

Storage (Domain) Threshold Alerts

Design Specification

Version 0.3

NW

CASL

Building ZK3

110 Spit Brook Road

Nashua, NH 03062

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

 2

Primary reviewers:

Design Specification Revision History

Version Date Changes

0.1 01/12/04 First draft for internal review

0.2 01/14/04 Addressed comments from review

0.3 01/29/04 Addressed DS PRT comments

 3

1. Introduction

1.1 Overview

This project is intended to provide a means for administrators and/or
the system itself to respond to conditions of increased or decreased
consumption beyond a predetermined (threshold) limit of a filesystem’s
available storage pool.

On Tru64 Unix via the AdvFS GUI, each AdvFS Domain and fileset could
optionally have a "free space alert" set. When free space used by a
given object crossed the alert threshold (based upon percentage in use)
an alert was issued. Upon issuance of an alert, a shell script may

have optionally been executed.

1.2 Impacts

This project implements threshold management via AdvFS utilities and
threshold monitoring by the kernel with alerts generated in the form of
EVM events.

Due to the fact that on HPUX the user is not presented with the concept
of fileset domains, even though “under the covers” the domain/fileset
design still exists, AdvFS on HPUX will present thresholds as Storage
thresholds. A Storage threshold to the user is going to be implemented
as a domain threshold in the code. They will be settable on original
(non-snapset) Storages only, although any storage consumed by a snapset
will come from its parent filesystem’s storage pool and ultimately
contribute to hitting its Storages thresholds.

The original Tru64 Unix design implemented threshold functionality for
filesets as well. Although initially we will only be exposing domain
thresholds to the user (as Storage thresholds), the supporting code for
fileset thresholds will be defined in this document and implemented in
the coding stage as well.

As we still utilize a domain/fileset design in our AdvFS code, we will
be implementing kernel APIs, data structures, transaction FTX agent IDs
and RootDone records whose naming conventions follow the domain/fileset
maxim.

 4

2. Proposed Design

2.1 High Level Design Overview

In this initial version of the threshold project, Storage(domain)
thresholds will be exposed to the user. Fileset thresholds will be
implemented as well, but not presented to the user via any API.
Possibly sometime in future versions, fileset thresholds will be made
available.

A threshold can be defined as follows:

A threshold consists of a limit, interval, and an elapsed time value.
The limit and interval are values set by the user. The kernel is
responsible for managing the elapse time value.

The limit value is an integer that represents percent full for the
Storage. For a given filesystem(domain) or fileset there will be the
potential for setting two threshold limits. There can be an upper
limit threshold set and a lower limit threshold set. These can be
thought of as high and low water marks.

The interval value is an integer that equals the number of minutes that
must elapse prior to generating subsequent EVM events. This is to
eliminate the possibility of a flood of EVM events being generated as
storage continues to be allocated or deallocated around the threshold
limit. It is important to note two things. First is that events are
generated only when a request for storage takes us from being below a
threshold limit to being above that threshold limit, and that future
storage allocation above the limit would not generate an event
regardless of the event interval. Second is that users can set the
interval value to zero. This relinquishes ability of AdvFS to control
a potential flood of EVM events should storage thrash around the
threshold limit.

The proposed design is divided into three parts. The first deals with
displaying threshold values, the second deals with managing threshold
values, and the third deals with monitoring for threshold crossing and
generating EVM events when conditions have been satisfied.

2.1.1 Displaying Threshold values

Storage threshold values can be viewed by users via the AdvFS utility
fsadm_advfs from the fsadm wrapper command. The following goes through
the high level design for viewing Storage thresholds. Remember that
these are the equivalent of Domain thresholds.

2.1.1.1 User interface

Storage threshold values can be viewed via the fsadm info command which
will access the kernel via the existing API msfs_get_dmnname_params().

Fileset threshold values will be retrievable using the existing API
msfs_fset_get_info() but will not be utilized in the initial version of
this project.

 5

2.1.1.2 Kernel interface and syscall implementation

The libmsfs.so library interface makes a kernel syscall with the op-
type ADVFS_OP_GET_DMNNAME_PARAMS.

msfs_syscall_op_get_dmnname_params() will be the routine that gets
called for the operation. The threshold limit, event interval and time
of last event are copied into the user’s buffer from the in-memory
domainT structure.

2.1.2 Managing Threshold Values

User settable threshold values consist of both a threshold limit and an
event interval. A valid limit will be between 0 and 100, corresponding
to "percent full". A valid event interval will be between 0 and 10080,
corresponding to "minutes between EVM events". Intervals will be
settable via a minute, day. Some examples would be 5m or 3d. All
would be converted to minutes and dealt with by the kernel as such.
Thresholds are initialized at domain and fileset creation time to a
limit of 0. They remain inactive until activated by a System
Administrator by changing either the upper or lower limit to a valid
non-zero value. The following walks through the high level design for
managing each.

 2.1.2.1 User interface

Storage thresholds will be managed via the fsadm –chfs utility and will
access the kernel via the new API advfs_set_dmnname_params ().

The caller will have the ability to activate or deactivate threshold
monitoring for a given named, non-snap filesystem. If the caller wants
to activate threshold monitoring a valid filesystem name and threshold
limit must be given. This can be the upper and/or lower limit.
Providing an event interval is optional as a default value of 5 minutes
will be used if omitted by the caller. If the caller wishes to
deactivate threshold monitoring for a filesystem, fsadm –chfs would be
called with a valid Storage name and a threshold limit of 0 for both
the upper and lower values.

2.1.2.2 Kernel interface and syscall implementation

Storage (Domain) thresholds:

The libadvfs library interface makes a kernel syscall with the new
op-type ADVFS_OP_SET_DMNNAME_PARAMS.
advfs_syscall_op_set_dmnname_params() is the handling routine that gets
called for the operation.

Finally, bs_set_dmn_threshold_info() is called and the domain threshold
limits and event interval are copied into the in-memory domainT and
written out to disk in the BSR_DMN_MATTR record of the RBMT. This
record resides in the RBMT of the volume that holds the most current
Log for the domain.

 6

Fileset thresholds:

The libadvfs library interface makes a kernel syscall with the op-type
ADVFS_OP_SET_BFSET_PARAMS. advfs_syscall_op_set_bfset_params() is the
handling routine that gets called for the operation.

Finally, bs_set_bfset_threshold_info() is called and the fileset
threshold limits and event interval are copied into the in-memory
bfSetT and written out to disk in the BSR_BFS_ATTR record for the
fileset. This record resides in the RBMT of the volume that holds the
most current Log for the domain.

2.1.3 Threshold monitoring / EVM event generation

2.1.3.1 Upper Limit

Storage(domain) and fileset threshold upper limits are checked anytime
additional on-disk storage is requested in bs_stg.c:add_stg(). When
new storage is requested, if the upper threshold limit would be crossed
by the request, and the event interval has been exceeded as compared to
the time of the last EVM threshold event, a rootdone operation is
attached to the parent transaction handling the request for additional
storage. When the parent transaction completes, the rootdone
operation is executed and an EVM event is generated announcing the
crossing of the threshold limit. The rootdone approach guarantees that
an EVM event will not be generated unless the request for additional
storage succeeds.

2.1.3.2 Lower limit

Storage(domain) and fileset threshold lower limits are checked anytime
on-disk storage is removed by file deletion in
bs_access.c:bs_close_one() and when files are truncated in
bs_stg.c:dealloc_stg(). When storage is being removed, if the lower
threshold limit would be crossed by the request, and the event interval
has been exceeded as compared to the time of the last EVM threshold
event, a rootdone operation is attached to the parent transaction
handling the storage deallocation. When the parent transaction
completes, the rootdone operation is executed and an EVM event is
generated announcing the crossing of the threshold limit. The rootdone
approach guarantees that an EVM event will not be generated unless the
storage deallocation succeeds.

 7

3. Detailed Design Overview

The following describes the threshold project design in greater
detail. The approach will be to define new and changed data
structures, EVM events, FTX transaction types, and new functions for
the three general subsystems of the project followed by pseudo code of
the logic for each of these subsystems. Again, these are threshold
viewing, threshold management, and threshold monitoring. For the sake
of simplicity, threshold management and threshold viewing will be
combined in one subsection. First are listed the new and changed data
structures common to all three subsystems.

3.1 New or Changed Structures for Storage(domain)/fileset
Thresholds

3.1.1 bs_public.h:adv_threshold_t and adv_threshold_ods_t

These new data structure describe thresholds for domains and for
filesets. This structures will be incorporated into existing in-memory
structures in the case of adv_threshold_t and on disk in the case of
adv_threhsold_ods_t.

/*
 * holds domain and fileset threshold values in memory.
 */
typedef struct {
 uint32_t threshold_upper_limit;
 uint32_t threshold_lower_limit;
 uint32_t upper_event_interval;
 uint32_t lower_event_interval;
 uint64_t time_of_last_upper_event;
 uint64_t time_of_last_lower_event;
} adv_threshold_t;

/*
 * holds domain and fileset threshold values on disk.
 */
typedef struct {
 uint32_t threshold_upper_limit;
 uint32_t threshold_lower_limit;
 uint32_t upper_event_interval;
 uint32_t lower_event_interval;
} adv_threshold_ods_t;

3.1.2 bs_ods.h:bsDmnMAttrT

This is the existing on-disk RBMT record defined to hold domain mutable
attributes with the new thresholdT structure added.

#define BSR_DMN_MATTER 15
typedef struct {
 onDiskVersionT ODSVersion;

 8

 .
 .
 .
 thresholdT threshold;
 .
 .
} bsDmnMAttrT;

3.1.3 bs_ods.h:bsBfSetAttrT

This is the existing on-disk RBMT record defined to hold fileset
attributes with the new thresholdT structure added.

#define BSR_BFS_ATTR 8
typedef struct {
 bfSetIdT bfSetId;
 .
 .
 .
 thresholdT threshold;
 .
 .
} bsBfSetAttrT;

3.1.4 advfs_evm.h: #defines

These are the new EVM event types needed to support this project. Note
the use of STORAGE in the naming conventions due to exposure to the
user.

#define EVENT_STORAGE_UPPER_THRESHOLD_CROSSED
_EvmSYSTEM_EVENT_NAME("fs.advfs.storage.upper.threshold.crossed")

#define EVENT_STORAGE_LOWER_THRESHOLD_CROSSED
_EvmSYSTEM_EVENT_NAME("fs.advfs.storage.lower.threshold.crossed")

#define EVENT_FSET_UPPER_THRESHOLD_CROSSED
_EvmSYSTEM_EVENT_NAME("fs.advfs.fset.upper.threshold.crossed")

#define EVENT_FSET_LOWER_THRESHOLD_CROSSED
_EvmSYSTEM_EVENT_NAME("fs.advfs.fset.lower.threshold.crossed")

3.1.5 advfs_evm.h:advfs_ev

This is the modified advfs_ev structure. It’s used to pass data values
to the EVM. The only change is the addition of threshold_limit values
and event_interval values.

 9

typedef struct _advfs_event {
 char *special;
 char *domain;
 .
 .
 .
 uint32_t threshold_upper_limit; /* NEW */
 uint32_t threshold_upper_interval; /* NEW */
 uint32_t threshold_lower_limit; /* NEW */
 uint32_t threshold_lower_interval; /* NEW */
} advfs_ev_t;

3.2 New or Changed Structures and Functions for
Threshold Viewing / Management

3.2.1 msfs_syscalls.h:ml_threshold_t

This is a new structure that is used as the buffer for passing
threshold data between the user commands and the kernel via the AdvFS
system calls for viewing and managing thresholds.

The freeBlks and totalBlks contain data needed at the user level after
a threshold has been set with the fsadm_advfs utility. The utilities
make an initial check for threshold crossing and need these fields to
accomplish this.

typedef struct {
 thresholdT threshold; /* dmn or bfSet threshold values */
 uint64_t freeBlks; /* total free blocks in dmn or bfSet */
 uint64_t totalBlks; /* total blocks in dmn or bfSet */
 uint64_t unused[10]; /* zeroed and reserved for future use */
} ml_threshold_t;

3.2.2 msfs_syscalls.h:mlDmnParamsT

This is the new mlDmnParamsT structure that now includes an instance of
an mlThresholdT.

typedef struct {
 mlBfDomainIdT bfDomainId; /* domain id */
 .
 .
 .
 mlThresholdT threshold; /* domain threshold */
} mlDmnParamsT;

3.2.3 msfs_syscalls.h:libParamsT

The following are the one new and three existing union members of the
libParamsT structure used when making the four AdvFS system calls for
threshold viewing/management. The structure name infers the system call
it is associated with.

New:

 10

typedef struct {
 char *domain; /* in - domain name */
 mlDmnParmsT dmnParms; /* in - domain params */
} opSetDmnNameParamsT;

Existing:
typedef struct {
 char *domain; /* in - domain name */
 mlDmnParmsT dmnParms; /* out - domain params */
} opGetDmnNameParamsT;

typedef struct {
 mlBfSetIdT bfSetId; /* in - fileset id */
 mlBfSetParamsT bfSetParams; /* in - fileset params */
} opSetBfSetParamsT;

typedef struct {
 mlBfSetIdT bfSetId; /* in - fileset id */
 mlBfSetParamsT bfSetParams; /* out - fileset params */
} opGetBfSetParamsT;

3.2.4 bs_params.c:bs_set_dmn_threshold_info()

This is a new routine defined to set domain threshold values in memory
and on disk as a result of an instance of the fsadm –chfs utility.

definition:
statusT
bs_set_dmn_threshold_info(
 domainT *dmnP, /* in - domain pointer */
 thresholdT *threshold /* in - threshold pointer */
)

logic:

check validity of domain pointer.
start a root transaction.
 if fail then return failure value.
get domain's log vd pointer.
malloc memory for a bsDmnMAttrT structure buffer.
 if fail then end transaction and return ENO_MORE_MEMORY.
copy threshold data into malloc'ed memory buffer.
write buffer to BSR_DMN_MATTR record on vd of domain log.
 if fail then free memory buffer, end ftx and return failure value.
copy threshold data to domainT in memory.
free malloc'ed memory buffer.
end transaction.
return EOK.

3.2.5 bs_bitfile_sets.c:bs_set_bfset_threshold_info()

This is a new routine defined to set fileset threshold values in memory
and on disk as part of future functionality. A user interface needs to
be defined as part of that future work.

 11

definition:
statusT
bs_set_bfset_threshold_info(
 bfSetT *bfSetp, /* in - bitfile-set's desc pointer */
 thresholdT *threshold /* in - bitfile-set's threshold struct */
)

logic:

check validity of bfset pointer.
start a root transaction.
 if fail then return failure value.
malloc memory for a bsBfSetThrshldAttrT structure buffer.
 if fail then end transaction and return ENO_MORE_MEMORY.
copy threshold data into malloc'ed memory buffer.
write buffer to BSR_BFSET_THRESHOLD_ATTR record into m-cell chain of
filesets Tag file.
 if fail then free memory buffer, end ftx and return failure value.
copy threshold data to bfSetT in memory.
free malloc'ed memory buffer.
end transaction.
return EOK.

3.3 New or changed Data structures and Functions for
Threshold Monitoring

3.3.1 ftx_agents.h:ftxAgentIdT

A new transaction agent will be added to handle generating threshold
EVM events. The new agent added to the enumeration is
FTA_ADVFS_THRESHOLD_EVENT.

3.3.2 bs_stg.c:thresholdAlertRtDnRecT

This is the record for the FTA_ADVFS_THRESHOLD_EVENT agent that is
attached to the transaction passed to add_stg() and dealloc_stg(). It
is passed to the rootdone routine upon completion of the root
transaction. First there is a threshold type enumeration to denote
domain or fileset threshold followed by the definition of the
thresholdAlertRtDnRecT.

typedef enum {
 DOMAIN_UPPER = 0,
 DOMAIN_LOWER = 1,
 FSET_UPPER = 2,
 FSET_LOWER = 3
}thresholdTypeT;

 12

typedef struct thresholdAlertRtDnRec
{
 thresholdTypeT type;
 bfSetIdT bfSetID;
}thresholdAlertRtDnRecT;

3.3.3 bs_stg.c:init_bs_stg_opx()

Add a call to ftx_register_agent() registering
advfs_threshold_rtdn_opx() as the rootdone routine for an
FTA_ADVFS_THRESHOLD_EVENT agent.

sts = ftx_register_agent(
 FTA_ADVFS_THRESHOLD_EVENT,
 NULL, /* undo */
 &advfs_threshold_rtdn_opx /* root done */
);

3.3.4 bs_stg.c changes to add / remove storage routines

3.3.4.1 add_stg()

Additions to this routine are made to facilitate the monitoring of
domain and fileset upper limit thresholds. This code will be added to
the beginning of the routine.

logic:

Calculate potential domain and fileset blocks used if the request for
storage was to succeed.

if domain upper threshold limit is > zero and
 total domain blocks is < the upper threshold limit and
 potential domain blocks is > upper threshold limit and
 event interval has expired then
 Start a sub transaction and fill in rootdone record.
 Attach the FTA_ADVFS_THRESHOLD_EVENT agent.
 Set rootdone record type to DOMAIN_UPPER.
 End sub transaction.

if fileset upper threshold limit is > zero and
 total fileset blocks is < the upper threshold limit and
 potential fileset blocks used is > upper threshold limit and
 event interval has expired then
 Start a sub transaction and fill in rootdone record.
 Attach the FTA_ADVFS_THRESHOLD_EVENT agent.
 Set rootdone record type to FSET_UPPER.
 Set the bfSetId in the rootdone record equal to the
 fileset’s bfSetId.
 End sub transaction.

 13

3.3.4.2 dealloc_stg() and bs_close_one()

Additions to this routine are made to facilitate the monitoring of
domain and fileset lower limit thresholds. This code will be added to
the beginning of the routine.

logic:

Calculate potential domain and fileset blocks used if the deallocation
of storage was to succeed.

if domain lower threshold limit is > zero and
 total domain blocks is > threshold limit and
 potential domain blocks is < threshold limit and
 event interval has expired then
 Start a sub transaction and fill in rootdone record.
 Attach the FTA_ADVFS_THRESHOLD_EVENT agent.
 Set rootdone record type to DOMAIN_LOWER.
 End sub transaction.

if fileset lower threshold limit is > zero and
 total fileset blocks is > threshold limit and
 potential fileset blocks is < threshold limit and
 event interval has expired then
 Start a sub transaction and fill in rootdone record.
 Attach the FTA_ADVFS_THRESHOLD_EVENT agent.
 Set rootdone record type to FSET_LOWER.
 Set the bfSetId in the rootdone record equal to the
 fileset’s bfSetId.
 End sub transaction.

3.3.5 bs_stg.c:advfs_threshold_rtdn_opx()

This is the rootdone operation associated with the
FTA_ADVFS_THRESHOLD_EVENT agent. This is the routine that generates an
EVM event when a domain or fileset threshold has been crossed. Using
the rootdone approach ensures that an event is not prematurely
generated if the addition or deallocation of storage were to fail.

definition:

void
advfs_threshold_rtdn_opx(ftxHT ftxH, /* handle to transaction */
 int32_t size, /* size of rootdone record */
 void* address /* address of rootdone record */
)

 14

logic:
copy rootdone record from address to local thresholdAlertRtDnRecT.
get system time.

if rootdone record type is DOMAIN_UPPER then
 generate an EVENT_STORAGE_THRESHOLD_UPPER_CROSSED EVM event
 update domain->threshold.time_of_last_upper_event with system time
 return.

If rootdone record type is DOMAIN_LOWER then
 generate an EVENT_STORAGE_THRESHOLD_LOWER_CROSSED EVM event
 update domain->threshold.time_of_last_lower_event with system time
 return.

if rootdone record type is FSET_UPPER or FSET_LOWER then
 if domain of the transaction is not active then open fileset.
 if open fails then panic domain and return.

 if rootdone record type is FSET_UPPER then
 generate an EVENT_FSET_THRESHOLD_UPPER_CROSSED EVM event.
 update bfSetP-> threshold.time_of_last_upper_event with
 system time.
 else if rootdone record type is FSET_LOWER then
 gerneate an EVENT_FSET_THRESHOLD_LOWER_CROSSED EVM event.
 update bfSetP-> threshold.time_of_last_lower_event with
 system time.

if fileset was opened then close.
 if fail then panic domain.

return.

 15

Appendix

I. Possible Future Enhancements

1. Implement fileset threshold viewing and management if the
domain/fileset environment is exposed to the user in a future HPUX
release.

2. Add initial checks for threshold crossing at domain activation and
fileset mount time.

3. Add rootdone operation to parent transaction passed to add_stg()
directly, saving having to start a sub transaction to attach the
FTA_ADVFS_THRESHOLD_EVENT agent.

