
Advanced File System
concepts

Module 1

Copyright (C) 2008 Hewlett-Packard
Development Company, L.P.

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Objectives

• Define the terms: file domains, filesets, and volumes
• Describe extent-based storage
• Describe logging and the benefits of transactions
• Describe at a high level: clones, file striping, trashcan

directories

• Describe the AdvFS architecture and on-disk format at
a high level

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

File domains and filesets

• An AdvFS ‘volume’ represents the actual storage entity
within a domain

• A file domain is a named set of one or more volumes
that provide a shared pool of physical storage

• A volume is any mechanism that behaves like a UNIX
block device

– an entire disk
– a disk partition
– a logical volume configured with the Logical Storage Manager

(LSM)

• A fileset represents a portion of the directory hierarchy
– follows the logical structure of a traditional UNIX file system
– hierarchy of directory names and file names. It's what you

mount

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS characteristics

• Within AdvFS, ‘pools of storage’ called ‘domains’ are
characteristics that make AdvFS an ‘advanced’ file
system

• Most other file systems lack the ability to draw storage
from a pool shared among multiple filesets

• AdvFS goes beyond UFS, by allowing you to create
multiple filesets that share a common pool of storage
within a defined file domain

• A fileset is similar to a file system in the following
ways:

– you can mount filesets like you can mount file systems
– filesets can have quotas enabled
– filesets can be backed up.

• AdvFS separates the directory layer from the storage
layer

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS capabilities

• Filesets offer features not provided by file systems:
– you can clone a fileset and back it up while users are still

accessing the original
– a fileset can span several disks (volumes) in a file domain

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Two filesets, one domain, three volumes

Domain with 3 volumes

Fileset A

Fileset B

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Filesets and partitions

Filesets

File Domain Volumes (Disk Partitions)

Filesets != Partitions

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Volumes

• Volumes are ‘virtual disks’ because they function just
as a disk would in less sophisticated file systems

• A physical storage building block for a file domain

• Any logical UNIX block device

– “real" disk partition

– hardware RAID logical disk

– LSM volume

• Administered from /etc/fdmns

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Displaying a directory under /etc/fdmns

ls -l /etc/fdmns/usr_domain

lrwxr-xr-x 1 root system 15 Mar 17 17:56 dsk2g
-> /dev/disk/dsk2g

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Filesets

• A file/directory tree mapped to a domain

• Created using the command mkfset or through
dxadvfs

• Mounted like a file system

• Administered from /etc/fstab file

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Filesets

Mounting through /etc/fstab
cat /etc/fstab
root_domain#root / advfs rw 0 1
usr_domain#usr /usr advfs rw 0 2
local_dmn#alpha_fs /local advfs rw 0 3
local_dmn#users_fs /users advfs
rw,userquota 0 3
/proc /proc procfs rw 0 0
/dev/fd /dev/fd fdfs rw 0 0
/backup@tryon /backup nfs
rw,bg,noexec,nodev

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Extent concepts

• AdvFS attempts to write each file to disk as a set of
contiguous pages

• This set of contiguous pages is called an extent

• An extent map translates the bitfiles to disk blocks

• Pages are added to a file by preallocating one fourth of
the file size up to 16 pages each time data is appended
to the file

• When a file uses only part of the last page, a file
fragment is created

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Extent-based storage

logical file
extent 1 extent 2

Extent Map

Disk Space

extent 1 extent 2

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Displaying extents using
the showfile command

• Use showfile to view AdvFS details pertaining to an
individual file
– showfile displays the extent map of each file

• Simple files have one extent map

• Striped files have an extent map for every stripe
segment

• The showfile command cannot display attributes for
symbolic links or non-AdvFS files

• Simple file has one extent map, striped file has more
than one extent map

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Using showfile to display
a contiguous file

showfile -x /usr/users/obrien/disktab

 Id Vol PgSz Pages XtntType Segs SegSz I/O Perf File

 596b.8001 1 16 3 simple ** ** async 100% disktab

 extentMap: 1

 pageOff pageCnt vol volBlock blockCnt

 0 3 1 576496 48

 extentCnt: 1

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

An extent map displays
the following information

• pageOff is the starting page number of the extent

• pageCnt is the number of 8K pages in the extent

• vol is a number indicating which volume within the
domain contains this file

• volBlock is the starting block number of the extent

• blockCnt is the number of blocks in the extent

• extentCnt is the number of extents

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Why logging

• Many file system operations involve several widely
separated writes to disk

– a transaction usually consists of more than one write

– crash in between the writes leaves the on-disk file system
inconsistent

• Fast crash recovery

• Improved performance for metadata-intensive
operations

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Logging a transaction

• Storage is allocated in the bitfile metadata table (BMT)
(log record 1)

• Bitfile tag slot is allocated (log record 2)

• Directory entry is changed (log record 3)

• Transaction is committed (log record 4)

• Buffered log records are written to disk

• Buffered bitfile pages are written to disk and the log
pages are removed

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Event sequence for logging a transaction

Tag Directory

"log"
tagN

Directory

1 2 3 Commit 4 5

6

1

2

3

Log

intentions commit record

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS logging (1 of 2)

• AdvFS transaction

– modifications to its own metadata (internal structures)

– not user file data (unless atomic write data logging has been
enabled using chfile -L).

• For each transaction, AdvFS:

– writes a series of log records describing all changes for an
operation to disk

and then

– performs changes (writes changed blocks to disk)

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS logging (2 of 2)

• In case of crash

– on reboot

– on-disk log indicates which transactions are complete

• File directory to insert a new file name

• Fileset tag directory to allocate the new file's tag

• Bitfile table to allocate an entry for the new file

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Cloning a fileset using clonefset (1 of 3)

• Lock the master (original) fileset

• Create the clone fileset

• Copy the tag directory of the master to the clone

• Increment the clone count in the master fileset

• Set the clone’s cloneID = clone count in the master

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Cloning a fileset using clonefset (2 of 3)

Handling a write to the master involves these steps:

• If the cloned bitfile does not already exist in the clone
fileset, create a bitfile for the file in the clone fileset

• Modify the clone fileset tag dir to reference the new file

• Allocate an extent in the new file for the portion being
written

• Copy the original data to the new extent

• Let the write occur to the file in the master

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Cloning a fileset using clonefset (3 of 3)

Domain

Application

write

Backup tool

read

COWread

after clone is created, before any writes

first write to a block in the original (master) fileset

access to COW write blocks in the cloned fileset

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Cloning issues

• Applications should not be writing to the master when
the clone is created

– fortunately cloning time is very fast (seconds) due to Copy-
On-Write (COW)

• A clone is not a backup

• A clone is a tool for minimizing down time for a fileset
due to backups

– make clone of fileset

– back up from clone

– delete clone

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

File striping (1 of 2)

• The stripe utility directs a zero-length file (a file with
no data written to it yet) to be spread evenly across
several volumes within a file domain

• Existing, nonzero-length files cannot be striped using
the stripe utility

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

File striping (2 of 2)

Domain
File

1
2

3
4
5
..

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Overview of trash cans

• Trashcan directories can be attached to one or more
directories within the same fileset

• Root-user privilege is not required to retrieve files from
a trashcan directory

• You can restore only the most recently deleted version
of a file

• You can attach more than one directory to the same
trashcan directory; however, if you delete files with
identical file names from the attached directories, only
the most recently deleted file remains in the trashcan
directory

• When you delete files in the trashcan directory, they are
unrecoverable

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Trashcans

Trashcan Dir

rm

mv

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

File domain commands

•mkfdmn - Make a file domain

•addvol - Add a new volume to the domain

•rmvol - Remove a volume from the domain

•balance - Distribute storage over the volumes evenly

•defragment - Make files contiguous if possible

•vfast - Background defragmentation

 and file balancing (V5.1B)

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Fileset commands

•mkfset - Make a fileset

•chfsets - Change fileset characteristics

•clonefset - Make a fileset clone

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

File commands

•migrate - Move a file from one volume

 to another

•stripe - Make an empty striped file

•mktrashcan - Make a trashcan directory

•chfile - Change file attributes

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS architecture (1 of 2)

File access subsystem (FAS)

• Emulates UFS and POSIX file and directory semantics

• Uses bitfiles to implement files and directories

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS architecture (2 of 2)

Bitfile access subsystem (BAS)

• Manipulates bitfiles: create, open, read, write, add and
remove storage

• Bitfile: array of 8K pages named via a tag. A tag is a
unique identifier within a domain similar to an inode
number

• Interfaces with buffer cache, VM interface, I/O
scheduling

• Provides transaction and log management

• Provides storage placement and management

• Provides domain and fileset management

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

File access: The Big Picture

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS architecture overview

VFS

Block Device Interface

File Access Subsystem (FAS)

Bitfile Access Subsystem (BAS)

VFS operations
vnode operations

Domains and Volumes
Bitfiles
Transaction Management

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS components (1 of 2)

• File Access Subsystem (FAS):

• POSIX file system layer in AdvFS - translates VFS file
system requests into BAS requests

• Components:

– mount, unmount, initialization

– directory operations (lookup, create, delete)

– file operations (create, read, write, stat, delete,
rename)

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS components (2 of 2)

Bitfile access subsystem (BAS): bitfile layer in AdvFS

• Domain operations (create, delete, open, close)

• Bitfile set operations (create, delete, clone, open, close)

• Bitfile operations (create, delete, open, close, migrate, read,
write, add & remove stg)

• Transactions management operations (start, stop,fail, pin
pg, pin record, lock, recover)

• Buffer cache operations (pin & unpin page, ref & deref page,
flush bitfile, flush cache, prefetch pages, I/O queuing)

• Volume operations (add, remove)

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS in Tru64 UNIX V5 (1 of 2)

• Version 5 of Tru64 UNIX has a new version of the on-
disk structure of AdvFS

• The previous version of the AdvFS on-disk structure
was V3; in Tru64 UNIX V5.0, the AdvFS on-disk
structure is version 4

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

AdvFS in Tru64 UNIX V5 (2 of 2)

Additional Features:

• Faster directory searches for directories larger than 8K

• Quota limits now held in 8-byte fields yielding higher
limits

• Removal of metadata limitations (such as BMT page 0
restrictions)

• Direct I/O allowing I/O direct to the application’s
address space (no UBC buffering)

• Smooth sync() operations to eliminate the update
daemon 30-second system I/O bursts

• SMP improvements

Learning

check

Lab 1

