Smith

text and the cause of the exception are known. In addition, the
current process does not advance state (ie. all subsequent
instructions are aborted) until the corresponding interrupt is
serviced.

The following automatically occurs when the R3051 de-
tects an interrupt:
• The current process is halted.
• The Exception Program Counter is loaded with the return

address for the current process.
• The Cause Register is loaded with exception cause

information.
• The Status Register KUc bit is cleared (ie. enter ‘kernel

mode’).
• The Status Register IEc bit is cleared (ie. disable subse-

quent interrupts).
• Execution is continued at the General Exception Vector.

These activities preserve the necessary processor context
to implement a precise exception model. The R3051 proces-
sor makes no assumptions about an external interrupt cause
or servicing techniques. For instance, R3051 registers are not
automatically stacked upon detection of an interrupt since this
often causes unnecessary service latency. Instead, the
software designer is allowed to fine-tune response to the
corresponding service requirements. This technique allows
for extremely fast interrupt handling.

INTERRUPT SERVICE LATENCY
Interrupt Service Latency is defined as the cycle count from

the assertion of an external interrupt to the beginning of the
corresponding service routine. This latency includes three
components;

1) pipeline latency to the General Exception Vector
2) exception type decode
3) preserving context.

PIPELINE LATENCY:
The R3051 pipeline must be in a ‘run’ state for an interrupt

to be recognized. Thus, pipeline stalls caused by such events
as cache misses and multiply/divide interlock cycles delay
detection of an interrupt. Once an interrupt is detected, the
address of the General Exception Vector will be the next
instruction fetched.

The R3051 has two types of external interrupt pins; syn-
chronous interrupts, and direct interrupts. The synchronous
interrupts are internally synchronized and thus may be driven
by an asynchronous source, with a corresponding pipeline
latency to the General Exception Vector of two cycles. The
direct interrupts are not internally synchronized by the proces-
sor, and thus must be externally synchronized. As a result,
these interrupts have only a one cycle pipeline latency to the

1031996 Integrated Device Technology 3158/- 2/96

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

104

General Exception Vector and are most useful for interrupting
agents which operate off the R3051 SysClk output.

EXCEPTION TYPE DECODE:
The General Exception Vector is the start address for all

types of R3051 exception handlers (except RESET and UTLB
Miss exceptions) - interrupts being just one classification.
Thus, the exact exception type must first be decoded before
servicing can begin. This is typically accomplished by soft-
ware interrogation of the R3051 Cause Register. The follow-
ing example code details this procedure:

mfc0 k0,C0_CAUSE; # k0 = CR(Cause Register)

sw t1,t1_OFF*4(sp) # use delay slot to stack gpr t1

and k1,k0,EXC_MASK; # isolate ExcCode field of CR

lw v0,cause_table(k1); # fetch cause start address

and k1,k0,IP_MASK; # isolate IP field of Cause Register

j v0; # go to Exception handler start address

(v0 = INT_EXTERN, if an interrupt)

sra k1,k1,8; # shift IP field 8 bits for word address

INT_EXTERN:

lw v0,IP_table(k1); # fetch service routine start address

sw v1,v1_OFF*4(sp); # use delay slot to stack gpr v1

j v0; # jump to corrresponding int(n) service

sw t0,t0_OFF*4(sp); # use delay slot to stack gpr t0

Even faster exception type decode can be achieved by
using the R3051’s BrCond(n) input pins. The MIPS ISA
contains conditional branch instructions based upon the value
of BrCond(n). These pins can be physically connected to
interrupt pins for extremely fast decode. The following ex-
ample code details this procedure:

bc0t PRIORITY_1; # int(0)?

sw k0,EPC_OFF*4(sp); # stack EPC (use branch delay slot).

bc1t PRIORITY_2; # int(1)?

sw k1,SR_OFF*4(sp); # stack SR (use branch delay slot)

bc2t PRIORITY_3; # int(2)?

sw v0,v0_OFF*4(sp); # stack v0 (use branch delay slot)

bc3t PRIORITY_4; # int(3)?

sw t0,t0_OFF*4(sp); # stack t0 (use branch delay slot)

The interrupt handler detailed in the Appendix is specific to
the R3051/2 by making use of the four available BrCond(n)
pins. Minor code modifications are required for the other
RISController family members due to the different number of
available BrCond(n) pins for each.

RISController Number of

Family Member BrCond(n) pins

R3051/2 four

R3071/81 three

R3041 two

3158 tbl 02

PRESERVING CONTEXT:
Detection of an exception causes the R3051 to automati-

cally disable subsequent interrupts. This makes it possible for
immediate servicing of the interrupt without preserving Cause
Register, Status Register, or Exception Program Counter
context. Note that care must be taken by the software
designer to ensure that execution of the interrupt handler and
service routine do not generate any other type of exception. If
‘nested’ interrupts are allowed, then the Status Register and
Exception Program Counter must be stacked. Otherwise the
handling of the original interrupt can not be resumed. The
IntMASK field of the Status Register can then be modified to
re-enable higher priority interrupts. The following example
code details this procedure:

bc0t PRIORITY_1; # int(0)?

sw v0,v0_OFF*4(sp); # use delay slot to stack gpr v0.

PRIORITY 2,3,4,5,6 - must stack context for servicing of higher
priority interrupts.

subu sp,sp,exc_stack_sz; # Initialize Stack.

mfc0 k0,C0_EPC; # k0 reserved for kernel processes

mfc0 k1,C0_SR; # k1 reserved for kernel processes

sw k0,EPC_OFF*4(sp); # stack EPC.

mfc0 k0,C0_CAUSE; # k0 = CR(Cause Register).

sw k1,SR_OFF*4(sp); # stack SR.

bc1t PRIORITY_2; # int(1)?

PRIORITY_2:

Stack additional General Purpose Registers needed for servicing.

re-enable int(0) - higher priority.

li v0,x0000401;

mtc0 v0,C0_SR;

PRIORITY 2 service here: . . .

Note that registers k0 and k1 are immediately available for
interrupt handling. These registers need not be stacked since
MIPS compiler and assembler conventions reserve k0 and k1
for kernel processes, and since subsequent interrupts are
disabled during any interrupt handlerís use of these registers.
However, the interrupt handler must stack any General Pur-
pose Registers to be used for interrupt servicing. The number
of registers required is of course interrupt service specific.
The delay slots immediately following branch and load instruc-
tions are convenient locations to stack context without ad-
versely affecting service latency.

 Other features of the R3051 also help to minimize interrupt
service latency. For instance, the on-chip cache is ‘physically’
indexed. This means that virtual-to-physical address transla-

INTERRUPT HANDLER
FOR THE IDT79R3051 RISCONTROLLER FAMILY APPLICATION NOTE AN-131

105

INTERRUPT HANDLER
FOR THE IDT79R3051 RISCONTROLLER FAMILY APPLICATION NOTE AN-131

tion is performed prior to cache addressing. As a result, cache
flushing is not required on a context switch (ie. jump to
interrupt service routine). Other processors implement virtu-
ally indexed caches thereby dramatically slowing context
switch performance. Also of importance is the R3051 PID
(Process ID) field associated with each entry of the TLB
(Translation Lookaside Buffer). The ‘Extended’ memory
management option uses an on-chip TLB as a hardware
cache for software managed page tables. The PID is com-
pared to the contents of each TLB entry at the time of address
translation, thereby providing a mechanism for multiple pro-
cesses to share the TLB even if identical virtual page numbers
are encountered. As a result, TLB flushing is not required on
a context switch.

INTERRUPT RESTART LATENCY
Interrupt Restart Latency is defined as the cycle count from

the end of the interrupt service routine to the restart of the
parent process. This latency includes two components;

1) context restore
2) pipeline refill.

Context Restore:
Any processor context stacked prior to interrupt servicing

must be restored after servicing is complete. Then the stack
pointer must be restored to its previous value. Finally,
execution can then return to the parent process. The following
example code details this procedure:

li k0,x000xxx0; # disable int’s prior to context restore.

mtc0 k0,C0_SR;

lw k1,SR_OFF*4(sp);

lw v0,v0_OFF*4(sp); # restore gpr v0

lw k0,EPC_OFF*4(sp); # acquire parent process return address

addu sp,sp,exc_stack_sz; # restore stack.

mtc0 k1,CO_SR; # restore SR(Status Register).

j k0; # return to parent process

rfe;

Note that interrupts must be disabled prior to context
restore. This is because k0 and k1 are not preserved prior to
use by the interrupt handler. Otherwise, the context of these
registers would be lost if another interrupt occurs during
context restore for the current interrupt.

Pipeline Refill:
Figure 1 illustrates R3051 pipeline refill following an inter-

rupt. Upon detection of an external interrupt, the three instruc-
tions less advanced than the ALU stage are aborted. These
instructions must be restarted upon return to the parent
process. This three cycle penalty must be considered when
calculating the Interrupt Restart Latency.

Figure 1. IDT79R3051 instruction pipeline.

This is an example R3051/2 priority-based nested
interrupt handler.

Other RISController Family members require minor code
changes due to the different number

of available BrCond(n) inputs
– prioritize up to four R3051/2 interrupts
– prioritize up to three R3081 interrupts
– prioritize up to two R3041 interrupts

BrCond(n) is tied to corresponding int(n). This allows for
fast interrupt decode:

The following interrupt priority is assumed:
PRIORITY 1 = Int(5) = BrCond(0)
PRIORITY 2 = Int(4) = BrCond(1)
PRIORITY 3 = Int(3) = BrCond(2)
PRIORITY 4 = SIint(2) = BrCond(3)
PRIORITY 5 = SInt(1)
PRIORITY 6 = SInt(0)

Exception causes execution to jump here:
General Exception Vector.

IF RD ALU D WB

IF RD ALU D WB

IF RD ALU D WB

IF RD ALU D WB

IF RD ALU D WB

Must
restart
upon
return to
parent
process

Current processor cycle 3158 drw 01

APPENDIX—R3051/2 PRIORTY-BASED NESTED INTERRUPT HANDLER

106

.set noreorder # assembler directive–disable
pipeline scheduling.

bc0t PRIORITY_1; # PRIORITY 1?

subu sp,sp,exc_stack_sz; # use delay slot to Initialize
Stack.

PRIORITY 2,3,4,5,6: Must stack CP0 context
to allow for nested servicing.

sw v0,v0_OFF*4(sp); # stack gpr v0.

mfc0 k0,C0_EPC; # k0 reserved for kernel processes
- no need to stack.

mfc0 k1,C0_SR; # k1 reserved for kernel processes
- no need to stack.

sw k0,EPC_OFF*4(sp); # stack EPC.

mfc0 k0,C0_CAUSE; # k0 = CR(Cause Register).

sw k1,SR_OFF*4(sp); # stack SR.

bc1t PRIORITY_2; # PRIORITY 2?

and k1,k0,EXC_MASK; # isolate ExcCode field of CR.

bc2t PRIORITY_3; # PRIORITY 3?

lw v0,cause_table(k1); # fetch exception cause start address.

bc3t PRIORITY_4; # PRIORITY 4?

and k1,k0,IP_MASK; # isolate IP field of Cause Register.

PRIORITY 5,6: Evaluate Cause Register, jump to
Exception cause start address.
(process already started by using Branch Delay Slots
above)
j v0; # jump to Exception cause start

address.

sra k1,k1,8; # shift right 8 bits to create word
address.

Exception cause start address = INT_EXTERN if an
interrupt.

INT_EXTERN:

lw v0,IP_table(k1); # fetch Interrupt routine start address
from IP_table.

sw v1,v1_OFF*4(sp); # use delay slot to stack gpr v1.

j v0; # jump to PRIORITY_5 or 6, per IP
field of Cause Register.

sw t0,t0_OFF*4(sp); # use delay slot to stack gpr t0.

PRIORITY_1:

sw v0,v0_OFF*4(sp); # stack gpr v0.

Stack any additional gpr’s needed for PRIORITY 1
interrupt servicing.

k0 & k1 are also available for PRIORITY 1 servicing.
PRIORITY 1 service here.

•

•
•

Restore any gpr’s used.
lw v0,v0_OFF*4(sp); # restore gpr v0.

Restore Stack and return to parent process.
addu sp,sp,exc_stack_sz; # restore sp(Stack Pointer).

mfc0 k0,C0_EPC;

nop;

j k0; # return from int svc.

rfe;

PRIORITY_2:

Stack gpr’s needed for PRIORITY 2 interrupt servicing.
v0 already stacked.

Re-enable PRIORITY 1 (higher priorty interrupt).

li v0,x0008001; # re-enable PRIORITY 1—Int(5). 2cycle
inst’n.

mtc0 v0,C0_SR;

PRIORITY 2 service here.

•

•

•

Restore SR, gpr’s used, Stack, and return to parent
process.

li k0,0x00000000; # disable interrupts prior to context
restore. 1 cycle inst’n.

mtc0 k0,C0_SR;

lw k1,SR_OFF*4(sp);

lw v0,v0_OFF*4(sp); # restore gpr v0.

nop

lw k0,EPC_OFF*4(sp);

addu sp,sp,exc_stack_sz; # restore sp(Stack Pointer).

mtc0 k1,CO_SR; # restore SR(Status Register).

j k0; # return from int svc.

rfe;

PRIORITY_3:

Stack gpr’s needed for PRIORITY 3 interrupt servicing.
v0 already stacked.

Re-enable PRIORITY 1,2 (higher priorty interrupts).

li v0,x000C001; # re-enable PRIORITY 1,2 - Int(5,4).
2cycle inst’n.

mtc0 v0,C0_SR;

PRIORITY 3 service here.
•

•

•
Restore SR, gpr’s used, Stack, and return to parent
process.
li k0,0x00000000; # disable interrupts prior to context

restore. 1 cycle inst’n.

mtc0 k0,C0_SR;

lw k1,SR_OFF*4(sp);

INTERRUPT HANDLER
FOR THE IDT79R3051 RISCONTROLLER FAMILY APPLICATION NOTE AN-131

107

INTERRUPT HANDLER
FOR THE IDT79R3051 RISCONTROLLER FAMILY APPLICATION NOTE AN-131

lw v0,v0_OFF*4(sp); # restore gpr v0.

nop

lw k0,EPC_OFF*4(sp);

addu sp,sp,exc_stack_sz; # restore sp(Stack Pointer).

mtc0 k1,CO_SR; # restore SR(Status Register).

j k0; # return from int svc.

rfe;

PRIORITY_4:

Stack gpr’s needed for PRIORITY 4 interrupt servicing.
v0 already stacked.

Re-enable PRIORITY 1,2,3 (higher priorty interrupts).

li v0,x000E001; # re-enable PRIORITY 1,2,3 - Int(5,4,3).
2cycle inst’n.

mtc0 v0,C0_SR;

PRIORITY 4 service here.

•

•

•

Restore SR, gpr’s used, Stack, and return to parent
process.

li k0,0x00000000; # disable interrupts prior to context
restore. 1 cycle inst’n.

mtc0 k0,C0_SR;

lw k1,SR_OFF*4(sp);

lw v0,v0_OFF*4(sp); # restore gpr v0.

nop

lw k0,EPC_OFF*4(sp);

addu sp,sp,exc_stack_sz; # restore sp(Stack Pointer).

mtc0 k1,CO_SR; # restore SR(Status Register).

j k0; # return from int svc.

rfe;

PRIORITY_5:

Stack gpr’s needed for PRIORITY 5 interrupt servicing.
v0,v1,t0 already stacked.

Re-enable PRIORITY 1,2,3,4 (higher priorty interrupts).

li v0,x000F001; # re-enable PRIORITY 1,2,3,4
- Int(5,4,3,2). 2cycle inst’n.

mtc0 v0,C0_SR;

PRIORITY 5 service here.

•
•

•

Restore SR, gpr’s used, Stack, and return to parent
process.

li k0,0x00000000; # disable interrupts—1 cycle inst’n.

mtc0 k0,C0_SR;

lw k1,SR_OFF*4(sp);

lw v0,v0_OFF*4(sp); # restore gpr v0.

lw v1,v1_OFF*4(sp); # restore gpr v1.

lw t0,t0_OFF*4(sp); # restore gpr t0.

lw k0,EPC_OFF*4(sp);

addu sp,sp,exc_stack_sz; # restore sp(Stack Pointer).

mtc0 k1,CO_SR; # restore SR(Status Register).

j k0; # return from int svc.

rfe;

PRIORITY_6:

Stack gpr’s needed for PRIORITY 6 interrupt servicing.

v0,v1,t0 already stacked.

Re-enable PRIORITY 1,2,3,4,5 (higher priorty
interrupts).

li v0,x0007F801; # re-enable PRIORITY 1,2,3,4,5
- Int(5,4,3,2,1). 2cycle inst’n.

mtc0 v0,C0_SR;

PRIORITY 6 service here.

•

•
•

Restore SR, gpr’s used, Stack, and return to parent
process.

li k0,0x00000000; # disable interrupts - 1 cycle inst’n.

mtc0 k0,C0_SR;

lw k1,SR_OFF*4(sp);

lw v0,v0_OFF*4(sp); # restore gpr v0.

lw v1,v1_OFF*4(sp); # restore gpr v1.

lw t0,t0_OFF*4(sp); # restore gpr t0.

lw k0,EPC_OFF*4(sp);

addu sp,sp,exc_stack_sz; # restore sp(Stack Pointer).

mtc0 k1,CO_SR; # restore SR(Status Register).

j k0; # return from int svc.

rfe;

.set reorder # assembler directive - enable pipeline
scheduling.

