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Objectives

• Define the terms: file domains, filesets, and volumes
• Describe extent-based storage
• Describe logging and the benefits of transactions
• Describe at a high level: clones, file striping, trashcan 

directories

• Describe the AdvFS architecture and on-disk format at 
a high level
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File domains and filesets

• An AdvFS ‘volume’ represents the actual storage entity 
within a domain

• A file domain is a named set of one or more volumes 
that provide a shared pool of physical storage

• A volume is any mechanism that behaves like a UNIX 
block device

– an entire disk
– a disk partition
– a logical volume configured with the Logical Storage Manager 

(LSM)

• A fileset represents a portion of the directory hierarchy
– follows the logical structure of a traditional UNIX file system 
– hierarchy of directory names and file names.  It's what you 

mount
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AdvFS characteristics

• Within AdvFS, ‘pools of storage’ called ‘domains’ are 
characteristics that make AdvFS an ‘advanced’ file 
system

• Most other file systems lack the ability to draw storage 
from a pool shared among multiple filesets

• AdvFS goes beyond UFS, by allowing you to create 
multiple filesets that share a common pool of storage 
within a defined file domain

• A fileset is similar to a file system in the following 
ways:

– you can mount filesets like you can mount file systems
– filesets can have quotas enabled
– filesets can be backed up. 

• AdvFS separates the directory layer from the storage 
layer
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AdvFS capabilities

• Filesets offer features not provided by file systems:
– you can clone a fileset and back it up while users are still 

accessing the original
– a fileset can span several disks (volumes) in a file domain
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Two filesets, one domain, three volumes

Domain with 3 volumes

Fileset A

Fileset B
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Filesets and partitions

Filesets

File Domain Volumes (Disk Partitions)

Filesets != Partitions
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Volumes

• Volumes are ‘virtual disks’ because they function just 
as a disk would in less sophisticated file systems  

• A physical storage building block for a file domain

• Any logical UNIX block device

– “real" disk partition

– hardware RAID logical disk

– LSM volume

• Administered from /etc/fdmns
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Displaying a directory under /etc/fdmns

# ls -l /etc/fdmns/usr_domain

lrwxr-xr-x   1 root  system      15 Mar 17 17:56 dsk2g 
-> /dev/disk/dsk2g
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Filesets

• A file/directory tree mapped to a domain

• Created using the command mkfset or through 
dxadvfs

• Mounted like a file system

• Administered from /etc/fstab file
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Filesets

Mounting through /etc/fstab
# cat /etc/fstab
root_domain#root /    advfs rw 0 1
usr_domain#usr /usr    advfs rw 0 2
local_dmn#alpha_fs /local    advfs rw 0 3
local_dmn#users_fs /users    advfs
rw,userquota 0 3
/proc /proc    procfs rw 0 0
/dev/fd /dev/fd   fdfs rw 0 0
/backup@tryon /backup   nfs
rw,bg,noexec,nodev
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Extent concepts

• AdvFS attempts to write each file to disk as a set of 
contiguous pages

• This set of contiguous pages is called an extent

• An extent map translates the bitfiles to disk blocks

• Pages are added to a file by preallocating one fourth of 
the file size up to 16 pages each time data is appended 
to the file

• When a file uses only part of the last page, a file 
fragment is created
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Extent-based storage

logical file
extent 1 extent 2

Extent Map

Disk Space

extent 1 extent 2
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Displaying extents using 
the showfile command

• Use showfile to view AdvFS details pertaining to an 
individual file
– showfile displays the extent map of each file  

• Simple files have one extent map

• Striped files have an extent map for every stripe 
segment

• The showfile command cannot display attributes for 
symbolic links or non-AdvFS files

• Simple file has one extent map, striped file has more 
than one extent map 
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Using showfile to display 
a contiguous file

# showfile -x /usr/users/obrien/disktab

         Id  Vol  PgSz  Pages  XtntType  Segs  SegSz  I/O   Perf  File

  596b.8001    1    16      3    simple    **     **  async 100%  disktab

    extentMap: 1

        pageOff    pageCnt     vol    volBlock    blockCnt

              0          3       1      576496          48

        extentCnt: 1
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An extent map displays 
the following information

• pageOff is the starting page number of the extent

• pageCnt is the number of 8K pages in the extent

• vol is a number indicating which volume within the 
domain contains this file

• volBlock is the starting block number of the extent

• blockCnt is the number of blocks in the extent

• extentCnt is the number of extents
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Why logging

• Many file system operations involve several widely 
separated writes to disk

– a transaction usually consists of more than one write

– crash in between the writes leaves the on-disk file system 
inconsistent

• Fast crash recovery

• Improved performance for metadata-intensive 
operations
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Logging a transaction

• Storage is allocated in the bitfile metadata table (BMT) 
(log record 1)

• Bitfile tag slot is allocated (log record 2)

• Directory entry is changed (log record 3)

• Transaction is committed (log record 4)

• Buffered log records are written to disk

• Buffered bitfile pages are written to disk and the log 
pages are removed
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Event sequence for logging a transaction

Tag Directory

"log"
tagN

Directory

1 2 3 Commit    4 5

6

1

2

3

Log

intentions commit record
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AdvFS logging (1 of 2)

• AdvFS transaction

– modifications to its own metadata (internal structures)

– not user file data (unless atomic write data logging has been 
enabled using chfile -L).

• For each transaction, AdvFS:

– writes a series of log records describing all changes for an 
operation to disk 

and then

– performs changes (writes changed blocks to disk)
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AdvFS logging (2 of 2)

• In case of crash

– on reboot

– on-disk log indicates which transactions are complete

• File directory to insert a new file name

• Fileset tag directory to allocate the new file's tag

• Bitfile table to allocate an entry for the new file
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Cloning a fileset using clonefset (1 of 3)

• Lock the master (original) fileset

• Create the clone fileset

• Copy the tag directory of the master to the clone

• Increment the clone count in the master fileset

• Set the clone’s cloneID = clone count in the master
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Cloning a fileset using clonefset (2 of 3)

Handling a write to the master involves these steps:

• If the cloned bitfile does not already exist in the clone 
fileset, create a bitfile for the file in the clone fileset

• Modify the clone fileset tag dir to reference the new file 

• Allocate an extent in the new file for the portion being 
written

• Copy the original data to the new  extent

• Let the write occur to the file in the master
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Cloning a fileset using clonefset (3 of 3)

Domain

Application

write

Backup tool

read

COWread

after clone is created, before any writes

first write to a block in the original (master) fileset

access to COW write blocks in the cloned fileset
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Cloning issues

• Applications should not be writing to the master when 
the clone is created

– fortunately cloning time is very fast (seconds)  due to Copy-
On-Write (COW)

• A clone is not a backup

• A clone is a tool for minimizing down time for a fileset 
due to backups

– make clone of fileset

– back up from clone

– delete clone
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File striping (1 of 2)

• The stripe utility directs a zero-length file (a file with 
no data written to it yet) to be spread evenly across 
several volumes within a file domain

• Existing, nonzero-length files cannot be striped using 
the stripe utility
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File striping (2 of 2)

Domain
File

1
2

3
4
5
..
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Overview of trash cans

• Trashcan directories can be attached to one or more 
directories within the same fileset

• Root-user privilege is not required to retrieve files from 
a trashcan directory

• You can restore only the most recently deleted version 
of a file

• You can attach more than one directory to the same 
trashcan directory; however, if you delete files with 
identical file names from the attached directories, only 
the most recently deleted file remains in the trashcan 
directory

• When you delete files in the trashcan directory, they are 
unrecoverable
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Trashcans

Trashcan Dir

rm

mv
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File domain commands

•mkfdmn   - Make a file domain

•addvol   - Add a new volume to the domain

•rmvol   - Remove a volume from the domain

•balance   - Distribute storage over the volumes evenly

•defragment - Make files contiguous if possible

•vfast   - Background defragmentation

                         and file balancing  (V5.1B)
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Fileset commands

•mkfset - Make a fileset

•chfsets - Change fileset characteristics

•clonefset - Make a fileset clone
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File commands

•migrate - Move a file from one volume 

                                 to another

•stripe  - Make an empty striped file

•mktrashcan - Make a trashcan directory

•chfile  - Change file attributes
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AdvFS architecture (1 of 2)

File access subsystem (FAS)

• Emulates UFS and POSIX file and directory semantics

• Uses bitfiles to implement files and directories
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AdvFS architecture (2 of 2)

Bitfile access subsystem (BAS)

• Manipulates bitfiles: create, open, read, write, add and 
remove storage 

• Bitfile: array of 8K pages named via a tag. A tag is a 
unique identifier within a domain similar to an inode 
number

• Interfaces with buffer cache, VM interface, I/O 
scheduling

• Provides transaction and log management

• Provides storage placement and management

• Provides domain and fileset management
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File access: The Big Picture
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AdvFS architecture overview

VFS

Block Device Interface

File Access Subsystem (FAS)

Bitfile Access Subsystem (BAS)

VFS operations
vnode operations

Domains and Volumes
Bitfiles
Transaction Management
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AdvFS components (1 of 2) 

• File Access Subsystem (FAS):

• POSIX file system layer in AdvFS - translates VFS file 
system requests into BAS requests 

•  Components:

– mount, unmount, initialization

– directory operations (lookup, create, delete)

– file operations (create, read, write, stat, delete, 
rename)
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AdvFS components (2 of 2)

Bitfile access subsystem (BAS): bitfile layer in AdvFS 

• Domain operations (create, delete, open, close)

• Bitfile set operations (create, delete, clone, open, close)

• Bitfile operations (create, delete, open, close, migrate, read, 
write, add & remove stg)

• Transactions management operations (start, stop,fail, pin 
pg, pin record, lock, recover)

• Buffer cache operations (pin & unpin page, ref & deref page, 
flush bitfile, flush cache, prefetch pages, I/O queuing)

• Volume operations (add, remove)
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AdvFS in Tru64 UNIX V5 (1 of 2)

• Version 5 of Tru64 UNIX has a new version of the on-
disk structure of AdvFS

• The previous version of the AdvFS on-disk structure 
was V3; in Tru64 UNIX V5.0, the AdvFS on-disk 
structure is version 4
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AdvFS in Tru64 UNIX V5 (2 of 2)

Additional Features:

• Faster directory searches for directories larger than 8K

• Quota limits now held in 8-byte fields yielding higher 
limits

• Removal of metadata limitations (such as BMT page 0 
restrictions)

• Direct I/O allowing I/O direct to the application’s 
address space (no UBC buffering)

• Smooth sync() operations to eliminate the update 
daemon 30-second system I/O bursts

• SMP improvements 
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