AdvVFS system calls &
kernel interfaces

Module 4

Copyright (C) 2008 Hewlett-Packard
Development Company, L.P.




Objectives

* List the various entry points to AdvFS

Describe how an AdvFS system call is processed
Describe the algorithms for startup and recovery
Explain the storage management algorithms
Describe the cloning algorithms

Define the file migration and deletion algorithms
Describe the algorithms for threads

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



VFS switch table

* 13 entry points for file system operations (includes V5
smooth sync)

* An interface defined In:
- /usr/include/sys/mount.h
- struct vfsops * m_op;

* The interface implemented in:
- msfs/osf/msfs_vfsops.c

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



VFS switch table routine list (1 of 2)

/*
* msfs_vfsops

*

* Defines function pointers to AdvFS specific VFS fs
operations.

*/
struct vfsops msfs_vfsops = {
msfs_mount,
msfs_start,
msfs_unmount,

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



VFS switch table routine list (2 of 2)

msfs_root,
advfs_quotactl,
msfs_statfs,
msfs_sync,
msfs_fthtovp,
msfs_vptofh,
msfs_1init,
msfs_mountroot,
msts_noop,
msfs_smoothsync,

Iy

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



vhode switch table

* 42 entry points for file operations

* An interface defined In:
- /usr/include/sys/vnode.h
- struct vnodeops * v_op;
* The interface implemented in:
- msfs/osf/msfs_vnops.c

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



File (vhode) operations (1 of 3)

/*
* msfs_vnodeops

* Defines function pointers to AdvFS specific VFS
vnode operations.

*/
struct vnodeops msfs_vnodeops = {

msts_lookup, /* lookup */
msfs_create, /* create */
msfs_mknod, /* mknod */
msfs_open, /* open */
msfs_close, /* close */
msfs_access, /* access */
msfs_getattr, /* getattr */
msfs_setattr, /* setattr */
msfs_read, /* read */
msfs_write, /* write */

msfs_1ioctl, /* 1octl */

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



File (vhode) operations (2 of 3)

seltrue, /* select */
msfs_mmap, /* mmap */
msfs_fsync, /* fsync */
msfs_seek, /* seek */
msfs_remove, /* remove */
msfs_1link, /* 1link */
msfs_rename, /* rename */
msfs_mkdir, /* mkdir */
msfs_rmdir, /* rmdir */
msfs_symlink, /* symlink */
msfs_readdir, /* readdir */
msfs_readlink, /* readlink */
msfts_abortop, /* abortop */
msfs_inactive, /* 1inactive */
msfs_reclaim, /* reclaim */
msts_bmap, /* bmap */

msfs_strategy, /* strategy */

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



File (vhode) operations (3 of 3)

*/

I

msfs_print,
msfs_page_read,
msfs_page_write,
msts_swap,
msfs_bread,
msfs_brelse,
msfs_lockctl,
msfs_syncdata,
msts_noop,
msts_noop,
msfs_getproplist,
msfs_setproplist,
msfs_delproplist,

msts_pathconf,

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

print */

page_read */

page_write */

swap handler */

buffer read */

buffer release */

file locking */

fsync byte range */

Lock a node */

Unlock a node */

Get extended attributes */
Set extended attributes */
Delete extended attributes

pathconf */

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



UBC interface

* vnode operations used in paging
*msfs_getpage

- to obtain a page from disk
*msfs_putpage

- to write a page to disk
* The implementation is in:

- msfs/osf/msfs_misc.c

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Device driver interface routines

e In AdVvFS struct buf

- b_1odone field contains address of msfs_iodone()
* Or bs_raw_complete() for raw 1/O operations

- represents a buffer of data
- listhead is bsBufList
* At interrupt
- device driver calls msfs_iodone()
* msfs_iodone()
- temporarily raises system priority level

- places buffer on MsfsIodoneBuf queue (holds completed I/O
operations for AdvFS) found within the processor structure.

- posts LWC_PRI_MSFS_UBC
* The implementation is in: msfs/osf/msfs_io.c

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



AdVFS Lightweight Context

(LWC) interface

* Priority: LWC_PRI_MSFS_UBC
* Entry: msfs_async_iodone_lwc()
*msfs_async_iodone_lwc()
- removes buffer from MsfsIodoneBuf
- calls bs_osf_complete()

* The implementation is in:
- msfs/osf/msfs_1io.c

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



AdvVFS I/O completion function

* Checks for many errors
— if appropriate, prints error messages
— if error while writing to log, panic kernel

* Call bs_10_complete() to reach BAS layer
* Initiate more /O if appropriate
* Source location: msfs/bs/bs_qgio.c

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



AdvVFS I/O descriptors

* AdVvFS struct 1oDesc: Element of the I/O queue
— contains reference to the "standard" struct buf
- AdvVFS structure for gueueing I/O requests

* AdvFS struct 1oDescHdr
- header element for an I/O queue of stuct ioDesc

* Source location is msfs/msfs/bs_ims.h

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Bitfile buffer structure

* AdVvFS struct bsBuf

— associates I/O descriptions with bitfile sets
* contains transaction information
* queues “dirty” buffers of a bitfile

- for "normal" files, contains reference to struct ioDesc
- for Direct I/O, contains reference to struct buf

 Source location is msfs/msfs/bs _buf.h

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



AdVFS 1/O queues in Tru64 UNIX V5

Sync. Writes
___(fsyng) A

Flush Queue

Lazy Queue

Wait ?imooth
Sync
Queue Queue

Figure taken from "What’s New with AdvFS" by Thomas Sjolshagen.

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



AdvFS API in Tru64 UNIX V5

Introduced to support user-written backup
and restore routines

*advfs_clonefset
*advfs_get_fdmn_list
*advfs_get_file_attributes
*advfs_get_fset_list
*advfs_get_fset_quotas
*advfs_rmfset
*advfs_set_file_attributes
*advfs_set_fset_quotas

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



True AdvVFS system call

*msfs_real_syscall()
- single call - many flavors

- called through MsfsSyscallp (filled in when AdvFS is
started) with the lower 32 bits of the KSEG address of
msfs_real_syscall()

- MsfsSyscallp + OxfffffcO000000000 =
&msfs_real_syscall()

* First argument is the operation type
- used in a large case statement to determine the action
* Source location: msfs/bs/bs_misc.c

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Prototype for msfs_real_syscall()

int
msfs_real_syscall(
opTypeT opType,
/* 1n - msfs operation to be performed */
libParamsT *parmBuf,
/* 1n - ptr to op-specific parameters
buffer; */
/* contents are modified. */
int parmBufLen
/* 1n - byte length of parmBuf */

),

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Types of AdvFS system calls

* 60 types

 User interface

— library wrappers for system call
* compiled into /usr/shlib/1ibmsfs.so
* included frommsfs_syscalls.h

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Operation types within msfs_real_syscall()

(1 of 5)

typedef enum {
OP_NONE,
OP_GET_BF_PARAMS,
OP_SET_BF_ATTRIBUTES,
OP_GET_BF_XTNT_MAP,
OP_ADD_STG,
OP_ADD_OVER_STG,
OP_MIGRATE,
OP_DMN_INIT,
OP_GET_DMNNAME_PARAMS,
OP_GET_DMN_PARAMS,
OP_SET_DMN_PARAMS,
OP_GET_DMN_VOL_LIST,
OP_GET_VOL_PARAMS,
OP_SET_VOL_IOQ_PARAMS,

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Operation types within msfs_real_syscall()

(2 of 5)

OP_DUMP_LOCKS,
OP_TRACE,
OP_FSET_CREATE,
OP_FSET DELETE,
OP_FSET_CLONE,
OP_FSET_GET_INFO,
OP_FSET GET_ID,
OP_GET_BFSET_PARAMS,
OP_SET_BFSET_PARAMS,
OP_ADD_VOLUME,
OP_CRASH,
OP_MSS_RESV1,

(...)
OP_MSS_RESV17,
OP_UNDEL_ATTACH,

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Operation types within msfs_real_syscall()

(3 of 5)

OP_UNDEL_DETACH,
OP_UNDEL_GET,
OP_GET_NAME,

OP_REM_STG,

OP_EVENT,

OP_TAG_STAT,
OP_SWITCH_LOG,
OP_GET_BF_IATTRIBUTES,
OP_SET_BF_IATTRIBUTES,
OP_MOVE_BF_METADATA,
OP_GET_VOL_BF_DESCS,
OP_REM_VOLUME,
OP_ADD_REM_VOL_SVC_CLASS,
OP_SWITCH_ROOT_TAGDIR,
OP_SET_BF_NEXT_ALLOC_VOL,
OP_DISK_ERROR,

Copyright (C) 2008 Hewlett-Packard Development Company, L.P




Operation types within msfs_real_syscall()

(4 of 5)

OP_FTX_PROF,
OP_REWRITE_XTNT_MAP,
OP_RESET FREE_SPACE_CACHE,
OP_SET_NEXT_TAG,
OP_REM_NAME,
OP_REM_BF,
OP_FSET_RENAME,
OP_GET_LOCK_STATS,
OP_FSET_GET_STATS,
OP_GET_BKUP_XTNT_MAP,
OP_GET_VOL_PARAMS?2,
OP_GET_GLOBAL_STATS,
OP_GET_SMSYNC_STATS,
OP_GET_IDX_BF_PARAMS,
OP_ADD_REM_VOL_DONE,

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Operation types within msfs_real_syscall()

(5 of 5)

OP_GET_CLUDIO_XTNT_MAP,
OP_SET_BFSET_PARAMS_ACTIVATE,
OP_SS_SET_LICENSE,
OP_SS_GET_LICENSE,
OP_SS_DMN_OPS,
OP_SS_GET_PARAMS,
OP_SS_SET_PARAMS,
OP_SS_GET_FRAGLIST,
OP_SS_GET_HOTLIST

} opIndexT;

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Domains and volumes

Utilities:

*msfs_dmn_init() mkfdmn
*msfs_add_volume() addvol
*advfs_remove_volume() rmvol
*msfs_get_dmn_params() showfdmn

*msfs_syscall_op_get_dmn_vol_list()

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Prototype for msfs_dmn_init() (1 of 2)

mlStatusT
msfs_dmn_init(
char* domain, /* 1n - bf domain name */
int maxVols, /* 1n - maximum number of
virtual disks */
u32T logPgs, /* 1n - number of pages
in log */

mlServiceClassT logSvc, /* in - log service
attributes */
mlServiceClassT tagSvc, /* 1n - tag directory
service attributes */
char *volName, /* 1n - block special
device name */
mlServiceClassT volSvc, /* 1n - service class */
u32T volSize, /* 1n - size of the
virtual disk */

Copyright (C) 2008 Hewlett-Packard Development Company, L.P




Prototype for msfs_dmn_init() (2 of 2)

u32T bmtXtntPgs, /* 1n - number of pages
per BMT extent */
u32T bmtPreallocPgs, /* 1n - number of pages to
be preallocated for the BMT */
u32T domainVersion, /* 1n - on-disk version

of domain */
mlBfDomainIdT* bfDomainId /* out - domain id */

)

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Prototype for msfs_add_volume()

mlStatusT

msts_add_volume(
char *domain, /* 1n - domalin name */
char *volName, /* 1n - block special

device name */
mlServiceClassT *volSvc, /* in/out -
service class */

u32T volSize, /* 1n - size of the
virtual disk */

u32T bmtXtntPgs, /* 1n - number of pages
per BMT extent */

u32T bmtPreallocPgs, /* 1n - number of pages to

be preallocated for the BMT */
mlBfDomainIdT *bfDomainId,/* out - domain id */
u32T *volIndex /* out - vol index */

)

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Prototype for advfs_remove_volume()

mlStatusT

advfs_remove_volume(
mlBfDomainIdT bfDomainId, /* 1in */
u32T volIndex, /* in */
u32T forceFlag /* in */

)

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Prototype for

msfs_syscall_op_get_dmn_params()

mlStatusT
msfs_syscall_op_get_dmn_params(
libParamsT *1ibBufp

),

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Filesets

* System call

o Utility
- msfs_fset_create() mkfset
- msfs_fset_clone() clonefset
- msfs_fset_delete() rmfset

- msfs_set_bfset_params() chfsets
* And many more

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Prototype for msfs_fset_ create()

mlStatusT

msfs_fset_create(

char *domain, /* 1n - domain name */
char *setName, /* 1n - set's name */
mlServiceClassT reqServ, /* 1n - required service
class */
mlServiceClassT optServ, /* in - optional service
class */
u32T userlId, /* 1n - user 1id */
gid_t quotald, /* 1n - group ID for
quota files */
m1BfSetIdT *bfSetId /* out - bitfile set id */

)

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Miscellaneous operations

*advfs_migrate()
- moves blocks of open file
*msfs_syscall op_set_bf_attributes()
- stripes a file
*msfs_undel_attach()
- attaches a trashcan directory
*advfs_ss_set_params()
- sets parameters for vFast
*advfs_ss_get_hotlist()
- gets list of hot files from vFast

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Startup and recovery overview

* Begins with a mount (2) system call
- Orvfs_mountroot () which does part of the job
* Invokes msfs_mount () found in msfs_vfsops.c
* Calls get_domain_disks()
- searches /etc/fdmns/domain (for list of virtual disks)

* Calls advfs_mountfs()(found in msfs_vfsops.c)to
do the real work

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Mounting the file system

* Obtains names of the fileset
* Activates the bitfile-set
- with bs_bfset_activate()
* Initializes various in-memory structures
* Opens significant bitfiles
- tagdir, root, fragment
* Links file system into mount list

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Activating the bitfile-set

*bs_bfset_activate_int()

* Activates or finds a domain structure
- with bs_bfdmn_tbl_activate()

* Finds the appropriate bitfile-set

- with bs_bfs_find_set () (which looks in the root tag
directory)

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Activating the domain -

search for virtual disks

*bs_bfdmn_tbl_activate()

* If domain not active:
- search virtual disks of domain
- check for consistencies:
* virtual disk count on disk
* number of links in /etc/fdmns
- find the transaction log
- activate the domain
* with bs_bfdmn_activate()

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Activating the domain -

full activation

*bs_bfdmn_activate()
* Open the transaction log
- with 1gr_open()
* Open root tag directory
- when appropriate
* Start crash recovery activities
- with ftx_bfdmn_recovery()
* Remove delete-pending filesets

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Recovering a domain

* ftx_bfdmn_recovery()

* Three recovery passes
- pass 1 -- RBMT file
- pass 2 -- Other reserved metadata bitfiles
- pass 3 -- Other metadata bitfiles
* After the three passes
- perform any further recovery actions

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Recovery pass (1 of 2)

* Recovers Domain Consistency
* ftx_recovery_pass()

* Scan the log
- read a record
- put in slot for this FTX ID
* allocate new one if needed
- Onpassl
* puffer continuation and root done record
- If record matches current pass

* perform record image redo records
* perform operation redo record

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Recovery pass (2 of 2)

- If level and member are zero, free the FTX slot

* Loop through remaining FTX slots

- if level is not zero:
* this is part of an uncompleted transaction

e fail the transaction
Execute the undo records
In pass appropriate manner

- if level is zero, better do the root done operations

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



BAS-level storage allocation

* Disk free storage list
- starting address and size of free storage

- may not be large enough to hold all free storage locations
(especially if disk is very fragmented)

* BAS-level routines add storage
— without much regard to efficiency

- though they will join adjacent grants into one extent (thus small
sequential extents may become one)

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



FAS-level storage allocation

* If file is being written sequentially:

- data space is preallocated in page sizes of

 MIN( pg_to_write/4, MAX_PREALLOC_PAGES)

pg_to_write 1s present page number
MAX_PREALLOC_PAGES is presently 16

— if this falls, data space is allocated as needed
- BAS-level will combine adjacent allocations

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Truncating bitfiles

* When bitfile closes:
- AdVFS sees if last page should be allocated in the fragment
file
* If necessary:
- a fragment is allocated
- last page is now unused
* If there are unused pages at end of file:
— unused pages are deallocated
- this can result in the release of small disk areas

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Creating a clone

fs_fset_clone()
 Perform various access checks

bs_bfs_clone ()
* Create new bitfile-set
* Copy original’s tagfile to clone’s tagfile

* Make appropriate modifications to bitfile-set attributes
record

Files open when cloning may not have perfect snapshots

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Prototype for fs_fset_clone()

/*
* fs fset clone

*

* Creates a clone file set of an 'original' file set.
*/

statusT
fs_fset_clone(
char *domain, /* 1n - name of set's domain */

char *origSetName, /* 1in - name of orig set */
char *cloneSetName, /* 1in - name of new
clone set */
bfSetIdT *retCloneBfSetlId, /* out - clone
set's id */
long xid /* 1n - CFS transaction id */

)

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Writing to a cloned original

* Bitfile pages of original are copy-on-write
* On first modification of bitfile

- new mcell is allocated for clone bitfile

- original and clone primary mcells are now different
* On first modification of bitfile page

- new extent is allocated for clone bitfile

- original data is copied to clone’s extent

- clone extent map has holes for original data

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Reading from a clone

* See if clone bitfile has requested page

* If not:
- see If page really is within range of clone bitfile
- check extent maps of original bitfile for page

* If a page is written into a hole of the original
- clone must be given a ‘permanent hole’ extent

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Deleting bitfile from cloned original

* Must ensure data is available for clone after deletion
from original fileset

* Original fileset is marked delete with clone
- it exists until clone fileset is deleted

* Not the same as unlinking a file from fileset
- FAS-level understands multiple links for one file

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Deleting a bitfile

e Set bitfile attributes state to BSRA_ DELETING
* Delete the bitfile from the tagfile

 Add bitfile to DDL, Deferred-Delete List for disk
- if system crashes, on recovery DDL is processed

* Wait for bitfile to close to reap the storage

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Closing a deleted bitfile

Carefully delete the storage

* Perform a series of root transactions
- pin several pages of SBM
- update the storage bit map to delete extents

- update the delRst field of bitfile's extent map to point to next
extent to delete

Carefully delete the bitfile’s mcell chain

* Perform a series of continued transactions
- pin several pages BMT
- free the mcells on those pages

- start a continuation transaction which knows next mcell to
delete

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Migrating a bitfile

* Allocate new target storage

- place target on deferred delete list (if system crashes, it is
gone on recovery)

* Put target storage on copy extent map list
- modifications will go to both source and target!

* Copy blocks -- source to target

* Flush blocks

* Switch roles on target and source
- source will be reclaimed

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Deleting a fileset

* Add hitfile-set to domain’s delete pending list

* [terate through the tags of the bitfile-set
- delete each bitfile

* Remove hitfile-set from bitfile-set delete pending list
* Delete tagfile

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



AdVFS threads

* Created by kernel idle thread routine (PID 0)
* Receive typed messages on queue
* Block with cond_wait ()

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Fragment bitfile thread

* One per system

* Deallocates frag groups of type 0
- when there are too many
- target is AdvfsMinFragGrps (defaultis 16)
* Awakened from frag_group_dalloc()
- with message containing bitfile-set ID

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



/0 thread

* For START_MORE_IO messages
- calls bs_startio( ) for a virtual disk
- awakened by bs_osf_complete() when queue is small
* For LF_PB_CONT messages
- check if a log flush continue or a pin block continue is needed

- awakened by bs_io_complete() if HLIF1ushLSN has
changed

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Bitfile access thread

* Allocates bfAccess structures
* Awakened by bfAccess allocation routines

* For ALLOC_BFAP_NORMAL messages
- respects AdvfsAccessMaxPercent limit

* For ALLOC_BFAP_ROOT messages
- gives root 1% more than AdvfsAccessMaxPercent

* For ALLOC_BFAP_NORMAL messages
- ignores AdvfsAccessMaxPercent limit

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Extend RMBT thread

* For FINSH_DIR_TRUNC messages
— allocates a new page to the RBMT
- awakened when there are only two free Mcells in the RBMT

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



AdvVvFS cleanup thread

For FINSH_DIR_TRUNC messages

- truncates space from directory

- awakened by routines to insert directory entries
For CLEANUP_CLOSED_LIST messages

- moves bfAccess structures from closed to free list
- awakened by routines which allocate bfAccess structures
For DEALLOCATE_BFAPS messages

- deallocates bfAccess structures

- doesn’t seem to be used in V5.1B

For UPDATE_BAD_FRAG_GRP_HDR messages
- marks a fragment group header as bad

- awakened by routines that allocate fragments

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Freeze thread

* Added in Tru64 UNIX V5.1A
- supports functionality of freezefs and thawfs

* Maintains a queue of timeouts for frozen domains
* Responsible for initiating a file system thaw at timeout

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



AdVFS vFast threads

* Added in Tru64 UNIX V5.1B
- Supports vFast

* Three types of threads

- Boss Only one of these
- Monitor Only one of these
- List

- Worker

e Source files:
- msfs/bs/vfast.c
- msfs/msfs/vfast.h

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



vFast boss threads

* Creates and manages the thread pools

* Terminates and restarts thread pools when appropriate
* Adjust the rate at which hot file messages are generate
* Executes ss_boss_thread

* For the most part, follows the orders of the monitor
thread

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



vFast monitor thread

* Monitors message queues
- tells the boss thread when to create new threads

- tells the boss thread when to adjust rate of hot file
messages

* Periodically checks 1/O load balance

- to see if any files should be moved to lightly loaded
volume

* Checks degree of fragmentation within domain
- to see if any files should be defragmented

e Executes ss monitor thread
 Tells the boss what to do

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



vFast list thread pool

* Maintains list of “hot files”

- using information regarding bitfile page references
* Maintains list of fragment files

- using information provided by monitor

* Executes ss_1list_thd_pool

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



vFast worker thread

* Waits for messages on the lists

* Invokes ss_vd_migrate to move files

* Only works when system 1/O load is low
* Executes ss_work_thd_pool

* Finally, a thread that does some real work

Copyright (C) 2008 Hewlett-Packard Development Company, L.P



Learning
check




Lab 4







