
AdvFS system calls &
kernel interfaces

Module 4
Copyright (C) 2008 Hewlett-Packard
Development Company, L.P.

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Objectives

• List the various entry points to AdvFS

• Describe how an AdvFS system call is processed

• Describe the algorithms for startup and recovery

• Explain the storage management algorithms

• Describe the cloning algorithms

• Define the file migration and deletion algorithms

• Describe the algorithms for threads

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

VFS switch table

• 13 entry points for file system operations (includes V5
smooth sync)

• An interface defined in:
– /usr/include/sys/mount.h
– struct vfsops * m_op;

• The interface implemented in:
– msfs/osf/msfs_vfsops.c

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

VFS switch table routine list (1 of 2)

/*
 * msfs_vfsops

 *
 * Defines function pointers to AdvFS specific VFS fs
operations.
 */
struct vfsops msfs_vfsops = {
 msfs_mount,
 msfs_start,
 msfs_unmount,

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

VFS switch table routine list (2 of 2)

 msfs_root,
 advfs_quotactl,
 msfs_statfs,
 msfs_sync,
 msfs_fhtovp,
 msfs_vptofh,
 msfs_init,
 msfs_mountroot,
 msfs_noop,
 msfs_smoothsync,
};

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

vnode switch table

• 42 entry points for file operations
• An interface defined in:

– /usr/include/sys/vnode.h
– struct vnodeops * v_op;

• The interface implemented in:
– msfs/osf/msfs_vnops.c

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

File (vnode) operations (1 of 3)

/*
 * msfs_vnodeops
 * Defines function pointers to AdvFS specific VFS
vnode operations.
 */
struct vnodeops msfs_vnodeops = {
 msfs_lookup, /* lookup */
 msfs_create, /* create */
 msfs_mknod, /* mknod */
 msfs_open, /* open */
 msfs_close, /* close */
 msfs_access, /* access */
 msfs_getattr, /* getattr */
 msfs_setattr, /* setattr */
 msfs_read, /* read */
 msfs_write, /* write */
 msfs_ioctl, /* ioctl */

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

File (vnode) operations (2 of 3)

 seltrue, /* select */
 msfs_mmap, /* mmap */
 msfs_fsync, /* fsync */
 msfs_seek, /* seek */
 msfs_remove, /* remove */
 msfs_link, /* link */
 msfs_rename, /* rename */
 msfs_mkdir, /* mkdir */
 msfs_rmdir, /* rmdir */
 msfs_symlink, /* symlink */
 msfs_readdir, /* readdir */
 msfs_readlink, /* readlink */
 msfs_abortop, /* abortop */
 msfs_inactive, /* inactive */
 msfs_reclaim, /* reclaim */
 msfs_bmap, /* bmap */
 msfs_strategy, /* strategy */

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

File (vnode) operations (3 of 3)

 msfs_print, /* print */
 msfs_page_read, /* page_read */
 msfs_page_write, /* page_write */
 msfs_swap, /* swap handler */
 msfs_bread, /* buffer read */
 msfs_brelse, /* buffer release */
 msfs_lockctl, /* file locking */
 msfs_syncdata, /* fsync byte range */
 msfs_noop, /* Lock a node */
 msfs_noop, /* Unlock a node */
 msfs_getproplist, /* Get extended attributes */
 msfs_setproplist, /* Set extended attributes */
 msfs_delproplist, /* Delete extended attributes
*/
 msfs_pathconf, /* pathconf */
};

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

UBC interface

• vnode operations used in paging
•msfs_getpage

– to obtain a page from disk

•msfs_putpage
– to write a page to disk

• The implementation is in:
– msfs/osf/msfs_misc.c

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Device driver interface routines

• In AdvFS struct buf
– b_iodone field contains address of msfs_iodone()

• Or bs_raw_complete() for raw I/O operations
– represents a buffer of data
– listhead is bsBufList

• At interrupt
– device driver calls msfs_iodone()

• msfs_iodone()
– temporarily raises system priority level
– places buffer on MsfsIodoneBuf queue (holds completed I/O

operations for AdvFS) found within the processor structure.
– posts LWC_PRI_MSFS_UBC

• The implementation is in: msfs/osf/msfs_io.c

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS Lightweight Context
(LWC) interface

• Priority: LWC_PRI_MSFS_UBC
• Entry: msfs_async_iodone_lwc()
•msfs_async_iodone_lwc()

– removes buffer from MsfsIodoneBuf
– calls bs_osf_complete()

• The implementation is in:
– msfs/osf/msfs_io.c

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS I/O completion function

• Checks for many errors
– if appropriate, prints error messages
– if error while writing to log, panic kernel

• Call bs_io_complete() to reach BAS layer
• Initiate more I/O if appropriate
• Source location: msfs/bs/bs_qio.c

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS I/O descriptors

• AdvFS struct ioDesc: Element of the I/O queue
– contains reference to the "standard" struct buf
– AdvFS structure for queueing I/O requests

• AdvFS struct ioDescHdr
– header element for an I/O queue of stuct ioDesc

• Source location is msfs/msfs/bs_ims.h

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Bitfile buffer structure

• AdvFS struct bsBuf
– associates I/O descriptions with bitfile sets

• contains transaction information

• queues “dirty” buffers of a bitfile

– for "normal" files, contains reference to struct ioDesc
– for Direct I/O, contains reference to struct buf

• Source location is msfs/msfs/bs_buf.h

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS I/O queues in Tru64 UNIX V5

Synchronous
I/O Request

 Asynchronous
I/O Request

Blocking Queue

Flush Queue

UBC Request Queue

Device
Queue

Lazy Queue

Wait
Queue

Smooth
Sync

Queue

Ready
Queue

Consol
queue

D
isk

Sync. Writes
(fsync)

VM Requests

Reads
Metadata

Figure taken from "What’s New with AdvFS" by Thomas Sjolshagen.

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS API in Tru64 UNIX V5

Introduced to support user-written backup
and restore routines

•advfs_clonefset
•advfs_get_fdmn_list
•advfs_get_file_attributes
•advfs_get_fset_list
•advfs_get_fset_quotas
•advfs_rmfset
•advfs_set_file_attributes
•advfs_set_fset_quotas

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

True AdvFS system call

•msfs_real_syscall()
– single call - many flavors
– called through MsfsSyscallp (filled in when AdvFS is

started) with the lower 32 bits of the KSEG address of
msfs_real_syscall()

– MsfsSyscallp + 0xfffffc0000000000 =
&msfs_real_syscall()

• First argument is the operation type
– used in a large case statement to determine the action

• Source location: msfs/bs/bs_misc.c

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Prototype for msfs_real_syscall()

int

msfs_real_syscall(

 opTypeT opType,

 /* in - msfs operation to be performed */

 libParamsT *parmBuf,

 /* in - ptr to op-specific parameters
buffer;*/

 /* contents are modified. */

 int parmBufLen

 /* in - byte length of parmBuf */

);

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Types of AdvFS system calls

• 60 types
• User interface

– library wrappers for system call
• compiled into /usr/shlib/libmsfs.so

• included from msfs_syscalls.h

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Operation types within msfs_real_syscall()
(1 of 5)

typedef enum {
 OP_NONE,
 OP_GET_BF_PARAMS,
 OP_SET_BF_ATTRIBUTES,
 OP_GET_BF_XTNT_MAP,
 OP_ADD_STG,
 OP_ADD_OVER_STG,
 OP_MIGRATE,
 OP_DMN_INIT,
 OP_GET_DMNNAME_PARAMS,
 OP_GET_DMN_PARAMS,
 OP_SET_DMN_PARAMS,
 OP_GET_DMN_VOL_LIST,
 OP_GET_VOL_PARAMS,
 OP_SET_VOL_IOQ_PARAMS,

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Operation types within msfs_real_syscall()
(2 of 5)

 OP_DUMP_LOCKS,
 OP_TRACE,
 OP_FSET_CREATE,
 OP_FSET_DELETE,
 OP_FSET_CLONE,
 OP_FSET_GET_INFO,
 OP_FSET_GET_ID,
 OP_GET_BFSET_PARAMS,
 OP_SET_BFSET_PARAMS,
 OP_ADD_VOLUME,
 OP_CRASH,
 OP_MSS_RESV1,
(...)
 OP_MSS_RESV17,
 OP_UNDEL_ATTACH,

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Operation types within msfs_real_syscall()
(3 of 5)

 OP_UNDEL_DETACH,
 OP_UNDEL_GET,
 OP_GET_NAME,
 OP_REM_STG,
 OP_EVENT,
 OP_TAG_STAT,
 OP_SWITCH_LOG,
 OP_GET_BF_IATTRIBUTES,
 OP_SET_BF_IATTRIBUTES,
 OP_MOVE_BF_METADATA,
 OP_GET_VOL_BF_DESCS,
 OP_REM_VOLUME,
 OP_ADD_REM_VOL_SVC_CLASS,
 OP_SWITCH_ROOT_TAGDIR,
 OP_SET_BF_NEXT_ALLOC_VOL,
 OP_DISK_ERROR,

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Operation types within msfs_real_syscall()
(4 of 5)

 OP_FTX_PROF,
 OP_REWRITE_XTNT_MAP,
 OP_RESET_FREE_SPACE_CACHE,
 OP_SET_NEXT_TAG,
 OP_REM_NAME,
 OP_REM_BF,
 OP_FSET_RENAME,
 OP_GET_LOCK_STATS,
 OP_FSET_GET_STATS,
 OP_GET_BKUP_XTNT_MAP,
 OP_GET_VOL_PARAMS2,
 OP_GET_GLOBAL_STATS,
 OP_GET_SMSYNC_STATS,
 OP_GET_IDX_BF_PARAMS,
 OP_ADD_REM_VOL_DONE,

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Operation types within msfs_real_syscall()
(5 of 5)

OP_GET_CLUDIO_XTNT_MAP,
OP_SET_BFSET_PARAMS_ACTIVATE,
OP_SS_SET_LICENSE,
OP_SS_GET_LICENSE,
OP_SS_DMN_OPS,
OP_SS_GET_PARAMS,
OP_SS_SET_PARAMS,
OP_SS_GET_FRAGLIST,
OP_SS_GET_HOTLIST

} opIndexT;

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Domains and volumes

Utilities:
•msfs_dmn_init() mkfdmn
•msfs_add_volume() addvol
•advfs_remove_volume() rmvol
•msfs_get_dmn_params() showfdmn
•msfs_syscall_op_get_dmn_vol_list()

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Prototype for msfs_dmn_init() (1 of 2)

mlStatusT
msfs_dmn_init(
 char* domain, /* in - bf domain name */
 int maxVols, /* in - maximum number of
 virtual disks */
 u32T logPgs, /* in - number of pages
 in log */
 mlServiceClassT logSvc, /* in - log service
 attributes */
 mlServiceClassT tagSvc, /* in - tag directory
 service attributes */
 char *volName, /* in - block special
 device name */
 mlServiceClassT volSvc, /* in - service class */
 u32T volSize, /* in - size of the
 virtual disk */

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Prototype for msfs_dmn_init() (2 of 2)

 u32T bmtXtntPgs, /* in - number of pages
 per BMT extent */
 u32T bmtPreallocPgs, /* in - number of pages to
 be preallocated for the BMT */
 u32T domainVersion, /* in - on-disk version
 of domain */
 mlBfDomainIdT* bfDomainId /* out - domain id */
);

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Prototype for msfs_add_volume()

mlStatusT
msfs_add_volume(
 char *domain, /* in - domain name */
 char *volName, /* in - block special
 device name */
 mlServiceClassT *volSvc, /* in/out –
 service class */
 u32T volSize, /* in - size of the
 virtual disk */
 u32T bmtXtntPgs, /* in - number of pages
 per BMT extent */
 u32T bmtPreallocPgs, /* in - number of pages to
 be preallocated for the BMT */
 mlBfDomainIdT *bfDomainId,/* out - domain id */
 u32T *volIndex /* out - vol index */
);

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Prototype for advfs_remove_volume()

mlStatusT

advfs_remove_volume(

 mlBfDomainIdT bfDomainId, /* in */

 u32T volIndex, /* in */

 u32T forceFlag /* in */

);

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Prototype for
msfs_syscall_op_get_dmn_params()

mlStatusT

msfs_syscall_op_get_dmn_params(

 libParamsT *libBufp

);

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Filesets

• System call
• Utility

– msfs_fset_create() mkfset
– msfs_fset_clone() clonefset
– msfs_fset_delete() rmfset
– msfs_set_bfset_params() chfsets

• And many more

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Prototype for msfs_fset_create()

mlStatusT

msfs_fset_create(

 char *domain, /* in - domain name */

 char *setName, /* in - set's name */

 mlServiceClassT reqServ, /* in - required service

 class */

 mlServiceClassT optServ, /* in - optional service

 class */

 u32T userId, /* in - user id */

 gid_t quotaId, /* in - group ID for

 quota files */

 mlBfSetIdT *bfSetId /* out - bitfile set id */

);

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Miscellaneous operations

•advfs_migrate()
– moves blocks of open file

•msfs_syscall_op_set_bf_attributes()
– stripes a file

•msfs_undel_attach()
– attaches a trashcan directory

•advfs_ss_set_params()
– sets parameters for vFast

•advfs_ss_get_hotlist()
– gets list of hot files from vFast

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Startup and recovery overview

• Begins with a mount(2) system call
– Or vfs_mountroot() which does part of the job

• Invokes msfs_mount() found in msfs_vfsops.c
• Calls get_domain_disks()

– searches /etc/fdmns/domain (for list of virtual disks)

• Calls advfs_mountfs()(found in msfs_vfsops.c) to
do the real work

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Mounting the file system

• Obtains names of the fileset
• Activates the bitfile-set

– with bs_bfset_activate()

• Initializes various in-memory structures

• Opens significant bitfiles
– tagdir, root, fragment

• Links file system into mount list

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Activating the bitfile-set

•bs_bfset_activate_int()
• Activates or finds a domain structure

– with bs_bfdmn_tbl_activate()

• Finds the appropriate bitfile-set
– with bs_bfs_find_set()(which looks in the root tag

directory)

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Activating the domain –
search for virtual disks

•bs_bfdmn_tbl_activate()
• If domain not active:

– search virtual disks of domain
– check for consistencies:

• virtual disk count on disk

• number of links in /etc/fdmns

– find the transaction log
– activate the domain

• with bs_bfdmn_activate()

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Activating the domain –
full activation

•bs_bfdmn_activate()
• Open the transaction log

– with lgr_open()

• Open root tag directory
– when appropriate

• Start crash recovery activities
– with ftx_bfdmn_recovery()

• Remove delete-pending filesets

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Recovering a domain

•ftx_bfdmn_recovery()
• Three recovery passes

– pass 1 -- RBMT file
– pass 2 -- Other reserved metadata bitfiles
– pass 3 -- Other metadata bitfiles

• After the three passes
– perform any further recovery actions

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Recovery pass (1 of 2)

• Recovers Domain Consistency
•ftx_recovery_pass()
• Scan the log

– read a record
– put in slot for this FTX ID

• allocate new one if needed

– On pass 1
• buffer continuation and root done record

– If record matches current pass
• perform record image redo records

• perform operation redo record

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Recovery pass (2 of 2)

– if level and member are zero, free the FTX slot

• Loop through remaining FTX slots
– if level is not zero:

• this is part of an uncompleted transaction

• fail the transaction

Execute the undo records

In pass appropriate manner

– if level is zero, better do the root done operations

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

BAS-level storage allocation

• Disk free storage list
– starting address and size of free storage
– may not be large enough to hold all free storage locations

(especially if disk is very fragmented)

• BAS-level routines add storage
– without much regard to efficiency
– though they will join adjacent grants into one extent (thus small

sequential extents may become one)

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

FAS-level storage allocation

• If file is being written sequentially:
– data space is preallocated in page sizes of

• MIN(pg_to_write/4, MAX_PREALLOC_PAGES)
pg_to_write is present page number

MAX_PREALLOC_PAGES is presently 16

– if this fails, data space is allocated as needed
– BAS-level will combine adjacent allocations

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Truncating bitfiles

• When bitfile closes:
– AdvFS sees if last page should be allocated in the fragment

file

• If necessary:
– a fragment is allocated
– last page is now unused

• If there are unused pages at end of file:
– unused pages are deallocated
– this can result in the release of small disk areas

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Creating a clone

fs_fset_clone()
• Perform various access checks

bs_bfs_clone ()
• Create new bitfile-set
• Copy original’s tagfile to clone’s tagfile
• Make appropriate modifications to bitfile-set attributes

record

Files open when cloning may not have perfect snapshots

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Prototype for fs_fset_clone()

/*
 * fs_fset_clone
 *
 * Creates a clone file set of an 'original' file set.
 */
statusT
fs_fset_clone(
 char *domain, /* in - name of set's domain */
 char *origSetName, /* in - name of orig set */
 char *cloneSetName, /* in - name of new
 clone set */
 bfSetIdT *retCloneBfSetId, /* out - clone
 set's id */
 long xid /* in - CFS transaction id */
)

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Writing to a cloned original

• Bitfile pages of original are copy-on-write
• On first modification of bitfile

– new mcell is allocated for clone bitfile
– original and clone primary mcells are now different

• On first modification of bitfile page
– new extent is allocated for clone bitfile
– original data is copied to clone’s extent
– clone extent map has holes for original data

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Reading from a clone

• See if clone bitfile has requested page
• If not:

– see if page really is within range of clone bitfile
– check extent maps of original bitfile for page

• If a page is written into a hole of the original
– clone must be given a ‘permanent hole’ extent

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Deleting bitfile from cloned original

• Must ensure data is available for clone after deletion
from original fileset

• Original fileset is marked delete with clone
– it exists until clone fileset is deleted

• Not the same as unlinking a file from fileset
– FAS-level understands multiple links for one file

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Deleting a bitfile

• Set bitfile attributes state to BSRA_DELETING
• Delete the bitfile from the tagfile
• Add bitfile to DDL, Deferred-Delete List for disk

– if system crashes, on recovery DDL is processed

• Wait for bitfile to close to reap the storage

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Closing a deleted bitfile

Carefully delete the storage
• Perform a series of root transactions

– pin several pages of SBM
– update the storage bit map to delete extents
– update the delRst field of bitfile’s extent map to point to next

extent to delete

Carefully delete the bitfile’s mcell chain
• Perform a series of continued transactions

– pin several pages BMT
– free the mcells on those pages
– start a continuation transaction which knows next mcell to

delete

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Migrating a bitfile

• Allocate new target storage
– place target on deferred delete list (if system crashes, it is

gone on recovery)

• Put target storage on copy extent map list
– modifications will go to both source and target!

• Copy blocks -- source to target
• Flush blocks
• Switch roles on target and source

– source will be reclaimed

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Deleting a fileset

• Add bitfile-set to domain’s delete pending list
• Iterate through the tags of the bitfile-set

– delete each bitfile

• Remove bitfile-set from bitfile-set delete pending list

• Delete tagfile

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS threads

• Created by kernel idle thread routine (PID 0)
• Receive typed messages on queue
• Block with cond_wait()

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Fragment bitfile thread

• One per system
• Deallocates frag groups of type 0

– when there are too many
– target is AdvfsMinFragGrps (default is 16)

• Awakened from frag_group_dalloc()
– with message containing bitfile-set ID

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

I/O thread

• For START_MORE_IO messages
– calls bs_startio() for a virtual disk
– awakened by bs_osf_complete() when queue is small

• For LF_PB_CONT messages
– check if a log flush continue or a pin block continue is needed
– awakened by bs_io_complete() if HiFlushLSN has

changed

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Bitfile access thread

• Allocates bfAccess structures
• Awakened by bfAccess allocation routines
• For ALLOC_BFAP_NORMAL messages

– respects AdvfsAccessMaxPercent limit

• For ALLOC_BFAP_ROOT messages
– gives root 1% more than AdvfsAccessMaxPercent

• For ALLOC_BFAP_NORMAL messages
– ignores AdvfsAccessMaxPercent limit

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Extend RMBT thread

• For FINSH_DIR_TRUNC messages
– allocates a new page to the RBMT
– awakened when there are only two free Mcells in the RBMT

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS cleanup thread

• For FINSH_DIR_TRUNC messages
– truncates space from directory
– awakened by routines to insert directory entries

• For CLEANUP_CLOSED_LIST messages
– moves bfAccess structures from closed to free list
– awakened by routines which allocate bfAccess structures

• For DEALLOCATE_BFAPS messages
– deallocates bfAccess structures
– doesn’t seem to be used in V5.1B

• For UPDATE_BAD_FRAG_GRP_HDR messages
– marks a fragment group header as bad
– awakened by routines that allocate fragments

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Freeze thread

• Added in Tru64 UNIX V5.1A
– supports functionality of freezefs and thawfs

• Maintains a queue of timeouts for frozen domains

• Responsible for initiating a file system thaw at timeout

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS vFast threads

• Added in Tru64 UNIX V5.1B
– Supports vFast

• Three types of threads
– Boss Only one of these
– Monitor Only one of these
– List
– Worker

• Source files:
– msfs/bs/vfast.c
– msfs/msfs/vfast.h

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

vFast boss threads

• Creates and manages the thread pools
• Terminates and restarts thread pools when appropriate
• Adjust the rate at which hot file messages are generate
• Executes ss_boss_thread

• For the most part, follows the orders of the monitor
thread

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

vFast monitor thread

• Monitors message queues
– tells the boss thread when to create new threads
– tells the boss thread when to adjust rate of hot file

messages

• Periodically checks I/O load balance
– to see if any files should be moved to lightly loaded

volume

• Checks degree of fragmentation within domain
– to see if any files should be defragmented

• Executes ss_monitor_thread
• Tells the boss what to do

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

vFast list thread pool

• Maintains list of “hot files”
– using information regarding bitfile page references

• Maintains list of fragment files
– using information provided by monitor

• Executes ss_list_thd_pool

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

vFast worker thread

• Waits for messages on the lists
• Invokes ss_vd_migrate to move files
• Only works when system I/O load is low
• Executes ss_work_thd_pool

• Finally, a thread that does some real work

Learning

check

Lab 4

