AdvFS Snapshots (Kernel)
Design Specification

Version 2.0

DB

CASL

Building ZK3
110 Spit Brook Road
Nashua, NH 03062

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

Design Specification Revision History

Version

Date

Changes

1.0

11/20/03

First draft for internal review

1

Table of Contents

INEFOAUCTION ..ttt ettt st ettt ae st sttt ae e b e 10
1.1 ADSITACE. ...ttt ettt s b et et b et enaen 10
1.2 Product IdentifiCationcooueuiiiirieiiiiiieineecrceeree ettt 10
1.3 Intended AUGIENCE........ccoiriiieiiriiieiiiteet ettt s 10
1.4 Related DOCUMENTATIONoviuiiiieiirieietirteeec ettt ettt 10
1.5 PurpoSe Of DOCUIMENLoiuviiiieiieiieii ettt ettt ettt ettt et esteesteenaeesaesse e seenseensesnsesnnenees 10
1.6 Acknowledgments & CONLACESceecvieiieeierieriiertieie et eee st et ettt et e aessaesseesseeseeseensesnnenes 11
1.7 Terms and DefINTtIONSccoueiriiiiiiriiieiieeeere ettt s 11

DESIZN OVEIVIEW ...tieiieeeiiieeieeetee et e etee st estteesbeeesbeessbeessseessseessseessseeasseesasaeasseesnsaeasseesnseessseesnsesnnsensns 13
2.1 I DT Fea s W aN o)) (0T Tl s USSP 13
2.2 OVETVIEW O OPETALION ...eeuiiieiiieiiieeiiie et eetee et et e ste e st e e steestaeessaeessseessae e sseensseesseensseesseesssennes 13
2.3 SCALADIIIEY c.eveneierteccrt ettt b ettt sttt et ere 13
2.4 PeITOIMANCE.cuiiiiiiiiiiiiciieetee ettt st sttt sae st bbbt nens 14
2.5 The SNaPSNOt MOooiiiiiiie ettt ere et ee st e s ae e tae e saeesbeenseeesaeensneenes 14

2.5.1 Single, Read-Only SNapShotscccccveriieiiieiiieierieciiere et ees 14

252 Multiple, Read-Only SnapShots..........cccevieriiriieiiieiieiesieeee et 15

253 Multiple, Writeable SNapShots.........c.cocverierieriieiieieeiesee et 16

2.5.4 The Multiple, Writeable Snapshots Model through Timecccooevevienienieiieieeieeeeen 16
B S ¥ - 11 gAY (o Yo L 1TSS 17
2.7 MajOr Data SIIUCTUIES........ccvertieteeieeiesiesitesie et teeetesteesseesbeesessaesseesseesseenseansenssesseeseesennsesnsesnes 17
2.8 DesigN CONSIACTATIONSeecuiiiiiietieeiieesteeeeeriee et e eteeebeeeteeeteeeteessaeesseesssaeenseesnseeasseesseesseens 17

DEtaAIlEd DIESIZN ...eeivieeiiieeiie ettt etee et et e et e eteesbeeebeesabeessbeessseeesseesabaeesseesnsaeansaesnseeesseessaeenseeans 18
3.1 Data Structure DESIZN.....c..eoiuiiiiiiiiie ettt aean 18

3.1.1 SEIUCT DEACCESS ...ttt s s 18

3.1.2 SEIUCT DSBIALLE ..o 19

3.13 SEIUCE DESET ..ot 19

3.14 SIUCE DSBESETAIT ..ot 20

3.1.5 StrUCE AAVES PVE PATAIMN.....iiiieiiieiiieieeiieciiete ettt sttt ettt eee e et e se e seenseensesneesneesseeseensenns 21

3.1.6 StrUCt €XEENt DIK AESC ..eevieiieiiieiiieiieciieeee ettt ettt e s e seenne e 21

3.1.7 SEIUCE T0AICHOT ...ttt 21

3.1.8 SEIUCE AAVIOAESC T .vieiiiieiieiieiieie et tett ettt et e st e st e et et e esteenaeeseesseeseensesnsesnnesneenseanseensenns 22

3.1.9 g0 (610 o) I =SSP 22

3,110 ENUMETALIONS ..cuvetiiiiiieiieicieiesteee ettt sttt sttt et et ennes 22

3.1.10.1 UM DS Tlags tooeeiieiiiieiee e 22
3.1.10.2 enum bfa flags b e e e 23
3.1.10.3 enuM bf 0d {18 t...eiiiiiiie e 23

3.1.10.4 enum acC_OPen_ flags......ccocieiiiiiiiiieiiiiee e e 24
3.1.10.5 enUM aCC_ClOSE Tlagseeiuiiiiiiiiiiiiece e 24
3.1.10.6 enum roUNd_tYPE to.iiiiiiiiieiieiieieet ettt ettt et 24
3.1.10.7 enum extent blk map TYPE t...ccvevieiiieiiiiieriieieeie ettt 25
3.1.10.8 UM SNAP_ FlAGS T .oireiiiiiiiiieiieie ettt ettt sreenees 25
3.1.11 Constants and MACTOS...........cueuirueiriirieieiieieieie ettt 25
3.1.11.1 #define BS_TD _OUT_OF_SYNC_SNAP 0X8ccecceeieiriieiriiieineeeeneeeeseeenens 25
3.1.11.2 #define BS_TD_VIRGIN_SNAP 0X10...ccceoviiriiiiiiieiniieeneeereeeseeeseeenens 25
3.1.11.3 uint64 t advfs cow_alloc UNitS 8oceevieiiieiieie e 25
3.1.11.4 #define ADVFS_ FORCE COW_MAX ALLOC UNITS 64.....cccocervviminvinennncns 26
3.1.11.5 #define ADVIOFLG _SNAP READ 0X8.....ccccoiririminiiiniieinienieeneeeeseeeeseeeenens 26
3.1.11.6 #define IOANCHORFLG_CHAIN_ERRORS 0X10...cccccoerieimimeiriiiineniceneeenens 26
3.1.11.7 #define ADVFS MAX SNAP DEPTH 5...ccccooiiiiiniiiiniicnicncecseeesieeiens 26
3.1.11.8 #define ADVFS _FILES BEFORE PREEMPTION POINT 128......ccccccocevverinunncns 26
3.1.11.9 #define ADVFS_CFS_COW_IS COMPLETE 1<<63.....ccccccrimmimeneinenccncienens 26
3.1.11.10 #define ADVFS_ROOT_SNAPSHOT (1) .cccirioiiiriiieinieineeeereeeeseeeseeenne 26
3.1.11.11 APP_MARK READ ONLY ..c.iiiiiiiiieiiicierecereeeseeee et 26
TRV (oY 111 (S B T ¥ o RO 26
3.2.1 Creating @ SNAP SEL.....eccueiieiieiieie et etertert et et e eteseestee e teesessaesseesseesseenseenseansesssenseensen 27
3.2.1.1 Function Call Tree OVEIVIEWc.ccceoveuiriinieiiniiieiirieieitrteeee ettt 27
3.2.1.2 Basic Operations of Creating a Snap Set.........cccecvvevueriieriierieniieie et 28
3.2.1.3 Functional Call Detail........c..ccccoiriiiiiiiiiiiiiiineccee e 28
3.2.1.3.1 advfs Create SNAPSEL......cccuertiertieriiiiiiie ittt ettt eetestee st e bt e e e tesseesaeeseeenteeaeeneeeas 28
3.2.1.3.2 advfs check SNap PEImS.......ccceriiriiiiiiiiiiieniieitete ettt st s 31
3.2.1.3.3 advis COPY taGAIT..cueiiiiiiiieitieiiee ettt 32
3.2.1.3.4 advfs_snap protect CACheccocooriiiiiiiiiiiieee e 33
3.2.1.3.5 advfs SNap drain WIILES......cuevierieesieeieeierieritete et eteeee st e sie et aesaesnaeseeesseenseeneeens 35
3.2.1.3.6 advfs_link snapsets fUll..........ccccceeririieicieniienieie et 35
3.2.1.3.7 dVES S WL .c.vieiieiiiciecieceeeee ettt et neenne e 36
3.2.1.3.8 AdVES PULPAZE ..veeeeieiiieiieciiecitet ettt ettt ettt b e e snaesnee st eseenneans 37
3.2.1.3.9 Miscellaneous Changes..........cccuerieruiriierierieniierie et eteeeesitesieeseesesaesnaeseeesseeseenseans 38
322 OPENING 8 FIIESEL....eieeieeiieciieiieie ettt e ae e s e e st e st enteenseensesnaensaenneas 39
3.2.2.1 Function Call TTee OVEIVIEWcceecveiiriiriiniiriiniiiieiieteiete sttt 39
3.2.2.2 Basic Operations of Opening @ SNaP Set.......ccceccviervieeriieriieeiiierieereeesteesireeseeeseeeesne e 40
3.2.2.3 Function Call DEtailsc..coeiiriiiiiiiiiiiiee e 40
3.2.2.3.1 DES OPCI. ittt ettt sae ettt ea 40
3.2.2.3.2 DES BCCESS ueetieniieniieiiieiieet et te sttt ettt sttt ettt et b bttt ettt eshe e saee bt et et en 41

32233 BES _AlI0C ..t 41
3.2.2.3.4 adVES SNAPSEL ACCESS .euvertiertietieiieieeite sttt ce ettt et e st e st e bt e b e et satesaeeseeente et et eas 42
3.2.2.3.5 advfs_SNapSet ACCESS TECUISIVE ...cccuerruiruiiriientietieieeitenttesteenteeteeeesieesteeseeenseeneeeneeens 43
3.2.2.3.6 advfs linK SNAPSELS ..ecceerieriieiiieieeieeie ettt ettt ettt e et eae e sneesneene e ens 44
323 OPENING 8 TI1€ .evieiiieiieeieeeeee ettt et e st e s see st et e st e enbeenaenraenean 46
3.2.3.1 Function Call Tree OVEIVIEWc.ccceoveuiriinieiiriiieiiieiciereeee ettt 46
3.2.3.2 Basic Operations of Opening @ File..........ccocoverieiiiiiiiiieiieieeeeee e 46
3.2.3.3 Function Call Detailsccooiviiiiiiiiiiiieinciereecreeesee e 47
3.2.3.3.1 DS _ACCESS. e uieuieiieiieieeteette et ee bt e b e et et e st e st et e et e e bt nteeta e st et e e b e enbeenteenaeenee st enseensean 47
3.2.3.3.2 DS _ACCESS O ..uuieuiieuiiiieniientieteeteeteeetesttestte bt e bt eateeateebeeabeenbeenbeemtesseesaeesaeenbeenseeneeans 47
3.2.3.3.3 advfs_lookup valid BIap......ccccooiiiiiiiiiie e 48
3.2.3.3.4 advfs_acCCESS SNAP_ PATENES....cc.eeruirriiriiriieriienteetteteeeteettesteenteeteeeesieesieesbeeneeenaeeneeens 49
3.2.33.5 BS MAP Dottt 51
3.2.3.3.6 Miscellaneous CRANGES.........ccccuieeiuieriieriieeniiesieesreesteesreesteesveessaeessseessneessseensneenes 52
324 Writing to a file (Copy-0n-Write PrOCESSING)....ccueererierieniieiieieeee it sieente ettt seee e ieas 53
3.2.4. 1 COW OVEIVIEW ...ttt sttt ettt sttt ettt sttt st ettt saenenen 53
3.2.4.2 Basic Operation 0f COpY-On-WTIte.........ccuerirriieriieiieiieiieriieie e ete e see e e 54
3.2.43 Function Call Detail..........cccccooiiiiiiiiiiiiiieceeeeeeesee e 55
3.2.4.3.1 adVES GEIPAZE wovveeieiieieeieeiieet ettt ettt ettt et s raeeneenreeseenneans 55
3.2.43.2 advfs GEtMEIAPAZE.eecveeeeeerieitieieeteete ettt et et et e aestae st e enbeenseenaesnaesneesneeseenreans 68
3.2.4.3.3 rDF @A StE eeeiiiieiiee et ettt ens 69
3.2.43.4 advfs access snap Childrenccocoooiiiiiiiiiiiiiiieee e 70
3.2.43.5 advfs_acquire SNap lOCKSccccoriiiiiiiiiiiiiiiiieit e 72
3.2.43.6 advfs drop SNap 1OCKS......coiiiiiiiiiiiiii it 73
3.2.43.7 advfs_acquire XtNtMap 10CKScooiiiiiiiiiiiieiiiieeeee e 74
3.2.43.8 advfs _drop XtNtMap 10CKS.......cooiiriiiiiiiiiriiiiet e 75
3.2.43.9 advfs add SNAP StE.....ccccciiiiiieiiee e ae e e 75
3.2.4.3.10 adVfS ISSUE SNAP 10 ceeeeeeriieriieriieiieeeeeiesttesteesteeteeesessaesseesseesseensesnsesseesseenseanseenseans 77
3.2.4.3.11 adVES SCIUP COW.ririiriieiieeiieitieieetesteeetesttestee et enteesaeesaesseesseenseensesnsesseesseenseenseensenns 78
3.2.4.3.12 advfs SYNC_COW MELAPAZE.eevveerrereereieriiertietieteeeeeraesseessaeseesessesseesseesseenseesenns 80
3.2.4.3.13 advfs_sSnap OUt Of SYNC...ccccieiiiiiiiiiiierieeeee ettt ees 81
3.2.4.3.14 adVES £S5 WIIEC...couieiieieeiieciieet ettt ettt sttt e e e snaesneenseenseeneeens 82
3.2.43.15 advfs_start BIKMAP 10 .c...coiiiiiiiiiiiii et 82
3.2.43.16 Miscellaneous ChaNgES........cccuveeruieriieriieeniiesieeereesteesireesteeseeeseaeessreessneessaeensneenes 83
3.2.5 ClOSING @ FAlE...uiiiiiieiieeie ettt et et e et e et e e aeeetaeeseeestbeesaessaeensneeans 84
3.2.5.1 CloSing @ FIle OVEIVIEWcooueeiiieiieiieiiieiiesieeteeie ettt sttt ettt sb e e s 84
3.2.5.2 Basic Operation of CloSing @ File........c.ccccviriiiiiiiiiieiiiecieciceeee e e ine e 84

3.2.5.3 Function Call Detail...........ccooviiiiiiiiiiiiiiiiiieie ettt e e e e 85

3.2.5.3.1 DS ClOSC..coiieieiteie e ettt sttt ea 85
3.2.53.2 DS _ClOSE OMNC..cniiiiiiiiiiiieiiet ettt s sttt et 85
3.2.53.3 adVES ClOSC SNAPS...cuiiiiiriiiitieiieieeieete sttt ettt et e st e e eente e sneenseeseenneens 86
3.2.53.4 advfs ClOSC SNAP PATCILS......cceeriieriiiieiieriietieteeteeteeeesseesseeseeaeeaessaesseesseenseenseans 87
3.2.53.5 advfs close _snap childrenccooiveiiiiiniinieieeeeee e 87
3.2.6 DEletiNg @ f1€ ..uvieiiieeieeieciieceee ettt sttt et enr e naenraenean 89
3.2.6.1 Deleting @ File OVEIVIEWcccvevuieiieiieieeiesieesieeieeae e stesseesseenseenseesaessaesseesseensesnsesnnesnes 89
3.2.6.2 Basic Operation of Deleting a Filecoccveiieriieiiieieiie et 89
3.2.6.3 Function Call Detail........ccccooiiiiiiiiiiiiiiiiieecee e 90
3.2.0.3.1 IDE dEIRLE .o e 90
3.2.6.3.2 advfs force cow and unlinkcccoooiiiiiniiiiiiiiiieee e 90
3.2.7 ClOSING @ FIESEE ..uviieiiieiiieie ettt et ettt e et e e tee et eesaeeetaeeaeeentbeesaessaeenseennns 92
3.2.7.1 CloSing @ FIleSEt OVEIVIBWcccueeiieiieiiieiieniieie ettt sttt ettt st sb et e s 92
3.2.7.2 Basic Operation of CloSing @ FIl€SEtccccveriiiriiieiiieiieerieesee et esee e eseeesieeenene e 93
3.2.7.3 Function Call Detail..........cccccooiviiiiiniiiiiieiiceeceeeseee e 93
3.2.7.3. 1 DS DES ClOSE..uiiiieiieiieie ettt ettt ettt et sne e neeseenneens 93
3.2.7.3.2 advfs SNAPSEt ClOSCccuiiiiriieiieieeie ettt ne e en 94
3.2.7.3.3 advfs_snapset ClOSE TECUISIVEecvvirieiierieriieiieieeteetestee e eteeaeseeseeseeesseenseenee e 94
3.2.8 REMOVING @ fIIESELeevieiieiieiieie ettt ettt et e st e st e st et eenteenseesaensaennean 96
3.2.8.1 RemovIng a FileSet OVEIVIEW......ccuveiuieieeiieriieiieieeieseestesteesteeeeeee e seaesseesseenseensesnneses 96
3.2.8.2 Basic Operation of Removing a FileSetc.ccccuverviieiiiiiiieiiiecie e 97
3.2.8.3 Function Call Detail........ccccoiiiiiiiiiiiiiiiii e 98
3.2.8.3.1 £S5 £S€E dEIETE .oouvieuieiiieiie ettt 98
3.2.8.3.2 DS BIS dEIELE .ooueeeuiieiiieiieeiet ettt 98
3.2.8.3.3 advfs can remove fIleSet........cooiiiiriiniiiiiiieee e 100
3.2.8.3.4 advfs_can_remove fileset second checkc.cccoovirririiiiiiiiienieieeeeeeeen 101
3.2.8.3.5 advfs bs_delete fileSet tagS......cccvrviirierieriieiieieeieieerte ettt 101
3.2.8.3.6 advfs unlink SNapShOt........cccecueeiiiiiirieieiee s 103
3.2.8.3.7 advfs unlink SNaPSEL.........ccceeveriiiriiirieieit ettt nees 104
3.2.8.3.8 Miscellaneous Changes..........ccvevuerieriienieriieie ettt eee e seaesseenseas 106
329 LOCKING OVEIVIEWveeuiieniieiieiieeiiesitesit et eeteeiaesteesseesseessesnaesneesseeseenseensesssessaenseesesnsesnsennes 106
3.2.9.1 Predicted LOCK HIi€TarChyccocviiiiieiiiiiiieiie ettt e s eavee s 106
3.2.10 EXtent Manipulationccceccuieeiieeiiieiiiesiie e et e st esveesaeesveesaeesaeesaeesnseessseessseessseensnes 107
3.2.10.1 advfs_get bIKmap IN TaNGE.......cccooiiiiiiiiiieiieiieieee et 107
32,010,101 TAEEITACE «.veiinieiiecieeece ettt e 107
3.2.10.1.2 DSCIIPHION . .ccutiietiieiiieriieeitteertteeireesteeestreeseseessaeessseessaeessseessseessseessseessseensseessseensses 107

3.2.10.1.3 EXECULION FIOW c.oiiiiiiiiiiiiii et s eenanes 107

3.2.10.2 advfs _get SNap XN dESC ...ovieruieriieiieiieieeitet et 110
3.2.10.2.1 TOEETTACE ..eeneieiiieiieeeeee ettt sttt ettt a e 110
3.2.10.2.2 DESCIIPHONcueieutreereetiertiesteetestesteseteseeteesesssessaeseeseesesnsesssesseenseenseessesssenseessees 110
3.2.10.2.3 EXECUtION FIOW .c..oiiiiiiiiiiiiiiiiiiicce ettt 110

3.2.10.3 advfs_get next SNap XNt dESC ..ceevireiiriierieiieii ettt 112
3210301 THEEITACE ..nveniiieiiiericeecct et sttt et 112
3.2.10.3.2 DESCIIPLIONcuuietieereetietieteeteeteseteseeeseeteessesssesseeseeseensesnsesseesseenseensennsesssenseensees 112
3.2.10.3.3 EXECULION FIOW ..ottt 112

3.2.10.4 advfs make COW hOleoocooiiiiiiiiiiiii e 112

3.2.10.5 advfs_append COW hole........ccocooiiiiiiiiiiiiii e 112

3.2.10.6 advfs insert COW holeccocoiiiiiiiiiiiiiiii e 112

3.2.10.7 advfs_get xtnt map (previously bs_get clone xtnt map, bs_get bf xtnt map, and

bs get bKUP XENE MAP) wouviiiiiiiiiiiie ettt sttt et sttt 112

3.2.10.8 load iNMEM. XENE MAP .eervieiieiieiiiie ettt st st ee et 113

3.2.10.9 COWED_HOLES in child SNapShotsccceevieriieriieiiiiiesieeieeeeie e 113

3211 CFS Related CRANGEScc.eevvieiieieeiieeiiesieeie ettt ettt ettt esaeseaesseesseesseensesnaesseesseenseenseans 113

3.2.11.1 Direct IO Writes from CHENLScoevereririeiiieienienesesceie et 113

32112 advfs et XNt MAP.....ccciiicieeieeiieiieie ettt ettt te e s te e e eteenseenseenaeesaensaeseas 113

3.2.11.3 advfs_getpage callers holding the file 10CK.........ccoecuveiiirierieieiee e 114

TN I Y/ [¥ [TSRS 114
32.11.4.1 migrate clu handlingcoocoooiiiiniinii e 114

3.2.11.5 Future CFS EnhancCementsccceeoueeiiiienienienieieee ettt 115
3.2.11.5.1 Function Shipped COWSccuiiiiieiiieiiienieerieeste et sre e saeessaeesaeessseesnaaenenas 115
3.2.11.5.2 Optimized reads from client NOAESccccveeriieriieiiierieereeee e 115

3.2.12 Miscellaneous CHANZEScc.eeuiiiirierieiieie ittt ettt e ettt st saeeseeeneeeneeeas 116
3.2.12.1 1S <] 11 USSP 116
3.2.12.2 advfs_access mgmt threadccooovieiiieiiieiinieieeee e 116
3.2.12.3 IMHIGEALE ...eeenvietieieeie ettt ettt ettt e et e et e st e e s e e e esseensesasesaeessee st enseenseanseensensaensaensean 116
3.2.12.4 8 £SEE CTCALE ..uveuvieiieie ettt ettt et ettt ettt et e ettt et e nbeenaeenaeeneenrean 116
3.2.12.5 AAVES PULPAZE ...veeetieeieeiieeiieeteee ettt ettt et et e e e e e b e s e e s eaesneenneeseenseens 116
3.2.12.6 8 €At f1€ .ueeiieiieie e e ettt neen 117
R T8 1 T (O 0103 117) (<503 s WSS 117
3.2.14 RECOVETY CONCEIMS ..ceuvieruiiererierteeritienteessteesteessseesseessseessseessseesseessseessseessseessseesssessssesnsses 117
3215 ON-DiSK TMPACE ..eeeiiiiiieiiieeiieceeeceeete ettt ettt st e e sae e sbe e s beessseesaseessseensseennnas 117
3.2.16 Future ENhanCemMENts.......c..covuiiiiiiiiieiieiieie ettt ettt ettt s 117

3.2.16.1 Enhanced Out-Of-Sync handling............cccooieiiiiiiniiiiii e 117

3.2.16.2 Deferred deletion of parent SNaPShOLS..........ceeveeeciiiiiiieeiie et 117

3.2.16.3 Forced Independence of Snapshot Childccoeveiieeiiiiiiieniie e 118
3.2.16.4 Inter-domain SNAPSNOLSccuveiiuiieriieieeie ettt et ee e aeesaeeetaeeaneenes 118
3.2.16.5 ASYNC and NOWAIT support for Snapshots.........ccceceeeereierienienienieieeie e 118

N B 1< o Tt 1d £S5 1 T (TSP 119
4.1 SYStemM AAMINISTIATION ...vvevieiieieeteeieeieeeest et et e ete et e siteste e seeseessessaesseesseenseenseansesssenssenseenses 119
4.2 MemOTY MaANAQZEIMENL.cccueiiitieeiieiiieeiee et e etee st te et e sbtesateesabeesabeesabeesabeesabeesateesaseenaseesaseenanes 119
4.3 CONUMA Lottt sttt sttt sttt 119
4.4 Process Mana@EIMENLcecuiiiiiiiiieiiie ettt sttt st e st e st e st e st e st e e sabeesateesabeenaees 119
4.5 File SYStemM LaYOULuviiiiieiieiiieeiieeiteette ettt e et e stee e e e sbeeesbaesntaeesseessbaessseesssaenssaesssaensss 119
4.6 FIIE SYSTOIMIS.tiiiiieeiie ettt ettt e et e et e et esbeessbeesabeeesbaesnbaeesseesssaeessaessseenssaesnsaennses 119
4.7 I/O System and DIIVETScuveeiuiieiiieiieeiieeciie et eseeesiteeste et esereestaeessaeessseessseessseessseensseessseensses 119
4.8 S CUITEY 1 vveeetteeitee et e et e et e et e et e st e e eateesabeeesbeessteeasseesssaeasseesssaeassaesnsaeanseesnseeasseesnseennseesnseennseenn 119
4.9 AUAIHIIZ oottt ettt e h e et b e bbbt a et b et e et 119
410 MU PTOCESSOT . vteeitieeirieeieeeeteesteeesteesteessteesseessseessseessseessseeasseessseessseesssesssseesssessssessssesssseenseennes 119
4.11 Behavior i @ CLUSLETc.eouiiiiiiiiieiieeeree ettt 119
4.12 Kernel Instrumentation/Measurement SYSTEIMSecveevereereereeerieeeeseeseereeeseeseesessnesseensens 119
413 DHAGNOSLICS c.uveuveeieniieiieieetesttesteeteeteeteseteestesseasseanseesseesseasaeseenseensesnsesseesseanseenseenseenseessenseesenn 119
4.14 Panic/HPMOC/TOC ..ottt st 119
415 COMMEANGScoiriiniiiiiiietieeetee ettt ettt ettt ettt sttt ettt n e e ene 120
416 SEANAATASoueeiiiiieiirieecee et ettt ene 120
417 KerNel DEDUZEETeouiieiiiiiieeiiet ettt ettt st sttt ettt eaeeebeenbeebeas 120
418 BOOt KEIMEL ...ttt ettt st 120
4.19 InStall KeINElo.ooiiiiiiiiiiiieiee ettt sttt st 120
420 Update/RoOIING UPGIade......cc.eeeiuieeiieiiieeiiesieeeieesieesieesteesveesveessveessseessseessseesssessssesssseesssennns 120
421 SUPPOTE PIOAUCES. ... viieiiieiiieeiie ettt sttt ste et e s te e sttt e s aeestaeessaeessbeessseesseessseesseenssessseensnannes 120
4.22 Learning Products (DOCUMENATION).........ccverierieiieiieieeieseesieesieete e seeeseesseeseenseensessnesseensens 120
S ISSUES (OPLIONAL)....ieiiiiieiiicieiiee ettt ettt st e st e et et e et e ssaesseesse e seensesnsesneesseanseenseenseennenseens 121
2 e 4B 10 17U 121
IMEAIUIM PTIOTILY ..veiteiieiieie ettt sttt ettt et e st e st e et e e seenseesaessaesseenseenseenseensesssensaensens 121
LLOW PLIOTILY .eeeutieiieeiieciest ettt ettt st e st ettt e et e esae st ae s e e seenseensessaesseesseenseenseensenssensaensenn 121

Preface

If you have any questions or comments regarding this document, please contact:

Author Name Mailstop Email Address

Sign-off review

Approver Name Approver Signature Date

1 Introduction

1.1 Abstract

This design describes a kernel implementation for multiple-writeable snapshots for AdvFS. The design
provides the basis for the implementation of AdvFS Snapshots on HPUX; however, in the first release
AdvFS will only expose an interface for a single, read-only snapshot. The multiple-writable features
described in this design will only be provided as infrastructure for future releases and will not be fully
qualified. This design will be fully tested with respect to the single, read-only features.

1.2 Product Identification

Project Name Project Mnemonic Target Release Date

AdvFS Read-Only Snapshots | AdvFS RO Snaps

1.3 Intended Audience

This design assumes a good deal of familiarity with AdvFS kernel internals and with the mechanisms that
AdVFS uses to interface with the UFC. As a result, the design is intended to be read and reviewed by
AdvFS kernel engineers and those interested in the internals of AdvFS Snapshots on HPUX.

1.4 Related Documentation

The following list of references was used in the preparation of this Design Specification. The reader is
urged to consult them for more information.

Item Document URL

1 AdvFS Integration with UFC Design
Specification

2 AdvFS Snapshots User Design

1.5 Purpose of Document

This design presents a description of multiple-writeable snapshots to be implemented. While the entire
design is complete, the implementation of the design will be phased and will focus on achieving fully
tested, single, read-only snapshot functionality for the first release of AdvFS in HPUX. This design
focuses on the main functional paths of snapshots along with the locking mechanism used to prevent race

10

conditions. Where applicable, the design compares the design of AdvFS Snapshots on HPUX to the
implementation of AdvFS Clones on Tru64.

1.6 Acknowledgments & Contacts
The author would like to gratefully acknowledge the contributions of the following people:
DA, TM, BT, and DL

1.7 Terms and Definitions

Term Definition

cow Copy-on-Write. This term refers to delaying copy until
the source data is about to be modified.

Snapshot A logical copy of a file at a moment in time. The
snapshot file stores original data for each change in the
parent file.

Snapset A copy of afileset at a moment in time. Used to refer to
the entire set of snapshot files as opposed to a single
snapshot'.

RO snapshots Read only snapshot. This term refers to the Tru64
model of clones where the snapset is read only and
cannot be modified.

MW snapshots Multiple-writable snapshots. In the first release, the
infrastructure will be in place for MW snapshots, but
they will not be enabled or fully tested.

Snapshot Tree In the case of multiple snapshots, the snapshot tree
refers to the hierarchical structure of the snapshots.
Each file is either the root (and in the first fileset to be
snapped) or is a child of some file. Any file may have
any number of snapshot children.

Parent The parent snapshot is the file or fileset which contains
the “original” data or the data to be COWed.

Child The child snapshot is the file or fileset which was
created as a snapshot and will receive COWed data. In
a MW snapshot context, a file or fileset can be both a
child and a parent.

Snap maps The term snap maps is used to describe a two-
dimensional list of extent maps for children snapshots of

' The term snapset is used in this design to differentiate between a fileset of snapshot files and a single
snapshot file. The there is no plan on exporting the term snapset to documentation or user commands.

11

a specific file. The list is organized by file then by extent
offset. The goal of the snap maps is to concisely
represent all storage that must participate in a COW
operation.

Unmapped extents

In a snapshot child, an extent can have one of three
states, mapped as storage, mapped as a hole, or
unmapped. An unmapped extent has not yet been
COWed and requires the parent snapshot to determine
what that extent represents.

Sympathetic
reference count

A reference placed on an object (bfSet or a bfAccess
structure) as a result of a reference put on another
object.

Out of Sync
Snapshot

An out of sync snapshot is a file that does not correctly
represent its parent at the moment in time that the
snapshot was created. Once a file becomes out of
sync, it is forever out of sync and no further 10 to the file
will succeed.

12

2 Design Overview

2.1 Design Approach

In developing this design, the author attempted to consider both the current requirement to provide
snapshot capability that is functionally comparable to Tru64 and the future goals of AdvFS on HPUX to
support multiple, writable (MW) snapshots. This document describes a complete design for multiple,
writeable snapshots. Only RO snapshots will be tested and qualified for the first release.

In some cases, optimizations that existed in Tru64 were eliminated because of the complexity on Tru64.
The ability of AdvFS snapshots to support the transfer of extents from parents to children snapshots on
deletes and truncates is not supported by this design. Additionally, the ability to delay the deletion of a
parent snapshot until the deletion of the child snapshot has also been deferred in favor of a simpler model
of forcing a COW on delete. The optimizations will be added back in subsequent releases.

2.2 Overview of Operation

On Tru64, as a page was pinned, it was COWed before it was modified. Since all pages were pinned prior
to being modified, the COW processing could be abstracted outside of the normal write paths and put into
COW routines.

Because of the design of AdvFS when using the UFC, only advfs getpage is able to have access to all the
data required to perform COWing efficiently. As a result, the COWing operations on HPUX will
conditionally happen in the main line code paths. There are two basic types of COW that are necessary for
snapshots. The first type, done once the first time a snapshot’s parent file is touched, involves the copying
of metadata for the snapshot. When a snapset is first created, only the tag directory for the filesystem is
copied to the new snap set. Each snapshot file shares its metadata with its parent. The first time a parent
file is touched after making a snap of the filesystem, the metadata of the parent is COWed over to the
snapshot file. The metadata COWing makes a copy of all non-extent mcells and links the bfap of the
snapshot to that new mcell chain.

In addition to the COWing of metadata, extent data also must be COWed. Extent data will be COWed in
advfs_getpage whenever a fault request for write permission comes into advfs_getpage and the range being
requested has not already been COWed. Because metadata COWing must occur before extent data
COWing can occur, advfs getpage will check to see if the snapshot already has its own set of metadata
before doing any extent data COWing.

Synchronization between creating new snap sets and operations on the parent set will be handled by a
combination of a new flag in the bfSet and the file lock of the files in the parent filesystem. When a
filesystem starts the snapping processing, it will set a flag indicating that all advfs getpage callers should
block and wait for the snap to complete if they are trying to do a write. In advfs getpage, writers will
synchronize with the new flag in the file set. The synchronization may, however, allow the advfs getpage
caller to continue with the write request if the file lock is already held for write.

Removing a filesystem will not be allowed if a snapshot exists of the filesystem. It will be required that all
child snapshots of a filesystem are removed before the filesystem is removed. This notion will carry over
for MW snapshots as well, were the concept is more important when one considers removing a snap set that
itself has a snap set.

2.3 Scalability

This design describes an implementation of snapshots based on filesets in a single domain. All filesets in a
single domain share a common log and must be mounted and served from the same node in a cluster. As a
result, having a large number of related, writeable snapshots concurrently mounted may affect the
scalability of a cluster since all of the snapsets will be served from the same node.

13

Additionally, as the number of snapshots on the same level increases (the number of child snapshots), the
number of IOs required to perform a single COW will increase thereby causing a linear decrease in
performance. This solution is likely to have scalability consequences with respect to number of children.
Section 3.2.16 discusses future enhancements to deal with scalability issues.

2.4 Performance

The time required to create a snapshot will be proportional to the amount of dirty data and the number of
files in the filesystem to be snapped. The process of creating a snapshot requires a domain flush and copy
of a single file. Therefore, the largest contributor to time to flush will be the time required to flush the
domain. Section 3.2.16 discussed future enhancements to address the time-to-snap issue. The time to snap
should be no worse than Tru64 and will allow all reads to proceed unhindered during the snapping process.

Real time performance will be impacted by creating a snapshot. Snapshots will force synchronous IOs on
all writes that require any copy-on-write. As a result, real time performance that relies on asynchronous 10
will be impacted.

2.5 The Snapshot Model

Before describing the design for AdvFS Snapshots on HPUX, it is useful to understand the model that will
beused. The following pictures and description illustrate various concepts and build up to the model
described by this document which is a multiple-writeable snapshot model.

2.51 Single, Read-Only Snapshots

Parent Fileset

Fileset A

Child Snapset

— Snapset A1

This single, read-only model of snapshots is nearly equivalent to clones on Tru64. The model allows for at
most one child snapshot which is directly related to one parent. More than one snapshot child can never
exist. In order to create a second snapshot, the first snapshot child must first be removed.

In addition to the limitation of having only a single snapshot child, the snapshot child cannot be modified.
While reads are allowed in snapset A1l (the child) any mounts are done read-only and all writes will fail.

14

2.5.2 Multiple, Read-Only Snapshots

Parent Fileset

Fileset A

— Snapset A1 — Snapset A2

Child Snapsets Sibling Snapsets

In the multiple, read-only snapshot model, a fileset can have multiple snapshot children at the same time.
Each snapshot child is a sibling to each other snapshot child. Only one level of snapshot children can exist,
and all snapshot children are mounted read only. All writes will fail on any snapshot child.

15

2.5.3 Multiple, Writeable Snapshots

Child Snapsets

Parent Fileset
Sibling Snapsets

Fileset A

Snapset A1 — Snapset A2

> Snapset A2-1

- Snapset A1-1 > Snapset A1-2

In the multiple, writeable model, a fileset can have any number of concurrent snapshot children and each of
those children can have additional children snapshots. In this model, any snapset can be mounted writeable
and snapshot children can be modified independently of their parents. A sibling snapshot in this model is
defined as a snapshot which shares a common immediate parent snapshot.

2.54 The Multiple, Writeable Snapshots Model through Time

Original Fileset, always being
modified.

Original File

Reflects what fileset A looked

like at 12:00 plus any new
Snap A 12:00 changes made to Snap A
Snap B: 1:00 Reflects what Snap B looked
ike at 2:00. Looks like Orignal plus any
Snap B-A: 2:00 hanges made to snap B since 1:00s
Snap B-B: 2:10
Snap C: 2:00
Snap D: 3:00
Snap D-A: 3:30

16

The diagram above provides an example of how a multiple-writeable model of snapshots might evolve over
time. The example is purly theoretical and is provided only as a means to help understand the potential
uses for multiple, writeable snapshots.

In the above example, a snapshot has been taken each hour of the original file. Additionally, Snap B and
Snap D have been snapped themselves and have versions that reflec them at a certain time. There is no
indication in this diagram of why or when files changed and what was COWed as a result.

2.6 Major Modules

This design considered a few key areas. The first, and the one with the most impact on AdvFS overall, is
advfs getpage, the heart of the snapshot system. advfs getpage will be responsible for making sure that
extents are correctly COWed as data is modified and for making sure that a snapshot has metadata in which
to put COWed extent data.

The next major area is in fileset creation. Fileset creation requires careful locking to ensure that once a
filesystem is snapped, all data on that filesystem is correctly COWed when it is modified.

Finally, the access structure and fileset management code is impacted by snapshots. When opening or
closing a snapshot or a snapset, care must be taken to correctly open the parent or child snapshot.

The impact of CFS on snapshots is discussed explicitly in a subsection of this document; however, where
CFS impacts AdvFS code, it is discussed in line.

2.7 Major Data Structures

The bfAccess structure and the bfSet structures bear the majority of the burden for managing snapshots.
Both of these structures are being modified to remove old Tru64 clone fields that are not longer relevant
and are being modified to remove superfluous locks. The bsBfSetAttrT structure is also changing to
support MW snapshots.

On Tru64, out-of-space errors were handled somewhat clumsily by clones. To improve the granularity of
out-of-sync snapshots, the information about when a file is not in agreement with the original file (at the
time of the snapshot) will be moved into the tag directory of the snap set. At the time of creating the snap
set, the entire tag directory is copied, so the tag directory provides a persistent and reliable mechanism for
tracking snapshot state information.

On HPUX, when a file is marked as out-of-sync, all further attempts to read or write from the file will fail
with EACCESS.

2.8 Design Considerations
This design considers the impact of AdvFS snapshots on CFS.

See Section 3.2.14 for a description of the impact of snapshots on recoverability and the policies that will
govern how and when snapshots are recovered.

17

3 Detailed Design

3.1
3.1.1

Data Structure Design

struct bfAccess

struct bfAccess {
dyn_hashlinks_w_keyT hashlinks;
struct bfAccess *freeFwd;
struct bfAccess *freeBwd;
advfs list_state_t freelistState;

/*
/*
/*

uint32_t accMagic;

struct bfAccess *setFwd;
struct bfAccess *setBwd;

mutexT bfaLock; /*

/* dynamic hashtable links */

/* Determines if the access structure

* is on the closed list, free list,

* or no list. */

magic number: structure validation */

guard next two with bfSetT.accessChainLock */
fileset chaining */

lock for many of fields in this struct */

/* next 3 guarded by bfalock */
int32_t refCnt; /* number of access structure references */
int32 t dioCnt; /* threads having file open for direct I/0 */
stateLkT statelk; /* state field */
struct—vrode b fVps % Pointer—+to—th rode—for—thisfite =
struct vnode bfVnode; /* The vnode for this file. */

struct bfNode bfBnp;
struct fsContext bfFsContext;

/*
/*

int32_t bfaWriteCnt; /*

*
*

*

/* Snapshot related fields.

rwlock t bfaSnapLock /*

*

cv_t bfaSnapCv /*
*

bfAccessT* bfaParentSnap /*
*

bfAccessT* bfaFirstChildSnap /*
*

bfAccessT* bfaNextSiblingSnap /*

int32_t bfaRefsFromChildSnaps /*

*
/*

size_t bfa orig file_size

* ok * *

Protected by the bfaSnapLock.

This files bfVnode */
This files fsContext area */

Count of number of writes in progress for
synchronization with snapset creation. Protected
by the atomic increment macros. Waiters are
notified using the bfalock and the bfaSnapCv */
*/

Protects snapshot related fields and provides
synchronization */

Used for synchronization, protected by
bfaSnapLock */

Parent bfap of this bfap. NULL if

parent not open or doesn’t exist */

First child snapshot of this bfap. NULL

if no children */

Next sibling snapshot on the same level

NULL if this is the last bfap on the level */
Indicates the number of refCnts caused by

child snaps accessing the parent */

Highest byte offset to be COWed in a snapshot
This is always zero if no parent exists.

If a parent exists, this is the file size of
the parent at the time of the snapshot. When a
snapshot has its own metadata, this is stored in
the bsBfAttr bfat orig file size field. */

off t migrate starting offset;
off t migrate ending offset;

£ £ £ * 01 . *] inle + + 1 ' + £ %
struct—Pf SSs—Fnextcion sz rnk—to—hnext—elone'ls—a SS—struet

£ £ b *] . * 14 + it filel + *
struect—bE 55 g P 3ak—E rrg—brtiidels—a SS—struet

18

1 . Do 4+ T e =T 5
— e P by g Stabio—rumber
ESIERY B e} h dded o raer *
= bs—eow—pgt)—has—added e
* the following a¥r atid—enty+fmapped—=1—*
giat32—+t—elenetds £ g == rigy—">—0N == e
wint32 £ eloneCnt; = 1 Lo At—ta time—bf changed =
sint32 £ maxClonePgss * max pages—in—elone X
bfDataSafetyT dataSafety; /* bitfile's data safety attribute */
/* flags */
aint32—tnoClones * flag—true—+fbitfilehasn Tore—*
siat32 £t deleteWithClones * trye—3+f bf should bedeleted—with elone =
wiat32 & HEofSyaetlones; * elonemayAot—be—& g—=
uint32 t trunc; /* truncate bitfile on last bitfile close */
bf fob_t bfaNextFob; /* 1 past the highest allocated */
/* file offset block */
bf fob t bfalastWrittenFob; /* Last FOB written by advfs fs write(). */
bfMCIAT primMCId; /* primary metadata cell id */
/* Analysis of the code reveals that the following locks
* seem to be protecting the xtntmap in the following way:
*
A —Erun fer—1] ysed—fer—elone—=a 55
* migStgLk - Held across adding stg, removing stg, migrating stg.
* mcellList lk - Protects the on-disk Mcells exclusively but also
* allows read access to the xtntMap.
*
* The following lock gives exclusive access to the xtntMap
*
* xtntMap lk - Must be held when merging xtntmaps and across any call
* to imm extent xtnt map.
*
* NOTE: The use of these appears to be fairly inconsistent and
* needs to be investigated.
*
*
bsInMemXtntT xtnts; /* extent descriptors */
void *dirTruncp; /* possible ptr to dtinfoT struct */
}
3.1.2 struct bsBfAttr
typedef struct bsBfAttr {
bfStatesT state; /* bitfile state of existence */
bf fob t bfPgSz; /* Bitfile area page size */
ftxIdT transitionId; /* ftxId when ds state is ambiguous */
uint64 t bfat orig file size; /* filesize at time of snapshot creation */
int32_t bfat del child_cnt; /* Number of children to wait for before

* deleting the file. Used to defer delete
* of parent snapshot */

bf od flags t bfat flags /* On disk flags for a file. */
bsBfClAttrT cl; /* client attributes */

} bsBfAttrT;

3.1.3 struct bfSet

struct bfSet {
dyn hashlinks w _keyT hashlinks; /* dyn hashtable links */

char bfSetName[BS SET NAME SZ]; /* bitfile-set's name */

bfSetIdT bfSetId; /* bitfile-set's ID */

uint32 t bfSetMagic; /* magic number: structure validation */
int32_t fsRefCnt; /* number of bfs_access() accessors */
domainT *dmnP; /* pointer to BF-set's domain structure */
bfsQueueT bfSetList; /* list of bfSetT's in this domain */
mutexT accessChainLock; /* protects the next two fields */
bfAccessT *accessFwd; /* list of access structures */

bfAccessT *accessBwd;

19

dev_t bfs dev;

bfTagT dirTag;
bfAccessT *dirBfAp;

mutex t bfsSnapMutex

/* set's dev_t; used for statfs() and stat() */

/* tag of bitfile-set's tag directory */

/* Used to protect snapshot fields */

cv_t bfsSnapCv /* Used to synchronize IO with making snap set */
bfSetT *bfsParentSnapSet /* Parent set. NULL if not open yet */

bfSetT *bfsFirstChildSnapSet /* First child snap set in snap tree */

bfSetT *bfsNextSiblingSnapSet /* Next snapset on the same level */

uintl6é_t bfsSnaplLevel

uint32_t bfsSnapRefs

/* 0 = root, greater 0 indicates number of
* parents back to root */
/* Number of refs from other related snapsets. */

bs meta page t tagUnInPg; /*
bs meta page t tagUnMpPg; /*

fileSetNodeT *fsnp;

/*

mutex t bfSetMutex; /*
bfs flags t bfsFlags
— — /x
/*
£29 4+ e £
aiaE bfSetFlags;

b
3.1.4 struct bsBfSetAttrT

typedef struct {
bfSetIdT bfSetId;

bfTagT nxtDelPendingBfSet;

uintlé t state;
uintlé t flags;
adv_dev_t fsDev;
adv_uid t uid;
adv_gid t gid;
adv_mode t mode;

char setName[BS_SET NAME SZ];

uint64 t numberFiles;
uint64_t numberDirs;
uint64_t numberExtents;

el

oAt
el

e £k~ PR * L + 1 %
bfSetT toneSetps pointer £ lone—set
K + T % 1 + . *x £] +h 1 + + A + *
bESetT rigSetps; forelones—this is parent set dese ptr
P TN TeoraTd. x N O 1] Ja X L 1an *
SEa — Tonetds Fie Tor
PRI IS Sl Lo I =] nelCnt . X 4+ 3 rier b P] ned X
SEa — Toretats = rig—has—been—elened
I o 1 * + £ 1 *
wint32—+t—numClones; wrrent—number of elones
— x
* Ml £a11 otna PR 1 T4 11 g + i nat 1 deletton £
Th Towiag = Tock—ds—wused reite he—detetion—of
1 £ 1] A +h £ + + £ £ 1] 1 +h 1 1
a—etone—fileset and the transfer tentsfrom files—in+th riginat
*x £ + + £ 1] +h] £ 1]
fileset +tofitesin+th tone—fiteset
M1t +] naDaAal QO+ + AN+ . X Dyt 4] naDaAl QO+ + A farTh =i *
i — TorebelStateMu 3 P TorebelSta aad—xferthread
ot T lm leoneDel S+ ot X Q4 o4 leone £41 FERDS DN PSS g *
arebkTelteornebelStates Ste £ elone—£i1 detetion
+£29 + £ Th A * N 1 £ +h A A + £ £ *
+AE32—+¢ ferThreadss Number—of threadsdoing transfer of
* + £ 3 1 1 £ 1] + *
storage from an originatl file to o
* 1en £11 ER,] £11 + *
Tore—fite—dn—thisf£41 -
uint32_t infolLoaded; /* true if correct tagdir info has been loaded */
mutexT setMutex; /* protects dirLock & fragLock lock header fields */
ftxLkT dirLock; /* tag dir lock */
bfsStateT state; /* state */
/* tagdir info - valid iff infolLoaded == TRUE */
int32 t bfCnt; /* number of bitfiles in the bitfile set */
bs meta page t tagFrLst; /* page no of head of free list + 1 */

first uninitialized page in tag dir */
first unmapped page in tag dir */

file set node pointer */

protect bfSetFlags */

/* The high-order 16-bits of this field holds */
in-memory attributes and the low-order */
16-bits holds on-disk flags */

/* bitfile-set's ID */
/* next delete pending bf set */
/* state of bitfile set */

/* Unique ID */

/* set's owner */

/* set's group */

/* set's permissions mode */

/* bitfile set's name */

/* ~ Number of file in fileset */

/* ~ Number of dirs in fileset */

/* ~ Number of extents in fileset */

20

IEERSE] + nanShaotrTde. *x 0 —— ricpe W o —— napnahot X%
Sy Hapott =7 Ea=aS N a5t
IEERSE] + nanShaotrOnt . b RS ETo2N SN £+ 1 nanahaot h B PN r fod %
Sy Hapott s3asy RomoeE T E=iis a5t E3acy B Fr reo =2
RS o] + haoto-. * 1 £ iy *
CE=sasy o pPontotSy brrehtRumoeY T—SHAPSHOtS

bfSetIdT bfsaParentSnapSet

bfSetIdT bfsaFirstChildSnap;
bfSetIdT bfsaNextSiblingSnap
uintl6_t bfsaSnapLevel;

uintlé t rsvdl;
adv_time t bfsaFilesetCreate
uint64_t rsvd3;

} bsBfSetAttrT;

3.1.5 struct advfs_pvt_param

struct advfs pvt param {

/*
/*

/*
/*

/*

Parent fileset to this fileset with respect to
the snapshot tree */

Head of the chain of child snap sets */

List of snaps on this level of the snap tree */
0 = root. Greater than 0 indicates number of
parents back to root. */

Time of fileset creation */

struct bsBuf *app bp; /* Associated bsBuf */

off t app total bytes; /* Total read() or write() length */

off t app starting offset; /* Starting Offset of original request */
pvt param flags t app flags; /* Flags */

uint32 t app_started readahead; /* TRUE if read-ahead was started */

bf fob t app ra first fob; /* Read-ahead: first FOB to read */

bf fob t app_ra num_fobs; /* Read-ahead: number of FOBs to read */
ftxHT app_parent ftx /* parent transaction for metadata COWs */

bi

3.1.6 struct extent_blk_desc

struct extent blk desc {

struct extent blk desc *ebd next desc; /* Next desc. in a list, null term */
struct extent blk _desc *ebd snap fwd; /* Next desc for use by snapshots */
bfAccessT* ebd bfap; /* Used by snapshots to chain snap_maps,

off t ebd offset;
size t ebd byte cnt;
bf vd blk t ebd vd blk;
vdIndexT ebd vd index;

}i

3.1.7 struct ioanchor

typedef struct ioanchor ({

spin t anchr lock; /*
_ _ s
int64 t anchr iocounter; /*
/*

uint64 t anchr flags; /*
struct buf *anchr origbuf; /*
/*

cv_t anchr cvwait; /*
_ _ I
/*

/*

struct iocanchor *anchr listfwd;
struct iocanchor *anchr listbwd;

/*
struct buf *anchr aio bp; /*
uint32 t anchr magicid; /*
struct buf *anchr_buf copy; /*

*

* extent maps of snapshots requiring
* COWing */
/* Starting offset in bytes in file*/
/* length of the range described */
/* Disk block the mapping begins at

* -1 = hole, -2 = start perm hole */
/* volume index this mapping is on */

Coordinate changes to anchor using lock. */
advfs iodone() always gets spin lock. */
Single IO request callers set to 1. Else, */
set to number of IO's in multi-IO set */
Anchor flags for advfs_iodone to check */
Set to the original UFC IO buf structure*/
for advfs iodone to use. */
Optionally allows caller to sleep on this */
condition variable until IO completes. */
Caller can also use with */
IOANCHORFLG_WAKEUP_ON ALL IO flag */

/* Caller can link multiple anchors to */

/* take responsibility for freeing anchors. */

/* Caller must set the */
/* IOANCHOR KEEP ANCHOR flag to use the link.*/

actRangeT *anchr actrangep; /*Active range pointer when using */
active range locking Otherwise, set to 0.%*/
Asynchronous IO buffer for directIO only.*/
Unique structure validation identifier */
A copy of the original buf struct. Used by
snapshots. */
struct adviodesc_t *anchr_ error_ ios

/* A chain of adviodesc structs that had

21

* errors occur during IO. The chain is maintained
* in the advio_fwd pointer in the adviodesc_t on if
* the IOANCHORFLG_ CHAIN ERRORS flag is set. */

} ioanchor t;

3.1.8 struct adviodesc_t

typedef struct adviodesc {
blkDescT advio blkdesc; /* Virtual disk location and index */
bfAccessT *advio bfaccess; /* File access structure */
ioanchor t *advio_ ioanchor; /* All callers initiating IO supply an anchor*/
struct bsBuf *advio bsbuf; /* Only metadata/log data write IO set ptr */

int (*advio save iodone) ((struct buf *));
/* Save IO caller's buf iodone() */
uint64 t advio flags; /* Flags set by advfs bs startio() caller */

/* for advfs iodone() processing. */
/* Following fields are mainly for AdvFS IO retry. */

off t advio foffset; /* 1KB aligned file byte block offset. */
caddr_t advio_ targetaddr; /*starting data virtual address for I/O */
int32_t advio_ioretrycount; /* Count of AdvFS initiated I/O retries */
uint32 t advio magicid; /* Unique structure validation identifier */

struct adviodesc *advio_fwd /* Used to link io descriptors */
} adviodesc t;

3.1.9 struct bfTag

typedef struct {

tagNumT tag num; /* tag number, 1 based */

tagSeqT tag seq; /* sequence number */

sint32 £ paddings * struycture aligament b mpiler *

uint32:t bft_tag flags; /* Flags for the tag. Used to return flags from

* tagdir lookup next. Not always valid. */
} bfTagT

3.1.10 Enumerations
3.1.10.1 enum bfs_flags_t

Flags for bitfile sets are currently divided into two groups, in memory flags and on disk flags. The flags are
defined in separate places as #defines. This enumeration will merge the set of flags into one enumeration
but maintain the quality of having the low order 16 bits represent on disk flags and the high order 16 bits
represent in memory flags.

typedef enum {
BFS_OD OUT_OF SYNC 0x0001 /* Snapshot could not allocate storage
* for a copy-on-write, so it is now
* out-of-sync with the original
* fileset.
*/
BFS_OD_HSM MANAGED 0x0004 /*
* The fileset is set to be managed
* by an HSM.
*/
BFS_OD HSM MANAGED REGIONS 0x0008
/*
* An HSM-managed fileset has had
* managed regions set, and so
* the BFS_OD_HSM MANAGED flag must not
* be unset.

*/

BFS OD OBJ SAFETY 0x0010 /* enables/disables forcing zeroed
* newly allocated storage in a file
* to disk before allowing the file to
* have the storage.

22

*/
BFS_OD_ROOT_SNAPSHOT 0x0020 /* This flag indicates that this fileset has no
* logical parent snapset. Either it is the root of
* a snapset tree or has been cleved from its
* parent */
BFS IM ON DISK MASK 0x0000FFFF /* Used to select the on-disk flags */
BFS_IM DIRECTIO 0x00010000 /* Default direct I/O */
BFS_IM SNAP_IN PROGRESS 0x00020000 /* The fileset is currently being snapped,
* all new getpage write requests must
* synchronize */
BFS_IM NOATIMES 0x000400000 /* Previously a mount flag, not a fileset
* flag */
} bfs_flags t

3.1.10.2 enum bfa_flags_t

This enumeration provides a set of flags for bfAccess structures. The flags are stored in the bfaFlags field
of the bfAccess structure and are protected by the bfal.ock.

typedef enum {

BFA NO FLAGS = 0x0, /* Not open, not mapped */

BFA EXT OPEN = 0x1, /* 1 or more external opens */

BFA INT OPEN = 0x2, /* 2 or more internal opens */

BFA MAPPED = 0x4 /* The bfap is inited from disk */
/* same as BSRA VALID essentially */

BFA_VIRGIN_SNAP = 0x8 /* This snapshot has not yet been given its
* own metadata. */

BFA_OUT_OF SYNC = 0x10 /* The bfap is a snapshot and is out of sync
* with the parent */

BFA_CFS_HAS_XTNTS = 0x80 /* This field is set whenever a CFS client has
*

successfully acquired a copy of the extent maps
* for this bfap. */
BFA_XTNTS_IN_ USE = 0x100 /* This flag indicates that the extent maps are
* being manipulated and CFS clients
* cannot get a copy of them */
BFA_SNAP_IN COW_MODE= 0x200 /* Indicates that CFS_COW_MODE ENTER has been
* called on the bfap */
BFA_SNAP_CHANGE = 0x400 /* This flag is used to get around a deadlock
between advfs_getpage and starting an exclusive
transaction in advfs_ create snapset. The
field lets getpage detect that a snapshot may
have been created and attempt to do late
hole COWing and page protection. The flag
is set every time a file has
its pages protected during the
snapping process. The flag is set whenever a
file is open when a snapshot child is created and
is cleared any time all children snapshots are
opened. */
This flag is set on snapshots whose access
patterns tend to be mostly one time reads. If
the flag is set, the access structure will be
aged in half the time of normal access
structures. */
BFA_PARENT SNAP OPEN =0x1000 /* The parent snapshot is opened by the child */
BFA_OPENED_BY PARENT =0x2000 /* The parent snapshot has opened this child */
BFA_ROOT_SNAPSHOT =0x4000 /* This file is a root of a snapshot tree */
} bfa flags_t;

*

BFA_QUICK_CACHE = 0x800 /

* ok ok ok R R ok Ok Ok H Ok F F * *

3.1.10.3 enum bf_od_flags_t

typedef enum {
BOF ROOT SNAPSHOT = 0xl, /* No dependency on parent snapshots */
BOF_DEL WITH CHILDREN = 0x2, /* The deletion of the last child will cause this
* file to be deleted */
} bf od flags t

23

3.1.10.4 enum acc_open_flags

enum acc_open_flags {

BF _OP_NO_FLAGS = 0x0, /* No Flags */

BF _OP_IGNORE DEL = 0x1,

BF OP OVERRIDE SMAX = 0x2, /* override acc_ctrl soft max to ref bfap */
BF_OP BFA LOCK_HELD = 0x4, /* bfaLock held on entry to advfs ref bfap */

BF OP INMEM ONLY = 0x8, /* Don't init a new bfap, doesn't bump v _count */
BF_OP_FIND ON_DDL = 0x10, /* Find it on DDL */

BF_OP_INTERNAL = 0x20, /* Doesn't set v_count */
BF_OP_IGNORE_CLOSED_LIST = 0x40 /* If the bfap is on the free or closed

list, do not remove it. This is required
to prevent sync code from interfering with
cache aging */
BF_OP_IGNORE_BFS_DELETING = 0x80 /* If this flag is set, then bs_access_one will
* allow a file to be opened on a fileset that is
* actively being deleted */
BF_OP_SNAP REF = 0x100 /* 1If set, whenever refCnt is bumped,
* will also be bumped bfaRefsFromChildSnaps */
bi

3.1.10.5 enum acc_close_flags

enum acc_close flags {

MSFS CLOSE_NONE = 0x0, /* No Flags */

MSFS_INACTIVE CALL = 0x1, /* Called from msfs_inactive */

MSFS BFSET_DEL = 0x2, /* */

MSFS_DO_VRELE = Ox4, /* Call to VN RELE required*/

MSFS_SS_NOCALL = 0x8, /* */

MSFS_CLOSE_DEALLOC = 0x10, /* Dealloc bfap on DEC REFCNT */

MSFS_CLOSE SYNCING = 0x20, /* The close was issued from a flush/sync */
MSFS_SNAP DEREF = 0x40 /* While holding the bfalock, and before calling

* DEC_REFCNT, the bfaRefsFromChildSnaps must be
* decremented. */
MSFS_SNAP_PARENT CLOSE = 0x80 /* While holding the bfalock, and before calling
* DEC_REFCNT, the bfaFlag BFA OPENED BY PARENT
* flag must be cleared */
bi

3.1.10.6 enum round_type_t

typedef enum {
RND ALLOC_UNIT =0x1,

/* Round to complete allocation units if the offset is
in the middle of a hole. This is primarily
intended for writes that start in a hole. If the

* end of a range falls in the middle of a 4k
* boundary, the end will be rounded up to 4k. (not

* the allocation unit). */
RND VM PAGE =0x2,
/* Round to a vm page boundary (4k). This is intended
* for use when a read is occuring. This round
* type prevents processing of entire allocation
* units when only part of the unit is required.
* The start of the range will be rounded down to a
* 4k boundary and the end will be rounded up to a
*

4k boundary */
RND MIGRATE =0x4,

/* Round to adjacent leading (left) holes and truncate
trailing (right) holes in order to guarantee
that a hole accompanies its trailing storage.
If the range is completely contained within
a hole, return the entire hole. Logical adjacent
blocks are coalesced into one extent block descriptor.
/
RND NONE =0x8,

/* No rounding. The passed in offset and length must be

X% o ok ok o

24

* a multiple of DEV BSIZE. */
RND_ENTIRE_HOLE =0x10
/* This rounding type will be used to indicate that rounding
* should encompass entire holes. If the range is 1 byte in
* in the middle of a 1 GB hole, the entire 1 GB hole will be
* returned. This is for COW operations to COW entire holes
* at once. */
} round type t;

3.1.10.7 enum extent_blk_map_type t

typedef enum {

EXB COMPLETE =0x1, /* Return a map of holes and storage. */
EXB_ONLY HOLES =0x2, /* Return only a map of holes. Do not include storage */
EXB_ONLY STG =0x4, /* Return only a map of storage. Do not include holes */

EXB_DO_NaT_INHERIT=0x8 /* Return only local xtnt maps, none from parent snaps */
} extent blk map type t;

3.1.10.8 enum snap_flags_t

This enumeration is used for passing flags into snapshot related routines.
typedef enum {

SF_SNAP NOFLAGS =0x0
SF_SNAP_ READ =0x1, /* Indicates a read operation is occurring on a snapshot */
SF_SNAP WRITE =0x2, /* Indicates a write operation is occurring */
SF_HAD PARENT =0x4 /* Used to indicate to advfs_unlink snapset that a parent
* DID exist, but may have been closed. */
SF_FAST SNAP =0x8 /* Indicates that only metadata should be flushed during
*

snapset creation */
SF_FOUND_SNAPSET =0x10 /* Indicates that the fileset being opened has been
* traversed while accessing other related snapsets
* see advfs access_snapset recursive */

SF_OUT_OF SYNC =0x20 /* Used to indicate a fileset that is out of sync has
* peen found and children must be marked out of sync */
SF_NO_UNLINK =0x40 /* Used to indicate to advfs force cow and unlink that the

* unlink is not desired */
} snap_flags_t

3.1.11 Constants and Macros
3.1.11.1 #define BS_TD_OUT_OF_SYNC_SNAP 0x8

This #define is used to set a flag in the tag directory if and when a snapshot file becomes out of sync with
the parent file.

3.1.11.2 #define BS_TD_VIRGIN_SNAP 0x10

This #define is used to indicate that the file described by this tag directory entry does not have it’s own
metadata. No COW has occurred to this file yet. This is set in each tag entry when a snapset is created
(during the copying of the tag directory) and is cleared when advfs_access snap children COWs the
metadata for a given file.

3.1.11.3 uint64_t advfs_cow_alloc_units 8

This global is used to determine the number of allocation units to be checked for COWing when a write
request occurs on a file with a snapshot. COWing will be done on aligned allocation units of
advfs_cow _alloc units, so if a write request comes in on the second allocation unit, the COW would
happen over the byte range:

[0..advfs cow alloc units*bfap->bfPageSz*ADVFS FOB SZ].

This value is made dynamic to allow for changing on a live kernel if necessary.

25

3.1.11.4 #define ADVFS_FORCE_COW_MAX_ALLOC_UNITS 64

This #define is used when the COWing of a file is being forced (the entire file will be faulted in for write to
force a COW to all children snapshots). This value represents the maximum number of allocation units that
will be brought COWed in a single iteration. This value is used to reduce the stress on UFC memory that
might result from forced COWs bringing in large files.

3.1.11.5 #define ADVIOFLG_SNAP_READ 0x8

This constant is a flag to advfs_start blkmap io to indicate that the IO to be issued is a READ for a
READ/WRITE serial operation on a snapshot. The flag indicates that the IO anchor should have an 10
Count of 2 rather than 1 and that the IOANCHORFLG WAKEUP ON ALL IO is set.

3.1.11.6 #define IOANCHORFLG_CHAIN_ERRORS 0x10

This IO Anchor flag is used to indicate to IO completion that any adviodesc t structures on which an error
has occurred should be chained to the IO Anchor via the anchr_error ios field. Additionally, the multiple
adviodesc t’s will be chained via the advio fwd field of the adviodesc t. This is used to return 1O error
information to advfs getpage when dealing with snapshots and multiple writes.

3.1.11.7 #define ADVFS_MAX_SNAP_DEPTH 5

This constant defines the maximum depth of snapshots. A snapshot can have at most
ADVFS MAX SNAP DEPTH parents.

3.1.11.8 #define ADVFS_FILES_BEFORE_PREEMPTION_POINT 128

This constant is the number of files that can be freed before a preemption point will be hit when trying to
remove all files in a fileset.

3.1.11.9 #define ADVFS_CFS_COW_IS_COMPLETE 1<<63

This flag is used to indicate to CFS that an extent of a file has already been COWed and that it is not
necessary to send direct IO writes through the server node. If this flag is set in the high order bit of the
bsExtentDescT bsed fob offset field, the extent can be safety directly read and written as long as the direct
10 token is held.

3.1.11.10#define ADVFS_ROOT_SNAPSHOT (-1)
This #define is used to initialize the bfat orig file size in files that do not have parent snapshots.
3.1.11.11 APP_MARK_READ_ONLY

This new flag for advfs private parameters to advfs_getpage and advfs_putpage is used to indicate that all
pages should but flushed and marked as read only.

3.2 Module Design

This section is divided into subsections based on high level function. The basic functions include creating
a snap set, opening a fileset (or snapset), opening a file (or snapshot), and writing to a file (invoking COW
processing). The sections are primarily non-intersecting, but some overlap occurs with respect to locking
issues.

26

3.21 Creating a Snap Set
3.2.1.1 Function Call Tree Overview

Sys-Admin
fsadm -snap

Merges functionality
from fs_fset_clone and
bs_bfs_clone

This routine checks
permissions on the domain
and parent filesystem

Syster@_»{ advfs_create_snapset ‘

—»‘ advfs_check_snap_perms ‘
|—>‘ bfs_access(parent bfSet)

ets the parent to have fla

L LOCK HELD FORNWRIT

EXCLUSIVE TRANSACTION
bfs_create(snap set)

bfs_access(snap set)

advfs_bs_dmn_flush

advfs_snap_protect_cache

For each access struct on parent bfSet access
List
fcache_vn_protect{ SET READ ONLY
ACCESS)

Set BFA_SNAP_CHANGE in bfap ‘

his routine makes a cop
of the tagdir. We have an
exclusive transaction, so it can’t
change under us .

advfs_copy_tagdir

rbf_add_stg

bs_refpg(parent tagdir)
Performed multiple times (1 per page)

bs_pinpg(snap tagdir) ‘

bcopy(parent to snap) ‘

fcache_vn_flush(snap)

advfs_link_snapset_full

.Correct fsRefCnt's and clear
BFS_IM_SNAP_IN_PROGRESS /

27

3.2.1.2 Basic Operations of Creating a Snap Set

When the user issues a command to create a snapshot of a filesystem, the command will resolve to
advfs_create snapset in the kernel. advfs create snapset provides the kernel interface for creating a
snapset. On entry, the parent set can be either mounted or unmounted, and on successful exit from the
routine, the parent will be actively COWed on any writes. If the parent file system is mounted, the snap set
will be activated on return and will remain open until the close of the parent filesystem. If the parent file
system is not mounted or otherwise open, both the parent and snap set will be closed on exit.

On Tru64, fs_fset clone provided the highest level kernel interface. fs fset clone performed access checks
prior to resolving to bs_bfs_clone which did the majority of the work for creating a clone. On HPUX,
advfs create snapset will make a call to advfs_check snap perms to make sure that the fileset can be
snapped. Once permissions have been verified, advfs create snapset will perform the majority of the work
required to create the snapset.

advfs create snapset will start an exclusive transaction in which to perform the majority of the snapping
work. The transaction synchronizes with rmfset which starts an exclusive transaction and with all
modifications to metadata. No transactions can be in progress at the moment when data begins to be
COWed since this would provide the potential to COW half of a transaction (half an atomic update).
Starting an exclusive transaction has the added benefit of preventing any further modifications to the tag
directory of the parent file system. Therefore, no files can be created, deleted, or migrated.

Before the transaction is started, advfs_create snapset will open the parent fileset and set the

BFS IM_SNAP IN PROGRESS flag in the parent fileset. The setting of the

BFS IM_SNAP IN PROGRESS flag will block write activity on the parent file system by holding up new
writers in advfs fs write and advfs getpage. Once the BFS IM_SNAP IN PROGRESS flag is set, any
new mmap writes will be stopped in advfs getpage while any new syscall writes will be stopped in
advfs_fs write. advfs_drain_snap_ writes will be called to wait for all in progress writes to complete.

After the parent is accessed, and the active writes are drained (all while holding the bfSetTbl lock), the
exclusive transaction will be started to perform the remainder of the snapset creation. The creation of the
snap set is done through a call to bfs_create. After bfs_create succeeds, the new snap set is accessed and a
ref count is placed on the snap set. At this point, all outstanding metadata on the domain is flushed. Since
the thread is in an exclusive transaction, flushing the entire domain makes sure the log is on disk and that
any metadata that is COWed will not be undone if the system panics. The flushing of the domain will
ensure that all metadata on disk is consistent; however mmappers may still be able to modify cached pages.
Next, a call to advfs snap protect cache will protect each page in cache to be read-only, thereby requiring
a fault to allow any writes. If a dirty page is found while protecting the page, it will be flushed again.

advfs snap protect cache will call fcache vn_flush on every file on the parent filesets access set list and
pass in the FVF_PPAGE flag along with a new private parameter flag APP. MARK READ ONLY. This
will set the pi_pg_ro flag on each pfdat, thereby marking the file write protected (read only). In addition,
advfs_snap protect cache will acquire the bfaLock and set the BFA SNAP_CHANGE flag in the bfaFlags
of the protected file.

Next, advfs_create snapset will call advfs copy tagdir which will allocate storage for and synchronously
copy the tag directory of the parent file system to the new snap set.

On return from advfs _copy_tagdir, the new snapset exists on disk and has a complete copy of the tag
directory of the parent file system, also on disk). Once advfs copy tagdir has completed, it is safe to link
the parent and child fileset together in memory and through the bfsAttr structures on disk.

Before returning to the caller, advfs create snapset will clear the BFS IM_SNAP IN PROGRESS flag
and broadcast on the bfsSnapCv to wakeup any waiters.

3.2.1.3 Functional Call Detalil

3.2.1.3.1 advfs _create_ snapset

28

3.2.1.3.1.1 Interface

statusT advfs create_ snapset (

char *parent dmn name, /* Name of parent fileset’s domain */
char *parent_ fset name, /* Name of parent fileset */
char *snap_dmn_name, /* Name of snap’s domain */
char *snap fset name, /* Name of snap’s fileset */
bfSetIdT* snap set id /* bf set id of the new snap set. */
snap_flag t snap_flags /* If SF_FAST SNAP is set, only flush metadata */
ftxIdT cfs xid) /* CFS transaction ID */
3.2.1.3.1.2 Description

This routine is the highest level kernel interface for creating a snapshot of a filesystem. This routine is
called with no locks held. On successful return, a fileset named snap _fset name exists on the domain
snap_dmn_name and is a snap shot of the fileset parent fset name on parent dmn_name domain.

At a high level, this routine will check for permissions to create a snapshot fileset, and then start an
exclusive transaction under which to create the snapshot. The transaction will open the parent file system
and create a new filesystem with the name snap fset name. The opened parent fileset will be checked for
the BFS DELETING state. If the state is BFS DELETING, the creation of a snapshot will fail, the
transaction will be failed and the function will return. After opening the parent filesystem, a flag will be set
(BFS_IM_SNAP IN PROGRESS) to indicate that a snapshot is currently being made of the parent and
that all modification operations should block including writes and deletes. The

BFS IM_SNAP_IN PROGRESS flag will also be set in the new snapset. If the parent filesystem is
mounted, the CFS callback CLU_CFS_SNAP_NOTIFY? will be sent using the SNAP_CREATE argument.
On any error that causes the snapshot creation to fail, the CFS callback CLU CFS SNAP NOTIFY will be
called passing the SNAP_DELETE parameter. Once the snapshot filesystem is created,

advfs_create snapset will wait for all outstanding writes (mmap and syscall) to complete before continuing.
After all writes have been drained via a call to advfs_drain_snap writes, the parent domain will be flushed.
The flush of the domain will make sure that all pages in cache are clean with the exception of user data
pages mmapped for write. advfs snap protect cache will be called to protect every page in cache and to
flush any additional dirty pages. This will block out any mmap writers who will need to fault into

advfs getpage in order to get write permission on the page.

A call to advfs_snap protect cache will walk through each file on the parent filesystems access set list and
call fcache vn_flush on each of the files with the FVF_PPAGE and APP. MARK READ ONLY flags.
The FVF_PPAGE flag will insure that advfs putpage is called and the APP. MARK READ ONLY will
indicate to advfs_putpage that each page in cache should be marked read only. On successful return from
advfs_snap protect cache, each file in the parent filesystem will have had all its pages write protected.

Once the flush and protect is complete, any COWed data will be consistent before and after a system failure
and it is, therefore, safe to call advfs copy tagdir to replicate the tag directory for the snapshot filesystem.

On successful return from advfs_copy_tagdir, the set of files that the snapshot file system will track has
been established on disk. Additionally, since the setting of BFS IM_SNAP IN PROGRESS and the start
of an exclusive transaction, all new writes to files have blocked in advfs_getpage (mmap) or in rbf add stg
(metadata) or in advfs_fs write (user data writes).

Once the tag directory is successfully copied to the snapshot fileset, advfs link snapset full will be called
to link the child into the parents list of snapset children and to copy the necessary fields of the parent’s
bfSetAttr record to the child. advfs link snapset full will pin records under the exclusive root transaction,
so after advfs_link snapset full, the transaction cannot fail. advfs_link snapset full will also set the
snapset child’s on disk state to BFS_ ODS VALID.

Once advfs_snap protect cache is called, all open files in the parent snapset have had the
BFA SNAP CHANGE flag set. Before returning, the fsRefCnt of the child snapset will be set to match

? Previously the * SNAP_* names were * CLONE_* for CFS. They will be renamed.

29

the fsRefCnt of the parent through a series of calls to bfs_access. Finally, the
BFS IM_SNAP_IN PROGRESS flag will be cleared in the parent and child filesets.

Before returning, a broadcast will occur on the bfsSnapCv to wake up any waiters on the create. Once the
parent has broadcast, the child will issue a broadcast in a similar fashion. The parent may have waiters in
advfs getpage, the child could only have waiters in code paths attempting to access the new fileset.

advfs_create snapset will hold the bfSetTbl lock in write mode across the majority of the routine. This
lock will synchronize with callers of bfs_access and bfs_open that are trying to open the parent fileset while
a snap is being created. In order to allow advfs bs dmn_flush to be called while holding the lock,
advfs bs dmn_flush will be modified to take a flag indicating that the bfSet table lock is already held and
need not be acquired.

In the event of any error, the exclusive transaction will be failed, any resources that were allocated will be
freed, and the error status of the subroutine that failed will be returned. The child snapshot will be removed
as part of the failing of the transaction.

3.2.1.3.1.3 Execution Flow

. Call advfs_check snap_ perms

. If permissions check fails
o Return E_ACCESS_DENIED
. If clu_is_ready
o CLU _CFS_SNAP NOTIFY’ of snapset create
. /* If advfs check snap perms succeeded, the bfSet parent is open */
. write lock bfSetTbl lock

. if parent fileset is BFS DELETING, close parent fileset, fail transaction, unlock
bfSetTbl lock, propogate error. If this is the first snapset in the domain, call
CLU_CFS_SNAP NOTIFY to notify CFS of the snapset delete.

. Set BFS_IM SNAP IN PROGRESS flag in parent fileset
. Call advfs_drain_snap_writes

. If advfs_snap_drain _writes fails, clear BFS_IM SNAP_IN PROGRESS flag in parent
fileset, propogate error. If this is the first snapset in the domain, call
CLU_CFS_SNAP NOTIFY to notify CFS of the snapset delete.

. Start an exclusive transaction (if it fails, return the error)
. write lock bfSetTbl lock
e Dbfs create the child fileset

. if bfs create fails, fail transaction, drop bfSetTbl Lock and propogate error If
first snapset_in domain CLU_CFS_SNAP NOTIFY of snapset delete

e Dbfs access child fileset
. Set BFS_IM SNAP IN_ PROGRESS flag in child fileset

. if bfs access fails, fail transaction, drop bfSetTbl Lock and propogate error,
clear BFS_IM SNAP IN PROGRESS flag. If this is the first snapset in the domain,
call CLU _CFS SNAP NOTIFY to notify CFS of the snapset delete.

. Flush the flush the entire domain (advfs bs dmn flush)
. Call advfs snap protect cache

. If advfs_snap_protect cache fails, finish transaction, drop bfSetTbl Lock and
propogate error, clear BFS_IM SNAP IN PROGRESS flag, and delete the child fileset.
If this is the first snapset in the domain, call CLU CFS SNAP NOTIFY to notify CFS
of the snapset delete.

. Call advfs copy tagdir

> The CLU_CFS_SNAP _NOTIFY with the SNAP_CREATE flag will be modified so that in addition to
draining any direct IO writes on clients, it will also invalidate the extent maps on those clients. Invalidating
the clients is necessary to make a new optimization for direct IO cluster writes to filesets with snapshots
function correctly.

30

. If advfs copy tagdir fails, fail transaction, drop bfSetTbl Lock and propogate
error, clear BFS_IM SNAP IN PROGRESS flag. If this is the first snapset in the
domain, call CLU_CFS_SNAP NOTIFY to notify CFS of the snapset delete.

. Call advfs link snapset full passing snap flags

. If advfs_link_snapset full fails, fail transaction, drop bfSetTbl Lock and
propogate error, clear BFS_IM SNAP IN PROGRESS flag. If this is the first snapset
in the domain, call CLU CFS SNAP NOTIFY to notify CFS of the snapset delete.

. Finish exclusive transaction

. Adjust the fsRefCnt of the child snapset to match the parent fileset by calling
bfs access on child until they match.

. Clear BFS_IM SNAP IN PROGRESS flag in parent and child
. cv_broadcast on parent’s bfsSnapCv

. cv_broadcast on child’s bfsSnapCv

. bfs close the parent fileset

. Unlock bfSetTbl lock

Note that any time the BFS IM_SNAP IN PROGRESS is cleared in an error condition, a broadcast
will occur to wake all waiters.

3.2.1.3.2 advfs check snap perms

3.2.1.3.2.1 Interface

statusT advfs_check_snap_perms (

char *parent dmn name, /* Name of parent fileset’s domain */
char *parent fset name) /* Name of parent fileset */
bfSetT *parent bf set) /* Returns bf set struct of parent fileset */

3.2.1.3.2.2 Description

advfs check snap perms is intended to be a routine used by advfs_create snapset to open the parent fileset
and validate that the parent fileset can be snapped. Validation includes making sure the parent fileset is not
managed by an HSM, verifying that the caller has write access to the domain, and verifying that the caller
has read access to the parent filesystem.

To verify permissions, advfs_check snap perms will first activate the domain of the parent filesystem.
Next, the parent fileset will be accessed. If the parent fileset is HSM managed

(BFS_OD _HSM_MANAGED in the bfsFlags field of the bfSet structure), then the file system is closed
and the domain deactivated and ENOT_SUPPORTED is returned.

Otherwise, the domain parameters of the parent filesystem domain are read via a call to
bs get dmn_params and the domain is checked to see if the caller has write permissions. If permission is
denied, the fileset is closed, the domain is deactivated, and E. ACCESS DENIED is returned.

Next, the bfSetParams structure is read from the parent fileset and the fileset is checked for read access. If
permission is denied, the fileset is closed, the domain is deactivated, and E. ACCESS_DENIED is returned.
If the depth of the fileset to be snapped is equal to ADVFS_ MAX SNAP_DEPTH, then the create will be
denied with the ENOT SUPPORTED flag. This indicates that the maximum depth of snapshots has been
exceeded.

If no error is returned, this routine will return with the domain activated, the parent fileset accessed, and
will return a status of EOK.

3.2.1.3.2.3 Execution Flow

e Activate the domain
. Read the domain attributes (bs_get dmn params)
. Call bs_accessible to check that domain is writeable

. If domain is not writeable (ie user does not have write permission)

31

o Close domain
o Return E ACCESS DENIED
. Activate the parent fileset
. Bfs open the parent fileset (and related snapsets)
. Read the bfSetAttr record of the parent fileset
. If parent fileset has BFS OD HSM MANAGED set
o Close fileset and domain
o Return E_NOT_SUPPORTED
. Call bs_accessible to check that parent fileset is readable
. If parent fileset is not readable
o Close fileset and domain
o Return E ACCESS DENIED
. If parent fileset snapset depth == ADVFS MAX SNAP DEPTH
o Return ENOT SUPPORTED

. parent bf set = accessed fileset

. return EOK

3.2.1.3.3 advfs_copy tagdir

3.2.1.3.3.1 Interface

statusT advfs copy_ tagdir (

bfSetT *parent bf set ptr, /* bfSetT pointer of parent fileset */

bfSetT* *snap bf set ptr /* bfSetT pointer of snap set */

ftxH parent ftx) /* Transaction of parent ftx */
3.2.1.3.3.2 Description

This routine is called to make a replica of the tag directory of parent bf set ptr in the snap _bf set ptr’s
fileset. On entrance to this routine, it is expected that an exclusive transaction is underway and that no
modifications can be made to the parent bf set ptr’s tag directory. Additionally, it is expected that all
changes made to the source tag directory are on disk and will not be undone during recovery.

On successful return from this function, the snap bf set ptr has a separate, but equivalent tag directory file
and all the fields of the snap bf set ptr structure are correctly mapped to the new file.

This routine does a synchronous copy of the tag directory and does not use any transactions to do the copy
(however a transaction may be started to add storage to the new tag directory file)*.

This routine will first check to see if the bfaNextFob value of the dirBfap field of the snap_bf set ptr
structure is less than the same field of the parent bf set ptr. Ifitis, then the tag file of the snap is smaller
than the tag file of the parent and storage must be added to the snap. If required, rbf add_stg will be called
to allocate the difference between the snapshot tag file and the parent tag file.

Once storage has been successfully added, the routine will loop over each bfPageSz unit of the tag
directories and call bs_refpg on the parent’s tag file and bs_pinpg on the snapshot tag file. Next, the
routine will do a bcopy from the parent to the snapshot. After the becopy is complete, each tag directory
entry in the copied page will have the flag field marked as BS TD VIRGIN_ SNAP to indicate that it has
not yet been given its own copy of metadata. Next, the pages will be derefed and unpinned. The unpin
with be called with the BS DIRTY flag which will cause the page to be cached.

* In the event that there were very few files on the file system, the single page of the snapsets tag directory
file that was allocated by bfs_create may be sufficient to hold the copy of the tag directory. As a result, a
transaction may not be started by rbf add_stg.

32

Once all pages have been bcopied, a call to fcache vn_flush will be made on the tag directory of the
snapshot with the FVF_WRITE and FVF_SYNC flags. Because the dirty pages were pinned with
bs_pinpg and not tbf pinpg, they were never given LSNs, but they were given bsBufs by
advfs get metapage. advfs putpage will note that the writeRef on the bsBuf is 0 and the bsb_metafwd
field is NULL and will therefore consider the pages eligible for 0. Once fcache vn_flush completes
successfully, the tag directory of the snapshot will be on disk and consistent with the parent.

Finally, tagdir get info will be called to initialize the tag directory related fields of the snap bf set ptr.
On success, the routine will return to the caller with the tag directory fully copied.

3.2.1.3.3.3 Execution Flow

. parent tagdir = parent bf set ptr->tagBfap
. snap tagdir = snap bf set ptr->tagBfap
. if parent tagdir->bfaNextFob > snap tagdir->bfaNextFob

o rbf add stg (parent tagdir->bfaNextFob - snap tagdir->bfaNextFob) to
snap tagdir

o if rbf add stg fails, propogate the error
. /* The parent and child tag directories are now the same size. */
. foreach bfPageSz page in parent tagdir

o bs refpg range in parent tagdir

o bs pinpg range in snap_tagdir

o bcopy from parent tagdir to snap tagdir

o for each tag entry in range

. set BS TD VIRGIN SNAP in tag flags

o bs derefpg range in parent tagdir

o bs unpinpg range in snap tagdir (with BS DIRTY flag)
. fcache vn flush snap tagdir from offset 0 to size 0 with FVF SYNC (entire file and

synchronously)

. if fcache vn flush returns an error, propogate the error and return
. call tagdir get info to initialize tag fields of snap bf set ptr

. return EOK

3.2.1.3.4 advfs _snap protect_cache

3.2.1.3.4.1 Interface

statusT advfs snap protect cache (
bfSetT *parent bf set ptr) /* bfSetT pointer of parent fileset */

3.2.1.3.4.2 Description

advfs_snap protect cache is required to protect every page that is currently in cache from being written.
This will cause all mmappers to fault into advfs_getpage to allow for COW processing. Until each page is
protected, there is no locking that can be done by AdvFS to prevent modifications to the data. This routine
was initially designed to use fcache vn_protect but it was determined that the fcache vn_protect interface
had negative consequences with respect to performance and CFS. As a result, pages will be protected by
flushing the pages with the FVF_PPAGE flag and a new private flag APP. MARK READ ONLY. The
FVF PPAGE flag will force a call into advfs putpage even for clean pages while the

APP MARK READ ONLY flag will indicate to advfs_putpage that it should flush dirty data and set the
pi_pg ro flag in all in-cache pages.

advfs_snap protect cache is primarily responsible for making sure that all files of the parent fileset are set
to be read-only and that the BFA_ SNAP_CHANGE flag has been set on every file that may need to be
COWed in advfs getpage. The setting of files to be read-only is done via a call to fcache vn_flush.

33

The routine will walk the access set list of the parent bf set ptr (accessFwd) and for each file that is not in
ACC_INVALID, ACC DEALLOC, ACC_RECYCLE and is not a bfAccess magic marker (accMagic ==
ACCMAGIC_MARKER), it will call fcache vn_flush on the file with the FVF_PPAGE and

APP MARK READ ONLY flags and then set the bfap’s BFA SNAP CHANGE flag. The bfap will
need the bfaLock to be held while setting the BFA SNAP CHANGE flag. Unfortunately, since

fcache vn_flush cannot be called while holding the accessChainLock, the same marker mechanism will be
used to traverse the access set list as is used by advfs_bs_bfs flush. Since any new files that are opened
will be added to the front of the list, and since any new files opened will not be allowed to have writes
performed (they will block in advfs getpage or advfs fs write), it is safe to traverse the access set list and
still allow new files to be added to the list.

advfs_snap protect cache is called in the context of an exclusive transaction and after having flushed the
entire domain. Therefore, it is expected that the vast majority of pages found in cache in advfs_putpage
will be clean. However, if a user data page is mmapped and if the mmapper modifies the page between the
domain flush and the call to advfs_vn_flush to protect the page, a page may be found dirty. A metadata
page should never been found dirty and in cache while in advfs putpage with the
APP_MARK READ ONLY flag.

On any error from fcache vn_flush, this routine will return the error status to the caller. The routine will
not unprotect previously protected pages. The snapshot fileset creation will be failed by the caller, and the
pages that were already protected will suffer a potential performance impact until they have all faulted
through advfs getpage to reset the write permissions.

3.2.1.3.4.3 Execution Flow

. Lock parent bf set ptr->accessChainLock
. cur bfap = head of setList
. While not at the end of the setList

o If cur_bfap is ACC_INVALID, ACC_DEALLOC, ACC_RECYCLE or is a
ACCMAGIC MARKER

L] cur bfap = cur bfap->setFwd
" continue
Insert marker after cur bfap
Drop accessChainLock
Try to lock the bfap flush lock for read.
if failure, skip the bfap and continue

fcache_vn_flush with FVF_PPAGE and APP_MARK READ ONLY on cur_bfap to make
it READ only

O O O O ©o

o 1f fcache_vn_flush fails,
" lock accessChainLock
- remove marker
- unlock accessChainLock
- free marker
- return error
lock bfaLock
set BFA_ SNAP_CHANGE flag in bfaFlags
unlock bfalLock
unlock bfap flush lock
lock accessChainLock

cur bfap = marker->setFwd

O O O O O O O

remove marker from setList
3 unlock accessChainLock

. return EOK

34

3.2.1.3.5 advfs snap drain_writes

3.2.1.3.5.1 Interface

statusT advfs snap drain writes (
bfSetT *parent bf set ptr) /* bfSetT pointer of parent fileset */

3.2.1.3.5.2 Description

This routine is used to wait for all in progress writes that may cause data to become dirty after a domain
flush. The routine will walk the list of access structures in the parent fileset and wait until the bfaWriteCnt
to go to zero. If any files have writes in progress, the bfaLock will be acquired and the bfaSnapCv will be
waited on. The last writer to decrement the bfaWriteCnt to zero will wake up the snapset creation thread.

The routine will use the same model as advfs snap protect cache to walk the access chain list. For each
file, if the bfaWriteCnt is not equal to zero, the bfal.ock will be acquired, and the thread will sleep on the
bfaSnapCv.

3.2.1.3.5.3 Execution Flow

. Lock parent bf set ptr->accessChainLock
. cur bfap = head of setList

. While not at the end of the setlList

o If cur_bfap is ACC_INVALID, ACC_DEALLOC, ACC_RECYCLE or is a
ACCMAGIC MARKER or is metadata

" cur_bfap = cur_bfap->setFwd
. continue
o if cur bfap->bfaWriteCnt ==
" cur_bfap = cur_bfap->setFwd
. continue
Insert marker after cur bfap
Drop accessChainLock
Lock cur bfap->bfalLock
While cur_bfap->bfaWriteCnt
. Cv_wait cur bfap->bfaSnapCv
Unlock cur_ bfap->bfalLock

O O O O

lock accessChainLock

o
o
o cur bfap = marker->setFwd
o

remove marker from setList

. unlock accessChainLock

. return EOK

3.2.1.3.6 advfs link snapsets full

3.2.1.3.6.1 Interface

statusT advfs link snapsets (

bfSetT *parent bf set ptr, /* bfSetT pointer of parent fileset */

bfSetT *child bf set ptr, /* bfSetT pointer of child fileset */

snap flags t snap flags /* Flags to indicate read or write snapshot */
ftxHT parent ftx) /* Transaction to use for updates */

3.2.1.3.6.2 Description

This routine will insert (on disk and in memory) child bf set ptr into the list of children snapshots of
parent bf set ptr and copy necessary fields from the parent bfSetAttr to the child bfSetAttr and set the

35

child’s on disk state to BFS_ ODS VALID. The update will be done in a root transaction and cannot be
undone. After this routine, the parent ftx cannot be failed.

This routine assumes that it is being called from an exclusive transaction and that the bfSetTbl lock is held
for write mode.

The parent fileset will be linked to the snapshot fileset by following the bfsaFirstChildSnap pointer and
then the bfsaNextSiblingSnap pointer to the end of the chain of child snapshots filesystems. If
bfsaFirstChildSnap is a NULL bfSetld, then the parent will have bfsaFirstChild snap pointer to the new
snapshot. The new snapset will be linked with the parent by having bfsaParentSnapSet set to the bfSetld of
the parent filesystem and by having the bfsaSnapLevel set to one greater than the same value in the parent
file set attributes field. The updates will happen to the fields in the bfSetAttr record of the tag directory file
for each fileset.

At the same time that the on disk linkage is established, the parent and child will be linked in memory using
the pointers in the bfSet structure.

3.2.1.3.6.3 Execution Flow
. ASSERT the bfSetTbl lock is held for write
. Read parent fileset’s bfSetAttr record
. if parent bf set ptr has a child snapset
o prev_child = parent bf set ptr->bfsFirstSnapChild
o next child = prev child->bfsNextSnapSibling
o while (next child)
. prev_child = next child
- next child = next child->bfsNextSnapSibling

o read prev_child’s bfSetAttr record

o modify bfsaNextSnapSibling pointer to have child bf set ptr’s setld

o update prev child’s on disk bfSetAttr (done under parent ftx)

o if update failed, the domain has paniced, return

o modify the prev child’s bfsNextSnapSibling pointer to point to the child
o else

o modify the parent’s bfsaFirstSnapChild to have child bf set ptr’s setld

o update parent’s on disk bfSetAttr (done under parent ftx)

o if the update failed, the domain has paniced, return

o modify the parent’s bfsFristSnapChild pointer to point to the child

. read child’s bfSetAttr
. modify bfsaParentSnapSet to have parent’s setld
. modify bfsaSnapLevel to be one greater than parent’s level
. set on disk state to BFS_ODS_VALID
. if snap flags & SF_SNAP_READ
o set mode bits in bfSetAttr to READ only
. else
O ASSERT snap_flags & SF_SNAP WRITE
o Set mode bits in bfSetAttr to WRITE and READ

. update the child’s on disk bfSetAttr record (done under parent ftx)
. if the update failed, the domain has paniced, return error
. modify the child’s bfsParentSnapSet pointer to point to the parent

. return EOK

3.2.1.3.7 advfs_fs write

36

3.2.1.3.7.1 Interface

statusT advfs fs write (..)

3.2.1.3.7.2 Description

This routine will be modified to synchronize with advfs create snapset. Before the file lock or the
cachemode lock are acquired, the routine will synchronize with snapset creation by checking for the

BFS IM_SNAP IN PROGRESS flag. If the flag is set, the routine will block on the bfsSnapCv using the
bfsSnapMutex to synchronize. If the BFS IM_SNAP IN PROGRESS flag is not set, then bfap-
>bfaWriteCnt will be incremented atomically and the BFS IM_SNAP IN PROGRESS flag will be
checked again. If the flag is now set, the bfaWriteCnt field will be decremented and the bfaSnapCv will be
broadcast before going to sleep on the bfsSnapCv (using the bfsSnapMutex to synchronize).

Before returning to the caller, and after dropping all locks, the bfaWriteCnt will be atomically decremented.
The bfaWriteCnt will synchronize direct IO with snapset creation since t direct IO is called from
advfs fs write.

3.2.1.3.7.3 Execution Flow

L]
. incr bfap->bfaWriteCnt
e while BFS_IM SNAP_IN PROGRESS
o decr bfap->bfaWriteCnt
o broadcast bfap->bfaSnapCv
o mutex lock bfSet->bfsSnapMutex
o if BFS_IM SNAP_IN PROGRESS
. cv_wait on bfsSnapCv NO_RELOCK
o else
. unlock bfSet->bfsSnapMutex
o incr bfap->bfaWriteCnt
o Lock cachemode lock and file lock

. Perform normal write

o decr bfap->bfaWriteCnt

. if bfap->bfaWriteCnt == 0 && BFS IM SNAP IN PROGRESS
o mutex lock bfap->bfaLock
o cv_broadcast bfap->bfaSnapCv
o mutex unlock bfap->bfalock

. return

3.2.1.3.8 advfs putpage

3.2.1.3.8.1 Interface

statusT advfs putpage (..

3.2.1.3.8.2 Description

advfs_putpage will be modified to handle the APP. MARK READ ONLY flag. When this flag is set,
advfs_putpage must do a fcache page scan for both clean and dirty pages. All pages in cache must have
the pi_pg_ro flag set and, additionally, dirty pages must be flushed. While the

APP MARK READ ONLY flag is set, a metadata file should never be found to have a dirty page.

3.2.1.3.8.3 Execution Flow

37

. if private params exist & app_ flags &
APP MIGRATE FLUSH ALL|APP MIGRATE FLUSH WAIT|APP MARK READ ONLY

o ptype = FPS GET DIRTY|FPS GET CLEAN

. while current request < ending request

o

o fcache page scan

o adjust for large pages

o if APP MARK READ ONLY
. for each pfdat in plist

. set pi pg ro flag

* if FPS ST CLEAN

. /* There is no need to continue in this routine in this
loop, just move on to the next plist. */

. fcache page release the pages
. goto loop end
L] else ASSERT(!metadata)

3.2.1.3.9 Miscellaneous Changes

When creating a new fileset, fs_fset create will set the BFS OD ROOT_ SNAPSHOT flag on disk to
indicate the fileset has no dependency on a parent snapset. This flag is in support of potential future work
to allow a snapshot child to be cleved from the parent. See Section 3.2.16 for further descriptions.

38

3.2.2 Opening a fileset
3.2.2.1 Function Call Tree Overview

Sys-Admin
fsadm -snap

System Call
I—»‘ advfs_mount ‘

I-»{ advfs_mountfs

On return from bfs_open,
all snapshots will be open and refed

bfs_open

bfs_access will increment the bfs access
fsRefCnt of the fileset being opened. —

bs_domain_access

bfs_lookup

bfs_alloc

Puts a ref on the filesel
being opened.

On Tru64, the BFSETTBL lock was taken in bfs_access and
dropped, then reacquired for the remainder of bfs_open. It will
now be taken in bfs_open and held for the duration of the open.

This is to synchronize with advfs_snapset_create which will

modify the fsRefCnt of the newly created snapset. This could

race with advfs_snapset_access if the lock is not held.

Will put a reference on every parent, child
and sibling in the snapset tree. Will not put a
second ref on the fileset being opened.

advfs_snapset_access

For each fileset in snapset tree |= fileset
being opened.

>{ bfs_access ‘

advfs_link_snapsets ‘

39

3.2.2.2 Basic Operations of Opening a Snap Set

When a user issues a command that will cause a fileset to be opened (in the above example, a mount system
call), the call will eventually resolve to bfs_open’. On returning from bfs_open, the fileset being opened
will have a reference count incremented on it, and all filesets in the snapshot tree will have a reference
count placed on them. In the case of RO snapshots, only the parent or child snapshot needs to have an
additional reference placed on it. In the case of MW snapshots, the tree must be walked from top to bottom
and every fileset needs to have bfs_access called to put a reference on the fileset.

Any call to bfs_open will result in all snapsets in the snapshot tree being opened and accessed. On entrance
to bfs_open, the BFSETTBL lock will be held for write or not held at all. If the lock is not held for write, it
will be acquired. The BFSETTBL lock will be held for write for the majority of the time bfs_open is
processing the open request. The lock will synchronize with advfs snapset create which will match the
number of accesses on the parent and the child filesets. If the BFSETTBL lock were dropped after
bfs_access (as is done in Tru64) a call to advfs snapset create would result in an extra reference on the
child fileset.

Since advfs snapset_create will release the BFSETTBL lock while creating the snapset, if the lock is not
held on entrance to this routine, it will be acquired and the fileset will be accessed. If, after accessing the
fileset, it is determined that the BFS IM_SNAP_IN PROGRESS flag is set in the parent or the accessed
fileset, the fileset will be closed and the lock will be dropped. In the event that the fileset is closed, the
thread will wait on the bfsSnapCv of the fileset to be accessed. Once the BFS IM_SNAP _IN PROGRESS
flag is cleared, the thread will be woken up and will re-access the fileset and continue. If a thread holds
the BFSETTBL lock for write when calling bfs_access, it must handle making sure that the

BFS IM_SNAP IN PROGRESS flag is not set.

bfs_open will first call bfs_access on the fileset being opened. This fileset may be either a parent fileset or
a child snapset. In either case, on return from bfs_access, only the fileset requested will be open (assuming
successful return). bfs access will have no knowledge of snapshots or responsibility for setting them up.
On successful return from bfs_access, advfs_snapset access will be called to correctly open and access all
related filesets.

advfs_snapset access will call bfs_access on every fileset in the snapshot tree that is not the fileset that was
already opened. In addition to opening the filesets, advfs snapset access will link the filesets together
using the bfsParentSnapSet, bfsFirstChildSnapSet, and bfsNextSiblingSnapSet fields.

Before returning, bfs_open will drop the BFSETTBL lock if it acquired it. On error, any filesets that were
accessed will be closed and all resources will be freed. In the event that opening a child snapshot fails, that
child will be marked as out of sync.

3.2.2.3 Function Call Details

3.2.2.3.1 bfs_open

3.2.2.3.1.1 Interface

statie statusT

bfs open(bfSetT **retBfSetp, /* out - pointer to open bitfile-set */
bfSetIdT bfSetId, /* in - bitfile-set id to open */
uint32 t options, /* in - options flags */
ftxHT ftxH /* in - parent transaction handle */

> On Tru64, bfs_open is called via two wrappers, rbf bfs_open and rbf bfs_access. The two routines call
the same function with a different flag and have no value-add, so they will be removed in favor of a direct
call to bfs_open.

40

3.2.2.3.1.2 Description

This routine opens a fileset and all associated filesets in the snapshot tree. On Tru64, the first line of this
routine called bfs_access to lookup, create and put a reference on the fileset to be opened. bfs_access
would conditionally acquire the BFSETTBL lock for write and drop it before returning (if it had acquired
the lock). The routine will be modified so that the BFSETTBL lock is acquired before bfs_access is called.
This will synchronize with advfs_snapset create so that snapsets do not end up with the wrong number of
fsRefCnt’s.

The remainder of the routine (the part not involved in acquiring the BFSETTBL lock or calling bfs_access)
on Tru64 was responsible for correctly opening clones. This code will all be removed and the routine
advfs_snapset access will be called instead. On successful return from advfs_snapset access, all parent,
sibling and child snapsets will have an fsRefCnt on them for this open and the system will be ready to have
data COWed.

Before returning, the BFESETTBL lock will be dropped if it was acquired at the beginning of the routine.

3.2.2.3.1.3 [Execution Flow

. If the bfSetTbl lock is not held for write
o Write lock the bfSetTbl lock

. Call bfs _access to access the fileset bfSetId

. If bfs _access fails
o If bfSetTbl lock was acquired in this routine, drop the lock
o Return error from bfs access

. advfs snapset access on bf set

. if advfs snapset access fails

o /* Some serious error occurred on the domain and the children that
couldn’t be opened also could not be marked out of sync. */

close bf set
drop bfSetTbl lock if acquired in this routine
return error
. if fileset is BFS_OD OUT_OF SYNC after advfs_snapset_access
o Report that fileset is out of sync
. if bfSetTbl lock was acquired in this routine
o drop bfSetTbl lock

. return EOK

3.2.2.3.2 bfs_access

3.2.2.3.2.1 Interface

static statusT

bfs access(bfSetT **retBfSetp, /* out - pointer to open bitfile-set structure */
bfSetIdT bfSetId, /* in - bitfile-set id to access */
uint32 t options, /* in - options flags */
fEtxHT ftxH) /* in - parent transaction handle */

3.2.2.3.2.2 Description

This routine will be modified to no longer deal with Tru64 clones. All snapshot field initialization will
occur in bfs_open or bfs_alloc. bfs_access will be a routine to access a single fileset and not its associated
snapshots.

3.2.2.3.2.3 Execution Flow

No significant logic changes. Code dealing with clones will be removed.

3.2.2.3.3 bfs_alloc

41

3.2.2.3.3.1 Interface

static statusT

bfs alloc(bfSetIdT bfSetId, /* in - bitfile-set id */
domainT *dmnP, /* in - BF-set's domain's struct pointer */
bfSetT **retBfSetp /* out - ptr to BF-set's descriptor */
3.2.2.3.3.2 Description

This routine will be modified to no longer initialize the obsolete cloneDelStateMutex and related fields.
The routine will also be modified to initialize the snapshot related fields of the bfSet to be NULL pointers.
The fields will be fully setup by advfs snapset_access.

3.2.2.3.3.3 Execution Flow

No significant logic changes. Changes will be made to initialize new fields as
described.

3.2.2.3.4 advfs _snapset_access

3.2.2.3.4.1 Interface

statusT advfs snapset access (
bfsetT *bf set ptr, /* The fileset that is being opened. This will not be
* re-accessed by this routine */
ftxHT parent ftx) /* The parent transaction to be used during this access */

3.2.2.3.4.2 Description

This routine is a wrapper for calling bfs_access on every fileset in the snapset tree that is not the same
fileset as the bf set ptr passed in. The basic algorithm will be to follow the parent snapshot pointer in the
bitfile set attributes record of the tag directory until the parent of the snapshot tree is reached. Once the
root of the tree is reached, the entire tree will be traversed in a prefix-order and each fileset will have
bfs_access called on it. After having bfs_access called, the fileset will be linked to its parent and children.
When a child is accessed, it will be pointed to by either its parent or one of its siblings on the same level.
After each call to bfs_access, the bfsSnapRefs field of the bfSet structure will be incremented to reflect that
it has been accessed by a related snapset.

It is expected that the calling routine will hold the BFESETTBL lock for the domain in write mode. The
routine will return with the lock still held.

If this routine encounters an error while trying to open a fileset, if bf set ptr being opened has not yet been
reached in the traversal of the snapshot tree, then a hard error must be returned and the bfs_open must fail
(we are a snapshot and our parents weren’t opened). If, however, the fileset being opened has already been
traversed in the snapshot tree, and a failure occurs, the fileset that failed to open and all its child snapsets
will have the BFS OD OUT_OF SYNC SNAP set in the bfSetAttr record of the fileset. If the setting of
the out of sync flag fails, then a hard error will be returned and the bfs_open will fail. Otherwise, all
snapsets that can be opened will be opened and those that cannot be opened will be marked as out of sync.

While traversing the snapset tree, if a snapset is found that has the BFS_ OD_OUT_OF _SYNC set, all it’s
children will have the BFS OD OUT OF SYNC set. On return from this routine, bf set ptr may be
marked as out of sync.

This routine will be optimized to use the in memory snapset pointers if bfsSnapRefs is non-zero. In the
case of a non-zero bfsSnapRefs count, IO can be avoided reading the bfSetAttr record for each fileset since
the pointers are valid in cache (and will remain so as long as the bfSetTbl lock is held).

3.2.2.3.4.3 Execution Flow
. ASSERT bfSetTbl Lock is held for write.
. Read the bfSetAttr of bf set ptr to get

42

parent set id = bfSetAttr->bfsaParentSnapSet

/* Walk up the snapset tree to the root */

while (parent set id != NilBfSetId)
top_level parent = parent set id

bs access one the tag file of the parent set

read the bfSetAttr of the tag file
parent set id = bfSetAttr->bfsaParentSnapSet
o bs close one the tag file of the parent set

o
o
o if bs access one gets an error, return the error
o
o

/* Top level parent is now the root */
advfs snapset access recursive(bf set ptr, top level parent, parent ftx)
if advfs_snapset access_recursive fails, return the error

return EOK

3.2.2.3.5 advfs _snapset_access_recursive

3.2.2.3.5.1 Interface

statusT advfs snapset access recursive(

bfSetT *bf set ptr, /* The fileset that is being opened. This will not be
* re-accessed by this routine */

bfSetT *parent_set_p /* Parent of cur bf set id */

bfSetId cur bf set id /* The current bfSet. The top level call should have this
* as NULL */

snap_flags_t *snap_flags /* Flags */

ftxHT parent ftx) /* The parent transaction to be used during this access */

3.2.2.3.5.2 Description

This routine will recursively access each fileset in the snapset tree that is not the same fileset as bf set ptr.
If this routine encounters an error, it will attempt to mark any children filesets as out of sync. If the
children cannot be marked out of sync, all filesets already open will be closed and an error will be returned.

The recursion will be done in a pre-order traversal where the parent is opened before any children. As a
fileset is accessed, it will be linked to its parent and the end of its parents list of children.

This routine relies on recursion to open any number of snapsets; however, in practice, the number of
snapsets ought to be bounded to prevent deep recursive calls on the kernel stack.

3.2.2.3.5.3 Execution Flow

Read bfsSetAttr for cur bf set id
if snap flags & SF_OUT OF SYNC
o mark bfSet as out of sync on disk (advfs_snap out of sync)
if bfSetAttr has BFS_OD OUT OF SYNC set
o snap flags & SF _OUT OF SYNC
if cur bf set id != bf set ptr->bfSetId
o bfs access(cur bf set id, cur set ptr)
else
o cur_set ptr = bf set ptr
o *snap flags &= SF_FOUND_SNAPSET
if bfs access fails and snap flags & SF_FOUND SNAPSET

o Attempt to open tagdir file for cur bf set id and update with
BFS_OD OUT OF SYNC.

o If update fails a domain panic occurred.

o Return error

43

. Else if bfs access fails
o /* We haven’t yet reached the fileset we are opening in the
* snapset tree so we can’t mark it’s children out of sync. Just
* fail the open completely */
o 1f SF _OUT _OF SYNC was set in this call, clear it
¢} return error
. if cur_set ptr != bf set ptr
o cur set ptr->bfsSnapRefs++
. advfs link snapsets(parent set p, cur set ptr)
e /* recurse to first child if it exists */
. if bfSetAttr->bfsaFirstSnapChild != bfSetNilIld
o advfs snapset access recursive(bf set ptr,
cur_set ptr,
bfSetAttr->bfsaFirstSnapChild,
parent ftx)
o if advfs snapset access recursive fails
. cur_set ptr->bfsSnapRefs--
. bfs close cur set ptr
. if SF_OUT OF SYNC was set in this call, clear it
" return the error
. /* walk list of siblings if any exist */
. if bfSetAttr->bfsaNextSnapSibling != bfSetNilId
o advfs snapset access_recursive(bf set ptr,
cur_set ptr,
bfSetAttr->bfsaNextSnapSibling,
parent ftx)
o 1f advfs_snapset access_recursive fails
. cur_set ptr->bfsSnapRefs—
L] For each child up to the child that failed

. advfs snapset close recursive(bf set ptr, child set,
parent ftx)

. bfs close cur_set ptr
. if SF_OUT OF_ SYNC was set in this call, clear it
. return the error

. if SF_OUT OF_ SYNC was set in this call, clear it

. return EOK

3.2.2.3.6 advfs link snapsets

3.2.2.3.6.1 Interface

statusT advfs link snapsets (
bfSetT *parent set ptr, /* The parent to be linked to child. */
bfSetT *child set ptr /* The child to be linked to parent */

3.2.2.3.6.2 Description

This routine is intended to link the child set ptr to it’s parent and the child set ptr to the end of the
parent’s snapset list. The linking is done only in memory since it was already done on disk at snapset
creation. This routine assumes the bfSetTbl lock is held for write access.

3.2.2.3.6.3 Execution Flow
. ASSERT the bfSetTbl lock is held for write access

. child set ptr->bfaParentSnap = parent set ptr

44

if parent set ptr->bfsFirstSnapChild == NULL

o

[¢]

else

parent set ptr->bfsFirstSnapChild = child set ptr
return EOK

prev_child = parent_set ptr->bfsFirstSnapChild
next child = prev_child->bfsNextSnapSibling
while next child

" prev_child = next_child

. next child = next child->bfsNextSnapSibling
prev_child->bfsNextSnapSibling = child set ptr
return EOK

45

3.2.3 Opening afile
3.2.3.1 Function Call Tree Overview

bs_access

Bs_access_one will have no knowledge of
snapshots, neither parents nor children. Unless the
BF_OP_IGNORE_BFS_DELEING flag is passed in,
bs_access_one will fail to open a bfap for a fileset that is being
deleted.

-»‘ bs_access_one

Will open every parent on chain from snap to root.
Will not open children or siblings. These opens will be internal and will
generate refCnt’s on the parents. advfs_close will decrement these
efCnts. Will link bfaps in chain back to parent if not already linked,

-» advfs_access_snap_parents

If IBEA_OPEN SNAP PARENT Acquire File Lock

For each parent to root

- bs_access_one

Set BEA:OPEN_SNAP_ PARENT

3.2.3.2 Basic Operations of Opening a File

Opening a file internally or externally enters a common code path at bs_access. On Tru64, bs_access opens
the original file if the fileset of the file being opened is an original fileset and opens the original and then
the clone if the file being opened is a clone.

On HPUX, the logic will be simplified somewhat. bs_access will begin by attempting to open the file
being opened (a call to bs_access_one) whether that file is a snapshot, a parent or both a snapshot and a
parent of a snapshot. If bs access _one succeeds in opening the file requested, then

advfs_access_snap parents will be called to open all the parents of the requested file. Since a fileset cannot
gain a new parent, the advfs_access snap parents will have a fast exit case if there are no parent filesets,
and there is no need to hold locks during this check.

If advfs_access_snap parents fails to open any parents (by calling bs_access_one on each of them) it will
close all parent files that were successfully opened and return an error to bs_access.

advfs_access_snap_ parents will also output an error message to the console and to the terminal to indicate
that the open failed because of the parent file open error.

If advfs_access_snap parent fails, bs_access will close the opened file and return an error.

46

It is not necessary to open any child snapshots at this point since we may only be opening the file to read
from it, in which case there is no need for us to open the child snapshots.

3.2.3.3 Function Call Details

3.2.3.3.1 bs_access

3.2.3.3.1.1 Interface

statusT

bs access (
bfAccessT **outbfap, /* out - access structure pointer */
bfTagT tag, /* in - tag of bf to access */
bfSetT *bfSetp, /* in - BF-set descriptor pointer */
ftxHT ftxH, /* in - ftx handle */
enum acc_open flags options, /* in - options flags */
struct vnode **vp /* in/out - from bs_access_one */

3.2.3.3.1.2 Description

This routine will be simplified to no longer check for BS BFSET ORIG and make conditional decisions
on which files to open. Instead, the routine will always call bs_access_one on the file being requested to be
open. The call to bs_access_one will open the file either externally or internally depending on the options
parameter to bs_access.

If the bs_access_one call is successful, then bs_access will call advfs_access snap_parents to open each
file starting at the file just opened and moving up to the root of the snapshot tree. If any open fails along
the way to the parent, bs_access will get an error from advfs _access_snap parents and will close the file
and return an error along with outputting an error message to the console and terminal.

The parameters origBfap and fsvp are to be removed from bs_access _one. bs_access will set *vp to
&outbfap->bfVnode before returning successful.

In the event that an access is attempted on a file that is out of sync, the access will be failed. Since reads of
out of sync files will fail, opens will also fail. Since the check is racy, it is possible to open a file which
immediately becomes out of sync. Any attempts to access data in the file will fail.

3.2.3.3.1.3 Execution Flow

. bs access one tag in bfSetp to get bfap
. if bs_access _one fails
o return error
. if !(bfaFlags & BFA ROOT SNAPSHOT)
o advfs access snap parents
o 1f advfs_access_snap_parents fails
. bs_close_one bfap
- return error
. *outbfap = bfap
. *vp = &bfap->bfVnode

3.2.3.3.2 bs_access_one

3.2.3.3.2.1 Interface

statusT

bs_access_one (
bfAccessT **outbfap, /* out - access structure pointer */
bfTagT tag, /* in - tag of bf to access */

47

bfSetT *bfSetp, /* in - BF-set descriptor pointer */

ftxHT ftxH, /* in - ftx handle */

enum acc_open flags options, /* in - options flags */

+ 4= Aakx £ * + Th A £ +ha + +

structvrea Feve, ESE L rese for tais = sE—sErsetur
Th 4 B roadiinAant oo+ + 4 o %
This—isredundan ithth atbfap

bhf M knva ~DF oo * 2 Oraer (=] P nan) *

BER T rigBfap in rig—a teton pen)

3.2.3.3.2.2 Description

bs _access_one is the interface for retrieving a single files access structure without incurring any penalties
for opening related snapshot files. The routine will not know anything about snapshots except for a check
to see if the bfSetp->bfsParentSnapSet is non NULL and checking for an original file size for a snapshot.
If the value of bfsParentSnapSet is non NULL, then the bfaFlags BFA QUICK CACHE will be set. This
flag will allow the snapshot to be processed early if it is on the free or closed list®.

The routine will have the parameters origBfap and fsvp removed. It will be the responsibility of the caller
to get the vnode from the outbfap->bfVnode field. Previously, the origBfap parameter was used to test
whether a clone was being opened and the clone fileset was being deleted. If it was the case that the clone
fileset was BFS DELETING, origbfap was set (indicating that a clone was being opened) and the clone
shared metadata with the parent (the primary mcell id’s were equal) then ENO SUCH TAG was returned.
Now, if BFS DELETING is set, then ENO_SUCH_TAG will be returned unless a new acc_open_flags
flag is passed in options parameter to indicate that the delete should be ignored. The new flag,

BF _OP IGNORE BFS DELETING is necessary in the fileset delete code path when the file must be
accessed for rbf delete is called.

3.2.3.3.2.3 Execution Flow

. advfs lookup valid bfap
. if bfap state is ACC_VALID
o No logic changes
. else if state is ACC_INIT TRANS or ACC_CREATING
unlock bfaLock
tagdir lookup

if bfSet flags & BFS _DELETING and not acc open flags &
BF_OP_ IGNORE_BFS_ DELETING

* sts = ENO_SUCH_TAG
- goto err setinvalid
o if bfState is BSRA INVALID
. bs map bf
o lock bfaLock
. No logic changes for bfState conditions
. Remove origBfap processing after BF _OP INTERNAL conditions
. if bfSet->bfsParentSnapSet != NULL
o if parent snapset is read only
* Dbfap->bfaFlags |= BFA QUICK CACHE
o 1f tagFlags & BS_TD VIRGIN SNAP set for bfap
- bfap->bfaFlags |= BFA_ SNAP_VIRGIN
. unlock bfalLock

. remove setting of fsvp and outbfap

3.2.3.3.3 advfs lookup valid bfap

® The entire free and closed lists will not be walked looking for BFA_ QUICK_CACHE access structures.
Instead, if they are encountered, they will be aged more quickly, but they may age the full length of time if
other bfaps without the BFA_ QUICK CACHE flag are ahead of them on the free or closed list.

48

3.2.3.3.3.1 Interface

bfAccessT*

advfs lookup valid bfap(
bfSetT *bfSetp, /* in - bitfile-set handle */
bfTagT tag, /* in - bitfile tag */

enum acc_open flags options /* in - options flags */

)

3.2.3.3.3.2 Description

advfs_lookup valid_bfap will be modified to conditionally increment bfaRefsFromChildSnaps if the
acc_open_flags BF_ OP_SNAP_REF flag whenever refCnt is bumped. bfaRefsFromChildSnaps will only
be conditionally bumped if refCnt is also bumped.

advfs_lookup valid bfap also initialize bfa_orig_file size to ADVFS ROOT_SNAPSHOT (-1).

3.2.3.3.3.3 Execution Flow
. find bfap
. if found
o if in valid state
* if BF OP INTERNAL
. advfs ref bfap
e if BF OP_SNAP REF
o bfap->bfaRefsFromChildSnaps++

. if not bfap->bfaFlags & BFA EXT OPEN
o advfs_ref bfap
o if BF OP_SNAP REF
" bfap->bfaRefsFromChildSnaps++
- return bfap
. advfs get new access
. initialize access structure
e if BF OP SNAP REF
o bfap->bfaRefsFromChildSnaps++

e Dbfap->bfa orig file size = ADVFS_ROOT_SNAPSHOT

. return
3.2.3.3.4 advfs _access _snap parents

3.2.3.3.4.1 Interface

statusT
advfs access_ snap parents(
bfAccess* bfap, /* in - file to be accessed */
bfSetT *bf set ptr, /* in - bfSet pointer of fileset to start
* walk at. */
ftxHT ftxH) /* in - ftx handle */
3.2.3.3.4.2 Description

This routine will conditionally call bs_access_one on all parent snapshots of bfap. If bfap->bfaFlags &
BFA PARENT SNAP OPEN is set, then there is no work to be done and advfs_access_snap_parents will
return success. If the BFA OPENING PARENTS flag is set, then another thread is racing to open the
parent files and this thread will block on the bfaSnapCyv.

49

In the event that the BFA_ OPENING_ PARENTS flag is not set, the flag will be set while holding the
bfaSnapLock for write. This flag will cause any racing openers to block until the
BFA PARENT SNAP OPEN flag is set and the BFA_ OPENING PARENTS flag is cleared.

Accessing the parents will consist of opening the immediate parent, acquiring the bfaSnapLock of the child
and pointing the child to the parent. The child’s bfaSnapLock will be dropped and the process will move
up one level of the snapshot tree (the parent will be the child and its parent will be opened).

When accessing the parents, the call to bs_access one will pass the BF OP_SNAP_ REF flag to force the
bfaRefsFromChildSnaps field of the parents to be incremented along with the refCnt. In most cases, an
error will cause all previously opened parents to be closed and an error will be returned. The one exception
to this would be if ENO_SUCH_TAG was returned. In the case of MW snapshots, a file may exists at
level 1, but not level 0, therefore, when ENO _SUCH_TAG is encountered, walking up the parent filesets
will stop.

This routine will link the access structure to their parents as the parents are opened. On error, any links
already setup will be left setup. There is no need to tear down links. Once all parents are opened, the
bfaSnapLock will be acquired and the BFA_ PARENT SNAP_OPEN flag will be set in the bfap passed in
to indicate that a reference has been placed on all the parent bfaps. The BFA_ OPENING PARENTS flag
will be clear and a cv broadcast will occur to wake up any other threads trying to open the same access
structure.

As the chain of parents is being traversed and opened, if a bfap is accessed and has a bfa_orig_file size of
ADVFS ROOT SNAPSHOT (-1), then the bfa orig_file size must be initialized. The bfa orig_file size
will be initialized in bs_map_bf inside the call to bs_access_one.

After accessing all parent snapshots of a file, it is necessary to set the file’s bfaNextFob field. Setting this
field for metadata ensures that the file size is correctly calculated. The bfaNextFob will be set to the max
of the bfa_orig_file size in fobs rounded up to an allocation unit, and either the bfa orig file size of the
first parent to have a bfa_orig_file size, or the bfaNextFob of the first parent to be a root snapshot.

It is expected that bfap being accessed was reference prior to this routine be called. As a result, this routine
will synchronize with bs_close since bs_close will not try to process a “last close” and will therefore not try
to close the parent files.

3.2.3.3.4.3 Execution Flow

. If BFA PARENTS OPEN is set
o return EOK
. write lock bfap->bfaSnapLock
. if BFA OPENING PARENTS is set
o while BFA PARENT SNAP OPEN is not set
. cv_wait on bfaSnapCv
unlock bfaSnapLock

if BFA OPENING PARENTS not set, start over (another thread failed the
open)

o return EOK
o else
lock bfaLock
set BFA OPENING PARENTS
unlock bfalLock

O O O

o unlock bfaSnapLock
. /* Start accessing parents until parent is NULL */
. child = bfap
. while (child->bfSet->bfsParentSnapSet != NULL)

o parent = bs access_one(child->bfSet->bfsParentSnapSet, bfap->tag,
BF_OP_SNAP REF)

o if parent open returns ENO SUCH TAG, break

50

o If parent open return any other error
L] Close any parents already opened by this loop
L] Lock bfaSnapLock
- Lock bfalLock
- Clear BFA OPENING PARENTS
- Unlock locks

. cv_broadcast bfaSnapCv

- return error
o write lock child->bfaSnapLock
o child->bfaParentSnapShot = parent
o unlock child->bfaSnapLock
o child = parent
o 1f (child->bfaFlags & BFA_ ROOT_SNAPSHOT)
- break
. if (bfap->bfa orig file size != 0)
o ASSERT(bfa orig file size != ADVFS_ ROOT_SNAPSHOT)

o bfap->bfaNextFob = roundup(OFFSET TO FOB UP (bfap->bfa orig file size),
bfap->bfPageSz)

. else

o while parent bfa orig file size == 0 && (bfap->primMCId == parent-
>primMCId) && parent’s parent != NULL

. parent = parent’s parent
o 1f parent->bfa orig file size == ADVFS_ROOT_ SNAPSHOT
. bfaNextFob = parent->bfaNextFob
o else
* ASSERT(bfa orig file size != ADVFS ROOT SNAPSHOT)

- bfap->bfaNextFob = roundup(OFFSET_TO FOB_UP (bfap-
>bfa orig file size), bfap->bfPageSz)

. write lock bfap->bfaSnapLock
o lock bfaLock

. set BFA PARENT SNAP OPEN

. clear BFA OPENING PARENTS

o unlock bfalLock

. unlock bfap->bfaSnapLock

. cv_broadcase on bfaSnapCv

. return EOK

3.2.3.3.5 bs_map_bf

3.2.3.3.5.1 Interface

statusT

bs map bf (
bfAccessT* bfap, /* in/out - ptr to bitfile's access struct */
enum acc_open flags options, /* in - options flags (see bs_access.h) */
bfTagFlagsT tagFlags /* in - flags to set various bfap values */

3.2.3.3.5.2 Description

bs map_ bf will have a few slight changes made so that it correctly initializes the bfa orig file size field of
snapshot children.

51

If a snapshot has its own metadata, the bsBfAttr fied bfat orig file size will be looked up and the original
file size set based on that record. If the file does not yet have its own metadata, then the original file size
will be initialized based on the parent’s file size for userdata and the parents bfaNextFob for metadata.

In order to make sure that the parents file size is valid, the initialization of the fsContext structure will be
moved from bf get 1into bs_map bf. On Tru64, the fsContext structure did not necessarily exist in

bs map_bf and could not be initialized for internal opens. On HPUX, the fsContext structure is embedded
and can be initialized in bs_map_bf whether the file is being opened internally or externally.

3.2.3.3.5.3 Execution Flow
. When reading the bfAttr, if BOF_ROOT_SNAPSHOT is set, set BFA ROOT_SNAPSHOT.
(]

. if bfSet->bfsParentSnapSet != NULL and bfap is COW-able (not reserved or a tag
dir)
o 1f tagFlags & BS_TD VIRGIN_SNAP set for bfap
- if bfap is metadata
e bfap->orig file size = bfap->bfaNextFob * ADVFS FOB SZ
- else
. bfap->orig file size = bfap->file size
o else
. get for BSR _BFATTR
. bfap->bfa orig file size = bfAttr->bfat orig file size

3.2.3.3.6 Miscellaneous Changes

advfs init_access will be modified to initialize snapshot pointers in the bfAccess structure.

52

3.2.4 Writing to a file (Copy-on-Write processing)
3.24.1 COW Overview

SPECIAL CASE COPY-BEFORE-WRITE

/éNERAL CASE COPY-ON-WRITE

User data only!

advfs_fs_write

Meta data only, not
for holes

TRANSACTION STARTED

This case is really a
copy-before-write case and only deals
with holes

fcache_uiomove

bs_pinpg

rbf_add_stg on metadata ‘

advfs_getpage ‘

-»‘ advfs_access_snap_children ‘

-»‘ advfs_acquire_snap_locks ‘

-»‘ advfs_access_snap_children

Add COW'ed holes to
snapshots

-»‘ advfs_acquire_snap_locks

advfs_access_snap_children is

called conditionally and will copy metadata for

newly accessed snapshot children . ‘ advfs_acquire_xtntMap_locks

advfs_add_snap_stg

>

For each snapshot, get
extent map, add storage or

holes as required.

‘ advfs_sync_cow_metapage ‘

Meta data only, not
for holes

advfs_getmetapage

Represents a call chain
exists between two
functions. The functions in
the chain are not detailed

Add storage to snapshots as required,
add COWed holes for any holes in pare

>

Get data to be modified into
cache

y happen multiple times

Get data to be modified into cache

Push data out to all snapshots

Wait for 1O to complete

FTA_GETPAGE_COW Transaction

—/

53

3.2.4.2 Basic Operation of Copy-On-Write

Copy-On-Write (COW) processing occurs primarily in advfs getpage. The basic set of operations required
to complete a COW includes synchronizing with any snapshot creations, acquiring locks to protect the
range to be COWed, adding storage to any child snapshots as required, issuing any necessary writes to
children snapshots and waiting for all IOs to complete. The majority of these steps are performed under
transaction control to ensure that a system crash leaves the snapshots in a valid state.

Copy-on-Write operations will happen in one of several possible ways. The most common COW path will
be through advfs getpage when being called from advfs fs write. In this general case, the data to be
COWed will necessarily be user data (metadata can’t come through advfs fs write). The case of
advfs fs write is nearly the same case as an mmap fault for write. In both cases, the bfaSnapLock (write)
and the migStg_lk (read) for all child snapshots will be acquired by a call to advfs_acquire_snap locks.
Once the locks are acquired, it is safe to potentially add storage to the snapshot children.

Storage will be added to all child snapshots via a call to advfs add snap stg. advfs add snap stg will
compare the extent maps of the faulted-on bfap and the unmapped extents of each child snapshot and add
storage or COWed holes as appropriate. Any holes that exist in the file to be faulted (logical holes, not
unmapped regions) will be inserted into the snapshot children as COW’ed holes’. Storage will only be
added for parts of the snapshot that are unmapped and had storage in a parent.

Once storage is allocated for all the snapshot children, advfs getpage will process the fault request but will
use 10 anchors to push out writes to all child snapshots. In the event that a write to a snapshot requires a
COW from the parent and to the children snapshots, the write to the children will happen first, and the write
to the faulted-on file will occur once storage has been allocated in the normal advfs_getpage code path for
the faulted-on file.

Before advfs_getpage acquires any necessary locks, the routine will synchronize with the creation of
snapshots by waiting on the BFS IM_SNAP_IN PROGRESS flag. Also, prior to acquiring locks,
advfs_getpage will check the BFA_ SNAP CHANGE flag in the bfap being faulted on. If the flag is set or
if the bfaFirstSnapChild pointer is NULL, then advfs_access_snap children will be called to put a
reference on any children that are not already linked into the faulted-on bfaps snapshot tree. This routine
will handle linking in any new snapshot children and making a copy of the parent’s metadata for the
snapshot child.

When advfs getpage is called from bs_pinpg, it may require COWs on metadata. advfs_getpage will never
need to create holes in the extent maps of snapshot children for metadata. Instead, advfs getpage will only
need to COW storage-backed metadata. For metadata, the process of getting storage for snapshot children
will be similar to user data files with the exception that the faulted-on file may have storage acquired for it
if it is an unmapped range of a snapshot that is being written®. For a child metadata snapshot being written
to in a region that is unmapped, storage will be added to the snapshot child and any of its children prior to
calling advfs getmetapage. advfs getmetapage will be called to bring the data into the cache and the data
to be COWed. If the page to be written is found in cache, advfs getmetapage will kick off an 1O for each
child snapshot. The IOAnchor will be returned to advfs_getpage and the necessary COW processing will
be finished there. If the data isn’t found in the cache, then a read will be initiated in advfs_getmetapage
and the 10 anchor will be returned to advfs_getpage. In this case, advfs_getpage will be responsible for
kicking off writes to all child snapshots and potentially newly allocated storage for the file on which the
fault is occurring.

7 COWed holes are replacing permanent holes since holes in a writable snapshot are not really permanent.
A mechanism is required to distinguish between an unmapped region of a snapshot and a hole that has been
COWed. In a snapshot, a normal hole represents an unmapped region whereas a COWed hole represents a
hole in the parent that has been COWed and not filled.

¥ advfs_getmetapage is not designed to allow a write to a hole in a metadata page. advfs bs add_stg will
synchronously COW a hole in a metadata page so that advfs getmetapage always sees storage backing for
meta writes.

54

Write optimization for files that require any COW processing will be ignored. If a file requires any COW
processing and any pages are not already in cache, then it is necessary to do a read from disk prior to doing
the COW.

On exit from advfs_getpage, all locks acquired in advfs_getpage will be dropped.

The final scenario for transferring extent information from a parent to a child snapshot is in the case of
adding storage on a metadata file. Because metadata have storage added before bs_pinpg is called to fault
in the page, waiting until advfs getpage to do COW processing on metadata holes would be too late. From
advfs_getpage’s perspective, there is no way to tell the difference between newly allocated storage and a
fault for a page that is not in cache. advfs getpage has no way to differentiate uninitialized storage from
initialized storage, and adding a flag to be passed down through bs_pinpg and into advfs getpage leaves
too much room for programming error that may cause data corruption or data reuse problems. Instead,
when adding storage to a metadata file, rbf add_stg will insert COWed holes into each of its snapshot
children. Since rbf add_stg is done in a transactional context, and since inserting COWed holes also
requires a transaction, synchronization with creating new snapshots is provided by the fact that
advfs_create snapset starts an exclusive transaction.

rbf create stg will call advfs access snap_children if bfaFirstSnapChild is NULL or if

BFA SNAP CHANGE is set in the bfaFlags. Once the children are setup, each child’s migStg 1k will be
acquired and it will have a COWed hole inserted into its extent map via advfs_make cowed_hole if the
extent map does not already have storage. For each snapshot that has a COWed hole inserted, the
transaction will have a special done mode so that the COWed hole is left in the event that the higher level
add storage transaction fails.

3.2.4.3 Function Call Detail

3.2.4.3.1 advfs getpage

3.2.4.3.1.1 Interface
int
advfs getpage (
fcache vminfo t *fc_ vminfo, /* An opaque pointer to a vm data struct*/
struct vnode * vp, /* The vnode pointer */
off t *off, /* The offset in the file of the fault */
size t *size, /* The size in bytes to fault in */
fcache ftype t ftype, /* The fault type */
struct advfs pvt param *fs priv param, /* File system private parameter */
fcache pflags t pflags) /* Options or modifiers to the function */
3.2.4.3.1.2 Description

advfs getpage will be the primary hub for all copy-on-write activity in AdvFS. advfs getpage will be
responsible for making sure that any snapshots that may need opening are opened and that any of the
opened snapshots have a copy of the parent snapshot’s metadata. To help minimize the impact that COW
processing has on code paths when snapshots are not enabled, advfs_getpage will attempt to make racy
checks for snapshots before doing any snapshot processing.

Before advfs getpage can do any COW processing, it must first synchronize mmap writers with any in
progress advfs create snapset calls. If advfs create snapset has already started execution, then the

BFS IM_SNAP_IN PROGRESS flag will be set in the bfSet of the bfap being faulted on. If the flag is set
and the fault is an mmap write request, then the thread will wait on the bfsSnapCv in the bfSet. On waking
up from sleeping on the bfsSnapCv, the BFS IM_SNAP IN PROGRESS flag should be cleared unless
another snapset was racing the create. advfs getpage will wait until the BFS IM_SNAP IN PROGRESS
flag is cleared before continuing. For non-mmap writers, the synchronization with advfs create snapset
was done either in advfs_fs write (for userdata) or through an exclusive transaction (for metadata).

Once passed the synchronization loop for BFS IM_SNAP IN PROGRESS, advfs getpage will start a
transaction to contain the entire COW effort. The entire COW process will happen under transactional
control so that a system crash does not leave any snapshots with a data reuse case that could render the

55

snapshot corrupt. For a write fault on metadata, the app_parent_ftx field must contain a non-Nil transaction
handle to be the parent of the COW transaction. The only exception to this rule is for metadata that is not
COWed (reserved metadata and tag directories.) This is required to correctly synchronize with snapset
creation. In the event that some parts of the COW operation fail, an attempt will be made to not fail the
entire transaction. Instead of failing the entire COW operation, snapshots will be marked as out of sync in
their bfAccess structure and in the flags field of their tag directory entry. The fault will be allowed to
proceed without COWing. In the case of multiple snapshots, as many snapshots will be COWed as is
possible.

After having started a transaction, advfs_getpage will see if either the faulted-on bfap, or any of its children
snapshots need a copy of the parent’s metadata . Otherwise, if the BFA_ VIRGIN SNAP flag is set, then
advfs_setup cow will be called to make a copy of the parent’s metadata for the faulted-on file. If either
the BFA SNAP_CHANGE flag is set or the bfSet has a child snapset and the bfap->bfaFirstSnapChild
field is NULL, then a call will be made to advfs access snap_children. advfs access snap children will
verify that all the snapshots children of the bfap being faulted on are open and will open and ref any
children that are not already open.

When advfs getpage is servicing a write fault on a file that may need COW processing the need for COW
operations will be checked for in ADVFS COW_ALLOC UNITS*bfap->bfPageSz byte units. To
accomplish this, the fault offset will be rounded down to an ADVFS COW_ALLOC UNITS*bfap-
>bfPageSz boundary and the offset+size will be rounded up to an ADVFS COW_ALLOC UNITS*bfap-
>bfPageSz boundary (not exceeding file size). These ranges will be used to check whether COWing is
required. This will help reduce fragmentation in snapshots.

The first step in COW processing is to acquire all necessary locks. advfs_acquire snap locks will handle
acquiring locks in the correct order for any potential COW or extent map operations. In either a read or
write case, the migStg_lk must be acquired for each ancestor of the faulted on bfap. In the case of a write,
the bfaSnapLock must be acquired for write access for each child, and the migStg_lk must be acquired for
read for each child. The migStg lk will protect reads from parent snapshots from having the storage
migrated during the read operation.

In the write case, advfs_get blkmap in range will be called to determine if any storage is required for this
write. If storage is required, the file lock will be acquired in write mode and advfs getpage will either start
over or continue. In either case, once the file lock is held for write and advfs_acquire snap locks has been
called, advfs add snap_stg will be called to allocate any storage or COWed holes required to process this
fault. On successful return from advfs add snap stg, any unmapped regions in the children snapshots that
will require storage will either have storage or will be a COWed hole.

advfs_add snap_stg will return an extent blk desc for each range of storage added for a child snapshot.
Any snapshot children that have no storage added will have their locks dropped. The extent blk desc
returned will be organized in a two-dimensional list by file then extent. The extent blk desc for a single
child will be linked via the ebd next desc pointer while the list of each child snapshot’s extents will be
linked through the ebd snap_ fwd pointer. advfs add snap_stg will also return a min and max fob that
was added to children. If snap_maps is NULL, these values are undefined. Otherwise, the write request
will be brought back in to the min and max fob offset. If min_fob is not equal to the request, then either a
hole existed in the original or no storage was added. In either case, we do not need to extend the fault in
this case since a COWED_ HOLE was already dealt with and already COWed storage does not need to be
dealt with. The same logic applies for max fob.

Any extent blk descs that represent storage in a child snapshot have a pointer to the bfap for which the
migStg_lk and the bfaSnapLock must be dropped after all IOs are completed’. For user data, storage for
the faulted on bfap will be added in the normal advfs getpage path for userdata. For metadata,
advfs_sync cow_metadata will be called to force a synchronous COW so that no special handling is
necessary in advfs_getpage or advfs getmetapage.

? If no COW was required for a given snapshot child, the locks were released by advfs_add snap stg. If
any COWing was required, then the snap map has a extent map for the snapshot child.

56

If the write is for metadata, advfs_getmetapage will be called. The call to advfs getmetapage will pass in
the snap maps through a new snap_map parameter. advfs getmetapage may start multiple IOs and will
pass back an IO Anchor that represents all IOs that were started. For metadata, COWing will be started in
advfs getmetapage and finished in the IO waiting section of advfs getpage.

At the start of the fcache page alloc loop, where x_load inmem xtnt map is called, a call will be made to
advfs acquire xtntMap locks. This routine will call x_load inmem_xtnt map on the chain of parents of
the faulted on file and acquire the xtntMap_lks for read. This is necessary for both reads and writes in case
the faulted-on bfap has unmapped regions that come from the parent snapshot.

The READ case of the fcache page alloc loop will change very little; however, it is necessary to make
sure any pages that have advfs_start blkmap io called on them are set to be write protected on IO
completion if any snapshots exist. The test for a snapshot existing will be based on the bfSet that the
faulted on file belongs to since a read to a snapshot will not cause child snapshots to be opened. The
protecting of these pages is necessary since read operations are allowed to proceed through advfs getpage
while a snapset create operation is occurring.

The WRITE case of the fache page alloc loop will change more significantly to initiate IO to snapshots.
When dealing with snapshots, large pages will always be demoted if any COWing needs to be done. In the
WRITE case code path, a check will be made to see if the snapshot unmapped maps are NULL. If the list is
NULL, then no COWing is required to the children, so large pages can be processed as usual, otherwise,
any pages outside of the range to be faulted are released and advfs getpage will skip past all of the large
page processing.

In the case of WRITE’s in which the pages from fcache page alloc are found in cache, if the page is
already writeable, then the page must have been COWed previously and can just be released. Otherwise, if
the page is still read only, then it must be COWed. If the page is read only, then it may be either dirty or
clean. Dirty pages must be pushed out to all snapshot children and the file being faulted on. Clean pages
must be pushed out to all child snapshots but not the bfap being faulted on.

If the page is in cache and read only (and COWing must be done) then, for each contiguous range of the
plist returned from fcache page alloc, fcache buf create will be called for a read. This read will be a fake
read and will just be used to synchronize with an IO Anchor that will track all necessary writes. An 10
Anchor will be created for each fake read with an 10 count of 1. The IO Anchor will be set to not be freed
at IO completion time. The IO Anchor will have the IOANCHORFLG_CHAIN ERROR_BUFS flag set to
keep track of all errant disk 10s. If the page is dirty, a copy of the fake read buf will be created for a write.
The fake buf will have the disk block for the write set in it along with the write flag. The IO count of the
10 anchor will be bumped by one and the buf will be issued as an [0. Next, a call will be made to
advfs_issue snap io passing the snap maps and the IO Anchor. advfs issue snap io will issue an 1O to
any extents in snapshots that overlap the IO that the buf structure represents. Once all writes to the current
bfap and the children snapshots have been started, the fake read will be issued as an I0. The fake 10 has
already bumped the IO Count. The IO Anchor will be added to the list of [O Anchors on which to wait at
the end of advfs_getpage. The picture below illustrates the relationship between buf structures and 10
Anchors in the “in-cache” case.

57

10 Anchor
loCounter=1+N

struct Buf (B-ORIG)

B_READ
Created via
fcache_buf _create

Locks VM Page(s)
at creation.

struct Buf
(B_SNAP1)

B_WRITE
A copy of B_ORIG

struct Buf
(B_SNAP2)

B_WRITE
A copy of B_ORIG

T

struct Buf
(B_SNAPN)

B_WRITE
A copy of B_ORIG

VM Page(s)

VM Page is locked until IO Anchor completes and B-ORIG has

biodone called. VM Page is the source for each write.

In the case that the plist returned from fcache page alloc is not found in cache, both a read from disk and a
write will be required to complete the COW. Since these are serial operations (the write cannot be started
until the read completes), the IO Anchor will be used to provide a serial notification of a completed READ
without having processed the 10 completion. The goal is to wait until the READ completes, then issue the
WRITEs before the READ pages are unlocked.' If the pages are unlocked, then the COW process is
compromised since another thread could modify the data before the write occurs. The picture below
illustrates the case of a page (or list of pages) not found in cache. The IO Anchor is described before and
after the READ 10 completes. The write IOs will not be issued until after the READ 10 has completed
(but the VM page will not be unlocked until all writes have completed).

' The reads from disk may be coming from the parent of the faulted on bfap if the faulted on bfap is a child

snapshot.

58

1O Anchor
loCounter = 2

VM Page is locked until IO Anchor completes and B-ORIG has
bicdone called. VM Page is the source for each write

VM Page(s) D

struct Buf (B-ORIG) | ~~_

B_READ S~
Created via - S~
fecache_buf_create

struct Buf (B-ORIG)

Locks VM Page(s)

at creation Issue the READ and

wait for it to
complete
~~ ~~ 1O Anchor

S~ S~ loCounter = 1 + N (write:
TS~ Tl BEFORE 10 [>+ _
~ ~ ~
S S N S
RN NN
N N ~

| \\\ AFTER rQ\
struct Buf struct Buf struct Buf
(B_SNAP1) (B_SNAP2) (B_SNAPN)
B_WRITE B_WRITE B_WRITE
A copy of B_CRIG A copy of B_CRIG _— A copy of B_CRIG

When calling advfs_start blkmap io, a new flag (ADVIOFLG _SNAP READ) will be passed in to indicate
that the 10 is for the READ portion of a READ/WRITE COW pair. Advfs start blkmap io will create an
10 anchor(s) for the 10 that will have the IO Count set to 2 and the
IOANCHORFLG WAKEUP ON ALL IO set. Additionally, the IOANCHORFLG CHAIN ERRORS
will be set so that all bufs that have errors generated will be accessible.

In the objectsafety case, if a transaction must be started, it will be started as a subtransaction of the COW
transaction. When the objectsafety transaction is completed, it will be completed with a special done mode
so that it is not undone if the overall transaction fails.

When calling advfs_start blkmap io for read ahead on a fileset that has any snapshot children, or is itself a
snapshot child, a special flag will be passed to indicate that any pages brought into cache must be marked
read-only.

The final step in the COW processing in advfs_getpage is to wait for any remaining WRITE or READs
from disk, and for each READ that completes, to issue any necessary WRITEs to snapshot children or the
current bfap. All started 1Os are associated with an IO Anchor and the READ IO anchors are at the front of
the list, so those will be processed first and their corresponding WRITEs issued before advfs getpage
begins to wait on any synchronous WRITEs.

If the caller specified FP_ ASYNC, advfs getpage can only return without waiting for 10 if no COWing
was done. Otherwise, if the snap maps are non-NULL, for each IO Anchor, the anchor will be locked. If
the anchor has the IOANCHORFLG WAKEUP_ON_ALL IOs flag set and the IO count is 1, then the
read has already completed. If the read has already completed advfs_issue snap_io will be called to kick
of any corresponding WRITEs. Before the IOs are initiated, the
IOANCHORFLG_WAKEUP ON_ ALL IO will be cleared since advfs_getpage will only be concerned on
waiting for the last IO to complete. Once all writes have been issued, the IO count will be decremented by
1 to remove the extra IO count put on when the read was issued. Each write that is issued will need to
make a copy of the buf structure used to issue the read. This buf structure will be acquired from a field in
the IO Anchor and will represent a copy of the read buf structure before the READ IO was issued. A copy

59

of the read buf structure before the 10 was issued is required (as opposed to making a copy after the IO is
issued) because the low level drivers may modify the buf structure during IOs. It is necessary to have a buf
that can still have 10 issued on it and not one that looks as if IO has already been issued.

If the IOANCHORFLG WAKEUP ON_ALL IO is not set and the IOANCHORFLG IODONE flag is
set, then all IOs have been completed on this anchor and we can remove it from the list. If the IO count is
non-zero, and IOANCHORFLG WAKEUP ON_ALL IO is not set, then advfs getpage will wait on the
10 Anchor’s condition variable and wakeup without relocking. The IO Anchor will be reprocessed once
the condition variable signal is received.

In the event of an 10O error for any of the writes, the snapshot to which the IO was directed will have
advfs_snap out of sync called to mark the snapshot on its fileset as out of sync.

Once all 10s have completed, the COW transaction will be ftx _done’d.

Before returning the migStg_lk of all parents and the file lock and migStg_lk of the child snapshots (along
with the migStg_lk of the faulted on bfap if necessary) will be dropped.

For direct 10, advfs_getpage may be called directly with the APP. ADDSTG_NOCACHE set in the private
parameters structure. Since the pages that storage is added to will be forced out of cache anyways, it is safe
to allow the storage to be added. If storage is added, any cache writers will need the file lock and direct 10
will upgrade to write mode, so there will not be a race. Trying to block out direct 10 threads during snapset
creation would required dropping the file lock to prevent a dead lock. In the event that the

APP_ADDSTG NOCACHE is set and the upgrade of the file lock from read to write fails, then after the
file lock is reacquired for write, if a snapshot may exist, advfs getpage will do a fault on the range that may
required a COW. This case will be very rare and will represent a direct IO write operation to a sparse range
in a file that was racing with a snapset creation. The fault is necessary since the snapset creation may have
succeeded while the direct 1O thread was blocked on the file lock. The fault will occur with the
APP_ADDSTG NOCACHE flag which will cause all pages brought into cache by the fault to be
invalidated before returning.

When the APP. ADDSTG_NOCACHE flag is set, and snapshots may exist, the full advfs getpage path
will be followed (not the short cut for just adding storage). Additionally, if any pages are faulted in when
the APP_ADDSTG_NOCACHE flag is set, they will be invalidated before returning from advfs getpage.

advfs getpage will be modified to support an APP FORCE COW flag. When this flag is set, no new
storage will be allocated for the file being faulted on, but the range will be COWed. Any pages that are
backed by a hole will not be brought into cache. If the APP FORCE COW flag is set and the faulted on
file is metadata, the user data write path will be followed. This will prevent the metadata from being
brought into cache with a bsBuf and a writeRef. The page must be clean since it has not yet been COWed.

3.2.4.3.1.3 Execution Flow

. if an mmapper, get the file lock for read
Start over:
. if (mmap writer
o incr bfap->bfaWriteCnt
e if (bfSet BFS_IM SNAP IN PROGRESS) & mmap writer
o While (BfSet BFS_IM SNAP IN PROGRESS is set)
. ASSERT bfap is not metadata
. Decr bfap->bfaWriteCnt
. Lock bfSet->bfsSnapMutex
= if BFS IM SNAP IN PROGRSS
. cv_wait(bfSet->bfsSnapCv, NO RELOCK)
. incr bfap->bfaWriteCnt
. if metadata && pvt params == NULL

o /* Do no COW processing. This is an implicit fault for write on metadata,
the COWing must have already been done. This is not detailed in the

60

following execution flow, but all COW processing and transactions will not
be done (starting a transaction would likely cause a deadlock). */

Kick out mmappers that are beyond EOF (goto popsicle stand if EFAULT)
if (parent or child snapset exists && FCF _DFLT WRITE)
o FTX START(FTA GETPAGE_COW, cow_ftx, pvt params->app parent ftx)
o if (bfap->file lock held for write)
- ASSERT (!bfap->BFA VIRGIN SNAP)

/* If the file lock is held for write, we should already have
COWed metadata for bfap. */

o Else /* In this case, we need to access any child snapshots and possibly
get a copy of metadata for bfap */

. If (bfap->BFA_VIRGIN_ SNAP)
. write lock bfap->bfaSnapLock
. advfs cow setup(bfap)
. unlock bfap->bfaSnapLock

. if (bfap->BFA_SNAP_CHANGE || (bfSet->bfsFirstSnapChild && bfap-
>bfaFirstSnapChild)

. advfs access_snap_children(bfap)
if parent or child snapset exists
o read lock bfap->bfaSnapLock
o 1f bfap->bfaFlags & BFA OUT OF SYNC
" fail cow_ftx
. unlock bfap->bfaSnapLocks
L] return EACCESS (is this the right error?)
/* Deal with CFS if necessary */
if clu is ready and (filelock held for read or not held) and not metadata
o if child snapset sets
. if child snapset exists
. for each child
o write lock child->bfaSnapLock
o while bfap->bfaFlags & BFA IN COW_MODE
. cv_wait bfaSnapCv
o lock child’s bfaLock
o set BFA XTNTS IN USE flag in bfap
o set BFA IN COW MODE flag in bfap
o unlock child’s bfalLock
o unlock child->bfaSnapLock
o unlock bfap->bfaSnapLock
. for each child
o CLU CFS_COW_MODE_ENTER
o 1f CLU CFS_COW MODE ENTER fails
. lock bfaLock
. clear BFA IN COW MODE flag in bfap
- unlock bfalLock
o else exit child cow mode = TRUE
o Read lock bfap->bfaSnapLock
o if parent snapset exists
L] unlock bfaSnapLock
. write lock bfaSnapLock
. lock bfaLock
. set BFA XTNTS IN USE flag in bfap
- set BFA IN COW MODE flag in bfap

61

. unlock bfaLock

. drop bfap->bfapSnapLock
* CLU _CFS_COW MODE_ENTER
* If CLU CFS COW MODE ENTER fails

. Lock bfalLock

. Clear BFA IN COW MODE flag in bfap
. Unlock bfaLock
. Else exit bfap cow mode = TRUE

. Read lock bfap->bfaSnapLock

. Else if clu is ready and file lock held for write or bfap is metadata

o If child snapsets exists

. For each child

. ASSERT child->bfaFlags BFA CFS HAS XTNTS is not set

. ASSERT child->bfaFlags BFA XTNTS IN USE flag is set
o If parent snapset exists
. ASSERT bfap->bfaFlags BFA CFS HAS XTNTS is not set
. ASSERT bfap->bfaFlags BFA XTNTS IN USE flag is set

e Adjust sizes (including rounding down to ADVFS COW ALLOC_UNIT boundaries)

3 Do read-ahead processing

. /* Acquire necessary locks for COWing */

. if parent or child snapsets exist

o advfs acquire snap locks (FCF_DFLT WRITE ? SF SNAP WRITE : SF_SNAP READ)

e If FCF DFLT WRITE

o advfs get blkmap in range (XTNT NO MAPS & LOCK NOT ALREADY HELD)

o if storage required

L] if (!metadata)

&& file lock not held for write

. Try to upgrade to write

[¢]

[e]

o

o

o

ftx_done the cow_ftx
If we failed, drop read fileLock, get write Lock,

advfs drop_snap locks FCF_DFLT WRITE ? SF_SNAP WRITE
SF_SNAP READ

drop bfap->bfaSnapLock

goto start_over

o if child snapsets exists

L] advfs add snap stg (bfap, snap maps, offset, size, min fob,

max_ fob)

L] if (min_fob > offset)

. Set offset to the minimum of the initial request size or
min fob.

L] if (max fob < offset + size)

. Set end of write to max of max_fob or initial request end.

o) /* Setup request needs storage flags */

if metadata & FCF DFLT WRITE & !APP FORCE COW

o If bfap is snapshot child

L] call advfs_sync cow metapg(bfap, offset, size, ftx)

o if parent or child snapsets exist

. advfs acquire xtntMap lks

else x load inmem xtnt map

call advfs getmetapage(bfap, snap maps)

Goto popsicle stand

. if snap maps == NULL

/* Calculate loop control variables */

62

o no_cow required = TRUE

o re-adjust fault range so ADVFS COW ALLOC UNIT rounding is undone
else

o pflags &= ~FP_CREATE
bfap smap storage head = NULL
bfap smap storage tail = NULL
while remaining loop_size > 0

o if parent or child snapsets exist

. advfs acquire xtntMap locks

o else x load inmem xtnt map

o

fcache page alloc
o if FCF DFLT READ
* if FP ST DATAFILL
. advfs get blkmaps in range
° for each extent
o if extent is a hole
. No change in logic
o Else
. If child snapshots exist
. For each pfdat in extent range
o Set pi pg ro flag
. advfs start blkmap io
" else FP_ST_EXISTS
. No change in logic
o Else FCF_DFLT WRITE
" if no_cow_required
. Process large pages
- Else

. /* Demote any large pages outside of COW adjusted fault
range on the left. */

. if alloc offset < cow adjusted fault offset
o 1f alloc_status == FPA ST DATAFILL
- inv flags = pflags&FP_ INVAL (~FP DEFAULT)

o fcache page release(current loop offset -
alloc_offset

» if FP_ST EXISTS
. if no_cow_required
o /* Non-snapshot case, logic unchanged */
o fcache page release
U else

o while plist != NULL and plist->pfs offset <
request_end

. pfdat = plist

L] is read only = pfdat->pi pg ro
. is dirty = pfdat->pi pg dirty
L] pfdat = pfdat->pfs next

- contiguous_range = VM PAGE SZ

L] while pfdat != NULL and pfdat->pi pg ro ==
is read only and pfdat->pi pg dirty ==
is dirty

. pfdat = pfdat->pfs next
. contiguous range += VM PAGE S7Z

63

. if !is read only
. fcache_page release
. else
. /* May need to do a COW */
. ASSERT !metadata && dirty
. iocanchor = advfs get io_anchor
. ioanchor->anchr iocounter = 1

. iocanchor->anchr flags &=
TOANCHOR KEEP_ ANCHOR|IOANCHOR WAKEUP
ON ALL IO|IOANCHOR CHAIN ERRORS

. fcache buf create a buf passing in
plist and a size of contiguous_range
for a READ

. iocanchor->anchr orig buf = buf

. malloc a temp buf buf structure

o bcopy buf to temp buf

. iocanchor->anchr buf copy = temp buf
. ASSERT the plist is not dirty

. advfs issue snap io passing the
iocanchor and the snap maps

. issue the fake read by calling
advfs bs startio with the
ADVIOFLG FAKEIO flag

* else FP_ST DATAFILL
. advfs get blkmap_ in range to get extent maps
° for each extent
o if extent is not a hole
- if !FP_CREATE

e When calling advfs_start blkmap io,
pass ADVIOFLG SNAP READ.

. /* Remaining logic remains the same
*/
. else

. No change to logic for the FP_CREATE
case

o Else
. /* The extent is a hole */
= if APP FORCE_COW
. invalidate pages
. No change to logic for dealing with holes
if parent or child snapset exists and plist != NULL
. /* Deal with any large pages to the right */
- if alloc status == FP_ST EXISTS
. fcache page release(pflags)
. else fcache page release (pflags &FP INVAL)
if parent or child snapset exists
. advfs unlock xtntMap locks
else unlock bfap->xtntMap 1k
if request needs storage and !APP FORCE_COW
" advfs_get blkmap_in_range
. for each sparseness map
. advfs bs add stg
. if advfs bs add stg fails

64

o for each child snapshot
. advfs snap out of sync
e if BFS OD OBJ SAFETY
o advfs bs zero fill pages
o 1f !no cow required
. ftx special done mode to skip undo
o ftx done n
. else if FP_CREATE
o no changes to FP_CREATE logic

. if parent snapset exists and extent is unmapped (not a
COWed hole)

o advfs get blkmap in range for sparseness map to get
storage extents (Get extent map for storage just
added)

o 1f bfap smap storage head == NULL
. bfap smap storage head = storage_extents

o else bfap smap storage tail->ebd next desc =
storage_extents

o if bfap smap storage tail == NULL

. bfap smap storage tail =
bfap smap_storage head

o while bfap smap_storage tail->ebd next desc != NULL

. bfap smap storage tail =
bfap smap storage tail->ebd next desc

. if need storage & !BFS OD OBJ SAFETY
. if FP_CREATE
o No change to logic for FP CREATE
. If !FP_CREATE || alloc_status == FPA ST _EXISTS
o if bfap smap storage head == NULL
L] advfs unprotect range all allocated storage
o else

L] Call advfs unprotect range on portions of
allocated storage not in bfap smap storage
list. (The page locks are still held for the
pages in the bfap smap storage head since
the IO has not completed).

. Else
o No change to logic for the FP CREATE case
. if bfap smap_storage head != NULL

o /* If we allocated storage for a child snapshot, add it’s storage to the
snap maps so that writes go out to the new storage */

o Dbfap smap_storage head->ebd snap_ fwd = snap maps
o snap maps = bfap smap storage head
. if child snapset exists
o advfs kickoff readahead with flag to mark pages as READ ONLY
. else advfs kickoff readahead
popsicle stand:
. if release pages
o fcache page release
. if xtntmap locked
o unlock xtntMap_lk
. if unlock filelock
o unlock file lock

. if ioAnchor head != NULL

65

o while (ioAnchor head != NULL)
- if snap maps == NULL

L]
. else
L]

Current io wait logic

lock ioanchor

if ioanchor->anchr flags & IOANCHORFLG WAKEUP ON ALL IOs

o /* This was a read, must issue writes */

o 1f ioanchor->anchr_ iocounter == 1

o else

else

/* The read has completed */

clear IOANCHORFLG WAKEUP ON ALL IOS
unlock ioanchor

if ioanchor->anchr error ios != NULL

. for each child in snap maps that
would have required a write

o advfs snap out of sync
. finish the io associated with the
ioanchor (biodone) to free the VM
page.
. free the adviodesc
. free the ioanchor
o continue
call advfs issue snap ios to issue writes
lock ioanchor
iocanchor->anchr_ iocounter—
put ioanchor at end of ioAnchor list

unlock ioanchor

/* The read isn’t done yet, wait */

cv_wait ioanchor->anchr cvwait NO_RELOCK

o /* Waiting for writes */
o 1f ioanchor->anchr flags & IOANCHORFLG IODONE

ioAnchor head = ioAnchor head->anchr listfwd
ASSERT ioanchor->anchr iocounter == 0

Unlock ioanchor

if ioanchor->anchr error ios != NULL

. for each adviodesc
o if advio bfaccess == bfap

. if bfap is a snapshot,
set mark bfap out of s
ync = TRUE

. For each child of
bfap, call
advfs snap out of sync
to mark it out of
sync.

- Execute error logic
already in
advfs getpage (adjust
return size).
o Else

. Call
advfs_snap_out of sync
to mark advio bfaccess
out of sync.

66

o Free the adviodesc
. advfs bs free ioanchor
o else
" /* Writes not done yet */

- cv_wait ioanchor->anchr cvwait NO_ RELOCK

. for each bfap in the snap_maps
o if bfap == faulted-on bfap
" continue

o unlock file’s migStg 1k
o unlock file’s bfaSnap_ lk
. if exit child cow_mode
o for each child snapshot
= if BFA IN COW MODE
. lock bfaLock child
e clear BFA XTNTS_IN USE
o unlock bfalLock
. if exit bfap cow_mode
o if BFA IN COW_MODE
. lock bfaLock
* clear BFA XTNTS_ IN USE
- unlock bfalLock
. unlock bfap->bfaSnapLock
. if parent snapsets exist
o for each parent snapshot
. unlock migStg 1k
. if mark bfap_out of sync == TRUE
o write lock bfap->bfaSnapLock
o advfs_snap out of sync
o unlock bfap->bfaSnapLock
. if exit child cow mode
o for each child snapshot'’
L] if child’s bfSet is BFS DELETING, skip the file
- else
e CLU CFS COW MODE LEAVE
o Lock child->bfaLock
e Clear BFA IN COW MODE
. Unlock child->bfalock
- broadcast bfaSnapCv
. If exit bfap cow mode
o CLU_CFS_COW_MODE LEAVE
Lock bfalLock
Clear BFA IN COW MODE
Unlock bfalLock
Broadcast bfaSnapCv

O O O O

e if mmap writer && BFS IM SNAP IN PROGRESS
o decr bfap->bfaWriteCnt

"It is safe to walk the child list without holding the bfaSnapLock since the file will be skipped if the state
of its fileset is BFS DELETING. The only way the file could be removed from the list would be if its
fileset were deleted.

67

o if bfap->bfaWriteCnt ==
- broadcast on bfaSnapCv
. free the snap maps (free each list of extents per file)

. return sts

3.2.4.3.2 advfs_getmetapage

3.2.4.3.2.1 Interface

statusT

advfs getmetapage (
fcache vminfo t *fc vminfo, /* An opaque pointer to a vm data struct*/
struct vnode *vp, /* The access structure pointer */
off t off, /* The offset in the file of the fault */
struct advfs pvt param *fs priv param, /* File system private parameter */
ioanchor t **ioAnchor head, /* list of anchors for wait on */
fcache pflags t pflags /* Flags passed to VOP_GETPAGE */
extent blk desc* snap_maps) /* Block maps for snaps needing COWing */

3.2.4.3.2.2 Description

advfs_getmetapage will be responsible for setting up the IO Anchors to correctly process metadata.
Metadata does not have the same synchronization issues that user data have with respect to snapset creation
since metadata must be modified under a transaction and snapset creation will be done under an exclusive
transaction. It is assumed that even for writeable metadata snapshots, the child has already had storage
allocated and initialized before this routine is called.

The new parameters snap maps will indicate whether or not any storage was allocated to children
snapshots that need to have data written to it. The snap _maps will also include storage for the faulted on
file if that file were a metadata file that is having a COW occur from the parent to the child.

In the case of advfs getmetapage where the page or pages are found in cache, if snap_maps is NULL, the
pages are released. If the snap maps are non-NULL, then IOs must be issued to any overlapping ranges in
the snap map. An assertion can be made that any pages found in cache and needing to be pushed out to
disk are not dirty. This is because the pages should have been flushed and protected under an exclusive
transaction. To issue the writes, a fake read will be setup and an IO anchor will be created with an 1O
count of 1. A call to advfs_issue snap_io will be made to issue the writes to overlapping regions in the
snap_maps. On return, the fake 10 will be issued and the IO Anchor will be chained to the end of the
returned ioAnchor list.

After having issued an IO for each snapshot child, the fake 10 will be issued and the IO Anchor will be
linked to the end of the IO Anchor list to be returned to advfs_getpage.

In the case of FP_ST DATA FILL, if any COWing is required, then it is necessary that the data first be
read into cache. This will be done in a similar manner to advfs_getpage. The READ operation will be
started in advfs getmetapage and the corresponding WRITE operations will be issued at the end of
advfs_getpage once advfs_getmetapage returns. If snap_maps is non-NULL, then advfs_start blkmap io
will be passed ADVIOFLG_SNAP_READ to indicate that it needs to set the IO Count on the IO Anchor to
2, set the WAKEUP_ON_ALL IO flag in the IO anchor, and that it needs to link the anchor to the front
rather than the back of the IO Anchor list.

The IO Anchor(s) returned by advfs getmetapage will be further processed or waited on by advfs_getpage.

3.2.4.3.2.3 Execution Flow

e while loop_size > 0
o fcache page alloc
o if loop size == ADVFS METADTA PGSZ

L] no change to logic

68

o if snap_maps
. ASSERT bfap->bfaSnapLock locked
- ASSERT plist->pi pg dirty ==
o if plist->pi pg dirty ==
L] no change to logic
o 1f alloc_status == FPA ST EXISTS
. if snap maps == NULL
. fcache_page release
- else
. /* May need to do a COW */
. iocanchor = advfs get io_anchor
. ioanchor->anchr iocounter = 1

. iocanchor->anchr flags &=
TOANCHOR_KEEP_ANCHOR| IOANCHOR_WAKEUP_ON_ALL_IO

. fcache buf create a buf passing in plist and a size of
contiguous range for a READ

. iocanchor->anchr orig buf = buf

. malloc a temp buf buf structure

. bcopy buf to temp buf

. ioanchor->anchr buf copy = temp buf

. advfs issue snap_io passing the ioanchor and the snap_maps

. issue the fake read by calling advfs bs startio with the
ADVIOFLG FAKEIO flag

o else
* /* FPA_ ST DATAFILL */
" advfs _get blkmap_in_range
" if error
. no change to error logic

. call advfs start blkmap io, if snap maps is not NULL, pass
ADVIO_FLG_SNAP READ to put an IO count of 2 on the ioanchor and to
set the IOANCHRFLG WAKEUP ON ALL IO flag.

- if error
3 no change to current error logic

. return sts

3.2.4.3.3 rbf add stg

3.2.4.3.3.1 Interface

statusT

rbf add stg(
bfAccessT *bfap, /* in */
bf fob t fob offset, /* in */
bf fob t fob cnt, /* in */
ftxHT parentFtx, /* in */
int checkmigstglock /* in */

)

3.2.4.3.3.2 Description

rbf add_stg must perform copy-before-write operations whenever a hole of a metadata file is being filled
and that file has a child snapshot. In the event that storage is being added to a metadata file and a snapshot
exists, an assertion can be made that the parent transaction handle passed into rbf add_stg is not
FtxNilFtxH. If the parent transaction were FtxNilFtxH, then the modification of the metadata would not be
correctly synchronized with the advfs create snapset’s exclusive transaction.

69

If the file to which storage is added may have a child snapshot and the file is metadata, the children
snapshots will be opened via a call to advfs_access_snap_children.

To add holes to children snapshots, rbf add_stg will acquire the sparseness map for the file to which
storage is being added. To acquire the sparseness maps, advfs get blkmap in range will be called with
the round type RND ENTIRE HOLE and the extent blk map type EXB ONLY HOLES. Each hole
returned will be inserted into all children snapshots. The hole that is being written to may be mapped in
either the bfap having storage added or the parent snapshot. If a race occurs and the snapshot has storage
added before the COWed hole is added, then the storage wins and the hole will only be created where no
storage exists.

The hole will be inserted into the snapshot’s extent maps via a call to advfs_make cow_hole. Prior to
calling advfs_make cow_hole, the migStg_lk will be acquired in READ mode.

3.2.4.3.3.3 Execution Flow
. ASSERT not COWable metadata & bfSet is BFS_SNAP IN PROGRESS
. If COWable metadata (not a tag dir and not a reserved file)
o ASSERT parentFtx != FtxNilFtx
o if & bfap->bfaFlags & BFA SNAP CHANGE
L] advfs access_snap_children(bfap, parentFtx)

o advfs get blkmap in range for bfap using RND ENTIRE HOLE and
EXB_ONLY HOLES

o for each child snapshot
L] acquire child’s bfaSnapLock for write
. acquire migStg lk of child for read access
. for each hole extent
. advfs make cow_hole in child snapshot
. drop child’s bfaSnapLock
. drop migStg lk of child
. stg_add stg on bfap

. return status

3.2.4.3.4 advfs_access _snap_children

3.2.4.3.4.1 Interface
statusT
advfs access_snap children(
bfAccessT* bfap,
ftxHT parent ftx)
3.2.4.3.4.2 Description

advfs access _snap_children will be called from advfs getpage or rbf add stg before any COWing is done
to the children bfaps. The routine will open any children snapshots that are not already opened.
Additionally, each child will have a single reference put on it. The accessing of children snapshots is
postponed until a COW is required so as to reduce the number of access structures in cache.

The basic algorithm for this routine is to walk the set of child bfSets of the bfSet that bfap belongs to, and
for each one, make sure a child bfap exists in bfap’s child list. If the child does not exist in the list, the
child snapshot will be opened via bs_access_one and the BFA_ OPENED BY PARENT flag will be set. If
the child does not exist in the child snapset, it will be skipped, if an error occurs, the child bfap will have
the BS TD OUT_OF SYNC SNAP set in its tag dir flags field. If any other error occurs, the routine will
return the error (most likely EIO). Any snapshot that is marked as out of sync will also cause the

BFS OD OUT_OF _SYNC flag to be set in the fileset that the snapshot belongs to.

70

After a child is accessed, if the BFA_ SNAP VIRGIN flag is set, then the bfaSnapLock of the child
snapshot will be acquired in write mode and advfs_setup cow will be called to make a copy of the
metadata. If advfs setup cow fails to copy the metadata, it will mark the child as

BS TD OUT OF SYNC SNAP in the tag directory of its bfSet and will set the BFA OUT _OF SYNC
flag in the bfaFlags.

If advfs access snap children is able to open all child snapshots that are not ENO _SUCH_TAG, then it
will return EOK. A return status of ENO_SUCH_TAG may indicate a file that was deleted in a child
snapset, or a child in a snapset that is in state BFS DELETING.

This routine will acquire the bfaSnapLock of bfap while walking and modifying the list of children.

3.2.4.3.4.3 Execution Flow

. ASSERT bfSet is not BFS IM SNAP IN PROGRESS
e ASSERT bfap->bfaFlags BFA_ OPENING_ PARENTS is not set
. write lock bfaSnapLock for bfap
. if BFA SNAP_CHANGE not set in bfaFlags

o unlock bfaSnapLock

o return
. cur bf set = bfap->bfSet->bfsFirstSnapChild
. cur bfap = bfap->bfaFirstSnapChild
o prev_bfap = NULL
e while cur bf set != NULL

o 1f cur bfap->bfSet == cur bf set

. cur bf set = cur bf set->bfsNextSnapSibling

. cur_bfap cur_bfap->bfaNextSnapSibling
o else
- ASSERT cur bfap->bfaNextSnapSibing == NULL
- /* This assumes that bfaps are chained in the

* same order as the bfSets */
. if cur bf set is BFS_DELETING
. /* 1f we are deleting the fileset, skip opening the file */
. cur bf set = cur bf set->bfsNextSnapSibling

e /* Open the child for cur_bf set */
. bs access one bfap->tag in cur bf set to get cur bfap
. if bs_access_one with ENO_SUCH TAG
o cur _bf set = cur bf set->bfsNextSnapSibling
. else
o call advfs_snap_out of sync cur_bfap, cur bf set
o On error, domain has paniced.
. if cur bfap->bfaFlags & BFA ROOT SNAPSHOT
o bs close one cur bfap
o cur _bf set = cur bf set->bfsNextSnapSibling
. Lock cur bfap->bfalLock
. Set BFA OPENED BY PARENT flag in bfaFlags
. Unlock cur_ bfap->bfalLock
. if prev bfap
o ASSERT bfap->bfaFirstSnapChild == NULL
o bfap->bfaFirstSnapChild = cur bfap
. else
o ASSERT bfap->bfaNextSnapSibling = NULL

71

o bfap->bfaNextSnapSibling = cur_ bfap
. if cur_bfap->bfaFlags & BFA_SNAP_VIRGIN

o write lock cur bfap->bfaSnapLock

o call advfs cow setup on cur bfap

o unlock cur_ bfap->bfaSnapLock

o 1f advfs cow setup fails

. call advfs snap out of sync cur bfap,
cur bf set

. lock cur bfap->bfalock
. set BFA OUT_OF SYNC in bfaFlags
. unlock cur bfap->bfaLock
e ASSERT cur_bfap->bfa orig file size != ADVFS ROOT_SNAPSHOT
. prev_bfap = cur_bfap
. lock bfap->bfalock
. clear BFA SNAP CHANGE flag
. unlock bfap->bfalock
. unlock bfap->bfaSnapLock

. return EOK

3.2.4.3.5 advfs_acquire snap locks

3.2.43.5.1 Interface
statusT
advfs acquire snap_locks (
bfAccessT* bfap,
snap flags t snap flags)
3.2.4.3.5.2 Description

This routine will acquire the bfaSnapLock and migStg_lk for the snapshots in the snapshot tree as required.
This routine will acquire different locks depending on whether the snap flags indicate a read or a write
operation (SF_SNAP READ or SF SNAP WRITE). If bfap is a reserved metadata file or a tag directory
file, no locks need to be acquired for reserved files since those files are not COWed. As a result, if the file
represents a tag file (is in a fileset with bfSetld of negative two) or is a reserved file (has a negative tag), no
work needs to be done by this routine.

For a read of userdata or non-reserved metadata, the migStg 1k will be acquired in read mode for all parent
snapshots of bfap'2. The bfaSnapLock will be held for read on entrance to this routine. For userdata, the
file lock will be held for read or write on entrance to this routine.

For a write, the bfaSnapLock for bfap is already held if bfap has a parent snapshot. It is necessary to
acquire the bfaSnapLock for each child snapshot for write mode. The locking will proceed in order of the
bfaNextSnapSibling chain starting at the bfaFirstSnapChild pointer in bfap. The bfaSnapLock will protect
uninitialized data in the snapshots from being read by other threads.

For both reads and write, once the bfaSnapLocks are acquired, it is necessary to acquire the migStg_lk for
all parents in read mode. The acquisition of the migStg lk in read mode will protect against migrate
moving the storage during a read. This is necessary in case any reads are required from the parent. If the
migStg 1k were not held, then the reads would need to be waited on synchronously while holding the

"2 The migStg_Ik will protect against migrate moving the physical storage. It will not protect against the
removal of the storage from the parent files. As a result, it is necessary for storage removal to force a COW
or transfer of the extents to the child. In any case, it will be necessary to acquire the file lock of the child,
so we only need to synchronize with migrate moving the storage.

72

xtntMap_lks of the parents. For writes, after acquiring the migStg_lk of each parent, the migStg 1k must
be acquired for each child. The migStg_lk will synchronize with any migrations of the child snapshot data.

The migStg_1lk of the faulted-on file does not need to be acquired since it synchronizes with migrate via the
page locks. Once the migStg 1k is acquired for the children, the bfaSnapLock will be acquired in read
mode for each of the child snapshots.

Both the bfaSnapLock and the migStg 1k will be dropped at the end of advfs getpage or as soon as it is
determined that a snapshot does not require any COW operations.

Any snapshots marked as BFA OUT OF SYNC will be skipped (no locking will be done).

3.2.4.3.5.3 Execution Flow
. If rsvd metadata or tag file
o Return EOK
. bfsetT* parent sets[ADVFS MAX SNAP DEPTH]
. bzero parent_ sets
. ASSERT bfaSnapLock of bfap held for read
. cur_parent = bfap->bfSet->bfsParentSnapSet
e high parent idx = 0
e while cur parent != NULL
o parent setsl[high parent idx] = cur_ parent
o high parent idx++
o cur parent = cur parent->bfsParentSnapSet
. high parent idx--

U /* parent sets now has parent chain from root to bfap’s fileset. All locks will
be acquired going from high parent idx down to 0 */

. if snap_flags & SF_SNAP WRITE
o /* Acquire bfaSnapLocks. The lock for bfap
* is already held (acquired by caller) for read */
o For each child of bfap
. If child is BFA OUT_OF SYNC continue
- Lock bfaSnapLock for write
. For high parent_ idx downto zero
0 ASSERT parent is not BFA_ OUT_OF SYNC
o Read lock parent sets[i]->migStg lk
. If snap_flags & SF_SNAP_WRITE
o For each child
. If child is BFA OUT_OF SYNC continue
. Read lock migStg 1k

. return EOK

3.2.4.3.6 advfs drop snap locks

3.2.4.3.6.1 Interface

statusT
advfs drop_snap locks(
bfAccessT* bfap,
snap flags t snap flags)

3.2.4.3.6.2 Description

73

This routine will drop the migStg_lk of all parents of bfap along with the migStg_lk and the bfaSnapLock
of each child of bfap. It is assumed that the bfaSnapLock of bfap is held on entrance. The routine cannot
be used unless all children (not marked BFA_ OUT OF SYNC) and all parents’ locks are held.

3.2.4.3.6.3 Execution Flow
. ASSERT bfap->bfaSnapLock is held
. cur_parent = bfap->bfaParentSnap
e while cur_ parent
o unlock cur parent->migStg lk
o cur parent = cur parent->bfaParentSnap
. if snap flags & SF_SNAP_READ
o return EOK
. cur child = bfap->bfaFirstSnapChild
e while cur_child
o 1f cur child->bfaFlags & BFA OUT OF SYNC
" continue
o else
L] ASSERT migStg lk (read) and bfaSnapLock (write) are held
unlock cur child->migStg lk
unlock cur_child->bfaSnapLock

o cur_child cur_child->bfaNextSnapSibling

. return EOK

3.2.4.3.7 advfs _acquire xtntMap locks

3.2.4.3.7.1 Interface

statusT
advfs acquire xtntMap_ locks (
bfAccessT* bfap)

3.2.4.3.7.2 Description

This routine will acquire the xtntMap_lks for bfap and all of the parents of bfap. The xtntMap_1lk will be
acquired in read mode. The locks will be acquired from the root down to bfap so that the locking order
always proceeds from parent to child. It is assumed that the bfaSnapLock of bfap is held for read access
when this routine is called.

3.2.4.3.7.3 Execution Flow

. bfsetT* parent sets[ADVFS MAX SNAP DEPTH]

. bzero parent_ sets

. ASSERT bfaSnapLock of bfap held for read

. cur parent = bfap->bfSet->bfsParentSnapSet

. high parent idx = 0

. while cur_parent != NULL
o parent sets[high parent idx] = cur parent
o high parent idx++
o cur_parent = cur parent->bfsParentSnapSet

e high parent idx--

° /* parent sets now has parent chain from root to bfap’s fileset. All locks will
be acquired going from high parent idx down to 0 */

. for i=high parent; I > 0; i-

74

o x load inmem xtnt map(parent sets[i], X LOAD REFERNCE)
(¢} On error
L] Unlock locked parents
- Return error
. x_load inmem xtnt map(bfap, X LOAD REFERNCE)
. On error
o Unlock locked parents

o Return error

. return EOK

3.2.4.3.8 advfs_drop xtntMap locks

3.2.4.3.8.1 Interface

statusT
advfs drop xtntMap locks(

bfAccessT* bfap)
3.2.4.3.8.2 Description

This routine will drop the xtntMap_lk of each of the parents of bfap and for bfap itself.

3.2.4.3.8.3 Execution Flow
. Unlock bfap->xtntMap lk
. Cur_parent = bfap->bfaParentSnap

e While cur parent != NULL
o Unlock cur_parent->xtntMap lk

o Cur_parent = cur_parent->bfaParentSnap

. return EOK

3.2.4.3.9 advfs add snap stg

3.2.4.3.9.1 Interface

statusT
advfs add snap_ stg(

bfAccessT* bfap,

off t offset,

size t size,

extent blk desc** snap maps,
bf fob t* min_ storage,
bf fob t* max_storage,
ftxHT parent ftx)

3.2.4.3.9.2 Description

This routine will handle adding storage or COWed holes to each snapshot child of bfap. The work
performed by this routine will all be done under the parent ftx transaction. The extent map of bfap will be
examined to determine if a COWed hole or storage should be allocated in the child snapshots. For each
storage extent in bfap, each child snapshot will have storage added to it and an extent_blk desc will be
created for the newly allocated storage. No storage will be added to a snapshot child beyond the snapshots
bfa_orig_file size". For each hole in bfap, a COWed hole will be inserted into each child snapshot extent

" A writeable snapshot may extend its file_size, but the bfa_orig_file_size is the size of the file at the time
the snapshot was taken (or the time the original metadata was created).

75

map. If storage or a COWed hole already exists in the child, no action is taken (the range has already been
COWed).

For each child snapshot, a chain of extent_blk desc for the storage added will be returned. The
extent blk desc list for a given snapshot will be chained together using the ebd next desc while the lists
for separate files will be chained together through the ebd _snap fwd field of the extent blk desc structure.

If storage allocation fails for any child snapshot because of a lack of disk space, that child snapshot will be
marked out of sync in the tag directory of its bfSet and in the access structure for the snapshot. If an error
other than ENO_SPACE occurs, that error will be returned. If any attempt to add storage to a snapshot
child fails, advfs_snap out of sync will be called to mark the snapshot child as out of sync and the locks
associated with that file will be dropped. On error, the snapshot will not have any snap maps returned.

This routine assumes that the bfaSnapLock is held for read for bfap and for write for each child of bfap.
The routine also assumes that the migStg_lk is held for read on each child snapshot. If any snapshot is
found to not require any storage (no COWing required) the bfaSnapLock and migStg_lk will be dropped
for that child snapshot.

This routine will return in min_storage and max_storage the lowest and highest fob added to snapshot
children. If snap maps are NULL then these values are undefined. This will be used by the caller to
determine if it is possible to un-round the COW value. If the range passed in starts or ends in a hole, the
original file does not need to have a fault occur over those fobs since the storage will have been COWed as
a hole.

On an error other than ENO_SPACE, the file locks and migStg_lks of the child snapshots will be dropped
and the routine will propagate the error.

3.2.4.3.9.3 Execution Flow

. advfs get blkmaps in range of bfap requesting RND ENTIRE HOLE and EXB COMPLETE and
XTNT_LOCKS_HELD

. snap_map head = snap map_tail = NULL

. for each child of bfap
o ASSERT the child’s bfaSnapLock is held for write
o child extent head = child extent tail = NULL

o advfs get blkmap in range on child using RND NONE and
EXB_ONLY HOLES|EXB DO _NOT INHERIT (get unmapped maps and COWed holes) and
XTNT LOCKS HELD. The request will be over the range of the request, but
not beyond the child’s bfa orig file size.

o for each extent of bfap
L] for each extent in child that is unmapped
. if range is a hole in parent

o advfs make cow_hole on overlapping range (rounded up
or down to cover the entire hole in parent)

o 1f advfs make cow hole fails

" advfs_snap_out of sync child bfap and
child bfap’s bfSet

" free child extent head extent list
. break
. else
rbf add stg to child bfap
if rbf add stg fails

. advfs snap_out of sync child bfap and
child bfap’s bfset

" free child extent head extent list

* break
create extent blk desc over range of added storage
if child extent_ head = NULL

76

. child extent head = extent blk desc
o 1f child_extent tail != NULL

. child extent tail->ebd next desc =
extent blk desc

o child extent tail = extent blk desc
o free child extent maps (not child extent head list)
o 1f child_extent head != NULL
. if snap map_head = NULL
. snap_map head = child extent head
. snap_map tail != NULL
. snap map_ tail->ebd snap fwd = child extent head

. snap_map_tail = child extent_ head

- /* No storage was added, so the locks will be dropped */
. drop bfaSnapLock of child bfap
- drop migStg lk of child bfap

. free bfap’s extent maps

. *snap maps = snap_map head

. return EOK

3.2.4.3.10 advfs issue snap io

3.2.4.3.10.1 Interface

statusT

advfs issue snap io(
iocanchor_ t* io_anchor,
extent blk desc** snap_maps)

3.2.4.3.10.2 Description

This routine will examine the anchr_buf copy field of the io_anchor to determine what range of the
snapshot a read was issued to. Once the range is determined, the snap maps will be examined and WRITE
10s will be issued to each contiguous range that overlaps the range of the anchr buf copy buf. In any
given snapshot child, multiple IOs may be issued. If the anchr buf copy has no overlapping ranges in the
snap_maps, no 10s will be issued.

It is assumed that external locking is protecting the snap_maps and the storage they map to from being
migrated or removed.

This routine should never be called on reserved metadata.

3.2.4.3.10.3 Execution Flow

. ASSERT bfap is not reserved metadata to tag directory.

. cur_buf = io_anchor->anchr buf copy
. ASSERT cur_buf != NULL
. io_start = cur_buf->foffset

. io _end = io_start + cur buf->size
. cur_extent maps = snap_maps

] prev_extent maps = NULL

e while cur_extent maps != NULL
o cur_extent = cur_extent map
o cur io start = io start
o while cur_extent != NULL

77

. if io_end < cur_ extent->ebd offset
® Dbreak
. if io _start > cur extent->ebd offset + ebd size
. cur_extent = cur_ extent->ebd next desc
. continue
. ASSERT io start >= cur_ extent->ebd offset
. offset into extent = cur extent->ebd offset - io start

. blks_into_extent = offset_in extent / (ADVFS_FOBS_PER BLK *
ADVFS_FOB_SZ)

. if io_end > cur extent->ebd offset + ebd size
o cur write end = cur extent->ebd offset + ebd size
. else cur write end = io_end
. malloc temp buf
- bcopy cur buf into temp buf
. temp buf->b flags &= ~B_READ
* temp buf->b flags &= B WRITE|B PHYS|B CALL
. temp buf->b foffset = io_start
. temp buf->b blkno = cur extent->ebd vd blk + blks into extent
. temp buf->b un.b_addr += cur io_start - io start
. temp buf->b bcount = cur write end - cur io start
. Lock ioanchor
. Increment iocounter
. Unlock ioanchor

" call advfs_bs startio with VD _HTOP (cur_extent->ebd vd index,
cur_extent->bfap->dmnP) ->devVp->v_rdev and NULL bsBuf passing in
temp buf for IO.

. cur_extent = cur extent->ebd next desc
o cur_extent maps = cur_extent maps->ebd snap fwd

. return EOK

3.2.4.3.11 advfs setup cow

3.2.4.3.11.1 Interface

statusT
advfs_setup_ cow(

bfAccessT* parent bfap,
bfAccessT* child bfap,
snap_ flags t snap_flags,
ftxHT parent ftx)

3.2.4.3.11.2 Description

This routine will handle making a copy of a parent snapshots metadata for the child. It is assumed that the
child snapshot has its bfaSnapLock held for write. Furthermore, it is assumed that the

BFA SNAP_VIRGIN flag is set in the bfAccess structure of the file to receive a copy of the metadata (the
child bfap).

If the copy of metadata fails, advfs_snap out of sync will be called to mark the snapshot and its fileset as
out of sync. If the copy succeeds, the BS TD VIRGIN SNAP flag will be cleared in the tag directory.

A transaction handle will be passed in under which to perform the copy of metadata. The basic routine
structure, locking and transaction control will be the same as clone in Tru64. The biggest exception to this
is that the bfaSnapLock will now provide synchronization. The transaction type

FTA BS BFS CLONE V1 will become FTA META SNAP, the new clone mcell routine will become
advfs new snap mcell, bmtr clone recs will become bmtr snap recs, stripe processing will be removed,

78

and field names will be changed to correctly reflect the new snapshot field names in the bfAccess and bfSet
structures.

After the chain of mcells has been copied to the child snapshot, a the bsBfAttr field bfat orig file size will
be set in the new metadata for the child. The field will be set to the file size of the parent snapshot at the
time the metadata is copied. This field will provide an upper boundary on the amount of data to COW and
will be used to initialize bfa_orig_file size when the snapshot is opened.

Before returning success, the BFA VIRGIN SNAP flag will be cleared.

3.2.4.3.11.3 Execution Flow

If ! child bfap & BFA SNAP VIRGIN
o /* child bfap already has its own metadata */
o return

write lock child bfap->bfaSnapLock

if !child bfap & BFA_SNAP VIRGIN

o unlock bfaSnapLock and return

/* Start a transaction so that we can finish it with a special done mode to
prevent undos */

/* Copy the parent’s mcell list to the child */

set child bfap state to ACC_INIT TRANS to prevent new accesses
FTX_START N(FTA META SNAP, parent ftx, snap_ftx)

get bfAttr (BSR ATTR) record for parent bfap

Initialize as in clone(.) on Tru64

Read lock parent bfap->mcelllist 1k

FTX_ LOCKWRITE (child bfap->mcelllList 1lk, snap_ftx)

Call advfs new snap mcell (new clone mcell on Tru64) to get a primary mcell for
child bfap

If advfs new _snap mcell fails
o fail snap_ ftx
o Call advfs snap out of sync(child bfap, parent bfap, parent ftx)
o Return error
Call tagdir lookup full to get tagdir entry for undo
If tagdir lookup full fails
o Fail snap_ ftx
o Call advfs snap out of sync
o Return error
Call bmtr snap_recs (bmtr clone recs on Tru64)

If bmtr snap recs fails
o Fail snap_ ftx
o Call advfs_snap_out of sync

o Return error

Update the tagdir entry with the new primary mcell (see clone(.) on Tru64). The
BS_TD SNAP VIRGIN flag will be cleared.

Call bs map bf with the BS REMAP flag to re-init child bfap with new primary
mcell.

Reset bsBfAttr->bfat orig file size with parent bfap->file size stored in it.
ftx special done mode(snap_ftx, FTXDONE SKIP SUBFTX UNDO)

ftx done snap_ ftx

unlock parent bfap->mcelllList 1k

bfaFlags &= ~ BFA SNAP VIRGIN

Transition child bfap back to previous state (before ACC_INIT_TRANS)

Return EOK

79

3.2.4.3.12 advfs sync_cow_metapage

3.2.4.3.12.1 Interface

statusT
advfs sync cow_metapage (
bfAccessT* bfap,
off t offset,
size t size,
ftxHT parent ftx)

3.2.4.3.12.2 Description

This routine is called to synchronously allocate and initialize a metadata page prior to calling

advfs getmetapage. This routine will only have any action to do if bfap is a child snapshot and if the page
in the range [offset, size] has not already been COWed to bfap. If the page is unmapped in bfap, then
storage will be allocated for the page in bfap’s extent maps and the page will be read in and written out to
bfap before returning from this function.

This routine assumes that the bfaSnapLock of bfap is held for read on entrance. If the page is unmapped in
bfap, then the bfaSnapLock will be upgraded to write mode. If the upgrade fails, then the lock will be
dropped and acquired in write mode. This routine also assumes that advfs_acquire snap_locks has already
been called to acquire the migStg_lk of the parent’s of bfap. This routine may drop and reacquire any locks
taken by advfs_acquire snap locks.

If the page is unmapped in bfap, the migStg_lk of all parents and bfap will be dropped (along with the
migStg lk of any children) and the lock will be reacquired for write mode. This will protect the parents’
storage against changing while storage is added to bfap. Once the migStg_lks are reacquired for the
parents and bfap in write mode, the extents will be queried to find out where in the parent extent maps the
page is located. The extent map locks will be dropped and storage will be added to bfap. Next, a READ
will be issued to the disk location that the page exists at in the parent. Once the read completes, a write will
be issued to the newly allocated storage in bfap. On successful completion of the write, all the parent
migStg_lks will be downgraded to read and the routine will return.

This routine will be optimized in the future to do more than a single page of COWing at a time.

3.2.4.3.12.3 Execution Flow

. if bfap->bfaParentSnap == NULL
o return EOK
. ASSERT that bfap->bfaSnapLock is held for read
. advfs get blkmap in range(bfap, offset, size, EXB ONLY HOLES)
. if extents don’t have any unmapped holes
o free extents
o return EOK
. if bfap->bfaSnapLock is not held for write
o Try to upgrade bfap->bfaSnapLock
o If upgrade fails
. Drop parent’s migStg 1lk’s
. Drop child’s migStg lk’s and bfaSnapLocks
. Drop read lock
. Write lock bfaSnapLock
. advfs acquire snap locks
- Start over
. If bfaSnapLock was dropped
o Advfs_get blkmap_in range to reacquire block maps

80

o If extents don’t have any unmapped holes
- Free extents
. If bfaSnapLock was upgraded
. Downgrade to read mode
- Return EOK
. rbf add stg to bfap over range [offset..offset+size]
. Create extent blk desc to describe page storage
. Do a loop similar to advfs getmetapage to fault in range
o Fcache page_alloc
. Demote any large pages
Fcache buf create
Create ioAnchor with IO Count of 2
advfs start blkmap io to do READ
wait for READ to complete
Call advfs start snap io passing extent blk desc of new storage
Wait for WRITE to complete

On any error

O O O O O O ©O

. advfs snap out of sync(bfap, bfap->bfSet, parent ftx)
o if bfaSnapLock was upgraded

o downgrade to read mode

. Return EOK

3.2.4.3.13 advfs _snap out of sync

3.2.4.3.13.1 Interface

int
advfs snap_out of sync(
struct bfAccess* bfap, /* in - bfap of out of sync snapshot */
struct bfSet * bf set ptr /* in - bfSet to mark out of sync */
ftxHT parent ftx /* in - transaction to update metadata under */)

3.2.4.3.13.2 Description
This routine will mark the snapshot file bfap and the snapshot fileset bf set ptr as out of sync.

To mark bfap as out of sync, the BS TD OUT OF SYNC SNAP flag will be transactoinally set in the tag
flags of the tag directory entry for bfap and the BFA_ OUT OF SYNC flag will be set in the bfaFlags field
of bfap.

To mark the bf set ptr as out of sync, the BFS OD OUT OF SYNC flag will be set in the bfsFlags of
bfap’s fileset and will be transactionally written to the bitfile set attributes record for the fileset. If an IO
error occurs during this routine, the domain will panic.

Transactions started by this routine will be ftx_done’d with a special done mode that will cause the
transaction to not be undone.

It is acceptable for one of the two parameters bfap or bf set ptr to be NULL. If bfap or bf set ptr is
NULL, that parameter is not marked out of sync. In this way, it is possible to mark a file but not a snapset,
or a snapset but not a file as out of sync.

3.2.4.3.13.3 Execution Flow

. If (bfap & bfap is already out of sync) and (bfSet and bfSet is already out of
sync)

o return EOK
. FTX START out of sync ftx
. if FTX START fails, panic

81

. If bf set ptr != NULL and not bf set ptr->bfSetFlags & BFS_OD OUT OF SYNC
o Get bfSetAttr record for bf set ptr (bmtr get rec ptr)

rbf pin_record bfSetAttr->flags field

bfSetAttr->flags |= BFS_OD_OUT_OF_SYNC

lock bfSetMutex

bfSetp->bfSetFlags |= BFS_OD_OUT_OF_SYNC

o unlock bfSetMutex

O O O O

. if bfap != NULL and not bfap->bfaFlag & BFA OUT OF SYNC
o tagdir lookup full(bf set ptr, bfap->tag, &tag flags)

o create a new tag entry with tag flag BS TD OUT OF SYNC set and all other
fields copied from tagdir lookup

tagdir_ stuff tagmap

lock bfap->bfalock

bfap->bfaFlags |= BFA OUT OF SYNC
unlock bfap->bfalock

O O O ©

. ftx special done mode (out of sync_ ftx, FTXDONE SKIP SUBFTX UNDO)
. ftx_ done

. return EOK

3.2.4.3.14 advfs fs write

3.2.4.3.14.1 Interface

int

advfs fs write(
struct vnode *vp, /* in - vnode of file to write */
struct uio *uio, /* in - structure for uiomove */
enum uio rw rw, /* in - read/write flags */
int ioflag, /* in - flags - append, sync, etc. */
struct ucred *cred /* in - credentials of caller */

)

3.2.4.3.14.2 Description

advfs_fs write must guard against potentially large transactions which could cause a log half full system
panic. In the event of a very large write, storage may need to be acquired for a large sparse range in a file.
Currently, the amount of storage allocated in a single transaction will be bounded by

MAX_ ALLOC FOB_CNT, however, if a file has multiple children snapshots, then storage may need to be
allocated for each of the children in addition to the file being written to.

In the write case, a transaction must be started to allocate storage to the children snapshots. If the
transaction were to allocate MAX ALLOC FOB_CNT fobs for each child plus

MAX_ALLOC FOB_CNT for the file being written, the total amount of storage allocated in a single
transaction would exceed MAX ALLOC FOB CNT. Therefore, advfs fs write must limit the size of a
single call to fcache as_uiomove to no more than MAX ALLOC _FOB_CNT / (number of children + 1) if
number of child is greater than 1. This will guard against significantly exceeding

MAX ALLOC FOB CNT.

3.2.4.3.15 advfs _start blkmap io

3.2.4.3.15.1 Interface

statusT

advfs start blkmap io(
fcache vminfo t *fc vminfo, /* opaque vm pointer for buf creation */
struct vnode * vp, /* The vnode pointer of the file */
off t offset, /* starting offset */

82

size t length, /* length to write */

extent blk desc t * primary blkmap, /* The blkmap for the main i/o*/
extent blk desc_t ** passed secondary blkmap, /* if multiple destinations */
ioanchor t **ioAnchor head, /* List to add any i/o's started to (SYNC only) */
page fsdata t ** plist, /* list of PFDATS to write */

struct bsBuf ** bsBufList ptr, /* list of bsBufs for meta-data i/o */

fcache pflags t pflags, /* flags need for buf creation */

int32_t io_flags /* ADVIOFLG_* flags */

3.2.4.3.15.2 Description

This routine will be modified to take a flag ADVIOFLG_SNAP READ which will cause the routine to
initialize the ioanchor t to have an iocounter value of 2. Additionally, when ADVIOFLG _SNAP READ is
set, then the [OANCHORFLG WAKEUP ON_ALL 10 and IOANCHORFLG CHAIN ERRORS flags
will be set in the anchr flags field of the ioanchor.

3.2.4.3.16 Miscellaneous Changes

On Tru64, bs_cow was called in a number of places to force only the metadata portion of a file to be
COWed to its clone. In HPUX, these calls to bs_cow will be replaced with locking the bfaSnapLock for
read, calling the advfs access snap children and dropping the bfaSnapLock.

bmtr_put rec_n _unlk, bmtr update rec, and advfs_setacl will be modified to perform special calls to
advfs access_snap children to force a metadata COW.

bmtr clone mcell will be renamed to bmtr_snap mcell.

When doing a truncate of a writeable snapshot file, it is necessary to reduce the orig file size record in the
bsBfAttr field bfat orig_file size to match the truncated size. If the truncation extends the file, no work
needs to be done. Also in the truncate code path, if a snapshot child exists, then for each snapshot child,
advfs_force cow and unlink will be called on truncated. The SF_ NO_UNLINK flag will be passed to
advfs_force cow and unlink to prevent the truncated file from be unlinked from its children.

advfs start blkmap io will be modified to handle the ADVIOFLG SNAP READ option to create a IO
Anchor with an iocounter value of 2 and the IDANCHORFLG_WAKEUP ON_ALL IO and
IOANCHORFLG CHAIN ERROR flags set.

advfs iodone will be modified so that if [IOANCHORFLG CHAIN ERRORS is set in the IO Anchor
associated with an 10, the adviodesc_t will not be freed but will be chained off of the IO Anchor’s
anchr_error_ios field and linked through the advio_fwd pointer in the adviodesc_t. If
IOANCHORFLG CHAIN ERRORS is set, an assertion will be made that the
IOANCHORFLG _KEEP ANCHOR is also set.

advfs_bs_ get ioanchor will be modified to set anchr_error ios to NULL.

83

3.2.5 Closing a File
3.2.5.1 Closing a File Overview

‘ msfs_inactive ‘ Internal Accessor

bs_close ‘
»‘ advfs_close_snaps
bfaSnaplLock WRITE
-»‘ advfs_close_snap_parents ‘
FOR EACH PARENT
—-»‘ bs_close_one(MSFS_SNAP_DEREF) ‘
Clear BFA_PARENT_SNAP_OPEN
Represents a call chain -»‘ advfs_close_snap_children ‘

exists between two
functions. The functions in
the chain are not detailed

f {(refCnt - (refs from child +
BFA_CPEN_BY_PARENT?1:0) == 1
or if bfaFirstSnapChild == NULL
return

FOR EACH CHILD

. bs_close_one(
B ‘ MSFS SNAP_PARENT CLOSE) ‘

- Clear BFA_OPEN_BY_PARENT
Clear bfaFirstSnapChild

—»‘ bs_close_one

3.2.5.2 Basic Operation of Closing a File

In a filesystem with snapshots, the refCnt of a bfAccess structure is incremented and decremented for all of
the reasons that it would be incremented in a non-snapshot filesystem. In addition, when snapshots are
enabled, it is necessary to put sympathetic refCnts on parent and children snapshots. When closing a file,

Advfs_close_snap_children only
does something if the close will remove all
remaining refCnts due to snapshots (either parent
or children). It has no work to do if other refs stil]
exist

and when the only remaining references on the file are sympathetic refCnts (either from parent or child

snapshots), it is necessary to remove any references on other access structures that the file being closed has

acquired. In other words, any time a “last close” would be done in a non-snapshot environment, it is
necessary to remove any sympathetic, snapshot related references.

84

To accomplish this goal, if snapshots are enabled, bs_close will advfs_close_snaps which will in turn call
advfs_close_snap parents and advfs close snap_children if needed.

On successful return from advfs_close snaps, all references placed on parents or children which resulted
from opening or writing to the file being closed will be undone. The undoing of the references will
synchronize with other accesses of the file via the bfaSnapLock.

Once all sympathetic links are removed from the file being closed, bs_close one will be called to
decrement the refCnt. If no parent or children snapshots have sympathetic reference counts on the file
being closed, then it will do last close processing as per the non-snapshot model. Otherwise, last close
processing will occur when the last sympathetic refCnt is removed.

3.2.5.3 Function Call Detail

3.2.5.3.1 bs_close

3.25.3.1.1 Interface

statusT

bs close(
bfAccessT *bfap, /* in */
enum acc_close flags options /* in */
)

3.2.5.3.1.2 Description

bs_close is the primary routine for causing a close to occur on a file. bs_close will handle closing any
related snapshots and will cause the close to occur on the bfap passed in. A quick check to see if snapshots
exist will be performed in bs_close before making a decision as to whether advfs close snaps needs to be
called. If snapshots exist, advfs_close snaps will close any necessary related snapshots and handle
synchronizing with new accesses of the file.

Whether advfs_close snaps is called or not, bs_close one will be called before returning to do the actual
close of bfAccessp.

3.2.5.3.1.3 Execution Flow
. If bfap == NULL
o return EINVALID HANDLE
. if bfap->bfSet has parent or child fileset
o advfs close snaps

. call bs close one(bfap, options, FtxNilFtx)

3.2.5.3.2 bs_close one

3.2.5.3.2.1 Interface

statusT

bs close one(
bfAccessT *pbfap, /* in */
enum acc_close flags options /* in */
)

3.2.5.3.2.2 Description

bs close one performs the close of a file. If the refCnt is going from 1 to 0, the close is the last close,
whether or not the refCnt is a sympathetic reference from an associated snapshot. bs close one is
primarily unconcerned as to why the refCnt is being decremented and whether the refCnt is from a
“normal” referencer or a snapshot. The only change bs_close one must make is to take action on the
MSFS SNAP DEREF and MSFS _SNAP PARENT CLOSE. While holding the bfaL.ock and before
calling DEC_ REFCNT, if MSFS SNAP DEREEF is passed in, then the bfaRefsFromChildSnaps field must

85

also be decremented. If the MSFS SNAP PARENT CLOSE flag is passed in, the bfaFlags
BFA OPENED BY PARENT flag must be cleared.

Both of these updates are done in bs_close one so that they are always consistent with the refCnt for
threads that need to determine whether the refCnts are from sympathetic references or “normal” references.

The only other change to bs_close one will be to remove its support for the MSFS DO_VRELE option.
This option is inefficient on HPUX and callers of bs_close with the MSFS DO_VRELE flag should change
to call VN_RELE directly or do an internal open and close call. Removing the MSFS DO VRELE flag
removes the need to artificially bump the refCnt in bs_close_one before calling VN_RELE and make it
more clear which refCnts are real opens and which are sympathetic references from other snapshots.

3.2.5.3.2.3 Execution Flow
The code will not be modified until the close it label.
close it:

. /* close it is always entered with the bfaLock held. */
. release migStg 1k
. MSFS DO VRELE handling will be removed
. If (options & MSFS_SNAP PARENT CLOSE)
o Clear BFA OPENED BY PARENT in bfaFlags
. Else if (options & MSFS_SNAP DEREF)
o Decrement bfaRefsFromChildSnaps
. Perform DEC_REFCNT

. Finish transaction

3.2.5.3.3 advfs close snaps

3.2.5.3.3.1 Interface

statusT
advfs close_ snaps (
bfAccessT *bfap, /* bfap to have associated snapshots closed */

)

3.2.5.3.3.2 Description

advfs_close_snaps will close any snapshot parents or children that were opened/ref’ed as a result of a call
to advfs_access snap_parents or advfs access _snap children. The routine will first check to see if any
snapshots exist. If snapshots do not exist on the bfSet of bfap, then the routine will return. Next,
advfs_close_snaps will check to see if this is the last close of a normal (non-snapshot related) open. If
refCnt — bfaRefsFromChildSnaps == 1 and the BFA OPENED BY PARENT flag is not set, or if refCnt —
bfaRefsFromChildSnaps == 2 and the BFA OPENED BY PARENT flag is set, then this is the last close
and advfs close snaps will continue. Otherwise, it will return success since there is no work to be done.

If snapshots exist, then the bfaSnapLock of bfap will be acquired (in write mode) and bfaParentSnap field
will be checked. If NULL, then no work needs to be done to close the parents. If bfaParentSnap is non-
NULL, then advfs_close snap parents will be called. On returning from advfs close snap_ parents, all
references on parent snapshots will have been removed. BFA PARENT SNAP OPEN will be cleared,
but bfaParentSnap will still point to the parent snap on return from advfs close snap_ parents.

Once advfs close parent snaps has been called, if bfaFirstChildSnap is non-NULL, then
advfs_close_snap children will be called. advfs close snap children will remove the reference counts on
any immediate children snapshots that were opened as a result of a write to this file.

Before returning, the bfaSnapLock will be dropped.

3.2.5.3.3.3 Execution Flow

86

. If bfSet is not a child or parent snapset
o Return
o write lock the bfap bfaSnapLock
. If bfap->refCnt -
(bfaRefsFromChildSnaps +
(bfap->bfaFlags & BFA OPENED BY PARENT 2 1 : 0)) !=1
/* Not the last non-snap closer, so just return */
o Unlock bfaSnapLock
o Return
. If bfap->bfaParentSnap
o call advfs close snap parents(bfap)
. if bfap->bfaFirstSnapChild
o call advfs close snap_children(bfap)
. unlock bfap bfaSnapLock

. return

3.2.5.3.4 advfs _close_snap parents

3.2.5.3.4.1 Interface

statusT
advfs close_ snap parents(

bfAccessT *bfap, /* bfap to have parent snapshots closed */
)

3.2.5.3.4.2 Description

If the bfaFlag BFA PARENT SNAP OPEN flag is not set, this routine has no work to do and can return.
Otherwise, advfs_close snap parents will call bs_close one on each of the parents of bfap (following the
bfaParentSnap points in the bfAccess structure) passing in the MSFS SNAP DEREEF flag to indicate that
the bfaRefsFromChildSnaps should be decremented in addition to the refCnt of the parent access structure.
It is assumed that the bfaSnapLock of bfap is held in write mode during this call to synchronize with an
access trying to access the snap parents.

Before returning, the BFA PARENT SNAP OPEN flag must be cleared so that any future calls to access
the file correctly open the parents.

3.2.5.3.4.3 Execution Flow
. ASSERT (bfap->bfaSnapLock held for write)

. If bfap->bfaFlags & BFA PARENT SNAP OPEN not true
o Return EOK

. Current parent = bfap->bfaParentSnap

. While current parent != NULL
o Next parent = current parent->bfaParentSnap
o0 Bs_close one(current parent, MSFS SNAP DEREF)
o Current parent = next parent

. Lock bfalLock

e Clear BFA PARENT SNAP OPEN

. Unlock bfaLock

. Return EOK

3.2.5.3.5 advfs close snap children

3.2.5.3.5.1 Interface

87

statusT
advfs close_ snap_children(
bfAccessT *bfap, /* bfap to have parent snapshots closed */

)

3.2.5.3.5.2 Description

advfs_close_snap_children must close and dereference any child snapshots that were opened as a result of a
write to bfap. If bfap->bfaFirstSnapChild is NULL, then this routine has no work do to and can return.

It is assumed that this routine is called with the bfaSnapLock held for write. Once it is determined that
bfaFirstSnapChild is non-NULL, the list of child snapshots will be walked and bs_close one will be called
on each child passing the MSFS SNAP PARENT CLOSE flag to indicate that the bfaFlag

BFA OPENED BY PARENT flag must be cleared in the child bfap when the refCnt is decremented.

Before returning, the bfaFirstSnapChild pointer must be set to NULL.

3.2.5.3.5.3 Execution Flow

. ASSERT (bfap->bfaSnapLock held for write)

. If bfap->bfaFirstSnapChild == NULL
o return EOK

. current child = bfap->bfaFirstSnapChild

. while current child != NULL
o next child = current child->bfaNextSnapSibling
o bs _close one(current child, MSFS SNAP PARENT CLOSE)
o current child = next child

. bfaFirstSnapChild = NULL

. return EOK

88

3.2.6 Deleting a file
3.2.6.1 Deleting a File Overview

rbf_delete

Transaction: Started if snapshot children may exist
Synchronizes with fileset creates and deletes

—-> advfs_force_cow_and_unlink

Advfs_force_cow_and_unlink will fault in for write a
the extents in the bfap on which it is called. The fault will force a
cow to all children. The xtntMaps will then be locked and the
children snapshots will have bfap removed as a parent since there
will no longer be any useful information.

— rbf_delete_int

3.2.6.2 Basic Operation of Deleting a File

Deleting a file in a parent fileset or in a writeable snapshot will be the same basic operation. Because
multiple filesets make transferring extents to snapshot children both more difficult than it already was and
less effective, the ability to transfer extents directly to snapshots will not be initially supported. As a
result, the process of deleting a file can be simplified to fault in a file’s storage at delete time, thereby
causing the storage to be created in the children snapshots.

The basic operation for deleting a file will start by calling rbf delete. If the fileset of the file to be deleted

has any children snapshots, then advfs _force cow_and_unlink will be called.

advfs force cow_and unlink will fault in (for write) the entirety of the deleted file’s extent maps, thereby

causing a complete COW to the children (metadata will also be created for the children if it does not exist).

After faulting in all necessary data, the pages can be invalidated from the cache and the parent file can be
unlinked from the child bfaps. To unlink the parent file, the bfaParentSnap in each child will be set to
NULL. Additionally, the refCnt in the file being deleted and all its parent snapshots will be decremented
by bfaRefsFromChildSnaps to remove the dependency on the parents from the children. On all the
parents, the close will be done via multiple calls to bs_close_one with the MSFS SNAP DEREF. On the

89

file being closed, the refCnt will simply be decremented since at least one non-snapshot reference must
exist for the thread calling tbf delete, therefore last close processing will not be required.

Once advfs force cow_and unlink has been called, the file effectively exists as a stand alone file in the
snapshot fileset and has no dependency on the parent snapshot. Therefore, rbf delete int can be called on
the parent. On last close, the parent bfap will be removed as normal and no additional extent or snapshot
processing will be required (except closing parent snapshots as appropriate).

3.2.6.3 Function Call Detail

3.2.6.3.1 rbf delete

3.2.6.3.1.1 Interface

statusT

rbf delete (
bfAccessT *pbfap, /* bfap to be marked for deletion */
ftxHT parent ftx /* Parent FTX */

)

3.2.6.3.1.2 Description

rbf delete is the interface routine for marking a file for deletion. Since a file can be deleted by one thread
but still opened by another thread, rbf delete does not actually remove the file from a fileset, it simply sets
the on disk state to BSRA DELETING which prevents further opens. On last close the file is removed
from the fileset.

On Tru64, if a file in an original fileset was being deleted, it would be marked as “delete with clone” to
indicate that when the associated clone file was deleted, the parent should also be deleted. In the context of
multiple, writeable snapshots, “delete with clone” is a complex idea that would require checking all siblings
and children of those siblings to determine if it was safe to delete a file. To simply the logic (which can be
expanded at a later date), rbf delete will simply remove all dependencies that children snapshots may have
on any parents when the parent file is deleted. Removing the dependency will include forcing all data in
the file to be deleted to be COWed to any children. While the approach is less efficient than the Tru64
model, it is significantly simpler to implement and will reduce the technical risk associated with read only
snapshots and would become obsolete with multiple-writeable snapshots.

3.2.6.3.1.3 Execution Flow

. If a snapshot exists
o ASSERT parent ftx is FtxNilFtxH
o Call advfs force cow_and unlink
o Start a transaction

. call rbf delete int

. If a transaction was started, finish the transaction

3.2.6.3.2 advfs force cow and unlink

3.2.6.3.2.1 Interface

statusT

advfs_force_cow_and unlink (
bfAccessT *pbfap, /* bfap to have all data cowed. */
off t offset, /* Starting offset to COW from */

90

size t size, /* Size to COW. 0 for the entire file */

snap_flags_t snap_flags /* SF_NO_UNLINK if no unlink is desired */
ftxHT parent_ ftx /* Parent FTX */

)

3.2.6.3.2.2 Description

This routine will force any data in bfap (mapped in bfap or its parent’s extents) to be COWed to the
children snapshots of bfap. Once all the data is COWed, the dependency between the child snapshots and
bfap and all parents of bfap can be severed. To sever the connection, all parents of bfap will be closed a
number of times equal to bfap->bfaRefsFromChildSnaps, then bfap itself will have its refCnt decremented
by bfaRefsFromChildSnaps. Since the thread performing the close will necessarily have a refCnt on bfap,
this routine can safely decrement the refCnt directly (while holding the bfaLock) without calling bs_close.

To force the COW from bfap to its children, advfs force cow and unlink will get a copy of the extent
maps for bfap and fault in each contiguous range for write. On return from the fault, the data in the faulted
on range will be invalidated to help reduce the amount of memory consumed for force COWing. If any
errors occur during the force COW, all child snapshots will be marked as out of sync in the tag directory.

Once the forced COW has occurred, each parent of bfap will be closed bfap->bfaRefsFromChildSnaps
times. After all parents have been closed, the refCnt of bfap will be directly decremented by
bfaRefsFromChildSnaps and bfaRefsFromChildSnaps will be set to zero. Because the child snapshots
have a complete copy of the parent snapshots, there is no longer any connection with the parents. The
bfaParentSnap pointer in each child will be set to NULL.

When calling fcache as fault to force the COW, a private flag APP FORCE COW will be passed to
indicate that no storage should be allocated to the file being deleted. This should simply cause the COW to
the children without affecting the parent.

This routine must not be called in the context of a transaction since it may cause a log half full transaction.

3.2.6.3.2.3 Execution Flow

. if bfap has no children snapshots
[¢) return
. ASSERT (bfap->refCnt > 1)

. Get extent maps for bfap in range [offset..offset+size] if size is 0, request the
entire file (use bfaNextFob for metadata and file size for userdata).

. While not at the end of extent list

o Fcache as map(min(extent size, ADVFS FORCE COW MAX ALLOC UNITS))
(meta-vas or user-vas as appropriate)

o Sts = Fcache as fault(min(extent size, ADVFS FORCE COW MAX ALLOC UNITS),
FCF_DFLT WRITE passing in APP_FORCE_COW

o If an error occurred during fault
- For each child

. Transactionally set BS TD OUT OF SYNC SNAP in tagdir flags
field, and set BFA OUT OF_SYNC in child’s bfaFlags field.

. unmap and invalidate range
° break
Fcache_as_unmap
fcache_vn_invalidate(faulted range)
If extent size > amount faulted
L] Advance extent start (advance offset value of extent)
o Else
- Advance to next extent
e If ISF NO UNLINK
o For each parent of bfap

. For I = 0; I < bfap->bfaRefsFromChildSnaps; i++

91

. bs_close one(parent, MSFS SNAP DEREF)

lock bfap->bfalock
bfap->refCnt -=

O O O o©

for each child

bfap->bfaRefsFromChildSnaps

. child->bfaParentSnapShot

o unlock bfap->bfalock

. return EOK

3.2.7
3.2.7.1

Closing a fileset
Closing a Fileset Overview

Sys-Admin
unmount

System Call

advfs-ummount

bfap->bfaRefsFromChildSnaps
=0

= NULL

bs_bfs_close

n return from bs_bfs_close, no filesets wi
have sympathetic references from the fileset

Will remove a fsRefCnt from each

being closed.

advfs_snapset_close

parent, child and sibling in the snapset
tree.

For each fileset in snapset tree != fileset
being opened.

bfs_close

bfs_close

bfs_close will decrement the
fsRefCnt of the fileset being closed.

Puts a ref on the fileset
being opened.

bfs_dealloc

bs_domain_close

92

3.2.7.2 Basic Operation of Closing a Fileset

Closing a fileset will be very similar to opening a fileset. bs_bfs_close is the counterpart routine to
bfs_access. Any calls to bs_bfs_close will be responsible for removing any references on related snapshots
that bfs_access put on those related snapsets. bfs close operates only on single filesets without respect to
related snapsets.

To close a fileset, the bfSetTbl lock will be acquired for write. The lock may be held for write on entrance
to bs_bfs_close, or may be acquired for write in bs_bfs close. In either case, once the lock is acquired, no
new filesets in the domain can be created or opened. advfs snapset close will remove all the references
on filesets that advfs_snapset access placed. advfs_snapset close does not need to undo the actions of
advfs link snapsets since the snapsets may still be opened. If all the snapsets are closed, they will be
deallocated and the links will become invalid.

Once all related snapsets have been closed, bfs close will be called on the fileset being unmounted or
otherwise closed. The call to bfs_close may deallocate the fileset if no related filesets still have external
fsRefCnts on them (i.e. if no other filesets are mounted to keep the fileset being closed referenced, it will be
deallocated).

3.2.7.3 Function Call Detail

3.2.7.3.1 bs_bfs close

3.2.7.3.1.1 Interface

statusT

bs bfs close (
bfSetT *bf set p, /* bfSet to be closed. */
ftxHT parent ftx /* Parent FTX */

)

3.2.7.3.1.2 Description

bs bfs close is responsible for undoing all the actions of bfs_access. Specifically, bs bfs close must
remove any references put on snapsets related to the one being closed, and it must close the fileset on
which it was called.

bs bfs close will first remove any references on related snapsets by calling advfs_snapset close, then it
will close bf set_p by calling bfs_close. bs_bfs close may be called with the bfSetTbl lock held for write
mode, or not held at all. If the lock is not held when this routine is called, then the lock will be acquired in
write mode before calling advfs_snapset close and will be dropped before returning. Holding the bfSetTbl
lock in write mode synchronizes with opening other snapsets and with creating new snapsets.

Although bs_bfs close must undo the actions of bfs_access, it does not need to unlink the filesets. If the
fileset being closed represents the last non-sympathetic fsRefCnt on any of the snapshots, then it will cause
each snapset to be deallocated in turn as bfs_close is called on that snapset. When bfs_close is called on
bfs_set p it too will be deallocated. As a result, destroying the links between snapsets will not be required
since they will be created next time any snapset is accessed in the snapset tree.

3.2.7.3.1.3 Execution Flow
e ASSERT(bf set p is a valid fileset)
e ASSERT(bf set p->fsRefCnt > 0
. If bfSetTblLock is not held for write
o Acquire bfSetTblLock for write

. Call advfs snapset close to close all parents, children and siblings
. Call bfs close to close the bf set p

. If bfSetTblLock was acquired
o Drop bfSetTblLock

93

3.2.7.3.2 advfs snapset close

3.2.7.3.2.1 Interface

statusT

advfs_ snapset close (
bfSetT *bf set_p, /* bfSet to have all related snapsets closed */
ftxHT parent_ ftx /* Parent FTX */

3.2.7.3.2.2 Description

This routine is responsible for calling bfs_close on every related snapset (parent, child or sibling) that
advfs_snapset access called bfs_access on when bf set p was opened (via bfs_open). The routine does
not need to undo the inter-fileset linking that was done between snapsets in advfs_snapset_access.

Like advfs_snapset_access, this routine relies on a recursive helper routine to walk the snapset tree. The
recursive routine will not call bfs_close on the fileset being closed (only on the filesets that it has put a
reference on).

The bfSetTblLock must be held for write when calling advfs snapset close to synchronize with the
creation of new snapsets and the opening of snapsets that are related to bf set p.

3.2.7.3.2.3 Execution Flow
. ASSERTbfSetTblLock held for write
. root set = bf set p
. next parent_set = bf set p->bfaParentSnapSet
. While (next parent set)
o root_set = next parent_set
o next parent set = parent set->bfaParentSnapSet
. advfs snapset close recursive(bf set p, root set, parent ftx)

. if advfs snapset close recursive fails,
o ADVFEFS_SAD

o /* Optionally, the filesets could be unlinked in memory and the system
could continue, but a memory leak will have occurred and problems could
arise in the future. */

o return EOK

3.2.7.3.3 advfs _snapset close recursive

3.2.7.3.3.1 Interface

statusT

advfs snapset close recursive (
bfSetT *bf set_p, /* bfSet to have all related snapsets closed */
bfSetT *cur _set p /* Parent of cur_set p */
ftxHT parent_ ftx /* Parent FTX */

3.2.7.3.3.2 Description

This routine is a helper routine to advfs_snapset close. The routine will do a post-order traversal of the
entire snapset tree calling bfs close on each snapset that is not bf set p (that will be closed by
bs bfs_close.

94

This routine relies on recursion to close any number of snapsets; however, in practice, the number of
snapsets ought to be bounded to prevent deep recursive calls on the kernel stack.

3.2.7.3.3.3 Execution Flow
. ASSERTbfSetTblLock held for write
. if cur_set p->bfaFirstSnapChild != NULL
o for each child
. advfs snapset close recursive(bf set p, child set p, parent ftx)
. ASSERT advfs_ snapset close returns EOK
. if bf set p != cur_set p
o bfs close(cur_set p)

. return EOK

95

3.2.8
3.2.8.1

Removing a fileset

Sys-Admin

remove filesystem

System Call

I—»{ fs_fset_delete ‘

Removing a Fileset Overview

I-»{ bs_bfs_delete ‘

advfs_can_remove_fileset faile
return. Will check to see if fsRefCnt is ok to

Will undo advfs_can_remove_fileset's open.

escrements fsRefCnt to 0 and removes pointer to bfSe
from parent all while holding the bfSetTblLock for write

in a cluster and the fileset is the last snapsho
(level == 1 and bfsNextSnapSet == NULL) the do a

be removed (only refs from parent snapsets,
otherwise none)

e

advfs_can_remove_fileset

his opens the fileset to delete
and all related snapsets

bfs_open

TTeset is not writable, or if bfSet->bfaFirstChildSnapSet =
will return E_ACCESS_DENIED

Start an exclusive transaction
Acquire bfSetTbl Lock Exclusively under transaction

>

advfs_can_remove_fileset_second_check ‘

Set BFS_DELETING in bfSet

|

Drop the bfSetTblLock with the transaction
BFS_DELETING will syncrhonize with new snapshots

v

bfs_delete_pending_list_add ‘

v

advfs_bs_delete_fileset_tags

Put an extra ref on
‘ fileset to remove

Start an exclusive transaction

L]

bfs_access

bs_bfs_close Acquire bfSetTbl Lock for Write

D

advfs_unlink_snapset ‘ Drop bfSetTblLock

bfs_delete_pending_list_remove ‘

rbf_delete(tagdirectory of bfSet) ‘

Acquire bfSetTbl Lock for Write

bfs_dealloc ‘

Drop bfSetTblLock

LOGSYNC ftx_done

ftx_done ‘

vy

bs_close(tag directory of bfSet) ‘

\Gtify CFS if needed (if ftx_done

was LOGSYNC)

3.2.8.2 Basic Operation of Removing a Fileset

The process of removing a fileset in a snapshot environment will be simplified so that removing a parent or
child snapset is essentially the same process as removing a single fileset with a few extra checks. The
process of removing a snapshot child or parent will not be nearly as different as they were on Tru64.

A user thread attempting to remove a fileset will resolve to fs_fset delete in the kernel. fs_fset delete will
do some minor error checking at the domain level to make sure the calling thread has permissions to
remove the fileset. Next, bs_bfs delete will be called to do the majority of the fileset removal work.

bs_bfs_delete will call advfs_can_remove fileset to perform racy checks to see if the fileset can be
removed, and to open the fileset to be removed and any related snapsets. advfs can remove fileset will
deny the removal of the fileset if the calling thread does not have write access to the fileset, or if the fileset
has any children filesets. Additionally, advfs can remove fileset will return an error if there are accessors
to the fileset that are not from other snapsets in the snapset tree. bfsSnapRefs is used to determine the
number of accesses caused by other snapsets.

If advfs_can remove fileset returns successfully, then all related snapsets will have been opened and must
be closed before returning. Next, an exclusive transaction will be started under which the
BFS_DELETING state will be set in the fileset to delete. The exclusive transaction blocks any snapshots
from being created while the BFS DELETING state is set. As soon as the exclusive transaction is started,
the fileset to be opened will be checked to see if any snapshot children were created while waiting to start
an exclusive transaction. If advfs can remove fileset second check finds a child snapshot, an error is
returned, all filesets that were opened are closed and the bs_bfs_delete will return an error. Once the
exclusive transaction is completed, the BFS DELETING state will prevent new snapshots from being
created. Under the exclusive transaction, the fileset to be removed is added to the fileset delete pending
list so that bs_bfs delete will be called again in the event of a system failure.

Once on the fileset delete pending list and in state BFS_DELETING, the exclusive transaction is
completed. The transaction must be stopped so that the (potentially huge number of) files in the fileset can
be deleted. The files in the fileset will be removed via a call to advfs_bs_delete fileset tags.
advfs_bs delete fileset tags will remove any files in the fileset and will unlink any open files from their
parents so that no new COWing is done. The unlinking will require the bfaSnapLock.

After advfs bs_delete fileset tags has completed, another exclusive transaction will be started. Under the
new exclusive transaction, the fileset to be deleted will have bfs_access called on it so that a second
fsRefCnt is put on it. This allows bs_bfs_close to be called, thereby forcing closed'* all other related
snapsets that are open because of the fileset to be removed. Before bs bfs close is called, however, the
fileset to be removed will be removed from the list of its parent’s child snapshots if a parent exists. This
will be done while holding the bfSetTbl Lock.

advfs_unlink snapset will be called to adjust the fsRefCnt of the fileset to be removed to be 0 (removing
any references from related snapsets) and to unlink the fileset from its parent and any sibling snapsets.
advfs_unlink snapset will be called while still holding the bfSetTbl lock, but the lock will be dropped on
return from advfs unlink snapset.

After the fileset has been unlinked, bfs_delete pending list remove will be called to take the fileset back
off of the fileset delete pending list. At this point, the fileset is essentially a stand alone fileset whether or
not it previously was a snapshot child. The remaining process for deleting the fileset includes removing the
tag directory for the fileset, deallocating the fileset and closing the tag directories fileset. If the snapshot
being removed is the last snapshot child in a snapset tree and the snapset is in a cluster environment, CFS
will be notified via a callout that there are no snapshots remaining.

" The call to bs bfs close will decrement the fsRefCnt on each related snapset. The snapsets will only
actually be closed if the fileset to be deleted was keeping the other fileset open.

97

3.2.8.3 Function Call Detail

3.2.8.3.1 fs_fset delete

3.2.8.3.1.1 Interface

statusT

fs_fset delete(
char *domain, /* in - name of set's domain table */
char *setName, /* in - name of set to delete */
ftxIdT xid /* in - CFS transaction id */
)

3.2.8.3.1.2 Description

fs_fset delete is the high level interface for deleting a fileset. The routine will activate the fileset to be
deleted and call bs_bfs_delete to perform the bulk of the work associated with deleting the fileset.

fs_fset delete can be called on any fileset, whether or not it has associated snapsets. If the fileset on which
fs_fset delete is called is mounted or if it has any snapshot children, the delete operation will fail and an
error will be returned.

3.2.8.3.1.3 Execution Flow
. Call bs bfset activate to get bfSetId
. Call bs bfs delete passing the bfSetId

. Call bs _bfdmn deactivate to deactivate the domain (undoing the bs bfset activate
call above)

3.2.8.3.2 bs_bfs_delete

3.2.8.3.2.1 Interface

statusT

bs bfs delete(
bfSetIdT bfSetId, /* in - bitfile set id */
domainT *dmnP, /* in - set's domain pointer */
ftxIdT xid /* in - CFS transaction id */
)

3.2.8.3.2.2 Description

bs bfs_delete is the primary internal interface for removing a fileset. The routine will do some basic error
checking before initiating the removal of the fileset. Before beginning the active removal of the fileset
specified by bfSetld, bs_bfs delete will put the fileset on the fileset delete pending list. As a result of this
operation, this routine may be called multiple times on the same fileset so it cannot do any damage to the
domain that would prevent it from completing a removal.

To validate that the calling thread has permission to remove the requested fileset, and that the fileset is safe
to remove (no external references or child snapsets), advfs can remove fileset is called. If

advfs can remove fileset succeeds, it will return the open bfSet structure to be removed. If

advfs can remove fileset fails, it will have cleaned up any operations that it performed and bs_bfs delete
will simply propogate the error.

If advfs_can_remove fileset verifies that the fileset can safely be removed and returns success, an
exclusive transaction must be started to put the fileset on the fileset deferred delete list. The exclusive
transaction is required to synchronize with the creation and opening of related snapsets (and snapset
children). Once the exclusive transaction is started, advfs _can_remove fileset second chance will be
called to verify that the fileset is still a valid candidate to be removed. The two level verification approach
is used to avoid starting an exclusive transaction if possible, but a check is required after the exclusive
transaction starts to synchronize with new snapsets. Within the context of the exclusive transaction, the

98

fileset state will be set to BFS DELETING and the fileset will be put onto the fileset delete pending list.
When the transaction is finished, new accesses will be allowed on the fileset, and no snapshots will be able
to be created on the fileset because of the BFS DELETING state. The transaction will be ftx_done’d with
the LOGSYNC option to make sure the transaction is on disk before the links between parent and child
snapshots are broken. Once a files link from its parent is severed, any remaining writes to the parent will
not be COWed. It is necessary to have the transaction that puts the fileset on the fileset delete pending list
on disk so that the potentially out of sync fileset is definitely deleted prior to the next activation of the
domain.

Once the transaction is completed, advfs bs_delete fileset tags will be called to delete each file in the tag
directory of the fileset being removed. advfs bs delete fileset tags must be called without holding any
locks and outside of the context of a transaction as it may take a very long time to remove each file in the
fileset.

Once every file in the fileset is deleted, another exclusive transaction is started. The exclusive transaction
makes sure that metadata is not modified for other filesets in the domain while this fileset is being removed.
Once the exclusive transaction is started, an additional reference is placed on the fileset by calling

bfs access. The call to bfs access does not reference any related snapsets and only bumps the fsRefCnt of
the fileset to remove. Next, the bfSetTbl lock is acquired for write mode and bs_bfs_close is called to
remove any references on related snapsets that were placed as a result of this snapset. If all other related
snapsets were open only because of this fileset, then they will be closed and deallocated. If, however, any
references already existed, the other snapsets may continue to exist. In either case, the fileset to be
removed will still be open because of the call to bfs_access. Next, advfs_unlink snapset will be called to
decrement the fsRefCnt on the fileset to be removed to 0 and to unlink the fileset from its parent and sibling
snapsets. On returning from advfs_unlink snapset, the fileset to be removed is no longer logically
associated with any other fileset and the bfSetTbl lock can be dropped.

Next, the fileset will be removed from the fileset delete pending list via a call to
bfs_delete pending_list remove and the tag directory file will be deleted via a call to rbf delete.

Finally, the bfSetTbl lock will be reacquired to synchronize with any lookups and the fileset structure
(bfSetT) will be deallocated via a call to bfs_dealloc. The transaction will be ftx_done’d and a call to
bs_close on the bfap of the tag directory will complete the deletion of the tag directory out of the root
bitfile set.

In a cluster environment, if the fileset being removed is the last snapset child in a snapset tree, the ftx_done
will be done as a synchronous log flush and a callout will be issued to CFS to notify it that direct writes can
be initiated.

3.2.8.3.2.3 Execution Flow
. call advfs can remove fileset get bf set ptr on success
. if sts != EOK
o return the error
. start an exclusive transaction
. call advfs can remove fileset second check
. if sts != EOK
o bs bfs close(bf set ptr)
o fail transaction
o return sts
. Set BFS_DELETING in bf set ptr flags field
. Call bfs delete pending list add to add to delete pending list
. Finish the exclusive transaction doing a synchronous log flush (LOGSYNC)
. Call advfs bs delete fielset tags to remove all fileset in fileset
. Start an exclusive transaction
. Call bfs access on fileset to remove to put an extra fsRefCnt on it.

. Acquire bfSetTbl lock for write

99

Call bs bfs close on fileset to remove fsRefCnts on all associated snapsets.

Call advfs unlink snapset to remove fileset from parents list of children snapsets
Unlock bfSetTblLock

Call bfs delete pending list remove to remove bf set ptr from delete pending list
Call rbf delete on tag directory of bf set ptr

Call bfs dealloc on bf set ptr to deallocate the bfSet structure

Finish the exclusive transaction

Call bs close to close the tag directory file and cause it to be deleted.

If the last child snapset in a domain was just removed and this is a cluster, the
transaction would have been finished with a synchronous log flush and CFS will be
notified that no snapshots remained.

3.2.8.3.3 advfs_can_remove_fileset

3.2.8.3.3.1 Interface

statusT
advfs can_remove fileset(
bfSetIdT bf set_id, /* in - bitfile set id */
domainT *dmnP, /* in - set’s domain pointer */
bfSetT** bf set ptr /* out - point of fileset to delete (valid on EOK return)*/

3.2.8.3.3.2 Description

advfs can remove fileset will open all filesets related to the fileset specified by bf set id and will verify
that the fileset can be safely removed. If the fileset has any snapshot children, or if the fileset is not
writable, then the fileset cannot be removed. Additionally, if after opening the fileset and it’s related
snapsets the fileset has a fsRefCnt of more than one, then the fileset cannot be removed because it is in use.

This routine will encapsulate much of the error checking that was done in fs_fset_delete on Tru64'>. On
error, advfs can remove fileset will undone all its own actions including closing the fileset that was
opened and all its related snapshots.

On successful return, bf set ptr will point to the newly opened fileset.

3.2.8.3.3.3 Execution Flow

Call bfs open passing in the fileset id and getting back the bfSet pointer
Get the domain and fileset parameters
If caller doesn’t have write access to either domain or fileset
o bs bfs close the fileset
o Dbf set ptr = NULL
o return E ACCESS DENIED
if fileset has any children snapshots
o bs bfs close the fileset
o Dbf set ptr = NULL
o return E HAS SNAPSHOT
if fsRefCnt of fileset is > # of sibling snapshots
o bs bfs close the fileset
o Dbf set ptr = NULL
o return E_TOO MANY ACCESSORS
return EOK

' The call to bs_bfset_activate will remain in fs_fset_delete, but the call to bfs_open will occur in
advfs_can_remove fileset.

100

3.2.8.3.4 advfs can_remove_fileset second check

3.2.8.3.4.1 Interface

statusT
advfs can remove fileset second check(
bfSetT** bf set ptr /* in - point of fileset to delete */

)

3.2.8.3.4.2 Description

This routine is a lightweight version of advfs can remove fileset. It is to be called in the context of an
exclusive transaction in which the fileset state will be set to BFS DELETING. This routine will verify that
the fileset was not transitioned to a state from which it cannot be deleted while the exclusive transaction
was starting. The routine will check to make sure that no snapshots were created during as children of this
fileset, and that the fsRefCnt is still acceptable to allow the deletion of the fileset.

It is assumed that the fileset is already open and valid when this routine is called. On error, this routine will
not take any action against the fileset passed in (it will not close the fileset).

3.2.8.3.4.3 Execution Flow
. ASSERT bf_set_ptr is BFS_DELETING

. if fileset has any children snapshots
o Return E_HAS_ SNAPSHOT

. if fsRefCnt of fileset is > # of sibling snapshots
o Return E_TOO MANY ACCESSORS

. return EOK

3.2.8.3.5 advfs _bs delete fileset tags

3.2.8.3.5.1 Interface

statusT
advfs bs delete fileset tags(

bfSetT** bf set ptr /* in — pointer to fileset to cleanup*/
)

3.2.8.3.5.2 Description

This routine will delete all files in a fileset and severe any connections between parents and sibling
snapshots for each file. No file will have any snapshot children while it is being deleted since the fileset
would not have been allowed to be removed if any snapshot children existed.

It is assumed that the fileset on which this routine is called is in the BFS DELETING state and on the
fileset delete pending list. Additionally, it is assumed that the transaction under which the fileset was put
on the fileset delete pending list is on disk. The last assumption allows advfs_bs_delete fileset tags to
break the link between parent and child snapshots (thus ceasing any further COWing) without the risk that
the fileset will not end up deleted.

The goal of this routine is to process each entry in the tag directory of the fileset to be deleted. Processing
of the tag directory entry consists of opening the file identified by the tag, calling rbf delete on the file,
disconnecting it from it’s parents and sibling snapshots, and closing the file to allow for final close
processing and storage deallocation. Since the deletion of all files in a fileset may potentially be a very
long operation, the routine holds no locks while walking the tag directory and processing the files.

advfs_bs delete fileset tags will merge the functionality of the routines delete orig set tags and
delete clone set tags on Tru64. Changes in the way snapshots are designed have made the differences
between snapshots and original filesets less severe and more easily handled in a common routine.

101

As each tag directory entry in a fileset to be deleted is read, the flags will be checked for the

BS TD VIRGIN SNAP flag. If set, the tag entry represents a snapshot that has not been COWed to by a
parent (no metadata has been created for the child). Since the fileset state is BFS DELETING, the parent
access structure will not be able to open this file to force a COW. Deleting such a file consists of simply
deleting the tag directory entry as long as the file is not already in cache. If bs access one with the

BF OP INMEM ONLY flag does not return an access structure, then deleting the tag is sufficient. If
bs_access_one with the BF_ OP_INMEM_ONLY flag does return an access structure, then the access
structure will be unlinked from its parents and closed to complete the delete.

As this routine processes each tag and opens the file, the BFA XTNTS IN USE and

BFA IN COW_MODE flags will be examined. If either of these flags is set, advfs bs delete fileset tags
will block and wait for those flags to clear. This is necessary because while these flags are set, the chain of
snapshot children may be walked without holding any locks. It is unsafe to unlink a snapshot child from its
parent while these flags are set. The wait will occur in the advfs_unlink snapshot routine.

In the event that BS TD_VIRGIN SNAP is not set, the file must be accessed so that it can be deleted.
bs_access_one will be called to open only the file to be deleted and not its parents. The call to
bs_access_one will pass in the BF OP_IGNORE BFS DELETING flag to indicate that the file must be
opened even though the fileset is being deleted. Once open, the bfap will be checked to see if a parent
pointer or a sibling pointer exists. If one does, then the file was already open and will be unlinked from
parents and siblings.

Once all unlinking is completed, the file can have rbf delete called on it and bs_close one can be called to
do the final processing and storage deallocation. For a fileset without any snapshots, the overhead
attributed to snapshots is simply checking the BS TD_ VIRGIN SNAP flag and checking a pointer to see if
the access structure has a parent or sibling.

3.2.8.3.5.3 Execution Flow
. ASSERT bf set ptr is BFS_DELETING
. cur_tag = NilBfTag
. file count = 0
. While (true)
o tagdir lookup next(cur tag)
o 1f tagdir_lookup_next return ENO_ SUCH_TAG
- break
o 1f tagdir_lookup_next fails
. domain panic
o 1f cur tag->bft tag flags & BS TD VIRGIN_ SNAP
. /* Tag does not have it’s own metadata */

. call bs access one on cur_ tag with
BF_OP_INMEM ONLY|BF OP IGNORE BFS DELETING|BF OP INTERNAL flag to
get cur bfap /* If found in cache, the parents must also be open */

. if bs access one fails
. output error message
. continue
. ASSERT bfap->bfaFlags & BFA SNAP VIRGIN
. call tagdir remove tag on cur tag
. if cur _bfap != NULL
. /* snapshot was in cache */
. advfs unlink snapshot cur bfap

. /* Setting state to ACC_INVALID will make sure cur bfap is
freed after last close */

. lock cur bfap->bfaLock
. set state to ACC_INVALID

. unlock cur bfap->bfaLock

102

. bs_close one cur_bfap (use MSFS BFSET DEL flag)
o else

. bs access one cur tag to get cur bfap (use
BF _OP_IGNORE BFS DELETING|BF OP INTERNAL flag)

. advfs unlink snapshot cur bfap
. bs_delete cur_bfap
. bs close one cur bfap (use MSFS BFSET DEL flag)
o file count++
o if file count && file count % ADVFS FILES BEFORE PREEMPTION POINT ==
. preemption point
- /* Allow other processes to run since this may be a long loop */

. return EOK

3.2.8.3.6 advfs _unlink snapshot

3.2.8.3.6.1 Interface

statusT
advfs unlink snapshot (

bfAccessT* bfap /* in - bfap to unlink from parents. */
)

3.2.8.3.6.2 Description

This routine will unlink a bfap from its parent’s list of snapshot children. If bfap has no parent, then this
routine has nothing to do. If bfap does have a parent, the parent’s bfaSnapLock will be acquired in write
mode and the child list will be relinked without bfap in it. After being removed from its parent’s list of
children, bfap will have it’s refCnt adjusted to 1 so that a last close can occur.

It is assumed that bfap has no child snapshots and that it is only being held open by its parent bfap.

3.2.8.3.6.3 Execution Flow
. ASSERT bfap->bfaFirstSnapChild == NULL
. If bfap->bfaParentSnap == NULL
o return EOK
. write lock bfap->bfaParentSnap->bfaSnapLock
e while bfap->bfaFlags & BFA XTNTS IN USE || bfap->bfaFlag & BFA IN COW MODE
o cv_wait on bfaSnapCv using bfaSnapLock to synchronize
. if bfap->bfaParentSnap->bfaFirstSnapChild == bfap
o bfap->bfaParentSnap->bfaFirstSnapChild = bfap->bfaNextSnapSibling
o else
prev_child = bfap->bfaParentSnap->bfaFirstSnapChild
cur_child = prev_child->bfaNextSnapSibling
while cur_child != bfap
" prev_child = cur_child
. cur_child = cur child->bfaNextSnapSibling
o prev_child->bfaNextSnapSibling = bfap->bfaNextSnapSibling
. unlock bfap->bfaParentSnap->bfaSnapLock

. /* There should be one access for the bs_access_one that opened this and one from
the parent bfap */

. ASSERT refCnt ==

. Lock bfap->bfalock

. refCnt = 1

. unlock bfap->bfalock

L] ASSERT bfap->bfaFlags & BFA OPENED BY PARENT

103

. ASSERT bfap->bfaFlags & BFA EXT OPEN is not set

. return EOK

3.2.8.3.7 advfs _unlink snapset

3.2.8.3.7.1 Interface

statusT

advfs unlink snapset (
bfSetT** bf set ptr /* in - pointer to fileset to unlink*/
snap_flags_t snap_flags /* in - SF_HAD_PARENT is set if a parent exists */
ftxHT parent_exc_ ftx /* in - an exclusive transaction handle */

3.2.8.3.7.2 Description

This routine will remove the fileset described by bf set ptr from its parents list of child snapsets.

If the parent fileset’s bfaFirstSnapChild is equal to bf set ptr’s bfSetld, then the parent’s
bfaFirstSnapChild will be set to the next sibling of bf set ptr (potentially NULL meaning there was only
one child). If the parent’s bfaFirstSnapChild is not equal to bf set ptr, then the list of child snapsets will
be walked until one is found that precedes bf set ptr. The fileset that precedes bf set ptr will be adjusted
so that the next sibling pointer points to the current next sibling pointer of bf set ptr (potentially NULL).
All the adjustments will be made in memory and on disk. The on disk changes will be in terms of file set
ids while the in memory changes will be in terms of pointers.

When this routine is called from bs_bfs_delete, the reference put on the parent and sibling snapsets has
already been removed. As a result, there is no guarantee that the related snapsets will still exist in memory.
If the SF HAD PARENT flag is set, then this is a snapshot with a parent that needs to have at least the on
disk structures unlinked. Ifthe SF HAD PARENT flag is set and the pointers in bf set ptr to next and
parent snapsets are non-NULL, then the in memory versions also need to be updated. Since this routine is
called in the context of an exclusive transaction, it is safe to modify the parent and sibling bfSet structures
without an fsRefCnt on them.

It is assumed that this routine is called in the context of an exclusive transaction. Since the transaction is
exclusive, no new snapsets can be created or deleted from the snapset chains. As a result, it is safe to
manipulate the snapset lists in this routine without explicitly locking.

3.2.8.3.7.3 Execution Flow
. if SF_HAD PARENT and bf set ptr->bfaParentSnapSet == NULL
o on_disk update only = TRUE

o /* This is the slow path. We only need to update on disk, but we need to
go to disk to find out what to update. */

o read bfSetAttr for bf set ptr to get set id of parent
o open the tag directory file of the parent
o current open_tagdir bfap = parent’s tagdir bfap
o read BSR BFS ATTR record from parent’s tag directory
o 1f Dbf set ptr->set id == parent’s bfsaFirstChildSnapSet
. is_first child = TRUE
o else
. Find the set that precede bf set ptr in the child list

. prev_set tag bfap = open tag dir file of first child snapset

104

. prev_bfs attr = read BSR BFS ATTR record from prev_set tag bfap
. cur_set id = prev_bfs attr bfsaNextSiblingSnapSet
. close current open tagdir bfap
. while cur_ set id.dirTag != bf set ptr->dirBfap.tag
. close prev_set tag bfap

. prev_set tag bfap = open prev bfs attr
bfsaNextSiblingSnapSet

e prev_bfs attr = read BSR BFS ATTR record from
prev_set tag bfap

. cur_set id = prev_bfs attr bfsaNextSiblingSnapSet

" next snap_sibling_id = read BSR BFS_ATTR of bf set ptr tag dir file
to get next snap sibling id.

. current open_tagdir bfap = prev_set tag bfap
. close_curent open tag bfap = TRUE

- /* Now prev _bfs attr is the field that needs to be updated on disk,
and next snap sibling id is what it’s next field needs to point to

*/
else if SF HAD PARENT and bf set ptr->bfaParentSnapSet != NULL

o /* Fast path, in memory snapset structure is still setup so we can take
advantage */

o on disk update only = FALSE
o if bf set ptr-:bfsParentSnapSet->bfsFirstSnapChild = bf set ptr
. is_first child = TRUE
. current open_tagdir bfap = parent’s tagdir bfap
o else
- /* Need to search for previous snap sibling to update */
. prev_bf set = parent->bfaFirstChildSnapSet
. cur bf set = prev_bf set->bfaNextSiblingSnapSet
. while cur bf set != bf set ptr
. prev_bf set = cur bf set
. cur bf set = cur bf set->bfaNextSiblingSnapSet
. current open_tagdir bfap = prev_bf set’s tagdir bfap
. prev_bfs attr = read BSR BFS ATTR from current open tagdir bfap
o next snap_sibling id = bf set ptr’s next sibling’s bfSetId
o close current open tag bfap = FALSE
/* Setup for the actual updates is not complete. */
if SF_HAD PARENT

o /* Update parent to point to next sibling of bf set ptr. Since we are in
an exclusive transaction, no one else could be modifying the ODS. */

o start transaction

o pin the page and record of the prev bfs attr

o setup undo record with previous snapshot info in the fileset attributes
o 1f is first child

. set bfsaFirstChildSnap = next snap sibling id

105

o else set bfsaNextSiblingSnapSet = next snap sibling id

o 1f l!on disk update only
L] lock bfaSnapMutex of parent
. if first child
. parent->bfaFirstSnapChild =
. else prev _bf set->bfaNextSibling =
. unlock bfaSnapMutex
o finish transaction
. if close current open tag bfap

o close current open_ tag bfap

3.2.8.3.8 Miscellaneous Changes

bf set ptr->bfaNextSnapSibling

bf set ptr->bfaNextSiblingSnap

delete_clone_set_tags will be removed and the logic will be merged into a common routine for snapshots

and non-snapshot files.

tagdir lookup next will be modified to return the tagFlags value in the bft tag flags field of the bfTagT

structure that it returns.

3.2.9 Locking Overview
3.2.9.1 Predicted Lock Hierarchy

The locks listed first are acquired before those listed second. These numbers only indicate lock hierarchy

relative to AdvFS and not other subsystems. Tru64 list is below.

Complex Locks
1. DmnTblLock
2. InitLock
3. kdmLock (fsContext)
4. cnode lock (CFS)
5. file lock (fsContext)
6. rmvolTruncLk (domainT)
7. bfaSnaplock (bfap)
8 ty—elon a1

o
L
Hh

10. migStg_lk (bfap)

11. ddlActivelk

12. ftxSlotLock (domainT)
13. bfSetTblLock

14. quotaInfoT gilLock

15 £ T 1 (bf + T

1 fraghock —{b£fSetT)

16. dirLock (bfSetT)

17 11 (bfanr)

17 —Lk—(bfap)

19 1 P ma Qe ~ 11 (bfanr)
Lh e tenemibgfta S k—(afas)

19. mcelllList 1k (bfap)

20. xtntMap lk (bfap)

21. FilesetLock

22. mcell 1k (vdT)

23. del list 1k (vdT)

24. BMT mcellList 1k (BMT bfap)
25. BMT xtntMap_ lk (BMT bfap)
26. scLock (domainT)

27. rbmt_mcell 1k (vdT)

106

28. stgMap 1k (vdT)

29. xidRecoveryLk (domainT)

Complex locks out of hierarchy
. TraceLock
. dgLock
——cow—1k

U descLock

. flushLock

3.2.10 Extent Manipulation
3.2.10.1 advfs_get blkmap_in_range

3.2.10.1.1 Interface
statusT
advfs get blkmap in range (
bfAccessT *bfap, /* IN - Access struct for file */
bsInMemXtntMapT *xtnt map, /* IN - Extent map to use to *
* generate range maps */
off t *offset, /* IN - offset in file to start range map */
/* OUT - offset adjusted to correct *
* alignment */
size t length, /* IN - length of range to map */
extent blk desc t **extent blk desc,
/* IN - pointer to an extent blk desc *
* OUT - pointer to head of list that maps *
* the given range */
uint64 t *xtnt count, /* IN - a pointer or NULL *
* OUT - Overloaded meaning. See Above */

round type t round type,/* IN - type of rounding to be performed */
extent blk map type t extent blk map_ type,

/* IN - determines the map type. (sparse, *
* stg, both */
int blkmap flags /* In - flags for the function */

)

3.2.10.1.2

This routine generates a linked list of extents representing the extent maps of bfap. For snapshots, this
routine will compose the extent maps from the mapped extents of bfap and the mapped extents of the
parents. If the extent blk type is EXB DO NOT INHERIT, then the extents returned will only be
composed from the extent maps of bfap and will not look to parents for extent information. If

EXB DO NOT INHERIT is set, then EXB ONLY HOLES will include both unmapped regions
(XTNT_TERM) and COWed holes (COWED HOLE).

Description

A new round _type t will be supported that rounds extents to include entire holes regardless of the
requested offset and length. This is used to allow holes to be completely COWed in one operation rather
than COWing parts of holes.

3.2.10.1.3 Execution Flow

. ASSERT only one of EXB COMPLETE, EXB ONLY HOLES and EXB ONLY STG is set
. ASSERT that EXB_DO_NOT_ INHERIT and RND ENTIRE HOLE are not both set

. If XTNT_LOCKS_HELD
o ASSERT xtnts are XVT VALID

. Else

107

o if extent_type & EXB_DO_NOT_INHERIT || bfap->bfaParentSnap == NULL
- x load inmem xtnt map

o else
. advfs acquire xtntMap locks

o no change to error logic

switch (round type)

o case RND MIGRATE,RND VM PAGE, RND ALLOC UNIT, RND ENTIRE HOLE:
. no change to logic

o case RND NONE
- if *offset & DEV BSIZE

. if unlock xtntlock

o 1f extent type & EXB DO NOT INHERIT || bfap-
>bfaParentSnap == NULL

" unlock xtntMap_ lk
o else
. advfs drop_xtntMap locks
source bfap = bfap
if EXB_DO _NO_INHERIT is set or bfap->bfaParentSnap == NULL
o sts = imm get xtnt desc(bfap, start fob, &xtnt desc)
else
o sts = advfs_get snap xtnt desc(bfap, start fob, &xtnt desc, &source bfap)
if sts != E_RANGE NOT MAPPED
o if RND MIGRATE
L] no change to logic
o if RND ALLOC UNIT
. no change to logic
o 1f RND ENTIRE HOLE and xtnt desc is a hole (XTNT_TERM or COWED_ HOLE)
. cur_fob = start fob = xtnt desc. bsx fob_offset
e *offset = ADVFS FOB TO OFFSET (start fob)

. if RND MIGRATE
. no change to logic

L] else if.. the logic will remain the same, but the
extent blk map type will now be check by bitwise AND with the
EXB ONLY HOLES, EXB ONLY STG and EXB COMPLETE types.

e if IXTNT NO MAPS
o 1f XTINT NO WAIT
. malloc cur_range (extent blk desc)
" if cur_range == NULL
. if unlock xtntlock

o if extent type &
EXB DO _NOT INHERIT || bfap-
>pbfaParentSnap == NULL

" unlock xtntMap_lk
o else

. advfs drop xtntMap loc
ks

. return E_WOULD_ BLOCK
o else
. cur_range = malloc extent blk desc
/* Initialize the cur_ range */
cur range->ebd snap fwd =NULL

cur_range->ebd bfap = source bfap

108

o ASSERT (!EXB DO _NOT INHERIT) || (EXB_DO NOT_ INHERIT
&& source bfap == bfap)

o if (EXB_ONLY HOLES || EXB_COMPLETE) && (XTNT_TERM | |
COWED_HOLE)

- if RND ENTIRE HOLE

. cur range->ebd byte cnt =
ADVFS_FOB_TO_OFFSET (xtnt_ desc.bsxdFob
Offset+xtnt desc.bsxdFobCnt -
cur fob)

- else
. no change to logic
. cur range->ebd vd index = 0

o else if (EXB ONLY STG || EXB_COMPLETE) &&
(!XTNT TERM && !COWED HOLE)

. no change to logic
e else (XINT NO MAPS is TRUE)
o if EXB ONLY HOLES
. if unlock xtntlock

e if extent type & EXB DO NOT INHERIT
|| bfap->bfaParentSnap == NULL

o unlock xtntMap 1k
. else
o advfs drop xtntMap_ locks
o else
L] no change to logic
. else
. /* This extent is to be skipped */
. no change to logic
. if bfap->bfaParentSnap or EXB DO_NO INHERIT is set
. sts = imm get xtnt desc(bfap, start fob, &xtnt desc)
. else

. sts = advfs get next snap xtnt desc(bfap, start fob,
&xtnt desc, &source bfap)

o while cur fob < end fob && sts == EOK && l!error
if cur fob < end fob && (EXB COMPLETE || EXB ONLY HOLES)
o 1f !XTNT NO MAPS
. no change to logic for malloc of cur_ range
. cur range->ebd snap fwd =NULL
. cur_range->ebd bfap = bfap
- ASSERT EXB DO NOT INHERIT || bfap->bfaParentSnap == NULL
. No change in logic
o else
* if EXB ONLY HOLES
. no change to logic

. if unlock xtntlock

o 1f extent type & EXB DO NOT INHERIT || bfap-
>bfaParentSnap == NULL
. unlock xtntMap 1k
o else

. advfs drop_xtntMap locks
. return EOK
- else if EXB COMPLETE

. no change to logic

109

. no change in logic
. if !XTNT_LOCKS_HELD
o if extent_type & EXB_DO_NOT_INHERIT || bfap->bfaParentSnap == NULL
" unlock xtntMap_lk
o else
. advfs drop_xtntMap locks

. return EOK

3.2.10.2 advfs_get snap_xtnt_desc

3.2.10.2.1 Interface

statusT

advfs get snap_ xtnt desc (
bf fob t fob_offset, /* in */
bfAccessT *bfap, /* in */
bsInMemXtntDescIdT *xtnt desc_id, /* out */
bsXtntDescT *xtnt desc /* out */
bfAccessT *source_bfap /* out */

)

3.2.10.2.2 Description

This routine performs the same basic operation as imm_get xtnt desc. The routine can be called to return
a bsXtntDescT structure which represents an extent in a file. If bfap has a parent snapshot, and if the extent
in bfap is unmapped (an XTNT TERM extent) then the parent bfap will be examined for its extent
descriptor. The bsXtntDescT will represent the first mapped (either hole or storage) extent in which
fob_offset is described.

Logically, this routine will return the extent descriptor which, in the extent maps composed by repeatedly
collapsing the extent maps of the child snapshot up to the root of the snapshot tree, contains the fob_offset
requested. As the extent maps are collapsed, unmapped ranges of the child will be replaced by mapped
regions of the parents.

The parameter source bfap is a pointer to the bfap from which the extent descriptor was acquired.
This routine assumes the extent maps of bfap and all its parents are locked for read access.

The xtnt_desc_id returns by this routine is the id of the extent descriptor in bfap that would map fob_offset
if it were mapped in bfap.

3.2.10.2.3 Execution Flow

. max_ fob from parent = ADVFS OFFSET_TO_FOB_UP(bfap->bfa orig file size)

. sts = imm get xtnt desc(fob offset, bfap->xtnts->xtnt map, bfap xtnt desc id,
bfap xtnt desc)

. if bfap->bfaSnapParent == NULL
o return

. if sts == E_RANGE_NOT MAPPED && fob offset > bfap->bfa orig file size
o return sts

. else if sts != E_RANGE_NOT MAPPED

o return sts
. child xtnt not mapped = (sts == E_RANGE NOT_ MAPPED)
. cur_xtnt desc = child xtnt desc

. cur_bfap = bfap->bfaParentSnap

110

while (sts ==
NULL)

o sts =

E_RANGE NOT MAPPED || cur_xtnt desc is XTNT TERM) && (cur bfap !=

imm get xtnt desc(fob offset, cur bfap->xtnts->xtnt map,

&cur xtnt desc, &cur xtnt desc id)

o if sts

!= EOK cur_bfap->bfapSnapParent == NULL || sts != E RANGE NO_MAPPED

return sts

o 1f cur_ bfap->bfaSnapParent != NULL && sts == E_RANGE_NOT_MAPPED
. cur_bfap = cur_bfap->bfaSnapParent
- continue
o if cur bfap->bfaSnapParent == NULL || cur xtnt != XTNT TERM (not unmapped
hole)
- /* At root, clip extent to child xtnt desc and return */
. if child xtnt not mapped

. /* If the child extent lookup returned E_RANGE NOT MAPPED,
clip the parent’s xtnt desc at bfap’s orig file size so we
don’t get extent maps from the parents beyond the COWable
region */

. cur_xtnt desc->bsxdFobCnt = MIN(bfa orig file size (in
fobs) - cur xtnt desc->bsxdFobOffset, cur xtnt desc-
>bsxdFobCnt)

. xtnt desc = cur xtnt desc

. return EOK

- else

° /* If the child had an extent, that extent must have been a
hole (an unmapped region as opposed to a COWed hole). Clip
the parent’s extent descriptor to the unmapped region of
the child */

. clip_fob offset = MAX(child xtnt->bsxdFobOffset,
cur_xtnt desc->bsxdFobOffset)

. clip_fob cnt = MIN(child xtnt->bxsdFobOffset+child xtnt-
>bsxdFobCnt, cur xtnt->bsxdFobOffset+cur xtnt->bsxdFobCnt)

. cur_xtnt desc->bsxdFobOffset = clip fob offset

. cur_xtnt desc->bsxdFobCnt = clip fob cnt

. xtnt desc = cur_xtnt desc

. return EOK

o else

return sts

/* cur_bfap is still unmapped, need to go up another level */
cur_bfap = cur_bfap->bfaParentSnap

/* The child xtnt desc fob count will be clipped since the parent’s
unmapped range may be smaller than the child’s */

clip_fob cnt = MIN(child_xtnt->bxsdFobOffset+child_xtnt-
>bsxdFobCnt, cur xtnt->bsxdFobOffset+cur xtnt->bsxdFobCnt)

child_xtnt_desc->bsxdFobCnt = clip fob_ cnt
if child not mapped

. /* If the child was unmapped, setup the child xtnt so the
clipping is correctly done when a mapped extent is found */

. child_xtnt_ desc->bsxdFobOffset = cur_xtnt->bsxdFobOffset
. child not mapped = FALSE

continue

111

3.2.10.3 advfs_get next_snap_xtnt desc

3.2.10.3.1 Interface

statusT

advfs get next snap xtnt desc (
bfAccessT *pfap, /* in */
bsInMemXtntDescIdT *xtnt_desc_id, /* in/out */
bsXtntDescT *xtnt desc /* out */
bfAccessT *source bfap /* out */

)

3.2.10.3.2 Description

This routine is the snapshot equivalent of imm_get next xtnt desc. The routine will take an extent
descriptor (xtnt_desc) and an extent descriptor id (xtnt_desc_id) and return the next extent in the snapshot.
If the next extent in bfap is unmapped, this routine will look to the parent snapshots of bfap to find the
correct extent information. This routine expects xtnt_desc to contain the last extent that was examined.

This routine will currently find the next extent descriptor by calling advfs get snap xtnt desc on the fob
after the last fob mapped by xtnt_desc. In the future, this routine can be optimized to more intelligently
traverse the extent maps.

3.2.10.3.3 Execution Flow

. next fob = xtnt desc->bsxdFobOffset + xtnt desc->bsxdFobCnt + 1
e return advfs get snap xtnt(next fob, bfap, &xtnt desc id, &xtnt desc, source bfap)

3.2.10.4 advfs_make_cow_hole

This routine is adapted from the routine make perm hole in Tru64. It inserts a COWed hole anywhere in
an extent map (in the middle or the end). This routine uses advfs_append cow_hole and
advfs_insert cow_hole.

It is assumed that the migStg 1k is held for READ mode when this routine is called.

This should just return success if there storage already exists in the extent maps.
3.2.10.5 advfs_append_cow_hole

This routine is adapted from the routine append perm_hole in Tru64. It appends a COWed hole to the end
of an extent map.

3.2.10.6 advfs_insert_cow_hole

This routine is adapted from the routine insert perm_hole in Tru64. It insert a COWed in the middle of
extents.

3.2.10.7 advfs_get xtnt_map (previously bs_get_clone_xtnt_map, bs_get bf xtnt map, and
bs_get_bkup_xtnt_map)

advfs_get xtnt map will merged version of bs_get clone xtnt map and bs_get bf xtnt map that will use
advfs get blkmap in range and build extent maps for the requested file. Since

advfs get blkmap in range will correctly compose the extent maps of child snapshots with those of its
parent snapshots, there is no need to maintain two versions of this routine (for snapshots and not for

112

snapshots). The routine will lock the extent maps using the advfs acquire xtntMap_locks routine and will
drop them using the advfs drop_ xtntMap_locks routine.

This routine will acquire the bfaSnapLock for read while trying generating the extents to return. If the
BFA XTNTS IN USE flag is set in the bfap’s bfaSnapFlags, this routine will drop the bfaSnapLock and
return an error indicating that the extents cannot be acquired at present. The BFA_ XTNTS IN USE flag
allows other threads that need to modify the extents and revoke the CFS token to set the flag and revoke the
CFS token without holding any locks. The thread trying to acquire the extent maps cannot block since it
currently holds the CFS token.

3.2.10.8 load_inmem_xtnt_map

When load_inmem_xtnt_map is called on a bfap that has BFA_ SNAP VIRGIN set, it will return EOK.
This is so that the extent maps of the parent are not loaded into the child’s extents. If the parent’s extents
were loaded, then the parent’s storage was migrated, the child snapshot would have incorrect extents. This
was a known issue on Tru64.

3.2.10.9 COWED_HOLES in child snapshots

Any time a hole is inserted into a writeable snapshot and that hole is not the result of an explicit COW
operation, the hole will be a COWED_HOLE. By example, if a snapshot is writeable and has an original
file size of 1k and is extended via a truncate to a size of 2k, the range from 1k to 2k will be a
COWED_HOLE even though it was not explicity COWed. This modification will be made to all extent
map routines that insert holes. An XTNT TERM hole will never be inserted into a child as that extent
would appear to be “unmapped” rather than an actual hole.

3.2.11 CFS Related Changes
3.2.11.1 Direct 10 Writes from clients

To improve direct 10 writes from cluster clients when snapshots exist, the advfs get xtnt map routine will
return information to clients to indicate whether or not an extent in a file has already been COWed. For
ranges that have already been COWed, direct 1O writes can occur as normal. For ranges that have not
already been COWed, direct IO writes must be sent to the server to have the COW completed. To pass
information about what ranges must be COWed, the high order bit of the bsed fob_offset field of the
bsExtentDescT structure will be set to 0 when a COW is required. On a fileset with no snapshots, the bit
will always be 0. On CFS clients, if the CFS_EXP HAS CLONE is set in the cms_dbentry_t associated
with a filesystem, then any direct IO writes to extents that have a 0 in the high order bit must be shipped to
the server. Any extents that have a 1 in the high order bit can do a direct IO write as long as the direct 1O
token is held.

The flag is an advisory. If the flag is incorrectly set, it will only be incorrectly set to 0 and will therefore
cause a write to be shipped to the server when that write could have occurred directly from the client.

The flag will be set in advfs_get xtnt maps by looking at the last child’s extent maps and subdividing the
extent maps to be returned based on unmapped ranges of the child. Whenever a new snapset is added, the
CFS_SNAP_NOTIFY callout will invalidate the extent maps of all children, thereby clearing the flag and
preventing incorrectly set hints. Since advfs_get xtnt maps must look at the last snapshot child, if

BFS IM_SNAP IN PROGRESS is set, it will return an error indicating that the direct IO token must be
dropped.

3.2.11.2 advfs_get xtnt_map

CFS clients will be modified to correctly handle an error when trying to acquire the extent maps for a file
while holding that files direct IO token. In the event of an error, the client must back out far enough to
drop the token, and then try again. If an error is returned, it means that the server was trying to get the
token for exclusive access so that a COW can be performed. If the client succeeded it getting the extent

113

maps, they would be immediately invalidated, so preference is given to the server by forcing the client to
try again.

3.2.11.3 advfs_getpage callers holding the file lock

If advfs getpage must do any COW operations on userdata, it must invalidate the extent maps of any child
snapshots. To invalidate the extent maps, advfs getpage must call CLU CFS COW_MODE ENTER.
The call to CLU_CFS _COW_MODE_ ENTER will acquire the cnode lock which is before the file lock in
the hierarchy. advfs getpage cannot safely drop a file lock that is held for write access, however it can
drop a lock that is held for read access. Any callers of advfs getpage that hold the file lock for write must
invalidate the extent maps of the child and set the BFA_ XTNTS IN USE flag in the children’s bfaFlags.

For callers that hold the file lock for read on entrance, the file lock will be dropped and the

BFA XTNTS IN USE flag will be set in each child snapshot as the child has
CLU_CFS_COW_MODE_ENTER called on it. Once each child has BFA_ XTNTS IN_USE set, the file
lock will be reacquired for read. If the file lock is still held for read on exit, and if any children had

CLU _CFS COW_MODE ENTER called on them, then before exiting advfs getpage, the file lock will be
dropped and CLU_CFS_COW_MODE_LEAVE will be called on each child. Additionally, the

BFA XTNTS IN USE flag will be cleared. If the file lock was held for read on entrance, it will be
reacquired before exiting. If the file lock was not held for read on entrance, the setting of

BFA XTNTS IN USE flag and the calling of CLU_CFS COW_MODE ENTER will occur before the
file lock is acquired.

If any calls to advfs_getpage return with the file lock held for write, the caller must call
CLU_CFS_COW_MODE _LEAVE on each child snapshot and clear the BFA_ XTNTS IN USE flag.

Any file lockers that set the BFA XTNTS IN USE flag must be responsible for clearing the flag and
broadcasting on the bfaSnapCyv as the flag is cleared.

3.2.11.4 Migrate

Migrate must deal with invalidating any cached extent maps of any children snapshots of the file to be
migrated.

3.2.11.4.1 migrate clu handling

3.2.11.4.1.1 Interface

static
statusT
migrate clu handling(
bfAccessT *bfap,
int32 t *do cluster cleanup,
int32 t *clear child wait for xtnt flag,
)

3.2.11.4.1.2 Description

This routine is responsible for revoking the direct 1O token for the file to be migrated, and for making sure
that any snapshot descendants (children and grandchildren) have any cached extents revoked. To protect
the extent maps of children during the migrate of the parent’s extents, the BFA WAIT FOR XTNTS flag
will be set while holding the bfaSnapLock for write. Setting the BFA XTNTS IN USE flag will cause
CFS clients that are trying to acquire a copy of the extent maps to block in advfs_get xtnt map and wait
for the migrate to complete. The waiters in advfs_get xtnt map will be woken up by a broadcast on the
bfaSnapCyv.

If the fileset that contains the file to be migrated is not mounted, then it is not necessary to revoke the CFS
direct 10 token, however, the children snapshots still must have their extents revoked if they are cached (if
child bfap->bfaFlags & BFA CFS HAS XTNTS).

114

3.2.11.4.1.3 Execution Flow

. if clu_is ready()

o if fileset is mounted and bfap is not metadata and vnode is VREG
" CC_CFS_CONDIO EXCL MODE ENTER on bfap->bfVnode
- On error, return ENO MORE_MEMORY
" do cluster cleanup = TRUE

o if bfap is metadata
L] ASSERT (foreach descendant, BFA CFS HAS XTNTS is not set)
. clear child wait for xtnt flag = FALSE
- return EOK

o if (bfSet->bfaFirstSnapCHild != NULL and bfap->bfaFirstSnapChild == NULL)
|| (bfap->bfaFlags & BFA SNAP CHANGE)

" advfs access snap_children
o if bfap->bfaFirstChildSnap != NULL

L] for each descendant of bfap
. write lock bfaSnapLock
o lock bfaLock
e set BFA XTNTS IN USE
o unlock bfalLock
. unlock bfaSnapLock
. call CLU_CFS_COW_MODE ENTER to revoke snapshots extent maps
. write lock bfaSnapLock
o lock bfaLock
e clear BFA CFS_HAS XTNTS
o unlock bfalLock
. unlock bfaSnapLock
o clear child wait for xtnt flag=TRUE

. else return EOK

3.2.11.5 Future CFS Enhancements

3.2.11.5.1 Function Shipped COWs

To further optimize direct IO writes on a cluster, cluster clients will be provided a routine that will force a
COW over a range of a file. When a client needs to do a direct IO write to a range in the file that is not
already COWed (the ADVFS_CFS COW_IS COMPLETE flag is not set in those extents), the client will
send a request to the serve to COW the range. On successful return, the client will be able to acquire the
direct 10 token and perform the write.

3.2.11.5.2 Optimized reads from client nodes

When performing frequent reads to child snapshots from a client node, significant performance degradation
has been observed when the parent snapshot is being actively and frequently written (causing frequent
COWing). Each modification to the parent file will invalidate any cached extent maps for child snapshots
and will potentially introduce a new extent (increasing fragmentation) in the child snapshot. If the child is
being frequently read while its extent maps are being invalidated, the CFS client will make frequent calls to
the server to request extent maps that are ever increasing in size.

115

Tru64 resolved this issue by having a global flag to force all reads to be function shipped to the server.
This flag could be set on a single cluster node and would cause all filesets with snapshot children to have
reads function shipped to the server.

In the future, AdvFS will provide a mechanism for monitoring the frequency of requests from clients for
extents maps and will enable or disable direct IO reads on a per file basis.

For HPUX 11.31, AdvFS will not provide a mechanism for disabling direct IO reads.

3.2.12 Miscellaneous Changes
3.2.12.1 fs_setattr

When a truncate occurs that extends the file, the hole must be a COWed hole. More generically, any hole
inserted into a child snapshot must be a COWed hole type. This is to make sure behavior is correct after a
snapshot child is truncated and then written to again. If the new holes weren’t COWed holes, attempts
could be made to COW into storage that is not really correctly associated.

A truncate of a parent file will trigger a call to advfs force cow and unlink prior to acquiring any locks
and performing the truncate. In this model, if the truncate were to fail, the COW may have already
occurred and will not be undone.

3.2.12.2 advfs_access_mgmt_thread

If advfs_access_mgmt_thread encounters a bfap that has the BFA_ QUICK CACHE flag set, it will halve
the age time when making a decision as to whether or not to advance the access structure in the cache.

3.2.12.3 Migrate

When migrate calls advfs get blkmap in range, it will pass in the EXB DO NOT INHERIT flag so that
it only examines extents that are mapped by the bfap it is trying to migrate. This will prevent migrate from
attempting to move storage that is mapped by a parent bfap.

The migStg_1lk for write will protect the child from having storage allocated for COW operations during the
migrate. The migStg 1k will no longer be dropped and reacquired for snapshots. Because of simplified
locking and transaction management for snapshots, it is no longer necessary to acquire the migStg lk in a
different order for snapshots and parents. As a result, the starting of a transaction when migrating a
snapshot child is no longer required.

mig_migrate will be modified so that the early exit condition is based on the BFA SNAP_ VIRGIN flag
rather than the BS BFSET ORIG flag.
3.2.12.4 fs_fset create

This routine will be modified to initialize the bfsaFilesetCreate field to contain the time at which the fileset
was created. It will also be modified to initialize the new bfsaSnap* fields to 0 when not creating a snapset.

3.2.12.5 advfs_putpage

advfs putpage will be modified to assert that if a file is a snapshot child, any writes that are issued to disk
are mapped in an extent map that has ebd bfap == bfap. This is to make sure that any dirty pages to be
written during a migrate are actually mapped in the bfap that is being flushed. If a dirty page was mapped
in a parent, it would indicate that the parent’s storage was being migrated under it. This would cause a
significant locking problem.

116

3.2.12.6 fs_create file

When creating a new file, the BOF_ ROOT SNAPSHOT flag should be set in the bsBfAttr bfat flags field.
Additionally, the bfat_orig_file size should be initialized to ADVFS ROOT SNAPSHOT value of (-1)
and the bfat_del child cnt should be initialized to 0.

3.2.13 10 Completion

10 completion code will be modified slightly to deal with errors during COW operations. If the
IOANCHORFLG CHAIN ERRORS flag is set on an IO anchor associated with a buf structure that is
being processed by advfs_iodone, and if an error occurred on that buf structure, the freeiodesc flag will be
cleared and the iodesc structure will be chained to the IO Anchor. Multiple errant IOs associated with the
same IO Anchor will all be chained so that advfs getpage can determine which 1Os failed and can correctly
mark snapshot children as out of sync.

The change in logic will occur after 1O retry processing and should not impact IO retry.

3.2.14 Recovery Concerns

Recovery of a snapshot filesystem will present a significant challenge since it is necessary that a snapshot
only be recovered if the exact original data is intact. If a snapset is marked as out-of-sync, it should not be
recovered but should be removed from the domain. In the event of an out-of-sync snapset that is corrupted,
there is no reliable way to know what is recoverable corruption and what are errors caused by an out-of-
sync condition. For snapsets that are not out-of-sync, recovery will consist of repairing the snapset in a
similar fashion to a fileset on Tru64. Any corrupt extents that are identified in a snapshot should cause the
file to be marked as out of sync along with the snapset, but the snapset should not be removed.

3.2.15 On-Disk Impact

The basic set of information maintained on disk has not changed significantly from Tru64. Tools that
directly examine on disk structures must continue to expect to find COWED_HOLES and unmapped holes
in snapshot children and never in parent filesets. If the BFS OD ROOT_ SNAPSHOT flag is set on a
fileset, a COWED_HOLE should never be seen. If the BES OD ROOT SNAPSHOT is not set, then it
may be the case that a COWED_HOLE or an XTNT_TERM (unmapped) hole is found in a file.

The links between parent and child snapshots have been expanded to have the flexability of mapping a tree
in constant space. As a result, related snapsets should be seen as linked through the
bfsaFirstSnapChildSnapShot, bfsaNextSiblingSnap, and bfsaParentSnapShot pointers which are the
bfSetld’s of the related snapshots.

3.2.16 Future Enhancements
3.2.16.1 Enhanced Out-Of-Sync handling

A flag could be introduced to indicate that it is more important to keep a snapshot in sync with the parent
than it is to successfully complete writes to the parent. With this flag, a write that would cause a child
snapshot to become out of sync would instead cause the write to the parent to fail.

3.2.16.2 Deferred deletion of parent snapshots

On deletion of parent snapshots, it is preferable that the entire file is not COWed to the children but is,
instead, marked as, “Delete with last child.” Marking the parent as deleted but not actually deleting it
prevents the need to COW a large amount of data at the time of deletion. A counter has been introduced
into the on-disk structure to allow for this future expansion. The counter indicates the number of children

117

that existed at the time the file was deleted. As children are removed, they must decrement the parent’s
counter if the parent is marked as “Delete with last child.” The child to decrement the counter from one to
zero must delete the parent file.

3.2.16.3 Forced Independence of Snapshot Child

It may be useful to provide the functionality to convert a snapshot into a snap clone and break all
dependencies between the parent and child. In order to support such future work, a flag,

BFS OD ROOT_SNAPSHOT is being introduced. Any fileset that has this flag set on disk will have been
completely COWed or will have no dependency on any parent snapshot.

3.2.16.4 Inter-domain snapshots

A future enhancement might be to support inter-domain snapshots. Since snapshots on linked on-disk only
through the bfSetld, it is theoretically possible to link snapsets that exist in different domain. Some locking
issues exist with respect to creation and removal of filesets. The advantage of inter-domain snapsets
would be the ability to mount filesets on different members of a cluster and the ability to prevent out of
sync conditions be providing a disk that is large enough to hold the entire original. Mounting on a separate
cluster client would likely required direct write capabilities.

3.2.16.5 ASYNC and NOWAIT support for snapshots

Currently, no simple solution has been developed to handle an asynchronous write that requires COWing.
At some future point, some thought may need to be given into how to deal with an asynchronous write
request in such a way that the write does not become synchronous.

118

4 Dependencies

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

410

4.1

412

413

414

System Administration

Dependencies related to this area will be fully discussed in a design specification for AdvFS
Snapshots in User Space

Memory Management

No dependencies

ccNUMA

No dependencies

Process Management

No dependencies

File System Layout

No dependencies

File Systems

No dependencies

/0 System and Drivers

No dependencies

Security

No dependencies

Auditing

No dependencies

Multiprocessor

No dependencies

Behavior in a cluster

Dependencies related to this area were fully discussed previously in this design.

Kernel Instrumentation/Measurement Systems

No dependencies

Diagnostics

No dependencies

Panic/HPMC/TOC

No dependencies

119

4.15 Commands

e Dependencies related to this area will be fully discussed in a design specification for AdvFS
Snapshots in User Space

4.16 Standards

e No dependencies

4.17 Kernel Debugger

e No dependencies

4.18 Boot Kernel

e No dependencies

4.19 Install Kernel

e No dependencies

4.20 Update/Rolling Upgrade

e No dependencies

4.21 Support Products

e No dependencies

4.22 Learning Products (Documentation)

e AdvFS online support documents must be updated to reflect new snapshot terminology.
e AdvFS manuals must be updated to reflect new snapshot terminology.

e AdvFS man pages must be updated.

120

5 Issues (Optional)

High Priority
e Issue...
o Owner:
o Contact:

o Status: Closed/Open. If closed, resolution:
o Issue...

o Contact:

o Status: Closed/Open. If Owner:

o closed, resolution:

Medium Priority

e Kernel recursion can pose risks. The design currently limits the number of recursive calls in the
kernel but still uses recursion. There is some concern about continuing to use recursion. The
design will use recursion initially but may be changed later to use a non-recursive algorithm. The
recusion is contained in routines such that the implementation can change without impacting most

of the design.
o Owner:
o Contact:

o Status: Open

Low Priority
e Issue...
o Owner:
o Contact:

o Status: Closed/Open. If closed, resolution:

121

