

DirectIO for AdvFS

Design Specification

Version 1.0

JRB

CASL

Building ZK3

110 Spit Brook Road

Nashua, NH 03062

Copyright (C) 2008 Hewlett-Packard Development Company, L.P.

 2

Design Specification Revision History

Version Date Changes

0.1 06/13/03 First draft for internal review

1.0 07/16/03 First document for general distribution

 3

Table of Contents
1 Introduction .. 10

1.1 Abstract... 10

1.2 Product Identification ... 10

1.3 Intended Audience.. 10

1.4 Related Documentation .. 10

1.5 Purpose of Document ... 10

1.6 Acknowledgments & Contacts ... 11

1.7 Terms and Definitions .. 11

2 Design Overview.. 12

2.1 Design Approach .. 12

2.2 Overview of Operation ... 12

2.3 Major Modules ... 13

2.3.1 Open/Close Paths.. 13

2.3.2 Read/Write Paths .. 14

2.3.3 Strategy Routine ... 14

2.3.4 fcntl()/ioctl() ... 14

2.3.5 I/O Start and Completion Paths .. 14

2.3.7 Interaction with Memory-Mapped files .. 15

2.4 Dependencies.. 15

2.4.1 File System ... 15

2.4.2 I/O System and Drivers .. 15

2.5 Major Data Structures... 15

2.6 Exception Conditions ... 15

2.7 Design Considerations .. 16

3 Detailed Design .. 17

3.1 Data Structure Design... 17

3.1.1 file structure.. 17

3.1.2 bfAccess structure... 17

3.1.3 vnode structure ... 17

3.1.4 advfs_pvt_param structure.. 18

3.1.5 advfs_pvt_param Structure flags .. 18

3.1.6 ioanchor_t Structure ... 18

3.1.7 advfs_args_t Structure .. 19

3.1.8 actRangeT Structure ... 19

3.1.9 New Macros.. 20

 4

3.2 Module Design ... 21

3.2.1 File Open .. 21

3.2.1.1 advfs_open() ... 21

3.2.1.2 Other Changes in this Path ... 22

3.2.2 File Close.. 23

3.2.2.1 advfs_close()... 23

3.2.2.2 Other Changes in this Path ... 23

3.2.3 Memory-mapping a file .. 24

3.2.3.1 advfs_mmap() ... 24

3.2.4 Open/Close on a cluster .. 25

3.2.4.1 advfs_cfs_set_cachepolicy() ... 25

3.2.5 Read Path.. 27

3.2.5.1 advfs_fs_read() ... 27

3.2.5.2 advfs_fs_read_direct() .. 28

3.2.6 Write Path... 34

3.2.6.1 advfs_fs_write() .. 34

3.2.6.2 advfs_fs_write_direct()... 35

3.2.7 Routines common to directIO Read and Write paths ... 44

3.2.7.1 advfs_dio_unaligned_xfer().. 44

3.2.8 I/O Completion Path ... 47

3.2.8.1 advfs_iodone() .. 47

3.2.8.2 advfs_bs_io_complete().. 47

3.2.9 AIO Interface.. 50

3.2.9.1 advfs_strategy() .. 50

3.2.9.2 vn_aio_strategy() .. 51

3.2.10 fcntl Path... 52

3.2.10.1 advfs_fcntl().. 52

3.2.11 ioctl Path... 52

3.2.11.1 advfs_ioctl().. 52

3.2.12 Storage Allocation and Snapshotting.. 52

3.2.12.1 advfs_getpage() .. 52

3.2.13 Mount Path ... 54

3.2.13.1 mount() ... 54

3.2.13.2 advfs_mountfs() .. 54

3.2.13.3 advfs_vfs_is_mounted_for_dio().. 55

3.2.14 Other Miscellaneous Routine Changes... 56

3.2.14.1 File Truncate Path... 56

 5

3.2.14.2 migrate_normal() .. 56

3.2.14.3 bs_refpg_direct()... 56

3.2.14.4 bs_pinpg_direct().. 56

3.2.14.5 Active Range Allocation... 56

3.2.14.6 Access structure construction and destruction. ... 56

3.2.14.7 Routines using the obsolete VDIRECTIO bit... 56

3.3 Script Design .. 57

4 Dependencies.. 58

4.1 System Administration ... 58

4.2 Memory Management... 58

4.3 ccNUMA .. 58

4.4 Process Management .. 58

4.5 File System Layout ... 58

4.6 File Systems.. 58

4.7 I/O System and Drivers .. 58

4.8 Security... 58

4.9 Auditing.. 58

4.10 Multiprocessor .. 58

4.11 Behavior in a cluster ... 58

4.12 Kernel Instrumentation/Measurement Systems .. 59

4.13 Diagnostics ... 59

4.14 Panic/HPMC/TOC.. 59

4.15 Commands.. 59

4.16 Standards .. 59

4.17 Kernel Debugger... 59

4.18 Boot Kernel .. 59

4.19 Install Kernel .. 59

4.20 Update/Rolling Upgrade... 59

4.21 Support Products... 59

4.22 Learning Products (Documentation)... 59

5 Issues (Optional)... 60

High Priority... 60

1 Introduction .. 7

1.1 Abstract... 7

1.2 Product Identification ... 7

1.3 Intended Audience.. 7

1.4 Related Documentation .. 7

 6

1.5 Purpose of Document ... 8

1.6 Acknowledgments & Contacts ... 8

1.7 Terms and Definitions .. 8

2 Design Overview.. 9

2.1 Design Approach .. 9

2.2 Overview of Operation ... 9

2.3 Major Modules ... 10

2.3.1 Open/Close Paths.. 10

2.3.2 Read/Write Paths .. 11

2.3.3 Strategy Routine ... 11

2.3.4 fcntl()/ioctl() ... 11

2.3.5 I/O Start and Completion Paths .. 11

2.3.6 Filesystem Mount Path ... 12

2.3.7 Interaction with Memory-Mapped files .. 12

2.4 Dependencies.. 12

2.4.1 File System ... 12

2.4.2 I/O System and Drivers .. 12

2.5 Major Data Structures... 13

2.6 Exception Conditions ... 13

2.7 Design Considerations .. 13

3 Detailed Design .. 15

3.1 Data Structure Design... 15

3.1.1 file structure.. 15

3.1.2 bfAccess structure... 15

3.1.3 vnode structure ... 15

3.1.4 advfs_pvt_param structure.. 16

3.1.5 advfs_pvt_param Structure flags .. 16

3.1.6 ioanchor_t Structure ... 16

3.1.7 advfs_args_t Structure .. 17

3.1.8 actRangeT Structure ... 17

3.1.9 New Macros.. 18

3.2 Module Design ... 19

3.2.1 File Open .. 19

3.2.1.1 advfs_open() ... 19

3.2.1.2 Other Changes in this Path ... 20

3.2.2 File Close.. 21

3.2.2.1 advfs_close()... 21

 7

3.2.2.2 Other Changes in this Path ... 21

3.2.3 Memory-mapping a file .. 22

3.2.3.1 advfs_mmap() ... 22

3.2.4 Open/Close on a cluster .. 23

3.2.4.1 advfs_cfs_set_cachepolicy() ... 23

3.2.5 Read Path.. 25

3.2.5.1 advfs_fs_read() ... 25

3.2.5.2 advfs_fs_read_direct() .. 26

3.2.6 Write Path... 32

3.2.6.1 advfs_fs_write() .. 32

3.2.6.2 advfs_fs_write_direct()... 33

3.2.7 Routines common to directIO Read and Write paths ... 42

3.2.7.1 advfs_dio_unaligned_xfer().. 42

3.2.8 I/O Completion Path ... 45

3.2.8.1 advfs_iodone() .. 45

3.2.8.2 advfs_bs_io_complete().. 45

3.2.9 AIO Interface.. 48

3.2.9.1 advfs_strategy() .. 48

3.2.9.2 vn_aio_strategy() .. 49

3.2.10 fcntl Path... 50

3.2.10.1 advfs_fcntl().. 50

3.2.11 ioctl Path... 50

3.2.11.1 advfs_ioctl().. 50

3.2.12 Storage Allocation and Snapshotting.. 50

3.2.12.1 advfs_getpage() .. 50

3.2.13 Mount Path ... 52

3.2.13.1 mount() ... 52

3.2.13.2 advfs_mountfs() .. 52

3.2.13.3 advfs_vfs_is_mounted_for_dio().. 53

3.2.14 Other Miscellaneous Routine Changes... 54

3.2.14.1 File Truncate Path... 54

3.2.14.2 migrate_normal() .. 54

3.2.14.3 bs_refpg_direct()... 54

3.2.14.4 bs_pinpg_direct().. 54

3.2.14.5 Active Range Allocation... 54

3.2.14.6 Access structure construction and destruction. ... 54

3.2.14.7 Routines using the obsolete VDIRECTIO bit... 54

 8

3.3 Script Design .. 55

4 Dependencies.. 56

4.1 System Administration ... 56

4.2 Memory Management... 56

4.3 ccNUMA .. 56

4.4 Process Management .. 56

4.5 File System Layout... 56

4.6 File Systems.. 56

4.7 I/O System and Drivers .. 56

4.8 Security... 56

4.9 Auditing.. 56

4.10 Multiprocessor .. 56

4.11 Behavior in a cluster ... 56

4.12 Kernel Instrumentation/Measurement Systems .. 57

4.13 Diagnostics ... 57

4.14 Panic/HPMC/TOC.. 57

4.15 Commands.. 57

4.16 Standards .. 57

4.17 Kernel Debugger... 57

4.18 Boot Kernel .. 57

4.19 Install Kernel .. 57

4.20 Update/Rolling Upgrade... 57

4.21 Support Products... 57

4.22 Learning Products (Documentation)... 57

5 Issues (Optional)... 58

High Priority... 58

 9

Preface

Version 1.0 of the DirectIO for AdvFS Design Specification is being made available to the reader

for design review. It is also being made available to all partners in order to allow them to design

and implement code meeting the specifications contained herein.

 If you have any questions or comments regarding this document, please contact:

Author Name Mailstop Email Address

JRB

Sign-off review

Approver Name Approver Signature Date

 10

1 Introduction

1.1 Abstract

This document details how the direct I/O functionality of AdvFS on Tru64 UNIX will be ported to AdvFS

on HP-UX. Direct I/O (directIO) is a technique that allows applications to read/write data directly from

disk into their application buffers by-passing the file system's buffer cache. This can be thought of as a

replacement for the use of raw partitions, while retaining the ease of administration (file naming, copy,

backup, etc). The ultimate purpose of directIO is to improve the performance for applications such as

databases that do not depend on the file system’s caching of file pages.

The goal of this design is to port the existing functionality and interface from Tru64 to HP-UX by the target

release, while retaining the ability, as much as possible, to add future enhancements.

1.2 Product Identification

Project Name Project Mnemonic Target Release Date

AdvFS/DirectIO

1.3 Intended Audience

This document is intended for review by those interested in the AdvFS design for HP-UX, and its

interactions with other kernel layers such as the UFC, VFS, and AIO processing.

1.4 Related Documentation

The following list of references was used in the preparation of this Design Specification. The reader is

urged to consult them for more information.

Item Document URL

1

2

3

1.5 Purpose of Document

This design document will detail how AdvFS will port its existing directIO functionality on Tru64 UNIX

into the AdvFS code base on HP-UX. The intent is to provide sufficient design detail for engineers to

begin implementing the design into code.

 11

1.6 Acknowledgments & Contacts

The author would like to gratefully acknowledge the contributions of the following people:

DA, DB, BH, DL, TM, and AZ.

1.7 Terms and Definitions

Term Definition

AIO The code layer that implements the POSIX Asynchronous I/O

interface. This code implements asynchronous I/O on top of

essentially synchronous I/O operations to allow greater

application efficiency. This is used extensively by high-

performance applications such as Oracle.

Active Range A form of synchronization used by threads operating on files

opened for directIO. Each range is specified for a certain

region of the file, allowing threads working on different areas

of the file to operate concurrently. Operations guarded by

active ranges are directIO reads/writes, migrates, and

truncates. The primary interaction prevented is data

corruption caused by one thread reading/writing directly to

disk while another thread manipulates a cached page that

represents the same portion of the file.

FOB A File Offset Block is a 1k aligned offset in a file. This is

being used as a common unit since it will allow page sizes

from 1k upwards on 1k boundaries (although in practice page

sizes will be >4k and powers of 2).

 12

2 Design Overview

2.1 Design Approach

The design approach chosen for the AdvFS directIO porting project is to utilize the existing Tru64 AdvFS

code base and design, while allowing for improvements that may be advantageous to introduce into the HP-

UX environment.

2.2 Overview of Operation

This design document is organized principally by functional operation (file open, read, write, ioctl, etc.),

with an emphasis on how the directIO operations mesh with and are differentiated from cached I/O

operations. The major functional operations include file open, file close, read, write, fcntl, ioctl, and the

AIO interface.

In order to understand how these modules work, some background on the algorithms used in AdvFS’s

directIO on Tru64 UNIX is provided. The following paragraphs describe behavior on Tru64 UNIX.

Changes proposed for the HP-UX implementation will be elaborated with the description of each module in

the following sections.

On Tru64 AdvFS, a file is opened for directIO using the O_DIRECTIO flag on the open() command. Once

a file is opened for directIO by one process, that file is opened for directIO for all processes, and will

remain so until all processes close that file. If operating on a standalone system (non-clustered), all dirty

pages on the file are flushed to disk, but not invalidated (removed from the cache), when the file is first

opened for directIO. If operating in a cluster, the first open causes all pages to be both flushed to disk and

invalidated. An application can tell if a file is open in directIO mode by using the

fcntl(F_GETCACHEPOLICY) command, but there is no corresponding ‘setcachepolicy’ command

available.

Once a file is opened for directIO, all read() and write() commands are intercepted in the AdvFS read and

write routines and dispatched into the directIO read/write paths. A ‘typical’ path for directIO reads and

writes is considered to be one where the data is not already in a cached page, and the data is transferred

directly to or from the disk via Direct Memory Access (DMA) without any complications from cached

pages. If the data is already in a cached page during a read operation, the data is simply copied to the

application buffer from the cached page. There is no attempt to remove pages from the cache on a directIO

read operation. If a page is modified by a directIO write, however, the page is removed from the cache and

the application data is written directly to the storage device. File operations such as storage allocation,

migration, copy-on-write transfers of pages to cloned files, and sometimes truncation, can bring pages into

the cache for a file opened for directIO.

To prevent data corruption between the operations that bring pages into the cache, and directIO operations

that remove pages from the cache and then write data directly to disk, active ranges are used for

synchronization. Active ranges replace a file-wide lock that would otherwise serialize these operations

across the entire file. Active ranges allow one thread to operate on one region of a file while other threads

operate on different regions of the file. Thus, a file can have directIO writes at the beginning of a file while

pages at the end of the file are being migrated to a different disk.

AdvFS using directIO must present data to the device driver in buffers that are an exact multiple of the

sector size since it will DMA this data directly to disk. Because the user can request a data transfer of any

size, if the request is neither 1) aligned on a sector boundary, nor 2) an even multiple of the sector size, then

AdvFS must compensate by reading the underlying sector from the disk, merging the application data, and

then writing the sector back to the disk. For this reason, applications that request properly aligned data

during a directIO transfer will get better performance than those that do not.

DirectIO reads and writes are inherently synchronous, meaning that the read() or write() call will not return

to the application until the data has been transferred to or from the storage device. Because waiting for the

I/O to complete is potentially inefficient, applications may take advantage of the POSIX AIO interface that

 13

will allow for an asynchronous I/O. For directIO files on Tru64, the AIO layer will call AdvFS’s strategy

routine as a special entry point for the I/O. In this case the I/O is set up specially for the read/write paths so

those paths will return to the caller before the I/O transfer has been completed.

All calls to read or write a directIO file must ultimately come through the read or write paths. There is no

provision for reading files via VOP_GETPAGE, for example, once a file has been opened for directIO.

Doing so will result in an error being returned on the getpage call.

Differences between the Tru64 implementation and the proposed HP-UX implementation for each major

module will be provided in Section 2.3.

2.3 Major Modules

2.3.1 Open/Close Paths

The open() routine specifying the O_DIRECTIO flag is the method for enabling directIO for a file. The

notion that once a file is opened for directIO by one process it is open for directIO for all processes will

also be carried forward. However, this design proposes changing one aspect of the open/close semantics.

It is proposed that the number of opens for directIO be tracked, and that when all of the threads that opened

the file for directIO close the file, the file may remain open, but now in cached I/O mode. This is in

contrast to the Tru64 implementation in which the file remains open for directIO until the file is closed by

all processes. This is being done to avoid a problem such as the following: A backup utility is written to

utilize directIO to read the files to be backed up. As it opens each file for directIO, the performance for

existing applications that have the file opened for cached I/O is modified as the file is now open for

directIO for all applications. This may be acceptable for the short time it takes the backup to read the file,

but in the Tru64 world, the file stays open for directIO until all threads close the file. Under the proposed

HP-UX semantics, the file would revert to cached I/O as soon as the backup closed the file.

To do this, a mechanism is needed to track the opens and closes. When the file is opened, a counter of the

number of open() calls processed for directIO for this file will be incremented in the file’s bfAccess

structure. This design proposes that a change will be made to the FMASK definition in fcntl.h that will

allow the F_DIRECT bit to remain in the file.f_flags field after the file has been opened. This set of flags

gets passed through the close() call, allowing AdvFS to decrement the counter in the bfAccess structure. In

this way, when the last thread that opened the file for directIO closes the file, the file will revert to cached

I/O behavior. The presence of the F_DIRECT bit in the file structure can also be used by the AIO interface

to detect when a file is open for directIO and to dispatch the call to AdvFS’s strategy routine.

The ability to track the number of opens/closes for directIO is relatively straightforward on a non-clustered

system. On a clustered system, CFS will need to track the number of times a file has been opened for

directIO. To prevent the situation where CFS and AdvFS counts for the number of threads that have

opened a file for directIO get out of sync, AdvFS will only track whether the file is currently opened for

directIO. This will be determined by CFS calling AdvFS with a new private interface routine. Thus, on a

clustered system, AdvFS will not track directIO opens and closes, but will respond to explicit requests to

set the mode in which the file is opened.

On Tru64, the open mode of the file was tracked in the vnode.v_flags field by the presence of the

VDIRECTIO bit. On HP-UX, this bit will not be used; instead it will be replaced with a counter in the

bfAccess structure called dioCnt. If this field is 0, the file is open for cached I/O, and if greater than zero,

the file is open for directIO.

Another change for the HP-UX version is that when the file is first opened for directIO, all cached pages

are flushed to disk and invalidated. On Tru64, the pages were flushed to disk (but not invalidated) on a

non-clustered system, and both flushed and invalidated on clustered systems. This change has been

adopted primarily because the directIO code on HP-UX cannot tell if pages in the file range are in the cache

or not. The simplest way to handle this situation is to eliminate caching as much as possible when the file

is first opened for directIO. Then, if processes subsequently bring pages into the cache for this file, they

must remove them to eliminate stale cached data.

 14

Detailed code flow for the AdvFS open and close paths, as well as the new CFS interface routine, are

given in Sections 3.2.1 through 3.2.4.

2.3.2 Read/Write Paths

Functionally, the AdvFS read and write paths remain largely the same as they are on Tru64, even though

the code has been restructured to accommodate the UFC interface. One change that has been made is that

directIO reads will no longer be satisfied from cached pages. All cached pages are removed when the file

is opened, and no cached pages will be maintained for this file so long as it is open for directIO.

AdvFS Direct I/O and AIO Porting Investigation Report suggested handling unaligned buffers by simply

passing these requests through the cached I/O path. The primary goal of this change was to reduce code

complexity in the directIO path. This design does not implement that suggestion. The primary reason is

that this change would allow those threads that do not ‘play by the rules’ and issue unaligned I/O requests

to populate the cache, forcing other threads (that do play by the rules) to spend cycles flushing and

invalidating those pages. Keeping the unaligned request handling in-line forces the additional cycles to be

done in the context of the threads that are making the unaligned requests. Since the primary consumers of

directIO, the large database vendors, use aligned requests, this prevents the actions of other thread from

inhibiting their performance. A secondary reason is that storage allocation for a file opened for directIO

may force the code into a very similar path as the unaligned request for zeroing newly-allocated sectors that

will not be overwritten by the I/O request. In fact, both unaligned accesses and zeroing these sectors are

designed to be handled by a common subroutine.

Details about the code flow for the read and write paths are given in Sections 3.2.5 and 3.2.6.

2.3.3 Strategy Routine

The AdvFS strategy routine, advfs_strategy(), is the entry point into the file system from the AIO read and

write paths. On HP-UX this routine is also an interface for the VM Swap Filesystem functionality. A buf

structure is passed into the strategy routine where the data is converted to a uio structure and then the

AdvFS read or write routines are invoked. The AIO-handling of this routine on HP-UX will work

essentially the same way as it does on Tru64, but there are a few changes in the uio and buf structures that

necessitate some minor modifications. The use of this routine for the AIO interface is detailed in Section

3.2.9.

2.3.4 fcntl()/ioctl()

A management decision was made to remove the fcntl(F_GETCACHEPOLICY) call in the HP-UX version

of AdvFS. This was available for an application to query whether a file was open in directIO or cached I/O

mode. This will be replaced with an ioctl() call using the ADVFS_GETCACHEPOLICY command. The

movement of this functionality from fcntl() to ioctl() has already been made in the current AdvFS porting

baselines.

In the Tru64 code, there is an ioctl(F_SETCACHEPOLICY) call that is used as a private interface between

CFS and AdvFS. On HP-UX, this interface is being replaced by a truly private interface, a new routine

called advfs_cfs_set_cachepolicy(). The functionality in ioctl() has already been removed in the current

AdvFS porting baselines.

2.3.5 I/O Start and Completion Paths

In Tru64, there is code to maintain a count of the number of I/Os started for each active range. This count

is used primarily in the AIO path to be sure that all I/Os started for a given active range have been

completed before the active range is removed during I/O completion. The ioanchor_t structure in AdvFS

on HP-UX serves the same purpose, and therefore this design proposes a simplification of the I/O start and

completion code (when servicing an AIO-started I/O) to remove unneeded accounting for I/Os within the

active range.

 15

There is a minor change to the I/O completion path proposed so that the status of a multi-part I/O can be

determined from the data in the ioanchor structure after the I/O has completed. A multi-part I/O is one for

which there are multiple buf structures generated per ioanchor structure. The ioanchor structure change is

detailed in Section 3.1.6, and the code changes are listed in Section 3.2.8.

2.3.7 Interaction with Memory-Mapped files

The interaction between directIO and memory mapping will remain the same on HP-UX as it is on Tru64

UNIX. That is, these two modes are mutually exclusive. If a file is already open for directIO, a call to

memory map the file will fail with an error. To determine this, the bfap->dioCnt field is checked in

advfs_mmap(). Conversely, if a file is memory-mapped, an attempt to open the file for directIO will also

fail with an error. This is done by checking the VMMF flag in the vnode in advfs_open(). See Sections

3.2.1 and 3.2.4.

2.4 Dependencies

2.4.1 File System

This project assumes that it is being integrated with the AdvFS code base described in the AdvFS/UBC

Integration Design Specification. Use of active ranges to synchronize directIO with other AdvFS code

paths are assumed to continue as in the Tru64 code base except where specific changes are specified.

2.4.2 I/O System and Drivers

It is assumed that the block size will be DEV_BSIZE (currently 1k) for disk transfers.

The advfs_strategy() routine is dependent on the buf structure being set up by the AIO calling routine. It is

assumed that the yet-to-be-written routine vn_aio_strategy() will set up the data as outlined in Section

3.2.9. However, the routine can be adapted to retrieving the data from different structure fields if that code

has already been written.

2.5 Major Data Structures

Data structure changes will be discussed in Section 3.1, Data Structure Design, since most of them are

internal AdvFS structures. However, there is one external structure for which this design proposes a

change, and that is the file structure. This design proposes adding the FDIRECT flag to the FMASK

definition so that the call to close() will know if this process originally opened the file for directIO. See

Section 3.1.1 for more details.

2.6 Exception Conditions
The following general classes of exception conditions have been considered for this design.

• Invalid input parameters.

o Parameter out of range.

o Referenced data invalid.

• Resource depletion.

o Memory resources (free memory, physical memory, memory objects (buf structures, etc.)).

o Hardware resources.

• Race conditions.

o Sleeping for an event just as it occurs (or missing it completely).

o Locking protocol deadlocks.

o Consider cluster-wide races

 16

• Insufficient privilege.

o User privilege level.

o Memory access rights.

o Privilege instructions.

• Hardware errors.

o Reported errors.

o Non-responding hardware.

• Power failure.

o System power failure.

o Device power failure.

• Multiprocessor.

o What the other processor is doing.

• Cluster exceptions

o What are other cluster members doing

o Failures during failover (i.e. multiple failures)

Specific cases of these general exception conditions that are applicable to this design are discussed in the

following subsections.

2.7 Design Considerations

The AdvFS directIO design will be hardware-architecture independent so that a single version will run on

both PA-RISC and Itanium systems.

The design will work in multi-CPU environments with the intention of operating in the smallest to largest

hardware configurations.

The design attempts to minimize dedicated memory resources by relying on the memory arena allocator to

dynamically allocate and free memory for data structures.

AdvFS Direct I/O and AIO Porting Investigation Report suggested adding functionality to the pathconf()

command to allow it to return directIO information such as whether directIO is available for a given file, or

the directIO read/write granularity. Because of time limitations I have not pursued this feature in this

design, but I believe that there are no design issues that would prevent this from being added in the future.

 17

3 Detailed Design

3.1 Data Structure Design

3.1.1 file structure

This design proposes to change the definition of FMASK in file.h so that the FDIRECT bit will be

preserved in the file.f_flag field. The file structure is used to retain information about a per-open instance

for a given file. The FMASK is used to strip away certain flags that got passed in on the open() call from

the flags field before they get saved. If the FDIRECT bit were saved in the flags, then it would be passed

to the close routine and used to determine if the directIO count in the bfAccess structure should be

decremented. In addition, the AIO layer can use this bit, or an ioctl(ADVFS_GETCACHEPOLICY) to

determine if the file was opened for directIO by this file to know that this call should be sent to the AdvFS

strategy routine.

To make porting from Tru64 to HP-UX easier for applications, there will be a new #define added to fcntl.h.

Currently on HP-UX FDIRECT is #defined to be the same as O_DIRECT, the value used by the

application to specify directIO mode. Since Tru64 uses the value O_DIRECTIO to open the file for

directIO, the application would not have to be modified if O_DIRECTIO were also #defined to be the same

as O_DIRECT. Therefore, the line:

#define O_DIRECTIO O_DIRECT

will be added to fcntl.h. Then either value could be specified on the open() call to enable directIO.

3.1.2 bfAccess structure

In order to maintain a count of the number of times a file has been opened for directIO, a new field is being

added to the bfAccess structure. It is called dioCnt, and has already been added to this structure in the

AdvFS porting baseline. The addition of this field makes the need for the VDIRECTIO bit in the vnode

flags obsolete.

A new read-write lock has also been added to the access structure, the cacheModeLock. This lock is used

to guard the dioCnt field, synchronize threads that are changing the file’s cache mode (either from cached

I/O to directIO or vice versa), to synchronize opening a file for directIO with respect to a file being

memory mapped, to allow the read/write paths to reliably determine whether the file is in cached I/O or

directIO mode, and to allow the open/close paths to wait for in-flight I/Os when changing the cache mode.

typedef struct bfAccess {

…

int32_t refCnt; /* number of access structure references */

int32_t dioCnt; /* threads having file open for direct I/O */

rwlock_t cacheModeLock; /* guards dioCnt field */

stateLkT stateLk; /* state field */

…

} bfAccessT;

3.1.3 vnode structure

On Tru64, the VDIRECTIO flag in vnode.vflag is used to determine if a file is open for directIO. This flag

is not going to be propagated into the HP-UX version, so there is really no change to the vnode structure.

However, all places in the code that reference this bit must be examined and have the functionality

corrected. These routines are listed in Section 3.2.13.6.

 18

3.1.4 advfs_pvt_param structure

This is a structure used for passing AdvFS information transparently through UFC functions such as

fcache_as_uiomove(), fcache_as_fault() and fcache_vn_flush(). The AdvFS getpage or putpage routines

are typically the recipient of this information. Getpage or putpage may also return information back

through this structure. The directIO write path will call fcache_as_fault() or advfs_getpage() to add

storage to a file. Storage may be added to the file that is outside the write range in the application’s request

because of the request’s alignment and the granularity of the storage allocation. If this happens, the

directIO write must zero the leading and trailing regions in the newly-allocated storage. Therefore, two

new fields will be added to this structure so that advfs_getpage() can return the range of newly-allocated

storage to the directIO path. The new fields are shown in bold in the following structure:

struct advfs_pvt_param {

 struct bsBuf *app_bp; /* Associated bsBuf */

 off_t app_total_bytes; /* Total read() or write() length */

 off_t app_starting_offset; /* Starting Offset of original request */

 uint64_t app_flags; /* Flags */

 uint32_t app_started_readahead; /* TRUE if read-ahead was started */

 uint64_t app_ra_first_page; /* Read-ahead: first page to read */

 uint64_t app_ra_num_pages; /* Read-ahead: number of pages to read */

 bf_fob_t app_stg_start_fob; /* First FOB with newly-allocated storage */

 bf_fob_t app_stg_end_fob; /* Last FOB with newly-allocated storage. */

};

3.1.5 advfs_pvt_param Structure flags

When the directIO write path calls fcache_as_fault() or advfs_getpage() to add storage, it will pass the new

APP_ADDSTG_NOCACHE flag in the app_flags field. This will be a signal to advfs_getpage() that it is

being called to add storage, but not to zero-fill or bring these pages into the cache.. The use of this new

flag in advfs_getpage() is discussed further in Section 3.2.12.

3.1.6 ioanchor_t Structure

DirectIO read and write requests can be broken down into a series of I/Os that make up the total request.

This is done by handing a series of buf structures off to the device driver, all of which are associated with

the same ioanchor structure. When the last I/O has completed, the thread waiting for I/O wakes up and

does whatever processing is required to indicate to the application the status of the entire request. Since the

I/Os can be completed out-of-order, and since POSIX requires that the number of bytes transferred from the

logical start of the I/O be reported to the application, this design proposes adding several new fields to the

ioanchor structure to handle tracking the number of bytes successfully transferred. These fields are shown

in bold in the following structure. The anchr_io_status field is always set to EOK or to the return code for

the ‘first’ error encountered. Anchr_min_req_offset should be set to the original (lowest) file offset being

requested in the series of I/Os. Its value is not modified. Anchr_min_err_offset should be set to a value

greater than any file offset requested in the series. It will be used internally to track the lowest file offset

for which an error has occurred. On the last I/O, if an error has been encountered, the value of

anchr_min_req_offset is subtracted from this value to get the number of logical bytes successfully

transferred up to the first error. The number of bytes transferred is returned in anchr_min_err_offset field.

typedef struct ioanchor {

spin_t anchr_lock /* Coordinate changes to anchor using lock. */

 19

/* advfs_iodone() always gets spin lock. */

int64_t anchr_iocounter /* Single IO request callers set to 1. Else, */

/* set to number of IO's in multi-IO set */

uint64_t anchr_flags; /* Anchor flags for advfs_iodone to check */

struct buf *anchr_origbuf; /* Set to the original UFC IO buf structure*/

/* for advfs_iodone to use. */

condvar_t anchr_cvwait; /* Optionally allows caller to sleep on this */

/* condition variable until IO completes. */

/* Caller can also use with */

/* IOANCHORFLG_WAKEUP_ON_ALL_IO flag */

struct ioanchor *anchr_listfwd; /* Caller can link multiple anchors to */

struct ioanchor *anchr_listbwd /* take responsibility for freeing anchors. */

/* Caller must set the */

/* IOANCHOR_KEEP_ANCHOR flag to use the link.*/

actRangeT *anchr_actrangep; /*Active range pointer when using */

/* active range locking Otherwise, set to 0.*/

struct buf *anchr_aio_bp; /* Asynchronous IO buffer for directIO only.*/

uint32_t anchr_magicid; /* Unique structure validation identifier */

statusT anchr_io_status; /* Final status of a multi-part I/O */

off_t anchr_min_req_offset; /* Set to the lowest file offset requested in a multi-part

I/O if the number of bytes successfully transferred is to

be calculated and returned in the next field.*/

off_t anchr_min_err_offset; /* In: File offset greater than any in the multi-part I/O */

/* Out: returns the logical number of bytes successfully

transferred for a series of I/Os associated with this

ioanchor. This value is only meaningful after I/O

completion if anchr_io_status is not EOK. This field is

used internally to track the offset of the logically lowest

I/O that was not successful.

} ioanchor_t;

3.1.7 advfs_args_t Structure

A new bit, MS_ADVFS_DIRECTIO, must be #defined for the advfs_args_t.adv_flags field in

advfs_public.h and (temporarily) ms_osf.h. This bit will be set in mount() if the –o directIO option is

specified to the mount command. This set of flags is then passed down to advfs_mountfs() where it is used

to decide whether to set the analogous in-memory bit in the bfSetT.bfSetFlags field.

3.1.8 actRangeT Structure

The arIosOutstanding field is no longer needed and will be removed. In addition, the arStartFob and

arEndFob fields will be changed from uint64_t to bf_fob_t types to clarify their usage.

 20

3.1.9 New Macros

The following macros will be added to bs_public.h for use in converting between byte, fob, and disk block

values:

/* These two macros give the first/last FOB within the disk block that encompasses the input file offset.

They will compensate for changing sizes of DEV_BSIZE with respect to ADVFS_FOB_SZ so long as

DEV_BSIZE is always >= ADVFS_FOB_SZ.*/

#define ADVFS_OFF_TO_FIRST_FOB_IN_VDBLK(offset) \

(((offset)/DEV_BSIZE) * ADVFS_FOBS_PER_DEV_BSIZE)

#define ADVFS_OFF_TO_LAST_FOB_IN_VDBLK(offset) \

(ADVFS_OFF_TO_FIRST_FOB_IN_VDBLK(offset) + (ADVFS_FOBS_PER_DEV_BSIZE-1))

/* This macro converts a possibly unaligned byte offset to one that is aligned to the lowest byte in its disk

block */

#define ADVFS_ALIGN_OFFSET_TO_VDBLK_DOWN(offset) \

(((offset) / DEV_BSIZE) * DEV_BSIZE)

/* This macro is used to determine the number of disk blocks that will span a given range of bytes. */

#define ADVFS_BYTES_TO_VDBLKS(bytes) \

((bytes) / DEV_BSIZE)

 21

3.2 Module Design

3.2.1 File Open
3.2.1.1 advfs_open()

3.2.1.1.1 Interface

advfs_open(struct vnode **vpp, /* in - vnode pointer */

int mode, /* in - open mode */

struct ucred *cred /* in - credentials of caller */

)

3.2.1.1.2 Description

This routine is called each time the file is opened. Actually, the file is already open at this point, but this

routine allows setting open file attributes which we will use here.

The intent of this code path is to increment the number of times that this file has been opened for directIO if

running on a non-clustered system. If running on a cluster, the count of directIO opens is maintained by

CFS, and they call AdvFS using advfs_cfs_set_cachepolicy() to increment this counter so it is not done

here. Also, metadata and reserved files are never opened for directIO.

There is provision for a ‘hidden’ –o directio mount option. This is used for internal testing only and is not

supported in the field.

The bfAccess.cacheModeLock will be seized for shared access initially in this routine while it is

determined if the cache mode needs to change. If so, the lock will be upgraded to an exclusive lock to

ensure that all in-flight I/Os have ended, to prevent new I/Os from starting, and to protect the value of the

bfAccess.dioCnt field.

3.2.1.1.3 Execution Flow

bfSetp = (bfSetT *)bfap->bfSetp

Intialize return value to EOK

extract fsContext and bfAccess structures from vnode pointer

if ((mode & FDIRECT) || bfSetp->bfSetFlags & BFS_IM_DIRECTIO))

if (clu_is_ready()) return EOK; /* Do nothing if operating under CFS */

/* If this is a reserved or metadata file, return an error if this is an explicit request to open for DIO; if

the metadata file is on a directIO-mounted fileset, just return EOK without doing anything.*/

if (bfap->dataSafety != BFD_USERDATA)

if (Advfs_enable_dio_mount && (bfSetp->bfSetFlags & BFS_IM_DIRECTIO))

return EOK

else

return EINVAL

seize the bfAccess.cacheModeLock for SHARED access

lock vnode using VN_SPINLLOCK()

/* Don’t allow non-regular or memory-mapped files to be opened for DIO */

if (*vpp)->v_type != VREG)

 22

return value = EINVAL

unlock vnode using VN_SPINLUNLOCK()

else if (((*vpp)->v_flag & VMMF) && (bfap->dioCnt == 0))

/* the file is already mmapped or there is an mmapper in progress and the file is not already open

for DIO. Let the mmapper succeed */

return value = EINVAL

unlock vnode using VN_SPINLUNLOCK()

else /* increment the DIO counter for this file */

unlock vnode using VN_SPINLUNLOCK()

if (bfap->dioCnt > 0)

/* file is already open for directIO; just increment the counter */

increment bfap->dioCnt

else

upgrade cacheModeLock to EXCLUSIVE access

/* At this point there are no in-flight I/Os or mmappers */

lock vnode using VN_SPINLLOCK()

if ((*vpp)->v_flag & VMMF)

/* mmapper snuck in before the lock was upgraded */

return value = EINVAL

unlock vnode using VN_SPINLUNLOCK()

else

unlock vnode using VN_SPINLUNLOCK()

increment bfap->dioCnt

/* Flush and invalidate any buffers for this file */

fcache_vn_flush(&bfap->bfVnode, 0, bfap->bfaNextFob, NULL,

 FVF_WRITE | FVF_SYNC | FVF_INVAL);

release the bfAccess.cacheModeLock

return (return value);

3.2.1.1.4 Other Items of Note for advfs_open()

All code using the O_CACHE flag in advfs_open() will be removed; it is obsolete.

3.2.1.2 Other Changes in this Path

There are several places where the VDIRECTIO bit was set or cleared in the open path on Tru64.

Specifically, the paragraphs in fs_create_file() and bf_get_l() that set or clear this bit will be removed since

they are not needed in this implementation.

 23

3.2.2 File Close
3.2.2.1 advfs_close()

3.2.2.1.1 Interface

statusT

advfs_close (struct vnode *vp, /* in - vnode of file to close */

int fflag, /* in - flags - not used */

struct ucred *cred /* in - credentials of caller */

)

3.2.2.1.2 Description

This is the path that closes the file. It is used here to decrement the directIO use counter if the thread that is

closing the file opened it for directIO. If running under CFS, the counter is not decremented here. Rather,

the cache mode of the file is modified by a call to advfs_cfs_set_cachepolicy().

The bfAccess.cacheModeLock is seized for exclusive lock to ensure that all in-flight I/Os have ended, to

prevent new I/Os from starting, and to protect the value of the bfAccess.dioCnt field.

3.2.2.1.3 Execution Flow

After the NFS_FREEZE_LOCK but before the check to see if the file stats need to be flushed, the

following will be added:

if (((fflag & FDIRECT) || (((bfSetT *)bfap->bfSetp)->bfSetFlags & BFS_IM_DIRECTIO)) &&

!clu_is_ready())

/* Decrement counter if not on a cluster and the file was opened for directIO */

seize the bfap->cacheModeLock for exclusive access

if (bfap->dioCnt > 0)

bfap->dioCnt--;

release bfap->cacheModeLock

3.2.2.1.4 Other items of note for advfs_close()

The comment on the fflag parameter that it is not used will be removed. This implementation uses the

FDIRECT bit in the file flags when closing the file.

3.2.2.2 Other Changes in this Path

In bs_close_one(), the paragraph that sets or clears the VDIRECTIO bit for regular files on the last close

will be removed. This is no longer needed.

 24

3.2.3 Memory-mapping a file
3.2.3.1 advfs_mmap()

3.2.3.1.1 Interface

The interface to this routine remains unchanged.

3.2.3.1.2 Description

To ensure unambiguous decisions between opening a file for directIO and enabling memory mapping on a

file, the bfAccess.cacheModeLock must be seized for shared access in this path. .

Note that the VMMF flag in vnode.v_flag (indicating that the file has memory-mapping enabled) is

conditionally set before this routine is called. If this routine returns an error, then the flag is cleared.

3.2.3.1.3 Execution Flow

This is a simplified version of the execution flow so that the differences between the cached and directIO

paths are more apparent. Areas of change from the current implementation are in a bold font.

Seize the bfAccess.cacheModeLock for shared access

If (bfap->dioCnt > 1)

/* the file is already open for directIO; return failure */

release the bfAccess.cacheModeLock

return failure

Release the bfAccess.cacheModeLock

Set dirty stats

Return success

 25

3.2.4 Open/Close on a cluster
3.2.4.1 advfs_cfs_set_cachepolicy()

3.2.4.1.1 Interface

statusT

advfs_cfs_set_cachepolicy(vnode *vp, /* pointer to vnode for file */

int flag) /* flag denoting which cache mode to set */

Flag values = ADVFS_DIRECTIO or ADVFS_CACHED; these values will be #defined in advfs_ioctl.h.

3.2.4.1.2 Description

This is a new private interface routine being provided to CFS for the purpose of turning directIO on or off

for a given file. CFS will track the number of times that a given file is opened for directIO, and will use

this routine to tell AdvFS when to enable or disable directIO for the file. This is to eliminate the possibility

of the two layers having directIO counters that get out of synchronization. On a clustered system, the

directIO counter in the access structure will always be either 0 (cached mode) or 1 (directIO mode).

There is no need to wait for DIO-induced I/Os to complete when reverting from directIO to cached I/O

mode here because CFS will ensure that AdvFS does not get any I/O requests when it wants to switch

modes by holding a CFS lock on the file. In addition, the AIO close code waits for in-flight AIO-induced

I/Os to complete.

3.2.4.1.3 Execution Flow

get fsContext and bfAccess structures from vnode pointer

If this is a metadata or reserved file

return EACCES;

seize bfAccess.cacheModeLock for exclusive access

If (flag == ADVFS_DIRECTIO)

If this is a memory mapped file

release bfAccess.cacheMode lock

return EACCES;

If (bfap->dioCnt == 0)

bfap->dioCnt++;

if (contextp->dirty_alloc)

/* flush any storage allocation transactions to disk */

advfs_lgr_flush(bfap->dmnP->ftxLogP, nilLSN, FALSE);

/* flush and invalidate any pages currently in the cache for this file */

fcache_vn_flush(&bfap->bfVnode, 0, bfap->bfaNextFob, NULL,

 FVF_WRITE | FVF_SYNC | FVF_INVAL);

MS_SMP_ASSERT(bfap->dioCnt == 1);

else /* (flag == ADVFS_CACHED) */

MS_SMP_ASSERT(flag == ADVFS_CACHED);

if (bfap->dioCnt > 0) bfap->dioCnt--;

 26

MS_SMP_ASSERT(bfap->dioCnt == 0);

release the bfAccess.cacheModeLock

return EOK

 27

3.2.5 Read Path
3.2.5.1 advfs_fs_read()

3.2.5.1.1 Interface

int

advfs_fs_read(struct vnode *vp, /* in - vnode of file to read */

struct uio *uio, /* in - structure for uiomove */

enum uio_rw rw, /* in - flags: AIO or not */

int ioflag, /* in - includes sync i/o flags */

struct ucred *cred /* in - credentials of caller */

)

3.2.5.1.2 Description

This function is mainline code for the read() system call in AdvFS. All reads of normal files (not metadata

or reserved files) for directIO must come through this routine. If a file is open for cached I/O, the UFC

routines are used to retrieve the data. If the file is open for directIO, then the directIO-specific routines are

used as much as possible to avoid bringing pages into the UFC.

3.2.5.1.3 Execution Flow

This is a simplified version of the execution flow so that the differences between the cached and directIO

paths are more apparent. Areas of change from the current implementation are in a bold font.

seize the bfap->cacheModeLock for shared access

seize the file lock for shared access

setup read offset and # bytes to read

Determine if the file is opened for directIO (DIO) access; this is true if (bfap->dioCnt > 0)

Loop until all bytes read (bytes_left == 0):

if (!DIO)

fcache_as_map();

fcache_as_uiomove();

if bytes still left call fcache_as_unmap();

else /* directIO */

bytes_read = 0;

error = advfs_fs_read_direct(bfap, uio, &bytes_read);

if (error) break;

bytes_left -= bytes_read;

if (!DIO)

If necessary, call fcache_as_fault() to start readahead.

fcache_as_unmap()

Update st_atime in the file's stat structure

 28

if (!DIO)

If FRSYNC & FDSYNC set call fcache_vn_flush() to flush pending writes.

If FSYNC set, call fs_update_stats() to update metadata.

release file_lock

release the bfap->cacheModeLock

return (return value)

3.2.5.2 advfs_fs_read_direct()

3.2.5.2.1 Interface

static statusT

advfs_fs_read_direct(bfAccessT *bfap, /* in: access structure */

struct uio *uio, /* in: uio struct */

size_t *bytes_read /* out: # bytes read */

)

3.2.5.2.2 Description

This routine is responsible for reading data from disk into an application buffer when a file is open for

directIO. There is no usage of data that is already in the UFC, primarily because we don’t have a

mechanism for knowing what data already exists in the UFC. The requested transfer may or may not be

aligned on sector boundaries. If the request is aligned, then the performance will be better than if it is not

aligned.

If there are multiple uio->uio_iov vectors, then each is handled on a single pass through this routine, and

advfs_fs_read() will call back in multiple times until the requests in all of the vectors have been handled.

3.2.5.2.3 Execution Flow

MS_SMP_ASSERT(uio->uio_iov->iov_len != 0); /* handle multiple uio_iov vectors correctly */

*bytes_read = 0;

if (uio->uio_old_offset == UIO_AIORW) /* handle AIO requests */

iov = &uio->uio_iov[1];

aio_bp = (struct buf *)uio->uio_iov[1].iov_base;

/* If an application requests an extremely large directIO read, the call to vaslockpages() later to wire the

application’s memory buffer could hang because we try to wire too many pages. To prevent that, we

artificially limit the size of a directIO transfer here to a predetermined value, initially planned to be 1 Mb.

This value will be saved in a global variable that could be modified via debugger if necessary, rather than

making this a #defined value. If the read size is limited here, advfs_fs_read() will detect that the number of

bytes requested was not transferred, and will call back into this routine to transfer the next set of bytes.

This process would continue until the original I/O request is fulfilled. This limitation will not be done for

calls from the AIO layer since the application buffer will already be wired. */

If ((!AIO) && (request > artificial size limit))

set request size to artificial size limit.

/* seize active range for sectors underlying this IO.*/

 29

allocate an active range structure by calling advfs_bs_get_actRange()

actRange.arStartFob = ADVFS_OFF_TO_FIRST_FOB_IN_VDBLK (uio->uio_offset);

actRange.arEndFob = ADVFS_OFF_TO_LAST_FOB_IN_VDBLK (uio->uio_offset + uio->uio_iov-

>iov_len);

insert_actRange_onto_list();

#ifdef ADVFS_DEBUG

/* Check for any cached pages in this range if running in a debug environment. This is a test that there

are no pages in the UFC for the range about to be written via directIO. Having stale cache pages that

are being bypassed could result in data contamination. So this is a test to be sure that there are no

paths that allowed UFC pages to be associated with this range for a file opened for directIO.

Normally there will be no UFC pages for this file. This is assured by flushing and invalidating when

the file is opened for directIO, and by having any operation (such as migrate) flush any pages to disk

if it brings them into the cache for a directIO-enabled file. The following call to fcache_vn_info()

merely tells us if there are UFC pages associated with this file. However, we do not have any way of

telling if they are within the range we have locked, so there remains the possibility that another

thread is migrating in another region of the file, and we will unnecessarily call the invalidate for our

range. */

/* Initialize a structure of fcache_vninfo_t type */

fcache_info.fvi_pages = 0;

if ((fcache_vn_info(bfap->bfVp, FVINFO_PAGES, &fcache_info) == EINVAL) ||

fcache_info.fvi_pages != 0)

/* Set 2 special (new) flags in the fs_pvt_params structure that tell advfs_putpage() to

ASSERT if either clean or dirty pages are encountered in this file range. */

fs_pvt_param.app_flags = APP_ASSERT_NO_DIRTY | APP_ASSERT_NO_CLEAN

fcache_vn_invalidate(vp, byte offset of start of active range, size of active range,

&fs_pvt_param, FVI_INVAL);

#endif ADVFS_DEBUG

release file lock

/* If this read is not invoked by the AIO layer, wire the application buffer */

if (!AIO)

sts = bufpin(ldusid(buffer), user’s buffer address, request size, B_READ);

if (sts != EOK)

if (! luseracc(ldusid(buffer), user’s buffer addr, request size, B_WRITE)

status = EFAULT; /* no access rights */

goto cleanup;

vas_read_lock(p_vas(u.u_procp));

Loop until the total request is locked:

vaslockpages(user’s buffer address, &request size, flags, B_READ, FALSE, NULL);

vas_unlock(p_vas(u.u_procp));

else

wired_via_bufpin = TRUE;

 30

If (there is a leading unaligned region)

/* Use advfs_get_blkmap_in_range() to see if this sector has storage or is in a hole. */

sts = advfs_get_blkmap_in_range(bfap, bfap->xtnts.xtntMap, start of active range, DEV_BSIZE,

&storage_blkmap, &no_of_maps, RND_NONE, EXB_ONLY_STG,

XTNT_WAIT_OK);

If (sts)

MS_SMP_ASSERT(sts != E_OFFSET_NOT_BLK_ALIGNED);

status = sts;

goto cleanup;

if this region is in a hole (no_of_maps == 0), bzero() the region in the application buffer

else /* there is backing store, so read the data from disk into application buffer */

sts = advfs_dio_unaligned_xfer(bfap = bfap

addr = start of application buffer

offset = (file offset % DEV_BSIZE)

nbyte = DEV_BSIZE - (file offset % DEV_BSIZE)

vdIndex = storage_blkmap->ebd_vd_index,

lbn = storage_blkmap->ebd_vd_blk;

stg_fobs = 0

flag = B_READ)

if (sts)

status = sts;

goto cleanup;

else

adjust # bytes remaining, uio->uio_iov->iov_base and iov_len for the # bytes just read

*bytes_read += nbyte

advfs_free_blkmaps(&storage_blkmap);

If (there is a trailing unaligned region)

/* Use advfs_get_blkmap_in_range() to see if this sector has storage or is in a hole. */

tmp_offset = ADVFS_ALIGN_OFFSET_TO_VDBLK_DOWN(uio->uio_offset, uio->uio_iov-

>iov_len);

sts = advfs_get_blkmap_in_range(bfap, bfap->xtnts.xtntMap, &tmp_offset, DEV_BSIZE,

&storage_blkmap, &no_of_maps, RND_NONE, EXB_ONLY_STG,

XTNT_WAIT_OK);

If (sts)

MS_SMP_ASSERT(sts != E_OFFSET_NOT_BLK_ALIGNED);

status = sts;

goto cleanup;

if this region is in a hole (no_of_maps == 0), bzero() the region in the application buffer

else /* there is backing store, so read the data from disk into application buffer */

 31

MS_SMP_ASSERT(no_of_maps == 1);

advfs_dio_unaligned_xfer(bfap = bfap

addr = start of trailing region in application buffer

offset = 0

nbyte = original request size – (# bytes read in leading unaligned

request + bytes in remaining full sector transfers)

vdIndex = storage_blkmap->ebd_vd_index,

lbn = storage_blkmap->ebd_vd_blk

stg_fobs = 0

flag = B_READ)

if (sts)

/* If an error occurs during the trailing transfer, we need to continue on and do any aligned

transfer, and then account for the success or failure of the trailing request at the end */

trailing_bytes_read = 0;

else

adjust # bytes remaining to be read for the # bytes just read

trailing_bytes_read = nbyte

advfs_free_blkmaps(&storage_blkmap);

Adjust number of bytes that still need to be read, and possibly starting application buffer address based on

unaligned reads, if any.

If there are no more bytes to be transferred, goto cleanup. /* entire read satisfied in unaligned transfers */

/* setup and start IO for aligned region */

/* This starts the ‘typical’ code path: for performing aligned I/O requests */

/* Allocate and initialize the ioanchor structure */

ioap = advfs_bs_get_ioanchor(TRUE);

ioap->anchr_iocounter = 0;

ioap->anchr_flags = IOANCHORFLG_DIRECTIO;

ioap->anchr_flags |= (!AIO) ? IOANCHORFLG_KEEP_ANCHOR : NULL;

ioap->anchr_actrangep = (AIO) ? active range pointer : NULL;

ioap->anchr_aio_bp = aio_bp; /* AIO buf struct if using AIO */

ioap->anchr_io_status = 0;

ioap->anchr_min_req_offset = file offset of aligned read

ioap->anchr_min_err_offset = file offset of aligned read + size of aligned read

/* Get the extent maps for the aligned region of the file Retrieve both storage and hole information. */

sts = advfs_get_blkmap_in_range(bfap, bfap->xtnts.xtntMap, start of aligned region, length of aligned

region, &storage_blkmap, NULL, RND_NONE, EXB_COMPLETE,

XTNT_WAIT_OK);

If (sts)

 32

MS_SMP_ASSERT(sts != E_OFFSET_NOT_BLK_ALIGNED);

status = sts;

goto cleanup;

/* Loop through the extent map structures; generate a single IO for each contiguous extent on a given

disk provided that it is smaller than the preferred transfer size of the disk. A given contiguous extent

may be broken up into multiple I/Os if it exceeds preferred transfer size. */

For (each extent inside the aligned I/O region):

if (current extent is a hole)

bzero() the appropriate portion of the application buffer

update user's buffer addr and block number

else /* there is storage; generate buf struct for IO */

/* allocate and initialize the buf structure. The buf structures for each ioanchor will be

chained together so that we can start an I/O for each after they have all been generated. */

bp = advfs_bs_get_buf(TRUE);

 bp->b_un.b_addr = (caddr_t)(user's buffer address)

bp->b_spaddr = ldsid(bp->b_un.b_addr);

bp->b_blkno = starting logical disk block number

bp->b_offset = current file offset for this I/O

bp->b_foffset = current file offset for this I/O

bp->b_bcount = byte count for this transfer

bp->b_vp = bfap->bfVp;

bp->b_proc = u.u_procp;

bp->b_flags = B_READ | B_RAW | B_PHYS

bp->b_flags |= (AIO) ? B_ASYNC : B_SYNC;

/* The next assignment temporarily saves the vdT pointer for each buf structure. This is

needed for passing to advfs_bs_startio(), but that routine will overwrite the buf.b_private

field for its own purposes. */

bp->b_private = (void *)vdp;

If this transfer is larger than the preferred transfer size, be sure to break it down into a series

of smaller transfers

Link the buf structures together here to form a null-terminated forward-linked list. This is

used to keep track of the buf structures so we can walk through them and start an I/O for each.

Use the buf.b_nextchain field.

ioap-> anchr_iocounter++

Adjust application buffer address, file offset, and disk block number based on the buf structs

already set up.

For each I/O (buf structure) set up in previous loop:

vdp = (vdT *)bp->b_private;

advfs_bs_startio(bp, ioap, NULL, bfap, vdp, 0) /* start each I/O */

If (!AIO)

 33

/* wait for I/O to complete */

spin_lock(&ioanchorp->anchr_lock);

cv_wait(&ioanchorp->anchr_cvwait, &ioanchorp->anchr_lock, CV_SPINLOCK, CV_NO_RELOCK);

/* Check the status of the whole I/O */

if (ioap->anchr_io_status != EOK)

status = ioap->anchr_io_status;

aligned_bytes_read = ioap->anchr_min_err_offset;

trailing_bytes_read = 0;

else /* AIO */

iov->iov_len = 1; /* records start of asynch IO for advfs_strategy */

*bytes_read += trailing_bytes_read + aligned_bytes_read;

Adjust uio->uio_offset and uio->uio_resid to reflect the # bytes successfully transferred.

cleanup:

seize file_lock for shared access

If (no asynchronous I/Os were started)

/* These all get cleaned up in I/O completion path for AIO */

release the active range by calling advfs_bs_free_actRange()

free the active range structure by calling advfs_bs_free_actRange()

if (ioanchor) advfs_bs_free_ioanchor(ioanchor, M_WAITOK);

If (we wired the application pages above)

if (wired_via_bufpin)

bufunpin(ldusid(buffer), user’s buffer address, request size, B_READ);

else

vasunlockpages(user’s buffer address, request size, 0, ldusid(user’s buffer), NULL,

B_READ);

/* Handle transfers with multiple uio->uio_iov vectors */

if (uio->uio_iovcnt > 1 && uio->uio_iov->iov_len == 0)

uio->uio_iov++;

uio->uio_iovcnt--;

if (storage_blkmap) advfs_free_blkmaps(&storage_blkmap);

return status

 34

3.2.6 Write Path
3.2.6.1 advfs_fs_write()

3.2.6.1.1 Interface

int

advfs_fs_write(struct vnode *vp, /* in - vnode of file to write */

struct uio *uio, /* in - structure for uiomove */

enum uio_rw rw, /* in - read/write flags */

int ioflag, /* in - flags - append, sync, etc. */

struct ucred *cred /* in - credentials of caller */

)

3.2.6.1.2 Description

This function is mainline code for the write() system call in AdvFS. All writes of normal files (not

metadata or reserved files) for directIO must come through this routine. If the file is open for directIO, then

the directIO-specific routines are used as much as possible to avoid bringing pages into the UFC.

3.2.6.1.3 Execution Flow

This is a simplified version of the execution flow so that the differences between the cached and directIO

paths are more apparent. Areas of change from the current implementation are in a bold font.

seize the bfap->cacheModeLock for shared access

seize file_lock for shared or exclusive access depending on IO_APPEND mode

advfs_fs_check_write_limits(); /* verify write request against limits */

Initialize filesytem private information for advfs_getpage().

Determine if the file is opened for directIO (DIO) access; this is true if (bfap->dioCnt > 0)

Loop while bytes left to write:

if (!DIO)

fcache_as_map()

fcache_as_uiomove()

increment cumulative_bytes_written and next offset

decrement # of bytes left

if bytes still left call fcache_as_unmap()

else /* DIO */

error = fs_write_direct(bfap, uio, &bytes_written, ioflag);

if (error) break;

increment cumulative_bytes_written and next_write_offset

decrement # of bytes left

ensure we don't loop again if we are in an AIO call.

check for errors or partial write

 35

if (!DIO)

Check to see if we want to start a read-ahead.

fcache_as_unmap() for final segment

update bfap->bfaLastWrittenFob;

Update st_mtime and st_ctime in the file's stat structure

Update file length if needed

If FSYNC or FDSYNC is set:

If (!DIO)

fcache_vn_flush(); /* synchronously write the data */

if FSYNC or allocation has happened call fs_update_stats()

release file lock

release the bfap->cacheModeLock

return

3.2.6.2 advfs_fs_write_direct()

3.2.6.2.1 Interface

static statusT

advfs_fs_write_direct(struct bfAccess bfap /* in: bfAccess structure for this file */

struct uio *uio, /* in: uio struct describing transfer request */

size_t *bytes_written, /* out: # bytes written */

int ioflag /* in - flags – needed for IO_APPEND. */

)

3.2.6.2.2 Description

This routine is responsible for writing data to disk from an application buffer when a file is open for

directIO. The UFC is bypassed on the data transfer. The requested transfer may or may not be aligned on

sector boundaries. If the request is aligned, then the performance will be better than if it is not aligned.

If there are multiple uio->uio_iov vectors, then each is handled on a single pass through this routine, and

advfs_fs_write() will call back multiple times until all of the bytes in all of the vectors have been written.

3.2.6.2.3 Execution Flow

When this routine is called, the file lock can be held for either shared or exclusive access. It will be held

for exclusive access only if we are in IO_APPEND mode.

The following is an outline of the code flow through this routine:

if (uio->uio_old_offset == UIO_AIORW) /* handle AIO requests */

iov = &uio->uio_iov[1];

aio_bp = (struct buf *)uio->uio_iov[1].iov_base;

MS_SMP_ASSERT(uio->uio_iov->iov_len != 0); /* handle multiple uio_iov vectors correctly */

 36

/* If an application requests an extremely large directIO write, the call to vaslockpages() later to wire the

application’s memory buffer could hang because we try to wire too many pages. To prevent that, we

artificially limit the size of a directIO transfer here to a predetermined value, initially planned to be 1 Mb.

This value will be saved in a global variable that could be modified via debugger if necessary, rather than

making this a #defined value. If the write size is limited here, advfs_fs_write() will detect that the number

of bytes requested was not transferred, and will call back into this routine to transfer the next set of bytes.

This process would continue until the original I/O request is fulfilled. This limitation will not be done for

calls from the AIO layer since the application buffer will already be wired. */

If ((!AIO) && (request > artificial size limit))

set request size to artificial size limit.

allocate an active range structure by calling advfs_bs_get_actRange()

/* If we are in IO_APPEND mode and there is an active range spanning the current EOF, then we need to

take out the active range now to protect the EOF value before we add storage. */

retry:

if (ioflag & IO_APPEND && actRange_spans(bfap, bfap->file_size))

save current value of EOF (bfap->file_size)

initialize range from current EOF to infinity

arStartFob =ADVFS_OFF_TO_FIRST_FOB_IN_VDBLK (bfap->file_size);

arEndFob = ~0L;

insert_actRange_onto_list();

uio->uio_offset = bfap->file_size; /* may have changed while we waited for the range */

if (current EOF < saved EOF)

release this active range

go back to ‘retry’ and get active range using new EOF

active_range_held = 1; /* remember for later */

initialize the advfs_pvt_param struct:

bzero the pvt_param structure (declared on the stack)

pvt_param.app_total_bytes = uio->uio_iov->iov_len;

pvt_param.app_starting_offset = uio->uio_offset;

pvt_param.app_stg_start_fob = 0;

pvt_param.app_stg_end_fob = 0;

pvt_param.app_flags = APP_ADDSTG_NOCACHE;

/* Add storage and check snapshotting requirements. The APP_ADDSTG_NOCACHE flag is new, and

indicates to getpage that the intent is to add storage within the range where needed, but not to bring pages

into the cache for the regions needing new storage. The snapshotting may bring pages into the cache;

this is OK. Those pages will be invalidated shortly. The new_stg_xxx_fob fields in the

advfs_pvt_param structure allow getpage to return the range of newly allocated storage. */

if (racy_check_for_clones || the fileset is mounted for object safety)

/* The snapshot check is not designed yet; will do this with the snapshotting work. If we get here, it is

possible that there is a need to move storage to a snapshotted file, and that will require a VM map, so

we will go through the VM interface, even though the actual intent is to get into advfs_getpage().

 37

Any races with threads creating snapshots will be dealt with in advfs_getpage() and will be

documented in the snapshot design. */

fcmap = fcache_as_map(bfap->dmnP->userdataVas, vp, uio->uio_offset, uio->uio_iov->iov_len, 0,

FAM_WRITE, &status);

fcache_as_fault(fcmap, address of user's buffer, uio->uio_iov->iov_len, &sts, (uintptr_t)&pvt_param,

FAF_GPAGE | FAF_WRITE | FAF_SYNC);

fcache_as_unmap(fcmap, NULL, 0, FAU_FREE);

else /* no snapshot possible; use getpage to add storage */

sts = advfs_getpage(NULL, vp, uio->uio_offset, uio->uio_iov->iov_len, FCF_DFLT_WRITE,

(uintptr_t)&pvt_param, 0);

if (sts != EOK && sts != ENOSPC)

goto cleanup;

If we get ENOSPC back from fcache_as_fault() or advfs_getpage(), then we did not get all the storage

which was requested. The range of new storage added is returned in the pvt_param.app_stg_xxx_fob

fields. Adjust the range of the original request to stay within the range of allocated storage. Be sure that

the requested range that lies outside the storage is reflected in the uio.uio_resid returned to the caller.

Adjust the # of bytes to be written if we didn’t get as much storage as we requested. This will be reflected

in the ‘size’ field returned from either advfs_getpage() or the fault routine.

/* Check if storage was added to the file before or after the actual requested IO range. This can happen

since storage will be allocated in chunks larger than a single fob. If the IO request starts in the middle of

the first newly-allocated chunk, the new storage that lies before the application data must be zero’d on

disk. The same is true at the end of the IO request range. The entire newly-allocated range of storage

must also be included in our active range. We will also check for data alignment at this time since we

will handle zeroing new storage outside of the original IO request and unaligned data merging at the

same time.*/

If (pvt_param.app_stg_end_fob)

/* We know storage was added if pvt_param.app_stg_end_fob is non-zero since the starting fob can be

0, but we can't add storage with just one fob. Determine the span of the active range. It must

include all new storage, which will be greater than or equal to the original transfer range requested.

*/

if (!active_range_held)

actRange.arStartFob = ADVFS_OFF_TO_FIRST_FOB_IN_VDBLK(

pvt_param.app_stg_start_fob * ADVFS_FOB_SZ);

actRange.arEndFob =ADVFS_OFF_TO_LAST_FOB_IN_VDBLK(

pvt_param.app_stg_end_fob * ADVFS_FOB_SZ);

/* First check for leading storage and alignment */

if (!(pvt_param.app_starting_offset % DEV_BSIZE) && (pvt_param.app_stg_start_fob ==

ADVFS_OFFSET_TO_FOB_DOWN (pvt_param.app_starting_offset)))

/* The application data aligns with start of new storage, so no special zeroing required */

new_stg_leading_fobs = 0;

else

/* The application data does not align with the start of new storage, so calculate the # of fobs that

must be zero-filled. This will include the fob into which the unaligned data will be merged. */

 38

new_stg_leading_fobs = (ADVFS_OFFSET_TO_FOB_DOWN(pvt_param.app_starting_offset) -

pvt_param.app_stg_start_fob) + 1;

/* Now check trailing storage and alignment */

if (!((pvt_param.app_starting_offset +pvt_param.app_total_bytes) % DEV_BSIZE) &&

(pvt_param.app_stg_end_fob ==ADVFS_OFFSET_TO_FOB_DOWN(

pvt_param.app_starting_offset + pvt_param.app_total_bytes)

/* The application data aligns with the end of new storage, so no zeroing here. */

new_stg_trailing_fobs = 0;

else

/* The application data does not align with the end of new storage, so calculate the # of fobs that

must be zero-filled. This will include the fob into which the unaligned data will be merged. */

new_stg_trailing_fobs = (pvt_param.app_stg_end_fob -

ADVFS_OFFSET_TO_FOB_DOWN(pvt_param.app_starting_offset +

pvt_param.app_total_bytes)) + 1;

else /* there is no new storage */

new_stg_leading_fobs = 0;

new_stg_trailing_fobs = 0;

if (!active_range_held)

actRange. arStartFob = ADVFS_OFF_TO_FIRST_FOB_IN_VDBLK (uio->uio_offset);

actRange. arEndFob =ADVFS_OFF_TO_LAST_FOB_IN_VDBLK (uio->uio_offset + uio-

>uio_iov->iov_len);

/* At this point, the variables new_stg_leading_fobs and new_stg_trailiing_fobs will be zero if either no

new storage was added or if the new storage will be completely overwritten by the application data. */

/* If we don’t already have an active range, seize it now. This is the typical situation. */

if (! active_range_held)

insert_actRange_onto_list(bfap, actRange, fsContextp);

#ifdef ADVFS_DEBUG

/* Check for any cached pages in this range if running in a debug environment. This is a test that there

are no pages in the UFC for the range about to be written via directIO. Having stale cache pages that

are being bypassed could result in data contamination. So this is a test to be sure that there are no

paths that allowed UFC pages to be associated with this range for a file opened for directIO.

Normally there will be no UFC pages for this file. This is assured by flushing and invalidating when

the file is opened for directIO, and by having any operation (such as migrate) flush any pages to disk

if it brings them into the cache for a directIO-enabled file. The following call to fcache_vn_info()

merely tells us if there are UFC pages associated with this file. However, we do not have any way of

telling if they are within the range we have locked, so there remains the possibility that another

thread is migrating in another region of the file, and we will unnecessarily call the invalidate for our

range. */

/* Initialize a structure of fcache_vninfo_t type */

fcache_info.fvi_pages = 0;

if ((fcache_vn_info(bfap->bfVp, FVINFO_PAGES, &fcache_info) == EINVAL) ||

 39

fcache_info.fvi_pages != 0)

/* Set 2 special (new) flags in the fs_pvt_params structure that tell advfs_putpage() to

ASSERT if either clean or dirty pages are encountered in this file range. */

fs_pvt_param.app_flags = APP_ASSERT_NO_DIRTY | APP_ASSERT_NO_CLEAN

fcache_vn_invalidate(vp, byte offset of start of active range, size of active range,

&fs_pvt_param, FVI_INVAL);

#endif ADVFS_DEBUG

Check whether the file lock is held for shared or exclusive access; will need to re-seize in same mode later.

release the file lock

/* If this write is not invoked by the AIO layer, wire the application buffer, (The AIO layer does this for

us). */

if (!AIO)

sts = bufpin(ldusid(buffer), user’s buffer address, request size, B_WRITE);

if (sts != EOK)

if (! luseracc(ldusid(buffer), user’s buffer addr, request size, B_READ)

status = EFAULT; /* no access rights */

goto cleanup;

vas_read_lock(p_vas(u.u_procp));

Loop until the total request is locked:

vaslockpages(user’s buffer address, &request size, flags, B_WRITE, FALSE, NULL);

vas_unlock(p_vas(u.u_procp));

else

wired_via_bufpin = TRUE;

/* Handle any zero-filling of leading newly-allocated storage or unaligned request now. */

if (new_stg_leading_fobs != 0 || there is a leading unaligned region)

if (leading unaligned region)

bytes_to_transfer = DEV_BSIZE - (file offset % DEV_BSIZE);

else

bytes_to_transfer = 0;

/* Use advfs_get_blkmap_in_range() to get the extent map for this sector. */

sts = advfs_get_blkmap_in_range(bfap, bfap->xtnts.xtntMap, file offset, DEV_BSIZE,

&storage_blkmap, &no_of_maps, RND_NONE, EXB_ONLY_STG,

XTNT_WAIT_OK);

If (sts)

MS_SMP_ASSERT(sts != E_OFFSET_NOT_BLK_ALIGNED);

status = sts;

goto cleanup;

/* This call takes care of zero-filling newly-allocated storage that will not be overwritten as well as

merging unaligned data with the underlying data on disk. */

 40

sts = advfs_dio_unaligned_xfer(bfap,

start of application buffer,

(file offset % DEV_BSIZE),

bytes_to_transfer,

storage_blkmap->ebd_vd_index,

storage_blkmap->ebd_vd_blk,

new_stg_leading_fobs,

B_WRITE);

if (sts)

status = sts;

*bytes_written = 0;

goto cleanup;

else

*bytes_written += nbyte

advfs_free_blkmaps(&storage_blkmap);

Adjust buffer addresses and count of bytes remaining to transfer.

/* Handle any zero-filling of trailing newly-allocated storage or unaligned request now. */

if (new_stg_trailing_fobs != 0 || there is a trailing unaligned region)

if (trailing unaligned region)

bytes_to_transfer = total transfer size - (# bytes in leading unaligned request + bytes in full sector

transfers)

else

bytes_to_transfer = 0;

/* Use advfs_get_blkmap_in_range() to get the extent map for this sector. */

tmp_offset = ADVFS_ALIGN_OFFSET_TO_VDBLK_DOWN(req_xfer_offset +req_xfer_size);

sts = advfs_get_blkmap_in_range(bfap, bfap->xtnts.xtntMap, &tmp_offset, DEV_BSIZE,

&storage_blkmap, &no_of_maps, RND_NONE, EXB_ONLY_STG,

XTNT_WAIT_OK);

If (sts)

MS_SMP_ASSERT(sts != E_OFFSET_NOT_BLK_ALIGNED);

status = sts;

goto cleanup;

/* This call takes care of zero-filling newly-allocated storage that will not be overwritten as well as

merging unaligned data with the underlying data on disk. */

sts = advfs_dio_unaligned_xfer(bfap,

start of trailing region in application buffer,

0,

bytes_to_transfer,

 41

storage_blkmap->ebd_vd_index,

storage_blkmap->ebd_vd_blk,

new_stg_trailing_fobs,

B_WRITE);

if (sts)

/* If an error occurs during the trailing transfer, we need to continue on and do any aligned

transfer, and then account for the success or failure of the trailing request at the end */

trailing_bytes_written = 0;

else

trailing_bytes_written = nbyte

advfs_free_blkmaps(&storage_blkmap);

Adjust buffer addresses and count of bytes remaining to transfer.

/* Setup and start the aligned IOs, if any remain */

if (there are data left to transfer)

/* This starts the ‘typical’ code path: for performing aligned I/O requests */

/* allocate and initialize the ioanchor structure. */

ioap = advfs_bs_get_ioanchor(TRUE);

ioap->anchr_iocounter = 0;

ioap->anchr_flags = IOANCHORFLG_DIRECTIO

ioap->anchr_flags |= (AIO) ? 0 :| IOANCHORFLG_KEEP_ANCHOR

ioap->anchr_actrangep = (AIO) ? active range pointer : NULL;

ioap->anchr_aio_bp = aio_bp; /* AIO buf struct if using AIO */

ioap->anchr_io_status = 0;

ioap->anchr_min_req_offset = file offset of aligned write

ioap->anchr_min_err_offset = file offset of aligned write + size of aligned write

/* Get the extent maps for the aligned region of the file Retrieve both storage and hole information. */

sts = advfs_get_blkmap_in_range(bfap, bfap->xtnts.xtntMap, start of aligned region, length of aligned

region, &storage_blkmap, NULL, RND_NONE, EXB_COMPLETE,

XTNT_WAIT_OK);

If (sts)

MS_SMP_ASSERT(sts != E_OFFSET_NOT_BLK_ALIGNED);

status = sts;

goto cleanup;

/* Loop through the extent map structures; generate a single IO for each contiguous extent on a given

disk provided that it is smaller than the preferred transfer size of the disk. A given contiguous extent

may be broken up into multiple I/Os if it exceeds preferred transfer size. */

For (each extent inside the aligned I/O region):

/* allocate and initialize the buf structure. The buf structures for each ioanchor will be chained

together so that we can start an I/O for each after they have all been generated. */

 42

bp = advfs_bs_get_buf(TRUE);

bp->b_un.b_addr = (caddr_t)(user's buffer address)

bp->b_spaddr = ldsid(bp->b_un.b_addr);

bp->b_blkno = starting logical disk block number

bp->b_offset = current file offset for this I/O

bp->b_foffset = current file offset for this I/O

bp->b_bcount = byte count for this transfer

bp->b_vp = bfap->bfVp;

bp->b_proc = process structure doing the IO

bp->b_flags = B_WRITE | B_RAW | B_PHYS;

bp->b_flags |= (AIO) ? B_ASYNC : B_SYNC;

/* The next assignment temporarily saves the vdT pointer for each buf structure. This is needed

for passing to advfs_bs_startio(), but that routine will overwrite the buf.b_private field for its own

purposes. */

bp->b_private = (void *)vdp;

If this transfer is larger than the preferred transfer size, be sure to break it down into a series of

smaller transfers, adjusting buffer addresses and disk lbn for each transfer.

Link the buf structures together here to form a null-terminated forward-linked list. This is used to

keep track of the buf structures so we can walk through them and start an I/O for each. Use the

buf.b_nextchain field.

ioap-> anchr_iocounter++

Adjust application buffer address, file offset, and disk block number based on the buf structs

already set up.

For each I/O (buf structure) set up in previous loop:

vdp = (vdT *)bp->b_private;

advfs_bs_startio(bp, ioap, NULL, bfap, vdp, 0) /* start each I/O */

If (!AIO)

/* For non-AIO transfers, we must wait for the I/Os to complete and then cleanup. Transfers done via

AIO will be cleaned up in the IO completion path. */

/* wait for I/O */

spin_lock(&ioanchorp->anchr_lock);

cv_wait(&ioanchorp->anchr_cvwait, & ioanchorp->anchr_lock, CV_SPINLOCK,

CV_NO_RELOCK);

/* Check the status of the whole I/O */

if (ioap->anchr_io_status != EOK)

status = ioap->anchr_io_status;

aligned_bytes_written = ioap->anchr_min_err_offset;

trailing_bytes_written = 0;

else

iov->iov_len = 1; /* records start of asynch IO for advfs_strategy */

 43

*bytes_written += trailing_bytes_written + aligned_bytes_written;

cleanup:

Adjust uio->uio_offset and uio->uio_resid to reflect the # bytes successfully transferred.

seize file_lock for access type recorded earlier

If no asynchronous I/Os were started

release the active range

free the active range structure

free the ioanchor structure

/* Handle I/O requests with multiple uio_iov vectors */

if (uio->uio_iovcnt > 1 && uio->uio_iov->iov_len == 0)

uio->uio_iov++;

uio->uio_iovcnt--;

if (app_pages_wired) /* unwire user’s pages if we wired them above */

if (wired via bufpin)

bufunpin(ldusid(buffer), user’s buffer address, request size, B_WRITE);

else

vasunlockpages(user’s buffer address, request size, 0, ldusid(user’s buffer), NULL,

B_WRITE);

if (storage_blkmap)

advfs_free_blkmaps(&storage_blkmap);

return status

 44

3.2.7 Routines common to directIO Read and Write paths
3.2.7.1 advfs_dio_unaligned_xfer()

3.2.7.1.1 Interface

static statusT

advfs_dio_unaligned_xfer(bfAccessT *bfap /* in: file’s access structure */

caddr_t addr /* in: address of application buffer */

off_t offset /* in: byte offset in sector to start transfer */

size_t nbyte /* in: # of bytes of data to transfer; may be

 zero if being called to zero-fill fobs on

disk in newly-allocated storage */

vdIndexT vdIndex /* in: index of disk to be read/written */

bf_vd_blk_t lbn /* in: logical disk block to read/write */

bf_fob_t stg_fobs /* in: # of fobs in newly-allocated storage

that require some amount of zeroing. If

there is unaligned data, it will go in one of

these fobs. This value will only be non-

zero on write operations. */

int flag /* in: B_READ/B_WRITE flag */

)

3.2.7.1.2 Description

This routine is called to handle unaligned data transfers and zero-filling of newly allocated storage that will

not be overwritten by the application data. For an unaligned read, this routine is responsible for reading the

sector from disk and transferring the appropriate subset of that data into the application buffer. For an

unaligned write, this routine reads the sector from disk, merges the appropriate bytes from the application

buffer with that data, and then rewrites the sector back to disk synchronously. However, if the stg_fobs

parameter is non-zero, this routine is being called to zero-fill and possibly merge some application data into

a newly-allocated region on the disk. In this case, we do not need to read the existing (uninitialized) data

from disk; we can simply overwrite the disk blocks.

3.2.7.1.3 Execution Flow

The following is an outline of the code flow through this routine:

MS_SMP_ASSERT(nbyte || stg_fobs); /* one should be non-zero */

/* Allocate a zero’d temporary buffer */

bufsize = MAX(DEV_BSIZE, ((stg_fobs/ADVFS_FOBS_PER_DEV_BSIZE) * ADVFS_FOB_SZ));

tmpbuf = ms_malloc(bufsize);

/* determine if we need to read the sectors from disk */

write_only = (!B_READ && stg_fobs != 0);

ioap = advfs_bs_get_ioanchor(TRUE); /* allocate the ioAnchor structure */

bp = advfs_bs_get_buf(TRUE); /* allocate the buf structure */

vdp = VD_HTOP(vdIndex, bfap->dmnP);

 45

if (!write_only) /* read op or first part of read/modify/write op */

/* Initialize the ioAnchor structure */

ioap->anchr_iocounter = 1

ioap->anchr_flags = IOANCHORFLG_DIRECTIO | IOANCHORFLG_KEEP_BUF |

IOANCHORFLG_KEEP_ANCHOR;

/* Initialize the buf structure */

bp->b_un.b_addr = (caddr_t)(tmpbuf);

bp->b_spaddr = ldsid(bp->b_un.b_addr);

bp->b_blkno = lbn;

bp->b_offset = (bufp->b_blkno << DEV_BSHIFT);

bp->b_bcount = bufsize;

bp->b_vp = bfap->bfVp;

bp->b_proc = u.u_procp;

bp->b_flags = B_READ | B_RAW | B_PHYS | B_SYNC;

/* read the data */

advfs_bs_startio(bp, ioap, NULL, bfap, vdp, 0);

/* wait for IO to complete */

spin_lock(&ioap->anchr_lock);

cv_wait(&ioap->anchr_cvwait, &ioap->anchr_lock, CV_SPINLOCK, CV_NO_RELOCK);

if ((bp->b_flags & B_ERROR) && (bp->b_error != 0))

/* There was an error on this IO */

status = bp->b_error;

goto cleanup;

/* If this is a READ operation, copy data to application buffer */

if (flag & B_READ)

bcopy(tmpbuf+offset, addr, nbyte);

goto cleanup;

/* We are here if we must write some data to disk */

if (nbyte) /* there is data to merge */

/* calculate locaton in temporary buffer to write application data, then copy it If (offset == 0) then

this is a trailing write and there is no need to adjust for the # storage fobs passed in for the merge. */

toaddr = (offset) ? (tmpbuf+((stg_fobs-1)*ADVFS_FOB_SZ)+offset) : tmpbuf;

bcopy(addr, toaddr, nbyte);

/* (Re)initialize the ioAnchor and buf structures */

ioap->anchr_iocounter = 1

ioap->anchr_flags = IOANCHORFLG_DIRECTIO | IOANCHORFLG_KEEP_BUF |

IOANCHORFLG_KEEP_ANCHOR;

 46

bp->b_un.b_addr = (caddr_t)(tmpbuf)

bp->b_spaddr = ldsid(bp->b_un.b_addr);

bp->b_blkno = lbn

bp->b_offset = (bufp->b_blkno << DEV_BSHIFT);

bp->b_bcount = bufsize; /* # fobs (in bytes) calc above */

bp->b_vp = bfap->bfVp

bp->b_proc = u.u_procp;

bp->b_flags = B_WRITE | B_RAW | B_PHYS | B_SYNC

bp->b_error = 0;

/* Start the I/O */

advfs_bs_startio(bp, ioap, NULL, bfap, vdp, 0);

/* wait for IO to complete */

spin_lock(&ioap->anchr_lock);

cv_wait(&ioap->anchr_cvwait, &ioap->anchr_lock, CV_SPINLOCK, CV_NO_RELOCK);

if ((bp->b_flags & B_ERROR) && (bp->b_error != 0))

/* There was an error on this IO */

status = bp->b_error;

cleanup:

advfs_bs_free_buf(bp, M_WAITOK);

advfs_bs_free_ioanchor(ioap, M_WAITOK);

ms_free(tmpbuf)

return status

 47

3.2.8 I/O Completion Path
3.2.8.1 advfs_iodone()

3.2.8.1.1 Interface

The interface for this routine is not changing.

3.2.8.1.2 Description

This routine completes AdvFS I/O processing after the driver completes the I/O and calls biodone(). The

primary change being proposed here is to allow this routine to update statistics in the ioanchor structure in

case one of a series of I/Os per ioanchor fails. At the end of the I/O, the information about how many bytes

were logically transferred will be present in the ioanchor structure so the uio->uio_resid field can be

updated properly.

3.2.8.1.3 Execution Flow

The following code logic will be inserted after the ioanchor spinlock is seized and the ioanchor-

>anchr_iocounter is decremented:

/* If there was an I/O error, update the statistics in the ioanchor structure if this error is logically ‘before’

any other error that may have already been recorded. It is assumed that the anchr_min_err_offset field

has been initialized to an integer value larger than any I/O offset requested if these statistics are to be

collected. */

if (sts != EOK) {

if (bp->bp_bfoffset < ioanchorp->anchr_min_err_offset) {

ioanchorp->anchr_io_status = sts;

ioanchorp->anchr_min_err_offset = bp->bp_bfoffset;

}

}

3.2.8.2 advfs_bs_io_complete()

3.2.8.2.1 Interface

The interface for this routine is not changing.

void

advfs_bs_io_complete(struct buf *bufp) /* in */

3.2.8.2.2 Description

This routine performs the final I/O completion processing on a buf structure. In the case of multiple buf

structures associated with a given I/O or ioanchor_t, this routine is called when processing the final buf

structure.

Changes are required here for several different reasons. The first is to have the I/O completion code, on a

directIO-requested I/O, check for successful I/O completion and calculate the number of bytes successfully

transferred. The second reason is to eliminate the need for maintaining the actrange.arIosOutstanding field

for I/Os started for an AIO request. This functionality is no longer required, and so is being removed here

to simplify the code. The third reason for changing this code path is to remove the call to

bs_aio_write_cleanup() which is not needed on HP-UX. The last reason is to simplify the code structure

somewhat.

 48

3.2.8.2.3 Execution Flow

The code currently has 2 paragraphs at the end of the routine with the following structure:

if (directIO-specific I/O)

if (AIO)

cleanup and call AIO iodone routine

if (!ioanchor->anchr_actrangep)

… processing if there is no active range (calls advio_save_iodone() for cached I/Os) …

else

… processing for an active range

Under HP-UX, we really only need 2 sections, one for directIO cleanup, and another for cached I/O

cleanup. Therefore, these paragraphs will be restructured as follows:

if (!ioanchorp->anchr_flags & IOANCHORFLG_DIRECTIO) {

... use existing code for calling advio_save_iodone() here. (cached I/O only)…

} else {

/* DirectIO specific cleanup */

if (ioanchorp->anchr_io_status != 0) {

/* Calculate the # bytes successfully transferred. This will be reported back to the application.

The ioanchor fields used here were set in advfs_iodone() before calling this routine for the final

I/O in this request. The ioanchor.anchr_min_err_offset field is overloaded and used to return

the number of bytes transferred back to the in-line directIO read/write routines. */

bytes_transferred = ioanchorp->anchr_min_err_offset - ioanchorp->anchr_min_req_offset;

ioanchorp->anchr_min_err_offset = bytes_transferred;

}

aio_bp = ioanchorp->anchr_aio_bp;

if (aio_bp) {

/* Do this for AIO-invoked I/Os */

MS_SMP_ASSERT(ioanchorp->anchr_dio_bufList);

MS_SMP_ASSERT(ioanchorp-> anchr_actrangep);

aio_bp->b_error = ioanchorp->anchr_io_status;

aio_bp->b_resid -= bytes_transferred;

/* Now invoke aio completion routine; may deallocate the aio_bp */

aio_bp->b_iodone(aio_bp);

/* Do active range cleanup. Active ranges are passed only for AIO requests */

spin_lock(&bfap->actRangeLock);

remove_actRange_from_list(bfap, ioanchorp->anchr_actrangep);

spin_unlock(&bfap->actRangeLock);

advfs_bs_free_actRange(ioanchorp->anchr_actrangep);

 49

ioanchorp->anchr_actrangep = NULL;

}

}

 50

3.2.9 AIO Interface
3.2.9.1 advfs_strategy()

3.2.9.1.1 Interface

int

advfs_strategy(struct buf *bp)

The buf structure passed to the strategy must contain byte-level addressing for the data to be transferred.

Some strategy routines only require block-level addressing, but we need to be able to transfer on any

boundary or for any size. The actual mechanism needs to be agreed upon. I am proposing putting this

byte-level addressing directly into the struct buf fields: b_bcount and b_offset. The fields in the buf

structure that must be passed in are:

bp.b_flags in: set to B_READ or B_WRITE for operation type

bp.b_vp in: vnode for file

bp.b_rp in: set to (struct file *) for this file

bp.b_un.b_addr in: address of application buffer

bp.b_bcount in: size (in bytes) of transfer requested

bp.b_resid out: returns # bytes not transferred on error or if IO is done synchronously

bp.b_offset in: byte offset in file for start of transfer

bp.b_iodone in: AIO iodone routine

Returned values will be zero for success, or an error returned from the AdvFS read/write path. This error

will also be in the bp->b_error field.

3.2.9.1.2 Description

This routine is the AdvFS interface with the AIO layer when a file is opened for directIO. Thus, the AIO

routine vn_aio_strategy() will set up the struct buf and call our strategy routine for reads or writes if the file

is open for directIO. (Non-directIO reads and writes are handled by a threaded implementation).

The strategy routine takes the data from the buf structure, builds a uio structure, and then invokes the

advfs_rdwr() routine so that this call will end up in the mainline AdvFS read/write path as described in

Sections 3.2.4 and 3.2.5

This code has only minor modifications from the Tru64 version.

On HP-UX this routine also provides an interface for the VM Swap Filesystem functionality, but that is not

detailed here. This routine will likely distinguish between AIO and VM Swap calls by the non-zero value

of the bp.b_rp field in the AIO interface, as well as the fact that the file must be opened for directIO for the

AIO call.

3.2.9.1.3 Execution Flow

The following is the code flow for this routine after determining that the call has been made on behalf of

the AIO subsystem:

Declare a uio structure on the stack

Declare a 2-entry struct iovec vector on the stack

If (bp->b_vp == NULL) /* This file must have a vnode */

 51

bp.b_iodone();

return EINVAL

Extract the struct file *fp = bp->b_rp;

/* setup the iovec vector and the uio structure */

vec[0].iov_base = bp.b_un.b_addr; /* application buffer */

vec[0].iov_len = bp.b_bcount; /* transfer size */

vec[1].iov_base = bp; /* original buf struct; gets passed to iodone */

vec[1].iov_len = 0; /* will be set to 1 if async I/O is started */

uio.uio_iov = vec; /* iovec vector address */

uio.uio_iovcnt = 1; /* second entry is ‘hidden’ */

uio.uio_old_offset = UIO_AIORW; /* for want of a better way to signal an AIO call */

uio.uio_seg = UIOSEG_USER; /* user space transfer */

uio.uio_resid = bp.b_bcount /* # of bytes to transfer */

uio.uio_fpflags = fp.f_flag; /* file flags: FREAD/FWRITE */

uio.uio_offset = bp.b_offset; /* file offset */

bp.b_resid = bp.b_bcount;

sts = advfs_rdwr(bp->b_vp, &uio, (bp->b_flags & B_READ) ? UIO_READ : UIO_WRITE,

(fp->f_flag & FAPPEND) ? IO_APPEND : 0, fp->f_cred);

/* Check for error or no asynchronous IO started */

if (sts != EOK || (vec[1].iov_len == 0))

bp.b_error =sts; /* return error value */

bp.b_resid = uio.uio_resid; /* update resid from uio structure */

bp.b_iodone(bp); /* call AIO completion routine */

else

bp.b_error = 0;

return (sts);

3.2.9.1.4 Other Items of Note

The call to bs_aio_write_cleanup() has been removed from advfs_strategy() since it is not needed under the

HP-UX AIO architecture. The call to it will also be removed from advfs_bs_io_complete(), and the routine

itself will be removed from bs_qio.c.

3.2.9.2 vn_aio_strategy()

This is the routine that I believe will be responsible for calling the AdvFS strategy routine for AdvFS files

that are open for directIO. To determine whether the file is open for directIO, this routine should probably

first check the FDIRECT bit in the fp->f_flags field. If it is set, then this thread has the file opened for

directIO. This should be a fairly quick check. If this bit is not set, then this routine can call the ioctl()

routine passing ADVFS_GETCACHEPOLICY command. This will return either ADVFS_DIRECTIO or

ADVFS_CACHED.

 52

3.2.10 fcntl Path
3.2.10.1 advfs_fcntl()

A management decision was made to remove the fcntl(F_GETCACHEPOLICY) call in the HP-UX version

of AdvFS. This was available for an application to query whether a file was open in directIO or cacheIO

mode. This will be replaced with an ioctl() call with the ADVFS_GETCACHEPOLICY command. The

removal of this code from fcntl() has already been made in the current AdvFS porting baselines.

3.2.11 ioctl Path
3.2.11.1 advfs_ioctl()

In the Tru64 code, there is an ioctl(F_SETCACHEPOLICY) call that is used as a private interface between

CFS and AdvFS. On HP-UX, this interface is being replaced by a truly private interface, a new routine

called advfs_cfs_set_cachepolicy() (see Section 3.2.4.1). The fcntl(F_GETCACHEPOLICY) functionality

on Tru64 is being put into advfs_ioctl() This functionality has already been moved into ioctl() in the

current AdvFS porting baselines. However, the use of the VDIRECTIO bit in the vnode needs to be

changed to use bfap->dioCnt to determine if the file is opened for directIO.

3.2.12 Storage Allocation and Snapshotting
3.2.12.1 advfs_getpage()

3.2.12.1.1 Interface

int

advfs_getpage(fcache_vminfo_t *fc_vminfo, /* An opaque pointer to a vm data struct*/

struct vnode * vp, /* The vnode pointer */

off_t *off, /* The offset in the file of the fault */

size_t *size, /* The size in bytes to fault in */

fcache_ftype_t ftype, /* The fault type */

struct advfs_pvt_param *fs_priv_param, /* File system private parameter */

fcache_pflags_t pflags /* Options or modifiers to the function */

)

3.2.12.1.2 Description

The private parameters passed to getpage will now accept a new flag, APP_ADDSTG_NOCACHE. This

will indicate to getpage that the request should not bring pages into the cache, but should allocate storage if

any holes are present in the passed in range.

The private parameters will require that the app_starting_offset and app_total_bytes be filled in.

The calculations for the amount of pages that need to be zeroed will remain the same. This means that the

request may end up allocating storage below the passed in offset and above the total request size. This will

be communicated back to the caller via the *off and *size arguments. NOTE: adjusting the *off will cause

the *size to be larger even if the end of the request was not adjusted. The caller will need to distinguish this.

Since *off is not passed back to the caller via the fault path, the private parameters fields app_stg_start_fob

and app_stg_end_fob will also reflect the range of new storage added.

Getpage will upgrade the passed in file lock to write if storage needs to be allocated (unless the lock is

already taken for write).

 53

Getpage will allocate as much storage as it can before returning an ENOSPACE error. The *off and *size

arguments will reflect the amount of the request that was processed up to the first hole that getpage was

unable to allocated storage for. NOTE: the *off could have been adjusted and the size and ENOSPACE

returned as well.

Getpage may seize and drop the extent map lock.

3.2.12.1.3 Execution Flow

The following changes must be made to the existing advfs_getpage() logic:

• The initial calculations round the offset and length to a VM page boundary. This will need to

either change for APP_ADDSTG_NOCACHE or we will need to restore the original offset and

length (and the private params new_stg_xxx_fob fields) to be returned if they did not need to be

modified for storage reasons.

• After calling to determine if we need to allocate any storage, return to the caller if this is

APP_ADDSTG_NOCACHE and no storage needs to be allocated for this requested range.

• If storage does need to be obtained and it modified the starting offset, update the offset and size of

the request, and the private params new_stg_xxx_fob fields.

• Wrap the call to lock the extent map (not for snapshots) and the call to fcache_page_alloc/UFC

processing with a conditional that this is not APP_ADDSTG_NOCACHE. Set up the alloc_size

and alloc_offset size to match the offset and size of the request.

• The call to advfs_bs_add_stg should stay as is. If there is an ENOSPACE error skip invalidating

pages if APP_ADDSTG_NOCACHE.

• Allow the code to fall into the object safety case for zeroing pages if this is

APP_ADDSTG_NOCACHE.

• Do not zero pages if APP_ADDSTG_NOCACHE.

• Do not unprotect pages if APP_ADDSTG_NOCACHE.

 54

3.2.13 Mount Path
3.2.13.1 mount()

3.2.13.1.1 Interface

This routine will be changed to allow the ‘-o directIO’ option to be specified.

3.2.13.1.2 Description

This routine will be changed to allow the ‘-o directIO’ option to be specified, but this option will not be

shown on any list of option or on the man pages. It is used for internal testing only. The changes noted

below will pass advfs_args_t.adv_flags with the MS_ADVFS_DIRECTIO bit set through advfs_mount()

and on to advfs_mountfs().

3.2.13.1.3 Execution Flow

The following changes need to be made to mount.c:

• Add string "directio" to end of myopts[] vector (before NULL terminator).

• Add: #define OPT_DIRECTIO 10

• In parse_std_options(), add:

case OPT_DIRECTIO:

adv_mntflg |= MS_ADVFS_DIRECTIO;

break;

• In print_flags() add:

"directIO" as penultimate member of adv_opt_str[]

MS_ADVFS_DIRECTIO as penultimate member of adv_opt[]

3.2.13.2 advfs_mountfs()

3.2.13.2.1 Interface

The interface for this routine will not change. The flags set in advfs_args_t.adv_flags in mount() get passed

down to this routine.

3.2.13.2.2 Description

This routine initializes a new fileset structure for a given mount point.

3.2.13.2.3 Execution Flow

If the MS_ADVFS_DIRECTIO bit is set in the advfs_args_t.adv_flags field and the global variable Advfs-

enable_dio_mount is non-zero, then this routine will set the BFS_IM_DIRECTIO bit in the

bfSetT.bfSetFlags field to enable directIO for all files on this fileset.

This routine already does the work necessary. Only changing the name of the passed-in flag from

M_DIRECTIO to MS_ADVFS_DIRECTIO is needed.

 55

3.2.13.3 advfs_vfs_is_mounted_for_dio()

3.2.13.3.1 Interface

boolean

advfs_vfs_is_mounted_for_dio(struct vfs *vfsp) /* input: vfs struct for mount point */

3.2.13.3.2 Description

This routine is provided primarily for use by CFS to determine if a fileset has been mounted with the –o

directIO option. It is passed a pointer to the vfs structure, and returns TRUE if the fileset has directIO

enabled, and FALSE otherwise:

3.2.13.3.3 Execution Flow

The following is the necessary code flow for this routine:

struct bfSet *bfSetp = ADVGETBFSETP(vfsp);

if (BFSET_VALID(bfSetp) {

if (bfSetp->bfSetFlags & BFS_IM_DIRECTIO) {

return TRUE;

}

}

return FALSE;

 56

3.2.14 Other Miscellaneous Routine Changes
3.2.14.1 File Truncate Path

 The code in the truncate path should continue to seize an active range while truncating the file. One

change to the functionality in fs_setattr() is necessitated by the directIO design. Before the active range is

released, if the file is open for directIO, any cached pages within the active range must be flushed and

invalidated.

3.2.14.2 migrate_normal()

The code in the migrate path should continue to seize an active range while migrating a region of the file.

One change to the functionality in migrate_normal() is necessitated by the directIO design. Before the

active range is released, if the file is open for directIO, any cached pages within the active range must be

flushed and invalidated. On Tru64, this was done if operating on a cluster, but not on a standalone system.

On HP-UX this will be required for all directIO files whether on a cluster or not.

3.2.14.3 bs_refpg_direct()

This routine can be removed from bs_buffer2.c; it is used in the Tru64 baseline, but is not needed for the

HP-UX implementation.

3.2.14.4 bs_pinpg_direct()

This routine can be removed from bs_buffer2.c; it is used in the Tru64 baseline, but is not needed for the

HP-UX implementation.

3.2.14.5 Active Range Allocation

In Tru64 UNIX, the active range structures are allocated at the start of every directIO read or write request,

and deallocated when the I/O has completed. Because there could be a fairly high turnover of these

structures, we will create a fixed-size memory arena from which these structures will be allocated. This

will involve creating constructor, destructor, allocate, and free routines for the active ranges.

3.2.14.6 Access structure construction and destruction.

The access structure constructor and destructor routines (advfs_access_constructor() and

advfs_access_destructor()) must be modified to initialize and destroy the new read-write lock

bfAccessT.cacheModeLock.

3.2.14.7 Routines using the obsolete VDIRECTIO bit

The VDIRECTIO flag in vnode.vflag is not being propagated into the HP-UX version. Therefore, all

places in the code that reference this bit must be examined and have the functionality removed or replaced

by correctly testing the bfaccess.dioCnt field. This includes:

• removing the definition of VDIRECTIO from ms_privates.h,

• changing the checks of this bit to a check of bfap->dioCnt in advfs_mmap(), advfs_ioctl(),

migrate_normal(), ss_chk_fragratio(), ss_snd_hot(), and ss_vd_migrate().

• remove the paragraphs in fs_create_file(), bf_get_l(), and bs_close_one() that set or clear this bit.

 57

3.3 Script Design

No scripts are being designed or implemented.

 58

4 Dependencies

4.1 System Administration

No dependencies.

4.2 Memory Management

Review of calls to wire application buffer in read/write paths by someone on VM team would be

appreciated.

4.3 ccNUMA

No dependencies.

4.4 Process Management

No dependencies.

4.5 File System Layout

No changes to the AdvFS layout are assumed.

4.6 File Systems

This project assumes that it is being designed to be integrated with the AdvFS code base described in the

AdvFS/UFC Integration Design Specification.

The changes proposed to the FMASK are dependent on approval from the group responsible for the file

descriptor structure.

4.7 I/O System and Drivers

It is assumed that the block size will be DEV_BSIZE (currently 1k) for disk transfers.

The advfs_strategy() routine is dependent on the buf structure being set up by the AIO calling routine. It is

assumed that the yet-to-be-written routine vn_aio_strategy() will set up the data as outlined in Section

3.2.9.

4.8 Security

No dependencies.

4.9 Auditing

No dependencies.

4.10 Multiprocessor

No dependencies.

4.11 Behavior in a cluster

No dependencies.

 59

4.12 Kernel Instrumentation/Measurement Systems

No dependencies.

4.13 Diagnostics

No dependencies.

4.14 Panic/HPMC/TOC

No dependencies.

4.15 Commands

No dependencies.

4.16 Standards

No dependencies.

4.17 Kernel Debugger

No dependencies.

4.18 Boot Kernel

No dependencies.

4.19 Install Kernel

No dependencies.

4.20 Update/Rolling Upgrade

No dependencies.

4.21 Support Products

No dependencies.

4.22 Learning Products (Documentation)

There will be documentation impacts, and these are being addressed elsewhere..

 60

5 Issues (Optional)

High Priority

• Issue: Adding the FDIRECT bit in the FMASK definition remains to be agreed upon. This is

discussed in Section 3.1.1, and this should be agreed to by the group responsible for the file

structure, since this change will result in the FDIRECT bit being preserved in the file.f_flag field..

o Status: Open.

• Issue: The details regarding the AIO/AdvFS interface remain to be agreed upon. One proposal

has been detailed in Section 3.2.9, but this should be agreed upon by the group responsible for the

AIO interface

o Status: Open.

