

The New

Hitchhiker’s Guide to

Tru64’s AdvFS

Authors:

LMS

JRB

Version 2.2

March 9, 2006

Copyright (C) 2006, 2008 Hewlett-Packard Development Company, L.P.

Chapter 2

PREFACE 9

Introduction 9

Conventions 9

CHAPTER 1: ADVFS OVERVIEW 11

1.1 How AdvFS differs from UFS 11

1.2 Basic AdvFS Concepts 11

1.3 The FAS and the BAS 13

CHAPTER 2: DOMAIN AND VOLUME CONCEPTS 15

2.1 Basic Concepts 15

2.2 Physical Volume Layout 16

2.3 On-disk structures 17
2.3.1 Bitfile Metadata Table (BMT) 18
2.3.2 Reserved Bitfile Metadata Table (RBMT) 20
2.3.3 Storage Bitmap (SBM) 22
2.3.4 Transaction Log 23
2.3.5 Root Tag File 25
2.3.6 Miscellaneous Bitfile 26

2.4 In-memory structures 26
2.4.1 DomainT Structure 27
2.4.2 Volume descriptor array and vd Structure 28
2.4.3 Service Classes 28
2.4.4 Free Space Cache 29

2.5 Creating a domain 30

2.6 Accessing a previously-created domain 31

2.7 Removing a domain 32

2.8 Adding a volume to a domain 32

2.9 Removing a volume from a domain 32

2.10 Domain activation and deactivation 33

CHAPTER 3: FILESET CONCEPTS 35

3.1 Basic Concepts 35

3.2 On-disk structures 35
3.2.1 Fileset Tag File 35
3.2.2 Fragment File 37

3.3 In-Memory structures 37
3.3.1 bfSet Structure 37
3.3.2 fileSetNode Structure 39

3.4 Creating a fileset 39

3.5 Displaying and changing fileset attributes 39

3.6 Removing a fileset 40

3.7 Cloning a fileset 40

3.8 Removing a cloned fileset 40

3.9 Mounting and unmounting a fileset 41

CHAPTER 4: FILE CONCEPTS 43

4.1 Files vs Bitfiles 43

4.2 Unique File Identification – tags 43

4.3 In-Memory Structures 45
4.3.1 bfAccess structure 46
4.3.2 BfNode 47
4.3.3 fsContext structure 48
4.3.4 bsBuf 48

4.4 On-Disk Structures 48
4.4.1 Extent mcell record combinations 49
4.4.2 On-disk mcell record types 50

4.5 Extents 50
4.5.1 In-memory and On-disk Extent Maps 51
4.5.2 Modifying In-memory Extent Maps 52
4.5.3 Striped Extent Maps 56

4.6 Sparse Files 56

4.7 File Operations 56
4.7.1 Create 56
4.7.2 Open 56
4.7.3 Read, pread, readv, aio_read 57
4.7.4 Write, pwrite, writev, aio_write 58
4.7.5 Close 58
4.7.6 Delete 58
4.7.7 Rename 59
4.7.8 Fcntl() and ioctl() 59
4.7.9 Truncate 59
4.7.10 Hard and symbolic links 59

Chapter 4

4.7.11 Memory Mapping 60

4.8 Bitfile Operations 60
4.8.1 Bitfile States 60
4.8.2 Lookup, open 61
4.8.3 Create 61
4.8.4 Read, read-ahead, prefetch 62
4.8.5 Write 64
4.8.6 Close 65
4.8.7 Delete 65
4.8.8 Truncate 66

4.9 Copy on Write (COW) 66

4.10 Storage Allocation and Deallocation 66
4.10.1 Allocation 66
4.10.2 Object Reuse 67
4.10.3 Deallocation 68

4.11 Property Lists 68

CHAPTER 5: UNIQUE ADVFS OPERATIONS 73

5.1 Cloning 73
5.1.1 Creating a clone 73
5.1.2 Writing to a cloned original (COW) 73
5.1.3 Reading from a Clone 74
5.1.4 Sparse files and permanent holes 74
5.1.5 Deleting a file that has a clone 75

5.2 File Migration 75

5.3 Defragmentation 76

5.4 Striping 77
5.4.1 Sparse Striped Files and Clones 77

5.5 Sync (update daemon), time of day stamping 79

5.6 System Boot 79

5.7 System Shutdown 81

CHAPTER 6: SPECIAL FILES 82

6.1 Directories 82
6.1.1 Non-indexed Directories 82
6.1.2 Indexed Directories 85
6.1.3 Directory Truncation 91
6.1.4 Trashcans 92

6.2 Fragment Bitfile 92
6.2.1 File Fragments and Fragging Concepts 92
6.2.2 Fragment Bitfile Layout 94

CHAPTER 7: BUFFER CACHE 97

7.1 Overview 97

7.2 In-Memory Structures 98

7.3 Buffer Cache Actions during System Calls 99
7.3.1 Page Lookup, Pinning , and Reffing 99
7.3.2 File Open 100
7.3.3 File Close and Inactivation 100
7.3.4 Read 100
7.3.5 Write 101
7.3.6 Flushing Pages 102
7.3.7 Invalidating Pages 103
7.3.8 Performing I/O on Cached Pages 104

7.4 Metadata Handling 106

7.5 UBC Page Recycling 107

7.6 Memory Mapping 107

7.7 Interaction with directIO 109

7.8 Big Pages 109

CHAPTER 8: I/O SUBSYSTEM 111

8.1 Asynchronous and Synchronous I/O 111

8.2 Atomic-write Data Logging 111
8.2.1 Asynchronous ADL 112
8.2.2 Synchronous ADL 112

8.3 I/O Queues 113

8.4 Starting I/Os 116

8.5 Completing I/Os 117

8.6 I/O Consolidation 119

8.7 Error Handling and I/O Retries 119

8.8 Relationship with UBC and Buffer Caching 119

8.9 Smoothsync 120
8.9.1 Modifying smoothsync Behavior (-o smsync2) 123

8.10 Load balancing 123

8.11 Tuning the I/O Subsystem 123

8.12 Direct I/O 124

Chapter 6

8.12.1 Use of the file lock 124
8.12.2 Use of active ranges 125
8.12.3 Interaction with cached pages 125
8.12.4 Block alignment 127
8.12.5 Interaction with file fragments (frags) 127
8.12.6 Transfer size considerations 128
8.12.7 Mitigating the synchronous nature of direct I/O 128
8.12.8 I/O consolidation 129

9 TRANSACTION MANAGEMENT 131

9.1 Transaction Basics 131
9.1.1 Generic rules to maintain data consistency 131
9.1.2 AdvFS-specific Transaction Rules 132
9.1.3 Transaction Terminology 133
9.1.4 Introductory Transaction Example 135

9.2 AdvFS Transaction Management 136
9.2.1 Overview of Transaction Primitives 136
9.2.2 Transaction start: ftx_start() 137
9.2.3 Transaction Commit: ftx_done() 138
9.2.4 Transaction Abort: ftx_fail() 140
9.2.5 Registering an agent: ftx_register_agent() 140
9.2.6 Transaction Locking: ftx_lock_*() 141
9.2.7 Pinning Pages: rbf_pinpg() 141
9.2.8 Pinning Records: rbf_pin_record() 141
9.2.9 Transaction Table 142
9.2.10 Metadata Management 143

9.3 Log File Management 143
9.3.1 Log Size 143
9.3.2 Log Writing 144
9.3.3 Log Flushing 144
9.3.4 Log Checkpointing 144
9.3.5 Log Isolation 146

9.4 Domain Recovery 146

9.5 Structure overview 147
9.5.1 In Memory 147
9.5.2 On Disk 150

9.5.2.1 Logical View 150
9.5.2.2 Physical View 151

9.6 Infinite Log Sequence Numbers (LSNs) 152
9.6.1 Assumptions about LSNs 152
9.6.2 Conditions that have to be dealt with when the LSN wraps: 152
9.6.3 Conditions that have to be dealt with when locating the log's end page: 152
9.6.4 Additional rules if the LSNs are 'jumped' during recovery: 154

CHAPTER 10: QUOTAS 156

10.1 Quota Utilities 157
10.1.1 quot 157

10.1.2 quota 157
10.1.3 quotacheck 157
10.1.4 edquota 158
10.1.5 repquota 158
10.1.6 quotaon and quotaoff 158
10.1.8 chfsets and showfsets 158

10.2 In-memory Quota Structures 159

10.3 Internal Functions for Maintaining Quotas 160

CHAPTER 11: DATA MANAGEMENT API (DMAPI) 165

11.1 Introduction 165

CHAPTER 12: LOCK MANAGEMENT 167

12.1 Overview 167

12.2 Lock types and their uses. 167
12.2.1 Simple Locks 167
12.2.2 Complex Locks 168
12.2.3 Special AdvFS Lock Types 168
12.2.4 Other Kernel Lock types 169
12.2.5 Locking at the utility/library level 169

12.3 Good things to know when using locks 171

12.4 Debugging lock usage 172
12.4.1 Using the lockinfo command 172
12.4.2 Lock Mode 176
12.4.3 Detecting deadlocks 176
12.4.4 Determining if there is excessive lock contention 176
12.4.5 Determining if a lock is held for excessive time. 177

12.5 AdvFS Lock Inventory 178
12.5.1 Domain Locks 178
12.5.2 BitfileSet Locks 179
12.5.3 Device Locks 180
12.5.4 Logging/Transaction Locks 180
12.5.5 File Locks 181
12.5.6 Buffer Cache Locks 182
12.5.7 Other Locks 183

CHAPTER 13: ADVFS SYSTEM CALLS AND UTILITIES 185

13.1 Overview 185

13.2 Trace of AdvFS System Call 185

13.3 vdump/vrestore 186
13.3.1 Vdump Basic Design 187
13.3.2 Saveset Format 188

Chapter 8

13.3.3 Vrestore Basic Design 189
13.3.4 rvdump/rvrestore 191

13.4 Fixfdmn 191

13.5 Verify 196

13.6 Salvage 197
13.6.1 Overview 197
13.6.2 Actions Taken During Recovery Processing 198

13.7 Vfast 202
13.7.1 Balancing free space across volumes 203
13.7.2 Defragmentation of a volume 203
13.7.3 Frequently Accessed File I/O Distribution 203
13.7.4 Dealing with cloned and striped files 204

13.8 Freeze/Thaw 205
13.8.1 Overview 205
13.8.2 freezefs and thawfs utilities 205

13.9 Advscan 206

13.10 Vods Tools 207
13.10.1 Argument order 208
13.10.2 Using the vods tools 209

CHAPTER 14: INTERACTIONS WITH OTHER LAYERS 211

14.1 VFS 211
14.1.1 Overview of VFS 212
14.1.2 File System and File Operation Vectors 214
14.1.3 How AdvFS Fits In 216
14.1.4 Namei Cache 217
14.1.5 Vnode Recycling 218

14.2 AIO Interface 218

14.3 LSM 219
14.3.1 LSM Terminology 220
14.3.2 AdvFS and LSM Interactions 220

REFERENCES 223

GLOSSARY 224

 9 Preface

Preface

Introduction
This document describes the inner workings of the Tru64 UNIX Advanced File System. It explains
AdvFS concepts and structures, algorithms and design rationales. Diagrams and illustrations are used
liberally, and code snippets are avoided.

Use the Hitchhiker’s Guide as a tool to understand the associated code.

Conventions
This guide uses the following conventions:

bold text Indicates the introduction of a new term that appears in the
glossary.

italic text Indicates function names.

UPPERCASE TEXT Indicates error codes and constant variables.

monospace text Indicates commands, utilities, options, attributes, variables,
tunables, and structures.

monospace italics Indicates parameters or arguments.

 11 Chapter 1: AdvFS Overview

Chapter 1: AdvFS Overview

This chapter provides a high-level overview of the Advanced File System (AdvFS). AdvFS differs from
the traditional UNIX File System (UFS). With AdvFS you can modify your system configuration at any
time without shutting down the system. AdvFS supports a multi-volume file system, so as your system
requirements change you can easily add or remove storage devices such as directly connected disks,
software redundant array of independent disks (RAID) volumes, hardware RAID, and storage area
networks.

1.1 How AdvFS differs from UFS
In contrast to AdvFS, the UFS model is rigid. A typical UFS maintains a single file hierarchy on a storage
device. A UFS file is bound to the device it was created on, so it cannot be moved to another disk (to
balance the disk’s I/O load, for example).

From a user's perspective, AdvFS looks like any other UNIX file system. AdvFS presents storage to the

user as a hierarchy of directories and files. Users can use the mkdir command to create new directories,

the cd command to change directories, and the ls command to list directory contents. AdvFS logical

structures, quota controls, and backup capabilities are based on traditional file system design. AdvFS

replaces or eliminates several standard commands, such as newfs, dump, restore and fsck.

AdvFS is the file system for the Tru64 cluster configuration. Cluster operation is transparent. AdvFS
running on a cluster, with very few exceptions, looks no different from AdvFS running on a single node.

1.2 Basic AdvFS Concepts
AdvFS presents storage to the user as a hierarchy of directories and files much the same as most other
UNIX file systems do. However, the relationship between files and their physical storage in the AdvFS
file system is different from other UNIX file systems. AdvFS consists of two distinct layers: the logical
file hierarchy layer and the physical storage layer. The logical file hierarchy layer implements the file-
naming scheme and POSIX-compliant functions such as creating and opening files, or reading and
writing files. The physical storage layer implements write-ahead logging, caching, file storage allocation,
file migration, and physical disk I/O functions. Figure 1-2 shows the relationship between the two layers.

Chapter 1: AdvFS Overview 12

Figure 1: Logical file layer and physical storage layer

The logical file hierarchy layer consists of

• Files, which are the entities that store information.

• Directories, which are collections of files that are logically related.

• Filesets, which are related sets of directories and files that are mounted.

 The physical storage layer consists of

• Domains, which are collections of volumes.

• Volumes, which provide the physical storage.

• Bitfiles, which are the physical representation of files.

Files are the user’s view of bitfiles. Bitfiles are how files are implemented in AdvFS.

Because AdvFS separates the file hierarchy from the storage, each component can be managed
independently. AdvFS files are not bound to specific devices to facilitate migrating files among the
storage in a domain. You can move files between volumes without changing path names for your files.
Because the path names remain the same, the action on the physical level is completely transparent at the
logical file hierarchy level.

AdvFS implements two unique file system concepts: filesets and domains. A fileset (see Chapter 3)
follows the logical structure of a traditional UNIX file system. It is a hierarchy of directory names and file
names, and it is what you mount on your system. AdvFS goes beyond the traditional file system by
allowing you to create multiple filesets that share a common pool of storage called a domain (see Chapter
2). A domain represents the physical storage layer. It is managed separately from the directory structure.
You can add or remove volumes within a domain without affecting the directory structure.

 13 Chapter 1: AdvFS Overview

A volume (see Chapter 2) is any mechanism that behaves like a UNIX block device. When first created,
all domains consist of a single volume. You can transform a single-volume domain into a multi-volume
domain by adding one or more volumes to it.

AdvFS has the ability to perform file striping (see Section 5.4). File striping allows a file to be spread
evenly across several volumes within a domain. As data is appended to the file, the data is spread across
the volumes. This increases the sequential read/write performance because I/O requests to the different
disk drives can be overlapped.

You can backup your AdvFS file system by using a fileset clone (see Section 5.1). An AdvFS fileset
clone is a read-only copy of an existing fileset created to capture data at one instant in time. When you
clone a fileset (create a fileset clone), the utility copies only the structure of the original fileset, not the
actual data. When a file is modified, the file system copies the original, unchanged data to the AdvFS
fileset clone. Therefore a copy of the system as it was at the time of creating the clone remains for the life
of the clone.

Fast recovery is a distinguishing feature of the AdvFS. AdvFS is a log-based file system that employs
write-ahead logging to ensure the integrity of the file system. Modifications to the metadata are
completely written to a transaction log file before the actual changes are written to disk. The content of
the transaction log file is written to disk at regular intervals. During crash recovery, AdvFS reads the
transaction log file to confirm file system transactions. All completed transactions are committed to disk
and uncompleted transactions are undone. The number of uncommitted records in the log, not the amount
of data in the file system, dictates the speed of recovery. Recovery usually takes only a few seconds.

Traditional UNIX file systems rely on the fsck utility to recover from a system failure, which can take

hours to check and repair a large file system.

1.3 The FAS and the BAS
AdvFS can also be described in terms of the File Access Subsystem (FAS) and the Bitfile Access
Subsystem (BAS). The FAS is responsible for managing the logical file hierarchy and the BAS is
responsible for managing the hierarchy’s physical storage representation. Figure 1-3 shows each
functional component’s task and how the components interact with each other and with other components
(like users and disks) to accomplish their tasks.

Figure 1: Storage Usage and Management

Who? What? How?

1. User 2. Manages information 3. Uses files to store
information

4. File Access Subsystem 5. Manages files and directories 6. Uses bitfiles to store files and
directories

7. Bitfile Access Subsystem 8. Manages bitfiles and their
storage on disks

9. Uses disks to store bitfiles

10. Storage Devices 11. Stores bitfiles 12.

The line separating FAS and BAS layer functions has become fuzzy over the years. Although the Tru64

code base still has msfs/bs and msfs/fs directories, many files and functions no longer map strictly

into these layer distinction

Chapter 1: AdvFS Overview 14

 15 Chapter 2: Domain and Volume Concepts

Chapter 2: Domain and Volume Concepts

2.1 Basic Concepts
A fileset follows the logical structure of a traditional UNIX file system. It is a hierarchy of directory
names and file names, and it is what you mount on your system. AdvFS goes beyond the traditional file
system by allowing you to create multiple filesets that share common storage called a domain.

A domain is the physical storage layer of the AdvFS file system. It is a defined pool of storage that can
contain one or more volumes. Because this storage is managed separately from the directory structure,
you can expand and contract the size of the domain by adding or removing volumes. The directory
structure is not affected.

A volume is any mechanism that behaves like a UNIX block device. An AdvFS volume can be a raw disk
partition, an entire disk, an aggregate volume provided by Logical Storage Manager (LSM), a storage area
network (SAN), or a hardware or software redundant array of independent disks (RAID) storage. When
first created, all domains consist of a single volume. You can then transform a single-volume domain into
a multi-volume domain by adding one or more volumes to it.

Multi-volume domains increase the storage available for the filesets and allow for preventative disk
maintenance. You can add volumes immediately after creating the domain, even before creating and
mounting filesets. To perform preventative disk maintenance, you can add a new volume to the domain
(see section 2.8), migrate your files to the new volume, then remove the old volume (see section 2.9).

The most significant difference between a typical UNIX filesystem and AdvFS is that AdvFS uses a two-
level lookup scheme to locate a file’s data. AdvFS looks up the file’s name in the directory to get the
file’s tag (which uniquely identifies a file within a fileset). The tag (and the associated fileset ID) is then
used to lookup the file’s metadata (equivalent to file descriptor). This is done by looking up the tag in the
fileset’s tag file to get the metadata’s disk identifier and the location of the metadata in the disk’s Bitfile
Metadata Table (BMT). The file’s metadata entry in the BMT is called a mcell (for metadata cell). The
mcell is used to locate the file’s data and to maintain the file’s attributes. The figure below shows the
AdvFS two-level lookup scheme.

Chapter 2: Domain and Volume Concepts 16

Figure 2: Two-level file lookup

The tag concept is a critical design feature that allows AdvFS to seamlessly move files among the disks in
a domain. This is important because it allows a decoupling of a file name from its on-disk structure. A
file’s directory entry does not need to be updated when a file is moved to a different disk. Only the tag file
needs to be updated when a file is moved.

2.2 Physical Volume Layout
As part of domain creation, some volume initialization takes place. Below is an illustration of the physical
disk layout for domain version 4. A domain version number (DVN) is associated with each domain, and
all domains created on Tru64 OS Version 5.0 carry a DVN of 4. Domains created prior to version 5.0
carry a DVN of 3.

The terms in this illustration will be discussed later in this chapter.

 17 Chapter 2: Domain and Volume Concepts

Figure 3: DVN 4 physical disk layout

2.3 On-disk structures
Each volume in a domain consists of the following on-disk structures:

• Reserved bitfile metadata table (RBMT) (see section 2.3.2)

• Bitfile metadata table (BMT) (see section 2.3.1)

• Storage bitmap (SBM) (see section 2.3.3)

• Miscellaneous bitfile (see section 2.3.6)

Each domain has the following on-disk structures. There is only one of each structure per domain, and
they can reside on any volume in the domain:

• Root tag file (see section 2.3.5)

• Transaction log (see section (2.3.4)

Each fileset has the following structures, which can reside on any volume in the domain.

• Tag file (see section 3.2.1)

• Fragment file (see section 3.2.2)

Chapter 2: Domain and Volume Concepts 18

Figure 4: Summary of volume, domain, and fileset specific structures

2.3.1 Bitfile Metadata Table (BMT)

The BMT is used to store file metadata for non-reserved files. Information stored in the BMT includes
file attributes, extent maps, fileset attributes, and POSIX file statistics. Examples of non-reserved files are
user files, directories, fileset tag directories, and the frag file. There is one BMT per volume.

The BMT is an array of 8KB pages. Each page consists of a header and an array of fixed-size metadata
cells (mcells), where each mcell contains one or more variable-length records. The records are of specific
types (bitfile attributes, extent map, etc.) which are defined in

src/kernel/msfs/msfs/bs_ods.h.

A series of contiguous 8K pages in a file is stored as an extent. Extents are groups of on-disk contiguous
8K pages managed by extent maps. AdvFS uses the BMT mcells to manage and describe non-reserved
files’ attributes and storage.

Each file has one primary mcell in one of the BMT files of the domain. The primary mcell contains the
file attributes, a primary extent map record, and a pointer to the next mcell (if there is one). Secondary
mcells can be used to contain additional mcell records, which can include the POSIX file statistics, fileset
attributes attached to tag directories, additional extent records, and POSIX symbolic links. Secondary
mcells are linked together such that the head of the linked list is the primary mcell.

An mcell functions similarly to an inode. It holds permissions, size, extent information, and link count.
Each mcell is 292 bytes, so 28 mcells (plus a 16-byte header) can fit on an 8K page. The following figure
compares the user’s view of a logical file to the physical on-disk view of the file. The BAS represents the
on-disk representation of this file by one or more mcells pointing to extents:

 19 Chapter 2: Domain and Volume Concepts

Figure 5: Physical and logical file views

If a BMT page contains at least one free mcell then the page is on a free page list. The free page list head
is maintained in the first mcell in BMT page 0. Each BMT page also maintains its own free mcell list,
which consists of mcells within the page that have free records. The free mcell list head is maintained in
the header of each BMT page.

Figure 6: BMT page details and linked lists

The mcells are addressed by the following mcell address tuple:

<volume index, BMT page number, mcell's index within the BMT page>

Chapter 2: Domain and Volume Concepts 20

Records within mcells are found by a sequential scan within the mcell. This search is very short because
most mcells contain only one or two records. AdvFS does not support deletion of mcell records.

2.3.2 Reserved Bitfile Metadata Table (RBMT)

The RBMT functions like the BMT, except that it contains all the mcells needed to describe the reserved
metadata files stored on that volume. Reserved files described by the RBMT include the RBMT itself,
the SBM, the root tag directory, the transaction log, the BMT, and the miscellaneous bitfile. There is one
RBMT per volume.

AdvFS relies on the RBMT during domain activation and especially during crash recovery. The RBMT
always starts at disk sector 32, which allows AdvFS to quickly find the mcells describing all the reserved
files on the volume. The information in the RBMT typically fits inside a single 8k page. However, since
the BMT is the one reserved file that tends to grow through time, and its extent map records are kept in
the RBMT, the RBMT may need to expand into additional pages to accommodate the added extent
records for the BMT. This is done by adding additional RBMT pages and linking their location through
mcell 27 in the previous RBMT page. This is the mechanism that was added in DVN 4 domains to
eliminate the problem seen in previous versions where the BMT could no longer grow because all BMT
extent maps were required to fit inside BMT page 0. This resulted in domains in which files could not be
added even though there was still storage on the disk. The use of the RBMT as an extensible container
for BMT extent records was the solution to this problem.

There are 2 ways to determine the last page of the RBMT. The second to the last page of the RBMT
always contains a mcell 27 with a BSR_XTRA_XTNTS record that describes the last RBMT page. The
next pointer in mcell 27 on the second to the last page can then be nil (on pre-5.1B domains) or can point
to mcell 27 of the last page of the RBMT (5.1B and after).

The following figure shows the layout of RBMT page 0 in detail:

 21 Chapter 2: Domain and Volume Concepts

Figure 7: RBMT layout

Chapter 2: Domain and Volume Concepts 22

The RBMT mcells are allocated as shown in the following table:

RBMT mcell number Use

0 Primary mcell for RBMT

1 Primary mcell for SBM

2 Primary mcell for root tag directory

3 Primary mcell for transaction log

4 Primary mcell for BMT

5 Primary mcell for miscellaneous bitfile

6 Secondary mcell for RBMT. Contains domain and
volume attributes for RBMT

7 through 26 Extra mcells used for additional extent maps for the
reserved files

27 Used to extend the RBMT to the next page if page 0
becomes full

2.3.3 Storage Bitmap (SBM)

Each AdvFS volume contains a storage bitmap, which keeps track of allocated disk space. In AdvFS
terminology, a block is a 512-byte sector, a page is 16 blocks, and one page is 8192 bytes. Each bit in the
storage bitmap represents one page. If the bit is set, the page is allocated to a bitfile; if the bit is clear, the
page is free (available for allocation).

The storage bitmap is structured as an array of 8KB pages where each page consists of an array of 32-bit

integers (each bit represents a page). Each page contains a header (struct bsStgBm) with two fields:
a 32-bit LSN number and a 32-bit XOR checksum, leaving 65,472 bits per page to map pages on the
volume. The actual size of the SBM depends on the size of the volume. The SBM is accessed primarily
during file creation, deletion, or migration. It can also be accessed during file extension if the free space
cache has been depleted. More on the free space cache shortly (see section 2.4.4).

The primary mcell describing the SBM for a volume is found in mcell 1, page 0 of that volume’s RBMT.

Figure 8: SBM to physical page mapping

 23 Chapter 2: Domain and Volume Concepts

2.3.4 Transaction Log

The transaction log is the on-disk structure used by the Flyweight Transaction Manager and Logging
Subsystem (also called the Logger) to ensure the integrity of the file system. Modifications to the
metadata (file system structures) are written to the transaction log before the metadata changes are written
to disk. The log provides recovery capabilities following an error, system crash, or media failure. During
crash recovery, AdvFS reads the transaction log to confirm file system transaction completion. All
completed transactions are committed to disk and incomplete transactions are undone.

The default size of the log is 512 pages (4 MB), but this can be changed when the domain is created (see
Section 2.5) The on-disk format of the log can be viewed in two ways: physically and logically.

The physical view is a series of 512-byte sectors. A sector is the disk unit that can be written atomically,
and 512-bytes is the sector-size supported by Tru64 UNIX. The sector-based view of the log is necessary
when needing to assure log consistency in the event of a crash. Since a page consists of 16 sectors, then it
is possible that less than 16 sectors will be written to the disk during a system failure. The problem is not
that all 16 sectors didn't get written, but that the logger must be able to detect that they didn't all get
written. To solve this problem the logger puts a unique page ID (an LSN) at the beginning of each sector
in the log page (see next figure). Then, when the log page is read during recovery, the logger checks to
see if the LSNs in each sector are all the same. If they are not, then the logger knows the page was not
completely written. To avoid complex code in the logger to prevent stepping on the portion of each
sector that is reserved for the ID, the logger ignores the IDs when writing records to a log page. Then,
just before unpinning the log page, the logger copies the bytes from the area where the ID is to be written
into a reserved "save area”. After this data has been saved, it then writes the ID into the beginning of
each sector. That way the logger isn't overwriting (and losing) data from the logged records. Later, when
the log page is read, the logger overwrites the IDs with the original values obtained from the page's "save
area". This “save area” is actually in the trailer for each page, which is part of the logical view.

Chapter 2: Domain and Volume Concepts 24

Figure 9: Physical view log page translation used to ensure on-disk log consistency

In the logical view, the log is a circular array of 8k pages that wraps around to page 0 after page 511 has
been written. The log has a beginning (tail in circular list terminology) and an end (head). Records are
written to the end of the log (head); the beginning of the log (tail) contains the oldest record in the log.

The Logger uses a logical sequence number (LSN) to uniquely identify each log record. When the log is
first created the log's current LSN is initialized to 2. Each time a record is written it is assigned the current
LSN and the current LSN is incremented by 2. LSNs can wrap so there is no limit on LSNs (see Chapter
9 for more information on infinite LSN numbers).

 25 Chapter 2: Domain and Volume Concepts

Figure 10: Log as viewed in circular fashion

Each page of the log is composed of a header, some number of variable-sized records, and a trailer:

1. The header consists of the first record's LSN. This is used whenever a domain is activated to locate
the end of the log.

2. Some number of variable-sized records. Each record contains a fixed-size header and a variable
amount of client data. Each log record is accessed by a unique address. A record address consists of
the page number of the page that contains the record, the record's word offset into the page, and the
record's LSN (which is the component of a record address that makes the address unique in time).

3. The trailer consists of the “saved area” that was discussed in the physical view of the log; this is for
saving data from the beginning of each sector in the log page.

Whenever a record is written to the log, the Logger returns the record's address and its LSN to the client.
When reading a log record the client must provide the record's address. The Logger uses the LSN in the
record's address to verify that the address is valid (each record header contains the record's LSN). Details
on the algorithms used to manage the transaction log are provided in Chapter 9.

2.3.5 Root Tag File

Chapter 2: Domain and Volume Concepts 26

Because there can be many filesets within a domain, there must be a way to locate the tag file that is
associated with each fileset. This is accomplished using the root tag file. Every domain has a single root
tag file that gives the location of the primary mcell associated with the fileset tag file for each fileset in
the domain. The root tag file is similar to a normal fileset tag file. It contains an entry for each fileset in
the domain, which contains the corresponding primary mcell to locate the fileset’s tag file. (see section
3.2.1 for more information on the Fileset Tag File). The fileset number is the index into the root tag file.

The root tag file is at mcell 2 in page 0 of the RBMT (see Section 2.3.2). Although each volume has an
RBMT, only one volume in the domain contains a valid root tag file. If the root tag file was ever moved
off its original volume, there may be traces of old “invalid” root tag files on other volumes.

To determine which root tag file is currently valid look at the domain mutable attributes record on each
volume in the domain. This record is found in mcell 6 in page 0 of the RBMT. Any volume that ever
housed the log (and therefore root tag file) also has a domain mutable attributes record. The volume
containing the domain mutable attributes record with the highest sequence number is the volume
containing the latest domain attributes, log, and root tag file. The domain mutable attributes record
contains the tag of the current root tag file.

Figure 11: Root tag file to fileset tag file

2.3.6 Miscellaneous Bitfile

The miscellaneous bitfile represents a fake superblock (a block used by UFS which contains essential
static filesystem information needed at boot time) and other disk overhead structures typically found on a
volume. The miscellaneous bitfile is used to reserve sectors on a volume that do not represent actual
AdvFS metadata, including the disk label, the UFS boot blocks, the fake superblock (for AdvFS, it
contains the magic number), and the AdvFS boot blocks. The magic number is 0x11081953 at offset
1372 (0x55c) into the superblock. Each volume has its own miscellaneous bitfile.

2.4 In-memory structures
In general, for every on-disk structure a corresponding in-memory structure exists. The in-memory
structures are used to cache parts of their corresponding on-disk structures, to maintain state information,

 27 Chapter 2: Domain and Volume Concepts

and to contain related lock structures. Some on-disk structures are represented by several in-memory
structures.

Before looking at the specific structures, there is a mechanism that is used in several of the common
AdvFS in-memory structures that is useful to understand. The in-memory structures for domains, bitfile
sets, fileset nodes, volumes, access structures, and buffers all contain a magic field. This field is used for

several purposes. First, each has a specific, preset value (e.g. 0xadf003 for a domain) that can be found

in bs_public.h. Thus, when debugging a crash dump and displaying a structure from a memory

pointer, it is immediately obvious if the address is, in fact, a pointer to the type of object specified. If the
magic number is displayed correctly, the pointer was valid. If the magic number is not valid, then the
address is not a pointer to that type of structure. A second use of the magic field is to understand if a
given in-memory structure is legitimately allocated, or if it has been freed. When the structure is
allocated, the magic field is given the preset value for the type of structure that it is. This value remains
the same while the structure is in use. When the structure is no longer needed, and it is freed, then a

special bit (MAGIC_DEALLOC = 0x00080000) is set in the magic field. If a crash dump is being

investigated and there is code that is manipulating a structure that has this bit set, then it is known that this
structure has already been freed, and the use of this structure is no longer valid.

The following illustration shows the relationship between the domain and volume in-memory structures
discussed in this section:

Figure 12: In-memory domain and volume structure relationship

2.4.1 DomainT Structure

Each active domain on a system has an associated domainT structure, allocated when its first fileset is

mounted. The first domain structure can be found off the DmnSentinelP global variable. All active

domains are on a circular doubly-linked list using the dmnFwd and dmnBwd fields within the domainT

structure. When a domain’s last fileset is unmounted, the domainT structure is freed (see Section 2.10).
Domains that are activated also have their domain IDs hashed and inserted into a global domain hash

table (DomainHashTbl).

Key items stored in the domain structure include:

Chapter 2: Domain and Volume Concepts 28

• Domain state and ID

• Forward and backward pointers to other domains on this system.

• Volume descriptor array

• Ordered list of dirty metadata buffers that need to be flushed

• Transaction table

• Pointer to the service class table

• Pointer to the transaction log’s access structure and state information

• Pointer to the root tag directory’s access structure

2.4.2 Volume descriptor array and vd Structure

A volume descriptor array (domainT.vdpTbl[]) is used to locate the disks in a domain. This array is

a fixed-size, holding 256 (BS_MAX_VDI) elements. Each array element is a pointer to an active volume

descriptor, or vd structure. Note that this array can be sparse; there may be NULL pointers interspersed

among the valid pointers.

Each volume descriptor consists of information that describes a disk. The vd structure contains the
following information as well as other volume-specific fields:

• Volume state and index (vdIndex)

• Pointer to the volume’s free-space cache

• I/O Queuing information

• Pointers to the volume's RBMT, BMT, and SBM bitfiles

• Pointer to the device vnode

• Physical characteristics of the device

The value of (vdIndex – 1) is the offset into the domain’s vdpTbl[] array in which the pointer to
this volume is held.

2.4.3 Service Classes

Each domain has a service class associated with it. Each volume added to the domain is added to the
service class and removed when the volume is removed from the domain. Service classes are used to
determine which volumes within a domain can allocate file storage for new data or data migration. They
act as a locking tool when volumes are removed from a domain. Removing the volume from the service
class is one of the first steps in the volume removal algorithm. This system prevents any storage from
being allocated on the volume being removed, with the exception of a few necessary metadata allocations.

There is one service class table (ServiceClassTblT) per domain, and the table contains one service

class entry (scEntry) per service class in the domain (with today’s functionality, that is always one).

The entry contains a linked list of the volume indexes in the service class and the volume index of the last

 29 Chapter 2: Domain and Volume Concepts

volume used for new storage or mcell allocation in the service class. A volume’s corresponding disk
structure is found by using the volume index to locate the appropriate volume descriptor pointer in the

vdpTbl of the domain structure.

The original intent of service classes was quite broad. When an AdvFS disk is initialized, it is assigned to
a service class, which defines the storage services the disk will support. AdvFS then allocates storage on a
disk that provides the services required by a particular file. Service classes were never expanded beyond
use as a way to group volumes into domains, and further expansion of the service class concept would not
provide any needed functionality. Many of the service class functions and structures can be removed or
simplified in order to clean up the code. For example, we don’t need a binary search to find the service
class entry (there’s only one), and we don’t need the disk index list to be a linked list of fixed sized arrays
(done for scaling). The key functionality that should be kept is allowing removal of a volume from a
service class as a way to avoid new allocations on that volume.

2.4.4 Free Space Cache

To avoid costly I/Os and SBM scanning when searching for free space on a volume, AdvFS uses an in-
memory free-space cache to keep track of free space on a volume. It is a cache because it has a limited
number of entries and does not represent all the free space on a volume.

The cache is a linked list of free space extents. Each extent is represented as a stgDescT structure with
fields for a starting block in the SBM and the number of contiguous free blocks representing the extent.

Note that the stgDescT fields are described in terms of clusters, and one cluster is equivalent to one

SBM block (or bit), which is one 8K page. The entries in the cache are currently sorted by virtual disk
block. Potential Enhancement: The free space list could be on two lists: one sorted by disk block

number and the other by free space extent size. This allows use of the best-fit algorithm and also allows

for space consolidation when new free space is added to the cache.

When a disk is mounted, its free-space cache is initialized to be empty. The free-space cache is populated
whenever it is empty and a request for file storage comes into the storage allocation system. The cache is
also repopulated immediately after an explicit invalidation request. The cache is populated by scanning
the SBM and creating cache entries for free space extents in the bitmap. When a file requests storage, the
cache tries to satisfy the request by delivering part of an entry or several entries until the request is
satisfied or the cache is emptied. The cache entries are delivered to files in the order they exist in the
cache. The cache is not searched for the closest extent or the best fit for a request.

When the cache cannot satisfy the storage request, all its entries are discarded and it is refilled from the
SBM. No entries are retained because there is no provision to merge an entry found by reading the SBM
with an entry already existing in the cache.

The free-space cache is a one-way pipe; space can be removed from it (allocated) but it cannot be put
back. This rule exists in support of transactionally consistent storage deallocation, which requires that
any storage deallocation transactions must be committed to the on-disk log before the deallocated space
can be reallocated to a different file. From the SBM’s perspective, storage deallocation modifies the
bitmap only (not the free-space cache) and the SBM modifications are logged. To maintain transaction
consistency, the deallocated space must not appear in the free-space cache until the associated transaction
records are committed to the on-disk log. Therefore, the transaction log must be flushed synchronously
before the bitmap is scanned to refresh the free-space cache. Consider the following example if this rule
were not followed. Storage is deallocated from File A, and returned to the free space cache. This storage
is then reallocated and given to File B. Meanwhile, the storage deallocation transaction is aborted, and
the storage is returned to File A. However, this storage has already been reallocated to File B, so we end

Chapter 2: Domain and Volume Concepts 30

up with a situation where the same piece of storage is actually allocated to two different files. This must
never happen, so storage is only reallocated after its deallocation transaction has been committed.

The main ramification of this transaction consistency rule is that the free-space cache does not know
about deallocated space until the next refresh of the cache. This means that it is not possible to coalesce
deallocated space with existing free space extents in the cache. Therefore, the cache does not always
contain the largest and possibly the most optimal free space extents. This can cause AdvFS to generate
disk fragmentation (refer to Section 4.7.9 for more discussion on fragmentation).

When the file is closed, any preallocated storage at the end of the file is freed. The freed storage is
returned to the storage cache the next time the cache is loaded. The freed storage cannot be returned to
the storage cache immediately because data corruption could occur if a second file allocated and wrote
data to the storage and the system crashed before the log entry for the storage-freeing transaction was
written to disk.

If a utility closes a file (after extending it), the next contiguous storage is most likely the storage that is
freed on closure. If the utility then reopens the file to append more data, the storage allocated to the file
(from the cache) is likely to be non-contiguous with the last page written. This causes fragmentation in
files that are repeatedly opened, appended, and closed. This is exactly the model that NFS uses.

Figure 13: Relationship between the free-space cache and the SBM

2.5 Creating a domain

A domain is created using the mkfdmn command, and its invocation is:

mkfdmn [options] device domain

where device is the name of the storage device on which the domain will be built, and domain
specifies the name of the new AdvFS domain to be created. The device can be a disk or an LSM volume.
Only a user with root privileges may use this command. There are several options for this command that
can be used to change the default size of the log, to use DVN 3 or 4 format, and to ignore overlapping

partition warnings. See the man page for more information on these and other options that are available.

Be careful when using this command because it overwrites the specified storage and initializes it to an
empty domain.

 31 Chapter 2: Domain and Volume Concepts

2.6 Accessing a previously-created domain
Sometimes it is useful to bring the disk(s) from one machine to another, and mount the domain on the

second machine. Using mkfdmn on this disk will wipe out the information already on the disk. To use

this domain on the second system, use the following steps:

1. Boot the system with the new disks in place. Use the list of disks in /dev/rdsk or the hwmgr
command to determine the name of the new disks (the ones with the domain information to be
mounted).

2. Go to the /etc/fdmns directory, and create a subdirectory with the name of the domain that is

being moved onto this system. For example, if the domain name is oracle_domain, then

create a subdirectory called /etc/fdmns/oracle_domain.

3. Change directory into the subdirectory created in step 2. Then create a symbolic link that points
to the partition on which this domain information is located, and call it the partition name. For

example, if the domain is on /dev/disk/dsk12c, use:

ln –sf /dev/disk/dsk12c dsk12c

Although it has some limitations, the advscan utility can be used to rebuild the /etc/fdmns
information from steps 2 and 3.

/sbin/advfs/advscan –r <devices>

This command will rebuild the /etc/fdmns entries automatically, giving the domain the name

of the underlying disks (/etc/fdmns/domain_dsk12c for the above example). Feel free to

rename the domain name in /etc/fdmns/<domain name> to one that is more meaningful

to you. This is the only place that the domain name actually appears; it is not stored within the

domain itself. One problem with using advscan is that occasionally it will recover several
overlapping domains on partitions of a single disk, where there was really only one most-recent

domain. For example, there have been cases where old domains were on the g and h partitions of

a disk, and the c partition of the disk contained the most-recent domain, and the one that we

wanted to be recovered. Advscan actually recovered all 3 domains into /etc/fdmns,
requiring additional steps to remove the older, unwanted domains. Many times it is simplest to

just build the /etc/fdmns entries manually, as was discussed in steps 2 and 3.

4. Up to this point, we have manually done the work that mkfdmn would have done, except that we
have not destroyed the information on the underlying storage. Now we must get the name of the

fileset(s) that are contained in this domain (if they are not already known). Use the showfsets
command:

showfsets –b <domain>

 This will display the names of the filesets contained in this domain.

5. Next, mount the fileset(s) from the domain onto the appropriate directories:

mount <domain>#<fileset> <mount point>

6. At this point, the information in this domain should be accessible on the new system.

Chapter 2: Domain and Volume Concepts 32

2.7 Removing a domain

A domain is removed using the rmfdmn command, and its invocation is:

rmfdmn domain

where domain specifies the name of the existing AdvFS domain to be removed. Only a user with root

privileges may use this command, and all filesets and clone filesets must be unmounted.

If you accidentally remove a domain, don’t panic! If you have not reused the disks for another domain or
raw device, you will be able to reestablish the original domain by doing the following:

1. rebuild the /etc/fdmns/<domain name> entry as described in section 2.6

2. fix the disk labels on the appropriate disk partitions. When rmfdmn removes a disk partitition

from an AdvFS domain, it changes the disk partition’s fstype field from ’AdvFS’ to

’unused’. You must use the disklabel utility to reset this field back to ’AdvFS’. Use the
command:

disklabel –s –F <dskNp> AdvFS

where <dskNp> is the disk number and partition (dsk12c for the example in section 2.6). Note

that ’AdvFS’ in this command is case-sensitive; specifying ’advfs’ will not work.

3. At this point you should be able to mount your domain and access the data again.

2.8 Adding a volume to a domain
A domain can have up to 256 (BS_MAX_VDI) volumes, but since only one may be specified in the

mkfdmn command, we need a way to add additional volumes to the domain. For this, we use the

addvol command, which is invoked similarly to mkfdmn:

addvol [options] device domain

where device is the name of the storage device which will be added to the domain, and domain
specifies the name of the existing AdvFS domain to be expanded. The device can be a disk or an LSM

volume. Only a user with root privileges may use this command. See the man page for information on

the options that are available. There is no need to quiesce the domain while the volume is added.

Internally, the work for this command is very straightforward, with most of the work happening in the

kernel routine called bs_vd_add_active(). The main steps here are to determine the index in the

domain’s vdpTbl[], to initialize the disk to look like an empty AdvFS volume with the requisite

reserved files, to allocate and initialize all the in-memory structures for this volume, to open all the
reserved files on this volume, to write the new volume attributes to disk, to mark the disk as mounted, and
to add this volume’s storage to the domain.

2.9 Removing a volume from a domain

Removing a volume requires the rmvol command, which is invoked similarly to addvol:

rmvol [options] device domain

where device is the name of the storage device which will be removed from the domain, and domain
specifies the name of the existing AdvFS domain to have storage removed. The device can be a disk or

an LSM volume. See the man page for information on the options that are available. There is no need to

 33 Chapter 2: Domain and Volume Concepts

quiesce the domain while the volume is removed, but all filesets in the domain must be mounted. Only a
user with root privileges may use this command. Also, this command cannot be run while the

defragment, balance, rmfset, or rmvol utilities are running on the same domain.

From an internal perspective, removing a volume is more interesting than adding a new volume, primarily
because there may be files on the volume to be removed, and these must all be migrated onto other
volumes in the domain. If there is not enough free space on other volumes in the domain to accept the

offloaded files from the departing volume, the rmvol utility moves as many files as possible to free

space on other volumes. Then a message is sent to the console indicating that there is not enough space to
complete the procedure. The files that were not yet migrated remain on the original volume. You can

interrupt the rmvol process without damaging your domain. AdvFS will stop removing files from the

volume; files already migrated from the volume will remain in their new location.

The volume is actually removed by a series of calls from rmvol.c into the kernel. After verifying the

volume and domain parameters, the command calls advfs_remove_vol_from_svc_class()
which dispatches into the kernel to remove this volume from the service class table. There is only one
service class implemented in AdvFS, so removing this volume essentially means that no new files can be

created on this device once it is removed from the service class. Next rmvol.c calls a routine called

move_metadata() which migrates all user-defined files off the volume being removed. After this,

rmvol.c calls advfs_remove_volume() which eventually dispatches into a kernel routine called

bs_vd_remove_active(). This routine is responsible for migrating the log and fileset tag file off

this volume (if they are on it), and then removing the volume from the domain.

2.10 Domain activation and deactivation
Domain activation is a process of setting up the in-memory data structures for a given named domain so
that files, filesets, or volumes inside it can be accessed. Although a domain can be activated for the
duration of a single kernel request, domains are typically activated when the first fileset in the domain is
mounted, and remains activated while its filesets remain mounted. The activation process is typically

handled by two routines that are called sequentially: bs_bfdmn_tbl_activate() and then
bs_domain_access().

bs_bfdmn_tbl_activate() is invoked with a domain name, and uses the global DmnTblLock to

synchronize access to global domain data such as the chain of in-memory domainT structures (see

Section 2.4.1). It first calls domain_name_lookup() to see if the domain is already on the list of

activated domains. If the domain is already activated, then the domain ID is simply returned. Otherwise,

bs_bfdmn_tbl_activate() must go through the work of activating the domain from data on disk.

It does this by first calling get_domain_disks() which finds the disks that are associated with this

domain by finding the list of volumes in the /etc/fdmns/<domain> directory.

bs_bfdmn_tbl_activate() then loops through each of the volumes, getting the volume attributes

from disk, verifying that the information from each volume synchronizes with the others, allocating and

initializing the in-memory vdT structures, adding the volumes to the service class, and verifying that we

found all the disks for this domain. The first time a valid volume is encountered in this loop, a domainT
structure is allocated, added to the chain of domain structures, and entered into the domain hash table

(DomainHashTbl). After all the volumes are verified and brought into memory,

bs_bfdmn_activate() is called. This routine does domain-specific actions including opening the

log file, performing recovery on the domain, opening the root tag directory, marking the virtual disk and
domain attribute records indicating that this doman has been activated, setting the in-memory domain
structure to be BFD_ACTIVATED, and scanning the bitfileset delete-pending list to finish removing any

filesets which are on that list.. At this point the work done by bs_bfdmn_tbl_activate() is
complete and a domain ID is returned to the calling routine.

Chapter 2: Domain and Volume Concepts 34

The domain ID is then passed to bs_domain_access() which calls domain_lookup() to retrieve

a pointer to the in-memory domainT structure from the domain hash lookup table. This table contains

all the activated domains hashed by domain ID. This domainT pointer is passed back to the caller which

can now use the domainT and vdT structures until the domain is deactivated. Each activator increments

the domainT.activateCnt so these structures will be kept in memory until all threads accessing the

domain have exited.

Domain deactivation is handled by calling bs_domain_close() and bs_bfdmn_deactivate().

The latter routine decrements the domainT.activateCnt. If this is still greater than zero, there are
other threads that require this domain, so its work is done. Otherwise it goes through the work of
deactivating the domain. These steps include checkpointing the log, closing the root tag file, clearing the
SBM cache for each of the volumes, closing the log, and dismounting all volumes and removing their in-

memory structures. Finally this routine calls dmn_dealloc() which will remove the domainT

structure from the DmnSentinelP chain, remove the domain from the domain hash table, remove the

root fileset, and remove all memory associated with the domainT structure.

 35 Chapter 3: Fileset Concepts

Chapter 3: Fileset Concepts

3.1 Basic Concepts
Filesets are defined to be a collection of related files. The relationship between the files is defined by the
users and/or applications. The files are organized in a file/directory hierarchy which is functionally
equivalent to what is generally called a UNIX file system. Filesets can be mounted and unmounted like
file systems, and they are accessed like file systems. The main difference is that there is no direct or
simple mapping between a fileset and its storage as illustrated in the figure in section 3.2.1. A fileset’s
files are stored anywhere in its domain, interspersed with files which belong to other filesets. In short, a
fileset is an abstraction that is added on top of a storage domain that allows specific subsets of files to be
addressed via the UNIX naming conventions, as well as being backed-up and restored as unique subsets.

One complication in this view is that there are special files, called reserved files, that are generally not
visible to the user and that do not belong to any of the filesets that the user may create. These files
(RBMT, BMT, SBM, LOG, MISC, root tag file, and fileset tag files), may have domain-wide scope (root
tag file and LOG), fileset scope (fileset tag files), or volume scope (RBMT, BMT, SBM, and MISC),
making the filesets that the user creates inappropriate for the abstraction of these reserved files.
Therefore, AdvFS creates a special fileset, called the root fileset (or hidden fileset) for each domain, and
all the reserved files are considered to reside in this special fileset. How to differentiate between these
various filesets will be discussed later in this chapter.

3.2 On-disk structures

3.2.1 Fileset Tag File

Each AdvFS file is identified by a tag number, similar to an inode number. This tag number is really just
an index into a slot in the Fileset Tag File. This file was traditionally called a Tag Directory, but since
this name is confused with normal directory files, that naming convention is being discouraged. Tag
numbers are discussed further in Section 4.3. The figure below depicts a domain with 2 filesets and 5
files. Each fileset can be independently mounted and unmounted. Note that there are two tag files for
this domain, and that the tag numbers for the files in each will run sequentially from 1 to n. This means
that there may be two files with any given tag number in this domain. Therefore, the unique identifier for
any given file within a domain is the combination of its tag number and its fileset tag number. Where
does the fileset tag number come from? As explained in Section 2.3.5, there is a Root Tag File in each
domain that contains the tags for each Fileset Tag File. The index into the root tag file for a particular
fileset is that fileset’s tag number.

A good way to view the various tag files in AdvFS is to think of the Root Tag File (section 2.3.5) as the
directory of all filesets in a domain and the Fileset Tag File as the directory of all files in a fileset. The
root tag file is only used when accessing a fileset for the first time. Once a fileset is open, AdvFS uses a
pointer to the bfSetT structure for most file operations.

Chapter 3: Fileset Concepts 36

Figure 14: Relationship of files to on-disk data via tags and set tags

The tag file consists of a series of 8K pages (each of type bsTDirPg); each page contains a header
(bsTDirPgHdr) plus 1022 tagmap entries. If these entries are viewed as a linear array that spans the
pages, the index into this array is the actual tag number that will appear in the entry. Every tagmap entry
is comprised of an 8-byte bsTMap structure that contains the sequence number, volume index, and
primary mcell ID for the file. The figure below gives a simplified view of the traversal of information
from a tag number to the file on disk.

Figure 15: Fileset tag file to on-disk file

 37 Chapter 3: Fileset Concepts

3.2.2 Fragment File

Storage allocation in AdvFS is done in 8 KB page units. For files that are not an even multiple of pages
in length, only a part of the last page is used to store data. For file systems with many small files, this can
result in inefficient storage utilization. To minimize wasting disk storage, AdvFS stores the data that is
beyond the last full page of a file in a fragment. This fragment is stored in a special file called the frag
file. There is one frag file per fileset, and it always has a tag of 1. The use of fragments and the frag file
is explained in more detail in Section 6.2.

3.3 In-Memory structures

3.3.1 bfSet Structure

Filesets are AdvFS’s equivalent of UFS’s file system structure. The bfSet structure is the in-memory

representation of a fileset. A bfSet can be reached via the fileSetNode structure, a file’s

bfAccessT, or by following the doubly-linked list of filesets within the domain structure

(domainT.bfSetHead). Important information in this structure includes:

• Pointer to the fileset’s domain

• Linked list of other bfSets within the domain

• Linked list of access structures associated with this fileset

• Clone and original fileset state and pointers

• Fileset Tag File information

• Fragment file information

• Pointer to the fileSetNode structure

A magic number is also contained in the structure, and is used for structure validation and debugging

(bfSetMagic = SETMAGIC = 0xADF00002 for a valid bfSet structure).

The global BfSetHashTbl structure indirectly points to bfSet structures. The macro

BFSET_GET_HASH_KEY(bfSetId) is used to generate a hash key value for accessing the

BfSetHashTbl, and is a fast way to get a bfSet for a fileset. All associated hash macros can be found

in bs_bitfile_sets.h

The figure below shows the relationship between the domain, fileset, and tag file structures for a domain

where there are two filesets, ‘usr’ and ‘var’. Note that two bfSetT structures that describe the mounted

filesets have fileSetNode pointers and names, while the ‘hidden’ root fileset has neither. Also note

that the tag numbers for the two tag files are ordered sequentially in the context of the root (or hidden)
fileset. This is because the tag files are actually members of the root fileset, as evidenced by the facts that

their bfAccess.bfSetp fields point to the root fileset, the root tag file and the tag files are linked via

bfAccessT.setFwd, and the file count for the root fileset is 2 (the two tag files). Being in the context
of the root fileset is not unique for the tag files, since all metadata files in a particular domain are in the

context of the root fileset. One other thing to notice in this figure is that the bfSetT.dirTag is -2.0
for the root fileset. This is an arbitrary value assigned to the root fileset when the domain is established;
there are no access structures with a tag value of -2. The lowest absolute value for metadata tags is -6,
and 1 for normal tags.

Chapter 3: Fileset Concepts 38

Figure 16: Relationship among in-memory domain, fileset, and tag file structures

In the v4.0 pools, the bfSet structures were not chained off the domain structures. All bfSetT structures

for all domains on a system were kept in a global vector called BfSetTbl[]. The position of any given

bfSetT in this vector was determined by the value of (fileset handle -1). Thus, if the fileset handle was

12, the bfSet address was located at BfSetTbl[11]. The field domainT.bfSetDirH contained the
handle for the root fileset for the domain.

There is one peculiar aspect of the linked list of bfSet structures in each domainT that bears mention.

A typical way to implement this would have been to add two domainT fields such as bfsFwd and

bfsBwd which would have been initialized to point back to the domainT structure for an empty list. As

each fileset was inserted onto the list, the forward pointer would have pointed to the domainT structure,

and the chain’s forward pointer would have pointed to the new bfSet structure. This is not how this

was implemented, however. A new field called domainT.bfSetHead was added to the domain

structure. This is a bfsQueueT structure that contains bfsQFwd and a bfsQbck fields. The tricky

part is that each of the bfsQueueT fields are initialized to point to bfSetHead instead of the domain

or fileset structures. This necessitates the use of some macros to walk, insert, and delete bfSet
structures on the domain. When debugging, the key to remember is that: 1)

domainT.bfSetHead.bfsQfwd points to bfSetT.bfSetList, not bfSetT, and 2) the end of the

chain of bfSet structures is reached when bfSetT.bfSetList.bfsQfwd points to (domainT +

offsetof(domainT.bfSetHead)), not to domainT.

 39 Chapter 3: Fileset Concepts

3.3.2 fileSetNode Structure

This structure contains information about the mounted AdvFS fileset. The fileSetNode can be

reached from the fsContext structure for each file within the fileset or from the m_info field in the

mount structure for the fileset. Important information in this structure includes:

• Doubly-linked list of fileSetNodes for all other mounted filesets within the domain

• Tag structures for the root directory and the “.tags” for the fileset

• Pointer to the fileset’s domain

• Pointers to the access structure and vnode for the root directory of the fileset

• Fileset ID and pointer to the bfSet structure associated with the fileset

• Pointer to the mount structure associated with the fileset

• Fileset quota information

• fileSetStats structure containing statistics on fileset use and operations

The tags for the root directory (rootTag field) and “.tags” (tagsTag field) are 2 and 3 respectively
(see section 4.3 for more on special tags). A magic number is also contained in the structure, and is used

for structure validation and debugging (filesetMagic = FSMAGIC = 0xADF00005 for a valid

fileSetNode structure).

3.4 Creating a fileset

A fileset is created using the mkfset command, and its invocation is:

mkfset [-o frag | nofrag] <domain> <fileset name>

where domain specifies the name of an existing AdvFS domain, and <fileset name>. is the name

of the fileset to be created. The optional frag/nofrag argument allows the explicit enabling or

disabling the creation of frags for files in this fileset (see Section 6.2). Only a user with root privileges
may use this command.

Each domain may have multiple filesets (there is no explicit limit) unless the fileset is enabled for
DMAPI, in which case only one fileset per domain is allowed (see Chapter 11). Each fileset in a domain
can be independently mounted and unmounted, and have unique fileset quotas assigned.

Once created, a fileset may be renamed using the renamefset command:

renamefset domain <original fileset name> <new fileset name>

This command requires root privileges, and also requires that this fileset (and any clones) be unmounted
before it can be renamed.

3.5 Displaying and changing fileset attributes

The attributes of a fileset can be displayed using the showfsets command, as follows:

showfsets [arguments] domain [fileset]

Chapter 3: Fileset Concepts 40

where domain specifies an existing domain, and fileset specifies one or more filesets in that domain.

This command has several options that can be specified to limit or customize the output. See the man
page for more information.

The attributes of a fileset can be modified using the chfsets command, as follows:

chfsets [arguments] domain [fileset]

where domain specifies an existing domain, and fileset specifies one or more filesets in that domain.

The user must have root privileges to run this command.

This command, if used without options, executes the showfsets command, and displays the existing

attributes of the fileset. By specifying options, this command can be used to change file and block quotas
and enable or disable object safety, fragging, or DMAPI for the fileset.

See the man page for these commands for details about the use of the arguments.

3.6 Removing a fileset
An existing fileset can be removed by using the following command:

rmfset –f domain fileset

where domain is the existing AdvFS domain and fileset is the fileset to be removed from that

domain. The –f option turns off the message prompt and is useful when running this command from a

script. There are several restrictions on the successful completion of this command: the fileset must not
be mounted, the user must have root privileges, and the fileset must not have a clone. If there is a clone

fileset, remove the clone before removing the original. The clone is removed using the same rmfset
command, just specify the name of the clone fileset.

Note that all files in this fileset will be removed when this command is executed, so be careful.

3.7 Cloning a fileset

The clonefset command allows the creation of an on-line backup of the files in a given fileset by

making a read-only copy (clone) of the specified fileset. The command is:

clonefset domain fileset clone

Where domain is the existing AdvFS domain, fileset is the fileset containing the files to be cloned,

and clone is the name of the cloned fileset. The user of this command must have root privileges, and

there cannot be a DMAPI-enabled fileset in this domain. Only one clone per fileset can be maintained at
a time. Files in the clone fileset may be read, but cannot be modified.

Cloning is explained in detail in Section 5.1. A key point to remember about cloned filesets is that the
files in the cloned set have extent map information in the original fileset until all the pages of the original
are cowed to the clone. Therefore, original filesets cannot be removed until the cloned fileset has first
been removed.

3.8 Removing a cloned fileset
Removing a cloned fileset is functionally the same as removing an original fileset, since they are both

done using rmfset. There are several differences in internal handling that should be noted. First, an
original fileset cannot be deleted while it has a clone fileset. This is because the cloned files may have
partial extent maps, and depend on the extent maps in the original files to locate non-cowed pages.

 41 Chapter 3: Fileset Concepts

Second, removal of a cloned fileset may actually result in the removal of files within the original fileset.
Consider the example of deleting a file in a fileset that has a clone. When the file is removed, it is not
actually deleted at that time. Its entry in the directory is removed so that it can’t be found, but the
underlying bitfile is not deleted because its extent maps may still be needed for accessing data for the

clone. In this case, the original file’s bfAccess->deleteWithClone is set to 1. This saves time

when the file is deleted since the pages do not have to be COWed at that time. Eventually, this bitfile is

deleted when the clone fileset is removed, as alluded to earlier. The delete_clone_set_tags()
routine walks through all files in the clone fileset freeing the storage for the cloned files. It also checks to

see if the original file’s bfAccess->deleteWithClone is set; if so, the original file is also deleted.

3.9 Mounting and unmounting a fileset
In AdvFS, filesets are mounted and unmounted to gain access to the domain’s storage. Many filesets per
domain can be mounted simultaneously. The command for mounting an AdvFS fileset is

mount [options] domain#fileset <mount point>

where domain and fileset are the AdvFS domain and fileset to be mounted, and <mount point>
is the location in the existing directory tree on which this fileset will be mounted. There are many options

to the mount command, and they can be viewed in the man page. Several AdvFS-specific options are

worth mentioning here. The –o adl option causes all files in the fileset to use atomic-write data logging

for the duration of the mount. See Section 8.2 for information on atomic-write data logging. The –o

dual option enables the AdvFS fileset to be mounted as a domain volume even though it has the same

AdvFS domain ID as a fileset that is already mounted. This is typically used when splitting a mirrored
volume, and remounting one of the mirrors for backup. See Section 14.3 for an explanation of mirrored

volumes. The –o noatimes option modifies the normal updating of access times for files on the

fileset. The default behavior (atimes) requires AdvFS to flush file access times to disk for each read of

regular files. This adds to the I/O load on the system, and some applications do not require a strict time
accounting for file accesses. If approximate times of last access are acceptable and I/O performance is

critical on a particular fileset, it can be mounted with the –o noatimes option. In this case, the file
access time updates are not flushed to disk until other file modifications occur. This behavior does not
comply with industry standards, but can be used to reduce the number of disk writes for applications with
no dependencies on file access times.

The last option to mention is –o directIO. This option is used to force all files in the fileset to be

opened in direct I/O mode. This option is not supported in the field and does not appear in the man page.
This option is only used internally for direct I/O testing, and is not to be discussed outside the company.

To use this option, a variable called Advfs_enable_dio_mount must be set to a non-zero value

using a debugger. Then the fileset can be mounted using the –o directIO option. To see what mode

a fileset is mounted in, use the ‘mount –l’ command; if it is mounted in directIO mode, the value

‘directio’ will appear in the values listed. Since direct I/O and memory-mapping are not supported

concurrently, and since all executable files are memory mapped by the loader, any files on a fileset
mounted for direct I/O use will not be able to be executed. This is one of the reasons this option is not
supported externally. Perhaps the primary reason that this option is not supported is that the Clustered
File System (CFS) does not do any locking to prevent simultaneous writes to the same region of a file by
different threads (although AdvFS on a standalone system does). This means that unintelligent
applications using direct I/O via CFS could end up with mixed data which could be interpreted as data
corruption. Since direct I/O was designed for intelligent applications such as Oracle and the other major
databases which do their own write synchronization among threads, this is not a big limitation. Not
advertising this option prevents an onslaught of customers complaining about data corruption for
applications that do not synchronize their own threads.

Chapter 3: Fileset Concepts 42

Section 14.1 discusses how AdvFS and the VFS layers cooperate to mount filesets. That section also

shows how to trace the mount and vnode structures for mounted filesets into the AdvFS

fileSetNode and fsContext structures.

Filesets are unmounted using the umount command:

umount [options] domain#fileset | <mount point>

where domain#fileset refers to a mounted fileset within the domain, or <mount point> indicates
a location in the directory tree where an AdvFS fileset is already mounted. The options are explained in

the man pages.

 43 Chapter 4: File Concepts

Chapter 4: File Concepts

4.1 Files vs Bitfiles
In AdvFS, the term file refers to a named storage entity that consists of attributes and a single byte stream
as is defined by POSIX; basically it is a UNIX file. A bitfile is a generic storage entity that is named with
a unique identifier (a tag in AdvFS) and consists of attributes and an array of 8KB pages. Basically, the
difference between a bitfile and a file is the level on which you are viewing the file: the physical storage
layer manipulates bitfiles on a low level (through mcells, tags, and extents) and the file hierarchy layer
manages files on a higher level (through filenames, paths, and directories).

There is a one-to-one relationship between files and bitfiles in AdvFS. Files are instantiated through
bitfiles, which means that a file is a bitfile plus some POSIX attributes and POSIX semantics. In fact,
everything (file, directory, metadata, tag directory, transaction log, and storage bitmap) in AdvFS is
instantiated through a bitfile.

IMPORTANT NOTE: To reduce confusion and maintain word consistency, the word “file” will be used
for both “file” and “bitfile” throughout this document. However, where specific differentiation is
necessary, “bitfile” will be used.

4.2 Unique File Identification – tags
AdvFS uses tags to decouple a file name from its on-disk structure. Each file within a fileset has its own
unique tag, but a file's tag is not unique within a domain. A file's unique identifier in a domain consists of
the file's tag and the tag of the fileset’s tag file (see section 2.3.5 Root Tag File). The following figure
shows the relationship between the Root Tag File, the Fileset Tag File (see section 3.2.1), and a file:

Figure 17: Root tag file to fileset tag file to file

 HP Confidential

Chapter 4: File Concepts 44

The BMT has been left out to simplify the figure; but as is always the case, a Tag File entry always points
to a BMT mcell, which actually defines the file through the file attributes record and one or more extent
map records.

A file tag consists of a tag number and a sequence number. The tag number is really just an index into a
slot in the fileset tag directory. Whenever a file is deleted, its tag becomes available for reuse. However,
for consistency (as for crash recovery), AdvFS cannot reuse the tag unless it is changed from previous
uses of that tag. Therefore, each time a tag is reused, its sequence number is incremented to differentiate it
from the previous use of the same tag. The sequence number can be used only 32,767 times and then it
becomes a dead tag, never to be reused again. This is because the tag sequence is a 16-bit unsigned value
on disk, and the high-order bit (0x8000) is used to mark that the slot (tag) is in use. If the sequence

number is ever incremented past the value BS_TD_DEAD_SLOT (0x7fff), then this slot is dead.

Each fileset has five special tags that are assigned on fileset creation:

File Tag

Fragment Bitfile 1

Root Directory (/) 2

.tags Directory 3

User Quota File 4

Group Quota File 5

The /sbin/advfs/tag2name utility can be used to translate a tag number to a file’s full pathname.

AdvFS reserved files (RBMT, BMT, SBM, Tag File, LOG, and MISC) also have special tags. These tags
differ from normal tags in that they are negative and do not correspond to slots in a Tag File. In addition,
since the reserved files can appear on any volume in a domain, there are different tags for each reserved
file depending on which volume they are on. The following explains the calculations used to determine
the tag number for each reserved file.

The primary mcell is the initial mcell allocated for each bitfile. Since the reserved files are set up when a
domain is created (or when a volume is added to the domain), their primary mcells are known values.
Each tag number is calculated using the primary mcell value and the index of the volume on which the
file resides. This is shown in the following formula:

Tag = - (primary mcell number + (volume index * 6))

The following table shows the relevant values and the resulting tags for the reserved bitfiles on the first
three volumes in a domain:

Reserved File Tag Number Reserved

File

Primary

Mcell Volume 1 Volume 2 Volume 3

RBMT 0 -6 -12 -18
SBM 1 -7 -13 -19
Root Tag 2 -8 -14 -20
LOG 3 -9 -15 -21
BMT 4 -10 -16 -22
MISC 5 -11 -17 -23

 45 Chapter 4: File Concepts

Remember that there will only be one LOG file and one Root Tag File per domain, but the other reserved
files reside on each volume in the domain.

AdvFS reserved files (RBMT, BMT, SBM, Tag File, LOG, and MISC) also belong to a special fileset, the

‘hidden fileset’ that is associated with each domain (Section 3.3.1). Thus, the value of bfap->bfSetp
for each of these reserved files will be the value of the hidden fileset. Normally this is not of great
significance, except for several issues. First, the hidden fileset cannot be cloned, and therefore these

reserved files will never be cloned (see Chapter 5). Also, because the frag file has a tag of 1, and the
first tag directory in a fileset has a tag of 1, the only way to know which of these files a given access

structure represents is to look at its bfap->bfSetp value. The frag file is associated with a real fileset,
and the tag directory is associated with the hidden fileset. The hidden fileset always has a

bfSetT.dirTag.num value of 0xfffffe (-2 or –BFM_BFSDIR), and can be displayed for each

domain using the domain –fh command in the crash utility..

4.3 In-Memory Structures

Files are represented by VFS vnodes, and bitfiles are represented by AdvFS file context (fsContext)

and access (bfAccess) structures. Vnodes contain generic VFS information to describe a file, plus a

file system-specific area called v_data. There is typically one vnode per open file, but the vnode

may persist on a free list for some time after the file has been closed. AdvFS uses the vnode.v_data

field to hold links to the bfAccess and fsContext structures. The following figure shows the
relationships among these structures as well as the other volume, domain, and fileset structures discussed
in Chapters 2 and 3.

 HP Confidential

Chapter 4: File Concepts 46

Figure 18: Relationships between file, volume, domain, and fileset in-memory structures

4.3.1 bfAccess structure

Files are managed by AdvFS with access structures, the memory-resident structures that hold most of the

information needed to operate on a file. The bfAccess structure contains bitfile attributes, the extent
map(s), a dirty buffer list, and pointers to the domain and bitfile set descriptors. It also contains pointers
to the file’s vnode and to the VM object used to interact with UBC. The relationship between a file and
its VM object is described in more detail in Chapter 7.

There is one bfAccess structure per open AdvFS bitfile. When a file is first opened, an access structure

is taken from the free list. When a file is closed, the access structure remains cached and is added to the

free list of access structures (global variable FreeAcc). Until an access structure is recycled, it retains all
the information about a file and can be reassociated with the same file if it is opened again.

 47 Chapter 4: File Concepts

Recycling of access structures is done asynchronously as new access structures are needed. The internal
algorithms tend to recycle access structures on a least-recently-used basis by removing access structures
from the head of the free list, and adding newly-closed access structures to the tail of the list. One

exception to this is that bfAccess structures marked ACC_INVALID are added to the front of the free

list since they have no consistent information for any given file. There is another list on which

bfAccess structures can be cached when they do not belong to an open file, and this is the closed list,

ClosedAcc. This list is a holding area for access structures that are not yet capable of being recycled to
a new file, but are no longer associated with an open file. When an access structure’s reference count
goes to zero, the routine free_acc_struct() decides whether the structure can go directly onto the free list,
or must spend some time on the closed list. Typical reasons for adding the structure to the closed list are
that it has dirty pages that must be flushed to disk, or it has dirty stats that must be flushed in a root
transaction. In some cases an access structure can be moved directly to the free list when the file is
closed.

Access structures on the closed list are processed and moved to the free list by the fs_cleanup_thread().
This is a kernel thread that runs in the background and is responsible for several asynchronous activities:
1) cleaning up access structures on the closed list so they can be moved to the free list, 2) deallocating
access structures, 3) completing directory truncation operations, and 4) marking frag group headers as bad
if requested to do so. This thread is event driven, and receives its events from the message queue called

the CleanupMsgQH. The get_free_acc() routine sends a message to this thread to process access

structures on the closed list whenever the maximum number of access structures have been allocated, the
free list is empty, and there are access structures available on the closed list. It can also request cleanup if

the number of access structures with saved_stats is at least MaxSavedStatsAccessPercent
(15%) of the total number of structures allocated.

Management of access structures can be critical on a system. Because they are fairly large (approx 960
bytes) and a system can have many open files, the amount of memory they consume must be carefully
managed. In addition, as the filesystem load on a system changes, it is helpful to be able to allow the
access structure pool to change size as needed. When AdvFS is first enabled on a system, a pool of
access structures is allocated and placed onto the free list. The number allocated is (2 *

AdvfsMinFreeAccess), which defaults to (2 * MIN_FREE_VNODES) or 300. This allows AdvFS

to coordinate its number of file-specific structures with those allocated for VFS. The get_free_acc()

routine may send a message to the bs_access_alloc_thread() thread to allocate more access

structures if there are less than AdvfsMinFreeAccess structures on the free list and there are fewer

access structures than allowed (MaxAccess). The value of MaxAccess is scaled to the amount of

memory on the system, and is set so that the amount of memory consumed by the access structures is

limited to AdvfsAccessMaxPercent (defaults 25%) of the amount of memory on the system.

Access structures can also be deallocated when they are no longer needed. This is detected in the
ADD_ACC_FREELIST() macro that is called to move an access structure onto the free list. If it detects

that there are more than MaxAccess structures allocated, or that more than

AdvfsAccessMaxPercent of the entire access structure pool is on the free list, then it will send a
message to the cleanup thread to deallocate an access structure. The access structure pool will always

contain at least (2 * AdvfsMinFreeAccess) structures.

The only access control variable that can be tuned via sysconfig (as of Tru64 UNIX Version 5.1B) is

AdvfsAccessMaxPercent, which can be adjusted from 5% to 95%.

4.3.2 BfNode

The v_data region of the vnode is used to store filesystem-specific data. The bfNode is a structure that

links the VFS file structures with the AdvFS file structures, and resides in the vnode.v_data field.

 HP Confidential

Chapter 4: File Concepts 48

The bfNode is a container for the file tag, bitfile set ID, and pointers to the fsContext and

bfAccess structures.

4.3.3 fsContext structure

The context structure contains file attributes (also called stats) and disk quota information. It also

contains an important complex lock, the file_lock. This lock is used in many paths to synchronize

access to the file, particularly when the file size is changing. The fsContext structure immediately

follows the bfNode structure in the vnode.v_data field. The possibility exists (although it does not

as of Tru64 5.1B) that the fsContext structure will be unable to fit within the malloced size of the

vnode structure. In this case, memory for the fsContext is obtained from the malloc pool, and the

structure can be reached using the pointer in the bfNode.

4.3.4 bsBuf

Each file is logically comprised of a byte-stream of data. AdvFS organizes this byte-stream into a series

of 8k pages. When a given page is in the buffer cache, the bsBuf structure is used to represent that page.

This means that each file may have many bsBuf structures associated with it. Each bsBuf contains
information about the state of the page (dirty, busy, etc.), the location of the UBC page that holds the data
for this page, which file and page are represented by this data, and where this data resides on disk. See

Chapter 7 for details about the buffer cache and uses of the bsBuf structure.

4.4 On-Disk Structures
On disk, a bitfile consists of metadata (data about the file) and the file’s data. As described in section
2.3.2, the metadata consists of a series of mcells in the BMT. An mcell and all the records in the mcell are
associated with one bitfile. The each mcell stores the fileset tag number and the file tag number of the
bitfile corresponding to that metadata. Each mcell has a pointer to a “next” mcell. This chain of mcells all
belong to the same bitfile. This chain of mcells contains all the non-extent metadata for the bitfile.

The primary mcell also contains a primary extent map record. File storage is defined by extents, which
are contiguous areas of disk storage. This primary extent map record may contain the first extent of data
of the file. This record also has a “chain” pointer to a secondary extent record. That secondary extent
record will use its “next” pointer to form a linked list of extent records as the file grows and must map
more extents.

So the metadata for each bitfile is stored in mcells that may form two singly linked lists of mcells, both
headed by the primary mcell. One linked list forms off the “next” pointer in the primary mcell. This list
links mcells together by using the “next” pointer in each mcell. This list contains all the metadata for a
bitfile except the extents of the file. The other linked list consists of extent mcells. This list starts from the
BSR_XTNTS record that always exists in the primary mcell of a bitfile. The BSR_XTNTS record
contains a chain pointer to the next extent mcell. Subsequent extent mcells are pointed to by the “next”
field in the mcell.

Extent records only describe storage on the disk that they live on and every page in a file is described by
an extent except pages in a hole at the end of a file. A hole is a portion of a file that does not have storage
allocated to it. This can happen if a seek is done on a file which is then followed by a file write at the new
location. Holes are described by extent descriptors that do not point to any block on the volume.

 49 Chapter 4: File Concepts

No page in a file falls between two extent descriptors or between two mcells. The extent descriptors start
by describing page 0 of the bitfile and each extent mcell starts describing storage at the page where the
previous extent mcell stopped. See section 4.4 for more information about extent maps and descriptors.

4.4.1 Extent mcell record combinations

The secondary extent records fill the entire mcell so no other records can fit in the extent mcells. There
are 3 types of extent records. The primary extent record is always in the primary mcell and is a
BSR_XTNTS record. There are two types of secondary extent records: BSR_SHADOW_XTNTS and
BSR_XTRA_XTNTS. The BSR_SHADOW_XTNTS record is used by DVN 3 domains as the first
secondary extent record and it is used in DVN 3 and 4 domains by striped files as the first extent record in
a stripe. The BSR_XTRA_XTNTS record is used for all other secondary extent records on either domain
version. When a BSR_SHADOW_XTNTS record exists, there is no extent stored in the primary
BSR_XTNTS record. Conversely, if there is an extent in the BSR_XTNTS record it will not point to a
BSR_SHADOW_XTNTS record. However, the absence of an extent in the BSR_XTNTS record does not
require it to point to a BSR_SHADOW_XTNTS record.

Below are the allowed extent mcell record chains:

1. DVN 3 and 4 reserved bitfiles:

BSR_XTNTS -> BSR_XTRA_XTNTS -> BSR_XTRA_XTNTS -> …

Most of the reserved files don’t need and don’t have any BSR_XTRA_XTNTS mcells. The BMT is
the exception. It almost always has one or more BSR_XTRA_XTNTS mcells. Remember that all
reserved file mcells are in the RBMT in DVN 4 and in BMT page 0 in DVN 3. Reserved files never
cross volume boundaries. All the mcells and all the data for a given reserved file will be on one
volume.

2. DVN 3 non-reserved non-striped files.

BSR_XTNTS -> BSR_SHADOW_XTNTS -> BSR_XTRA_XTNTS -> BSR_XTRA_XTNTS -> …

In DVN 3, no extent information was kept in the primary extent record. The primary extent record
used its “chain” pointer to point to a BSR_SHADOW_XTNTS record. This record contained the first
extent descriptor. The BSR_SHADOW_XTNTS record contains a field that is a count of the
BSR_SHADOW_XTNTS mcells and all the BSR_XTRA_XTNTS mcells. This field is short and
may roll over for very long lists of extent mcells.

3. DVN 4 non-reserved non-striped files.

BSR_XTNTS -> BSR_XTRA_XTNTS -> BSR_XTRA_XTNTS -> …

In DVN 4, the BSR_XTNTS record can contain the file’s first extent. Since an extent descriptor can
not describe storage on another volume, if the file’s first extent is on a different volume from the
primary mcell, the BSR_XTNTS record will describe a zero length extent. The first
BSR_XTRA_XTNTS record will describe the first extent on another volume.

4. DVN 3 and 4 striped (non-reserved) files.

BSR_XTNTS -> BSR_SHADOW_XTNTS -> BSR_XTRA_XTNTS -> …
-> BSR_SHADOW_XTNTS -> BSR_XTRA_XTNTS -> …

 HP Confidential

Chapter 4: File Concepts 50

No reserved files are striped. Each stripe starts at page 0 in a BSR_XTRA_XTNTS record. There is
no record on the disk that says how many stripes a file has. When opening a file, the extents are read.
As each new BSR_SHADOW_XTNTS record is found, an in-memory stripe counter is incremented.
Only at the end of the linked list of extent mcells will AdvFS know how many stripes a given file has.
The mcell count in each BSR_SHADOW_XTNTS record is the count of mcells in that stripe. Each
stripe starts with a BSR_SHADOW_XTNTS record but it may not have a BSR_XTRA_XTNTS
record. The BSR_SHADOW_XTNTS record may describe all the extent in that stripe. In that case, a
BSR_SHADOW_XTNTS record can point to another BSR_SHADOW_XTNTS record. Two stripes

in one file are never created on one volume, but the rmvol or migrate utilities can form

degenerate striped files with more than one stripe of a file on a single volume.

4.4.2 On-disk mcell record types

There are many different record types used to describe information contained in mcells. The following is
a chart of the most common record types seen in mcell chains.

Record Type Description

BSR_ATTR Record describing file attributes; always in primary mcell

BSR_XTNTS Record for first extent in primary mcell

BSR_XTRA_XTNTS Describes additional extents

BSR_SHADOW_XTNTS Describes the first extent of each stripe in a striped file. Also used as
the first extent of a file on V3 domains.

BSR_PROPLIST_DATA Describes file property lists

BSR_VD_ATTR Describes volume attributes

BSR_DMN_ATTR Describes permanent domain attributes

BSR_DMN_MATTR Describes mutable domain attributes

BSR_MCELL_FREE_LIST Describes the first page of the mcell free list

BSR_DEF_DEL_MCELL_LIST Describes storage on the deferred delete list

BSR_DMN_SS_ATTR Describes domain’s vfast attributes

BSR_DMN_FREEZE_ATTR Describes domain’s freeze/thaw state

BSR_BFS_ATTR Describes the fileset attributes

BSR_BFS_QUOTA_ATTR Describes fileset quotas

4.5 Extents
Extents are contiguous areas of disk storage. The access structure has a list of extents that make up the
file. As a file grows, it must acquire new storage. If the new storage is contiguous to the storage at the
current end of the file, the file tends to be composed of a few large extents. If, on the other hand, each
new page added to a file is at a random location on the disk, the file will be composed of many small
extents. Files with fewer, larger extents have less metadata overhead and show better sequential read
performance.

 51 Chapter 4: File Concepts

Extents are stored on the disk as a series of descriptors. A descriptor is a file page and corresponding
starting disk block pair. An extent is the range of pages from one descriptor to the next. All the disk
storage necessary to store the pages of the extent is contiguous on the disk starting at the block number
specified in the first descriptor in a pair of descriptors. A series of descriptors is ended when the block is -
1. There are also descriptor terminators that use the value of –2, and are associated with holes in clone
files. See Section 5.1.5 for more information on extent maps in clone files.

For example, the following set of descriptors describes two extents followed by a hole, followed by one
more extent.

Page Block

0 1024

15 2048

27 -1

56 64

57 -1

Start of 15 page extent

End of 15 page extent, start of 12 page extent

End of 12 page extent, start of 29 page hole

End of 29 page hole, start of 1 page extent

End of 1 page extent

The first extent is 15 pages long and starts at disk block 1024. The next extent is 12 pages long and starts
at disk block 2048. There are no disk blocks for file pages 27 through 55. The last page, page 56, is stored
starting at block 64. The descriptor for page 57 is needed only so the size of the extent is known.

4.5.1 In-memory and On-disk Extent Maps

An extent map is the set of all the descriptors needed to specify the disk storage for a file. On the disk the
extent map for a file is stored in extent records in a chain of mcells. Each record can hold a fixed number
of descriptors.

AdvFS keeps an in-memory copy of the extent map for files that have been opened. The in-memory

extent map is kept in a bsInMemXtntMapT structure. This structure has a variable number of

bsInMemSubXtntMapT structures which are stored in array format. Each valid

bsInMemSubXtntMapT structure corresponds to an on-disk mcell extent record. The portion of the

extent map covered by the bsInMemSubXtntMapT structure is called a subextent map. If the number

of subextents grows, a new array (bsInMemXtntMapT->subXtntMap) with more entries is

allocated. The old array is copied into the new array and the old array is freed.

The bsInMemSubXtntMapT structure has an array of page/block descriptors

(bsInMemSubXtntMapT->bsXA). The number of in-memory descriptors (maxCnt) may not be as

large as the number of on-disk descriptors in the corresponding mcell (onDiskMaxCnt). If the number

of in-memory descriptors grows, a new array with more entries is allocated. The old array is copied into
the new array and the old array is freed.

 HP Confidential

Chapter 4: File Concepts 52

The following is the layout of the extent map structure - bsInMemXtntMapT:

origStart index of first subextent to be replaced in upcoming change

origEnd index of last subextent to be replaced in upcoming change

updateStart index of first replacement subextent

updateEnd index of last replacement subextent

validCnt number of subextents with valid information

cnt number of subextents in use, including changes

maxCnt number of subextents allocated in array (some may not be used)

subXtntMap array of in-memory subextent maps (bsInMemSubXtntMapT[maxCnt])

The following is the layout of the subextent map structure - bsInMemSubXtntMapT:

pageOffset first page described in this subextent

pageCnt number of pages described by this subextent

vdIndex volume containing the mcell for this subextent record

mcellId pointer to on-disk mcell corresponding to this subextent

onDiskMaxCnt number of descriptors allocated in the corresponding mcell

updateStart index of first descriptor that needs to be updated on the disk

updateEnd index of last descriptor that needs to be updated

cnt number of descriptors (bsXA) in use

MaxCnt number of descriptors allocated in the bsXA array

bsXA array of extent descriptors (bsXtnt[MaxCnt])

Although both structures have fields named cnt, updateStart, and updateEnd, they have different

meanings. In the bsInMemXtntMapT structure, these fields refer to the subextents in the subextent

array. In the bsInMemSubXtntMapT structure, these fields refer to the count of descriptors in the
descriptor array. More detail on how these fields are used will be described in the following sections.

4.5.2 Modifying In-memory Extent Maps

AdvFS modifies on-disk extents by adding modified subextent maps to the in-memory extent map. The
out-of-date on-disk subextent maps are then replaced with the modified in-memory subextent maps. This
replacement is done at the same time the on-disk records are updated. The on-disk change is always done
under transaction control.

In the bsInMemXtntMapT structure, the range of valid entries in the bsInMemSubXtntMapT array is

0 through (validCnt-1). A subextent map entry is considered “valid” when it has a corresponding on-

disk mcell record. When a range of extents in a file changes (pages are added, truncated, or migrated),

 53 Chapter 4: File Concepts

AdvFS marks the range of subextent maps that include the modified extents in the origStart and

origEnd fields. The modified subextent maps are replaced by new subextent maps located in

bsInMemSubXtntMapT array entries updateStart through updateEnd. The value of

updateStart is greater than or equal to validCnt.

 HP Confidential

Chapter 4: File Concepts 54

Example #1

The following example illustrates a file with an array of five subextents, so validCnt is 5. Subextents

1, 2 & 3 are about to be modified. The first subextent index past the valid ones is 5, so updateStart

is set to 5. It takes four subextents to affect the change, so updateEnd is set to 8. Once the changes

have been written into subextents 5 through 8, cnt is set to 9 to indicate that 9 subextents are now in use.

In this example, the bsInMemSubXtntMapT structure has 10 array entries, so a new array does not

need to be allocated, and maxCnt remains at 10.

Each extent descriptor in the bsInMemSubXtntMapT->bsXA array of extents from updateStart

to updateEnd corresponds to an mcell that must be modified. The range of descriptors from 0 to

updateStart is not changed. The extent descriptor range from updateStart through updateEnd
must be changed on disk.

bsInMemXtntMapT

bsInMemSubXtntMapT[index] 0 1 2 3 4 5 6 7 8 9

Field values: origStart origEnd updateStart updateEnd

Subextent array size: maxCnt = 10

Valid subextents: validCnt = 5

Subextents in use: cnt = 9

As explained previously, the meanings of updateStart and updateEnd are different in the two

extent and subextent structues. In bsInMemXtntMapT, updateStart through updateEnd specify
a source replacement range for subextents. The range does not have to be contiguous with the
replacement range or at the end of the current valid subextents. The update range is moved to replace the
original range. The number of valid subextents in the updated subextent array is

 validCnt – ((OrigEnd - origStart) + (updateEnd - updateStart))

In the example above, updateStart could have been 6. If this were the case, subextent 5 would not be
part of the original valid subextents, nor would it be part of the replacement subextents.

In contrast, in bsInMemSubXtntMapT, updateStart is the beginning of new descriptors in the
descriptor array that are already in place. No descriptors in the update range have to move within the

descriptor array. The updated descriptor array has updateEnd+1 (that is, cnt) valid descriptors. In the
example above, subextent 5, which replaces subextent 1, may be changing only the last half of the extents

in the subextent. In this case, if there were six descriptors, bsInMemSubXtntMapT->updateStart
would be 3. The descriptors from 0 through 2 are the same in subextent 1 and 5. The descriptors from 3
through 5 are different in subextent 1 and 5. When subextent 5 replaces subextent 1, then descriptors 3
through 5 need to be updated on the disk.

 55 Chapter 4: File Concepts

Example #2

The following example adds five pages of storage to a sparse file at page 23. The original file is described
by two mcells (and two subextents) with extents. Page 23 is described in the first subextent. Therefore,
the first subextent is modified.

bsInMemXtntMapT Original Intermediate Final

origStart 0
origEnd 0
updateStart 2
updateEnd 2
validCnt 2 2
cnt 2 3 2
maxCnt 3 3

subXtntMap[0] � denoted by (origStart, origEnd) range
 pageOffset 0 0
 pageCnt 42 42
 updateStart
 updateEnd
 cnt 5 7
 maxCnt 10 10
 bsXA[0] 0, 1024 0, 1024
 [1] 10, 512 10, 512
 [2] 12, -1 12, -1
 [3] 40, 2048 23, 4096 (added)
 [4] 42, -1 28, -1 (added)
 [5] 40, 2048
 [6] 42 ,-1

subXtntMap[1]
 pageOffset 42 42
 pageCnt 3 3
 updateStart
 updateEnd
 cnt 2 2
 maxCnt 10 10
 bsXA[0] 42, 8092 42, 8092
 [1] 45, -1 45, -1

subXtntMap[2] � denoted by (updateStart, updateEnd) range.
 pageOffset 0
 pageCnt 42
 updateStart 3
 updateEnd 6
 cnt 7
 maxCnt 10
 bsXA[0] 0, 1024
 [1] 10, 512
 [2] 12, -1
 [3] 23, 4096 < updateStart
 [4] 28, -1
 [5] 40, 2048
 [6] 42, -1 < updateEnd

 HP Confidential

Chapter 4: File Concepts 56

The first subextent map is copied to new subextent map 2. The range from updateStart to

updateEnd (2 to 2) indicates the new subextent that replaces the old subextent in the range

origStart to origEnd (0 to 0). In the new subextent map, updateStart through updateEnd (3

to 6) indicate the changed descriptors. The last descriptor is updateEnd.

After the in-memory extent map is changed, the on-disk mcells are changed to agree with the in-memory
extent map. All changes are done under one transaction. Storage can be appended to the end, inserted into
the middle, or removed using this mechanism.

4.5.3 Striped Extent Maps

The extent map for a striped file (see Striping, section 5.4) consists of an ordinary extent map for each
stripe. Each extent map starts at page 0 and the order of the maps is derived from the order of the mcell
chain, which determines which extent map page 0 describes file page 0 and which extent map page 0
describes file page 8, etc.

One extent in a stripe extent map may actually describe two or more discontiguous file page ranges. This
is because an extent that describes a set of contiguous disk blocks more than eight pages long is
describing two or more stripe segments of no more than eight pages apiece.

When a striped file is cloned, the clone file is striped over the same volumes as the original file. The clone
file has the same number of stripes and the same stripe width as the original file.

4.6 Sparse Files
Sparse files are files that do not have disk storage for all their pages. Pages without storage are called
holes. When a page in a hole is read, AdvFS sees that there is no disk data for that page and creates a

page of zeros in memory. The read() system call returns the page of zeros.

4.7 File Operations

4.7.1 Create

From the logical file hierarchy perspective, a file is created when its name is inserted into its parent
directory. File creation consists of 1) inserting the file’s name and tag into the parent directory, 2)
creating a primary mcell with metadata for the file in the BMT and 3) adding an entry into the fileset’s tag
file pointing to the primary mcell.

4.7.2 Open

Opening a file (done via open() or creat() calls) involves translating a file path name to a file descriptor
that can identify the open file (typically a file handle), and preparing the file to be used. Most of the work
here is traversing the pathname through the directories, retrieving the tag for the file, looking the tag up in

the tag directory, and then setting up in-memory structures (vnode, bfAccess) that can be used to
make future file references more efficient. Note that there are routines above the AdvFS layer that also

allocate structures when a file is opened. For example, there is a struct file that is used as a link

between open file descriptors for a process and the underlying vnode for the open file.

 57 Chapter 4: File Concepts

When a file is opened, the application can specify the mode in which the file is opened. Some of these
modes are obvious, and some need a bit of explanation. The following is a table of some of the open
modes that can be used for AdvFS files and some of the salient points regarding that mode.

Open(2) flag Explanation

O_RDONLY Open the file for read access only

O_WRONLY Open the file for write access only

O_RDWR Open the file for read and write access

O_CREAT Create the file if it does not exist

O_APPEND All writes will be appended to the end of the file. The kernel
synchronizes writes among racing threads to assure that no data is
interspersed from the different writes.

O_TRUNC Truncate the file to zero length when it is opened. All previous
data is lost.

O_EXCL If the file already exists and both O_EXCL and O_CREAT have
been specified, the open will fail. This prevents accidentally
losing the file’s data by specifying O_CREAT.

O_DIRECTIO Open the file for direct I/O. This mode causes the data to be
transferred directly from the application buffer to the disk,
bypassing the buffer cache. When one process opens a file in this
mode, that file is opened for direct I/O for all other processes,
whether it was requested or not. Also, once opened for direct I/O,
that mode will remain in effect until all processes close that file.

O_CACHE Open the file for cached I/O. This is the opposite of direct I/O, but
this cannot be used to turn direct I/O off for a file. This is the
default value, so it is really not necessary to specify this flag.

O_SYNC Specifies that each write should be synchronous, not returning
until the data and updated metadata have been flushed to disk.
The configurable variable ‘strict_posix_osync’ must be set in
order for AdvFS to comply fully with POSIX requirements. This
will force AdvFS to write the metadata even if the size of the file
has not changed. For performance reasons, if O_SYNC is not
specified, AdvFS will not update the metadata before returning if
the size has not changed.

O_DSYNC Specifies that each write should be synchronous, not returning
until the data (but not the file statistics metadata) have been
flushed to disk.

O_RSYNC Specifies that any pending writes be flushed to disk before a read
can be satisfied. This forces AdvFS to flush unwritten data during
a read operation. Valid only if O_SYNC or O_DSYNC are also
specified.

4.7.3 Read, pread, readv, aio_read

 HP Confidential

Chapter 4: File Concepts 58

Reading a file can be done via a variety of interfaces, including the read(), pread(), and readv() routines,
which all require a file descriptor obtained from the open() call. The file can also be memory-mapped via
mmap(), and the read will occur when the mapped memory region is accessed.

Because all read operations are inherently synchronous (the read call cannot return until the data is
fetched from disk and placed into the application buffer), there is also an aio_read() call that can be used
by an application to make reads appear to be asynchronous. That is, an application can call aio_read() to
start a read, and then go do some additional processing. aio_error() can be called at a later time to check
the status of the read. These routines are part of the Asynchronous IO (AIO) package. See section 14.2
for more information.

4.7.4 Write, pwrite, writev, aio_write

Writing a file can be done by a variety of interfaces, including the write(), pwrite(), and writev() routines
which all require a file descriptor obtained from the open() call. The file can also be memory-mapped via
mmap(), and the write will occur when the mapped memory is modified (although this does not force the
data out to disk).

Writing to a file that is opened for cached I/O is typically an asynchronous operation. This means that the
data is written to the buffer cache when the write() call returns to the application, but the data will be
flushed to disk at some later time. This flushing can occur under application control via calls to fsync() or
msync(), by the operating system which will flush dirty buffers to disk periodically via the sync() interface
or by the smoothsync algorithms (section 8.9).

When a file is opened for direct I/O, writes bypass the buffer cache and go directly from the application’s
buffer to the disk. The write() routine will not return until the data is on disk. Because direct I/O writes
are synchronous, and because the I/O latency is long, many applications that use direct I/O choose to
simulate asynchronous behavior by using the Asynchronous IO (AIO) package. This allows them to call
aio_write(), do some additional processing, and then check the status of the write at some later time by
calling aio_error().

4.7.5 Close

Closing a file is a fairly simple operation. From the application point of view, this really just involves
disassociating the file descriptor that was obtained on the open() call from the underlying file. There are
some underlying operations that AdvFS does at this time, and they are discussed in Section 4.7.6.

4.7.6 Delete

Files are deleted via the unlink() system call. This causes the name of the file to be removed from its

directory, and it can no longer be located by the logical file hierarchy at that point. However, if processes
still have that file open for processing, the file itself does not get removed until the last process closes the
file.

Most UNIX flavors do not provide an ‘undelete’ function, so if a file is removed accidentally, it is usually
a cause for concern. AdvFS provides the trashcan concept to help alleviate some of the problems
associated with unwanted deletes. This allows files that are deleted to be moved to a trashcan directory
instead of being removed. (See Section 6.1.4)

 59 Chapter 4: File Concepts

4.7.7 Rename

Renaming a file is conceptually fairly simple: the name in the directory must be changed from the old
name to the new name, assuring that the new name is not a duplicate. If the path is modified so that the
file moves from one directory to another (within the same domain), the operation becomes a delete of the
file directory entry from the old directory and an insert into the new directory. If the rename causes the
file to move to a different domain, then the underlying storage will be different, so the whole file must be
copied from the old domain to the new one, and then the old storage is deleted.

4.7.8 Fcntl() and ioctl()

These are two interfaces to allow manipulation of open files. fcntl() performs controlling operations on a
file specified by the file descriptor returned by the open() call. A variety of functions can be performed,
and several are filesystem-specific. One that is unique to AdvFS is F_GETCACHEPOLICY which will
retrieve the cache policy for the open file. This allows an application to determine if a file is opened for
direct I/O or for caching. There is also an F_ADVFS_OP function that allows activating atomic-write
data logging (ADL) or forcing synchronous I/O, as well as retrieving the current I/O mode for the file
(synchronous, asynchronous, ADL). Another interesting fcntl() function is F_GETMAP which retrieves

the sparseness map for the file. This allows applications such as vdump to determine where storage holes

exist in a file. The man pages have more information on how to use this function.

ioctl() is another useful interface that is typically used to control devices, and is used internally by AdvFS
for controlling and retrieving information about disk devices. For example, when a disk is added to a
domain, AdvFS uses the ioctl(GETGEOM) call to determine many parameters of the disk and to optimize
future interactions with that device.

4.7.9 Truncate

Open files can be truncated via the truncate() and ftruncate() calls; the file can also be extended using this
interface. If the new length of the file is less than the previous length, all data beyond the new end-of-file
(EOF) is deleted, and the underlying storage is returned to the domain for reuse. If the new length is
greater than the previous length, one byte of zero value is written at the offset of the new length. Any
complete pages between the previous EOF and the new EOF will not have storage. These pages will be
considered part of a sparse hole.

Internally, the VFS routine vtruncate() compares the new and old lengths of the file and, if the file is
being truncated, dispatches through VOP_SETATTR() and the msfs_setattr() routine. However, if the
file is being extended, it will set up a VOP_WRITE() call which will go through the fs_write() path to
write the single zero-value byte at the new EOF.

4.7.10 Hard and symbolic links

A hard link is an additional name for an existing file, and is created using the link or ln commands.

After a link is created, the file has more than one name. For AdvFS, this simply means that there are
several unique directory entries, each of which contains the tag number for the same file. Because tags
are unique within a fileset context, hard linking across filesets is not permitted.

A symbolic (or soft) link contains the name of the file to which it is linked, and is created using the

command: ln –s sourcename linkname. These entries in the directory have unique tag
numbers, and, in fact, are separate files. What links them together is that the symbolic link file stores the

 HP Confidential

Chapter 4: File Concepts 60

name of the ‘linked-to’ file. This name is stored in the metadata (specifically the BMTR_FS_DATA
record), provided that the name is less than 261 (BS_USABLE_MCELL_SPACE) bytes long. If it is
longer than that, then file extents are allocated and the link is stored in the file itself. The former method
is more efficient, so symbolic links with short names tend to perform better than ones with very long
names.

4.7.11 Memory Mapping

As mentioned briefly in the read and write sections, a file can be memory-mapped. This is a process
whereby a file, or a portion of a file, can be represented by a range of memory. After the file is memory
mapped, then simply reading the memory reads the file, and modifying the memory will cause the file to

be modified. Mapping is done using the mmap() and munmap() system calls, and can provide

significant performance gains.

This mechanism is largely handled by the Virtual Memory subsystem. If a memory mapped page is
touched (either for reading or writing) and this page is not resident in virtual memory, VM will fault the
page. Faulting is a process whereby the page is brought into virtual memory and made available to the
application. For a memory-mapped file, part of this process involves reading the page from disk into
memory so that the data can be read and/or modified. When a file page is faulted and brought into
memory,VM calls a filesystem-specific ‘getpage’ routine via the FSOP_GETPAGE() macro. For AdvFS,
this will invoke msfs_getpage(). Further discussion of the msfs_getpage() internals is presented in
Section 7.6.

4.8 Bitfile Operations

4.8.1 Bitfile States

A bitfile can be in one of the following states:

Invalid bitfile does not exist

Creating bitfile is being created

Valid bitfile exists and is accessible

Deleting bitfile is being deleted

The bitfile state is maintained in its primary mcell and its corresponding access structure (if one exists), in

bfAccess->bfState. The figure below shows the possible state transitions:

Invalid

Creating

Valid

Deleting

Figure 19: File state transitions

 61 Chapter 4: File Concepts

4.8.2 Lookup, open

Most of the work of opening an AdvFS file is done by the msfs_lookup() routine via VOP_ACCESS().
The lookup routine is called from namei() inside vn_open() when the file is opened to convert the
filename path to a vnode. The lookup routine is responsible for determining if the file exists, setting up

the vnode for the file, and indirectly allocating the fsContext and bfAccess structures for the file.
The vn_open() routine will also call VOP_OPEN() which dispatches to msfs_open() for an AdvFS
filesystem. This routine doesn’t do much for opening most files. As of Tru64 UNIX Version 5.1B,
msfs_open() is used only for checking the cache mode of the file and enabling direct I/O if that was
specified in the open() call. Other than that, most the work of opening the file is done in the lookup
routine.

After a file has been opened, there are several in-memory structures associated with that file, notably the

vnode, fsContext, and bfAccess structures. There is only one copy of each of these structures,
no matter how many times the file has been opened. Being able to find these on a running system or in a
crash dump is often helpful. The following are some hints about finding and using files that are open.

• To find all the processes that have a particular file open on a running system, use the fuser

<file> command. This will print a list of process numbers (PIDs) for the processes that have

this file open.

• To find the struct file structures associated with every file that a process has open, use

kdbx or crash and the command ofile –pid <pid>. This will print a series of pointers for
that process. This is the process’ file descriptor table, and contains an entry for each open file,

including multiple opens of the same file. Print the contents of each pointer as a struct file

*; if the file.f_type field has a value of 1 (DTYPE_VNODE), then the pointer at

file.f_data is the vnode for that file. Note that if the file is open for direct I/O, the

VDIRECTIO bit will be set in the vnode.v_flag field since this is one of the attributes that is
file-wide.

• Once you have the vnode, you can find the bfNode structure that is in the vnode.v_data

field. Do this by finding the address of vnode.v_data, and then casting that address as a

struct bfNode. Within the bfNode are pointers to both the fsContext and bfAccess
structures for this file.

4.8.3 Create

File creation is done via VOP_CREATE() from vn_open(), and this dispatches into msfs_create() and
fs_create_file() where most of the file creation logic resides. The work done here is all under transaction
control so the various pieces can be rolled back if any succeeding part fails. The primary steps vary
slightly depending on whether a regular file, a directory, or a symbolic link is being created, but are
essentially:

1. Get a new vnode.

2. Start a transaction of type FTA_FS_CREATE_1.

3. Call rbf_create() to get the next tag available for this file

4. Get a new mcell for the file

5. Initialize the bfAccess, bfNode, and fsContext structures

 HP Confidential

Chapter 4: File Concepts 62

6. Put the file onto the mount queue

7. Write the BMTR_FS_STAT record to the primary mcell

8. Allocate storage, if needed, for the file

9. Insert the new file into the directory

10. Initialize data for directories and symbolic links

11. Write updated stats to disk for the new file and its directory

12. Finish the transaction.

Note that several of the substeps will encompass their own subtransactions. In addition, there is a “root
done” transaction that will call create_rtdn_opx() to set the on-disk bitfile state to VALID, and wake any
threads waiting for this file to become valid. See Chapter 9 for more information about root done
transactions.

4.8.4 Read, read-ahead, prefetch

Read operations can enter AdvFS via four different entry points depending on how the application is
coded. Reads done via read() and its sibling routines will dispatch into AdvFS via the VOP_READ()
macro in the VFS layer. This will end up calling msfs_read() and then fs_read() where most of the read
logic resides. Reads done via memory-mapped files are done when the memory page is faulted (see
Section 7.6) and msfs_getpage() is called to bring the file page into the buffer cache. Reads done via

aio_read() (see Section 15.2) enter AdvFS via the msfs_strategy() routine, which sets up a struct uio
and calls down into the vn_pread() function and ultimately into fs_read() like the normal read() call.
NFS preferentially uses the FSOP_GETPAGE() call for reading a page. However, if a file is opened for
directIO, msfs_getpage() will return an error to NFS, and it will revert to using VOP_READ() for that
file. This is because msfs_getpage() does not use the active range locks to synchronize with other threads,
and since it is used heavily for memory-mapped files, we did not want to add the active range locking
overhead in that path.

AdvFS uses two special algorithms for optimizing read performance:

• Prefetch is used when a single read request from an application requires reading more than one
AdvFS page.

When the first page is referenced, AdvFS sets up the rest of the pages to be read and puts the buffers
onto the blocking queue. (Actually, if the first page is already in the cache, the remaining pages are
put onto the blocking queue; if they all need to be read, they are all put onto the blocking queue at the
same time.) Once the data for the first page is transferred to the application buffer, the rest of the
pages are already in the buffer cache, eliminating any more waiting for I/O completion. Only copying
the data from the buffer cache to the application buffers is required.

Prefetching is limited to 64 pages by the global variable max_prefetch_pgs. This limit is

maintained to minimize potential problems if the system is low on memory and the application is
trying to read a large number of pages. The variable is not configurable or modifiable by an AdvFS
utility. The only way to change it is with a debugger.

• Read-ahead is similar to prefetch, but instead of setting up I/O for pages in the current I/O request,
read-ahead is used to get sequentially read pages into the cache before the user requests them.

When a read is sequential to the last one, AdvFS assumes that the file is being read sequentially and

starts read-ahead processing. The last page read is recorded in the file’s vnode (vp->v_lastr).
While the page being requested is being referenced, the I/O subsystem sets up two I/Os for the

 63 Chapter 4: File Concepts

succeeding pages. Each I/O is of preferred_transfer_size to optimize the device’s abilities.

A trigger page is set to point to the last page of the first I/O. Eventually, the application reads the

trigger page. This page is still in the cache, and preferred_transfer_size bytes following it
are also still in the cache. At that time, AdvFS schedules an additional single I/O worth of pages to be
read; these pages follow those that have already been read. Then the trigger page is reset. This
continues until all of the data has been read.

For example, assume that the preferred_transfer_size for the underlying device is 100 pages
and that an application reads a file sequentially in 8K increments starting at page 0. The process is as
follows:

1. When the application reads page 0, that page is referenced, read from disk, and loaded into the
cache.

2. The data is copied from the cached page into the user’s buffer and vp->v_lastr is set to page
0.

3. The read() call returns the status to the application. When the application requests a read of page
1, AdvFS notices that page 1 immediately follows the last page read (page 0) and goes into read-
ahead mode.

4. During the read of page 1, AdvFS schedules I/O for two page ranges, each of size

preferred_transfer_size (pages 2 through 101 and 102 through 201).

5. AdvFS sets page 101 to be the trigger page and updates vp->v_lastr to page 1.

6. Hopefully all subsequent reads of pages 2 through 101 occur without having to wait for any I/O
to complete because those pages are already in the cache.

7. When the trigger page 101 is read, AdvFS starts a single I/O for the page range of pages 202
through 301 and sets the new trigger page to 201.

8. This pattern continues until the end of the file is reached or until the application stops reading the
file sequentially.

One limitation of the read-ahead algorithm is that there is only one sequential read point maintained for
each file. This means that if two applications are reading the same file sequentially, but one is reading at
offset page 0 and the other at offset page 10,000, the read-ahead algorithm does not work as efficiently as

if each application were reading from a different file. Removing the read-ahead point from the vnode,

putting it into the bfAccessT structure and allowing for a dynamic number of active read offsets could

be one way to fix this.

This algorithm can also be defeated if there are few free Unified Buffer Cache (UBC) pages on a busy
system. Assume the read-ahead algorithm has retrieved a given range of pages. If the UBC reclaims some
or all of these before the original thread can retrieve the data from the cache, then the read-ahead has been
defeated, and the I/O must be redone.

Having a single thread monopolize the buffer cache with read-ahead pages could adversely impact other
processes. To prevent this, two global variables are used and can be tuned with a debugger if desired.

AdvfsReadAheadNumIOs determines the number of page ranges that are read ahead. The default for

this variable is 2, as shown in the example above. AdvfsReadAheadMaxBufPercent limits the

number of pages that can be available to a single thread doing read-ahead to a percentage of the pages in
the UBC. The default is 5%.

 HP Confidential

Chapter 4: File Concepts 64

The device-specific variable preferred_transfer_size can be determined by looking at the

Rblks and Wblks output of the showfdmn command or the rblks and wblks output of the chvol

command. The variable can be reset with the chvol command and either the –r blocks or –w

blocks options.

4.8.5 Write

Write operations can enter AdvFS via several different entry points depending on how the application is
coded. Writes done via write() and its sibling routines will dispatch into AdvFS via the VOP_WRITE()
macro in the VFS layer. This will end up calling msfs_write() and then fs_write() where most of the write
logic resides. Writing to memory-mapped files is done when the memory page is faulted (see Section
7.6) and the memory is modified. In this case, the pages are not written to disk until the application calls

msync() or the UBC page is otherwise flushed to disk at the request of the UBC or AdvFS. Writes

done via aio_write() (see Section 15.2) enter AdvFS via the msfs_strategy() routine, which sets up a

struct uio and calls down into the vn_pwrite() function and ultimately into fs_write() like the normal

write() call. NFS appears to use the VOP_WRITE() macro for all its writes.

Most of the logic for writing files is in the fs_write() routine. This routine has two basic sections. First
this routine checks if the write operation will require storage to be added to the file. If so, it attempts to
add the storage by looping through all the pages to be written and calling fs_write_add_stg() for any that
need to have storage added. If storage allocation is successful, or if part of it fails, but some part of the
write can still be processed, then the copying of data from the application’s buffers to the cached pages
commences in the second part of the routine. If a file has been opened for direct I/O, the write is handled
by calling fs_write_direct() to setup the I/O. Otherwise, the transfer is done by looping through all pages,
pinning them, copying the on-disk data to the cached page, and then unpinning the page. Any transaction
management required for files opened for atomic-write data logging is handled in this loop as well. After

all the pages are updated, there is some cleanup such as marking the fsContext structure if the file
statistics need to be updated, updating the new file size, and possibly flushing the cached pages to disk if
required.

When storage is allocated in the write path, part of the storage allocation path must zero the newly-
allocated pages. This is done in fs_zero_fill_pages(), which has a performance optimization to skip the
zeroing of any pages that will be completely overwritten in fs_write() after the page is allocated. This
saves the overhead of pinning, zeroing, and unpinning each of these pages.

Part of the write algorithm is to keep track of the number of sequentially written pages for a performance
optimization called ‘aggressive write flushing’. This optimization is intended to prevent low-memory
situations because most of the UBC pages are dirty and must be flushed to disk before they can be used
for other purposes. It works by tracking the number of pages that have been sequentially written for the

current file, and if it exceeds the default value of 32 (stored in bfap->seqWritePgMax), will check
the number of dirty UBC pages. If the number of free VM pages is less than a ‘prewrite threshold’
indicating that free memory is low, or if the number of UBC pages that are dirty or busy exceeds a

predetermined threshold (default is 70% in global variable aggressiveWritePcnt), then the

aggressive write algorithm causes the pages being written to be flushed to disk before the write() call
returns to the user. The whole point of this is to prevent a single thread from depleting the UBC available
pages by doing a large number of sequential writes. This algorithm actually slows the writer if the
amount of memory available is becoming critically low. If the aggressive write algorithm is turned off

(by setting the global variable aggressiveWriteFlush to 0), then the cached writes are not flushed
to disk until smoothsync or the UBC initiates the flush.

 65 Chapter 4: File Concepts

4.8.6 Close

When a file is closed for the last time (no other processes have the file open), AdvFS determines if the
last page should be moved into the fragment bitfile. See Section 6.2 for a discussion of when this
happens. In addition, if the file has pre-allocated pages at the end of the file, they are truncated. This is
done by calling bf_setup_truncation(). If necessary, the file stats are updated under transaction control by
calling fs_update_stats(). Statistics that can be updated include creation/modification/access times and
file size. If a file is created or deleted, then its parent directory modification time should also be updated
when the file is closed.

4.8.7 Delete

File deletion is a complex set of steps that comes through VOP_REMOVE() into msfs_remove().
Because AdvFS supports trashcans (see Section 6.1.4), the delete code first determines if there is a
trashcan directory for this file, and if so, calls msfs_rename() to move the file to the trashcan. If the file is
actually going to be deleted, then the following primary steps are followed:

1. Seize the file_lock for the file and its parent directory

2. Start an FTA_OSF_REMOVE_V1 transaction.

3. Decrement the file’s link count (fscontext->dir_stats.st_nlink)

4. If the link count is not zero:

a. Call remove_dir_ent() to remove the file from the parent directory

b. Flush the modification time to disk

5. Else the link count is zero, so actually remove the file:

a. Call cache_purge() to remove the file’s name from the name cache.

b. Call rbf_delete() to put the file into the BSRA_DELETING state and put the file’s
primary mcell onto the Deferred Delete List (DDL). If this is an original file and the file
has a clone, the file is simply marked as being deleted, but is not actually deleted at this
point.

c. Call remove_dir_ent() to remove the file from the parent directory.

6. Commit the FTA_OSF_REMOVE_V1 transaction.

7. Unlock the file and parent directory.

Some of the work of the deletion is done by root done transactions for the FTA_OSF_REMOVE_V1
transaction. If the delete is being finished (not undone), then this invokes bs_delete_rtdn_opx(). This
routine makes sure the bitfile set is still open, and then calls tagdir_remove_tag() to remove the file’s tag
from the bitfile set's tag directory.

If a file is deleted and it has a clone, then the clone still has a dependency on the original file. The
original file is removed from the directory so it is not available under its old name, and then it is marked
as ‘delete with clone’ in its BSR_ATTR record on disk. When the clone is removed, this file will then be
deleted.

 HP Confidential

Chapter 4: File Concepts 66

After a file’s primary mcell is moved to the DDL, its storage will be returned to the domain for later
reuse. See Section 4.7.10.2 for information about storage deletion and the use of the DDL.

4.8.8 Truncate

File truncation (new file size is smaller than original file size) is dispatched through VOP_SETATTR()
and msfs_setattr(). The truncation process requires the following steps:

1. Get bfAccess and fsContext structures

2. Seize the fsContext.file_lock and an active range lock

3. Update the new file size and statistics

4. Start an FTA_OSF_SETATTR_1 transaction.

5. Call fs_delete_frag() if the file is being truncated such that the frag must go away.

6. Call fs_trunc_test() to see if the file can be truncated.

7. If it can be, call bf_setup_truncation() to do the first phase of storage deallocaton.

8. If truncating to an offset within a page, pin the trailing page, zero out the range beyond new EOF,
and unpin the page.

9. Call fs_update_stats() to flush the new stats (size and times) to disk.

10. Commit the FTA_OSF_SETATTR_1 transaction.

11. Call stg_remove_stg_finish() to finish the storage deallocation.

12. Release the active range lock and the file_lock.

The active range lock is taken in this path to coordinate with direct I/O threads to prevent I/O in a range
of the file that is being truncated.

4.9 Copy on Write (COW)
Copy-on-write is relevant when a file has a clone in a cloned fileset. Before a page in an original file can
be modified, that page must be copied to the clone. This happens only on the first modification of that
page after the clone has been created. When a given page is COWed, up to 31 successive pages may be
copied to the clone at the same time. COWing more than one page is done anticipating that sequential
pages in the original file will be modified. With this procedure, the clone file is less fragmented than if
only one page at a time were allocated and copied. Note that COWing multiple pages is limited to the
active range when a file is opened for direct I/O. This is done so that only pages within the protection of
the active range lock will be modified (this is only true in later baselevels of 5.1B - see Section 8.12.3 for
further details). Cloning is discussed more fully in Section 5.1.

4.10 Storage Allocation and Deallocation

4.10.1 Allocation

 67 Chapter 4: File Concepts

A main goal of storage allocation is to allocate disk space to a file as contiguously as possible. This
enables the buffer cache and I/O scheduler to perform large I/O requests (prefetching and consolidated
writes) and to minimize the number of I/O's required to read and write to a file. So, even when a write
operation from an application is for just one page, AdvFS may preallocate more than that page to ensure
that when the write request for the next page arrives, that page will be allocated adjacent (on disk) with
the previous page. (See section 4.5 for more information about extents).

A typical storage allocation has the following steps:

1. An application program calls the write(2) system call to write a data buffer to a file. When

writing sequentially, the data is appended to the file.

2. The write(2) system call causes the AdvFS fs_write() routine to be called. If this routine
determines that there is no disk space allocated for the write request, it calls

rbf_add_overlapping_stg() to allocate one or more pages to the file.

3. rbf_add_overlapping_stg() calls the storage bitmap routines to find one or more free

space extents on disk that satisfy the storage request. It marks the bits in the bitmap as 'allocated'
and it updates the file's extent map to refer to the newly allocated storage.

4. fs_write() then transfers the data buffer to the newly allocated space in the file.

The preallocation of pages is controlled by fs_write(). It uses a storage allocation algorithm that

increases the number pages per allocation as the file increases in size. The basic assumption is that as a
file gets bigger it is more likely that it will get even bigger, so it is okay to preallocate more space to the
file. The preallocation is currently limited to 16 pages. Preallocated space at the end of the file that is not
used (end-of-file is before the preallocated pages) will be truncated when the file is closed (last close if
multiple applications have the file open).

Disk storage is preallocated when a file is extended. If a file is growing at two or more sites (the end of
the file and/or some sparse holes are being filled), each site gets its own preallocated storage. In some
cases, this storage is not removed from the file when the file is closed. If a file is written sequentially and
a hole is created by seeking forward past the end-of-file, the preallocated storage in the newly created
hole is truncated before the new end-of-file is extended. However, preallocated storage added in an
existing hole remains with the file when the file is closed.

To avoid costly I/Os and scanning of the SBM when searching for the free space on a volume, AdvFS
uses a free-space cache. This cache is used to keep some information about the space still available on
each volume. For more information on the free-space cache, see Section 1.4.4.

4.10.2 Object Reuse

After allocating disk space, fs_write() zero-fills all the allocated pages. However, it does not flush
the zeros to disk synchronously, so it is possible that after a system failure the file's EOF is beyond the
last written page and the pages between the last written page and the EOF may not have been zero-filled
on disk. That is, the zero-filled buffers did not get written to disk. This is both data corruption and a
security issue because now it is possible for the owner of this file to see old data that was on the disk in
this page range. This ability to see data that is not part of the current file is called object reuse.

 HP Confidential

Chapter 4: File Concepts 68

Preventing object reuse is called object safety. Activating object safety forces zero-filled pages to be

written to disk before data is written to disk. This is done using the chfsets utility:

To enable object safety for all files in a given fileset:

chfsets –o objectsafety <domain> <fileset>

To disable object safety for all files in a given fileset:

chfsets –o noobjectsafety <domain> <fileset>

Because the flushing of the zero-filled pages to disk is extra overhead in the storage allocation path, the
use of the object safety attribute will cause some performance degradation during storage allocation.

4.10.3 Deallocation

Storage deallocation is responsible for returning unused storage to the volume’s free space cache
following a file truncation or deletion. There are two main issues that must be dealt with when
deallocating storage:

1. Storage deallocation is a potentially unbounded transaction because a file can consist of a large
number of extents. In addition, large extents may represent many SBM pages which may cause a
problem since there is a limit to the number of pages that can be pinned in a single transaction.
So, it is difficult to deallocate storage and return it to the SBM in a single, bounded transaction.

2. Releasing resources must be done carefully so that there is no chance that the storage could be
reallocated to another file before the transaction deallocating the storage has committed.

To deal with these issues, AdvFS deallocates file storage in two steps:

1. The storage to be removed is gathered as an extent map in a chain of mcells and put onto the
deferred delete list (DDL). There is one DDL per volume, and is essentially a chain of mcells
containing extent maps of storage to be returned to the volume’s SBM. Once the extent maps are
placed onto the DDL, the deallocation of this storage from its file is logically committed. If the
system crashes after the storage has been moved onto the DDL, AdvFS continues the storage
deletion process after the domain is reactivated. Even a very long list of mcells with huge extents
can be cut from the file’s mcell list with one cut. Very few on-disk changes are needed.

2. The second step in the storage deletion is to return the storage delimited by the extent maps on the
DDL back to the volume’s SBM. This is accomplished via a continuation transaction that
performs as much work as possible given the constraints of the transaction system. When the
continuation transaction commits, it also starts another continuation transaction if there is more
work to be done. This takes care of the unbounded nature of storage deallocation.

4.11 Property Lists
A property list is a file attribute (or series of attributes) that can be set persistently, and later retrieved.
Typically this data is a <name, value> pair, where the name is used to differentiate between the various
attributes that can be stored for the same file. For instance, property lists are used to track managed

 69 Chapter 4: File Concepts

regions for files under DMAPI control (see Section 11.4), audit properties, manage Access Control Lists
(ACLs), and control other application-specific functions and attributes.

Property lists are sometimes referred to as "VFS+" because of their generic container properties; they are

not unique to AdvFS. They can be set by the application using the routines in the proplist.so

library; these include setproplist() and getproplist(). Ultimately, these library routines call the

system vnode operation, VOP_SETPROPLIST() and VOP_GETPROPLIST(). For AdvFS, these
dispatch to msfs_setproplist() and msfs_getproplist().

Internally, the property lists are stored in a file’s metadata, which is inside the mcell chain for that file in
the BMT. The writing and updating of property lists is done under transaction control. Even though a
property list can span mcells, the size of property lists is restricted by the BMT architecture and the
transaction subsystem. Because updating an mcell requires the byte range (record) to be pinned, and there
is a maximum of 7 record pins per page in the transaction subsystem, the property list may not span more
than 7 mcells. Since each mcell is 292 bytes, and there is some overhead in the structures, the property
list has a maximum length of 1548 bytes. In addition, the larger the property’s name, the less room there
is to store the data associated with that property (the name can be up to 255 characters).

The physical layout of property lists always contains 3 parts: the header, the name, and the value. The
name and value contents are determined by the application. The header is determined by AdvFS, and has

evolved somewhat through time. For DVN 3 domains, the header is a bsPropListHeadT structure
that contains the length of the name data, the length of the value data, and some flags. So, if the property
list data all fit inside one mcell, there would be the property list header, then the name, and then the value.
Note that the name and value part of the data will be padded on disk so that they will be long-word
aligned. For instance, if the name occupies 10 bytes, the value part of the data will start at byte 16 in the
data list, since that is the next closest long-word (8-byte) boundary.

Figure 20: Small property list

 HP Confidential

Chapter 4: File Concepts 70

A property list can be put into the mcells in two different fashions, depending on the size of the property
list data. A ‘small’ property list entry is one in which the size of the name rounded up to the nearest long-
word boundary plus the length of the value is less than 129 bytes. There can be several small property list
entries per mcell. Since there is no facility for deleting mcell records, when a small property list entry is
deleted, it is merely marked as not-in-use (the BSR_PL_DELETED bit is set in the flags field of the
record) and can be overwritten at a later time.

If the property list entry is slightly larger, say 132 bytes, the property list entry would occupy an entire
mcell. This is a ‘large’ property list entry and is designated by having the BSR_PL_LARGE bit set in the
flags field of the property list header. A large property list entry has the advantage that, since the header
and data records consume one entire mcell, this list entry can be deleted by unlinking the mcell from the
primary mcell chain. This mcell is then available for general use and will appear on the free mcell list.

Figure 21: Large property list

If the property list entry is even larger such that it takes up room in two mcells, then the header, name,
and as much of the value as possible are placed in the first mcell, and the rest of the data is placed in the
following mcells (up to a maximum of 7 mcells). The structure used to describe the data in the second

through sixth mcells is a bsPropListPageT structure, but that is really nothing more than a container

for a buffer in DVN 3 domains.

 71 Chapter 4: File Concepts

Figure 22: Property list spanning 2 mcells

In DVN 4, the property lists changed slightly to allow for detection and possible fixing of corrupt

property list chains. A field called pl_num was added to the bsPropListHeadT structure to allow
internal numbering of the property list chains. Then, two fields were added to each

bsPropListDataT structure. One is pl_num and should match the pl_num in its header record.

The second field is pl_seq; this is a sequence number and allows the ordering of the mcells within the

property list chain.

Be aware that the chfile command uses an fcntl() call to invoke the VOP_GETPROPLIST() and

VOP_SETPROPLIST() dispatch routines to set the persistent atomic-write data logging and the
synchronous-write attributes for a file. However, these attributes are not actually stored in a property list.
This entry point was chosen because AdvFS needed a mechanism that would allow an NFS client to turn
these attributes on and off at the server. The property list interface was easy to use for this purpose.
Inside msfs_setproplist_int() and msfs_getproplist(), however, this call is intercepted and the appropriate
data are sent to msfs_set_bf_params() and msfs_get_bf_params() to handle these attributes, and no
property lists are built or read.

 73 Chapter 5: Unique AdvFS Operations

Chapter 5: Unique AdvFS Operations

5.1 Cloning
Cloning can be thought of as creating a new fileset that is a snapshot of an existing fileset. The cloned
fileset is in the same domain as the original fileset. This snapshot does not change, even though the data
in the files of the original fileset continue to be modified. The following sections discuss some relevant
aspects of cloning, particularly from the aspect of storage allocation.

5.1.1 Creating a clone

Clones are created using the following command:

clonefset <domain> <fileset> <clone>

where <fileset> is the fileset that will be cloned, and <clone> is the name of the new (clone) fileset.

This clone fileset may be read, but none of its files may be modified. Thus, this fileset is essentially read-
only to applications.

When a fileset is cloned, the original fileset’s tag file is copied into the clone fileset. This ensures that
both sets contain the same files. Both tag files originally point to the same metadata in the BMT; this

may change later as the original files are modified. Also, the original fileset’s bfSetp->cloneCnt

value is incremented, and the clone’s bfSetp->cloneId is set to this newly-incremented value. The

original fileset always has a bfSetp->cloneId value of zero.

When a clone is first created, the cloned files have no metadata or disk space of their own, but the clone
fileset itself gets metadata of its own. The tag file of the clone fileset is created as a copy of the tag file of
the original fileset. Therefore, the primary mcell for each entry in the tag file is a pointer to the original
file’s primary mcell. As pages in the original file are modified, the differences must be maintained, and
this is discussed in the next section.

First, however, consider that some files and filesets are never cloned. The ‘hidden fileset’ (Sections 3.3.1

and 4.2) associated with each domain is never cloned because it cannot be specified to the clonefset
utility. In addition, the following files are never cloned: RBMT, BMT, SBM, LOG, MISC, and all tag
files. These files are not cloned because they belong to the hidden fileset in each domain. There are no

explicit checks in the clone or cow paths that specifically exclude these files. The fact that (bfap-

>bfSetp->cloneSetp == 0) is true for these files is adequate to keep the cloning/cowing code
from being invoked for these reserved files.

5.1.2 Writing to a cloned original (COW)

The first time after cloning that a file is modified, the clone must have its own metadata allocated. If the

file’s bfap->cloneCnt value is less than the fileset’s bfSetp->cloneCnt value, then the clone

needs to have its own metadata allocated and then have its bfap->cloneCnt incremented. After that,

the page(s) being modified (in the original file) must be copied to the clone file before any modifications
are allowed to the original file. This procedure of copying the original data to the clone is called copy on
write or COW. A given page must be COWed only the first time that page is modified after the fileset
has been cloned.

HP Confidential

Chapter 5: Unique AdvFS Operations 74

As an optimization, when a page is COWed, that page plus up to 31 subsequent pages are copied to the
clone. This is called COW-ahead, and is done anticipating that sequential pages in the original will be
modified. This algorithm makes the clone file less fragmented than if only one page at a time were
allocated and copied. Fewer than 32 pages may be COWed if: 1) some of the pages are already mapped

in the clone, 2) the end of the original file (bfap->nextPage) or the end of the original file at the time

the clone was created (cloneap->maxClonePgs) is reached, 3) this file is open for directIO, or 4)
there is a hole within 31 pages of the page being modified.

If a file is open for directIO, COW-ahead is disabled in most baselevels. This was done to ensure that no
pages outside the active range are touched. Starting in 5.1b BL25 and 5.1a BL26, COW-ahead for
directIO files has been re-enabled, but it restricts the pages being COWed to those within the current
active range. This compromise protects the data integrity while minimizing the number of extents
generated in the clone file.

5.1.3 Reading from a Clone

When a file is read, AdvFS needs to access the extent maps to find the data on disk. In the case of a clone
file, it first looks at the extents of the clone. If the requested page exists in the clone extents, then the
clone page is a copy of the original, and the clone extents can be used to locate the data. If the requested
page does not exist in the clone extents, the original file's extents are checked. If the page exists there,
then the page has not been modified since the clone was created, and the requested page is read using the
original file's extents. If the page is not in the original file’s extents, then this page is in a hole, and zeros
are returned for the read operation.

5.1.4 Sparse files and permanent holes

A cloned file maintains the sparseness of the original file at the time the fileset was cloned. A hole in the
original file is recorded in the clone file extents as a permanent hole. They are the result of COWing a
hole in the original file into the clone’s extent maps. There is no mechanism that can create a permanent
hole in an original file.

A permanent hole is denoted by a value of –2 in the vdBlock entry of a clone file’s extent map. This

indicates that a new extent is starting, but that there are no disk blocks for this extent within the clone file
or the original file. A -2 descriptor must be followed by another descriptor to terminate the permanent
hole extent. A -1 in a clone can be used for two purposes: 1) it terminates an extent and can be the last
descriptor in a series of descriptors, or 2) it represents a normal hole in the clone which means that the
page has not been COWed to the clone and that the original file extents should be referenced for the page.

When a page in an original file is modified and it has a clone, we check the clone’s descriptor for that
page. If the clone’s page is in a normal hole (-1 descriptor), the page is COWed to the clone. If the clone’s
page is in a permanent hole (-2 descriptor), the page is not COWed to the clone. The clone’s -2 extent
represents a real hole in the original file and behaves as if storage were already allocated for those pages.
Since clone files are never truncated or deleted (except when the entire clone is deleted), a permanent hole
is never filled in.

When a page in a hole in the original file is written, the AdvFS code sees that the original file had a hole
surrounding the page. A permanent hole the size of the original's hole is inserted into the clone extents.
Any further pages written to the original file that fill in the hole do not change the clone file, because the
clone file already has the pages mapped as a permanent hole in its extents. Even though the pages are
mapped in an extent that doesn't have any storage, they are still considered mapped and are not filled in.
A clone extent that starts with a -1 can be filled in. The pages within an extent that start with a -1 are
considered not mapped. Rather, they signify that those pages have not yet been COWed to the clone.

 75 Chapter 5: Unique AdvFS Operations

Finding a hole within 31 pages of the page to be modified truncates the COW-ahead. All the pages from
the selected page to the hole are copied to the clone. The hole is copied as a permanent hole in the clone.
The size of the permanent hole is the size of the hole in the original file at the time the clone was created.

After the descriptor of the original file’s hole has been transferred to the clone, the original file’s on-disk
extent maps are modified within a transaction. The original file’s in-memory extent map is merged so that
the updated subextent maps replace the original subextent maps. The in-memory extent map is now ready
for the next modification under a separate transaction.

Adding storage to a clone file is done under one transaction because, if not, the second part (adding the
hole) could be lost if the system crashed right after committing the first part (adding the storage). This
transaction is accomplished by performing two sequential modifications to the in-memory extent map
without changing the on-disk mcells. Then the on-disk mcells are changed to agree with the twice-
modified in-memory extent maps. The second modification may have to create a new update range of
subextent maps by copying and modifying the update range produced by adding storage. If that happens,

updateStart may not be contiguous with the old valid subextent maps.

5.1.5 Deleting a file that has a clone

When an original file that has a clone is deleted, it is not actually deleted at that time. Its entry in the
directory is removed so that it can’t be found, but the underlying bitfile is not deleted. Its extent maps

may still be needed for accessing data for the clone. A field in the bfAccess structure for the original

file (bfAccess->deleteWithClone), is set to 1. This saves time when the file is deleted since the

pages that have not been COWed to the clone do not have to be COWed at this time. The original bitfile

is deleted when the clone fileset is removed. The bs_bfs_delete() routine, which is responsible for

deleting bitfile sets, will call delete_clone_set_tags() if the fileset being removed is a clone.

This routine walks through all files in the clone fileset freeing the storage for the cloned files. If the

original file’s bfAccess has its deleteWithClone flag set, it is deleted at that time.

5.2 File Migration
File migration takes advantage of the deferred delete list (DDL). The new storage is allocated and
immediately put on the DDL so it will be cleaned up in the case of a crash before the migrate is complete.

Then migrate sets up an in-memory extent map (called the copyXtntMap) to describe the new storage

and in which to copy the all the data being migrated. This copyXtntMap is associated with the file's

access structure and eventually becomes the file’s xtntMap when the migration is complete.

The data is copied to the new storage location and the copyXtntMap is updated appropriately. Next, the

pointers to xtntMap and copyXtntMap are swapped so that the new storage and extent maps describe

the file. When the copy is transactionally complete, the old storage is put on the DDL.

In the normal file migration case, we allocate new storage, migrate the file, and then close the file. On
file close, the old storage is taken off the DDL and deallocated.

In the case of a crash while migrating a file, the DDL may contain the old storage or the new storage.
When the fileset is mounted on reboot, the DDL is processed and any storage on the DDL is considered
safe to deallocate, so we do just that. However, if we are in a cluster and we are performing failover, we
do not want to process the DDL on remount. First we need to reestablish connections with any clients,
since it is possible that files are still open on the client side (and the client does not know that the server is
being relocated).

After we have reestablished necessary connections, we want to process the DDL. However, we don't
want to remove storage for files that are still open on the client. The client will remove the storage as

HP Confidential

Chapter 5: Unique AdvFS Operations 76

appropriate on the last close of the file. We check for a bfAccess structure for each file on the DDL, and
if found, that storage is not removed from the DDL.

The exception to this rule is with special files with tags less than six, which are not normal user files.
These files (frag file, root directory, quota files, .tags) are opened on mount and are not closed until the
filesystem is unmounted. For files in this case, we remove any old storage that exists on the DDL after
reboot.

struct bsAccess

xtntMap
copyMap

BMT

Primary
Mcell

Extent
Map

Delete
Pending
List

New Stg Bitfile Stg

Extent
Map

5.3 Defragmentation
For a variety of reasons, a file’s extent map may become large and cumbersome because the storage for
the file is discontiguous in the domain. When this happens, the file is said to be fragmented. Note that
this is not related to a frag in the fragment file. A fragmented file is inefficient because its extent maps
require more disk space and memory to store and it takes longer to walk through the extent maps to find
any given page. For this reason, maintaining files with minimal extent maps is preferred from both disk

utilization and performance perspectives. A utility called defragment is provided that will make the

storage for files in a given domain more contiguous. Before you can defragment a domain, all filesets in
the domain must be mounted. There are some additional recommendations for cleaning up a domain

before running defragement to allow the best chance for getting the most contiguous files and for

quantifying the efficacy of a defragment run. See the AdvFS Administration Guide for these

recommendations.

 77 Chapter 5: Unique AdvFS Operations

In version 5.1B, the vfast utility was introduced. Vfast is a background defragmenter. It runs in the kernel
and defragments the worst fragmented files as they are discovered. Vfast has largely eliminated the need
to run defragment.

5.4 Striping
AdvFS can stripe individual files over more than one volume in a multi-volume domain. A striped file
distributes its storage more or less evenly over the volumes that it is striped over. The stripe width is the
number of sequential file pages allocated to one volume before the next volume is used for the next stripe.

The stripe utility always sets the stripe width to 8 pages. Therefore, AdvFS allocates the first 8 pages on
the first volume, the next 8 pages on the next volume, and so on until all the volumes specified are used.
Then, the next 8 pages are allocated from the first volume again.

Since striped file storage is allocated in a round-robin fashion over several volumes, if AdvFS runs out of
storage on any of those volumes, the file can not grow.

A striped file’s extent map is really composed of several extent maps, one for each volume’s stripe. Each
extent map starts at page zero, so the page numbers in a striped file’s extent maps are relative to the
volume’s stripe. Page 0 in stripe 0 is page 0 in the file. Page 0 in stripe 1 is page 8 in the file. Most of the
routines that work with extent maps work with only one stripe extent map at a time and work with extent
map relative pages verses file relative pages.

See Section 4.4.4 for a discussion of striped extent maps.

The following table shows how a striped file’s pages are distributed across the volumes. (This

information is generated automatically for striped files using the bfaccess –x <bfap> command in

the crash utility). This file is 112 pages in length, but has a hole spanning pages 80 through 87. These
pages would have been on stripe #2, but they are missing, and the normal round-robin assignment of
pages is resumed on stripe #3.

Stripe Number vdIndex bsPage vdBlk Pages Mapped

1 2 0 66784 0 - 7

 24 - 31

 48 - 55

 72 - 79

 96 - 103

 40 -1

2 3 0 66784 8 - 15

 32 - 39

 56 - 63

 24 -1

 32 67168 104 - 111

 40 -1

3 1 0 66992 16 - 23

 40 - 47

 64 - 71

 24 66928 88 - 91

 28 1047552 92 - 95

 32 -1

5.4.1 Sparse Striped Files and Clones

HP Confidential

Chapter 5: Unique AdvFS Operations 78

When a page is COWed, bs_cow_pg() tries to COW up to 31 pages after the page to be modified.

These pages may span several stripes. If a hole in the original file is found while looking 31 pages ahead

of the page to be modified, no more pages are COWed during this call to bs_cow_pg(). The hole
discovered in one stripe causes a permanent hole to be created in the clone in that one stripe. Even if the
hole in the original spans more than one stripe, only one permanent hole is added to the clone file's extent
map in this COW operation.

The permanent hole is as long in the one stripe as the hole in the original file was in the one stripe.
Subsequently, if a page originally in the hole of another stripe is added, the clone gets a permanent hole in
the other stripe. This retains the sparseness in the original file at the time the clone was created.

The following example illustrates the page layout (see Section 4.4) of a 90 page file with three stripes and
a hole from page 35 through the end of page 75. In the illustration, a ‘–‘ means the page exists and a ‘.’
means the storage for that page has not been allocated (it is part of a hole).

Descriptor

Page

 File Page Volume 1 File Page Volume 2 File Page Volume 3

0 0 – – – – – – – – 8 – – – – – – – – 16 – – – – – – – –

8 24 – – – – – – – – 32 – – – 40

16 48 56 64

24 72 – – – – 80 – – – – – – – – 88 – –

The following example illustrates the descriptors for each volume. The disk block numbers are not
shown, but are represented by ‘xxx’ values.

Stripe #1 Stripe #2 Stripe #3

Descriptor Pages Mapped Descriptor Pages Mapped Descriptor Pages Mapped

0, xxx 0 – 7, 24 – 31 0, xxx 8 – 15, 32 – 34 0, xxx 16 – 23

16, -1 11, -1 8, -1

28, xxx 76 – 79 24, xxx 80 – 87 24, xxx 88 – 89

32 -1 32, -1 26, -1

If page 17 is modified in the original file, pages 17 - 34 are COWed to the clone. The hole in the original
file at page 35 stops the further COWing of pages even if the next non-hole page in the file is within 32
pages of the modified page (see section 5.1.4). The hole discovered in the second stripe at descriptor
pages 11 though 23 causes a permanent hole (represented as a -2) to be added to the clone's second stripe.
The descriptors for the clone now appear as follows:

 79 Chapter 5: Unique AdvFS Operations

Stripe #1 Stripe #2 Stripe #3

Descriptor Pages

Mapped

Descriptor Pages

Mapped

Descriptor Pages

Mapped

0, -1 0, -1 0, -1

 1, xxx 17 - 23

8, xxx 24 - 31 8, xxx 32 - 34

 11, -2 8, -1

16, -1

 24, -1

5.5 Sync (update daemon), time of day stamping
To allow applications the ability to flush dirty file buffers to disk, UNIX supplies two system calls:

sync() and sync2(). The first is used to synch each mounted filesystem, and the second is used to

synch those filesystems that are not under smooth-sync control. (See Section 8.9 for a discussion of
smooth-synch mechanism). In addition, to prevent too many buffers from being dirty, UNIX has

traditionally supplied an update daemon that calls sync2() every 30 seconds.

The sync() and sync2() system calls utilize the VFS_SYNC() and VFS_SMOOTHSYNC() VFS

operations. For AdvFS filesets, these are dispatched into msfs_sync() and msfs_smoothsync().

There is a mechanism associated with the synchronization of disks that writes a timestamp to disks
periodically as a sanity-check to the battery-backed clock. In AdvFS, the routine that handles this is

msfs_sync_todr(). This is called from msfs_smoothsync() at smsync_age intervals, and

from msfs_sync() during sync() and sync2() system calls. This routine will write a

BMTR_FS_TIME record to a disk when: 1) it is unmounted; 2) it is the root fileset and the system is
shutting down; or 3) it is the root fileset and an hour has expired since the last update.

5.6 System Boot
The boot process is a series of discrete steps. When the system is first turned on, the firmware is loaded
and run. At this point, the system is in ‘console’ mode, and the administrator enters the ‘boot’ command
to boot from the desired device. For a disk to be bootable, it must contain the appropriate information:
the bootblock, the primary bootstrap program, and the secondary bootstrap program.

The first step of the boot process is to read the bootblock off the device; this is always at block 0 for
Tru64 systems. The bootblock is really just a data record that contains the location of the primary
bootstrap program on that device. This location is at logical block number (LBN) 64 on the device for
AdvFS, and at LBN 1 for UFS and CDFS. The code for the primary bootstrap is then loaded into
memory and executed. The purpose of this piece of code is to locate the secondary bootstrap program

(/osf_boot) and to load it into memory. The osf_boot code is responsible for prompting for the

kernel to be booted, then locating that kernel and loading it into memory. Once the kernel is loaded, it is
executed, the various subsystems are loaded and initialized, and the system is brought up.

Several aspects of the boot process need further explanation. First, the primary bootstrap program is at a
known location on the disk, so there is no additional intelligence required to find the appropriate disk
block. This makes the initial code required to load the primary bootstrap fairly small. The secondary
bootstrap, however, can be located anywhere on the root filesystem, and locating it requires knowledge

HP Confidential

Chapter 5: Unique AdvFS Operations 80

about the underlying filesystem. Therefore, both the primary and secondary bootstrap programs must
contain some code that understands how to traverse the filesystem and locate a file. Second, the system
has no way of knowing what type of filesystem will be on the device that is being booted. Determining
what type of filesystem is on that disk is one of the responsibilities of the bootstrap code. Third, until the
kernel is running and the filesystem code is initialized, kernel resources such as vnodes, file descriptors,
the buffer cache, and typical filesystem routines, are not available for use to read the filesystem. Special
routines (a mini-filesystem) are used to do this in the primary and secondary bootstrap programs, and in
the early stages of kernel initialization. A bare-bones subset of filesystem routines is linked into the
primary and secondary bootstrap programs to keep them as small as possible. More on these routines
shortly.

Let’s take a step back and see where the various pieces of the boot code come from. The bootblock and

primary bootstrap program are stored in the root partition in the /mdec directory. The bootblock is

named xxboot.<filesystem>, so that the bootblock record for AdvFS would be named

xxboot.advfs. (UFS is considered a default in the naming convention, so xxboot, not

xxboot.ufs is the UFS bootblock file). The primary bootstrap program is named

bootxx.<filesystem>, with the same naming convention caveats mentioned for the bootblock. At

one time a different primary bootstrap program was required for each disk type, necessitating files such as

bootrz.advfs and bootra.advfs. This is no longer true, but the old file names are still

maintained in the /mdec directory with symbolic links to the bootxx.<filesystem> file. The

bootxx.<filesystem> file can be used on any type of disk to make it bootable.

How is a disk made bootable? Basically, it only takes the presence of the bootblock and the primary

bootstrap program. The /usr/sbin/disklabel or /usr/sbin/newfs utilities will write the
bootblock and primary bootstrap progarm to the appropriate locations on a disk to make the disk bootable.
However, these utilities do nothing magical, they just copy the appropriate bootblock to LBN 0, and the
appropriate primary bootstrap program to the correct LBN based on which type of filesystem is going to

be supported. It is possible to make a non-bootable AdvFS disk bootable by using the dd utility to copy

the bootblock to LBN 0, and the bootxx.advfs file to LBN 64.

Now, let’s go back and look at how the primary bootstrap program works and how it uses the special
routines that understand the AdvFS filesystem. A global structure is used throughout the primary
bootstrap code to pass information between routines and to retain state information. This structure is

struct iob for UFS and CDFS, and struct iob2 for AdvFS. The layout of these structures is
interdependent, so don’t change either one without knowing what you are doing. The bootstrap code

basically sets up the iob structure, opens the device, and then reads the superblock into memory. It then

checks to see if the UFS filesystem magic number is in the superblock. If not, it calls open_advfs()

to see if this is an AdvFS filesystem. The open_advfs() routine and the rest of the mini-filesystem

routines used for booting are in the file kernel/dec/sas/sys_advfs.c. open_advfs()

follows the following sequence of steps to find the file /osf_boot:

1. Open the Root tag file.
2. Find the entry for the root fileset tag file.
3. Open the root fileset tag file.
4. Find the entry for the root directory.
5. Read the primary mcell for the root directory.

6. Read and search the root directory for the osf_boot entry. If the path name were more

complicated, the search_dir() routine would be called for each path component until the

entire path is resolved.

 81 Chapter 5: Unique AdvFS Operations

7. If a match is found, read and save the contents of the first extent mcell into the iob2
structure. This will be used later when the file is read. Return success. If no match is found,
return an error.

At this point, /osf_boot has been opened, but it has not been read. Later read_advfs() is called to

read the file into memory. It does this by using the extent map information loaded in open_advfs() to
locate the data on disk, and read the data into memory.

Once osf_boot is running, it prompts for the kernel to be loaded. This name is passed to

open_advfs() and read_advfs() as before to load the kernel into memory so that it can be

executed.

If you need to modify any of the code in sys_advfs.c, please note that this code can be tricky. First,

many of the subroutines are recursive, so that takes special care. Second, the iob2 structure contains
only 2 buffers that can be used to hold data, and each of these buffers is used for multiple types of data.

For instance, the i_io_un buffer is a union that can be used for an I/O buffer, a BMT page, or a

directory entry. The i_in union can be used for a tag directory page or an extent mcell. This makes the

sequence in which these buffers are used extremely critical so that the data is not overlaid prematurely.
Increasing the size of this structure is fraught with peril. Theoretically it is possible, but has not been
done so successfully. The stack space available in the bootstrap programs is extremely limited, so you
must be careful. You can not add much stack space to any of the subroutines. For instance, adding an 8K
buffer to read data into will generate stack errors in the bootstrap programs.

Debugging code in the primary or secondary bootstrap programs is almost impossible. For this reason,

there is ancillary code and some #defines in sys_advfs.c that allows that module to be built as a

standalone utility for testing. See the instructions at the top of the file for doing this. Depending on

which values are #defined, this utility will open the specified file (using open_advfs()), and then

read the file. If ‘CATIT’ is defined, then the file is read (using read_advfs()) and the contents are

dumped to stdout. If ‘SHOWDIR’ is defined, then the file is assumed to be a directory and the

directory entries are read and displayed.

5.7 System Shutdown

When the system is shutting down, it calls a routine named, oddly enough, boot(). Boot() does
most of the work responsible for cleaning up before the system goes away. One of the things done in this

routine is to set the global variable ‘advfs_shutting_down’ which is done specifically for AdvFS.

There is also a ‘shutting_down’ global variable used by the device drivers, and AdvFS used to check
that, but it was slated for removal at one time, so AdvFS added its own file system-specific variable.
’Shutting_down’ was never removed after all.

In boot(), mntflushbuf() is called for all mount points. In this routine, if the fileset is AdvFS,

msfs_mntflushbuf() is called to flush any outstanding dirty buffers to disk asynchronously. After

mntflushbuf() has been called on all mount point from the boot() routine, mntbusybuf() is
called on each mount point to count the number of outstanding dirty buffers that we are waiting to finish

flushing to disk. We loop in boot(), calling mntbusybuf() until the number of unflushed buffers

reaches zero.

When shutting down, the current timestamp is also written to the BMTR_FS_TIME record on the root
filesystem’s disk. See Section 5.5 for a discussion of writing timestamp records to disk.

Chapter 6: Special Files 82

Chapter 6: Special Files

Directories and the fragment bitfile can be thought of as ‘special’ files because of the way they are
handled. Directories are special because, although they are not metadata files, changes to their layout
must be logged to ensure atomicity of file creation and deletion. Similarly, the fragment bitfile is a
reserved file that is not visible to the logical file hierarchy, and also has its changes logged. However, it
contains mostly user data that is typically not logged. The details of these files are explored in this
chapter.

6.1 Directories
AdvFS directories are interesting because: 1) they are user-visible files but are not manipulated directly
by applications; 2) they provide the interface between the logical file hierarchy layer and the physical
storage layer; 3) they must be protected by the logging subsystem to ensure that file creation and deletion
are atomic operations, and 4) they may or may not be indexed.

Historically, AdvFS directories are similar to UFS directories. Directories are a series of records that
contain a file name plus some information to associate (link) the name with the location of its data. In
UFS, that information link is an inode number, but in AdvFS, the link is a tag. The relationship between
the file name and tag is what provides the interface between the logical file hierarchy layer (name) and the
physical storage layer (tag) (see section 1.2). One of the drawbacks to the historical directory layout was
that as the directory got larger, the time to search the directory increased as well. To solve this problem,
indexed directories were introduced into AdvFS in Tru64 UNIX Version 5.0. If a directory is indexed, its
data is actually spread across two distinct files: the traditional directory file and the index. This allows
the flexibility to use directories either with or without the index file. It also allows an older kernel that
does not know about indexed directories to read a directory with an index (although the benefits of the
index are not realized).

6.1.1 Non-indexed Directories

In this section we will explore the traditional part of the directory from an AdvFS perspective. When the
term ‘directory’ is used in this section, it refers to the file only, not the index, unless explicitly stated
otherwise.

AdvFS directories can be viewed as a series of 512-byte logical blocks. This size is rooted in the fact that
the underlying sector size for disk devices supported by Tru64 UNIX is 512 bytes. This means that the
512-byte blocks will be written atomically: either completely updated or not updated at all. To take
advantage of this, the AdvFS designers laid out the directory as a series of 512-byte sections. No data
written within any of these sections can span into another section.

Superimposed on top of this 512-byte scheme is the logical layout of each directory page. Each 8K page
contains a sequence of variable-length directory entry records, one for each file in the directory. Each

entry is made up of a fixed-length header (struct dir_header), a variable-length name field (char

fs_dir_name_string[]), and a fixed-length trailer (struct dir_ent_end). (See Table 6.1 for

a sample directory layout). The entry header contains the tag for the file (fs_dir_bs_tag_num), the

size of the directory entry record (fs_dir_size), and the length in bytes of the filename

(fs_dir_namecount). The size of the directory entry is useful for allowing advancement to the next

entry in the page. The trailer is tacked on at the end of the filename, and is included in the size of

HP Confidential

 Chapter 6: Special Files 83

fs_dir_size. The variable-length name field is always padded so that the trailer will begin on the

first 4-byte word boundary immediately following the filename. If the variable-length name field is
already 4-byte word aligned, a word (4 bytes) of nulls is added; the name field must be terminated by at

least one null. The trailer contains the full tag (struct bfTag) for the file.

If a file is deleted, the fs_dir_bs_tag_num field in the dir_header contains a zero value. It

appears that the tag.num value is repeated in the header and trailer because the original designers
wanted the AdvFS entry header to have the same structure and size as the UFS entry header.

At the end of each directory page is a fixed-length trailer structure (struct dir_rec) that contains
three values: the offset to the start of the last directory entry on the page, the offset of the largest free
space in the page, and the page type. The values in the page trailer appear to be of limited usefulness.

The value for largestFreeSpace is always set to zero, and the value for pageType is always one.

The value for lastEntry_offset contains a pointer to the last entry in the page, whether it is a valid
entry or a free slot.

Table 6.1 illustrates the data in a simple subdirectory page. The first two entries are for the ‘.’ and ‘..’

files which are in all directories. Three files, file1, bigfilename, and bigfile2 were

created, and then the file bigfilename was deleted. We can tell that this file was deleted because its

tag number in the entry header has the value zero, even though all the other information for the entry
remains intact. If another file is created in this directory with a name the same length or shorter than

bigfilename, it will be written over this data. Note that the entire page after the valid filenames (at

offset 0x78) contains a series of segments all with tag values of zero. These are empty slots and will be
used as needed. The first slot contains 392 free bytes of free space, while all others are empty 512-byte
segments.

Table 6.1 Layout of Entries in a Sample AdvFS Subdirectory

Offset into the

page
Tag # Entry Length

Name

Length
Filename Tag.Sequence

0 7 0x14=20 1 . 7.8001
0x14 2 0x14=20 2 .. 2.8001
0x28 8 0x18=22 5 file1 8.8001
0x40 0 0x1c=28 11 bigfilename 9.8001
0x5c 10 0x1c=28 8 bigfile2 10.8001
0x78 0 0x188=392 0 0 0
0x200 0 0x200=512 0 0 0
0x400 0 0x200=512 0 0 0
…

0x1c00 0 0x200=512 0 0 0
0x1e00 0 0x200=512 0 0 0

 dir_rec.lastEntry_offset = 0x1e00
 dir_rec.largestFreeSpace = 0
 dir_rec.pageType = 1

If a file is deleted and there is an adjacent free entry within its 512-byte block, the free areas are

coalesced. In the above example, if file1 is deleted, then the tag number at offset 0x28 is set to zero,

and the entry length for that entry is set to 0x34 because its entry of length 0x18 is combined with the
following entry of length 0x1c. If there had been a free entry at offset 0x14, then that entry would have

Chapter 6: Special Files 84

been coalesced as well. Coalescing (also called glomming), however, will not occur across 512-byte
block boundaries.

There are three principle operations that can occur to a directory: create, delete, and lookup. Secondarily,
storage can be added or removed from a directory. When creating a new entry, the inserting thread must
first verify that it is not inserting a duplicate entry into the directory. This means that after some
synchronization mechanism is seized, it must either search the entire directory (in the case of non-indexed
directories) or search the b-tree (in the case of indexed directories) to ensure that the entry does not
already exist. Timestamps can be used to avoid unnecessarily searching the directory, and this will be
explained shortly. Directory entry removal is somewhat simpler than insertion because there is no need to
check all entries. The only verification required is that the entry to be removed is actually associated with
the file being deleted. Since entries are never moved in the directory, once it is located, its position is
known until it is removed. Because lookup and removal may occur on different calls to the kernel,
timestamps may again be used to avoid unnecessary re-searching of the directory when removal starts.
The only synchronization required in this path is to ensure that one thread is not trying to remove an entry
that has already been removed by another thread, and to guarantee that the glomming of entries cannot
cause another thread to lose its way through the directory.

All directory operations must be synchronized to assure proper operation when multiple threads are

manipulating the same directory concurrently. The directory's file lock (fsContext.file_lock) is
the primary synchronization mechanism among these operations. During lookup operations, the file lock
is seized for shared access. This allows several threads to search the directory concurrently, while
blocking modifications to the directory during the lookup process. The real concern for lookup is that no
entry lengths are being modified in a non-atomic fashion by an insert or delete operation such that the
searching thread may not find the next entry correctly. Both insert and delete operations seize the file
lock for exclusive access, preventing all racing operations. Note that this lock is file wide, so insertions
and deletions effectively single-thread operations for a given directory while that modification is in flight.
A file rename is essentially a deletion followed by an insertion, so it also seizes the file lock for exclusive
access.

Storage addition and deletion to all AdvFS files are done with the file lock held for exclusive access, and
this convention is also followed for directories.

Timestamps can be used to avoid unnecessary directory searches. There are two timestamps that are

maintained, one in the directory's fsContext structure, and one in each thread's nameidata structure.

The nameidata is local to the current thread, and is not modified by the actions of other processes or

threads. During lookup (msfs_lookup), the nameidata timestamp is set to the timestamp value in

the file's context structure. When a new directory entry is inserted (fs_create_file, msfs_link,

msfs_rename), the timestamp in the file's context structure is incremented to indicate that the directory

has been modified. This field is also incremented in the entry removal path (remove_dir_ent), to
indicate that the directory has been modified.

Now, let's see how this all goes together in actual system operations. During file creation, an application

calls open(), which eventually calls vn_open(), namei() and msfs_lookup(). During
lookup, the fact that the name does not already exist is verified, and a location where the entry can be

inserted is saved in the nameidata structure. If the lookup finds no existing entry, then

vn_open()calls msfs_create() and fs_create_file() where the directory entry is created.

The file lock is not held between the msfs_lookup()and msfs_create() calls, so it is possible for
a file of the same name to be created between the lookup and the create. Since a file create must be
absolutely certain that the file name doesn't already exist, it could search the directory again, but this
would be inefficient. To avoid this double search, the timestamps are compared in

HP Confidential

 Chapter 6: Special Files 85

fs_create_file(). Remember that the nameidata timestamp was set to the file's timestamp

during the lookup. If, after seizing the file lock in the create path, the timestamps are still the same, then
the thread knows that there was no intervening directory modification between the lookup and the create
call, so it is safe to go ahead and insert the entry. If the timestamp has changed, however, the thread
doing the create must re-search the directory to: 1) verify that the file hasn't already been inserted, and 2)
find a location at which the entry can be inserted.

The removal path is similar in that msfs_lookup() is called to ensure that the file exists. If it does, it

saves the location of the directory entry in the thread's local nameidata structure. When

msfs_remove() or msfs_rmdir() is called, the location of the entry is known unless a racing
thread already removed it. This means that the remove code must, if the timestamp has changed since the

lookup, verify that the entry pointed to by the nameidata structure belongs to the file intending to be
removed. If so, it is removed. If not, it returns an error indicating that the file no longer exists.

6.1.2 Indexed Directories

Indexed directories were introduced into AdvFS in Tru64 UNIX Version 5.0 with the goals of: 1)
improving lookup performance, 2) scaling lookup performance with the number of entries in the
directory, 3) being invisible to applications, and 4) maintaining the old directory format for backward
compatibility. If a directory is indexed, its data is actually spread across two distinct files: the traditional
directory file and the index. This allows the flexibility to use directories with or without the index file. It
also allows an older kernel that does not know about indexed directories to read a directory with an index
(although the benefits of the index are not realized).

As names of files are added to a directory, more than one 8k page will eventually be required to hold all
the entries. An index is automatically built for a directory when it expands from one to two pages in size.
The reason for waiting until a directory reaches 2 pages in length is that the search time for a one-page
directory is minimal, and the added overhead of maintaining the index for a small directory was
determined to be excessive. Once created, however, the index remains with the directory until the
directory is deleted, even if the directory is truncated to only one page.

You can tell if a directory has an index by running:

showfile <directory>

If this is a domain that supports directory indexes (DVN 4 or later) and the directory has an index, then

the word ‘(index)’ will follow the directory name under the heading ‘File’. If you would like to
display the statistics for the index instead of the traditional portion of the directory, enter:

showfile –i <directory>

In this case, the word ‘index’ is displayed under the File heading, and the name of the directory is

appended in parentheses.

The index file is organized as a B+ Tree. This structure allows a quick search mechanism using a tree
structure where each node has many entries, and the tree can grow and shrink as needed using generalized
splitting and pruning routines. In a B+ tree each non-leaf node contains a series of entries that each point
to a child node whose elements are less than or equal to its own value. The leaf nodes contain the actual
data elements.

Chapter 6: Special Files 86

Figure 23: B+ Tree Nodes

Each index actually contains two B+ Tree structures: one for the filenames and one for the free space
within the directory. The index file metadata has a mcell record that contains the page numbers to locate
the root nodes for each of the two B+ trees plus the depth of each of the trees (# of levels). The filename
tree maps the location of the filenames in the directory. Each filename is hashed into a 56-bit value, and
each hash value is paired with the offset in the directory where the filename entry resides. Collisions in
the hashed values can occur and are handled in the code. The free-space B+ tree exists to facilitate
retrieval of free space in the directory by mapping deleted entries. These locations are sorted and stored
in the tree by file offset within the directory. Unlike the directory file, which coalesces unused areas
within 512-byte regions, the free space within the free space tree is coalesced into the largest possible
chunks. The free space is given out by first fit in the directory, which encourages directory truncation.

Each index node is an 8K page containing a header and up to 510 (IDX_MAX_ELEMENTS) entries.

Each node can be described by the struct idxNode which contains the number of elements currently

in the node, the page number of the right sibling, and an array of struct idxNodeEntry structures
to hold all of the data elements. Each of these elements contains a search key plus a union of offsets,
page numbers, or free space size depending on the type of node.

Figure 24: B+ Tree Index Node Comparison

HP Confidential

 Chapter 6: Special Files 87

Insertion of entries into a B+ tree once a node is full can cause the node to be split. When the node is
split, half the entries are placed into each of the 2 new nodes. The addition of a new node will force a
new entry to be inserted into the parent node that points to the newly-split nodes. If that parent node is
already full, it will also split. By this mechanism, it is possible that the split can propagate up the tree. A
new level can be produced if the root splits and a new root node is added. See the figure below.

Figure 25: Splitting a B+ Tree Node

Pruning of a B+ Tree takes place when a node becomes ¾ empty (less than 128 entries in one node).
Nodes on the same level are merged by moving the elements from the right sibling into the left. If the
two nodes cannot be compressed into one node, their elements will be evenly distributed between the two
nodes. This pruning can occur at any level of the tree. Levels are collapsed when only one node exists at
that level.

Based on all this, we can see that file creation causes a new entry to be inserted into the directory. This
will cause AdvFS to obtain the space from the free space B+ tree, insert the hash value and offset into the
filename B+ tree, insert the entry into the directory, and initiate file truncation if the truncation flag is set
(see section 6.1.3 on Directory Truncation). Similarly, removing a file will cause the directory entry to be
deleted; this involves removing the hash value from the filename B+ tree, inserting the space into the free
space B+ tree, zeroing the tag in the directory entry, and setting a truncation flag if the last page in the
directory file is now all free space.

As mentioned previously, indexed directories are actually treated as two files internally: the directory file

and the index file. When looking at the bfAccess structures for directories, you can tell if a directory is

indexed if the bfAccessT.idx_params field is neither NULL nor -1; it should look like a valid

pointer to a structure of type bsIdxRecT. If the bsIdxRecT.flags field has the

IDX_INDEX_FILE bit set, then this is the bfAccess structure for the index file. Otherwise, this is the

bfAccess structure for the directory file itself.

A note on the values of bfAccessT.idx_params. This field is initialized to NULL when the

bfAccess structure is initialized or recycled. This value indicates that the file's mcell should be read

to see if an index file is associated with this directory. A value of -1 indicates that the directory does not

have an index and its mcell does not need to be checked. This saves a read every time the directory is

opened.

Chapter 6: Special Files 88

To decipher the contents of the structure at bfAccessT.idx_params, cast it as a (bsDirIdxRecT

*) if the bfAccess is for the directory file, but cast it as a (bsIdxRecT *) if the bfAccess is for

the index file. The following are examples using the crash utility:

Given the following data:

directory bfap = 0xffffc00c3816c08
directory bfap->idx_params = 0xfffffc000a2737e8
index bfap = 0xfffffc00c3816008
index bfap->idx_params = 0xfffffc0056abc948

Then:

crash> * bsDirIdxRecT 0xfffffc000a2737e8

struct {

flags = 0x0 <== IDX_INDEX_FILE is not set
idx_bfap = (nil)
index_tag = struct {

num = 0x3007 <== tag.num for index file

seq = 0x8001 <== tag.seq for index file
}

}

This is the data for the directory file since the IDX_INDEX_FILE bit is clear. It contains the tag for the

index file, and, if the index file were open, a pointer to the index file's bfAccess structure. The value of

bfap->idx_params->idx_bfap is NULL in this case because the index has been closed. This
indicates to future threads that the index must be re-opened before use. When the index file is opened, the

value of idx_bfap is set to point to the bfAccess structure for the index.

The following is the data for the index file, as indicated by the IDX_INDEX_FILE bit in the flags field.
This contains information for finding data inside the index file, as well as a pointer back to the directory's

bfAccess structure.

crash> * bsIdxRecT 0xfffffc0056abc948

struct {

flags = 0x2 <== IDX_INDEX_FILE is set
bmt = struct {

fname_page = 0x3 <== page with root node for name tree

ffree_page = 0x1 <== page with root node for free space tree

fname_levels = 0x1 <== # of levels in name tree

ffree_levels = 0x0 <== # of levels in free space tree
}

dir_bfap = 0xfffffc00c3816c08 <== bfap for directory.
}

Here are some debugging hints if you need to wander into this code. There are always at least two pages
in an index, the two B+ tree root nodes. Partial dumps will not contain the contents of the index nodes

since these are in UBC pages. If you need access to the index file contents, use showfile and

disphex to dump the index pages.

HP Confidential

 Chapter 6: Special Files 89

Consider the following example in which we want to see the directory and index information for a

subdirectory called /fset1/test40 which contains 511 files.

Step 1: Use showfile to get information about the directory file.

prompt> showfile /fset1/test40

 Id Vol PgSz Pages XtntType Segs SegSz I/O Perf File

2e.8001 2 16 2 simple ** ** ftx 33% test40 (index)

This shows us that there is an index associated with this directory. Before looking at the index
data, let's see the information inside the directory itself.

Step 2: To dump the directory pages for this file, use the disphex utility. This utility and its source

code can be found at soak2:/usr/specs/filesystem/tests/general.

prompt> disphex -D /fset1/test40

This will read the directory one page at a time starting at page 0, interpret the directory entries,
and dump them to the screen in an abbreviated format:

Pg Offset Tag Seq Entry Len Name
--------- ----- ----- --------- ------------------
 0 21 8001 20 .
 20 2 8001 20 ..
 40 97 8001 28 Test_file_0
 68 165 8001 28 Test_file_1
 96 238 8001 28 Test_file_2
 124 288 8001 28 Test_file_3
...
8032 12398 8001 32 Test_file_251
8064 12445 8001 32 Test_file_252
8096 12496 8001 32 Test_file_253
8128 12538 8001 32 Test_file_254
8160 32 --- Empty slot ---
Block = 0
Enter: block #, [c #], d, q, [o #], L, l, n, N, p, P, ?

These are the entries for page 0. Hitting return will display the entries for page 1. At the prompt
you can enter the next page of data that you want to display. For instance, typing ‘3’ will display
the data for page 3 in the file. Type 'q' to quit.

Step 3: Using the -i option of showfile, see the information for the index.

prompt> showfile -i /fset1/test40

Id Vol PgSz Pages XtntType Segs SegSz I/O Perf File

3007.8001 2 16 4 simple ** ** ftx 33% index (test40)

From this we get the tag (0x3007) and size (4 pages) of the index file.

Chapter 6: Special Files 90

Step 4: We can use disphex and the .tags interface to dump the pages of the index. We need the

decimal value of the tag, which is 12295 (0x3007).

prompt> disphex /fset1/.tags/12295

 0 ff000000 00000000 01000000 02000000 |................|
10 00000000 00000000 00000000 00000000 |................|
20 002e0000 00000000 00000000 00000000 |................|
30 000e0300 00000000 14000000 00000000 |................|
40 00202bd0 a5ca5a00 28000000 00000000 |. +...Z.(.......|
50 00212bd0 a5ca5a00 44000000 00000000 |.!+...Z.D.......|
60 00222bd0 a5ca5a00 60000000 00000000 |."+...Z.`.......|
70 00232bd0 a5ca5a00 7c000000 00000000 |.#+...Z.|.......|
80 00242bd0 a5ca5a00 98000000 00000000 |.$+...Z.........|
90 00252bd0 a5ca5a00 b4000000 00000000 |.%+...Z.........|
a0 00262bd0 a5ca5a00 d0000000 00000000 |.&+...Z.........|
b0 00272bd0 a5ca5a00 ec000000 00000000 |.'+...Z.........|
c0 00282bd0 a5ca5a00 08010000 00000000 |.(+...Z.........|
d0 00292bd0 a5ca5a00 24010000 00000000 |.)+...Z.$.......|
e0 0040b202 5daaac05 40010000 00000000 |.@..]...@.......|
f0 0041b202 5daaac05 60010000 00000000 |.A..]...`.......|
Block = 0
Enter: block #, [c #], d, q, [o #], L, l, n, N, p, P, ?

This is the raw data for page 0 of the index file, but we really don't know what kind of
information this represents (file name tree or free space tree; root node or leaf node).

Step 5: Use the crash utility to search for the access structure for this directory. If you have used the

showfile commands above, this subdirectory has been accessed recently, so its bfAccess
structure should still be around on the free list.

crash> bfaccess -s 12295

LIST bfAccessT bfSetT Tag
------ ---------------- ---------------- -------------
Free fffffc00c3816008 fffffc00e3e4e788 3007.8001

crash> bfaccess fffffc00c3816008

struct {
...
idx_params = 0xfffffc0056abc948

}

crash> * bsIdxRecT 0xfffffc0056abc948

struct {
flags = 0x2
bmt = struct {

fname_page = 0x3
ffree_page = 0x1
fname_levels = 0x1
ffree_levels = 0x0

}
dir_bfap = 0xfffffc00c3816c08

}

HP Confidential

 Chapter 6: Special Files 91

From this data we can see that the file name btree root node is page 3 of the file, and the free space root

node is page 1. Since there are 4 pages in this file (from the showfile in step 3), we can infer that
pages 0 and 2 contain the file name leaf nodes. This agrees with the fact that the filename tree has one
level (root level plus one level for leaf nodes).

Step 6: Now use disphex with the -I option to format the data on the page as if it were an index.

Currently this utility does not know the difference between leaf and non-leaf nodes, nor between
the file name and free space tree, so all the data is presented in raw form. But not quite so raw as
the unformatted data.

The following example dumps the root node for the file name tree in which there are 2 leaf nodes,
at pages 0 and 2.

prompt> disphex -I /fset1/.tags/12295
Page in file: 3
Elements in page: 2
Left page: 1
Right page: -1
Max elements/node:510

non-leaf nodes: Key = Search Key Location = Node Page
file name leaf nodes: Key = Hashed Name Location = Dir Offset
free space leaf nodes: Key = Dir Offset Location = Bytes Free

 Key Location
--------------- ---------

723878400 0
12 2

6.1.3 Directory Truncation

Directories can be truncated whenever all the entries are removed from a trailing page, but never from an
interior page. This means that if a directory has 5 pages of entries, and all of the entries are removed from
page 4, page 4 is eligible to be truncated and have its storage returned to the domain (page 0 is the first
page). If all the entries are removed from page 2, that page is not eligible to be truncated since there are
still entries in page 3. If the entries from pages 3 and 4 are subsequently removed, then pages 2, 3 and 4
will be truncated.

Curiously, directories are not truncated on entry deletion, but on entry insertion. This is because of the
amount of overhead required to determine the truncation point. Since the directory is scanned and the last
known entry is determined on insertion, but not during removal, insertion was chosen as a more-efficient
operation to trigger storage truncation. Another reason that truncation is done at insert time is to avoid
trying to truncate a page that has pinned records. As in all storage deallocation, the truncation is done in
two phases. The first phase is done in the context of the thread doing the directory insertion. This thread

then passes a message to the fs_cleanup_thread() which completes the storage deallocation.

An indexed directory does not have its index file removed even when the directory itself is truncated
down to a single page. Once the directory has been indexed (as it expands beyond the first page), it
remains an indexed directory forever.

Chapter 6: Special Files 92

6.1.4 Trashcans

Trashcans are a mechanism that system administrators can use to prevent unwanted deletions of files in
the AdvFS environment. In a typical UFS filesystem, and in AdvFS directories without trashcans, there is
no way to retrieve a file (undelete it) after it has been removed. With trashcans, however, the file is never
deleted, it is simply moved to the trashcan directory. The deletion code checks for a trashcan directory,
and if one exists, it merely renames the file instead of a deleting it. If the trashcan is on a different
domain, the file is copied to the trashcan directory and then the old file is removed.

Trashcans are established using the mktrashcan <trashcan> <directory> command. See the

man page for more information about adding, removing, and displaying trashcans.

6.2 Fragment Bitfile

6.2.1 File Fragments and Fragging Concepts

Storage allocation in AdvFS is done in 8 KB page units. For files that are not an even multiple of 8 KB in
length, only part of the last page is used to store data. For file systems with many small files, this can
result in inefficient storage utilization.

Figure 26: Wasted space in a non-fragged file

To minimize wasting of disk storage, AdvFS stores the data that is beyond the last full page of a file in a
fragment. (Storing this remainder of data in a fragment is typically called fragging the file). Fragments,
by definition, are sized in 1k increments from 1K to 7K. Thus, if a file is 13.5K in length, the 5.5K in
page 1 will be stored in a 6K fragment. This scheme guarantees that the wasted space at the end of a file
is always less than 1K. This is illustrated in the figure below:

HP Confidential

 Chapter 6: Special Files 93

Figure 27: Wasted space avoided with fragging

In bitfile A in this figure, assume that the file size is 5632 bytes, or 5.5K. This data will all fit inside a 6K
fragment with only 512 wasted (unused) bytes. If this file were not fragged, then the wasted space would
be 2.5K of a full 8K page. Therefore, AdvFS realizes a savings of 2K, and the wasted space is only 20%
of what it would be if the file were not fragged.

Because a domain with many small files of uneven size will exhibit a greater waste of storage space than
a domain with fewer larger files, and because fragging a file adds processing overhead, AdvFS only
attempts to frag relatively small files. Internally, a file will be considered for fragging when the wasted

space after the end-of-file will be greater than 5% (#defined by FRAG_PERCENT) of the total file size.
Because of this calculation, any file 160K in size or larger will never be fragged.

A file is fragged on the last close of the file so long as none of the following conditions are true:

• The file is a reserved file.

• The file is a quota file.

• The file is empty.

• The file is opened for direct I/O.

• The file is marked for using persistent atomic-write data logging (see Section 8.2).

• The fileset is marked for ‘no fragging’ (see below)

• The fileset is mounted read-only

• The amount of unused storage in the last page of the file is less than 5% of the size of the file.

On the last close, if none of the above conditions are met, the last page of the file is moved into the
fragment bitfile, which is explained in the next section. This is done by allocating a fragment from the

Chapter 6: Special Files 94

fragment bitfile, copying the data into the fragment, deallocating the final page of the data file, and

storing the information necessary to find the fragged data in the file’s bfAccess.fragId structure.

For existing files with fragments, when a write exceeds the fragment size, a new page is allocated to the
file, the fragment is copied to the new page, and the fragment is deallocated.

Let’s briefly discuss two of the above reasons why files are not fragged. First, files opened for direct I/O
are not fragged on close in anticipation that it will be opened for direct I/O again. When the data in the
frag is modified in a direct I/O file, the frag must be brought into the normal extent maps before the I/O
can be done. This is added overhead that is usually not wanted in a direct I/O application, so the fragging
of the file is inhibited to prevent this unneeded overhead.

Another reason that a file might not be fragged is because the fileset has been marked to prevent it.
Applications like web servers that generate many small files may rather trade off the additional storage
space required to eliminate the overhead necessary to frag and unfrag the files as they are closed and
reopened. In this case, the application can keep all of the files that are not to be fragged in a fileset that is
marked to prevent fragging. This is done by using one of the following commands:

mkfset –o nofrag <domain> <fileset>

chfsets –o nofrag <fileset>

The showfsets utility will indicate if a fileset is marked for fragging by displaying a line of the type:

Fragging: On or

Fragging: Off

6.2.2 Fragment Bitfile Layout

File fragments are stored in the fragment bitfile, usually called the frag file. There is one frag file per
bitfile set, and it always has a tag of 1. The frag file can be viewed in two different ways. One way is as
an array of 1K slots. This means that each page of the file has 8 slots. The page number of the frag can
be found by dividing the slot address by 8, and the remainder corresponds to the slot inside that page.

The bfAccess.fragId.frag field is an index into this virtual array. A frag value of 0x12a77 refers
to a frag starting in page 9550, slot 7 of the frag file.

Another way to view the frag file is as a collection of fragment groups, where each group contains a
header and an array of fragments of a uniform size. A fragment group is defined by the size of fragments
it contains: 1K, 2K, 3K, ... , 7K. Each group consists of sixteen 8K pages. Groups are addressed by the
page number of the first page in the group. Groups of the same type (that is, fragment size) are linked
together if they contain at least one free fragment (See figure below). Groups with no in-use fragments
are kept in a special list of free groups. When a group is allocated, it is initialized and assigned a type. A
group that has no free fragments is not on the linked list for its fragment type; if fragments are
subsequently freed, then the group is placed back on the linked list.

Once the number of free groups on the free list exceeds a maximum threshold, the number of free groups
is reduced to a minimum threshold by deallocating the corresponding pages from the frag file. Group
deallocation is done by a global kernel thread. frag_group_dealloc() sends a message to
bs_fragbf_thread() to do the deallocation. A separate thread is necessary because bs_frag_dealloc() runs
within a transaction, and the deallocation of fragment groups requires starting a new root transaction
inside del_dealloc_stg(). Since root transactions can not be nested, a separate thread is needed. There is
one bs_fragbf_thread() per system. Curiously, the free list headers for the frag file are maintained in the

HP Confidential

 Chapter 6: Special Files 95

BSR_BFS_ATTR record in the mcell chain of the bitfile set's tag directory. This appears to have been
done as a matter of convenience rather than necessity. The other attributes of the bitfile set are in the tag
directory’s metadata, so this attribute is there as well.

Prior to version 5.1B, the minimum and maximum threshold values were configurable via sysconfig.

The variables were AdvfsMinFragGroups and AdvfsMaxFragGrps, and defaulted to 16 and 48,
respectively. As of 5.1B, these default values are still used, but they are no longer configurable, even via

dbx.

Figure 28: Logical structure of the fragment bitfile

A third way to view the frag file is as an array of 16-page groups. The figure below shows the layout of
the frag file in the previous figure. Note that two groups have been completely deallocated; these are
sparse holes in the file:

Figure 29: Frag file in 16-page groups

To summarize, the frag file can be addressed in several ways:

• By slot number (as an array of 1K slots)

• By page number

Chapter 6: Special Files 96

• By group (which is by the page number of the first page in the group)

Fragments other than 1K and 2K sizes may span underlying frag file pages. By definition all 1K
fragments fit inside an 8K page. The first page of the 2K group is coerced such that the first fragment
starts 2K into the page, guaranteeing that none of the 2K fragments will span the underlying pages. All
other fragment types may have fragments that span the underlying pages. There is logic throughout the
fragment code that detects spanning and pins or refs both pages as necessary.

All changes to the fragment bitfile, including data modifications within allocated fragments, are done
under transaction control. This seems rather incongruous since the data saved in the frag file is user data,
and user data is not typically logged. In addition, the logging of frag data adds significant traffic to the
log file. However, transactions serve to maintain the consistency of the frag file and to prevent object
reuse. There was an experiment in the v51 era in which an AdvFS engineer stopped logging much of the
frag file traffic, and object reuse became significant, particularly in the clustered environment. This may
be an area worthy of additional study and experimentation.

 97 Chapter 7: I/O Subsystem

Chapter 7: Buffer Cache

7.1 Overview
Once upon a time in the predawn of computing when silicon wafers were evolving in a methane-rich
atmosphere, reading a file meant retrieving the data from disk and placing it into the application’s
memory. Conversely, writing a file meant transferring the data from a user’s buffer and placing it onto
disk. The write was not considered complete until the data was safely on disk. However, primordial
programmers quickly realized that transfers to disk were orders of magnitude slower than transfers of data
to memory. They also realized that the data for a given file page may be accessed many times, and
reading and writing to disk each time was not very efficient. It was speculated that a copy of the data for
each file page could be kept (cached) in memory, and each read would be satisfied from this cached page.
Further, any writes to the page could be accomplished by updating the cached page, temporarily avoiding
the more-costly update to disk. Thus was born the idea of the filesystem’s buffer cache.

The AdvFS buffer cache has had two different implementations. Prior to Tru64 Unix Version 5.1, AdvFS
wired a predetermined number of virtual memory pages and maintained absolute control of these pages
for use as its buffer cache. The number of pages set aside for the cache was determined by the

configurable variable AdvfsMaxCachePercent, which could range from 1 to 30% of total system

memory (default value was 7%). One drawback with this scheme was that if the system administrator
guessed wrong when setting the value for this variable, the cache could be either woefully undersized for
the amount of file activity, or it could end up consuming memory resources that were not needed for file
activity, but were needed for other purposes.

As of Version 5.1, AdvFS makes use of the Unified Buffer Cache (UBC) for its cached pages. The
AdvFS buffer cache can be considered a wrapper around the memory resources and routines offered by
the UBC. The term ‘buffer cache’ will be used throughout this chapter to mean the AdvFS buffer caching
routines and mechanisms plus their underlying UBC resources; explicit references to the UBC and its
routines will be made where applicable.

The UBC is part of the Virtual Memory (VM) subsystem. The UBC monitors the number of memory
pages needed by each filesystem and dynamically allocates the number of pages as demands change.
Conversely, as other memory demands on the system increase (e.g. processes start, memory is allocated),
the UBC may be required to take away some pages in use by the file systems to give back to VM for such
demands. This give-and-take allows the system to self-tune and allows memory resources to be used
where most needed at any given time.

AdvFS user and metadata pages are typically stored in the buffer cache. Several operations that bypass
the caching of data are direct I/O requests, AdvFS raw I/O requests, and certain domain-related metadata
initializations that use a raw I/O interface. The UBC manages the recycling of clean pages either for use
as a new UBC page or to give it back to the Virtual Memory subsystem. In addition, the UBC may
request AdvFS to flush dirty pages to disk so that they can be reclaimed as clean pages by the UBC. This
will be discussed in more depth shortly.

The following sections will discuss the AdvFS buffer cache, its structures, and functions primarily from
Version 5.1A perspectives. (There are some significant changes in Version 5.1B that complicate several
of the code paths presented here. We hope to update this chapter to reflect those changes shortly).

HP Confidential

Chapter 7: Buffer Cache 98

7.2 In-Memory Structures

Every open file in AdvFS has a vnode, which is associated with both a vm_ubc_object and a

bfAccess structure. (Reserved AdvFS files don’t have a vnode, but that isn’t important in this

discussion). Each vm_ubc_object has a list of UBC pages (struct vm_page) that represent the

on-disk pages for the file. In parallel with this, AdvFS maintains a bsBuf structure for each UBC page

in the cache (see figure below). For AdvFS only, the UBC page’s vm_page.pg_private field

contains a pointer to its associated bsBuf structure. Additionally, the bsBuf.vmpage field contains a

pointer to its associated vm_page structure (this field was called the bsBuf.vmpl.pl[0] field in

5.1A). vm_page structures are linked together with the pg_onext and pg_oprev pointers.

The bsBuf is always associated with an 8k page of memory. The UBC page_t structure has
traditionally been associated with an 8k page also, but may be associated with a Big Page of larger size as
of version 5.1B. (More on Big Pages in section 7.8.) Also notice in the figure that AdvFS maintains a list

of dirty buffers in the bfAccess structure, but does not maintain a list of clean buffers. This is because

there is no need for AdvFS to monitor clean buffers. If these pages are needed elsewhere, then the UBC
can recycle them as needed without intervention from AdvFS. If a clean page is recycled and is later
needed by AdvFS, it must be brought back into the cache. Maintaining dirty buffers is more complicated,
since the manipulation of dirty pages may be initiated by either AdvFS or the UBC, as we shall shortly
see.

Figure 30: VFS, UBC, and VM in-memory structures

 99 Chapter 7: I/O Subsystem

7.3 Buffer Cache Actions during System Calls

7.3.1 Page Lookup, Pinning , and Reffing

Before looking at some file-specific system calls, let’s look at a UBC operation that is common to many
of those paths. This operation is the page lookup, and is done whenever the filesystem or the UBC needs
to determine if a certain file page is already in the cache. Pages are uniquely identified by their

vm_ubc_object and their offset in the file.

To determine if a given file page is in the cache, AdvFS calls ubc_lookup(), passing the object, offset, and

a flag controlling the lookup. Within this routine, the object’s lock (vm_ubc_object.ob_lock) is
seized to synchronize threads with racing lookups on the same object. After acquiring the lock, the UBC
searches its cache for an existing reference to the page. If the page is not in the cache (a cache miss), the

UBC allocates a new UBC page (a vm_page structure), marks the page busy (by setting

vm_page.pg_busy), and increments the page’s reference counter (vm_page.pg_hold). The latter
field is incremented to prevent the page from being manipulated by other threads while it is in use. This
busy, held page is then returned to the caller. In the case of a cache miss, ubc_lookup() also sets the
B_NOCACHE bit in the flags parameter to indicate to AdvFS that the page was not found in the cache.
This is because additional work is usually necessary to set up a new page when it is returned to AdvFS.

If the page is found in the cache (a cache hit), but is currently marked as busy (pg_busy flag is set),

then the object lock is released and the caller is put to sleep until the pg_busy flag is cleared. The page
can be busy either because it is newly initialized or there is an I/O in progress to that page. Either way,
the current thread seeking access to the page must wait until the page is in a consistent state. Once the

pg_busy condition is clear, threads waiting for the page reference are awakened and given the reference

to the page. After that, the page has its reference counter (vm_page.pg_hold) incremented, and is

returned to the caller.

The act of bringing a page into the buffer cache and incrementing its pg_hold so that the data in the
page can be manipulated by a single thread is called referencing or reffing the page (if the page is being
read) or pinning the page (if the page is being modified). Each time a page is reffed or pinned, it must be

followed by a deref (call to bs_derefpg()) or unpinned (call to bs_unpinpg()) to allow other

threads to manipulate these pages. Basically, a deref just decrements the pg_hold count on the page.
An unpin operation is slightly more complicated depending on the type of page being unpinned and the
mode of unpin required. This will be discussed further in Section 7.3.5 on buffer cache write operations.

There are two additional features that ubc_lookup() provides that are useful to AdvFS. One of the
parameters to this function is a flag, which AdvFS typically passes as B_READ or B_WRITE. If

B_WRITE is passed, then it is assumed that the page will be modified, and the vm_page.pg_dirty
bit will be set when it is returned to the caller. If B_READ is passed, then it is assumed that the page will

be used for a read operation and vm_page.pg_dirty will not be set (unless the page is already dirty).

The second feature also uses the flag parameter. If AdvFS passes the B_CACHE flag, this is a signal to
ubc_lookup() that it wants to know if the page is in the cache, but does not want a new page to be
initialized if it does not already exist. In this case, if there is a cache miss, no page is initialized and
B_NOCACHE is returned. For example, direct I/O uses this flag to check for the existence of a page in
the cache without causing a new cached page to be created if it doesn’t already exist.

Simplified ubc_lookup() code flow summary:

ubc_lookup(vm_ubc_object, offset, blocksize, length, *pageptr, *flags, policy)
Seize object lock
Lookup the page in the cache

HP Confidential

Chapter 7: Buffer Cache 100

If cache miss:
If B_CACHE was set:

set B_NOCACHE flag
Set *pageptr to NULL to indicate no page being returned

Else
Allocate a new page by calling ubc_page_alloc()

Set pg_busy and increment pg_hold

Set *pageptr to address of new page
Else cache hit:

Increment vm_page.pg_hold

Set *pageptr to address of page found in cache
Release object lock
return

7.3.2 File Open

The first open of a file causes AdvFS to create its own internal file structure to manage the file in

memory. This bfAccess structure stores a pointer to the file’s vnode along with other information that

AdvFS needs to manage the file’s activity. The vnode also holds a pointer back to the bfAccess

structure in the bfNode structure that is found at vnode->v_data. AdvFS will then obtain a UBC

file object to associate with the bfAccess structure by calling ubc_object_allocate(). The UBC

allocates a new vm_ubc_object structure which contains a pointer to the bfAccess structure and a

filesystem-specific callback dispatch table. The vm_ubc_object is the structure that the UBC will use
to manage the cached pages associated with this file. File structures are discussed in more detail in
Chapter 2.

In addition, for metadata files or files under transaction log control, AdvFS will indicate to UBC that the
file object must be managed specially by calling UBC_OBJECT_PREVENT_FLUSH(). This is needed to
maintain the write-ahead log rule. Special management considerations for metadata files are discussed in
Section 7.4.

Simplified code flow summary for file open:

Object = ubc_object_allocate(handle, dispatch table, funnel)
If AdvFS metadata controlled file:

UBC_OBJECT_PREVENT_FLUSH(object) sets object’s UBC_NOFLUSH flag

7.3.3 File Close and Inactivation

Some time after a file is closed for the last time, AdvFS will recycle its bfAccess structure to end its

relationship with that file. This recycling can be initiated by AdvFS when it needs a new bfAccess

structure, or by the VFS subsystem when it needs to reclaim a vnode. (The freeing of the bfAccess
structure is not done immediately upon closing the file in anticipation that the file will be reopened and

the existing bfAccess and vnode structures will be reused, saving the overhead of initializing them

again). During this reclamation, AdvFS will call ubc_object_free() to disassociate the vm_ubc_object

from the bfAccess structure and deallocate it. The UBC assumes that AdvFS has invalidated all of the

cache pages associated with that object before ubc_object_free() is called.

7.3.4 Read

 101 Chapter 7: I/O Subsystem

AdvFS processes each read() request as a series of 8 KB data buffers, each equivalent to a page of data.
For each page, a call to ubc_lookup(B_READ) searches the UBC cache for the specified page. It returns
either a new UBC page (if the page is not in the cache), or the existing page (if it was found in the cache).
This is called reffing the page.

After a cache miss, AdvFS dynamically allocates its own state structure, called a bsBuf, and attaches it

to the UBC page at vm_page._upg._pg_private. This vm_page/bsBuf association will remain

until UBC recycles the page. Next, AdvFS issues a read to the disk driver to initialize the page with data
from the on-disk file. After the I/O completes, AdvFS calls ubc_page_release(B_DONE) so that UBC
can clear the busy state and wakeup any threads waiting for the page. Next, the cached data is copied into
the application’s memory buffer, and ubc_page_release() is called a second time to allow the UBC to
decrement the page reference counter.

After a cache hit, AdvFS simply copies the cached data to the application’s buffer and calls
ubc_page_release() to decrement the page reference counter (deref the page).

read() system call code flow summary:

read(file handle, offset, length)
For each page (8Kb) of data:

Reference the page:
ubc_lookup(object, pg offset, pg length, B_READ)
If cache miss:

Allocate bsBuf and associate with UBC page
Start I/O to read file data into new cache page
ubc_page_wait(page) to wait for I/O completion

ubc_page_release(B_DONE) to clear vm_page.pg_busy

Copy cached data to application buffer via uiomove()
Dereference the page:

ubc_page_release() decrements vm_page.pg_hold

7.3.5 Write

AdvFS processes each write() request as a series of 8 KB data buffers, each equivalent to a page of data.
Each of these pages must be pinned before it can have its data modified. For each page a call to
ubc_lookup(B_WRITE) searches the UBC cache for the specified page. It returns either a new UBC page
if the page is not in the cache, or the existing page if it was found in the cache.

After a cache miss, AdvFS allocates a new bsBuf structure and attaches it to the UBC page in the

vm_page._upg._pg_private field. Next, AdvFS issues an I/O to read the data from disk into the

new page. When the I/O completes, AdvFS calls ubc_page_release(B_DONE) to clear the busy state and
wakeup any threads waiting on the page. At this point the page is pinned. The application’s data is then
copied into the cache page, and the page is unpinned.

After a cache hit, the page is returned from ubc_lookup() with vm_page.pg_dirty set because the
B_WRITE flag was passed in. At this point the page is pinned. Then the data is copied from the
application buffer into the cached page, and the page is unpinned.

Unpinning a page may involve different steps depending on the kind of page and its state. The
bs_unpinpg() routine has several different code paths that can be specified by the calling routine. Each

path needs to decrement the pg_hold on the buffer, but there may be other work that is also required.

HP Confidential

Chapter 7: Buffer Cache 102

One path is for log pages (BS_LOG_PAGE). In this case, the LSN for the page is checked, and, if there
is a flush in progress that spans this page, then it is put onto the blocking I/O queue so that it will be

flushed immediately. Otherwise the page has its pg_hold decremented, and there is a check to see if the

log needs to be flushed (it is flushed every 8 pages). Another path is for a page that is being unpinned and
must be flushed to disk immediately (BS_MOD_SYNC). In this case, the page is put onto the file’s dirty
buffer list if it is not already there, it is marked DIRTY and BUSY, it is staged for I/O, and put onto the

blocking I/O queue. Then the code waits for the I/O to complete and decrements the pg_hold value. A
third path involves pages that have not been modified (BS_NOMOD). If this is the last unpin of the

buffer and the page is not already dirty, then the pg_hold is simply decremented. Otherwise, some

other thread has also modified this page, and it needs to be placed onto an I/O queue. It will be placed
onto the blocking I/O queue if a thread is waiting for a file flush that includes this page range. Otherwise
it is simply put onto the lazy I/O queue. The last type of unpin is the most common, the lazy unpin
(BS_MOD_LAZY). In this case the page is marked DIRTY, and put onto the file’s dirty buffer list. It is
put onto the blocking I/O queue if there is a flush outstanding that includes this page; otherwise it is put

onto the lazy I/O queue and pg_hold is decremented. As mentioned in Chapter 8, a buffer that is on the

blocking I/O queue will be flushed to disk almost immediately, while a buffer on the lazy I/O queue may
languish for a while before being flushed to disk.

Note that this code path gets the data from the application buffer to the cache, but does not deal with
flushing the cached page to disk. That path is discussed in Sections 7.3.6. and 7.3.8.

Write() system call code flow (simplified):

write(file handle, offset, length)
For each page (8Kb) of data:

Pin the Page:
ubc_lookup(object, pg offset, pg length, B_WRITE)
If cache miss:

Allocate bsBuf structure and associate with UBC page

Start I/O to read file data into new cache page
ubc_page_wait(page) to wait for I/O completion
ubc_page_release(B_DONE) clears page BUSY state

Copy data from application buffer to cache via uiomove()
Unpin the Page:

Move the ioDesc for buffer to AdvFS I/O queue

ubc_page_release() decrements page reference

7.3.6 Flushing Pages

AdvFS and UBC both have the ability to flush dirty cached pages to disk. AdvFS supports its own file
sync routines (sync() and fsync()) as well as its own cache I/O scheduling mechanisms. AdvFS also
supports the smoothsync mechanism that periodically flushes dirty data based upon an aging timestamp
scheme (See Section 8.10). The UBC may need to flush pages if it needs to reclaim pages for other uses,
either for new file pages or for other memory requirements.

If the the UBC is initiating the flush, it will select a dirty page to be flushed based on a ‘least-recently-
used (LRU)’ basis, meaning that the page that has not been touched the longest will be flushed. To start
the flush, the UBC will first stage the page for I/O by moving it from the object’s dirty list to the clean

list, clearing vm_page.pg_dirty, and setting vm_page.pg_busy. The UBC then tells the
filesystem to flush the page by calling FSOP_PUTPAGE(). For an AdvFS filesystem, this will dispatch
into msfs_putpage(). msfs_putpage() will call ubc_dirty_kluster() to get a list of pages for this object that
can fit into one I/O. This is an optimization that assumes that if the UBC is requesting one page to be
flushed, it probably needs more than one page. So AdvFS tries to collect nearby pages that can be

 103 Chapter 7: I/O Subsystem

consolidated into a single I/O operation. These pages are then flushed to disk using an asynchronous,
non-blocking I/O request that the AdvFS I/O subsystem will manage. The code flow for this path is given
at the end of this section.

Flushing of dirty metadata is initiated only by AdvFS and is described Section 7.5. Flushing of
application data by AdvFS can be from a number of routines, some of which are included in the following
table:

Flush Routine Purpose

bfflush() Flush pages within a page range (or all pages) of a file

bs_bflush() Flush buffers on lazy queue for a given disk

bs_bfdmn_flush_bfrs() Flush buffers on all disks in a domain

bs_bfdmn_flush_all Flush buffers on all active domains

bs_bfs_flush Flush and invalidate all buffers within a fileset

The routines that flush buffers for disks and domains really just ensure that all the buffers on the
appropriate lazy I/O queues get moved onto the flush I/O queues for immediate flushing to disk. The
bfflush() routine is a more generally-used routine for flushing files via fsync() or when a file is opened

with the O_SYNC flag. This routine actually walks through the file’s dirty buffer list (bfap-

>dirtyBufList), staging each page for I/O, and moving the buffer to the flush I/O queue. (See

Chapter 8 for a discussion of the I/O queues).

msfs_putpage() code flow:

msfs_putpage(object, pagelist, pagecount, flags, ucred)
For each page in the pagelist:

ubc_dirty_kluster(object, page, offset, kluster pg length wanted, flags, pgcnt): This creates a list
of contiguous pages that are all staged for I/O

Consolidate the list of pages and insert it onto the ubcReq I/O queue
Issue the I/O to disk
Upon I/O completion, call ubc_page_release(B_DONE) to clear each page’s BUSY state

7.3.7 Invalidating Pages

When the UBC recycles a cached page, it calls back to AdvFS via FSOP_FS_CLEANUP() to deallocate

any bsBuf structure that is associated with the UBC page. The UBC will then recycle the UBC page and
remove it from the object’s clean list. Recycling removes the page from the cache. This whole process is
known as invalidating pages. Note that invalidating pages means removing them from the cache and
throwing away the contents, even if the page has been modified. Paths that want to flush and then
invalidate certain pages do the flushing first to make the pages clean, and then invalidate them.

When AdvFS needs to invalidate pages, such as when a file is deleted or truncated, AdvFS will usually

call bs_invalidate_pages(). This routine walks through the file’s dirty buffer list, remove the bsBuf
from any I/O queue on

which it resides, and then calls ubc_invalidate() to invalidate the page from the cache and wake up any
threads waiting for the page. Waiters are returned a status indicating that the page no longer exists. In

HP Confidential

Chapter 7: Buffer Cache 104

several paths, particularly error paths within the buffer cache code, ubc_invalidate() may be called
directly.

7.3.8 Performing I/O on Cached Pages

To perform I/O on a cached page, the kernel must prepare the page for I/O, start the I/O, and later process

the I/O completion. While an I/O is in progress, the page is marked busy (vm_page.pg_busy is set) to

prevent other threads from accessing the page. At I/O completion, the vm_page.pg_busy flag is
cleared and waiting threads awakened. The following figure illustrates the I/O processing for cached
pages.

 105 Chapter 7: I/O Subsystem

Figure 31: Flowchart of I/O processing for cached pages

If UBC initiates the I/O, the UBC sets up the page as described in Section 7.3.6 and then calls
FSOP_PUTPAGE(). The filesystem then removes the page from whatever lazy I/O queue that it is

HP Confidential

Chapter 7: Buffer Cache 106

currently on, inserts it onto the AdvFS ubcReq queue, and then calls the bs_startio() routine to start the
I/O.

If AdvFS initiates the I/O, AdvFS removes the page from whatever lazy I/O queue it is on, and stages the
page for I/O by calling advfs_page_busy(). This routine does much the same thing as the UBC does in

staging a page for I/O: the page is moved to the object’s clean list, vm_page.pg_dirty is cleared, and

vm_page.pg_busy is set. Next, AdvFS inserts the pages onto either the blocking, ubcReq, or flush
queue, and then calls the bs_startio() routine. Which I/O queue the page is placed on depends on the
calling routine. See Chapter 8 for more details about the I/O queues.

UBC follows these steps to flush a modified cache page to disk:

Remove the page from the object’s dirty list
Insert the page onto the object’s clean list

Set vm_page.pg_busy and clear vm_page.pg_dirty

Call FSOP_PUTPAGE() to have the filesystem start the I/O.

AdvFS follows these steps to flush a modified cache page to disk:

Remove the page’s I/O descriptor from the lazy I/O queue on which it resides
Call advfs_page_busy() to:

Remove the page from the object’s dirty list
Insert the page onto object’s clean page list

Set vm_page.pg_busy and clear vm_page.pg_dirty

Insert the page’s I/O descriptor onto the appropriate non-lazy I/O queue
Call bs_startio()

When the I/O completes, the buffer’s I/O descriptor is removed from the device queue, the page remains

on the object’s clean list, and the page’s vm_page.pg_busy flag is cleared. Threads waiting for the I/O

to complete, as determined by the clearing of the pg_busy flag, are awakened.

7.4 Metadata Handling
Metadata refers to information needed to describe files within the filesystem. Examples of metadata for a
given file include its size, date and time of modification, and storage location on disk. Metadata must be
handled carefully to ensure the integrity of the filesystem as a whole. Most metadata is stored in a
reserved file called the BMT, but AdvFS organizes some types of metadata into distinct files, such as the
storage allocation bitmap (SBM). AdvFS also supports atomic data logging (ADL; see Section 8.2) of
user files, which requires that the data in those files be managed the same as metadata.

AdvFS uses the UBC to cache metadata as well as normal data files. This arrangement allows AdvFS to
use a single cache interface and to maintain a pool of dynamic cache memory for varying loads of
metadata-intensive operations.

Clean metadata pages that are not referenced are subject to recycling at anytime by UBC. By definition,
clean pages contain no modifications (contain the same data as the page on disk). Since AdvFS has no
special ordering requirements on these pages (as there are for dirty metadata pages), the UBC is allowed
to manage the clean metadata pages just like regular user data pages.

To ensure the recoverability of metadata in the event of a system crash, AdvFS must control the sequence
in which metadata and transaction log modifications are written to disk. This is the write-ahead log rule,
and guarantees that log records describing metadata changes are on disk before the actual metadata
changes are written to disk (see Section 9.4). Therefore, AdvFS, and not the UBC, must control the

 107 Chapter 7: I/O Subsystem

timing of metadata flushing. To ensure that this is true, the UBC routines that do dirty page flushing first
call FSOP_WRITE_CHECK() to see if a file object is under metadata control. If an object has the
UBC_NOFLUSH flag set, then it is under metadata control (see Section 7.3.2) and UBC will not flush the
dirty page.

When AdvFS modifies a metadata page and then calls ubc_page_release(), the UBC will insert the dirty
page onto the UBC dirty metadata LRU when this is the last reference to the page. The dirty metadata

LRU is a linked list at ubc_cntl_t->ubc_dirty_metadata_lru with a count of the pages on

this list in ubc_cntl_t->ubc_dirty_metadata_count. The dirty metadata LRU allows the

UBC to monitor the percentage of all UBC pages that are dirty metadata. If the percentage exceeds a

UBC threshold limit (kept in ubc_cntl_t->ubc_dirty_metadata_pcnt), the UBC can request
that the filesystem start flushing some of its dirty metadata. This request is made by calling
FSOP_FS_METADATA_PUT() and passing in the UBC object of a dirty metadata page. For AdvFS, this
dispatches to the routine msfs_log_and_meta_flush(), that flushes all pages for the file requested. This
allows UBC to indirectly manage the number of dirty UBC pages while allowing AdvFS to maintain the
ordering of log and metadata writes.

The threshold percentage of dirty UBC metadata pages is modifiable by the VM configurable parameter

ubc_maxdirtymetadata_pcnt (default value 70%).

7.5 UBC Page Recycling
Recycling (or freeing) of UBC pages may be initiated by either AdvFS or the UBC. The UBC will
initiate recycling of cached pages either to get memory for new UBC page requests or to give the memory
back to the Virtual Memory subsystem. This allows UBC to dynamically adjust its consumption of
memory for file caching versus general VM requirements.

AdvFS may also invalidate and free a file’s cached pages during file delete, file truncate, fileset

unmount, or a direct I/O write of a previously-cached page. To do this, AdvFS calls ubc_invalidate()
passing in the page range that the UBC should invalidate.

When the UBC recycles a page, it calls FSOP_FS_CLEANUP() to allow the filesystem to cleanup its

filesystem-specific state structures in the page’s vm_page._upg._pg_private field. For AdvFS,

the filesystem state structure is the bsBuf structure. The FSOP_FS_CLEANUP() call dispatches to

msfs_fs_cleanup(), where AdvFS retrieves its page-specific bsBuf structure pointer from

vm_page._upg._pg_private and then deallocates the bsBuf structure. The UBC permits

filesystems to use the _pg_private field without restriction while the page represents valid file data.
After the call returns, the UBC zeroes this field, completing the disassociation of the UBC page structure
from the file system structure.

7.6 Memory Mapping

As mentioned in section 4.6.11, memory mapping functions (mmap() and munmap()) can be used by an
application to represent a file by a region of memory. Using this method, simply modifying the mapped
memory region will result in the eventual writing of that data to the file. This mechanism is largely
handled by the VM subsystem. If a mapped memory page is touched (either for reading or writing) and
this page is not resident in virtual memory, the VM will fault the page. Faulting is a process whereby the
page is brought into virtual memory and made available to the application. For a memory-mapped file,

HP Confidential

Chapter 7: Buffer Cache 108

part of this process involves reading the page from disk into memory so that the data can be read and/or
modified. When a file page is faulted and brought into memory, the VM calls a filesystem-specific
‘getpage’ routine via the FSOP_GETPAGE() macro. For AdvFS this will invoke msfs_getpage(). As can
be seen in the code flow below, msfs_getpage() must do operations similar to reffing or pinning the page.

It will return each page with its pg_hold variable incremented. The fault handler will set a read or write

permission on the page and then decrement the pg_hold. This means that the page can be recycled by

the UBC at any time after the pg_hold is dropped. If the page is recycled and the application touches
the page again, the whole faulting process will restart to bring the page back into the cache.

When mmap() is called by the application, a parameter is specified that allows the mapped pages to be
read-only (READ) or read/write enabled (WRITE). If the page being faulted is to be read-only, then
msfs_getpage() reads the page into the UBC and it is marked clean. The data can be read by the
application, but the fault handler puts a write-protection on this page so that if the application tries to
modify the page, a memory fault is generated (but not handled). Also, since the page is clean, the UBC
can reclaim it at any time without the intervention or knowledge of AdvFS. If a page is memory-mapped
for writing, however, the page is returned from msfs_getpage() marked DIRTY. This ensures that if VM

subsequently reclaims the page it will get flushed to disk. This page is not explicitly put onto the bfap-

>dirtyBufList, however. (We are not sure why this is, exactly. This could be an area of

investigation.) This means that calls to fsync() will not cause memory-mapped pages to be flushed to

disk. This is because fsync() will call bfflush() which walks the bfap->dirtyBufList for pages that
need to be flushed. There are only three mechanisms that will cause memory-mapped pages to be flushed
to disk. First, the msync() call which will call into ubc_msync() to walk the list of dirty pages on the file’s

vm_ubc_object. Second, the coarse-granularity smoothsync call to msfs_sync_mmap() that flushes

pages by calling ubc_flush_dirty(). Third, the UBC may flush these pages as they need to be reclaimed.
This is done by calling msfs_putpage() to flush their contents to disk, and then the clean page can be
reclaimed.

msfs_getpage code flow:

msfs_getpage(object, offset, length, protection, pagelist,

read/write flag, ucred)

If writing to a sparse hole, allocate storage for the page (cannot extend the file here):
For each page of data:

If mapping for read:
ubc_lookup(object, pg offset, pg length, READ)
If cache miss:

Allocate bsBuf and associate with UBC page
Queue I/O to read file data into new cache page
ubc_page_wait(page) to wait for I/O completion
ubc_page_release(B_DONE) clears page BUSY state

Else mapping for write:
ubc_lookup(object, pg offset, pg length, WRITE)
If cache miss:

Allocate bsBuf and associate with UBC page
Queue I/O to read file data into new cache page
ubc_page_wait(page) to wait for I/O completion
ubc_page_release(B_DONE) clears page BUSY state

Mark the page DIRTY so it will get written to disk if reclaimed.

Return pages with pg_hold incremented.

 109 Chapter 7: I/O Subsystem

7.7 Interaction with directIO
By definition, direct I/O bypasses the buffer cache. This means that any data already in cached pages
must be handled to avoid data corruption. In summary, for non-clustered systems, any pages already in
the cache will be used to return data for a direct I/O read, and the pages are left in the cache. For direct
I/O writes, the new data is merged with the cached data, then flushed to disk, and the cached pages are
invalidated. This means that direct I/O writes tend to remove pages from the cache. In clustered systems,
cached pages are flushed and invalidated when the file is first opened for direct I/O, and pages are not
brought into the cache. In operations such as migration which operate by bringing pages into the cache,
all pages brought into the cache are invalidated before the operation ends. See Section 8.13.3 for details.

7.8 Big Pages
Needs to be added.

 111 Chapter: 8 I/O Subsystem

Chapter 8: I/O Subsystem

The I/O subsystem is responsible for writing data that is in memory to permanent storage devices
(volumes) and for retrieving data from storage into memory. This subsystem is tightly integrated with the
buffer caching subsystem. See Chapter 7 for an explanation of buffer caching and Chapter 4 for a
discussion of read-ahead and aggressive write flushing.

While the time to access data in memory may be 25 to 50 machine cycles, the time required to transfer
that same data from disk may involve millions of machine cycles. Therefore, it is important that the I/O
subsystem be as efficient as possible. To increase efficiency, data is buffered in memory when possible
and appropriate, I/Os are avoided when possible, and the data is transferred to the driver in as efficient a
size as possible.

8.1 Asynchronous and Synchronous I/O

Write requests, by default, are cached. That is, data is written to the buffer cache and scheduled for later
transfer to disk. This method, called asynchronous I/O, generally gives the highest throughput, because
the application does not have to wait for disk I/O to complete and multiple changes to the same page may
be combined into one physical write to disk. Asynchronous I/O decreases disk traffic and increases the
concurrent access of common data by multiple threads. In addition, delaying the write to disk increases
the likelihood that a page will be combined with other contiguous pages into a single, more efficient
transfer. This is known as I/O consolidation (see section 8.6).

One disadvantage of asynchronous I/O is that the likelihood of losing data during a system crash
increases. When a fileset is mounted after a crash, the completed log transactions are replayed and
incomplete transactions are backed out so that the original metadata on disk is restored. These log
transactions, by default, save only metadata, not the data written to the file. This means that file sizes and
locations on disk are consistent but, depending on when the crash occurs, the user data from recent writes
may be out of date because the data was left in the buffer cache and lost during reboot.

Synchronous I/O, by contrast, ensures that both the metadata and the application data are written to disk
before the write request returns to the calling application. This means that if a write is successful, the data
is guaranteed to be on disk. Synchronous I/O reduces throughput because the write does not return until
after the I/O has completed. In addition, because the application, not the file system, determines when the
data needs to be flushed to disk, the likelihood of consolidating I/Os is reduced. The advantage, however,
is that application data is safely in permanent storage, and a system crash cannot jeopardize its data
consistency.

To avoid the I/O latency in synchronous operations such as reads and direct I/O writes, there is an AIO
interface that allows the application to work around the I/O latency. This interface allows the application
to start a series of operations such as read and write (using aio_read() and aio_write() calls) and later to

go back and check the status of each I/O requested. See section 15.2, plus the aio reference pages for
more information on the AIO interface.

8.2 Atomic-write Data Logging

Atomic-write data logging (ADL) writes user data (in addition to the normally logged metadata) to the
log file so data is consistent in the event of a system crash. ADL guarantees that either the metadata and

 HP Confidential

Chapter 8: I/O Subsystem 112

the associated file data are written to disk, or neither is updated on disk. The I/O method that ADL uses
depends on whether your I/O has been set to asynchronous or synchronous.

8.2.1 Asynchronous ADL

Asynchronous ADL I/O is similar to asynchronous I/O except that the user data written to the buffer
cache is also written to the log file for each write request. This is done in 8k increments. The extra write
of the data to the log file ensures data consistency in the event of a crash, but it can degrade throughput
compared with using only asynchronous I/O. If atomic-write data logging is enabled while asynchronous
I/O is being used, the resulting I/O is asynchronous ADL.

If a crash occurs, the data is recovered from the log file when the fileset is remounted. As in asynchronous
I/O, all completed log transactions are replayed and incomplete transactions are backed out. Unlike
asynchronous I/O, however, the user's data has been written to the log, so both the metadata and the data
intended for the file can be restored. This guarantees that each 8k increment of a write is atomic. It is
either completely written to disk or is not written to disk at all.

Because only completed write requests are processed, obsolete and possibly sensitive data located where
the system was about to write at the time of the crash can never be accessed. Protecting such data is called
object safety. Out-of-order disk writes, which might cause inconsistencies in the event of a crash, can
never occur.

8.2.2 Synchronous ADL

Synchronous ADL is similar to asynchronous ADL except that the logged data is flushed from the buffer
cache to disk before the write request returns to the calling application. Throughput is likely to be
degraded compared with using asynchronous ADL, because the write does not return until after the log-
flushing I/O is complete. If ADL is enabled while synchronous I/O is being used, the resulting I/O is
synchronous ADL.

The benefit of synchronous ADL, compared with asynchronous ADL, is the guarantee of data consistency
when a crash occurs after a write call returns to the application. On reboot, the log file is replayed and the
user's entire write request is written to the appropriate user data file. In contrast, asynchronous ADL
guarantees the consistency of only 8K increments of data after the write call returns.

Two types of atomic-write data logging are available: persistent and temporary. Persistent data logging
remains in effect across mounts and unmounts. Temporary data logging is activated for the duration of the

mount. The logging status of a file can be checked using the chfile command with no options.

To turn persistent atomic-write data logging I/O on and off, use the fcntl() function or enter the

chfile command with the -L option:

chfile -L on <filename>

chfile -L off <filename>

If a file has a frag, persistent ADL cannot be activated. Conversely, if persistent ADL is activated on a
file, the file will not be fragged (see section 6.2.1 for more information on frags). Persistent ADL files

cannot be fragged because they have bfAccess->dataSafety = BFD_FTX_AGENT. This is the
value used by metadata files. The way data logging is implemented for user files is to make them look
like, and therefore be treated as, metadata files. Metadata files (BMT, RBMT, SBM, etc) are not fragged.
To activate data logging on a file that has a frag, either use temporary atomic-write data logging, or
disable frags by using the command:

 113 Chapter: 8 I/O Subsystem

chfsets –o nofrag <domain> <fileset>

Data logging incurs a performance cost because data as well as metadata is written to the transaction log.
This increases the amount of traffic to the log for that domain and doubles the I/O for each write
requested. Grouping files or filesets for which ADL is activated into certain domains can be used to
reduce the increased logging burden on other more performance-sensitive domains.

Files that use persistent ADL cannot be memory mapped or opened for direct I/O. In either case, an error
is returned. Temporary ADL files can be memory-mapped but cannot be opened for direct I/O.
Internally, when a temporary ADL file is mmapped, the temporary data logging is suspended until the last
thread using the mmapped file unmaps it. Although it would be complicated, there is no technical reason
why ADL (persistent or temporary) and direct I/O are mutually exclusive. However, ADL would greatly
reduce performance, which is a significant bonus gained by using direct I/O. Additionally, there is no
technical reason that persistent ADL must be mutually exclusive with memory mapping. These dual
functionalities were not implemented due to a tight schedule when ADL code was added to the code base.

8.3 I/O Queues

When a page in the buffer cache is dirty, AdvFS places it onto one of the I/O queues so that it can be
scheduled for I/O. The same thing happens when a read is requested. The following illustration shows the
movement of the synchronous and asynchronous I/O requests through the AdvFS I/O queues.

Figure 32: AdvFS I/O Queues

All reads are placed onto the blocking queue, while synchronous write requests are placed onto either the
blocking, ubcreq, or flush queues. A synchronous write request must be written to disk before it is
considered complete and the application can continue.

 HP Confidential

Chapter 8: I/O Subsystem 114

The blocking queue is used primarily for reads and for AdvFS-generated synchronous write requests (for
example. log flushes). The ubcreq queue caches synchronous write requests that come from the UBC.
These are required primarily to flush dirty pages to disk so that the memory pages can be freed. The flush
queue is used primarily for buffer write requests from applications, either through fsync(), sync(), or
synchronous writes. Because the buffers on the blocking queue are given slightly higher priority than
those on the ubcreq or flush queues, kernel requests are handled more expeditiously and are not blocked if
many buffers are waiting to be written to disk.

Processes that need to read or modify data in a buffer that is on the blocking, flush, or ubcreq queues must
wait for the data to be written to disk. This is in direct contrast to buffers on the lazy queues that can be
modified at any time until they are finally moved down to the device queue.

The lazy queue is a logical series of queues in which asynchronous write requests are cached. When an
asynchronous I/O request enters the lazy queue, it is assigned a time stamp. This time stamp is used to
periodically flush the buffers down toward the disk in numbers large enough to allow them to be
consolidated into larger I/Os. Processes can modify data in buffers at any time if they are on the lazy
queue, potentially avoiding additional I/Os. Scheduling the writing of buffers on the lazy queue is a trade-
off between writing the buffer as soon as the device is not busy and waiting as long as possible in
anticipation that the page will be repinned and an extra I/O will not be needed.

There are four subqueues that make up the logical lazy queue:

wait queue

Asynchronous I/O requests that are waiting for a write to the AdvFS transaction log to complete
enter the wait queue. Waiting maintains the write-ahead rule of the log, which ensures consistency
of file metadata. Only buffers for metadata files or files being written with atomic-write data
logging are put onto the wait queue. Buffers can be moved from this queue to the smoothsync
queue only after their associated log data has been flushed to disk. The flushing is detected during
I/O completion of a log page in bs_io_complete(), which sends a message of type CK_WAITQ to
the background I/O thread. This thread runs the check_cont_bits() routine that moves the buffers
that are now eligible to be written to either the smoothsync or the ready queue.

smoothsync queue

If smoothsync is enabled (see 8.10), buffers from the wait queue or buffers for user data are put
onto the smoothsync queue. Asynchronous I/O requests remain, by default, on the smoothsync
queue for at least 30 seconds. Because there are 16 subqueues in the smoothsync queue, most
buffers stay in each queue for approximately two seconds. Under normal conditions, the
smoothsync queue is where buffers spend the most time. Allowing requests to languish in the
smoothsync queue prevents I/O spikes, increases cache hit rates, and improves the consolidation of
requests. The addition and removal of buffers from the smoothsync queues are based on time
stamps in the buffer. These time stamps are, by default, set when the buffer is first dirtied; but this
behavior can be modified to reset the time stamp each time the buffer is modified by mounting the

fileset with the –o smsync2 attribute (see the mount reference page).

ready queue

After buffers have aged in the smoothsync queue or if smoothsync is disabled, they move to the
ready queue. Asynchronous I/O requests are sorted by logical block number (LBN) as they are
moved onto the ready queue, increasing the likelihood of consolidating the I/O for these buffers.

After the ready queue reaches a specified size (based on the AdvfsReadyQLim tunable
parameter), all buffers on the ready queue are moved onto the consol queue.

 115 Chapter: 8 I/O Subsystem

consol queue

The name consol queue appears to be a holdover from an older architecture where the buffers were
actually consolidated and then put onto this queue. This is no longer the case. The consol queue can
be thought of as a holding tank for the presorted buffers waiting to be written. If a device is busy,
the buffers can build up on the consol queue until they can be moved to the device for I/O. There is
no limit to the size that the consol queue can reach. In fact, this queue is needed primarily to
prevent the starvation of buffers representing pages with high LBNs. For example, if AdvFS sorted
the buffers by LBN directly onto the consol queue, and the algorithm that feeds the device from the
consol queue removes buffers from the head of the queue, it might be possible for the incoming rate
of buffers with low LBNs to exceed that of the rate of removal from the consol queue. This might
effectively cause buffers with higher LBNs to remain in the cache without being flushed for an
indeterminate amount of time.

All I/O consolidation (see Section 8.6) is done as the buffers are moved from the blocking, flush, ubcreq,
and consol queues onto the device queue. As buffers are moved onto the device queue, logically
contiguous I/Os from the incoming queues are consolidated into larger I/O requests to reduce the number
of I/Os that must be completed.

The algorithm that moves the buffers onto the device queue favors taking buffers from the blocking queue
over the ubcreq and flush queues, and all three are favored over the lazy queue. Device and driver
resources limit the number of buffers that can be placed onto the device queue. The algorithms that load
the device queue use feedback from the drivers to know when the device queue is full (see section 8.5).
At that point the device is saturated and continued movement of buffers to the device queue only degrades
throughput of the device. The capacity of the device queue and how full it is ultimately determine how
long it may take to complete a synchronous I/O operation.

Buffers on the device queue cannot be repinned or modified until their I/O has completed. For this reason,

there is a flag in the bsBuf structure called REMOVE_FROM_IOQ that is set in the buffer pin path

when it is known that this page is about to be pinned. The algorithm in bs_startio() explicitly avoids
moving buffers with this flag set from the consol queue onto the device queue to prevent the pinning
thread from having to wait until the I/O has completed.

While buffers are on any of the lazy queues, they can be repinned and removed from the I/O queues. This
makes it possible to get several updates into a page before it is flushed to disk, making the whole process
more efficient. For this reason, the algorithm that tries to move the buffers from the consol queue to the

device queue is not very aggressive unless it is passed a flag (IO_FLUSH) telling it that the lazy queues
need to be emptied.

In contrast, when a buffer is on the blocking, ubcreq, flush, or device queues, it cannot be repinned or
referenced until the I/O is complete. Pages on the lazy queues are not staged for I/O (that is, they are not
marked as busy and put onto the object’s clean list) until they are moved onto the device queue. All
buffers on the blocking, flush, ubcreq, and device queues are already staged for I/O.

Through Tru64 Unix Version 5.1A, there was one simple lock, vdIoLock, that was used to guard all the
I/O queues. This lock was one of the most contentious locks in AdvFS. As of Version 5.1B, we broke this

lock down into one simple lock per I/O queue. This lock is in the queue’s ioDescHdrT structure, which

also contains the links to the ioDescT structures on the queue, the queue length, the queue’s length

limit, and a field containing the cumulative number of elements placed onto this queue. The lenLimit
field is only utilized for the readyLazy and device queues; it is zero for all the others.

 HP Confidential

Chapter 8: I/O Subsystem 116

8.4 Starting I/Os

The bs_startio() routine is responsible for starting I/O. It fills the device queue from the four incoming
queues (blocking, flush, ubcreq, and consol queues) in a manner that maintains the priority of the
incoming queues. This means that the buffers on the blocking queue get highest priority; the ubcreq queue
is next highest, followed by the flush queue and the consol queue. This priority order is always
maintained.

The caller specifies the number of buffers taken from the consol queue by passing one of three values for
the flush flags:

• IO_FLUSH - the lazy queues should be completely drained

• IO_SOMEFLUSH - the lazy queue should be drained but not aggressively

• IO_NOFLUSH, - no buffers need be taken from the lazy queue

Regardless of the flush flags, bs_startio() must not overfill the device queue. There is a feedback
mechanism in the I/O completion routine that maintains the theoretical maximum number of buffers that
can be efficiently handled by the device. bs_startio() does not put more buffers onto the device queue
than this value allows. See section 8.5 for an explanation of how this queue length limit is maintained.

One of the variables used in bs_startio() is the vdT.qtodev variable. This defaults to 5 and is used to
determine the level of aggressiveness that is used when the IO_SOMEFLUSH flag is passed. The number

of buffers on the consol queue divided by 2qtodev yields the number of buffers to move from the consol

queue to the device queue. Therefore, a vdT.qtodev value of 5 yields a divisor of 32 that results in
moving approximately 3.125% (that is, 1/32) of the buffers on the consol queue to the device queue. This

value can be changed for a given device using the chvol –q command. The –q flag is hidden, so it

does not show up in the reference page for chvol. The default value is 5. If you have a reason to modify

this value, it is probably best to keep it in the range of 1 to 8.

For each I/O that is placed onto the device queue, the routine call_disk() is invoked to hand the I/O off to
the device driver. The call_disk() routine:

1. Allocates a struct buf and initializes it with the data needed by the driver to do the I/O.

2. Sets buf.b_flags to B_RAW and B_PHYS flags if this is a direct I/O call.

3. Sets buf.b_vp to NULL to avoid having biodone() change its vnode, then sets buf.b_iodone to

point to msfs_iodone() and buf.b_pagelist to the address of the ioDescT address.

4. Invokes the device’s strategy routine. As long as the device driver controls an I/O, its ioDescT
remains on the device queue. In most recent versions of the code (post-Version 5.1A), a time stamp

for when the I/O was started and the address of the struct buf that was handed to the device

driver are saved in each ioDescT. This is done to allow easier debugging of I/Os that appear to be
hung in the device driver code because it is possible to tell how long an I/O has been pending and

which struct buf the device driver is dealing with.

Also, while there are I/Os outstanding on a device, vdT.vdIoOut is greater than 0 and

vdT.active.state is ACTIVE_DISK.

 117 Chapter: 8 I/O Subsystem

8.5 Completing I/Os

I/O completion is done in several steps.

1. The disk driver calls biodone(), passing the struct buf for the I/O being completed. Because

buf.b_vp was set to NULL (see Section 8.4), biodone() only calls the routine in buf.b_iodone,

which has been set to msfs_iodone(). This routine links the struct buf onto the processor's

structure at pr->MsfsIodoneBuf and schedules a lightweight context event for this processor.

2. The lightweight context thread calls msfs_async_iodone_lwc(), which walks through all the buffers

chained onto pr->MsfsIodoneBuf and passes each in turn to bs_osf_complete(). This is the
routine that, from the AdvFS perspective, is responsible for completion of all actual I/Os. No sleeping

or complex locks are allowed. The struct buf that was originally handed off to the device driver

is passed back to this routine. The ioDescT is extracted from buf.b_pagelist, and the

struct buf is freed.

3. If the I/O was consolidated, the list of buffers is pulled apart and any waiting threads are awakened. If

there are multiple I/Os scheduled to be completed for a given bsBuf, then the waiting threads are not

awakened until the last I/O has actually completed (bsBuf.ioCount == 0).

4. If the device queue is less than half full, which is determined by comparing the queue’s length to

its lenLimit, a message is sent to the background I/O thread so that it can try to start more I/Os on

this device. This mechanism keeps the queued I/Os moving onto the device as resources allow.

The I/O completion routine is also responsible for performance sampling and maintaining the length limit
for the device queue. Prior to Version 5.1 this was set with a system-wide configurable variable

AdvfsMaxDevQLen. This variable was not sufficient because there can be devices with different
capabilities on the system, and a single value might not be appropriate for all of them. For Version 5.1

and later, the length limit (vdT.devQ.lenLimit) is maintained internally for each device and is not

configurable.

There are two algorithms for maintaining lenLimit in bs_osf_complete(). Both are responsible for

setting the vdT.devQ.lenLimit field, which contains the length limit, in buffers, for the device

queue.

1. The preferred algorithm uses feedback from the device driver. This algorithm can adjust the
length limit either up or down. When an I/O is started, AdvFS places the current length of the

device queue in buf.b_iostats.devqlen. When the I/O completes, the device driver

places an active time and a pending time in the other buf.b_iostats fields. The total time

required to service the I/O is the sum of the active and pending times.

From the AdvFS perspective, pending time is wasted time. If possible, AdvFS would like to have
most I/Os complete with the active time as close to the total time as possible. This seems to be the
best way to maximize throughput to the device over time. So, on I/O completion, if the pending
time is less than 1.3% of the total time, AdvFS increases the value of the

vdT.devQ.lenLimit by the number of buffers declared in the global variable

Advfs_biostats_devq_delta. This means that more buffers are outstanding on the device

at one time. If pending time exceeds 25% of the total time, then AdvFS decreases the value of

vdT.devQ.lenLimit. Because the need to scale back the number of buffers is usually more

immediate than the need to increase it, this algorithm decreases the length limit at a rate three

times faster than it is increased (3 * Advfs_biostats_devq_delta).

 HP Confidential

Chapter 8: I/O Subsystem 118

2. The second algorithm sets the length limit if the device driver does not provide the feedback.
LSM and third-party drivers are examples of drivers that do not provide feedback. This algorithm
currently (Version 5.1B) scales the length limit up but not down. It records the number of buffers
having I/O completed in a 16 second sampling period and calculates the average number of
buffers processed per unit time throughout the sampling period. If the number of buffers that can

be processed in n seconds is greater than the current value of vdT.devQ.lenLimit, the length

limit is set to this new value. The n seconds accrual value is set by the sysconfig variable

io_throttle_shift.

Changing io_throttle_shift sets the value in the internal variable bio_time_shift

(-4 < bio_time_shift < 4). The following table shows the relationship between the

values for io_throttle_shift and the statistical maximum time that an I/O spends on the

device queue (accrual time).

io_throttle_shift Accrual Time (secs)

-3 0.1253

-2 0.25

-1 0.5

0 1

1 (default) 2

2 4

3 8

The length of the sampling period is not configurable, but it can be modified with a debugger.

The internal variable bio_sample_shift determines the sampling period. By default this has

a value of 4, which gives a sampling period of 16 seconds. (hz is left-shifted by this value, so this

gives the number of cycles per second * 24 or 16.) Use the following table to set the desired
value.

bio_sample_shift Sampling period (secs)

5 32

4 16

3 8

2 4

1 2

0 1

 119 Chapter: 8 I/O Subsystem

AdvFS has a background I/O thread, bs_io_thread(). Prior to Version V5.1B, there was one I/O thread
per system. As of Version 5.1B, there is one I/O thread per RAD. Not all I/Os are started by this I/O
thread. Rather, it is present to maintain a consistent amount of activity on the device when the other
threads are not keeping the device busy. The I/O thread is activated by messages from other threads,
typically during an I/O completion. Because a volume may be removed from the domain before the I/O
thread handles the message, the thread checks that a device is still valid before attempting to start more
I/Os on it.

8.6 I/O Consolidation

I/O consolidation refers to the collection of individual I/O requests accessing contiguous space on the disk
which can be combined into a single read or write to be handled by the device driver. This is an
optimization that allows better throughput to the disk. I/Os are consolidated only to the point that the

resulting transfer does not exceed the disk’s preferred_transfer_size.

I/Os are not consolidated if they represent raw or direct I/O transfer requests. This is because the driver
uses Direct Memory Access (DMA) to transfer the data directly from user space to the disk. Because the
virtual memory addresses in user space can be mapped differently for different users, AdvFS cannot use
the same mapping for I/Os started from different threads.

I/O consolidation is done in consecutive_list_io() when I/O is started and the buffers are moved onto the
device queue (see section 8.4). To help maximize the possibility that I/Os can be consolidated, buffers are
kept in ascending order by Logical Block Number (LBN) on the readyLazy and consol queues. The
buffers are sorted as they are placed onto the readyLazy queue. This makes it easy to detect if two of the
I/Os refer to contiguous blocks on the disk. There is no equivalent sorting of I/O requests on the blocking,
UBC request, or flush queues.

Consolidation depends on special mapping routines, bp_map_alloc() and list_map(), provided by the
Virtual Memory subsystem. These routines allow AdvFS to map the individual memory buffers for each

of the individual I/O requests into a single virtual memory location. The resulting ioDesc structure is
then passed to the device driver. Upon I/O completion (in bs_osf_complete()), the consolidated I/O

structure must be examined, and each of the individual ioDesc structures are passed to bs_io_complete()

if this represents the final I/O for this buffer.

8.7 Error Handling and I/O Retries

Errors may be returned from the device drivers to AdvFS through the buf.b_flags and buf.b_eei

fields. If there is an error, B_ERROR is set in buf.b_flags and buf.b_eei contains a detailed error
code. AdvFS will retry the I/O if the error is caused by temporary conditions at the device. This is done
by bs_osf_complete() detecting an error that can be retried and sending a message of type RETRY_IO to

the background I/O thread along with the struct buf from the original I/O. The background I/O

thread again queues this buf onto the device queue after incrementing the retry statistics counters in the

ioDescT and vdT structures. Retrying I/Os is disabled by default, but setting the sysconfig variable

AdvfsIORetryControl to the maximum number of times that each I/O should be retried can enable

it.

8.8 Relationship with UBC and Buffer Caching

When a file’s page is in the buffer cache, AdvFS maintains a bsBuf structure that defines the attributes

that are needed to maintain the page. There is a pointer to the bsBuf in the vm_page.pg_opfs field.

In the bsBuf, there is a substructure called the ioDescT. This is the actual structure that is placed on
the I/O queues and is responsible for mapping the buffer to the storage device.

 HP Confidential

Chapter 8: I/O Subsystem 120

Normally there is one ioDescT per bsBuf, but there are two exceptions:

1. When a file is being migrated and a page is in the buffer cache, there is a period of time during

which the page has two ioDescT structures, one mapping the page to the location on the old

volume and one mapping the page to the new volume. When I/O is started on this page, its I/O is
not considered to be complete until the page has been written to both locations.

2. If direct I/O is enabled (see Section 8.12) and a direct I/O request exceeds the volume’s

maximum transfer size (vdT.max_iosize_wr), then the request is divided into a series of

I/Os that do not exceed the maximum transfer size. This is done using a series of ioDescT

structs associated with the bsBuf. For example, if a 4M direct I/O write is requested on a device

with a 1M maximum transfer size, the blkmap_direct() routine builds four separate ioDescT

structs and links them to the bsBuf. bs_pinpg_direct() adjusts the target addresses from the

user’s buffer so that each covers one quarter of the span in the original request. The

bsBuf.ioCount is set to 4 to indicate that there are 4 I/Os that make up the transfer of this

data. During I/O completion, bs_osf_complete() is called for these four I/Os. Each is handled

normally, except that bs_io_complete() is not called until the last I/O for the bsBuf has

completed (bp->ioCount == 0). Only then does bs_io_complete() get called, which wakes
any threads waiting for this I/O to complete.

For cached I/O, each bsBuf represents a UBC page. The UBC page is held (the vm_page.pg_hold
variable is greater than zero) from the time the page is pinned until it is unpinned. Holding a vm page
prevents it from being removed from the cache. Staging an AdvFS page for I/O involves moving the UBC
page from the dirty to the clean list, clearing the dirty flag, and setting the busy flag. This is done in
AdvFS by calling the routine advfs_page_busy(). Buffers on the lazy queues are never staged for I/O, but
buffers on the blocking, ubcreq, flush, and device queues are always staged for I/O. Buffers on the lazy
queues are staged for I/O when they are moved onto the device queue.

From the AdvFS perspective, buffers cannot be repinned while they are staged for I/O. This may cause
interthread interactions if one thread causes many buffers to be placed on the flush queue and another
thread is trying to modify the data in those pages. In this case, the second thread will be forced to wait
until the I/Os have been completed for the pages attempting to be modified. For more information on the
UBC, see Chapter 7.

8.9 Smoothsync

Smoothsync is a mechanism whereby the dirty buffers are drained to disk at a constant, time-based rate.

This is in contrast to the older mechanism where the update daemon caused all dirty buffers to be

flushed to disk every 30 seconds, even though some of those buffers had been dirty for 30 seconds and
some for only 1 second. Smoothsync works by assigning a time stamp to a buffer when it is dirtied, then
moving the buffer to one of 16 smoothsync buckets. Which bucket the buffer is moved to depends on the

current time and the value of the smsync_age variable. The default smsync_age of 30 seconds
means that a dirty buffer is eligible to be flushed after it has been dirty for 30 seconds. Therefore, with
this value, all buffers dirtied in any two-second interval are linked onto one smoothsync bucket. Buffers
dirtied in the next two-second interval are placed onto the next bucket, and so on. (The mount command

with the –o smsync2 option modifies this behavior (see Section 8.9.1.)

The smoothsync thread is responsible for removing the buffers from each bucket in a timely fashion. This
wakes at one-second intervals and scans through all the mounted filesets. It calls VFS_SMOOTHSYNC()
for each fileset, so the msfs_smoothsync() routine gets called for each AdvFS mounted fileset.

 121 Chapter: 8 I/O Subsystem

For each pass through all the mounted filesets, smoothsync_thread() passes a constant value for the bit at

the SMSYNC_LATCH position in the smsync_flag parameter. This allows each filesystem to

distinguish between successive passes through all the mounted filesets. The static variable latch in
msfs_smoothsync() is used to track when smoothsync passes change. For example, if / and /usr are
AdvFS-mounted filesets, on the first smoothsync pass, the value 0 is passed to msfs_smoothsync() for
both the / and /usr filesets. On the next two calls to msfs_smoothsync() for / and /usr, the value
SMSYNC_LATCH is passed. After that, the value for SMSYNC_LATCH bit alternates between 0 and 1
on successive passes. This provides a mechanism for the underlying filesystem to detect a new run on a
set of mounted filesystems, since the value changes on each run. For instance, if there are ten AdvFS
filesets mounted, msfs_smoothsync() will be called ten times during a single pass of the smoothsync
thread through all of the mounted filesets on the system. AdvFS has a frequency counter that is
maintained in msfs_smoothsync() and is updated only once per pass through all the filesets, so it uses the
change of the SMSYNC_LATCH value to detect when this variable needs to be updated.

The smoothsync_thread() passes the current value of smsync_age to msfs_smoothsync() in the

sync_age parameter. This enables msfs_smoothsync() to know that this is a typical call on behalf of the

smoothsync thread. Occasionally, msfs_smoothsync() must do some special processing, which is called
‘coarse granularity processing’. This processing includes flushing the log, flushing memory-mapped
pages, and updating the last modified time for the disk. Coarse granularity processing may be requested

by the sync() system call by passing a sync_age value of 0 to msfs_smoothsync(), or by the
smoothsync thread when it passes a SMSYNC_PERIOD flag. In each case, msfs_smoothsync() will do
the requested coarse granularity processing. By default, this coarse-granularity processing occurs every
30 seconds.

Even though msfs_smoothsync() is called every second, it might not run each time it is called. For

example, because there are 16 smoothsync buckets, a smsync_age value of 30 means that a bucket

needs to be flushed every other second to have them all flushed in 30 seconds. For a smsync_age of 60,

a bucket needs to be flushed every 4 seconds. For a smsync_age of value of 15, a bucket must be

flushed on each call. msfs_smoothsync() keeps a variable called freq_cntr to determine whether or not

smoothsync flushing is required on this call. If this is a non-smoothed call (sync_age was passed as 0),
the flushing must be done on this call.

The following table shows the relationship between values for three variables maintained in
msfs_smoothsync().

 HP Confidential

Chapter 8: I/O Subsystem 122

smsync_age (seconds) smsync_period smsync_step

5 1 5

10 1 10

15 1 15

20 2 10

30 2 15

35 3 11

40 3 13

50 4 12

60 4 15

smsync_period is the interval between AdvFS smoothsync runs. This is calculated based on the

number of smoothsync buckets (16) and how long the smsync_age gives to get them all flushed. For a

smsync_age of 30, smsync_period is 2 because all 16 buckets can be flushed in 30 seconds, if a

bucket is flushed every two seconds. If smsync_age is 10, the smsync_period becomes 1 (second),

and msfs_smoothsync() runs and flushes at least one bucket at each call, which happens at one second
intervals.

smsync_step is a variable that is used to determine which smoothsync queue is appropriate for adding

buffers with a given timestamp. It is calculated as (smsync_age/smsync_period), and is

recalculated whenever smsync_age changes. This value is to decide which of the smoothsync queues

to insert a buffer onto using the formula:

((timestamp / smsync_period) + smsync_step) % 16

This generates a bucket index (from 0 to 15) that is the appropriate smoothsync queue onto which a dirty
buffer will be inserted when it is unpinned.

The smoothsync_age attribute is enabled when the system boots to multi-user mode and disabled

when the system changes from multi-user mode to single-user mode. To change the value of the

smoothsync_age attribute, edit the following lines in the /etc/inittab file:

smsync:23:wait:/sbin/sysconfig -r vfs smoothsync_age=30 > /dev/null 2>&1

smsyncS:Ss:wait:/sbin/sysconfig -r vfs smoothsync_age=0 > /dev/null 2>&1

The value of smsync_age can be modified with dbx or sysconfig. Change the sysconfig value for

smoothsync_age (see 8.11) to modify the internal smsync_age variable. If smoothsync_age is

set to 0, smoothsync is disabled and dirty page flushing is controlled by the update daemon at 30-

second intervals.

To get the current smoothsync_age value, enter:

 sysconfig –q vfs | grep smoothsync_age

 123 Chapter: 8 I/O Subsystem

To reset the value, enter:

 sysconfig –r vfs smoothsync_age=15

smoothsync_age has a limit of 60 seconds if you are using sysconfig. If you want it to be greater, use

dbx.

8.9.1 Modifying smoothsync Behavior (-o smsync2)

The mount option, -o smsync2, modifies the way smoothsync works for a fileset (and domain).

When this option is enabled, the timestamp on each buffer is reset every time the buffer is modified. By
default, the timestamp is set only the first time the buffer is modified. The buffer remains on the

smoothsync queues until the value of (timestamp + smoothsync_age) has expired. Then it may

be moved down the I/O queues and scheduled for I/O. Therefore, enabling the smsync2 option tends to
flush idle buffers, while active buffers tend to remain on the smoothsync queues indefinitely. Be aware
that keeping the buffers on the smoothsync queues indefinitely prevents the typical flushing of the file
buffers every few seconds but may give better performance for an application that constantly refers to the
same set of file pages.

If you enable the smsync2 option on a mount point in a domain, the alternate smooth sync policy goes

into effect for all the filesets in the domain. It remains in effect until all of the filesets in that domain are
unmounted.

8.10 Load balancing

If a domain has more than one storage device, load balancing ensures that a specific device does not
become a bottleneck while another is underutilized. You can choose to spread the files out over the

existing resources dynamically with the vfast utility (see section 13.6) or by changing system

parameters.

AdvFS has several utilities that monitor volume activity in a domain. The advstat –v [1 – 3]

command examines the volume statistics. The more generic iostat utility can be used to compare I/O

rates between specific devices. To determine if there are specific hot files that are responsible for a load

imbalance, use the vfast utility: vfast –l hotfiles <domain> to print a report of the most

actively paging files and the volumes on which they reside. If a given file is known to be responsible for a
serious load imbalance, that file can be migrated to a volume that has less I/O traffic.

8.11 Tuning the I/O Subsystem

The smoothsync_age VFS attribute specifies the amount of time, in seconds, that a modified page

ages before becoming eligible for the smoothsync mechanism to flush it to disk. This value defaults to 30

seconds, but can be set from 0 to 60 seconds. Setting smoothsync_age to 0 sends data to the ready
queue every 30 seconds, regardless of how long the data has been cached. Increasing the value increases
the chance of lost data if the system crashes, but can decrease net I/O load (improve performance) by
allowing the dirty pages to remain cached longer. This value is applied to all devices on the system. See
section 8.9 for more information on smoothsync.

The AdvfsReadyQLim AdvFS attribute specifies the size limit of the ready queue. This defaults to 16k

blocks (1024 pages) and can be set from 0 to 32k blocks. As long as smoothsync is enabled, there is no
reason to change this attribute. If smoothsync is disabled, then increasing this value increases the
likelihood of I/O consolidation, but it also increases the overhead needed to sort the buffers onto the ready

queue. AdvfsReadyQLim is a global variable and affects all volumes on the system. The variable can

 HP Confidential

Chapter 8: I/O Subsystem 124

be overridden on a per-volume basis using the chvol –t command. This command allows the user to

specify the maximum size of the ready queue for a given device. To allow for optimal I/O consolidation,
try to keep the ready queue limit larger than the device’s preferred transfer size.

The device’s preferred I/O transfer size may be overridden using the chvol –r or chvol –w
command. Making this value smaller causes AdvFS to issue I/O requests to that device in smaller chunks,
breaking large read/write requests down into a series of smaller requests. This may add overhead to
handle all the I/O requests. Making this value larger causes AdvFS to issue larger transfers when possible.
If the device can handle the larger transfers efficiently, then this is likely to improve throughput.
However, making this value too large can cause the device to handle the transfers inefficiently.

8.12 Direct I/O

Direct I/O is a method of I/O that allows applications to read and write data directly from disk into their
application buffers by bypassing the file system's buffer cache. This can be thought of as a replacement
for the use of raw partitions that retains ease of administration (file naming, copy, backup, etc). The
ultimate purpose of direct I/O is to improve the performance for applications that do not depend on the
filesystem’s caching of file pages. Such applications do not access the same block frequently and usually
perform large I/O writes.

There is more information on the use of direct I/O from the application perspective in Section 4.6.2 where

the O_DIRECT I/O open() parameter is discussed.

AdvFS uses the following internal rules for direct I/O:

1. Changing the file-open mode MUST be done with the file_lock seized. This holds for setting

direct I/O, data logging, mmapping, and caching (the file_lock is discussed in section
8.12.1).

2. Once an I/O of a given type has been started (direct I/O, cached, mmapped), modifying the file’s
open mode must not interfere with that I/O’s completion.

3. On read or write, once the open mode has been determined to be direct I/O, the file_lock may

NOT be released until the active range structure covering that I/O is on the file’s active range list
(active ranges are discussed in section 8.12.2).

4. Simultaneous I/O within the same active range by direct I/O and migrate is not allowed and is
prevented. Successive threads will sleep waiting for an overlapping active range to be released by
the thread actively doing I/O. The completion of the last I/O to any active range awakens any
threads waiting for the range to be completed. In the future, we may, if possible, relax this
restriction with respect to simultaneous direct I/O readers in the same range, but specifically
block threads doing writes, migrates, truncates, or page invalidation in the same range.

8.12.1 Use of the file lock

The file_lock in the AdvFS context structure is typically used to synchronize threads that are
concurrently manipulating the same file. One example is the use of the file lock to coordinate threads that

have the file opened for O_APPEND mode. In this case, the lock guards the bfAccessT.filesize
field, and this field is used to determine which file offset each thread uses to append its data.

The direct I/O read and write paths explicitly drop the file_lock to allow multiple threads to read and

write data to the same file concurrently. This is very useful to databases, which have many threads

 125 Chapter: 8 I/O Subsystem

concurrently manipulating different regions of the same database file. Because the file lock has been
dropped, active ranges are used to synchronize I/O with finer granularity.

8.12.2 Use of active ranges

To synchronize threads that run concurrently on different parts of the same file, AdvFS uses active
ranges. These ranges cover file blocks (not pages) and are mutually exclusive, meaning that there cannot
be two active ranges on a file that overlap. Typically a thread sets an active range while the file lock is
held and then drops the file lock. Paths that currently use active ranges for synchronization are

• direct I/O reads and writes

• truncate

• migration

• CFS calls to msfs_flush_and_invalidate().

The active ranges are used in migration to prevent migration code from bringing a page into the buffer
cache at the same time a direct I/O write is trying to remove it from the cache. The truncate path also
takes an active range from the truncation point to infinity to keep any direct I/O threads out of that region
until the truncation has completed. The CFS calls to msfs_flush_and_invalidate() use the range lock to
synchronize with any migrate that is running on the server.

There is a special case active range that is used when a file is opened for direct I/O and for O_APPEND.
In this case, an active range is seized from the current end-of-file to infinity to prevent another
O_APPEND thread or a truncate thread from concurrently modifying the end-of-file while the original
append is in progress. This serializes these threads so be aware that opening files for O_APPEND and
O_DIRECTIO concurrently does not give optimal throughput or scalability.

The active range algorithms cause a thread that is attempting to take out a range that overlaps an existing
range to sleep until non-overlapping ranges are available. There is also a fairness aspect to the algorithm
that prevents threads taking out small ranges from starving out a thread that is waiting for a large range.

8.12.3 Interaction with cached pages

By definition, direct I/O bypasses the buffer cache. This means that

• direct I/O does not perform any prefetch or read-ahead operations to prime the cache.

• Any data already in cached pages must be handled to avoid data corruption. How this is handled
is described below.

It is tempting to think that AdvFS can eliminate the overhead of the direct I/O code that handles a page
already in the buffer cache by merely flushing and invalidating all cached pages when the file is initially
opened for direct I/O. However, this cannot be done so long as AdvFS allows files that are opened for
direct I/O to be migrated. File migration occurs by bringing the pages of a file into the cache, and then
writing them out to the newly mapped locations. The pages that remain in the cache following migration
must be handled by any subsequent direct I/O read or write.

What happens to pages that are already in the cache when a direct I/O request is made?

• During a direct I/O read, if a page is in the cache, AdvFS returns the data to the user from the
cache, and there is no invalidation of the page (the page remains in the UBC). This makes the
read faster because there is no need for a disk access.

 HP Confidential

Chapter 8: I/O Subsystem 126

• When there is a write to a page that is in the cache, AdvFS must avoid losing or corrupting the
data that is in the cached page. If the cached page is going to be completely overwritten by the
new data, it is merely invalidated (removed from the cache) and then the write to underlying
storage is done with direct I/O. If the page is being partially overwritten, the application data is
merged into the cached page, the page is flushed to disk, and then the page is invalidated
(removed from the UBC).

There are several code paths that can bring pages into the cache for a file opened for direct I/O:

• When an application is extending a file or adding storage in a hole, the storage is first allocated at
the top of fs_write(). The storage-allocation routines call fs_zero_fill_pages() that does special
processing for pages that are to be partially overwritten on this write request. Any 8K page that is
not completely overwritten must be zeroed and have the new data merged with the page before
being flushed to disk. This happens at the beginning or end of a range to be written. Therefore,
for partial writes, direct I/O takes advantage of the fact that fs_zero_fill_pages(),pins the
underlying page (dragging it into the UBC), zeroes it, and then unpins that page lazily. This
newly zeroed page is then repinned in fs_write_direct(), the new data is merged, the page is
flushed to disk, and then the page is invalidated. Testing has shown that using temporary UBC
caching yields a 30 to 40% performance gain during file extension, as compared to maintaining
special-case code.

• The truncation code in fs_setattr() may cache a page for a file opened for direct I/O. If a
truncation causes the end-of-file to fall in the middle of an underlying page, that page is pinned,
the bytes beyond the new end-of-file are zeroed, and the page is unpinned. If this page is in a
hole, the pin code causes a page marked UNMAPPED to be left in the cache. Trying to reference
this page results in the E_PAGE_NOT_MAPPED error, which needs to be handled correctly by
the routines that could be referencing or pinning the page.

• A file opened for direct I/O can have pages brought into the cache by the copy-on-write (COW)
code, which is done in bs_cow_pg(). When a file with a cloned fileset is modified, the old data
must be copied to the clone before the modification can be performed. This routine references the
original page (bringing it into the cache), pins the analogous page in the cloned file, and copies
the data from the original to the clone. This is done prior to modifying the original file’s data.
Once this is done, the direct I/O code detects that the page is in the UBC cache and invalidates it
prior to writing the data to disk. All this is done atomically (to outside readers and writers) under
protection of a range lock. So that all COW’d pages are invalidated, the COW-ahead code in
bs_cow_page() is inhibited, and only one page is COW’d at a time if the original file is opened
for direct I/O. This assures that only pages protected by the current range lock can be brought into
the UBC during the COW operation.

In the direct I/O write path there is considerable code devoted to serializing threads that have separate
active ranges that all lie on the same underlying 8k page. These threads race with each other to flush the
data to disk and invalidate the page. If not correctly serialized, one thread will be trying to invalidate the
page while the others are trying to reference or pin the page. Contention is handled by marking the

bsBuf as DIO_REMOVING by the first thread that discovers that this page is dirty and needs to be

flushed and removed from the cache. Any subsequent threads, on checking to see if this page is cached,
see this flag, sleep until the page has been flushed to disk, and then return to the caller with a status
reflecting the fact that the page is not in the cache. Ideally, the DIO_REMOVING would not be removed
until after the page has been invalidated, but this is not possible because of UBC-AdvFS interactions in

handling bsBuf and UBC page structures. This means that there is a period after the page is flushed to

disk (clearing DIO_REMOVING on I/O completion) and before the page is actually invalidated during
which this page can be found in the UBC cache. Threads that look up and find this now clean page in the

 127 Chapter: 8 I/O Subsystem

UBC attempt to invalidate the page. This means that direct I/O writers to a clean page in the UBC all race
to invalidate the page. This race is somewhat inefficient, but it is benign. It only happens the first time a
dirty page is found in the cache by direct I/O threads all writing to the same page, so this is a fairly
uncommon code path.

When the direct I/O code calls ubc_lookup() to see if a page is already in the cache, it passes the
B_READ flag. This is done so that the UBC code does not mark the page dirty if it is found in the cache.
This also allows ubc_lookup() to pass back the B_DIRTY flag if the page in the cache is already dirty.
The direct I/O write path must flush this page before invalidating it if it is already dirty. Otherwise, it can
just invalidate a clean page.

8.12.4 Block alignment

The direct I/O code needs to know the underlying block size (sector size) of the disk being written or
read. This is because AdvFS MUST present data to the driver in buffers that are an exact multiple of the
block size because it will use Direct Memory Access (DMA) to transfer this data directly to disk. Because
the user can request a data transfer of any size, if the request is neither aligned on a block boundary, nor
an even multiple of the block size, then AdvFS must adjust for this.

If the application presents data that is correctly aligned and sized, the underlying storage is already
allocated, and there is no cached page, AdvFS can execute a minimal code path to do the I/O. Basically,

this means that AdvFS wires down the user’s buffer pages, builds a bsBuf that maps the user’s buffer to

the underlying storage, and puts the bsBuf onto the AdvFS blocking queue. From there, the I/O

subsystem hands the pages off to the device driver to do the transfer.

If the data is not aligned or correctly sized, AdvFS must deal with partial block sizes on the read, and
partial page sizes on the writes. If a read doesn't begin on a disk sector boundary, a disk read of the entire
disk sector is performed using a temporary buffer. The requested data is then copied to the user's buffer.
An aligned transfer needs no intermediate buffer allocation or data copy. Similarly, any transfer of less
than a full sector in length also requires an intermediate copy to a temporary buffer. This is because some
drivers, including LSM, do not handle less than full sector-sized transfers.

Unaligned writes are slightly more complicated than unaligned reads; writes that need to allocate
underlying file storage also fall into this category. (Requests that are aligned and already have file storage
fall into the minimal code path discussed above.) A direct I/O write can require up to three steps.

1. If the I/O has an unaligned write in the first page, an 8K page is malloc’d, read in from disk,
merged with the application data, and written synchronously to disk. Any error is returned to the
caller.

2. If the end of the transfer does not end on a page boundary, the same set of steps is followed
(malloc, read, merge, write).

3. The unaligned portions are now accounted for, and the rest of the transfer will be aligned on the
underlying sectors. Therefore, AdvFS can simply hand the write for the remaining pages to the
disk driver.

8.12.5 Interaction with file fragments (frags)

If a file has a frag (see 6.2) and AdvFS detects that a write will be done to the fragged region, the fragged
page is brought into the file’s normal extent map prior to the data transfer. AdvFS never does direct I/O to
pages in the frag file.

 HP Confidential

Chapter 8: I/O Subsystem 128

When reading a fragged file with direct I/O, there is no attempt to bring the frag into the file’s normal
extent map. The code in fs_read() requests that all pages prior to the frag be read with fs_read_direct().
When only the frag data remains to be read, fs_read() calls uiomove_frag() to transfer the data from the
frag page (still in the frag file) to the user’s buffer.

8.12.6 Transfer size considerations

There is no explicit limit on the size of a direct I/O transfer, but moderation is the best guideline. A lot of
small transfers take longer than a few larger ones. For example, writing a 100M file in 1M increments is
generally faster than writing the same file in 1K increments. However, making the application’s I/O
buffer too large can start to slow things down. For example, writing the 100M file in a single 100M
transfer may not produce the best results for two reasons:

1. The pages in the application’s I/O buffer must be wired before the DMA transfer can take place.
Wiring 100M of pages on a small-memory system may constrain the memory resources available
to concurrently running threads. In addition, although an application can malloc and write data to
a 1Gb virtual memory space, wiring all those pages on a system with only 512M of physical
memory does not give good results and may even hang that thread.

2. The write may have to be broken down into a series of transfers that can be managed by the disk
driver. Although large transfers can be requested, AdvFS breaks the request into a series of

smaller transfers if it exceeds the underlying disk’s maximum_transfer_size. This is

transparent to the application. To determine a disk’s maximum transfer size, use the chvol –l

<volume> <domain> command and observe the values displayed after “max =”. This value
is expressed in 512-byte blocks, so multiply by 512 to get the transfer size in bytes. Note that

direct I/O scales to the device’s maximum value, not the value that is resettable with chvol –r

or chvol –w. Currently there is no way to override this transfer size value.

For example, if a volume has a maximum transfer size of 1M, and a file on that disk is written
using direct I/O in 4M requests, each request is broken down into a series of four 1M transfers to

the disk. This is accomplished by allocating four ioDescT structures for the one bsBuf that
describes the application’s data buffer.

8.12.7 Mitigating the synchronous nature of direct I/O

Direct I/O transfers are, by default, handled synchronously (see 8.1), meaning that the write() call does
not return until the data is on disk. This differs from cached calls that guarantee only that the data has
been written to the filesystem’s buffer cache, not to disk. Because this synchronous behavior can cause
performance problems, the application has the option of using the slightly more complicated
Asynchronous I/O (AIO) Interface. This allows the application to queue up a series of I/Os and to check
their status at a later time. The AIO package is a software layer between the application and the kernel
that allows the application to deal with synchronous I/Os in an asynchronous fashion.

Because of this asynchronous behavior, AdvFS must make several changes when the call has been made
through the AIO interface. The steps are as follows:

1. The code detects that it has been called through AIO because the value in

uio->uio_rw is UIO_ AIORW instead of UIO_WRITE.

2. The vnode.v_numoutput field must be decremented after I/O has completed if this was an

aio_write() request.

3. The AIO I/O completion routine must be called by the AdvFS I/O completion code.

 129 Chapter: 8 I/O Subsystem

4. The active range that covered the blocks being written is removed. This is typically done in
bs_osf_complete() as the I/O is completed, but there is similar code in fs_write_direct() if an
asynchronous I/O has not been started or an error path is taken.

Active ranges are more effective than simple and complex locks for controlling file ranges. The kernel
cannot return to the user with locks held, but when AIO is involved, AdvFS must return to the user with
some kind of locking on the file range while the I/O completes. The active range serves this purpose well
because it is not a formal lock and can be released by the I/O completion code.

See Section 14.2 for more information on the AIO interface, and some considerations when modifying
code in this path.

8.12.8 I/O consolidation

AdvFS does not consolidate any I/Os associated with direct I/O. This is because the driver is going to use
Direct Memory Access (DMA) to transfer the data directly from user space to the disk. Because the
virtual memory addresses in user space can be mapped differently for different users, AdvFS cannot use
the same mapping for I/Os started from different threads.

 131 Chapter 9: Transaction Management

9 Transaction Management

AdvFS uses transactions to guarantee the integrity of metadata on disk. For performance reasons, AdvFS
does not attempt to guarantee the integrity of all user data. However, at the user’s request, the filesystem
is able to log all user and metadata (see Section 8.2).

Data integrity in AdvFS is provided through three cooperative subsystems: the transaction manager, the
logging subsystem, and the buffer cache.

One of the requirements of the AdvFS filesystem is that the overhead associated with the transaction
manager be kept to a minimum. For this reason, the transaction manager is referred to as the flyweight
transaction manager. The term flyweight transaction is often abbreviated as FTX. (Since there is only
one transaction manager in AdvFS, the term ‘flyweight’ will be omitted throughout the rest of this chapter
for brevity). The transaction manager employs ideas from database theory to provide transaction
primitives that are used to make non-atomic operations on the filesystem occur in a way that will be
atomic (all-or-nothing). The transaction log is used to store transaction records that can be used to either
redo or undo any operations under transaction control. A single transaction log exists per domain, and is
accessed through the logging subsystem. The logging subsystem (also called the logger) provides a set
of primitives that can be used to write to and read from a log file. The buffer cache (see Chapter 7)
interacts with the logger primarily via the write-ahead log rule, which will be discussed shortly. The
transaction manager, the buffer cache, and the logger collaborate to ensure that basic transaction rules are
maintained. These rules will be discussed next.

9.1 Transaction Basics
A transaction is a collection of operations that perform a single logical function. In the context of
AdvFS, the logical operation may be the addition of storage to a file, while the collection of operations
might include allocating a new mcell for the file and updating several pages of the SBM.

A transaction is a key concept that allows a sequence of primitive storage updates to be linked together
into a single all-or-nothing atomic action. Transactions are necessary to reliably update persistent storage
structures of any significant complexity with high performance, yet still be assured of the ability to
completely recover from system and media failures.

AdvFS’s transaction manager maintains transaction state in a hierarchical scheme. The first transaction
begun for a set of related operations that must be completed atomically is known as the root transaction.
All transactions that comprise smaller units of work within that transaction are called subtransactions.
A more in-depth discussion of root transactions and subtransactions occurs later in this chapter.

9.1.1 Generic rules to maintain data consistency

In order to guarantee that the logical function being performed maintains consistency in the system, each
transaction must follow the ACID properties. These are generic transaction rules, and are not limited to
the AdvFS transaction manager implementation.

• Atomicity – The actions that a transaction performs must be atomic; either none of the transaction is
done or the entire transaction is done. The transaction system must ensure that if a failure occurs in
the middle of a transaction, all steps done before the failure are backed out in such a way that the

Chapter 9: Transaction Management 132

system is left in the same state as before the transaction was started. AdvFS implements this property
through redo/undo transaction records that are recorded in the log. In the event that a transaction
cannot complete, these records are used to ensure that all steps done before the failure are backed out.

• Consistency—Execution of a transaction in isolation preserves the consistency of the database. Each
transaction must be serializable in such a way that if transaction A commits before transaction B then
the system will never be in a state where the effects of B are seen and the effects of A are not. This is
a fundamental issue in AdvFS and is maintained through locks at a file level. Because transactions
must be serializable, all changes made within a transaction tree must be single threaded; two threads
cannot both make changes that are recorded under the same transaction.

• Isolation—The effects of a transaction must not be seen by other threads until the transaction is either
committed or aborted. Like consistency, this is a matter of correct locking.

• Durability—Once a transaction has completed (been committed), the transaction system must ensure
that the actions done by the transaction are guaranteed not to disappear. AdvFS uses a lazy commit
model in which it only guarantees durability after the transaction is committed to disk. A portion of
the log is kept in memory. Until the portion of the log containing the transaction has been flushed to
disk, that transaction may not be redone in the event of a system crash. This is acceptable only
because of the write-ahead log rule which is discussed below.

In addition to the ACID rules, there is one other property of transactions that must be considered.

• Idempotence — This is a property of an operation that allows it to be repeated many times on a given
object and will either transform it to the desired state, or will leave it in the desired state. This is often
important in redo operations during recovery. If certain operations are redone during recovery, and
the system crashes in the middle of recovery, and recovery has to be done yet again, the redo
operations must be able to leave the transaction in the desired state, no matter how many times the
recovery is run.

9.1.2 AdvFS-specific Transaction Rules

The transaction manager, the buffer cache, and the logger collaborate to ensure that the ACID properties
are maintained. The most important interaction between these three subsystems is to maintain the write-
ahead log rule. This rule states that:

A modification to metadata made under a transaction must not be flushed to disk before the
corresponding transaction records are written to the transaction log and flushed to disk. In other
words, the transaction log must be written ahead of the actual metadata.

This rule ensures that AdvFS can always use the transaction log to create a consistent view of its
metadata. In the event of a system failure, only changes made under a transaction whose records are on
disk could have been written to disk. Therefore, only changes with associated on-disk log records will
need to be redone or undone. If a metadata change is made, but the transaction log record is not written to
disk, then the change exists only in memory and does not need to be undone following a system crash.
Likewise, any transactions that have been written to disk will have all the information required to redo or
undo the operations on the metadata and restore the metadata to a consistent view. Maintenance of the
metadata pages in relationship with this rule is discussed in Section 9.2.10.

There are several additional rules to consider when using AdvFS transactions.

• There are limits on the number of pinned pages per transaction. The limits are defined in

ftx_public.h and ftx_privates.h. One limit is defined by FTX_TOTAL_PINS (currently

 133 Chapter 9: Transaction Management

10). This represents the total number of pages that can be pinned by all active subtransactions within
the same root transaction at one time. As subtransactions finish, their pages are unpinned and
subtracted from this total count. Both a root transaction and subtransaction can pin the same page,
and this will only count as one page pinned in this total. Another limit is FTX_MX_PINP (currently
7), which places a limit on the number of pages that can be pinned at a given subtransaction level.

• There are limits on the number of records that can be pinned at one time within each page at each
subtransaction level. The limit is defined by FTX_MX_PINR (currently 7).

• There are limits on the number of nested subtransactions that can be created. The longest path from a
subtransaction to the root transaction can be no more than FTX_MX_NEST (currently 11) levels.

• Once a subtransaction pins a record, that subtransaction may not fail. AdvFS only records after-
images of transactions (a binary copy of what the record looks like after being changed). As a result,
a subtransaction that has pinned records can not be failed because it can not be undone. See the
discussion of undo and redo records for more information. A subtransaction must always have an
undo record in case its parent transaction should fail.

• A thread must never start a root transaction if it already has a root transaction started; the system will
likely hang. Also, a thread that has started a root transaction must not wait for another thread that
also might start a root transaction; this mostly applies to DMAPI which calls out of the kernel to
DMAPI applications that may call back into the file system and possibly start another root
transaction. See section 9.2.9 on transaction slots for a better understanding of why the system may
hang.

• Undo and Redo operations should be logical rather than physical. This means that the records should
redo and undo operations logically, not by simply recording before images or after images of the
operation being performed.

9.1.3 Transaction Terminology

Root Transactions and Subtransactions

The first transaction begun for a set of related operations that must be completed atomically is known as
the root transaction. All transactions that comprise smaller units of work within that transaction are
called subtransactions.

Before and After Images

The before image of a datum is its value before it has been modified by the transaction. Its after image
is its value after it has been modified. Undo operations typically restore a before image, and redo
operations typically restore after images. Consider a transaction-based banking system used to withdraw
$100 from a checking account. If we start with $300, and remove $100, the before image value of our
account balance is $300, and the after image is $200.

Undo and Redo Operations

An undo operation ensures that any data changes made during the transaction are set back to their values
before the transaction started. Redo operations ensure that all data changes made during a committed
transaction are present in non-volatile storage. Consider again a banking example where we will transfer
$100 from our bank account that contains $300 to another account that contains $500. If the transaction
removes $100 from our account, but finds the other account is no longer valid, an undo operation
‘undoes’ the withdrawal from our account, essentially adding the $100 back so that we still have the $300

Chapter 9: Transaction Management 134

we started with. Conversely, if the system crashes after removing the $100 from our account but before it
has been added to the other account, a redo operation after reboot will ensure that the $100 is properly
added to the other account.

Logical and Physical operations

Undo and redo operations may be accomplished via logical or physical operations. Logical operations
take the current data and make it correct via some logical sequence of steps (addition, subtraction, etc).
Physical operations merely overlay the current data with the correct data. Each method has its
advantages, and each must conform to the broad transaction rules specified earlier (Section 9.1.1). Let’s
consider the previous banking example again. The transaction which removed $100 from our bank
account logically subtracted $100 from our balance. So the logical operation to undo this transaction
would be to add $100 to the balance. A physical operation to undo this transaction would be to remember
that the before image of our bank account was $300. However, AdvFS does not save before images, so
any undo operation will always be a logical undo. Before images are not saved due to performance
reasons.

Transaction Slot

Each root transaction is assigned a slot in the domain’s transaction table. The transaction table is an in-
memory structure and has a fixed number of slots. Only root transactions are assigned to slots. See
Section 9.2.9 for more details.

Global Pin Table and Per-level Pin Table

The global pin table (ftx.PinTbl[]) is a structure used to monitor the pages currently pinned by the

current transaction. So the term ‘global’ here is used to mean ‘global to the transaction’, and refers to
pages pinned at all levels by the current subtransactions. There is also a per-level pin table

(ftx.cLvl[].lvlPinTbl[]) that keeps track of pages pinned within the current level
(subtransaction) of the transaction. These tables are of fixed size, such that there can be at most 10 pages
pinned per transaction (size of the global pin table) at one time, and at most 7 pages pinned at one time in
each subtransaction level (size of the per-level pin table). See Section 9.5.1 for more information on the
structures for these tables.

Undo Record

An undo record for a transaction is any structure that contains information necessary to logically undo the
operation under transaction control. For example, if an mcell were to be modified, the undo record may

be a structure that maintains the mcellId and information about what data was changed. Undo records

are written into the log as an array of bytes; it is up to the undo routines to correctly cast the byte array
back into an appropriate structure.

Redo Record

A redo record for a transaction works like an undo record, but contains information to redo an operation
under transaction control rather than to undo it. This could be a simple byte image of the final data being
changed.

Root Done Record

A root done record is a structure that contains needed information to take final actions on behalf of a
transaction at the point when the root transaction is committed. For example, if a subtransaction is
making a change that should not be visible until the root transaction is committed, it may register a root
done record with the transaction. At root commit time, each root done record will be processed and a call

 135 Chapter 9: Transaction Management

back to a root done function for the subtransaction will be made using the root done structure as a
parameter. This allows a subtransaction to postpone resource release until root transaction commit.

Transaction Continuation Record

A transaction continuation record is a structure that allows one transaction to establish a set of follow-on
operations that will be done after the current transaction is committed. This is sometimes used to break a
long-lived transaction down into a series of smaller transactions.

The Agent Concept

Each subtransaction is associated with an agent. The agent helps to identify what the transaction was
doing, or had done, in the event of a recovery. Since we are storing log information on disk, and we are
not guaranteed that from one boot to the next a function pointer will reference the same function, we can
not store undo routine references on disk. Instead, the concept of an agent is used. In the kernel, each
agent is assigned an Id, an undo routine, a redo routine, and a root done function pointer. At recovery

time, the agentId can be looked up in the kernel to find the correct function to use for undo/redo. A
transaction’s agentId is an index into FtxAgents[].

Figure 33: FtxAgent structures

Whenever a subtransaction or a root transaction are started, an ftx_agent must be identified. The

agentId is then stored in the log records associated with that transaction.

9.1.4 Introductory Transaction Example

Below is a simplified version of what happens when a file is created under AdvFS’s transaction control.

Chapter 9: Transaction Management 136

Figure 34: Creating a new file under transaction control

Step 1: Storage allocated within the BMT to hold the new bitfile's attributes. The changes to the affected
mcell are written to the in-memory transaction log as log record "1".

Step 2: A bitfile tag slot is allocated and modified to reference the newly initialized mcell from step 1.
The changes to the tag slot in the tag directory are written as log record "2".

Step 3: A file system directory entry is created with the specified file name ("foo") to reference the bitfile
tag created in step 2. The directory changes are written as log record "3".

Step 4: The entire transaction is committed and a final log record is written as record "4" to indicate the
commit.

Note that at this point all of the above changes are in-memory only, so if the system crashes it would be as
if the transaction never occurred and the file had never been created (which leaves all the metadata
structures consistent).

Step 5: If the file is to be synchronously created, then the in-memory log is flushed to disk. Otherwise,
log records are buffered in memory until multiple log pages can be written to disk in a single
large I/O to improve performance.

If the system fails at this point the log would be used to redo the changes done in steps 1-3 when the
domain is recovered.

Step 6: Once the log records are flushed to disk the buffered metadata pages modified in steps 1-3 can be
written to disk. Once the metadata changes are written to disk, the log records describing the
changes in steps 1-3 are no longer needed.

9.2 AdvFS Transaction Management
Transaction primitives provide the necessary tools to create root transactions and subtransactions, to
register undo and redo operations for those transactions and to fail or complete transactions as
appropriate.

9.2.1 Overview of Transaction Primitives

 137 Chapter 9: Transaction Management

ftx_start (parentFtxH) - Starts a transaction, returns a transaction handle. If the parent transaction
handle is NULL then a root transaction is started, otherwise a subtransaction is started.

ftx_done (ftxH, agentId, undoArgs, rootDoneArgs) - Commits a transaction; optionally passing logical
undo or root done information.

ftx_fail (ftxH) - Fails a transaction; subtransactions that have been completed are backed out. Must not

be called after rbf_pin_record() has been used in the current (sub)transaction.

ftx_lock_* (ftxH, lock) - Acquires a lock and associates it with the (sub)transaction at the current level.
When that (sub)transaction is done, the lock is automatically released once the associated log record is
written to the log. There is also a function to add an already-acquired lock to the current level.

rbf_pingpg (bfH, page) - This routine is like a "begin to modify" function. It pins the specified bitfile
page in the buffer cache (preventing it from being written to disk) and tells the buffer cache that the
thread intends to modify the page as part of the transaction.

rbf_pin_record (pgH, recAddress, recSize) - This routine is called just before modifying a byte range in

a page (must call rbf_pingpg() first to obtain the page handle (pgH)). It allows the transaction

manager to capture the byte-level modification for use in the redo pass of recovery.

ftx_register_agent () -The code that does the recoverable modification is called a transaction agent which
must be registered with the transaction manager. The main purpose of this registration is to identify the
routines for undo and root done functions.

The basic model is to use the primitives to perform some atomic and recoverable modification. If the
modification can be done in a root transaction without subtransactions (also called a flat transaction) then
no undo action is needed. This is because for a root transaction all modifications are in-memory and
nothing is logged until ftx_done() is called which commits the transaction (so only redo information is
associated with the transaction so that it can be rolled forward during recovery).

AdvFS also supports subtransactions. If a recoverable modification requires subtransactions then the
subtransactions generally need to provide undo actions; these are defined by a separate undo routine.

9.2.2 Transaction start: ftx_start()

The ftx_start() primitive comes in many flavors all of which call _ftx_start_i() to do the actual work of
starting a transaction. _ftx_start_i() is the primitive used to start a transaction or subtransaction. If
_ftx_start_i() is called with no parent transaction handle, a new root transaction is created, causing a
transaction slot in the domain’s transaction table to be utilized. If a root transaction handle is specified, a
new subtransaction is created.

The parameters of ftx_start_i are:

• ftxHT *ftxH – the transaction handle of the transaction to be started. This pointer is passed in and

initialized during the _ftx_start_i() routine. This handle will contain an index value into the

domainT.ftxTbld.tablep. However, the hndl value stored in ftxHT is one-based, so hndl-1
is the slot this transaction handle references.

• ftxHT parentFtxH –the transaction handle for the parent transaction, if any. If this is

FtxNilFtxH, a new root transaction is allocated, otherwise, ftxH becomes a subtransaction of the
parentFtxH

Chapter 9: Transaction Management 138

• ftxAgentIdT agentId—The agent ID for this transaction. This defines the undo routine, the redo
routine and the rootdone routine for this transaction.

• domainT dmnP –This field specifies the domain in which this transaction is occurring and in which

this transaction will be tracked. It also provides a means of getting the ftx structures for the parent
transaction.

• int page_reservation—currently unused.

• unsigned int atomicRPass—recovery is done in several stages, this defines the recovery pass
in which this transaction should be processed.

• int flag—used to pass in flags to the transaction. Currently a flag value of 1 indicates an
exclusive transaction, meaning that no other transactions on the domain can be executing in parallel
with this transaction.

• long xid—a CFS generated transaction id.

_ftx_start_i() will take different actions depending on whether the transaction to be started is a root

transaction (parentFtxH = FtxNilFtxH) or a subtransaction (parentFtxH != FtxNilFtxH). To

start a root transaction, _ftx_start_i() must acquire a free slot from the domainT’s ftxTbld structure.
If the transaction is specified as exclusive, _ftx_start_i() must wait for all other transactions on the
domain to complete before reserving a slot. Slots are acquired in FIFO order to preserve fairness among
multiple threads.

Once a root transaction has a slot, an ftxStateT structure is allocated and initialized to maintain state

information for the entire transaction, including future subtransactions. Finally, a perlvlT structure is
allocated and initialized to track pages pinned only at this level of the transaction (level 0 for root
transaction).

For a subtransaction, the current transaction level is incremented in the ftxStateT structure, and a new

perlvlT structure is allocated and initialized to track the pages pinned in this subtransaction.

The initialization of the perlvlT structure is done in a common code block for both the root and

subtransactions. _ftx_start_i() finishes by initializing the return ftxH parameter to contain a handle to the
transaction that was begun.

9.2.3 Transaction Commit: ftx_done()

The primary goal of this routine is to commit a (sub)transaction by writing the transaction records to a
pinned log page in memory; there is no responsibility by this routine to ensure that the records are written
to disk. Like ftx_start(), ftx_done() comes in many flavors all of which call ftx_done_urdr() to perform
the actual work. ftx_done_urdr() (short for ftx_done_undo_rootdone_redo) is the primitive used to
declare that a transaction is complete and should be committed to the log. All other versions of
ftx_done_*() are wrappers around ftx_done_urdr().

Once ftx_done() has been called and the transaction log is written to disk, this transaction will be
recovered in the event of a system failure. After ftx_done() is called on a root transaction, and the
transaction record has been written to disk, if the system crashes prior to the logged operations being
completed, the entire transaction tree (root and all subtransactions) will be redone when the domain is
recovered. If, however, ftx_done() is called on a subtransaction and the transaction record for the

 139 Chapter 9: Transaction Management

subtransaction is pushed out to disk and the system fails prior to the root transaction having been
committed, when the domain is recovered, the subtransactions will be undone because the root transaction
was never completed.

The parameters to ftx_done_urdr() are:

• ftxHT ftx -- the handle to the transaction being committed. If this transaction created
subtransactions, those subtransactions must already be committed.

• ftxAgentId agentId -- the agent type of the transaction being committed. This is required to
associate the undo/redo/rootdone routines with the transaction.

• Int undoOpSz – size of the undo record parameter (in bytes).

• Void* undoOp – a pointer to the undo record structure, the structure type is determined by the agent
type.

• Int redoOpSz – size of the redo record parameter (in bytes).

• Void* redoOp – a pointer to the redo record structure, the structure type is determined by the agent
type.

• Int rootDnOpSz – size of the root done record parameter (in bytes).

• Void* rootDnOp – a pointer to the root done record structure, the structure type is determined by
the agent type.

The steps followed by ftx_done_urdr() include:

• Create a log record header (ftxDoneLRT structure) that maintains information required to read

back undo and redo records during recovery. The record maintains size information for undo,
redo, and root done records, as well as some additional recovery information.

• Add the undo, redo, and root-done records for the transaction to the lrDescT structure, which
represents all the data to be logged for this (sub)transaction. Note that there is no undo record for
a root transaction. Committing a root transaction to disk ensures that the changes made in the
transaction will always be made, even if the system fails.

• Call log_donerec_nunpin() to place the transaction record into the log and unpin all the pages
pinned at this transaction level.

• Call release_ftx_locks() to release all locks seized at the current transaction level via ftx_lock().

• A loop is executed to apply all the root done records for the transaction. Subtransactions that
were previously committed and had registered a root done record now have the root done logic
completed. Executing the root done records could require additional information be to be placed

into the log, so for each root done record executed, an lrDescT record is created and logged
with a call to log_donerec_nunpin().

• Finally, the entire transaction is cleaned up. First, the transaction slot is marked as available, then

the ftxT structure is freed and the FtxMutex is released.

As has already been alluded to, a log page is not sent to disk immediately when it is unpinned, and any
records of a log page that are not on disk when the system crashes will not be redone. This is generally
fine since the write-ahead log rule guarantees that the actual metadata changes are not on disk, and are,
therefore, “undone” when the in-memory log page is lost.

Chapter 9: Transaction Management 140

The system of delayed log page writes is called lazy commit mode. This means that there is no guarantee
of transaction persistence at the time the transaction is committed via ftx_done(). It buffers the

transaction records in-memory (in log buffers) until an explicit sync(2), fsync(2) or when there
are LOG_FLUSH_THRESHOLD (currently 8) log pages ready to be written. Lazy commit mode ensures
file system metadata integrity, but potentially loses transactions when the system crashes. This is
acceptable in a UNIX system since UNIX file system semantics utilize lazy writing as a general rule to
maximize file system performance.

9.2.4 Transaction Abort: ftx_fail()

ftx_fail() is the primitive used to abort a transaction that can not continue for any reason. Note that
ftx_fail() must NOT be called once a record has been pinned in a (sub)transaction, or a domain panic will
occur. This is because before-images of data are not collected during rbf_pin_record(), and therefore the
data change can not be undone. This stipulates that all necessary resources required for the
(sub)transaction to complete successfully (these being possible situations resulting in a call to fail the
transaction due to lack of a particular resource) must be obtained prior to calling rbf_pin_record() and
making any metadata modifications. To enforce this, pinning a record causes the page to be marked dirty.
Ftx_fail() will domain panic if it detects a dirty page, since to do otherwise would force inconsistent
metadata to disk. In addition, ftx_fail() can only be called passing in the handle for the current level’s
transaction. If ftx_fail() is called on a transaction with subtransactions that have completed successfully,
these subtransactions will be undone if they provided undo information when they called ftx_done().

The parameters of ftx_fail() are:

• ftxHT ftxH – The transaction to fail.

Ftx_fail() begins by unpinning each page pinned within the transaction being failed. The perlvlT
structure that maintains per level information is used to determine what pages are pinned. While
unpinning each page, ftx_fail() verifies that the page is not dirty and domain panics if the page is dirty.

Next, ftx_fail() opens the log for reading so that it can undo each of the previously completed
subtransactions of the transaction being failed. The log is read starting at the last log record committed

(ftxp->lastLogRec) and moving backwards one record at a time (only reading records associated

with this transaction). For each record, if an undo record exists, the undo record is executed and the
resources associated with that record are released. Processing the undo records may cause new records to
be written to the log.

All locks for this transaction are released, and, if any new records were written during the fail, a final

done record is written to the log. Finally, the transaction slot is made available and the ftxH structure is
freed.

9.2.5 Registering an agent: ftx_register_agent()

ftx_register_agent() is used to associate a set of functions with a single agent id. This is used to allow a
transaction of a specific type to store only an integer id value in the transaction log. The kernel uses the
agent id to determine which functions need to be called with an undo, redo or root done record for the

transaction. Agent ids are statically assigned, and agents are tracked in an array of FtxAgentT
structures.

 141 Chapter 9: Transaction Management

9.2.6 Transaction Locking: ftx_lock_*()

ftx_lock_read() and ftx_lock_write() are used to seize a lock for read/write access and to associate the lock
with the current transaction level. All locks seized on the same level are chained together (on

perLvlT.lkList) for quick access when releasing locks during transaction commit or abort.

_ftx_add_lock() is provided to allow a lock that is already seized to be associated with the current
(sub)transaction. This allows locks that have been seized prior to a transaction start to be automatically
released when the transaction commits.

9.2.7 Pinning Pages: rbf_pinpg()

rbf_pinpg() is the bs_pinpg() equivalent for use in transactions. rbf_pinpg() is a wrapper around
bs_pinpg(), but takes actions to associate the page being pinned with the current (sub)transaction so that
the page can be unpinned or repinned when the transaction is committed, failed, or recovered.

The parameters to rbf_pinpg() are:

• rbfPgRefHT pinPgH – a return parameter used to pass back a reference handle to the page being
pinned.

• Void **bfPageAddr – a return parameter used to pass back a pointer to the data of the page.

• struct bfAccess *bfap – the access structure for the file whose page is being pinned.

• unsigned long bsPage – the page in the file to be pinned.

• bfPageRefHintT refHint – future hint.

• ftxHT ftxH – the transaction under which the page is to be pinned.

rbf_pinpg() first scans the global pin table in the ftx structure to see if the page has already been pinned

within this transaction. If the page is pinned globally (global to the root transaction), the perlvlT
structure is checked to see if the page was already pinned within the current subtransaction. If so, nothing
needs to be done and the function simply returns. Otherwise, the page handle (a reference to the page in
the transaction’s global pin table) is inserted into the per-level pin table to associate the pinned page with
the current subtransaction.

If the page to be pinned is not already globally pinned, a page handle is acquired in the global pin table,

and a perlvlT pin slot is allocated. After both a global and local pin handle are successfully allocated,
bs_pinpg_ftx() is called to actually pin the page.

Pages pinned during a (sub)transaction will remain pinned until that (sub)transaction is committed. The
page does not remain pinned until the root transaction has completed. To accomplish this, rbf_pinpg()
associates each page that is pinned within the (sub)transaction with the current transaction level. Then,
when the (sub)transaction is committed, all pages that were pinned at that level are unpinned. This is
done in the log_donerec_nunpin() routine. If a subtransaction needs to be subsequently undone, any
pages required are repinned at that time.

9.2.8 Pinning Records: rbf_pin_record()

Chapter 9: Transaction Management 142

rbf_pin_record() is the transaction primitive that actually allows the transaction to know what data has
changed and to gather after-images of the data being modified. Only data that is explicitly pinned will be
redone during recovery. Because before-images are not saved before record modifications are performed,
undo records are not automatically created when ftx_done() is later called for this transaction.

The parameters to rbf_pin_record() are:

• rbfPgRefHT pinPgH – the page reference for the pinned page in which the data will be changed.

• void *recAddr – address of the record to be pinned. This is not page relative, but the in-memory
address of the record to be pinned.

• int recSz – the size in bytes of the record to be changed. A record is simply a set of bytes; it does
not necessarily correspond to any single data structure.

rbf_pin_record() calculates the page-relative offset and size of the record to be modified and stores this

information into the perlvlT structure. If a record overlaps with a record already being modified by

this (sub)transaction, the two records are merged. rbf_pin_record() also changes the unpinmode of the
page from BS_NOMOD to BS_MOD_LAZY, to indicate that a change to this page has been made. The
after-image of the data to be redone is later collected from the pinned page during ftx_done() in
addone_recredo(). If the transaction is committed and there is a page that has not been modified, then
that page is simply unpinned.

9.2.9 Transaction Table

Each root transaction is assigned a slot in the domain’s transaction table (domainT.ftxTbld). The
transaction table is an in-memory structure and has a fixed number of slots (currently 30). Thus, the
number of concurrent transactions per domain is limited. Only root transactions are assigned to slots;
subtransactions are associated with their root transaction’s slot.

On a historical note, the designers of AdvFS originally chose a maximum of 30 concurrent transactions
system-wide because of the number of pages that could be pinned concurrently in the AdvFS buffer
cache. At that time each transaction could have only 8 pinned pages, and the AdvFS buffer cache was
fixed at 256 pages. (256 pages / 8 pages/transaction = 32 transactions). They reduced the number of
transactions from 32 to 30 to allow for 16 cached pages that were not part of a transaction. Later the
buffer cache was allowed to scale with memory size, and the number of concurrent transactions was
changed from being system-wide to being domain-wide. The 30 transaction slots per domain has never
changed, however.

Transaction slots are allocated in a strict round-robin fashion. This means that if the next slot to be
assigned is currently in use, all subsequent root transactions must wait to start until that particular slot
becomes available, even if other slots are already available. This was implemented to ensure that there
are no long-lived transactions. The round-robin allocation of slots is one reason why root transactions
cannot be nested. If the next slot available is the previous root transaction, the thread will deadlock
waiting for that transaction slot to be released.

There is a relationship between the number of concurrent transactions system-wide and the size of the
buffer cache. The relationship is:

max_transaction_slots_per_system = # cache buffers / max_pinned_pages_per_transaction

 143 Chapter 9: Transaction Management

This was more of a restriction in v4.0 streams where the size of the AdvFS buffer cache was limited and
determined at boot time. In the v5.x streams, we tend to ignore this restriction since the UBC will,
theoretically at least, supply the number of buffers we need.

There is also a close relationship between the number of transaction slots per domain and the size of the
log. As reported in the original HitchHiker’s Guide, the formula is:

slots_per_domain = log_size (bytes) / 4 (quadrants) / max_transaction_size (bytes).

The original designers didn’t know what the maximum size of any transaction was, so they tested the
system with a 512k log and 30 transaction slots. They didn’t run into any problems, so they guessed that
making the log 8 times larger (4Mb) should prevent getting ‘log half full’ errors with 30 transaction slots.
If the transaction table size is ever increased, this should be kept in mind. Also, it might be useful to
instrument the kernel and try to ascertain the maximum transaction size that is ever achieved.

9.2.10 Metadata Management

Metadata is any file data that must be logged. This includes directories, indices, reserved files, and files
with atomic data logging turned on. To guarantee the write-ahead log rule is maintained, a domain-wide

log sequence number (lsn) tracks the last log record to be written to disk. Once a record is on disk, the
record stored can be redone or undone if necessary. Therefore, it is safe to allow the metadata changes be
flushed to disk.

Each logged page contains an lsn value in the bsBuf structure that timestamps the changes to that page.

When the log has been flushed past the lsn value, the associated metadata can safely be written. A

system failure before the log gets written to disk would lose the metadata changes, thus automatically
leaving the system in the state before the changes took place. This has the effect of making an undo
unnecessary, so losing the in-memory portion of the log itself has no effect on data consistency.

The first time a metadata page is modified under transaction control, it is placed at the end of a domain-

wide list (domainT.lsnList). This lsn list is maintained in increasing order by its

bsBuf.origLogRec field. This is the field that tracks the oldest modification to this page. Therefore,

when a page reaches the head of this list, it should be associated with the oldest transaction on that
domain. This makes it easy for the kernel to find dirty metadata pages that need to be flushed when the
log needs to be checkpointed (see Section 9.3.4).

What prevents a metadata page from being flushed to disk before the log records are written? Whenever
a page is modified in AdvFS, it is first pinned, then it is modified, and then it is unpinned. The last unpin
of a metadata page will place that page onto a special I/O queue, the wait queue. This queue can be
thought of as a holding area for metadata pages that have log data waiting to be flushed. The metadata
pages will remain on this queue until one of two things happens. Either the page will be repinned and
removed from the wait queue until it is unpinned, or it can be moved from the wait queue to the
appropriate lazy queue (see Chapter 8) after the log page is written to disk. The writing of the log page is
detected during the I/O completion in bs_io_complete(), which sends a message of type CK_WAITQ to
the background I/O thread. This thread runs check_cont_bits() that moves the metadata buffers that are
now eligible to be flushed to disk to the appropriate lazy queue (smoothsync or readyLazy).

9.3 Log File Management

9.3.1 Log Size

By default the log is 4 Mb in size. The reason for this size is given in Section 9.2.9 where the relationship
between the size of the log and the size of the transaction table is discussed. It is possible to increase the

Chapter 9: Transaction Management 144

size of the log, however, when a new domain is created. The mkfdmn command has a –l command that

allows the creator to specify the log size in pages. Alternatively, the switchlog command has a –l

option that can be used to resize the log while moving the log to a different volume. The man page for

switchlog does not make reference to the –l option, but it does work.

9.3.2 Log Writing

Transaction records are most typically written to the log in the context of a transaction commit or abort.
The routine log_donerec_nunpin() is called to write the transaction record and unpin the pinned pages.
To write the transaction record, the routine lgr_writev_ftx() is called. This routine reserves the correct

amount of space in the log, pins the appropriate log page(s), assigns a new lsn to the log record, copies
the record to the log page, and unpins the page(s). It will also add any metadata pages to the lsn list if
required. The write may trigger a flush of the in-memory log pages to disk if a synchronous write to the
log was requested.

9.3.3 Log Flushing

Flushing the log is handled primarily by the lgr_flush_start() and lgr_flush_sync() routines.
lgr_flush_start() determines if we need to unpin the last log page to flush up to the lsn required. If so, it
unpins that page and places it onto the blocking I/O queue. Pages up to this last page are flushed by
calling bs_logflush_start() which essentially walks through the buffers on the log’s dirty buffer list,
moving them to the blocking I/O queue if they are not already there. lgr_flush_sync() will wait for the log

pages up to and including the specified lsn to be flushed to disk. Waking of this thread is handled in

bs_wakeup_flush_threads() which is called by bs_io_complete() whenever a write to a file has been

completed. If the appropriate lsn has been flushed to disk, then the thread is awakened.

Flushing may be initiated by the log write routines if a synchronous write was requested. Flushing will
also be initiated as old pages in the log are needed for new transaction records. This situation is discussed
in the next section.

9.3.4 Log Checkpointing

The log can be viewed as a large circular buffer, with strict rules regarding when old log pages can be
overwritten. This is sometimes called ‘wrapping’ the log. The main rule is that there may be no dirty
metadata buffers that are associated with the transactions whose records are about to be overwritten
(destroyed) in the log. In a way, this is an addendum to the write-ahead log rule. Just as it is important to
flush log pages associated with metadata changes, so too, it is important to ensure that the metadata
changes are flushed to disk before the associated log pages are overwritten. Consider the metadata pages
and log pages moving through the following steps:

Operation State

Read metadata page into the buffer cache

Modify the metadata within a transaction Log pages must precede metadata to disk

Write transaction records to log buffers

 145 Chapter 9: Transaction Management

Flush the log buffers to disk Metadata may now be flushed to disk, but
there is no requirement to do this quickly

(Possibly, do more modifications on this
metadata)

Notice impending need to wrap the log Must be sure that associated metadata buffers
have been flushed to disk

Flush metadata buffers associated with log
region that needs to be wrapped.

After this is done, neither the log transaction
records nor the metadata changes need to be
saved any longer; the modifications have been
permanently made. It is safe to overwrite the
old log records.

Allow the logger to overwrite the old log
records up to the next quadrant.

The process of flushing metadata buffers to ensure that the log can safely wrap is called log
checkpointing. AdvFS does checkpointing on log quadrant boundaries. The log is divided into four
quadrants (see next figure). Whenever the log crosses a quadrant boundary, AdvFS flushes all dirty
metadata buffers associated with the previous log quadrant. This is done by allowing all outstanding
transactions to complete but prohibiting new transactions from starting until the buffers are flushed and
the log is trimmed up to the end of the previous quadrant. AdvFS also ensures that the log is not more
than half full when a quadrant boundary is crossed; this ensures that there is enough space in the log for
recovery if the system fails.

1

23

4

F
L

1

23

4

F

L

1

23

4

F

L

1

23

4

FL

1 2 3 4

F - First log record L - Last log record

Transaction Log

The flushing of the metadata buffers is done in the routines bs_pinblock() and bs_pinblock_sync(), which

are passed an lsn value. These routines will flush any metadata buffers on a domain’s lsn list whose

origLogRec values are older than that value. When those buffers have been flushed, it is safe to

overwrite the next quadrant of the log.

Chapter 9: Transaction Management 146

9.3.5 Log Isolation

The log file of an AdvFS domain is initially placed onto the first virtual disk added to the domain. If this
disk also contains many actively-accessed files, the interlacing of I/O to the log and the active files may
overload the bandwidth of the disk or its hardware controller. One way to alleviate this is to place the log
onto a volume that is not so active. This can be done manually by using one of the 2 following methods:

Method 1. This will simply move the existing log to a new disk and isolate it from other files being used
by applications.

• Pick a disk or disk partition for the log. You may need to use the addvol utility to add a new
disk to the domain.

• Use the switchlog utility to move the log to that disk.

• Use showfdmn to figure out how many free blocks are left on that disk.

• Make a file that is that size.

• Use the migrate command to move the file to that disk or partition.

Method 2. This method will build a 32 Mb log (currently believed to be optimal in clustered systems) on
a disk partition with no free space remaining so no other files can be placed there. Feel free to adjust this
procedure to make a log that is something other than 32 Mb in size.

• Unmount the domain on which you are isolating the log.

• Use /sbin/disklabel –e <disk> to edit the disk label of a new disk. You will only be
using the ‘a’ partition to store the log. Edit this disklabel so that the ‘a’ partition is 65664 blocks
long.

• Use /usr/sbin/addvol <disk> <domain> to add the ‘a’ partition of this disk to the
domain where you want to isolate the log.

• Use showfdmn <domain> to see what the volume index is for the newly-added disk. This

will be needed in the next step.

• Run /sbin/advfs/switchlog –l 4096 <domain> <disk index> to move the log

to the specified disk and make it 4096 pages long (32 Mb). Note that the man page for

switchlog does not make reference to the –l option, but it does work.

• Remount the domain.

There was a project to allow the kernel to isolate the log without manual intervention. The goal was to
move the log to its own virtual disk within the domain, and this disk would not be used for any other
AdvFS files. Although this code was never submitted to the development pools, there are functional and
design specifications for this work that can be found on the Tru64 Repository AdvFS page.

9.4 Domain Recovery
In the event of a system failure, AdvFS will recover a domain when its first fileset is mounted (this
activates the domain). RBMT information is used to open the reserved files (including the log). The log
manager finds the end of the log which allows the transaction manager to also find the beginning of the
log (or more accurately, the crash redo log address). The transaction manager keeps its log address in
each log record.

Recovery is done in three passes:

 147 Chapter 9: Transaction Management

Pass 1: The RBMT is recovered. This is primarily making the extent maps for the reserved
metadata files consistent for the next pass. This is referred to as the Meta-Meta Pass.

Pass 2: The reserved metadata files are recovered (this includes the BMT, Storage Bitmap and Root
Tag Directory). Mainly the extent maps are made consistent for the next pass. This is
referred to as the Meta Pass

Pass 3: All other logged files are recovered. (This includes directories and atomic-write data-
logging files). This is referred to as the Data Pass

During each pass the following phases are performed:

Redo phase: Applies all after-image records logged (these were captured via rbf_pin_record()).

Roll-back / roll-forward phase: The log is used to create in-memory transaction information. All
committed transactions are completed (rolled forward) and all uncommitted transactions
are undone (rolled back).

Consider a scenario where a transaction is in progress and 3 (of 5) subtransactions are committed when
the logger pushes a portion of the log to disk (probably because the LOG_FLUSH_THRESHOLD-th
page was unpinned and the previous group of pages is being flushed). The transaction continues and
commits the last two subtransactions. The amount of the log information that gets flushed to disk before
the system crashes will determine whether this transaction will be redone or undone during domain
recovery.

When a transaction log record is written to disk and the system crashes before the associated metadata
changes have been written to disk, the changes must be redone. A transaction can only be redone if all
the subtransactions associated with the transaction have been written to disk at the time of the system
crash. If the last two subtransaction log records are written to disk before the system crashes, the entire
transaction will be redone, starting with the first subtransaction.

Alternatively, when only a portion of the transaction’s log records are written to disk prior to a crash, the
entire transaction must be undone. In the above example, if subtransactions 4 and 5 were not written to
disk prior to the crash, the entire transaction would be undone. There would be no on disk indication that
transactions 4 and 5 ever existed, and no record indicating the entire transaction had completed.
Therefore, the undo would progress from the last complete log record (subtransaction 3) and proceed
backwards undoing each subtransaction.

Note: When undoing subtransactions, although changes are undone from the last subtransaction
backwards, locks are reacquired from the start of the transaction forward and released as the undos
progress.

9.5 Structure overview

9.5.1 In Memory

The in-memory structures for a single in-progress transaction are illustrated below.

Chapter 9: Transaction Management 148

Figure 35: In-memory structures for a single transaction

Transaction Table Descriptor (ftxTblD)

There is one transaction table per domainT which is used to hold an array of transaction descriptors

(ftx structures) for active transactions. As previously mentioned, a root transaction must have a slot in

the transaction table in order to start. The ftxTblD structure provides an array of ftxSlotT structures

which maintain a pointer to an ftx structure and a state (available, busy, in use exclusively). This array
composes the basic transaction slot system. The transaction table also provides state information used to
trim the log (see Section 9.3.4 on Log Checkpointing) and to track the slot use.

Transaction Descriptor (ftxStateT & ftx)

ftxStateT is a type definition for an ftx structure. It is used frequently, but the name can become

confusing since this represents a descriptor for an entire root transaction.

The ftx structure tracks information for a transaction and all its subtransactions. The ftx maintains

information including all currently pinned pages (at all active transaction levels), and the current

 149 Chapter 9: Transaction Management

transaction level (the root transaction is level 0). Additionally, the ftx structure maintains pointers to the

first and last log records for the entire transaction tree.

Transaction Handle (ftxH)

An ftxH structure represents a handle to a transaction. The structure provides the domain on which the

transaction exists, an index into the transaction table, and a transaction level.

Global Pin Table (ftxPinTblT)

The global pin table is a structure used to monitor the pages currently pinned by the current transaction.
So the term ‘global’ here is used to mean ‘global to the transaction’, and refers to pages pinned at all
levels in the current transaction. This table is of fixed size, such that there can be at most
FTX_TOTAL_PINS (currently 10) pages pinned per transaction.

Per-level State (perlvlT)

This structure represents a single node of a transaction or subtransaction. It is used to track which pages
are pinned at this level, what records have been pinned in which pages, and how large the pinned regions

are. Even a single-level transaction will have both an ftx structure and a perlvlT structure, describing
exactly what the transaction has done on that level and at that node of the transaction tree.

Figure 36: Per-level transaction tree

Per-level Pin Table (lvlPinTblT)

The per-level pin table keeps track of pages pinned within the current level (subtransaction) of the
transaction. This table is of fixed size, such that there can be at most FTX_MX_PINP (currently 7) pages
pinned per subtransaction level. Each entry in this table maintains the information about a page pinned at
this level, including a vector of records that have been pinned on this page.

Pinned-record State (ftxRecXT)

Chapter 9: Transaction Management 150

This structure represents the location (page offset and size) of a single pinned record on a page. There
can be at most FTX_MX_PINR (currently 7) pinned records per page.

Log Record Descriptor (lrDescT)

The log record descriptor structure is used to compose one large log record from several different smaller
records (header, undo record, redo record, root done record). When composing a log record for a
transaction, this structure is used to associate several disjoint buffers into one buffer. This structure

maintains an array of logBufVectorT structures that each point to a portion of the entire log record for
the subtransaction. Note that there is no standard redo, undo, or root done structure. Each of these records
is unique to each type of transaction.

The following figure shows the in-memory representation of a subtransaction. The structures in the figure
map directly to the on-disk records created for each subtransaction. These on-disk structures are
discussed in the next section.

Figure 37: In-memory representation of a subtransaction

9.5.2 On Disk

9.5.2.1 Logical View

The log has several logical views. First, the log is a circular buffer of pages. Each log page contains a

header (logPgHdrT) and a trailer (logPgTrlrT), with a stream of transaction records in between (See

the second figure in Section 2.3.4). There is an lsn associated with each log page header. Typically the

lsns will increase as we view the log pages sequentially. At some point, however, the lsns will drop
dramatically between two sequential pages; this is the tail/head of the log.

The second view of the log is a series of transaction records between the page header and trailer. Each

transaction record is comprised of 3 parts: a logRecHdr record, an ftxDoneLRT record, and zero or

 151 Chapter 9: Transaction Management

more undoRec, redoRec, or rootDoneRec records. Each of these can be thought of as a logical

record. These records are chained forward and backward via the logRecHdrT.nextRec and

logRecHdrT.prevRec fields. Walking through the records via this chain will traverse all records in

the log. The records are also chained backward via the logRecHdrT.prevClientRec field, and links
subtransaction records within a given transaction. This allows the logger to start with the last record in a
given transaction, and to quickly find all subtransaction records associated with that transaction.

The next figure shows a hypothetical example of a log page with 3 transaction records. Note that the
ftxDoneLRT and the undo, redo, and root done records map directly to the in-memory structures shown in
the previous figure.

Figure 38: On-disk log page

9.5.2.2 Physical View

Each log page contains a header and a trailer, with a stream of transaction records in between (struct

logPgT). However, because the logical unit of storage on the disk is the 512-byte sector, the logger can
also view the page as a series of 16 sectors, and adds some information to the beginning of each sector
within the log page as a way of verifying that all the data within the page is consistent. The first four

bytes of each sector are overwritten with the lsn for the page (See Figure 7 in Section 2.3.4) It gets this

value from the page header (logPgHdrT). Because overwriting this data will result in the destruction of
the underlying data in the transaction records, the logger first saves the data that will be overwritten to a

fixed-length array in the page trailer (logPgTrlrT) which has been reserved for exactly this purpose.
So the sequence of events when unpinning a log page would be: 1) copy the leading four bytes from each

logical sector within the page to the lsnOverwriteVal vector in the page trailer; 2) copy the lsn
value from the page header to the leading bytes in each sector; 3) release the page. This is all done in the

routine lgr_make_pg_safe(). When the page is read back in from the disk, the procedure is

reversed: the page is read, the lsn values at the beginning of each sector are verified to be all the same,

and then the data from the page trailer is copied over the leading bytes in each sector throughout the page.
The in-memory page is then ready for use by other routines. This is done by the routine
lgr_restore_pg().

Chapter 9: Transaction Management 152

9.6 Infinite Log Sequence Numbers (LSNs)

9.6.1 Assumptions about LSNs

• AdvFS uses an unsigned integer for the LSN and lets its value wrap (overflow).

• An LSN value of 0 is not valid; it is used to mark a log page which has never been written.

• Numerically larger LSNs are "older LSNs". By older we mean that they were generated and
written to the log at a later time. So, if LSN(a) is less than LSN(b), then LSN(b) is the older
LSN.

• An LSN wrap occurs when the sign bit of an LSN changes. Since we generally consider LSNs to
be unsigned we are mostly interested in the LSN wrap that occurs when the sign bit changes from
1 to 0. The secondary LSN wrap occurs when the sign bit changes from 0 to 1.

• There is a maximum number of LSNs that can be in the log at any time; we call this
MAX_LOG_LSNS.

• There is a maximum LSN that can be represented, called MAX_LSN. For example, a 16-bit
unsigned LSN has a maximum value of 65536.

9.6.2 Conditions that have to be dealt with when the LSN wraps:

When the LSN wraps (MAX_LSN + 1) we must skip over LSN 0 because it is invalid. Also, once the
LSN has wrapped we have to be able to determine which LSNs are older when comparing the LSNs
before the LSN wrapped with the LSNs after the LSN wrapped. This can be done by casting all LSNs to
signed integers when comparing them. This way all pre-wrap LSNs are monotonically decreasing
negative numbers (due to 2's complement binary arithmetic) and all post-wrap LSNs are monotonically
increasing positive numbers.

This switch to using a signed comparison works fine until we have a transition from positive LSNs to
negative LSNs (a secondary LSN wrap). When we make this secondary transition, we need to switch
back to using an unsigned comparison of LSNs.

To summarize, we use the current LSN's sign to determine if a signed or unsigned comparison is to be
used when comparing any two LSNs in the log (this does not work for arbitrary LSNs, they must be in the
log):

If the current LSN is unsigned, use a signed comparison
If the current LSN is signed, use an unsigned comparison

9.6.3 Conditions that have to be dealt with when locating the log's end page:

The above method of comparing LSNs using the current LSN's sign works fine for a running system.
However, when the system is booting there is no concept of a current LSN until after the log's END_PG
has been located. To locate the log's END_PG we must be able to compare two LSNs in the log. The
same basic LSN comparison principle applies: we must be able to determine whether we should use a
signed or unsigned comparison. Since we have no current LSN to aid us in making this decision we must
use a different method.

To determine this method, consider that there is some maximum number of LSNs that can be in the log at
any time (MAX_LOG_LSNS). In addition, there is a maximum LSN that can be represented. For
example, a 16-bit unsigned LSN has a maximum value of 65536 (MAX_LSN).

Rule 1a: MAX_LSN must be greater than MAX_LOG_LSNS.

 153 Chapter 9: Transaction Management

This guarantees that we never have an LSN in the log more than once. Therefore, there can be only one
LSN wrap in the log at any time. However, given that there is also a secondary LSN wrap where we go
from unsigned LSNs to signed LSNs then we need to make Rule 1 more strict if we want to guarantee
that we never see more than one LSN wrap (signed to unsigned, or unsigned to signed) as follows:

Rule 1b: (MAX_LSN / 2) must be greater than MAX_LOG_LSNS.

Given that only one LSN wrap can exist in the log at a time, we can formulate a rule that allows us to
detect whether or not the log contains an LSN wrap by simply looking at random LSNs in the log (we
choose to use the first LSN in the first log page).

Rule 2: An LSN wrap may exist in the log if the following condition is true:

-MAX_LOG_LSNS < (any LSN in the log) < MAX_LOG_LSNS

Call this range between –MAX_LOG_LSNS and MAX_LOG_LSNS the LSN_WRAP_RANGE.

Rule 3: An LSN wrap does not exist if the log contains any LSNs outside the LSN_WRAP_RANGE

defined by Rule 2.

Rule 4: If an LSN wrap may be in the log, then use a signed comparison for the LSNs in the log.

Otherwise, use an unsigned comparison.

Consider an example using a 4-bit LSN and a log that can hold 4 LSNs:

4-bit LSNs can be viewed as follows:
Unsigned LSNs: 8 9 a b c d e f 1 2 3 4 5 6 7 ...
 Signed LSNs: -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 ...

A 4-LSN log can be viewed as a forward-scrolling window through these LSNs.
For these examples we assume that the first LSN in the log is the "Log
Beginning" and the last LSN is the "Log End". In other words, we don't show
cases where the "Log End" is somewhere in the middle of the log as this does not
affect the examples.

The two extremes where the log contains an LSN wrap are as follows:

Case 1 Case 2
Unsigned: d e f 1 f 1 2 3
 Signed: -3 -2 -1 1 -1 1 2 3

All other cases where the log contains the LSN wrap are between these two end
cases.

Using Rule 2 we know that if the log contains any LSN in the range -3 to 3 then
we know that the log may contain a log wrap (MAX_LOG_LSNS is 4, so the
LSN_WRAP_RANGE is -3 to 3). This is confirmed by the above two cases.
Using Rule 4 we must use a signed comparison for the LSNs in the log. The two
cases show that by using a signed comparison we get the correct increasing LSNs
(-3, -2, -1, 1) and (-1, 1, 2, 3). An unsigned comparison would have given the

Chapter 9: Transaction Management 154

incorrect LSNs of (d, e, f, 1) and (f, 1, 2, 3) which would cause us to miss the
correct end of the log.

Rule 3 tells us that if an LSN outside the range -3 to 3 exists in the log then we
know that there is no LSN wrap in the log which by Rule 4 we can use an
unsigned comparison. In the following cases we've moved the log "window" so
that -4 is in the log for Case 1 and 4 is in the log for Case 2. Notice that the log
wrap is now no longer in the log.

Case 1 Case 2
Unsigned: c d e f 1 2 3 4
 Signed: -4 -3 -2 -1 1 2 3 4

Using the above two cases we also see that if we picked a random LSN from
these two logs we could get an LSN that is in the -3 to 3 range causing us to use a
signed comparison or we could get an LSN that is outside this range which
causes is to use an unsigned comparison. Note that either type of comparison
works in this case.

The question now is: "If the log contains LSNs both inside and outside the LSN_WRAP_RANGE, can we
always use either signed or unsigned comparisons?". The answer is YES if we guarantee that the log
cannot contain the secondary wrap and an LSN in the LSN_WRAP_RANGE. The following rule
guarantees this and is a further restriction of Rules 1a and 1b:

Rule 5: MAX_LOG_LSNS must be less than or equal to MAX_LSN / 4.

In practice this is not an issue because we typically use a 32-bit LSN and the log is relatively small
compared to the MAX_LSN of a 32-bit LSN.

Back to our example: For our 4-bit LSN we have a maximum log size of 4. The
following cases show that even if -3 or 3 are in the log we cannot also have the
secondary LSN wrap in the log (the secondary wrap is LSN 7 and LSN 8 for a 4-
bit LSN):

Case 1 Case 2

Unsigned: a b c d 3 4 5 6
 Signed: -6 -5 -4 -3 3 4 5 6

9.6.4 Additional rules if the LSNs are 'jumped' during recovery:

Normally MAX_LOG_LSNS can be calculated as follows:

MAX_LOG_LSNS = MAX_LOG_PGS * MAX_RECS_PER_LOG_PG

However, AdvFS allows a certain number of log pages to be written to the log simultaneously without
worrying about the order in which the writes complete. The number of pages that can be outstanding is
called LOG_FLUSH_THRESHOLD.

Since we don't know which of these pages were actually written to the log during a system crash, log
recovery ensures that the new "post recovery current LSN" is unique by adding

 155 Chapter 9: Transaction Management

(LOG_FLUSH_THRESHOLD * MAX_RECS_PER_LOG_PG + 1) to the "end LSN" in the log (this is
the last LSN in the log end page).

We will call (LOG_FLUSH_THRESHOLD * MAX_RECS_PER_LOG_PG) the CRASH_ADDER from
now on for simplicity.

Theoretically, the system could crash right after it filled just one page. This would cause us to add the
CRASH_ADDER after each page that was written. This could be done (MAX_LOG_PGS - 1) times.
Therefore, the calculation for MAX_LOG_LSNS becomes:

MAX_LOG_LSNS = MAX_LOG_PGS * MAX_RECS_PER_LOG_PG +
(MAX_LOG_PGS - 1) * CRASH_ADDER.

or (simplified):

MAX_LOG_LSNS = MAX_RECS_PER_LOG_PG *

(MAX_LOG_PGS + (MAX_LOG_PGS - 1) * LOG_FLUSH_THRESHOLD)

Chapter 10: Quotas 156

Chapter 10: Quotas

In an environment where storage can be used by more than one user, there is the potential for one user to
use more than their fair share of the storage. It is easy to forget to delete temporary or unused files. It can
also become very time consuming for system administrators to maintain and track storage allocation when
they are supporting a large group of users. To mitigate this problem, both UFS and AdvFS file systems
provide system administrators with a mechanism called quotas that allow them to gain more control over
how storage is allocated. Quotas are a way to limit the number of files created or the amount of space
consumed by a specific user, group, or within an entire fileset. Quotas are established and maintained via
quota system commands, and there are also tools that offer reports of storage consumption. UFS and

AdvFS both allow the administrator to limit storage based on user-id and group-id, but AdvFS also
allows quotas on filesets. This is not needed on UFS because its file systems do not share storage the way
AdvFS filesets can share storage in a common domain. Fileset quotas are used to control the growth of a
fileset, allowing them to compete fairly for storage within the domain. In this chapter we will look at how
AdvFS manages user, group, and fileset quotas.

AdvFS can limit storage allocation both by disk blocks and number of files. Thus, each user could be
restricted to using 1G of storage (by disk blocks) and 10,000 files. The file system can impose either soft
or hard limits. When a hard limit is reached, AdvFS will disallow any new disk space allocations or file
creations that would exceed the allowed limit. A soft limit may be exceeded for a period of time known
as a grace period. If the soft limit is still exceeded after the grace period has expired, then no more
allocations or file creations are allowed until the space is freed or files deleted that would allow the quotas
to be below the soft limit. Enforcement of quotas can be enabled or disabled by user, group, or fileset.
Quota enforcement can be enabled for a subset of filesets in a domain.

AdvFS maintains quota statistics for users and groups in two files: <mount_point>/user.quota

and <mount_point>/group.quota. These are special files that can not be modified by user

programs. For all filesets, the fileset quota information is kept in entry 0 of the group.quota file for
that fileset. Quota statistics are maintained by AdvFS even if the quotas are not being enforced; more on
enforcement later.

When a fileset is mounted, the group quota file is opened, the extent map is brought into memory, the
pages are walked, and the block and inode usage for all parties is tallied.

The following information is stored in the two quota files:

• Inode soft limit - the number of files allowed to be allocated to a particular user or group
(party), which, when exceeded, will cause a warning to be issued at the console

• Inode hard limit - the maximum number of files allowed to be allocated to a party

• Block soft limit - the number of blocks allowed to be allocated to a party, which, when exceeded,
will cause a warning to be issued at the console

• Block hard limit - the maximum number of blocks allowed to be allocated to a party

• Grace Period - the amount of time for which a party is allowed to exceed a soft limit

• Usage Inodes - the number of files actually allocated by a party

• Usage Blocks - the number of blocks actually allocated by a party

 157 Chapter 10: Quotas

10.1 Quota Utilities
The following table is a summary of the AdvFS quota Utilities. Please note that unless otherwise
indicated, you must have root permissions to use these commands.

Quota Utility Function

quot Displays disk space used and number of files created for each user. (UFS or
AdvFS)

quota Displays disk space usage and quota limits by user and group (UFS or AdvFS)

quotacheck Checks fileset quota consistency (UFS or AdvFS)

repquota Displays a summary of user, group, or fileset quotas (UFS or AdvFS)

edquota Allows editing of user and group quotas, including hard limits, soft limits, and
grace period (UFS or AdvFS)

quotaon Turns quota enforcement on (UFS or AdvFS)

quotaoff Turns quota enforcement off (UFS or AdvFS)

chfsets Displays or changes fileset quotas for AdvFS filesets (AdvFS only)

10.1.1 quot

The quot command displays disk space usage and the number of files created by each user on the

system. This information is not quota-specific, but allows tracking of fileset usage by user.

10.1.2 quota

The quota command displays, by default, disk space usage and limits for the current user (you do not

need to have root permissions to use this command). Its various options allow reporting group quotas as

well as quotas on all mounted filesets, just filesets listed in /etc/fstab, or just filesets listed in

/etc/fstab which are over their quota limits.

The program gathers a list of mounted file systems (according to the options selected) and uses a

quotactl(Q_GETQUOTA64) to read the appropriate quota records. If this call is not successful, and

we have root permissions, then quotactl(Q_QUOTAINFO) is called which determines the size of the

quota records (dqBlk32 or dqBlk64). Knowing that, we navigate the quota file via lseek() and

read(), retrieving the records into a temporary buffer and printing the requested information.

10.1.3 quotacheck

This command checks current file system usage against usage recorded in the quota file. If any
inconsistencies are detected, the quota file and its in-memory structures are brought to a consistent state.
Both user and group quotas are verified. Although this command will check only mounted file systems,

Chapter 10: Quotas 158

the user must make sure that the file systems being verified are quiescent (no files are open). Any file

system activity could yield unreliable results. See the man page for options for this command.

On an AdvFS fileset, this utility calls advfs_tag_stat() iteratively, retrieving and adding each file’s

size to the appropriate user and group counters. advfs_tag_stat() dispatches into the

tagdir_lookup_next() routine which will traverse the tag file for the fileset, returning information

about the next file in the tag file. It eventually returns ENO_SUCH_TAG when it has reached the end of

the tags in the fileset. If the scan-by-tag terminates normally, the update_advfs() routine is called to
update the user or group quota information as appropriate. This routine opens and reads the quota file,
comparing the data from the file with the information accumulated in the previous loop. If there are any

discrepancies, the quotactl(Q_SETUSE64) is used to update the quota file.

10.1.4 edquota

This command is used to 1) add and modify user and group quota limits, and 2) modify file system quota

grace periods. The quota command is needed to display these values originally. Only those file

systems that are currently mounted and are listed with quota entries in the /etc/fstab file may be

modified with this utility. Only a user with root privileges can use this utility. See the man page for more

information on using this command.

10.1.5 repquota

This utility is used to display user, group, and fileset quota information. The user must have root
permissions to use this command.

Repquota uses quotactl(Q_QUOTAINFO) to determine the size of the quota records (dqBlk32 or

dqBlk64). Knowing that, we navigate the quota file via lseek(), retrieve the records using

quotactl(Q_GETQUOTA or Q_GETQUOTA64), save them into a temporary buffer, and print the

requested information.

10.1.6 quotaon and quotaoff

These commands enable and disable user and qroup quotas. The actual quotas must have been previously

established using the edquota command. The user must have root privileges to use this command, and

the file systems must have quotas specified in the /etc/fstab file and be mounted. An example entry

in /etc/fstab to enable user and group quotas would be

test#test /test1 advfs userquota,groupquota,rw 0 2

Remember that AdvFS always maintains user and group file information, and these utilities merely turn

quota enforcement on and off. Each time a fileset is unmounted and remounted, the quotaon utility
must be run to enforce user and group quotas.

Fileset quotas are not maintained with these commands – the chfsets utility must be used.

10.1.8 chfsets and showfsets

This command is used for changing attributes of AdvFS filesets. These attributes are written to disk, so
their settings are preserved across reboots and fileset unmount/remount activities.

 159 Chapter 10: Quotas

This AdvFS program allows for changing certain characteristics of an AdvFS fileset. This includes
setting a fileset quota for soft and hard limits on number of files, and soft and hard limits for number of

blocks. Note that the fileset grace period is only set by the edquota program.

Fileset quotas can only be enabled using the chfsets command. There is no need to turn on quotas via

quotaon, or to change /etc/fstab. Fileset quotas are displayed as part of the output of

showfsets and vdf.

When looking at the showfsets output,

% /sbin/showfsets -k test
fset1
 Id : 3e835a55.0006ae8c.1.8001
 Files : 21, SLim= 0, HLim= 0
 Blocks (1k) : 75062, SLim= 0, HLim= 0
 Quota Status : user=off group=off
 Object Safety: off
 Fragging : on
 DMAPI : off

The Quota Status line provides information on the state of the user and group quotas. However, this

has nothing to do with fileset quotas. The the Slim and Hlim values shown on the Files and Blocks
lines provide the current Soft and Hard limits, respectively, for files and file storage for the fileset. In the
example above, fileset limits are not enforced (shown by the limits equal to zero). To turn fileset quotas

on for fileset fset1 and set the file storage hard limit, use chfsets:

/sbin/chfsets -b 100000 test fset1

showfsets -k test fset1
 Id : 3e835a55.0006ae8c.1.8001
 Files : 21, SLim= 0, HLim= 0
 Blocks (1k) : 75062, SLim= 0, HLim= 100000
 Quota Status : user=off group=off
 Object Safety: off
 Fragging : on
 DMAPI : off

If a user now tries to allocate storage in the fileset that exceeds the new quota, an error message will be
displayed and the allocation will not be allowed:

% cp /vmunix /fset1/user1/foo

/fset1: write failed, fileset disk limit reached
cp: /fset1/user1/foo: Disc quota exceeded

Note that root is not similarly limited by fileset quotas.

10.2 In-memory Quota Structures

The dQuot structure and many of the other quota structures are defined in fs_quota.h. The dQuot

tracks disk usage for a user or group on a file system. There is one dQuot allocated for each current user

or group in a file system that is under quota control. The dQuot structure contains fields for its hash
table link and key, quota flags, a quota type, the number of active references to the structure, the uid or

Chapter 10: Quotas 160

gid for that entry, a dQ structure containing the usage and quotas, a pointer to the quota’s associated

filesetNode, and a dqLock to ensure mutual exclusion when modifying the dQuot structure. The

dqLock is protected by the dquotMutex. The dynamic dQuot hash table (DqHashTbl) contains the

active dQuots. The hash bucket lock protects the individual dQuot reference field (dq_cnt) as well as

the dQuot's hash chain pointers.

The fileSetNode structure contains many fields that are used to maintain fileset quotas. The quota-

relevant fields pertain to soft and hard block and file limits, the number of quota blocks and files used in

the fileset, fileset grace limits, a two-element array (qi[]) of quotaInfoT structures (protected by the

fileSetMutex), and a quotaStatus field to track quota state. quotaStatus is set to

QSTS_DEFAULT upon fileset creation, and this value changes to QSTS_QUOTA_SYNC only while we
are in the process of syncing quotas to disk.

The two-element array of quotaInfoT structures stored in the fileSetNode (qi[] field) is used to
track info for each of the quota types. qi[USRQUOTA] is used to access the user quota data (array
element 0) and qi[GRPQUOTA] is used to access the group quota data (array element 1). The

quotaInfo structure contains pointers to the quota bfAccess structure and quota fsContext
structure, fields to store the quota file tag number, the grace periods, flags, number of quota pages,

credentials, and the qiLock which serializes adding storage to the quota file. The qiLock is protected

by the filesetMutex in the fileSetNode structure. The flags field, qiFlags, is set to

QTF_ENFORCED when quotas are being enforced on the fileset.

The constants MAX_FQ_TIME and MAX_DQ_TIME define the default amount of time given to a user

before the soft limits are treated as hard limits (usually resulting in an allocation failure). The timer is
started when the user crosses their soft limit and is reset any time they drop below their soft limit. These

default values are used in the qi_init() function where the quotaInfo structures for both user.quota

and group.quota are initialized. Both constants are equal to 1 week’s time as measured in units of

seconds. These grace periods can be reset to any value using the edquota utility.

10.3 Internal Functions for Maintaining Quotas

The following routines relate directly to quota maintenance and enforcement.

attach_quota (struct fsContext *cp, ftxHT ftxH) - Sets up quotas for a file. Setup entails adding

pointers to up-to-date dQuot structures (filled in by dqget()) to the fsContext structure for each quota

type (user and group). The quota limits and usage are reported in the fields dQBlk32 or dQBlk64

which are parts of a union inside the dQuot structure. The dQuot has flags to help determine if the 32 or

64 bit field should be used.

detach_quota (struct fsContext *cp) – Disassociates quotas from a file. dqrele() is called on each

dQuot pointed to inside the fsContext structure. This function is always called from

vnode_fscontext_deallocate(), which is called when we are trying to reclaim a vnode (due to vnode
recycling or a filesystem unmount).

dqrele (dq) – Macro to call dqput()

dqput (struct dQuot *dq, int blkChng, int bfChng, int dirty, ftxHT ftxH) - Releases a reference to a

dQuot. If the dQuot is dirty, dqsync() is called to flush the data to the appropriate on-disk quota file.

 161 Chapter 10: Quotas

dyn_hash_remove() is then called to remove the dQuot from the hash table and its unique lock is

terminated.

dqsync (struct dQuot *dq, int blkChng, int bfChng, int update, ftxHT parentFtxH) - Updates the on-

disk quota file in the scope of a transaction before freeing a modified in-memory dQuot.

dyn_hash_remove (void * hashtable, void * element, int obtain_lock) – Removes a dQuot from the

dynamic hash table of active quotas.

dyn_hash_insert () – Inserts an in-memory dQuot element into a dynamic hash table of active quotas.

The hash function is based on the pointer to the associated quotaInfoT structure and the quota’s

fsContext structure pointer.

quota_init () - Called from msfs_init() (general startup), to register a transaction agent and initialize a

dynamic hash table for dQuot entries.

quota_files_init (bfAccess *uqbfap, bfAccess *gqbfap, uint32T quotaStatus, ftxHT parentFtxH) -
Initializes the quota files for a new fileset. For each quota file (user and group), page 0 is pinned. Then

the appropriate dQBlk32 or dQBlk64 record structure within page 0 is pinned. The current number of

files within the fileset (excluding the quota files) and the number of blocks in use (also excluding the

quota files) are initialized within the dQBlk32/dqBlock64 structure and the pages are unpinned. This
is all done within a transaction.

advfs_quota_chown (struct vnode *vp, uid_t new_uid, gid_t new_gid, int flags, struct ucred *cred,

ftxHT ftxH) - Transfers usage statistics from one owner to another. It does this with proper locking. The
calculated change is performed via the chk_bf_quota() and chk_blk_quota() routines. The quota amount
being transferred is decremented from the original owner first, then the amount is added to the new
owner’s quotas.

advfs_enforce_on (struct fileSetNode *dnp, int type) - Turns on quotas for a fileset. Called by the

quotaon user command. Note that quotaon must be run after every startup to start quota enforcement

for that fileset.

advfs_enforce_off (struct fileSetNode *dnp, int type, ftxHT ftxH) - Turns off quotas. Called by the

quotaoff user command.

advfs_quota_sync (struct fileSetNode *dnp) – Noop function.

advfs_set_quota (struct fileSetNode *dnp, uint_t id, int type, int size, caddr_t addr, int kernaddr) –

Sets fields in a dQBlk structure. dqget() is called to get the dQuot. If there was no soft limit previously

or the group or user was under the soft limit, but now a soft limit exists and has already been passed, then

the grace period will begin immediately. Once all fields are reset, the dQuot is flushed to disk with
dqput().

advfs_get_quota_info (struct fileSetNode *dnp, caddr_t addr, int kernaddr) - Returns the value of the

fileSetNode->quotaStatus field. This field is set to QSTS_DEFAULT on a newly created
fileset. The only other relevant status values are QSTS_QUOTA_SYNC (set when we are syncing quotas
to disk) and QSTS_LARGE_LIMITS (set if 64 bit quotas are used).

Chapter 10: Quotas 162

advfs_get_quota (struct fileSetNode *dnp, uint_t id, int type, int size, caddr_t addr, int kernaddr) -

Returns current values in a dQBlk structure stored at address addr. The caller specifies the quota type

(USER or GROUP) and the size (32 bit or 64 bit). dqget() is called to obtain the dQuot from disk, then

values found in the on-disk dQuot->dQBlk structure are stored in memory in the appropriately sized

dQBlk structure at address addr.

advfs_set_use (struct fileSetNode *dnp, uint_t id, int type, int size, caddr_t addr, int kernaddr) - Called
by the quotactl() application level function on behalf of a request for Q_SETUSE or Q_SETUSE64. This
call is used to set current inode and block usage, which is not typically done except by the quotacheck
utility to correct usage values. The caller specifies the type (USER or GROUP), the id (USERID or

GROUPID), and the dQBlk size (32 or 64 bit). The function calls dqget(), updates the new dQBlk
values, then calls dqput() to flush the new values to disk. During this update, if a soft limit is crossed, the
grace period is started. Finally, the fileset quota counts are verified and updated in the filesetNode
structures as appropriate, and grace periods are started if necessary.

chk_blk_quota (struct vnode *vp, long change, struct ucred *cred, int flags, ftxHT ftxH) – Verify that
a block change to a particular file is within the quota range and update the quotas accordingly. If the
requested allocation surpasses quota limits, undo the change. If the fileset does not have quotas turned on,
EOK is returned immediately. If quotas are enabled, then calculate the proposed change, adding or
subtracting blocks from the current values to come up with the difference between new and old block
values. A calculated change which is negative indicates that the quota file is no longer reporting correct
values and we may underflow. The incorrect values may be due to an incorrect quota calculation or a

corruption, and now the quotacheck utility must be run to correct the accounting (the user is given a

warning message to run quotacheck). In the mean time, the dQBlk value is set to zero rather than
performing negative accounting with unsigned values, and a flag is set to avoid reporting a warning
message twice.

If the change request looks valid, we copy it into the appropriate dQBlk field, overwriting the previous

value. If the change was positive and neither the FORCE nor ESCAPE_QCHECK flags were set, then
chk_blk_quota_chg() is called on the value. If chk_blk_quota_chg() returns with a failure then our
original change request is backed out and a dqsync() is performed. If chk_blk_quota_chg() returns

successfully, we add or subtract from the dQBlk as expected. dqsync() is then called, passing in the
change so that an undo record can be created. If dqsync() fails, an undo is performed on the changes made

in the dQBlk. If dqsync() succeeds, the fileset blksUsed and filesUsed fields are updated. If during
this update an underflow is detected, it is reported, the field is set to 0, and a flag is set to avoid repeating
these steps again.

The FORCE flag mentioned above is used to allow a deduction to occur, since values may temporarily

increase but cause fragging on close, which will then cause a decrease. A decrease should always be

allowed to take place. The ESCAPE_QCHECK flag is used to allow CFS to finish a cached operation

because it has committed to it and can not do otherwise. The ESCAPE_QCHECK flag is employed when

user or group quotas for a user might be exceeded.

chk_bf_quota (struct vnode *vp, long change, struct ucred *cred, int flags, ftxHT ftxH) - Verify that
adding or deleting a file is within the quota range for a specified type and update the quotas accordingly.
Identical to chk_blk_quota() but refers to file counts rather than block counts.

chk_quota_write (struct fsContext *cp) - Special check to ensure that writing is not being done directly

to a quota.user or quota.group file.

 163 Chapter 10: Quotas

get_clone_usage_stats (struct fileSetNode *dnp) - Since a fileset clone contains a snapshot in time of all
files in a fileset, it also needs to have its own quota files. This routine assists in determining in-use blocks
and files for the clone fileset.

quota_page_is_mapped (struct bfAccess *bfap, unsigned long id) - Specialized routine to increase
performance by avoiding taking locks if not necessary. To synchronize with migrate, check to see if a
quota page is mapped by a real page.

 165 Chapter 11: DMAPI

Chapter 11: Data Management API (DMAPI)

11.1 Introduction
Today's computing environments are characterized by an ever-increasing demand for data storage
capacity. Large amounts of data are stored on UNIX-based servers, and the costs associated with
managing the storage subsystems have been significantly higher than the cost of the storage itself. There
is an ongoing need for intelligent and efficient storage management.

Over the years, a variety of data management applications have been developed, including various
hierarchical storage management applications, data migration applications, unattended backup and
recovery, and various on-line data compression schemes. We can also include in this category various
enhanced data security applications such as automatic data encryption. Throughout this chapter, such
data management applications are referred to as DM applications.

 167 Chapter 12: Lock Management

Chapter 12: Lock Management

12.1 Overview
This chapter is about various types of locks used throughout AdvFS. We will attempt to explain the
different types of locks and why they are used, some general rules when using locks, how to detect some
common locking problems, and an inventory of the AdvFS locks and what they protect.

In general terms, locks are used to prevent different threads from using or modifying a common resource
concurrently. For instance, if you had a multi-threaded application in which a certain routine were run by
each of the threads, and you needed to know how many times the routine had been run, you would
probably insert a counter into the routine that would be incremented each time the routine was executed.
A problem can arise however if two threads attempt to increment the counter at the same time. To solve
the problem, you would seize a lock, increment the counter, and then release the lock. If a second thread
attempted to seize the lock while it was held by the first thread, then it would block waiting for the lock to
be released by the first thread. This would ensure that the counter was incremented exactly one time per
execution of the routine.

Before jumping into the locks, there are several terms that need to be explained. The act of getting access
to a lock is called seizing, asserting, or locking that lock. In this state, the lock is said to be seized,
asserted, held, or locked. Releasing the lock is called releasing or unlocking the lock. Other terms will
be introduced as they are needed in the following sections.

12.2 Lock types and their uses.

12.2.1 Simple Locks

Simple locks are also known as spin locks and mutexes. This is basically just a flag at a known memory
location that indicates if the lock is held or not. It can only be held by one thread at a time. If one thread
holds the lock, and another tries to seize the lock, the second thread will ‘spin’ on the processor until it is
granted the lock. This is why it is called a spin lock. While the thread is spinning, it is consuming
processor cycles.

In the Tru64 UNIX code, the simple lock is a structure of type simple_lock_t which is really just an

unsigned long word. The state of a simple lock can be viewed with the crash utility by using the

locksig <lock> command. This will show the caller and the state of the lock.

The advantage of this type of lock is that it has relatively low overhead; there is not a lot of code needed
to seize, wait for, or release the lock. The disadvantage of this kind of lock is that the processor is busy
while threads are waiting to seize the lock. It might be more efficient, from a system point of view, if the
threads that had to wait for a lock were put to sleep and another thread were allowed to run on the
processor. In this case, a complex lock might behave better, as we shall shortly see. Another
disadvantage of this lock type is that it should only be held for very short periods of time. This is to
prevent other threads from spinning and wasting time on other processors while this lock is held. What is
acceptable? Try to limit to the scope of simple locks to several lines of code. More on this later.

Chapter 12: Lock Management 168

12.2.2 Complex Locks

A complex lock is also called a read/write lock because it can be seized for reading or writing. There
can be many readers, but only one writer. This means that if it is seized for reading, the lock can be
shared among readers, but will block any writers. Similarly, if this lock is held for writing, all other
readers and writers will block until the lock is released.

This lock, of type struct lock, contains a simple lock, plus several additional fields to record state,

number of readers, and indexes into a lockinfo array. There is also an l_lastlocker field that
contains the thread that was last granted the lock; this is often useful in debugging.

The advantage of this kind of lock is that a thread attempting to seize it will block (be put to sleep) until
the lock is available. This means that processor cycles are not wasted on a thread that is merely waiting
for a lock. Another advantage is the fact that the lock can be shared by multiple readers, but will block all
other threads if the lock is seized for writing. Unlike the simple lock, this lock can be held for relatively
long periods of time. The biggest disadvantage to this type of lock is that there is greater overhead than
with simple locks. In fact, there is a simple lock embedded inside the complex lock that guards its
internal fields.

12.2.3 Special AdvFS Lock Types

AdvFS designers added several other special lock types. The first three are the state lock (stateLkT),

the buffer lock (bufLkT), and the ftx lock (ftxLkT). All are implemented as a common lock header

structure (lkHdrT), plus some additional state fields. The lock header contains a simple lock to guard

the state fields, and a type field to identify the lock. There is also a chain pointer, but it is used only by
the ftx lock version of these locks.

These locks can have many different ‘states’, and the code can determine what to do when the lock is
found to be in each of the different states. This makes this type of lock more flexible than a read/write
lock, while retaining the relatively low overhead of the simple lock. The disadvantage of this type of lock
is that AdvFS must maintain all the code for their use.

As of Tru64 UNIX Version 5.1B, there are 3 state locks (bfAccessT.stateLk, vdT.active, and

bfSetT.cloneDelState), one buffer lock (bsBuf.bufLock). and 9 ftx locks

(bfAccessT.xtntMap_lk, bfAccessT.mcellList_lk, bfSetp.dirLock,

bfSetp.fragLock, vdT.del_list_lk, vdT.stgMap_lk, vdT.mcell_lk,

vdT.rbmt_mcell_lk, and domainT.BfSetTblLock).

Ftx locks are unlike all other locks in one special way. All other locks tend to be seized and released in
the same code path, meaning that most calls to seize a lock will be paired with a call to release the lock.
This is not true for the ftx locks. These are seized at some point during a (sub)transaction, but are never
explicitly released. They are associated with a given transaction structure, and are released when that
(sub)transaction commits or aborts.

Active range locks are another mechanism unique to AdvFS that are used to synchronize threads acting
within a specific range of the file. They are used primarily by direct I/O routines to synchronize with
threads that tend to bring pages into the buffer cache, as well as to prevent direct I/O reads and writes
from acting on the same disk sectors simultaneously (see section 8.12.2). Active ranges have some
characteristics of both spin locks and complex locks. They are always seized for exclusive use; but if one
thread holds the range, other threads will sleep while waiting to be granted the range. One advantage of
active range locks is that they can be seized by one thread and released by another. This must be done
when a directIO read/write is done via the AIO interface. One thread seizes the active range, starts the
I/O, and then returns to the caller. The I/O is completed and the active range is released in the context of

 169 Chapter 12: Lock Management

the I/O completion thread. One disadvantage of the active range locks is the fact that all the code is

maintained in AdvFS code space. The routine insert_actRange_onto_list() is used to seize an

active range, while remove_actRange_from_list() is used to release it.

12.2.4 Other Kernel Lock types

There are several other lock types that you may encounter in the kernel. The first is a probe, and this is a
special lock type that was used throughout AdvFS for evaluation of testing code coverage. There were
tools that allowed the tests to be run, and then evaluate how many times each probe had been passed.
From this, it could be determined whether the tests were adequately testing the AdvFS code paths. This
mechanism was deemed to be obsolete in the original Version 51B (wildcat) project and was removed.
However, the wildcat changes were backed out before the wcalphaos project changes were implemented,
and the probes are still in place. We are currently removing the probes on a case by case basis. When
changes are made to existing routines, the submitter also removes the probes associated with that routine.
Brian Tsao put together a document on the steps necessary to remove a probe. Those guidelines can be

found on anw:/usr/specs/filesystem/advfs/probeRemoval.html.

The second lock type is the read/write spin lock that was implemented in Tru64 Version 5.0. These have

a type of rws_lock_t, and are not currently used by AdvFS.

The third lock type is the MCS or queued lock that is used only on NUMA-systems. These are needed on
NUMA boxes because of the unfair access to memory. CPUs local to the memory can starve out non-
local CPU's if a simple spin lock is used. MCS locks are used for NUMA machines by default, but this

can be overridden. The sysconfig generic variable called locktype is used to control this; if set
to 0 will specify spin locks and if set to 1 will specify MCS locks. (A value of 1 is ignored on non-NUMA
platforms.)

12.2.5 Locking at the utility/library level

There are quite a few utilities and commands that perform an operation on one particular domain, but only
one instance of any of these utilities should be running at one time on the domain. Locking at this level is
kept to a minimum so that filesystem access is not limited by administrative maintenance to the system.

The motivation for the synchronization is two-fold:

1. Some of these utilities work towards the same result, either directly or indirectly. For example,

doing a rmvol and defragment simultaneously on the same domain will both move file

extents among disks and reduce fragmentation in the domain. Also, it is a waste of machine time
to defragment a disk that this being removed from the domain.

2. The lack of synchronization may cause a utility to fail. For example, if rmvol is run at the same

time as defragment, when rmvol successfully removes a volume, the defragmenter will fail

when it tries to reference that volume. Even more serious, a kernel failure may result if a vd
pointer is referenced after that volume has been removed and the pointer has become invalid.

Chapter 12: Lock Management 170

For the purpose of synchronization, we divide the utilities and commands into three categories:

Fast addvol, chfsets, chvol, clonefset, migrate, mkfset, renamefset, rmfdmn, switchlog
Slow balance, defragment, rmfset, rmvol, verify
Special Case mkfdmn, mount_advfs, showfdmn, showfsets

The theory behind this categorization is that if a fast utility is running and another utility (X) wants to run,
then X should just wait, because the fast utility will be done soon. But, if a slow utility is running and X
wants to run, X should print an error message and exit, because the wait would be too long.

The exceptions to these rules are the special case utilities. When executed first, they are treated like fast
utilities, in that they will cause subsequently-run utilities (both fast and slow) to block and wait until
completion. But, if a slow utility is already running, the special case utility will not wait or exit with a
failure – it will execute as normal.

This behavior is implemented by locking the /etc/fdmns and /etc/fdmns/<domain-name>
directories with special protocols. These are explained next.

Fast Utility Locking Protocol

First lock /etc/fdmns, by calling lock_file. This causes a wait if the lock is already held. Then

lock /etc/fdmns/<domain-name> by calling lock_file_nb. If the lock is already held, the
utility will exit with an error message indicating that another utility is claiming exclusive use of the
domain.

With the above two locks held, the bulk of the utility work and calls into the kernel are completed. Since
this is a fast utility this work should not take a long time. Lastly, the file locks are unlocked explicitly or
by process rundown.

Slow Utility Locking Protocol

First lock /etc/fdmns, by calling lock_file. This causes a wait if the lock is held. Optionally, do a

small amount of work. Then lock /etc/fdmns/<domain-name> by calling lock_file_nb. If
the lock is already held, an error message is printed and the utility exits. Optionally, do a little more

work. Next unlock /etc/fdmns by calling unlock_file. Now do the major part of the work (this

should be the only step that takes a significant amount of time). Lastly, unlock

/etc/fdmns/<domain-name> by process rundown.

These protocols ensure that subsequent utilities find /etc/fdmns/<domain-name> held when a
slow utility is already running, causing the latter utility to exit with an error. However, fast utilities hold

both locks for their duration, which will cause a subsequent utility to block on /etc/fdmns when it
attempts to lock that first.

Special Case Utility Locking Protocol

The special case commands are done differently because it is often convenient to run them (especially
showfsets and showfdmn) to monitor the progress of a utility.

 171 Chapter 12: Lock Management

First lock /etc/fdmns, by calling lock_file (in most cases with the LOCK_SH flag). Do the small

amount of work necessary for this utility. Unlock /etc/fdmns, explicitly or by process rundown. This

protocol allows concurrent access across domains, except for the duration that /etc/fdmns is locked,
which is very short.

Note that the /etc/fdmns directory lock and its subdirectory domain locks are only advisory: they

don't actually prevent any action from occurring on the domains and files they lock, so it's important that
all utilities working on a specific domain follow this scheme.

12.3 Good things to know when using locks
There are some simple things to understand when using kernel locks.

• In AdvFS there is a naming convention in which global variables (and locks) have the first letter
of the name capitalized. Non-global variables have the first letter in lower case. Therefore, the

FtxMutex and BfAccessFreeLock are global locks, while the bufLock and bfIoLock

are locks with a smaller scope. One lock that breaks this rule is the domainT.BfSetTblLock.
I believe this was a global lock at one point, and the name was not changed to adhere to the
convention when it was moved into the scope of the domain.

• The kernel does not like to return from a system call with either simple or complex locks held.

There are lock counters in the thread() and pcb() structures, and, if not zero, will cause a

panic when returning from kernel code. There is a lock_disown()/lock_adopt_lock()
set of routines that can be used to avoid this problem, but AdvFS does not use them. There is one
situation where AdvFS does return from the kernel mode with a lock held, and this is in the case
of a read/write using directIO and AIO. In this case a file range is locked by the thread that starts
the I/O, and the thread that completes the I/O must release the lock. This path avoids the problem
by using active range locks instead of simple or complex locks.

• A thread may not hold a simple lock and then sleep or block for any reason. This could cause
indefinite holding of a simple lock.

• Similarly, a light-weight context thread cannot block, and therefore cannot use complex locks.
There is no real wake-up mechanism for this case. In AdvFS, the I/O completion path through

bs_osf_complete() is executed in a light-weight context.

• When a thread must seize more than one lock, it must do so in hierarchy order to prevent

deadlocks. All kernel locks are declared in the file lockinfo.c, with locks earlier in the file
being higher in the hierarchy, and therefore seized first. A deadlock is a situation where 2 or
more threads block each other’s ability to proceed. Consider the following example. Thread 1
seizes lock A and then attempts to seize lock B. Meanwhile, thread 2 has lock B seized, and
attempts to seize lock A. In this situation, both threads are deadlocked and will never be able to
proceed. By adhering to the hierarchy, both threads will seize lock A and then lock B. A single
thread can deadlock with itself if it holds a lock and attempts to seize that lock again in a non-

recursive fashion. When running in lockmode == 4, an error will be generated if a thread
seizes locks in an out-of-hierarchy order. If a thread must seize locks in an out-of-hierarchy
order, it can do so safely by using the lock try mechanism. For complex locks this includes the

lock_try_read() and lock_try_write() routines, and for simple locks, the

simple_lock_try() routine. When these routines are called, the lock will be seized if it is

not already held, and will not be seized if it is already held.

Chapter 12: Lock Management 172

• There are a variety of other lock routines to help avoiding locking problems. The recursive lock
routines allow a single thread to seize a lock multiple times without deadlocking itself. Normally
if a thread holds a particular lock, and then attempts to seize the same lock, it will wait forever for
that lock to be released, and is said to be deadlocked with itself. The recursive lock routines help
to avoid this sometimes-unavoidable situation. If a lock is seized recursively, it must be released

as many times as it has been seized. Routines such as lock_islocked() tell if a lock is

already locked, and lock_holder() will tell if the current thread already holds a lock. For
complex locks, a lock can be upgraded from a shared lock to an exclusive lock by using

lock_read_to_write(), and can be downgraded by using lock_write_to_read().

Look through lock.c for various flavors of these routines.

• In lockinfo.c, there are flags of value ORDERED and ORDNEXT that are sometimes used,

and bear mentioning. If there is a class of lock for which many locks actually exist and can be
held at the same time, then the ORDERED flag is specified, and indicates to the kernel that the
application has determined an ordering for seizing locks within this class to prevent deadlocks.

For instance, the logDescT.descLock is ORDERED because two can be held simultaneously

without hierarchy violation, and the code in lgr_flush_start() explicitly avoids
deadlocking by using the lock try mechanism. A different method for avoiding a deadlock is

used for the bfAccessT.bfaLock which is also ORDERED. In this case, a thread will seize

the bfAccessT.bfaLock for the clone file before seizing the same lock for the original file in

bs_access_one(). It really doesn’t matter what mechanism is used to prevent deadlock,

just that there is such a mechanism.

• The ORDNEXT flag for a lock class indicates that the lock is at the same hierarchy level as the

next lock declared in lockinfo.c. This is used to avoid lock hierarchy violations when

lockmode == 4 and there is some external synchronization mechanism between the two lock

classes to avoid deadlocks.

12.4 Debugging lock usage

12.4.1 Using the lockinfo command

Some of this information is also available in the Tru64 System Configuration and Tuning Guide.

Without showing all the options available for this command, the command is run as:

lockinfo <command> <command-args>

When you enter a lockinfo command, the utility first opens the lockdev pseudo driver and turns on lock
statistics gathering. Then, the utility forks and executes the specified command. After the command

completes, the utility turns off lock statistics gathering (closes lockdev), collects the data, and sends it

to stdout. The output data shows the locking done by the operating system during the execution time

for command.

To gather statistics with lockinfo, follow these steps:

1. Start up a system work load and wait for it to get to a steady state.

2. Start lockinfo with sleep as the specified command and some number of seconds as the

specified cmd_args. This causes lockinfo to gather statistics for the length of time it takes

the sleep command to execute.

 173 Chapter 12: Lock Management

3. Based on the first set of results, use lockinfo again to request more specific information about

any lock class that shows results, such as a large percentage of misses, that is likely to cause a
system performance problem.

For example, the following command causes lockinfo to collect locking statistics for 60 seconds:

lockinfo sleep 60

The output from this command will look similar to that shown in Table 12.1.

Table 12.1 Sample output from the lockinfo command.

hostname: sysname.node.corp.com

lockmode: 2 (SMP default)

processors: 4

start time: Wed Jun 9 14:38:05 1999

end time: Wed Jun 9 14:39:05 1999

command: sleep 60

tries reads trmax misses percent sleeps waitmax waitsum

 misses seconds seconds

bsBuf.bufLock (S)

5718642 0 45745 194509 3.4 0 0.00007 0.63226

lock.l_lock (S)

5579643 0 40985 75656 1.4 0 0.00005 0.16531

thread.lock (S)

1989132 0 24817 21795 1.1 0 0.00003 0.03864

vnode.v_lock (S)

1578583 0 49207 1527 0.1 0 0.00002 0.00443

.

.

inifaddr_lock (C)

1 1 1 0 0.0 0 0.00000 0.00000

total simple_locks = 28545191 percent unknown = 0.0

total rws_locks = 1429 percent reads = 100.0

total complex_locks = 2764296 percent
reads = 33.2

percent unknown = 0.0

The first six lines of output specify the system, its lockmode attribute setting, how many processors it

has, the start and end times of the statistics gathering, and the command that was run. Next, a table with
statistics data for each lock class is displayed. In this example, the lock class entries in the table are

sorted by the number of tries. This is the default sort order, but can be changed using the –sort option.

(Note that the names of the locks are the strings used to declare each lock in kern/lockinfo.c). The
data in each column are explained in this table:

Chapter 12: Lock Management 174

Column Heading Meaning

tries The number of tries for asserting (seizing) the lock.

reads The number of attempts on read.

trmax The maximum number of readers in the critical path (for a C
class lock) or the maximum number of cycles spent holding the
lock (for an S, RWS, and MCS class lock).

misses The number of lock misses.

sleeps The number of blocks encountered while waiting for the lock.

waitmax The maximum amount of time (in seconds) spent waiting for a
lock.

waitsum The total (in seconds) of all times spent waiting for the lock.

percent misses The lock miss percent.

When diagnosing a system problem, certain statistics are more important than others. The following
results may indicate a problem:

• A large number of tries. This is simply the number of times the lock was attempted to be seized.
If this number is large but the path being tested seizes and releases this lock many times, this may
not indicate a bug. However, it would probably be beneficial to consider the locks being taken
and whether they are needed or can be seized fewer times.

• A percent misses value that is too high. "Too high" varies somewhat, depending on the lock
class. A kernel developer who is testing VM code under development might consider any
percentage over 1 percent "too high" for certain kinds of locks. A support representative testing
released product software should look for percent misses values that exceed the range of 5 to 7
percent.

• A large waitsum value. This it the total time that threads spent waiting for this lock to be
released, so a large value here indicates a lot of inter-thread lock contention. Perhaps the lock can

be held for shorter periods of time in certain paths to reduce this contention. Using the –class

option for lockinfo may be useful in determining which paths generate the most contention.

This will be discussed next.

 175 Chapter 12: Lock Management

In the first example of lockinfo output, a few locks show high values in the tries, percent

misses, and waitsum columns. The following example uses lockinfo to show the code paths where

one of these, bsBuf.bufLock, is asserted with high frequency:

lockinfo -class=bsBuf.bufLock sleep 60

hostname: sysname.node.corp.com

lockmode: 2 (SMP default)

processors: 4

start time: Wed Jun 9 14:38:05 1999

end time: Wed Jun 9 14:39:05 1999

command: sleep 60

Locks asserted by PC for lock class: bsBuf.bufLock

count miss caller line # return line #

--
--- 733418 41275 bs_pinpg_one_int: 4494 bs_pinpg_clone: 4125

704579 49182 bs_pinpg_one_int: 4460 bs_pinpg_clone: 4125

697209 0 find_page: 5986 bs_pinpg_one_int: 4368

680910 30359 bs_unpinpg: 5461 log_donerec_nunpin: 3149

544828 12869 bs_q_lazy: 2006 bs_q_list: 1142

496294 15537 find_page: 5670 log_donerec_nunpin: 3149

.

.

tries reads trmax misses percent sleeps waitmax waitsum

 misses seconds seconds

bsBuf.bufLock
(S)

5322157 0 45745 366848 6.9 0 0.00009 1.77041

.

.

For the bufLock, we could conclude that there is no contention for this lock when called from

find_page() in the bs_pinpg_one_int(), but that there is some contention (6.3%) when locked in
bs_pinpg_one_int() directly.

Based on the information returned about high frequency code path assertions for the bsBuf.bufLock
lock, the kernel developer can then look for ways to reduce the amount of locking for this class. Strategies
for reaching this goal might include one or more of the following:

• Changing the code to use a read/write spin lock rather than a simple spin lock.

• Reducing lock hold times by moving some work outside the time that the lock is being held.

Chapter 12: Lock Management 176

• Making more radical changes in kernel algorithms to reduce the frequency of lock assertions or
the amount of time that locks are held.

12.4.2 Lock Mode

In order to have kernel lock debugging enabled, the lockmode that the system is running under must be

set to 4. This is a sysconfig generic variable. See the sys_attrs_generic(5) man page for

more information about the lockmode, locktype, and locktimeout configurable variables when

debugging lock issues. The lockinfo command will gather lock statistics for lockmode values of 2,
3 or 4. Note that the simple lock macro SLOCK_HOLDER() that returns true if the current thread (cpu)
holds the simple lock, otherwise false, will only work as expected when running with a lockmode value of
4. For all other lock modes, it acts the same as SLOCK_LOCKED(), returning true if the lock is held by
any thread or cpu. Usually this behavior is OK, but beware of this when tracking down problems if there
is a question of whether a thread is correctly synchronizing itself using simple locks and this macro on a
system in running lower lock modes.

12.4.3 Detecting deadlocks

Deadlock detection is usually straight-forward. The primary symptom is a thread or set of threads that are
hung attempting to seize a lock. A single thread can also deadlock with itself if it holds a lock and
attempts to seize it again in a non-recursive fashion. To determine if two threads are deadlocked, select
one thread and determine which locks it currently holds, and which lock it is attempting to seize. Do the
same for the second thread. If the locks that each are attempting to seize are held by the other, then the
threads are deadlocked. One code path must be changed either to seize the locks in the correct order, or to
use a lock-try type of mechanism.

Determining which locks a thread holds can sometimes be tricky, since there is no linked list of locks per

thread. The number of simple locks held by the thread is stored in pcb.pcb_slock_count, and the

number of complex locks held is kept in thread.lock_count. Using these values will help you
figure out which set of locks need to be evaluated. Obviously only one thread can hold a simple lock at a
time, and simple locks are held for short periods, so if there are simple locks held, it is usually possible to
determine these by looking back through the recently executed code path. The same thing can be done

for complex locks, but there is a way to verify these. The lock.l_lastlocker field will hold the
thread that last locked the lock. If there are many readers holding the lock, this may not help a lot, but if
the thread holds the lock exclusively, then its thread pointer will be in this field.

Don’t forget that deadlocks can occur between any kind of resource, so state locks and active ranges can
also contribute to the deadlock. Deadlocks involving state locks may have to be inferred by the code path
involved since there is no thread tracking unless the kernel has been compiled with the ADVFS_DEBUG

directive enabled. Active ranges contain an actRange.arState field that indicates what type of
action (migrate, direct I/O, etc.) has taken the range, so this can be helpful for determining whether the
range is involved in the deadlock.

12.4.4 Determining if there is excessive lock contention

This is usually determined by large waitsum values generated for the lock class by the lockinfo

command. If there are a number of paths seizing this lock, you may need to run the lockinfo

command with the –class option as shown above, and then examine each of the code paths to

determine which are holding the locks for long periods and contributing to the contention.

 177 Chapter 12: Lock Management

12.4.5 Determining if a lock is held for excessive time.

This section is focused toward simple locks. A complex lock or the various state locks can be held for an
indeterminate amount of time, so that analysis really becomes detection of excessive lock contention
which has already been discussed in section 12.4.4. Theoretically, simple locks should be held for short
periods of time. If a thread spins for more than a configurable number of seconds while waiting for a
simple lock, then the thread holding the lock is violating this rule. Most times when this is encountered it
is a coding error and the lock release was omitted in a code path. At other times, it is because the scope
of work done while holding the simple lock is too large or indeterminate.

If a thread waits more than 15 seconds for a simple lock, and the kernel is running in lockmode == 4,

then the message "simple_lock: time limit exceeded" is generated and the kernel panics.

(Actually, the 15 seconds timeout value is the default value for the sysconfig variable

locktimeout. This value can be changed, but do so with caution; see sys_attrs_generic(5)

man page). The panic gives the Program Counter (pc) for the thread that is attempting the lock, the lock

address, and the state of the lock. In this case, the thread that detects the condition is not the thread that is

holding the lock. However, the slock.sl_data field will contain the low-order 32 bits of the
instruction that called the lock routine. This gives you a routine and line number of the code path that
seized the spin lock. Searching for a thread that is in this code path usually turns up the thread that is
holding the lock. As a bonus, the code path that this thread is in is the path that has held the lock for an
excessive amount of time.

To proactively tell what simple locks are being held for long periods of time, you can set up the lock to

timeout if it is held too long. To do this, set the sysconfig generic variable lockmaxcycles to
the number of cycles in, for example, one second. Then, if the lock is ever held for more than one second,
the lock routines will panic the system, and you will be able to see which lock and path held the simple
lock for this amount of time. Use this with caution, and only in a test environment. To determine what
value to set this variable to, determine the number of cycles per second for your machine. Use the crash

command rpb –p. This will show the processor type and speed for each cpu. Set the value of

lockmaxcycles to the speed of the cpu to get a one-second timeout value. For example, issue the

rpb –p command:

crash> rpb -p

CPU 0: PROCESSOR: EV56 (21164A) pass 2 (532 MHz)

CPU 1: PROCESSOR: EV56 (21164A) pass 2 (532 MHz)

Then reset lockmaxcycles to the number of cycles per second:

sysconfig –r generic lockmaxcycles=532000000

This would cause a lock panic if any simple lock were subsequently held more than one second. The
timeout value you select may vary. Note that the resulting panic will be in the context of the thread that is
holding the lock. There is no problem of getting a lock panic generated by one thread for a lock actually
held by another thread as we saw previously.

Another way to see how long simple locks are being held is to examine the trmax values for a lock

generated by the lockinfo command. For example, in Table 12.1 the bsBuf.bufLock has a trmax

value of 45745. If we are running on the same machine as we ran the rbp –p command, we know that

Chapter 12: Lock Management 178

this is a 532 MHz machine, so divide the trmax value by the clock rate in MHz to give the number of

microseconds that the lock class was held. For the bsBuf.bufLock in Table 21.1, this is (45745/532)
or 85 microseconds.

12.5 AdvFS Lock Inventory
The following sections detail the various AdvFS locks in Tru64 UNIX Version 5.1B. For some locks
some additional notes have been added. These notes can be expanded as more information becomes
available.

12.5.1 Domain Locks

There are a number of locks that work on the domainT level. These are summarized in the following

table.

Lock Lock Type Scope Comments

DmnTblLock Complex System Synchronizes domain activation / deactivation

DmnTblMutex Simple System Guards domain lookup (along with the DmnTblLock)

rmvolTruncLk Complex domainT Serializes file truncation and volume removal.

ftxSlotLock Complex domainT Checks for hierarchy violations between locks &
starting a root ftx. (Debugging Only)

scLock Complex domainT Guards service class table

xidRecoveryLk Complex domainT Guards the domainT.xidRecovery structure which is
used by CFS to hold xid recovery status information.

mutex Simple domainT Mutex protecting vd.mcell_lk, vd.stgMap_lk, totalBlks,
freeBlks, vd.ddlActiveWaitMCId, bfSetHead, and
bfSetList

lsnLock Simple domainT Guards fields related to the lsnList

vdpTblLock Simple domainT Guards the domain's vdpTbl[] array, maxVds, and
vdCnt

BfSetTblLock Ftx Lock domainT Guards bfSetT in the domain, particularly during fileset
state changes (open, creation, deletion, etc.)

dmnFreezeMutex Simple domainT Guards dmnFreeze* fields.

ssDmnLk Simple domainT SmartStore Lock

ssDmnHotLk Simple domainT SmartStore Lock

 179 Chapter 12: Lock Management

There are two domain locks that may bear investigation: the use of the DmnTblLock and the

DmnTblMutex appear to overlap. For instance, in domain_lookup() there is a check that either the

DmnTblMutex or the DmnTblLock is held. Why isn’t there just one lock for this?

12.5.2 BitfileSet Locks

Lock
Lock

Type
Scope Comments

FilesetLock Complex System
Guards FileSetHead list of mounted filesets and
the fileSetNodeT.fsNext and fsPrev chain fields.

LookupMutex Simple System
Synchronizes threads inserting, deleting, or
looking up bfSet descriptors in the bfSet table.
Guards the BfsFreeListStats structure.

fragLock Ftx Lock bfSetT Guards the manipulation of the frag file.

dirLock Ftx Lock bfSetT Guards the bitfile set’s tag directory

setMutex Simple bfSetT Mutex for guarding the fragLock and dirLock

accessChainLock Simple bfSetT
Guards the chain of access structures in the
bfSetT structure.

cloneDelStateMutex Simple bfSetT
Mutex to guard cloneDelState and the
xferThreads field in the bfSetT

cloneDelState State Lock bfSetT State of clone fileset deletion

bfSetMutex Simple bfSetT Guards bfSetT.bfSetFlags field.

filesetMutex Simple fileSetNodeT
Guards the quota and fileset statistics fields in
the fileSetNodeT structure.

Chapter 12: Lock Management 180

12.5.3 Device Locks

Lock Lock Type Scope Comments

ioQLock Simple ioDescHdrT Protects the I/O queue chain; one lock per I/O queue.
There are 24 I/O queues per device.

vdIoLock Simple vdT Guards vdT.syncQIndx and vdT.error* fields

vdStateLock Simple vdT Guards the vdT.vdState and related fields.

ddlActiveLk Complex vdT Synchronizes DDL activity on a vdT.

active State Lock vdT State flag for whether I/Os are outstanding on device.
Protected by the vdT.vdIoLock.

mcell_lk Ftx Lock vdT Guards vdT.nextMcellPg

rbmt_mcell_lk Ftx Lock vdT Guards mcell allocation from the rbmt mcell pool.

stgMap_lk Ftx Lock vdT Guards free-space cache (vdT. freeStgLst).

del_list_lk Ftx Lock vdT Guards disk's Deferred Delete List (DDL).

ssVdMsgLk Simple vdT Guards ssVdMsgState field

ssVdMigLk Simple vdT Guards migrate fields in SS volume information

ssFragLk Simple vdT Guards frag list in SS volume information

12.5.4 Logging/Transaction Locks

Lock Lock Type Scope Comments

FtxMutex Simple System Guards domainT.ftxTbld

descLock Complex logDescT Guards most fields in log descriptor and log statistics
fields in the domainT.

flushLock Complex logDescT Guards the fields in the log descriptor that govern which
log pages are being written to disk.

 181 Chapter 12: Lock Management

12.5.5 File Locks

Lock Lock Type Scope Comments

file_lock Complex fsContext Protects the file during various operations; see
paragraph below.

kdmLock Complex fsContext Used by DMAPI code to enforce exclusive and shared
access rights to the file.

fsContext_mutex Simple fsContext Guards fsContext fields, particularly the statistics and
flags fields.

bfIoLock Simple bfAccessT Guards the I/O and buffer cache related fields in the
access structure inclunding the dirtyBufList. The
bsBuf.accFwd and accBwd fields for buffers chained
onto this access structure are also guarded.

bfaLock Simple bfAccessT Guards bfAccess structure fields such as bfVp, bfObj,
refCnt, accessCnt, mmapCnt, stateLk, and bfState.

migTruncLk Complex bfAccessT Guards a file from being migrated while storage is
being added to, or removed from, the file.

trunc_xfer_lk Complex bfAccessT Prevents a clone from being read while the original file
is being truncated and the extents are being transferred
to the clone.

clu_clonextnt_lk Complex bfAccessT CFS-only lock protecting a clone.

cow_lk Complex bfAccessT Used to serialize threads that are COWing pages with
those attempting to examine or modify the extent maps
of the original file.

stateLk State Lock bfAccessT Contains current state of the bfAccessT structure.

xtntMap_lk Ftx Lock bfAccessT Protects extent maps in bfAccessT

mcellList_lk Ftx Lock bfAccessT Protects the on-disk Mcells.

actRangeLock Active
Range

bfAccessT Locks a range of the file for kernel use. (see below)

The fsContext.file_lock is used for many reasons, including the following. It is seized for shared

access: 1) while searching a directory, 2) while reading a page in msfs_getpage(), and 3) while
syncing a file's data. It is seized for exclusive access while 1) adding or removing storage to a file, 2)
changing bitfile attributes, 3) while inserting or deleting an entry in a directory, 4) on file write if the file
is being extended or opened in IO_APPEND mode, and 5) when changing cache policy for a file (mmap,

ADL, or directIO). The use of the file_lock in direct I/O paths is discussed in section 8.12.1.

Chapter 12: Lock Management 182

The migTrunc lock protects a file from being migrated while storage is being added to, or removed

from, the file and, conversely, it prevents storage allocation to or deallocation from a file during the time
that the file is migrated. The migrate code path takes the lock exclusively, so while the file is migrated,
there is very little else allowed on the file: it can be read, but that's about all that can be done to it. The
storage allocation/deallocation paths take the lock shared, so they lock out migration but not each other.

There is an ordering constraint: the migrate code path takes the migTrunc lock on a file and then starts a

root transaction, provided the file is not a clone. But if the file is a clone, the migTrunc lock is taken
after the root transaction is started. That creates an ordering dependency that has to be obeyed by the rest
of the code, otherwise deadlocks might occur. The reasons for this constraint are technical: the clone file
being migrated might have storage allocated to it while the migration is going on. Being able to

manipulate the lock within a transaction allows bs_cow_pg() to coordinate storage allocation and
migration, something that would be tricky (if not impossible) in the other order.

The use of Active Range locks is discussed in Sections 8.12.2 and 8.12.7.

12.5.6 Buffer Cache Locks

Lock Lock Type Scope Comments

bufLock Simple bsBuf Guards most fields within the bsBuf, but primarily the
state.lock and the fields that identify the buffer
(bfPgNum, tag, bfPgAddr).

lock Buffer Lock bsBuf A state field in the buffer

rangeFlushLock Simple bsBuf Guards rangeFlushT.outstandingIoCount. There may be
multiple rangeFlushT's associated with a bsBuf.

 183 Chapter 12: Lock Management

12.5.7 Other Locks

Lock Lock Type Scope Comments

InitLock Complex System Used during AdvFS initialization to ensure that
racing domain activations only do system-wide
initializations one time.

TraceLock Complex System Used for synchronizing trace events (Debug Only).

BfAccessFreeLock Simple System Guards global access lists: ClosedAcc and FreeAcc

LockMgrMutex Simple System Used only during AdvFS initialization when
ADVFS_DEBUG is enabled. (Debug Only)

mutex Simple msgQT Guards the message queue contents

dqhash_chain_lock Simple DqHashTbl Guards DqHashTbl hash for dquot structs

dqLock Complex dQuot Guards dQuot struct (quotas)

qiLock Complex Quota File Serializes adding storage to the quota file.

ssListTpool.plock Simple System Guards pool of Smart Store list worker threads

ssWorkTpool.plock Simple System Guards pool of Smart Store general worker threads

ssStoppedMutex Simple System Guards condition variable for shutting down SS.

 185 Chapter 13: AdvFS System Calls and Utilities

Chapter 13: AdvFS System Calls and Utilities

13.1 Overview

This chapter is an overview of how some of the AdvFS utilities function. The utilities covered

include vdump, vrestore, rvdump, rvrestore, fixfdmn, verify, salvage, vfast,

freezefs, thawfs, advscan, and the vods tools. There is additional information on these

utilities in the man pages and in Chapter 5 of the Tru64 AdvFS Administration Guide.

Vfast is a relatively new utility that runs in the background and attempts to maximize the

performance within AdvFS domains by defragmentation and balancing loads across disks.

Vdump, vrestore, rvdump, rvrestore, freezefs, and thawfs are used for file

backup and restore operations. Fixfdmn ,verify, and salvage are used to check, and

optionally fix, the consistency of domain metadata. Advscan is used to check the consistency

between the /etc/fdmns directory and the data on volumes. The vods tools are used
primarily by engineering to examine on-disk AdvFS data structures.

Sometimes customers wonder which of the tools we provide are most appropriate to use when
they suspect or experience domain corruption. Here are a few guidelines.

• The verify utility is fairly old, and the use of ‘fixfdmn –n’ should generally be

used to check the consistency of domains. Fixfdmn checks more corruption cases than

verify.

• If a domain is unmountable, then fixfdmn can be used to check and repair the metadata

on that domain.

• If a domain is unmountable and cannot be repaired, salvage can be used as a method

of last-resort to extract data from files in that domain. It does not fix any metadata or

make the domain mountable. It is generally recommended to run fixfdmn before

resorting to the use of salvage.

First, let’s look at how a call from a typical application makes its way down into the kernel.

13.2 Trace of AdvFS System Call

The following is an example trace of an AdvFS system call (in this case a call from rmvol)
from user space into the kernel.

rmvol.c: main()

• remove_volume (dmnName, volName)

- advfs_remove_volume()

� advfs_syscall(ADVFS_OP_REM_VOLUME)

• msfs_syscall(ADVFS_OP_REM_VOLUME)

o msfs_real_syscall(ADVFS_OP_REM_VOLUME)

Chapter 13: AdvFS System Calls and Utilities 186

• msfs_syscall_op_rem_volume()

Starting in user space, remove_volume() is called from main() within the rmvol.c file.

remove_volume() is a local function found in rmvol.c, and from this routine we call into the

libmsfs library by calling advfs_remove_volume(). The libParamsT buf struct is setup
here, which is a union of all the AdvFS structures specific to each kernel call. In this case, we

insert our domain and volume info into the libParamsT.remVol union structure.

advfs_syscall() is then called, passing in an operation type of ADVFS_OP_REM_VOLUME. This

is actually a wrapper function for msfs_syscall(). msfs_syscall() is called passing the opType

(ADVFS_OP_REM_VOLUME), a pointer to the libParamsT , and the size of

libParamsT.remVol .

msfs_syscall() lives in msfs/osf/msfs_syscalls.c. If AdvFS is not installed on the

machine, the system call will error out here. If AdvFS is installed, MsfsSyscallp will have
been setup to point to msfs_real_syscall() in bs_kernel_pre_init(). This is how we get entry into

the AdvFS kernel code that will only be followed if AdvFS is installed. MsfsSyscallp is
defined as a pointer to a function. From here msfs_real_syscall() is called with the opType of the

kernel call we are seeking, in this case ADVFS_OP_REM_VOLUME.

msfs_real_syscall(), located in msfs/bs/bs_misc.c, is where the actual call into the kernel
occurs, through a huge switch statement in this function. In this function, the opType drops the

'ADVFS' part, so opType becomes OP_REM_VOLUME. A big switch statement is then used to

match the opType, which then determines the specific kernel function will be called. In this
case, the kernel function msfs_syscall_op_rem_volume() will be called after appropriate error
checks are performed.

msfs_syscall_op_rem_volume() is located in bs_misc.c, and starts the kernel work of the
original call.

13.3 vdump/vrestore

The vdump and vrestore utilities provide basic file system backup/restore functionality that

is compatible at the functional level with UFS dump and restore.

Key Features of vdump:

• Performs full or incremental backups on filesets or clone filesets

• Backs-up any associated extended attributes (ACLs, property lists, etc.)

• Partial fileset backup/restore (directory level backup) is possible with

vdump/vrestore

• Remote versions of the utility can backup/restore to/from a device connected to a remote
machine.

• Can be used to backup other file systems such as UFS, NFS, etc., apart from AdvFS.

• Provides protection against data corruption by XORing the blocks and making it part of
the save set.

• Compression of data blocks during backup.

 187 Chapter 13: AdvFS System Calls and Utilities

Key features of vrestore:

• The backed-up fileset can be restored using a corresponding version of the vrestore
utility.

• Browsing and selective restoration of data from the saveset is possible.

However, vdump and vrestore differ from dump and restore in the following ways:

• Vdump works at the logical file system level rather than in terms of inodes (which dump

does). Vdump scans the directories for files and uses regular POSIX file system calls to

access directories and files. Vdump can also be used to backup non-AdvFS file systems.

• Vdump provides a tape format that is incompatible with dump/restore.

13.3.1 Vdump Basic Design

Vdump performs two passes through the directory hierarchy of the fileset being backed up. In the

first pass, it creates a saveset which is a set of data describing the data to be backed up (see
Section 13.2), and calculates the number of bytes to be backed up by looking at each file's size.

In the second pass, vdump backs up the file attributes and actual file data.

In order to improve backup performance, vdump implements buffered I/O using two threads.

The main thread traverses the directory tree, reading file data blocks and generating saveset
blocks. When a saveset block attains the specified block size, which is tunable, the main thread
sends a message to a write thread with a pointer to the block to be written. When the write thread
receives the message, the saveset block is written to the destination media. In parallel, the main
thread allocates a new saveset block and continues to read in data to be backed up. Concurrent
read and write operations by these two threads improve the overall performance.

Chapter 13: AdvFS System Calls and Utilities 188

The following figure and description shows how the process operates.

Msg Queue

Block Pool

Fill Block
Write Block

Main Thread Write Thread

1. Blocks move from the buffer block pool to the main thread where the block is filled with
data read from the source (disk).

2. The block is moved to the message queue.

3. The write thread writes the now-full data block to a saveset (tape).

4. The block is put back in the buffer block pool for reuse.

13.3.2 Saveset Format

A saveset is an array of fixed-size blocks. The valid range of block sizes is 2KB to 64KB; the
default is 60KB. Each block consists of a block header and one or more variable length records.
Each record consists of a fixed length record header and a variable length data section. Record
types include: file attributes, file data, directory data, and property lists. A block’s unused space
is accounted for by a filler (dummy) record so all space in a block is accounted for by its records.
These records are illustrated in the following layout of a saveset block. The gray areas represent
the variable-length data.

 189 Chapter 13: AdvFS System Calls and Utilities

Block Header
Block size

Record Header
Record Size
Record Type

Record Header
Record Size
Record Type

Record Header
Record Size
Record Type

A saveset can span multiple tapes. Likewise, a tape can contain multiple savesets. Savesets on a
tape are delimited by file marks, which are written when the saveset is closed by vdump. The
saveset consists of three regions:

1. First block - Used to determine the block size, source directory path, and other saveset
attributes.

2. Directory blocks - Used to restore the fileset directories into a temporary file. This enables
browsing of the saveset and supports interactive/selective restoring of files.

3. File attributes and data blocks - Contains the directory and file attribute records and the
actual file data records.

13.3.3 Vrestore Basic Design

Vrestore allows the user to select specific files and directories to be restored. This can be

done through an interactive shell or by using the -x option on the command line. To support this

feature, vrestore uses the Directories section of the saveset and an in-memory inode table.

Since POSIX defines an inode as the unique identifier for a file, we use the term inode in

vrestore rather than the AdvFS tag number. This is done because vrestore is a file
system-independent program.

Vrestore constructs a temporary directory structure of the original fileset that vdump backed
up. This structure is created from the Directories section of the saveset and it is put in a file (the

Chapter 13: AdvFS System Calls and Utilities 190

Directories File) in the current working directory. The file is unlinked immediately after being

created so that it will be cleaned up automatically after the vrestore process is done.

As the Directories File is being created, vrestore also creates an inode table. The inode table
is a hash table (hashed by inode) with chaining for multiple entries that hash to the same slot.
Each time a directory is restored into the Directories File, an entry for that directory is added to
the inode table. The inode entry is used to describe the directory in the Directories File; it
contains information like the directory name, its inode, its parent directory's inode, the byte
offset to the start of the directory in the Directories File, and the length of the directory.

The following figure shows a sample Directories File and inode table for a saveset that consists
of two subdirectories (foo and bar):

root

foo

bar

inode: 2
parent inode: 2

name: root

offset : 0
length: 512

inode: 6
parent node: 2

name: foo

offset : 512
length: 512

inode: 7
parent inode: 2

name: bar

offset : 1024
length: 1024

Directories File Inode Hash Table
Inode Table Entries

apple: 77

foo: 6

bar: 7

This structure allows vrestore to locate any file in these directories. For example, to find

"./foo/apple" the following steps are done:

1. "./" is equivalent to the root directory whose inode (2) is stored in a global variable.

2. Lookup inode 2 in the inode table and get the location and length of the directory for
inode 2 (root).

3. Search the root directory for "foo". The directory entry for "foo" will show that it has
inode 6.

4. Lookup inode 6 in the inode table and get the location and length of directory "foo"
(inode 6).

5. Search the "foo" directory for "apple". Its directory entry indicates that it has inode 77.

The inode table also allows vrestore to construct directory path names given just the last

directory's inode number. This is important because vdump writes only the file name and its

parent directory's inode number into the saveset (in the file attributes record). For example, to

 191 Chapter 13: AdvFS System Calls and Utilities

generate the full path name for "apple" and parent inode 6, vrestore will lookup inode 6 in

the inode table and find the name "foo" and parent inode 2; so now it has the path

"foo/apple". Then it looks up inode 2 and finds it is the root so the full path name is

"./foo/apple".

The above discussion only examines directories in the inode table. Vrestore also uses the
inode table for individual files that are marked for restoration or marked as "don't restore;" that
is, the files are to be examined and not restored. This process is used for the 'add' command in

the interactive mode (-i option) and for the -x option, which allows the user to specify which

files are to be restored. For example, if the user specifies vrestore -x ./foo/apple,

vrestore would use the method described above to find the file "apple." It then adds an entry

in the inode table for file "apple" with inode 77 and marks that entry as "restore me." If a

directory is selected (like "./foo"), then since the entry already exists, vrestore just finds

the entry for "foo" and marks it as "restore me." When a directory is marked "restore me," all

files and directories beneath that directory are restored (unless explicitly marked as "don't restore
me").

13.3.4 rvdump/rvrestore

The rvdump and rvrestore commands perform backup of a fileset to a storage device

connected to a remote machine. For this to happen, the user/root must have an entry in the

$HOME/.rhosts file on the remote machine.

Rvdump shares most of the functionality of vdump except when communicating to the remote

system to which the storage device is connected. Rvdump uses a special variety of rcmd (a

remote command function), called rcmd_af(), to communicate to the remote machine.

Rcmd_af() is capable of handling both IPV6 and IPV4 ports.

Rvdump and rvrestore use rcmd to communicate to a rmt server process running on the

remote machine. First, rmt is invoked on the remote system using rcmd_af(), which returns a
socket file descriptor. This socket is used as an interprocess communication channel to

communicate to the rmt server process running on the remote host. Access permission checks

are done before the communication line is setup. Commands such as backup device open, read,
write, close, and ioctl are executed on the remote host by the rmt process running there. The rmt

process accepts commands and responds to the requests in a particular format. Rvdump and

rvrestore issue commands to the rmt process and interpret the responses from the remote

rmt accordingly. See the rvrestore(8) and rmt(8) pages for details.

13.4 Fixfdmn

Fixfdmn is a new utility capable of fixing a number of common corruptions in on-disk

metadata, and is intended to be used if tools such as verify detect on-disk corruption, or if a
domain cannot be mounted without a domain panic. Previously, if a domain became
unmountable due to corruption in metadata, the only way to fix the domain was either to run

salvage or to restore it from backup. Unlike the verify utility, fixfdmn does not need to
mount the filesets in the domain, so it can fix classes of errors that would cause a fileset to be
unmountable.

Chapter 13: AdvFS System Calls and Utilities 192

Fixfdmn scans on-disk metadata looking for corruption and attempts to correct such problems

when located, if there is enough viable data to allow the on-disk metadata to be corrected. If not

enough viable metadata is available, then fixfdmn attempts to bypass the corruption by

deleting the corrupted metadata and related files. It is not be possible to fix all forms of

corruption, and in those cases running salvage or restoring from backup tape is required.

Fixfdmn keeps track of all changes made to the domain, and gives the user an option to undo

those changes.

The AdvFS domain locks are used to prevent other AdvFS utilities from accessing the domain at

the same time fixfdmn is running. Fixfdmn reads and writes to the raw disks that comprise

the domain; it does not access the domain through AdvFS. Fixfdmn will not run on a domain

if there are any mounted filesets. It can be run in either multiuser or single user mode.

When fixfdmn is run for a given domain, the block devices specified for the volumes in

/etc/fdmns/<specified domain> are opened. When booting from the CDROM to

repair a domain, /etc/fdmns and the entries under it for the domain must be created by the

user. If the user specifies the –a flag on the command line, fixfdmn attempts to activate the

domain after the fix-up to verify that it can be mounted,. Although the domain may be activated,
that doesn't guarantee all corruptions have been eliminated.

Fixfdmn does not process the domain’s transaction LOG, but the LOG pages are rewritten to

give the appearance of an empty LOG. Since completed transactions are not applied to the

metadata and incomplete transactions are not ‘undone’ in the metatdata, fixfdmn must correct

any inconsistencies that are caused by not processing the LOG.

The on-disk metadata is used to determine what corruptions exist in the domain. Only metadata

will be repaired, as there is no way to check and repair user data. Fixfdmn is primarily

concerned with fixing problems that have a limited scope. When a large portion of the domain is

corrupted, there is very little fixfdmn can do, so it recommends restoring data from tape or

running salvage. If a volume is missing from the domain, fixfdmn will not work, and the

user needs to run salvage or restore data from backup.

If the metadata for a specific file can not be recovered, the file may be truncated or deleted,
depending on the situation. As much of the file as possible will be saved.

Every page changed is saved to an undo file, so that fixfdmn can restore the domain to its

original state upon user request. If the file system containing the undo files runs out of space

during the fixfdmn run, the user is prompted how to proceed. The user has the option to

continue without the undo files, to make more space available on the file system containing the
undo files and to then continue, or to exit.

All corruptions encountered and whether or not they were fixed are reported.

The following paragraphs describe the sequence of steps that fixfdmn uses to process a
domain.

 193 Chapter 13: AdvFS System Calls and Utilities

Fixfdmn first verifies that the disk(s) specified actually contain an AdvFS domain. This is done

by checking if the AdvFS 'Magic Number', which is located on each partition, is correct. If this
value is incorrect, additional checks will be performed on the disks to determine if the magic
number is corrupt, or if this is not an AdvFS domain. If it is not an AdvFS domain, then

fixfdmn exits, informing the user that either the domain is not AdvFS or the domain is so

corrupt that they need to run salvage.

Fixfdmn then validates the RBMT (for V3 domains, BMT page 0). The RBMT contains

information on where the other important AdvFS on disk structures are stored, as well as general
information on how the domain is put together. The RBMT check is applied to each volume in

the domain. As part of this check, fixfdmn verifies that each volume's metadata agrees that the

same number of volumes are contained in the domain. If this number is different from the

number of volumes found in /etc/fdmns, fixfdmn will inform the user that they either have

a missing volume that they need to locate (or optionally run salvage), or that one (or more) of

the volumes needs to be removed from /etc/fdmns.

If the RBMT is missing or extremely corrupt, fixfdmn cannot continue and issues a message

telling the user to run salvage.

Once the RBMT has been checked, fixfdmn starts checking each volume. This check is to

make sure that the volumes are in sync with one another. This stage requires fixfdmn to

perform multiple checks of metadata stored in each volume's RBMT. Fixfdmn checks that all
the volumes have the same domain ids, mount ids, and domain version. If any volume’s data

differs from what is expected, fixfdmn asks the user to verify that the correct volumes are

being used. If the user informs fixfdmn that all volumes are correct, then it selects the most

common values between the multiple volumes and assigns this value to those volumes that are
incorrect.

The final check in this stage is to verify that each volume's metadata agrees on the state the
volumes are in, such as mounted or unmounted. If the volumes are inconsistent, the tool selects a
value which makes sense to all volumes, and assigns it to them.

Fixfdmn then collects extent information on the BMT, SBM, log file, and root tag file. These

extents are stored in a page-to-LBN array which allows fixfdmn to quickly locate any page in
these files.

At this point fixfdmn builds the in-memory data structures which it needs to continue. The

first structure built is an in-memory version of the SBM. The SBM allows the file system to
know which pages (and blocks) have been allocated to metadata and to user data on each

volume. Fixfdmn updates the in-memory version of this structure as it moves through the

metadata. Near the end of execution of fixfdmn, the in-memory version will be compared to

the version on disk.

Now that the volumes and high level domain information have been validated, the tool checks

and clears the domain's log. Fixfdmn does not process the log records and apply the changes to
the domain. This is because the tool would need to duplicate a large portion of kernel code, and
at the time of implementation this code was not in a form which would be easily usable by

Chapter 13: AdvFS System Calls and Utilities 194

fixfdmn. Also, since the log might contain records which could overwrite pages which

fixfdmn has already changed, the log is simply cleared.

After the log has been cleared, fixfdmn checks all the records stored in the BMT in two stages:

a page by page check, and a detailed check which follows mcell chains for each file. The first
check verifies that data falls within reasonable boundaries, such as confirming that extents do not
extend past the end of the volume and that extents do not overlap. Some of these checks are
done by checking the in-memory SBM. When each extent is processed, the tool updates the in-
memory SBM with the pages that are known to be used.

Fixfdmn then sequentially steps through the extent maps in the BMT, examining each page in

the extent. A BMT page’s numerical position can be verified because it contains its BMT

sequence number. Since these numbers are sequential, fixfdmn knows if the BMT is missing

pages, at which point fixfdmn recreates pages as needed. When fixfdmn finds a page so
badly corrupted that it can not correct the page, it reinitializes the page, puts the page in the
correct position in the BMT, and finally puts the page on the free list. After this, the tool finds all
references to this BMT page and terminates any mcell chains linked to this (now free) page.

On each BMT page there are 28 mcells which fixfdmn verifies while it is examining all the

pages in the BMT. However, some mcell checks can only be done by following mcell chains,
and these checks are done at a later time. Each mcell has a header which contains the file’s tag
and an mcell chain pointer which may point to another mcell for the same file. After the header,
the mcell also has one or more records which contain data about the file it is describing.

After the mcell header is checked, each mcell's records are verified. There are around 25
different types of mcell records to be checked. Each mcell record has two sections: the record
header (which has the same format for all records), and the corresponding record metadata.

Fixfdmn validates that the record header and metadata are both of the same type. The tool also

checks and fixes the metadata for each of the mcell records.

As part of the mcell verification algorithm, fixfdmn maintains a skiplist of in-use mcells in the

domain. As each mcell is verified, as described above, it is marked either as in use and

containing useful information, or it is marked not in use. Fixfdmn adds an mcell node into the

skiplist for each used mcell it finds. This skiplist is used later to verify the contents of the Root
Tag File.

After the BMT pass is complete, fixfdmn clears the deferred delete list. The deferred delete list
(DDL) is used for both deleting and truncating files. The DDL stores the mcell of the extents we
are truncating, or the entire mcell chain of a file we are deleting. The DDL mcells for extents
being deleted are preserved until the truncation or deletion operation is complete. If a file is
being deleted, it should either: not be in the tags file or be marked as being deleted. If a file is
being truncated, it will be in the tag file and not marked as deleted.

The next step is to collect a list of all the filesets in the domain. This information is stored in the
Root Tag File. The Root Tag File is a collection of pages, where each page contains a header,
followed by an array of up to 1022 bsTMap structures that describe the location of the Tag File
for each fileset in the domain.

 195 Chapter 13: AdvFS System Calls and Utilities

The Root Tag File header contains the number of used, free, and dead primary mcells contained
in the array. This number is verified against the actual number of used, free and dead primary
mcells in the array. Each primary mcell in the array is then verified against the mcell skiplist to
ensure that it is a valid mcell. If the mcell is not valid or the mcell is missing, then a page by
page search of the BMT is performed later to locate the fileset's primary mcell.

Now that fixfdmn has a list of all the filesets, it creates a skiplist structure for each fileset
which will contain information about all the tags in that fileset. The information needed to create
these skiplist structures is stored in the fileset’s tag file.

NOTE: Some of the BMT mcell and record checks described above are not done until the tag
files have been checked. So, another walk through the BMT is done here.

One of the checks fixfdmn performs is looking for loops in file mcell chains. As each mcell

should only be pointed at by one other mcell, the tool can use this information to find problem
mcell chains. This is done by using a status bit in each record in the mcell skiplist. This status bit

will let fixfdmn know if some other mcell already points to this mcell. Now as fixfdmn
goes through the mcells on each BMT page, it first checks to see if the chain is pointing to a

valid mcell. If the mcell is valid, then fixfdmn will check that the status bit in the mcell

skiplist has not been set. If the bit is not set, it will be set. If the tool finds the status bit already
set, it knows it has a problematic mcell chain, and flags it for further testing.

The tool then checks that all pages with free mcells are on the free mcell list. If any pages with
free mcells are found that are not on this list, they are added to the list. If there are any pages on
the free list that do not contain free mcells, they are removed from the list. Each page in the free
mcell list contains a header storing the current number of free mcells on that page. This number
is verified with the actual number of free mcells on that page and corrected if necessary.

Although the verification of the BMT chains and the verification of the frag file chains are done
simultaneously, we are describing them separately for simplicity and clarity. Tag 1 represents the

frag file, so fixfdmn steps through the extents describing tag 1 in order to locate all the frag
file data.

The frag file is logically separated into frag groups, one for each frag size (1k, 2k, etc.). Each
frag group has a header describing how the group is formatted. If the frag header is corrupt, then

fixfdmn repairs it. Fixfdmn also verifies that there are no loops in the free group list or in
the free frag list for each group. Later, each tag is checked that it points to a valid frag, if it has
one.

The next stage in fixfdmn execution involves checking each tag against a number of different

error conditions. To do this, fixfdmn steps through each tag's mcell chain, and checks that the

data in the chain is consistent. Fixfdmn has already checked for possible mcell loops so it does

not need to check for them again during this stage. The following lists some error situations that
are checked and fixed:

• Tags with missing extents

• Tags which have overlapping extents

• Tags which have a frag overlapping an extent

Chapter 13: AdvFS System Calls and Utilities 196

• Tags which have mcells which belong to a different tag

• Verify that tags point to valid frags

• Verify that tags with symlinks are valid

• Verify that tags with property lists are correct

• Verify tags with trashcans are correct

After that, the directories are checked to ensure that all tags are in at least one directory and that

no directory is in more than one other directory. Fixfdmn also ensures that there are no
corruptions in the directories themselves, and that the directory indexes match the directories. If
a directory index is corrupt, or does not match its full directory, that index is deleted (the kernel
can rebuild the index).

Then the user and group quota files are checked to ensure that the file size of the quota file
matches the last extent of actual storage for the file. The data in the quota files is not checked, as
it can not prevent mounting a fileset. Quota data validation can be done by running the
quotacheck utility.

One of the last checks that fixfdmn does is compare the in-memory SBM to the on-disk SBM.

By this point we have parsed all the extents in the domain and have marked them in the in-

memory SBM. Now fixfdmn can compare the checksum of the in-memory SBM against the

on-disk SBM, and if the numbers are different then the in-memory version will be written to
disk.

After all the checks have been made, fixfdmn writes out the undo files. Only after the undo
files are closed and written to disk are the changes to the domain volumes written out.

13.5 Verify

The verify utility mounts all the filesets in a domain at temporary mount points to process

them and unmounts them when finished. It checks on-disk structures such as the BMT, the
storage bitmaps, the tag directory, and the frag file for each fileset. It verifies that the directory
structure is correct, that all directory entries reference a valid file, and that all files have a
directory entry. If an inconsistency is found, it attempts to fix the problem in-memory so that the
mcell is consistent.

Verify checks the storage bitmap for double allocations and missing storage. It checks that all

mcells in use belong to a file and that all files have all of their mcells.

The consistency of free lists for mcells and tag directories is checked. Verify checks that the
mcells pointed to by tags in the tag directory are indeed the mcells associated with that tag
number.

For each fileset in the specified file domain, verify checks the frag file headers for
consistency. For each file that has a fragment, the frag file is checked to ensure that the frag is
marked as in use.

Verify creates a tag hash table to check that all in-use mcells are included in a file's metadata

mcell chain. It checks every mcell on every volume in the domain and if an mcell is marked as

 197 Chapter 13: AdvFS System Calls and Utilities

in-use or marked as being bad, it checks that the mcell position field is non-zero. A zero value in
the position field indicates that the mcell is not linked into an mcell chain for any file.

Each fileset's tag directory is then verified. The tag for each fileset is found in the root tag
directory. Each in-memory tag is then verified to be valid by finding the tag in the on-disk tag
directory for the corresponding fileset.

Verify checks the consistency of directories, files, and the BMT for each fileset. Each file's

frag is also checked for consistency. Verify does not attempt any repairs on clone filesets,

since they are read-only.

13.6 Salvage

13.6.1 Overview

One problem with AdvFS file systems is there is no way to recover file data when a domain
becomes unmountable due to an error in metadata, accidental removal of a volume, or other

errors causing a domain panic. Salvage is able to recover file data from corrupt domains or

domains with volumes missing. Since domains tend to be large, salvage works primarily on

the fileset level.

Salvage uses on-disk structures to obtain file data. It uses as much viable data as is available

in the on-disk structures in the case where corruption has occurred. It recovers as much file data
as it can find. However, it may not be possible to maintain directory structures with some forms

of corruption. Salvage is not able to overcome all possible disk corruptions. If no corruption

exists in the on-disk structures, recovery of all files in the fileset will occur. Although salvage
may recover all pages of a file, it cannot guarantee that the file data is correct. Because it is

reading the raw device, salvage may recover out-of-date data from the device if on-disk

structures have not been updated from the buffer cache.

Salvage opens only raw block devices, and only issues read requests. It uses the AdvFS
domain locks to prevent other AdvFS utilities from accessing the domain, and is able to run in
single user mode

Salvage reports any problems it encounters when trying to recover files. It attempts to find all

disk blocks associated with a file. However, due to corrupt metadata, it may recover only a
portion of a file. This may cause a file to be truncated or to have missing pages in the middle of
the file. The file and the page ranges which were recovered are listed in the log file.

If it is not possible to recover the file names, names are created for the files incorporating their

tag numbers, and the files will be put in the fileset “lost and found” directory under the

recovery directory. If it is not possible to recover the file attributes, the uid will be set to root,

the gid will be set to system, and the protection will be set to “read by owner”.

Salvage does not recover clone filesets. The filesets from which the clones were made will be

recovered.

Salvage is capable of processing AdvFS filesets on LSM volumes.

Chapter 13: AdvFS System Calls and Utilities 198

Salvage is intended to be used as the method of last resort for restoring files from corrupted

domains. It does not attempt to fix any on-disk structures or to make the domain mountable.

Therefore, it is recommended that fixfdmn is run before salvage is run.

13.6.2 Actions Taken During Recovery Processing

Salvage has several distinct steps it performs in order to recover data from a corrupted

domain:

1. Get options from the command line and initialize data structures

2. Build the directory tree and fill in the tag pointer array

3. Fill in filenames as found in the directory data and validate the directory tree

4. Walk the directory tree and restore the files

By using this design, a tradeoff is made to use memory rather than disk space to store data
structures. The primary reason is to allow for an easy transition to tape output.

In general, salvage tries to overcome errors encountered due to disk corruption. Salvage
also attempts to keep processing even after system call errors, if at all possible. In these cases,

salvage most likely returns a status of partial recovery. However, in the case of an error that

prevents continuation, such as memory exhaustion, it exits. Salvage also exits on errors
occurring before the start of disk processing (i.e., invalid command line options, error opening
the log file, etc.).

Each volume is checked for a valid AdvFS magic number or for valid BMT extent records
located in the RBMT (or BMT page 0 in DVN 3 domains).

Then the BMT LBN (Logical Block Number) array is built for each volume. This array maps
each BMT page to a block on the disk. This allows an easy lookup of the on-disk LBN for each
BMT page. In order to determine the size of this array, the BMT extent chain is followed to find
the last extent. The number of pages found while following the extent chain is used as the size of
the BMT LBN array.

In DVN 4, the BMT extents are found in the RBMT file. The RBMT file can be several pages
long. Before we can find all the BMT extent mcells in the RBMT file we need to find all the
RBMT pages. Each RBMT page reserves mcell 27 to contain the extent of the next RBMT page.
In DVN 4, this requires following the RBMT next pointer to find all possible RBMT pages, but
in DVN 3 all of the extents can be obtained by reading only BMT page 0.

Next we need to confirm that the volumes are in the same domain and obtain the real volume
index for each volume. This is done by following a next pointer from mcell 0 on page 0 of the
RBMT (DVN4) or BMT (DVN3) and checking the vdi for each volume. In DVN 4, the pointer
usually points to mcell 6 of the RBMT (in DVN 3, the pointer is to mcell 4 of BMT page 0). The
volume information is then resorted by volume index to make it easy to access volume
information.

 199 Chapter 13: AdvFS System Calls and Utilities

Mcell 2 of the RBMT (BMT0) is checked on each volume for the root tag file. This file provides
the locations for the fileset tag files. A fileset information entry is created in-memory for each
fileset and linked onto a fileset list for the domain.

Each fileset tag file is searched to find the number of tags in use, which is used to determine the
size of the tag pointer array to allocate. The first 2 nodes of the file directory tree are created for

the top level directory (<fileset>) and the lost and found directory

(<fileset>.lost+found).

The primary mcell for the frag file (tag 1) is read and the extents for the frag file are obtained
from the extents chain. The frag file LBN array is then built and filled in using this information.

Building the Directory Tree and Filling in the Tag Pointer Array

Metadata is read from the on-disk structures, and the in-memory representation of this data is

constructed by salvage. The collection of the metadata may need to be done in multiple

passes, where each pass consists of a different strategy to access the on-disk data. Based on what
we have seen of fileset corruption, most of the fileset directory tree should be built in the first
pass. Salvage only needs multiple passes if it finds data corruption that it can not work around.

Pass 1 - This is the main pass and it uses the fileset tag file to access the BMT to get mcell
information for all files. The pointers to next and chain mcells in the BMT are followed. A fileset
directory tree node is created for each file and the fileset tag pointer array entry is filled in. If the
parent entry has not been created yet, the node is linked to the lost and found node and the parent
tag number is stored in the node (it is possible to find a file before we find the directory which
contains it).

In addition, there are 3 special cases to pass 1. These are performed if the user specifies that
only a portion of the fileset should be recovered on the command line. There is an option of
selecting recovery by tag, path and/or date.

Recover by Tag - After creating the top node of the tree, if a tag was specified, the
metadata for this tag is read and the entry in the fileset directory tree is created. One of

the fields in the metadata is the parent tag. Using the current tag's parent, salvage reads

the metadata of the parent and creates its entry in the tree. Salvage continues to follow
the parent tags and create nodes until it reaches the top of the directory tree. To save
memory, we now want to prune the tree so that we only recover files which are in the
same path. At each level in the tree, the directory data for the tag's parent is read and all
the tags in this directory are set to “ignore” except for the current tag.

Recover by Path - After creating the top node of the tree, if a path was specified, the
directory data for the fileset’s root directory (tag 2) is read. Each entry in the directory is
compared to the first portion of the path specified. For each filename that does not match
our current path directory name, the tag is set to “ignore”. This prunes the tree at the top
level to save memory when recovering only a path and leaves exactly one node which
matches the path. We keep following the path in this manner until we have found all tags
which create the full pathname we are recovering.

Chapter 13: AdvFS System Calls and Utilities 200

Recover by Date - This case is processed when stepping through the fileset tag directory.
If a date was specified on the command line and the file for a tag is not a directory and
has not been changed since the date specified, the tag is marked as “ignore”.

Recover all tags not marked ignore - This step goes through the fileset tag directory for
each tag. If the tag is not already marked as “ignore” (i.e. from recover by tag, path, or
date), and its parent is not marked as “ignore”, then fill in the fileset tag pointer array
entry and create a tree node for it. If a tag is not marked as “ignore”, but its parent is
marked “ignore”, then mark the tag as “ignore” in the tag array.

Relink lost and found - As it is possible to recover a child before a parent, at the end of

pass 1, entries may exist under lost+found which actually do have a parent in the

fileset directory tree. For each child under the lost+found node, if its parent exists
and is not marked as “ignore”, relink the node under its parent. If the parent is marked
“ignore”, free this node and everything linked under it.

Pass 2 - This pass is performed when we can't find the root tag file, any fileset tag files, or have
partially recovered files. This pass searches all the mcells on RBMT pages (BMT page 0 in DVN
3) looking for mcells that describe the BMT file.

Next a sequential search of the BMT is performed, page by page, mcell by mcell. When the tool
finds an mcell which belongs on the free list, this mcell is ignored. If the tool can tell that an
mcell belongs to the deferred delete list, it is ignored. In the case that the tool can not tell if the
mcell is on the deferred delete list and the file being restored contains more extents than
expected, a warning is printed in the log.

None of the pointers to next or chain mcells are followed in this pass. The mcells for files for
which all extents have been found can be ignored. If Pass 1 was not successful and if the root tag
file or a fileset tag file is found in this pass, then we can use parts of Pass 1 to process them.

If salvage finds data in later passes that conflict with data found in earlier passes, the tool
assumes that the data found in the prior passes is correct. This is done because the data collected
in earlier passes is more closely aligned with the way AdvFS would collect the data under
normal operating conditions. The later passes have a greater possibility of finding invalid data,
and we have no way to detect this.

Pass 3 - This pass is performed only if a special flag is used on the command line. This pass is

useful when a mkfdmn has been performed by accident on top of a valid domain, or if the

RBMT (BMT page 0) can not be found. A sequential search of the disk is performed, page by
page, looking for pattern match for BMT pages.

Filename Recovery and Directory Tree Validation

After the tag pointer array and fileset directory tree data structures are built, the tag array is
scanned, and the actual filenames for the tag structures which have been found are retrieved from
the directory files and inserted into their respective positions in the fileset directory tree.

In the event that a conditional salvage operation is specified which is based on a specific date
range, the directory tree is first scanned to eliminate superfluous empty directories. The tree is

 201 Chapter 13: AdvFS System Calls and Utilities

pruned of these empty directories and the status of these files is marked as “ignore” in the tag
pointer array.

To retrieve the filename data, the tag pointer array is scanned in tag order. If a tag's file type
indicates that the tag is a directory, and the status of the tag in the tag pointer array indicates the
directory should not be ignored, then the following steps are taken:

Read the data: Initialize the fsDirData structure. This structure includes a pointer to
a data buffer used to contain the raw data from the directory file and fields to track the
current relative position within the data buffer as it is sequentially parsed. The directory
file is then read from disk according to the tag's extent map, one page at a time, and

stored in the buffer within the fsDirData structure.

Scan the buffer: The directory entries in each page are sequentially parsed. Each entry's
state is checked, and if valid, the tag number and filename data are extracted.

Find the node: The file's tag entry is looked up in the fileset directory tree, and the
filename is inserted into the name field of the file's node in the tree.

Check for hard links: The relationship between the tag's parent tag (known from the
tag's metadata) and the tag's position in the tree (i.e., its "positional parent") is checked.
Anomalies indicate the tag has multiple hard links, and these conditions are resolved by
creating additional nodes in the tree as required.

Validate tree data: All tags are scanned, and the linksFound attribute and the

numLinks attribute are compared. This check corrects for a particular condition which

occurs when multiple hard links for a file exist, and the original link was deleted.
Otherwise, anomalies are noted and logged. In addition, all tags are scanned to verify that
they have been properly named. If tags exist which do not have names (possibly due to
missing data in the directory files), special names based on the file's tag number are
generated and inserted. In addition, if directory entries are found for which there are no
valid tag entries, "empty shell" nodes for these entries are created in the fileset directory
tree. These nodes serve as markers so that their existence can be logged during file
recovery.

After the fileset directory tree has been checked and made consistent, a final check for extent
allocation is performed using the SBM. The bits in the SBM are checked against the disk blocks
which comprise each page of each extent in each file. If all of the bits are set to one for the
corresponding disk blocks, then they are allocated to a file (mostly likely the file we are
checking, but there is no guarantee). If all of the bits are set to zero, then the corresponding disk
blocks are not considered to be allocated to a file. If this is true for all pages in the file, then most
likely the file was deleted, but the metadata had not been overwritten. This case could also
indicate corruption in the SBM as would the case when some bits are one and some bits are zero
for a file. In all cases of inconsistency, an error message is displayed.

Restoring Files in the Directory Tree

The fileset directory tree is processed from the top node down (depth first with directories being
processed before children) and the files are recovered based on their file type and status. Any

Chapter 13: AdvFS System Calls and Utilities 202

files that are marked as “ignore” or “dead” will be skipped as well as files that are only partially

recovered (this occurs only if the -x option was specified).

By the time this point is reached in the code, the fileset directory tree will have been pruned to
eliminate files not changed since the specified date and/or files not within a specified path. In
addition, the extents for each file will have been sorted in file page order.

Before writing out the file data, a check is made to see if the file already exists, and if so,
whether or not it can be overwritten. This is done in anticipation of future check-pointing within

salvage where files may be recovered in stages. The suffix “.partial” will be added to the
filename if the command line option to do so was chosen.

The following file types are handled: directories, regular files, symbolic links, hard links, fifos,
and device special files. Where appropriate, file attributes and property lists are restored.

For regular files, extents are read from the disk page by page and written to the restored file. This
continues extent by extent until the entire file is written. Where holes occur in sparse files,

lseek is used to skip over them in the restored file. Depending on command line options,

messages may be written into the log file.

After all the files under the top level directory are processed, the files in the

<fileset>.lost+found directory are restored in the same manner.

13.7 Vfast

The vfast utility automates the tasks that are manually performed using the balance and

defragment utilities. This tool performs file defragmentation, executes volume capacity

balancing, and migrates user files to eliminate device I/O bottlenecks. Administrators are freed
from mundane tasks and 24x7 operations aren't slowed down by periodic utility operations.

Vfast was added to Tru64 version 5.1B, and is optionally started as a background daemon

when the system is booted. It automatically runs during periods of low system demand to
minimize any performance impact to no normal filesystem operations.

The primary goal of vfast is to provide a file system that requires no maintenance beyond

adding and subtracting storage. Vfast performs the following maintenance duties without

interaction from system administrators:

• defragmentation and free space consolidation within the domain

• balancing of the free space over domain volumes

• monitoring to identify "hot" files, then distributing them across AdvFS volumes to
improve file-access performance

Vfast does not require any ramp-up time to start processing files, although as time goes on

vfast becomes better at predicting which files are used more often and therefore should be

fixed sooner. During normal operations, vfast avoids any significant analysis before

performing useful defragmentation, as is the case with the standard defragment utility.

Some utilities, such as umount, rmvol, and rmfset, suspend vfast operations temporarily

while they run. When the utilities finish, vfast is returned to its prior state. Also, because

 203 Chapter 13: AdvFS System Calls and Utilities

vfast defragments and balances domains, the traditional AdvFS defragment and balance

utilities cannot be used if vfast is activated with the -o defragment, -o balance, or

-o topIObalance operations enabled. The Tru64 AdvFS Administration Guide has a very

complete section on using vfast.

13.7.1 Balancing free space across volumes

Vfast, balance, and defragment utilities perform similar work because they move

extents in order to provide better file-access times, but vfast automates this procedure so that it
happens automatically, requiring no interaction from system administrators. Balancing free space
among volumes improves subsequent write performance so that newly created files are
distributed evenly over the drives. Newly created files have a greater potential for becoming the
files with the highest sustained IO count, so they should be evenly distributed over the disk
volumes at creation time. Volume capacities are maintained within 10% of each other by

vfast.

13.7.2 Defragmentation of a volume

Defragmenting, whether done via vfast or defragment, has two primary functions:

1. Reduce the number of file extents.
2. Reduce the number of free-space fragments and create larger free-space segments.

When a file consists of many discontiguous file extents, the file is considered to be fragmented.
File fragmentation reduces read/write performance because more I/O operations are required to
access the file. Likewise, when a volume’s free space is scattered over many discontiguous
extents, the volume free space is fragmented, increasing the chance that new files will have
discontiguous file extents.

The vfast utility attempts to reduce the number of file extents in a domain by making files

more contiguous. Vfast also attempts to make the free space on a disk more contiguous, resulting
in less fragmented file allocations in the future.

Vfast runs most efficiently on volumes that have more than 20% free space. The more free

space in the domain, the more efficient defragmenting and I/O balancing becomes.

13.7.3 Frequently Accessed File I/O Distribution

Vfast is a tool to automatically distribute the disk I/O across the available disks. This helps to

prevent a single disk from becoming an I/O bottleneck and decreasing performance. Vfast can
also determine the files with the highest amount of disk I/O in the domain and distribute them
evenly across the disk volumes.

Each AdvFS file domain has a transaction log that tracks activity for all filesets in the domain
and ensures AdvFS metadata consistency if a crash occurs. The domain's transaction log may
become a bottleneck if the log resides on a congested disk or bus, or if the domain contains many
filesets.

To prevent the log from becoming a bottleneck, vfast includes the log, as well as the other
AdvFS reserved files, in its I/O distribution algorithm. The transaction log's special I/O

Chapter 13: AdvFS System Calls and Utilities 204

characteristics are considered when determining where to place the frequently accessed normal
files.

Statistics gathered by the AdvFS kernel (such as buffer cache misses, file writes, and file access
times) are used to produce file usage profiles that are then used to intelligently distribute the I/O
load over domain volumes.

The performance benefit of I/O distribution depends on the number of disks in the domain, the
location of the disks, and how applications perform I/O. Under ideal conditions, I/O
performance improves linearly as the number of disks in a domain increases. All files

redistributed by vfast are also defragmented during the placement operation.

In order to determine which files have the highest disk I/O, two parameters are used. The first is
an I/O counter in the file's access structure. This counter is incremented each time a write or
read from disk is performed for this file. This counter determines which files have the most
potential for consistent I/O. The use of this counter does not significantly affect overall I/O
performance for AdvFS.

The second parameter is a field used to store the last file I/O time. This parameter is used by

vfast to determine which frequently-accessed files have been accessed recently. Without this

parameter, the I/O counts could become stale after an initial burst of file activity and vfast
would not detect this condition. As file access times grow older, files are less likely to be
considered frequently accessed.

The contents of the hot file list can be displayed with the command:

 vfast -l hotfiles dmnName_x

The vfast topIObalance option distributes hot file I/O over volumes to perform I/O load

balancing. If topIObalance is used on a domain, and then disabled, the fragmented files are

defragmented without regard for previous file placement. This means files will be defragmented
without regard for I/O distribution across volumes and may be moved from their present location
on disk.

Vfast will create new fragment lists over time as files are accessed. This list is needed to track

file extent segments in real-time so that vfast does not have to continuously scan the domain.

The time required to create this list will vary according to the number of files in the domain. This

list creation allows normal file system operations because vfast is still subject to the -o

percent_ios_when_busy=percent option. The list for high disk I/O files is created
after an initial ramp up time without affecting current operations.

13.7.4 Dealing with cloned and striped files

Within a clone file, the non-holey ranges of pages will be defragmented when possible.

Clone files are distributed across volumes according to the number of times that their extents are
accessed. Clone file hits are counted according to the following rules:

1. If the original of a clone has not been modified, the original receives credit for file hits on
the clone.

 205 Chapter 13: AdvFS System Calls and Utilities

2. If some changes have been made to the original of a clone, both the clone and the original
receive credit for clone file hits.

3. If the original of a clone has been modified so that no more pages need to be cowed, only
the clone receives credit for clone file hits.

Striped files are not defragmented by vfast.

When the rmvol command is used to remove a volume from a domain, vfast is aware of the
change and no longer moves files to the device being removed.

13.8 Freeze/Thaw

AdvFS's multi-volume domain functionality can cause problems when utilizing some of the
features inherent in today's hardware storage products. For example, hardware snapshotting
(similar to AdvFS's cloning) is in widespread use by customers. If a multi-volume AdvFS
domain made up of multiple hardware RAID LUNs is snapped, metadata inconsistency in the
snapshot is likely. This metadata inconsistency stems from not being able to snap all of the
LUNs in the domain simultaneously. Since there is a time differential between snapping each
LUN, the view of the metadata (which is spread across all of the LUNs) becomes inconsistent in
the snapshot.

To allow coherent hardware snapshots, AdvFS provides a method to freeze (or quiesce), and
later thaw, its metadata domain-wide. This means that even though all LUNs are not
simultaneously snapped, there is no activity in the domain, and the metadata remains in a
consistent state so long as the domain remains frozen.

A distinction between two types of freeze is necessary. The term meta-freeze describes a freeze
of metadata only, and the term full-freeze is used for a complete filesystem/domain-wide freeze.

For meta-freeze, only metadata is frozen and flushed to disk (possibly with whatever user data is
currently in memory). Subsequent operations on the filesystem are allowed as long as no
metadata changes are needed. Since all metadata updates are under transaction control, all
operations that require metadata updates are blocked on the start of the transaction.

For full-freeze, all filesystem activity is stopped and current data in memory is flushed to disk.

13.8.1 Overview

For meta-freeze, the premise is to use an exclusive transaction in AdvFS to finish existing
metadata changes and to block new transactions. Since all AdvFS metadata operations are done
under transaction control, blocking new transactions effectively blocks other metadata changes.

The freezefs API sends a message to a background thread which starts an exclusive

transaction, flushes all existing metadata buffers, and then signals the API. The API then

returns. The thawfs API sends a different message to the background thread which then

completes (or aborts) the exclusive transaction.

13.8.2 freezefs and thawfs utilities

The freezefs and thawfs utilities provide metadata freeze/thaw in support of multi-

volume hardware snapshots. The freeze is domain-wide, so all filesets in the domain are
affected by the operation. These utilities are actually a single binary module whose names are

Chapter 13: AdvFS System Calls and Utilities 206

hard-linked together. The name by which it is invoked is parsed and determines whether the
domain will be frozen or thawed. Operations on the domain which require transaction control
(metadata updates) will block while the domain is frozen, I/O that would not cause AdvFS
metadata to change is allowed to proceed. For freeze, any in-process metadata updates are
allowed to finish, and new ones are blocked. For thaw, normal operation is resumed on the
specified domain.

The normal sequence of events involving freeze/thaw is as follows: freeze the fileset, perform
the hardware snapshot, and thaw the fileset. (Even though a mount point or fileset is specified to
the utilities, all filesets in the domain are affected). A timeout parameter can be entered on the
command line to specify the maximum time that the domain is to be frozen. If the domain is not
explicitly thawed before the timeout expires, it will thaw on its own. A timeout value of zero
specifies that the default timeout value should be used, and a negative timeout value specifies
that no timeout is requested and the domain should stay frozen until the thaw command is given.

13.9 Advscan

In order to mount an AdvFS fileset, the domain that contains the fileset must be consistent. An
AdvFS domain is consistent when the number of physical partitions or volumes with the correct
domain ID are equal to both the domain volume count (which is a number stored in the domain)

and the number of links to the partitions that are in the /etc/fdmns directory.

If you attempt to mount an inconsistent domain, a message similar to the following will appear
on the console:

 # Volume count mismatch for domain dmnz.
 dmnz expects 2 volumes, /etc/fdmns/dmnz has 1 links.

The advscan utility attempts to fix domain inconsistencies such as these so that you can mount

filesets in a domain. The advscan command locates AdvFS volumes (disk partitions or LSM

volumes) that are in AdvFS domains. Given the AdvFS volumes, it can re-create or fix the

/etc/fdmns directory of a named domain or LSM disk group. For example, if you have

moved disks to a new system, moved disks around in a way that has changed device numbers, or
lost track of where the AdvFS domains are, you can use this command to locate them.

Another use of advscan is to repair AdvFS domains when you have broken them. For example,

if you mistakenly delete the /etc/fdmns directory, delete a domain directory in the

/etc/fdmns directory, or delete links from a subdirectory under the /etc/fdmns directory,

you can use advscan to fix the problem.

The advscan command accepts a list of disk device names and/or LSM disk group names and

searches all the disk partitions to determine which partitions are part of an AdvFS domain.

You can run advscan to automatically rebuild all or part of the /etc/fdmns directory, or
you can rebuild it manually by supplying all the names of the volumes in a domain. Run

advscan with the -r option set to re-create missing domains from the /etc/fdmns

directory, missing links, or the entire /etc/fdmns directory.

 207 Chapter 13: AdvFS System Calls and Utilities

To determine if a disk partition is part of an AdvFS domain, advscan performs the following

functions:

• Reads the first two pages of a partition to determine if it is an AdvFS volume and to find
the domain information.

• Reads the disk label to sort out overlapping partitions. The size of overlapping partitions
are examined and compared to the domain information to determine which partitions are
in the domain. These partitions are reported in the output.

• Reads the boot block to determine if the partition is AdvFS bootable.

The advscan command displays the date the domain was created, the on-disk structure version,

and the last known or current state of the volume.

See advscan(8) for examples of advscan output and options available.

13.10 Vods Tools

The vods (View On-Disk Structure) tools allow you to look at the on-disk metadata in a domain.
These tools also allow you to save on-disk metadata to a file and then to look at the metadata at a
later time using these tools. This is extremely helpful when debugging a customer problem that
may involve inconsistencies between on-disk and in-memory data. A customer can run a subset
of these tools to save on-disk metadata structures into files, and then you can analyze the on-disk
state of the domain by viewing the metadata structures stored in the files sent to you, using these
tools. There is a vods tool for each AdvFS metadata type:

2. nvbmtpg views the volume BMT and RBMT pages.

3. nvfragpg views the fileset frag group headers.

4. nvlogpg views the domain LOG file.

5. nvtagpg views the root and fileset tag files.

6. vfilepg views, as hex, any file or block in the domain.

7. vsbmpg views the volume SBM pages.

8. savemeta is a script that saves the metadata of a domain.

The vods tools read the disk directly and never write to the disk. They do not operate through the
file system, so they are suitable for looking at an inactive domain with no mounted filesets, and
this method is recommended. The vods tools are able to look at metadata on active domains, but
because they do not coordinate with the file system, inconsistent data may be provided by the
tools as AdvFS changes metadata while the tool is being run or between runs. Also, AdvFS has
access to cached dirty buffers; the vods tools do not. Running vods tools on an active domain
may result in reports of errors where there are none.

When a domain is specified in the argument list for a vods tool, the tool will open the block

device(s) linked from the /etc/fdmns/<domain_name>/ directory. Because block devices
can be opened by only one application and mounting a fileset also opens the block devices of the

Chapter 13: AdvFS System Calls and Utilities 208

domain, the vods tools normally fail to work on a domain with one or more mounted filesets.

The -r option will cause these tools to open the character devices that correspond to block
devices of the domain.

If the source argument is a device special file (a volume), you can specify whether the tool
should use the block device or the character device. Specifying the block device protects the file
system from changing the metadata during the time the vods tool is reading the metadata. The
character device allows the vods tool to work even when the file system has opened the block
device (i.e., when a fileset in the domain is mounted). Using an abbreviated device name

resolves to the block device (e.g. dsk5c resolves to /dev/disk/dsk5c).

13.10.1 Argument order

The vods tools arguments are positionally sensitive. There are a few option style arguments (for
example, -v) that precede all other arguments, then the remaining arguments sequentially refine

where in the domain to look for metadata. For example, the nvbmtpg command requires the

domain name first, then the volume id, then the page. Alternatively, some commands require the
domain name first, then the fileset within the domain, then a file within the fileset.

Each additional argument either refines the search further (for example, specify –f to show the

free list on the page) or tells what to search for next (specify -c to follow a chain of mcells).

The way you specify the location of the metadata depends upon the file you would like to view.
For some metadata files, like the BMT, there is a file on each volume. So to view pages of the

BMT (using nvbmtpg), you must specify the volume to indicate which BMT file to display.

The volume can be specified either by a domain name and volume id pair, or simply by special
device name. For example, on a two volume domain, called test_dmn, composed of

/dev/disk/dsk2c (volume 1) and /dev/disk/dsk8c (volume 2), a volume could be

specified in one of two ways:

• domain and volume pair (i.e., test_dmn 2)

• special device name (i.e., /dev/disk/dsk8c or dsk8c)

Some metadata files, like the log, occur only once in a domain. To view the log (using

nvlogpg), you only have to specify the domain. The utility finds the volume that contains the

log. However, if you already know what volume contains the log, you can specify the volume
identification instead. In that case, the utility looks only on that volume to find the log.

All the vods tools can display any page (sixteen 512-byte blocks on a sixteen block boundary) on
any disk, assuming you have permission to read the disk. In addition, the vods tools can display

the entire metadata file. This can be used with grep or an editor to find a specific part of a
metadata file. Most of the vods tools display a summary of their metadata file if no page is
specified. For example, the command

nvbmtpg test_domain 1

displays information about the BMT on volume 1 in test_domain. The command

vsbmpg test_domain

 209 Chapter 13: AdvFS System Calls and Utilities

displays general information about the SBM on each volume in test_domain.

Some metadata files (i.e., BMT, tag file) contain information that can be identified as belonging
to one user file. The vods tools for these metadata files have arguments that allow the user to
display only the parts of the metadata file that control or belong to the specified user file.

The vods tools can read an entire metadata file and save that data to a specified file. The tools
can then process the saved file with most of the same capabilities as they have when working on
a live system. This is useful when saving information from one system and analyzing it on
another system.

13.10.2 Using the vods tools

The reference pages for the vods tools show many examples of how to use them. It is worthwhile

to review these man pages to see of all the options available for viewing different types of
metadata with each tool.

The vods tools can be used to manually follow the related metadata from one file to another. The
following shows an example of how to look at saved metadata files from a domain:

Suppose you have saved metadata including saved directories from a domain, and you want to
view the primary mcell of a file known by its domain, fileset and path.

1. Use vfilepg to view the saved directory that contains the file.

a. vfilepg saved_dir –a –f d

b. -a formats and displays the entire saved directory

c. -f d formats the saved file as a directory

d. Find the desired file in the directory and note its tag number.

2. Knowing the fileset and the tag number, use nvtagpg to find the primary mcell. There

are 1022 tags on a tag page. Divide the tag number by 1022 to determine the tag page
number.

a. nvtagpg saved_fileset page_#
b. Find the required tag and note the primary mcell (volume, page, mcell).

3. Use nvbmtpg to display the primary mcell. Use the volume from step 2 to select the

saved BMT file (one per volume in the domain).

a. nvbmtpg saved_bmt page cell
b. This displays the metadata records in the file’s primary mcell.

In an active domain (vs. saved files) you would not have to do these steps manually. The vods
tools look at all the metadata to find the requested information for you. For example, to display
the primary mcell, as above, of a file, known by domain, fileset and path within the fileset, type:

nvbmtpg domain fileset dir/file

Chapter 13: AdvFS System Calls and Utilities 210

The vods tools look at the BMT, tag file, and directory files to find and display the requested
mcell.

 211 Chapter 14: Interactions with Other Layers

Chapter 14: Interactions with Other Layers

14.1 VFS
One of the components of a process is the file table. When a process opens a file, an entry is made into
this table and an index (the file descriptor) is returned to the user side of the process, through which the
process can access the file.

The process' open file table entry contains a pointer to a system open file table entry. The main purpose
of the per-process open file table is to hold the process' offset into the file (this offset is what is
manipulated by the lseek() system call). Before the introduction of VFS, the system open file table entry
contained a pointer to the in-memory copy of the file's inode. The in-memory inode is shared between

processes (one purpose of the v_usecount field is to to keep track of this sharing).

The reason for the intermediate process table is flexibility in sharing (or not) the file offset. The offset
cannot be stored in the in-memory inode table, since a process that opens this file shares this inode with
every other process that has opened this file - but they all have different offsets into it. Storing the offset
in separate per-process tables allows sharing the offset. The dup() system call will create a second entry in
the per-process open file table pointing to the same system open file table entry. Similarly, fork() will
copy the whole per-process open file table into the new process, so the new process will share offsets with
the old process. If two processes open the same file (or a process opens the same file twice), each per-
process open file table entry points to a different system open file entry (although in the same table), so
the offsets are not shared.

In terms of implementation, the file descriptor that is passed to the kernel through a system call is used as
an index into the per-process open file table, which yields a pointer to the system open file table. This

translation is done by getf() in kern_descrip.c. The resulting system file table entry pointer is used

by the system call to perform the required operation. The only thing that changes with the introduction of
VFS is that instead of the system open file table containing pointers to in-memory inodes, it contains

pointers to vnodes. In short, from a file descriptor, we get to a per-process open file table entry (struct

ufile_entry *), then to a system open file table entry (struct file *), and from there we get to

a vnode. (There is some information on debugging these structures in Section 4.7.2).

Figure 42: Per-task in-memory structures

 HP Confidential

Chapter 14: Interactions with Other Layers 212

14.1.1 Overview of VFS

AdvFS fits into the OS through the VFS/vnode mechanism. VFS (Virtual File System) adds a layer of
indirection that allows a user process to access multiple underlying file systems transparently (i.e., NFS,
MFS, CFS, FFM, AdvFS, UFS). In this section, we examine the VFS mechanism in more detail and
examine how AdvFS fits into the scheme.

VFS was created in order to define the abstract data types “file system” and “file”. Each type has its own
data structure and set of abstract operations (a “class” in OOP terms). The set of operations is represented

as a vector of function pointers. Each vector is implemented as a struct, rather than an array, so named

fields (rather than numeric indices) can be used to index into it. The file system type is described in terms

of a struct mount that looks like this:

struct mount {

 ...

 struct mount *m_nxt; /* next in mount list */

 struct mount *m_prev; /* prev in mount list */

 struct vfsops *m_op; /* operations on fs */

 struct vnode *m_vnodecovered; /* vnode we mounted on */

 struct vnode *m_mounth; /* linked-list of vnodes

 on this mount point */

 ...

 qaddr_t m_info; /* private data */

 ...

};

and a file is described in terms of a struct vnode:

 213 Chapter 14: Interactions with Other Layers

struct vnode {

 u_int v_flag; /* vnode flags */

 uint_t v_usecount; /* ref count of users */

 ...

 enum vtype v_type; /* vnode type */

 enum vtagtype v_tag; /* underlying data type */

 struct mount *v_mount; /* ptr to vfs we are in */

 struct mount *v_mountedhere; /* ptr to mounted vfs */

 struct vnodeops *v_op; /* vnode operations */

 struct vnode *v_freef; /* vnode freelist forwd */

 struct vnode **v_freeb; /* vnode freelist back */

 struct vnode *v_mountf; /* vnode mountlist forwd */

 struct vnode **v_mountb; /* vnode mountlist back */

 ...

 union {

 struct socket *vu_socket; /* unix ipc (VSOCK) */

 struct specinfo *vu_specinfo; /* device specinfo struct */

 struct fifonode *vu_fifonode; /* pipe and fifo struct */

 } v_un;

 struct vm_ubc_object *v_object; /* VM object for vnode */

 ...

 char v_data[1]; /* placeholder, private

 data */

};

We will examine only a few fields from these structures. First, recall that a file system is mounted on an
existing directory. That directory, like any file, is described by its own vnode. When you mount a file
system, its mount structure is initialized and linked into a list of the system’s mounted file systems

through the m_nxt and m_prev pointers. The vnode of the mounted-on directory is stored in the

m_vnodecovered field, and the m_op field is initialized to point to the (fixed) vector of operations for
this type of file system (e.g. UFS, NFS, AdvFS, CFS, DFS, etc.).

Similarly, any open files and some closed files within this file system are described by vnodes, whose

v_type field specifies the type of file system that the file belongs to. The v_mount field points to the
mount structure of this file system. The vnodes of a given file system are linked together on the vnode

mount list, maintained by the v_mountf and v_mountb fields. When a file is closed, its vnode is added

to the vnode free list, but also stays on the vnode mount list. The free list is managed through the

v_freef and v_freeb fields in each vnode. If the file is reopened quickly enough, we have a ready

 HP Confidential

Chapter 14: Interactions with Other Layers 214

vnode for it. Otherwise, the vnode is eventually recycled, at which point it is also removed from the
vnode mount list in vgone().

If the file is a mounted-on directory, then the v_mountedhere field points to the mount structure of the

file system, allowing us to proceed downward through the hierarchy.

14.1.2 File System and File Operation Vectors

There are two more fields in each of the mount and vnode structures that remain to be examined. The

first pair is the m_op field in the mount structure and the v_op field in the vnode structure. These are
pointers to the corresponding vectors of abstract operations for the underlying file system. The second

pair is the m_info field in the mount structure and the v_data field in the vnode. We will now take a

closer look at these.

The following operations vector describes the file system set of abstract operations:

/*

 * Operations supported on mounted file system.

 */

struct vfsops {

 int (*vfs_mount) __((struct mount *, char *, caddr_t, struct nameidata
*));

 int (*vfs_start) __((struct mount *, int flags));

 int (*vfs_unmount) __((struct mount *, int));

 int (*vfs_root) __((struct mount *, struct vnode **));

 int (*vfs_quotactl) __((struct mount *, int, uid_t, caddr_t));

 int (*vfs_statfs) __((struct mount *));

 int (*vfs_sync) __((struct mount *, int));

 int (*vfs_fhtovp) __((struct mount *, struct fid *, struct vnode **));

 int (*vfs_vptofh) __((struct vnode *, struct fid *));

 int (*vfs_init) ();

 int (*vfs_mountroot) __((struct mount *, struct vnode **));

 int (*vfs_swapvp) ();

 int (*vfs_smoothsync) __((struct mount *, u_int, u_int));

};

Some of the vnode abstract operations are shown below (see usr/include/sys/vnode.h for a
complete list):

struct vnodeops {

 215 Chapter 14: Interactions with Other Layers

 int (*vn_lookup) __((struct vnode *, struct nameidata *));

 int (*vn_create) __((struct nameidata *, struct vattr *));

 ...

 int (*vn_open) __((struct vnode **, int, struct ucred *));

 int (*vn_close) __((struct vnode *, int, struct ucred *));

 ...

 int (*vn_read) __((struct vnode *, struct uio *, int, struct ucred *));

 int (*vn_write) __((struct vnode *, struct uio *, int, struct ucred *));

 int (*vn_ioctl) __((struct vnode *, int, caddr_t, int, struct ucred *, int *));

 ...

 int (*vn_mmap) __((struct vnode *, vm_offset_t, struct vm_map *, vm_offset_t *,

 vm_size_t, vm_prot_t, vm_prot_t, int, struct ucred *));

 int (*vn_fsync) __((struct vnode *, int, struct ucred *, int));

 int (*vn_seek) __((struct vnode *, off_t, off_t, struct ucred *));

 int (*vn_remove) __((struct nameidata *));

 int (*vn_link) __((struct vnode *, struct nameidata *));

 int (*vn_rename) __((struct nameidata *, struct nameidata *));

 ...

 int (*vn_inactive) __((struct vnode *));

 int (*vn_reclaim) __((struct vnode *, int));

 ...

};

The common operations are used to open, close, read, and write files and directories; perform seeks and
ioctls on files; get and set file attributes; and rename or remove files and directories. Some more-

specialized operations are vn_lookup() to translate a pathname to a vnode, vn_mmap() to memory map a

file, and vn_inactive() and vn_reclaim(), operations that mark a vnode as inactive or reclaim it. More on

these later.

The m_info field in the mount structure contains data specific to the type of the underlying file system;

different file system types maintain different kinds of data in this field. Similarly, the v_data field in the
vnode usually contains data specific to the underlying file (AF_UNIX sockets, special files, and pipes use
a different vnode field). Again, the data maintained here depends on the file system type and on the
specific file. These fields and the operations vectors tie the abstract VFS/vnode layer to the specific
physical file system.

The system finds these structures through a few global variables: rootfs points to the mount structure

of the root file system; any other mounted file systems come afterwards in this list. There is also rootvp

and rootdir, which point to the vnodes of the root device and the root directory respectively. Recall

that the open file tables of many processes may point to vnodes. Vnodes cannot be reused while there is

at least one reference to them. There is a reference count called v_usecount that implements this

 HP Confidential

Chapter 14: Interactions with Other Layers 216

policy. Note that the set of operations for a particular file system type is the same for any member of the

given class. For example, every vnode of a UFS file system uses the same set of vnode operations. In
general, each file system implementation defines a vector of operations as a static structure containing
pointers to the functions that implement the operations. When this vector is initialized, a pointer to the

vector is placed in the appropriate vnode or mount structure.

The illustration below shows what the edifice looks like for three mounted file systems and several open
files. The illustration also includes a few global variables that the system uses:

Figure 43: VFS structure relationships

14.1.3 How AdvFS Fits In

AdvFS must supply four pieces to conform to the above conventions: AdvFS-specific data will be stored

in the mount and vnode structures, and implementations for the abstract VFS operations and vnode

operations will be declared.

 217 Chapter 14: Interactions with Other Layers

Let us first discuss the mount structure. The m_info field is a pointer to file system-specific data. In the

case of AdvFS, the m_info field is a fileSetNode pointer. This structure contains information

about the mounted AdvFS fileset. We are now firmly within the purview of AdvFS: the mounted filesets

of this domain are linked together through the fsNext and fsPrev pointers in the fileSetNode

structure. The fileSetNode structure contains a back pointer to the mount structure and pointers to the

access structure and the vnode of the root directory of the fileset (see section 3.3.2 for complete details on

the fileSetNode structure).

Similarly, the vnode v_data field contains file system-specific information about the particular file. In

this case, however, the information is contained within the vnode, rather than being pointed to by a

pointer. For AdvFS, this is a bfNode structure (see section 4.3.2).

The two operations vectors, one for the VFS functions and one for the vnode functions, are statically

declared in msfs_vfsops.c and msfs_vnodeops.c and initialized with pointers to the functions
that implement the corresponding abstract operations.

There are two classes of system calls for AdvFS. The first class contains VFS/vnode-related system calls

which are dispatched normally. For example, a read() in user space ends up calling the read system call

in bsd/sys_generic.c, which in turn calls rwuio. rwuio calls the macro FOP_READ to dispatch

to the read operation of the file operations vector, which in turn calls vn_read in vfs/vfs_vnops.c.

vn_read extracts the vnode pointer from the file structure, and calls the macro VOP_READ passing the
vnode pointer as an argument. This macro then selects out of the vnode's operations vector the file

system’s “read” function pointer (which in our case is a pointer to the AdvFS function msfs_read) and

calls it. At this point, we are within AdvFS territory: msfs_read gets a pointer to the access structure

from the bfNode structure in the vnode and uses it to call lower-level functions within AdvFS to process
the read.

The second class of system calls is used by AdvFS utilities to perform operations that are specific to
AdvFS, like migrating a file from one volume to another or adding a volume to a domain. These system
calls have nothing to do with VFS. They are dispatched through one giant switch statement in

msfs_real_syscall() in bs_misc.c. They are mentioned here for completeness, but do not interact with

the VFS/vnode layer. See section 13.1 for an AdvFS-specific system call stack trace.

14.1.4 Namei Cache

“Lookup” is the translator between names and vnodes. When a file is opened, we pass the pathname of
the file to the kernel. The pathname is traversed component by component and translated to an open file
whose vnode is the result of the lookup operation. This is done by namei() which starts at some directory
whose vnode is known (either the root directory of the process or the current directory of the process) and
keeps going down the pathname, looking up each component in the context of its containing directory. It
also takes care of the detours that mount points, symbolic links and “..” represent. Each intermediate
lookup returns a new vnode, the vnode of the directory that corresponds to the pathname that was
resolved so far, which is then used in the next iteration in namei() to resolve the next component of the
pathname. When namei() runs out of pathname, the lookup is done.

Namei() is file system-independent, but the lookup of a name in a directory is not, so it is implemented as
a vnode operation. The filename is looked up in the name cache, and if it is found or knows it does not
exist, the result is returned. If the filename is not found in the cache, the directory is searched (either
sequentially or using the index file, if one exists). The result (positive or negative) is added to the cache

and if positive, the resulting vnode is returned.

 HP Confidential

Chapter 14: Interactions with Other Layers 218

This is also the place where the .tags magic happens: if the name to be resolved is

.tags/something, then the “something” is used directly as a tag to open the file (see section 4.3).

14.1.5 Vnode Recycling

Opening a file through the VFS layer (as opposed to internal opens) increments a reference counter in the

vnode structure. When a file is closed, the reference counter is decremented. When the counter reaches

zero (the last close), the vnode is made inactive by calling the VOP_INACTIVE vnode op and freed.
Freeing the vnode puts it on the tail of a list of free vnodes which are recycled on a least-recently-used
basis. All this is done by vrele(). When the system needs a vnode, it grabs one from the head of the vnode
free list. While the vnode is on the free list, it still contains valid information. The vnode stays on the file
system’s open vnode list until the vnode is needed for another file (this means the vnode can be on two
lists at once – the vnode free list and the file system’s vnode list). If the file to which the vnode referred in
its previous life is reopened before the vnode is recycled, the vnode is found on the free list, unlinked, and
put into service again. The search is accomplished by a hashing mechanism that uses a combination of
inode number/tag and device number to identify the correct vnode, so it is fast.

When the vnode finally arrives at the head of the free list and is grabbed by the system for a different file,
the connection between the vnode and the file that it previously referred to has to be broken. In particular,
the underlying file system needs to be told about the severance, in order to enable it to do file system-
specific cleanup.

A new vnode is requested through a call to getnewvnode(), which decides whether to allocate a new
vnode or to get one from the free list. If the latter, it unlinks the vnode from the free list and calls vgone()
on it. vgone() checks for races (some other thread may have called vgone() on this vnode already), resets

the vnode ops to dead_vnodeops (for catching and avoiding errors: any vnode ops that are called on
the vnode will return error values and/or print error messages on the console) and calls vclean() on the
vnode. vclean() disassociates the vnode from the underlying file system: it flushes any associated pages

from the buffer cache and invalidates them. If the vnode is active, it has to be closed (VOP_CLOSE) and

inactivated (VOP_INACTIVE); then it can be reclaimed.

The VOP_CLOSE vnode op for AdvFS does not do much: it just updates file stats. The VOP_INACTIVE

vnode op breaks the pointer from the vnode's v_data field to the underlying AdvFS access structure and

a VREG vnode type is changed to VNON. Calling the VOP_RECLAIM vnode op does the reclaim. In the

case of AdvFS, this ends up calling msfs_reclaim() which checks for races, flushes any dirty pages of the
VM object associated with the access structures and invalidates them in the UBC, arranges for dirty stats
to be flushed to disk, and finally breaks the connection between the access structure and the vnode that it
pointed to. There is a little more cleanup to do: vnode_fscontext_deallocate() cleans out the file context
area (e.g. ensures quotas are detached), and clears out the VM object pointer in the vnode. At this point,
the vnode is ready to be reused.

14.2 AIO Interface
The Asynchronous I/O Interface (AIO) is a code layer between the application and the kernel that
allows synchronous I/O calls to be treated asynchronously by the application. This is done by having the
application make special calls to the kernel (aio_read() instead of read(); aio_write() instead of write()).
The AIO and kernel routines treat these I/O calls specially to allow the application to start each I/O (or
series of I/Os) and then check for their completion later. This capability is particularly useful when an
application is using raw or directIO (see section 8.12) because I/O in these modes is essentially
synchronous.

 219 Chapter 14: Interactions with Other Layers

AIO code handles AdvFS I/O starts in two steps.

1. The first I/O request initializes the vector of 64 result block pointers (rpb’s) in the proc structure.
These structures track the I/Os started with the AIO interface by each process. If the process exits
before calling the I/O completion routines, the AIO subsystem delays the exit until all outstanding
AIO-related I/Os are complete.

2. The application's calls to both aio_read() and aio_write() filter down through the aio_rw() routine in

the kernel. Here an rpb in the proc structure is set up, the user's pages for this transfer are wired,
and the appropriate kernel routine is called. For an AdvFS fileset, this routine is msfs_strategy(). The

aio_rw() routine passes a struct buf to msfs_strategy(), which uses this information to set up a

uio structure to pass to the AdvFS read and write routines.

The AdvFS read and write routines do little special processing for AIO calls. One special check is to
ensure that after the I/O request has been handed off to the device driver, the kernel will return to the
application without waiting for I/O completion. Another special step is for the I/O completion path to call
the AIO completion routine for each I/O started through the AIO interface.

When a process using the AIO interface exits, it automatically calls aio_exit() to check if there are any
outstanding AIO-induced I/Os. If there are, it will wait for them to complete and then do the appropriate
cleanup. I/O completion for AIO happens in two distinct thread contexts.

1. For any I/O, the driver signals I/O completion and invokes the AdvFS I/O completion routine,
bs_osf_complete(). If the I/O is determined to be associated with an AIO call, then the AIO
completion routine (aio_driver_done()) is called. aio_driver_done() saves some information from the

incoming struct buf and then casts that structure (which was the same struct buf that was

passed into msfs_strategy() originally) to be an aio_completion_qentry structure

(acq). (This was done for performance reasons, and dictates that AdvFS be careful of how this

structure is modified. See the final paragraph of this section.) This acq structure is then placed onto a

per-Resource Affinity Domain (RAD) queue (aio_completion_queue) for later processing.

2. Another context in which I/O is completed takes place in the aio_completion_thread(). There is one
such thread per RAD, and each is responsible for removing entries from the

rad->aio_completion_queue, doing some cleanup, and then moving this acq structure onto

the process’ p_aio_completion queue for final cleanup.

From the AdvFS perspective, it is important to understand that the struct buf passed into
msfs_strategy() is used for a completion queue entry after the I/O has completed. This means that the
AdvFS code must not overwrite any part of this structure after an asynchronous I/O has been started.

Conversely, if an asynchronous I/O fails to be started, the error code must be posted in the struct buf
so that the caller knows that no I/O has been started.

14.3 LSM
The Logical Storage Manager (LSM) is a volume manager used to help manage data storage, and is a
layer below AdvFS. LSM uses Redundant Arrays of Independent Disks (RAID) technology to enable
configuration of storage devices into a virtual pool of storage from which LSM volumes can be created.
New and existing AdvFS file systems, databases, and applications can be configured to use LSM
volumes. LSM volumes can also be created on top of RAID storage sets. The benefits of using an LSM
volume instead of a single disk partition include the following:

• Data loss protection: LSM can automatically store and maintain multiple copies (mirrors) of data
or data and parity information. If a storage device fails, LSM continues operating using either the

 HP Confidential

Chapter 14: Interactions with Other Layers 220

remaining mirrors or the remaining data and parity information, without disrupting users or
applications, shutting down the system, or backing up and restoring data. LSM can automatically
transfer the data from the failed storage device to a designated spare disk, or to free disk space,
and send you mail about the relocation.

• Maximized disk usage: LSM can be configured to seamlessly join storage devices to appear as a
single storage device to users and applications.

• Performance improvements: LSM can be configured to separate data into units of equal size,
then stripe the data to two or more storage devices over different disks and different buses.

14.3.1 LSM Terminology

LSM is used to manage storage space, while AdvFS is used to manage files and file systems.
Applications, databases, and file systems access logical volumes, and LSM manages the composition of
these logical volumes. A LSM volume is a virtual disk device that looks to applications and file systems
like a regular disk-partition device and is formed by combining portions of several physical disks. The
data contained on each volume can then be duplicated to provide redundancy.

A physical disk, or partition, is defined as a group of contiguous data blocks on a disk device, (SCSI

disks, DSA disks, etc.) and is referenced in a form similar to /dev/disk/dsk3d. A subdisk is a
logical representation of a set of contiguous disk blocks on a physical disk. Subdisks are the basic
components of LSM volumes. Concatenation of subdisks gives LSM the ability to create enormous LSM
volumes for use by file systems and enables LSM volume creation of small leftover pieces of disks.

A plex is a collection of one or more subdisks that compose one copy of the volume data. A plex is an
instance of the volume data. A mirrored volume is comprised of two or more plexes, and data contained
at any given point on each plex is identical, although the subdisk arrangement may differ. Plexes have
either a striped or a concatenated organization. Volume mirroring using plexes improves data integrity.
Any write operation is written to all the plexes, and any read operation can be satisfied by any of the
plexes.

A disk group is a collection of disks that share the same LSM configuration database (LSM disks,

subdisks, plexes and volumes). The root disk group, rootdg, is a special, private disk group that is

created upon LSM initialization. rootdg contains information on all the other disk groups in the

system’s LSM configuration. Disk groups provide a way to partition the configuration database and
enable disks to move between systems.

14.3.2 AdvFS and LSM Interactions

AdvFS’s primary point of interaction with LSM is in the volume name space. User space utilities such as

addvol, rmvol, migrate, and mkfdmn must accept traditional AdvFS volume names as well as

LSM volume names:

rmvol /dev/disk/dsk3c test_dmn AdvFS volume name

rmvol /dev/vol/rootdg/vol4 LSM rootdg group volume

rmvol /dev/vol/testdg/vol1 LSM testdg group volume

 221 Chapter 14: Interactions with Other Layers

Internal kernel migration routines must be able to handle LSM volume names, as well. Other than the
LSM volume name awareness, AdvFS functions independently of the LSM layer.

Both AdvFS and LSM support striping of data, but it is recommended that only one method of striping be
used. For instance, configuring an AdvFS striped file that resides on an LSM striped volume is usually
not recommended. See the Tru64 UNIX System Configuration and Tuning Guide for more information.

See the References section for pointers to more detailed documents about LSM.

 223 References

References

Glossary 224

Glossary

This is a list of some items that might be included in a glossary.

access rights Portable abstraction of the operating system locks

access structure Memory-resident structures that hold file information.

asynchronous I/O A non-blocking I/O scheme where data is written to the cache
and may return control to the calling application before the data
is written to disk.

Atomic-write data logging Guarantees that either all data in a write system call (up to 8
kilobytes) is written to the disk, or that none of the data is
written to the disk.

Bitfile Access Subsystem

(BAS)

The BAS is responsible for managing the filesystem’s physical
storage representation. This subsystem provides shared storage
support of a domain’s file systems, storage migration, and
storage expansion.

bitfile A set of pages that AdvFS views as one entity. Reserved files
and user files are bitfiles.

Blocking queue An I/O queue used primarily for reads and for AdvFS-generated
synchronous write requests (e.g. log flushes).

BMT Bitfile Metadata Table. An array of mcells that define and maps
a file’s data storage. All bitfiles are mapped by the BMT,
including the BMT itself. Page 0 of the BMP maps ther
domain’s reserved bitfiles.

bfAccess structure

Contains bitfile attributes, the extent maps, a dirty buffer list
and pointers to the domain structure and bitfile set descriptor
for a file.

bsBuf structure Headers associated with pages in memory that help control the
I/O for those pages.

Buffer cache A set of memory pages that contains data read from and/or
waiting to be written to disk.

Clone fileset A read-only copy of the original fileset’s tag file that is
maintained as it existed at the time of the clone.

Consol queue A lazy I/O queue that holds a sorted list of dirty buffers waiting
to be written.

Context structure

 225 Glossary

continuation transaction

COW Copy On Write. The process by which original information is
saved in a clone fileset when data in the original file is changed.

DDL Deferred Delete List

Data management

descriptor A file page and corresponding starting disk block pair.

device queue

direct I/O An I/O scheme that synchronously reads and writes data from a
file without copying it into the buffer cache.

DM application A Data Management application is any application that uses the
DMAPI.

DMAPI Data Management Application Programming Interface. The
term that refers to the interface defined by this XDSM
Specification.

DMAPI implementation The services in the host Operating System that act as the
XDSM API provider

Directory A collection of files that are logically related.

Disposition Attributes describing a DMAPI session.

Domain A named pool of storage that contains one or more volumes.

event A notification from the operating system to a DM application
about an operation on a file. For example, a DM application can
arrange to be notified about attempts to read a particular file.

Extent Contiguous area of disk space allocated to a file. A file may
have zero or more extents.

Extent map An in-memory or on-disk map of file pages to disk blocks. A
subextent map is part of an extent map that will fit in one mcell.

Fast recovery

File An entity that stores information.

File Access Subsystem (FAS) The subsystem responsible for managing the logical file
hierarchy. This is the AdvFS representation of standard UNIX
directories, files, and file systems.

file directory A directory that associates a file name with its metadata.

Glossary 226

Fileset A hierarchy of directory and files. A fileset represents a
mountable portion of the directory hierarchy of the AdvFS file
system.

Fileset tag

flush queue An I/O queue that holds pages waiting to be flushed to disk
from an explicit flush request such as fsync().

frag file A special file that stores the last partial page of a file in a
fileset. Using frag files reduces the amount of wasted disk
space.

fragment File storage of less than 8K.

fragment bitfile A collection of fragment groups.

fragment group An array of fragments of uniform size.

free-space cache An in-memory cache of disk space available for each volume in
each domain.

fsContext structure Contains file attributes and disk quota information.

Hole An area of a file that consists entirely of bytes of zeros. Some
file system implementations may not need to consume any
media resources to maintain such an area.

inode A numeric file identifier.

I/O transfer size A volume-specific value that indicates the amount of data that
can be processed in a single I/O request.

I/O consolidation A performance optimization that combines the I/O for several
discrete buffers into a single I/O request to the device driver

lazy queue A logical series of queues in which asynchronous write requests
are cached.

LBN Logical Block Number . The address on the storage device at
which a given page of information is stored.

logical file hierarchy layer The software that implements the file-naming scheme and
POSIX-compliant functions for AdvFS.

logical sequence number A unique identifier of a transaction log entry.

magic number A unique number (the time since Chris Sather's birthday) that
identifiies a domain as AdvFS at mount time.

managed file A file that is being monitored by a DM application for events.

managed region A contiguous span of a file given as an (offset, length) pair,
together with an associated event generation specification.

Mcell Metadata cells that contain records of file structure.

 227 Glossary

mcell address tuple The address of an mcell; consists of the volume index, BMT
page number, and the mcell’s index within the BMT page.

metadata File structure information such as file attributes, extent maps,
and fileset attributes.

miscellaneous bitfile Maps areas of the volume that do not represent AdvFS
metadata, such as the disk label and boot blocks.

namei cache

non-reserved file

NUMA Non-Uniform Memory Access. A memory access system in a
cluster that gives preference to certain processors.

object reuse The reuse of storage in such a way that data from previous
objects are revealed in the current object.

object safety Forces newly-allocated storage to be zero-filled and written to
disk before it is made available to the file so there can be no
object reuse.

opaque An opaque variable is one that should not be interpreted by an
application. It should be thought of as a block box.

opaque extended attributes

outstanding Pending or waiting for action.

page An allocation of 8 KB of contiguous disk space (16 blocks).

physical storage layer The software that implements the logging, caching, file storage
allocation, file migration, and physical disk I/O functions for
AdvFS.

punching holes An action taken by a DM application to release on-disk blocks
of a file to free up space on a local file system.

preferred transfer size The optimum number of pages in an I/O request for a given
volume.

prefetch An algorithm to read and cache more than one page during a
single read request.

primary extent map record

primary mcell

RAD Resource Affiity Domain.

RBMT Reserved bitfile metadata table. Contains the disklabel, BMP,
boot block, RTD, SBM, and transaction log,

Glossary 228

read-ahead An algorithm to read and cache pages before an application
requests them. Used during sequential reading of a file.

ready queue A lazy I/O queue that contains dirty buffers that are sorted by
LBN.

record

reserved metadata file

RTD Root tag directory. A domain reserved bitfile used to
locate file systems (for example, as a mount point).

root tag file A directory that defines the location of all filesets in a domain.
Each file domain has one.

saveset The collection of blocks created by the vdump utility.

SBM Storage Bitmap. Keeps track of allocated disk space in a
volume.

secondary mcell

service class Determines which volumes within a domain can allocate file
storage for new data or data migration.

Session Communication channels used between a DM application and
the kernel component of DMAPI

smoothsync A mechanism whereby the dirty buffers are drained to disk at a
constant, time-based rate.

smoothsync queue A lazy I/O queue that contains dirty buffers that have not aged
sufficiently to be flushed to disk. It is only used when
smoothsync is enabled.

striping

synchronous I/O An I/O scheme where data is written both to the cache and to
the disk before the write request returns to the calling
application.

tag A unique identifier for an AdvFS file within a fileset. It locates
the initial link to the on-disk file metadata.

tag directory An array of tag entries that identify the volume, page, and
mcell location for a file. [correct?]

tertiary storage

token A reference to state associated with a synchronous event
message.

transaction log The log that records changes to metadata before the changes are
written to disk. These changes are written to disk at regular

 229 Glossary

intervals.

transactionally consistent

storage deallocation

Requires that all transaction records in the log associated with a
storage deallocation transaction must be committed to the disk
log before the deallocated space can be reallocated

trashcan A directory that contains the most recently deleted files from
and attached directory. Trashcan directories can be set up by
each user for user files.

UBC Unified Buffer Cache. The dynamically allocated system buffer
cache that holds file data and AdvFS metadata.

ubcreq queue An I/O queue that caches synchronous write requests that come
from the UBC..

virtual memory subsystem

wait queue A lazy I/O queue that contains metadata pages that cannot be
flushed until their log entries are flushed to disk.

volume For AdvFS, anything that behaves like a UNIX block device.
This can be a discrete disk, an LSM volume group, or an
HSG80 with many disks.

volume descriptor Describes the disks in a domain.

volume descriptor array Contains pointers to active volume descriptors.

volume index

write-ahead logging The process by which the modifications to the file metadata are
completely written to a transaction log file before the actual
changes are written to disk.

