dt

Integrated Device Technology, Inc.

~

UPGRADE STRATEGIES FOR
IDT79R3051" -BASED DESIGNS

APPLICATION
NOTE
AN-113

By Phil Bourekas

INTRODUCTION

The IDT RISControllerC] family includes various highly-
integrated microprocessors providing high levels of perfor-
mance with low system cost. Currently, the R3051" family
includesthree different devices, each providing differing levels
of price performance, yet each pin-compatible with each
other. This allows the system designer to implement a single
base system, yet offer various end products at different
capability levels. The end result to the customer is reduced
time to market for a product family, and the amortization of a
single development effort over a wider variety of end products.
Thiswide range of pin-compatible performance is not currently
achieved by any other RISC processor family.

This application note describes system design techniques
that insure a high degree of interchangeability with no real
design impact.

THE R3051 FAMILY

Common characteristics of the R3051 family include high
integration at low cost. All current family members are pin-
compatible. All family members include:

» Substantialamounts of separate instruction and data caches
integrated on-chip. Although the amount of caches varies
across different family members, all devices contain enough
cache on-chip to achieve extremely high performance with
low-cost memory systems. The caches on the R3052 and
on the R3081" are actually larger than the cache on the
Intel 80486 high-end processor, enabling these devices to
offer higher performance at lower cost.

* MIPS R3000A compatible integer CPU. The R3051 family
was designed by integrating cache and a low-cost bus
interface around the standard MIPS R3000A CPU. This
RISC core is widely recognized as an extremely high-
performance execution engine, with powerful compiler and
developmenttools. Some of the features of the core include
a large register file, single cycle ALU, rich set of branch
instructions (including compare operations as part of the
branch), and separate, autonomous integer multiply and
divide. Since the R3051 was designed using the standard
core, 100% software compatibility is guaranteed. Thus,
compiler tools, real-time operating systems, and other
software tools developed around the standard R3000A
work without modification on the R3051 family.

Optional Translation Look-aside Buffer (TLB). The "E"

(Extended Architecture) versions of the RISController fam-

ily feature a 64-entry, fully associative TLB. The TLB allows

virtual addresses to be translated into physical addresses
on a4kB page basis. The TLB is useful in providing memory
protection and debug utilities in any application; in other

applications, such as those using a real-time operating
system, or in an X-windows server, the TLB allows in-
creased system functionality to be provided.

Simple, low-pin count bus interface. The R3051 family uses
a time-multiplexed 32-bit address and data bus to commu-
nicate with memory. Internal to the processor are 4-deep
read buffer and write buffer FIFO's to decouple the speed of
the internal execution core from the slower speed memory
system. The multiplexed bus arrangement has many ad-
vantages, such as lower-cost interface chips and ASICs,
without impacting system performance.

Currently, there are three family members. These are:
The R3051/51E. This device features 4kB of Instruction
cache and 2kB of Data Cache. There is no hardware
floating-point unit available on this device.

The R3052/52E. This device features 8kB of Instruction
cache and 2kB of Data Cache. As with the R3051, there is
no hardware floating-point unit available on this device.

The R3081/81E. This device introduces a number of new
features to the family. The primary features of interest are
changestothe caches, andinclusion of a hardware floating-
point unit; other features will be described throughout this
application note. The R3081 implements 16kB of Instruc-
tion Cache and 4kB of Data Cache; kernel software can
dynamically reconfigure the on-chip caches as 8kB of

Instruction and 8kB of Data Cache.

POTENTIAL UPGRADE OPPORTUNITIES

A number of possible system upgrades from a single, base
design are possible. Elsewhere in this application note,
design considerations to assure interchangeability are de-
scribed.

Possible upgrade strategies include the following tech-
nigues:

Upgrading Cache Size

As all devices are pin compatible; it is possible to increase
performance of an application by upgrading the amount of
cache available on-chip. Thus, holding all other components
the same, an R3051 may be removed and replaced by an
R3052 to double the instruction cache. An R3052 can be
removed and replaced with an R3081, doubling both the
instruction and data caches.

Add Hardware Floating-Point

One upgrade to higher performance involves upgrading an
R3051 or R3052 to an R3081 and taking advantage of the on-
chip floating-point accelerator. Later in this applications note,
software considerations for such an upgrade are described.

The IDT logo is a registered trademark and IDT79R3051, IDT79R3081, IDT/c, IDT/kit, IDT/sim and RISController are trademarks of Integrated Device Technology, Inc.

All others are trademarks of their respective companies.

[J1996 Integrated Device Technology

96

2850/- 2/96

UPGRADE STRATEGIES FOR R3051-BASED DESIGNS

APPLICATION NOTE AN-113

This upgrade will obviously substantially increase the per-
formance of software containing floating-point operations;
while the IDT software floating-point environment is very
efficient, the floating-point unit of the R3081 dramatically
outperforms integer emulation, and may result in a significant
speed-up of some applications.

Increasing Frequency

Obviously, one way to increase performance is to increase
the system frequency. This may or may not be easy to do,
depending on the exact system design. Obviously, such an
upgrade will typically require the replacement of multiple
devices on the PCB.

Note, however, that R3051 family packaging insures that
the same footprint and pinout is available across the full
frequency range of the family, and for all of the family mem-
bers. Thus, the same 84-pin PLCC footprint used fora 20MHz
R3051 accommodates the package fora40MHz R3081, even
though that device consumes more power. This obviously
simplifies upgrading adesignto a higher frequency processor.
Design techniques for increasing frequency may include:
Using faster memory devices to achieve the same relative
access time.

Using faster control logic, such as faster PALs or transceiv-
ers, to increase set-up time and reduce propagation delays.
Forexample, a 15ns PAL may be replaced with a 10ns PAL,
effectively allowing the clock period to be reduced 5ns.
Re-programming PALs and control logic to increase the
number of wait cycles. While this will reduce the frequency
normalized performance, the absolute performance will be
increased substantially, since the processor will execute
(typically out of its internal cache) at a higher rate.

"Clock Doubler" Operation

The R3081 presents a particularly unique opportunity to
upgrade systems using an R3051 or R3052. This is particu-
larly due to the "half-frequency bus" mode of operation of the
R3081.

A dramatic system upgrade can be achieved by:
1.Removing a 20MHz R3051 or R3052 and replacing it with

a 40MHz R3081.
2.Selecting the "half-frequency bus" and "1x clock" modes via

the reset vectors.

The resulting system bus will continue to operate at 20MHz,
but the CPU will execute out of its internal cache at 40MHz.
The resulting system will typically see its performance more
than double (recall that the upgrade to the R3081 will also
increase the on-chip caches and add hardware floating-point,
relative to the R3051 or R3052).

Itis also interesting to note that the performance impact of
running a 40MHz processor witha 20MHz bus is not as severe
as one would intuitively guess. This is due to the fact that
memory accesstime is really in units of time, rather thanin wait
states. That is, 200ns access memory is 4 clock cycles at
20MHz and is 8 cycles at 40MHz; the absolute time is not
improved by running the bus faster.

Intel has estimated that for the i486 with clock doubling,
running the bus at one-half the CPU execution rate is approxi-
mately 11% less efficient than running the bus at the full CPU

rate on benchmarks such as the SPEC benchmark suite. The
R3081 contains more than twice the amount of on-chip cache
as does the i486, and thus will be even less dependent on bus
performance; thus, the performance degradation should be
even less.

DESIGN CONSIDERATIONS FOR UPGRADING

The remainder of this applications note details specific
techniques which facilitates the interchange of various mem-
bers of the R3051 family. In general, all devices are pin and
footprint compatible, so there are no PCB issues to be
concerned about. In general, the only things needed to
upgrade a design are:

» Designitaround an R3051. The R3081 does include some
superset features relative to the R3051 which simplifies
high-speed systems; however, if a system works for the
R3051, it will work for an R3081.

Make the software independent of cache size. The various
devices include varying amounts of cache on-chip. An
algorithm to determine the amount of cache available is
presented in this applications note.

Have a strategy for software floating-point versus hardware
floating-point. The R3081 adds a high-performance hard-
ware floating-point accelerator, as well as increasing the
cache size. This applications note describes various soft-
ware techniques for dealing with software emulation versus
hardware acceleration of floating-point.

Thus, this application note details specific hardware choices
and software choices which facilitate interchanging CPUs. In
addition, the application note illustrates techniques for de-
termining the presence or absence of the R3081 config
register, the R3081 FPA, and the amount of cache on-chip.

SOFTWARE CONSIDERATIONS FOR
UPGRADING SYSTEMS

Some of the system upgrade considerations should be
accommodated in the application software (especially the
kernel). It is possible to develop a single binary set of code
which performs across all of the family members.

Sensitivity to Cache Size

Obviously, one characteristic difference among the various
family members is the amount of Instruction and Data cache
available. Thus, to insure interchangeability among these
devices, the software should be written to be insensitive to the
cache sizes.

Typically, very little of the actual application will be function-
ally sensitive to the amount of on-chip cache; the primary
difference will be in the performance achieved. This is the
primary advantage of caches with respect to memory mapped
zero-wait state RAM; caches are transparent to the software,
and do not affect the memory map.

Typically, the only part of the software that may be sensitive
to the cache size will be the boot/initialization software, which
may perform certain memory (including on-chip cache) diag-
nostics, and which must initialize the on-chip cache by per-
forming a cache flush.

97

UPGRADE STRATEGIES FOR R3051-BASED DESIGNS

APPLICATION NOTE AN-113

Figure 1 shows alisting of a routine to perform cache sizing.
This routine uses bits of the on-chip status register to isolate
the cache (to prevent writes or cache misses from propagating
to memory), and to swap the cache (to perform the algorithm
onthe Instruction cache). In order to determine hit or miss, the
algorithm places a marker in the first word of the cache, and
then looking for the cache size such that a read of the cache
forces a wrap-around to reading location zero. Once this
occurs, the maximum cache size has been exceeded, and
thus the cache size is known. Other algorithms could use the
cache miss bit of the status register, rather than a marker
value. This capability is provided in the IDT/kit” and IDT/sim"
software packages from IDT.

Once the cache size has been determined, it is used in the
cache flush routines (for example) to completely flush the
caches. Note that if the only time the cache is flushed is at
system start-up, it is acceptable to assume a worst case
(large) cache size and flush that amount of cache; caches
smaller than the size assumed will merely be flushed multiple
times, resulting in wasted execution time but correct function-
ality. On the other hand, applications which perform cache
flushing as part of ongoing operation (e.g. to assure cache
coherency when DMA operations are used) would be sensi-
tive to performance, and thus would desire to flush only the
proper amount of cache.

Floating-Point Presence

Another difference between various family members has to

do with the presence or absence of the floating-point. This
distinction may have two impacts on the software environ-
ment:
The initial setting of the coprocessor 1 usable bit should
reflect whether or not a hardware floating-point is available.
It is possible to create a software environment which can
dynamically determine the presence or absence of the FPA.
The actual binary executable of the application may be best
optimized according to the presence or absence of a hard-
ware floating-point. This is discussed below.

How to Determine Floating-Point Presence

There are at least two different methods for determining
whether a floating-point is present. One way is to perform
floating-point operations and determine whether the results
are reasonable; these operations could be as simple as
moving data into and out of the FPA registers to see if they are
present, through performing floating-point calculations and
examining the results (or even possibly seeing if an exception
is reported). If the floating-point is detected as present,
coprocessor 1 should be marked as usable by the kernel.

Another method would be to use the CpCond(1)
(coprocessor 1 condition) flag. The hardware could tie the
CpCond(1) to a known state (e.g. HIGH); software could then
perform a compare operation (or move to the fp cscr register)
to cause CpCond(1) to report the opposite polarity. A simple
branch on coprocessor (1) condition will then determine
whether the CpCond(1) signal is driven by an on-chip FPA, or
by the off-chip pull-up resistor.

FPA Impact on the Binary Code

There are two methods for dealing with the software which
may or may not have a hardware floating-point unit. The
optimal method depends on trade-offs between a single
binary set operating either with or without a hardware FPA,
versus a single source set compiled twice resulting in two
binaries (one targeted to a hardware FPA and one targeted to
an integer only environment).

Using a Single Binary with and Without an FPA

If the system designer chooses to implement a single
binary capable of taking advantage of a hardware FPA when
one is available, all that needs to be done is to tap into the
inherent capabilities of the MIPS coprocessor architecture.
Specifically, if the kernel marks the coprocessor 1 FPA as
unavailable, FPA instructions will cause a trap to occur. The
kernel can then perform an integer interpretation of the FPA
instruction. The application software is then compiled to
assume the availability of a hardware FPA: if one is available
in the system fine; if not, traps will occur when FPA operations
are encountered, and the kernel can perform an emulation of
the function.

Using this technique requires two things in the software:
» Boot software must perform the diagnostics described

above to determine the appropriate setting for the
coprocessor 1 usable bit.

» The kernel must include the capability to emulate the entire
FPA unit, including the FPA operations, the register file, and
the FPA exception mechanisms used by the application.

While this technique has the advantage of resulting in a
single binary which works in either environment, the result is
added complexity and a loss of performance in the environ-
ment in which no FPA is available. Specifically, the kernel
must provide an emulation library of the entire FPA; and,
software FPA operations will include additional overhead from
the CPU exception model and from emulating all aspects of
the FPA, eventhough a given operation only requires a subset
of the FPA functionality.

Developing Two Binaries from a Single Source

Another technique exists whereby two distinct binaries are
developed from a single source tree. Each of the resulting
binaries is fully optimized for either an integer only environ-
ment, or for an environmentin which a hardware floating-point
is available.

This is accomplished by taking advantage of the software
floating-point library capabilities of the IDT/c” environment.
IDT/cincludes a compile time flag which can be used to control
whether hardware FPA instructions (coprocessor 1 instruc-
tions) are generated, or whether direct calls to a software
floating-point library are generated. Thus, software floating-
point is not forced to emulate the register set and data type
conversions of the hardware FPA, and execution is not forced
to go through the CPU exception model. The resulting binary
operates much more efficiently than one which goes through
the trap and emulation model described above.

A separate applications note describes how to determine
the optimal compilation environment for a given application.

98

UPGRADE STRATEGIES FOR R3051-BASED DESIGNS

APPLICATION NOTE AN-113

/***'k****************************

* %

** size_cache()

** returns cache size in vO

* %

'k*************************/

FRAVE(_si ze_cache, sp, 0, ra)

. set
nfcO
and
or

m cO

/*

nor eor der
t0, C0_SR
t0, ~SR PE
v0,t0,SR I SC
v0, C0_SR

/*
/*
/*

save current sr
do not
i sol ate cache */

* First check if there is a cache there at all

*/
nove
li
SW
| w
nop
nfcO
nop
. set
and
bne
bne
/*

* O ear

*/
li

SW
sl
bl e

li
SW
li

2: I w
bne
sl
bl e
nove
. set

3: nm cO
j
nop

vO, zero

v1, Oxa5ababa5
v1, KOBASE

t 1, KOBASE

t2, CO_SR

r eor der
t2, SR CM
t2, zero, 3f
vl t1, 3f

v0, M NCACHE

zer 0o, KOBASE(v0)
vO, 1
v0, MAXCACHE, 1b

vO, -1
v0, KOBASE(zer 0)
v0, M NCACHE

v1, KOBASE(v0)
v1, zero, 3f
vO, 1

v0, MAXCACHE, 2b
v0, zero

nor eor der

t0, C0_SR

ra

ENDFRAME(_si ze_cache)

. set

reor der

/*
/*
/*

/*
/*

cache size boundries to known state

/*
/*

/*
/*
/*
/*
/*

/*

*/

i nadvertently clear

PE */

distinctive pattern */
try to wite into cache */
try to read fromcache */

cache m ss, nust
data not equa

store marker

be no cache */

M N cache size */

Look for marker
found nmarker */
cache size *
keep | ooking */

must be no cache */

restore sr */

Figure 1. Cache Sizing Software

*/

2 */

-> no cache */

in cache */

99

UPGRADE STRATEGIES FOR R3051-BASED DESIGNS

APPLICATION NOTE AN-113

31 30 29 28 26 25 24 23 22 0
Slow| DB
Lock| gus | Refill FPInt Halt| RF | AC Reserved
Lock: 1 -> Ignore subsequent writes to this register
Slow Bus: 1 -> Extra time for bus turnaround
DB Refill: 1-> 4 word refill
FPInt: Power of two encoding of FPInt <-> CPU Interrupt
Halt: 1 -> Stall CPU until reset or interrupt
RF: 1 -> Divide frequency by 16
AC: 1 -> 8kB per cache configuration

Reserved: Must be written as 0; returns 0 when read

Figure 2. R3081 Config Register

The method of dealing with floating-point operations in an
integer CPU only environment is particularly important in the
evaluation of a compiler platform; techniques such as the "mix
and match" approach supported by IDT/c allows the best
capabilities of the MIPS compiler toolchain to be integrated
with efficient software floating-point emulation.

The obvious advantage of this approach is the optimum
performance achieved for both the integer only system and
the R3081-based (hardware FPA) system. Using distinct
EPROM sets at manufacturing time, or upgrading both the
EPROMSs and processor as a field upgrade, are obvious
consequences, but in general are not particularly onerous
(EPROM upgrade can be a replacement of EPROMSs, or, for
FLASH EPROM, a re-programming of the EPROM s resident
on the board).

The R3081 Config Register

The R3081includes, as part of coprocessor 0, an additional
control register called "Config". The R3081 Config Registeris
shown in Figure 2.

The Config register controls various aspects of system
functionality. If these features are used in an R3081 system,
software must first determine whether they are available.

To determine whether the current device is an R3081 (and
thus whetherthe config register is available), software can use
various techniques. One straightforward technique is to
determine whether or not there is an FPA; if so, the device is
an R3081. Similarly, software could determine the cache
sizes available, and see if these correspond to the organiza-
tion the R3081.

Other techniques are also possible; for example, size the
cache, then reconfigure the cache by writing to the config
register; re-size the cache to determine that the change
occurred. Obviously, if the change occurs, the config register
is available.

Note that writes to this register location in the R3051 or
R3052 will have no effect; no side effects occur, and no traps
are signalled. Reads of the config register produce an
undefined data result for the R3051 and R3052.

If the config register is used when an R3051 is in place,
various other considerations exist. These are:

* Floating Point Interrupt. In general, if an R3051 application
intends to also work with an R3081, one of the CPU interrupt
inputs needs to be reserved for the hardware FPA of the

R3081. The defaultinterrupt is Int(3), but the config register
allows a different interrupt assignment to be used. The
corresponding interrupt input pin of the R3081 is then
ignored. Thus, the PCB should contain a pull-up resistor at
the interrupt pin; when an R3051 is used in the application,
no interrupt will be signalled.

Reduced Frequency. This mode dramatically reduces the
power consumption of the R3081, by reducing its operation
frequency. This mode is unavailable in the R3051. In
general, the only real functional system change that occurs
is that the SysClk output clock frequency is also reduced,;
thus, if DRAM refresh, for example, was derived from this
clock, the counter value should be reprogrammed. If an
R3051 is told to "reduce frequency", nothing will happen.
Halt. This control bit forces the R3081 to stall until an
interrupt input is asserted, or a reset is encountered. This
mode is unavailable in the R3051, and no simple software
equivalent exists.

Data Block Refill. The R3081 allows the block size read on
a data cache miss to be dynamically reconfigured by soft-
ware. The initial value is set by the reset value. In general,
this bit may affect the performance of software, but is
unlikely to impact its functionality.

Alternate cache. This bit allows the caches to be dynami-
cally reconfigured for the R3081. A cache flush should be
performed after the cache is reconfigured. An earlier
section of this applications note discussed how to make
software independent of the cache organization.

Lock. This bit allows software to inhibit subsequent writes
to the Config register. Thus, boot software can set up the
operation mode, and then protect it from other software.
Slow Bus Turnaround. This bit allows systems to enjoy
longer time between A/D bus mastership transitions. How-
ever, this software control is not available on the R3051. If
the system designer desires extra time, and also desires to
be able to interchange R3051s and R3081s, the hardware
technique described in applications note AN-97 is appropri-
ate. This technique uses the DMA arbiter interface of the
CPU to insure that new transactions are not begun until
ample time for bus turn-off has passed. This hardware
techniqgue works equally well with both the R3051 and
R3081.

100

UPGRADE STRATEGIES FOR R3051-BASED DESIGNS

APPLICATION NOTE AN-113

HARDWARE DESIGN ISSUES

There are various hardware design considerations that
may impact the ability to interchange various members of the
CPU family. With proper design, these considerations can be
dealt with no real system impact.

Slow Bus Turn

Bus turn is the amount of time allowed to change master-
ship on the A/D bus of the processor. In general, a read
followed by a write can cause a change in bus direction in one-
half bus cycle. At 33MHz, this is 15ns.

The system designer may implementan architecture which,
by using appropriate transceivers and control signals, can
tolerate a rapid bus turn. Alternatively, the designer may
desire to increase the minimum amount of time.

Although the R3081 includes a bit in the Config register to
slow the bus, this technique does not work with the R3051.
Instead, the hardware technique of using BusReq to insure a
longer tri-state time is recommended. This technique is
described in applications note AN-97.

Coherent DMA

The R3081 includes a hardware interface to insure cache-
coherency in systems using DMA. This interface is unavail-
able in the R3051.

Many MIPS applications perform multi-master cache co-
herency via software techniques, and thus do not require
hardware-based coherency. While hardware-coherency will
improve the performance of some applications, relying on
software (which may, for example, flush the entire data cache
once a DMA operation is completed to insure coherency. This
technique will function equally well with either the R3051 or
R3081.

Floating-Point Interrupt

The R3081 uses one of the interrupt input pins to report
exceptions to the CPU. The hardware should reserve one of
the input pins for this function, and provide logic or pull-up
resistors to insure that this input is held HIGH for an R3051 or
R3052.

CpCond(1)

The R3081 uses this input to report the results of compari-
sons back to the CPU; thus, the external input pin is ignored.
R3051 systems should provide a pull-up resistor for this pin.
Earlier in this applications note, a method to use this pin to
determine the presence or absence of an FPA was described.

Reset Mode Vectors

Both the R3051 and R3081 use the same basic technique

to perform reset mode selection of various options. Figure 3

illustrates the mode vector logic for the R3081. Note that for

the R3051, Int(5:3) mode vectors are reserved, and must be
held HIGH during reset.
Options include:

« Tri-state. This option is used to perform board testing, and
is available in all devices.

* BigEndian. This option selects the data byte ordering
convention, and is available in all devices.

» Data Block Refill. This option selects single versus four-
word refill on data cache misses. Although this option is
available in all devices, software (via the config register) can
dynamically change the value for the R3081.

» Coherent DMA Enable. This option enables the coherent
DMA interface of the R3081. For the R3051, this input must
be HIGH at reset.

R3081 Mode Vector Logic

Sint(0) — » BigEndian
Sint(1) - Tri-State
Transparent
Sint(2) — Latch » DBlockRefill
Int(3) — » Half-frequency Bus
Int(4) — » 1XClockEn
Int(5) — En » CoherentDMAEN
Reset L » CPU_Reset
Reset
Synchronizer
SysClk >

Figure 3. R3081 Mode Vector Assignment

101

UPGRADE STRATEGIES FOR R3051-BASED DESIGNS

APPLICATION NOTE AN-113

» 1x Clock Mode. This option instructs the R3081 that the
input clock provided is at the CPU operation frequency,
rather than at twice the frequency. In the R3051, only the
"2x" clock is available, and this vector must be held HIGH.

» Half-frequency Bus. This option instructs the R3081 to
operate its bus interface at one-half the execution rate. This
option is unavailable in the R3051, and must be held HIGH
at reset.

In order to design a system to accommodate either an
R3051 or R3081, it may be desirable to include jumpers for the
R3081-only options. Thus, when an R3081 is included in the
design, various of the hardware options may be changed.
This may open up other upgrade strategies, such as the clock
doubling capability described earlier.

SUMMARY

By following a few simple rules, the system designer can
implement a base R3051 system which can easily upgraded
to higher performance. Upgrade options include more amounts
of cache on-chip, the addition of hardware floating-point, and
increases of frequency. With the R3081 half-frequency bus
mode, the operation frequency of the execution engine can be
substantially increased while maintaining the same (or even
slower) bus interface frequency.

Thus, the IDT RISController family effectively reduces the
time to market of new product families, and maximizes engi-
neering return on investment by enabling one design effort to
result in multiple end products.

102

