
THE UNIVERSITY OF WAIKATO
DEPARTMENT OF MATHEMATICS

Lecture notes for
MATH102-06A Introduction to Algebra

by Rua Murray and Tim Stokes

Website: http://www.math.waikato.ac.nz/˜rua/102/



Contents

Contents 1

Introductory examples 3

0.1 A system of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.2 Transformations and computer graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.3 Fibonacci numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

0.4 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Linear systems 6

1.1 Introduction to linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Solving systems of linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Gaussian elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Gauss–Jordan elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Matrices 21

2.1 Vector and matrix algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Matrix multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Matrix inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Homogeneous equations and the general solution to Ax = b . . . . . . . . . . . . . . . . 34

3 Determinants 38

3.1 Definition of determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Determinants by row-reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Trigonometry review 48

4 Vectors and geometry in R2 and R3 52

4.1 Basic vector geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Vector products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Lines and planes in space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Linear equations and intersections of lines and planes . . . . . . . . . . . . . . . . . . . . 63

4.5 Projections in R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



MATH102-06A

5 Induction and recursion 70

5.1 Set theory, the natural numbers N and mathematical induction . . . . . . . . . . . . . . . 70

5.2 Mathematical induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Strong induction and recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Complex numbers 84

6.1 Introduction to complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Further operations on C and the polar form . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Solving equations in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Elementary number theory 96

7.1 Natural numbers and divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2 Remainders and the Euclidean algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 Linear Diophantine equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4 Modular arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.5 The algebra of modular arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.6 Computing remainders and solving congruences . . . . . . . . . . . . . . . . . . . . . . . 111

8 Cryptography 116

8.1 The shift cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.2 The affine cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.3 The RSA cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9 Extra topics 121

9.1 Application: Least squares model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.2 Matrices and linear transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.3 Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10 Exercises 129

2



Lecture Notes (Week 1) MATH102-06A

Introductory examples

Here are several examples of the kinds of problems where the methods studied in this paper will be useful.

(0.1) A system of equations
• The main sources of energy in food are: carbohydrates, protein, fats and alcohol.

• The number of grams of each in 100 gram servings of four foods (and total energy content) is given
in the following table:

Food Grams per 100g serving Energy
Carbohydrates Protein Fat Alcohol (kcal per 100g)

Bread 47 8 2 0 227
Lean steak 0 27 12 0 218
Ice-cream 25 4 7 0 170
Red wine 0 0 0 10 68

• By assigning variables c, p, f, a to the number of kilocalories per gram of each of carbohydrates,
protein, fat and alcohol we can write down a system of equations:

47 c + 8 p + 2 f = 227
27 p + 12 f = 218

25 c + 4 p + 7 f = 170
10 a = 68

• By solving these equations (with methods to be learned in the paper), we find that c ≈ 3.7, p ≈ 4.3,
f ≈ 8.5, a = 6.8.

• So, protein has more energy value per gram than carbohydrates, and both have significantly less than
fat or alcohol!

• Most dietary advice recommends that no more than 30% of calories come from fat. How much wine
is needed for a recommended diet of 2000kcal if bread is excluded, but the remaining foods are
allowed?

(0.2) Transformations and computer graphics
• It is often important (for example in computer graphics programming) to get a mathematical descrip-

tion of how solid objects move in two or three dimensional space

• Points can be represented as vectors (these are really just arrays of numbers representing coordinates),
and transformations like rotations can be represented by matrices
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• For example
(

1√
2

1√
2

1√
2

1√
2

)

for rotation through 45◦ or

(

−1 0
0 1

)

for reflection in the y–axis

• We’ll learn how to do algebra with such arrays in a way that represents successive applications of
such transformations. For example, our rotation followed by reflection gives a reflection in a line
22.5◦ clockwise from the y–axis, whereas applying the transformations in the other order gives a
reflection in a line 22.5◦ anti–clockwise from the y–axis!

(0.3) Fibonacci numbers
• A simple population model for number of rabbits Rn in n years

• Each rabbit replaces itself through breeding in two subsequent seasons so

Rn+1 = Rn + Rn−1

• Start with R−1 = R0 = 1 so that

R1 = R0 + R−1 = 1 + 1 = 2,
R2 = R1 + R0 = 2 + 1 = 3,
R3 = R2 + R1 = 3 + 2 = 5 . . .

• The sequence is
{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .}

• You’ll learn techniques to prove that

Rn =
√

5−3
2
√

5

(

1−
√

5
2

)n

+
√

5+3
2
√

5

(

1+
√

5
2

)n

≈ (−0.1708 · · · ) (−0.618 · · · )n + (1.170 · · · ) (1.618 · · · )n

(0.4) Cryptography
• We can “code” a plain-text message by converting letters into numbers:

A 7→ 0, B 7→ 1, C 7→ 2, . . . Z 7→ 25.

• So “ALGEBRA” becomes “0 11 6 4 1 17 0”

• Next, we could do some arithmetic operations on each number x to get a new number y. If we look
at the remainder of y after dividing by 26, the new number can be converted back into a letter; this
process “encrypts” a message

• If we use y = 5 x + 8 then

A 7→ 0 7→ 5 × 0 + 8 = 8 = 0 × 26 + 8 7→ 8 7→ I

B 7→ 1 7→ 5 × 1 + 8 = 13 = 0 × 26 + 13 7→ 13 7→ N
...
G 7→ 6 7→ 5 × 6 + 8 = 38 = 1 × 26 + 12 7→ 12 7→ M
...

so “ALGEBRA” becomes “ILMCNPI”
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• Exercise: “JNVWMBQ” has been encrypted using y = 9 x + 17; what was the word?

• RSA public key cryptography is based on a function y = xa. The idea is to choose a very large n to
replace 26 and a power a so that there is a unique way to decode each message, but the “decrypt” key
is impossibly hard to construct

5
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I ◦ Linear systems

(1.1) Introduction to linear systems
We will be working with systems of linear equations. We will start by looking at the most basic equations:
those describing lines in the plane.

6
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Now, points in the plane are described by an ordered pair (x, y) of Cartesian coordinates . For points on our
line L, these coordinates satisfy some sort of equation.

Example 1. The above diagram depicts a line passing through the point (1, 1), with slope 1/2. we would
like to be able to describe this line. �

Here are several formulations, of increasing sophistication:

• Slope–intercept formula. Using the “slope” m and “y–intercept” c of the line, the equation of the
line is y = mx + c and we can write

L = {(x, y) |y = m x + c} .

This notation reads “L is the set of the points (x, y) such that y = m x + c.”

• Point–slope formula. More generally, if we are given the slope m and one point on the line (x0, y0)
we can write

L = {(x, y) |y − y0 = m (x − x0)} .

This is more general than the slope–intercept formula, since we are no longer tied to knowing the y
value when x = 0; the value of y at any given x0 will do.
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• Algebraic formula. The two previous approaches give a privileged position to x as the “independent
variable”—the one which is allowed to vary. There is really no reason for this asymmetry between x
and y, so we can git rid of it by writing1

L = {(x, y) |a1 x + a2 y = b}

for suitable choices of a1, a2, b. (The “slope” of the line is then m = − a1

a2

and we must have a1 x0 +
a2 y0 = b.)

Example revisited. Consider the line with slope m = 1
2
, passing through the point (x0, y0) = (1, 1).

We can work out our three formulations. The point–slope formulation is easy (we are given the
appropriate data). For the slope–intercept formula we need to work out the y–intercept. We know
that m = 1

2
, and that y = 1 when x = 1. Thus,

1 = y0 = m x0 + c =
1

2
1 + c =

1

2
+ c

so c = 1
2

and our three representations of the line are now:

y =
1

2
x +

1

2
,

y − 1 =
1

2
(x − 1),

x − 2 y = −1.

(The last formula can be got by a bit of rearranging of either of the others.)

• Vector formula. All of these formulations express the relationship between x and y for points on the
line. In fact, the line is simply all the points (x, y) which are solutions of the algebraic equation. This
is the most appropriate way to think of the line in Algebra (in Calculus, the line is thought of as the
graph of a function which tells you how to turn x into y). In this paper, we will learn how to find all
the solutions of such equations.

Example revisited again. If we treat y as an “unknown” in the equation, then we can rearrange to
obtain

x = −1 + 2 y
y = 0 + 1 y

where y ∈ R is treated as a free variable. With some judicious bracketing (and a simple convention
about pushing arithmetic operations through brackets) we can write

(

x
y

)

=

(

−1
0

)

+ y

(

2
1

)

.

This is a vector equation for the line. The points (x, y) on the line are written in vector notation as
(x
y). Notice that (−1

0) represents the point (−1, 0), which is on the line. The final vector (2
1) represents

the direction of the line; the numbers can be thought of as meaning “2 units in the x direction moves
you 1 unit in the y direction”—compatible with the original slope of 1

2
. There is no longer anything

1There is a very good reason for doing this: the slope based formulations cannot represent a vertical line!
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special about y in the vector formulation; we could replace it by any other parameter. For example, if
we let y = 1 + t for t an arbitrary real parameter, and use sensible rules for adding vectors:

(

x
y

)

=

(

−1
0

)

+ (1 + t)

(

2
1

)

=

(

−1
0

)

+

(

2
1

)

+ t

(

2
1

)

=

(

−1 + 2
0 + 1

)

+ t

(

2
1

)

=

(

1
1

)

+ t

(

2
1

)

,

showing that the original point (x0, y0) = (1, 1) is still on the line.

Now that we have some equations for lines, we can consider systems of such equations, and their solution.
We will try to solve them by a method of systematically eliminating variables.

Example 2. Consider the system

x + y = 1

2 x + y = 1.

We can solve as follows: subtract 2 times the first equation from the second equation; the second equation
is now

−y = −1

so y = 1; substituting this into the first gives x+1 = 1, so x = 0. The solution set for this pair of equations
is simply {(0, 1)}.
Geometric interpretation: each equation describes one line in the plane, so any solution to the system of
equations satisfies both equations simultaneously and must therefore represent a point which is on both
lines. Since there is only one such point, it is the point of intersection of the two lines. �

Example 3. Consider the system

2 x + y = 1

−4 x − 2 y = −2.

We can see that the second equation is a multiple of the first, so contains no new information. Let us ignore
this for the moment, and use the same elimination method as above. Adding twice the first equation from
the second gives the revised system

2 x + y = 1

0 = 0.

We no longer have enough information to determine both x and y uniquely; in fact, the solution set is
infinite, and we can write it down letting y take the value of an arbitrary real parameter. Effectively, we
replace the missing final equation by y = y, and substitute this back into the first equation to get 2 x+y = 1
or x = 1

2
(1 − y). The solution set is thus:

{

(x, y) | x =
1 − y

2
, y ∈ R

}

, or

(

x
y

)

=

(

1
2

0

)

+ y

(

−1
2

1

)

.

Note: This solution set is infinite; there are as many solutions as there are real numbers.
Geometric interpretation: The solution set is a line. In fact, both equations in our system describe the same
line, so their common points are that same line!
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Remark: We could have assigned x to be the arbitrary parameter, or even y = t (or any other letter). Letting
y be the free variable has been done for consistency with the general approach that we’ll study below
(many equations in many variables). �

Example 4. Consider the system

2x + 3y = 1

2x + 3y = 2.

What are the solutions? Whatever values x, y are given, 2x + 3y cannot be both 1 and 2, so there are no
solutions to this system. This can also be seen be a systematic method: if we subtract the first equation
from the second we are left with 0 = 1! This is a ridiculous, and intolerable, situation. In order to avoid
this contradiction to the rules of arithmetic, we conclude that there cannot be any values of x and y which
simultaneously satisfy both equations in the system.
Geometric interpretation: The two lines described by the system do not share any common points; they are
parallel. �

These examples capture three important facts about systems of linear equations: (i) their solutions can be
probed by systematic methods; (ii) there could be exactly one, infinitely many, or no solutions; (iii) the
solutions can be interpreted geometrically.

(1.2) Solving systems of linear equations
The three examples in the previous section were all very easy to solve; when we have more variables, and
more equations in our system it is very important to follow a systematic approach.

Example. Consider the system of equations:

2 x − y − z + 2 w = 1
6 x − 2 y + z + 6 w = 4
2 x − z + 3 w = 4.

Does it have any solutions? how many? what are they? �

Setup

To proceed, we need a definition.

Definition. A system of m linear equations in n unknowns is one of the form:

a11 x1 + a12 x2 + · · · + a1n xn = b1

a21 x1 + a22 x2 + · · · + a2n xn = b2
...

...
...

am1 x1 + am2 x2 + · · · + amn xn = bm

where each aij and bi is a real number. �

This is sometimes called an m × n (linear) system. The variables (or unknowns) are x1, . . . , xn. The
numbers aij are the coefficients of the system, and the numbers bi are sometimes called the right-hand
side (or RHS). Note that none of the variables are multiplied together; this is what makes the system linear .

Definition. A solution to an m×n system is an assignment of numbers to each of x1, . . . , xn so that all m
equations are satisfied. A system is consistent if it has at least one solution. Otherwise it is inconsistent.
The general solution to a consistent system is the set of all solutions. �

9
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Example 1. The system of equations

x − 2 y = 3

2 x − 4 y = 8

is inconsistent, because if x = x0, y = y0 was a solution we would have

8 = 2 x0 − 4 y0 = 2 (x0 − 2 y0) = 2 × 3 = 6,

which is ridiculous! �

Example 2. The system of equations

x + 2 y = 5

x + y = 3

is consistent, because the assignment x = 1, y = 2 is a solution. �

Systems in Echelon form

Certain linear systems are easy to solve. We will study how to solve systems with a special form, and then
see later how to put an arbitrary system into a form which has this nice structure.

Definition. A system is in Echelon Form (EF) if the first variable in each equation is further to the right
as we move down. The leading variables (or pivots) of a system in EF are those variables that are the
first in one of the equations. The other variables are free variables. Each equation must contain a leading
variable. �

Example 3. The system

x1 +2 x2 +x3 −x4 + x6 = 3
x2 −x4 +x5 = 0

x4 +3 x6 = 3
x5 +2 x6 = 4.

is in echelon from, whereas the system

x + y = 1

x − y = 7

is not. �

To solve a system in echelon form, we work up from the last equation expressing the value of each leading
variable in terms of the free ones.

Example. In the first system of Example 3, the leading variables are x1, x2, x4, x5 and the free variables
are x3 and x6. The last equation has x5 as its leading variable, so we rearrange to get

x5 = 4 − 2x6. (x5–equation)

Similarly, rearranging the next one up to solve for x4:

x4 = 3 − 3x6. (x4–equation)

10
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Rearranging the next equation up and eliminating the non-free variables using the expressions for x4 and
x5 gives:

x2 = x4 − x5

= (3 − 3x6) − (4 − 2x6)
= −1 − x6.

(x2–equation)

Finally, the top equation gives:

x1 = −2x2 − x3 + x4 − x6 + 3
= −2(−1 − x6) − x3 + (3 − 3x6) − x6 + 3
= 8 − x3 − 2x6.

(x1–equation)

we have solved for x1, x2, x4, x5 (the leading variables) in terms of x3, x6 (the free variables). We can collect
together the various (xi–equation)s to state the general solution:

x1 = 8 − x3 − 2 x6

x2 = −1 − x6

x4 = 3 − 3 x6

x5 = 4 − 2 x6

with x3, x6 ∈ R.

The idea is that any choice of real values for the free variables determines a solution to the system. For
instance let x3 = 0 and x6 = 1. Then the above general solution tells us

x1 = 6, x2 = −2, x4 = 0, x5 = 2.

Finally, by adding the equations x3 = x3, x6 = x6 and applying vector notation we obtain:
















x1

x2

x3

x4

x5

x6

















=

















8
−1

0
3
4
0

















+ x3

















−1
0
1
0
0
0

















+ x6

















−2
−1

0
−3
−2

1

















.

�

Algorithm for solving a system in Echelon Form

1. Identify the leading and free variables.

2. Assign a parameter to each free variable.

3. Work up from the last to the first equation, solving by substitution (back substitution).

4. [Optional] Write the solution in vector form.

Example 4. 3 x + 2 y = 1
−y = 1

The leading variables are x and y. There are no free variables and the solution is
(x, y) = (1,−1). �

Example 5. x + y + z = 1
z = 1
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The leading variables x and z; y is a free variable, and we call it t. The solution is
(x, y, z) = (0, 0, 1) + t (−1, 1, 0), t ∈ R. �

Example 6. x + y + z = 1
2 y + 2 z = 2

3 z = 3

The leading variables are x, y and z. There are no free variables and the solution is
(x, y, z) = (0, 0, 1). �

Example 7. x + y + z − w = 0
y + 2 z = 0

The leading variables x and y; z and w are free variables, and we call them s and t respectively. The solution
is

(x, y, z, w) = (0, 0, 0, 0) + s (1,−2, 1, 0) + t (1, 0, 0, 1), s, t ∈ R. �

Remarks on systems in echelon form

• Every system in echelon form is automatically consistent.

• The back substitution procedure can involve of a lot of arithmetic, and it is easy to make mistakes.
It is therefore a good idea, when you have found the general solution, to select a particular solution
(for example, by setting all the free variables to zero), and substitute it in to the system to check that
it satisfies all the equations.

• It is often convenient to replace the free variables with a parameter described by a different letter.
Although this has no mathematical significance, it is a good convention for the unambiguous presen-
tation of solutions.

Remarks on general systems

• A general system of equations can have exactly 0, 1 or infinitely many solutions.

• Two systems will be called equivalent if they have the same solutions. That is, their solution set
is the same. The basic idea that we will exploit in solving a general system is to perform some
elementary operations on a system to obtain an equivalent system which is in EF. Since equivalent
systems always have the same solutions, we can obtain the general solution to our original system by
solving the equivalent EF system by back-substitution.

12
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(1.3) Gaussian elimination
Systems of linear equations in echelon form (EF) are solved easily by back-substitution. Therefore, we’d
like to know how to put a general system in EF. The idea is to systematically eliminate variables from the
front of equations. We can accomplish this by a suitable sequence of elementary operations.

Elementary operations

There are three basic operations that we can perform on a system:

1. Interchange the order of two equations;

2. Multiply an equation by a non-zero constant;

3. Add a multiple of one equation to another equation.

Note: combining operations 2 and 3 into one operation is not an elementary operation, and can lead to the
creation of “bogus” solutions.

Theorem 1.1 Elementary operations do not change the solution set of a linear system.

This result is important, plausible, and fairly easy to prove. The basic idea is that a solution cannot be
destroyed by an elementary operation (after all, we are simply reordering, adding together or multiplying
a bunch of true arithmetic statements). On the other hand, each elementary operation can be reversed by
another elementary operation (again this is pretty obvious), so new solutions cannot be created (if they were,
the reversed operation would have to delete them, which is not allowed!).

Theorem 1.2 A sequence of elementary operations can be applied to any consistent linear system to put it
in echelon form.

The proof of this result is the Gaussian elimination algorithm. We will rehearse it a few times before writing
it down precisely. The idea is to work through the system, one variable at a time, systematically eliminating
the leading variable from all the other equations.

Example 1. Let us solve the following system:

x + 2y = 3 [1]

2x + 5y = 7. [2]

We’re aiming at an echelon form. So we need to eliminate the leading variable x in the first equation [1]
from the second equation [2]. Subtract twice [1] from [2]:

2x + 5y = 7
2x + 4y = 6

y = 1.

So our new system, equivalent to the old, is:

x + 2y = 3

y = 1.

13
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In future examples, we will record the row operation used by writing [2] → [2] − 2 × [1]. The new system
is in echelon form and is easily solved: y = 1, so x = 3− 2 = 1. There are no free variables, so x = y = 1
is the solution. (Check!) �

Example 2. We apply the elimination procedure to the following system:

y + z = 1 [1] → [2]
x + y + z = 1 [2] → [1]

2 x + 2 y + 3 z = 1

x + y + z = 1
y + z = 1

2 x + 2 y + 3 z = 1 [3] → [3] − 2 × [1]

x + y + z = 1
y + z = 1

z = −1

The solution can now be found by back substitution: x = 0, y = 2, z = −1. �

Formal statement of the Gaussian elimination algorithm

The main idea in Gaussian elimination is to use elementary operations to systematically eliminate variables.
The basic procedure is to work through the leading variables one at a time, removing the terms from lower
equations:

Gaussian elimination algorithm for m equations

0. Identify the first leading variable. Call it X , set i := 1.

1. If equation [i] does not start with an X then swap with another equation which does.

2. [Optional] Divide equation [i] by the coefficient of X to turn the first coefficient into a 1.

3. Eliminate X from each of equations [i + 1]–[m] by subtracting an appropriate multiple of equa-
tion [i].

4. If any equations “0 = 0” are obtained, remove them from the system; if any equations “0 = b”
(where b 6= 0) are obtained, then STOP, as the system is inconsistent.

5. If there are no more equations, then STOP. Otherwise, identify the next leading variable which
appears to the right of X in any of the equations [i + 1]–[m]. Call it X . Set i := i + 1 and go to
Step 1.

Note: This procedure, if followed correctly, will produce a system in echelon form which is equivalent to
the original one. The only way that it can fail is if the original system is inconsistent. In this case, the
algorithm with terminate. �

Using Gaussian elimination to solve a word problem

Example 3. A traveller recorded the following data about $ spent in several categories on a brief European
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tour. Determine how much money she spent in each country.

$ / day UK France Spain TOTAL $ spent
Accommodation 50 20 20 340
Food 20 30 20 320
Sundry 10 10 10 140

First of all, let x, y, z represent days spent in the UK, France and Spain respectively. Then, the data can be
written as several equations, which we proceed to solve by Gaussian elimination:

50 x + 20 y + 20 z = 340
20 x + 30 y + 20 z = 320 [2] → [2] − 20

50
[1]

10 x + 10 y + 10 z = 140 [3] → [3] − 10
50

[1]

50 x + 20 y + 20 z = 340
22 y + 12 z = 184
6 y + 6 z = 72 [3] → [3] − 6

22
[2]

50 x + 20 y + 20 z = 340
22 y + 12 z = 184

30
11

z = 240
11

The system is now in Echelon Form, and we can solve it by back substitution to obtain: x = 2, y = 4,
z = 8. So, with 2 days in the UK, her total expenditure there was 2 × ($50 + $20 + $10) = $160. Similar
calculations reveal that she spent $240 in France and $400 in Spain. �

Notice that in this example the arithmetic could have been simplified by interchanging the second and third
equations before the final step. Once you get familiar with the process of Gaussian elimination, you can
introduce these extra manouvres to simplify your calculations.

(1.4) Gauss–Jordan elimination
We can improve our Gaussian elimination procedure, reduce the amount of writing required and simplify the
back substitution step by employing matrix notation and performing some extra elementary row operations
.

Augmented matrix notation

In Gaussian elimination, there is considerable redundancy in notation by having to constantly rewrite the
whole system of equations, variables and all. Since the variables never change (and are implicitly identified
by their positions), there is really no need to keep writing them down. In fact, the elementary operations
change only the coefficients of this system, so we need only keep track of these numbers.

Example 1. We represent the system

x + 2 y + 3 z = 4
3 x + 4 y + 5 z = 2
2 x + 5 y + z = 3

as the augmented matrix




1 2 3 4
3 4 5 2
2 5 1 3



 .
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Now we can apply the Gaussian elimination approach to the rows of this matrix to put it in EF, and convert
back to a linear system at the end. The only difference is that we will record our steps using a slightly
different notation. First, we want to eliminate the coefficients of x in the second and third equations. This
corresponds to transforming the first entries of the second and third rows of the augmented matrix into
0s. This is done by elementary row operations , and they exactly mirror the elementary operations used in
Gaussian elimination. Now, our first move is to subtract 3 times the first row from the second row, in order
to put a 0 in the first column of the second row. We denote this by R2 → R2 − 3 R1; the similar move
R3 → R3 − 2 R1 is applied to the second row. We then obtain:





1 2 3 4
0 −2 −4 −10
0 1 −5 −5



 .

We then apply R3 → R3 + 1
2
R2 to get





1 2 3 4
0 −2 −4 −10
0 0 −7 −10



 ,

which corresponds to the system of equations:

x + 2 y + 3 z = 4
−2 y − 4 z = −10

−7 z = −10.

This can be solved by back substitution to get x = − 32
7

, y = 15
7

, z = 10
7

. �

Notice that when we performed a “row operation”, we simply worked along the row, one column at a time,
doing the (same) indicated arithmetic operation to each entry.

Definition. The system of equations:

a11 x1 + a12 x2 + · · · + a1n xn = b1

a21 x1 + a22 x2 + · · · + a2n xn = b2
...

...
...

am1 x1 + am2 x2 + · · · + amn xn = bm

can be written in augmented matrix notation as:










a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
...

...
am1 am2 · · · amn bm











or (A|b)

where

A =











a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn











and b =











b1

b2
...

bm











.

Then A is the matrix of coefficients and b is the right hand side (RHS). �

Definition. The elementary row operations are:
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1. Interchange two rows

(

Ri → Rj

Rj → Ri

)

2. Multiply a row by a non-zero constant (Ri → a Ri)

3. Add a multiple of one row to another (Ri → Ri + a Rj)

They do not change the solution, and are equivalent to the elementary operations for a systems of equations
(each equation is associated with a row of the matrix). �

In Example 1 we used elementary row operations to put the matrix in Echelon Form. It turns out that we
can continue doing further row operations to make the matrix as simple as possible. Basically, we’ll use
row operations to do most of the work from the back-substitution step.

Example 2. Let us pick up the augmented matrix from the previous example, and do some more row
operations. First of all, we’ll turn the first non-zero coefficient of each row into a one:





1 2 3 4
0 −2 −4 −10
0 0 −7 −10



 R2 → −1
2

R2

R3 → −1
7

R3





1 2 3 4
0 1 2 5
0 0 1 10

7





R1 → R1 − 3 R3

R2 → R2 − 2 R3





1 2 0 −2
7

0 1 0 15
7

0 0 1 10
7





R1 → R1 − 2 R2





1 0 0 −32
7

0 1 0 15
7

0 0 1 10
7



 .

The extra operations were motivated by trying to get as many 0s and 1s in the matrix as possible. Note that
the system of equations now turns out to be

x = −32
7

y = 15
7

z = 10
7

so the system is effectively solved. �

We now introduce some terminology to describe what we have done.

Definition. The first non-zero entry of a matrix row is called a pivot. A leading 1 is a pivot which has
the value 1. A matrix is in Reduced Row Echelon Form (RREF) if every pivot is a leading 1, and each
column containing a leading 1 has 0s above and below the leading 1. �

We can make some enhancements to our methods to put the augmented matrix in RREF. This involves
putting as many 0s and 1s as possible in the augmented matrix, and is accomplished by further row op-
erations. At the end of this procedure, back–substitution is no longer necessary, since the solution can be
written down immediately.
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Gauss–Jordan elimination

Example 3. Use augmented matrices and row operations to solve the following system of equations via a
matrix in RREF:

2 x + 4 y + 2 z = 6
y + z = 1

x + 3 y + 3 z = 5.

We will write down the augmented matrix and proceed by row operations:




2 4 2 6
0 1 1 1
1 3 3 5





R3 → R3 − 1
2
R1





2 4 2 6
0 1 1 1
0 1 2 2





R3 → R3 − R2





2 4 2 6
0 1 1 1
0 0 1 1



 .

This is an EF, which could be solved by back-substitution. Instead, we scale the first row to make the top-
left pivot a leading 1. This requires the operation R1 → 1

2
R1. We then continue with further operations to

get the RREF:




1 2 1 3
0 1 1 1
0 0 1 1





R1 → R1 − R2

R2 → R2 − R3





1 1 0 2
0 1 0 0
0 0 1 1





R1 → R1 − R2





1 0 0 2
0 1 0 0
0 0 1 1





from which we immediately recover x = 2, y = 0, z = 1. �

Gauss–Jordan elimination procedure

0. Write the system in augmented matrix form.

1. Use row operations to obtain the echelon form.

2. Divide each row by its leading coefficient (so all the pivots are leading 1s).

3. Eliminate all non-zero entries above each leading 1 by subtracting appropriate multiples of its
row.

4. Write down the solution.

Note: One can clear each column with a leading variable in succession instead, without getting to
echelon form along the way. The answer will be the same.
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Theorem 1.3 The RREF for a linear system is unique, and always can be found by Gauss–Jordan elimina-
tion.

Example 4. Use Gauss–Jordan elimination to solve the system:

x + y + z = 1
2 x − y + 3 z = 2
4 x + y + 5 z = 5

.

By the Gauss–Jordan algorithm, we write:




1 1 1 1
2 −1 3 2
4 1 5 5



 R2 → R2 − 2 R1

R3 → R3 − 4 R1





1 1 1 1
0 −3 1 0
0 −3 1 1





R3 → R3 − R2





1 1 1 1
0 −3 1 0
0 0 0 1





The last row indicates an inconsistency, so we stop after step 1, concluding that there is no solution. �

Example 5. Use Gauss–Jordan elimination to solve the following system:

x1 + x3 + 4 x4 = −1
2 x1 − x2 + x3 + 7 x4 = −2

−2 x1 + x2 − 6 x4 = 2
x1 + x2 + x3 + 4 x4 = −1.

Solution:








1 0 1 4 −1
2 −1 1 7 −2

−2 1 0 −6 2
1 1 1 4 −1









R2 → R2 − 2 R1

R3 → R3 + 2 R1

R4 → R4 − R1









1 0 1 4 −1
0 −1 −1 −1 0
0 1 2 2 0
0 1 0 0 0









R2 → R4

R4 → R2









1 0 1 4 −1
0 1 0 0 0
0 1 2 2 0
0 −1 −1 −1 0







 R3 → R3 − R2

R4 → R4 + R2









1 0 1 4 −1
0 1 0 0 0
0 0 2 2 0
0 0 −1 −1 0







 R3 → 1
2
R3

R4 → (−1)R4
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1 0 1 4 −1
0 1 0 0 0
0 0 1 1 0
0 0 1 1 0









R1 → R1 − R3

R4 → R4 − R3









1 0 0 3 −1
0 1 0 0 0
0 0 1 1 0
0 0 0 0 0









The solution can be read off simply: the positions of the leading–1s tell us that x1, x2, x3 are leading
variables, and the lack of leading–1 in the fourth column tells us that x4 is a free variable. Thus, we set
x4 = t and recover: x1 = −1 − 3 t, x2 = 0, x3 = −t. �

Remarks

• If you are a little confused by the final step in Example 5 (“reading off the solution”), try writing out
the equations from the RREF and then solve!

• If a system of equations has no solutions, then the coefficient matrix of the RREF will have a row of
zeros, with the corresponding element in the RHS column being non-zero.

The idea of an equation Ax = b

In our augmented matrix notation, we have replaced the system of equations with an augmented matrix
(A|b). It is tempting to think of the augmented matrix (A|b) as a short-hand notation for a “matrix equa-
tion”: A × x = b, (where x is a vector of the unknown variables x1, . . . , xn). It turns out that this is a
completely reasonable point of view, and the trick in making this precise is to get the correct the idea of
“multiplication” for matrices. We will do this in the next few lectures, by studying matrix algebra . Al-
though we can’t solve the equation by writing x = b ÷ A (matrix division certainly doesn’t make sense),
we will see that there is sometimes another matrix A−1 such that x = A−1b. So, we will next start looking
at matrices as objects in their own right, and study their algebraic properties. Once we understand these
basic properties, we can come back to the connection with linear equations.
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II ◦ Matrices

(2.1) Vector and matrix algebra
We have worked with augmented matrices for solving linear systems, and have employed “vector notation”
to describe solutions of these equations. It is now time to give these objects status in their own right, and
study their algebraic properties.

Basically, a matrix is an array of (usually real) numbers. Such things have many uses:

• solving systems of linear equations (already seen, but more to come)

• operations research applications (linear programming etc.)

• computer graphics

• all sorts of scientific computations

• statistical analysis

Definition. An m × n matrix

A =











a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn











is an array of numbers with m rows and n columns. We will often write A = (aij) (where aij is the entry
(or element or component) in the ith row and jth column of A. The size or dimension of the matrix is
m × n. If B = (bij) is another m × n matrix, then A = B if and only if aij = bij for all i = 1, . . . , m and
j = 1, . . . , n. �

Example 1. The following matrix is a 3× 2 matrix: A =





2 4
3 6
4 0



 . If we employ the notation A = (aij)

then, a11 = 2, a12 = 4, a21 = 3, a22 = 6, a31 = 4, a32 = 0. �

Example 2. A necessary (but not sufficient) condition for equality of matrices is that they have the same
size:

(

−2 0
1 3

)

6=
(

0 −2
1 3

)

and

(

1 0
0 1

)

6=
(

1 0 0
0 1 0

)

.

�

Special types of matrices

There are some special types of matrices that are important:

• column vector: n × 1 matrix, essentially just an element of Rn;
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• row vector: 1 × m matrix, an element of Rm written in a different way;

• zero matrix: all entries are zero (often denoted 0, with its size clear from context);

• square matrix: an n × n matrix;

• triangular matrix: aij = 0 when i > j (upper triangular), or aij = 0 when i < j (lower triangular).
Triangular matrices are especially nice since they represent systems of equations which are in EF, so
are easily solved by back-substitution;

• diagonal matrix: square, and the only non-zero entries are on the main diagonal (entries of the form
aii). These are even better than triangular matrices, since they represent systems of equations of the
form

a11 x1 = b1

a22 x2 = b2

. . .
...

...
ann xn = bn

which are solved by ordinary division;

• identity matrix: diagonal matrix with all main diagonal entries 1 (denoted I or In). These are the
target coefficient matrices with Gauss–Jordan elimination, since the RHS with such an augmented
system is the solution;

• block matrix: these are built out of smaller matrices. Augmented matrices are block matrices. Here
is another example, if

A =





1 2
3 4
1 0



 , B =

(

1 5
0 7

)

and C =
(

8 9
)

then
(

A
B
C

)

=





1 2 1 5
3 4 0 7
1 0 8 9



 .

Many configurations are possible, subject to consistency in number of rows and columns.

You can think of an m × n matrix as an array of m rows, each of which is an n–dimensional row vector,
or as an array of n columns, each of which is an m–dimensional column vector. Sometimes this will be
useful!

Example 3. Let r1 = (2 4), r2 = (3 6), r3 = (4 0), c1 =





2
3
4



 , c2 =





4
6
0



. Then, with A as in

Example 1, A =





r1

r2

r3



 =



 c1 c2



 . �
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Remarks about vectors

Row and column vectors have a number of special properties that are not shared by all matrices:

• they provide a natural description of points in Rn (the components represent “number of units in a
coordinate direction”), and perform very well as the basic objects in geometry;

• they have a natural notion of length and direction (we have had a taste of this with the vector descrip-
tion of lines);

• their algebra (addition and scalar multiplication) has a geometric interpretation;

• they can be transformed by matrices.

In view of their special importance, vectors are will usually be denoted by bold-face, lower-case letters. For
example, v. (When writing by hand, it is conventional to underline vectors: v, or even place an arrow above
them: ~v.)

Matrix algebra

We can add matrices of the same size together simply by adding all their respective entries. For example,
(

2 4
3 6

)

+

(

1 2
3 −4

)

=

(

3 6
6 2

)

.

Matrices can also be scaled by multiplying all entries by the same constant number. For example,

3

(

1 2
3 −4

)

=

(

3 6
9 −12

)

.

We also define: −A = (−1) A.

Note: Any matrix can be multiplied by a given scalar, but only matrices of the same size can be added
together.

These operations behave in much the same way as ordinary arithmetic (they are, after all, ordinary arithmetic
performed “entry–by–entry”). The rules can be summarized formally. Let A, B and C be any m×n matrices
and let α, β be scalars. Then:

1. A + B = B + A;

2. A + 0 = A;

3. (A + B) + C = A + (B + C);

4. α (A + B) = α A + α B;

5. (α + β) A = α A + β A

6. A + (−A) = 0

7. α (βA) = (αβ) A;

8. 1 A = A.
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Transpose of a matrix

The final basic operation that we will sometimes perform on a matrix is to “flip it around”, exchanging rows
for columns.

Definition. The transpose AT of an m × n matrix A is the n × m matrix obtained by interchanging rows
and columns:











a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn











T

=











a11 a21 · · · am1

a12 a22 · · · am2
...

...
...

a1n a2n · · · amn











.

A square matrix is called symmetric if A = AT . �

Remark. One can easily check that (AT )T = A and (A + B)T = AT + BT .

Examples

1.

(

2 3
1 4

)T

=

(

2 1
3 4

)

6=
(

2 3
1 4

)

so this matrix is not symmetric.

2.

(

2 1
1 4

)T

=

(

2 1
1 4

)

so this matrix is symmetric.

3.

(

2 3 1
−1 4 6

)T

=





2 −1
3 4
1 6



.

4.





1
2
3





T

=
(

1 2 3
)

. �
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(2.2) Matrix multiplication
It is desirable to have a notion of multiplication for certain matrices. This will make matrices much more
useful, and provide a richer algebraic structure for us to study.

Row–column products

We seek to write the system of equations

a11 x1 + a12 x2 + · · · + a1n xn = b1

a21 x1 + a22 x2 + · · · + a2n xn = b2
...

...
...

am1 x1 + am2 x2 + · · · + amn xn = bm

as a matrix equation: Ax = b, for certain choices of matrices. By convention, we put:

A =











a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn











,x =











x1

x2
...

xn











and b =











b1

b2
...

bm











;

we are hoping to be able say A × x = b. If we pick off the first row of A and b we are aiming for:

(a11 a12 · · · a1n)










x1

x2
...

xn











= b1

as a representation of the first equation in our system:

a11 x1 + a12 x2 + · · · + a1n xn = b1.

So, we make the following definition.

Definition. Let r = (r1 r2 · · · rn) be a 1× n row vector and let c =











c1

c2
...
cn











be an n × 1 column vector .

Then

r c = r1 c1 + r2 c2 + · · ·+ rn cn =
n
∑

j=1

rj cj

is the row–column product of r and c. �

Example. We compute

(

1 3 4
)





2
−1

1



 = 1 × 2 + 3 × (−1) + 4 × 1 = 2 − 3 + 4 = 3.

�

Note: the row–column product always produces a number; the dimensions of the vectors must match; the
row vector must always be written first. �
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General matrix products

With a simple generalization, we can define matrix products.

Definition. Let A be an m×n matrix and B an n× p matrix. Then, their product AB is the m× p matrix
whose ikth entry is the row–column product of the ith row of A with the kth column of B. �

Example 1. Let A =

(

1 2
3 4

)

and B =

(

5 1
−1 3

)

. Then,

(AB)11 =
(

1 2
)

(

5
−1

)

= 5 − 2 = 3

(AB)12 =
(

1 2
)

(

1
3

)

= 1 + 6 = 7

(AB)21 =
(

3 4
)

(

5
−1

)

= 15 − 4 = 11

(AB)22 =
(

3 4
)

(

1
3

)

= 3 + 12 = 15

so A B =

(

3 7
11 15

)

. On the other hand,

B A =

(

5 1
−1 3

) (

1 2
3 4

)

=

(

5 + 3 10 + 4
−1 + 9 −2 + 12

)

=

(

8 14
8 10

)

.

�

Example 2. Let

A =

(

1 3 2
2 1 4

)

, B =

(

3 1
−1 0

)

.

Then A is a 2 × 3 matrix, and B is a 2 × 2 matrix. Since the dimensions do not agree in the required way,
the product AB does not exist. �

Example 3. Let A and B be as in the previous example. If we let m = 2, n = 2 and p = 3 then B is an
m × n matrix and A in an n × p matrix, so we can define the product B A, and we expect an n × p matrix
(2 × 3) for the product:

B A =

(

3 1
−1 0

)(

1 3 2
2 1 4

)

=

(

3 + 2 9 + 1 6 + 4
−1 −3 −2

)

=

(

5 10 10
−1 −3 −2

)

.

�

Example 4. Let A =

(

1 2
3 4

)

, B =

(

1 −1 1
0 2 3

)

and C =





1
4
3



. Then

(i) AB =

(

1 3 7
3 5 15

)

;
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(ii) AC is not defined, due to incompatible dimensions;

(iii) BC =

(

0
17

)

;

(iv) ABC =

(

34
68

)

;

(v) BA is not defined, due to incompatible dimensions;

(vi) BT A =





1 2
5 6

10 14



.

�

Remark. The product formula can be written reasonably compactly: if A = (aij) is m × n and B = (bjk)
is n × p (so number of columns of A = number of rows of B) then we define

AB = (aij)(bjk) = (cik) where cik =

n
∑

j=1

aijbjk.

Properties of matrix multiplication

Certain properties of ordinary algebra carry over to matrix multiplication.

• We have the associative and distributive laws: assume the indicated operations can be performed on
matrices A, B, C then:

1. (AB)C = A(BC)

2. A(B + C) = AB + AC

3. (A + B)C = AC + BC

4. α(AB) = (αA)B = A(αB), α ∈ R.

• Some identities of ordinary algebra carry over too. For example, if A, B are square of the same size,
then

(A + B)2 = (A + B)(A + B)

= A(A + B) + B(A + B)

= A2 + AB + BA + B2.

(We cannot assume AB = BA though, recall Example 1 above)

• Because of associativity of multiplication, brackets are not needed in products, and for a square matrix
A, we write

Ak = A × A × · · · × A (k times).

• If A and B are such that their product is defined, then

(A B)T = BT AT .
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• For every integer n > 0, the n × n identity matrix In “fixes” a matrix under multiplication. (Recall,
In is diagonal and has all its diagonal entries equal to 1.) For example,

I2 =

(

1 0
0 1

)

, I3 =





1 0 0
0 1 0
0 0 1



 .

Basic property: if A is m × n, then

A In = Im A = A.

Some odd things happen with matrix multiplication.

• Not all pairs of matrices can be multiplied together; the dimensions must be compatible.

• Generally, AB 6= BA, even if both products are defined and have the same sizes (for example if A, B
are both n × n). We saw an example of this above. Here is another one:

(

1 2
0 1

)(

2 1
−1 1

)

=

(

0 3
−1 1

)

,

whereas
(

2 1
−1 1

)(

1 2
0 1

)

=

(

2 5
−1 −1

)

.

• Two non-zero matrices can multiply to give a zero matrix. For example,

(

1 1
−1 −1

)2

=

(

0 0
0 0

)

.

Remarks

• We have seen that a system of linear equations

a11 x1 + a12 x2 + · · · + a1n xn = b1

a21 x1 + a22 x2 + · · · + a2n xn = b2
...

...
...

am1 x1 + am2 x2 + · · · + amn xn = bm

can be written as a matrix equation: Ax = b (A is the m × n coefficient matrix, and x is the n × 1
matrix of variables). However, the temptation to replace the solution of the underlying system with
the algebraic manouvre x = b ÷ A should be resisted at all costs. We have said nothing about
division of matrices; we have had enough trouble with matrix multiplication—matrix division does
not make sense in general. We will see shortly how the idea of an inverse matrix can be employed to
make some sense of “undoing matrix multiplication”.

• You may find it interesting to think of a matrix as inducing a “function on vectors”, via multiplication.
If A is an m×n matrix and x is an n–dimensional column vector, then y = Ax is an m–dimensional
column vector. This is especially important for square matrices, since they can be used in this way to
describe transformations on Rn (the points in Rn are identified with vectors).
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(2.3) Matrix inversion
Suppose that b is an n–dimensional column vector. Then the action of the identity matrix In on b is just
like multiplying by 1:

In b =











1 0 · · · 0

0 1
. . .

...
...

. . . 1 0
0 · · · 0 1





















b1

b2
...
bn











=











b1

b2
...
bn











= b.

Thus, if we could find a matrix B such that B A = In we could solve the system Ax = b:

x = In x = (B A)x = B (Ax) = B b,

so that x can be found by matrix multiplication.

Definition. An n × n matrix A is invertible (or non-singular) if there is another n × n matrix B such that

A B = In = B A.

The matrix B is called the inverse of A and is written A−1. If no such matrix B exists then A is non-
invertible or singular. �

Remarks

• Technically, it is only necessary to require AB = In in the definition, since one can then prove that
also BA = In (see Theorem 1.6.3 on page 61 of Anton, or Theorem 1.8.7 on page 112 of Grossman.).

• We have also glossed over the fact that an inverse is not guaranteed to be unique in the definition. The
proof of uniqueness is a classic in algebra: suppose that AB = BA = In = AC = CA for matrices
B and C. Then

C = C In = C (AB) = (CA) B = In B = B.

Example 1. Let A =

(

3 2
4 3

)

and B =

(

3 −2
−4 3

)

. Then

A B =

(

3 2
4 3

) (

3 −2
−4 3

)

=

(

1 0
0 1

)

= I2 = · · · = B A

so

(

3 2
4 3

)−1

=

(

3 −2
−4 3

)

. Now, suppose we wish to solve the system:

3 x + 2 y = 5
4 x + 3 y = 2

.

We can write this as:
(

3 2
4 3

) (

x
y

)

=

(

5
2

)
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so
(

x
y

)

=

(

1 0
0 1

)(

x
y

)

=

(

3 2
4 3

)−1(
3 2
4 3

)(

x
y

)

=

(

3 2
4 3

)−1(
5
2

)

=

(

3 −2
−4 3

)(

5
2

)

=

(

11
−14

)

;

that is, x = 11 and y = −14. �

Of course, being invertible is a rather special property, and not all square matrices have it.

Example 2. The matrix A =

(

1 1
1 1

)

is singular. Proof: if A is to be invertible, we must be able to find

a matrix B such that I2 = AB. Let B =

(

x y
z w

)

, so writing out the equation:

(

1 0
0 1

)

=

(

1 1
1 1

)(

x y
z w

)

=

(

x + z y + w
x + z y + w

)

.

But looking at the 11 and 21 components of this equation we get

1 = x + z from the 11 entry and 0 = x + z from the 21 entry.

This is inconsistent, so there can be no such matrix B. �

Theorem 2.1 Let A and B be invertible square matrices. Then:

1. A−1 is invertible and (A−1)−1 = A;

2. AB is invertible and (AB)−1 = B−1A−1;

3. AT is invertible and (AT )−1 = (A−1)T .

These are all straight-forward applications of the definition of the inverse.

Finding the inverse

Example 3. Let us find the inverse of the matrix

(

2 1
5 3

)

. We seek an unknown matrix B =

(

x y
z w

)

such that AB = I2; that is:
(

2 1
5 3

)(

x y
z w

)

=

(

1 0
0 1

)

.

This is really two systems of equations, one for each column:
(

2 1
5 3

)(

x
z

)

=

(

1
0

)

and

(

2 1
5 3

)(

y
w

)

=

(

0
1

)

.
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It turns out the same sequence of row operations works for solving both systems, so we do them simultane-
ously:

(

2 1 1
5 3 0

)

R2 → R2 − 5
2
R1

(

2 1 0
5 3 1

)

(

2 1 1
0 1

2
−5

2

)

R2 → 2R2

(

2 1 0
0 1

2
1

)

(

2 1 1
0 1 −5

)

R1 → R1 − R2

(

2 1 0
0 1 2

)

(

2 0 6
0 1 −5

)

R1 → 1
2
R2

(

2 0 −2
0 1 2

)

(

1 0 3
0 1 −5

) (

1 0 −1
0 1 2

)

.

Reading off the solution, x = 3, z = −5, y = −1, w = 2, so that the inverse is

(

3 −1
−5 2

)

. �

The procedure we used in this example turns out to have general applicability: essentially, we construct a
large augmented matrix, with a family of RHSs for the columns of the identity matrix, and solve simulta-
neously for all the columns of A−1.

Algorithm for calculating A−1

1. Form the n × 2n augmented matrix:
(A|In).

2. Perform Gauss–Jordan elimination to obtain the RREF.

3. If row operations cease with an augmented system

(In|B)

then B = A−1;

otherwise, a row of 0s appears in the left-hand matrix and A is singular .

Theorem 2.2 The augmented matrix method for a square matrix either produces the inverse or proves the
matrix is non-invertible.

The augmented matrix method works in practice, and this theorem tells us that it always will. The theorem
is immediate, once we have established a few more facts about inverses. Convince yourself of this after
reading Theorem 2.3 below.

Examples

1. Find





1 2 1
3 1 2
9 −2 5





−1

.
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Solution:




1 2 1 1 0 0
3 1 2 0 1 0
9 −2 5 0 0 1





R3 → R3 − R2





1 2 1 1 0 0
3 1 2 0 1 0
0 −5 −1 0 −3 1



 R2 → R2 − 3 R1

R3 → −R3





1 2 1 1 0 0
0 −5 −1 −3 1 0
0 5 1 0 3 −1





R3 → R3 + R2





1 2 1 1 0 0
0 −5 −1 −3 1 0
0 0 0 −3 4 −1





Stop! No Inverse.

2. Find





2 1 −1
0 2 1
5 2 −3





−1

.

Solution:




2 1 −1 1 0 0
0 2 1 0 1 0
5 2 −3 0 0 1





R3 → R3 − 2R1





2 1 −1 1 0 0
0 2 1 0 1 0
1 0 −1 −2 0 1





R1 → R3

R3 → R1





1 0 −1 −2 0 1
0 2 1 0 1 0
2 1 −1 1 0 0





R3 → R3 − 2R1





1 0 −1 −2 0 1
0 2 1 0 1 0
0 1 1 5 0 −2



 R2 → R2 − R3





1 0 −1 −2 0 1
0 1 0 −5 1 2
0 1 1 5 0 −2





R3 → R3 − R2





1 0 −1 −2 0 1
0 1 0 −5 1 2
0 0 1 10 −1 −4





R1 → R1 + R3





1 0 0 8 −1 −3
0 1 0 −5 1 2
0 0 1 10 −1 −4





So the inverse is:





8 −1 −3
−5 1 2
10 −1 −4



.
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3. Find









1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1









−1

.

Solution:








1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 1 1 0 0 0 1 0
1 1 1 1 0 0 0 1









R4 → R4 − R3









1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 1 1 0 0 0 1 0
0 0 0 1 0 0 −1 1







 R3 → R3 − R2









1 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0
0 0 1 0 0 −1 1 0
0 0 0 1 0 0 −1 1









R2 → R2 − R1









1 0 0 0 1 0 0 0
0 1 0 0 −1 1 0 0
0 0 1 0 0 −1 1 0
0 0 0 1 0 0 −1 1









So the inverse is:









1 0 0 0
−1 1 0 0

0 −1 1 0
0 0 −1 1









.

Invertibility and linear equations

We have seen (in Example 1) how to use the inverse to solve linear equations. We will finish this section by
recording the importance of invertibility in a theorem.

Theorem 2.3 Let A be an n × n matrix. The following are equivalent:
(1) A is invertible;
(2) every equation Ax = b has a unique solution (x = A−1 b);
(3) if Ax = 0 then x = 0;
(4) no echelon form of A has a row of 0s;
(5) the RREF of A is In.

Proof of Theorem 2.3 (Optional)

Proof: (1)⇒(2) First of all, x = A−1 b is a solution, since A(A−1b) = A A−1b = Inb = b. If x′ is another
solution then A−1b = A−1(Ax′) = x′, so the solution is unique.
(2)⇒(3) Clearly, A 0 = 0, so x = 0 follows by uniqueness.
(3)⇒(4) If an echelon form E of A had a row of zeros, then E would have at most n− 1 leading variables,
and thus at least one free variable. Therefore, (by inspecting the row reduced augmented matrix (E|0)),
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there is a solution to the equation Ax = 0 of the form x = tv for a non-zero vector v (it has a 1 in the row
corresponding to the free variable).
(4)⇒(5) The RREF has no row of zeros, therefore, every row contains a leading 1, and since there are n
rows and n columns, there can be no free variables. Thus, the Gauss-Jordan elimination procedure can row
reduce A to In.
(5)⇒(1) Since the RREF of A is In, the equation AB = In can be solved “column-by-column” by the
augmented matrix procedure outlined above. �

(2.4) Homogeneous equations and the general solution to Ax = b

We have seen above that a square matrix A is invertible precisely when every equation Ax = b has a unique
solution for each choice of b. In this case, x = A−1b. For non-square matrices, such a characterization
makes no sense: a non-square matrix cannot be invertible. However, we can say a little more about the
solutions to Ax = b in the general case. The essential possibilities are that the equation may have 0, 1 or
infinitely many solutions, depending on A and b. The Gauss–Jordan algorithm is a very powerful method
for finding all of these solutions, and we’ll now spend some time having a closer look at what exactly it is
finding! The basic questions about Ax = b which are resolved by Gauss–Jordan elimination are: is the
system consistent? and what are all the solutions?

Solution spaces, homogeneous and particular solutions
We need a couple of pieces of terminology.

Definition. The solution space is the general solution to Ax = b (ie. the set of vectors x which satisfy the
equation). The homogeneous equation (associated with A) is

Ax = 0.

The general solution to the homogenous equation is called the homogeneous solution. A solution to Ax = b

is called a particular solution. �

Similar terminology will occur when we solve linear diophantine equations later on.

Suppose xp,yp are both particular solutions. Then

Axp = b and Ayp = b

so
A (xp − yp) = Axp − Ayp = b − b = 0;

that is, xp − yp belongs to the homogeneous solution. Conversely, if xh is the homogeneous solution, then
if xp is a particular solution,

A (xp + xh) = Axp + Axh = b + 0 = b.

Thus, the general solution can be expressed as the sum of a particular solution and the homogenous solution.

In fact, the Gaussian elimination algorithm automatically finds both homogeneous and particular solutions.
We will investigate this by revisiting several of our earlier examples.

Example 1. Let A =





1 1 1
2 −1 3
4 1 5



 and b = (−2, 5, 1)T . The RREF is





1 0 4
3

1
0 1 −1

3
−3

0 0 0 0



 .
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First of all, from the bottom row, the system is consistent. Next, we find the homogeneous solution by
setting the RHS to zero, assigning a free parameter to each free variable (in this case, only z, corresponding
to the third column), and applying back substitution. That is, we solve

x + 4
3
z = 0

y − 1
3
z = 0
z = z

to get (x, y, z) = (− 4
3
z, 1

3
z, z). It is more convenient to write this in terms of a parameter t = 3 z to get

xh = t





−4
1
3



 , t ∈ R.

Next, in finding xp we need only one particular solution, since any particular solutions differ by a homoge-
neous solution. This means that in finding xp we can ignore any homogeneous contributions and so set the
corresponding parameters to 0. Since xh was generated by the third column (without a leading 1), we can
ignore this column, and solve





1 0 × 1
0 1 × −3
0 0 × 0



 .

Clearly, xp = (1,−3, 0)T and we write the general solution as

x = xp + xh =





1
−3

0



+ t





−4
1
3



 .

�

Notice that the free parameters are used up by solving the homogeneous equation, leaving the leading 1s
for use in finding a particular solution.

Example 2. Let A =





1 1 1
2 −1 3
4 1 5



 and b = (1, 2, 5)T . The RREF is





1 0 4
3

1
0 1 −1

3
0

0 0 0 1



 .

The system is inconsistent so has no solution space. However, the homogeneous system has RREF




1 0 4
3

0
0 1 −1

3
0

0 0 0 0



 ,

and the homogeneous solution is the same as in the previous example. �

Example 3. Let A =





2 4 2
0 1 1
1 3 3



 and b = (6, 1, 5)T . The RREF is





1 0 0 2
0 1 0 0
0 0 1 1



 .
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In this case, xh = (0, 0, 0)T is the homogeneous solution (there are no free parameters), and the particular
solution is xp = (2, 0, 1)T . Since xh = {0}, there is only one particular solution in this case. �

Remark: Notice that the homogeneous equation is the same for every choice of b (b is a particular RHS,
and in the homogeneous equation the RHS is 0). Also, since A 0 = 0, the homogeneous equation is always
consistent, and the homogeneous solution always includes 0. �

Some special “vector spaces”

Let A be an m× n matrix. There are some special collections of vectors associated with every such matrix.
These are intimately connected with the “size of the solution space” of Ax = b. The first special space
specifies “the possible bs for which Ax = b is consistent”, and the second space determines the dimension
of the solution space when the system is consistent.

Definition. The column space of A col(A) consists of the vectors in Rm that can be written as Ax for
some x ∈ Rn. This is sometimes called the range of A. The null space (or kernel) of A, denoted null(A),
is the set of vectors x in Rn for which Ax = 0. �

Note: If A = (c1|c2| · · · |cn) (where the m–dimensional vectors ci are the columns of A), then

Ax = x1 c1 + x2 c2 + · · · + xn cn

(where x = (x1, x2, · · · , xn)T ). So every vector Ax is a sum of scalar multiples of the columns of A.
The columns of A thus “span” the space col(A) (explaining the name). Note also that null(A) is the set of
solutions to the homogeneous equation. �

Example 4. Let A =

(

1 −2
3 −6

)

. If x =

(

s
t

)

then

Ax =

(

s − 2 t
3s − 6t

)

= (s − 2t)

(

1
3

)

.

This means that every vector of the form Ax can be written as some multiple of the vector

(

1
3

)

. Thus

col(A) =

{

λ

(

1
3

)∣

∣

∣

∣

λ ∈ R

}

.

In fact, our calculation above also shows how to find null(A). If Ax = 0, then we must have s− 2 t = 0 so

s = 2 t and x =

(

s
t

)

=

(

2 t
t

)

= t

(

2
1

)

. Thus,

null(A) =

{

t

(

2
1

)∣

∣

∣

∣

t ∈ R

}

.

�

In this example, finding col(A) and null(A) was quite easy; in general, we might need to use Gauss–Jordan
elimination. The solution space to the homogeneous system is null(A). It turns out that col(A) is spanned
by the columns of A which contain a leading 1 in the RREF. The proof of this is beyond the scope of
MATH102. The point of all this is the characterization:

Ax = b is consistent ⇔ b ∈ col(A).
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Example 5. Let A =





1 0 1 4
2 −1 1 7
1 −2 −1 2



. The RREF of A is





1 0 1 4
0 1 1 1
0 0 0 0



 ,

from which we can read off the homogeneous solution so

null(A) =















s









−1
−1

1
0









+ t









−4
−1

0
1









∣

∣

∣

∣

∣

∣

∣

∣

s, t ∈ R















.

Suppose now that b ∈ R3, and that the augmented matrix (A|b) has RREF




1 0 1 4 u
0 1 1 1 v
0 0 0 0 w



 .

If there exists a particular solution, we must have w = 0 (otherwise the system Ax = b is inconsistent).
From our work above, we know that any particular solutions differ by a homogeneous solution, so all we
need to do is find one particular solution. Since the homogeneous solution is “generated” by the columns
without leading 1s (the third and fourth columns), these columns can be ignored safely and a particular
solution can be found by looking at





1 0 × × u
0 1 × × v
0 0 0 0 0



 .

Clearly, xp = (u, v, 0, 0)T is a particular solution. Notice that this also tells us how to identify col(A): if
b ∈ col(A) then Ax = b has solutions of the form x = xp + xh. Then, using the notation above,

b = Ax = A (xp + xh) = Axp + Axh =





1 0 1 4
2 −1 1 7
1 −2 −1 2













u
v
0
0









+ 0 = u





1
2
1



+ v





0
−1
−2



 .

The method of this example can be applied in general to find the null and columns spaces of matrices. �

Aside: canonical decomposition with respect to A

There are two additional spaces associated with A. These are the null space and columns space of AT . The
latter space is called the row space, since the columns of AT are the rows of A. One can prove that every
vector in null(AT ) is orthogonal to every vector in col(A), and every vector in null(A) is orthogonal to every
vector in row(A). In fact, these spaces provide nice decompositions:

Rn = null(A) ⊕ row(A) and Rm = null(AT ) ⊕ col(A).

Moreover, the dimensions of row(A) and col(A) are the same, and are the rank of A. The rank is the number
of leading ones in the matrix. These facts are beyond the scope of MATH102, but lead to a very deep and
applicable understanding of the geometry of linear transformations.
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III ◦ Determinants

(3.1) Definition of determinants
Recall that invertible matrices correspond to systems of equations with unique solutions. This makes de-
tection of non-invertibility important. We will develop a numerical criterion for assessing invertibility of
square matrices.

2 × 2 determinants

Let A =

(

a b
c d

)

. A careful reading of Theorem 2.3 (equivalence of (1) and (4)) reveals that A is

singular if and only if it has an echelon form containing a row of zeros. So, let’s try to find the REF of A.
By performing the row operation R2 → R2 − c

a
R1 we get

(

a b
0 d − bc

a

)

.

Multiplying R2 by a, we see that the REF has a row of zeros only if a d − b c = 0. Thus:

Theorem 3.1 Let A =

(

a b
c d

)

and define the determinant of A to be det (A) = ad − bc. Then A is

singular if and only if det (A) = 0.

Notation: Sometimes, instead of writing det (A) we will write |A|.

Example 1. Let A =

(

2 1
−3 3

)

. Then

det (A) =
2 1

−3 3
= 2 × 3 − 1 × (−3) = 6 + 3 = 9.

Thus, A is invertible. �

3 × 3 determinants

Similar ideas can be extended to 3 × 3 matrices, but the formulas are more complicated. Let

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 ,

and let M1j be the minor obtained by deleting the first row and jth column from A. Thus,

M11 =

(

a22 a23

a32 a33

)

, M12 =

(

a21 a23

a31 a33

)

and M13 =

(

a21 a22

a31 a32

)

.

38



MATH102-06A

Definition. The determinant of a 3 × 3 matrix A = (aij) is

det (A) = a11 |M11| − a12 |M12| + a13 |M13|.

�

This determinant is computed recursively (it is in written in terms of 2 × 2 determinants), and also has the
property of determining whether a matrix is singular or not.

Example 2. Let A =





1 1 0
0 2 3
1 1 1



. Then the minors are

M11 =

(

2 3
1 1

)

, M12 =

(

0 3
1 1

)

, M13 =

(

0 2
1 1

)

.

Hence,

det (A) = 1 × 2 3
1 1

− 1 × 0 3
1 1

+ 0 × 0 2
1 1

= (2 × 1 − 3 × 1) − (0 × 1 − 3 × 1) + 0

= −1 − (−3) = 2.

Since det (A) 6= 0, A is invertible. �

n × n determinants

The idea of a determinant proves useful for square matrices of any size. The general definition of an n × n
determinant can be made “recursively”.

For an n × n matrix A, with

A =











a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

an1 an2 · · · ann











,

let Mij be the matrix obtained from A by deleting the ith row and jth column. Each such matrix is an
(n − 1) × (n − 1) minor of A.

Then we define det (A) to be

a11 det (M11) − a12 det (M12) + · · · ± a1n det (M1n) .

The sign of the last term depends on whether n is even or odd: it will alternate +,−, +,−, . . ..

Example 3. Let

A =









1 0 7 2
0 3 0 3
2 4 2 0
1 0 0 4









.

Then

det (A) = 1 ×
3 0 3
4 2 0
0 0 4

− 0 × (· · · ) + 7 ×
0 3 3
2 4 0
1 0 4

− 2 ×
0 3 0
2 4 2
1 0 0

.
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For the first 3 × 3 determinant above, we can continue the process.

3 0 3
4 2 0
0 0 4

= 3
2 0
0 4

− 0 × (· · · ) + 3
4 2
0 0

= 3 (2 × 4 − 0 × 0) − 0 + 3 (0 × 0)

= 24.

The second 3× 3 determinant is irrelevant since it is multiplied by zero anyway. The third and fourth come
out to be −36 and 6 respectively. So

det (A) = 1 × 24 + 7 × (−36) − 2 × 6 = −240.

�

This way of computing the determinant is called a cofactor expansion along the first row. The cofactors
are the (signed) determinants of the minors, so the cofactor of aij is (−1)i+j|Mij|. Somewhat surprisingly,
this process produces a notion of the determinant which behaves in exactly the right way.

Theorem 3.2 A is invertible if and only if det (A) 6= 0.

We will defer the proof of this theorem until we’ve collected a few more facts about the way that determi-
nants behave.

Theorem 3.3 Let A and B be square matrices. Then

1. The determinant can be computed by a cofactor expansion along any row:

det (A) =

n
∑

j=1

(−1)i+j aij det (Mij) , (i = 1, · · · , n);

2. det
(

AT
)

= det (A);

3. det (AB) = det (A) det (B).

The proof of Theorem 3.3 is uninspiring, and technical. Therefore, it is omitted (see Theorems 1,4,5 in
Section 2.2 of Grossman, if you are really keen, or Theorems in Sections 2.3—2.4 of Anton!)

The general formula for expanding along the ith row is in terms of the minors Mij of A, obtained by deleting
the ith row and the jth column. Thus det (A) equals

(−1)i+1ai1 det (Mi1) + (−1)i+2ai2 det (Mi2) + · · · + (−1)i+nain det (Min) .

The (−1)i+j terms tell us which sign to use: if i + j is even, it keeps the sign of aij as it is, while if i + j is
odd, it changes the sign.

Taken together, Theorem 3.3 (1) and Theorem 3.3 (2) show that we can expand by cofactors along any row
or column. The best idea is to choose the one with the most 0s in it. In fact, if a matrix has an entire row or
column of zeros, then its determinant must be zero!
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Example 4. As in the previous example, let

A =









1 0 7 2
0 3 0 3
2 4 2 0
1 0 0 4









.

We are free to compute the determinant by expanding in cofactors along any row or column. Since the final
row has two zeros, we could usefully use this row:

det (A) = (−1)4+1 × 1 ×
0 7 2
3 0 3
4 2 0

+ 0 + 0 + (−1)4+4 × 4 ×
1 0 7
0 3 0
2 4 2

.

Evaluating the two 3 × 3 determinants gives 96 and −36 respectively, so that

det (A) = −1 × 96 + 4 × (−36) = −240,

in agreement with the earlier answer. �

(3.2) Determinants by row-reduction
The recursive formula for calculating the determinant requires a significant amount of arithmetic, and re-
membering to put in the appropriate power of (−1) adds more room for error. We’ll therefore look at an
alternative method of computation.

Determinant of a triangular matrix

The central observation is that determinants of triangular matrices are easy to evaluate.

Theorem 3.4 Let A be a triangular n × n matrix. Then det (A) = a11a22 · · ·ann.

Proof: Assume that A is upper triangular; the lower triangular case is similar. Then, by expanding about
the first column,

a11 a12 a13 · · · a1n

0 a22 a23 a2n

0 0 a33
. . .

...
...

. . . . . .
0 0 · · · 0 ann

= a11

a22 a23 · · · a2n

0 a33 a34
. . .

...
. . . . . .

0 · · · 0 ann

− 0 × · · ·

= a11 a22

a33 a34 · · ·
0

. . .
...

0 ann

+ a11 × 0 × · · ·

= · · ·
= a11 a22 a33 · · ·ann.

�
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Example 1. Let A =





1 0 1
0 2 3
0 0 1



. One can expand the determinant by cofactors, obtaining:

det (A) = 1 × 2 3
0 1

− 0 × 0 3
0 1

+ 1 × 0 2
0 0

= (2 − 0) + 0 + (0 − 0) = 2.

Alternatively, one can simply use the formula, giving det (A) = 1 × 2 × 1 = 2. �

Example 2. Let A =









1 2 3 4
0 2 1 3
0 0 3 1
0 0 0 2









. Then det (A) = 1 × 2 × 3 × 2 = 12. �

Effect of row operations on det (A)

The idea is to use row operations to put an arbitrary square matrix in triangular form, and then compute the
determinant via Theorem 3.4.

Theorem 3.5 Elementary row operations have the following effects on the determinant:
(1) interchanging two rows multiplies the determinant by (−1);
(2) multiplying a row by a constant a multiplies the determinant by the same constant a;
(3) adding a constant multiple of one row to another row leaves the determinant unchanged.

The proof of Theorem 3.5 is a little bit technical; see Properties 2,4 and 7 in Section 2.2 of Grossman, or
Theorem 2.2.4 in Anton for details. Our main interest is in using the result.

Theorem 3.6 A square matrix A which has two rows the same has zero determinant.

Proof: If two rows of A are the same, then adding (−1) times one of these rows to the other one will create
a row of zeros. By Theorem 3.5, the determinant of the new matrix will be the same as det (A). But, by
expanding in cofactors along the row of zeros, it is clear that the determinant of the new matrix is 0. Thus
det (A) = 0. �

Computations of det (A)

We will perform a suitable sequence of row operations, keeping track of the effect of our operations on the
determinant.
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Example 3. Let A =





2 4 0
1 2 −1
1 1 1



. Then, by row-reduction and Theorem 3.5,

det (A) = 2 4 0
1 2 −1
1 1 1

R1 → 1
2
R1

= 2 × 1 2 0
1 2 −1
1 1 1

R2 → R2 − R1

R3 → R3 − R1

= 2 1 2 0
0 0 −1
0 −1 1

R2 → R3

R3 → R2

= (−1) × 2 1 2 0
0 −1 1
0 0 −1

= −2 × 1 ×−1 ×−1 = −2,

using Theorem 3.4. Notice that when the first row was multiplied by r = 1
2
, the overall effect on the

determinant was also to be multiplied by 1
2
. Thus, in order to maintain equality with det (A), a factor of

2 = 1
r

was inserted. �

Note: if an n × n matrix cannot be converted into upper triangular form in this way, it must be singular
and its determinant will be zero. (See the reasoning in the proof of Theorem 3.2 below.) This will become
obvious during the calculation since a row of zeros will occur.

Determinant calculations grow exponentially as n increases, but grow roughly in proportion to n3 if row
reductions are used. So for large n, the row reduction method is much preferred. Even in the 3 × 3 case,
the row operation method is generally faster and easier to use.
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Example 4. Finally, let us revisit the example of the previous section, using our new method:

det









1 0 7 2
0 3 0 3
2 4 2 0
1 0 0 4









=

1 0 7 2
0 3 0 3
2 4 2 0
1 0 0 4

R3 → R3 − 2 R1

R4 → R4 − R1

= 1 0 7 2
0 3 0 3
0 4 −12 −4
0 0 −7 2

R3 → 1
3
R3

= 3 × 1 0 7 2
0 1 0 1
0 4 −12 −4
0 0 −7 2

R3 → R3 − 4 R2

= 3 1 0 7 2
0 1 0 1
0 0 −12 −8
0 0 −7 2

R3 → − 1
12

R3

= −12 × 3 1 0 7 2
0 1 0 1
0 0 1 2

3

0 0 −7 2 R4 → R4 + 7 R3

= −36 1 0 7 2
0 1 0 1
0 0 1 2

3

0 0 0 20
3

.

By multiplying down the diagonal we again recover the determinant: −36 × 20
3

= −240. �

Proof of Theorem 3.2

From Theorem 2.3, A is singular if and only if there is a echelon form E for A containing a row of zeros.
In fact, there is no loss of generality in assuming that the last row of E is zeros. Since E was obtained
from A by a sequence of elementary row operations, there is a number r 6= 0 such that det (A) = r det (E)
(this follows from Theorem 3.5). Moreover, since E is an EF, it is necessarily upper triangular, so by
Theorem 3.4,

det (A) = r det (E) = rE11 E22 · · · Enn = 0

since the last row of E (which includes the entry Enn) is 0. �

Aside: Geometry and determinants
Determinants have a geometric meaning, in that they can be used to determine the volumes and areas of
certain geometric objects.
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Figure 3.1: (a) Parallelogram generated by u and v (b) The row operation R2 → R2 − a R1
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Figure 3.2: (a) Parallelogram generated by u and v′ (b) The row operation R1 → R1 − b R2

2 × 2 determinants and parallelograms

Let u = (u1, u2) and v = (v1, v2) be two vectors in R2. These vectors determine a parallelogram, by
letting u and v be the directions of the two pairs of parallel sides. The corners of the parallelogram have the
coordinates of 0, u, v and u+v, see Figure 3.1 (a). It turns out the area can be computed via determinants!

First of all, form the matrix A =

(

u1 u2

v1 v2

)

. Then, one aims to compute the determinant via row opera-

tions. First of all, a suitable multiple a = v1

u1

of R1 is subtracted from R2.

Algebraically, this puts a 0 in the lower left hand corner of the matrix, so the transformed matrix is of the

form

(

u1 u2

0 v′
2

)

. We also know that we haven’t changed the determinant, so

det (A) =
u1 u2

0 v′
2

.

Since the rows of A were the vectors u and v, the geometric interpretation of the row operation is that we
have replaced v with a vector v′ = v−au; this corresponds to “sliding” the vector v down the line parallel
to u, and is depicted in Figure 3.1 (b). This induces a “shear” on the parallelogram, which preserves area;
the revised parallelogram (with sides u and v′ and the same area as the original) is depicted in Figure 3.2 (a).

Finally, a further row operation R1 → R1 − b R2 reduces the matrix to diagonal form, without changing the
determinant. The geometric effect of this is to replace the first vector u by the vector u′ = u−bv′, obtained
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by sliding along the line through u, parallel to v′. This is depicted in Figure 3.2 (b). The new parallelogram
has the same area as the original, but now it is easy to compute. The vectors u′ and v′ are aligned parallel
to the x and y axes, so take the form u′ = (u′

1, 0) and v′ = (0, v2). Since this parallelogram is a rectangle,
its area is simply base × height = u′

1v
′
2. Combining all this together, we have:

det (A) =
u1 u2

v1 v2
=

u′
1 0
0 v′

2

= u′
1 v′

2 = area of new parallelogram = area of original parallelogram.

By the calculation det (A) = u1 v2 − u2 v1, we have proved:

Theorem 3.7 The area of the parallelogram generated by vectors u = (u1, u2) and v = (v1, v2) is |u1 v2−
u2 v2|.

Note: The absolute value signs are to ensure that the area is positive. �

Example 1. The area of the parallelogram with sides parallel to the vectors (2, 1) and (1, 2) is 2×2−1×1 =
3. �

Areas of triangles and convex bodies in R2

Another neat application of 2 × 2 determinants is to the computation of areas of triangles and other convex
bodies in the plane.

Theorem 3.8 Consider the triangle with corners p, q and r (written as row vectors). Let A be the matrix

whose rows are p − r and q − r. Then the area of the triangle is |det(A)|
2

.

Proof: Certainly, the area of the triangle is unchanged if a constant vector is subtracted from all the corners
(this corresponds to shifting the triangle about in the plane. So, the area is the same as the area of the triangle
with corners p − r,q − r, r − r = 0. However, this area is precisely half the area of the parallelogram
generated by the vectors p − r and q − r (draw a diagram). The result now follows by Theorem 3.7. �

Example 2. What is the area of the triangle with corners p = (3, 2), q = (5, 3) and r = (4, 4)? Solution:
The area of this triangle is

p − r

q − r

2
=

−1 −2
1 −1

2
=

|(−1)(−1) − (−2)1|
2

=
3

2
.

�

In fact, this approach to computing areas can be extended.

Theorem 3.9 The n–sided polygon in the plane with corners (x1, y1), (x2, y2), . . . , (xn, yn) has area

1

2
|(x1 y2 − x2 y1) + (x2 y3 − x3 y2) + · · ·+ (xn−1 yn − xn yn−1) + (xn y1 − x1 yn)| .

Remarks on proof: This formula is proved in several stages.
First of all, assume that the polygon is convex, and contains the
origin. Then, it can be thought of as the union of triangles with
corners (0, 0), (xi, yi) and (xi+1, yi+1). The area formula can be
proved by adding up the areas of all these triangles. Next, one
can prove that shifting the origin to any other x inside the poly-
gon has no effect on the formula. Finally, one can show that
non–convexity is not a problem either. � -

6

x

y

r   
   

(x1, y1)

r�
�
�
�
�
�
��

(x2, y2)

r@@
(x3, y3)

r

�
�

�
��r���r

�
�
�
�

(xn, yn)
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Volume of a parallelepiped

In 3–dimensions, the determinant also has a geometric meaning. A parallelepiped is a 3–dimensional “box”,
which rather than being rectangular, is a kind of pushed over prism with 3 pairs of parallel faces. (Each
face is a section of a 2–dimensional plane in R3, and we will soon see that these can be specified by a pair
of directions.) All of the edges of the parallelepiped are generated by 3 vectors, u, v and w. The corners
of the parallelepiped are the points represented by 0,u,v,w,u + v,u + w,v + w,u + v + w. A similar
argument to the proof of Theorem 3.7 gives:

Theorem 3.10 Consider the parallelogram generated by the (row) vectors u, v and w, and let A be the
matrix with rows u,v,w. Then the volume of the parallelepiped is |det (A) |.
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Trigonometry review

You will need a mastery of the basic facts of trigonometry. These include the definitions of the functions
sin and cos, their values for a few common angles, and some idea of how to work out other angles. The
main point to get to grips with is that angles are measured as a “proportion of a circle”. Thus, if working
in degrees, 360◦ is a whole circle, so 90◦ is 90

360
= 1

4
of a circle. The trig functions are a convenient way of

writing down the coordinates of the points of a circle. If you think of the circle1 as being drawn in the xy–
plane, with radius 1 (centred at (0, 0)) then we associate 0◦ (or 0rad) with the point (1, 0) (on the x–axis).
Angles are then measured anti-clockwise from the positive x–axis. Thus, a 90◦ angle is 1

4
of the way around

the circle, so lies on the y–axis; it corresponds to the point (0, 1) in the xy–plane. Angles which differ by a
multiple of 360◦ are considered to be the same (an exact number of additional “winds” around the circle2).

The trigonometric functions are defined by saying that the (x, y) coordinates of the angle θ are (cos θ, sin θ).

cos θ—x coordinate sin θ—y–coordinate

Try drawing a picture of a circle with an embedded triangle (one vertex at (0, 0), one at the point on the
circle with angle θ, and one side along the x–axis) to convince yourself that this definition is the same

as the “SOHCAHTOA” taught in school (“SOH” stands for sin =
opposite

hypotenuse , “CAH” stands for cos =

adjacent
hypotenuse ).

Radians
You may be used to working with degrees, wherein 360◦ is a “whole circle”. Most mathematicians prefer
to use radians wherein 2 πrad comprise the whole circle. The reason for this is simple: if you measure the
circumference of a circle of radius 1, it is precisely 2 π; so an angle of θrad means that you have travelled a
distance θ along the circumference of the circle while subtending3 the angle. Thought of this way, angle is
a dimensionless quantity, expressing the ratio of arclength to radius.

For quoting an angle, it doesn’t much matter whether you use degrees or radians, so long as it is clear which
you are using. Angles quoted without a clear statement of angular measure will be assumed to be in radians,
since this is the natural, dimensionless angular measure. Another good reason for using radians is that the
basic trigonometric functions have very nice expressions in terms of power series when written in radians,
for example,

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · · .

(But this formula is FALSE if x is expressed in degrees!) In summary, you can use degrees to express
angles, but radians are better! In other papers (especially calculus), you must use radians.

1In calculus, this is the curve of points satisfying the implicit formula x2 + y2 = 1.
2Or think of the fact that a clock depicting 2o’clock looks exactly the same today as it does it 2o’clock tomorrow, despite the

fact that the hands have undergone two complete rotations around the clock-face in between.
3To “subtend” is what angles do!
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Key ingredients in working out sine and cosine
• 2π radians ≡ 360◦ so

π

6
rad ≡ 30◦,

π

4
rad ≡ 45◦,

π

3
rad ≡ 60◦,

π

2
rad ≡ 90◦, . . .

• The following basic triangles can be used to remember some standard values of sine and cosine. (Note
that the sidelengths of the triangles satisfy Pythagoras’ Theorem.)

45o

2

1

1

30 o

60o

3

2
1

so
sin(30) = cos(60) = 1

2
,

sin(60) = cos(30) =
√

3
2

,
sin(45) = cos(45) = 1√

2
.

• Quadrants of circle; angles anti-clockwise from +ve x–axis

0, 2

π/2

π π

90 -180 0 -90

270 -360180 -270

3π/2

o o o o

o oo o

• cos θ—x coordinate, sin θ—y–coordinate

Example 1. Calculate sine and cosine of 10 π
6

.

• First, 10 π
6

rad is 360
2 π

10 π
6

= 300◦

• Notice that 300 = 270 + 30, so the angle corresponds to the final quadrant, being 30◦ anti-clockwise
from the negative y–axis

• Now take the appropriate triangle (in this case the 1–
√

3–2 triangle) and arrange it with the 30◦ angle
at the origin, and the adjacent edge along the negative y–axis.
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x

y

+

+

-

-

3

270 +30

1

• The coordinates of the opposite corner allow us to read off the cos and sin values. From the diagram,

sin(300) =
−
√

3

2
and cos(300) =

1

2

[since the triangle has “adjacent” side of −
√

3, “opposite” side of length 1, and “hypotenuse” (or
radius) 2].

�

Example 2. (Requires some knowledge of complex numbers) Figure out arg(−
√

3 + i).

• plot the point −
√

3 + i in the complex plane

• note that it lies in the second quadrant

• inscribe the appropriate triangle, with its adjacent side along the positive y–axis [since the +ve y–axis
is the boundary of the first and second quadrants]

3  +i

9060+

Imaginary

Real
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• the triangle which fits is the one with a 60◦ angle, so the total angle from the x-axis is

90◦ + 60◦ = 150◦ =
5 π

6
= arg(−

√
3 + i)

�

Some useful tables
Some important values of sin and cos are summarized in the following tables. The right-hand table gives
some “translation rules”, wherein if an angle φ = θ + x for x a multiple of π

2
, then the values of sin φ and

cos φ can be recovered from the values of sin θ and cos θ (these may be listed in the left-hand table).

θ sin θ cos θ
0 0 1
π
6

1
2

√
3

2
π
4

1√
2

1√
2

π
3

√
3

2
1
2

π
2

1 0

φ sin φ cos φ
−θ − sin θ cos θ
θ + π

2
cos θ − sin θ

θ + π − sin θ − cos θ
θ − π − sin θ − cos θ
θ + 2 π sin θ cos θ

Table 3.1: Common values of trigonometric functions (left) and addition rules (right).

Think about the fact that the angle −π
2

is the same as the angle 3 π
2

; why is this?

Example 3. We can use these tables to compute other commonly occurring values. For example, to
calculate sin( 2 π

3
), note that 2 π

3
= π

6
+ π

2
. Using θ = π

6
(and φ = 2 π

3
) in the right-hand table we see

sin
2 π

3
= sin

(π

6
+

π

2

)

= cos
π

6
=

√
3

2
,

(where the value of cos π
6

is obtained from the second row the left-hand table). �

Remark: The values in the right-hand table are recovered from the trigonometric addition formulae:

sin(θ + α) = sin θ cos α + sin α cos θ,

cos(θ + α) = cos θ cos α − sin α sin θ.

The other important basic identity is: (sin θ)2 + (cos θ)2 = 1.

Exercise III.1 Can you see how to derive the values of sin−θ and cos−θ from these identities? [Hint:
sin 0 = 0, cos 0 = 1.]
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IV ◦ Vectors and geometry in R2 and R3

(4.1) Basic vector geometry
We have seen vectors crop up in several places so far: as a useful notation for describing points and lines in
the plane; for writing down solutions to linear equations; and as special kinds of matrices. Now, we would
like to think of vectors as “generalized numbers” which can describe things happening in multi-dimensional
space (this is important in geometry, physics, economics, biology, . . .). We will start our geometric study
with vectors in the plane.

Geometry of vectors in R2

We will think of a vector in 2–space is a 2 × 1 matrix, and will often write it as an ordered pair of real
numbers:

v = (a, b) ≡
(

a
b

)

.

To draw the vector (a, b), we can choose Cartesian coordinates, and draw it as a “directed arrow”: we put
its “tail” at any point we like, and its “head” a units to the right (if a is positive, left if it’s negative) and b
units above (if b is positive, below if it’s negative) its tail.

-�
a units

6

?

b units

6

-

t�
�

�
�

�
�

�
�

�
�3v

x

y

A vector v = (a, b) with its tail at the origin1 is a position vector , because it specifies a particular point: the
point with coordinates a and b. We call a the x-coordinate and b the y-coordinate2.

Algebra of vectors

Just like matrices, two vectors are equal if their coordinates agree. In R2:

(a, b) = (c, d) if and only if a = c and b = d.

1The origin is where the x and y axes meet.
2Formally, the vector v is not to be confused with the point with coordinates (a, b). The reason for making the distinction

is that we want to be able to do algebra with vectors (add them, multiply by scalars, multiply them by matrices, and so on), but
“algebra with points” doesn’t make much sense!
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Recall that vectors can be scaled by constants α, and added together:

α (a, b) = (α a, α b) and (a, b) + (c, d) = (a + c, b + d).

These operations satisfy all the normal rules of algebra (given in Section 2.1), and have a sensible geometric
interpretation. In particular, if u = (a, b) and v = (c, d) then u+v is the vector obtained by putting the tail
of v at the head of u:

-�
a units

6

?b units

-� c units

6

?

d units

6

-

t��������1

�
�

�
�

�
�

�
�

�
�

�
���

�
�
�
�
�
�
�
�
�
��

v

u

u + v

x

y

Geometrically, αv has a similar “direction” to v, but the “length” is scaled by α (if α < 0 then the direction
is opposite to the direction of v).

Length and direction

Definition. The length of v = (a, b) is

‖v‖ =
√

a2 + b2.

Let θ ∈ [0, 2π) be such that a√
a2+b2

= cos θ and b√
a2+b2

= sin θ. Then the direction of v is the vector

(cos θ, sin θ)

(θ is the angle measured in radians anti-clockwise from the x–axis). Then, v can be written as: v =
‖v‖ (cos θ, sin θ). �

Two vectors are called parallel if one is a scalar multiple of the other. If two vectors are parallel they point
in equal or opposite directions.

Example. u = (1, 2) and v = (−2,−4) are parallel since v = −2u. Their direction vectors are

1√
12 + 22

(1, 2) =

(

1√
5
,

2√
5

)

and
1

√

(−2)2 + (−4)2
(−2,−4) =

(−1√
5
,
−2√

5

)

respectively, so their directions are opposite. �

Note: if u,v are non-zero, and u = αv, we must have α 6= 0, so also v = βu, where β = 1
α

. Thus, it
doesn’t matter which way round we do things. �

Example. Are u = (1, 2) and v = (2, 5) parallel? Answer: No, because if v = αu for some real α, then
we must have (2, 5) = α(1, 2) = (α, 2α), so

2 = α, 5 = 2α
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must hold simultaneously! �

Example. For what value of the unknown a is (−2, a) parallel to (3, 6)? Answer: If (3, 6) = α(−2, a),
then

3 = −2α, 6 = a α.

So α = −3
2

from the first equality, and from the second,

a =
6

α
= 6

(

−2

3

)

= −4.

So (−2,−4) is parallel to (3, 6). �

Generalization of vector properties beyond R2

Just like in R2, higher dimensional vectors have a meaning as objects on their own. We associate vectors in
Rn with n × 1 matrices, work with them algebraically, and think about them as geometric objects.

In 3-space R3, we have a third z–coordinate as well (often drawn coming out of the page). Then, a vector
(a, b, c) represents an arrow whose head has moved from its tail: a units in the x–direction, b units in the
y–direction and c units in the z–direction. The idea generalizes formally to any number of dimensions,
giving the concept of vectors (x1, x2, . . . , xn) ∈ Rn (n-space)—although pictures become problematic!

Vector arithmetic is simply the arithmetic associated with matrices (two vectors are equal if their compo-
nents are equal, they can be added component by component, and so on), but we have the supplementary
concepts of length and direction.

Length and direction in Rn

The length of a vector v = (x1, x2, . . . , xn) is

‖v‖ =
√

x2
1 + x2

2 + · · ·+ x2
n

(

=
√

vTv
)

.

If u and v are position vectors of points, then the distance between the points they represent is ‖u − v‖.

Example 1. Find the distance between points in R3 with coordinates (1,−3, 2) and (−1, 0,−4).
Answer: Working with the corresponding position vectors, the distance is

‖(1,−3, 2) − (−1, 0,−4)‖ = ‖(2,−3, 6)‖ =
√

4 + 9 + 36 =
√

49 = 7.

�

A unit vector is a vector of length 1. For any non-zero v ∈ Rn, v̂ = v

‖v‖ is the unit vector in the direction
of v, and we can write

v = ‖v‖ v̂.

Three unit vectors in R3 are especially important, namely

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

Note that (a, b, c) = a i + b j + ck for any a, b, c. The set {i, j,k} is often called the standard basis of R3:
it has the property that every vector can be uniquely expressed as a “linear combination” of its elements (as
just shown). (There is something similar for each Rn.)
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(4.2) Vector products
We will now study two “products” on vectors which are fundamentally important for the geometry of Rn.
The basic idea is that since u,v ∈ Rn are n × 1 matrices, we can’t simply multiply them together with
matrix multiplication; something else is required.

Scalar product

The scalar product (or dot product or inner product) of two vectors u, v ∈ Rn is the real number (1× 1
matrix):

u · v = uT v.

Thus, in R2, if u = (u1, u2) and v = (v1, v2) then

u · v =
(

u1 u2

)

(

v1

v2

)

= u1 v1 + u2 v2.

In R3, if u = (u1, u2, u3) and v = (v1, v2, v3) then:

u · v = u1 v1 + u2 v2 + u3 v3.

The idea can be generalized in an obvious way to any number of dimensions.

Example 1. In R3,
(2, 3,−1) · (1, 4, 1) = (2)(1) + (3)(4) + (−1)(1) = 13.

�

Note: The scalar product of two vectors is always a number, not another vector. �

The scalar product has some sensible algebraic properties: For vectors u,v,w ∈ Rn and scalars α ∈ R,

1. u · v = v · u

2. u · u = ||u||2

3. u · (v + w) = u · v + u · w

4. α (u · v) = (αu) · v.

Other facts now follow easily: for example,

u · (−v) = u · ((−1)v) = (−1) (u · v) = −(u · v).

Angle

Definition. Let u and v be two vectors in Rn, and let θ be such that

cos θ =
u · v

‖u‖ ‖v‖ .

Then θ is the angle between u and v. We say that the two vectors are orthogonal if the angle between
them is a right angle; that is cos θ = cos π

2
= 0 so u · v = 0. �

This is justified in R2 and R3 by the following:
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Theorem 4.1 If u,v are non-zero vectors in R2 or R3, then

u · v = ‖u‖ ‖v‖ cos θ,

where θ is the angle between u and v when their tails are at the same point.

Note: cos θ = cos(2 π − θ), so it doesn’t matter if we go clockwise or anti-clockwise when measuring this
angle! �

Proof: From the cosine rule of geometry,

‖u − v‖2 = ‖u‖2 + ‖v‖2 − 2 ‖u‖ ‖v‖ cos θ.

But

‖u − v‖2 = (u − v) · (u − v)

= (u − v) · u + (u − v) · (−v)

= u · u + (−v) · u + u · (−v) + (−v) · (−v)

= u · u − u · v − u · v + v · v
= ‖u‖2 − 2 (u · v) + ‖v‖2.

Comparing with the cosine rule, we see that u · v = ‖u‖ ‖v‖ cos θ. �

Example 2. Find the angle between the vectors (1, 1, 1) and (1, 1,−1). Answer: If the angle is θ, then

cos θ =
1 + 1 − 1√

3
√

3
=

1

3
.

So θ = arccos( 1
3
) = cos−1(1

3
) ≈ 71 degrees. �

Example 3. In 2-space, let points A, B, C have position vectors u = (−4, 3), v = (1, 0) and w = (0,−2)
respectively. Find the angle at vertex A. Answer: The angle at vertex A in triangle ABC has cosine

(v − u) · (w − u)

‖v − u‖ ‖w − u‖ =
(5,−3) · (4,−5)

‖(5,−3)‖ ‖(4,−5)‖ =
35√

34
√

41
≈ 0.9374,

so θ = arccos(0.9374) = cos−1(0.9374) ≈ 20.38 degrees. �

Vector cross product

We will study a special vector “product” of vectors on R3 which produces another vector. It is impor-
tant in 3–dimensional geometry, and is defined via determinants. This product is very different to matrix
multiplication (we can’t multiply two (3 × 1) matrices together), and makes sense only in 3–space.

Definition. Let i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1) be coordinate vectors in R3. For any pair
u,v ∈ R3 define the cross product:

u × v =
i j k

u1 u2 u3

v1 v2 v3

= (u2 v3 − u3 v2) i− (u1 v3 − u3 v1) j + (u1 v2 − u2 v1)k

= (u2 v3 − u3 v2, 0, 0) − (0, u1 v3 − u3 v1, 0) + (0, 0, u1 v2 − u2 v1)

= (u2 v3 − u3 v2, u3 v1 − u1 v3, u1 v2 − u2 v1).

�
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Remarks on the cross product

• From the definition, the matrix whose determinant gives u × u has two rows the same (the second
and third rows are both the row vector u). Consequently, the determinant is zero, so u × u = 0.

• Comparing the definitions of u × v and v × u, the only difference is that the second and third rows
have been interchanged. Since this multiplies determinants by (−1), we have u × v = −v × u.

• The definition involving determinants is really a mnemonic; it doesn’t make sense to talk about a
matrix where some of the entries are vectors (the i, j and k in the first row). Nonetheless, it is a useful
trick for remembering the formula (the last line of the definition), if the symbols i, j and k are given
a purely formal interpretation.

• The vector cross product has the unusual properties listed above (u × u = 0 and u × v = −v × u),
and is unique to 3–dimensions. Thus, we will reserve the symbol × for the vector cross product, and
not use it elsewhere from now on.

Example 4. Let u = (2,−1, 2) and v = (4,−1,−4). Calculate u × v. Solution: From the formula:

u × v = ((−1)(−4) − 2(−1), 2(4) − 2(−4), 2(−1) − (−1)(4)) = (6, 16, 2). �

Scalar triple product
In R3, there is a special ternary operation. This is a combination of vector products called the scalar triple
product:

Theorem 4.2 Let u,v,w be vectors in R3, and let A be the matrix whose rows are u, v and w respectively.
Then

u · (v × w) = det (A) = (u × v) · w.

Proof: The first equality follows by a cofactor expansion of

det (A) =
u1 u2 u3

v1 v2 v3

w1 w2 w3

along the first row (use the definitions of · and v × w.) For the other equality, note that

(u × v) · w = w · (u × v),

so this product is the same as the determinant of the matrix with rows w, u and v respectively. By Theo-
rem 3.5 this matrix has the same determinant as A, since it can be obtained from A by the row operations
R1 ↔ R2 then R3 ↔ R1 (each of which changes the sign of |A| once). �

We can use this result to compute volumes of parallelepipeds (Theorem 3.10), or to establish further prop-
erties of the cross product.

Theorem 4.3 Let u,v ∈ R3. Then u × v is orthogonal to both u and v.

Proof: By Theorems 4.2 and 3.6 (a matrix with two rows the same has zero determinant),

u · (u × v) =
u1 u2 u3

u1 u2 u3

v1 v2 v3

= 0

This shows that u is orthogonal to u × v. The argument for v is similar. �
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Further properties of the cross product
Lemma. If u,v ∈ R3 then ‖u × v‖2 = ‖u‖2 ‖v‖2 − (u · v)2.

Proof: Let u = (u1, u2, u3) and v = (v1, v2, v3). The result follows by expanding both sides. �

Theorem 4.4 Let u,v ∈ R3 be non-zero vectors. Then
(1) ‖u × v‖ = ‖u‖ ‖v‖ | sin θ| where θ is the angle between u and v;
(2) ‖u × v‖ is the area of the parallelogram defined by u and v;
(3) u × v = 0 if and only if u and v are parallel.

Proof: From the lemma,

‖u × v‖2 = ‖u‖2 ‖v‖2 − (u · v)2

= ‖u‖2 ‖v‖2 − (‖u‖ ‖v‖ cos θ)2

= ‖u‖2 ‖v‖2 (1 − (cos θ)2)

= ‖u‖2 ‖v‖2 (sin θ)2.

Part (1) follows by taking square roots of both sides of the equality. For part (2), notice that the parallelo-
gram generated by u and v is comprised of two triangles of side length ‖u‖ and ‖v‖, separated by an angle
θ (draw a diagram). If u is the base of the triangle, its height is ‖v‖ | sin θ|, so the area of each triangle
is 1

2
‖u‖ ‖v‖ | sin θ|. Since the parallelogram has twice the area of such a triangle, the result follows from

part (1). For part (3), note that

u × v = 0 ⇔ ‖u × v‖ = 0 ⇔ sin θ = 0 ⇔ θ = 0 or π.

But the angle between two vectors being 0 or π means they have the same or opposite directions, so they
are parallel. �

Example 5. Find the area of the parallelogram whose sides are the vectors (1, 3, 0) and (2, 1, 2). Answer:
the area is

‖(1, 3, 0) × (2, 1, 2)‖ = ‖(6,−2,−5)‖ =
√

36 + 4 + 25 =
√

65.

Note also that if the angle between them is α, then

sin α =

√
65√

10
√

9
=

1

3

√

65

10
≈ 0.85.

�

Example 6. Find the area of the triangle with vertices at (1, 2, 1), (3, 3, 3), (2, 1, 2). Answer: Let

u = (3, 3, 3) − (1, 2, 1) = (2, 1, 2),

v = (2, 1, 2) − (1, 2, 1) = (1,−1, 1).

Then we seek half the area of the parallelogram determined by these two vectors. Hence the area is

1

2
‖u × v‖ =

1

2
‖(2, 1, 2) × (1,−1, 1)‖

=
1

2
‖(3, 0,−3)‖

=
1

2

√
9 + 9

=
3√
2

≈ 2.121.

�
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(4.3) Lines and planes in space
We can use vector notation to describe interesting geometric objects.

Vector form of a line

Vectors provide a very convenient way of representing lines; let us recall this. In R2, a line is specified by
two vectors:

1. a position vector r0 for one point on the line; and

2. a direction vector d for the line.

Given r0 and d, every point on the line has position vector

r0 + td, t ∈ R.

We call the real variable t a parameter.
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Given two points on a line with position vectors p,q, we can define the line as follows: let

r0 = p and d = q − p.

Then the line is

r = r0 + td = p + t (q − p) = p + tq − tp = (1 − t)p + tq, t ∈ R.

This makes sense in any number of dimensions (including 3); we will do some examples later.

Just like in R2, a line has the general equation

r = r0 + td, t ∈ R

where r is a position vector for points on the line, r0 is the position vector of a given point on the line, and
d is the direction vector for the line.

Example 1. Find the line through (1, 2, 1) and (2,−1,−1) in R3. Let r0 = (1, 2, 1),

d = (2,−1,−1) − (1, 2, 1) = (1,−3,−2).

59



MATH102-06A

The line has parametric vector equation r = r0 + td, so

r = (1, 2, 1) + t (1,−3,−2) = (1 + t, 2 − 3t, 1 − 2t),

t ∈ R. Letting t vary gives all points on the line. In coordinate-based parametric form:

x = 1 + t, y = 2 − 3t, z = 1 − 2t.

�

Planes in R3

We have seen how lines are idealized geometric objects that arise naturally as solutions of systems of linear
equations, and that they have a “parametric” description via vectors. Planes—another kind of geometric
idealization—also arise in this way.

Example 2. Consider the equation in R3: x + 2 y + 3 z = 1. This can be thought of as a system in echelon
form, so that the solution can be written down as: y = s, z = t, x = 1− 2 s− 3 t. In vector notation, this is
simply





x
y
z



 =





1
0
0



+ s





−2
1
0



+ t





−3
0
1



 , s, t ∈ R.

�

The set of solutions to this system of equations is a 2–dimensional object (it has two free parameters). It
makes a great deal of sense to think of this as a flat two–dimensional sheet (of infinite extent in all directions)
sitting in R3. It is a plane.

Parametric form of a plane in space

Definition. Let r0 ∈ R3 and let d1,d2 ∈ R3 be two non-parallel3 vectors in R3. Then the set of all position
vectors

r = r0 + t1 d1 + t2 d2, t1, t2 ∈ R

describes the plane through r0, parallel to d1 and d2. �

Note: if d1 and d2 were parallel, then the parametric form above is simply describing a line4. �

So, in Example 2 above, the set of solutions to the single equation given is a plane. The solution has been
written in terms of two parameters, and this is the vector parametric form of the plane. Planes can be
given several different mathematical descriptions. The vector parametric form is one of these. It turns out
that a single equation (like the one in Example 2) is also a legitimate description.

Plane through three points

Just as two points can be used to define a line, three points in R3 are sufficient to describe a plane (provided
they do not all lie on a common line).

Example 3. We will find an equation for the plane containing the points with position vectors

u = (0,−4, 1),v = (3, 0, 2),w = (2,−1,−3).

3That is, there is no α ∈ R such that either d1 = αd2 or d2 = α d1.
4If αd1 = d2 then r0 + t1 d1 + t2 d2 = r0 + t1 d1 + t2 αd1 = r0 + sd1 where (t1 + α t2) = s ∈ R is arbitrary.
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One point in the plane is r0 = u, while two non-parallel vectors lying in the plane are d1 = v − u and
d2 = w − u. So the plane is

r = r0 + t1 d1 + t2 d2

= u + t1 (v − u) + t2 (w − u)

= (0,−4, 1) + t1 (3, 4, 1) + t2 (2, 3,−4).

As for lines, we can write down a parametric form:

(x, y, z) = (0 + 3 t1 + 2 t2,−4 + 4 t1 + 3 t2, 1 + t1 − 4 t2),

so
x = 3t1 + 2t2, y = −4 + 4t1 + 3t2, z = 1 + t1 − 4t2,

t1, t2 ∈ R. �

From the method of this example, we can see that in general, if u,v,w are the position vectors of three
points in a plane (which are not on a common line) then the plane has vector parametric form:

r = (1 − t1 − t2)u + t1 v + t2 w, t1, t2 ∈ R.

Cartesian form of a plane

Example 0 shows that we can go from three points on a plane to the vector parametric description. It is easy
to see how to go in the other direction: if r = r0 + t1 d1 + t2 d2 then choosing any three different values of
(t1, t2) will give three different points. For example, (t1, t2) = (0, 0), (1, 0), (0, 1) gives r0, r0 +d1, r0 +d2

respectively—the position vectors of three points on the plane. It is natural to wonder whether we can move
freely back and forth between the parametric form, and a single equation like in Example 2.

Example 4. Consider the parametric form obtained in the previous example. We can eliminate t1, t2 from
the three equations in the parametric form to find a single equation for the plane.

We treat t1, t2 as unknowns, and solve for them in terms of the variables x, y, z. The system is:

3 t1 + 2 t2 = x

4 t1 + 3 t2 = y + 4

t1 − 4 t2 = z − 1.

Using Gaussian elimination to solve the first two equations we get

t1 = 3 x − 2 y − 8 and t2 = 3 y − 4 x + 12.

Putting these into the third equation in our system, we get

(3 x − 2 y − 8) − 4 (3 y − 4 x + 12) = z − 1.

After rearranging:
19 x − 14 y − z = 55

is the single Cartesian equation for the plane. �

Definition. Let a, b, c, d ∈ R. Provided at least one of a, b, c is non–zero, the set of all points (x, y, z)
satisfying

a x + b y + c z = d
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is a plane. The formula is called the Cartesian form of the plane. �

The Cartesian form has a very nice geometric interpretation. Let n = (a, b, c) and r = (x, y, z) be the
position vector of a point on the plane. Then the Cartesian form can be written as

n · r = d.

Now suppose that r0 is the position vector of a point on the plane, and the vector v is parallel to the plane,
then r0 + v is also a point on the plane, so we have

n · r0 = d = n · (r0 + v) = n · r0 + n · v.

From this we conclude that n · v = 0. That is, n is orthogonal to any vector which is parallel to the
plane. In fact, if r is the position vector of an arbitrary point on the plane, then r − r0 is parallel to the
plane, and we have:

Definition. The general Cartesian form of a plane is

n · (r − r0) = 0,

where r = (x, y, z), r0 is the position vector of a point on the plane, and n is the normal vector for the
plane. This is sometimes called the implicit form of the plane. �

Example 5. Consider the plane in R3 containing the point (1, 2,−1) and perpendicular to the line with
parametric form

x = 2t − 1, y = t + 2, z = −t, t ∈ R.

We can find a Cartesian form of this plane as follows. First, we find the direction of the given line, via the
vector form:

(x, y, z) = (2 t − 1, t + 2,−t) = (−1, 2, 0) + t (2, 1,−1).

So the direction vector is (2, 1,−1). Then, we want a plane perpendicular to this vector which contains
(1, 2,−1). Hence, the plane is:

0 = (2, 1,−1) · ((x, y, z) − (1, 2,−1))

= 2 (x − 1) + (y − 2) − (z + 1)

= 2 x + y − z − 2 − 2 − 1 = 2 x + y − z − 5,

that is, 2 x + y − z = 5 is the Cartesian form. �

The final piece in our study of the description of planes is to see how to move efficiently from a parametric
form, to a Cartesian form. Let the parametric form be

r = r0 + t1 d1 + t2 d2.

We need the normal vector n to be orthogonal to both d1 and d2. From our study of the cross product, this
is easy to accomplish: simply set n = d1 × d2.
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(4.4) Linear equations and intersections of lines and planes
We can consolidate our understanding of lines and planes by working with these objects some more.

Cartesian form of a line

Let us suppose that we have a pair of planes P1 and P2. Each of these will be described by a Cartesian
equation:

P1 : n1 · r = k1

P2 : n2 · r = k2

for normal vectors n1 and n2 and constants k1, k2 ∈ R. We would like to study the set of points common
to both planes. Written out in coordinates, we have a pair of Cartesian equations in three variables. If we
were to solve these equations via Gaussian elimination, we will obtain one of the following possibilities:

• there are no solutions because the system is inconsistent;

• there is one free variable, leading to a one-parameter general solution;

• there are two free variables, and hence a two parameter general solution.

The first case will occur when the planes are parallel, but do not intersect. In the second case, the solution
is a line, and in the final case, the solution is a plane—the same plane as both P1 and P2. In summary, we
have: the intersection of two planes is usually a line, although it could happen that the planes are coincident
or parallel.

The representation of a line as the intersection of two planes is called the Cartesian representation of the
line. It is important to understand what is going on geometrically here, but it is not so important to be
able to find the Cartesian representation of a given line—it is non-unique. Of course, finding a parametric
representation, given a Cartesian representation is easy: you simply solve the system of equations.

Some problems involving lines and planes

Example 1. Let us use vectors to test whether the points (−1, 2, 0), (3, 3, 2) and (11, 5, 6) lie on a single
line. First of all, we’ll write down the equation of the line through the first two points:

(x, y, z) = (1 − t) (−1, 2, 0) + t (3, 3, 2) = (4 t − 1, 2 + t, 2 t).

If the points are co-linear, then there will be a value of t which allows (11, 5, 6) to be written in this way.
The equations (for x, y and z respectively) would then be:

11 = 4 t − 1, 5 = 2 + t, 6 = 2 t.

These are all solved by t = 3, so the points are indeed co-linear. We can even write (11, 5, 6) = −2 (−1, 2, 0)+
3 (3, 3, 2). �

Example 2. Do the points (1, 3, 2), (−2, 3, 5), (−1, 0, 1) and (8, 3,−5) lie on a common plane? The first
thing to do is to find the plane containing the first three points, and then test whether the fourth point is
on it. We’ll take r0 = (1, 3, 2) and let the two direction vectors be (−2, 3, 5) − (1, 3, 2) = (−3, 0, 3) and
(−1, 0, 1) − (1, 3, 2) = (−2,−3,−1). A suitable normal vector is thus

n = (−3, 0, 3) × (−2,−3,−1) = (9,−9, 9).
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The plane containing the first three points thus has equation:

(9,−9, 9) · (x, y, z) = n · r = n · r0 = (9,−9, 9) · (1, 3, 2) = 0.

Dividing by 9, this becomes x − y + z = 0. It is easy to see that first three points satisfy this equation (as
we would expect). But also:

8 − 3 + (−5) = 0,

so the fourth point is on the plane. That is, the four points are coplanar. �

Remarks

• The points represented by u, v and w are co-linear if and only if v − u and w − u are parallel.
But, by Theorem 4.4 (3) this happens if and only (v − u) × (w − u) = 0. Then, we’ll also have
u · ((v − u) × (w − u)) = u · 0 = 0, so by regarding u,v,w as row vectors, by Theorem 4.2

0 = u · ((v − u) × (w − u)) =
u

v − u

w − u

=
u

v

w

(the last equality is by Theorem 3.5, since the second matrix is obtained from the first by elementary
row operations). Therefore, three points in R3 are co-linear if and only if their scalar triple product is
0.

• Two planes intersect in a common line if and only if their normal vectors n1 and n2 are non-parallel.
In this case, the direction vector for the line is n1 × n2.

• Two (distinct) lines with parallel direction vectors always lie in a common plane.

• If two lines ri+ti di (i = 1, 2) lie in a common plane then the normal vector of the plane is n = d1×d2

and we would need r1 · n = r2 · n. That is, (r1 − r2) · (d1 × d2) = 0.

Intersections of lines and planes

Suppose we are given a line and plane in three–dimensional space. We might expect these to have some
common points. There are several ways we could go about finding these points, depending on the way the
objects are presented to us:

• If the line is given as a pair of Cartesian equations, and the plane is given as a single Cartesian
equation, then any point in their intersection must satisfy all three equations. Consequently, we
could: solve the system of three equations for x, y, z.

• If the line and plane are both given in parametric form, then we are looking for a point which simul-
taneously satisfies

r = r0 + td and r = r′0 + t1 d1 + t2 d2

for the line and plane respectively (the position vectors are r0, r
′
0, d,d1,d2 are direction vectors,

t, t1, t2 ∈ R are real parameters). By equating the two equations, and reorganizing, we then need to
solve

t1 d1 + t2 d2 − td = r0 − r′0.
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This can be written as a matrix equation


 d1 d2 −d









t1
t2
t



 = r0 − r′0

for the variables t, t1, t2. The intersection can be found either by substituting the value of t into the
equation for the line, or by substituting t1, t2 into the formula for the plane; both should give the same
answer!

• If the line is given as a pair of equations, and the plane is given in parametric form, then substituting
the plane equation into the pair of equations for the line will give two equations for t1 and t2. These
can be solved, and the values substituted back into the parametric form for the plane to give the
required points.

• If the line is given in parametric form, and the plane is given in Cartesian form, then the parametric
equation for the line should be substituted into the Cartesian equation for the plane. This gives one
equation for the one parameter t describing the line. This can be solved easily, and the resulting value
of t substituted into the parametric equation for the line.

It turns out that the last of these is the easiest to use.

Example 3. Find the point of intersection of the line (x, y, z) = (1, 2, 1) + t (2,−3, 1) and the plane
2 x + y − 3 z = 5. To solve this, substitute

x = 1 + 2 t, y = 2 − 3 t, z = 1 + t into 2 x + y − 3 z = 5.

Thus,
5 = 2 (1 + 2 t) + (2 − 3 t) − 3 (1 + t) = 1 − 2 t.

This is solved by t = −2, so the point of intersection is (x, y, z) = (1, 2, 1)+(−2) (2,−3, 1) = (−3, 8,−1).
Substituting these numbers back into the equation for the plane reveals that 2 x + y − 3 z = 2 (−3) + 8 −
3 (−1) = 5, providing a useful check for our calculations. �

The method of this example can be written down as an algorithm.

Finding the intersection of a line and plane

1. Write down the line in the form r = r0 + td (if the line is given as a pair of Cartesian equations,
solve the equations);

2. write down the plane in Cartesian form: r ·n = d (if the plane is given as r = r′0 + t1 d1 + t2 d2

then put n = d1 × d2 and d = r′0 · n);

3. substitute the equation for the line into the equation for the plane to get a single equation for t;

4. solve for t;

5. the intersection point(s) are obtained by substituting the solution(s) for t into the equation for
the line;

if there are no solutions for t, then the plane and the line do not intersect;

6. check the points satisfy the equation of the plane.

65



MATH102-06A

(4.5) Projections in R3

We have now seen how to describe lines and planes in space via parametric or Cartesian equations. We can
use the scalar product and vector algebra to work out solutions to some geometric problems. For example:
given a point P in Rn and a line L, what is the distance from P to L? To answer this kind of question
we will need the concept of a projection. We will introduce some important concepts, and solve some
geometric problems.

Projection onto a vector
We will be begin by describing the process of “projection onto a vector”. Let u be the position vector of a
given point; we would like to know uv—the component of u in a given direction v.

t -�
�

�
�

�
�

�
�

�
��

r -

uv

v

u

To calculate such components, we need some additional notation. We would like uv to be a vector parallel
to v, such that u − uv is orthogonal to v. This gives us a pair of equations to solve:

uv = αv since uv is parallel to v,
0 = (u − uv) · v since u − uv is orthogonal to v.

Thus
0 = (u − αv) · v = u · v − αv · v

and hence α = u·v
v·v . Thus:

Definition. The component of u in the direction of v is

uv =
u · v
v · v v.

�

Example 1. To find the component of the vector (2, 0, 1) in the direction of the vector (1,−1, 0), let
u = (2, 0, 1) and v = (1,−1, 0). Then

uv =
(2, 0, 1) · (1,−1, 0)

(1,−1, 0) · (1,−1, 0)
(1,−1, 0)

=
2 + 0 + 0

(1 + 1 + 0)
(1,−1, 0)

= (1,−1, 0).

So the component is v itself in this case. We can check that the orthogonality of u − uv with v:

(u − uv) · v = ((2, 0, 1)− (1,−1, 0)) · (1,−1, 0) = (1, 1, 1) · (1,−1, 0) = 0,

so the method has worked! �
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Projections and the method of projection

The component of a vector in a certain direction is a special case of a general kind of operation:

Definition. Let V be a collection of vectors. Suppose that a vector u can be written as

u = u‖ + u⊥

where u‖ ∈ V and u⊥ is orthogonal to every v which is parallel to V . Then u‖ is the projection of u onto
V , and we write u‖ = projV u. �

Projection principle. u‖ represents the closest point to u in V . The distance from u to V is

‖u − u‖‖ = ‖u⊥‖.

Method of Projection. To compute the distance from a point with position vector u to a collection V of
vectors, first compute projV u, and then

‖u − projV u‖ = ‖u⊥‖

is the distance from u to V . �

Example 2. By the projection principle, the position vector uv represents the closest point to u on the line
with direction vector v. �

Distance from a point to a line

We can apply the definition of projections to calculate the distance from a point to an arbitrary line. Let u

be a position vector of a point, and let the line L have parametric representation

r = r0 + td.

Then, projLu must be on the line, and u⊥ = u − projLu must be perpendicular to any vector parallel
to L—that is, any vector parallel to d. As in projecting onto a vector, we have

projLu = r0 + α d since projLu is on L,
0 = [u − projLu] · d since u⊥ is orthogonal to d.

So, we need to find an α such that

0 = (u − (r0 + αd)) · d = (u − r0) · d − αd · d.

Thus,

α =
(u − r0) · d

d · d
and the method of projection gives an algorithm:

Finding the distance from a point to a line

1. Write the line as r = r0 + td, let the point be represented by u;

2. find
projLu = r0 + α d where [u − projLu] · d = 0;

3. calculate ‖u⊥‖ = ‖u − projLu‖.
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Example 3. Use the method of projection to find the distance between the point P = (2, 2, 1) and the line
(x, y, z) = (−1 + 2 t, 1 + 3 t,−3 + 2 t), t ∈ R.
Solution: The line can be written as (−1, 1,−3)+t (2, 3, 2), so the important vectors are u = (2, 2, 1), r0 =
(−1, 1,−3) and d = (2, 3, 2). We need to solve

projLu = r0 + αd since projLu is on L,
0 = [u − (r0 + αd)] · d since u⊥ is orthogonal to d.

Since u − r0 = (3, 1, 4), we need:

[(3, 1, 4)− α (2, 3, 2)] · (2, 3, 2) = 0

or
(3, 1, 4) · (2, 3, 2) = α(2, 3, 2) · (2, 3, 2).

This says 17 = α 17,so α = 1 and

projLu = r0 + α d = (−1, 1,−3) + 1 (2, 3, 2) = (1, 4,−1).

Finally,
u⊥ = u − projLu = (2, 2, 1)− (1, 4,−1) = (1,−2, 2)

so the distance from P to L is ‖u⊥‖ = ‖(1,−2, 2)‖ =
√

1 + (−2)2 = (2)2 = 3. �

Distance from a point to a plane

By the projection principle, the distance from a point to a plane can be obtained via projections.

Example 4. Let P be the plane r = (1, 2, 1)+ t1 (1, 3, 4)+ t2 (−1, 0, 2). Find the projection of (−1, 8,−1)
onto P .
Solution: We need to solve the projection equations. Here, r0 = (1, 2, 1), and the two direction vectors are
d1 = (1, 3, 4) and d2 = (−1, 0, 2). We need u⊥ = u − projPu to be orthogonal to the directions d1,d2, so
we solve:

projPu = r0 + αd1 + β d2 since projPu is on P,
0 = [u − (r0 + αd1 + β d2)] · d1 since u⊥ is orthogonal to d1

0 = [u − (r0 + αd1 + β d2)] · d2 since u⊥ is orthogonal to d2.

After substituting in the vectors:

0 = (−2, 6,−2) · (1, 3, 4) − α (1, 3, 4) · (1, 3, 4)− β (−1, 0, 2) · (1, 3, 4)

0 = (−2, 6,−2) · (−1, 0, 2) − α (1, 3, 4) · (−1, 0, 2) − β (−1, 0, 2) · (−1, 0, 2)

or
26 α + 7 β = 8
7 α + 5 β = −2.

This system has solution: α = 2
3
, β = −4

3
so

projPu = (1, 2, 1) +
2

3
(1, 3, 4)− 4

3
(−1, 0, 2) = (3, 4, 1).

�

We apply the projection principle to find the distance from a point to a plane: the least distance from a
point u to a plane P is ‖u − projPu‖:
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Finding the distance from a point to a plane

1. Express the plane in parametric form: r0 + t1 d1 + t2 d2

(if necessary, solve a Cartesian equation to get this form);

2. find projPu = r0 + αd1 + β d2, so that [u − projPu] · di = 0 (i = 1, 2);

3. calculate ‖u − projPu‖.

Example 5. Find the shortest distance between the point with position vector u = (−1, 1, 3) and the
plane P with Cartesian equation 2 x − y − 3 z = 2.
Solution: The Cartesian equation can be solved to give the plane as





1
0
0



+ t1





1
2
0



+ t2





3
0
2



 .

We therefore solve the pair of equations:

0 = [(−1, 1, 3) − (1, 0, 0)− α (1, 2, 0) − β (3, 0, 2)] · (1, 2, 0)

0 = [(−1, 1, 3) − (1, 0, 0)− α (1, 2, 0) − β (3, 0, 2)] · (3, 0, 2);

that is
5 α + 3 β = 0
3 α + 11 β = 0.

This system has solution α = β = 0 (which was lucky, and not the usual situation), so

projPu = (1, 0, 0) + 0 (1, 2, 0)− 0 (3, 0, 2) = (1, 0, 0).

The shortest distance is now

‖u − projPu‖ = ‖(−1, 1, 3) − (1, 0, 0)‖ = ‖(−2, 1, 3)‖ =
√

4 + 1 + 9 =
√

14.

�

Remark. If the plane P is given implicitly r · n = d, there is an alternative approach. The vector u⊥ must
be orthogonal to all directions in P , so is in fact parallel to n (the normal to the plane). We thus solve the
plane equations for u⊥ = γ n. Since the projection of u onto P must satisfy the plane equation, we know

projPu · n = d and projPu = u − u⊥ = u − γ n.

Combining these equations gives
(u − γ n) · n = d,

so γ = d−u·n
n·n . This allows us to write down u⊥, and thus recover projPu = u − u⊥ and the distance from

u to P . (In this method, we are really looking for where the line through u with direction n intersects P .)
This strategy suggests an alternative algorithm for finding the distance from a point to a plane when P is
given parametrically: find a Cartesian representation using n = d1 × d2 and proceed. �

Proof of the projection principle
Proof: Suppose that v ∈ V and write v = u‖ + v′ where v′ = v − u‖ is parallel to V . Then,

‖u−v‖2 = ‖u‖ +u⊥ − (u‖ +v′)‖2 = ‖u⊥ −v′‖2 = (u⊥ −v′) · (u⊥ −v′) = u⊥ ·u⊥ − 2v′ ·u⊥ +v′ ·v′.

However, since v′ is parallel to V , u⊥ · v′ = 0. Moreover, v′ · v′ = ‖v′|2 ≥ 0. This shows that

‖u − v‖2 = u⊥ · u⊥ + v′ · v′ ≥ u⊥ · u⊥ = ‖u⊥‖2.

By taking square roots, this shows that u is at least a distance ‖u⊥‖ from w ∈ V , so the projection principle
is true. �
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V ◦ Induction and recursion

So far we have worked with vectors of real numbers without much regard for the underlying structure of R.
In this part of the paper, we will take a tour into the foundations of mathematics, to explore the properties
of number systems, and discuss how the numbers we work with are “built”. We will begin with the most
basic of systems.

(5.1) Set theory, the natural numbers N and mathematical induction
Numbers are a mathematical abstraction. For millennia (we don’t know how many millennia), humans have
been counting things. Thus, we have the notion of natural numbers:

N = 1, 2, 3, 4, · · · .

We can think of these numbers as being universal names for “how many” objects, but it is very difficult to
be more explicit than that. Do these numbers really exist? Well, the answer is “yes”, so long as you are
prepared to accept some axioms from “Set theory”.

Set theory and the history of mathematics

There are many axioms of set theory, and they are all quite plausible. Things like “there exists a set”,
“given any pair of sets, there is another set that contains them both”, and so on. Taken together, and
worked with cleverly, these axioms are enough to construct most of mathematics! Most of set theory was
soundly established about 100 years ago. There are some traps however, one of the most famous is “the
set of all sets which are not members of themselves”. Think about this set. Does it contain itself? This
is Russell’s paradox, after Bertrand Russell (1872–1970). In the early 20th century, great mathematicians
and philosophers (Cantor, Frege, Russell and others) tried to put all of mathematics on rigorous, axiomatic
foundations, and Russell’s paradox was a devastating blow1. It turned out that Russell’s approach could
be fixed up (with some more sophisticated notions), but every axiomatic system suffers from a certain
weakness; this is the content of Gödel’s incompleteness theorem , which states that any formal axiomatic
system will contain valid statements which are neither provably true, nor provably false. Partly due to
Gödel’s result, and partly due to the whims of mathematical fashion, most contemporary mathematicians
do not worry too often about these foundations. Indeed, like students, working mathematicians take much
of what they learn on trust, and put off checking all the details until really needed. In fact, you may notice
that the “deeper” we probe into the structure of mathematics, the more recently the foundations have been
secured. For example, Gauss (1777–1855) was working masterfully with complex numbers in the late 18th
century, but the foundations of the natural numbers were not really sorted out until the 20th century.

Set theory and the natural numbers

Clever use of the set theory axioms lets us construct the “empty set”: ∅. Basically, you take any set you can
find (remember, there is an axiom that says “there exists a set”2), and throw away all its members; you are

1At least to Russell!
2If this axiom is still a bit much to swallow, what do you think about Descartes’ cornerstone epistemological existence

theorem: “Cogito Ergo Sum”?
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left with ∅. We will associate ∅ with the number 0. Next, we can define an operation on sets, the “successor”
operation.

Definition. The successor of a set A is the set succ(A) containing A, and ∅. A set B is called an inductive
set if succ(x) ∈ B whenever x ∈ B. �

The idea is to build 1 as the successor of 0, 2 as the successor of 1, and so on. So,

succ(∅) = {∅}
succ(succ(∅)) = {∅, {∅}}

succ(succ(succ(∅))) = {∅, {∅, {∅}}}
...

specifies the numbers 1, 2, 3. This construction allows any natural number to be constructed, by iterative
application of the successor operation. Roughly speaking, N is defined as the smallest non-empty inductive
set.

Note: Quite a lot is still swept under the carpet with this construction of N. For example, are there any
inductive sets? �

Basically, we observe that, 1 ∈ N and n + 1 ∈ N whenever n ∈ N. We can build basic arithmetic with
definitions like “A+succ(∅) = succ(A)” (which just says that n+1 means what we already think it means)!
Further clever use of set theory axioms lets us construct multiplication on N.

Principle of induction

With our construction of N, we have:

Principle of Induction: Let S be a subset of the set of the natural numbers N = {1, 2, 3, . . .}. Suppose the
following properties hold for S.

• 1 ∈ S; and

• k ∈ S implies k + 1 ∈ S.

Then S = N. �

This principle has a simply analogy: climbing a ladder. Suppose that, starting from the ground,

• we can climb to the lowest rung; and

• if we can climb to any given rung, we can always climb to the next one.

Then we can climb to any rung we like, however high up the ladder!

Note: We defined N to be a non–empty inductive set. This is why the principle of induction requires us to
check that 1 ∈ S. �
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A proof by induction
We will now see how to use induction to establish formulae which depend on n.

Example 1. We would like to show that

12 + 22 + · · · + n2 =
n (n + 1) (2 n + 1)

6
.

For all n. This formula depends on an integer in that n is a “variable”. �

The motivation is simple: if we let S be the set of n ∈ N for which a given statement is true, then we try to
establish that S is an inductive set. That is, that 1 ∈ S, and that k + 1 = succ(k) ∈ S whenever k ∈ S.

Proof of Example 1. We would like to show that

12 + 22 + · · · + n2 =
n (n + 1) (2 n + 1)

6
.

This formula depends on an integer in that n is a “variable”, and we will think of it as indexing an inductive
set. Let

S =

{

n

∣

∣

∣

∣

12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
is true

}

.

Thus we must show:

(B) Base case: the formula is true for n = 1; and

(R) Recursive step: for any k ≥ 1, the formula being true for n = k implies it is true for n = k + 1.

(Note that (B) really says 1 ∈ S, and (R) says that k ∈ S implies k + 1 ∈ S.) Once (B) and (R) are shown,
the principle of induction gives that S = N, so the formula is true for all n ∈ N.

When k = 1, we have
12 = 1 × 2 × 3/6,

which is clearly TRUE. So (B) is OK.

To work on (R), assume that for some particular k ≥ 1:

12 + 22 + · · ·+ k2 =
k(k + 1)(2k + 1)

6
.

We must show, assuming only this, that the formula holds for n = k + 1. Namely:

12 + 22 + · · ·+ (k + 1)2 =
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
.

Let’s start with the more complicated side of P (k + 1) and try to simplify it.

LHS = 12 + 22 + · · · + (k + 1)2

= (12 + 22 + · · · + k2) + (k + 1)2

=
k(k + 1)(2k + 1)

6
+ (k + 1)2 (by assumption for n = k)

=
k(k + 1)(2k + 1) + 6(k + 1)2

6

=
(k + 1)(k(2k + 1) + 6(k + 1))

6

=
(k + 1)(2k2 + k + 6k + 6)

6

=
(k + 1)(2k2 + 7k + 6)

6
.
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On the other hand,

RHS =
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6

=
(k + 1)(k + 2)(2k + 3)

6

=
(k + 1)(2k2 + 4k + 3k + 6)

6

=
(k + 1)(2k2 + 7k + 6)

6
= LHS.

This establishes (R), the recursive step. It now follows by the Principle of Mathematical Induction that the
equation is true for all n = 1, 2, 3, . . .. �

Final remark: The rigorous mathematical foundations of the method of induction were only completed
with the development of modern set theory in the early–20th century. Despite this, Blaise Pascal (1623–
1662) used the method of induction competently and correctly in the mid–17th century!

Justification of induction

We have already seen how the natural numbers are an “inductive set” constructed from set theory. It is also
possible to derive the Principle of Induction from other, more concrete, assertions. It is easy to define an
order in N (to accommodate statements like 2 < 4), and this gives rise to a swag of rigorously constructed
(but familiar) concepts. Amongst these is:

Least integer principle. Every non-empty subset S of N has a least element3. �

This unremarkable looking fact gets us a really long way when it comes to proving things about the integers!
It turns out to be equivalent to the principle of induction, although we’ll prove only one direction here.

Theorem 5.1 The least integer principle implies the principle of induction.

Proof: Let S ⊆ N be such that 1 ∈ S and n ∈ S implies n + 1 ∈ S. Let S̄ be the complement of S in N, ie.
all the natural numbers not in S. We want to show this set is empty.

By the least integer principle, if S̄ is not empty, it has a least element m. Now,

• m ∈ S̄, so by definition, m /∈ S; and

• since m is the least element of S̄, we have k /∈ S̄ whenever k < m; that is, k ∈ S.

From the first observation, we conclude that m 6= 1 (since 1 ∈ S). This implies that m > 1 (since m is a
natural number, it cannot be negative), so m − 1 > 0; that is, m − 1 ∈ N. But, by the second observation
above, since m−1 < m, we must have m−1 ∈ S. Since S is the set of natural numbers where the recursive
step holds, we must have m = (m − 1) + 1 ∈ S. This is a contradiction. The only possible conclusion is
that S̄ cannot have any elements, so S = N. �

(5.2) Mathematical induction
In this section we will be a bit more formal about the methodology of induction proofs. To start with, we
will clarify what sort of things can be proved by induction.

3Note that the least integer principle fails in Z, where negative numbers are allowed.
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Propositions

A valid statement for us will be one that can be expressed in plain, simple language. We will refer to
propositions P ; such a P is a statement with a definite truth value.

Example 1. “Auckland is the capital of New Zealand.” Here the proposition has truth value FALSE. �

Generally, we don’t allow imprecise statements such as “Hamilton is more than you expect.” However, a
statement such as “The average annual rainfall in Hamilton is more than twice that of Christchurch” is
allowable (and FALSE in this case!).

Some propositions are functions, whose truth depends on a variable. For example, let P (x) be the statement
that the person in office G3.0x is a lecturer. When x = 6, this is TRUE (G3.06 is a lecturer’s office); when
x = 5 it is FALSE (the current occupant of G3.05 is a postdoc). Obviously the value of x determines
whether this statement is true or false.

Some statements are true for all possible values of their variables, such as when we let P (x) be the statement
“x2 ≥ 0”, where x is a real number. This is true for all real numbers.

We are interested in propositions which depend on an integer value. Let P (n) be a statement which is either
true or false for any given n. For example, P (7) may be true while P (191) may be false4. Our strategy for
showing that P (n) is true for all n is to apply the principle of induction to the set of integers

S = {n | P (n) is true}.

Example 2. For each positive integer n, let P (n) be the proposition that

12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6
.

(If n = 1, this just says 12 = 1×2×(2+1)
6

.) We proved above that P (n) is true for all n. More precisely, we
proved that the set of n for which P (n) is true is N. �

Many such facts in mathematics and computer science (eg. whether an algorithm works, or how fast it is)
are difficult to prove directly but can be proved with induction.

Method of induction

The basic idea is to show the n = 1 case works, and then to show that if it works for some given fixed
k ≥ 1, (ie. if P (k) is true for some k), then it must also work for n = k + 1 (i.e. P (k + 1) is true too).
From there we will conclude that P (n) is true for all n ≥ 1.

Example 3. Prove that for all n ∈ N, 2n ≥ n + 1. We will solve this problem with ideal setting out.
(Always try to stick to this, even if you cannot solve a problem in full.)
Proof: For n ≥ 1, let P (n) be the proposition that 2n ≥ n + 1.

(B) P (1) says that 21 ≥ 1 + 1, that is, 2 ≥ 2, which is true.

(R) Assume P (k) is true for some particular k ≥ 1, that is,

2k ≥ k + 1.

4Showing that a proposition P (n) is true for every single value of n is obviously not practical, and usually it will be too hard
to derive the formula. In induction, we start with the formula, and prove that it is correct.

74



MATH102-06A

We show that P (k + 1) is true, that is,

2k+1 ≥ (k + 1) + 1.

LHS = 2k+1

= 2 × 2k

≥ 2 × (k + 1) by P (k)

= 2k + 2

≥ k + 2

= RHS.

So LHS≥RHS, and P (k + 1) is true. Thus, P (k) implies P (k + 1).

Hence by the Principle of Induction, P (n) is true for all n ∈ N. �

Note the strategy was the same as before: take the more complicated side and try to simplify it using the
P (k) assumption. In this case we make the LHS smaller or equal at each step, rather than just equal.
Usually, the key step is seeing how to write P (k + 1) in a form where you can use P (k).

Writing a proof by induction

1. Make sure you understand what the proposition P (n) means, and write down the algebraic
description of P (n): “Let P (n) be the proposition that · · · .”

2. Write down the base case, P (1), and check that it is true.

3. Write: “We assume P (k) is true. That is, · · · .” where the · · · are replaced by the algebraic
description of P (k).

4. Use mathematical reasoning to deduce that P (k + 1) is true. It may be necessary to write down
what P (k+1) actually says, and work from the more complicated side to the simpler side, using
a substitution of P (k) where appropriate. Then, write: “P (k) implies P (k + 1).”

5. Write: “Hence, by the Principle of Induction, P (n) is true for all n · · · .”
Example 4. Prove that 5n − 1 is divisible by 4 for all n ≥ 0. First of all, note:

• “m is divisible by n” is saying that if m, n are integers and m = nq, then q also an integer. So 12 is
divisible by 4 (since 12 = 4 × 3), but not divisible by 5 (since 12 = 5 × (2 2

5
) and q = 2 2

5
is not an

integer).

• Now n = 0 is the base case! The principle of induction can be modified to allow any starting point,
be it positive, negative or zero.

Now we can get on with the proof. For each n ≥ 0, let P (n) be the proposition that 5n − 1 is divisible by 4.

(B) P (0) says that 50 − 1 is divisible by 4. But 50 − 1 = 0 = 0 × 4, so this is TRUE.
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(R) Assume k ≥ 0 is such that P (k) is true, that is, 5k − 1 is divisible by 4. This means

there is an integer q such that 5k − 1 = 4q.

We must show that P (k + 1) is true, that is, that 5k+1 − 1 is divisible by 4. But

5k+1 − 1 = 5 × 5k − 1

= 5(4q + 1) − 1 by P (k)

(we assume 5k − 1 = 4q)

= 20q + 5 − 1

= 20q + 4

= 4(5q + 1).

But 5 q +1 is an integer since q is, so by definition, 5k+1− 1 is divisible by 4, that is, P (k +1) is true.
Hence P (k) implies P (k + 1).

Thus, by the Principle of Induction, P (n) is true for all n ≥ 0. �

Example 5. Prove that for all n ∈ N,
(

3 2
−2 −1

)n

=

(

1 + 2n 2n
−2n 1 − 2n

)

.

Proof: For each n = 1, 2, 3, . . ., let P (n) be the proposition that

(

3 2
−2 −1

)n

=

(

1 + 2n 2n
−2n 1 − 2n

)

.

(B) P (1) says that
(

3 2
−2 −1

)1

=

(

1 + 2 2
−2 1 − 2

)

,

which is TRUE.

(R) Assume k ∈ N is such that P (k) is true. That is,

(

3 2
−2 −1

)k

=

(

1 + 2k 2k
−2k 1 − 2k

)

.

We show P (k + 1) must therefore be true, ie.

(

3 2
−2 1

)k+1

=

(

1 + 2(k + 1) 2(k + 1)
−2(k + 1) 1 − 2(k + 1)

)

.
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LHS =

(

3 2
−2 −1

)k+1

=

(

3 2
−2 −1

)(

3 2
−2 −1

)k

=

(

3 2
−2 −1

)(

1 + 2k 2k
−2k 1 − 2k

)

by P (k)

=

(

3(1 + 2k) + 2(−2k) 3(2k) + 2(1 − 2k)
−2(1 + 2k) − 1(−2k) −2(2k) − 1(1 − 2k)

)

=

(

3 + 6k − 4k 6k + 2 − 4k
−2 − 4k + 2k −4k − 1 + 2k

)

=

(

3 + 2k 2k + 2
−2 − 2k −1 − 2k

)

,

whereas

RHS =

(

1 + 2k + 2 2k + 2
−2k − 2 1 − 2 (k + 1)

)

=

(

3 + 2k 2k + 2
−2 − 2k −1 − 2k

)

= LHS.

So P (k + 1) is true. That is, P (k) implies P (k + 1).

Hence by the Principle of Induction, P (n) is true for all n ∈ N. �

Now we’ll attempt a different kind of example.

How many subsets does a set with n elements have? Any set with one element has two subsets: the empty
set and itself. A two-elements set has four subsets, and a three-element set has eight.

Example 6. We can use induction to prove that an n-element set has 2n subsets.

For n ≥ 1, let P (n) be the proposition that any set with n elements has 2n subsets.

(B) P (1) we have already considered: it was true.

(R) Assume P (k) is true for some k ≥ 1: any set with k elements has 2k subsets. We will show P (k+1):
any set with k + 1 elements has 2k+1 subsets.

Let S be any set with k + 1 elements. Suppose a ∈ S, and let S ′ be S with a removed, so S ′ has k
elements. So S ′ has 2k subsets by P (k).

Each subset of S ′ is a subset of S as well. How many other subsets of S are there? All the subsets
which do contain a, and there are exactly as many of these as there are subsets that don’t contain a,
namely 2k of each. Thus

total number of subsets of S = 2k + 2k

= 2 × 2k

= 2k+1.

So since S was arbitrary, we have shown every set with k + 1 elements has 2k+1 subsets, so P (k + 1)
is true and we have established that P (k) implies P (k + 1).

Hence by the Principle of Induction, P (n) is true for all n ∈ N. �
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Final remark

Your answers to induction problems will get around half marks if you get all the steps right except the
recursive step (the only possibly hard step). But conversely, if your setting out is poor, even if you get the
recursive step to work, you may not get much more than half the marks!

(5.3) Strong induction and recursion
In mathematics and computing, an important class of propositions are those which are defined recursively.
A recursively defined sequence of propositions is a collection in which the proposition is defined in terms of
the values of previous propositions. Given this setup, it is very natural to try to prove the truth of recursively
defined sequences of propositions by induction.

Example 1. Let x1 = 0 and for each n > 1 let

xn =
1

2
xn−1 + 2.

Then x2 = 1
2
x1 + 2 = 1

2
0 + 2 = 2, x3 = 1

2
x2 + 2 = 1

2
2 + 2 = 3, x4 = 1

2
x3 + 2 = 1

2
3 + 2 = 3 1

2
, and so

on. In fact, we can use induction to prove

P (n) : xn = 4 − 8

(

1

2

)n

.

(B) When n = 1, P (n) states x1 = 4 − 8 1
2

= 0, which is TRUE.

(R) Suppose that P (n) holds for n = k, so that xk = 4 − 8 (1
2
)k. Then,

xk+1 =
1

2
xk + 2 =

1

2

(

4 − 8 (1
2
)k
)

+ 2 = 2 − 8 ( 1
2
)k+1 + 2 = 4 − 8 ( 1

2
)k+1.

Thus, P (k + 1) is true.

Since P (k) implies P (k + 1), the proposition P (n) is true for all n ∈ N by the principle of mathematical
induction. �

Of course, most recursively defined sequences are far more complicated than the one above. Although we
will get nowhere near the level of complexity required for some computer science applications, we can
certainly equip ourselves for handling more complicated propositions than the one above. We will start
with a “second order recursion”.

Example 2. Recall the “Fibonacci” sequence from the first lecture:

R0 = 1, R1 = 2, Rn+1 = Rn + Rn−1.

The first few terms of this sequence are

1, 2, 3, 5, 8, 13, 21, . . . .

There is actually a formula for the nth term of the sequence! Let P (n) be the statement:

Rn =

√
5 − 3

2
√

5

(

1 −
√

5

2

)n

+

√
5 + 3

2
√

5

(

1 +
√

5

2

)n

.

78



MATH102-06A

We would like to use induction to prove this statement. Unfortunately, our basic method of induction is
insufficient: in order to evaluate the formula for Rk+1, we need to use the formulae for both Rk and Rk−1.
Thus, the best we will be able to prove is that

P (k − 1)&P (k) ⇒ P (k + 1),

which is logically weaker than what is needed by the principle of induction. �

Fortunately, there is an equivalent (although apparently stronger) version of induction which saves the day.

Strong induction

Strong principle of induction: Let S be a subset of the set of the natural numbers N = {1, 2, 3, . . .}. Suppose
the following properties hold for S:

• 1 ∈ S; and

• 1, 2, 3, . . . , k ∈ S implies k + 1 ∈ S.

Then S = N. �

When proving a proposition P (n) is true for all n, using strong induction means that in the recursive
step (R), we can assume not just that P (k) is true, but all P (i) for all i ≤ k. Note that the statement
“P (1)&P (2)& · · ·&P (k) ⇒ P (k + 1)” is a logically weaker statement than “P (k) ⇒ P (k + 1)”, so the
sufficiency of this weaker recursive step suggests that the strong principle of induction is actually stronger
than ordinary induction. However, the two principles are equivalent (as can be shown in the exercises).

Example 2 revisited. We will use Strong induction to prove that

Rn =

√
5 − 3

2
√

5

(

1 −
√

5

2

)n

+

√
5 + 3

2
√

5

(

1 +
√

5

2

)n

.

Let S be the subset of N for which the formula is true.

(B) If n = 1 then the RHS of the formula is:

RHS =

√
5 − 3

2
√

5

(

1 −
√

5

2

)1

+

√
5 + 3

2
√

5

(

1 +
√

5

2

)1

=
(
√

5 − 3)(1 −
√

5) + (
√

5 + 3)(1 +
√

5)

(2
√

5) 2

=
(
√

5 − 3 − (
√

5)2 + 3
√

5) + (
√

5 + 3 + (
√

5)2 + 3
√

5)

4
√

5

=
8
√

5

4
√

5
= 2,

so the formula holds for k = 1. A similar calculation proves the formula for k = 2, so we have a
“base case” of the formula holding for all k ≤ 2.
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(R) We will assume now, for a given k, that the formula holds for all i ≤ k. In particular

Rk−1 =

√
5 − 3

2
√

5

(

1 −
√

5

2

)k−1

+

√
5 + 3

2
√

5

(

1 +
√

5

2

)k−1

,

Rk =

√
5 − 3

2
√

5

(

1 −
√

5

2

)k

+

√
5 + 3

2
√

5

(

1 +
√

5

2

)k

=

√
5 − 3

2
√

5

(

1 −
√

5

2

)k−1 (

1 −
√

5

2

)

+

√
5 + 3

2
√

5

(

1 +
√

5

2

)k−1 (

1 +
√

5

2

)

.

We now have:

Rk+1 = Rk−1 + Rk =
√

5−3
2
√

5

(

1−
√

5
2

)k−1 (

1 + 1−
√

5
2

)

+
√

5+3
2
√

5

(

1+
√

5
2

)k−1 (

1 + 1+
√

5
2

)

.

However,
(

1 +
1 −

√
5

2

)

=
3 −

√
5

2

=
6 − 2

√
5

4

=
1 − 2

√
5 + 5

4

=
1 − 2

√
5 + (

√
5)2

4

=

(

1 −
√

5

2

)2

.

A similar calculation shows that
(

1 +
1 +

√
5

2

)

=

(

1 +
√

5

2

)2

.

Putting these formulas back in the expression for Rk+1 gives:

Rk+1 =

√
5 − 3

2
√

5

(

1 −
√

5

2

)k−1 (

1 −
√

5

2

)2

+

√
5 + 3

2
√

5

(

1 +
√

5

2

)k−1 (

1 +
√

5

2

)2

=

√
5 − 3

2
√

5

(

1 −
√

5

2

)k+1

+

√
5 + 3

2
√

5

(

1 +
√

5

2

)k+1

.

This shows that the proposition P (k + 1) holds.

By the Strong Principle of Induction, P (k) holds for every k ≥ 1 and the formula is correct. �

Example 3. Let a sequence an be generated by an+1 = −2 an + 3 an−1 where a0 = 1 and a1 = 13 are
given (this is a second order recurrence). Prove by induction that

an = 4 + (−3)n.

Solution: We will use strong induction.
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(B) For a base case, notice that P (1) and P (2) are true, simply by use of the formula.

(R) Let k ≥ 2 and assume now that P (1), . . . , P (k) all hold. In fact, we need only the formulae in
P (k − 1) and P (k), since these are the terms needed in the recursion. The two formulae are:

ak−1 = 4 + (−3)k−1 and ak = 4 + (−3)k.

Now, from the recurrence,

ak+1 = −2 ak + 3 ak−1 = −2 (4 + (−3)k) + 3 (4 + (−3)k−1)

= −8 − 2 (−3)k + 12 + 3 (−3)k−1

= 4 − 2 (−3)k − (−3) (−3)k−1

= 4 − 2 (−3)k − (−3)k

= 4 − (2 + 1) (−3)k

= 4 + (−3) (−3)k = 4 + (−3)k+1.

This establishes P (k + 1). We have thus established that “P (k − 1)&P (k) ⇒ P (k + 1), so certainly
the weaker condition “P (1)& · · ·&P (k − 1)&P (k) ⇒ P (k + 1) holds.

Thus P (n) is true for all n ≥ 1 by the Strong Principle of Induction. �

Higher order linear recurrences

The last two examples are called second order linear recurrences, since the formula for the nth term depends
on scalar multiples of the previous two terms.

Definition. A kth order linear recurrence is a sequence {an} defined by

an = b1 an−1 + b2 an−2 + · · ·+ bk an−k

where b1, b2, . . . , bk are fixed constants and a1, a2, . . . , ak are given “initial values”. �

To solve for the general term of a kth order linear recurrence, one needs do some algebra. Let

p(x) = xk − b1 xk−1 − b2 xk−2 − · · · − bk−1 x − bk.

If λ1, · · · , λk are k distinct roots of the polynomial equation p(x) = 0, then the general term of the sequence
has the form

an = c1 λn
1 + c2 λn

2 + · · ·+ ck λn
k .

So, to solve an kth order linear recurrence one first has to find these roots, and then solve a system of
equations (using the values of a1, · · · , ak) to find c1, · · · , ck. Once this is done, strong induction can be
used to prove that your formula is correct.

Notes

• In general the above procedure can be fairly involved.

• The constants c1, . . . , ck can be found using linear algebra, and the work done here can be re-used
when doing the “base case” in strong induction (the base case will involve checking your formula for
all a1, . . . , ak).

• If the polynomial doesn’t have distinct roots, then things get more complicated.
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We will do just one example.

Example 4. Let a sequence an be generated by an = −2 an−1 + 3 an−2 where a0 and a1 are given (this is
a second order recurrence). Prove by induction that

an = c1 αn + c2 βn

where c1, c2, α, β solve the equations:

α2 + 2 α − 3 = β2 + 2 β − 3 = 0

a0 = c1 + c2 and a1 = c1 − 3 c2.

Solution: We will use strong induction. First of all, notice α and β are solutions to the equation p(x) =
x2 + 2 x − 3 = 0 (in the notation of the general case we have b1 = −2 and b2 = 3). Thus, we can take
α = 1, β = −3. Let P (n) be the proposition that

an = c1 1n + c2 (−3)n = c1 + c2 (−3)n.

(B) For a base case, notice that with this choice of α, β, P (0) and P (1) will be true if
(

1 1
1 −3

)(

c1

c2

)

=

(

a0

a1

)

.

This equation is the same as the given one for c1, c2, fixing a choice of constants for which P (0) and
P (1) hold.

(R) We will assume now that P (k − 1) and P (k) both hold. Then

ak−1 = c1 + c2 (−3)k−1 and ak = c1 + c2 (−3)k.

Now, from the recurrence,

ak+1 = −2 ak + 3 ak−1 = −2 (c1 + c2 (−3)k) + 3 (c1 + c2 (−3)k−1)

= c1 − 2 c2 (−3)k + 3 c2 (−3)k−1

= c1 − 2 c2 (−3)k − (−3) c2 (−3)k−1

= c1 − 2 c2 (−3)k − c2 (−3)k

= c1 − (2 + 1) c2 (−3)k

= c1 + (−3) c2 (−3)k = c1 + c2 (−3)k+1.

This establishes P (k + 1).

Thus P (n) is true for all n ≥ 0 by the Strong Principle of Induction. �

Prime factorization

You may have encountered the idea of a prime number (you certainly will in a couple of weeks time when
we study elementary number theory). A prime is a positive integer greater than 1 which has no factors
other than itself and 1. The first few primes are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43.
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Primes are important because every (positive) integer can be written as a unique product of prime factors.
For example:

819 = 3 × 3 × 7 × 13.

The only time a number cannot be expressed as a product of several primes is if it actually is a prime.

Example 5. Let us prove that all non-primes can be factored in this way. The proof involves strong
induction.

For n ≥ 2, let P (n) be the proposition that n is either prime or is a product of primes:

n = p1 p2 · · · pr, all pi prime.

(B) P (2) is the base case, but 2 is a prime, so P (2) is true.

(R) Assume P (i) is true for all i ≤ k, for some k ≥ 2. We shall show P (k + 1) is true. There are two
possibilities:

(i) If k + 1 is prime, then P (k + 1) is true.

(ii) If k + 1 is not prime, then by definition there must exist positive integers p, q, both greater than 1, for
which k + 1 = p q. But both p, q are less than k + 1 so both P (p) and P (q) are true by the strong
induction assumption above. So we can write

p = p1 p2 · · ·pr, q = q1 q2 · · · qs,

where p1, p2, . . . , pr, q1, q2, . . . , qs are primes. So

k + 1 = pq = p1p2 · · · prq1q2 · · · qs,

which is a product of primes. So P (k + 1) is true.

So whether or not k +1 is prime, P (k +1) is true. Hence by the Strong Principle of Induction, P (n) is true
for all n ≥ 2. �
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VI ◦ Complex numbers

(6.1) Introduction to complex numbers
The complex numbers are an enlargement of the reals that allow arbitrary polynomial equations to be solved.
(For example, x2 + 1 = 0 has no real solution.) This turns out to be a very useful extension.

History of number systems

The first number system “invented” was the natural numbers 1, 2, 3, . . ., or N. We have discussed the mod-
ern, set theoretic, approach to their structure, but the basic idea has been around since at least Babylonian
times (c. 2000BC). The operations of addition and multiplication can be defined on N, so that equations
like

x1 + x2 = y or x1 x2 = y

made sense, and could be solved for y using arithmetic, given x1, x2.

It made sense to extend this by allowing negative numbers and zero as well, so that subtraction would work
in general. This allowed the solution of equations like:

x1 + y = x2.

Remember, we take subtraction for granted, but it really does mean “undoing addition”, or “solving an
equation”. Since it is a “reverse” operation, it may be more difficult than a “forward” operation, like
addition or multiplication. And sometimes, it can’t be done without an “extension” of the system1. To
make subtraction work properly, we need the integers Z. The other operations on N are easily extended, but
facts such as

(−2) × (−3) = 6

are needed, to ensure the usual number laws still work (distributivity of multiplication mainly).

Now, to “undo” multiplication by division, we need to be able to solve equations like

2 x = 5.

This cannot be done in Z, so fractions or rational numbers Q proved necessary. Linear equations with
integer coefficients can be solved in Q. The rational numbers were well understood in the times of the
ancient Greeks, but · · ·

· · · eventually, it was realized that the real numbers were needed so that the
“gaps” on the number line are filled, and equations like x2 = 2 could be solved. Pythagoras (c. 500 BC)
and his followers knew that the rational numbers didn’t solve everything: the length of the hypotenuse of a
right-angle triangle with its other sides of length 1 was irrational (ie.

√
2 is irrational).

Strange as it seems nowadays, the existence of irrational numbers was amongst the secret knowledge of
the Pythagorean sect! Amazingly, the intricacies of “filling in the gaps” in the real number system weren’t
properly worked out until the late–19th century, when Dedekind’s (1831–1916) work in the foundations of
analysis and calculus provided the modern construction of the real number system R.

1Try solving 3 + x = 2 in N.
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But mathematicians didn’t stop there. Many more number systems have been considered. The cross product
operation on vectors in R3 defines a kind of number system. Square matrices of fixed size is another
example.

The complex numbers are much closer to the real numbers.

Complex numbers and the basic operations

Complex numbers allow all algebraic equations with real coefficients to have solutions. Most of their prop-
erties were well understood by Gauss (1777–1855), and the complex numbers have a beautiful geometric
interpretation.

Definition. A complex number is a “number” of the form

z = a + bi,

where a, b are real and i is assumed to satisfy i2 = −1. Then a is the “real part” of z and b is the “imaginary
part”. The set of all complex numbers is denoted by C. �

We simply define the operations of addition, multiplication and subtraction by using all the usual laws of
algebra and replacing i2 by −1 wherever it arises. So we assume associativity and commutativity of both
addition and multiplication, as well as the distributive law.

Examples

1. (2 + 3i) + (1 − 5i) = 2 + 1 + 3i − 5i = 3 − 2i

2.

(2 + 3i)(1 − 5i) = 2(1 − 5i) + 3i(1 − 5i)

= 2 − 10i + 3i − 15i2

= 2 − 7i − 15(−1)

= 17 − 7i.

3. −(−2 + 6i) = 2 − 6i

In a similar way, we can deduce the general formulas for the sum or product of two complex numbers.
Sum:

(a + bi) + (c + di) = (a + c) + (b + d)i

Product:

(a + bi)(c + di) = a(c + di) + bi(c + di)

= ac + adi + bci + bdi2

= (ac − bd) + (ad + bc)i

Negatives:
−(a + bi) = −a − bi

Actually, these are usually taken to be the definitions of the complex number operations, and the usual laws
can be deduced from these. The numbers themselves can be viewed as ordered pairs of reals, ie. elements
of R2:

a + bi ↔ (a, b)
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with the operations defined in terms of them. Addition is then just ordinary vector addition in R2:

(a + b i) + (c + d i) ↔ (a, b) + (c, d) = (a + c, b + d) ↔ (a + c) + (b + d) i

and something similar for negatives. Multiplying one complex number by another with imaginary part zero
is really just scalar multiplication in this view:

c (a + b i) ↔ c (a, b) = (c a, c b) ↔ c a + c b i.

The only weird one is multiplication by complex numbers with non–zero real part:

(a, b) (c, d) = (a c − b d, a d + b c),

although even this can be represented by matrix multiplication2.

The view of complex numbers as elements of R2 is useful for visualizing complex numbers. Representing
z = a + b i as (a, b) allows us to draw z in the Argand plane. This is just the usual R2, with the x–axis for
real parts, and the y-axis for imaginary parts. While complex addition and scalar multiplication are easy to
visualize as vector operations, multiplication is more tricky—we’ll see more of this later.

(6.2) Further operations on C and the polar form
There are several special operations with the complex numbers.

Conjugation, modulus and inversion

Definition. The conjugate of z = a + b i ∈ C is z̄ = a − b i. In the Argand plane, the conjugate of z is
obtained by reflecting about the x-axis. �

Example 1. If z = 3 + 4 i then z̄ = 3 − 4 i. �

Conjugation has several reasonable properties (all are easy to prove):

1. ¯̄z = z

2. z1 + z2 = z̄1 + z̄2

3. z1z2 = z̄1z̄2

Multiplying z by its conjugate gives a non-negative real number with a geometric interpretation: Write
z = a + bi, so that

zz̄ = (a + b i)(a − b i)

= a2 + b a i − a bi − (b i)2

= a2 + (b a − a b) i − (i2) b2

= a2 + 0 − (−1) b2

= a2 + b2.

This is just the square of the length of the vector (a, b) in the Argand plane!

2The idea is to identify the complex number a + b i with the matrix

(

a −b

b a

)

. Then complex addition and multiplication

are equivalent to ordinary matrix addition and multiplication, but visualization is more tricky.
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Definition. The modulus of z is
|z| =

√
z z̄.

The modulus is the length of z, and it is a positive real number, providing z 6= 0. �

Example 2. If z = 3 + 4 i then |z| =
√

zz̄ =
√

(3 − 4 i)(3 + 4 i) =
√

32 + 42 =
√

25 = 5. �

Properties of the modulus:

1. | − z| = |z|

2. |z1 + z2| ≤ |z1| + |z2| (triangle inequality)

3. |z1z2| = |z1| · |z2|

Proof: The first of these is easy to prove. The second is really a fact about lengths of vectors in R2 and is
obvious from a picture. The third follows from the properties of conjugation:

|z1 z2|2 = (z1 z2)(z1 z2)

= z1 z2 z̄1 z̄2

= (z1 z̄1) (z2 z̄2)

= |z1|2 |z2|2.

Taking square roots of both sides gives us what we want. �

Definition. The inverse of a non-zero complex number z is:

z−1 =
1

z
=

1

z

z̄

z̄
=

z̄

z z̄
=

z̄

|z|2 .

Clearly, z−1 z = 1. �

Example 3. The inverse of 4 − 3 i is

1

|4 − 3 i|2 4 − 3 i =
1

42 + 32
(4 + 3 i)

=
1

16 + 9
(4 + 3 i)

=
1

25
(4 + 3 i)

=
4

25
+

3

25
i.

We can check this by multiplying out! �

Finally, we can define complex division: For z1, z2 ∈ C with z2 6= 0, we now define

z1/z2 = z1 z−1
2 .
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Polar form
A complex number written as a + bi is in rectangular form . There is also the polar form; this is the
representation on the Argand plane .

Any complex number (or indeed position vector in R2) is completely determined by knowing the angle it
makes with the positive x–axis θ (as shown, with anti-clockwise positive and clockwise negative, as usual),
and its length.

b

a

6

-

t

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�3
z

θ Real

Imaginary

Suppose the length of z = a + bi is r. Then by definition,

cos θ = a/r, and sin θ = b/r.

So
z = a + b i = (r cos θ) + (r sin θ) i = r (cos θ + i sin θ).

Definition. Write cis θ = cos θ + i sin θ. We call z = r cis θ the polar form of z. Here r = |z|, and θ is
the argument of z, arg(z). �

Note that |cis θ| = | cos θ + i sin θ| =
√

cos2 θ + sin2 θ =
√

1 = 1.

Example 4. Suppose z =
√

2 cis π
4
. Express z in rectangular form z = a + bi for a, b real. We’ll be using

radians from now on unless stated otherwise.

z =
√

2 cis
π

4

=
√

2 (cos
π

4
+ i sin

π

4
)

=
√

2 (
1√
2

+
1√
2

i)

= 1 + i.

(Recall that π/4 radians is 180
π

· π/4 = 45 degrees.) �

Example 5. Suppose |z| = 2 and arg(z) = 5π
6

. To put z in rectangular form, note that 5π
6

= π − π
6
, so

cos
5 π

6
= cos

(

π +
(

−π

6

))

= − cos
(

−π

6

)

= − cos
π

6
= −

√
3

2
,

and likewise,

sin
(

π + (−π

6
)
)

= − sin
(

−π

6

)

= sin
π

6
=

1

2
.
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So cis 5π
6

= −
√

3
2

+ 1
2
i and hence

z = 2 cis
5π

6
= 2

(

−
√

3

2
+

1

2
i

)

= −
√

3 + i.

�

Converting from polar to rectangular form

1. Let z = r cis θ.

2. Calculate cos θ and sin θ.

3. Let a = r cos θ and b = r sin θ.

Now let’s convert from rectangular to polar.

Example 6. Let z = 1 + i. To find the polar form z = r cis θ, we calculate r = |z| =
√

12 + 12 =√
1 + 1 =

√
2, and write z as

z =
√

2

(

1√
2

+
1√
2

i

)

.

We must have

cis θ = cos θ + i sin θ =
1√
2

+
1√
2

i,

so

cos θ =
1√
2
, and sin θ =

1√
2
.

Now cos φ = 1√
2

if φ = ±π
4
, but sin π

4
= 1√

2
and sin

(

−π
4

)

= − 1√
2

so the only solution to both equations is
θ = π/4 (or 45 degrees). Then

z =
√

2 cis
π

4
.

�

Example 7. Convert z = − 1
2

+
√

3
2

i to polar form. First of all, |z| =
√

1
4

+ 3
4

= 1, so cis θ = − 1
2

+
√

3
2

i.
Then

cos θ = −1

2
, and sin θ =

√
3

2
.

Solving the cosine equation gives θ = ± 2 π
3

, and from the sine equation, θ = π
3

or 2 π
3

. The only common
solution is θ = 2 π

3
, so

z = cis
2π

3
.

�

Converting from rectangular to polar form

1. Let z = a + i b. Let r =
√

a2 + b2.

2. Find the two values of φ = cos−1 a
r
.

3. The correct value of θ will be the φ for which sin φ = b
r

(the other one is − b
r
).

4. The polar form is z = r cis θ.
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Interpretation of complex multiplication

We can use the polar representation to help understand what happens when we multiply together two com-
plex numbers. Let z1 = r1 cis θ1, z2 = r2 cis θ2. Then

z1 z2 = (r1 cis θ1) (r2 cis θ2)

= r1 r2 cis θ1 cis θ2.

With the help of some trig identities, one can prove that

cis θ1 cis θ2 = cis (θ1 + θ2),

so that
z1 z2 = r1 r2 cis (θ1 + θ2).

This shows the fact mentioned earlier, that

|z1 z2| = r1 r2 = |z1| |z2|,

and that
arg(z1 z2) = arg(z1) + arg(z2).

Sometimes, instead of cis θ the notation eiθ is used. The above formula involving cis then has the more
intuitive form:

ei θ1 ei θ2 = ei (θ1+θ2).

One can show how to generalize exponentials to allow complex arguments in a way consistent with this
usage, but we do not pursue this further now.

(6.3) Solving equations in C

Solving linear equations with complex numbers

Using only complex division, we can solve basic equations in C. Suppose that

z1 w = z2.

Then
w = z−1

1 z1 w = z−1
1 z2 =

z2

z1
=

z2 z̄1

z1 z̄1
.

Example 1. Compute (−1 + 7 i)/(2 + i).

−1 + 7 i

2 + i
=

(−1 + 7 i

2 + i

) (

2 − i

2 − i

)

=
(−1 + 7 i) (2 − i)

(2 + i) (2 − i)

=
−1(2 − i) + 7 i (2 − i)

22 + 12

=
−2 + i + 14 i + 7

5

=
5 + 15 i

5
= 1 + 3 i.
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�

We can even use this method to find the inverse of a complex number efficiently:

Example 2. Let z = 2 − i. Then,

1

2 − i
=

(

1

2 − i

) (

2 + i

2 + i

)

=
2 + i

22 + 12

=
2 + i

5

=
2

5
+

1

5
i.

�

We can solve more complicated equations too: if u, v, w are complex we can solve uz + v = w for z:

z = (w − v)/u = (w − v) u−1.

In fact, all the techniques of linear algebra work for matrices with complex coefficients: you might like to
test out a few!

Equations of the form zn = w

From facts established above, we can use induction to prove De Moivre’s formula:

(r cis θ)n = rn cis (nθ).

This will allow us to do a lot of calculations involving powers of complex numbers.

Example 3. Find (−1 +
√

3 i)8, in rectangular form.

Commentary: A key useful point here is that in general

cis θ1 = cis θ2

means both the sines and cosines of the two angles are equal, so θ1 and θ2 differ by a multiple of 2π, as we
saw earlier. �

Now, let z = −1 +
√

3 i. Then |z| =
√

1 + 3 =
√

4 = 2, so

z = 2

(

−1

2
+

√
3

2
i

)

,
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so cos θ = − 1
2
, sin θ =

√
3

2
, and hence θ = π − π/3 = 2π/3 giving z = 2 cis 2 π

3
. Thus,

(−1 +
√

3 i)8 =

(

2 cis
2 π

3

)8

= 28 cis 8

(

2 π

3

)

= 28 cis
16 π

3

= 28 cis

(

4 π +
4 π

3

)

= 28 cis
4 π

3

= 28 cis
(

π +
π

3

)

= 28
(

cos
(

π +
π

3

)

+ i sin
(

π +
π

3

))

= 28
(

− cos
π

3
− i sin

π

3

)

= 28

(

−1

2
−

√
3

2
i

)

= 27 (−1 −
√

3 i)

= −128 − 128
√

3 i.

�

Finding nth powers of z ∈ C

1. Write z in polar form: z = r cis θ;

2. Calculate rn and n θ. The nth power is rncis nθ.

3. Write the results of step 2 in rectangular form.

Equations of the form wn = z

We can use the same idea to find n-th roots of complex numbers. In general, this means that for a given w ∈
C we want to solve the equation zn = w.

Let us suppose that w = |w| cis θ, and write z = r cis φ, where both r and φ are to be found. Then, by De
Moivre’s formula,

|w| cis θ = (r cis φ)n

= rn cis (n φ),

so rn = |w| and hence r = |w| 1

n . But we also know that cis (n φ) = cis θ, so nφ = θ +2 k π for any integer
k.

Commentary: This step is really critical, since we want to find all the roots of z. It turns out that there are
exactly n of them, and their arguments are evenly spaced around the unit circle in C. �
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We can now write φ = θ
n

+ 2 k π
n

, so

z = r cis φ

= |w| 1

n cis

(

θ

n
+

2 k π

n

)

for any integer k. In practice, we need to consider only k = 0, 1, 2, . . . , n − 1, since for k = n we are just
adding 2π to the k = 0 case and we start repeating ourselves3. Except for 0, there are exactly n n-th roots
of a complex number.

Example 4. Solve z3 = 8 i.
Solution: First, write w = 8 i in polar form: 8 i = 8 (0 + i). So cos θ = 0, sin θ = 1, and hence θ = π/2.
Thus,

z3 = 8 i = 8 cis
π

2
= 8 cis

(

2 k π +
π

2

)

,

k = 0, 1, 2, . . .. Hence

z = 8
1

3 cis
2 k π + π/2

3

= 2 cis
4 k π + π

6
, k = 0, 1, 2

= 2 cis
π

6
, 2 cis

5π

6
, 2 cis

9π

6

= 2 (
√

3/2 + i/2), 2 (−
√

3/2 + i/2), 2 (−i)

=
√

3 + i, −
√

3 + i, −2i.

Note: k = 3 would give 2 cis 13π
6

= 2 cis π
6
—nothing new. Also, the cube roots are equally spaced around

the circle |z| = 2, centred on the origin of the Argand plane and having radius 2. �

Finding nth roots of z ∈ C

1. Write z in polar form: z = r cis θ;

2. the nth roots are w = r1/ncis
(

θ+2 k π
n

)

, k = 0, 1, . . . , n − 1;

3. write the results of step 2 in rectangular form.

Example 5. Solve z2 = 2 + 2
√

3 i.
Solution: |2 + 2

√
3 i| =

√
4 + 12 = 4, so

2 + 2
√

3 i = 4

(

2

4
+

2
√

3

4
i

)

= 4

(

1

2
+

√
3

2
i

)

.

If arg(w) = θ, then cis θ = 1
2

+
√

3
2

i, so

cos θ =
1

2
, sin θ =

√
3

2
,

so we’re in the first quadrant and our table tells us that θ = π/3. So

z2 = 2 + 2
√

3 i = 4 cis
π

3
= 4 cis

(

2 k π +
π

3

)

,

3The same consideration lets us exclude all k < 0.
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for k = 0, 1. Then

z = 4
1

2 cis

(

2kπ + π/3

2

)

= 2 cis (k π + π/6), k = 0, 1

= 2 cis
π

6
, 2 cis

7 π

6
.

But

cis
π

6
= cos

π

6
+ sin

π

6
i =

√
3

2
+

1

2
i,

and

cis
7π

6
= cis

(

π +
π

6

)

= −cis
π

6
= −

√
3

2
− 1

2
i.

Thus z =
√

3 + i, −
√

3 − i.

Note: If z2 = w, then also (−z)2 = z2 = w, so the two solutions are z,−z, just as with real numbers
(though now there is no concept of “positive” or “negative”). �

Solving quadratic equations
To solve the general quadratic equation

a z2 + b z + c = 0, a, b, c ∈ C,

the method is as for the real numbers. First complete the square:

a z2 + b z + c = a

(

z2 +
b

a
z +

c

a

)

= a

(

(

z +
b

2 a

)2

− b2

4 a2
+

c

a

)

which is zero exactly when
(

z +
b

2 a

)2

=
b2

4 a2
− c

a
=

b2 − 4 a c

4 a2
.

So taking square roots:

z +
b

2a
= ±

√
b2 − 4 a c

2a
,

so

z = − b

2 a
±

√
b2 − 4 a c

2 a

=
−b ±

√
b2 − 4 a c

2 a
.

Example 6. Solve z2 + 2 z + 3 = 0.

z =
−2 ±

√
4 − 12

2

= −1 ±
√
−8

2

= −1 ± 2
√

2 i

2

= −1 +
√

2 i, −1 −
√

2 i.
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Example 7. Solve z2 + 2z −
√

3 i = 0.

z =
−2 ±

√

4 + 4
√

3 i

2

=
−2 ± 2

√

1 +
√

3 i

2

= −1 ±
√

1 +
√

3 i.

To simplify the writing down, we’ll work on w =
√

1 +
√

3 i. Then

w2 = 1 +
√

3 i

= 2

(

1

2
+

√
3

2
i

)

= 2 cis
π

3

so

w = ±
√

2 cis
π

6

= ±
√

2

(√
3

2
+

i

2

)

= ±
(√

3√
2

+
i√
2

)

= ±
(

√

3

2
+

1√
2

i

)

,

and so

z =

(

−1 +

√

3

2

)

+
1√
2

i, or

(

−1 −
√

3

2

)

− 1√
2

i.

�
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VII ◦ Elementary number theory

(7.1) Natural numbers and divisibility
Number theory is the study of properties of the natural numbers N, especially relating to addition and
multiplication. It turns out that these basic arithmetic operations lead to an amazing amount of structure
on N, including the notion of prime numbers, and their apparently random pattern. This area has many
modern applications, eg. coding theory and cryptography—we’ll see some of these applications later.

Divisibility and remainders

Definition. An integer b divides an integer a if a
b

is an integer, that is, if a = k b for some integer k.
Notation: b|a, and we say b is a divisor of a. The divisor list for a is the set of all positive divisors of a. �

Properties: For all integers a, b, c:

1. a|a

2. if a|b and b|a then a = ±b

3. if a|b and b|c then a|c

Sometimes it is easy to tell if a base ten integer is divisible by a certain natural number. Obviously 2|n if
and only if the final digit of n is even, but more interesting are the following:

• 4|n iff the integer given by the final two digits is divisible by 4

• 3|n iff sum of digits is divisible by 3

• 9|n iff sum of digits is divisible by 9

• 5|n iff last digit is 0 or 5

Example 1. The divisors of 15 are {1, 3, 5, 15}.
The divisors of 72 are {1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72}.
The divisor list for −5 is {1, 5}. �

Prime numbers

Prime numbers are the “least divisible” numbers. There are infinitely many of them, their distribution obeys
a remarkably regular law1, but there is no known formula for generating them. Indeed, the distribution was
derived by Gauss (1777–1855) when he was a teenager, but a full proof did not arrive until 1896! Primes
are amongst the most beguiling objects in mathematics: so simple to define, yet the set of all them is so
complicated that mathematicians have struggled to understand it from ancient times to the present day.

1The “Prime number theorem” asserts that the number of primes less than or equal to n is approximately n

log n
. A brief dis-

cussion, including some history, can be found on the WWW at: http://mathworld.wolfram.com/PrimeNumberTheorem.html
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Definition. If a positive integer p > 1 has only 1 and p as divisors, we call it prime. �

The first few primes are:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .

There are lots of primes, a fact known to Euclid (c. 300 B.C.):

Theorem 7.1 There are infinitely many primes.

Proof: Suppose on the contrary that there are only finitely many, say

p1, p2, . . . , pk.

Let n = 1 + p1 × p2 × · · · × pk. By assumption, this is not prime since it is bigger than any of the pi.
So it must have divisors, and can in fact be written as a product of primes (as we showed in the induction
section). So it is certainly divisible by at least one of the pj . So n = k pj for some integer k. Now let P be
the product of all the primes except pj . Obviously p1 × p2 × · · · × pk = P pj so we can write

1 = n − p1 × p2 × · · · × pk

= k pj − P pj

= (k − P ) pj.

This suggests that 1 is divisible by pj which is obviously false. We conclude that there cannot be finitely
many primes! �

A fundamental fact of algebra is that any non-prime n can be written as a product of primes in only one
way. So not only can we write

n = pα1

1 pα2

2 · · · pαr

r ,

where the pi are primes with p1 < p2 < · · · < pr, and the αi are naturals, but n cannot be written as any
other such product.

The divisors of such an n all have the form

pm1

1 pm2

2 · · ·pmr

r

with 0 ≤ mi ≤ αi for each i. There are thus αi + 1 possible choices of each mi and hence

(α1 + 1)(α2 + 1) · · · (αr + 1)

distinct divisors.

Example 2. Write 504 as a product of primes. How many divisors has it have? Solution: Successively
divide by each prime as many times as you can and continue dividing until you get 1:

2 504
2 252
2 126
3 63
3 21
7 7

1

So 504 = 23 × 32 × 7, and the number of divisors is: (3 + 1)(2 + 1)(1 + 1) = 4 × 3 × 2 = 24. �

97



MATH102-06A

Greatest common divisor

Definition. For a, b ∈ N, the greatest common divisor of a and b is the largest d ∈ N with the property
that d|a and d|b. Notation: gcd(a, b). �

Example 3. 30 and 75 have divisor lists {1, 2, 3, 5, 6, 10, 15, 30} and {1, 3, 5, 15, 25, 75} (respectively). Of
these, the following are common divisors: 1, 3, 5, 15. The largest of these is 15 so gcd(30, 75) = 15.

We can find this gcd by writing each of 30, 75 as unique products of primes. then:

30 = 2 × 3 × 5, 75 = 3 × 52.

(To obtain these, successively divide by the smallest prime you can, as described earlier.) We can read off
the gcd by taking the highest power of each prime present in both numbers and multiplying them together.
(In this case, we get 3 × 5 = 15.) �

For large a, b this method of obtaining the gcd (used in the above example) is very inefficient; we’ll shortly
see a much better way.

Least common multiple

This is an important “dual” concept to the gcd.

Definition. The least common multiple n = lcm(a, b) is the smallest natural number n divisible by both
a and b (ie. such that a|n and b|n). �

Example 4. 30 and 75 have as their first few multiples

30, 60, 90, 120, 150, 180, . . . and 75, 150, 225, 300, . . .

respectively. The smallest of these common to both is obviously 150, so lcm(30, 75) = 150. �

We can find lcms as for gcds, by first rewriting the two numbers as their unique products of primes and
taking the highest (rather than lowest) power of each prime that occurs in either (rather than both), and
multiplying them together. Thus

30 = 2 × 3 × 5, 75 = 3 × 52

so
lcm(30, 75) = 2 × 3 × 52 = 150.

However, as noted above, this method is rather inefficient, finding the prime factorization can be very
difficult and there are some neat tricks that will lead to a much better way.

Theorem 7.2 We have a b = gcd(a, b) lcm(a, b).

Example 5. We will soon see that gcd(10362, 12397) = 11. Therefore,

lcm(10362, 12397) =
10362 × 12397

gcd(10362, 12397)
=

128457714

11
= 11677974,

a calculation that might be infeasible otherwise! �
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(7.2) Remainders and the Euclidean algorithm

Remainders

Most of our study of divisibility is built on the following result.

Theorem 7.3 (Remainder Theorem.) For a, b ∈ Z with b > 0, there are unique integers q, r ≥ 0 such
that

a = bq + r, 0 ≤ r < b.

Notation: We call q the quotient and r the remainder of a on division by b and write: rem(a, b) = r. �

Example 1. If a = 548 and b = 24, then a
b

= 22 + 20
24

(we can find with the help of a calculator). So

548 = 22 × 24 + 20, and 0 ≤ 20 < 24,

so the quotient is 22 and remainder is 20. That is, rem(548, 24) = 20. �

The ideas work just as well if a is negative. The divisor b must be positive, but a often is not.

Example 2. If a = −548 and b = 24, then a
b

= −23 + 4
24

:

−548 = −23 × 24 + 4, and 0 ≤ 4 < 24,

so quotient is −23 and remainder is 4. �

The Euclidean algorithm

We now consider a very efficient method of computing gcd(a, b) which does not involve factorizing each
of a, b into its product of primes representation. First, a useful fact, which allows us to simplify gcd calcu-
lations.

Theorem 7.4 For a > b > 0, gcd(a, b) = gcd(rem(a, b), b).

To use this result to compute gcd(a, b), with a > b, we first replace a by its remainder on division by b—the
gcd will be the same. Let a′ = rem(a, b), we have gcd(a′, b) = gcd(a, b), with b > a′. Notice that the
new pair of numbers (b, a′) is “smaller” than the original pair (a, b). We can repeat this step by computing
b′ = rem(b, a′), and our new pair will be (a′, b′) with gcd(a′, b′) = gcd(a′, b) = gcd(a, b). By continuing in
this way, at each step replacing the larger one by its remainder on division by the smaller one, eventually
we get a remainder of zero2. In the final case, we have gcd(c, 0) to compute, and the answer is c.

Example 3. To compute gcd(10362, 12397) we divide the smaller into the bigger initially and replace the
bigger by its remainder:

12397 = 10362 × 1 + 2035.

Replace 12397 by 2035 (since gcd(12397, 10362) = gcd(2035, 10362)) and repeat. Next, we calculate:

10362 = 2035 × 5 + 187.

So gcd(2035, 10362) = gcd(2035, 187). Again,

2035 = 187 × 10 + 165.

2This follows from the least integer principle since the remainders are going down each time, and are never negative.
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So gcd(2035, 187) = gcd(165, 187). And again:

187 = 165 × 1 + 22.

So gcd(165, 187) = gcd(165, 22). Once more:

165 = 22 × 7 + 11.

So gcd(165, 22) = gcd(11, 22). And again:

22 = 11 × 2 + 0.

Now, gcd(11, 22) = gcd(11, 0) = 11, but stringing together all of our equalities, each gcd in this list is
equal to the others, so the original gcd must be 11. Thus

gcd(10362, 12397) = 11.

In general, the setting out can be streamlined as follows:

12397 = 10362 × 1 + 2035

10362 = 2035 × 5 + 187

2035 = 187 × 10 + 165

187 = 165 × 1 + 22

165 = 22 × 7 + 11

22 = 11 × 2 + 0

and we simply read off the gcd from the line immediately before the zero remainder: 11. �

The method of this example is easily generalized, and can be written down formally:

Euclidean algorithm

1. Let a > b and set r0 = a, r1 = b; let n = 1.

2. Find numbers qn and rn+1 < rn such that

rn−1 = rn qn + rn+1.

3. If rn+1 = 0 then gcd(a, b) = rn; otherwise increment n := n + 1 and return to Step 2,

Note, at the first iteration, one is simply writing a = b q + r, with a = r0, b = r1 and r = r2; the iterative
steps are justified by the remainder theorem, and keep repeating until the algorithm stops. In essence,
Theorem 7.4 says that gcd(rn−1, rn) = gcd(rn, rn+1), so the algorithm is mathematically correct.

Perhaps more extraordinary is that we can rewrite the entire computation in the Euclidean algorithm to
express gcd(a, b) as a certain integer combination of a and b. This will let us solve special kinds of linear
equations: linear Diophantine equations .

Example 4. Let’s rewrite the equations in our computation of gcd(12397, 10362) to have the remainders
on the left:

2035 = 12397 − 10362 × 1

187 = 10362 − 2035 × 5

165 = 2035 − 187 × 10

22 = 187 − 165 × 1

11 = 165 − 22 × 7
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The final equation expresses 11 in terms of 22 and 165. But the fourth equation tells us how to write 22
in terms of 165 and 187, so we can eliminate 22 from the final equation to get 11 in terms of 165 and 187.
Then, we can use the third equation to eliminate 165, resulting in an expression for 11 in terms of 187 and
2035. Continuing with second and then first equations we will end up with integers x, y such that

11 = 12397 x + 10362 y.

Let’s do this in full. We have,

11 = 165 − 22 × 7

= 165 − (187 − 165 × 1)7 from previous line

= 165 × 8 − 187 × 7

= (2035 − 187 × 10) × 8 − 187 × 7

= 2035 × 8 − 187 × 87

= 2035 × 8 − (10362 − 2035 × 5)87

= 2035 × 443 − 10362 × 87

= (12397 − 10362 × 1)443 − 10362 × 87

= 12397 × 443 − 10362 × 530.

So that in this case we’ve shown
11 = 12397 × x + 10362 × y

where x = 443 and y = −530. �

Because the Euclidean algorithm followed by the back-substitution method just discussed can be performed
for any a, b, the general method proves:

Theorem 7.5 (Bezout’s Theorem) For any a, b ∈ N there are integers x and y such that

a x + b y = gcd(a, b).

We will use Bezout’s theorem to solve linear Diophantine equations.

Proof of the remainder theorem

To prove Theorem 7.3 we need to dust–off the least integer principle . Recall that this asserts the plausible
fact that every non-empty set of positive integers has a smallest element.

Now, we can get on with the proof, although some care needs to be taken to deal with all cases correctly!

First of all, suppose that a = 0, then the theorem holds with q = r = 0. If b|a then a = b q for some q, and
the theorem obviously holds.

Next suppose that b does not divide a and a > 0. Then a− bq 6= 0 for all q ∈ Z. We show the least element
of the following set R of natural numbers contains a remainder r with the desired properties:

R = {a − bq | q ≥ 0 and a − b q > 0}.

Clearly a ∈ R (use q = 0) so R is not empty. By the least integer principle, R has a smallest element r.
Clearly, r > 0. Since r ∈ R, there is q0 ≥ 0 such that r = a − b q0, so a = b q0 + r. We need to show that
r < b, and that q and r are unique.
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If r = b then b|a, and we have dealt with this case already3. If r > b, then r = b + r′ for some r′ > 0, and
then a = b q0 + b + r′ = b (q0 + 1) + r′. We’d then have r′ = a − b(q0 + 1) > 0, so r′ ∈ R and r′ < r,
contradicting the minimality of r, so r < b.

The proof of uniqueness is similar: suppose that also a = b q ′ + r′ with 0 ≤ r′ < b. Then r′ ∈ R, so
necessarily

0 ≤ r′ − r < b

(remember that r is the minimal member of R). However, we also know that

r′ − r = (a − b q′) − (a − b q) = b (q − q′).

Putting these facts together, we have
0 ≤ b (q − q′) < b,

so (upon division by b) the only possible value of q − q ′ is 0. Thus q = q′ and r = r′.

Finally, we consider the case a < 0 and b does not divide a. Then, let a′ = −a, so a′ > 0 and by our work
above there are unique q′, r′ such that a′ = b q′ + r′ and 0 < r′ < b. Then,

a = −a′ = −(b q′ + r′) = b (−q′) − r′ = b (−1 − q′) + (b − r′).

We take q = −1 − q′ and r = b − r′. This is the last case, and the proof is complete. �

Proofs of the gcd/lcm theorems

First of all, we need a technical result.

Theorem 7.6 Suppose that a|m and b|m. Then lcm(a, b)|m.

Proof: Since m is a multiple of both a and b, it follows that lcm(a, b) ≤ m. Therefore, there are positive
integers q, r with r < lcm(a, b) such that

m = q lcm(a, b) + r.

If r = 0, there is no more work to do. We will assume that r > 0, and derive a contradiction. Now, since
a|m and a|lcm(a, b) there are integers p1, p2 such that

m = p1 a and lcm(a, b) = p2 a.

Thus,
r = m − q lcm(a, b) = p1 a − q (p2 a) = (p1 − q p2) a,

so a|r. A similar argument shows that b|r. Thus, r is a common multiple of a and b, so r ≥ lcm(a, b). This
is a contradiction. Therefore, the only possibility is that r = 0, so that

m = q lcm(a, b) + 0 = q lcm(a, b);

that is lcm(a, b)|m. �

Now:
3You should check that you understand why b = r implies that b|a.
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Proof of Theorem 7.2: We prove this in two steps. First of all, since gcd(a, b) divides both a and b, there
are p1, p2 such that a = p1gcd(a, b) and b = p2gcd(a, b). Then

p1 b = p1 p2 gcd(a, b) = p2 p1 gcd(a, b) = p2 a,

so p1 p2 gcd(a, b) is a multiple of both a and b. It follows that lcm(a, b) ≤ p1 p2 gcd(a, b) and hence

gcd(a, b) lcm(a, b) ≤ gcd(a, b) p1 p2 gcd(a, b) = (p1 gcd(a, b)) (p2 gcd(a, b)) = a b.

The proof will be complete if we can also derive the opposite inequality. Clearly, a b is a multiple of both a
and b, so by Theorem 7.6 there is an integer d such that

d lcm(a, b) = a b.

In particular, both q1 = lcm(a,b)
a

and q2 = lcm(a,b)
b

are integers, so a = d q2 and b = d q1. This shows that d
divides both a and b, so gcd(a, b) ≥ d. In particular,

gcd(a, b) lcm(a, b) ≥ d lcm(a, b) = a b.

Since we have proved inequalities in both directions, the theorem is true. �

Proof of Theorem 7.4: Let d = gcd(rem(a, b), b), r = rem(a, b), and let a = b q + r. Clearly, gcd(a, b)
divides both a and b, so there are integers p1, p2 such that

a = p1 gcd(a, b) and b = p2 gcd(a, b).

Then,
r = a − b q = p1 gcd(a, b) − p2 gcd(a, b) q = (p1 − p2 q) gcd(a, b)

so also gcd(a, b)|r. Since gcd(a, b) divides both b and r, we have

gcd(a, b) ≤ gcd(r, b) = gcd(rem(a, b), b) = d.

On the other hand, d|r and d|b so d is also a divisor of b q + r = a. Consequently,

d ≤ gcd(a, b).

Taken together, we have proved that d = gcd(a, b). �

(7.3) Linear Diophantine equations
Definition. A Diophantine equation is an equation in which the unknowns and coefficients are all
integers. �

The most famous examples have the form

xn + yn = zn,

where n is a fixed natural number and x, y, z > 0 are integers. It was recently shown that this equation has
no solutions x, y, z if n > 2. (If n = 2, there are many, e.g. x = 3, y = 4, z = 5.) This is Fermat’s Last
Theorem (although Fermat probably didn’t prove it).

We are interested in linear Diophantine equations in two variables:

a x + b y = k,
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where a, b, k are given and we solve for x, y.

Example 1. Does 21 x + 35 y = 12 have any integer solutions? Let us suppose that it does, and observe
that 7 divides both 21 and 35. So if there is a solution to this equation x0, y0, then because 7|(21 x0 +35 y0),
it must also be a factor of 12. It is not, so no solution to this equation can exist. �

We can generalize this reasoning to prove:

Theorem 7.7 a x0 + b y0 = k has integer solutions if and only if gcd(a, b)|k.

Proof: (⇒) Suppose that a x0 + b y0 = k. Since gcd(a, b)|a and gcd(a, b)|b we can write

a = p1 gcd(a, b) and b = p2 gcd(a, b).

Thus,
k = a x0 + b y0 = p1 gcd(a, b) x0 + p2 gcd(a, b) y0 = (p1 x0 + p2 y0) gcd(a, b),

so gcd(a, b)|k.
(⇐) Suppose that k = d gcd(a, b). By Bezout’s Theorem, there are integers x and y such that

a x + b y = gcd(a, b).

Then, using xp = x d and yp = y d we have

a xp + b yp = a x d + b y d = (a x + b y) d = gcd(a, b) d = k,

so the theorem is proved. �

The argument in the proof also shows us how to construct solutions; let us see how it works:

Example 2. Find integers x, y such that

10362 x + 12397 y = 33.

We saw earlier using the Euclidean algorithm that gcd(10362, 12397) = 11, and 11|33, so solutions will
exist. In fact we also found using back-substitution that

10362 × (−530) + 12397 × 443 = 11.

Multiplying −530 and 443 by 3 = 33
11

gives a solution to the given equation:

x = −1590, y = 1329.

�

How do we find all solutions to a linear Diophantine equation? Notice that if x0, y0 is one solution and
x1, y1 is a second solution, then by subtraction,

a x1 + b y1 = k
− a x0 + b y0 = k

a (x1 − x0) + b (y1 − y0) = 0

so
a(x1 − x0) = −b(y1 − y0).

Thus, our problem is equivalent to finding all solutions to

a x + b y = 0

since the full solution can then be recovered as x0 + x, y0 + y. The problem is solved by the following
theorem4:

4The proof shows why we need the concept of lcm.
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Theorem 7.8 Let a, b > 0. All integer solution to a x + b y = 0 have the form

x = t
b

gcd(a, b)
, y = −t

a

gcd(a, b)
, t ∈ Z.

Proof: Assume that a x + b y = 0. If a x = 0, then the result follows by letting t = 0. We will assume that5

a x > 0. Put m = a x. Then m is a multiple of a, and since m = a x = −b y, m is also a multiple of y. By
Theorem 7.6, lcm(a, b)|m. Thus, m = t lcm(a, b) for an integer t. That is,

x =
a x

a
=

m

a
= t

lcm(a, b)

a
= t

a b

gcd(a, b)

1

a
= t

b

gcd(a, b)

(by Theorem 7.2). The expression for y follows immediately, since y = −a x
b

. �

Now, we can write down an algorithm.

Solving linear Diophantine equations

Let the equation be a x + b y = k.

1. Use the Euclidean algorithm to find gcd(a, b).

2. If gcd(a, b)|k then use back-substitution through the working of the Euclidean algorithm to find
integers x0, y0 such that

a x0 + b y0 = gcd(a, b);

otherwise, the equation has no integer solutions, so STOP.

3. The general solution is

x = x0
k

gcd(a, b)
+ t

b

gcd(a, b)
, y = y0

k

gcd(a, b)
− t

a

gcd(a, b)

for any t ∈ Z.

This says that any choice of t ∈ Z gives a solution to the original equation, and also that every possible
solution arises in this way. The situation is very like what happens with the general solution of a system of
linear equations where there are free variables.

Example 3. In solving
10362 x + 12397 y = 33,

we already have the particular solution

xp = −1590, yp = 1329.

We can now write down the general solution.

x = xp + t · b

gcd(a, b)

= −1590 +
12397

11
t

= −1590 + 1127 t

5Otherwise, let m = b y > 0, and a similar proof goes through.
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and

y = yp − t · a

gcd(a, b)

= 1329 − 10362

11
t

= 1329 − 942 t.

So general solution is
x = −1590 + 1127 t, y = 1329 − 942 t, t ∈ Z.

�

Further applications of divisibility

Bezout’s Theorem is a very useful fact. It allows us to show things like the following.

Theorem 7.9 Suppose p is a prime and a, b ∈ N. If p|(a b), then either p|a or p|b.

Proof: Suppose p|(a b). Of course gcd(a, p)|p, so since p is prime, either (i) gcd(a, p) = p or (ii) gcd(a, p) =
1.

(i) If gcd(a, p) = p, then p|a by definition.

(ii) If gcd(a, p) = 1 then by Bezout’s Theorem, a x+ p y = 1 for some integers x, y. So multiplying both
sides by b, a b x + b p y = b. But p|(a b), so a b = p q for some natural q. Hence

b = (a b) x + b p y = (p q) x + b p y = p (q x + b y)

and so p|b. �

This theorem can be used to prove that the prime factorization of an integer is unique.

Let’s finish this subsection with an elegant proof (very like the original ancient Greek proof) that
√

2 is
irrational, that is, not a fraction.

Proof: Suppose instead that
√

2 is rational, with
√

2 = p
q
. Assume that this fraction is in reduced form, so

that any common factors in the top and bottom lines have been cancelled out. (This can always be done.)
Then squaring both sides gives 2 = p2/q2.

Hence p2 = 2 q2, and so 2|p2. But 2 is prime, 2|p or 2|p by the last theorem. So 2|p. Hence p = 2 k for
some natural number k. So 2 q2 = p2 = (2 k)2 = 4 k2, so q2 = 2 k2. Hence 2|q2 and so 2|q for the same
reason that 2|p.

So 2 is a common factor of p, q, contradicting our assumption that their common factors had been cancelled
out. So

√
2 cannot be rational. �

(7.4) Modular arithmetic
In the Euclidean algorithm, we used the fact that replacing one number by its remainder when divided
by the other gave the same answer, but also simplified the gcd calculation considerably. It also turns out
that computing remainders of complicated expressions can be made much easier by replacing the numbers
involved by their remainders.
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Congruence modulo n

Definition. Let n be a natural number. We say integers a, b are congruent modulo n if they differ by a
multiple of n. Notation:

a ≡ b (mod n).

�

This is what happened with angles in the complex numbers section: two angles are essentially equal if they
are “congruent modulo 2 π”, or in degrees, congruent modulo 360.

The remainder theorem shows us that any integer is congruent to its remainder modulo n: since a = n q+r,
a−r = nq, so by definition, a ≡ r (mod n). The next fact tells us we can decide if two things are congruent
by comparing their remainders.

Theorem 7.10 For integers a, b and a natural number n, a ≡ b (mod n) if and only if

rem(a, n) = rem(b, n).

Proof: Dividing both a, b by n using the remainder theorem gives

a = q1 n + r1, b = q2 n + r2, 0 ≤ r1, r2 < n.

Assume r1 ≥ r2 (w.l.o.g.!). Then

a − b = (q1n + r1) − (q2n + r2)

= (q1n − q2n) + (r1 − r2)

= (q1 − q2)n + (r1 − r2).

Here, 0 ≤ r1 − r2 < n, so r1 − r2 must be the remainder when a − b is divided by n. So n|(a − b) if and
only if r1 − r2 = 0; that is, r1 = r2. �

Shorthand notation: We’ll sometimes write “a mod n” for rem(a, n) or “the remainder when a is divided
by n”. �

Example 1. Are 423 and 321 congruent modulo 17? Calculate 423 mod 17 and 321 mod 17 to confirm the
theorem. Then

423 − 321 = 102 = 17 × 6,

so by definition, 423 ≡ 321 (mod 17). Note that

423 = 17 × 24 + 15, 321 = 17 × 18 + 15,

so rem(423, 17) = rem(321, 17), confirming the theorem in this case. �

The notion of equivalence modulo n has some convenient properties:

Theorem 7.11 For any n ∈ N and a, b, c ∈ Z,

1. a ≡ a (mod n);

2. a ≡ b (mod n) implies b ≡ a (mod n);

3. a ≡ b (mod n) and b ≡ c (mod n) imply a ≡ c (mod n).
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The proofs of these are pretty straightforward, in view of Theorem 7.10: two integers are congruent if and
only if their remainders are the same. Together these conditions show that congruence modulo n is an
equivalence relation: every integer is in a unique congruence class, defined by what its remainder is. Each
such congruence class consists of all things congruent to that remainder (and hence to each other!)

The possible remainders modulo n are
0, 1, 2, . . . , n − 1

so there are n distinct such classes.

Modular arithmetic

It turns out to be quite a reasonable proposition to do arithmetic within equivalence classes. First of all, it
is interesting to note that the basic operations of addition and multiplication are well-behaved.

Theorem 7.12 For any n ∈ N and a1, a2, b1, b2 ∈ Z, if a1 ≡ a2 (mod n) and b1 ≡ b2 (mod n), then

1. a1 + b1 ≡ a2 + b2 (mod n);

2. a1 b1 ≡ a2 b2 (mod n);

3. −a1 ≡ −a2 (mod n);

4. ak
1 ≡ ak

2 (mod n) for any natural k.

Proof: We show the first of these, leaving the others as exercises. If a1 ≡ a2 (mod n) and b1 ≡ b2 (mod n),
then a1 − a2 = k1 n and b1 − b2 = k2 n for some integers k1, k2. So

(a1 + b1) − (a2 + b2) = (a1 − a2) + (b1 − b2)

= k1n + k2n

= (k1 + k2)n,

so by definition a1 + b1 ≡ a2 + b2 (mod n). �

These rules tell us that congruence modulo n behaves like equality: if we have some expression built out of
integers and the operations on them, we can replace things by other things they’re congruent to (e.g. their
remainders) without changing what the overall expression is congruent to.

We can now show one of the rules for checking divisibility of 3 we gave earlier: a (positive) integer n is
divisible by 3 if and only if the sum of its digits is 3.

Example 2. Is 23985 divisible by 3? Work out 2 + 3 + 9 + 8 + 5 = 27. This is divisible by 3 (since
2 + 7 = 9 is!). So 23985 is also. �

Proof of criterion for divisibility by 3: Write n = n1 n2 · · ·nk, where the ni are the digits in the decimal
representation. We note that 10 ≡ 1 (mod 3). Then

n = 10k−1 × n1 + 10k−2 × n2 + · · · + 10k−k × nk

≡ 1k−1 × n1 + 1k−2 × n2 + · · ·
+1k−k × nk (mod 3)

= n1 + n2 + · · ·nk,
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so n ≡ (n1+n2+· · ·+nk) (mod 3). Therefore, 3|n if and only if 3|(n1+n2+· · ·nk) (since both remainders
will equal zero together). �

We can prove lots of other familiar facts quite easily also. For example: the product of two odd numbers
is odd.

Proof: Let m, n be odd, so m ≡ 1 (mod 2) and n ≡ 1 (mod 2). Then

m n ≡ 1 × 1 (mod 2) = 1,

and so m n is odd. �

Some of our earlier induction proofs about divisibility can now be superseded.

Example 3. We show 6n − 1 is divisible by 5 :

6n − 1 ≡ 1n − 1 (mod 5) = 0,

so 5|(6n − 1). �

Example 4. What is 13511 mod 7? To solve this problem, note that 13−2×7 = −1, so 13 ≡ (−1) (mod 7).
Thus,

13511 ≡ (−1)511 = (−1)2×255+1 = ((−1)2)255(−1) = (1)255 × (−1) = (−1) ≡ 6 (mod 7).

�

(7.5) The algebra of modular arithmetic
We know that we can replace the two numbers in a sum or product by their remainders and the result will
be congruent to what we started with, and hence congruent to the remainder of what we started with. This
suggests there is an underlying “algebra of modular arithmetic”.

Example 1. Consider the following simple congruence:

2 × 4 = 8 ≡ 3 (mod 5).

It reflects the following fact: any integer with remainder of 2 (mod 5), when multiplied by any integer with
remainder 4 (mod 5) gives an integer with remainder 3 (mod 5). Now, −8 has remainder 2 on division by 5
and 14 has remainder 4. So their product should have remainder 3. Sure enough:

(−8) × 14 = −112 = (−23) × 5 + 3 ≡ 3 (mod 5).

�

This works the same way for all three operations +,×,−, and for any n.

Definition. For an integer a, let a denote the equivalence class of a modulo n. That is,

a = {x ∈ Z|a ≡ x (mod n)}.

We write
Zn = {0̄, 1̄, . . . , n − 1}

and call Zn the integers modulo n. (We use the bar notation to emphasize that elements of Zn are not
ordinary numbers, because the operations are not the ordinary ones!) �
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Example 2. The equivalence class of 17 modulo 5 is

17 = {x ∈ Z|x ≡ 17 (mod 5)} = {. . . ,−8,−3, 2, 7, 12, 17, 22, 27, 32, . . .}.

Its representative in Z5 = {0̄, 1̄, 2̄, 3̄, 4̄} is 2̄. �

The arithmetic operations on Zn are defined as follows:

ā + b̄ = rem(a + b, n)

āb̄ = rem(ab, n)

−ā = rem(−a, n).

They simply duplicate the ordinary properties of congruences:

• a + b ≡ c (mod n) if and only if ā + b̄ = c̄ in Zn, and

• ab ≡ c (mod n) if and only if āb̄ = c̄ in Zn.

Example 3. The congruence
2 × 4 ≡ 3 (mod 5)

corresponds to the fact that in Z5, 2̄ × 4̄ = 3̄. �

It turns out that all the usual identities of algebra work for Zn: addition and multiplication are both commu-
tative and associative, and the distributive law works. Also, 0̄ acts like the number zero and we call it the
zero element, and each element has an additive inverse. Also, 1̄ is an identity element for multiplication.

Invertibility in Zn

We would like to know when it is possible to solve equations like

a x ≡ b (mod n).

If n is small enough, we can solve by replacing a, b by their remainders modulo n, computing all answers
in Zn for x, and then adding t n (t an integer) to the result to get the general solution. However, it turns out
that there is a much neater way. Motivated by the situation for matrices, the ideal would be to have

x ≡ a−1 b (mod n)

for an appropriately defined a−1.

Definition. We will say that a ∈ Zn is invertible in Zn if there is an element y ∈ Zn such that

a y = y a ≡ 1 (mod n).

Such a y (if it exists) is unique, and is the inverse of a, so we write y = a−1. �

Amazingly, the existence of inverses is probed via the gcd.

Definition. Numbers a, b ∈ N are called relatively prime if gcd(a, b) = 1. �

For example, 51 and 5 are relatively prime, and any natural number is relatively prime to 1.

Theorem 7.13 A non-zero a ∈ Zn is invertible in Zn if and only if a and n are relatively prime.
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Proof: First of all, notice that a y ≡ 1 (mod n) if and only if there is an integer x ∈ Z such that

n x + a y = 1.

By Theorem 7.7, this equation has solutions if and only if

gcd(a, n)|1.

That is, gcd(a, n) must equal 1. �

Note: Since all of 1, 2, 3, . . . , n − 1 are relatively prime to n if and only if n is a prime, it follows that all
non-zero elements of Zn have an inverse if and only if n is a prime. That is, Zp has exactly (p−1) invertible
elements. �

The proof of the theorem also indicates how to find the inverse of a in Zn.

Finding inverses in Zn

1. Use the Euclidean algorithm to calculate gcd(a, n).

2. If gcd(a, n) = 1 use back-substitution to find integers x, y such that

n x + a y = 1;

otherwise a is not invertible modulo n.

3. Then a−1 = rem(y, n).

Example 4. Find 17
−1

in Z43. First of all, 43 is prime so all inverses exist. We want to solve 17 x ≡ 1 (mod
43), that is, find integers x, y such that

43 x + 17 y = 1.

Applying the Euclidean algorithm gives x = 2 and y = −5 as a solution pair. So y = −5 solves the
Diophantine equation. Now we have to find a remainder modulo 43 congruent to this: rem(−5, 43). But
−5 = 43 × (−1) + 38, so rem(−5, 43) = 38. So 17

−1
= 38. �

Exercise. Solve 17 x ≡ 5 (mod 43).

(7.6) Computing remainders and solving congruences
It turns out that certain kinds of congruences are really important for cryptography. Solving them rests on
some really nice mathematics.

Fermat’s little theorem and Euler’s extension

Theorem 7.14 (Fermat’s little theorem) Let p be prime. Then ap−1 ≡ 1 (mod p) if p does not divide a.

Proof: Since p is not a divisor of a, the number b = rem(a, p) 6= 0 and hence ā = b̄ is invertible in Zp. Next,
consider the elements

{b, 2 b, . . . , (p − 1) b}
of Zp. Since p is prime, each of 1, 2, . . . , (p− 1) is relatively prime to p, so each is invertible. In particular,
each r b 6= 0 (since otherwise, we would have b = r−10 = 0—contradicting b 6= 0). Moreover, each
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r b is invertible (with inverse (b)−1(r)−1), and these (p − 1) elements are all distinct (if r b = s b then

r = r bb
−1

= s bb
−1

= s). Taken together, these facts show that the collection

{b, 2 b, . . . , (p − 1) b}
are exactly the (p − 1) invertible elements of Zp. Thus, by multiplying all of these elements together:

1 × 2 × · · · × (p − 1) = b × 2 b × · · · × (p − 1) b = 1 × 2 × · · · × (p − 1) × b
p−1

.

Now, simply multiply both sides by (p − 1)!
−1

to obtain,

1 = b
p−1

= ap−1;

that is, 1 ≡ ap−1 (mod p). �

Example 1. We will compute the remainder when 2323 is divided by the prime 13. That is:

2323mod13.

To do this, we use Fermat’s theorem to write: 212 ≡ 1 (mod 13). Then, we divide 323 by 12

323 = 12 × 26 + 11.

so that

2323 = 212×26+11

= (212)26 × 211

≡ 126 × 211 (mod 13)

= 211.

It remains to compute the remainder when this is divided by 13. There are many ways to do this. For
example, 25 = 32 ≡ 6 (mod 13), so

211 = (25)2 × 2 ≡ 62 × 2 (mod 13)

= 72

≡ 7 (mod 13).

In summary,
2323 ≡ 211 ≡ 7 (mod 13),

so the remainder is 7. �

In fact, Fermat’s theorem is a special case of Euler’s theorem (where the restriction on p being prime is
relaxed). Both are useful for computing remainders. We will finish off by establishing enough notation to
state Euler’s theorem, and defer it’s application to the next section.

Definition. The Euler phi-function φ(n) is defined for each n ∈ N as the number of natural numbers
between 1 and n relatively prime to n. �

Note: From our work above, φ(n) is the number of invertible elements in Zn. �

Example 2. To evaluate φ(12), note that 1, 5, 7, 11 are the only integers between 1 and 12 relatively prime
to n. So φ(12) = 4. �

Example 3. If p is prime then φ(p) = p − 1. �

Theorem 7.15 (Euler’s theorem) Fix an integer n. If gcd(a, n) = 1 then

aφ(n) ≡ 1 (mod n).
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Computing remainders

We can now apply some of our techniques to solving congruence problems.

Example 4. Let’s work out the remainder of 7 × 26 + 14 on division by 5.

7 × 26 + 14 ≡ 2 × 1 + 4 (mod 5)

= 6

≡ 1 (mod 5).

Here we have replaced 7, 26 and 14 by things they’re congruent to modulo 5 (their remainders in this case),
and by the earlier Theorem 7.12, we can be sure the result is congruent to what we started with. So we
know 7 × 26 + 14 ≡ 1 (mod 5). So 7 × 26 + 14 and 1 have the same remainder on division by 5. This is
obviously 1! So the remainder of 7×26+14 on division by 5 is 1 and we don’t have to calculate 7×26+14
to compute its remainder modulo 5. �

Example 5. Let’s compute the remainder of 514 on division by 8. Again, we’ll replace 51 by its remainder,
and repeatedly replace things by their remainders until we get an answer. (Note that we haven’t yet replaced
the index in a power by its remainder!)

514 ≡ 34 (mod 8)

= 92

≡ 12 (mod 8)

= 1

so the remainder is 1. Again, we can do all of this without having to compute 514 itself. �

Example 6. If the time is now 1PM, what will the time be in 625 hours?
Answer: 1PM is 13 hours after midnight. Adding 24 hours does not change the time, so we want the
remainder (mod 24) of 13 + 625.

13 + 625 = 13 + 252

≡ 13 + 12 (mod 24)

= 14,

so the time will be 14 hours after midnight, or 2PM. �

Fermat’s little theorem and Euler’s extension also provide useful tricks for evaluating remainders.

Example 7. Find the remainder when 7123 is divided by 10. To solve this problem we will use Euler’s
theorem. Note that 1, 3, 7, 9 are relatively prime to 10, so φ(10) = 4. Next, since gcd(7, 10) = 1, Euler’s
theorem gives 74 = 7φ(10) ≡ 1 (mod 10). So

7123 = 74×30+3

= (74)30 × 73

≡ 73 (mod 10)

≡ (−3)3 (mod 10)

= 9 × (−3)

≡ (−1) × (−3) (mod 10)

= 3,

so the remainder is 3. �
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Solving congruences
If n is not too large, we can fairly easily solve congruences modulo n (“equations” in which congruence
modulo n is used instead of equality) by trying all possibilities. One special form is the following:

p(x) ≡ q(x) (mod n).

Here p(x) and q(x) are polynomials.

Any such congruence can be rewritten (by subtracting q(x) from both sides) as p(x) − q(x) ≡ 0 (mod n),
so we just consider things of the form p(x) ≡ 0 (mod n).

The trick is that we only have to try out the remainders 0, 1, 2, . . . n − 1, since other cases can be reduced
to these, using Theorem 7.12. For instance, 58 ≡ 2 (mod 7), so p(58) ≡ p(2) (mod 7).

Example 8. Find all integer solutions to 5x2 + 5x + 2 ≡ 2x2 + 3x (mod 7).
Solution: Let p(x) = (5x2 + 5x + 2) − (2x2 + 3x) = 3x2 + 2x + 2. Then

a 0 1 2 3 4 5 6
p(a) 2 7 18 35 58 87 122

rem(p(a), 7) 2 0 4 0 2 3 3

So p(1) ≡ p(3) ≡ 0 (mod 7). So x = 1, 3 are solutions.

In fact, any other integer k congruent to 1 or 3 is also a solution, since then p(k) ≡ p(1) (mod 7) or
p(k) ≡ p(3) (mod 7). Moreover, any other k will be congruent to one of the other possible remainders and
so cannot be a solution. So the general solution is

x = 1 + 7t or 3 + 7t, t ∈ Z.

�

Via our work on Diophantine equations, we can even solve congruences of the general form

a x ≡ b (mod n)

This congruence has an integer solution x exactly when n|(a x − b), i.e. when a x − b = k n for some
integer k. So we look for x, k such that a x − k n = b, or, letting y = −k,

a x + n y = b.

Since this is simply a linear Diophantine equation in two unknowns, we can solve it to find x—-provided that
gcd(a, n)|b (recall Theorem 7.7). (We generally discover whether there is a solution during the calculation.)

Example 9. Solve the congruence equation

30 x ≡ 6 (mod 108).

We must find integers x, y for which
30 x + 108 y = 6.

Note that 6 divides both 30 and 108, so we can simplify this equation to

5 x + 18 y = 1.
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(Obvious common factors can always be divided out of Diophantine equations in this way without changing
the solution set.) Then

18 = 5 × 3 + 3

5 = 3 × 1 + 2

3 = 2 × 1 + 1

2 = 1 × 2 + 0.

(Obviously 1 is the gcd.) Back-substituting:

1 = 3 − 2 × 1

= 3 − 1(5 − 3 × 1)

= 3 × 2 − 5 × 1

= 2(18 − 5 × 3) − 5 × 1

= 5 × (−7) + 18 × 2.

So we have 5 x + 18 y = 1, with x = −7, y = 2. By Theorem 7.8, the general solution is

x = −7 + t × 18

1
= 18 t − 7, t ∈ Z.

�

Proof of Euler’s theorem

The proof is essentially the same as the proof of Fermat’s theorem; we just need to be a little more careful
about which elements are invertible in Zn.

Proof: There are φ(n) remainders modulo n having gcd of 1 with n, say n1, n2, . . . , nφ(n). The invertible
elements of Zn are thus:

{n̄1, n̄2, . . . , n̄φ(n)}.
But 1 = gcd(a, n) = gcd(rem(a, n), n), so letting r = rem(a, n), r̄ is invertible in Zn. It follows that

n̄1r̄, n̄2r̄, . . . , n̄φ(n)r̄

are all distinct (since if n̄ir̄ = n̄j r̄, then multiplying by r̄−1 gives n̄i = n̄j). Also, each n̄ir̄ is invertible in
Zn, since it has inverse n̄−1

i r̄−1. So, since there are φ(n) of them, it must also be that

{n̄1r̄, n̄2r̄, . . . , n̄φ(n)r̄}

are the invertible elements. Thus, the n̄i and n̄j r̄’s can be matched up and

n̄1n̄2 · · · n̄φ(n) = (n̄1r̄)(n̄2r̄) · · · (n̄φ(n)r̄)

= (n̄1n̄2 · · · n̄φ(n))r̄
φ(n).

Multiplying through by n̄−1
1 n̄−1

2 · · · n̄−1
φ(n) gives r̄φ(n) = 1̄ in Zn. Hence rφ(n) ≡ 1 (mod n), so aφ(n) ≡ 1

(mod n) since a ≡ r (mod n). �
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VIII ◦ Cryptography

Cryptosystems guarantee (?) the secure transmission of information, on the internet for example. The ideas
of modern cryptography go back to the Second World War (e.g. the German Enigma code). Here we look
at three cryptosystems. The first two are too simple to be practical but give an idea of the methods used,
while the third is in use today.

(8.1) The shift cipher
Let’s keep things simple and consider letter-by-letter encryption methods. We’ll ignore punctuation and
spacing, so there are just 26 characters to encrypt.

The letters in words are first converted to elements of Z26:

A ↔ 0, B ↔ 1, C ↔ 2, . . . , Z ↔ 25.

Then, an encryption function is applied to the letters of a message (which are by now in numerical form).
Choose a fixed non-zero b ∈ Z26. Then for all x ∈ Z26, a typical encryption function is

E(x) = x + b.

(Once encrypted, numbers can be translated back into letters, giving an encrypted message, although the
message can just as well be left as a stream of elements of Z26.)

The receiver must then decrypt the message. For this, a decryption function D(y) must be known. The
key feature of a decryption function is that it “undoes” the effect of E(x), so that D(E(x)) = x for all
x ∈ Z26.

For the shift cipher, this is achieved by adding −b to the received message (viewed as elements of Z26).
Thus we define D(y) = y − b. Then

D(E(x)) = E(x) − b = x + b − b = x,

so it does work!

Example 1. Let us use the simple shift cipher with b = 8; the effect of encryption is to shift forward by
eight letters, so

E(x) = x + 8.

Let’s encrypt the word “password”.

• first convert to elements of Z26:
15, 0, 18, 18, 22, 14, 17, 3;

• then apply the encryption formula to each of these: add 8 (mod 26):

23, 8, 0, 0, 4, 22, 25, 11.
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(For the record, this translates into “xiaaewzl”.)

The receiver will know b, and will therefore just add −b to each element of Z26 in the incoming stream. In
Z26, 8 + 18 = 0, so −b = 18. So the decryption function in our example is

D(y) = y + 18.

From here, the receiver will do the following:

• apply the decryption function to each incoming “letter” (so D(23) → 23 + 18 = 15, (since 41 ≡ 15
(mod 26)):

15, 0, 18, 18, 22, 14, 17, 3

• then transform back to letters of the alphabet:

“password”.

�

The simple shift cipher is a very weak form of encryption: there are only 25 possible encryption functions
(we exclude b = 0). Such ciphers are easily cracked by trial and error (try each possible −b ∈ Z26 until an
intelligible message is produced). Also, if just one original and encrypted letter pair is known, then b can
be determined easily by subtraction and the cipher broken.

Example 2. Suppose that a simple shift cipher is used, and “d” is encrypted to “a”. Decrypt the message
“irzh”. To solve this problem, we must first find the decrypt function: D(y) = y − b. We know that “d” is
identified with the number 3, and “a” is identified with 0, so we have

3 = D(0) = 0 − b

since D must convert the code for “a” back into the code for “d”. Thus, b = −3 and D(y) = y + 3. To
decrypt, note that the message has code:

8 17 25 7

which becomes
11 20 2 10

upon adding 3 to each entry (mod 26). This is the message “luck”. �

(8.2) The affine cipher
This is one level more complex than the shift cipher: we multiply by a constant and then add the shift factor
(all modulo 26 as before).

The encryption function maps Z26 → Z26:

E(x) = a x + b, a, b ∈ Z26.

(The shift cipher has a = 1.)

Example 1. Let E(x) = 3x + 11 and encrypt: “hello”.
Solution: First h ↔ 7. Then

E(7) = 3 × 7 + 11 = 6.
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Continuing, we obtain 6, 23, 18, 18, 1. (For the record, this translates as the encrypted message “gxssb”.) �

We need to be careful with the affine cipher since there may be no decryption function if E(x) is not 1 : 1:

Example 2. Suppose we use E(x) ≡ 4 x + 7 (mod 26). Then “a” is identified with 0, so encodes to 7, but
also “n” identifies with 13 so encodes to

E(13) ≡ 4 × 13 + 7 (mod 26) = 7.

�

In general, if two letters encrypt to the same thing, there is uncertainty in the decryption. This situation
should be avoided, and luckily the mathematics of inverses modulo n tells us how:

Theorem 8.1 The encryption function E(x) = a x + b has a decryption function D(y) if and only if a−1

exists in Z26. If a−1 does exist, the decryption function is D(y) = a−1(y − b).

Proof: If a has no inverse, then a x is never 1 for any x ∈ Z26, so the set {a x | x ∈ Z26} has fewer than
26 elements. But there are 26 possibilities for x, so there must be unequal x, x′ ∈ Z26 for which a x = a x′.
Then also E(x) = a x+b = a x′ +b = E(x′), so no decryption function will be able to distinguish between
E(x) and E(x′).

On the other hand, if a has an inverse, then letting D(y) = a−1(y − b), we see that

D(E(x)) = a−1(E(x) − b)

= a−1(ax + b − b)

= a−1ax

= x,

as required. �

This theorem generalizes to cases where we have other than 26 characters, say m: just work in Zm rather
than Z26.

Definition. We call (a, b) the key of the encryption scheme based on E(x) = ax + b. �

Example 3. It is know that affine cipher has key (5, 18). Find the message which encrypts to be “spvoe”.
To solve this problem we need to find the decrypt key. The encryption function is given as

E(x) = 5 x + 18 (mod 26)

so the decrypt function will be
D(y) = (5̄)−1(y − 18) (mod 26).

So, we need to solve z = (5̄)−1; this can be done by solving the Diophantine equation

5 z + 26 n = 1.

Fortunately, the first step of the Euclidean algorithm produces

26 = 5 × 5 + 1

so 1 = 5 (−5) + 26 and (5̄)−1 ≡ −5 ≡ 21(mod 26). The most convenient representation of the D is:

D(y) = (−5) (y − 18) ≡ (−5) (y + 8) ≡ (−40) − 5 y ≡ 12 − 5 y (mod 26).
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Now, “spvoe” has code 18 15 21 14 4 and

D(18) = 12 − 5 (18) = −78 ≡ 0 (mod 26),

so “s” decodes to “a”. Similarly,

D(15) = 15, D(21) = 11 , D(14) = 20 and D(4) = 18.

The decoded message is thus 0 15 11 20 18 or “aplus”. �

It is not hard to show that any choice of (a, b) with a invertible will give a different E(x).

By Theorem 7.13, a is invertible in Zm if and only if gcd(a, m) = 1. In the Z26 case, the following are
relatively prime to 26:

1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25.

So φ(26) = 12 and any of a = 1, 3, 5, . . . can be used in E(x). Any value of b will do. But we exclude
a = 1, b = 0. So altogether there are 12 × 26 − 1 = 311 different possible E(x) functions. (For the shift
cipher there were 25.)

Also, knowing only what one letter encrypts to is not enough to break the cryptosystem, although two may
be enough. So overall, the affine cipher is a lot more secure than the shift cipher, but is still very insecure!

(8.3) The RSA cryptosystem
We finish with a discussion of a highly successful cryptosystem which is still much-used, the RSA cryp-
tosystem. It is “public key”, which means that the encryption function is known and usable by anyone but
not the decryption method. One simple secret piece of information is needed to allow decryption. This is
unlike the two previous cases, where D(x) can be found if E(x) is known.

First, note that Euler’s theorem can be re-phrased as follows:

if a ∈ Zn is invertible, then aφ(n) = 1.

This also tells us that a−1 = aφ(n)−1 for all invertible a in Zn.

The RSA cryptosystem is best described stage by stage.

Setup: Choose two large (i.e. ≈ 50 digits long!) prime numbers p and q.

Let n = p q. It can be shown that φ(n) = (p − 1)(q − 1).

Pick a natural number a < φ(n) and find b < φ(n) for which ab ≡ 1 (mod φ(n)). Since

a b − k φ(n) = 1

for some k, b can be found (if it exists) via the Euclidean algorithm. If a suitable b doesn’t exist, just
pick a different a until you have one that works.

Now, remember the integers n, a, b. Make n, a public (for encryption) and keep b secret (it is needed
for decryption—see below).

Encryption: represent the message as a sequence of elements of Zn, e.g. let each sequence of ten characters be
represented by a different x ∈ Zn. Encrypt using the function

E(x) = xa

over Zn (will need to use repeated doubling or similar for quick computation).
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Decryption: apply the decryption function D(x) = xb to a received message.

We need to show D(x) = xb really is a decryption function.

Remember that a b ≡ 1 (mod φ(n)), so a b = kφ(n) + 1 for some integer k > 0. So

D(E(x)) = E(x)b

= (xa)b

= xab

= xkφ(n)+1

= (xφ(n))k · x
= 1

k × x by Euler

= x.

Actually, there is a small hole in this line of reasoning: Euler’s theorem may not apply to x—this will be the
case if x is not invertible in Zn. Still, remember that of the n = p q elements of Zn, φ(n) = (p − 1)(q − 1)
are invertible. As a proportion, this is

(p − 1)(q − 1)

pq
= (1 − 1/p)(1 − 1/q) ≈ 1,

since p, q are huge. So an arbitrary x ∈ Zn will be invertible almost certainly. Occasionally this won’t be
the case and D(E(x)) could be wrong, but almost never.

To break the cryptosystem, one needs to discover b from knowledge of a, n alone. This can be done if φ(n)
can be found, since a b ≡ 1 (mod φ(n)). But to find φ(n) = (p − 1)(q − 1), one must discover p and q,
where pq = n.

Thus the problem reduces to being able to factorize n into its large prime factors, which is EXTREMELY
hard. So we can have a high degree of confidence that the cryptosystem cannot be broken using existing
technology.

So strangely, modular arithmetic, prime numbers, and number theory, once thought to be completely use-
less, turn out to provide the security system for the whole information economy. Financial transactions
worth trillions of dollars now depend on this “useless” stuff.
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IX ◦ Extra topics

(9.1) Application: Least squares model fitting
In science or statistics, experimentation or data collection can produce numerical data which it is desirable
to model somehow. Generally speaking, one has a bunch of data points v1,v2, . . . ,vn and would like to be
able to find an approximate relationship between the components. For example, if each vi = (xi, yi) we
might like to “fit” a function of the form

y = m x + c

in such a way that the line is a good fit for the data points; that is, we’d like to choose m, c such that
yi ≈ m xi + c for all of the data pairs (xi, yi). We can model this as a projection problem in Rn.

Let x = (x1, x2, . . . , xn), 1 = (1, 1, . . . , 1) ∈ Rn. Then each component of the vector equation mx + c 1

has the form m xi +c. If we put y = (y1, y2, . . . , yn) ∈ Rn, then we can express our approximation problem
as

y ≈ mx + c 1.

We will use the method of projection to choose m and c so that the vector y− (mx+ c 1) of residual errors
has the shortest length possible. We need to solve the projection equations:

0 = [y − (mx + c 1)] · x

0 = [y − (mx + c 1)] · 1.

Example. Find the best fit line y = m x + c to the pairs of (x, y) data: (1, 1), (2, 2.8), (3, 4.2), (4, 5.2). The
relevant vectors are:

1 =









1
1
1
1









,x =









1
2
3
4









,y =









1
2.8
4.2
5.2









.

The equations to solve are:

0 = [(1, 2.8, 4.2, 5.2)− m (1, 2, 3, 4)− c (1, 1, 1, 1)] · (1, 2, 3, 4)

0 = [(1, 2.8, 4.2, 5.2)− m (1, 2, 3, 4)− c (1, 1, 1, 1)] · (1, 1, 1, 1),

which are simply
m 30 + c 10 = 40
m 10 + c 4 = 13.2.

The solution is m = 1.4, c = −0.2, so the best fit line is

y = 1.4 x − 0.2.

The data, and the best fit line, are depicted in the diagram below. �
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(9.2) Matrices and linear transformations
Linear transformations are fundamental to the general theory of linear algebra, and are also extremely
important in applications ranging from computer graphics to signal processing. They will be studied again
in many mathematics and applications papers (especially MATH253).

Linear transformations T are functions which move vectors around with the special property that lines are
mapped to lines. This means that if a line consists of points x, then all of the image points T (x) form a line.
Basic examples of linear transformations are rotations and reflections, and we will see in this brief section
that their actions can be easily computed via matrix algebra.

We will concentrate entirely on R2. Elements of R2 will be written as column vectors

(

x
y

)

.

Matrix representation of linear transformations
Definition. With any 2 × 2 matrix A, there is an associated linear transformation TA of R2, which takes
a vector x in R2 to the vector Ax, also in R2. We call this the linear transformation associated with A.�

This definition makes perfect sense, since the laws of matrix algebra guarantee that lines are mapped to
lines, and TA(x) is the product of a 2 × 2 matrix with a 2 × 1 vector, giving a 2 × 1 vector.

We can visualize the effect of linear transformations by examining their effect on the unit square, having
corners at

0 =

(

0
0

)

,p =

(

1
0

)

,q =

(

1
1

)

, r =

(

0
1

)

.

We will always have 0 7→ T (0) = 0, but also,

p 7→ p′ = T (p),q 7→ q′ = T (q), r 7→ r′ = T (r).

The points represented by 0,p′,q′, r′ can be drawn in another copy of the xy–plane. Since linear transfor-
mations map lines to lines, the line through 0 and p must be mapped to a line containing 0 and p′. Similarly,
the line through p and q gets mapped to a line through p′ and q′, and so on. Thus, the points 0,p′,q′, r′

define the corners of geometrical object which is the image of the basic square under T .

Rotations
These rotate the points of R2 about the origin. The effect of a 45◦ rotation is depicted in Figure 9.1. To
figure out the matrix for this transformation, we use a general formula. The matrix has the form

(

cos θ − sin θ
sin θ cos θ

)

,
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Figure 9.1: The effect on the unit square of a 45◦ anti-clockwise rotation.
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Figure 9.2: The effect on the unit square of a 90◦ clockwise rotation.

with θ the angle of rotation (measured anti-clockwise) about 0.

Example 1. So, a 45◦ anti-clockwise rotation has matrix:

(

cos 45 − sin 45
sin 45 cos 45

)

=

(

1√
2

− 1√
2

1√
2

1√
2

)

.

�

Example 2. If θ = 90 degrees, the matrix is
(

cos 90 − sin 90
sin 90 cos 90

)

=

(

0 −1
1 0

)

.

So if T is this rotation,

T

(

x
y

)

=

(

0 −1
1 0

) (

x
y

)

=

(

−y
x

)

and
(

1
0

)

7→
(

0
1

)

,

(

1
1

)

7→
(

−1
1

)

,

(

0
1

)

7→
(

−1
0

)

.

As always, 0 7→ 0. This action is depicted in Figure 9.2. �
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Reflections

These reflect the points of R2 about a particular line through 0, and change the orientation. The general
matrix has the form

(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)

,

with θ the angle made with the positive x-axis, measured so that anti-clockwise is the positive direction.

Example 3. For example, if the line is y = −x, then θ = 135 degrees, or 3π
4

radians. So 2θ = 270 degrees,
or −90 degrees. The matrix for the reflection is then

(

cos (−90◦) sin (−90◦)
sin (−90◦) − cos (−90◦)

)

=

(

0 −1
−1 0

)

,

since cos (−90◦) = cos 90◦ = 0 and sin (−90◦) = − sin (90◦) = −1. So if T is the reflection, T

(

x
y

)

=
(

−y
−x

)

and
(

1
0

)

7→
(

0
−1

)

,

(

1
1

)

7→
(

−1
−1

)

,

(

0
1

)

7→
(

−1
0

)

.

As usual, 0 7→ 0. �

Applying transformations in succession

Suppose that we first rotate by 45◦, and then reflect in the y–axis. What kind of map do we obtain? It turns
out that we work out the combined effect of several maps by matrix multiplication! Suppose that A and B
are 2 × 2 matrices representing the maps TA and TB . Then,

TB (TA(x)) = B (TA(x)) = B (Ax) = (B A)x,

so the combined transformation is represented by the matrix B A.

Example 4. Let us determine the overall effect of a reflection across the y-axis followed by a rotation by
45 degrees anti-clockwise. Since the y–axis is an anti-clockwise angle of 90◦ from the x–axis, the reflection
matrix is

A =

(

cos 180◦ sin 180◦

sin 180◦ − cos 180◦

)

=

(

−1 0
0 1

)

.

The rotation matrix is

B =

(

cos 45◦ sin 45◦

sin 45◦ cos 45◦

)

=

(

1√
2

− 1√
2

1√
2

1√
2

)

.

So matrix for reflection followed by rotation is

B A =

(

1√
2

− 1√
2

1√
2

1√
2

)

(

−1 0
0 1

)

=

(

− 1√
2

− 1√
2

− 1√
2

1√
2

)

.

In general, a reflection followed by a rotation is a reflection through another axis, so we need to work out
the angle θ. We must have:

(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)

=

(

− 1√
2

− 1√
2

− 1√
2

1√
2

)

.
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So cos 2θ = − 1√
2

and sin 2θ = − 1√
2
. From the value of cos, we find that 2 θ = ±135◦, and from the

value of sin we have that 2 θ = −45 or − 135◦. Therefore, 2 θ = −135◦, and: combined transformation is
a reflection in the line θ = 67.5 ◦ clockwise from the x–axis . (Note that a negative anti-clockwise angle is a
positive clockwise angle.) �

Example 5. Let A and B be as in the previous example, but this time perform first the rotation TB and
then the reflection TA. The matrix is

A B =

(

−1 0
0 1

)

(

1√
2

− 1√
2

1√
2

1√
2

)

=

(

− 1√
2

1√
2

1√
2

1√
2

)

.

Setting this equal to a reflection matrix means
(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)

=

(

− 1√
2

1√
2

1√
2

1√
2

)

.

So cos 2θ = − 1√
2

and sin 2θ = 1√
2
. The only solution is 2 θ = 135◦, or θ = 67.5◦. �

(9.3) Eigenvectors
Many linear transformations allow some vectors to have a very special property: that their direction is
unchanged by the application of the map.

Example 1. Consider the matrix A for a reflection TA through the line y = x. This line makes an angle
θ = 45◦ with the x–axis, so the matrix of rotation is

(

cos 2 θ sin 2 θ
sin 2 θ − cos 2 θ

)

=

(

0 1
1 0

)

.

Geometrically, it is clear that any points lying on the line y = x are not changed by the reflection. In terms

of vectors, this line has representation {tv|t ∈ R} where v =

(

1
1

)

. Indeed,

TA(v) = Av =

(

0 1
1 0

) (

1
1

)

=

(

1
1

)

= v.

So the vector v is preserved by matrix multiplication with A. �

Example 2. Consider the composition of the shear with matrix A =

(

1 −1
0 1

)

and the dilation with

matrix B =

(

3 0
0 2

)

. This map has matrix

B A =

(

3 0
0 2

) (

1 −1
0 1

)

=

(

3 −1
0 2

)

.

Notice that both transformations preserve the x–axis, so we would expect that the composed maps also
preserve the x–axis. Now, the x–axis is generated by the vector v = (1

0), and we see that

B Av =

(

3 −1
0 2

) (

1
0

)

=

(

3
0

)

= 3v.

Again, we see that the direction of v is preserved by the transformation. �

We might ask, given a linear transformation (or matrix), which directions (or vectors) are preserved by the
action of the transformation. This question turns out to be a very important one in mathematics, and has a
special name:
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The eigenvalue problem

Given an n × n matrix A, can you find a number λ and an n × 1 vector v such that

Av = λv?

The eigenvalue problem is to find all such λ,v pairs.

Definition. A number λ is called an eigenvalue for A if there is a non-zero n × 1 vector v such that

Av = λv.

The vector v is called an eigenvector for λ. �

Note: Letting v = 0, both sides of the equation are 0, regardless of the value of λ. Hence, we require
v 6= 0 in order to give the definition some content. �

Example 3. Let A =

(

2 1
−4 7

)

. Then

A

(

1
1

)

=

(

3
3

)

= 3

(

1
1

)

,

so λ = 3 is an eigenvalue of A with (1, 1) a corresponding eigenvector. �

It is an amazing fact that every n×n matrix has at least one, and at most n, eigenvalues. The theory behind
these facts is really nice, and we will introduce some of the ideas here; a more detailed study is deferred to
MATH253. It is natural to ask: how can we find all of the eigenvectors of a given square matrix?

Suppose A is n × n and v is a non-zero n × 1 column vector. If Av = λv for some number λ, then

0 = Av − λv

= Av − λ In v

= (A − λ In)v.

Thus, we are looking for non-zero solutions v to the matrix equation

(A − λ In)v = 0.

By comparing this requirement with Theorem 2.3 ((1)≡(3)) and Theorem 3.2, we have:

Theorem 9.1 Let A be an n × n matrix. Then λ is an eigenvalue of A if and only if (A − λ In) is singular
if and only if det (A − λ In) = 0.

So, we know precisely when λ is an eigenvalue (the matrix (A−λ In) fails to be invertible), and we have an
algebraic characterization too (|A− λ In| = 0). So if we evaluate det (A − λ In) with λ left as an unknown
and set the result equal to zero, we should get an equation in λ which we can hopefully solve to find the
eigenvalues.
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Example 4. Find all eigenvalues of the 2 × 2 matrix A =

(

5 −6
2 −2

)

. We will compute det (A − λ I2),

set it equal to zero, and solve for λ (if we can):

det (A − λ I2) = det

((

5 −6
2 −2

)

− λ

(

1 0
0 1

))

= det

((

5 −6
2 −2

)

−
(

λ 0
0 λ

))

= det

(

5 − λ −6
2 −2 − λ

)

= (5 − λ) (−2 − λ) − (−6)2

= −10 − 5 λ + 2 λ + λ2 + 12

= λ2 − 3 λ + 2

= (λ − 1) (λ − 2).

Now, this determinant is zero exactly when λ = 1 or 2, so these are the eigenvalues of A. �

Note: To find the corresponding eigenvectors in this example, one must solve the two matrix equations
Au = 1u and Av = 2v for the unknown vectors u,v. This can be done by solving a system of linear
equations. �

General method for the eigenvalue problem

By the theorem and example above, finding the eigenvalues of A relies on a particular polynomial.

Definition. Let A be an n × n matrix. Then the characteristic polynomial p for A is

p(λ) = |A − λ In|.

�

Corollary. The eigenvalues of A are the roots of the characteristic polynomial p. That is, the numbers λ
such that p(λ) = 0.

Solving the eigenvalue problem

1. Use determinants to calculate p(λ) = |A − λ In|.

2. Find the values λ such that p(λ) = 0.

3. For each λ, use linear algebra to solve the equation (A − λ In)v = 0.

Example 5. Find the eigenvectors in the previous example. Solution: We’ll work first with λ = 1. Then

A − λ In =

(

5 −6
2 −2

)

−
(

1 0
0 1

)

=

(

4 −6
2 −3

)

.

We need to solve
(

4 −6
2 −3

)

u =

(

0
0

)

.

The augmented matrix is
(

4 −6 0
2 −3 0

)
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and the row operations R2 → R2 − 1
2
R1, R1 → 1

4
R1 give the RREF

(

1 −3
2

0
0 0 0

)

.

The general solution to this system is u2 = t, u1 = 3
2
t. Taking t = 2 (any non-zero t would do), we obtain

an eigenvector

u =

(

3
2

)

.

It is easy to check that

Au =

(

5 −6
2 −2

) (

3
2

)

=

(

3
2

)

= 1u,

so u is indeed an eigenvector for the eigenvalue 1. A similar calculation shows that v = (2
1) is an eigenvector

for λ = 2. �

Final remarks

Most important eigenvalue problems are for matrices much bigger than 2× 2. The determinant of a general
n × n matrix A is used to compute the eigenvalues. But, p(λ) turns out to be a polynomial of degree n,
and finding zeros of degree n polynomials with n > 2 is much harder than the degree 2 case! In fact, the
theory and practice of solving the eigenvalue problem is both broad and deep. Its applications penetrate
many branches of pure and applied mathematics.
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X ◦ Exercises

1. Consider the line with slope 2 through the point (x0, y0) = (2, 3). Write down formulas for this
line: (a) using the point–slope formula; (b) as an algebraic equation; (c) in vector notation. Is the
point (−1,−2) on the line?

2. Consider the line described by the algebraic equation

2 x + 3 y = 7.

Write the line in the form y = m x + c for suitable choices of m and c. Find a point (x0, y0) on the
line.

3. Consider the line written in vector notation as:
(

x
y

)

=

(

2
−1

)

+ t

(

3
−1

)

, t ∈ R

(a) Find an algebraic equation which describes the line; (b) write down a pair of parametric equations
for x and y (as a function of t); (c) find a value of t which shows that the point (−4

1) is on the line.

4. Determine whether each of the following systems is consistent. If a system is consistent, find the
general solution and write it in vector notation.

(a) x − 3 y = 4
−4 x + 2 y = 6

(b) 2 x − y = −3
5 x + 7 y = 4

(c) 2 x − 8 y = 5
−3 x + 12 y = 8

.

5. The following systems of linear equations are in echelon form . Use back substitution to solve them,
and write down the general solution in vector notation.

(a) x + y + 2 z = 8
y + 4 z = 3

z = −1

(b) x + y + 2 z = 8
y + 4 z = 3

(c) x1 + 4 x2 + x4 = 8
x3 − x4 = 2

(d) x + y + 2 z = 8.
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6. A porcelain company manufactures ceramic cups and saucers. For each cup or saucer, a worker
measures a fixed amount of material, and puts it in a forming machine where it is glazed and dried.
On average, this takes three minutes per cup and two minutes per saucer. The materials for a cup cost
15cents, and a saucer 10cents. In exactly eight hours of work, a worker uses $24 worth of materials.
Can you determine how many cups and how many saucers are made?

7. Let c 6= 0. Find conditions on a and b such that the following system has infinitely many solutions:

a x + b y = c
a x − b y = c

.

8. For which values of the constant k does the following system of equations have solutions?

x + y + 2 z = 1 [1]
x + 2 y + 3 z = k [2]

2 x + 3 y + 5 z = 3 [3]

[Hint: compare [1]+[2] with [3].]

9. Use any method to find all solutions of the following systems of nonlinear equations:

(a) x2 + y2 = 5
x + y = 2

(c) x2 + 2x + y2 − 4y = 0
x2 − 4x + y2 + 2y = 0

(b) x + y = 2
x × y = 1

(d) x2 − y2 = 3
x + y = 3

[Hint: a graphical method may help.]

10. Find all solutions to the following pair of equations and interpret your result geometrically:

5 x + 2 y = 3
2 x + 5 y = 3

.

11. Consider the setup of problem 6 (above), but now the materials costs are 25cents, 20cents and $44
respectively. Find how many cups and how many saucers are made per worker.

12. Obtain the general solution to the following system, and write it in vector notation:

2 x1 + 3 x2 − x3 + 4 x4 = 7
x3 + 2 x4 = 3

.

13. Find conditions on a, b, c such that the system in problem 7 (above) has a unique solution.
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14. Use an augmented matrix and Gaussian elimination to find all solutions (if there are any), to the given
systems.

(a) x1 − 2 x2 + 3 x3 = 11
4 x1 + x2 − x3 = 4
2 x1 − x2 + 3 x3 = 10

(b) 3 x1 + 6 x2 − 6 x3 = 9
2 x1 − 5 x2 + 4 x3 = 6
−x1 + 16 x2 − 14 x3 = −3

(c) x1 + x2 − x3 = 7
2 x1 − x2 + 3 x3 = 4
4 x1 + x2 + x3 = 19

15. Solve the following systems

(a) x + y + z = 0
4 x + 3 y + 6 z = 0
3 x − y + 11 z = 0

(b) 3 y − z + w = −1
x + y + z + 2 w = 8

2 x + z = 10

(c) 5 b − 8 c + 3 d = 2
a + 2 b − 3 c + d = 4

2 a − b + 2 c − d = 6

(d) x1 +x3 −2 x5 = 1
x1 + x2 + x4 = 3

2 x1 +3 x2 +x3 −3 x4 −x5 = 3

16. Which of the follolwing augmented matrices is in RREF? For each system, either write down the
general solution, or explain why it is inconsistent:

(a)





1 0 0 2
0 1 0 1
0 0 1 3



 (c)





1 0 1 2
0 1 0 1
0 0 0 0



 (e)





1 0 1 3
0 2 0 4
0 0 1 5





(b)





1 0 1 2
0 1 1 2
0 0 0 2



 (d)





1 2 0 1
0 0 0 1
0 0 0 0





17. Use elementary row operations to put the following matrix in RREF:




1 0 2 1 4
1 −3 −1 −1 −4
1 −1 1 2 3
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18. An investor remarks to her stockbroker that all her stock holdings are in three companies, Delta
Airlines, Hilton Hotels and McDonald’s, and that two days ago the value of her stocks went down
$350 but yesterday the value increased by $600. The broker recalls that two days ago, the price
of Delta Airlines stock dropped by $1 a share, Hilton Hotels dropped by $1.50, but the price of
McDonald’s stock rose by $0.50. The broker also remembers that yesterday the price of Delta Airlines
rose $1.50, there was a further drop of $0.50 in Hilton Hotels stock, and McDonald’s stock rose $1.
Show that the broker does not have enough information to calculate the number of shares the investor
owns of each company’s stock, but that when an investor says she owns 200 shares of McDonald’s
stock, the broker can calculate the number of shares of Delta Airlines and Hilton Hotels.

19. Let a =





−3
1
4



, b =





5
−4

7



, c =





2
0

−2



, A =





1 2
−1 3

5 2



, B =





−2 1
−7 0

4 5



, C =





−1 4
−7 1

6 3



. Calculate:

(a) a + b (b) 3b (c) −2 c (d) 2 a − 5b (e) 3b − 7 c + 2 a

(f) 3 A (g) A + B (h) 2 C − 5 A (i) 0 B (j) 2 A − 3 B + 4 C

20. Find the transpose of the given matrices:

(a)

(

−1 4
6 5

)

(b)

(

3 0
1 2

)

(c)

(

2 −1 0
1 5 6

)

.

21. Suppose a, b, c are constants (i.e. some fixed real numbers). Show that the following system is
consistent only if c = 2 a − 3 b:

2 x1 − x2 + 3 x3 = a
3 x1 + x2 − 5 x3 = b

−5 x1 − 5 x2 + 21 x3 = c

22. Prove the following facts about n × n matrices:

(a) if A and B are symmetric then A + B is symmetric;

(b) 1
2
(A + AT ) is symmetric [hint: you’ll need (a A)T = a (AT )];

(c) if A is upper triangular then AT is lower triangular.

23. The following are augmented matrices which describe systems of equations with variables x, y and
z. In each case interpret the matrix (as equations in x, y, z) and solve the system (where possible).

a)





1 0 2 0
0 1 5 0
0 0 1 1



 b)





1 0 2 0
0 1 5 0
0 0 0 1



 c)





1 0 2 0
0 1 5 0
0 0 0 0





24. For the following problems: (i) Write them in augmented matrix form; (ii) use Gaussian elimination
to put them in an EF; (iii) proceed by Gauss-Jordan elimination to get RREF; (iv) write down the
general solution (or show that the system is inconsistent).

(a) 2 x + y − 2 z = 10
3 x + 2 y + 2 z = 1
5 x + 4 y + 3 z = 4

(b) x + 2 y − 3 z = 6
2 x − y + 4 z = 2
4 x + 3 y − 2 z = 14

(c) x + 2 y − 3 z = −1
3 x − y + 2 z = 7
5 x + 3 y − 4 z = 2

132



Exercises MATH102-06A

25. Let A, B and C be the matrices from problem 19 (above). Find a matrix D such that A+2 B−3 C+D
is the 3 × 2 zero matrix.

26. Write out the system of equations represented by the augmented matrix





1 1 −1 7
4 −1 5 4
6 1 3 20



.

27. Write the equations from problem 26 as a matrix equation Ax = b for suitable matrices A,x,b.

28. Calculate:





3 −2 1
4 0 6
5 1 9









1 0 0
0 1 0
0 0 1



.

29. Calculate A2, A3, A4, A5 when A =









0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0









.

30. A company pays salaries to its management team, and gives shares as an annual bonus. Last year, the
CEO received $150000 and 5000 shares, each of three divisional directors received $110000 and 3000
shares, and the chief operating officer received $90000 and 2000 shares. (a) Express the payments to
the senior managers (in both cash and shares) as a 2× 3 matrix; then (b) put the number of managers
of each rank in a column vector of suitable size; and (c) use matrix multiplication to calculate the
cash and share cost of the company’s executive remuneration scheme.

31. Consider the matrix equation A2 + 3A + 2I = 0. We could factorise this as the matrix equation
(A+ I)(A+2I) = 0. Hence apparently the only solutions are A = −I and A = −2I . This argument
is false. Verify that (−1 0

0 −2) is another solution. Can you find the defect in the reasoning above which
led us to this false conclusion?

32. Below are listed a number of matrices.

A =









1 1 1
2 2 2
3 3 3
4 4 4









B =

(

2 1 3 1
1 1 0 2

)

C =

(

−1 1
−1 2

)

D =





1 0 −1
0 −1 1

−1 1 0



 E = (1, 1, 1, 1) F =





1 2 3
2 1 3
3 2 1





Determine the following products if they exist.

(a) AB (b) BA (c) EA (d) A2 (e) DF (f) FD (g) BED (h) BAD

33. Let C be as in question 32. Find all matrices X such that XC = CX .

34. For a real number x, x2 = x implies x(x − 1) = 0, so x = 0 or 1.

(a) Find a square matrix A which is not the zero matrix and isn’t I2, but for which A2 = A. (Hence
the above rule doesn’t work for matrices.)

(b) Show however that if A2 = A, then A must be either I2 or non–invertible (singular).
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35. Find a non-zero solution to

(

2 −1
−4 2

)

x = 0. Is A invertible?

36. Find the inverses of the matrices S =

(

3 −1
2 −1

)

and T =





1 2 0
3 1 1
2 1 4



.

37. Verify that: X =









1 0 1 1
2 0 2 1
0 1 1 1
1 1 0 1









−1

= 1
2









−1 1 −1 1
−3 1 1 1
−1 1 1 −1

4 −2 0 0









.

38. Let A, B, C, D, E, F be the matrices from problem 32. Calculate the following expressions (if they
exist):

(a) (B + E)A (b) A(D + F ) (c) C2 − I (d) (C − I)(C + I)

39. Show that the matrix ( 3 4
−2 −3) is its own inverse.

40. Compute the inverse of the matrix A =





1 −2 −1
−2 0 1

1 1 0



 . Hence solve Ax =





2
1
7



.

41. Evaluate the following determinants in two ways:

(a) by expanding along rows and/or columns throughout, and

(b) by using row operations.

(i) 2 1 4
4 3 6
0 1 3

(ii) 1 2 3 4
0 3 0 1
1 0 1 −1
2 4 6 5

.

42. Let I3 be the 3 × 3 identity matrix. Perform each of the following row operations on I3 to obtain
matrices A, B, C, D respectively. In each case, calculate the determinant of the new matrix by a
suitable cofactor expansion, and comment on the result.

(a) R3 → R3 − 2 R1

(b) R2 → R2 + R3

(c) R1 → −2 R1

(d) R2 ↔ R3

43. Let A =

(

−1 2
−4 7

)

, B =

(

−3 2
1 1

)

, C =

(

4 −2
3 0

)

. Compute

det (A) , det (B) , det (C) , det
(

A2
)

, det (ABC) , det
(

A26
)

.

44. Show using determinants that if AB = 0 (where A, B are n × n matrices), then either A or B must
be singular (ie. has no inverse).

45. A square matrix A is called nilpotent if Ak = 0 for some k > 0. Show that if A is nilpotent then
det (A) = 0.
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46. A square matrix A is called idempotent if A2 = A. What are the possible values of det (A) if A is
idempotent?

47. Find the area of the triangle in 2-space with corners at (1,−1), (2, 3) and (4, 1).

48. Compute the volume of the parallelepiped in 3-space with one corner at (1,−1, 1) and the three
adjacent corners at (2, 1, 2), (−1, 0,−1) and (0, 1, 1). [Hint: translate the parallelepiped back to the
origin, and find vectors u,v,w which describe the adajacent corners when one of the corners is 0.]

49. Compute the cross product of the vectors (1, 4,−2) and (−1, 3, 1).

50. Consider the triangle in the plane whose corners have coordinates: (x1, y1), (x2, y2), (x3, y3). Show
that the area of the triangle is

±1

2

1 x1 y1

1 x2 y2

1 x3 y3

.

51. Find the determinants of each matrix below

A =

(

1 2
3 4

)

; B =





1 2 1
1 0 1
0 2 3



 ; C =









0 1 0 1
1 1 0 1
1 1 2 3
2 1 0 0









.

52. Recall that det (A B) = det (A) det (B) for all n×n matrices A and B. Use this information to show
that

(a) det (A−1) = 1

det(A)
for all invertible matrices A;

(b) det (A−1 B A) = det (B) for all B and invertible A.

53. Prove the associative law of vector addition for vectors u,v,w in R2:

u + (v + w) = (u + v) + w.

54. Prove the following law for the dot product of vectors in R2:

u · (v + w) = u · v + u · w.

55. Given that u = (1, 2, 1), v = (−1, 1, 3), and w = (2,−1, 3) calculate the following wherever
possible. In cases where the expression cannot be calculated, explain why.

(a) 2u − 3v
(b) u · w
(c) u × v

(d) (u + v) × w

(e) (u × v) × w

(f) u × (v × w)
(g) u · (v × w)
(h) (u · v) × w

(i) v · (w × u)
(j) (u × v) · u
(k) (u + v) · (u − v)
(l) (u + v) × (u − v)

56. Let u = 2i − 3j + 4k, v = i − j + 2k. Find (using the cross product):

(a) a vector perpendicular to both u and v;

(b) the area of the parallelogram defined by u and v; and
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(c) the sine of the angle between u and v.

57. Consider the triangle in 3-space which has as vertices the points P, Q, R with respective position
vectors of (1, 0, 1), (−1, 1, 0) and (2, 1, 2). Find vectors u and v describing the sides of the triangle
which meet at P . Use a vector product to work out the angle at P , and thus calculate the area of the
triangle. Use a similar method to calculate the angles at Q and R. Do you get the same answer for
the area? What do the angles add up to?

58. P = (8,−1, 2) and Q = (5,−4, 8). Find the vector parametric equation of the line through P and Q.

59. Let u = (1, 2, 1). Find two (non-zero) vectors v and w such that u, v and w are mutually perpendic-
ular to each other.

60. Let u and v be non-zero, non-parallel vectors and let:

p = −2u + 5v r = 2u− v

q = 2u + 3v S = 8u.

(a) Determine whether or not the point with position vector p is on the line through the points with
position vectors q and r;

(b) Determine whether or not S − p is parallel to r.

61. Find a Cartesian equation for the plane containing the points (1, 0, 0), (0, 1, 0) and (0, 0, 1).

62. Suppose that u and v are non-parallel vectors of the same length. Show that u − v is perpendicular
to u + v. (Hint: an algebraic proof is preferred!)

63. Find the angle at the corner Q of the triangle with corners at points P, Q, R having position vectors
(1, 2, 1), (0,−2, 1) and (−1, 3,−2) respectively.

64. Find a (non-zero) vector perpendicular to both (1,−2, 1) and (1, 3, 2).

65. Do the lines (1, 1, 3) + t (2, 1, 1) and (5, 6, 4) + s (1, 2, 1) lie in a single plane?

66. Use the cross product to help you find the parametric vector equation of the line through the point
(1, 1, 1) and perpendicular to the plane given by

r = r0 + t1(2, 0, 1) + t2(−1,−2, 3).

67. Let A = (1, 1, 1), B = (2,−4,−2) and C = (10, 2, 7). Find a vector parametric equation for the
plane through A, B and C.

68. In general a plane can be defined by a single Cartesian equation in x, y, z. Usually, two planes
intersect in a line, so one way to specify a line is to give two simultaneous equations. Find a parametric
vector equation for the line given by:

x + y + z = 1

2x + y − z = 1

69. Find the point of intersection of the line with parametric vector equation r = (1,−1, 1)+t(−1, 2,−3)
with the plane having Cartesian equation 3x − 4y + z = 2.
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70. Find a vector parallel to the line described by x + 2y + 3z = 6 and x + 3y + 4z = 7.

71. Show that the line with equation (x, y, z) = (4,−1, 3) + t (−3, 3, 0) intersects the line with equation
(x, y, z) = (5, 4, 1)+ s (2, 1,−1). Find the coordinates of the point of intersection, and determine the
angle between the two lines.

72. Find the point of intersection of the three planes x+y+z = 1, x+2y+3z = 2 and 3x+2y+2z = 3.

73. If u = (1, 3,−10) and v = (2, 3, 6) find the components u‖ and u⊥ of u which are parallel and
perpendicular to v.

74. Find the minimum distance between the point w = (3, 4, 5) and any point on the line (x, y, z) =
(1, 3,−2) + t(0,−2, 1), t ∈ R.

75. Find the distance between the point with position vector w = (−1, 0, 3) and the plane with Cartesian
equation x + 2y − 2z = 11.

76. Use the general method of projection onto a plane to prove that if the plane is given by a x+b y+c z =
k, then the distance from (w1, w2, w3) to the plane is given by:

|a w1 + b w2 + c w3 − k|√
a2 + b2 + c2

.

77. Use the cross product to help you find the Cartesian equation of the plane through the points (1, 1, 1),
(2, 1, 4) and (5, 0, 1).

78. For what value of α does the plane 3x− 6y + 4z = α contain the point with position vector (1, 2, 5)?

79. Let w = (1, 2, 3) and let L be the line (x, y, z) = (6, 3, 6) + t (4, 3, 1), t ∈ R. Find projLw and the
minimum distance from w to L.

80. Using the method of projection (onto a plane), find the distance between the point P = (1, 1, 11) and
the plane x − 2 y + 2 z = 3.

81. Use induction to prove that for any real number a ≥ 0: (1 + a)n ≥ (1 + na) for all n ≥ 1.

82. What is wrong with the following “proof” by induction that all balls have the same colour?

For n > 0, let P (n) be the proposition that any set of n balls have the same colour.
Obviously P (1) is true!
Now assume P (k) is true for some k > 0. Let

S = {b1, b2, . . . , bk+1}

be a set of k + 1 balls. Then the two subsets {b1, b2, . . . , bk} and {b2, b3, . . . , bk+1} each have k
elements so by the inductive assumption, all balls in each of these two smaller sets have the same
colour. Clearly then, all balls in their union must have the same colour also. So by the Principle of
Induction, the desired result follows!

83. Prove by induction that

1 × 2 + 2 × 3 + · · · + n(n + 1) =
1

3
n(n + 1)(n + 2)

for all integers n > 0.
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84. Prove: 13 + 23 + 33 + . . . + n3 =
1

4
n2(n + 1)2.

85. Prove that 52n+1 + 22n+1 is divisible by 7 for all n ≥ 0.

86. Prove by induction that 17 n3 + 103 n is divisible by 6 for all n ∈ N.

87. Prove that a2 − 1 is divisible by 8 for all odd integers a.

88. Give a formal inductive proof that the sum of the interior angles of a convex polygon with n sides is
(n − 2) π (radians). You may assume that the result is true for a triangle. (A convex polygon is one
where all the interior angles are smaller than π radians.)

Hint: you can cut a convex n-gon into a convex (n − 1)-gon and a triangle.

89. Use induction to prove that 1 + 2 + 3 + . . . + n =
1

2
n(n + 1).

90. Prove that n (n2 + 5) is divisible by 6 for all integers n ≥ 1.

91. Suppose a sequence of numbers a1, a2, a3, . . . is defined recursively by

a1 = 3 and an+1 =
an

an + 1
,

so the first few terms of the sequence are 3, 3
4
, 3

7
, . . .. Use induction to prove that

an =
3

3 n − 2
.

92. Let the sequence {an} be defined recursively by

an = 6 an−1 − 9 an−2, a1 = 0, a2 = 9.

Use strong induction to prove that an = 3n (n − 1).

93. Recall the Fibonacci recurrence: Rn+1 = Rn + Rn−1. Find a matrix A such that
(

Rn

Rn+1

)

= A

(

Rn−1

Rn

)

.

Prove by induction that
(

Rn

Rn+1

)

= An

(

R0

R1

)

.

94. Find a k × k matrix A such that kth order recurrence

an = b1 an−1 + · · ·+ bk an−k

can be written as






an+1−k
...

an+1






= A







an−k
...

an






.

Suppose that you knew a formula for powers of the matrix A. How would this help you to solve the
recurrence?
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95. Use strong induction to prove the least integer principle. [Hint: let P (n) be the proposition that every
nonempty subset of N containing n has a least element.]

96. Use induction to prove the principle of strong induction. [Hint: let S be the set of n ∈ N for which
P (n) is true and and let Q(n) be the proposition that {1, 2, . . . , n} ⊆ S. Use the hypotheses of
strong induction to prove (using ordinary induction) that Q(n) is true for every n ∈ N.] Deduce that
induction and strong induction are equivalent.

97. Simplify the following expressions involving complex numbers

(a) (2 + 3i) + (−4 + i)

(b) (2 + 3i) × (−4 + i)

(c) (2 + 3i) ÷ (−4 + i)

(d) |2 + 3i|
(e) arg(−4 + i)

(f) 6(1 + i)(1 − i)

98. Let z = 2 + 2i. Convert z to polar form and hence evaluate z5, expressing your final answer in
rectangular form.

99. Prove that cis θ1 · cis θ2 = cis (θ1 + θ2) by using the following trigonometric “addition theorems”:

cos (θ1 + θ2) = cos θ1 · cos θ2 − sin θ1 · sin θ2,

sin (θ1 + θ2) = sin θ1 · cos θ2 + cos θ1 · sin θ2.

Deduce that for any pair z1, z2 ∈ C, arg(z1z2) = arg(z1) + arg(z2).

100. Let z = −5 − 5i.

(a) Write z in the form r cis θ for suitable r and θ.

(b) Solve the equation w5 = −5 − 5i. Give all solutions.

(c) Draw the solutions to part (b) on the complex plane.

101. Solve the following system of linear equations involving complex numbers. The method is identical
to the method for real numbers, but the arithmetic gets a lot messier.

iw +(1 − i)z = 2 + 3i
w +(2 + i)z = 1 − i

102. Write each of the following complex numbers in the form r cis θ.

(a) 3 − 6 i

(b) 5 − i

(c) 3
5

+ 4
5
i.

103. Solve in complex numbers the following equations. Give all solutions accurate to 4 significant figures.

(a) z7 = 3 − 6 i

(b) z3 = 5 − i
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(c) z8 = −1.

104. Solve the following quadratic equation for the complex variable z:
√

3 z2 +2i z− i = 0. Your answer
should be in rectangular form.

105. Use the result of problem 99 above and induction to prove De Moivre’s formula:

(r cis θ)n = rn cis (n θ) for all n ∈ N.

106. Find all solutions to: z3 = −2 + 2 i .

107. Show that a2 − 1 is divisible by 8 for all odd integers a.

108. Express 960 and 468 as products of primes and hence calculate the number of distinct divisors each
has. Hence also compute lcm(960, 468) and gcd(960, 468).

109. For a = 8451 and b = 2277, express each as a product of primes and compute the number of distinct
divisors each has. Use the product of prime representations to compute lcm(a, b) and gcd(a, b).

110. If gcd(a, b) = 21, lcm(a, b) = 630630, and a = 2310, find b.

111. (a) Apply the Euclidean algorithm to find gcd(966, 320), showing your setting out.

(b) Go on to find integers x, y such that 966 x + 320 y = gcd(966, 320).

112. Use the Euclidean algorithm to help you find all solutions (if there are any) of the Diophantine equa-
tion

231 x + 70 y = 28.

113. Are there any integer solutions to 13242 x − 123 y = 5?

114. Use the Euclidean Algorithm to solve the Diophantine equation 5326 x− 10705 y = 2 where x and y
are integers. Use the general solution to find the solution which has the smallest positive value of x.

115. (a) Use the Euclidean algorithm to find gcd(576594, 256347).

(b) Use back substitution to find two integers a and b with

576594 a + 256347 b = gcd(576594, 256347).

116. Use the Euclidean Algorithm to find the general solution of the following Diophantine equations
where x and y are integers

(a) 4523 x + 3781 y = 21

(b) 836 x − 17346 y = 11

117. Now we know how to solve one linear Diophantine equation. What would you need to do to solve a
system of them? Illustrate your approach by finding the general solution to

x + 5 y + z = 11
2x + 11 y + 5 z = 2

where x, y and z are all integers!
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118. Let p, q, r, s ∈ N and x, y ∈ Q be such that

q x = p and s y = r.

Use standard properties of addition and multiplication (ie. no fractions) to prove that

q s (x + y) = p s + q r.

Deduce a formula for addition in Q.

119. Let n be a natural number with a, b, c, d integers. Show that if a ≡ b (mod n) and c ≡ d (mod n) then
ac ≡ bd (mod n). (Hint: model your proof on the one in the lectures for showing a + c ≡ b + d.)

120. If a, b are integers with remainders of 3 and 5 when divided by 7, find the remainder of 24 a + 16 b3

when divided by 7.

121. Find the remainder of 9999 on division by 7.

122. Show using congruences that 8n − 3n is divisible by 5 for all integers n ≥ 1.

123. Find the remainder when 27475 is divided by 14.

124. What are the invertible elements of Z15? Find their inverses.

125. Since 131 is prime, all non-zero elements of Z131 have inverses. Using the Euclidean algorithm (or
otherwise) find the inverse of 43.

126. Find all integer solutions to the congruence equations:

(a) 6x ≡ 2 (mod 8)

(b) 6x ≡ 2 (mod 88).

127. Solve the polynomial x2 + x + 8 = 0 (mod 10).

128. Which n ∈ {1, 2, 3, . . . , 19} are relatively prime to 20? Hence find φ(20).

129. Use Fermat’s or Euler’s theorems to find the remainders when:

(a) 33962 is divided by 37;

(b) 53242 is divided by 143;

(c) 8123456789 is divided by 15.

130. Find all integer solutions of the congruence equation 2 x2 + 3 x + 4 ≡ 0 (mod 6).

131. This question concerns Z24.

(a) List all the invertible elements of Z24.

(b) Find 7̄−1 in Z24 if it exists.

(c) Find the Euler number φ(24).

(d) Hence compute the remainder when (11)13947 is divided by 24.

132. List the invertible elements of Z14. Hence calculate φ(14) and evaluate 5
1042

in Z14.
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133. Solve the system of simultaneous congruences

x + 3y ≡ 4 (mod 5)
3x + 2y ≡ 3 (mod 5)

Hint: Just go ahead and do a Gaussian elimination. But use modular arithmetic, i.e. work in Z5. To divide,
you just multiply by the inverse in Z5.

134. A shift cipher is used to encrypt a message which comes out as:

WEZI SYV WSVPW

It is known that the first letter of the unencrypted message was “S”. Decrypt the rest of the message.

135. An affine cipher based on Z26 has encryption formula E(x) = 9x + 17.

(a) Show 9
−1

exists in Z26, and find it.

(b) Hence give the decryption formula D(x) corresponding to E(x).

(c) Use it to decrypt the four-letter message: “WRXX.” (Remember that 0̄ corresponds to A, 1̄ to
B, 2̄ to C, and so forth.)

136. If numbers are encrypted by raising to the power of 17 modulo 111, find an exponent b so that raising
to the power of b modulo 111 decrypts them.

137. In an affine cipher, the letters “A”,. . .,“Z” are encoded by the integers 0, . . . , 25 and then encrypted
by a function

E(x) ≡ a x + b (mod 26).

For a certain choice of a and b, the letter “E” gets encrypted to be “R” and the letter “V” gets encrypted
to be “Q”. Crack this code by finding the decrypt function D(y) = a−1 (y − b). Decrypt the message
“FMMOVSR”.

138. A toy RSA cryptosystem! Let n = 5 × 7 = 35. Work through an RSA cryptosystem as follows.

• compute φ(n)

• check that a = 11 is such that a has an inverse in Zφ(n)

• compute the inverse, i.e. find b such that ab ≡ 1 (mod φ(n))

• encrypt the message “top secret!” by translating single letters into elements of Zn in the usual
way, with also a space represented by 26 and “!” by 27 (the other elements don’t get used here
but could correspond to other forms of punctuation), using

E(x) = xa in Zn

• decrypt using
D(x) = xb in Zn

Did decryption work in each case? Why not? Will this be a problem in practice if a much larger n is
used, do you think?
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139. An RSA encrypted message is sent with the published key numbers a = 7 and n = 19519. These
are of course absurdly small for an RSA code - so we should be able to break it easily. Break the
code and find the decryption key! Demonstrate that you have done so by first encrypting and then
decrypting the number 2.

140. Consider the matrices

A =

(

−1 0
0 1

)

, B =

(

0 −1
−1 0

)

, and C =

(

0 1
−1 0

)

.

(a) Give geometrical descriptions of the maps TA, TB, TC associated with A, B, C respectively.

(b) Calculate A2 and B2 and interpret your results in terms of linear maps.

(c) Calculate BC and CB and interpret your results in terms of linear maps.

(d) Calculate ABC and interpret your result in terms of linear maps.

141. Let T1 be a reflection about the x-axis and T2 a reflection about the line with Cartesian equation
y = x.

(a) Compute the matrices A and B of T1 and T2 respectively.

(b) Show that both T1 ◦T2 and T2 ◦T1 are rotations and determine the angle of rotation in each case.

(c) The product of any two reflections is a rotation. Show this, and determine the angle of this
rotation.

142. Write down the 2 × 2 matrices for the following linear maps of the plane, and draw the image of the
unit square under each.

(a) Rotation through 60 degrees anticlockwise.

(b) Reflection across the line y =
√

3x.

143. Let

A =

(

1√
2

1√
2

− 1√
2

1√
2

)

and B =

(

−1 0
0 1

)

.

(a) Describe geometrically TA and TB .

(b) Determine using matrix algebra the effect of TA followed by TB .

144. Show that if λ is an eigenvalue of A, then λ2 is an eigenvalue of A2.

145. Find all eigenvalues for the matrix A =

(

−12 7
−7 2

)

.

146. Consider A =





0 0 5
3 −4 0
4 3 0



 . Write down the characteristic polynomial for A.

147. Find all eigenvalues for the matrix

A =

(

2 0
3 −2

)

.

Go on to find the eigenvectors corresponding to those eigenvalues.
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