
KDF11-BA CPU Module

User’'s Guide

Prepared by Educational Services
of

Digital Equipment Corporation

1st Edition, January 1982

Copyright © 1982 by Digital Equipment Corporation

All Rights Reserved

The material in this manual is for informational pur-
poses and is subject to change without notice.

Digital Equipment Corporation assumes no responsi-

bility for any errors which may appear in this manual.

Printed in U.S.A.

This document was set on DIGITAL’s DECset-8000 computerized

typesetting system.

The following are trademarks of Digital Equipment

Corporation.

DIGITAL DECsystem-10 - MASSBUS

DEC DECSYSTEM-20 OMNIBUS
PDP DIBOL OS/8
DECUS EduSystem RSTS
UNIBUS VAX RSX
DECLAB VMS IAS

MINC-11

PREFACE

CHAPTER 1

L
h
t
b
h
h
t
b
h
h
n
b
h
h
n
h
h

b
o
)

-

T

I
Y
=

N
s
W
i

—

p
—

—

—

e

—

—

—

—

—

—

—

e
—

—

e
—

e
—

e

p
e
e
e
k

e
l

e
k

p
—
—

CHAPTER 2

N
N

—

W
b

—

SE
NE

NE
NI

SF
NY

IR
S

b

D
D

e
t

e
t

e
t

s

—

CONTENTS

Page

SPECIFICATIONS

INTRODUCTION............... et e e e e e e, 1-1
FE AT URES e, 1-1
SPECIFICATIONS e 1-2
PROCESSOR HARDWARE.......... e, e, s e 1-3

- General-Purpose RegISTersooviiiiiiiiiii e, 1-3
Bus CycCles... ..., 1-4
Addressing Memory and PeripheralS.............coooceiiiieimoe e 1-4
Memory Management ... 1-5
Processor Status Word (PS)ocooiiiiiiiee e, 1-6

Condition Codes (PS bits <<3:0>).....ccccoonnn..... e e 1-6
Trace Bit (PS bit <<4>).......cccoiiiiiinie, e 1-6
Priority Level (PS bits <7:5>).............. e——— e e 1-6
Suspended Instruction (SI) (PS bit <<8>)coooiiiiiiiiiiiiieeiee, 1-7
Previous Mode (PS bits <<13:12>) oooiiiviieeeeieeeeeeenn, e 1-7
Current Mode (PS bits <1514) i 1-7

INSTRUCTION SET .., 1-7
FLOATING-POINT OPTIONo, 1-8
COMMERCIAL INSTRUCTION SET OPTIONoooiiiiiiiie e, 1-8
MEMORIES AND PERIPHERALS ..., 1-8
RELATED DOCUMENTS ..o, 1-8

INSTALLATION

INTRODUCTION ..., cerereren ettt r e e nresbans 2-1
JUMPER AND SWITCH CONFIGURATION............ e e 2-1

Test JUMPETS....cvviiiiiiiiiiiiee e, e ——————— - 2-1
Manufacturing Test JUMPErsooooiviiiiiiiiiiiii e, 2-3
UART TeSt JUMPEI...coiiiiioiiiieeieieeeeeee et ee e 2-3
Field Service Test JUMPEr......cc.oooiiiiiiiiiiieee e, -, 2-3

CPU Option Jumpers............ e et ettt et e et et eeeas 2-4
Power-Up Mode Selection. ..o 2-4
Halt/Trap Option........c............ e ettt e ety a et 2-5

On-Board Device Selection Jumpers O SRR UR USROS 2-5
Bootstrap/Diagnostic Switches and Jumpers...............c........... veerterreieenannes 277

‘Bootstrap/Diagnostic Configuration Switches.............ooocvevevvreeierrnnnn, 2-7
Bootstrap/Diagnostic ROM Jumperscooocoioiiiomieeeoeeeeeeeeeeee . 2-8

Console SLU Switch and Jumper Configurations.........cccoooeevevviiiicneennn 2-9
Console SLU Baud RatesSoueiveeeiiieiceeeeee e 2-9
Console SLU Character Formats..........ccocccoeeieiiiviiiiiiiccecce e, 2-10
Break-on-Halt Jumpers.......... ettt eaeeeete et eeee e et ————————————————— 2-11

i

2.2.6
2.2.6.1
2.2.6.2
2.2.7
2.2.8
2.3
2.4
2.5

2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.7
2.8

CHAPTER 3

CONTENTS (Cont)

Page

Second SLU Switch and Jumper Configurations..........cocccoooooiiiiiiiiininnnnnnn, 2-11
Second SLU Baud Rates.......ccvvvviiiiiiiieeece 2-11
Second SLU Character Formatsccciiiiiiie, 2-12

Internal /External SLU Clock Jumpers..........cccoooooiiiiiiiiiiiiiiiiie e, 2-13
Bus Grant Continuity JUMPETSuuviiiiiiiiiiiic it 2-13

FACTORY SWITCH AND JUMPER CONFIGURATIONScooccvviiiinn 2-14
MODULE CONTACT FINGER IDENTIFICATIONccccooiiiiiiiie, 2-17
BACKPLANE PIN ASSIGNMENTS AND THEIR KDF11-BA
UTILIZATION oo 2-18
HARDWARE OPTIONS ... 2-18

Backplanes ... 2-19
B NG OSUTES .ot 2-20
Memory Modules........cooooooiiiiii e, 2-20
Peripheral Options......occuviiiiiiiiie e e 2-20

SYSTEM DIFFERENCES ..., 2-21
MODULE INSTALLATION PROCEDURE......ccoocovee e, 2-21

CONSOLE ON-LINE DEBUGGING TECHNIQUE (ODT)

INTRODUCTION ..o e, 3-1
TERMINAL INTERFACE.........c..o e 3-1
CONSOLE ODT ENTRY CONDITIONS ... e, 3-1
ODT OPERATION OF THE CONSOLE SERIAL-LINE
INTERFACE ..o e, 3-2

Console ODT Input SEqUENCEoccvvvviiiiiiiiiiecei e, 3-2
Console ODT Qutput SEQUENCEvvveeniiieeii e 3-3

CONSOLE ODT COMMAND SET...cooiiiiii 3-3
J (ASCIT 057) = Slash .o 3-4
<CR> (ASCII 15) — Carriage Return....................cooiiiiiiiieceeee, 3-5
<LF> (ASCIT 12) —Line Feed.....cccoooviiiiii 3-5
$ (ASCII 044) or R (ASCII 122) - |
Internal Register Designator ..., 3-6
S (ASCII 123) - Processor Status Word Designatorcccceeeevvvveeeieviienen. 3-6
G (ASCIT 107) = GO, 3-6
P (ASCII 120) —Proceed ..o, 3-7
Control-Shift-S (ASCII 23) — Binary DUumpcooooveiiciiceccceeceeeieeeeeeee 3-7
Reserved Command............ ettt e tat e e ee et e r e aastearnnaaeaaas 3-7

KDFI11-B ADDRESS SPECIFICATION ..., 3-7
Processor I/O Addresses ..o 3-7
Stack Pointer SeleCtion.....ccoooeviiiiiirini e, 3-8
Entering of Octal DIigItscoooviveiiiiii e, 3-8
ODT Timeoutoovvvevviriiniiinnnn, et eet e ee ittt e et e att e e earn et 3-8

INVALID CHARACTER S . e 3-8

EXTENDED LSI-11 BUS

INTRODUCGCTION ..o e, 4-1
BUS SIGNAL NOMENCLATURE........ooiiiiii e 4-2
DATA TRANSFER BUS CYCLES ..., 4-3

CHAPTER S

A

i

A
N

B
W

—

e N a
d

CONTENTS (Cont)

Page

Bus Cycle Protocol..........ovoiiiiiiiiii e 4-4
Device AdAressSIng.........ovvviiiiiiiiiiiiii e, 4-4
DATL . e 4-5

DATIO(B) ..o ettt e, 4-10
DIRECT MEMORY ACCESS (DMA) ..o, 4-10
INTERRUPTS .. e, 4-13

DEVICE PriOTItY . ccouiieieieiiieiie et e, 4-16
Interrupt Protocol ... e 4-16
4-Level Interrupt Configurations...........cooeeeiiiiiiiiiii i 4-19

CONTROL FUNCTIONS ..., 4-20
Memory Refresh ..., 4-20
Halt . e 4-20
INIANZATION. ...t e, 4-20
POWET STatUS ..ooooniiinii e et 4-21

BDCOK H.ooooe et 4-21
BPOK H ..o e e —————— 4-21
POWET-UD .. i, 4-21
POWET-DOWN...cooiiiii e 4-22

BEVENT L. B U U UOPR 4-22
BUS ELECTRICAL CHARACTERISTICS ..., 4-22

Signal-Level Specification.................ooo..ooiiiiiii e, 4-22
AC Bus Load Definition ..., 4-22
DC Bus Load Definition ... e, 4-22
120 Q LSI-T1 BUS..ooiiiii e, 4-23
BUS DIIVEIS oot 4-23
BUS RECEIVETS. ., 4-24
Bus Termination ... e 4-24
Bus Interconnection WIrIng.....ooooooiiiiiiii e e, 4-25

Backplane Wiring ... 4-25
Intrabackplane Bus Wiringcoccovviviiiiiiioc e 4-25
Power and Ground..............coo L, 4-25
Maintenance and Spare Pins ..o, 4-26

SYSTEM CONFIGURATIONS L e e e 4-26
Rules for Configuring Single-Backplane Systems......ccooveevieivioeeiierieeiaee 4-26
Rules for Configuring Multiple-Backplane Systemscoocvvvviieviiviiei 4-27
Power Supply Loading. ..o 4-28

FUNCTIONAL DESCRIPTION

INTRODUCTION e, 5-1
DATA CHIP ..o e e, 5-1
CONTROL CHIP .o, 5-4
MMU CHIP oo e 5-4
BASE TIMING LOGIC ... e 5-4
MIB DECODE LOGIC ... e 5-6

MIB Decode During Phase Time ettt 5-7
MIB Decode at the End of Phase Time...........cccoooveiiioiieee e, 5-8
MIB Decode at the End of Phase-Bar Timecoooviiiiiieoieeeeee e, 5-8

o

t
h

b

n

b

n

b

Ln

N

T
I

N
T
=
R

=
R
y

CHAPTER 6

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.9.1
6.3.9.2
6.3.9.3
6.3.9.4
6.3.10
6.3.11
6.3.12
6.3.13

CONTENTS (Cont)

Page

BUS CONTROL LOGIC ..., 3-8
Bus Synchronizer CIrCUItSoooooiiiiiiiiii e, 5-9

BRPLY, BSYNC, BSACK, BDMR Synchronization.......................... 5-10
BDCOK and MCENB Synchromizationccccooveivivieveiieeiieeieieeenen 5-10

Direct Memory Access (DMA) Control...........ooiiveviiiiiiiiii e, 5-10
Address Microcycle Control..........c.ocoiiiiii i 5-11
BSYNC SIZNAL ..iiviiiiiiiiiiiiec e e 5-12
Noninterrupt Bus DIN Cycles.....oooiiiiiie e, 5-12
Interrupt-Type Bus DIN Cyclescooooviiiiiiiii e 5-12
Bus DOUT CycCle oo, 5-13

CDAL/BDAL INTERFACE ... 5-14
SERVICE, RESET, AND ODT LOGIC ..., 5-14

Read Service Operation............coooovveiiiiiiiieeeee e, 5-16
F11 Chip Reset Operation............ccccooiiiiiiiiiiiiieiiieeeeeeeeeee e 5-18
ODT AdAress LOZIC.......ovviioeeiieceeee e 5-19

FIXED DATA DIN CYCLES ...t 5-20
CDAL/IDAL INTERFACE ...t 5-20
IDAL ADDRESS DECODE ... et 5-22
BOOTSTRAP/DIAGNOSTIC AND LINE CLOCK LOGIC.............coouvenee., 5-24

Boot and Diagnostic LOZIC......ccoooooiiiiiiiiiiiice e, 5-25
Line CloCK REGISIETovviiiiiiiiiiiiiiieieeeeee e e 5-26

SERITAL-LINE UNITS L., 5-26
Universal Asynchronous Receiver Transmitterscooooeeeceveiciiesieceeeeee e 5-26
The DCOO03 Interrupt LogiC CIrCUItS . uuiimriiiiierieeeeeeeeeecee et 5-29
Register Read Operations..............ooooiiiiiiiiiiiiiiccceeee e 5-29
Baud Rate Generator........ccocooiiiiiiiiiiiiiiiiiee et 3-29
Charge Pump Circuit......cocooiiiiiiiii e 5-30

ADDRESSING MODES

INTRODUCGCTION ..o, 6-1
INSTRUCTION FORMATS ... e, 6-2
ADDRESSING MODES. ..., 6-3

Register Mode (Mode Q) ..o 6-3
Register-Deferred Mode (Mode 1) ..o, 6-4
Autoincrement Mode (Mode 2) ..., 6-5
Autoincrement-Deferred Mode (Mode 3) ..o 6-5
Autodecrement Mode (Mode 4)oeeeeieeiiieeeeeee e 6-6
Autodecrement-Deferred Mode (Mode 5) ..o 6-6
Index Mode (MOAE 6).....oooiiiieieeeeeeeeeee e e 6-7
Index-Deferred Mode (Mode 7) .ot e e, 6-7
Use of the PC as a General Registerooviiiiviiiiiie el 6-8

PC Immediate Mode (Mode 2) ...oooovmeiiiiie e, 6-8
PC Absolute Mode (Mode 3) .o 6-9
PC Relative Mode (Mode 6)ooovvviiiiiieiieeeee e, 6-10
PC Relative-Deferred Mode (Mode 7)..ccooiiiiiiiiiiiiiiiiieeeee, 6-10

Direct Addressing Modes SUMMAry...........c.ooovviiiiiiiiie i, 6-11
Indirect Addressing Modes Summary........ccccccviiiiiiiiiiiiiieieeeeee e 6-11
PC Register Addressing Modes Summarycoccccvvvvieeeeeiiniiiieeeeeeeeeeeeeeeee. 6-12
Graphic Summary of Addressing Modesccccoveiiveiiiiiiiiee e 6-12

Vi

CHAPTER 7

N

—

d
~d

<
~d

=
=0

<
~

=
=
T
~

e
t

o
t

et

pm
mt

e
t

b
b

b

et

B
W

N
—

B
L
W
L
W
W
W
N
N
N
—

N
p
—
n
.
—
—
-
.
—
n

nan
li

el

o
W

N
—

CHAPTER 8

CONTENTS (Cont)

Page

INSTRUCTION SET

INTRODUGCGTION.ottt ettt eer e as e eeeeeeeeeeees s e e e samnees 7-1
Single-Operand INStrUCLIONSc.uiiiiiiiiiicir e 7-1
Double-Operand INStrUCLIONScoooviiiiiiiiiiiier et eeece e 7-3

Double-Operand Instruction Format............ccooooiiiiiiiiiiiiee e, 7-3
Byte INSTTUCLIONS ..ivvivviiiiiiiiiiiiiiine e e e e e e 7-4

Program Control InStructionsccceoviiiiniiiieiiieiiiiin i 7-4
Branch INStrucCtionscooooiiiiiiir i e eerne e 7-4
Jump and Subroutine InsStructionscccccccriiiiiiiiiiiiiniie, 7-5
Condition Code Instructions..........cc........ e e et —e et .. ——————ran————— 7-7
Miscellaneous InStruCtionSoiiiiiiiiiiiiiiienne e e 7-9

Examples of Single-Operand, Double-Operand,
and Branch InStructions..........ccccooiiiiiiiiiiie e 7-9

Single-Operand Instruction Example.........c.oooveiiiiiiiiicieeceeeeeen 7-9
Double-Operand Instruction Examplecccooovviviiiiiiiiiiiie, 7-9
Branch Instruction Example ..o, 7-10

INSTRUCGTION SET ...ttt ie e e et e et e teraae e aeeeaeaeeeseeseesaneas 7-11

MEMORY MANAGEMENT

INTRODUCGTION. ..o e te e e e e e e e s 8-1
PrOgramIMING .o.uueeeeeeee et e e e e e e et e ettt e e e e e e e et eeaaennaaaes 8-1
BasicC AdAreSSINE. . .. oieieiieeiiieiiiiiieee e eee et eee e e e e e e e e eeer e e e e e e e e aaeeeaes 8-2
Active Page Registers.........oooovriiiiiiiiieiie e e e —— 8-2
Capabilities Provided by Memory Management....... e, 8-3

MEMORY RELOCATION ..ottt eiiee e iee e e e e e e e aaeaeeaeeaaeea e 8-3
Program Relocationcoooiiiiiiiiiiiiii e 8-3
MEMOTY UNIES....ouuiiiiiiiiiieiiieiiie et ettt eeeaeteaneeneaeeseannens 8-5

MEMORY MANAGEMENT REGISTERS ..., 8-5
Page Address Register (PAR) ..., 8-5
Page Descriptor Register (PDR) ..., 8-5

Access Control Field (ACEF) ... e 8-6
Expansion Direction (ED) ..., 8-6
Write ACCESS Bt (W) oo e 8-7
Page Length Field (PLEF) oo 8-7

PAR /PDR Address ASSIgNMENtS........c.ccceiiiiiiiiiiiiiiiiniiee e 8-9
Status Register O (SRO) — Address: 177775728 ccccummieeeaiiiiieeeeiieiee e 8-9

ADOTt NONTESIACNt....u i e e 8-10
Abort Page Length ...t 8-10
Abort Read-Only ... s 8-10
Mode of OPerationcccovvviiieiiiiiie e 8-10
Page NUMDET.....ooiiiii e, 8-10
Enable Relocation and Protection..........ccoceieiiiiiiieiiiiiiieeeeecee 8-10

Status Register 1 (SR1) — Address: 17777574G.....cuuuuieeieieeeiiiieeieeeieeeeeeeeaeenn, 8-10
Status Register 2 (SR2) — Address: [77775768.....cveoeeeeeieeiiiiaeeeiiiiiiieeeeeaenn, 8-10
Status Register 3 (SR3) — Address: 177725168.c...ccccooveiiiiiiiiiiiiiiiiieieiienn, 8-11

VIRTUAL AND PHYSICAL ADDRESSES ...l 8-11
Construction of a Physical Address...........ooccoviiiiiiii e 8-11
Determining the Program Physical Address..........ocooovvviiiiiiviiienen 8-14

Vil

W
W

W
W

W
—

00
00

00
90

00
00

90
00

00
N

L

L

h
o

on

L

-

CHAPTER 9

9.1
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.3
9.4
9.5
9.6
9.7

CHAPTER 10

10.1
10.2
10.2.1

10.2.2

10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.6.1
10.3.6.2
10.3.7
10.3.7.1
10.3.7.2
10.3.8
10.3.8.1
10.3.8.2
10.3.9

10.3.9.1

CONTENTS (Cont)

Page

PROTECTION ..ottt ettt 8-14
Inaccessible MEmMOTYcooiiiiiiiiii e, 8-15
Read-Only MEemOTYcoooiiiiiiiiiiiicee et ee e e e e e 8-15
Multiple Address SPace.......cccvviiviiiiiciie e, 8-15

Mode Specification in the Processor Status Wordccooveveeeveveena, 8-15
Processor Status Word Protection..........cccccooovvuiieeieiniee e ee 8-16
User Mode ReStriCtionS...........ccoooiiiiiiiiiiiie e, 8-16
Interrupt and Trap Processing.........cooooveviiviiiiieieeeeeeee e 8-16

MEMORY MANAGEMENT INSTRUCTIONS ..ottt oo, 8-18

FLOATING-POINT ARITHMETIC

INTRODUCGTION ..o, 9-1
FLOATING-POINT DATA FORMATS ..o, 9-1

Nonvanishing Floating-Point Numbersccocoooviiiimiio e 9-1
Floating-POint Zero........c.covviiiiiiiii it T 9-2
The Undefined Variablecc.oooiiiiiiiie e 9-2
Floating-Point Datacc.c.oooiiiiiii e 9-2

FLOATING-POINT STATUS REGISTER (FPS) .o oo 9-4
FLOATING EXCEPTION CODE AND ADDRESS REGISTERScovvvvonn.. 9-4
FLOATING-POINT PROCESSOR INSTRUCTION ADDRESSING............. 9-8
ACCURAQCY L ettt e e et 9-8
FLOATING-POINT INSTRUCTIONS, 9-9

PROGRAMMING TECHNIQUES

INTRODUCGTION ... e, 10-1
POSITION-INDEPENDENT CODE........ccooioiiieeeeeoe e, 10-1

Use of Addressing Modes in the Construction of
Position-Independent Code.............oooiiiiiiiiiiiiiiiiiee e 10-1
Comparison of Position-Dependent and
Position-Independent Code............ocovviviiiiiiiiieieeee e, 10-3

ST A C K S e e e, 10-4
Pushing onto a Stack...........oocciiiiiiiie e, 10-5
Popping from a Stackcccoooiiiiiiiiii e 10-6
Deleting Items from a Stack...........oooiiiiiiiiiiiee e 10-6
STACK USES -.oeieiie e e 10-7
Stack Use EXamplesoooiiiiiiiiiiii e, 10-8
Subroutine Linkageocccooviiiiiiiii e, 10-10

Return from a Subroutineccocooooiiiiiiiiieee e, 10-10
Subroutine AdVantagesccceeiieiiiiiiee e ee s 10-10

INEEITUPLS oot e e e, 10-10
Interrupt Service ROULINESc..oooiiiiiiiiiiee e, 10-11
INESTING et e, 10-11

REENETANCYooiiiiiiii e 10-11
Reentrant Code ..o e 10-13
Writing Reentrant Code..........o...oooiiiiii e 10-13

COTOULIMES ...ttt e e e e e e e e e e et e e e e e e 10-14
Corouting CallS......ccoooiiiiiiccc e 10-14

10.3.9.2
10.3.9.3
10.3.10
10.3.11
10.3.11.1
10.3.11.2
10.3.12
10.4
10.5
10.6
10.7

CHAPTER 11

11.1
11.2
11.2.1
11.2.2
11.2.3
11.3

11.4

11.4.1
11.4.2

CHAPTER 12

12.1
12.2
12.3

CHAPTER 13

13.1
13.2
13.3
13.4
13.5

CHAPTER 14

14.1

14.2
4.3
14.3.1
14.3.2
14.3.3
14.3.4

CONTENTS (Cont)

Page

Coroutines Versus Subroutines.................cccccci i, 10-14
USING COTOULIMESuvviieiieeciiiiiiee e et ee e et ee s e st e e s seesietreeaes s enene 10-16

Recursion....... e eeerh e bt ieeettrtaeeeteteieeeettteteieestesaaeeerertaneaeerraneetearanaaanrrnnaaerees 10-18
PrOCESSOr TTaAPS ... i ieieeieiiitiiie et e et e e e e s e e e e aenesbee s 10-19

Trap INStrUCLIONS ...eeeieiiiiiiiiee e e, 10-20
Use of Macro Calls. ... 10-21

Conversion ROULINESoovvviiiiiiiiiiie e e 10-21
PROGRAMMING THE PROCESSOR STATUS WORD..........cccooiiiii 10-25
PROGRAMMING PERIPHERALS.......coo e 10-25
PDP-11 PROGRAMMING EXAMPLES ... 10-26
LOOPING TECHNIQUES ... e 10-31

BOOTSTRAP AND DIAGNOSTIC LOGIC

INTRODUCGCTION ...ttt ettt e e et 11-1
BOOTSTRAP AND DIAGNOSTIC REGISTERS ..., 11-1

Page Control Register (PCR) — Address: 17777520 ..oovvvvveeiiiiiiiiiiiiie, 11-2
Read /Write Maintenance Register (R/W) — Address: 17777522 11-2
Configuration and Display Register (CDR) — Address: 17777524 11-2

KDF11-BA ROM Memory
(ADDRESSES: 17773000—17773777) oieeiiiieeeeeee ettt aa e 11-2
KDF11-BA BOOTSTRAP AND DIAGNOSTIC
FUN CT ION A LT Y oottt e, 11-3

KDF11-BA LED DisSplay ...ocooiiiiieiiieeee e 11-3
KDF11-BA Error Halts ..o, 11-5

LINE FREQUENCY CLOCK

INTRODUCGCTION ..ttt e e e e e 12-1
LINE CLOCK STATUS REGISTER (LKS) (ADDRESS: 17777546) 12-1
LINE CLOCK OPERATION ... 12-1

SERIAL-LINE UNITS

INTRODUGCGTION ..ottt et e e 13-1
SERIAL-LINE UNIT REGISTERS ..., 13-1
INTERRUPT VECTORS AND INTERRUPT PRIORITY ..o, 13-4
CONSOLE SLU BREAK RESPONSE ..o e 13-4
SERIAL-LINE I/O SIGNALS ... 13-4

COMMERCIAL INSTRUCTION SET

INTRODUCGTION e, 14-1

UNPREDICTABLE CONDITIONS, 14-1
CHARACTER DATA TYPES. ... 14-2

O 1T) 2 (01 1) (PR TP U TSSOSO UUPRTUROTPPPRPRRRIO 14-2
ChaArACIET SEIIME oiiiiiiiiiiie et e e et ee e eeeearareeene s 14-2
CRATACLET SEt oo e, 14-3
Character String InStruCtionScocoveieiiiiii i, 14-4

14.4
14.4.1
14.4.2
14.4.3
14.4.4
14.4.5
14.4.6
14.4.7
14.4.8
14.4.9
14.4.10
14.5
14.6
14.7
14.7.1
14.7.2
14.7.3
14.7.4
14.7.5
14.7.6
14.7.7
14.7.8
14.7.9
14.7.10
14.7.11
14.7.12
14.7.13
14.7.14
14.7.15
14.7.16
14.7.17
14.7.18
14.7.19
14.7.20

APPENDIX A

Al
A.2
A3
A4
A.5
A.6
A.7

APPENDIX B

B.1
B.2
B.3

CONTENTS (Cont)

Page

DECIMAL STRING DATA TYPES ...t ren e 14-6
Decimal String DESCIIPLOTScoiviviiiiiiiiiiiee et ee e, 14-7
PacKed SEINES ..cvvieiieiiieie e et s e e 14-8
ZONEA SEIINES...0eeiiiiiiiiieirie e cicieiie e et eeerate et e essaateseeessereeeesessaensaneseens 14-10
Overpunched Stringscccooviiiiiiiiiiii e e, 14-11
SEPATALE SEIINES...ceiiiiiiiiiirieiiiiie et e et e e e e e reeeeesaneeeseenns 14-13
LONg INtEET ... 14-15
Decimal String INStrucCtions..............oovevviiiiiiiiiici et 14-15
Condition Codes.......coooeieiiiiiiiiie e 14-16
Operand DElIVETY ...cooeeiiiiiciiecee e 14-17
Data OVETIAD ...vveeeieiieeee et 14-17

COMMERCIAL LOAD DESCRIPTOR INSTRUCTIONS.......coeoveeeeeeene, 14-17
INSTRUCTION SUSPENSION.......ccoveeee.n. e etarereee e e e eeese e e arbrarbeasaens 14-18
EXTENDED INSTRUCTION DEFINITIONS......coooiiee e, 14-20

ADDN/ADDP/ADDNI/ADDPI ..o 14-20
ASHN/ASHP/ASHNI/ASHPI ... 14-21
CMPC/CMPC ... e, 14-23
CMPN/CMPP/CMPNI/CMPPI ..o, 14-25
CVTLN/CVTLP/CVTLNI/CVTLPI ... e 14-26
CVTINL/CVTPL/CVTNLI/CVTPLI ..., 14-28
CVINP/CVTPN/CVTNPI/CVTPNI ..o, 14-29
DIVP /DIVPL.....oo e, 14-30
LOCC/LOCC .t 14-32
L2DR et ea s 14-33
L3R e 14-34
MATC/MATCL . 14-35
MOVC /MOVCT e, 14-37
MOVRC/MOVRC ..., 14-39
MOVTC/MOVTC ...t e e 14-41
MULP/MULPL ...ttt e 14-43
SCANC/SCANCT ..o et e s 14-44
SKPC/SKPCI ... et 14-46
SPANC/SPANC ..o et 14-48
SUBN/SUBP/SUBNI/SUBPI ..o, 14-50

GENERAL REFERENCE INFORMATION

SUMMARY OF KDF11 INSTRUCTIONS ... A-1
NUMERICAL OP CODE LIST ..o eee e, A-8
PROCESSOR STATUS WORD (PS) 17777776 ...ccooooeiieeeieeeeeeeeeeeeeeeeeaa . A-9
ABSOLUTE LOADER/BOOTSTRAP LOADERooovivieeieeee, A-9
DEVICE REGISTER ADDRESSES AND VECTORScoooiiiiiievieee, A-10
CONSOLE ODT COMMANDS ... e, A-12
T-BIT ASCIT CODE ..., A-13

INSTRUCTION TIMING

GENERAL INFORMATION ... e B-1
BASIC INSTRUCTION TIMING ...ttt e, B-2
DMA AND INTERRUPT LATENCIES ... B-5

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

Figure No.

U
T
M
M
{
A
M
M
M
H
I
I
M
M
M
M
-
P
-
D
Q

CONTENTS (Cont)

Page

LSI-11, KDF11/PDP-11 PROGRAMMING AND OPERATIONAL
DIFFERENCES

KDF11-BA BACKPLANE PIN ASSIGNMENT COMPARISON

MICRO-ODT DIFFERENCES

FUNCTIONAL DESCRIPTION OF BUS SIGNALS

FIGURES

Title Page

General-Purpose Registers..... ..o e, 1-3
High and Low Bytes of a Processor Wordcooouviiiiimoeeeeeeeeeeeee 1-5
Word and Byte Addresses for First 4K Words of Memory.........ccooveeevoeeeeeceeii.. 1-5
Processor Status Word (PS) FOrmat......ooooomeeoe oo, 1-6
KDF11-BA Jumper, Switch, and Diagnostic Display Locations...............c............ 2-2
Quad Module Contact Finger IdentifiCationooooeeeeeeoreeee oo 2-17
H9276 Backplane Pin Identificationsccooooooiieieiii TSR 2-18
Typical KDF11-BA S12K-Byte System.......coccoooiiiiiiiiieiieeee e, 2-19
DATI BUS CYClE .o ee e, 4-6
DATI Bus Cycle TIMINGooiiiiiiiii e 4-7
DATO or DATO(B) BUS CyCleooeeiiiiii e, 4-8
DATO or DATO(B) Bus Cycle TIMING........ooiiiimiieeeeiie e ee oo 4-9
DATIO or DATIO(B) BUS CYCIe ..oooooeiiiiiiiiiiiiie e, 4-11
DATIO or DATIO(B) Bus Cycle TIMING........oooiiiiiiieae oo 4-12
DMA Request/Grant SEQUENCEoovviiiiiiiieeeee e 4-14
DMA Request/Grant Bus Cycle Timing...........c..ccoooeimimie e, 4-15
Interrupt Request/Acknowledge Sequence.........ccoooviiiiiomii e 4-17
Interrupt Protocol Timing.......oooooiiiiiiiiii e, 4-18
Position-Independent Configurationc...ccoovierioeiee oo 4-19
Position-Dependent Configuration.................ooovviiiiiiiin e, 4-20
Power-Up/Power-Down Timing.......cccocoooiiiiiiiiiii e 4-21
Bus Line Terminationoooiiiiiiiiiii e, 4-24
Single-Backplane Configurationioiiiiiiiie oo 4-27
Multiple-Backplane Configurationccoccoiiiiiiie e, 4-28
KDFIT-BA ProCeSSOT...cciiiiiiiiiiie e, 5-2
Base Timing Interface. ..o e, 5-5
MIB Decode LogiC.......c.coooiiiieeee e a e 5-7
KDF11-BA Bus Control Interfaceccooooiiimiiiiiiiii e 5-9
CDAL/BDAL INterface........ccocveoiiiieiiiiiieieece e, 5-15
Service and Reset Logic INterface.oooooiiviiiioeiee e 5-16
KDFI1-BA ODT Logic Interface......ccc.oooioioiieeeie e 5-19
FIXed Data LOZIC .oooueiiiieieiiece e e, 5-21
CDAL/IDAL INterface....ccooveoiiiiiieeiec e, 5-21
IDAL Address Decode LOZICc.coveveeieeieeeee e, 5-23
Bootstrap/Diagnostic and Line Clock LOZICc...cooooiiiiiiiiiicee e 5-25
SEral-Line UNItS....oooooiiiiiiiiiiiiii e e 5-27

'
]

('
S

O
\
O
\
O
\
O
\
?
\
O
\
O
\
O
\
m

O

~
-
1
O
N

N
B
W
k

—
—

T
 ~

O

O
O
O
O
O
O
\
J
\
J
T
J
*
Q
\
J
\
J
O
\
O
N

V
O
I
S

SI

SO

DR
I

SR
S

.
VA

R
N

\
D
\
O
\
O
\
O
O
O
O
O
O
'
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

9-5

FIGURES (Cont)

Title Page

Baud Rate Generator and —12 V Charge Pump.......ccoccooeviiiiiiiieccee, 5-30
Single-Operand Instruction Format...............ooo 6-2
Double-Operand Instruction Formatcccoccoeiiiiiiiiiiiiiiiiiiee e, 6-3
Register Mode Increment EXample 6-4
Register Mode Add Example........ccocviiiiiiiiniis e ens 6-4
Register-Deferred Mode Example ..., 6-5
Autoincrement Mode Example.......coooiviiii 6-5
Autoincrement-Deferred Mode Example ... 6-6
Autodecrement Mode EXamplecoooooiiiiiiiiiiii e 6-6
Autodecrement-Deferred Mode Example ..o 6-7
Index Mode Example.......oooooii s 6-7
Index-Deferred Mode Example ... 6-8
PC Immediate Mode Example ... 6-9
PC Absolute Mode Example............oooiiiiiiii e 6-9
PC Relative Mode EXamPpleccooooiieiieiiiiiii e 6-10
PC Relative-Deferred Mode Example......coooooiiiiiiiiii e 6-11
General Register Addressing Modescccooevvnvvvnnnnnn. e e 6-13
Program Counter Addressing Modes........ccooeiiiiiiiiiiiii 6-14
Single-Operand Instruction Format.............ccccooccci 7-2
Double-Operand Instruction Formatooooviiiiiiiiiiiiiiriiiiiicein e, 7-3
Branch Instruction FOrmat ... 7-5
JSR INStruction FOrmat ... e e e 7-5
RTS Instruction FOrmatooooiiiiiiiiiiii e 7-6
Condition Code Operators FOrmat.......ocoooeviiviiiieiiiiiin e 7-7
ACHIVE Page REeGISTETS ..ooiiiiiieiiiiiet e 8-2
Memory Relocation, Simplified Block Diagram ... 8-4
Relocation of a 32K-Word Program into 2 Megawords
Of PhySical MemOTY ... e 8-4
Page Address RegISteruvuiiiiiiiiiiiie e 8-5
Page Descriptor RegIStErooiiiiiiiiiiee e 8-6
Example of an Upward-Expandable Pagecccoii 8-7
Example of a Downward-Expandable Page................c.c 8-8
Format of Status Register O (SRO) .vvvvevnin e 8-9
Format of Status Register 2 (SR2) oo e 8-11
Format of Status Register 3 (SR3) oo 8-11
Interpretation of a Virtual Address............ooiii e 8-12
Displacement Field of a Virtual Address.........ccooiiiiiiiiiiiiiee 8-12
Formation of a Physical Address ..., 8-13
Single-Precision FOrmat... ..., 9-2
Double-Precision Formatocoooiiieriii e, 9-3
2’s Complement FOrmat..........oooooiiiii e 9-3
Floating-Point Status RegISter.....coooiiiiii 9-4
Floating-Point Addressing Modes ..o 9-10
Word and Byte Stacks........coooiiiiiiiiiiiiiii 10-5
Push and Pop Operations ... e 10-6
Byte Stack Used as a Character Buffer............ooooo e 10-9
JSR Stack Condition EXampIe ...cc..oovviiiiiiiieieiceeee e 10-10
Nested Interrupt Service Routines and Subroutinesccccccvveeiviiimiiiiernmenneene. 10-12
Reentrant ROULINESccooiiiiiiii ettt ee e e e 10-13

X1l

Figure No.

10-7
10-8
10-9
10-10
10-11
10-12
11-1
11-2
11-3
13-1
14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12
14-13
14-14
14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22
14-23
14-24
14-25
14-26
14-27
14-28
14-29
14-30
14-31
14-32
14-33
14-34
14-35
14-36
14-37
14-38
14-39

FIGURES (Cont)

Title Page

Sharing Control of @ RoOUtineoccccoiiiiiiiii e, 10-13

Coroutine EXampleooooiiiiiii 10-15

Coroutines Versus SUDFOULINESc..ovvueiiieieiiiiiiieee e re et e e e ecnnni e eenerenn 10-15

Corouting Path ...oooooiii et et 10-16

Coroutine INEEraCHION . ..uv ittt e e e e e eeine e 10-17
Recursive ROULINE FIOW ..oooo et 10-18
Page Control Register Format ..., 11-2
ROM Address Format Using PCR LO Byte ..o, 11-3
ROM Address Format Using PCR HI Byte ... 11-3
Serial-Line Register FOrmats........cocooccoiii e, 13-2
8-Bit Byte CRaracter......cooouiiiiiiiiiiiiiccic e 14-2
Character String DeESCIIPLOrvuviiiiiieiiiiieiiee e 14-2
Character String in MEMOIYooiiiiiiiiii e 14-3
Character Set FOTMAL ..oooiiiiiiiiiie e eeeeee e, 14-4
Decimal String DesCriPtoOr......u e riiiiii e 14-7
Packed String — Odd Digitsoooviiiionii e, 14-9
Packed String — Even DIigits ..o 14-9
Packed String — Zero Length ... 14-9
ZONEA SEIINES ..vviieiieiiiiee ettt et 14-10
Trailing Overpunched String ..o 14-12
Leading Overpunched String........ccoccoviiiiiiiiiiiiiiii e, 14-12
Trailing Separate SIrINgcooiciiiiiiiiii e 14-13
Leading Separate STINEooviiviiiie o 14-14
Zero-Length Trailing Separate Stringccccoocoiieiiiiiiiiiiiii e, 14-14
Zero-Length Leading Separate String.......cooccvvviiiniiiii e 14-14
Decimal Convert (Register FOrm) ..., 14-15
Decimal Convert (In-Line FOorm)........ccoooiiiiiiee 14-15
Add Decimal FOrmat ..ot e e 14-20
Add Decimal Format (Cleared).........coceiiiiieiiiriieie e 14-21
Shift Descriptor FOrmat..........ooocoiiiiiiiiiii e, 14-22
Arithmetic Shift Decimal FOrmatcocoooviiiiiiiei e 14-22
Arithmetic Shift Decimal Format (Cleared)cooooiiiiiiiiiiii i, 14-23
Compare Character Format............ccccoooiiii 14-24
Compare Character Termination Format...........ccooovii 14-24
Compare Decimal Format ... 14-26
Compare Decimal Format (Cleared)...........c.ccoooooii 14-26
Convert Long-to-Decimal Format.........cccvviiiieiiiniinie e, 14-27
Convert Long-to-Decimal Format (Cleared)c..cccoooiiiiiiiiiii 14-27
Convert Decimal-to-Long Format..........coooooeiiii 14-28
Convert Decimal-to-Long Format (Cleared)ooveeveiiiiiiiimiiiccien 14-28
Convert Decimal FOrmat ... 14-30
Convert Decimal Format (Cleared)oovvveeeiiiiiiiiiieeie e, 14-30
Divide Decimal FOrmat ..ot e 14-31
Divide Decimal Format (Cleared)oooviiiiimiiiiiiiiiiiiii e, 14-31
Locate Character Format (Register Form).........oooooiiiiiiii 14-32
Locate Character Termination Format............cooooiviiii i, 14-33
Locate Character Format (In-Line) ..o 14-33
Load Two Descriptors FOrmatoccoocieiiiiiiiii e, 14-34
Load Three Descriptors FOrmat..........ccooiiiiiiiiiiii e, 14-35

Figure No.

14-40
14-41
14-42
14-43
14-44
14-45
14-46
14-47
14-48
14-49
14-50
14-51
14-52
14-53
14-54
14-55
14-56
14-57
14-58
14-59
14-60
14-61

N
M
M
M
M
[
‘
I
\
)
I
\
J
N
M
N
'
—
'

O

OO
0

N
N

N

—

O

FIGURES (Cont)

Title Page

Match Character Format (Register FOrm)ooooooooeooeo e 14-36
Match Character Termination Formatoccoooiiieeeiioieeeee e 14-36
Match Character Format (In-Line)ccoooomiimom oo 14-37
Move Character Formatccoooo i, 14-38
Move Character Format (Cleared)........c..cooovvemmeeooeeeee oo 14-38
Move Reverse-Justified Character FOrmat.........ccooeveeooiovoeoeeeee oo 14-40
Move Reverse-Justified Character Format (Cleared) ..ccooooovveeeeeeeeeooeee 14-40
Move Translated Character Formatococooriimi oo, 14-42
Move Translated Character Format (Cleared)ooovvevvoeieeoeieeeeeeoeee o] 14-42
Multiply Decimal FOrmatcoooooiiiiiiii e 14-43
Multiply Decimal Format (Cleared)............cocooouveoiemeooeeeeeeoeeeeeeeoeeee 14-44
Scan Character FOrmat........oocoooiiiiiiiiiiiie oo, 14-45
Scan Character Termination FOFMat..........oocoooiiimioieoooe e 14-45
Scan Character Format (In-Line)........cooooiiiiioe e 14-46
Skip Character Format (Register FOrm)occoooiiiiioeoee oo 14-47
Skip Character Termination FOrmatocoooeoiinioiooe oo, 14-47
Skip Character Format (In-Line)...........cccoooviiiioiiiioeeeeeee oo, 14-48
Span Character Format (Register FOrm) ...ooovvoooeeoe oo 14-49
Span Character Termination FOrmat..............occooooiniiiiioioee oo 14-49
Span Character Format (In-Line)..........cocooooeioimoeonee oo 14-49
Subtract Decimal FOrmatcooooiii oo 14-50
Subtract Decimal Format (Cleared).........cc.ooooiieiooeeoee oo 14-51

TABLES

Title Page

Related DOCUMENtAtIONooooiviviieeeiieeeeeee e 1-8
Manufacturing Test JUMPErs........c..oooooiiiiiii oo 2-3
UART TeSt JUIMPET «.ieiieiieeee e, 2-3
Field Service Test JUMPETc..oooiiiiiiceeeee e e 2-4
Power-Up Mode Jumper Configurationsc.coooovieooe oo 2-4
Halt/Trap Jumper Configuration................c.ooooioiioeoiooeeeee oo 2-5
On-Board Device Selection JUMPETSccoooviioeeoiioeeeeeeeee e 2-6
Diagnostic/Bootstrap Program Selectionoccovoveieoeeeooee oo, 2-7
Bootstrap Program Selectionc..oooiiiiiiiiiiee oo 2-8
ROM (0r EPROM) JUMPETS ... 2-9
Console SLU Baud Rate Selectioncoouveeioorooreeeeeee oo 2-9
Console SLU Character Format JUMPErs............ocovovoooooeooeeeoe oo 2-10
Character Jumper Configurationsc..ooooovioveet oo 2-10
Break-on-Halt Jumper Configurations...............ooov oo emoeoee oo 2-11
Second SLU Baud Rate Selectionooovooioiioeeeeee e 2-11
Second SLU Character Format JUMPErsco.ooiveooiooeoeeeeeeeeeeeoe 2-12
Character Jumper Configurationsocoooueioiooeoor oo 2-12
[nternal /External SLU Clock Jumper Configurations..........ocovcveeeeveeivveeiereenn 2-13

‘Bus Grant Continuity JUMPETScovoreommeeeeeeeeeeeeeeeeeeeeeeeeeoeee o, 2-13
Factory Jumper Configurationscocooeoreeos oo 2-14

Xiv

Table No.

2-20
2-21
2-22
2-23

b
o
F

b
1

]
—

i

D
D

e

G0

DN

=
B
N

—

-
fl
—
*
h
—
*
m
-
—
\
D
O
O
O
O
O
O
O
O
I
\
]
O
\
O
\
G
\
M
U
\
U
\
L
A

D

D
Y

e
t

i

1

TABLES (Cont)

Title Page

Bootstrap/Diagnostic Factory Switch Configurations..............ccccoccooiin. 2-16
SLU Baud Rate Factory Switch Configurationsccoccveeviiveiieiiveicciecenee e, 2-16
KDF11-BA Extended Address Lines..........oooviiiiiiiiiiiiiiiiie e, 2-19
Console Power-Up Printout (or Display) ..., 2-22
Console ODT Commands ..ot 3-3
Console ODT States and Valid Input Characters..........ccocvveviiiieiiiiniiiicecece, 3-9
Summary of Signal Line Functionsccccoiiiiiiiiiiiii e, 4-1
Data Transfer Bus CycClesoovneiiii s 4-3
Data Transfer Bus Signals ..., 4-4
Position-Independent, Multilevel Device Requirementscccooiiiiiiiceniinnnnee. 4-19
Decoded General-Purpose QULPULvvviiiiiiiiiiiiieen ittt 5-8
Service Logic Bits <<06,04:02,00>>ccoooiiiiiiiiiiiiiii e, 5-17
Service Logic Bits <C12:07,05,01 > ...coirriiiiiiri e, 5-17
F11 Chip Reset SiZnals........ooooiiiiiiiiiiiiiieiiie ettt 5-18
Direct Addressing Modes..........coooiiiiiiiiiiiiiie et 6-11
Indirect Addressing MoOdes ... e 6-12
PC Register Addressing MoOdescuiviiiiiiiiiiiiiiiiiiee e 6-12
INStruction SYMDbOISouvveemiiie 7-11
Access Control Field Keys ... s 8-6
PAR/PDR Address ASSIZNMENESc..ieiiiiiiiiieiiieeiiieeiiee e 8-9
Relating Virtual Address Ranges to PAR/PDR Sets.......ccccooii 8-14
Processor Status Word ProteCtioncoooovoveieoreiininiiieieeieeeee e 8-17
FPS Register Bits.....ccooiiiiiii et e 9-5
Register Address ASSIZNMMENTS. . cooiii ittt et ee e 11-1
KDF11-BA LED DisSplay...ccooeiiiiiiiiiiiiiee e 11-4
List Of Error Halts. ..o e 11-5
Line Clock Status Register Bit ASSiZNMmentccoooeeiiiiiiriiiiiiiiiieneneeeeeeeeeee e 12-1
Serial-Line Register Addresses.....oooiiiiiiiiiiiiiiiiiee e s 13-2
RCSR1 and RCSR2 Bit ASSIZNMENLS ...ccooiiviiiiiiiiiiie e ceee e eeiiivneeeeee e e 13-3
RBUF1 and RBUF2 Bit ASSIZNMENTS ...o.oouuiiiiiiiiiiiiiie e e eeeveei s eeeaeee s 13-3
TCSR1 and TCSR2 Bit ASSIZNMIENTSouuuiiiiiiiiiiiiiiiieieeeieeaee e 13-4
TBUF1 and TBUF2 Bit ASSIZNMENtSoiiiiiiiiiiiiii e 13-4
Console and Second SLU Interrupt VECIOrS.......vvvieieiiiiiieieieiieeeiieeeee e e e, 13-5
SLU Connector Pin FUNCLIONScooooiiiiie e 13-5
KDF11-BA Common Microcode Cycle Timesccoooveieiiciiieiiieieieieeeeeeeiee B-1
KDF11-BA Peripheral Microcode Cycle Times..........ooooiiiiiiiiiiiiiiiiiiiiiieceeeannn B-2
MSVI11-P Parity MemOTYcoveiiiiiiiieieie e e e e e B-2
Source Address TIMESoovvvieiiiiiiiieeieee e ee e e, B-2
Destination Address TimeEscoooeeiiiiiiiiiiiiiieee e eeee e B-3
Basic (Fetch and Execute) TImesccoooiiiiiiiiiiiceiee e B-4
Jump InStruction TIMES ..ot B-5
Backplane Pin Assignment Comparison (Rows A and B)............cccooovinnn D-1
KDF11-BA Backplane Pin Assignment (Rows C and D)cccooevinniiininncnnnne, D-2
Extended LSI-11 Bus Signal Functions...............ccoooiiioiiiiiiiiereee e, F-1

XV

PREFACE

This guide i1s meant to familiarize you with the purpose and uses of the KDF11-BA Central Processor
Unit (CPU) module. Included are explanations of the features, options, capabilities, and technical char-
acteristics of the module, as well as general reference data. Specifically, this guide presents:

Information needed to configure, install, and operate the CPU module in a computer system.

An explanation of the module’s configuration requirements and a definition of the factory
configuration.

The module’s hardware and software operating features.

A functional description of the module’s major logic elements (using block diagrams).

General reference information and the differences between the KDF11-BA CPU module and

previous LSI-11 CPU modules (Appendices A through F).

XVii

CHAPTER 1
SPECIFICATIONS

1.1 INTRODUCTION
The KDF11-BA is a quad-height PDP-11 CPU module (M8189). This module contains a central pro-
cessor, memory management unit (MMU), a line frequency clock, a BDV11-compatible bootstrap and
diagnostic ROM, and two serial-line units. Three extra 40-pin sockets are provided for optional floating-
point and commercial instruction sets. The central processor and memory management units are func-
tionally compatible with the KDF11-AA CPU and MMU.

The KDF11-BA CPU supports up to 256K bytes of memory on a traditional LSI-11 bus backplane (18
address bits) or up to 4 megabytes of memory when the module is installed in an extended LSI-11 bus
backplane (H9276 or H9275). The extended LSI-11 bus backplane adds four address lines to the LSI-
11 bus to provide a 22-bit addressing capability when the KDF11-BA is used with the MSV11-P
(M8067) memory module. The extended LSI-11 bus will be referred to throughout this manual as the
LSI-11 bus except in those cases where a distinction must be made between it and the traditional LSI-
11 bus.

The central processor uses the LSI-11 bus or extended LSI-11 bus with 4-level interrupt bus protocol.
The KDF11-BA is compatible with existing LSI-11 processors and peripheral devices.

The LSI-11 bus is built based on LSI-technology requirements consistent with low-cost, high-perform-
ance and small-board-form factors. Low cost and high performance are realized, in part, through use of
multifunction lines such as the data/address lines (DALs), which reduce the number of pins to the bus.
Other lines, such as the I/O page address decode line, eliminate hardware by removing the need for
identical page decoders on each interface module. A detailed description of the extended LSI-11 bus is
contained in Chapter 4.

The KDF11-BA is software-compatible with the PDP-11 family. A wide range of software is available,
including programming languages, diagnostic software, and operating systems. Note, however, that not
all PDP-11 family software uses the extended addressing capability (22 bits) of the KDF11-BA.

1.2 FEATURES
The KDF11-BA CPU module (M8189) has the following features.

KDF11-AA-Compatible CPU

Instruction set with over 400 instructions
4-level vectored interrupts
16-bit word or 8-bit byte addressable locations
Multiple general-purpose registers
Stack processing
Direct memory access (DMA)
Power-fail /autorestart hardware
18-bit ODT console emulator

I-1

KDF11-AA-Compatible Memory Management

e 18- or 22-bit address
e Kernel and user modes only (no supervisor mode)
e I-space only (no D-space)

Optional Floating-Point Instruction Set

Optional Commercial Instruction Set

On-Board Peripherals

Line frequency clock
BDV11-compatible boot and diagnostic
Console serial-line unit
Second serial-line unit

Extended LSI-11 Bus Interface (AB Rows)

1.3 SPECIFICATIONS

Identification

Size

Dimensions

Power Consumption

AC Bus Loads

DC Bus Loads

Environmental

Storage

Operating

Instruction Timing

Mg&189

Quad

26.6 cm X 22.8 cm (10.5 in X 8.9 in)

+5V = 5% at 6.4 A (maximum), 4.5 A (typical)

+12V = 5% at 0.7 A (maximum), 0.3 A (typical)

2 unit loads

1 unit load

—40° C to 65° C (—40° F to 150° F) 10% to 90% relative humidity,
noncondensing

5 C to 60° C (41° F to 140° F) 10% to 90% relative humidity, non-
condensing

Maximum outlet temperature rise of 5° C (9° F) above 60° C (140° F)

Derate maximum temperature by 1° C (1.8° F) for each 305 m (1000 ft)
above 2440 m (8000 ft).

Based on 75 ns intervals

(See Appendix B.)

[-2

Interrupt Latency 5.7 us
12.600 us, maximum (except EIS)
54.225 ps, maximum (including EIS)

Interrupt Service 8.625 us (memory management off)
9.750 us (memory management on)

DMA Latency 1.35 us, maximum

NOTE
Interrupt and DMA latencies assume a KDF11-BA
with Memory Management Enabled and using
MSV11-P memory.

1.4 PROCESSOR HARDWARE
The KDF11-BA processor is implemented using three chips. Two MOS/LSI chips, data and control on
a single hybrid package, implement the basic processor. The memory management unit (MMU), the
third chip, provides a PDP-11/34 software-compatible memory management scheme.

The data chip (DC302) performs all arithmetic and logical functions, handles data and address trans-
fers with the external world, and coordinates most interchip communication. The control chip (DC303)
does microprogram sequencing for PDP-11 instruction decoding and contains the control store ROM.
The data and control chips are contained in one 40-pin package. The MMU chip (DC304) contains the
registers for 18-bit or 22-bit memory addressing and also includes the FP11 floating-point registers and
accumulators. Optional floating-point requires the MMU chip. Data and control chips do not need the
MMU chip for 16-bit addressing.

1.4.1 General-Purpose Registers
The data chip contains nine 16-bit general-purpose registers that provide for a variety of functions.
Note, however, that only eight of these registers may be used at any given time. These registers can
serve as accumulators, index registers, autoincrement registers, autodecrement registers, or as stack
pointers for temporary storage of data. Arithmetic operations can be from one general register to anoth-
er, from one memory location or device register to another, between memory locations, or between a

device register and a general register. Figure 1-1 identifies the general registers RO through R7.

GENERAL RO

REGISTERS
R1

R2

R3
R4

R5

KERNEL USER

| R6 Jisp) [R6 | (sp)
STACK POINTER STACK POINTER

R7 | (PC)

PROGRAM COUNTER

MR-35635

Figure 1-1 General-Purpose Registers

1-3

Registers R6 and R7 are dedicated. The KDF11-BA contains two R6 registers which are selected by
the processor status word (PS) so that only one is accessible at any given time. R6 serves as the stack
pointer (SP) and contains the location (address) of the last entry in the stack. Register R7 serves as the
processor’s program counter (PC) and contains the address of the next instruction to be executed. Reg-
ister R7 is normally used for addressing purposes only and not as an accumulator. Register operations
are internal to the processor and do not require bus cycles (except for instruction fetch); all memory
and peripheral device data transfers do require bus cycles, however, and longer execution time. Thus,
general registers used for processor operations result in faster execution times.

1.4.2 Bus Cycles
The bus cycles (with respect to the processor) are as follows.

DATI Data word transfer input Equivalent to read operation

DATO Data word transfer output Equivalent to write word
operation

DATOB Data word transfer output Equivalent to write byte
operation

DATIO Data word transfer input Equivalent to read /modify/
followed by word transfer write word operation
output

DATIOB Data word transfer input Equivalent to read /modify/
followed by byte transfer write byte operation
output

Every processor instruction requires one or more bus cycles. The first operation required is a DATI,
which fetches an instruction from the location addressed by the program counter (R7). If no more oper-
ands are referenced in memory or in an I/O device, no additional bus cycles are required for instruction
execution. If memory or a device is referenced, however, one or more additional bus cycles is required.
DMA operations may occur between individual bus cycles, since these operations do not change the
state of the processor.

Note the distinction between interrupts and DMA operations: interrupts, which may change the state of
the processor, can occur only between processor instructions, while a DMA operation can occur be-

tween bus cycles. For more details on bus operations refer to Chapter 4.

1.4.3 Addressing Memory and Peripherals
The KDF11-BA processor uses 16-bit data paths throughout. These data paths are also used to con-
struct operand and instruction addresses. Octal notation 1s used to describe information on the data
paths.

A processor word is divided into a high byte and a low byte as shown in Figure 1-2. Word addresses are
always even-numbered. Byte addresses can be either even- or odd-numbered. Low bytes are stored at
even-numbered memory locations, high bytes at odd-numbered memory locations. Thus, it is convenient
to view the memory as shown in Figure 1-3. |

15 08 07 00

HIGH BYTE LOWBYTE

1 1 1 L A i | 1] 1 1 1 1 A

MR-3636

Figure 1-2 High and Low Bytes of a Processor Word

16-8IT WORD

BYTE BYTE 8-BITBYTE

HIGH LOW 000000 LOW 000000

HIGH LOW 000002 HIGH 000001

HIGH LOW 000004 LOW 000002

HIGH 000003

LOW 000004

F e i

P T B P, OR Pt
MM

HIGH LOW 017772 . HIGH 017775

HIGH LOW 017774 LOW 017776

HIGH LOW 017776 HIGH 017777

WORD ORGANIZATION BYTE ORGANIZATION

MR-3637

Figure 1-3 Word and Byte Addresses for First 4K Words of Memory

The full 16-bit data path allows a program to specify operand addresses (i.e., virtual addresses) any-
where within a 64K-byte range or 32K-word range. This virtual address range is fixed by the instruction
format and cannot be changed by the user.

For applications that require more than 32K words of physical addresses, such as multiprogramming
and/or timesharing applications, six additional addressing bits are available. These bits allow up to 2
megawords of memory to be physically addressed by the processor. This additional addressing capabili-
ty is part of the standard memory management within the KDF11-BA architecture.

1.4.4 Memory Management
The memory management has the following three major features.

1. Two software modes that are useful for multiuser (timesharing) systems.

2. Extended memory addressing (greater than 32K words, up to 2 megawords) to allow more
than one program to reside in memory at the same time.

3. Memory protection for controlling user program access to system resources (e.g., memory,
1/0). -

The first feature provides a kernel and user mode to allow efficient segmentation of memory for multi-
user environments. Kernel mode is employed by the operating system to control system resources and
allows full privileges of the entire system. The user mode is employed for executing a user program and
restricts processor privileges. In user mode, the processor is inhibited from executing certain instruc-
tions (e.g., the HALT instruction cannot be executed).

1-5

The second feature provides a full 22-bit memory addressing capability. Mapping registers are used to
map (relocate) the 32K-word virtual address space anywhere in the 2 megaword physical address space.

The third feature allows restricted access to virtual memory pages (a page is defined as 4K words long).
This permits the operating system software rather than the user program to control system resources in
a multiprogramming environment. This feature ensures that no user operating in user mode can cause a
failure of the entire system. Chapter 8 contains a complete discussion of memory management.

1.4.5 Processor Status Word (PS)

The processor status word (PS) is in the data chip and contains information on the current status of the
processor. As shown in Figure 1-4, this includes: the condition codes describing the arithmetic or logical
results of the last instruction, a trace bit that forces a trap at the end of instruction execution (used
during program debug), the current processor priority, an indicator of the previous memory manage-
ment mode, and an indicator of the current memory management mode. The processor status word is

located at physical address 17777776.

15 14 13 12 11 09 08 07 05 04 03 02 01 00

PRIORTY
CM PM S LEVEL T N Zz \Y C

‘ 1]] 1 l * ‘
b — | I } Y \

Y

RESERVED TRACE —’ 1

PREVIOUS MEMORY NEGATIVE
MANAGEMENT MODE ZERO

CURRENT MEMORY OVERFLOW
MANAGEMENT MODE CARRY

SUSPENDED
INSTRUCTION

MRA-3638

Figure 1-4 Processor Status Word (PS) Format

1.4.5.1 Condition Codes (PS bits <<3:0>) - The condition codes contain information on the result of
the last CPU operation. The bits are set after execution of all arithmetic or logical single-operand or
double-operand instructions. The bits are set as follows.

N = 1 if the result was negative.

= 1 if the result was 0. Z

V = 1 if the operation resulted in an arithmetic overflow.

C = 1 if the operation resulted in a carry from the MSB (most significant bit) or a 1 was shifted
from the MSB or LSB (least significant bit).

1.4.5.2 Trace Bit (PS bit <4>) — The trace bit is used in debugging programs since it allows instruc-
tions to be single-stepped.

1.4.5.3 Priority Level (PS bits <<7:5>) ~ These bits are used by the software to determine which
interrupts will be processed.

Octal Value of PS<<7:5> Interrupt Level Acknowledged*

7 None
6 7,
b 7, 6,
4 7,6, 5,
3 7,6, 5, 4

2 7,6,5,4
1 7,6,35, 4
0 7,6,5,4

*Higher levels acknowledged first.

1.4.5.4 Suspended Instruction (SI) (PS bit <<8>) — This bit is reserved for use by DIGITAL and is
intended for options such as the commercial instruction set (CIS). This bit is read/write and has no
protection mechanism. Refer to Paragraph 8.5.3.2 for more details.

1.4.5.5 Previous Mode (PS bits <<13:12>>) — These bits are used with memory management to in-
dicate the last memory management mode. They are read /write bits and are present even without the
memory management option.

1.4.5.6 Current Mode (PS bits <<15:14>) - These bits indicate the present memory management
mode. They are read/write and are present even without the memory management option.

1.5 INSTRUCTION SET

The KDF11-BA instruction set provides over 400 powerful instructions. As a comparison with other
instruction sets, consider that most other (for example, accumulator-oriented) 16-bit processors require
three separate instructions to execute a common double-operand instruction (e.g., ADD). The following
is the conventional approach to a simple operation.

LDA A Load contents of memory location A into accumulator.

ADD B Add contents of memory location B to accumulator.

STA B Store result at location B.

By contrast, the KDF11-BA can fetch both operands, execute, and store the result in one instruction.

ADD A, B Add contents of location A to location B; store result at location B.

This greater efficiency not only saves memory space and time, but also improves processor speed since
fewer instruction fetches are required.

Another major advantage of the KDFI1-BA instruction set is the absence of special-purpose in-
put/output instructions. Special I/O instructions are unnecessary since peripheral device registers are
accessed in the same way as main memory locations. This approach to handling 1/0 devices allows the
normal instruction set to be used to test and/or manipulate the various 1/0 device register bits. For
example, a COMPARE instruction can test status bits directly in the 1/O device register without bring-
ing them into memory or disturbing any of the general registers; control bits can be set, cleared, or
shifted as is most convenient; and peripheral data can be arithmetically or logically altered when re-
ceived at the device register and before being stored in memory. Refer to Chapter 7 for a complete
description of the instruction set and its utilization.

1-7

Addressing Modes - Much of the flexibility of the KDF11-BA is derived from its wide range of address-
ing capabilities. Addressing modes include sequential forward or backward addressing, address in-
dexing, indirect addressing, absolute 16-bit word and 8-bit byte addressing, and stack addressing. Vari-
able-length instruction formatting allows a minimum number of words to be used for each addressing
mode. The result is efficient use of program storage space. For more details on addressing modes refer
to Chapter 6.

1.6 FLOATING-POINT OPTION
Forty-six floating-point instructions are available as a microcode option (KEF1 1-AA) on the KDF11-
BA processor. These instructions supplement the integer arithmetic instructions (e.g., MUL, DIV, etc.)
in the basic instruction set. The floating-point option allows floating-point operations to be executed
faster than equivalent software routines and provides for both single-precision (32-bit) and double-preci-
sion (64-bit) operands. This option also conserves memory space, since floating-point routines are exe-
cuted in microcode instead of software. This option implements the same floating-point instruction set
found on the PDP-11/34, PDP-11/60, and PDP-11/70. For a complete description refer to Chapter 9.

1.7 COMMERCIAL INSTRUCTION SET OPTION
The commercial instruction set (CIS) is a microcode option (KEF 11-BB) that adds character string
instructions to the basic PDP-11 instruction set. The character string operations conveniently imple-
ment most of the common, as well as time consuming functions that are encountered in commercial
data and text processing applications. The microcode option is completely compatible with the standard
PDP-11 commercial instruction set. The CIS microcode resides in six MOS/LSI chips mounted on a
single double-width 40-pin carrier.

1.8 MEMORIES AND PERIPHERALS
Digital Equipment Corporation provides a wide range of memories and peripherals to allow maximum
flexibility in configuring systems. A detailed list and descriptions can be found in the Microcomputer
and Memories Handbook and the Microcomputer Interfaces Handbook.

1.9 RELATED DOCUMENTS
Table 1-1 lists documents containing additional information of possible interest to KDF11-BA processor
users.

Table 1-1 Related Documentation

Title Document Number

Microcomputer Interfaces Handbook EB-20175-20/80
Microcomputer and Memories Handbook EB-18451-20/80
PDP-11 Processor Handbook EB-09402-20/81
PDP-11 Software Handbook EB-08687-20/80
PDP-11/23B Mounting Box Technical Manual EK-1123B-TM-001
PDP-11/23B User’s Guide EK-1123B-UG-001
KDF11-B Field Maintenance Print Set MP-01236

These documents can be ordered from:

Digital Equipment Corporation
Printing and Circulation Services
444 Whitney Street
Northboro, MA 01532

Attention: Communications Services (NR2/M15)
Customer Services Section

1-8

CHAPTER 2
INSTALLATION

2.1 INTRODUCTION
This chapter discusses the basic considerations and requirements for configuring and installing the

KDF11-BA processor in LSI-11 systems using an extended LSI-11 bus backplane as well as existing

LSI-11 systems using one of the LSI-11 bus backplanes. The items that must be considered fall into

four basic categories.

1. Configuration of jumpers and switches for operation of user-selectable features.

2. Selection of an LSI-11 bus-compatible backplane and mounting box.

3. Selection of LSI-11 bus-compatible options and accessories.

4. Knowledge of system differences if replacing an LSI-11, LSI-11/2 or LSI-11/23 (KDF11-
AA) processor with an LSI-11/23B (KDF11-BA) processor.

See Paragraph 1.9 for information on ordering documents referred to in this chapter.

2.2 JUMPER AND SWITCH CONFIGURATION
The KDF11-BA contains two DIP (dual in-line package) switch units (E102 and E114) and a number

of jumpers that allow the user to select the module features desired. The location of the switch units

and jumpers is shown in Figure 2-1. The boot/diagnostic switch unit (E102) consists of eight switches

that let the user select boot and diagnostic programs. The second switch unit (E114) selects the baud

rate for the console SLU (serial-line unit) and the second SLU. The module contains both wirewrap

jumper stakes and soldered-in jumpers. The jumpers are divided into the following functional groups.

Test jumpers
CPU (central processor unit) option jumpers
Device selection jumpers
Boot and diagnostic ROM jumpers
SLU character format jumpers
Internal /external SLU clock jumpers
Bus grant continuity jumpers N

 hs
L
D

2.2.1 Test Jumpers .

The test jumpers described in the following paragraphs are used for tests performed by manufacturing

and field service.

2-1

suoneoo|
Aejdsi(q

snsougei(q
pue

‘Yoyumg
‘rodwing

v
g
-
1
1
4
a

8
r
r
S
-
d
y
y

[-C
2
3
1

‘NOI
LISOd

,.NO..
NI

NMOHS
34V

&'
—2S

ANV
"2V’ Z' 1~ 1S STHOLIMS

b
‘a3123INNOD

1ON
—

SI ¥2r
"€2r

0L
Q3LDINNOD

SIZZr
A3SN

34V
S WOHAI

NIHM
'€

"a3103NNOD
LON

SI
Z2f

-£2r
01

A31D3NNOD
SI p2r

03SN
34V

S WOH
AINSYW

NIHM
'Z

"‘NOILVHNOIINOD
AHOLOV

IHL
MOHS

SHIJWNT
GITIVLSNI

'L

‘
S
3
1
0
N

£Er
o

br

Sr

><._n_m_n_,

O
1
1
S
O
N
O
V
I
A

—
»

or
?ms_

‘
I

E

iz
—

3
7
T

NO
U
M
d

A
S+

o
L
r
o

o
L

J
o
o
{

3}o
LM

ZM
—

Liro
zzro

&
8

yzr
00:£0

9Z13
Zilf

o
gzr

(
3
L
A
8

01}

€lro
13ND0S$

il
o

WOHd3/WOHN

alfe
W

Lifo
80'SlL

/213
8Lr

(3LAE
IH)

6
L
I

Z
0
1
3

L
1

L
I
M
O
0
S

WOHJ3/WOHY
i
w
v
a
l
|
C
I
J

s
|
1
0

{8
—

]

—
X

z
NS

1
3

=

1
3

[m
E
E

E)
v

1
]

1

L
A7S

(OAW)
[

.
3

INIWIOVNYVIN
A
H
O
W
I
W

colval|
]

|t
|
D

|

NO
340

NO
340

543
(15)

DLLSONOVIQ
(28)

1037138
o
,

{NdD)
/1004

v

oo
TOHLNOD

ONV
V1Vd

anve
 aan
lEro
Zero

9/3

(NOILJO
V
Y
V
~

L L43M)
LINIOd

ONILVO14
1

[
]

[
]

L
]

[
—

[
]

—

TE
3

gero
_

ver
138

Ger
NOILINYLSNI

T
V
I
O
H
I
W
W
O
D

_
9Ero

GZro
LET

8/3
—

ger
8Er

Lzr
6Er ©

(NOILJO
88-11433)

13S
_

oer
ovr o

NOILDNYISNI
T
V
I
D
H
I
W
N
O
D

)

Ler

370SNOD
ZMms

o
&3

4
3

Lr
er

1/
“

_
/
/

LPF
Z¥F

€4r
v¥r

Spr
Opr

2-2

2.2.1.1 Manufacturing Test Jumpers — Three wirewrap jumpers are provided for manufacturing tests.
The jumpers are removed while the tests are performed and must be installed for normal operation.
Table 2-1 lists the manufacturing test jumpers.

Table 2-1 Manufacturing Test Jumpers

Jumpér
From [To Function

J6 J7 Connects the system oscillator to the CPU and LSI-11 bus timing circuits.

J8 J9 Connects the PHASE signal to the input of the F11 chip clock drivers.

J20 J21 Connects the baud rate crystal oscillator to the SLU baud rate generator and the —12
V charge pump circuit.

2.2.1.2 UART Test Jumper — For normal operation the bus initialize signal (BINIT) will clear the
UARTS on the console and second SLUs. If a character is in either of the UARTS’ buffers and a RE-
SET instruction is executed before the character is read, the character is lost. The three jumper stakes
(J33-J35) allow the console UART to be configured so it will be cleared by power-up and system re-
start only. Currently this feature is not used by DIGITAL in manufacturing or field service testing.
Table 2-2 describes the jumper configuration for the UART test jumper.

CAUTION
Standard field service SLU diagnostics will FAIL if
the reset disabled configuration is selected. Normal
system and diagnostic operation requires that this
feature not be selected.

Table 2-2 UART Test Jumper

Jumper Reset Normal
From To Function Disabled Operation

J35 J34 Connects LINITF(1) H to the R I
console SLU UART reset input.

J33 J34 Connects DCOKC2B L to the console I R
SLU UART reset input.

R = removed; | = installed.

2.2.1.3 Field Service Test Jumper - This jumper allows field service personnel to check out the console
terminal and its cable independently of the processor. When the jumper is installed in the test con-
figuration, the serial input from the console is looped through the console SLU connector (J1) back to
the console. Table 2-3 describes the jumper configuration for normal operation and field service testing.

2-3

Table 2-3 Field Service Test Jumper

Jumper Field Normal
From To Function Service Operation

J27 J26 Connects the output of the R I
console serial-line driver to

the console serial-output line.

J25 J26 Connects the serial-line input I R
from the console connector to
the console connector serial-line

output.

R = removed; | = installed.

2.2.2 CPU Option Jumpers |
Four wirewrap stakes provide user-selectable features associated with the operation of the CPU. The
ground stake can be connected to any combination of the other three stakes to select the available fea-
tures. Two power-up mode stakes select one of four power-up modes. The halt/trap stake selects the
halt/trap option.

2.2.2.1 Power-Up Mode Selection — The four power-up modes are selected by installing Or removing
In various combinations the wirewrap jumpers between jumper stakes J17 and J19 and the ground stake
(J18). The jumper configurations for the modes are listed in Table 2-4.

Only the power-up mode is affected, not the power-down sequence. The following paragraphs describe
the sequence of events after executing common power-up for each of the four modes. The state of bus
signal BHALT L is significant in power-up mode operation.

Table 2-4 Power-Up Mode Jumper Configurations

Jumper Jumper
J18 to J19 J18 to J17 Mode Name

R R 0 PC@24, PS@26
R I 1 Console ODT
I R 2 Bootstrap
I I 3 Extended microcode

R = removed; | = installed.

Power-Up Mode 0 - This mode causes the microcode to fetch the contents of memory locations 24g and
263 and loads their contents into the PC and PS, respectively. The microcode then examines BHALT L.
If BHALT L is asserted, the processor enters console ODT mode; if it is not, the processor begins pro-
gram execution by fetching an instruction from the location pointed to by the PC. This mode is useful
when power-fail/auto-restart capability is desired, but is valid only when used with nonvolatile memory.

Power-Up Mode 1 — This mode causes the processor to enter console ODT (on-line debugging tech-
nique) mode immediately after power-up, regardless of the state of any service signals. This mode is
useful in a program development or hardware debugging environment — the user has immediate control
over the system after power-up.

2-4

Power-Up Mode 2 — This mode causes the processor to generate internally a 16-bit bootstrap start ad-

dress of 1730005 (the conventional start address for DIGITAL systems). This address is loaded into the

PC. The processor sets the PS to 3403 (PS<7:5> = 7) to inhibit interrupts before the processor is

ready for them. If BHALT L is asserted, the processor enters console ODT mode; if it is not, the pro-

cessor begins execution by fetching an instruction from the location pointed to by the PC. This mode 13

useful for turn-key applications where the system automatically begins operation without operator inter-

vention.

Power-Up Mode 3 - This mode causes the microcode to jump to optional control chip number 37g,
location 76g, and begin microcode execution. This mode is reserved for future microcode expansion by

DIGITAL and is not recommended for customer usage. If it is erroneously selected, the processor will

treat it as a reserved instruction trap to location 10g.

2.2.2.2 Halt/Trap Option — If the processor is in kernel mode and decodes a HALT instruction,

BPOK H is tested. If BPOK H is negated, the processor will continue to test for BPOK H. The proces-

sor will perform a normal power-up sequence if BPOK H becomes asserted sometime later. If BPOK H

is asserted after the HALT instruction decode, the halt/trap jumper (J16) is tested. If the jumper is

removed, the processor enters console ODT mode. If the jumper is installed, a trap to location 10g will

occur. |

NOTE |

In user mode a HALT instruction execution will al-

ways result in a trap to location 10g.

This feature is intended for situations where recovery from erroneous HALT instructions is desirable,
such as unattended operation. Table 2-5 lists the halt/trap jumper functions for kernel and user proces-

sor modes. |

Table 2-5 Halt/Trap Jumper Configuration

Jumper Processor
J18 to J16 Mode Function

R Kernel Processor enters console ODT microcode when it executes a HALT in-

struction.

I Kernel Processor traps to location 10g when it executes a HALT instruction.

X User HALT instruction decode results in a trap to location 10g regardless of

the status of the halt/trap jumper.

R = removed; | = installed; X = “Don’t care.”

2.2.3 On-Board Device Selection Jumpers
Six wirewrap stakes on the KDF11-BA module are used to select which on-board peripheral devices are

to be enabled or disabled. The ground stake can be connected to any combination of the other five

stakes to obtain the desired configuration. The jumper functions are described in Table 2-6.

2-3

Table 2-6 On-Board Device Selection Jumpers

Stake Stake
Number | Name Function

J10 Ground This wirewrap stake provides a ground source for the other five wirewrap
stakes in this group.

J15 BDK DISJ L | When grounded, this signal disables the boot/diagnostic registers, the
boot /diagnostic ROMs, and the line clock register.

J11 LTC ENBJ L | When grounded, this signal forces the line clock interrupt enable flip-flop to
be set and allows the LSI-11 bus BEVNT signal to request program inter-
rupts unconditionally.

J14 DLI1 DISJ L | When grounded, this signal disables the console serial-line registers. When
ungrounded, the device and vector addresses for the console SLU are the
following.

Device Addresses Interrupt Vectors

RCSR 17777560 Receiver 060
RBUF 17777562 Transmitter 064
XCSR 17777564
XBUF 17777566

NOTE
If DL1 DISJ L is grounded, the break-on-halt feature must also be disabled
(Paragraph 2.2.5.3).

J13 DL2 DISJ L | When grounded, this signal disables the second serial-line registers. When
ungrounded, the device and vector addresses for the second SLU are deter-
mined by the status of the DL2 ADRJ L jumper.

J12 DL2 ADRJ L | When DL2 ADRIJ L is ungrounded, the second SLU device and its vector
addresses are as follows.

Device Addresses Interrupt Vectors

RCSR 17776500 Receiver 300
RBUF 17776502 Transmitter 304
XCSR 17776504
XBUF 17776506

When DL2 ADRJ L is grounded, the device and vector addresses are as
follows.

Device Addresses Interrupt Vectors

RCSR 17776540 Receiver 340
RBUF 17776542 Transmitter 344
XCSR 17776544
XBUF 17776546

2-6

2.2.4 Bootstrap/Diagnostic Switches and Jumpers
A 16-pin DIP switch pack (E102) and two jumpers on the KDF11-BA module provide switch-selectable
bootstrap and diagnostic programs for hard disks and diskettes or the customer’s own bootstrap pro-
gram. The KDF11-BA will have BDV11 functionality only if the BDV11 2K X 8 diagnostic/bootstrap
ROMs or EPROMs containing DIGITAL programs are installed in sockets E126 and E127. The
switch and jumper functions are described in Paragraphs 2.2.4.1 and 2.2.4.2 and their locations are
shown in Figure 2-1.

2.2.4.1 Bootstrap/Diagnostic Configuration Switches — Boot and diagnostic configuration register bits
<<07:00> reflect the status of the eight switches of the S1 switch pack (E102). Switches S1-1 through
S1-4 are used to select a diagnostic and/or a bootstrap program. Switches S1-5 through S1-8 are used
in conjunction with switches S1-3 and S1-4 to select the specific bootstrap program desired. The switch
configurations when using the BDV11 2K X 8 diagnostic bootstrap ROMs (DIGITAL) are listed in
Tables 2-7 and 2-8. .

Table 2-7 Diagnostic/Bootstrap Program Selection

CDAL | Switch Switch
Bit Number Position Function

00 S1-1 On Execute CPU diagnostic upon power-up or restart.

01 S1-2 On Execute memory diagnostic upon power-up or restart.

02 S1-3 On DECnet boot (S1-4 through S1-7 are arguments*).

03 S1-4 On Console test and dialogue (S1-3 Off).

03 S1-4 Off g;;;-key boot dispatched by S1-5 through S1-8 configuration (S1-3

* DECnet boot arguments are:

Switch Positions
Boot Devicet S1-4 S1-§ S1-6 S1-7

DUVII On X X X

DLVII-E Off On X Off

DLVI11-F Off On X On

T DLVI11-E CSR = 17775610

DLVII-F CSR = 17776500
DUVI11 CSR = 17760040 if there are no devices from 17760010 to 17760036

X = “Don’t care.”

2-7

Table 2-8 Bootstrap Program Selection

Device Switches: S1-5 S1-6 S1-7 S1-8 Program
Mnemonic* CDAL Bit: 04 05 06 07 Selected

DKn;n < 8%* Off Off Off On RKO05 boot

DLn;n < 4 Off Off On Off RLO1 or RLO2 boot

DDn;n < 2 Off Off On On TUS8 (SLU) at 776500
boot

DXn:n < 2 Off On Off Off RXO01 boot

DYn;n < 2 Off On On Off RX02 boot

*n = unit number

All bootstrap programs other than the DECnet boots above are controlled by the bit patterns in switch-
es S1-5 through S1-8. The bit patterns are described in Table 2-8. If the console test is selected (S1-4
On, S1-3 Off), the bootstrap program is controlled by a device mnemonic and unit number supplied by
the console operator. These device mnemonics are also described in Table 2-8.

The console test prompts the operator with

XXXX.KW
START?

where XXXX is the decimal multiple of 1024 words of RAM found in the system when sized from O up
in consecutive 1024-word increments. The first word of each 1024-word segment is read and written

back to itself.

The console operator responses are a 2-character device mnemonic with a 1-digit octal unit number or
one of two special single-character mnemonics. If no 1-digit unit number is specified, the unit 0 is se-

lected. The response must be followed by a <<CR> (carriage return). The special single-character

MNEemonicCs are

Y Use switch settings to determine boot device
N HALT - enter ODT microcode

2.2.4.2 Bootstrap/Diagnostic ROM Jumpers — Two 24-pin sockets (E126 and E127) are provided for

the installation of 2K X 8 ROMs or EPROMs. When EPROMs are inserted into the two ROM sock-

ets, +5 V must be applied to pin 21 of each socket. For all other ROMs used in this option, ROM

address bit 13 (BTRA 13 H) must be applied to pin 21. This pin is a chip select input for 2K ROM:s.

Table 2-9 describes the jumper configurations when using ROMs or EPROMs. Figure 2-1 shows the

location of jumper stakes J22, J23 and J24.

2-8

Table 2-9 ROM (or EPROM) Jumpers

Jumper Memory Type
From To ROM EPROM | Function

J24 J23 [R Connects BTRA 13 H to pin 21 of the two ROM sockets.

J22 J23 R | Connects + 5 V to pin 21 of the two ROM sockets.

I = installed; R = removed.

2.2.5 Console SLU Switch and Jumper Configurations
Four switches of a 16-pin DIP switch pack (E114) and four jumpers provide user-selectable features
associated with the operation of the console serial-line unit. The switch and jumper functions are de-
scribed in Paragraphs 2.2.5.1 through 2.2.5.3 and Paragraph 2.2.7.

2.2.5.1 Console SLU Baud Rates - Switches 1-4 of the S2 switch pack (E114) select 1 of 16 possible
SLU baud rates if the internal baud rate generator is used as the clock source. If the KDF11-BA is
configured to operate the SLU with an external clock, the positions of these switches are meaningless.
Paragraph 2.2.7 describes the jumper configuration for internal /external baud rate clock selection.

The SLU transmits and receives at the selected baud rate. Split baud operation is not provided. The
switch configuration for selecting any one of the available baud rates is described in Table 2-10.

Table 2-10 Console SLU Baud Rate Selection

Switch Position

S2-4 S2-3 S2-2 S2-1 Baud Rate

On On On On 50

On On On Off 75
On On Off On 110

On On Off Off 134.5
On Off On On 150
On Off On Off 300
On Off Off On 600
On Off Off Off 1200
Off On On On 1800

Off On On Off 2000
Off On Off On 2400
Off On Off Off 3600
Off Off On On 4800 -
Off Off On Off 7200
Off Off Off On 9600
Off Off Off Off 19200

2.2.5.2 Console SLU Character Formats — Five wirewrap stakes are used to select options for estab-

lishing the console SLU character format. The ground stake can be connected to any combination of

the other four stakes to configure the character format for the following options.

One or two stop bits
Seven data bits plus parity
Eight data bits without parity
Odd or even parity

The jumper stake functions are described in Table 2-11 and the jumper configurations are described in

Table 2-12.

Table 2-11 Console SLU Character Format Jumpers

Stake Stake

Number | Name Function

J38 Ground This wirewrap stake provides a ground source for the other four wirewrap

stakes in this group.

J39 DL1 CH7J L|When grounded, this signal causes the UART to transmit and receive 7-bit

characters. Otherwise, the UART is formatted for 8-bit characters.

J37 DL1 ST1J L {When grounded, this signal causes the UART to transmit and receive one

stop bit. Otherwise, it is formatted for two stop bits.

J36 DL1 PARJ L|When grounded, this signal enables UART parity generation and checking.

Otherwise, parity is disabled.

J40 DL1 ODDJ L|When DL1 PARJ L and DL1 ODDJ L are both grounded, odd parity is se-

lected. If only DL1 PARJ L is grounded, even parity is selected.

Table 2-12 Character Jumper Configurations

Jumper
From To J38 Character Format Option

J39 IN 7-bit characters
OouT 8-bit characters

J37 OouT Two stop bits
IN One stop bit

J36* IN Parity check enabled

OouT Parity check disabled

J40 IN Odd parity if J36 is 1n.

OUT Even parity if J36 1s 1n.

NOTE: If 8-bit characters (J39 OUT) are selected, parity check

must be disabled (J36 OUT).

2-10

2.2.5.3 Break-on-Halt Jumpers — Two jumpers enable and disable the break-on-halt feature. If this
feature is enabled, the detection of a break condition by the console UART causes the processor to halt
and enter the on-line debugging technique (ODT) microcode. If this feature is disabled, there is no
response to the break condition. Table 2-13 lists the jumper configurations for selecting the break-on-
halt feature.

Table 2-13 Break-on-Halt Jumper Configuration

Jumper Break Feature
From To Function Enabled Disabled

J5 J4 Connects ground to RQ HLT H. R [

J3 J4 Connects DL1 FE H to RQ HLT H. | R

R = removed:; I = installed.

J3 = DLI FE H

J4 = RQ HLTH

J5 = Ground

2.2.6 Second SLU Switch and Jumper Configurations
The second SLU is configured in the same manner as the console SLU except that a different set of
switches and jumpers are used to select the available SLU features. The switch and jumper functions
for the second SLU are described in Paragraphs 2.2.6.1 and 2.2.6.2.

2.2.6.1 Second SLU Baud Rates — Switches 5 through 8 of the S2 switch pack (E114) select 1 of 16
baud rates for the second SLU, if the internal baud rate generator is used as the clock source. The
second SLU will transmit and receive at the same selected baud rate. The switch configurations for
selecting any of the available baud rates are listed in Table 2-14.

Table 2-14 Second SLU Baud Rate Selection

Switch Position

S2-8 S2-7 S2-6 S2-5 Baud Rate

On On On On 50

On On On Off 75
On On Off On 110
On On Off Off 134.5
On Off On On 150
On Off On Off 300
On Off Off On 600
On Off Off Off 1200
Off On On On 1800

Off On On Off 2000
Off On Off On 2400
Off On Off Off 3600
Off Off On On 4800&
Off Off On Off 7200
Off Off Off On 9600
Off Off Off Off 19200

2.2.6.2 Second SLU Character Formats — Five wirewrap stakes are used to select options for estab-
lishing the second SLU character format. The ground stake can be connected to any combination of the
other four stakes to configure the character format for the following options.

One or two stop bits
Seven data bits plus parity
Eight data bits without parity
Odd or even parity

The jumper stake functions are described in Table 2-15 and the jumper configurations are listed in

Table 2-16.

Table 2-15 Second SLU Character Format Jumpers

Stake Stake
Number | Name Function

J30 Ground This wirewrap stake provides a ground source for the other four wirewrap
stakes in this group.

J31 DL2 CH7J L |When grounded, this signal causes the UART to transmit and receive 7-bit

J29

J28

J32

characters. Otherwise, the UART is formatted for 8-bit characters.

DL2 STi1J L |When grounded, this signal causes the UART to transmit and receive one
stop bit. Otherwise, it is formatted for two stop bits.

DL2 PARJ L |When grounded, this signal enables UART parity generation and checking.
Otherwise, parity is disabled.

DL2 ODDJ L{When DL2 PARJ L and DL2 ODDJ L are both grounded, odd parity is se-
lected. If only DL2 PARJ L is grounded, even parity is selected.

Table 2-16 Character Jumper Configurations

Jumper
From To J30 Character Format Option

J31 IN 7-bit characters
OuUT 8-bit characters

J29 OouT Two stop bits
IN One stop bit

J28 IN Parity check enabled
OuUT Parity check disabled

J32 IN Odd parity if J28 is in.
OuUT Even parity if J28 is in.

2-12

2.2.7 Internal/External SLU Clock Jumpers

Two sets of jumpers are provided to select an internal or external clock for the console SLU and the
second SLU. If the internal clock jumpers are installed, the SLU clocks are obtained from the internal
baud rate generator. When the external clock jumpers are installed, external clocks are routed to the
SLUs through pin 1 of the J1 and J2 SLU connectors. Table 2-17 lists the internal /external SLU clock
jumper configurations.

Table 2-17 Internal/External SLU Clock Jumper Configurations

Jumper Selected Clock
From To Function Internal External

J43 J42 Connects internal baud rate I R

generator to the console SLU
UART. (Normal configuration)

J41 J42 Connects external clock to R |

the console SLU UART.

J46 J45 Connects internal baud rate I R
generator to the second SLU
UART. (Normal configuration)

J44 J45 Connects external clock to R |

the second SLU UART.

R = removed; | = installed.

2.2.8 Bus Grant Continuity Jumpers

Two jumpers must be installed when the KDF11-BA is used in an LSI-11/LSI-11 bus backplane. An
LSI-11/LSI-11 bus backplane (e.g., an H9275 or H9270) is one that carries the LSI-11 bus signals on
backplane rows C and D as well as rows A and B. The jumpers provide continuity for the interrupt
acknowledge (BIAK) and direct memory access grant (BDMG) LSI-11 bus signals. The jumpers are
described in Table 2-18.

Table 2-18 Bus Grant Continuity Jumpers

Jumper* | Function

Wil | Connects backplane pins CM2 and CN2, providing continuity for BIAK L.

w2 Connects backplane pins CR2 and CS2, providing continuity for BDMG L.

*Must be installed when the KDF11-BA is used in an LSI-] 1 /LSI-11 bus backplane; otherwise, the
jumper installation is optional.

NOTE
If the KDF11-BA is installed in an LSI-11/CD
backplane (H9273 or H9276) and the W1 and W2
jumpers are installed, pin CM1 is shorted to CN1
and pin CR1 is shorted to CS1 on slot 2.

2-13

2.3 FACTORY SWITCH AND JUMPER CONFIGURATIONS
Users may reconfigure the module jumpers and switches to select the KDF11-BA options required for
the particular system application. All switches and all jumpers except those jumpers reserved for manu-
facturing and field service testing may be reconfigured. Therefore, the factory configuration as shipped
is described below to assist users in determining the jumper and switch changes that are required to
select the module options for their systems. Table 2-19 lists the factory jumper configurations. Tables 2-
20 and 2-21 list the bootstrap/diagnostic switch and SLU baud rate switch configurations, respectively.

Table 2-19 Factory Jumper Configurations

Jumper Jumper
From To State Function

The manufacturing and field service test jumpers are described below
in Paragraph 2.2.1.

J6 J7 I Master clock; enables internal oscillator.

J8 JO | Phase; connects signal to F11 chip clock drivers.

J20 J21 I XTAL; connects baud rate oscillator.

J35 J34 I LINITF (1) H; connects reset to console UART.

J33 J34 R Installed reset disabled test feature (only after removing jumper
J35-J34).

J27 J26 | Connects console S1.U serial output to connector J1.

J25 J26 R Installed for field service wraparound testing (only after removing
jumper J27-J26).

The CPU option jumpers are described below in Paragraph 2.2.2.

J19 J18 I Power-up mode 2 (jumper J19-J18 installed; jumper J17-J18 removed)
J17 J18 R causes the processor to begin executing the bootstrap code at start

address 173000.

J16 J18 R Processor enters console ODT microcode when it executes a kernal

mode HALT instruction.

The on-board device selection jumpers are described in Paragraph
2.2.3.

J11 JI0O | R LTC ENJ L. BEVENT can request interrupts only if the processor
program has set bit 6 of the line clock register (17777546).

J12 J10 R The second SLU is enabled with an RCSR address of 17776500

J13 J10 R and interrupt vector addresses of 300 and 304.

J14 J10 R The console SLLU is enabled.

R = removed; | = installed.

Table 2-19 Factory Jumper Configurations (Cont)

Jumper Jumper
From To State Function

J15 J10 R The BDV ROMs and registers, as well as the line clock register, are
enabled.

The boot and diagnostic ROM jumpers are described in Paragraph
2.2.4.2.

J22 J23 NOTE: When ROMs are used, jumper J22-J23 1s installed and jumper
J24-3J23 is removed.

J24 J23 NOTE: When EPROMSs are used, jumper J22-J23 is removed and

jumper J24-J23 is installed.

The console SLU character formats are described in Paragraph
2.2.5.2.

J36 J38 R Console SLU parity check is disabled.

J37 J38 | Console SLU character contains one stop bit.

J39 J38 R Console SLU character contains eight bits.

J40 J38 R No effect; console parity already disabled.

The break-on-halt jumpers are described in Paragraph 2.2.5.3.

J3 J4 R Break-on-halt feature is disabled. The break key on the console SLU
J5 J4 I does not halt the processor. This feature may be enabled by removing

jumper J5-J4 and then installing jumper J3-J4.

The second SLU character formats are described in Paragraph 2.2.6.2.

J238 J30 R Second SLU parity check is disabled.

J29 J30 I Second SLU character contains one stop bit.

J31 J30 R Second SLU character contains eight bits.

J32 J30 R No effect; second SLU parity already disabled.

The internalfexternal SLU ciock jumpers are described in Paragraph
2.2.7.

J41 J42 | R The on-board baud rate generator is connected to the console SLU.
J43 J42 | 1 The external clock input from connector J1 1s disabled.

R = removed; | = installed.

Table 2-19 Factory Jumper Configurations (Cont)

Jumper Jumper
From To State Function

J44 J45 | R The on-board baud rate generator is connected to the second SLU.
J46 J45 I The external clock input from connector J2 is disabled.

The bus grant continuity jumpers are described in Paragraph 2.2.8.

2! I Provides bus grant continuity for the BIAK signal.

W2 I Provides bus grant continuity for the BDMG signal.

R = removed; I = installed.

Table 2-20 Bootstrap/Diagnostic Factory Switch Configurations

Switch S1 (E102)
Number Position Function*

1 On Execute CPU diagnostic
2 On Execute memory diagnostic
3 Off DECnet boot disabled
4 On Console test and dialogue
5 Off —
6 Off -
7 On RLOI1/RLO2 bootstrap program
8 Off —

*With the switch configurations shown, the KDF11-BA, upon power-up or
restart, will execute the CPU diagnostic, the memory diagnostic, and then

enter the console test. If the operator wishes to terminate the memory diag-

nostic and immediately enter the console test, control /C must be entered on
the console terminal.

Table 2-21 SLU Baud Rate Factory Switch Configurations

Switch S2 (E114)
Number | Position Function

1 On Console SLU set for 9600 baud per Table 2-10.
2 Off
3 Off
4 Off

5 On Second SLU set for 9600 baud per Table 2-14.
6 Off
7 Off
8 Off

2-16

MODULE CONTACT FINGER IDENTIFICATION
Digital Equipment Corporation’s plug-in modules, including the KDF11-BA, all use the same contact
(pin) identification system. Figure 2-2 shows the contact finger identification for a typical quad-height
module. The LSI-11 bus signals are carried on rows A and B. Each row contains 36 lines (the com-
ponent and solder sides of the circuit board having 18 lines each).

2.4

\
F

>
y)

0
N

)
Q

Q
m

—

[

A
fl
\

O

.
.
C
\
u
L
.
fi
_
.
U

1
K

\
.
1
»
1

-

.
T

S
R

R
t

S
T

T
R

S
T

L
A

&
T
S

i

._\W,D.mw
i

e

O
-

G

Tmmmoh
o

e
o

—

T

Q
.

L

=
R
l

i

0
4
0
1
‘
5
0

W

IS
—

>

.fln/\
-

G
,

P
y

B
.

M
.

=

|
1
U
w

/l,flm..ui\
o

=

<
b

‘Hullllwmv
e

/wun,
O
O

O
d
u
u
.

n.ufi.uu.anl,u
-
O
O
H

/WVO
=
7
0

Yy
V

fo==e
o

B

3
|

et
O
l
n
,
u

Q
=
&

.
A
T

-
S
T

e
l

&
=
R

=
T

_
w/‘.z

X/lm
1‘0

A%
&
A
I
:
;
C

o<w
..Mui)f,\O”

g

n
fl
m
j
o

T
N

-

o
o
N
E

"

3.
\L%Mnflhh

w
.
\
\
I
U
O

\
o

A
N
.
V
D

G
-
,

g

T

L
B

4
T
y

R
o
e
n

T
G

Ty
w

T
E

WA\,
S

R
G
,

V
e

e
N

R

o
N

©
e

o

T

o

<
B

O
-~

v

W
S

N

owvmflr,.
[
P

S
N

C
—

w
A
T

D
d.\

"
S
L
N
E
Y

_OLL.MML
?‘M..Afx,u

o
_mlnc

Y

=

T

m
—
T
e
n

o

.
—

<
o~

T
l

R

am
“omts

HL
T

aMf/
o

S

A
R

-
w

Q
=
%

T

//u
-

°
fi\

o,mrflr.\
°
N

,..qu
Q
5

D
G

O

D
S

=
O

3
o

=
n

D
=

J
.
W
O
R
.
\
W
O
M
_

D/fw&@fl
c.

_%m
.

n
W
H

.LOM
nm,l.l...muo

r,\fl.v!n_u.F.\fiOM.vO
2)

AWH
e

”
e

O
[

(
=

X3
iy

o)
O

Y

1.;0
o

Ny
r

I\)U

=

U.Vl,uru‘l
O.AW

=}
o
=

o
Ofl.flA@

Q|.|I,W.L
NM/I

3
4
%

n/.mwl
CA.W.UO

G.Uw
Q.fi

.Onm.d.
@

//
o

L
o

S
R
R

n/uu
F
e
l

LU
v

N

A

G

TR
-

T
P

S
A
C
E
A

T

//
C
E
o
L

®
o

0
”
%

O
B

o
o

=
A
T

D
N

.
<

Lquit
...Mufl‘

o

o
L

o
.

nfl
Ty

O
I
\

2
(o

¢
N

-
.,H.N

%
.

=
2

T
y

o
o
l

o
o

b
e

\eeSte
U
t

e

N

=
O

R
S

Ce
Y

o
R

T

G
U
I
E

R
O

e
_

[
ol

<
O

L
=

—

<
o

-
r—

Ww
?

T

<
n
b
l
w
\
fl
fl
w
q
\

©

=
_

L

E
y
—
e
-

O
O

/q.UO
&

T

M
U
A
Q
U

fivw..l
o

O.U|
S

O
U
M
W
W
“

O
A
H

/.VO

o

R
S
P

N
%/..

I
R

L
==

\“
&
o

-

—

.
N

E
E
 .

s
o

e
e
,

=
R

L

s

TN
e

=

\
O

o

S
R

b
9

S
R

©
I

U
=

e

B NDE
B

W
=

2
A

2
0

F
=
°

&
23

)
B

o
S

-

o

..._MWIWU
e

L
o
®

=
Y

=

N

e

N

S
y

SRR
o

-
)

|
-

Ty
T\

:
\

\
'\

.../
...f

.
e

—

;
L

A
N

N\
\Lg

o\
m/l

<
>

>,
>

<
>

<
>

a
<

<
o

m
Q

Q
=

O

M
0

©
(=]

5
z

nwu
=

«
Q

2
o

o

[2
o

Z
<

>
<

>
<

>
<

>
A
m
\
i
B

B
m
\
'
c

C
m
\
‘
m

o
/

e

r
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

e

Y

—
—
—
—
—
s
v
r
e
e
m
r
e
=
r
r
r
i
r

e
—
—
—
—
—
—
—

Y i
y

3 i

A i

i
)
 COMPONENT SIDE

SIDE1

MR-5456

Figure 2-2 Quad Module Contact Finger [dentification

2-17

Row A, shown in Figure 2-2, includes a numeric identifier for the side of the module. The component
side is designated side 1 and the solder side is designated side 2. Letters ranging from A through V
(excluding G, I, O, and Q) identify particular pins on a side of a slot. A typical pin is designated as
follows.

??2*—— Module Side Identifier “Side” (solder side)

Pin Identifier (Pin E)

Row Identifier (Row A)

The positioning notch between the two rows of pins mates with a protrusion on the connector block for
correct module positioning.

2.5 BACKPLANE PIN ASSIGNMENTS AND THEIR KDF11-BA UTILIZATION
When configuring a system with the KDF11-BA, the module may be inserted in one of several available
backplanes. (Refer to Paragraph 2.6.1 for information on the types of backplanes available.) As an ex-
ample, Figure 2-3 shows the pin identifications of an H9276 backplane. Individual connector pins
shown are viewed from the module insertion side. Only pins for one slot location are shown in detail.
This pin pattern is repeated 36 times on the backplane, allowing the user to install several double-height
or quad-height modules.

EXTENDED LSI-11 BUS CD BUS
e ™

(A ROWS B](C ROWS D]
PIN Al PIN V1

SLOT 1 PIN V2

sLoT2 | LpriN a2

SLOT 3

SLOT 4

SLOT 5

SLOT 6

SLOT 7

SLOT 8

SLOT 9

(VIEW FROM MODULE INSERTION SIDE OF BACKPLANE)

MR 5449

Figure 2-3 H9276 Backplane Pin Identifications

The KDF11-BA backplane pin assignments for rows A and B (extended LSI-11 bus signals) add four
BDAL lines that extend the physical address space to four megabytes. The extended bus pin assign-
ment additions are listed in Table 2-22. (Backplane pin assignment and signal pin functions for the
remaining pins on rows A and B are described in Appendix F.) A comparison of the KDF11-BA,
KDF11-AA, KD11-HA, and KD11-F processors’ backplane pin assignments appears in Appendix D.

2.6 HARDWARE OPTIONS
KDF11-BA systems can be configured with a variety of backplanes, power supplies, enclosures, memo-
ries, peripherals, etc. Figure 2-4 shows a typical configuration for a KDF11-BA system with 512KB
bytes of memory capacity.

2-18

Table 2-22 KDF11-BA Extended Address Lines

Bus Signal
Pin Mnemonic Signal Function

BCl BDAL I8 L Data/address line 18

BD1 BDAL 19 L Data/address line 19

BE1 BDAL 20 L Data/address line 20

BF1 BDAL 21 L Data/address line 21

BACKPLANE |
SLOTS ROW A rows | mrowc | Rowo

1 KDF11-BA PROCESSOR MODULE

2 MSV11-PL 512 KB MEMORY MODULE

3 DZV11 FOUR ASYNCHRONOQUS LINE MODULE

4 RLV12 DISK CONTROL MODULE

5 FREE

6 FREE

7 FREE

8 FREE

9 FREE

VIEW FROM MODULE SIDE OF BACKPLANE

MR.5451

Figure 2-4 Typical KDF11-BA 512K-Byte System

2.6.1 Backplanes
The KDFI11-BA 1s designed to run in any LSI-11 bus-compatible backplane that accepts quad-height
modules. The KDF11-BA provides 18-bit addressing in backplanes that feature the traditional LSI-11
bus, or 22-bit addressing in backplanes that feature the extended LSI-11 bus. The following LSI-11 bus
and extended LSI-11 bus backplanes are available.

e H9276 — A 9-slot X 4-row backplane that supports 22-bit addressing for up to nine quad- or
dual-height modules. The AB slots are bused in accordance with the wiring scheme of the
extended LSI-11 bus; the CD slots are bused in accordance with the wiring scheme of the
CD bus.

e H9273 — A 9-slot X 4-row backplane that supports 18-bit addressing for up to nine quad- or

dual-height modules. The AB slots are bused in accordance with the wiring scheme of the
LSI-11 bus; the CD slots are bused in accordance with the wiring scheme of the CD bus.

e HO9275 - A 9-slot X 4-row backplane that supports 22-bit addressing. Each slot may contain
one quad- or two dual-height modules. The AB and CD slots are bused in accordance with
the wiring scheme of the extended LSI-11 bus.

2-19

* H9270 - A 4-slot X 4-row backplane that supports 18-bit addressing. Fach slot may contain
one quad- or two dual-height modules. The AB and CD slots are bused in accordance with
the wiring scheme of the LSI-11 bus.

e DDVII-B - A 9-slot X 4-row backplane that supports 18-bit addressing. The AB and CD
slots are bused in accordance with the wiring scheme of the LSI-11 bus. The EF slots are
available for user-defined interconnections.

Refer to the PDP-11/23B Mounting Box Technical Manual for a complete description of the H9276
backplane and the Microcomputer Interfaces Handbook for a complete description of the other back-
planes listed.

2.6.2 Enclosures
The KDF11-BA may be installed in a variety of enclosures, including, but not limited to, the following.

e BAII-S Mounting Box — Contains the H9276 backplane and the H7861 power supply. It
supports 22-bit addressing for up to nine quad- or dual-height modules. The H7861 power
supply provides 36 A at +5 Vand 5 A at +12 V.

e BAII-N Mounting Box — Contains the H9273 backplane and the H786 power supply. It sup-
ports 18-bit addressing for up to nine quad- or dual-height modules. The H786 power supply
provides 22 A at +5 Vand 11 A at +12 V.

¢ BAI1-M Mounting Box — Contains the H9270 backplane and the H780 power supply. 1t sup-
ports 18-bit addressing for four slots, each of which may contain one quad- or two dual-height
modules. The H780 power supply provides 18 A at +5 V and 3.5 A at +12 V.

Refer to the PDP-11/23B Mounting Box Technical Manual for a complete description of the BA11-S
mounting box and the Microcomputer Interfaces Handbook for a complete description of the BA11-N
and BA11-M.

2.6.3 Memory Modules
The KDF11-BA is compatible with a wide variety of memories, including, but not limited to, the ones
that follow.

e MSVII-P Quad-Height Memory Module — Provides up to 512K bytes of 22-bit addressable
memory. |

e MSVII1-L Dual-Height Memory Module — Provides up to 256K bytes of 22-bit addressable
memory.

e MSVI1-D Dual-Height Memory Module — Provides up to 64K bytes of 18-bit addressable
memory.

The MSV11-B memory module, which does not have on-board refresh logic and only decodes 16-bit
addresses, 1s not recommended for use with the KDF11-BA.

2.6.4 Peripheral Options
The KDF11-BA is designed to be compatible with all peripheral options designed to the LSI-11 bus
specification. However, it is incompatible with two types of older options used in systems that support
22-bit addressing.

2-20

Direct Memory Access (DMA) devices that provide 18-bit DMA addresses, such as the
RLVI11, RXV21, and DRVI11-B, can only access up to 256K bytes of memory.

Peripheral devices that use pins BC1, BD1, BE1, and/or BF1 for test signals cannot be used

in extended LSI-11 bus backplanes that bus these pins for BDAL21-18 L.

The RLV12 disk controller is a single quad-height module that provides 22-bit addressing. It replaces
the RLVI11 as an interface to the RLO1 and RLO2 disk drives.

Non-DMA peripheral devices are generally not affected by 22-bit addressing because they monitor
BBS7 L instead of BDAL21-13 to decode 1/0O Page addresses. Refer to the PDP-11/23 Mounting Box
Manual for a listing of peripheral options compatible with the extended LSI-11 bus backplanes.

2.7 SYSTEM DIFFERENCES
A number of minor differences exist between the KDF11-AA or KDF11-BA processors and the LSI-11
(KD11-F) or LSI-11/2 (KD11-HA) processors. The following is a list of these differences.

1.

2.

5.

The KDF11-BA and KDF11-AA do not have a boot loader in console ODT microcode.

The KDF11-BA and KDF11-AA console ODT functions are a subset of the KD11-F and

KD11-HA ODT functions.

KDF11-BA, KDF11-AA, and KD11-HA do not perform memory refresh.

The EVENT line 1s on level 6 for the KDF11-BA and KDF11-AA; KD11-F and KD11-HA

have the EVENT line on level 4.

The REV11-C refresh/boot module cannot be used to boot the KDF11-BA system.

Refer to Appendices C, D, and E for additional comparisons among these LSI-11 processors.

2.8 MODULE INSTALLATION PROCEDURE
Certain guidelines should be followed when installing or replacing a KDF11-BA module.

1.

2.

3 * .

4.

Verify dc power before inserting the module in a backplane.

Ensure that no dc power is applied to the backplane when removing or inserting the module.

Verify the configuration of option jumpers and switches as specified under Paragraphs 2.2
and 2.3.

It is recommended that a single switch be used to apply +5 V and +12 V to the system.

The KDF11-BA module’s response to power-up depends on the power-up mode, as detailed in Table 2-
23.

The following diagnostics are available for checking out the KDF11-BA module.

CJKDB CPU Diagnostic — Tests the basic instruction set, EIS, and processor traps.

CJKDA MMU Diagnostic — Checks out the memory management and extended addressing
functions.

2-21

CVMBA BDVI11 Diagnostic — Checks out KDF11-BA BDV functionality.

CJDLA SLU Diagnostic — Checks out the KDF11-BA serial-line units.

CJKDC and CJKDD Floating-Point Diagnostics — Check out the floating-point option.

CJKDH CIS Diagnostic — Checks out the CIS option.

Table 2-23 Console Power-Up Printout (or Display)*

Power-up | BHALT L
Mode State Console Response

0 Unasserted | Processor will execute the program using the contents at location 24g as
the PC value.

Asserted Terminal will print and enter micro-ODT.

] Unasserted | Terminal will print out a random 6-digit number, which is the contents of
the program counter.

Asserted Terminal will print out a random 6-digit number, which is the contents of
the program counter, and enter micro-ODT.

2 Unasserted Processor will execute the program at location 773000.7

Asserted Terminal will print out 173000 and enter micro-ODT.¥

3 Unasserted | Mode 3 causes microcode to jump to optional control chip 37g, location
76g, and begin microcode execution. This mode is reserved for future use
by DIGITAL and is not recommended for customer use. If this mode is
erroneously selected, the processor will treat it as a reserved instruction
trap to location 10g.

Asserted A normal printout-terminal will print out the contents of memory location
10g and enter micro-ODT.

*The terminal printout consists of six octal digits‘ as specified in the table, followed by a carriage return, line feed, and @
prompt in all cases.

TNormal mode for use with the BDV11 bootstrap/diagnostic ROMs.

2-22

CHAPTER 3
CONSOLE ON-LINE DEBUGGING TECHNIQUE (ODT)

3.1 INTRODUCTION |
A portion of the microcode in the KDF11-BA processor emulates the capability normally found on a
programmer’s console. Since the KDF11-BA does not have a programmer’s console (one with lights and
switches) or a console switch register at bus address 777570, the terminal at the standard bus address of
777560 is used to perform console functions. Communication between the processor and the user is via
a stream of ASCII characters interpreted by the processor as console commands. The console terminal
addresses 777560 through 777566 are generated in microcode and cannot be changed.

This feature is called the microcode on-line debugging technique, or micro-ODT. The KDF11-BA mi-
cro-ODT accepts 18-bit addresses, allowing it to access 248K bytes of memory, plus the 8K-byte 1/0
page. A PDP-11 software version of ODT, macro-ODT, is necessary to access memory beyond these
limits. Macro-ODT provides a more sophisticated range of debugging techniques, including access of
memory locations by virtual address.

The differences in use of console ODT in the KDF11-BA as compared with that in the KD11-F (LSI-
11) and the KD11-HA (LSI-11/2) are listed in Appendix E.

3.2 TERMINAL INTERFACE
The hardware interface between a terminal (serial-line unit) and ODT is the on-board console serial-line
unit. The terminal 1s connected to the serial-line unit via connector J! on the module. Refer to Para-
graph 5.14 for a description of the console serial-line unit.

3.3 CONSOLE ODT ENTRY CONDITIONS
The ODT console mode can be entered by the following ways.

1. Execution of a HALT instruction in kernel mode, provided the HALT TRAP jumper (J16 to
J18) is not installed.

2. Assertion of the BHALT signal on the bus. Note that the signal must be asserted long enough
that it is seen at the end of a macroinstruction by the SERVICE state in the processor.
BHALT 1s level-triggered, not edge-triggered. Typically, BHALT remains asserted until the
processor enters ODT.

3. If power-up mode option 1 has been selected, ODT is entered upon processor power-up.

4. From the console serial-line unit if the halt-on-break feature is enabled. Refer to Paragraph
2.2.5.3.

3-1

NOTE
Unlike the KD11-F and KD11-HA, the KDF11-BA
does not enter console ODT upon occurrence of a
double bus error (for example, when R6 points to
nonexistent memory during a bus timeout trap). The
KDF11-BA creates a new stack at location 2 and
continues to trap to 4. If a bus timeout occurs while
getting an interrupt vector, the KDF11-BA ignores it
and continues execution of the program, whereas in
such case the KD11-F and KD11-HA enter console
ODT. Refer to Appendix E for a listing of the differ-
ent ways certain processors interpret the same con-
sole ODT commands.

ODT causes the following processor initialization upon entry.

1. Performs a DATI from RBUF (input data buffer at 777562g) and then ignores the character
present in the buffer. This operation prevents the ODT from interpreting erroneous charac-
ters or user program characters as a command.

2. Prints a <CR> and <<LF> on the console terminal.

3. Prints the contents of the PC (p-rogram counter R7) in six digits.

4. Printsa <CR> and <LF>.

5. Prints the prompt character @.

6. Enters a wait loop for the console terminal input. The DONE flag (bit 7) in the RCSR at
777560g is constantly being tested via a DATI by the processor for a 1. If bit 7 is a 0, the
processor keeps testing.

3.4 ODT OPERATION OF THE CONSOLE SERIAL-LINE INTERFACE
The processor’s microcode operates the serial-line interface in half-duplex mode by using program 1/0
techniques rather than interrupts. This means that when the ODT microcode is busy printing charac-
ters using the output side of the interface, the microcode is not monitoring the input side for incoming
characters. Any characters coming in while the ODT microcode is printing characters are lost. Overrun
errors detected by the universal asynchronous receiver/transmitter (UART) will be ignored because
the microcode does not check any error bits in the serial-line interface registers.

Therefore, the user should not “type ahead” to ODT because those characters will not be recognized.
More importantly, if another processor is at the end of the serial line, it must obey half-duplex oper-
ation. In other words, no input characters should be sent from the console terminal until the processor’s
ODT output has finished. This restriction does not pertain to echoed characters, however.

3.4.1 Console ODT Input Sequence
The input sequence for ODT follows. (Upon entry to ODT, the RBUF register at 777562 is read but the
character is ignored to prevent the character from being interpreted as a command by the console

ODT.)

3-2

. Test RCSR bit 7 (DONE flag) of RCSR at 7775603 using a DATI bus cycle; if itis a 0,
continue testing.

2. If RCSR bit 7is a 1, read the low byte of RBUF at 777562g using a DATI bus cycle.

3.4.2 Console ODT Output Sequence
The output sequence of ODT is as follows.

I. Test bit 7 (DONE flag) of the XCSR at 777564¢ using a DATI busy cycle; if it is a 0, contin-
ue testing.

2. If XCSR bit 7 is a I, write to the XBUF at 777566g using a DATO bus cycle. The desired
character 1s in the low byte. The data in the high byte is undefined and is ignored by the
serial-line interface.

[f the interrupt enable (bit 6) in the XCSR is a I, an interrupt will-be created to the software when the
proceed (P) console ODT command is used. If a go (G) command is used, all interrupt enables in pe-
ripherals are cleared and an interrupt will not occur.

3.5 CONSOLE ODT COMMAND SET
The ODT command set is listed in Table 3-1 and described in Paragraphs 3.5.1 through 3.5.9. The
commands are a subset of ODT-11 and use the same command characters. ODT has 10 internal states.
Each state recognizes certain characters as valid input and responds with a question mark (?) to all
others.

Table 3-1 Console ODT Commands

Command Symbol Function

Slash / Prints the contents of a specified location.

Carriage return <CR> Closes an open location.

Line feed <LF> Closes an open location and then opens the next con-
tiguous location.

Internal register
designator $ or R Opens a specific processor register.

Processor status

word designator S Opens the PS; must follow an $ or R command.

Go G Starts execution of a program.

Proceed P Resumes execution of a program.

Binary dump Control-shift-S Manufacturing use only.

(Reserved) H Reserved for DIGITAL use.

3-3

The parity bit (bit 7) on all input characters is ignored (i.e., not stripped) by console ODT and if the
input character is echoed, the state of the parity bit is copied to the output buffer (XBUF). Output
characters internally generated by ODT (e.g., <<CR>) have the parity bit equal to 0. All commands

are echoed except for <LF>.

In order to describe the use of a command, other commands are mentioned before they have been de-
fined. For the novice user, these paragraphs should be scanned first for familiarization and then reread
for detail. The word “location,” as used in the following paragraphs, refers to a bus address, processor

register, or processor status word (PS).

The descriptions of the ODT commands include examples of the printouts that the processor will output
to the console terminal in response to the commands entered by the user. In the examples given, the
processor output is underlined.

3.5.1 / (ASCI 057) - Slash
This command is used to open a bus address, processor register, or processor status word and 1s nor-
mally preceded by other characters that specify a location. In response to /, ODT will print the con-
tents of the location (six characters) and then a space (ASCII 40). After printing is complete, ODT will
wait for either new data for that location or a valid close command. The space character is issued so
that the location’s contents and possible new contents entered by the user are legible on the terminal.

Example: @00001000/ 012525 <SPACE>

where: @ =ODT prompt character.

00001000 = octal location in the QBus address space desired by the user (leading Os are
not required).

/ =command to open and print contents of location.

012525 = contents of octal location 1000.

<SPACE> = space character generated by ODT.

The / command can be used without a location specifier to verify the data just entered into a previously
opened location. The / produces this result only if it is entered immediately after a prompt character. A
/ issued immediately after the processor enters ODT mode will cause 7 <CR>, <<LF>, to be printed
because a location has not yet been opened.

Example: @1000/012525 <SPACE> 1234 <CR> <CR> <LF>

@/001234 <SPACE>

where: first line = new data of 1234 entered into location 1000 and location closed with

<CR>.

second line = a / was entered without a location specifier and the previous location
was opened to reveal that the new contents was correctly entered into
memory.

3.5.2 <CR> (ASCII 15) - Carriage Return
This command is used to close an open location. If a location’s contents are to be changed, the user
should precede the <<CR> with the new data. If no change is desired, <CR> will close the location
without altering its contents.

Example: @R1/004321 <SPACE> <CR> <CR> <LF>

@

Processor register R1 was opened and no change was desired, so the user issued <<CR>. In response to
the <CR>, ODT printed <CR>,<LF>, and @.

Example: @R1/004321 <<SPACE> 1234 <CR> <CR> <LF>

@

In this case, the user desired to change R1. The new data, 1234, was entered before the <CR>. ODT
deposited the new data into the open location and then printed <<CR>,<LF>, and @. ODT echoes
the <<CR> entered by the user before it prints <CR>, <LF>, and @.

3.5.3 <LF> (ASCII 12) - Line Feed

This command is used to close an open location and then open the next contiguous location. Bus ad-
dresses and processor registers will be incremented by two and one, respectively. If the PS is open when
an <<LF> 1s issued, it will be closed and <CR>, <LF>, @ will be printed; no new location will be

opened. If the open location’s contents are to be changed, the new data should precede the <<LF>. If
no data is entered, the location is closed without being altered.

Example: @R2/123456 <SPACE> <LF> <CR> <LF>

@R3/054321 <<SPACE>

In this case, the user entered <<LF> with no data preceding it. In response, ODT closed R2 and then

opened R3. When a user has the last register, R7, open, and issues <<LF>, ODT will “roll over™ to the
first register, RO. When the user has the last bus address of a 32K-word open segment and issues
<LF>, ODT will open the first location of that segment. If the user wishes to cross the 32K-word

boundary, he/she must reenter the address for the desired 32K-word segment (i.e., ODT is modulo 32K
words).

Example: ~ @R7/000000 <SPACE> <LF> <CR> <LF>

@R0/123456 <SPACE>>

or

Example: @577776/000001 <SPACE> <LF> <CR> <LF>

@477776/125252 <<SPACE >

Unlike other commands, ODT will not echo the <<LF>. Instead, it will print <CR>, then <LF>, in
order that teletype printers would operate properly. In order to make this easier to decode, ODT does
not echo ASCII 0, 2, or 10, but responds to these three characters with ? <CR>, <LF>, @.

3-5

3.5.4 $ (ASCII 044) or R (ASCII 122) - Internal Register Designator
Either character when followed by a register number (0 to 7) or PS designator (S), will open the proces-
sor register specified. The $ character is recognized to be compatible with ODT-11, and the R charac-
ter was introduced for its being one key stroke representative of its function.

Examples: @$0 /000123 <SPACE>

@R7/000123 <SPACE> <LF>

@R0/054321 <SPACE>

If more than one character (digit or S) follows the R or §, ODT will use the last character as the regis-
ter designator. An exception: if the last three digits equal 077 or 477, ODT will open the PS rather than
R7.

3.5.5 S (ASCII 123) - Processor Status Word Designator
This designator is for opening the processor status word and must be used after the user has entered an
R or § register designator.

Example: @RS/100377 <SPACE> 0 <CR> <CR> <LF>

@/000010 <SPACE>

Note that the trace bit (bit 4) of the processor status word cannot be modified by the user. This is so in
order that PDP-11 program debugging utilities (e.g., ODT-11), which use the T bit for single-stepping,
will not be accidentally harmed by the user. If the user issues an <LF> while the processor status
word is open, the word is closed and ODT will print a <CR>, <LF>, @: no new location is opened in

this case.

3.5.6 G (ASCII 107) - Go
This command is used to start program execution at a location entered immediately before the G. This
function i1s equivalent to the LOAD ADDRESS and START switch sequence on other PDP-11 con-
soles.

Example: @200 <NULL> <NULL>

The ODT sequence for a G, after echoing the command character, is as follows.

1. Print two nulls (ASCII 0) so the bus initialize that follows will not flush the G character from
the double buffered UART chip in the serial-line interface.

2. Load R7 (PC) with the entered data. If no data 1s entered, O is used. (In the above example,
R7 will equal 200 and that is where program execution will begin.)

3. The PS, and FPS (floating-point status) register will be cleared to O.

4. The LSI-11 bus 1s initialized by the processor asserting BINIT L for 12.6 us, negating BI-
NIT L, and then waiting for 110 wus.

5. The service state is entered by the processor. Anything to be serviced is processed. If the
BHALT L bus signal is asserted, the processor reenters the console ODT state. This feature

is used to initialize a system without starting a program (R7 is altered). If the user wants to
single-step a program, he/she issues a G and then successive P commands, all done with the
BHALT L bus signal asserted.

3-6

3.5.7 P (ASCII 120) - Proceed
This command is used to resume execution of a program and corresponds to the CONTINUE switch on
other PDP-11 consoles. No machine state visible to the programmer is altered using this command.

Example: @P

Program execution resumes at the place pointed to by R7. After the P is echoed, the ODT state is left
and the processor immediately enters the state to fetch the next instruction. If a HALT request is as-
serted, it is recognized at the end of the instruction (during the service state) and the processor will
enter the ODT state. Upon entry, the contents of the PC (R7) will be printed. In this fashion, a user can
single-step through a program and get a PC ““trace” displayed on his/her terminal.

3.5.8 Control-Shift-S (ASCII 23) - Binary Dump
This command is used for manufacturing test purposes and is not a normal user command. It is in-
tended to display a portion of memory more efficiently than the / and <LF> commands do. The pro-
tocol is as follows.

1. After a prompt character, ODT receives a control-shift-S command and echoes it.

2. The host system at the other end of the serial line must send two 8-bit bytes which ODT will
interpret as a starting address. These two bytes are not echoed. The first byte specifies start-
ing address <<15:8> and the second byte specifies starting address <<7:0>. Bus address bits
<21:16> are always forced to 0; the DUMP command is restricted to the first 32K words of
address space.

3. After the second address byte has been received, ODT outputs 10g bytes to the serial line,
starting at the address previously specified. When the output is finished, ODT will print
<CR>, <LF>, @.

If a user accidentally enters this command, it is recommended that, in order to exit from the
command, two @ characters (ASCII 100) be entered as a starting address. After the binary
dump, the user will get the prompt character @.

3.5.9 Reserved Command
An ASCII H (110) is reserved for future use by DIGITAL. If it is accidentally typed, ODT will echo
the H and print a prompt character rather than a ?, which is the invalid character response. No other
operation is performed.

3.6 KDF11-BA ADDRESS SPECIFICATION
The KDF11-BA micro-ODT accepts 18-bit addresses, allowing it to access 248K bytes of memory, plus
the 8K-byte I/O page. All I/O page addresses must be entered by users with a full 18 bits specified.
For example, if a user wishes to open the RCSR of the SLU (serial-line unit), he/she must enter
777560, not 177560.

3.6.1 Processor 1/0 Addresses
Certain processor and MMU registers have 1/0 addresses assigned to them for programming purposes.
If referenced in ODT, the PS will respond to its bus address, 777776. Processor registers RO through
R7 will not respond (i.e., timeout will occur) to bus addresses 777700 through 777707 if referenced in
ODT.

The MMU contains status registers and PAR/PDR pairs. These registers can be accessed from ODT
by entering their bus address.

Example: @777572/000001 <SPACE>

In this case, memory management status register O is opened to show the memory management enable
bit set.

The FP11 accumulators, which are also in the MMU chip, cannot be accessed from ODT. Only FP11
Instructions can access these registers.

3.6.2 Stack Pointer Selection

Accessing kernel and user stack pointer registers is accomplished in the following way. Whenever R6 is
referenced in ODT, it accesses the stack pointer specified by the PS current mode bits (PS<15:14>).
This is done for convenience. If a program operating in kernel mode (PS<15:14> = 00) is halted, and
R6 is opened, the kernel stack pointer is accessed. |

Similarly, if a program is operating in user mode (PS<<15:14> = 11), the R6 command accesses the
user stack pointer. If a different stack pointer is desired, PS<<15:14> must be set by the user to the
appropriate value, and then the R6 command can be used. If an operating program has been halted, the
original value of PS<C15:14> must be restored in order to continue execution.

Example: PS = 140000

@R6/123456 <SPACE>

The user mode stack pointer has been opened.

@RS/140000 <SPACE> 0 <CR> <CR> <LF>

@R6/123456 <SPACE> <CR> <CR> <LF>

@RS/000000 <SPACE> 140000 <CR> <CR> <LF>

@P

In this case, the kernel mode stack pointer was desired. The PS was opened and PS <<15:14> was set to
00 (kernel mode). Then R6 was examined and closed. The original value of PS<<15:14> was restored,
and then the program was continued using the P command.

If PS<<15:14> are set to 01, another unique register within the processor is accessed. This register is
reserved for future use by DIGITAL.

3.6.3 Entering of Octal Digits
In general, when the user is specifying an address or data, ODT will use the last six digits if more than
six have been entered. The user need not enter leading Os for either address or data; ODT forces Os as

the default. If an odd address is entered, the low-order bit is ignored, and a full 16-bit word is displayed.

3.6.4 ODT Timeout
If the user specifies a nonexistent address, ODT will respond to the bus timeout by printing 7, <CR>,
<LF>, @.

3.7 INVALID CHARACTERS
In general, any character that ODT does not recognize during a particular sequence is echoed (with the
exception of ASCII codes 0, 2, 10, and 12 as noted earlier) and ODT will print ?, <CR., <LF>, @.

ODT has 10 internal states, with each state having its own set of valid input characters. Some com-
mands are allowed only when in certain states or sequences; thus an attempt has been made to lower the
probability of a user’s unconsciously destroying himself by pressing the wrong key. Table 3-2 defines
the ODT states and valid input characters.

3-8

Table 3-2 Console ODT States and Valid Input Characters

State

Example of
Terminal Output Valid Input

9*

10

TQ
RE
O

p

Control-shift-S

@R or @$
S

@1000/123456
<CR>

<LF>

@R1/123456

<CR>

<LF>

@1000

/
G

@R1 or @RS

S

/

@1000/123456 1000
<CR>

<LF>

@R1/123456 1000
<CR>
<LF>

@

@ Control-shift-S

0-7

0-7

/

2 binary bytes

*Indicates previous location was opened.

3-9

CHAPTER 4
EXTENDED LSI-11 BUS

4.1 INTRODUCTION
The processor, memory and 1/0O devices communicate via signal lines that constitute the extended LSI-
11 bus. The extended LSI-11 bus contains 4 additional address lines (BDAL<<21:18>) in addition to
the 38 lines of the original LSI-11 bus. The four additional address lines extend the 256K-byte physical
address space of the LSI-11 bus to 4 megabytes. Addresses, 8-bit bytes or 16-bit data words, bus syn-
chronization, and control signals are sent along these 42 lines. Addresses may be either 16, 18, or 22
bits wide, depending on the addressing capability of the processor installed in the system. The 16-bit
data and the first 16 address bits are time-multiplexed over the same 16 data/address lines. Two addi-
tional address bits (<<17:16>) and the memory parity bits are also time-multiplexed over two signal
lines. The signal lines are functionally divided as listed in Table 4-1. Refer to Appendix F for a detailed
list of the extended LSI-11 bus signal functions.

The LSI-11 bus lines may be considered transmission lines that are terminated in their characteristic
impedance (Zg) at both the near and far ends of the bus. The near end of the bus is defined as the first
bus interface slot in the backplane, the far end is the last bus interface slot.

Table 4-1 Summary of Signal Line Functions

Quantity Function Bus Signal Mnemonic

16 Data/address lines BDAL <15:00>

2 Memory parity/address lines BDAL<17;16>

4 Address lines BDAL<21:18>

6 Address and data transfer BSYNC, BDIN, BDOUT,
control lines BWTBT, BBS7, BRPLY

3 Direct memory access (DMA) BDMR, BDMG, BSACK
control lines

5 [nterrupt control lines BIRQ4, BIRQS5, BIRQ6,

BIRQ7, BIAK

6 System control lines BPOK, BDCOK, BINIT,
BHALT, BREF, BEVNT

Most LSI-11 bus signals are bidirectional and use a terminating resistor network connected between
+5 V and ground to provide a negated (high) signal level. Devices may be connected to any point along
the bus to receive signals from the near or far end of the bus via high-impedance bus receivers, or to
transmit signals to the near or far end through gated open-collector bus drivers. A bus driver asserts a
signal by causing the line to go from a high level (approximately 3.4 V) to a low level (approximately
0.5 V). Although bidirectional lines are electrically bidirectional, certain lines carry signals that are
functionally unidirectional. The functionally unidirectional lines carry signals that are required to travel
in only one direction. For example, when a device asserts a bus request signal (BIRQ), the signal always
travels from the requesting device to the processor and never in the reverse direction.

The interrupt acknowledge (BIAK) and direct memory access grant (BDMG) signals are physically
unidirectional signals that are wired to each LSI-11 bus slot in a daisy-chain scheme. These signals are
generated by the processor in response to interrupt and direct memory access requests and are trans-
mitted to the bus via output signal pins. Each of the output signals (BIAKO or BDMGO) is received on
a device input pin (BIAKI or BDMGI) and conditionally retransmitted via a device output pin
(BIAKO or BDMGO). These signals are received from higher-priority devices and retransmitted to
lower-priority devices on the bus. DMA and I/O interrupt priorities are discussed in Pargaraphs 4.4
and 4.5.1.

Bus Master/Slave Relationship

Communication between devices on the bus is asynchronous. A master/slave relationship exists
throughout each bus transaction. At any time, there is one device that has control of the bus. This con-
trolling device is termed the “bus master.” The master device controls the bus when communicating
with another device on the bus, termed the “slave.” The bus master (typically the KDF11-BA processor
or a DMA device) initiates a bus transaction. The slave device responds by acknowledging the transac-
tion in progress and by receiving data from, or transmitting data to, the bus master. The extended LSI-
11 bus control signals transmitted or received by the bus master or bus slave device must complete the
sequence according to the protocol established for transferring address and data information. The pro-
cessor controls bus arbitration (i.e., “decides” which device is to be bus master at any given time).

A typical example of a master/slave relationship has the processor, as master, fetching an instruction
from memory which is always a slave). Another example is a disk drive, as master, transferring data to
memory, again, as the slave. Any device except the processor can be master or slave depending on the
circumstances. Communication on the extended LSI-11 bus is interlocked; therefore, for each control
signal issued by the master device, there must be a response from the slave in order to complete the
transfer. It 1s the master/slave signal protocol that makes the extended LSI-11 bus asynchronous. The
asynchronous operation allows both fast and slow devices to use the bus and eliminates the need for
synchronizing clock pulses between the bus master and slave device.

Since bus cycle completion by the bus master requires response from the slave device, each bus master
must include a timeout error circuit that will abort the bus cycle if the slave device does not respond to
the bus transaction within 10 us. The KDF11-BA has a bus timer that restarts the clock when no device
responds to BDIN L or BDOUT L within 10 us. An immediate trap to location 4g occurs. The slowest
peripheral or memory device must respond in less than 10 us to prevent a bus timeout error.

4.2 BUS SIGNAL NOMENCLATURE
Throughout the following protocol specifications, bus signals are referred to in several different ways.

. In general discussions where timing, polarity, and physical location are unimportant, the base
signal name without any prefixes or suffixes is used. For example:

SYNC, WTBT. BS7, DAL <21:00> or the DAL lines

4-2

2. Most signals on the backplane etch are asserted low and referred to with a prefix character
B, and a suffix (space) L. For example:

BSYNC L, BWTBT L, BBS7 L, BDAL<21:00> L

BPOK H and BDCOK H are asserted high.

3. Receivers and drivers are considered part of the bus. Signal inputs to drivers are referred to
with a prefix character T for transmit. For example:

TSYNC, TWTBT, TBS7, TDAL<21:00>

4. Signal outputs of receivers are referred to with a prefix character R for received. For
example:

RSYNC, RWTBT, RBS7, RDAL <21:00>

Whenever timing is important, the designations in items 3 and 4 above are used to reference timing to a
recetver output or driver input. For example, after receipt of the negation of RDIN, the slave negates
its TRPLY (0 ns minimum, 8000 ns maximum). It must maintain data valid on its TDAL lines until O
ns (minimum) after the negation of RDIN, and must negate its TDAL lines 100 ns (maximum) after
the negation of its TRPLY.

4.3 DATA TRANSFER BUS CYCLES
Data 1s transferred between a bus master and slave device to accomplish various functions. The data
transfer bus cycles and their functions are described in Table 4-2.

Table 4-2 Data Transfer Bus Cycles

Bus Cycle Function (with respect
Mnemonic Description to the bus master)

DATI Data word input Read
DATO Data word output Write
DATOB Data byte output Write byte
DATIO Data word input/output Read-modify-write
DATIOB Data word input/byte output Read-modify-write byte

These bus cycles, executed by bus master devices, transfer 16-bit words or 8-bit bytes to or from slave
devices. The data to be written in the destination byte during byte output operations is valid on the
appropriate BDAL lines. For example, BDAL <(15:08> contains the high byte, and BDAL <07:00>
contains the low byte. Table 4-3 describes the bus signals used in a data transfer operation.

Data transfer bus cycles can be reduced to three basic types: DATI, DATO(B) and DATIO(B). These
transactions occur between the bus master and one slave device selected during the addressing portion
of the bus cycle.

4-3

Table 4-3 Data Transfer Bus Signals

Mnemonic Description Function

BDAL <21:00>} 22 Data/address lines BDAL <21:18> L are used for 22-bit extended address-
L ing; BDAL<17:16> L are used for 18-bit extended ad-

dressing, memory parity error, and memory parity error
enable functions; BDAL <<15:00> L are used for 16-bit
addressing, word and byte transfers.

BSYNC L Synchronize Strobe signals
BDIN L Data input strobe
BDOUT L Data output strobe
BRPLY L Reply

BWTBT L Write /byte control Control signals
BBS7 L Bank 7 select

4.3.1 Bus Cycle Protocol
Before initiating a bus cycle, the previous bus transaction must have been completed (BSYNC L ne-
gated) and the device must become bus master. The bus cycle is divided into two parts: an addressing
portion, and a data transfer portion. During the addressing portion, the bus master outputs the address
for the desired slave device (memory location or device register). The selected slave device responds by
latching the address bits and holding this condition for the duration of the bus cycle (until BSYNC L
becomes negated). During the data transfer portion of the bus cycle, the operations performed will vary
slightly, depending on the type of data transfer desired. Paragraphs 4.3.1.2 through 4.3.1.4 describe the
data transfer portion of the various bus cycles.

4.3.1.1 Device Addressing — The device addressing portion of a data transfer bus cycle comprises an
address setup/deskew time and an address hold/deskew time. During the address setup/deskew time
the bus master does the following.

1. Asserts TDAL<<21:00> with the desired slave device address bits.

2. Asserts TBS7 if a device in the /O page is being addressed.

3. Asserts TWTBT if the cycle is a DATO(B) bus cycle.

4. Asserts TSYNC 150 ns (minimum) after gating TDAL, TBS7, and TWTBT onto the bus.

During this time the address, RBS7, and RWTBT signals are asserted at the slave bus receiver for at
least 75 ns before RSYNC becomes active. Devices in the 1/O page ignore the 9 high-order address
bits RDAL<21:13> and instead decode RBS7 along with the 13 low-order address bits. An active
RWTBT signal indicates that a DATO(B) operation follows, while an inactive RWTBT indicates a
DATI or DATIO(B) operation.

The address hold/deskew time begins after RSYNC is asserted. The slave device uses the active
RSYNC to clock RDAL address bits, RBS7 and RWTBT, into its internal logic. RDAL<21:00>,
RBS7, and RWTBT will remain active for 25 ns (minimum) after the RSYNC becomes active.
RSYNC remains active for the duration of the bus cycle.

Memory and peripheral devices are addressed similarly, except for the way they respond to RBS7. Ad-
dressed peripheral devices must not decode address bits on RDAL<<17:13>. Addressed peripheral de-
vices may respond to a bus cycle only when RBS7 is asserted during the addressing portion of the cycle.
When asserted, RBS7 indicates that the device address resides in the I /O page (the upper 8K-byte
address space). Memory devices generally do not respond to addresses in the I /O page; however, some
system applications may permit memory to reside in the 1/O page for use as DMA buffers, read-only
memory bootstraps or diagnostics, etc.

4.3.1.2 DATI - The DATI bus cycle is a read operation that inputs data from the slave device to the
bus master. The operations performed by the bus master and slave device during a DATI are shown in
Figure 4-1. The DATI bus cycle timing is shown in Figure 4-2. Data consists of 16-bit word transfers
over the bus. During the data transfer portion of the DATI bus cycle, the bus master asserts TDIN 100
ns (minimum) after it asserts TSYNC. The slave device responds to RDIN active by asserting:

1. TRPLY after receiving RDIN and 125 ns (maximum) before TDAL bus driver data bits are
valid.

2. TDAL<17:00> L with the addressed data and error information.

When the bus master receives RRPLY, it does the following.

. Waits at least 200 ns deskew time and then accepts input data at RDAL < 15:00> bus re-
ceivers. RDAL <17:16> are monitored for a possible parity error indication.

2. Negates TDIN 150 ns (minimum) after RRPLY becomes active.

The slave device responds to RDIN negation by negating TRPLY and removing read data from TDAL
bus drivers. TRPLY must be negated 100 ns (maximum) prior to removal of read data. The bus master
responds to the negated RRPLY by negating TSYNC.

Conditions for the next TSYNC assertion are as follows.

I. TSYNC must remain negated for 200 ns (minimum).

2. TSYNC must not become asserted within 300 ns of the previous RRPLY negation.

4-5

BUS MASTER SLAVE

(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE MEMORY

* ASSERT BDAL <21:00> L WITH
ADDRESS AND

ASSERT BBS7 IF THE ADDRESS

IS tN THE 1/O PAGE

ASSERT BSYNC L
\ \‘-__ “—\

——

T
DECODE ADDRESS

* STORE"DEVICE SELECTED"”

OPERATION

/ f

" -

REQUEST DATA -
e REMOVE THE ADDRESS FROM

BOAL <21:00> L AND NEGATE BBS?

L

» ASSERT BOIN L —
H‘\ \\

T

INPUT DATA

e PLACE DATAON BDAL < 15:00> L

-+ ASSERT BRPLY L

d/ /#

—_—

TERMINATE INPUT TRANSFER

o ACCEPT DATA AND RESPOND

BY NEGATING BDIN L —_—
\—

\‘ \

-
TERMINATE BUS CYCLE OPERATION COMPLETED

e NEGATE BSYNC L - » NEGATE BRPLY L

MA.6028

Figure 4-1 DATI Bus Cycle

T/R DAL (4) T ADDR x (4) X R DATA x (4)

100ns

150ns MIN b — 200ns MAX

T SYNC MIN _.1/ - 200ns MIN tX /_
CLOCK DATA

—a1 100ns MIN [&——— 200ns MIN
8uS MAX r_ fe— 200ns MIN —e» 7/ ‘

/x—% 300ns MIN —————————g»

R RPLY

150ns MIN je—
_.1 > |-—100ns MIN

TBS7 (4 ‘X (4)

TWTBT (4) > /< (4)

TIMING AT MASTER DEVICE

R/T DAL (4) X R ADDR >< (4))(T DATA X (4)

. 2M5Iflll5 I. —» la— 125ns MAX —» 100ns MAX, Ons MIN

R SYNC / /
5 / Ons MIN —|———— \

75ns —— 200ns MIN
MIN ‘\ 150ns MIN -a»

\ I-— 300ns MIN >

R DIN

T RPLY

— 75ns MIN

RBS7 (4) J (4)

B 25ns MIN

RWTBT (4) /((4)

TIMING AT SLAVE DEVICE

NOTES:

1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A "B PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION,
T =BUS DRIVER INPUT

R = BUS RECEIVER QUTPUT

MR-6037

Figure 4-2 DATI Bus Cycle Timing

4.3.1.3 DATO(B) - DATO(B) is a write operation. Data is transferred in 16-bit words (DATO) or 8-
bit bytes (DATOB) from the bus master to the slave device. The data transfer output can occur after
the addressing portion of a bus cycle when TWTBT has been asserted by the bus master, or immedi-
ately following an input transfer part of a DATIO(B) bus cycle. The operations performed by the bus
master and slave device during a DATO(B) bus cycle are shown in Figure 4-3. The DATO(B) bus cycle

timing 1s shown 1n Figure 4-4.

BUS MASTER SLAVE

(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE/MEMORY

ASSERT BDAL <21:00> L WITH

ADDRESS AND

ASSERT BBS7 L |IF ADDRESS IS

IN THE I/0 PAGE

ASSERT BWTBT L (WRITE

CYCLE)

ASSERT BSYNC L

e
DECODE ADDRESS

[3 e rs

- SO'L(éziT%ENWCE SELECTED

/

—

OUTPUT DATA -
» REMOVE THE ADDRESS FROM

BDAL <21:00> L AND NEGATE BBS7 L

* NEGATE BWTBT L UNLESS DATOB

» PLACE DATAON BDAL < 15:00> L

e ASSERT BDOUT L T ——

\

————

T
TAKE DATA
« RECEIVE DATA FROM BDAL

LINES
__« ASSERT BRPLY L

—
— —

TERMINATE OUTPUT TRANSFER 4
« NEGATE BDOUT L (AND BWTBT L

\F A DATOB BUS CYCLE)
« REMOVE DATA FROM BDAL <15:00> L____

——

~

OPERATION COMPLETED
___+ NEGATEBRPLY L

TERMINATE BUS CYCLE

e NEGATE BSYNC L
MR-6029

Figure 4-3 DATO or DATO(B) Bus Cycle

4-8

—.‘ Ons MIN r—

T DAL (4) x T ADDR X T DATA x (4}

|'; 150ns 100ns l‘ —of 100ns |.
MIN MIN MIN

T SYNC / L /

«— Bus _.I a— 175ns MIN be—— 200ns MIN ————o»

T DOOUT

150ns MlN——I L— 300ns MIN ——»

R RPLY
V

- I-— 100ns MIN

i T XX
—-—| 150ns MIN j@—

TWTBT (4)

(4)

\ ASSERTION = BYTE X (4)

LlSOnsMIN-H 100ns l-— —-l 100ns MIN L—

TIMING AT MASTER DEVICE

R DAL (4) x R ADDR X R DATA x {4}

— — 25ns MIN —> L—25ns MIN

RSYNC // \

25ns
25 . MIN “ {—on 100ns MIN 150ns MIN —»

ns

MIN \
R DOUT / ‘

26ns . —u‘ 150ns MIN Q—x |<7 300ns MIN ———————»

MIN
T RPLY \

—-| 75ns MIN -

R BS?7 (4) X x (4)

26ns MIN |- — !‘— 25ns MIN

RWTBT (4) \ { ASSERTION = BYTE X (4)

L—— [— ln— 25ns MIN
MIN

TIMING AT SLAVE DEVICE

NOTES:

1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT
BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A ""B” PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BE LOW: 4. DON'T CARE CONDITION.
T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

MRA-1179

Figure 4-4 DATO or DATO(B) Bus Cycle Timing

4-9

The data transfer portion of a DATO(B) bus cycle comprises a data setup/deskew time and a data
hold/deskew time. During the data setup/deskew time, the bus master outputs the data on
TDAL <15:00> 100 ns (minimum) after TSYNC is asserted. If it is a word transfer, the bus master
negates TWTBT while gating data onto the bus. If the transfer is a byte transfer, the bus master asserts
TWTBT while gating data onto the bus. During a byte transfer, the condition of BDAL 00 L during the
address cycle selects the high or low byte. If asserted, the high byte (BDAL<15:08> L) is selected;
otherwise, the low byte (BDAL<<07:00> L) is selected. An asserted BDAL 16 L at data transfer time
will force a parity error to be written into memory if the memory is a parity-type memory. BDAL 17 L
1s not used for write operations. The bus master asserts TDOUT L 100 ns (minimum) after the TDAL
and TWTBT bus driver inputs are stable. The slave device responds to RDOUT by accepting the input
data and asserting TRPLY (8 us maximum to avoid bus timeout). This completes the data se-
tup/deskew time. During the data hold/deskew time the bus master negates TDOUT 150 ns (min-
imum) after the assertion of RRPLY. TDAL<21:00> bus drivers remain stable for at least 100 ns
after TDOUT negation. The bus master then negates TDAL inputs.

During this time, the slave device senses RDOUT negation and negates TRPLY. The bus master re-
sponds by negating TSYNC. However, the processor will not negate TSYNC for at least 175 ns after
negating TDOUT. This completes the DATO(B) bus cycle. Before the next cycle, TSYNC must re-
main unasserted for at least 200 ns. Also, TSYNC may not assert until 300 ns (minimum) after
RRPLY negates.

4.3.1.4 DATIO(B) - The protocol for a DATIO(B) bus cycle is identical to the addressing and data
transfer portions of the DATI and DATO(B) bus cycles. After addressing the device, a DATI cycle is
performed as explained in Paragraph 4.3.1.2; however, TSYNC is not negated. TSYNC remains active
for an output word or byte transfer [DATO(B)]. The bus master maintains at least 200 ns between
RRPLY negation during the DATI cycle and TDOUT assertion. The cycle is terminated when the bus
master negates TSYNC, which follows the same protocol as described for DATO(B). The operations
performed by the bus master and slave device during a DATIO or DATIO(B) bus cycle are shown in
Figure 4-5. The DATIO and DATIO(B) bus cycle timing is shown in Figure 4-6.

4.4 DIRECT MEMORY ACCESS (DMA)
The direct memory access (DMA) capability allows direct data transfers between 1/0 devices and
memory. This is useful when using mass storage devices (e.g., disk drives) that move large blocks of
data to and from memory. A DMA device only needs to know the starting address in memory, the
starting address in mass storage, the length of the transfer, and whether the operation is read or write.
When this information is available, the DMA device can transfer data directly to or from memory.
Since most DMA devices must perform data transfers in rapid succession or lose data, DMA requests
are assigned the highest priority level.

DMA is accomplished after the processor (normally bus master) has passed bus mastership to the high-
est-priority DMA device that is requesting the bus. The processor arbitrates all requests and grants the
bus to the DMA device located electrically closest to the processor. A DMA device remains bus master
until it relinquishes its mastership. The following control signals are used during bus arbitration.

BDMGI L DMA Grant Input
BDMGO L DMA Grant Output
BDMR L DMA Request Line
BSACK L Bus Grant Acknowledge

4-10

BUS MASTER SLAVE
(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE/MEMORY
® ASSERT BDAL <21:00> L WITH

ADDRESS
® ASSERT BBS7 L IF THE

ADDRESS IS IN THE 1/0 PAGE
® ASSERT BSYNC L

&—--‘_—-_.‘

DECODE ADDRESS
¢ STORE “DEVICE SELECTED"

OPERATION
--"'- - -

-
REQUEST DATA

®¢ REMOVE THE ADDRESS FROM

BDAL <21:00> L

® ASSERTBDIN L —_——

INPUT DATA

e PLACE DATA ON BDAL <15:00> L
¢ ASSERT BRPLY L

TERMINATE INPUT TRANSFER -
® ACCEPT DATA AND RESPOND BY

TERMINATING BDIN L
S — ~— —_ -

COMPLETE INPUT TRANSFER
e REMOVE DATA
e NEGATE BRPLY L

- OUTPUT DATA
e PLACE OUTPUT DATA ON BDAL <15:00 > L
® (ASSERT BWTBT L IF AN OUTPUT

BYTE TRANSFER)
e ASSERT BDOUT L

\\\\.

TAKE DATA
® RECEIVE DATA FROM BDAL LINES
® ASSERT BRPLY L

/cfl'

- TERMINATE OUTPUT TRANSFER
e REMOVE DATA FROM BDAL LINES
e NEGATE BDOUT L —

OPERATION COMPLETED

® NEGATEBRPLY L

—

TERMINATE BUS CYCLE -
o NEGATEBSYNCL

(AND BWTBT L IF IN

A DATIOB BUS CYCLE)

MR.-6030

Figure 4-5 DATIO or DATIO(B) Bus Cycle

].— 150ns MIN —-‘ |-— Ons MIN

&T ADDR)((4) R/T DAL X R DATA X (4) X T DATA)((4)

100ns 200ns L— ' MIN —— — MAX I 100ns MIN

TSYNC J /_

o 10ns_ | 175ns
lg4— 200ns MIN

T DOUT /7/ 200ns MIN —»

a— 200ns MIN—-‘

T DIN /

300ns

\ / MIN ’
R RPLY / F

\
150ns | g

l MIN

T BS7)(K

— — 100ns MIN —e{ 100ns MIN r—

TWTBT (4>\| (4) X ASSERTION = BYTE X (4)

—DI [— 150ns MIN

TIMING AT MASTER DEVICE

RT/DAL (4) X R ADDRX— (4) X T DATA >< (4) X R DATA)((4)

—» L— 25ns MIN —~ I- 25ns MIN

R SYNC ,/ —»{ | 100ns MA X \ /

—o le— 75ns MIN 25ns MIN —® |'~ — 100ns MIN

125ns

R DOUT = ax - \R 150ns MIN fa-

j— 200ns MIN =

R DIN \‘\\

) I‘— 150ns MIN —Bm / i — 300ns MIN ——o»

T RPLY Q\ Q.\
—.‘ -— 75ns MIN

R BS7)()(

4-1 e— 75ns MIN v‘ e— 25ns MIN —» |—— 25ns MIN

R WTBT (4% (4))(ASSERTION = BYTE)((4)

— 25ns MIN

TIMING AT SLAVE DEVICE

NOTES:
1. TIMING SHOWN AT REQUESTING DEVICE

BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW:

T=8BUS DRIVER INPUT

R =BUS RECEIVER QUTPUT

Figure 4-6 DATIO or DATIO(B) Bus Cycle Timing

4. DON'T CARE CONDITION.

3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

SIGNAL NAMES INCLUDE A "B"” PREFIX.

MR 6036

A DMA transaction is divided into three phases: the bus mastership acquisition phase, the data transfer
phase, and the bus mastership relinquish phase. The operations performed by the processor and bus
master during the DMA request/grant sequence are shown in Figure 4-7. The DMA request/grant bus
cycle timing is shown in Figure 4-8.

During the bus mastership acquisition phase, a DMA device requests the bus by asserting TDMR. The
processor arbitrates the request and initiates the transfer of bus mastership by asserting TDMGO. The
maximum time between BDMR L assertion by the DMA device and BDMGO L assertion by the pro-
cessor is DMA latency. This time is processor-dependent. The KDF11-BA asserts TDMGO 1.4 us
(maximum) after the assertion of RDMR.

BDMGO L/BDMGI L is one of two signals that are daisy-chained through each module in the back-
plane. The signal is driven out of the processor on the BDMGO L pin, enters each module on the
BDMGI L pin and exits on the BDMGO L pin. This signal passes through the modules in descending
order of priority until it is stopped by the requesting device. The requesting device blocks the output of
BDMGO L and asserts TSACK. If no device responds to the DMA grant, the processor will clear the
grant and rearbitrate the bus.

NOTE
The KDF11-BA uses a “NO-SACK” timer, which
clears BDMGO L if BSACK L is not received from
the DMA device within 10 us.

During the data transfer phase, the DMA device continues asserting BSACK L. If multiple-data trans-
fers are performed during this phase, consideration must be given to the use of the bus for other system
functions, such as memory refresh (if required). The actual data transfer is performed in the same man-
ner as the data transfer portion of DATI, DATO(B) and DATIO(B) bus cycles described in Paragraphs
4.3.1.2 through 4.3.1.4.

The DMA device can assert TSYNC L for a data transfer 0 ns (minimum) after it receives RDMGI L,
250 ns (minimum) after RSYNC is negated, and 300 ns (minimum) after RRPLY is negated.

During the bus mastership relinquish phase the DMA device relinquishes the bus by negating TSACK.
This occurs after the last data transfer cycle (RRPLY negated) is completed (or aborted). TSACK may
be negated up to 300 ns (maximum) before negating TSYNC.,

4.5 INTERRUPTS ,,
The interrupt capability of the LSI-11 bus allows any 1/O device to suspend temporarily (interrupt)
current program execution and divert processor operation for service of the requesting device. The pro-
cessor inputs a vector from the device to start the service routine (handler). As with a device register
address, the hardware fixes the device vector at locations within a designated range of addresses be-
tween 000 and 777g. The vector indicates the first of a pair of addresses. The content of the first ad-
dress is read by the processor; it is the starting address of the interrupt handler. The content of the
second address is a new processor status word (PS). The PS bits <<07:05> can be programmed to a
priority level from O to 7g. Only interrupts on a level higher than the number in the priority level field
of the PS are serviced by the processor. If the interrupt priority level of the new PS is higher than that
of the original PS, the new PS raises the interrupt priority level and thus prevents lower-level interrupts
from breaking into the current interrupt service routine. Control is returned to the interrupted program
when the interrupt service routine is completed. The original (interrupted) program’s address (PC) and
its associated PS are stored on a ‘“‘stack.” The original PC and PS are restored by a return from inter-
rupt instruction (RTI or RTT) at the end of the service routine. The use of the stack and the LSI-11 bus
interrupt scheme can allow interrupts to occur within interrupts (nested interrupts) if the requesting
interrupt has a higher priority level than the interrupt currently being serviced.

4-13

KDF11-BA PROCESSOR] BUS MASTER

(MEMORY IS SLAVE) (CONTROLLER)

REQUEST BUS

— 7 & ASSERT BDMR L _
GRANT BUS CONTROL __—
o NEAR THE END OF THE = o —
CURRENT BUS CYCLE
(BRPLY L IS NEGATED),
ASSERT BDMGO L AND ~— _
INHIBIT NEW PROCESSOR ~
GENERATED BYSNC L FOR —~ ACKNOWLEDGE BUS
THE DURATION OF THE —~ MASTERSHIP
DMA OPERATION. * RECEIVE BDMG

— « WAIT FOR NEGATION OF
- BSYNC L AND BRPLY L

.~ e ASSERT BSACK L
TERMINATE GRANT L * NEGATE BDMR L
SEQUENCE
« NEGATE BDMGO L AND
WAIT FOR DMA OPERATION ™ ___
TO BE COMPLETED T~

~ . EXECUTE A DMA DATA
TRANSFER
e ADDRESS MEMORY AND
TRANSFER UP TO 4 WORDS
OF DATA AS DESCRIBED
FOR DATI, OR DATO BUS
CYCLES

—— « RELEASE THE BUS BY
- -~ TERMINATING BSACK L

- (NO SOONER THAN
— NEGATION OF LAST BRPLY

gep:zgrfigxocesson . L) AND BSYNC L.

e ENABLE PROCESSOR-
GENERATED BSYNC L
(PROCESSOR IS BUS WAIT 4 us OR UNTIL
MASTER) OR ISSUE ANOTHER FIFO TRANSFER
ANOTHER GRANT IF BDMR IS PENDING BEFORE

L IS ASSERTED REQUESTING BUS AGAIN.

MA-6031

Figure 4-7 DMA Request/Grant Sequence

4-14

SECOND
REQUEST

_.| le— DMA LATENCY

—r— 7 S 0 7T 7T T T 7T 7 ;7T T 7
T DMR \/////////////////

/ yi / / / / / / / rd / / / / / /

— Ons MIN

S ——

M R DMG \ Y,

T SACK L

250ns MIN —e» |‘— — ’4— 300ns MAX

RIT SYNC \\\\\\\ \

l 250ns MIN ——— onsmum—-l L‘—-
‘41 300ns MIN ——>

R/T RPLY \\ \\ \\\ / \

—b Ons MIN
‘ — l<-100nsMAx

Ons MIN

T DAL J(ADDR X DATA \
(ALSO BS7,
WTBT, REF)

NOTES:
1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER INPUTS

AND BUS RECEIVER QUTPUTS.

2. SIGNAL NAME PREF!XES ARE DEFINED BELOW:

T=BUS DRIVER INPUT

R = BUS RECEIVER OUTPUT

3. BUS DRIVER QUTPUT AND BUS RECEIVER INPUT SIGNAL NAMES

INCLUDE A "B PREFIX.

MR 3690

Figure 4-8 DMA Request/Grant Bus Cycle Timing

Interrupts can be caused by LSI-11 bus options and can also originate in the processor. Interrupts origi-
nating in the processor are called “traps” and are caused by programming errors, hardware errors, spe-
cial instructions, and maintenance features. The following are the LSI-11 bus signals used in interrupt
transactions.

BIRQ4 L
BIRQS L
BIRQ6 L
BIRQ7 L

BIAKI L
BIAKO L

BDAL<15:00> L

BDIN L
BRPLY L

Interrupt request priority level 4
Interrupt request priority level 5
Interrupt request priority level 6
Interrupt request priority level 7

Interrupt acknowledge input
Interrupt acknowledge output

Data/address lines

Data input strobe
Reply

4-15

4.5.1 Device Priority
The LSI-11 bus supports the following two methods of determining device priority.

. Distributed arbitration — Priority levels are implemented on the hardware. When devices of
equal priority level request an interrupt, priority is given to the device electrically closest to
the processor.

2. Position-defined arbitration — Priority is determined solely by electrical position on the bus.
The device closest to the processor has the highest priority while the device at the far end of
the bus has the lowest priority.

The KDF11-BA uses both methods — distributed arbitration, with four levels of priority, and position-
defined arbitration within each level. Interrupts on these priority levels are enabled /disabled by bits in
the processor status word (PS <<07:05>). Single-level interrupt (position-defined) devices that interrupt
on BIRQ4 can also be used in KDF11-BA systems but must be placed in a bus slot following the last
bus slot in which a position-independent device is installed.

4.5.2 Interrupt Protocol
Interrupt protocol has three phases: the interrupt request phase, the interrupt acknowledge and priority
arbitration phase, and the interrupt vector transfer phase. The operations performed by the processor
and interrupting device are shown in Figure 4-9. Interrupt protocol timing is shown in Figure 4-10.

The interrupt request phase begins when a device meets its specific conditions for interrupt requests;
for example, when the device is “ready,” “done,” or when an error has occurred. The interrupt enable
bit in a device status register must be set. The device then initiates the interrupt by asserting the inter-
rupt request line(s). BIRQ4 L is the lowest hardware priority level and is asserted for all interrupt
requests for compatibility with previous LSI-11 processors. The level at which a device is configured
must also be asserted. (A special case exists for level-7 devices that must also assert level 6.) The inter-
rupt request line remains asserted until the request is acknowledged.

Interrupt Level Lines Asserted by Device

4 BIRQ4 L
5 BIRQ4 L, BIRQS5 L
6 BIRQ4 L, BIRQ6 L
7 BIRQ4 L, BIRQ6 L, BIRQ7 L

During the interrupt acknowledge and priority arbitration phase, the KDF11-BA will acknowledge in-
terrupts under the following conditions.

1. The device interrupt priority is higher than the current priority level stored in PS<07:05>.

2. The processor has completed instruction execution and no additional bus cycles are pending.

The processor acknowledges the interrupt request by asserting TDIN and, 225 ns (minimum) later,
asserting TIAKO. The device electrically closest to the processor receives the acknowledge on its
RIAKI bus receiver.

4-16

On the leading edge of RDIN, each bus option capable of requesting interrupts decides whether to

accept or to pass on the RIAKI signal. A device that does not support position-independent, multilevel

interrupts will accept RIAKI if it is requesting an interrupt when RDIN asserts. A device that does

support position-independent, multilevel interrupts accepts RIAKI if it is requesting an interrupt and if

there is no higher-priority request pending when RDIN asserts. This decision must be clocked into a

flip-flop, which settles within 150 ns of TDIN.

PROCESSOR DEVICE

INITIATE REQUEST

——® ASSERT BIRQ L

/

STROBE INTERRUPTS -
e ASSERT BDIN L —

\

\ \

Tt

| RECEIVE BDIN L

e STORE “INTERRUPT SENDING”
* IN DEVICE

GRANT REQUEST
¢ PAUSE AND ASSERT BIAKO L ——__

\ —_—
\ \

—

RECEIVE BIAKI L
« RECEIVE BIAKI L AND INHIBIT

BIAKO L
e PLACE VECTORON BDAL <15:00> L
* ASSERT BRPLY L

__ e NEGATE BIRQ L

/ /

--"'"

-
RECEIVE VECTOR & TERMINATE
REQUEST
e INPUT VECTOR ADDRESS
e NEGATE BDIN L AND 81AKO L

\-

\\

\-.

\-

B

COMPLETE VECTOR TRANSFER
e REMOVE VECTOR FROM BDAL BUS

-» NEGATE BRPLY L

-

PROCESS THE INTERRUPT

e SAVE INTERRUPTED PROGRAM

PC AND PS ON STACK

e LOAD NEW PC AND PS FROM

VECTOR ADDRESSED LOCATION

e EXECUTE INTERRUPT SERVICE

ROUTINE FOR THE DEVICE

MR-1182

Figure 4-9 Interrupt Request/Acknowledge Sequence

INTERRUPT LATENCY
™ MINUS SERVICE TIME ‘

TIRQ

—-l 150ns MIN j@—

R DIN /

R 1AKI

T RPLY
\

—-l 125ns MAX f&— |-— 100ns MAX

T DAL (4) X VECTOR x (4)

R SYNC (UNASSERTED)

R BS7 {UNASSERTED)

NOTES:

1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER INPUTS

AND BUS RECEIVER OUTPUTS.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW:

T =BUS DRIVER INPUT

R =BUS RECEIVER OUTPUT

3. BUS DRIVER QUTPUT AND BUS RECEIVER INPUT SIGNAL NAMES

INCLUDE A “B” PREFIX,

4. DON'T CARE CONDITION.

MR.1183

Figure 4-10 Interrupt Protocol Timing

Devices that support position-independent, multilevel interrupts assert from one to three IRQ lines
when requesting an interrupt. Table 4-4 presents the IRQ lines a device at each level must assert in
order to request an interrupt, and the lines it must monitor to determine whether a higher-priority de-
vice is requesting an interrupt.

Table 4-4 Position-Independent, Multilevel Device Requirements

Interrupt Level IRQ Lines Asserted IRQ Lines Monitored

4 TIRQ4 RIRQS, RIRQ6
5 TIRQ4, TIRQS RIRQ6
6 TIRQ4, TIRQ6 RIRQ7
7 TIRQ4, TIRQ6, TIRQ7

During the interrupt vector transfer phase, the responding interrupt device receives RIAKI and then
asserts TRPLY. The vector address must be stable at TDAL <08:02> 125 ns (maximum) after
TRPLY 1s asserted. The processor receives the assertion of RRPLY, and 200 ns (minimum) later it
inputs the vector address and negates both TDIN and TIAKI. The interrupting device negates TRPLY
after the negation of RIAKI and removes the vector address from TDAL <08:02> 100 ns (maximum)
after TRPLY negates. Since vector addresses are constrained to be between 000 and 774g, none of the
remaining TDAL lines are used.

4.5.3 4-Level Interrupt Configurations
Users who have high-speed peripherals and desire better software performance can use the 4-level inter-
rupt scheme. Both position-independent and position-dependent configurations can be used with the 4-
level interrupt scheme.

The position-independent configuration is shown in Figure 4-11. This configuration allows peripheral
devices that use the 4-level interrupt scheme to be placed in the backplane in any order. These devices
must send out interrupt requests and monitor higher-level request lines, as described in Paragraph
4.5.2. The level-4 request is always asserted by a requesting device, regardless of priority, to allow com-
patibility if an LSI-11 or LSI-11/2 processor is in the same system. If two or more devices of equally
high priority request an interrupt, the device physically closest to the processor will win arbitration.
Devices that use the single-level interrupt scheme must be modified or placed at the end of the bus for
arbitration to function properly.

: BIAK (INTERRUPT ACKNOWLEDGE) LEVEL4 |BiAk | LEVEL6 |giak | LEVELS |glak | LEVEL?Y
KDF1 DEVICE DEVICE *| DEVICE * DEVICE

! |
BIRQ 4 (LEVEL 4 INTERRUPT REQUEST)

BIRQ 5 (LEVEL S INTERRUPT REQUEST)

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST) 1

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST))

MA-2888

Figure 4-11 Position-Independent Configuration

4-19

The position-dependent configuration is shown in Figure 4-12. This configuration is simpler to imple-
ment, with the following constraint, however. Peripheral devices must be ordered so that the highest-
priority device is located closest to the processor with the remaining devices placed in the backplane in
decreasing order of priority. With this configuration each device must only assert its own level and level
4 (for compatibility with an LSI-11 or LSI-11/2). Monitoring higher-level request lines is unnecessary.
Arbitration is achieved through the physical positioning of each device on the bus. Single-level inter-
rupt devices on level 4 should be positioned last on the bus.

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL 7 |Biak | LEVELS |Biak | LEVELS | BlAK | LEVEL4
KDF11 DEVICE DEVICE DEVICE *1 DEVICE

5%
BIRQ 4 (LEVEL 4 INTERRUPT REQUEST)

BIRQS5 (LEVEL 5 INTERRUPT REQUEST) 4

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)

BIRQ 7 {LEVEL 7 INTERRUPT REQUEST)

MR-2889

Figure 4-12 Position-Dependent Configuration

4.6 CONTROL FUNCTIONS
The following LSI-11 bus signals provide system control functions.

BREF L Memory refresh
BHALT L Processor halt
BINIT L Initialize
BPOK H Power OK
BDCOK H DC power OK
BEVENT L External event interrupt request

4.6.1 Memory Refresh
If BREF is asserted during the address portion of a bus data transfer cycle, it causes all dynamic MOS
memories to be addressed simultaneously. The sequence of addresses required for refreshing the memo-
ries is determined by the specific requirements of each memory. The complete memory refresh cycle
consists of a series of refresh bus transactions. (A new address is used for each transaction.) The entire
cycle must be completed within 2 ms. Multiple-data transfers by DMA devices must be avoided since
they could delay memory refresh cycles. The KDF11-BA does not perform memory refresh.

4.6.2 Halt |
Assertion of BHALT L stops program execution and forces the processor unconditionally into console
ODT mode. The processor does not assert the BHALT L bus line when it comes to a programmed
HALT.

4.6.3 Initialization
Devices along the bus are initialized when BINIT L is asserted. The processor asserts the BINIT L
signal under the following conditions.

1. During a power-down sequence.

2. During a power-up sequence.

3. During the execution of a RESET instruction.

4-20

4. After detection of a G character in ODT mode (if the processor features an ODT mode and a
G command within it), and before execution of the code starting at the address that preceded
the G command.

4.6.4 Power Status

Power status protocol is controlled by two signals, BDCOK H and BPOK H. These signals are driven
by an external device (usually the power supply) and are defined as follows.

4.6.4.1 BDCOK H - The assertion of this line indicates that dc power has been stable for at least 3 ms.
Once asserted this line remains asserted until the power fails.

4.6.4.2 BPOK H - The assertion of this line indicates that there is at least an 8-ms reserve of dc power
and that BDCOK H has been asserted for at least 70 ms. Once BPOK H has been asserted, it must
remain asserted for at least 3 ms.

The negation of this line indicates that power is failing and that only 4 ms of dc power reserve remains.
The negation of this line during processor operation initiates a power-fail trap sequence.

4.6.4.3 Power-Up - The following events occur during a power-up sequence.

I. Logic associated with the power supply negates BDCOK H during power-up and asserts
BDCOK H 3 ms (minimum) after dc power is restored to voltages within specification.

2. The processor asserts BINIT L after receiving nominal power and negates BINIT L 0 ns
(minimum) after the assertion of BDCOK H.

3. Logic associated with the power supply negates BPOK H during power-up and asserts BPOK
H 70 ms (minimum) after the assertion of BDCOK H. If power does not remain stable for 70
ms, BDCOK H will be negated; therefore, devices should suspend critical actions until
BPOK H is asserted.

4. BPOK H must remain asserted for a minumum of 3 ms. BDCOK H must remain asserted 4

ms (minimum) after the negation of BPOK H.

The timing diagram for the power-up/power-down sequence is shown in Figure 4-13.

4| Ons ——‘ 8-20uS
MIN

BINIT L lh [\ j

b¢—— 3ms MIN SmM 1uS L-
MAX MAX

B POK H /

- 70msMIN |e- 4ms MIN —» fl 70ms MIN

BDCOK H A{ \
_

—_— 3ms i -I wn 54S MIN r—

DC POWER / \.../

POWER UP NORMAL POWER DOWN POWER UP NORMAL

SEQUENCE " power “T* SEQUENCE g SEQUENCE " poweR

NOTE:

ONCE A POWER DOWN SEQUENCE IS STARTED,

IT MUST BE COMPLETED BEFORE A POWER UP

SEQUENCE ISSTARTED.

MR.6032

Figure 4-13 Power-Up/Power-Down Timing

4-21

4.6.4.4 Power-Down - The following events occur during a power-down sequence.

. 1If the ac voltage to a power supply drops below 75% of the nominal voltage for one full line

cycle (15-24 ms), BPOK H is negated by the power supply. Once BPOK H is negated, the
entire power-down sequence must be completed.

A device that requested bus mastership before the power failure that has not become bus
master should maintain the request until BINIT L is asserted or the request is acknowledged
(in which case regular bus protocol is followed).

2. Processor software should execute a RESET instruction 3 ms (minimum) after the negation
of BPOK H. This asserts BINIT L for from 8 to 20 us. Processor software executes a HALT
instruction immediately following the RESET instruction.

3. BDCOK H must be negated a minimum of 4 ms after the negation of BPOK H. This 4 ms
allows mass storage and similar devices to protect themselves against erasures and erroneous
writes during a power failure.

4. The processor asserts BINIT L 1 us (minimum) after the negation of BDCOK H.

5. DC power must remain stable for a minimum of 5 us after the negation of BDCOK H.

6. BDCOK H must remain negated for a minimum of 3 ms.

4.6.5 BEVENT L
The BEVENT L signal is an external line clock interrupt request to the processor. When BEVENT L is
asserted, the processor internally assigns location 100g as the vector address for the BEVENT service
routine. Because the vector is internally assigned, the processor does not execute the protocol for read-
ing-in the interrupt vector address as is the case for other external interrupt requests.

4.7 BUS ELECTRICAL CHARACTERISTICS
This paragraph contains information about the electrical characteristics of the LSI-11 bus.

4.7.1 Signal-Level Specification

Input Logic Levels

TTL logical low: 0.8 Vdc (maximum)
TTL logical high: 2.0 Vdc (minimum)

Output Logic Levels

TTL logical low: 0.4 Vdc (maximum)
TTL logical high: 2.4 Vdc (minimum)

4.7.2 AC Bus Load Definition
AC bus loading is the amount of capacitance a module presents to a bus signal line. This capacitance is
measured between each module signal line and ground. AC bus loading is expressed in ac unit loads
where each unit load is defined as 9.35 pF.

4.7.3 DC Bus Load Definition
DC bus loading is the amount of leakage current a module presents to a bus signal line. A dc unit load
is defined as 105 uA flowing into a module device when the signal line is in the unasserted (high) state.

4-22

4.7.4 120 2 LSI-11 Bus

The electrical conductors interconnecting the bus device slots are treated as transmission lines. A uni-
form transmission line, terminated in its characteristic impedance, will propagate an electrical signal
without reflections. Insofar as bus drivers, receivers, and wiring connected to the bus have finite resis-
tance and nonzero reactance, the transmission line impedance becomes nonuniform, and thus in-

troduces distortions into pulses propagated along it. Passive components of the LSI-11 bus (such as
wiring, cabling, and etched signal conductors) are designed to have a nominal characteristic impedance
of 120 Q.

The maximum length of the interconnecting cable in multiple-backplane systems (excluding wiring
within the backplane) is limited to 4.88 m (16 ft).

NOTE
1. The KDF11-BA processor (as well as all stand-

ard DIGITAL-supplied LSI-11 interfaces) con-
nects to the bus via special drivers and re-
ceivers, described in Paragraphs 4.7.5 and
4.7.6.

2. The KDF11-BA processor provides resistive
(120 Q) pull-up (on all bused lines) to 3.4 Vdc
for this wired-OR interconnecting scheme.

4.7.5 Bus Drivers

Devices driving the 120 2 LSI-11 bus must have open collector outputs and meet the specifications that
follow.

DC Specifications (These conditions must be met at worst-case supply voltage, temperature, and input
signal levels.)

Vcce can vary from 4.75 V to 5.25 V.

Output low voltage when sinking 70 mA of current: 0.7 V (maximum).

Output high leakage current when connected to 3.8 Vdec: 25 uA (even if no power is applied
to them, except for BDCOK H and BPOK H).

AC Specifications

Bus driver output pin capacitance load: Not to exceed 10 pF.

Propagation delay: Not to exceed 35 ns.

Driver skew (difference in propagation time between slowest and fastest bus driver): Not to
exceed 25 ns.

Rise/fall times: Transition time from 10% to 90% for positive transition, and from 90% to
10% for negative transition, must be no faster then 5 ns.

4-23

4.7.6 Bus Receivers
Devices that receive signals from the 120 Q LSI-11 bus must meet the following requirements.

DC Specifications (These conditions must be met at worst-case supply voltage, temperature, and output

signal conditions.)

Vcce can vary from 4.75 V to 5.25 V.

Input low voltage: 1.3 V (maximum).

Input high voltage: 1.7 V (minimum).

Maximum input leakage current when connected to 3.8 Vdc: 80 uA with V¢ between 0.0

and 5.25 V.

AC Specifications

Bus receiver input pin capacitance load: Not to exceed 10 pF.

Propagation delay: Not to exceed 35 ns.

Receiver skew (difference in propagation time between slowest and fastest receiver): Not to

exceed 25 ns.

4.7.7 Bus Termination
The 120 Q LSI-11 bus must be terminated at each end by an appropriate resistive termination. A pair of

resistors in series from + 5.0 V to ground is used to establish a voltage for each bidirectional line when

that line is not being driven (negated). The paraliel impedance of this pair of resistors is 120 €. The

terminating resistors are shown in Figure 4-14. The KDF11-BA contains terminating resistor networks

in 16-pin dual-in-line packages to provide the 120 Q terminations for the data/address, synchronization,

and control lines at the processor end of the bus.

Some system configurations do not require terminating resistors at the far end of the bus. If the system

configuration does require such termination, it is typically provided by a M9404-YA cable connector

module. Rules for configuring single- and multiple-backplane systems are described in Paragraphs 4.8.1

and 4.8.2.

+5 V

18082

12012

BUS LINE

TERMINATION

39052

MR 6033

Figure 4-14 Bus Line Termination

4-24

4.7.8 Bus Interconnection Wiring
This paragraph contains the electrical characteristics of the bus interface. The bus interface for the
module connectors is provided by one, two or three backplanes, depending on the system configuration.
Since each backplane contains 9 slots, a system may have a maximum of 27 module interfaces to the
bus.

4.7.8.1 Backplane Wiring — The wiring that interconnects all device interface slots on the LSI-11 bus
must meet the following specifications.

. The conductors must be arranged so that each line exhibits a characteristic impedance of 120
Q2 (measured with respect to the bus common return).

2. Crosstalk from a pulse-driven line to an undriven line to which a constant 5 V is applied must
be less than 5% of the 5 V. Note that worst-case crosstalk is manifested by simultaneously
driving all but one signal line and measuring the effect on the undriven line.

3. DC resistance of a bus segment signal path, as measured between the near-end terminator
and far-end terminator modules (including all intervening connectors, cables, backplane wir-
ing, connector-module etch, etc.) must not exceed 2 Q.

4. DC resistance of a bus segment common return path, as measured between the near-end ter-
minator and far-end terminator modules (including all intervening connectors, cables, back-
plane wiring, connector-module etch, etc.) must not exceed an equivalent of 2 Q per signal
path. Thus, the composite signal return path dc resistance must not exceed 2 Q divided by 40
bus lines, or 50 m{2. Note that although this common return path is nominally at ground po-
tential, the conductance must be part of the bus wiring; the specified low-impedance return
path must be provided by the bus wiring as distinguished from common system or power
ground path.

4.7.8.2 Intrabackplane Bus Wiring — The wiring that interconnects the bus connector slots within one
contiguous backplane is part of the overall bus transmission line. Due to implementation constraints,
the nominal characteristic impedance of 120 € may not be achievable. Distributed wiring capacitance
in excess of the amount required to achieve the nominal 120 Q impedance may not exceed 60 pF per
signal line per backplane.

4.7.8.3 Power and Ground — Each bus interface slot has connector pins assigned for the following dc
voltages.

+5 Vdc Three pins, 4.5 A (maximum) per bus device slot

+12 Vdc Two pins, 3.0 A (maximum) per bus device slot)

Ground Eight pins, shared by power return and signal return

The maximum allowable current per pin is 1.5 A. The +5 Vdc must be regulated to + 5% and the
maximum ripple should not exceed 100 mV peak-to-peak. The + 12 Vdc must be regulated to +3% and
the maximum ripple should not exceed 200 mV peak-to-peak.

NOTE
Power is not bused between backplanes on any inter-
connecting LSI-11 bus cables.

4-25

4.7.8.4 Maintenance and Spare Pins

Maintenance Pins — There are four M SPARE pins per bus device slot assigned to maintenance (AKI,
AL1, BK1, BL1). The maintenance pins on the basic LSI-11 system are not bused from module to
module. Instead, at each bus device slot, the maintenance pins are shorted together as pairs. These pins
must be shorted together for some modules to operate. This allows a module to use these pins during
initial testing as two separate points. This feature is used by DIGITAL for manufacturing tests only.

Spare Pins — Spare pins are allocated on the backplane as follows.

S SPARES - These four pins, AE1, AH1, BH1, AF1 (with the exception of AFI in slot 1),
are reserved for the particular use of a module or set of modules. They may be used as test
points or for intermodule connection. Appropriate wires must be added for intermodule com-
munication since these pins are not connected in any way. The processor uses AF1 in slot 1
as an output pin for the SRUN signal. S SPARE lines cannot be used as bus connections.

P SPARES - These two pins, AUl and BU1 are similar to the S SPARE pins except that
they are located in a manner that causes dc voltages to appear on them if a module is inserted
backwards. Use of these pins is not recommended.

4.8 SYSTEM CONFIGURATIONS
LSI-11 bus systems can be divided into two types. The first type comprises those systems that use only

one backplane, the second type comprising those systems that use multiple backplanes. Two sets of

rules must be followed when configuring a system to accommodate the different electrical character-

istics of the two types of systems. These rules are listed in Paragraphs 4.8.1 and 4.8.2.

Three characteristics of each component in an LSI-11 bus system must be known before configuring

any system:

. Power consumption — The total amount of current drawn from the 4+5 Vdc and +12 Vdc
power supplies by all modules in the system.

2. AC bus loading — The amount of capacitance a module presents to a bus signal line. AC

loading is expressed in ac unit loads, where one ac unit load equals 9.35 pF of capacitance.

3. DC bus loading — The amount of dc leakage current a module presents to a bus signal when

the line is high (undriven). DC loading is expressed in terms of dc unit loads, where one dc

unit load equals 105 uA (nominal).

Power consumption, ac loading, and dc loading specifications for each module are included in the Mi-
crocomputer Interfaces Handbook.

NOTE
The ac and dc loads and the power consumption of
the processor module, terminator module, and back-

plane must be included in determining the total bus
loading of a backplane.

4.8.1 Rules for Configuring Single-Backplane Systems
The following rules apply only to single-backplane systems. Any extension of the bus off the backplane
is considered a multiple-backplane system and must be configured accordingly. A single-backplane con-
figuration diagram is shown in Figure 4-15.

4-26

The bus can accommodate modules that have up to 20 ac loads (total) before an additional
termination 1s required. The processor has on-board termination for one end of the bus. If
more than 20 ac loads are included, the other end of the bus must be terminated with 120 Q.

A terminated bus can accommodate modules comprising up to 35 ac loads (total).

The bus can accommodate modules up to 20 dc loads (total).

The bus signal lines on the backplane can be up to 35.6 cm (14 in) long.

. BACKPLANE WIRE N
- 356 CM (14 IN) MAX ™

L
[)] I

120¢2 OR ONE ONE ONE | OPTIONAL

22052 UNIT UNIT UNIT 120
LOAD LOAD LOAD

N
+

34V v -3.4 vV

- 35 AC LOADS 1

= 20 DC LOADS =

PROCESSOR TERM

MR 6034

Figure 4-15 Single-Backplane Configuration

4.8.2 Rules for Configuring Multiple-Backplane Systems
Multiple-backplane systems may contain a maximum of three backplanes. A configuration diagram for
a multiple-backplane system is shown in Figure 4-16.

1.

2.

The signal lines on each backplane can be up to 25.4 cm (10 in) long.

Each backplane can accommodate modules that have up to 20 ac loads (total). Unused ac
loads from one backplane may not be added to another backplane if the second backplane
loading will exceed 20 ac loads. It is desirable to load backplanes equally, or with the highest
ac loads 1n the first and second backplanes.

DC loading of all modules in all backplanes cannot exceed 15 loads (total).

The first backplane must have an impedance of 120 Q (obtained via the processor module).
The second backplane is terminated by 120 Q resistor networks contained on the cable con-
nector inserted in the third backplane.

The cables connecting the backplanes must observe the following rules.

a. The cable(s) connecting the first two backplanes must be 61 c¢cm (2 ft) or greater in
length.

b. The cable(s) connecting the second backplane to the third backplane must be 22 ¢cm (4
ft) longer or shorter than the cable(s) connecting the first and second backplanes.

c. The combined length of both cables must not exceed 4.88 m (16 ft).

d. The cables used must have a characteristic impedance of 120 Q.

4-27

¥
 BACKPLANE WIRE

356 CM (14 IN) MAX o

l d & CABLE

ONE ONE
1208 UNIT UNIT

LOAD LOAD
+

_&4v . —~

20 AC LOADS MAX

PROCESSOR

(. BACKPLANE WIRE
[25.4 CM (10 IN) MAX o

-5 |

ONE ONE
UNIT UNIT
LOAD LOAD

CABLE N ~ . CABLE

ADDITIONAL 20 AC LOADS MAX
CABLES AND OACLO
BACKPLANE | BACKPLANE WIRE N

I 25.4 CM {10 IN) MAX |

{(
l) ¥

ONE ONE
12092 UNIT UNIT
3.4V LOAD LOAD

CABLE/ N ,
TERM A

20 AC LOADS MAX

NOTES:

1. TWO CABLES (MAX) 488 M (16 FT) (MAX)

TOTAL LENGTH.

2.20 DC LOADS TOTAL (MAX]}.

MR .6035

Figure 4-16 Multiple-Backplane Configuration

4.8.3 Power Supply Loading
Total power requirements for each backplane can be determined by obtaining the total power require-
ments for each module in the backplane. Obtain separate totals for +5 V and 412 V power. Power
requirements for each module are specified in the Microcomputer Interfaces Handbook.

Do not attempt to distribute power via the LSI-11 bus cables in multiple-backplane systems. Provide
separate, appropriate power wiring from each power supply to each backplane. Each power supply
should be capable of asserting BPOK H and BDCOK H signals according to bus protocol; this is re-

quired if automatic power-fail/restart programs are implemented, or if specific peripherals require an

orderly power-down halt sequence. The proper use of the BPOK H and BDCOK H signals 1s strongly

recommended.

4-28

CHAPTER 5§
FUNCTIONAL DESCRIPTION

5.1 INTRODUCTION
This chapter describes the control logic and data flow of the KDF11-BA. Figure 5-1 (Sheets 1 and 2) is
a functional block diagram that shows the major logical subunits of the KDF11-BA and their relation to
the LSI-11 bus and the three internal processor buses. The three internal buses are the chip/data ad-
dress lines (CDALSs), the microinstruction bus (MIB), and the internal data/address lines (IDALs).

The functions of the logic subunits are described at the block diagram level. The block diagrams may
be used in conjunction with the KDF11-B Field Maintenance Print Set to locate the detailed circuit
logic for the logic subunits. Each block in a diagram contains the letter K followed by a number 1|
through 10. This alphanumeric designator refers to the specific drawing number of the KDF11-B Field
Maintenance Print Set that contains the detailed circuit logic for that block.

The KDF11-BA central processor unit is contained on two LSI chips (control and data) which reside on
a single 40-pin carrier. The optional memory management unit (MMU) is contained on one LSI chip,
which also resides on a 40-pin carrier. The KDF11-BA has sockets for these two carriers and three extra
sockets for the commercial instruction set (CIS) or floating-point (FP) options. The control and data
chips, the MMU chip, and the optional CIS and FPP (floating-point processor) chips are referred to in
this discussion as the F11 chip set. The F11 chips communicate among themselves and with external
KDF11-BA logic over the MIB <15:00> and CDAL <21:00> bus. KDF11-BA logic interfaces the
F11 chip set with the internal IDAL <<15:00> bus and the external LSI-11 bus. The KDF11-BA boot-
strap and diagnostic line clock and serial-line units reside on the IDAL bus. Memory and additional
peripherals interface with the LSI-11 bus. Bidirectional interfaces (CDAL/IDAL transceivers and
CDAL/BDAL transceivers) on the KDF11-BA module connect the CDAL <21:00> bus with the
IDAL <15:00> bus and with the LSI-11 data/address lines BDAL <<21:00>.

KDF11-BA logic supporting the F11 chip set includes the master clock control logic, MIB decode logic,
fixed data logic, service logic, reset logic and ODT logic. Logic pertaining to the LSI-11 bus includes
the bus control logic, bus synchronizer and the CDAL/BDAL transceivers. Logic pertaining to the
IDAL bus peripherals includes the bus control logic, CDAL/IDAL transceivers, the IDAL address
decode, bootstrap/diagnostic and line clock logic, the console and second SLU logic, the baud rate gen-
erator, and the — 12 V charge pump logic.

3.2 DATA CHIP
The data chip contains the PDP-11 general registers, the processor status word (PS), several working
registers, the arithmetic and logic unit (ALU), and conditional branching logic. The data chip does the
following.

1. Performs all arithmetic and logical functions.

2. Handles all data and address transfers with the LSI-11 bus (except relocation, which is han-
dled by the MMU; see Paragraph 5.4).

3. Generates most of the signals used for interchip communication and external system control.

>-1

S
L
E
S
-
U
W

(T
JO

1
199YS)

10ss9201d
V
d
-
1
1
4
A
N

[-G
aIng1f

@
u
@
o

TINGASE
o
8

I
N
I
A
T

HID
|

(LHY

L
T
NMES

“

EMW
TLINIG

(cL
A

0
0

(Z N
3a0923d

STVNDIS
104

1LNOD
I
1
D
A
D

SNg
51907

1
0
M
v
i
d

.mm,qw
—
—

gIW
>

T
O
H
I
N
O
D

1
O
O
W
G
H

(Z3v)
:

-
-

—
—
0

Ival
N3

‘vdi
g

ena
|

1
1
n
o
a
s

(ZHY)

H
(L) L

a
1
M
H

-
1va8

08
1va8

19
1va8

a1
§

H
1

N1dd
-

R

3
0
0
3
3
0

891N
8

21907
_1a0]

01
8Md

41D
V
1
3
0

4M
IS

75
e

=

H
LNO3NWIL

V
)

_
‘
I
l
l
.
o

H
aN3IOW

°
e

T
O
H
1
N
O
D

2
1
9
0
7

H
<
O
L
:
l
Z
>

1va)d
3
N
I
0
1
D

H
I
Z
I
N
O
Y
H
I
N
A
S

I
.
E
:
l
o

(T4dv)
140

_
sna

g J
A
1
J
H
E

o
o

~
*

a
0

dino|
HY3LSYA

1ONAsE
R

T
-

H
01S8

T
A
d
d

N
A
W

-
7
H
N
Q
E

V
310

dIHD
T Sovsg

C
(INE)

7
1
H
0
8
Y

07
YMd

H1D
738D

>
M

SNOILdO
dN

HIMOdJ
V
1
V

3

K
'

H
<
0
0
:
2
0
>
<
£
0
:
8
0
>

T
v
d
d

e

£

-
a3xi4

P
L
E
A
E
F
A
E
L
E

R

7L
1VH

-
2007

g
TLIVHS

NOILdO
dvdl

H1SH
dIHO|

13534
STVYNDIS

H
O
H
H

51901
<
5
3
5

°
M_mew

0

-
7
,
0
4
8

=
8510

dIHD
.
.
T
E
F
A
,
T
&

=
(S19)

H
<
0
0
:
Z
1
>
1
v
a
d

R

IE
*
I
I
‘
I
I
-
&

i
0

H
LSY

dIHD
—
<
o
g
e

o
)

o
(dd)

*
Avasg

gy
S

H
<00:SL>

91N
SdIHD

H
<00:SL>

I
v
a
d

O

v
I
Y
N
O
I
L
O

>
h

R
A
A
S
E
S

T
-

N
Y

_vasail
1380

e

O
0

HOL
1vay

+
A
E
I
O
.
@
!
M
M
M
W

Py
H

{1
1vay

7
0C

1vag
-

"
Y

5
6

vas
oo

a9
7
Aldd

NWIN
v

)10
dIHD

0

{ | D6}
-

T
781

1vad
7

1H08av
l
e
—
—
—
—
—
—
—
0
{
1
a
V
)

<
7.1

1vad
T
d
v
I
N
8
N

d
I
H
)

o
m
0

(|
DY)

991
1vag

-
N
I
N
I
N

,
‘
I
%
.
'
O
A
N
\
/
E
V

H
<
$
0
:
6
0
°
Z
1
>

8IW
H
<
0
0
:
1
¢
>

1
v
a
d

,
l
r
.
!
o
a
m
a
m
v

J
vl

vasa
‘
I
l
l
l
.
l
l
l
l
l
g

TEl
1vaa

.ANNWMW
.

—
l
'

*
E
'
O
A
N
E
M
V

i
l

e
—
—
—
—
—
—

VA
Y
o0

diHD
H

<00:
12>

1vaD
SHIAIFOSNVHL

g
T0L

VA8
-

o,
TOHLINOD

H
1SH

dIHD
SIS

e
a
v
a
s
 o

H
<
0
0
'
G
L
>

8IW
A

d
W
N
d

3/
1
v
a
g

Z
5
8
)

H
<00:51>

1
v
a
)

AZL-
J
O
U
V
H
I

|
9
o
v
a
a

o
v
i
v
d

_
¢

¢
_

¢
—
—
—
—
—
»
0

«
_

AcL—
T
s
v
a
g

o
—
=

0L
S
T

vag
o

Mwumw
N3O

a
0

“
Tval

a8
1¢

1vas
‘lwlv_.fl..ml

3
l
v
d

‘
I
d
.
u
_
l
d
fl
m
m
v
o

(239)
oM

+
—
m
e
e
d

(J1V'H
l
|
.
.
|
|
.
l
.
.
.
1
|
'
2
m
>
$

o
r

H <00:S1>
1val

H <00:§1>
1¥aDd

X0
LY

e

1VG8
i
z

S
H
I
A
I
T
D
S
N
V
Y
Y
H
 L

70
1vag

zav)
p
—
e
—
)

I
v
a
i
/
I
v
a

/
.

H
(L)

1
9
1
M
H

14588
>0

(Z39Y)
Ival

N3
H

0ISg
7
191Mm8

5-2

(T
JO

T
199YS)

I0ss3001d
v
d
-
1
1
4
A
N

9
4
8
8

H
W

|-g axn1y 1
1
N
3
A
3
E

1
N
3
I
A
3

Y
1
3

AN

H
a
v
i

dil

l
84

o
0
0
7

[*
M

D.d_

H

974
IN3IA3

A30710
3INIT

H
<90>

v
al

8
~01

aMmy
a1

4315193y
_

|H
dMY

d7
I
N
I
Y
I
N

H4MY
a4

3114mM/av3ay
H
<00:51>

1va!

9
<

=
431S1934

[
dOVMS

Oy
A_U.IAv/o

N
O
I
L
V
H
N
O
I
4
N
O
D

H
<00

0
>

1
v
a
l

SIHILIMS
/1008

NOILVHNOI4NOD

/1008
M

S
4315193y

G+
O
—
—
—
—

A
V
1
4
S
1
4

A
1
d
S
d

a
1

D1LSONDVIA
AV

dSId
/11008

H
<00:£0>

1vdl
a3’

8
<00:90>'<80:€1>

HOd
4315193y

434
Q1

TOHLNOD
I9vd

H
<00:50>'<80:€L>

1val

X
N

$S3HQAY
g

W
O
H
Y

L
8

H
<80:€1>

V
Y
8

SWOod
WOoY

a4
D11SONDYICA

/1008
H
<00:G1>

1val
\

H
<
1
0
7
0
>

v

¢
1vaiay

B
0S

cr
NS

IS
anNo0d3s

-
B

i
|

OS
310SNOD

H
<00:£0>

1
V

IS
’

Z
1
0

1d
L
S

1H
|

SIvNDISOY
B

a1
I

H<10:L0>
V]

“Svalad
3Q0923a

SHAY
H
<00:S1>

1vq!
Ivai

e

H
0ISg

| S

H <00:G1i> 1vdl

X

H <00:§1>
#
5
.
6

N

5-3

A typical microinstruction cycle starts when the data chip receives a 16-bit microinstruction from the
control chip on the time-multiplexed, bidirectional MIB. During the first half of the cycle (phase time)
the register file is precharged, and the selected register(s) are read and sent part way through the ALU
chain (i.e., operands are latched into the propagate and generate latches). Also during the first half of
the cycle, control information is decoded from the microinstruction and output on the MIB for use by
other chips and external logic. During the second half of the cycle (phase-bar time) the ALU operation
1s completed and the result is written into the appropriate register.

Output operations occur during the first half of the cycle when the contents of the selected source regis-
ter are bused around the ALU logic directly to the output buffers. Input data is strobed into the data
chip during the first half of the cycle, although it is not written into the register file until the second
half.

5.3 CONTROL CHIP
The control chip contains the microprogram sequence logic and 552 words of microprogram storage in
programmable logic arrays (PLAs) and read-only memory (ROM) arrays.

During the course of a normal microinstruction cycle, the control chip accesses the appropriate micro-
instruction in the PLA or ROM, sends it along the MIB to the data and MMU chips for execution, and
then generates the address for the next microinstruction to be accessed. The next address is constructed
from either a next-address field associated with the current microinstruction or, if a microprogrammed
branch is to be executed, the target address contained within the microinstruction itself. The control
chip operation is pipelined for better performance so that the next microinstruction is being accessed
while the current one is being executed. This next address is then used in conjunction with various inter-
nal status and external service inputs to determine the microprogram sequence. The control chip ac-
cesses only its local storage. However, multiple chips (up to 32) can be cascaded with external buffering
to provide additional microprogram storage.

Chip Select (CSEL) — CSEL is an open collector line with a pull-up resistor. CSEL is routed to all F11
chips on the board except the MMU. The active control chip holds the line low. If a nonexistent control
chip 1s selected by the microcode, the line is pulled high. This causes a control chip error and a trap to
location 10g.

5.4 MMU CHIP
The MMU chip serves two purposes: it provides the memory management function and storage for the
FP11 floating-point accumulators and status registers. This chip provides dual mode (user and kernel)
address relocation of 22 bits. Sixteen-bit virtual addresses are received from the data chip via the
CDAL bus, relocated to the appropriate 18- or 22-bit physical address, and then sent on the CDAL bus
to replace the original virtual address for transmission to the external LSI-11 bus. The MMU chip con-
tains the status register and active page registers (PAR/PDR register pairs), as well as access pro-
tection and error detection capability. The MMU chip also provides the 36 16-bit registers needed for
operand storage, scratchpad areas, and status information storage during floating-point operation.

The MMU chip is controlled by information received on the microinstruction bus (MIB) from the data
chip and control chip and by several discrete control inputs. Complete details of memory management
capabilities are described in Chapter 8.

5.5 BASE TIMING LOGIC
The base timing for the KDF11-BA is performed by the master clock control logic. Figure 5-2 shows
the major logic blocks of the master clock control, the outputs of the master clock control logic, and the
interface to the KDF11-BA logic.

5-4

IDAL g JAD SEL H " |
ADR | TTLPHASE L

DECODE ' I

K4 75NS CHIP CLK A _ g
MMU !MMU RPLY H . 375 CHIP >
CHIP ‘ Lol CLK

| _/__/— DRIVER CHIP CLK B J
- | 0SC H |

FIXED _FDIN ENB H o PHASEA (1) H

DATA | PBT NXT L) PHASE (1) H . |

DRIVER PHASEA (1) L ol

K3 | PHASE I—d
Hgggg i ENB RSTH oHASE FF PBT CLR L |

LOGI PHASE (0) H
I TIME -1 C 0) > I_o

CONTROL | SHORT PT H K1 » L0GIC O | MEDPTH PT CLR L
L |

. RELCYC (0) H —0

| bouTCcYCH l

| PT2 (1) H |

PT3 (1} H
| T PBT6 (1) H _] PT5 (1) H PHASE o L E-BURE N PBTS (1) H _ g | PBT2 (1) H BAR ———— |

PBT5 (1) H TIME >
MIB | > SHIFT PBT3 (VW H |
DECODE PBT6 (0) H REGISTER erann

= RRPLY2 H 9
l PHASE (1} L I

BUS — OSCH _
SYNCHRO o 0SC H NIZER I 26.666 MHZ

MCENB3 HJ 0SC LOGIC l
[] G I S

r K1 I i DOUT CYC H '
| |

X LAD CYC (1} H — PTS {1 H

l DINCYCH | phase |
PT3(1) H PT4 (1) H l MMU RPLY H | TIME 1 priase T4 (1) =i

PAUSE PT4 (1) H PT2 (1) H p H I CONTROL —_ ;'_I’\{“FET 130 :i
3 RRPLY3 {1) H LOGIC

TER PT2 (1) H _ e " RRPLY3 (0) H REGISTE __l

CONTRO ' RD IDAL (O} H CLK CLR

LOGIC | GT BDAL3 (O} H I
1 ROCOK3 (0} H |
| |

| PHASE (0) H , |

Figure 5-2 Base Timing Interface

A 26.666 MHz crystal oscillator toggles a flip-flop whose buffered output (OSC H) drives the timing
logic for the F11 chip set, the control logic for the LSI-11 bus, and the IDAL bus. OSC H has a period
of 75 ns and a half period of 37.5 ns.

The chip clock driver uses the PHASE (1) H flip-flop output to produce the +12 V F11 chip set clock
signals (CHIP CLK A and CHIP CLK B). Each chip set clock cycle consists of a phase time [PHASE
(1) H set] and a phase-bar time [PHASE (1) H clear]. The F11 chip set is semistatic and loses informa-
tion 1f it remains in phase-bar time (PBT) for longer than 500 ns. The F11 chip set can remain in phase
time (PT) indefinitely.

Two shift registers [PT2 (1) H through PT5 (1) H and PBT2 (1) H through PBT6 (1) H] operate as
state machines during phase time and phase-bar time, respectively. If PHASE (1) H is set, but PT2 (1)
H through PT5 (1) H are clear, the logic is in phase time one. If PHASE (1) H and PT2 (1) H are set,
but PT3 (1) H through PT5 (1) H are clear, the logic is in phase time two. Similarly, if PHASE (1) His
clear and PBT2 (1) H through PBTS5 (1) H are clear, the logic is in phase-bar time one. If PBT2 (1) H
through PBT4 (1) H are set, but PHASE (1) H and PBT5 (1) H are clear, the logic is in phase-bar time
four.

The PHASE (1) H flip-flop and the two shift registers are clocked on the leading edge of OSC (1) H.
When PHASE (1) H is clear, the logic typically advances from one phase-bar time to the next. Usually,
it advances from phase-bar time two to phase time one. However, there are two exceptions.

1. During address relocation cycles [REL CYC (0) H negated], the logic enters phase time one
after phase-bar time five.

2. During reset cycles (ENB RST L clear), the logic enters phase time one after phase-bar time
S1X.

When PHASE (1) H is set, the logic typically advances from one phase time to the next. However
there are the following exceptions.

?

1. The logic pauses in phase time one if microcycle enable [MCENB3 (1) H] is clear.

2. The logic pauses in phase time one if the last phase time was an address cycle [LAD CYC (1)
H] and the address has not yet settled on the LSI-11 bus [GT BDAL 3 (0) H] *

3. The logic enters phase-bar time one after phase time two during a chip set micro-NOP cycle
(SHORT PT H).

4. The logic enters phase-bar time one after phase time three if both MED PT H and — FDIN
ENB H are asserted. MED PT H is asserted during an F11 chip set address cycle or an F11
chip set data cycle that does not reference the LSI-11 bus, the IDAL bus, or an MMU regis-
ter. In these two cases, MED PT H is asserted. —FDIN ENB H is negated during a fixed
data cycle.

5. During an LSI-11 bus DOUT cycle, the logic pauses in phase time four until RRPLY3 (1) H
clears. This only affects LSI-11 bus DATIO timing.

6. During an LSI-11 bus, IDAL bus, or MMU DIN cycle, the logic pauses in phase time four
until it receives a reply signal. It then proceeds to phase time five.

7. During an LSI-11 bus, IDAL bus, or MMU DOUT cycle, the logic pauses in phase time five
until it receives a reply signal. It then proceeds to phase-bar time one.

The PBT CLR L signal clears flip-flops that gate data onto the CDAL lines during phase time. That
data must remain there for one-half an OSC period into phase-bar time. The PT CLR L signal clears
flip-flops that gate data onto the CDAL lines during phase-bar time. That data must remain there for
one-half an OSC period into phase time.

5.6 MIB DECODE LOGIC
The 16-bit microinstruction bus MIB <<15:00> is common to all data and control chips. The MIB is
time-multiplexed and is used for different functions during the clock cycle. During the clock phase-bar
time, the MIB contains the current microinstruction provided by one of the F11 control chips. During
the clock phase time, the MIB lines contain control information provided by the F11 data chip. The
KDF11-BA logic monitors some MIB lines during phase time, some at the end of phase time, and some
at the end of phase-bar time. The MIB decode logic is shown in Figure 5-3.

5-6

i GENERAL SRUNL » (AH1, AF1)

MiB <03:00> H PURPOSE
OUTPUT
DECODER

| DGPOS L o (CLR EVENT)
(DURING PHASE TIME PHASE (1) L DGPO B L o | R PWR LOW)

CLOCK
NTROL PHASEA H RELCYC(0) H _ 3 CONTRO SEA (D) N o RELOCATION ADDRESS ¢ oH,
» PHASEA (1) H lcycLe ADDRESS LINITF (1) H

CYCLE AND ODT
CYCLE DECODER BINIT L

END OF PHASE TIME vemH | ToBUS
MIB <15:14> L, MIB <07:06> H>) AR CIC I, ~CONTROL

A LOGIC
S BUSCYCH_ S

v
o END OF PHASE LSYNCF (1) H
= . >

BAR TIME { ODT CYC (1) H_
r K1 >

BUS CYC H |apr cve Ho)
vner i n| ApDRESS 1/0 -

LSYNCF (1) CYCLE DECODERS
PHASEA {1) H | (DURING PHASE TIME)

12 9 8| mB
2 1 0 | (a0

0 0 0] AwWO SHORTPTH__ | TOBUS
0 0 1 { ARW MED PTH_ > CONTROL

0 1 0 | UNUSED > | Logic
MIB <12,09,08> H o 1 1] ARO DINCYCH

1 o o | oouts ||looutcycH,

1 1 0| DIN >

HSYNCF (1) H

MR-5878

Figure 5-3 MIB Decode Logic

5.6.1 MIB Decode During Phase Time
During phase time, MIB lines <12,09,08> contain the address/input/output signals AIO <2:0>
while MIB lines <<03:00> contain the general-purpose outputs DGPO <3:0> L.

The AIO bits are decoded to determine whether the current cycle is an address cycle (ADR CYC H), a
bus-type data-in cycle (DIN CYC H), or a bus-type data-out cycle (DOUT CYC H). Bus-type DIN and
DOUT cycles are decoded only if BUS CYC H is asserted. The write/byte signal (WTBT H) is also
decoded, as are two signals that determine whether the logic enters phase-bar time either after phase
time two (SHORT PT H), phase time three (MED PT H), or phase time five (SHORT PT H and MED
PT H both clear). Table 5-1 describes the decoded general-purpose output signals derived from MIB
<02:00> when MIB 03 is negated.

The assertion of MIB 03 is used to set the read fixed data [RD FIXDT (1) L] flip-flop during phase
time three. When the RD FIXDT (1) L flip-flop is set, the jumper-selected power-up mode and
HALT/TRAP option information is gated onto the CDAL bus at the same time CDAL <08> is ne-
gated to specify boot address 173000.

>-7

Table 5-1 Decoded General-Purpose Output

GPO2
(MIB02)

GPO1
(MIBO1)

GPOO
(MIB00)

Output
Name Function

1 1 1 DGPO7 L Loads the two highest order address bits into
a latch while in micro-ODT. These two bits
are necessary for 18-bit addressing because
the memory management unit is disabled
while in ODT.

DGPO0O6 L Clears the power-fail flip-flop after the
power-fail sequence has been executed in
microcode.

DGPOS L Clears the event flip-flop after the event
interrupt has been serviced in microcode.

SRUN L Generates a low-going pulse that is routed
directly to edge fingers AF1, AH1. This
signal can be used to cause a steady RUN
indication while the processor is fetching
instructions, and a flashing indication when
typing characters in console ODT.

5.6.2 MIB Decode at the End of Phase Time
The following MIB lines are clocked into flip-flops by PHASEA (0) H at the end of phase time.

1.

2.

MIB 15 H 1s clocked into relocation cycle [REL CYC (0) H].

MIB 12 H is inverted to produce address cycle (ADR CYC H), which is clocked into latched
address cycle [LAD CYC (1) H].

MIB 07 H is inverted to produce SYNC H, which is clocked into LSYNCF (1) H. LSYNCF
(1) H 1s used by the bus control logic to generate BSYNC L.

MIB 14 H is clocked into LINITF (0) H, which is inverted to produce BINIT L.

3.6.3 MIB Decode at the End of Phase-Bar Time
PHASEA (1) H clocks the ODT CYC (1) H flip-flop at the end of phase-bar time. The ODT CYC (1)
H flip-flop sets if MIB 07 H is asserted and MIB 06 H is clear.

5.7 BUS CONTROL LOGIC
The logic described in this section controls the transfer of information between the F11 chip set and the
LSI-11 bus, the transfer of information between the F11 chip set and the IDAL bus, and the transfer of
LSI-11 bus ownership to DMA devices. Figure 5-4 shows the bus control logic interface to the LSI-11
bus and the internal KDF11-BA logic.

Figure 5-4 KDF11-BA Bus Control Interface

A > le_ LSYNCF (1) H 1
BUS CYC H

DOUT CYC H
- MIB DIN CYC H DECODE

LAD CYC H LOGIC
o« ADRCYCH

(AH2) «BRIN L ODT CYC (0) H

(AE2) - BDOUT L

(AS2) «-BDMGO L e -MMU RPLY H ” oDT

_ BIAKO L MIB 13 H (IAK) LOGIC
(AN2) - F11 CHIPS MIB 15 H{MME L

LPOK2 (1) H & K3
(BN1) «-32ACK L) K2 RSACK2 H ose FIXED
(AN1)«BOMR L , RSYNC2 H = DATA < CDAL <21:00>H

, BSYNC L RRPLY2 H

A BRPLY L RDOMR2 H IAD SEL H K7
(AFQ)“““'—"BDCOK » BUS LD IADR (1) H DAL

(BA1) "—'—”MCENB y filT;ECRHRO' MG (1) H IAD WR (1) L ADDRESS <IDAL <15:00> H
(AM2) @—————— RD IDAL (1) H DECODE

TSYNC (1) H BUS

TIMEQUT (1) H RDCOK3 (1) H _ CONTROL

MCENB3 (1) H _ LOGIC K6 <
v o CDAL/ - o K2 seLa 1y H? osch | {PAL = SELA

— o TRANSCEIVERS CDAL <15:00> H
Z FF SELA (0) H]

f OSC H l BBS7 (1) H K5
NI CDAL <21:00> H

PHASE (1) H LD BDAL {1} CDAL/BDAL
K1 GT BDAL (1) H TRANSCEIVERS 4 > PHASEA (1) L

MCENB3 (1) H RD BDAL (1} H
PHASEA (0) L

“MMU RPLY H RDCOK3 (1) H
—— PT3 (1) H 1

PT4 (1) H EN DLIAK (1) H 3

PT4 (0) H RD BDAL (1) H CDAL <12:00> H
MASTER PT5 (1) H LPOK1 (1) H BiRQ 4 L {(AL2)
CLOCK “ SERVICE
CONTROL PBT3(1)H -DCOKC?2B L LOGIC BIRQOS5L (AA1)

PBT4 (1) H -IRQ5 L BIRQG L (AB1)
PBT CLR L JRQ 6 L BIRQ7 L (BP1)

_ TIMEOQUT (1) H ;
GT BDAL 3 (1) H -

RRPLY3 (1] H DL IRQ L K9
CONSOLE

RD IDAL (1) H & 2ND SLU

<L BDAL <21:00> BBS7 L

MR-5879

5.7.1 Bus Synchronizer Circuits
Because internal operation of the KDF11-BA is synchronous, asynchronous external signals must be
synchronized before they can be used by the KDF11-BA logic. The BRPLY L, BSYNC L, BSACK L,
and BDMR L signals received from the LSI-11 bus are time-critical and must be monitored as fre-
quently as possible. At the same time, the registers that receive them must be allowed to settle for at
least 100 ns to ensure reliable bus operation. The bus synchronizer contains special circuits that clock
these four bus signals every OSC H period (75 ns), but allows them two OSC H periods (150 ns) to
settle. A fifth LSI-11 bus signal BDCOK H, and the microcycle enable signal MCENB H, are not as
time-critical; they are clocked every two OSC H periods.

5-9

5.7.1.1 BRPLY, BSYNC, BSACK, BDMR Synchronization - Each of the four bus signals (BRPLY L,
BSYNC L, BSACK L, and BDMR L) is applied in parallel to a pair of D type flip-flops. These flip-
flops are called the A and B synchronizer flip-flops. The outputs of the A and B flip-flops are connected
to the A and B inputs of a multiplexer. The select input of the multiplexer is obtained from the SELA
flip-tlop, which is toggled by the leading edge of OSC H. The SELA (1) H output is used to clock the B
flip-flops and also for the select input of the multiplexer. The SELA (0) H output is used only to clock
the A flip-flops.

The BRPLY L signal is clocked into the B flip-flop by the SELA (1) H signal and into the A flip-flop
by the SELA (0) H signal. The SELA (1) H signal connected to the multiplexer selects either the A or
B flip-flop output to produce RRPLY2 H. When SELA (1) H is set, RRPLY2 H equals the A flip-flop
output, which, by the next OSC H toggle, will have settled for two OSC H periods. This description
applies to the BSYNC L, BSACK L, and BDMR L signals, which are used to produce the RSYNC?2
H, RSACK2 H, and RDMR2 H signals, respectively.

5.7.1.2 BDCOK and MCENB Synchronization - The BDCOK H signal is applied to two B synchro-
nizer flip-flops, which are clocked by SEL (1) H. The output of the second B flip-flop [(RDCOK3 (1)
H)] is used to hold the KDF11-BA logic in the clear condition untit RDCOK3 (1) H sets. This means
that the KDF11-BA logic will remain in the clear condition for two OSC H periods (150 ns) after
BDCOK H is asserted.

The MCENB H signal is applied to two A synchronizer flip-flops, which are clocked by SEL (0) H.
The output of the second A flip-flop MCENB3 (1) H is sent to the phase time pause control logic of the
master clock control. MCENB3 (1) H will clear two OSC H periods (150 ns) after MCENB H is ne-
gated. This signal is negated for manufacturing test purposes only.

5.7.2 Direct Memory Access (DMA) Control
DMA on the KDF11-BA module allows a peripheral to gain control of the LSI-11 bus from the proces-
sor and transfer data directly between that peripheral and memory. In this way, data transfers can oc-
cur at full memory speed rather than having the processor transfer data words one at a time between
the peripheral and memory. Paragraph 4.4 presents the LSI-11 bus specification for granting DMA
requests.

DMA Bus Grant Operation

A direct memory access (DMA) device requests control of the LSI-11 bus by asserting BDMR L. The
KDF11-BA grants control of the LSI-11 bus to a requesting device by asserting BDMGO L. The fol-
lowing events occur during a KDF11-BA bus grant sequence.

1. BDMR L is received, inverted to RDMR H, synchronized, and delayed by two OSC H peri-
ods to become RDMR2 H.

2. After the KDF11-BA has released the LSI-11 bus [GTBDAL 1 (0) H and HLD BUS (0) H
both asserted], RDMR2 H asserts DMG ENB H.

3. OSC H clocks DMG ENG H into the DMG (1) H flip-flop, which asserts BDMGO L.

4. DMG (1) H also triggers the NO-SACK timeout circuit in the bus synchronizer. If BSACK
L is not asserted by the requesting DMA device within 10 us after the KDF11-BA issues
BDMGO L, the NO-SACK timeout circuit will negate ENB DMR (1) L. The negation of
ENB DMR (1) L negates RDMR H, which leads to the negation of BDMGO L.

5. BSACK L is received, inverted to RSACK H, synchronized, and delayed by two OSC peri-
ods to become RSACK2 H. RSACK2 H is clocked into the RSACK3 flip-flop (located in
the bus control logic) by OSC H to negate RSACK3 (0) H.

6. The negation of RSACK3 (0) H by OSC H causes the negation of BDMGO L to terminate
the bus grant sequence.

5.7.3 Address Microcycle Control
The KDF11-BA may perform either a normal-address microcycle or a relocated-address microcycle,
depending on whether the memory management unit is enabled or disabled. The memory management
unit 1s enabled or disabled under program control.

A normal-address microcycle is a 16-bit direct byte address that references the first 32K words (64K

bytes) of memory, and therefore, does not require the memory management function. A relocated-ad-
dress microcycle is one that uses the MMU to convert a 16-bit program virtual address (VA) to an 18-
or 22-bit physical (PA) address. When the MMU is enabled, the normal 16-bit direct byte address is no
longer interpreted as a direct physical address but as a virtual address containing information to be
used in constructing a new 18- or 22-bit address that is capable of referencing addresses in a 4 me-
gabyte memory.

Microinstruction bus bit (MIB 15) is the memory management enable (MME L) signal that indicates
to the processor logic whether a relocated-address microcycle should or should not be performed. The
memory management unit asserts MME L when a relocated-address microcycle should be performed.
MME is also asserted low by the KDF11-BA ODT logic during certain ODT address cycles.

The KDF11-BA logic stores the address provided by the F11 data chip during phase time if a normal-
address microcycle is to performed or if an ODT cycle has been decoded. During a relocation-address
microcycle (MMU asserts MME L), the address provided by the MMU is stored by the KDF11-BA
logic during phase-bar time. The following events take place during an address microcycle.

1. The LD BDAL (1) H and LD BBS7 (1) H signals from the bus control logic clock the CDAL
address into the BDAL registers at the end of phase time three.

2. The LD IADR (1) H signal from the bus control logic clocks the CDAL address into the
latched internal address registers of the IDAL decode logic at the end of phase time three.

3. If no DMA device is using the LSI-11 bus, the GT BDAL (1) L signal from the bus control
logic gates the address in the BDAL registers onto the BDAL lines at the end of phase time
three. Note that during address relocation cycles, the BDAL registers do not contain a valid
address until the end of phase-bar time three.

4. It a DMA device is using the LSI-11 bus, the GT BDALL1 (1) H signal is inhibited until the
DMA device releases the bus by negating BSACK L. When the bus is released, OSC H sets
GT BDALI1 (1) H, which gates the address in the BDAL registers onto the BDAL lines.

5. LD BDAL (1) H and LD BBS7 (1) H clock the CDAL address into the BDAL registers at
the end of phase-bar time three when using the phase-bar time address (relocation address)
from the MMU.

6. LD IADR (1) H clocks the CDAL address into the latched internal address registers of the
IDAL decode logic at the end of phase-bar time four when using the phase-bar time address
from the MMU.

7. GT BDALI1 (1) H remains set until the recognition of a bus DIN cycle (MIB decode logic
asserts DIN CYC H), or the end of a bus DOUT cycle [DOUT 2 (1) H negates].

5-11

5.7.4 BSYNC Signal
The BSYNC L signal is asserted on the LSI-11 bus when the bus control logic asserts transmit synchro-
nize [TSYNC (1) H]. All address cycles, except those that precede an interrupt-type DIN cycle, assert
TSYNC (1) H. According to LSI-11 bus specifications, TSYNC (1) H must be set 150 ns (minimum)
after the address is gated onto the BDAL lines. OSC L from the master clock control clocks TSYNC
(1) H set if both LSYNCF (1) H and GT BDAL3 (1) H are set. The MIB decode logic will assert
LSYNCEF (1) H if MIB 07 H is negated at the end of phase time. The GT BDAL 3 (1) H signal in the
bus control logic is set 150 ns after the address is gated onto the BDAL lines. If GT BDAL3 (1) H is
clear, the logic pauses in phase time until it sets, thus assuring two and one-half oscillator periods be-
tween the time the address is gated on the BDAL lines and the assertion of BSYNC L. If LSYNCF (1)
H is clear, the logic continues but does not set TSYNC (1) H.

Once set, TSYNC (1) H remains set until the HLD BUS (1) H signal in the bus control logic clears and
the slave device negates BRPLY L. HLD BUS (1) H does not clear until GT BDAL2 (1) L and BUS
CYC H both clear.

5.7.5 Noninterrupt Bus DIN Cycles
A noninterrupt bus DIN cycle (DATI) is a read operation. Durmg a DIN microcycle of a DATI bus
cycle, 16-bit data is 1nput to the F11 chip set from the IDAL bus via the CDAL/IDAL transceivers or
from the LSI-11 bus via the CDAL/BDAL transceivers. The MIB 13 H (IAK H) signal is not asserted
during a noninterrupt bus DIN microcycle, and thus prevents the assertion of BIAKO L on the LSI-11
bus. The following events take place during a normal bus DIN cycle.

1. The TSYNC (1) H signal from the bus control logic is set one-half period before the end of
phase time one and is inverted to assert BSYNC L.

2. BDIN L is asserted by DIN CYC H from the MIB decode logic one-half period into phase

time three.

3. GT BDAL (1) H is cleared at the end of phase time three because the MIB decode logic has
asserted DIN CYC H.

4. If the IAD SEL H signal from the IDAL address decode logic is asserted, RD IDAL (1) H
gates the data on the IDAL lines onto the CDAL lines at the end of phase time four.

5. If the IAD SEL H signal is clear, RD BDAL (1) H gates the data on the BDAL lines onto
the CDAL lines at the end of phase time four.

6. The master clock control causes the logic to pause in phase time four until it receives an
indication that the data transfer is completed. The completion of the data transfer is in-
dicated by the assertion of the BRPLY L signal, the RD IDAL (0) H signal from the bus
control logic, or the MMU RPLY H signal from the memory management unit.

7. The CDAL data is clocked into the F11 chip set at the end of phase time five.

5.7.6 Interrupt-Type Bus DIN Cycles
The KDF11-BA may accept interrupts from either the on-board SLUSs or from external devices. If the
interrupt request is from an on-board device, the interrupt vector address is input to the F11 chip set via
the CDAL/IDAL transceivers. If the interrupt request is from an external device, the input vector
address is input to the F11 chip set from the LSI-11 bus via the CDAL/BDAL transceivers.

The F11 chip set asserts MIB 13 H (IAK H) during interrupt type bus DIN cycles. IAK H causes the
assertion of the BIAKO L bus signal to acknowledge the honoring of an external or internal interrupt
request. The following events take place during an interrupt-type DIN cycle.

1.

8.

The KDF11-BA SLUs request an interrupt by asserting DL L. If one of the SLUs is request-
ing an interrupt, and if no higher interrupt request is pending (BIRQ 5 L and BIRQ 6 L
negated), the bus control logic asserts EN DLIAK (1) H at the beginning of phase time one.

Because LSYNCEF (1) H is clear, TSYNCF (1) H does not set.

The assertion of DIN CYC H from the MIB decode logic causes DIN (1) H to set one-half
period into phase time three. When DIN (1) H sets, it causes the assertion of BDIN L.

GT BDALI (1) H in the bus control logic is cleared at the end of phase time three by the
assertion of DIN ENB H.

If the EN DLIAK (1) H signal in the bus control logic is set, RD IDAL (1) H is set one
period into phase time four. When RD IDAL (1) H sets, one of the four KDF11-BA SLU
vector addresses placed on the IDAL lines is input to the F11 chip set via the CDAL/IDAL
transceivers.

If EN DLIAK (1) H is clear, RD BDAL (1) H is set one period into phase time four and
TIAK (1) H 1s clocked set one period after GT BDAL3 (1) H is clocked clear. When TIAK
(1) H sets, it causes the assertion of BIAKO L. The vector address input from the external
device is then read from the BDAL lines to the CDAL lines.

The master clock control causes the logic to pause in phase time four until it receives an
indication that the vector address transfer is completed. The completion of the vector trans-
fer is indicated by the assertion of the BRPLY signal or by the negation of the RD IDAL (0)
H signal from the bus control logic.

The CDAL data is clocked into the F11 chip set at the end of phase time five.

5.7.7 Bus DOUT Cycle
A bus DOUT cycle is a write operation. During a DOUT microcycle of a DATO(B) bus cycle, 16-bit
words (DATO) or 8-bit bytes (DATOB) are output by the F11 chip set to an IDAL register via the
CDAL/IDAL transceivers, or to an external device via the CDAL/BDAL transceivers. The following
events take place during a DOUT cycle.

1. LD BDAL (1) H clocks the CDAL data into the BDAL registers at the end of phase time
three.

The CDAL data is also gated onto the IDAL lines.

The bus control logic clocks the internal address write [IAD WR (1) L] signal on at the end
of phase time two and clocked off one period into phase time five. If the PLA in the IDAL
address decode logic has selected one of the writable registers, the IAD WR (1) L signal
gates the load signal (e.g., LD PCR LO L) to the selected IDAL bus register.

The master clock control causes the logic to pause in phase time four until the bus control
logic negates RRPLY3 (1) H. This occurs only during DATIO cycles.

5-13

5. The DOUT CYC H signal from the MIB decode logic is clocked into DOUT (1) H of the bus
control logic one period into phase time five. When DOUT (1) H sets, it causes the assertion
of BDOUT L.

6. The master clock control causes the logic to pause in phase time five until the MMU asserts
MMU RPLY H, an external device asserts BRPLY L or, if IAD SEL H i1s asserted, until the
bus control logic negates IAD WR (1) H.

7. The negation of GT BDAL (1) H is delayed by the setting and clearing of DOUT2 (1) H.
DOUT2 (1) H is set one period after DOUT (1) H sets (after BDOUT L is asserted).
DOUT?2 (1) H clears one period after DOUTI (1) H clears.

5.8 CDAL/BDAL INTERFACE
The CDAL/BDAL transceivers transfer information between the LSI-11 bus and the F11 chip set in
response to load, gate, and read signals obtained from the bus control logic. The CDAL/BDAL bus
interface is shown in Figure 5-3.

The LD BDAL (1) H and LD BBS7 (1) H signals are used to load the information on the CDAL bus
into the transceiver registers during a data-out (write) bus cycle. The GT BDAL (1) L signal gates the
contents of the transceiver registers onto the LSI-11 bus. The RD BDAL (1) L signal enables the trans-
ceiver registers during a data-in (read) bus cycle to transfer the information on the BDAL <18:00> L

lines to the CDAL bus.

The MIB decode logic decodes MIB <<7:6> and sets or clears the ODT CYC flip-flop at the end of
phase-bar time to indicate whether the current cycle is a normal address cycle or an ODT address
cycle. The ODT CYC flip-flop is clear during a normal address cycle and set during an ODT cycle.

During normal address cycles, BBS7 L is asserted if BSIO H is asserted by the F11 data chip or the
MMU chip. During ODT address cycles, the ODT logic performs an ODT relocation cycle to clear
BBS7 L if either ODTA17 (1) H or ODTAL16 (1) H is clear. The assertion of BBS7 L indicates that an
address references the 8K-byte 1/0 page.

The HWTBT (1) H signal is loaded into the CDAL/BDAL transceivers and gated onto the LSI-11 bus
during the address and data portions of the data-out bus cycle. The MIB decode logic decodes MIB
<9:8> to set or clear the HWTBT latch. The HWTBT (1) H signal is set during the address portion of
a data-out bus cycle. During the data portion of the data-out bus cycle, HWTBT (1) H is set to indicate
a write byte operation and clear to indicate a write word operation. The state of HWTBT is not gated
onto the LSI-11 bus during a data-in cycle.

The BDAL < 17:16> L bits are used by the service logic for an address parity check. The bits are
transferred as RDAL <17:16> H to the service logic by RD BDAL (1) L during a data-in bus cycle.
If both RDAL bits are set, an address parity error [PAR ERR (1) H] is generated by the service logic
at the end of phase-bar time. PAR ERR (1) H is used by the reset logic to reset all of the F11 chips
except the MMU chip. PAR ERR (1) H also causes the program to trap to location 114g.

5.9 SERVICE, RESET, AND ODT LOGIC
The service logic gates information onto the CDAL <<12:07,05:00> lines in response to various exter-
nal and internal KDF11-BA conditions. The service logic operation is described in Paragraph 5.9.1. The
reset logic monitors various error signal inputs and generates a reset signal for the bus control logic and

the F11 chip set if an error is detected. The reset logic operation is described in Paragraph 5.9.2. The

service and reset logic interface to the LSI-11 bus, CDAL bus, and other KDF11-BA logic is shown in

Figure 5-6.

0
8
8
G

HIN

Q
e

T
V
A
L
/
T
V
A
D

 §-§
2Ind1]

1
<
0
0
:
6
1
l
>
"
1
v
a
g

1
<
9
1
:
8
1
>

1
v
d
8

2\ SNg 187

0

G

S
H
I
A
I
I
I
S
N
V
Y
Y
L

H
<00:61>

1va)d
H
<00:G1>

1vAdD
I
v
a
l
/
v
a
n

<00:G1>

S
H
I
A
I
F
I
S
N
V
H
 L

—

1vQa4g/1vad

(1)
1vds

19

21907
{1y

v
a
a

ad
T0H1INOD

S

H
(1)

1vQag
a1

Gl

Y
-

3
9
0
1

<
8
6
>

81N

3
0
0
2
3
4

[
<9:/>

8IW

8IN
H

(L)
LALMH

<91:8L>

_
S
H
I
A
I
F
O
S
N
V
H

L
7

{0)
DAD

LAO
1
v
Q
9
/
1
v
a
d

g

E
o
_

H
<
9
L
:
8
1
>

IvaD

£

H
(S8

s

219071
|
H<9L:ZL=1vd)

“H
(1)

HH3
Hvd

130
o

L

H
Y
L
Y

—

N
O
O
T

H
<
9
L
l
/
{
>
1
v
d
Y

-
IDIAYIS

30053a
<8:6>

9N
SHav

dIHD
H
<00:1Z>

1
v
a
d

Tvdai
N
N

>
Gl

7
(1)

1vad
19

—

H
(L)

/S88
a1

.

o
S

am
<bites

diHD
H
<00:61>

1v3)
H
<
6
L
:
L
Z
>
1
v
a
d

S
H
I
A
I
Z
O
S
N
V
Y
L

v
1
v
a

1
Y
a
s
/
1
v
a
n

H
O1SH

7
1
9
1
M
m
8

1
<
6
L
:
1
2
>
1
v
a
d

1
4
5
4
4

5-15

AL2) BIRQ 4 L
AAT) BIRQ 5 L
(AB) BIRQ 6 L
(BP1) BIRQ 7 L
(BB} BPOK H
AP1) BHALT L

RDAL 16 H COAL/BDAL o CDAL <12:00> H 1
e : | >

K5 IRQ <4:7>H TO CDAL <11:8> H |

LINE CLOCK EVENT FLG (1) H
LOGIC

K8
SERVICE
LOGIC

CONSOLE SLU RQ HLT H - -IRQ5 L

-IRQ 6 L K9 BUS
LPOK1 {1} H _| CONTROL

DGPO 6 L (CLR PWR L) LOGIC
MIB LINITF (1) L (BINIT L) el L DECODE

REL CYC (0) H
K1

RESET (1) H
RD SVC (1) L K2

PHASE (0) H

PT2 (1)L DCOKC2 (0) H
PT4 (1) H BUSERR (1) H

PBT4 (1) H NO CSEL H

MASTER —o K3 PARERRIDH
CLOCK
CONTROL -

PTCLR L RESET
PBT3 (1) L LOGIC
0SC H

ENB R " B RST L

MMU CHIP ABOR
F11 CHIP SET QRT L

CHIP RST H
K4 K3

MRA.-5881

Figure 5-6 Service and Reset Logic Interface

The ODT logic gates the ODT address onto the CDAL <21:16> lines during ODT address cycles.
The operation of the ODT logic is described in Paragraph 5.9.3 and the logic interface is shown in
Figure 5-7.

5.9.1 Read Service Operation
The CDAL <12:00> lines contain service information during phase-bar time if a relocated address is
not on the CDAL bus. The read service RD SVC (1) L signal from the reset logic gates the service
information onto the CDAL <<12:00> lines at the end of phase-bar time one, or when an MMU abort
occurs at the beginning of phase-bar time four. RD SVC (1) L is cleared by phase time clear PT CLR
L one-half period into phase time one.

5-16

Thirteen service information bits are placed on the CDAL <12:00> lines by tri-state drivers or tri-
state registers. Five of the CDAL lines <<06,04:02,00> are driven by tri-state drivers when RD SVC
(1) L is asserted. The signal names and functions for the CDAL lines are described in Table 5-2.

Table 5-2 Service Logic Bits <06,04:02,00>

CDAL Signal
Line Name Function

CDAL 06 H Ground CDAL 06 H is always asserted.

CDAL 04 H CTL ERR (1) L The assertion of this bit indicates that none of the F11 control

chips asserted either CSELA L or CSELB L.

CDAL 03 H ABORT L Negation of this bit indicates the occurrence of an MMU
abort.

CDAL 02 H PAR ERR (1) L Assertion of this bit indicates a parity error.

CDAL 00 H DCOKC3 (1) L Assertion of this bit indicates that the LSI-11 bus BDCOK H
signal has been valid for at least three phase-to-phase-bar
transitions.

The remaining eight CDAL lines <12:07,05,01> are driven by a tri-state register. The signals de-
scribed in Table 5-3 are clocked into the register by PHASE (0) H at the beginning of phase-bar time
and placed on the CDAL lines when RD SVC (1) L is asserted.

Table 5-3 Service Logic Bits <12:07,05,01>

CDAL Signal
Line Name Function

CDAL 12 H EVENT FLG (1) H The assertion of this bit posts a line clock interrupt request.

CDAL 11 H IRQ4H The assertion of this bit posts a level-4 interrupt request.

CDAL 10 H IRQ S H The assertion of this bit posts a level-5 interrupt request.

CDAL 09 H IRQ 6 H The assertion of this bit posts a level-6 interrupt request.

CDAL 08 H IRQ7H The assertion of this bit posts a level-7 interrupt request.

CDAL 07 H PWR DWN (1) H The assertion of this bit posts a power-down interrupt
request.

CDAL OS H HALT H This bit reflects the state of the LSI-11 bus BHALT L line.

CDAL 01 H TIMEOUT (1) H The assertion of this bit indicates that a bus timeout has
occurred.

>-17

5.9.2 F11 Chip Reset Operation

The reset logic generates an F11 chip reset (CHIP RST H) signal for any one of five error conditions
that require immediate attention by the chip set. The CHIP RST H signal is routed to all the F11 chips
except the MMU chip. The CHIP RST H signal is asserted high for any one of the five following
conditions.

1. Control error — A nonexistent control chip is selected by the microcode.

2. Bus error — A nonexistent memory location is accessed.

3. Party error — A parity error is detected on a current read from memory.

4. DC power-up — Upon power-up the processor forces the reset logic to assert CHIP RST H to
initialize all internal chip registers. The dc power-up line then clears and is not reactivated
while dc power is on.

5. MMU abort — The MMU has aborted a mapped memory reference. The MMU chip will
assert ABORT L for any of the following reasons.

e The memory location referenced is not present in the current user’s protected address
space.

e Anpn attempt is made to modify a write-protected location.

e The user is exceeding his allotted page boundary.

The reset logic input and output signals are shown in Figure 5-6. The CHIP RST H signal is obtained
from a RESET flip-flop that is clocked set at the beginning of phase-bar time four if any one of four
error signals from the service logic is asserted. The service logic error signals are applied to a NOR gate
to produce an enable reset (ENB RST L), which is applied to the D input of the RESET flip-flop and
the master clock control. The assertion of ENB RST L extends phase-bar time through phase-bar time
SIX.

The ABORT L signal generated by the MMU chip as a result of a memory error is applied to the set
input of the RESET flip-flop when phase-bar time three begins. The signal names and functions of the
error signals that cause assertion of CHIP RST H are described in Table 5-4. The RESET flip-flop is
cleared by PT CLR L from the master clock control one-half period after phase time one.

Table 5-4 F11 Chip Reset Signals

Signal
Name Function

DCOKC3 (0) H Assertion of this bit indicates that the LSI-11 bus BDCOK H signal has been
valid for less than three phase time-to-phase-bar transitions.

PAR ERR (1) H Assertion of this bit indicates a parity error; a trap to location 114g occurs.

BUS ERR (1) H Assertion of this bit indicates a bus timeout; a trap to location 4g occurs.

NO CSEL H Assertion of this bit indicates that none of the F11 control chips asserted either
CSELA or CSELRB; a trap to location 10g occurs.

ABORT L Assertion of this bit indicates an MMU abort; a trap to location 250g occurs.

5-18

5.9.3 ODT Address Logic
During ODT addressing cycles the processor responds to commands and information entered via the
console terminal addresses 777560g through 777566g. The ODT logic interface to the CDAL bus and
other KDF11-BA logic is shown in Figure 5-7.

The ODT logic contains a flip-flop (PT2D) that is used to gate the CDAL <21:16> and MIB 15 H
drivers. PT2D is clocked set during every address cycle at the beginning of phase time two and cleared
one-half period into phase-bar time one by PBT CLR L. The ODT logic also contains an ODT ADR
flip-flop that gates the ODT address bits <<17:16> onto CDAL <17:16>> H, controls ODT address
relocation by assertion or negation of MIB 15 H, and enables or disables the MMU by assertion or
negation of DMMUS L.

C
D
A
L

<
2
1
:
0
0
>

H

NV

A
< CDAL <21:16> H

<CDAL <15:00> H

{AP2) BBS7 L

0SC H

PHASE (1) L

MASTER PHASEA (1) L

CLOCK PT2 (1) H

PTCLR L

‘1 PRT CLR L

ADR CYC H

REL CYC (1) H
MiB

LOGIC DGPO 7 L (WR ODTA)

LINITF (1) L
K1

CDAL 00 H
F11 CHIPSET CDALO1 H oDT

LOGIC
MIB15 H (MME L)

MMU CHIP MMU RPLY L

DMMUS L

s BSIO H

CDAL/BDAL
TRANSCEIVERS fe—

K5

IDAL ADDRESS
DECODE LD MMRO LO L

K7

CDAL/IDAL
TRANSCEIVERS IDALB 00 H

K6 K3

MR 5882

Figure 5-7 KDF11-BA ODT Logic Interface

5-19

During ODT address cycles the ODT ADR flip-flop is clocked set by OSC H at the end of phase time
two and cleared one-half period into phase-bar time. If the ODT ADR flip-flop is set, the PD2D flip-
flop negates CDAL <21:18> H and gates ODT address bits <17:16> onto CDAL <17:16> H.
During normal address cycles the ODT ADR flip-flop is clear and the PT2D flip-flop negates CDAL
<21:16> H. The remaining address bits (<15:00>) are gated onto CDAL <15:00> H by the F11
data chip.

If the two ODT address bits, ODT17 (1) H and ODT16 (1) H, are both set, the phase time address and
BSIO H signal are correct and there is no need to prevent the DAT and MMU chips from responding
to their I/O page addresses. However, if either of the ODT address bits is clear, the ODT logic must
guarantee that the BBS7 L register bit is negated and that the DAT and MMU chips do not incorrectly
respond to an asserted BSIO H during phase time. Therefore, if either ODT17 (1) H or ODT16 (1) H is
clear, the ODT ADR flip-flop asserts DMMUS L to disable the MMU registers, and negates MIB 15
H to force an ODT address relocation cycle. The assertion of DMMUS L prevents the MMU from
decoding CDAL <12:00> for an MMU register address.

The ODT address relocation cycle negates BSIO H and CDAL <21:19>, but presents meaningless
data on CDAL <18:00>. This relocation cycle performs two functions. First, it prevents the DAT chip
from incorrectly responding to a phase time PS address of 177776 on CDAL < 15:00>. The DAT chip
sees a relocated address with BSIO H negated. Second, it loads the negated BSIO H signal into the
BBS7 L register bit with the load signal LD BBS7 (1) H. Note that LD BDAL (1) H also updates the
BDAL <21:19> L register bits even though they were correctly negated during phase time.

5.10 FIXED DATA DIN CYCLES

The fixed data logic shown in Figure 5-8 gates the jumper-selected power-up mode and HALT/TRAP
options onto the CDAL bus during DIN cycles. If MIB 03 H is asserted during phase time, the RD
FIXDT flip-flop is set at the end of phase time two and cleared one-half period into phase-bar time one.
RD FIXDT L enables tri-state drivers that gate the following status bits onto the CDAL lines.

CDAL Line | Input Signal and Purpose

CDAL 08 H| Ground. When power-up mode 2 is selected (CDAL bits 01-00 below), this bit specifies
boot address 773000.

CDAL 07 H| LPOK2 (1) L. The assertion of this bit indicates that the LSI-11 bus BPOK H signal is
asserted.

CDAL 02 H| TRAP OPJ L. Assertion of this signal indicates that the trap option jumper has been
installed.

CDAL 01 H} PUP CD1J L. Assertion of this signal indicates that the power-up code bit 01 jumper
has been installed.

CDAL 00 H | PUP CDOJ L. Assertion of this signal indicates that the power-up code bit 00 jumper
has been installed.

5.11 CDAL/IDAL INTERFACE
The CDAL/IDAL transceivers transfer address and data information to and from on-board peripheral
devices connected to the IDAL bus and other internal KDF11-BA logic and/or the LSI-11 bus via the
CDAL bus. The on-board peripheral devices are the console and second serial-line units, the boot-
strap/diagnostic ROMs and the line clock. The CDAL/IDAL interface is shown in Figure 5-9.

5-20

J16 o=

J18

J1

LPOK2 {1) L i f CDAL 07 H

TRAP CPJ L i > CDALOZH

_PUPCD1J L CDALOTH

CDAL 08 H

i :fl f>

CDAL OO H 5 oPUP COOJ L i]> .

MR-5883

QDAL <1 5:08>>

PT3H)H'————~\\

D 1
MiB 03 H /

RD
FIXDT

0SC H
¢ SIRoFxpT L

PBTCLRLfr

__{::;szDnuENBL_

Figure 5-8 Fixed Data Logic

MASTER
CLOCK
CONTROL

K1

]PBT3(1)L

D 1
PHASE (1) L T

8K CDAL<15:08>) CDAL/IDAL
S TRANSCEIVERS

0SC H " Y1 ENIDAL (DL

)

S !
SERVICE w? ©
LOGIC

CDAL/IDAL
K3 CDAL <07:00>) TRANSCEIVERS

L
BUS RD IDAL {1} H '
CONTROL

K2 N

Figure 59 CDAL/IDAL Interface

5-21

<1DAL <07:00>>

I
D
A
L

<
1
5
:
0
0
>
H

U
MR 5884

The CDAL/IDAL transceivers are enabled by the EN IDAL (1) L signal. The EN IDAL flip-flop 1s
clocked clear one-half period into phase-bar time one; this disables the CDAL /IDAL transceivers. The
CDAL/IDAL transceivers are enabled when the EN IDAL flip-flop is clocked set one-half period into
phase-bar three or one-half period into phase time one, whichever occurs first.

The direction of data transfer through the CDAL /IDAL transceivers is controlled by the RD IDAL (1)
H signal obtained from the bus control logic. The RD IDAL (1) H signal is normally low, causing the
transfer of data from the CDAL bus to the IDAL bus. When an IDAL bus register or vector address is
read, RD IDAL (1) H goes high at the end of phase time four and is cleared at the end of phase-bar
time one. RD IDAL (1) H causes the transfer of data from the IDAL bus to the CDAL bus.

5.12 IDAL ADDRESS DECODE
The IDAL address decode logic decodes the IDAL <<12:00> H address bits and generates read and
load signals for the serial-line units, the bootstrap/diagnostic ROMs, the bootstrap/diagnostic registers,
and the line clock register. The IDAL address decode logic is shown in Figure 5-10.

The LD IADR signal from the bus control logic clocks BS7 H and IDAL < 12:00> H into the latched
internal address register at the end of phase time three of a normal address cycle, or at the end of
phase-bar time four of a normal address relocation. Because BS7 H reflects BSIO H gated by the asser-
tion of ODT17 (1) H and ODT16 (1) H, ODT relocation cycles do not update the internal address
register. The outputs of the latched internal address register are sent to the programmable logic array
(PLA), ROM read decode logic, and the load and read decoders.

The PLA decodes address, control, and jumper signals to produce signals that control the loading and
reading of various IDAL bus registers. The PLA inputs may be subdivided as follows.

1. Four wirewrap jumpers:

e J15 BDK DISJ L, when asserted, disables the boot and diagnostic registers, the boot
and diagnostic ROMs, and the line clock register.

e J14 DLI1 DISJ L, when asserted, disables the console SLU registers.

e J13 DL2 DISJ L, when asserted, disables the second SLU registers.

e J12 DL2 ADRJ L, when asserted, changes the base address of the second SLU from
17776500g to 177765403.

2. HWTBT H — This signal is always clear during read data transfers, clear for write-word data
transfers, and set for write-byte data transfers.

3. HSYNCF H - This signal is clear when reading a vector address and set for a normal read or
write.

4. This signal is asserted (low) if LBS7 (1) H, LA12 (1) H, and LA10 (1) H are all asserted.
This signal 1s asserted for all IDAL references. However, it is not decoded for vector address
references.

5. This signal is asserted (low) if LAO8 (1) H and LAO6 (1) H are both asserted while LAQ7 (1)
H 1s negated. This signal is asserted for all IDAL register references. It is not decoded for
either boot and diagnostic ROM references or for vector address references.

6. LA <11,09,05:01> H — These seven address signals are individually decoded.

7. LA <00> H - If HWTBT H is asserted, this address bit determines whether the high byte
or low byte is referenced.

5-22

I
D
A
L

<
1
5
:
0
0
>

H

O\
ROM

IDAL <12:00> D LA <12:09>H M SEQSDE RD ROM L
r—————

LATCHED T LOGIC LNDTSL . é | LBS7 H <
2

REG - T LOAD LDPCRLOL
LD IADR s RD DAL H AND LDRWRLOL =

< 1 |- READ LDDSPLY LOL _ 8510 H v LA <02.01> H DECODERS | LDKWLOL
|

LDPCRHIL
— pLa |SELMMROL _ LDRWRHIL

{TO ODT LOGIC) ODT BS7 L _AD_] SEL BK HB H LDRCSR2L
LDTCSR2L P

> ;%[})1‘: CycC
SELBK LB L LD TBUF2 L _

RD RWR L - Frommig [—PWIBTH JAD WR L ROSWADRL
RD KW L - ESE?CDE { HSYNCF H RD IDAL H —

{FROM BUS LD RCSR1 L
CONTROL LOGIC) LD TCSR1 L -

LDTBUFI L)15 BDKDISIL SELDLLBL _ RD RCSR L -~
J14 DLIDISI L RDTCSR L .
c_

J10
T J13 DL2DISJ L ™ K7

J12 DL2ADRJL RD RBUF L
— LA 09 H

SLU RBUF RD RBUFT L
| o seLect | SELDL1L SELECT -

—— RD RBUF2 L
K7 SELDL2L K7 >

>

IAD SEL H
R

RD IDAL L DVECL ImSiurcik
VECTOR RD kw L | AssERTIon |!DAL <07:00> H

—> K9

ZB 15—12 L
ZERO

ZB11-8 L BIT IDAL <15:08>, <05:03>, <01>
ZB5—3A1 L ASSERTION

K7 K7

K IDAL <15:00>

Figure 5-10 IDAL Address Decode Logic

5-23

MR-5886

The eight PLA outputs are sent to the load and read decoders, the SLU select logic, the SLU/CLK
vector assertion logic, and the zero bit assertion logic. The signal names and functions of the PLA out-
puts are as follows.

l. SEL MMRO LB L - Asserted for low-byte references to memory management status regis-
ter (SRO) at address 177775723.

SEL DL LB L - Asserted for low-byte references to device and vector addresses selected by
the following jumper configurations.

e Device addresses 17777560g through 17777566¢ if DL1 DISJ L (J14) is ungrounded.

e Device addresses 17776500g through 17776506¢ if DL2 DISJ L (J13) and DL2 ADRJ
L (J12) are both ungrounded.

e Device addresses 177765405 through 17776546g if DL2 DISJ L (J13) is ungrounded
and DL2 ADRJ L (J12) is grounded.

SEL BK HB H - Asserted for high-byte references to addresses 17777521g through
177775258 and 17777547g if BDK DISJ L (J15) is ungrounded.

SEL BK LB L - Asserted for low-byte references to addresses 17777520g through
17777524g\and 17777546g if BDK DISJ L (J15) is ungrounded.

ZB-3A1 L - Asserted for all register references for which, when read, register bits

<<05:03,01 > are always zero.

ZB11-08 L — Asserted for all register references for which, when read, register bits
<11:08> are always zero.

ZB15-12 L — Asserted for all register references for which, when read, register bits
<15:12> are always zero.

IAD SEL H - Asserted if SEL DL LB L, SELL BK HB H, or SEL BK LB L is asserted. Also
asserted for valid DL high-byte references and valid references to the boot and diagnostic
ROM addresses.

The various load and read control signals are produced by three 74L.S155 decoders and associated log-
ic. The load signals are sent to the SLU registers, the page control register, the read /write maintenance
register, the boot/diagnostic display register, and the line clock logic when the IAD WR L signal from
the bus control logic is asserted.

The read signals are sent to the SLU registers, the boot configuration register, the SLU/CLK vector
assertion logic, and the read/write maintenance register when the RD IDAL H signal from the bus
control logic is asserted. The ROM read decode logic asserts RD ROM L when the RD IDAL H signal
is asserted. The RBUF select logic uses the RD RBUF L signal from the load and read decoders to read
the contents of either the SLU receiver buffer RD RBUFI L or RD RBUF2 L.

5.13 BOOTSTRAP/DIAGNOSTIC AND LINE CLOCK LOGIC
Figure 5-11 shows the bootstrap/diagnostic and line clock logic.

5-24

BOOT/
DIAGNOSTIC IDAL <07:00> H ROM

LO o
LATCHED BYTE - i

INTNL K8 J22
IDAL <12:00> H ADRS LA <07:00> H RD ROM L J23

REG 124 K7
E127 LD IADRHf BOOT/

DIAGNOSTIC IDAL < 15:08 > H ROM

Hi
PCR <13:12> H ROM BYTE

PAGE ADDRESS
CONTROL MUX K8
REGISTER
PCR <13:08> l PCR <05:00> H > BTRA 12 H

IDAL <13:08> H | K8 BTRA 13 H
g PCR <11:08> H

< LA 08 H—I
- LD PCR HI H f

A | ROM
S ggfi.ErROL __> ADDRESS

2 MUX BTRA <11:08> H vV IDAL <05:00> H REGISTER .
Y PCR <05:00> PCR <03:00> H
< K8 a K8
- LD PCR LO H f

CONFIG- BOOT/DIAGNOSTIC < IDAL <07:00> H URATION —---o\o—_L SWITCHES

REGISTER =
RD SWADR MSO,

Ko D1

RD/WR M,«
" MAINT. D3 IDAL <15:08> H b DISPLAY i

' (DAL <03:00> H REGISTER Dg . M [
LD RWRHIH_] HIBYTE L D4 1

o RD RWR H—I <8 |05 4,

RD/WR LD DSPLY LO H | LSD Ny
<IDAL <07:00> H ’::&NT- KW IE (1) H SLU/CLY

' 11 ERTI LD RWR LOH_| LOBYTE _‘I’__19 W1 LTCENJ L RD KW L] ASSERTION

IDAL <06> H >D Q D QLEVENT FLG H
LINE SERVICE
CLK LINE GIC

CLK LO STATUS o »

LD Kw LO H_|REG
K8 C K8

cBEVENT L EVENT H

(BR1)
CLR EVENT

Figure 5-11 Bootstrap/Diagnostic and Line Clock Logic

MR 5887

5.13.1 Boot and Diagnostic Logic
The boot and diagnostic page control register consists of two bytes, PCR 13-08 (1) H and PCR 05-00
(1) H, each located in a hex register. These registers are loaded from the IDAL lines by —LD PCR LO
H and by —LD PCR LO H, respectively. A pair of quad multiplexers produce the six most significant
ROM address bits, BTRA 13-08 H. If LA 08 (1) H is set, BTRA 13-08 H equals PCR 13-08 (1) H. If
LA 08 (1) H is clear, BTRA 13-08 H equals PCR 05-00 (1) H.

5-25

The boot and diagnostic ROM sockets accept pin-compatible 2K, 4K, and 8K ROMs. These ROMs are
addressed by BTRA 13-08 and by latched internal address bits LA <<07:01>. A wirewrap jumper can
replace BTRA13 H with +5 V for 2K EPROMs. The ROM data is gated directly onto IDAL

<15:00> by RD ROM L. The KDF11-BA uses 2K ROMs that are compatible with the BDV11.

The boot and diagnostic read /write maintenance register consists of two bytes located in a pair of 8-bit
universal shift/storage registers. These registers are loaded from IDAL <15:00> by —LD RWR HI
H and —LD RWR LO H. RD RWR H gates their contents onto IDAL <15:00>.

The boot and diagnostic write-only display register consists of four bits located in a quad register. —LD
DSPLY LO H loads this register with data from IDAL <<03:00>. Clearing one of the four display
register bits lights a corresponding LED mounted at the top of the KDF11-BA module.

The boot and diagnostic read-only switch register consists of eight switches that are gated onto IDAL
<<07:00> by RD SWADR L. The remaining IDAL lines are negated by the zero bit logic driven by
the PLA outputs ZB 15-12 L and ZB 11-9 L. (See Figure 5-10.)

5.13.2 Line Clock Register
the line clock register contains a single read-write bit, KW IE (1) H. This bit is loaded from IDAL 06 H
by —LD KW LO H. KW IE (1) H is held set when the LTC ENJ L signal is.asserted by a wirewrap
jumper. The LSI-11 bus BEVENT L signal is received as EVENT H. If KW IE (1) H is set, the lead-
ing edge of EVENT H sets EVENT FLG (1) H.

The logic for reading the line clock register consists of a quad multiplexer that gates KW IE (1) H onto
IDAL 06 H and negates IDAL 07, 02, and 00 H. The remaining IDAL lines are negated by the zero bit
logic driven by the PLA outputs ZB 15-12 L, ZB 11-9 L, and ZB 5-3A1 L. (See Figure 5-10.)

S.14 SERIAL-LINE UNITS
Figure 5-12 (Sheets 1 and 2) shows the logic associated with the serial-line units.

S.14.1 Universal Asynchronous Receiver Transmitters
Each serial line unit is based on a universal asynchronous receiver transmitter circuit, contained in a
single 40-pin package (Digital Part No. 21-13937-01). Each UART contains a receiver section and a
transmitter section.

The receiver section contains receiver data buffer bits 07-00 and receiver status register bit 07. Serial
data (SERIAL IN1 H or SERIAL IN2 H) is clocked into a receiver shift register and then transferred
to the data buffer. Loading the data buffer sets the status bit (RX1 DONE H or RX2 DONE H). The
read control signal (RD RBUF1 L or RD RBUF2 L) gates the data buffer onto IDAL 07-00 H and
clears the status bit.

The transmitter section contains transmitter data buffer bits 07-00 and transmitter status register bit
07. The write control signal (LD TBUF1 L or LD TBUF2 L) loads IDAL 07-00 H into the data buffer
and clears the status bit (TBMT1 H or TBMT2 H). The contents of the data buffer is loaded into the
transmitter shift register (as soon as that register is empty) and then clocked out as serial data (SE-
RIAL OUTI1 H or SERIAL OUT2 H). The status bit is set when the data buffer is empty and able to
receive another character.

For each UART the receiver and transmitter clock inputs are driven by the same clocking signal (RT
CLK1 H or RT CLK 2 H). The clock rate is 16 times the serial data rate.

Character formats are selected by wirewrap jumpers and may consist of seven or eight data bits, one or
two stop bits, parity or no parity, and odd or even parity.

5-26

B
8
8
S
-
U
W

(T
JO

[
199YS)

suun)
sur-[eUsS

 7[-S
2Indij

H <00:SL>Vval

o]
o

7
(1)

Ival
ay

-
6

<
21907

-
1
0
4
t
z
1
d

T

(1)
4LINGT

T
I
v
E
-
6
8
Z

|
N
O
I
L
Y
I
S
S
Y

|
~10°'c0:50°80:G1>

V
A
l

.
ME-RETN

AL
HZdSoL

07
v
t

Tgaias
L\ Yld

35518z
118

-
£
0
0
0
d

1
N

O

i
o
L

0
"
3
Z
z

H
31

zXd
=

7
rs1a

z1d
T
¢
l
-
6
L
 9z

—

710YLINOD
H <90>

TV al
T
o

o
H3

1dNYYILNI
OLF

ZLr
1
rdav

cia
1

aNz
T(1)

zld
H
823A

210
»

—
—
—
—

H
INOG

XY
Hzusod

a7
Ha03A

170
21907

NOILY3ISSY
H

<00:
/0>

v
Q!

H
Z
1
W
N
g
1
l

t
v
l
d

H
O
X
V
I
1
Q

H
O
1
0
3
A

W123/N1S
1
0
3
A
Q
Y

ol
H

(1)
%48

ZX1
7

HSO1
ay

_
2

e

304l
10

H
3
l
Z
X
1

oy
H

<60>
V1

7
(1)
1
v
a
r
 ay

A
v

H
a
t
i
x
d

*

7
13S

av|
21907

T
R
T
a
G
E

V
)

3
S
t

:
— e
y

]
S
T
N
E
L

<00°Z0°90:£0>
1vQl

J
o
u
i
n
e
s

[T
o
N
A
S
E

a_.qw

-

P
r
—
—
)

HLLWNEGL
(L)

HM
A
V

sng
[T

Inogg™e
‘¢3v

-
e

O

Tivessaz|
=—XTEE®C

(CHY)
oM

<
-

=
—
—
—
—
8
0
{
Z
N
Y
)

7
4S04

4y
T
8
—
1
L

8z
H

13S
Q
v

TOMNVIg
-

ZLVY)
H
<60>

V1
T
¢
1
-
G
l

87
H

(1)
D
N
A
S
H

-
A o

v
d

1(L)
“_:z_.__.“

LINIE
"
E
N
R
T

HSOH
—

H
(1)

£587

T
E
T
R
N

E
R
E
R
E
R

H
<00:50°60°LL>

¥

woowm__m

H
I
N
O
Q

X
Y

P
r
U
—
—

L

|
9

T
z4nal

al
H

(1)
davi

gl
H

3d
¢1d

3
4N84

ay
P

e

_
T
Z4SOL

a1
T

(1)
UM

avi
L

H
34

210
H
<60>

V1
-

e
k
l

o3y
7
24508

a1
L

=

f
f
r
—
—
—
—
—
—

of
SOLVIS

I
6
1
>

Gval
U
E
R
E
G
R

HOLV 1
—

7
14SO21

a7
H<L0:20'60>

V1
H

<00:Z21>
1val

@

7
14S24

471

@

TU50L
00

!
odivig

]

6>
7
4
S
O

Qd
3
23A

QY
_

7
4N9Y

Y

(1)
4LINIT

<
@

e
o

£0000
I3

L

=
H
L
1
I
H

DY
J
O
H
I
N
G
D

H
<
9
0
>

1vQal
P U
—
—
—

o—u2I>
e
I

LdNYYILNI
124N8Y

a8}
93735

 ERRIBES
Gr

-
N
S

|o
4
3
4
4
n
9

H
8
0
3
A

L
0

J10OSNQOD
H

LHSDO1
a1

D
3
M

T
H
I
{
D

3

1(1)Z1d
3

13nay
o

nis
H <

6
0
>
 v

ol
p
l
—
—
—
—
—

H
(L)

3
I
X
L

H
i
d
s
o
d

Q1
a

OL

5-27

(T Jo
T

199Yg)
syun)

Surf-[euds
 1-¢

2Indrg

6
8
8
9

H
W

3
®

14vn
l
l
fl
u
u
u
w

NS
ANz

S

z
Z
a
n
a
l
 o

[
z4ndl

0S
vid

53
H

<00:£0>
1val

L1INX

VI3
cr

=
3
3
4

=

z
4
N
8
Y

H
<
0
0
:
£
0
>

1val

0

IXT
H3dzia

*
HZX1D

L
X
3

SALYLS
.

e

A
C
L
+

v
1
v
a

H
34

<10

oEL
H
Y
0
2
1
a

7
2
3
1
0
 14

1OULNOD
7
2
4
n
8
y
 ad

14vn
H

3NOd
ZXH

w
HZLWEL

Amv

SY3IdWNC
1YWHOS

HILDIVHYHD

SHIdWNC
1YWY

O
4
I
1
I
V
H
Y
H
D

H
3
I
N
O
Q

[XY
T
O
H
1
L
N
O
D

H
L
L
W
N
E
L

14vNn
H
5
1
D
 Ld

7
1
4
n
8
Y
 Oy

_
SNLVLS

H3dt1a
®

—

v1iva
.AHV

=
A
t

_
iy

H
39

L
owq

H
10

1X3
HHO

L1a
H

<00:20>
v

Q!
s

713
-

L4ngy
>
v
a

234
|
l
|
i
A
H
v

w3
T
1
4
n
4
a
L
 a7

h
L
1
I
N
X

L
4
N
8
1

oS
oS

H
<00:£0>

v
l

3
14vN

NS
370SNOD

©

5-28

5.14.2 The DCO003 Interrupt Logic Circuits
Each serial-line unit has an associated DC003 interrupt logic circuit that consists of an 18-pin package.
Each DCO03 provides two interrupt channels for receiver and transmitter interrupts. The receiver chan-
nel has a higher priority than the transmitter channel.

The receiver channel contains a read/write interrupt enable bit [RX1 IE (1) Hor RX2 IE (1) H] that is
accessed as bit 06 of the receiver status register. LD RCSR1 H or LD RCSR? H loads IDALB 06 H
into this interrupt enable bit.

The transmitter channel contains a read/write interrupt enable bit [TX1 IE (1) H or TX2 IE (1) H]
that is accessed as bit 06 of the transmitter status register. LD TCSR1 H or LD TCSR2 H loads K6
IDALB 06 H into the interrupt enable bit.

If the receiver interrupt enable bit and the receiver done bit (RX1 DONE H and RX2 DONE H) are
both set, or if the transmitter interrupt enable bit and the transmitter ready bit (TBMT1 H and TBMT?2
H) are both set, the open collector interrupt request output is asserted. The interrupt request outputs of
the two DCO0O03 circuits are tied together as DL IRQ L.

The F11 chip set and KDF11-BA logic respond to an SLU interrupt request (DL IRQ L asserted) by
reading the vector address. PT2 (1) L drives the DC003 BDIN inputs and activates all channels re-
questing an interrupt at that time. RD VEC L not only gates the vector address onto IDAL 07-00 H,
but also asserts the console DC003’s BIAKI input. If neither of the interrupt channels in this DC003
were activated by PT2 (1) L, the DC003 asserts its BIAKO output, which drives the BIAKI input of
the other DC003. The actual vector address gated onto IDAL 07-00 H depends upon DL1 VECB H,
DL1 IAKO H, DL2 VECB H, and DL2 ADRJ L. The selected interrupt channel is cleared.

S5.14.3 Register Read Operations
Control signal RD RBUF1 L or RD RBUF2 L gates one of the receiver data buffers onto IDAL 07-00
H. Simultaneously, the assertions of ZB 15-12 L and ZB 11-08 L cause the zero bit assertion logic to
negate IDAL 15-08 H.

Control signal RD RCSR L gates either RX1 DONE H and RX1 IE (1) H or RX2 DONE H and RX?2
IE (1) H onto IDAL 07-06 H and negates IDAL 02 H and IDAL 00 H. If LA 09 (1) H is asserted, the
console receiver status register signals are selected. In either case, the assertion of ZB 15—12 L, ZB
I1-08 L, and K7 ZB 5-3A1 L causes the zero bit assertion logic to negate the remaining IDAL lines.

Control signal RD TCSR L gates either TBMT1 H and TX1 IE (1) H or TBMT2 H and TX2 IE ()H
onto IDAL 07-06 H and negates IDAL 02 H and IDAL 00 H. If LA 09 (1) H is asserted, the console
transmitter status register signals are selected. In either case, the assertion of ZB 15-12 L,ZB11-08L,
and K7 ZB 5-3A1 L causes the zero bit assertion logic to negate the remaining IDAL lines.

5.14.4 Baud Rate Generator
A dual baud rate generator circuit contained in an 18-pin IC produces the RT CLK1 H and RT CLK?2
H clocking signals for the two serial-line units if the J42-J43 and J45-J46 jumpers are installed.

The baud rate generator and —12 V Charge Pump are shown in Figure 5-13. The baud rate generator is
driven by a signal provided by a 5.0688 MHz crystal oscillator. The baud rate generator divides the
basic crystal oscillator frequency into one of 16 possible SLU receiver-transmitter frequencies. Four
switches for each serial line select the desired RT clock frequency, which is 16 times the desired SLU
baud rate. The switch configurations for selecting the available baud rates are listed in Table 2-10.

5-29

E114

SWITCH

PACKAGE
DUAL BAUD

RATE GENERATOR
S2-1 - = RO

J43 J42 RTCLKI1H _
L2478 o”o—{ R GENERATOR

J4lx EXTCLK1TH
1 523 7y 1Ry #1

- fl/o———' R3

525 1 oy To
J46__£45 RTCLK2H

=== oo J4T1 GENERATOR J44 527 o |10 22 § EXTCLK2H

XTAL1

» XTALO k1 +12V

5.0688 MHZ| DIVIDE 1ov
CRYSTAL [J21 420 BY 317 KHZ

MFG TEST COUNTER PUMP
K10 JUMPER

CLOCK FREQ BAUD

{KHZ) RATE

0.8 50

1.2 75

1.76 110

2.152 1345

2.4 150

48 300

9.6 600

19.2 1200

28.8 1800

32.0 2000

38.4 2400

57.6 3600

76.8 4800

115.2 7200

153.6 9600

307.2 19200

Figure 5-13 Baud Rate Generator and — 12 V Charge Pump

5.14.5 Charge Pump Circuit
The senial-line EIA transmitter-receiver drivers require +12 V and —12 V operating power. The
charge pump circuit supplies the — 12 V, thereby eliminating the need for backplane power other than
the standard +5 V and +12 V.

The input to the charge pump circuit is a 317 KHz square wave signal obtained from a divide-by-16
counter driven by the 5.0688 MHz crystal oscillator. The 317 KHz signal drives a pair of MHO0026
+ 12 V MOS clock drivers that alternately charge a 0.47 uF capacitor to —12 V.

5-30

CHAPTER 6
ADDRESSING MODES

6.1 INTRODUCTION
In the KDF11-BA all memory reference addressing is accomplished using the eight general-purpose
registers. In specifying an address of the data (operand address), one of the eight registers and one of
several addressing modes are selected. Each memory reference instruction specifies the following.

1. Function to be performed (operation code).

2. General-purpose register to be used when locating the source and/or destination operand.

3. Addressing mode, which specifies how the selected registers are to be used.

Many capabilities are provided by the combination of the addressing modes and the instruction set. The
KDF11-BA is designed to handle structured data efficiently and with flexibility. The general-purpose
registers implement these functions in the following ways.

1. Act as accumulators — they hold the data to be manipulated.

2. Act as pointers — the content of the register is the address of the operand rather than the
operand itself, allowing automatic stepping through memory locations.

3. Act as index registers — the content of the register is added to the second word of the instruc-
tion to produce the address of the operand. This capability allows easy access to variable
entries in a list.

Utilization of the registers for both data manipulation and address calculation results in a variable-
length instruction format. If registers alone are used to specify the data source, only one memory word
is required to hold the instruction. In certain modes, two or three words may be utilized to hold the

basic instruction components. Special addressing mode combinations enable temporary data storage for
convenient dynamic handling of frequently accessed data. This is known as stack addressing. (Progr-
amming techniques utilizing the stack are discussed in Chapter 10.) Register 6 is always used as the
hardware stack pointer (SP). Register 7 is used by the processor as its program counter (PC). Thus, the
register arrangement to be considered in conjunction with instructions and with addressing modes is:
registers 0-5 are general-purpose registers, register 6 is the hardware stack pointer, and register 7 is the
program counter. The full KDF11-BA instruction set and instruction formats are explained in Chapter
7. To illustrate clearly the use of the various addressing modes, the following instructions and symbols
are used in this chapter.

6-1

Mnemonic Description Octal Code

CLR Clear (Zero the specified destination.) 0050DD

CLRB Clear byte (Zero the byte in the specified 1050DD
destination.)

INC Increment (Add 1 to contents of destination.) 0052DD

INCB Increment byte (Add 1 to the contents of the 1052DD
destination byte.)

COM Complement (Replace the contents of the 0051DD
destination by their logical 1’s
complements; each 0 bit is set and each
1 bitis cleared.)

COMB Complement byte (Replace the contents of the 1051DD
destination bytes by their logical 1’s
complements; each 0 bit is set and each 1
bit is cleared.)

ADD Add (Add the source operand to the 06SSDD
destination operand and store the result
at the destination address.)

DD = destination field (6 bits)
SS = source field (6 bits)
O = contents of

6.2 INSTRUCTION FORMATS
The instruction format for the first word of all single-operand instructions (such as clear, increment,
test) is shown in Figure 6-1. The instruction format for the first word of the double-operand instruction
is shown in Figure 6-2.

15 06 05 04 03 02 00

MODE @ Rn
1 l |] i |] 1 1 1 l 1

LK - * —)\ _ —Y Y

OP CODE T T
DESTINATION ADDRESS

LEGEND

*SPECIFIES DIRECT OR INDIRECT ADDRESS

** SPECIFIES HOW REGISTER WILL BE USED

*¥** SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

MR-3643

Figure 6-1 Single-Operand Instruction Format

OP CODE MODE @ Rn MODE @ Rn

!] 1 1 i 1 1 1 1

* % L] * %% "% * [X X

)\ J
Y v

SOURCE ADDRESS J I

DESTINATION ADDRESS

LEGEND

* SPECIFIES DIRECT OR INDIRECT ADDRESS

*# SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED

»** SPECIFIES A GENERAL REGISTER

Figure 6-2 Double-Operand Instruction Format

6.3 ADDRESSING MODES
Instruction bits <<5:3> specify the binary code of the addressing mode chosen. The four direct ad-
dressing modes are as follows.

1. Register
2. Autoincrement
3. Autodecrement
4, Index

When bit 3 of the instruction is set, indirect addressing is specified and the four basic modes become
deferred modes. In a register-deferred mode the content of the selected register is taken as the address
of the operand. In the other deferred modes the content of the register specifies the address of the
operand, rather than the operand itself. Prefacing the register operand(s) with an @ sign or placing the
register in parentheses indicates to the MACRO-11 assembler that deferred addressing mode is being
‘used. The indirect addressing modes are as follows.

1. Register-deferred
2. Autoincrement-deferred
3. Autodecrement-deferred
4. Index-deferred

Program counter (PC or register 7) addressing modes are as follows.

1. Immediate
2. Absolute

3. Relative

4. Relative-deferred

The KDF11-BA addressing modes are explained and shown in examples in the following pages. They
are summarized in Paragraphs 6.3.10 through 6.3.13.

6.3.1 Register Mode (Mode 0) Rn
Register mode provides faster instruction execution since there is no need to reference memory to re-
trieve an operand. Any of the general registers can be used as accumulators. The operand is contained

in the selected register. Assembler syntax requires that a general register be defined as follows.

RO = %0
R1 = %1
R2 = %2

The % sign indicates register definition.

6-3

Register Mode Examples (Figures 6-3 and 6-4.)

Instruction
Symbolic Octal Code Description

INC R3 005203 Add 1 to the contents of R3.

RO

R1 15 06 05 04 03 02 00 A2

} SELECT 0 0 0 0 1 0 1 0 1 0 0 0 I 0 0 1 1 == = =~ R3
! i ! 1 1 1 L 1 | i 1 I 1 REGISTER R4

— v I — J R5

T I R6(SP)
OP CODE {INC({0052))

R7(PC} DESTINATION FIELD '

Figure 6-3 Register Mode Increment Example

Instruction
Symbolic Octal Code Description

ADD R2, R4 060204 Add the contents of R2 to the contents of R4, replacing the
original contents of R4 with the sum.

BEFORE AFTER

R2| 000002 | Rz| " oooo02 |

Ra [ooooos | ma[ooo00]

MR-3675

Figure 6-4 Register Mode Add Example

6.3.2 Register-Deferred Mode (Mode 1) (Rn)
In register-deferred mode, the address of the operand is stored in a general-purpose register. The ad-
dress contained in the general-purpose register directs the CPU to the operand. The operand is located
outside the CPU, either in memory or in an 1/O register. This mode is used for sequential lists, indirect
pointers in data structures, top-of-stack manipulations, and jump tables.

Register-Deferred Mode Example (Figure 6-5.)

Instruction
Symbolic Octal Code Description

CLR (RY) 005015 The contents of the location specified in RS are cleared.

6-4

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1677 R&{ 001700 | 1677 Rs{ 001700 |
1700{ 000100 1700{ 000000

Figure 6-5 Register-Deferred Mode EXample

6.3.3 Autoincrement Mode (Mode 2) (Rn)+
In autoincrement mode the register contains the address of the operand; the address 1s automatically
incremented after the operand is retrieved. The address then references the next sequential operand.
This mode allows automatic stepping through a list or series of operands stored in consecutive locations.
When an instruction calls for mode 2, the address stored in the register is autoincremented each time
the instruction is executed. It is autoincremented by 1 if byte instructions are being used, and by 2 if
word instructions are being used.

Autoincrement Mode Example (Figure 6-6.)

Instruction
Symbolic Octal Code Description

CLR (R5)+ 005025 Contents of R5 are used as the address of the operand. Clear
selected operand and then increment the contents of RS by 2.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

20000] 005025 | Rs| 030000 | 20000 005025 | Rs| 030002 |

30000 111116 | 30000 000000 |

MR-3677

\

Figure 6-6 Autoincrement Mode Example

6.3.4 Autoincrement-Deferred Mode (Mode 3) @(Rn)+
In autoincrement-deferred mode the register contains a pointer to an address. The + indicates that the
pointer in R2 is incremented by 2 after the address is located. Mode 2, autoincrement, 1s used to access
operands that are stored in consecutive locations. Mode 3, autoincrement-deferred, is used to access
lists of operands stored anywhere in the system; that is, the operands do not have to reside in adjoining
locations. Mode 2 is used to step through a table of volumes; mode 3 is used to step through a table of
addresses.

Autoincrement-Deferred Example (Figure 6-7.)

Instruction
Symbolic Octal Code Description

INC @(R2)+ 005232 Contents of R2 are used as the address of the address of the
operand. The operand is increased by 1, and contents of R2
are incremented by 2.

6-5

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

R2| 010300 | R2| 010302 |
1010 000025 1010 000026
1012 1012
—

010300 001010 10300 001010

MR-3678

Figure 6-7 Autoincrement-Deferred Mode Example

6.3.5 Autodecrement Mode (Mode 4)
In autodecrement mode the register contains an address that is automatically decremented; the decre-
mented address is used to locate an operand. This mode is similar to autoincrement mode, but allows
stepping through a list of words or bytes in reverse order. The address is autodecremented by 1 for
bytes, by 2 for words.

—(Rn)

Autodecrement Mode Example (Figure 6-8.)

Instruction
Symbolic Octal Code Description

INCB —(RO) 105240 The contents of RO are decremented by 1, then used as the
address of the operand. The operand byte is increased by 1.

BEFORE AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER

1000 | 005240

17774 000000 |

RO| 017776 | 1000] 005240 | ro| 017774 |
7

17774 | 000001 |

MR-3679

Figure 6-8 Autodecrement Mode Example

6.3.6 Autodecrement-Deferred Mode (Mode 5) @ —(Rn)
In autodecrement-deferred mode the register contains a pointer. The pointer is first decremented by 2,
then the new pointer is used to retrieve an address stored outside the CPU. This mode is similar to
autoincrement-deferred, but allows stepping through a table of addresses in reverse order. Each address
then redirects the CPU to an operand. Note that the operands do not have to reside in consecutive
locations.

Autodecrement-Deferred Mode Example (Figure 6-9.)

Instruction
Symbolic Octal Code Description

COM @—(R0) 005150 The contents of RO are decremented by 2, then used as the
address of the address of the operand. The operand is 1’s com-
plemented.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

10100 | 012345 RO| 010776 | 10100| 165432 rRo| o10774 |
10102 10102

10774 [010100 10774 [010100
10776 10776

Figure 6-9 Autodecrement-Deferred Mode Example

6.3.7 Index Mode (Mode 6) X(Rn)
In index mode a base address is added to an index word to produce the effective address of an operand;
the base address specifies the starting location of a table or list. The index word then represents the
address of an entry in the table or list relative to the starting (base) address. The base address may be
stored in a register. In this case, the index word follows the current instruction. The locations of the
base address and index word may be reversed (index word in the register, base address following the
current instruction).

Index Mode Example (Figure 6-10.)

Instruction
Symbolic Octal Code Description

CLR 200(R4) 005064 The address of the operand is determined by adding 200 to
000200 the contents of R4. The location is then cleared.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 005064 Ra{ 001000 | 1020] 005064 R4} 001000 |
1022 000200 1022 000200

1024 1024
1000

’/—'\ +200
1200

1200 177777 1200 000000

1202

MR.-3681

Figure 6-10 Index Mode Example

6.3.8 Index-Deferred Mode (Mode 7) @X(Rn)
In index-deferred mode a base address is added to an index word. The result is the address of a pointer
to the address of the source operand, rather than the address of the source operand. This mode is sim-
ilar to mode 6, except that it produces a pointer to an address. The content of that address then redi-
rects the CPU to the desired operand. Mode 7 provides for the random access of operands using a table
of operand addresses.

Index-Deferred Mode Example (Figure 6-11.)

Instruction
Symbolic Octal Code Description

Add @1000(R2), R1] 067201 1000 and the contents of R2 are summed to produce the ad-
001000 dress of the source operand, the contents of which are added

to the contents of R1. The result is stored in R1.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 067201 R1[o0123¢ | 1020 067201 R1| 001236 |
1022 001000 1022 001000 1024 R2| 000100 | 1024 R2{ ooo100 |

1050 000002 1050 000002

1100 001050 1000 1100 001050
+100

1100

Figure 6-11 Index-Deferred Mode Example

MR-3682

6.3.9 Use of the PC as a General Register
Register 7 is both a general-purpose register and the program counter. When the CPU uses the PC to
access a word from memory, the PC is automatically incremented by 2 to contain the address of the
next word in the instruction being executed or the address of the next instruction to be executed. When
the program uses the PC to access byte data, the PC is still incremented by 2.

The PC can be used with all the addressing modes. There are four modes in which the PC can provide
advantages for handling position-independent code (see Chapter 10) and unstructured data. These
modes are termed immediate, absolute (or immediate-deferred), relative, and relative-deferred. The re-
maining modes operate normally when used with the PC. However, they have no practical use in nor-
mal programming.

6.3.9.1 PC Immediate Mode (Mode 2) #n
Immediate mode is equivalent to using the autoincrement mode with the PC. It provides time improve-
ments for accessing constant operands by including the constant in the memory location immediately
following the instruction word.

6-8

PC Immediate Mode Example (Figure 6-12.)

Instruction
Symbolic Octal Code Description

ADD #10, RO 062700 The value 10 is located in the second word of the instruction

000010 and is added to the contents of R0. Just before this instruction
is fetched and executed, the PC points to the first word of the
instruction. The processor fetches the first word and in-
crements the PC by 2. The source operand mode 1s 27 (au-
toincrement the PC). Thus, the PC is used as a pointer to

fetch the operand (the second word of the instruction) before
being incremented by 2 to point to the next instruction.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 062700 RO I 000020 J 1020 062700 RO | 000030 J

1022 000010 \pc 1022 000010

1024

PC
1024 /

MR.3683

Figure 6-12 PC Immediate Mode Example

6.3.9.2 PC Absolute Mode (Mode 3) @#A

This mode is the equivalent of immediate-deferred or autoincrement-deferred mode using the PC. The

contents of the location following the instruction are taken as the address of the operand. Immediate

data is interpreted as an absolute address (i.e., an address that remains constant no matter where in
memory the assembled instruction is executed).

PC Absolute Mode Example (Figure 6-13.)

Instruction

Symbolic Octal Code Description

CLR @#1100 005037

001100 Clears the contents of location 1100.

BEFORE AFTER

ADDRESS SPACE ADDRESS SPACE

20 005037 \ 20 005037

22 001100 PC 22 001100 / PC

'/ 24

1100 177777 1100 000000

1102

MR-3684

Figure 6-13 PC Absolute Mode Example

6-9

6.3.9.3 PC Relative Mode (Mode 6) A
This mode is index mode 6, using the PC. The operand’s address is calculated by adding the word that
follows the instruction (called an “offset”) to the updated contents of the PC. PC+2 directs the CPU
to the offset that follows the instruction. PC+4 is summed with this offset to produce the effective
address of the operand. PC+4 also represents the address of the next instruction in the program.

With the relative addressing mode, the address of the operand is always determined with respect to the
updated PC. Therefore, when the instruction is relocated, the operand remains the same relative dis-
tance away. The distance between the updated PC and the operand is called an offset. After a program
is assembled, this offset appears in the first word location that follows the instruction. This mode is
useful for writing position-independent code (see Chapter 10).

PC Relative Mode Example (Figure 6-14.)

Instruction
Symbolic Octal Code Description

INC A 005267 To increment location A, the contents of the memory location
000054 in the second word of the instruction are added to the PC to

produce address A. The contents of A are increased by 1.

BEFORE AFTER

ADDRESS SPACE ADDRESS SPACE

1020 005267 1020 0005267

1022 000054 \ 1022 000054
1024 PC 1024 *— PC
1026 1026

. A 1024 - s
+54 1100 { 000000] o 1oo| ooocotr |

MR-3685

Figure 6-14 PC Relative Mode Example

6.3.9.4 PC Relative-Deferred Mode (Mode 7) @A
This mode is index-deferred (mode 7), using the PC. A pointer to an operand’s address is calculated by
adding an offset (that follows the instruction) to the updated PC.

This mode is similar to the relative mode, except that it involves one additional level of addressing to
obtain the operand. The sum of the offset and updated PC (PC + 4) serves as a pointer to an address.
When the address is retrieved, it can be used to locate the operand.

6-10

PC Relative-Deferred Mode Example (Figure 6-15.)

Instruction
Symbolic Octal Code Description

CLR @A 005077 Adds the second word of the instruction to the PC to produce

000020 the address of the address of the operand. Clears the operand.

BEFORE AFTER

ADDRESS SPACE ADDRESS SPACE

1020 005077 1020 005077

1022 000020 \ PC 1022 000020 / PC

1024 1024

. ~ 1024 . -,

1044 [o010100 | == 1044 { 010100 |

10100 i 100001 —j 10100 | 000000 J]

MR.3686

Figure 6-15 PC Relative-Deferred Mode Example

6.3.10 Direct Addressing Modes Summary

Table 6-1 summarizes the four basic modes used with direct addressing.

Table 6-1 Direct Addressing Modes

Binary
Code Mode Name Symbolic Function

000 0 Register Rn Register contains operand.

010 2 Autoincrement (Rn)+ Register is used as a pointer to se-

quential data, then is incremented.

100 4 Autodecrement —(Rn) Register is decremented, then is used
as a pointer to sequential data.

110 6 Index X(Rn) Value X is added to (Rn) to produce
address of operand. Neither X nor
(Rn) 1s modified.

6.3.11 Indirect Addressing Modes Summary

Table 6-2 summarizes the same four basic modes used with indirect addressing.

6-11

Table 6-2 Indirect Addressing Modes

Binary
Code Mode Name Symbolic Function

001

011

101

111

Register-deferred

Autoincrement-deferred

Autodecrement-deferred

Index-deferred

@Rn or (Rn)

@(Rn) +

@—(Rn)

@X(Rn)

Register contains the address of the
operand.

Register is first used as a pointer to a
word containing the address of the
operand, then is incremented (always
by 2, even for byte instructions).

Register 1s decremented (always by
2, even for byte instructions), then is

used as a pointer to a word containing
the address of the operand.

Value X (located in a word contained
in the instruction) and (Rn) are
added and the sum is used as a
pointer to a word containing the ad-
dress of the operand. Neither X nor
(Rn) 1s modified.

6.3.12 PC Register Addressing Modes Summary
When used with the PC, these modes are termed immediate, absolute (or immediate-deferred), relative,
and relative-deferred. They are summarized in Table 6-3.

Table 6-3 PC Register Addressing Modes

Binary

Code Mode Name Symbolic Function

010 2 Immediate #n Operand is contained in the
instruction.

011 3 Absolute @#A Absolute address is contained in the
instruction.

110 6 Relative A Address of A, relative to the instruc-

tion, i1s contained in the instruction.

111 7 Relative-deferred @A Address of location containing ad-
dress of A, relative to the instruction,

1s contained in the instruction.

6.3.13 Graphic Summary of Addressing Modes
Figures 6-16 and 6-17 provide a graphic summary of general register addressing modes and program
counter addressing modes.

6-12

Mode O Register OPR P R contains operand.

R
msrnucnowH OPERAND]

Mode 1 Register deferred OPR (R) R contains address.

R
INSTHUCTIONH ADDRESS H OPERAND]

Mode 2 Autoincrement OPR (R)+ R contains address,
then increment (R).

R

INSTRUCTION H ADDRESS]———L OPERANDj
4

.1 +2 FOR WORD,
1 +1 FORBYTE

Mode 3 Autoincrement OPR @(R}+ R contains address of address,
deferred then increment (R) by 2.

R
| INsTRUCTION |—] ADDRESS |+ aoomess |—= operand I

4

. | . | - 2 —

Mode 4 Autodecrement OPR -(R) Decrement (R}, then
R contains address.

R
"2 FOR WORD, | INSTRUCTION]—*IJDDRESS H 2EORWORD. L=l opeRAND |

Mode 5 Autodecrement OPR @- (R) Decrement (R) by 2, then R
deferred contains address of address.

INSTRUCTION]——-LADDRESSH -2 —]——-[ADDRESSHOPERAND 1

P

Mode 6 Index OPR X(R) (R)+X is address, second
word of instruction.

R

PC |NSTRUCTION1—0{JDDRESS

OPERAND I

PC+2 | R fil—

Mode 7 Index deferred OPR @X(R) (R)+X is address (second

word) of address.
R

PC INSTHUCTIONH ADDRESS

S E |

R is a general register, 0 to 7.

(R) is the contents of that register.

ADDRESS |—-aLOPE RAND——I

MR .-3587

Figure 6-16 General Register Addressing Modes

6-13

Mode 2 Immediate OPR #n Literal operand n is con-

tained in the instruction,

PC [INSTRUCTIONJ

PC+2 | n]

Mode 3 Absolute OPR @#A Address A is contain-
ed in the instruction.

PC hNSTRUCTlofl

Pc+2[A l—-| OPERAND J

Mode 6 Relative OPR A PC+4+X is address.

PC+4 is updated PC.

PC [lNSTRUCTIONJ

PC+2 [X N

OPERAND 1

PC+4I NEXT INSTR]

Mode 7 Relative deferred OPR @A PC+4+X is address of ad-

dress PC+4 is updated PC.

PC [INSTRUCTIONJ

PC+2 + [X .

ADDRESS H OPERAND1

PC+4[NEXT INSTR J

I

Register = 7
MR-3688

Figure 6-17 Program Counter Addressing Modes

CHAPTER 7
INSTRUCTION SET

7.1 INTRODUCTION
The KDF11-BA instruction set and addressing modes produce over 400 unique instructions. The in-
struction set offers a wide choice of operations, and often a single instruction will accomplish a task that
would require several instructions in a traditional computer.

KDF11-BA instructions allow byte and word addressing in both single- and double-operand formats.
This saves memory space and simplifies the implementation of control and communications appli-
cations. The use of double-operand instructions makes it possible to perform several operations with a
single instruction. For example, ADD A,B adds the contents of location A to location B and stores the
result in location B. Traditional computers would implement these operations with three instructions:

LDA A
ADD B
STR B

The instruction set contains a full set of conditional branches, eliminating excessive use of jump instruc-
tions. All instructions fall into one of three categories.

1. Single-Operand — One part of the word, referred to as “op code,” specifies the operation; the
second part provides information for locating the operand.

2. Double-Operand — The first part of the word specifies the operation to be performed; the
remaining two parts provide information for locating two operands.

3. Program Control — The first part of the word specifies the operation to be performed; the
second part indicates where the action is to take place in the program.

7.1.1 Single-Operand Instructions
The following is a list of single-operand instructions.

General

Mnemonic Instruction

CLR(B) Clear destination
COM(B) I’s complement destination
INC(B) Increment destination
DEC(B) Decrement destination
NEG(B) 2’s complement negate destination
TST(B) Test destination

Shift and Rotate

Mnemonic Instruction

ASR(B) Arithmetic shift right
ASL(B) Arithmetic shift left
ROR(B) Rotate right
ROL(B) Rotate left
SWAB Swap bytes

Multiple-Precision

Mnemonic Instruction

ADC(B) Add carry
SBC(B) Subtract carry
SXT Sign extend

Processor Status

Mnemonic Instruction

MFPS Move byte from processor status
MTPS Move byte to processor status

Instruction Format — The instruction format for single-operand instructions, as shown in Figure 7-1, is
described as follows.

. Bits 15-6 indicate the operation code, which specifies the operation to be performed. (Bit 15
indicates word or byte operation.)

2. Bits 5-0 indicate the destination address, which gives information on locating the operand.

15 06 05 04 03 02 00

MODE @ Rn

] i | | i L 1 | L 1 | 1

T » aw
- Ja _ —

0P CODE T J
DESTINATION ADDRESS

LEGEND

* SPECIFIES DIRECT OR INDIRECT ADDRESS

*+ SPECIFIES HOW REGISTER WILL BE USED

®&#* SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

MR-3643

Figure 7-1 Single-Operand Instruction Format

7-2

7.1.2 Double-Operand Instructions
The following is a list of double-operand instructions.

General

Mnemonic Instruction

MOV (B) Move source to destination
ADD Add source to destination

SUB Subtract source from destination

ASH Shift arithmetically

ASHC Arithmetic shift combined

MUL Integer multiply
DIV Integer divide

Logical

Mnemonic Instruction

BIT(B) Bit test
BIC(B) Bit clear

BIS(B) Bit set
XOR Exclusive OR

7.1.2.1 Double-Operand Instruction Format — The format of most double-operand instructions (see
Figure 7-2) is similar to that of single-operand instructions except that the former have rwo fields for
locating operands. One field is called the source field, the other is called the destination field. Each
field s further divided into addressing mode and selected register. Each field is also completely inde-
pendent. The mode and register used by one field may be completely different from the mode and regis-
ter used by another field.

15 12 n 10 09 08 06 05 04 03 02 00

OP CODE MODE @ Rn MODE @ Rn

1 1 | | i I | I L

[X] »* T Y] - % * L X X]

| —_— i
Y Y

SOURCE ADDRESS T I
DESTINATION ADDRESS

LEGEND

* SPECIFIES DIRECT OR INDIRECT ADDRESS

**SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED

+** SPECIFIES A GENERAL REGISTER

MR.3644

Figure 7-2 Double-Operand Instruction Format

Bit 15 indicates word or byte operation except when used with op code 6. Then it indicates an ADD or
SUBtract instruction. Bits 14—12 indicate the op code, which specifies the operation to be done. Bits
11-6 indicate the source address, which contains information for locating the source operand. Bits 5-0
indicate the destination address, which contains information for locating the source operand.

7-3

7.1.2.2 Byte Instructions — Byte instructions are specified by setting bit 15. Thus, in the case of the

MOV instruction, bit 15 is 0; when bit 15 is set, the mnemonic is MOVB. There are no byte operations
for ADD and SUB - that is, no ADDB or SUBB. In order to perform the equivalent of an ADDB or
SUBB, the MOVB instruction can be used along with an ADD or SUB. The MOVB instruction, when
the destination address mode is 0, sign-extends the byte operand through the high byte of the register.
This feature can be used by executing a MOVB to get the first byte operand and place it in one general
register, and another MOVB to get the second byte operand and place it in a second general register.
Then an ADD or SUB is performed on both general registers.

MOVB A,RO
MOYVB B,R1
ADD RO,R1

The condition codes will be affected based upon the byte result.

7.1.3 Program Control Instructions
This paragraph discusses program control instructions.

7.1.3.1 Branch Instructions - What follows is a list of branch instructions and a discussion of the

branch instruction format.

Branch

Mnemonic Instruction

BR Branch (unconditional)
BNE Branch if not equal to 0
BEQ Branch if equal to 0
BPL Branch if plus
BMI Branch if minus
BVC Branch if overflow is clear
BVS Branch if overflow is set
BCC Branch if carry is clear
BCS Branch if carry is set

Signed Conditional Branch

Mnemonic Instruction

BGE Branch if greater than or equal to 0
BLT Branch if less than O
BGT Branch if greater than O
BLE Branch if less than or equal to 0
SOB Subtract 1 and branch if not equal to O

Unsigned Conditional Branch

Mnemonic Instruction

BHI Branch if higher
BLOS Branch if lower or same

BHIS Branch if higher or same
BLO Branch if lower

Branch Instruction Format
The high byte (bits 8-15) of the instruction is an op code specifying the conditions for the branch to
take place. Refer to Figure 7-3.

15 08 07 00

— i N N . -

OP CODE r

BYTE OFFSET e
V

MR-3645

Figure 7-3 Branch Instruction Format

The low byte (bits 0-7) of the instruction is the offset value in words that determines the new program
location 1if the branch is taken. The low byte is treated as an 8-bit signed integer, and since the CPU is
byte-organized, the integer must be converted from words to bytes. This is done during execution by
sign-extending the low byte and then shifting the 16-bit word left one position to create the offset in
bytes. Then the offset is added to the current value of the PC to form the new program location if the
branch is taken. Since the PC is always incremented by two bytes immediately after the instruction is
fetched, the current value of the PC, when the new program location is formed, points to the next loca-
tion after the branch. Hence an unconditional branch to its own location is 000777g, rather than

00040g, which is a branch to the next location.

7.1.3.2 Jump and Subroutine Instructions — The following is a list of jump and subroutine instructions,
and a discussion of their formats. A list of related interrupt and trap instructions is also provided, along
with a list of ways to exit from a main program.

Jump and Subroutine

Mnemonic Instruction

JMP Jump
JSR Jump to subroutine
RTS Return from subroutine

JSR Instruction Format
Bits 9—-15 are always octal 004 indicating the op code for JSR. Refer to Figure 7-4.

15 09 08 06 05 04 03 02 00

0 0 0 0 1 0 0 Rn MODE @ Rn

| 1 i | 1 | L i 1 i I

— J A J e J

OP CODE

LINKAGE REGISTER

DESTINATION ADDRESS

—

<

L
—

<

MR-3646

Figure 7-4 JSR Instruction Format

7-5

Bits 6-8 specify the link register. Any general-purpose register may be used in the link, except R6. Bits
0-5 designate the destination address that consists of addressing mode and general register fields. This
specifies the starting address of the subroutine.

Register R7 (program counter) is frequently used for both the link and the destination. For example,
JSR R7, SUBR, which is coded 004767, may be used. R7 is the only register that can be used for both
the link and destination, the other general-purpose registers (GPRs) cannot. Thus, if the link is RS, any
register except R5 can be used in the destination field.

RTS Instruction Format

The RTS (return from subroutine) instruction uses the link to return control to the main program once
the subroutine is finished. Refer to Figure 7-5.

OP CODE

LINKAGE REGISTER

—
’
<

—
_
—

MR-3647

Figure 7-5 RTS Instruction Format

Bits 3—15 always contain octal 00020, which is the op code for RTS. Bits 0-2 specify any one of the
general-purpose registers. The register specified by bits 0-2 must be the same register as the one used
in the JSR that called the subroutine.

Interrupts and Traps

Mnemonic Instruction

EMT Emulator trap
TRAP Trap
BPT Breakpoint trap
10T Input /output trap
RTI Return from interrupt
RTT Return from trace trap

Exiting from a Main Program
There are three ways to leave a main program.

1. Software Exit — The program specifies a jump to some subroutine.

2. Trap Exit — Internal processor hardware executes certain instructions (e.g., EMT) that cause
a jump to special software routines.

3. Interrupt Exit — External hardware forces a jump to an interrupt service routine.

In all of the above cases, there is a jump to another program. Once that program has been executed,
control 1s returned to the proper point in the main program.

7.1.3.3 Condition Code Instructions — The following is a list of instructions that affect the condition
codes in the PS, and their formats. How the condition codes are affected 1s also discussed.

Mnemonic Instruction

CLC, CLV, CL2 Clear selected condition code
CLN, CCC
SEC, SEV, SEZ Set selected condition code
SEN, SCC

Instruction Format
The format of the condition code operators, shown in Figure 7-6, is as follows.

1. Bits 15-5 — The operation code.

2. Bit 4 — The “operator” that indicates set or clear with the values 1 and O, respectively. If set,
any selected bit is set; if clear, any selected bit is cleared.

3. Bits 3—0 — The “select” field. Each of these bits corresponds to one of the four condition code
bits. When one of these bits is set, the corresponding condition code bit is set or cleared de-

pending on the state of the “operator’ (bit 4).

CONDITION CODE OPERATORS

15 05 04 03 02 01 00

0/1 N Z \% C

| 1 i 1 ! L I i 1 i

- J — J
Y Y

|

OP CODE j

OPERATOR

SELECT FIELD

MR-3648

Figure 7-6 Condition Code Operators Format

More than one condition code can be set by a particular instruction. For example, both a carry and an
overflow condition may exist after instruction execution.

Condition Codes
There are four condition code bits.

N indicates a negative condition when set to 1.
Z indicates a zero condition when set to 1.
V indicates an overflow condition when set to 1.
C indicates a carry condition when set to 1. n

a
l
b

el

Ao

These four bits are part of the processor status word (PS). The result of any single-operand or double-
operand instruction affects one or more of the four condition code bits. A new set of condition codes is
usually created after execution of each instruction. Some condition codes are not affected by the execu-
tion of certain instructions. Branch instructions may test the condition codes after execution of a single-
or double-operand instruction. The condition codes are used by the various instructions to check soft-
ware conditions.

7-7

N Bit
The CPU looks only at the sign bit of the result. If the sign bit is set, indicating a negative value, the
CPU sets the N bit. If the sign bit is clear, indicating a positive value, the CPU clears the N bit. When
an overflow occurs (V bit is set), the N bit does not indicate the true sign of the result since the N bit is
equal to bit 15 of the result.

Z Bit
Whenever the CPU sees that the result of an instruction is 0, it sets the Z bit. If the result is not 0, 1t
clears the Z bit. There are a number of ways of obtaining a 0 result.

. Adding two numbers equal in magnitude but different in sign.
2. Comparing two numbers of equal value.
3. Using the CLR instruction.

V Bit

The V bit is set to indicate that an overflow condition exists. An overflow means that the result of an
instruction is too large to be represented in 2’s complement format. There are two methods the hard-
ware uses to check for an overflow condition.

One way is for the CPU to test for a change of sign.

. When using single-operand instructions, such as INC, DEC, or NEG, a change of sign in-
dicates an overflow condition.

2. When using double-operand instructions, such as ADD, SUB, or CMP, in which both the
source and destination have like signs, a change of sign in the result indicates an overflow
condition.

Another method used by the CPU is to test the N bit and C bit when dealing with shift and rotate
Instructions.

1. If only the N bit is set, an overflow exists.
2. If only the C bit is set, an overflow exists.
3. If both the N and C bits are set, there is no overflow condition.

C Bit
The CPU sets the C bit automatically when the result of an instruction has caused a carry-out of the
most significant bit of the result. When the instruction results in a carry-out of the most significant bit
of the result, the carry itself is usually moved into the C bit. Otherwise, the C bit is cleared. During
rotate instructions (ROL and ROR), the C bit forms a buffer between the most significant bit and the
least significant bit of the word. A carry of 1 sets the C bit while a carry of O clears the C bit. However,
there are exceptions.

. SUB and CMP set the C bit when there is no carry to indicate that a borrow occurred.

2. Logical operations (e.g., BIT) do not affect the C bit since they are not arithmetic in nature.

3. COM always sets the C bit, TST always clears the C bit.

7-8

7.1.3.4 Miscellaneous Instructions — Miscellaneous program control instructions are listed below.

Mnemonic Instruction

HALT Halt
WAIT Wait for interrupt
RESET Reset 1/0
MTPD Move to previous data space
MTPI Move to previous instruction space
MFEPD Move from previous data space
MEFPI Move from previous instruction space
MTPS Move byte to processor status word
MFPS Move byte from processor status word

7.1.4 Examples of Single-Operand, Double-Operand, and Branch Instructions
The following examples and explanations show the use of the various types of instructions in a program.

7.1.4.1 Single-Operand Instruction Example — This routine uses a tally to control a loop, which clears
out a specific block of memory. The routine has been set up to clear 30g byte locations beginning at
memory address 600.

(RO) = 600
(R1) = 30

LOOP: CLRB(RO)+
DEC R1
BNE LOOP
HALT

Program Description
The CLRB (R0O)+ instruction clears the contents of the location specified by R0O. RO is the pointer.
Because the autoincrement addressing mode is used, the pointer automatically moves to the next memo-
ry location after execution of the CLRB instruction.

Register R1 indicates the number of locations to be cleared and is, therefore, a counter. Counting is
performed by the R1 instruction. Each time a location is cleared, it is counted by decrementing R1.

The branch if not zero (BNE) instruction checks for Done. If the counter is not 0, the program
branches back to start to clear another location. If the counter is 0, indicating Done, the program exe-
cutes the next instruction, HALT.

7.1.4.2 Double-Operand Instruction Example — This routine prints out a portion of a payroll program
for review by the supervisor. It is known that 76 locations are to be printed and the locations start at
address 600.

INIT: MOV #600,R0
MOV #76,R1

START: TSTB 1/0
BPL START
MOVB (R0)+,1/0+2
DEC R
BNE START
HALT

7-9

Program Description
MOV is the instruction normally used to set up the initial conditions. Here, the first MOV places the
starting address (600) into RO, which will be used as a pointer. The second MOV sets up R1 as a
counter by loading the desired number of locations (76) to be printed.

The TSTB instruction tests the Done or Ready flag (bit 7) of the printer. The BPL instruction causes a
loop to start if the state of the Printer-ready flag is cleared.

The MOVB instruction moves a byte of data to the printer (I/O) for printing. The data comes from the
location specified by RO. The pointer RO is incremented to point to the next sequential location, and the
counter (R1) is decremented to indicate one byte has been transferred.

The program then checks the loop for Done with the BNE instruction. If the counter has not reached 0,
more transfers must take place. The BNE causes a branch back to START and the program continues.

When the counter (R1) reaches 0, indicating all data has been transferred, the branch does not occur
and the program executes the next instruction, HALT.

7.1.4.3 Branch Instruction Example

NOTE

Branch instruction offsets are limited to be from

+ 1778 to —200g words.

A payroll program has set up a series of words to identify each employee by his/her badge number. The
high byte of the word contains the employee’s badge number; the low byte contains an octal number
ranging from O to 13 that represents his/her salary. These numbers represent steps within three wage
classes to identify which employees are paid weekly, monthly, or quarterly. It is time to make out week-
ly paychecks. Unfortunately, employee information has been stored in a random order. The problem is
to extract the names of only those employees who receive a weekly paycheck. Employee payroll num-
bers are assigned as follows: 0 to 3 — wage class I (weekly); 4 to 7 — wage class II (monthly); 10 to 13 —
wage class 11 (quarterly).

The starting address of the memory block containing the employee payroll information is 600. The final
address of this data area is 1264. The following program searches through the data area and finds all
numbers representing wage class I. Each time one is found, the program stores the employee’s badge
number (just the high byte) on a ““last-in/first-out” stack that begins at location 4000.

INIT: MOV #600, RO
MOV #400, R1

START: CMPB(RO)+,#3
BHI CONT

STACK: MOVB (R0),—(R1)

CONT: INC RO |
CMP # 1264, RO
BHIS START
HALT

7-10

Program Description
RO becomes the address pointer, R1 the stack pointer. Compare the contents of the first low byte with
the number 3 and go to the first high byte. If the number is more than 3, branch to continue. If no
branch occurs, the number is 3 or less. Therefore, move the high byte containing the employee’s num-
ber onto the stack as indicated by stack pointer R1. RO is advanced to the next low byte. If the last
address (1264) has not been examined, this instruction produces a result equal to or greater than zero.
[f the result is equal to or greater than zero, examine the next memory location.

7.2 INSTRUCTION SET
The KDFI11-BA instruction set is described below. For ease of reference the instructions are presented
alphabetically. A number of special symbols are used to describe certain features of individual instruc-
tions. The commonly used symbols are explained in Table 7-1.

Table 7-1 Instruction Symbols

Symbol Meaning

SO Single-operand instruction.

DO Double-operand instruction.

PC Program control instruction.

MS Miscellaneous instruction.

CC Condition code.

() Indicates “the contents of”’; for example, (R5) means “the contents of R5.”

STC Source address.

dst Destination address.

— Becomes, or moves into; for example, (dst) «— (src) means that the source becomes the
destination or that the source moves into the destination location.

(SP) + Popped or removed from the hardware stack.

— (SP) Pushed or added to the hardware stack.

N Logical AND.

V Logical inclusive OR (either one or both).

Y Logical exclusive OR (either one, but not both).

~ Logical NOT.

Reg or R| Register.

B Byte.

NOTE

Cond_ition code bits are considered to be cleared un-

less they are specifically listed as set.

7-11

ADC/ADCB

Add carry 0055DD
1055DD

15 06 05 00

0/1 0 0 0 1 0 1 1 0 1 D D D D D)

Type: SO

Operation: (dst) — (dst) + C

Condition Codes: N: set if result < 0
Z: set if result = 0
V: set if (dst) is 077777 and C = 1
C: set if (dst) is 177777 and C = 1

Description: Adds the contents of the C bit to the destination. This permits the carry from the

addition of the low-order words/bytes to be carried into the high-order result,
such as in performing double-precision arithmetic.

ADD

06SSDD

15 12 11 06 05 00

0 1 1 0 S S S S S S D D D D D D

1 | { 1 L L 1 1 1] i | 1

Add

Type: DO

Operation: (dst) — (src) + (dst)

Condition Codes: N: set if result < 0

Z: set if result = 0

V: set if there is arithmetic overflow as a result of the operation; that is, both

operands were of the same sign and the result is of the opposite sign

C: set if there is a carry from the most significant bit of the result

Description: Adds the source operand to the destination operand and stores the result at the

destination address. The original contents of the destination are lost. The con-

tents of the source are not affected. 2’s complement addition is performed.

7-12

ASH

Arithmetic shift 072RSS

09 08 06 05 00

1 1 o 1 0 R R R S S S S S S
| i |] | I i 1 | |] 1

Type:

Operation:

Condition Codes:

MR.-2720

DO

R « R shifted arithmetically NN places to the right or left where NN = (src)

N: set if result << 0
Z: set if result = 0
V: set if sign of register changed during shift
C: loaded from last bit shifted out of register

Description: The contents of the register are shifted right or left the number of times speci-
fied by the source operand. The shift count is taken as the low-order six bits of
the source operand. This number ranges from —32 to 431. Negative is a right
shift and positive is a left shift.

ASHC

Arithmetic shift combined 073RSS

15 09 08 06 05 00

0 1 1 0 1 1 R R R S S S S S S

Type: DO

Operation: R,RVI—R RVI

Condition Codes:

Description:

The double word is shifted NN places to the right or left, where NN = (src).

N: set if result << 0

Z: set if result = 0

V: set if sign bit changes during the shift

C: loaded with high-order bit when left shift; loaded with low-order bit when
right shift (loaded with the last bit shifted out of the 32-bit operand)

The contents of the register and the register ORed with 1 are treated as one 32-
bit word. R V 1 (bits 0-15) and R (bits 16-31) are shifted right or left the num-
ber of times specified by the shift count. The shift count is taken as the low-order

7-13

six bits of the source operand. This number ranges from —32 to +31. Negative
1s a right shift and positive is a left shift.

When the register chosen is an odd number, the register and the register ORed
with 1 are the same. In this case, the right shift becomes a rotate. The 16-bit
word is rotated right the number of bits specified by the shift count.

ASL/ASLB

Arithmetic shift left 0063DD
1063DD

Type:

Operation:

Condition Codes:

Description:

MR.2722

SO

(dst) — (dst) shifted one place to the left

N: set if high-order bit of the result < 0

Z: set if the result = 0

V: loaded with the exclusive OR of the N bit and C bit (as set by the completion
of the shift operation)

C: loaded with the high-order bit of the destination

Shifts all bits of the destination left one place. The low-order bit is loaded with a
0. The C bit of the status word is loaded from the high-order bit of the destina-
tion. ASL performs a signed multiplication of the destination by 2 with overflow
indication.

ASR/ASRB

Arithmetic shift right 0062DD
1062DD

06 05 00

0 0 1 1 0 0 1 0 D D D D D D

MR.2723

7-14

Type:

Operation:

Condition Codes:

SO

(dst) «— (dst) shifted one place to the right

N: set if the high-order bit of the result is set (result < 0)

Z: set if the result = 0

V: loaded from the exclusive OR of the N bit and C bit (as set by the completion
of the shift operation)

C: loaded from low-order bit of the destination

Description: Shifts all bits of the destination right one place. The high-order bit is replicated.
The C bit is loaded from the low-order bit of the destination. ASR performs sign-
ed division by 2.

BCC

Branch if carry clear 103000

15 08 07 00

1 0 0 0 1 1 0 OFFSET

Type: PC

Operation: PC — PC + (2 X offset) if C = 0

Condition Codes: N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description: Tests the state of the C bit and causes a branch if C is clear.

BCS

Branch if carry set 103400

0 0 0 1 1 1 OFFSET
1] I | 1 L | | 1] l | !

MR-272%

7-15

Type:

Operation:

Condition Codes:

Description:

PC

PC — PC 4 (2 X offset) if C = 1

N: unaffected

7 unaffected
V: unaffected
C: unaffected

Tests the state of the C bit and causes a branch if C is set. Used to test for a

carry in the result of a previous operation.

BEQ

Branch if equal 001400

08 07 00

0 0 0 0 1 1 OFFSET

I] |]]) 1 ! . i) i L

Type:

Operation:

Condition Codes:

MR.2726

PC

PC — PC + (2 X offset) if Z = 1

N: unaffected
Z: unaffected
V: unaffected

C: unaffected

Description: Tests the state of the Z bit and causes a branch if Z is set. As an example, it is
used to test equality following a CMP operation, to test that no bits set in the
destination were also set in the source following a BIT operation, and, generally,
to test that the result of the previous operation was 0.

BGE

Branch if greater than or equal 002000

15 08 07 00

0 0 0 0 1 0 0 OFFSET

l 1 i 1 | | | L 1 i]] |

MRA.-2727

1-16

Type: PC

Operation: PC—PC + (2 X offset) if N V=0

Condition Codes: N: unaffected
Z: unaffected
V: unaffected

C: unaffected

Description: Causes a branch if N and V are either both clear or both set. BGE is the com-
plementary operation to BLT. Thus, BGE always causes a branch when it fol-
lows an operation that caused addition of two positive numbers. BGE also causes
a branch on a 0 result.

BGT

Branch if greater than 003000

15 08 07 00

0 0 0 o 0 1 1 0 OFFSET

Type: PC

Operation: PC —PC + (2 X offset) if Z V (N &% V) =0

Condition Codes: N: unaffected
Z.: unaffected
V: unaffected
C: unaffected

Description: Causes a branch if the exclusive OR of the N and V bits is 1. Thus, BGT always
branches after an operation that added two negative numbers, even if overflow
occurred. In particular, BGT always causes a branch if it follows a CMP instruc-
tion operating on a negative source and a positive destination (even if overflow
occurred). Further, BGT never causes a branch when it follows a CMP instruc-
tion operating on a positive source and negative destination. BGT does not cause
a branch if the result of the previous operation was 0 (without overflow).

BHI

Branch if higher 101000

15 08 07 00

1 0 0] 0 0 1 0 OFFSET

Type: PC

Operation: PC — PC + (2 X offset) if C =0and Z = 0

Condition Codes: N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description: Causes a branch if the previous operation causes neither a carry nor a 0 result.
This will happen in comparison (CMP) operations as long as the source has a
higher unsigned value than the destination.

BHIS

Branch if higher than the same 103000

15 08 07 00

1 0 0 0 1 1 0 OFFSET

Type: PC

Operation: PC — PC + (2 X offset) if C = 0

Condition Codes: N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description: Tests the state of the C bit and causes a branch if C is cleared.

BIC/BICB

Bit clear 04SSDD
| 14SSDD

15 12 11 06 05 00

01 ©o ofs s s s s s |Dp D D D D D

MR-2731

Type:

Operation:

Condition Codes:

DO

(dst) — ~ (src) A (dst)

N: set if high-order bit of result set
Z: set if result = 0
V: cleared

C: not cleared

Description: Clears each bit in the destination that corresponds to a set bit in the source. The
original contents of the destination are lost. The contents of the source remain
unaffected.

BIS/BISB

Bit set 05SSDD
15SSDD

15 12 1 06 05 00

0/1 0] S S S S S S D D

Type: DO

Operation: (dst) — (src) V (dst)

Condition Codes: N: set 1f high order bit of result set
Z: set if result = 0
V: cleared

C: not affected

Description: Performs an inclusive OR operation between the source and destination operands
and leaves the result at the destination address; i.e., corresponding bits set in the
source are set in the destination. The original contents of the destination are lost.

BIT/BITB

Bit test 03SSDD
13SSDD

15 12 i 06 05 00

0/1 1 1 S S S S S S D D

i i | J] |]

Type: DO

Operation: (dst) vV (src)

7-19

Condition Codes: N: set if high-order bit of result set
Z: set if result = 0O
V: cleared

C: not affected

Description: Performs a logical AND comparison of the source and destination operands and
modifies condition codes accordingly. Neither the source nor destination oper-
ands are affected. The BIT instruction may be used to test whether any of the
corresponding bits that are set in the destination are clear in the source.

BLE

Branch if less than or equal to 003400

15 08 07 00

0 0 0 0 1 1 1 OFFSET

Type: PC

Operation: PC—PC + (2 Xoffset)ifZV (NV¥ V) =1

Condition Codes:

Description:

N: unaffected

Z: unaffected
V: unaffected
C: unaffected

Causes a branch if the exclusive OR of the N and V bits is 1. Thus, BLE always
branches after an operation that added two negative numbers, even if overflow
occurred. In particular, BLE always causes a branch if it follows a CMP instruc-
tion operating on a negative source and a positive destination (even if overflow
occurred). Further, BLE never causes a branch when it follows a CMP instruc-
tion operating on a positive source and negative destination. BLE does not cause
a branch if the result of the previous operation was 0 (without overflow).

BLO

Branch if lower 103400

08 07 00

0 0 0 1 1 1 OFFSET
| 1 1 | I i | | I | |] .

Type:

Operation:

MR-2735

PC

PC — PC + (2 X offset) if C = 1

7-20

Condition Codes: N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description: Tests the state of the C bit and causes a branch if C is set. Used to test for a
carry in the result of a previous operation.

BLOS

Branch if lower or same 101400

15 08 07 00

1 0 0 o 0 1 1 OFFSET
L | | |] L | i | i 1 L | |

Type: PC

Operation: PC—PC + (2 Xoffset) if CV Z =1

Condition Codes:

Description:

N: unaffected
Z: unaffected

V: unaffected
C: unaffected

Causes a branch if the previous operation caused either a carry or a O result.
BLOS is the complementary operation to BHI. The branch occurs in comparison
operations as long as the source is equal to or has a lower unsigned value than the
destination.

BLT

Branch if less than

15

002400

08 07 00

0 0 o 1 0 1 OFFSET

Type:

Operation:

Condition Codes:

MR-2737

PC

PC—PC + (2 X offset) if NV V =1

: unaffected
: unaffected
: unaffected
: unaffected O

<
N
 Z

7-21

Description: Causes a branch if the exclusive OR of the N and V bits is 1. Thus, BLT always
branches after an operation that added two negative numbers, even if overflow
occurred. In particular, BLT always causes a branch if it follows a CMP instruc-
tion operating on a negative source and a positive destination (even if overflow
occurred). Further, BLT never causes a branch when it follows a CMP instruc-
tion operating on a positive source and negative destination. BLT does not cause
a branch if the result of the previous operation was 0 (without overflow).

BMI

Branch if minus 100400

08 07 00

0 0 0 0 0 1 OFFSET

Type:

Operation:

Condition Codes:

Description:

PC

PC — PC + (2 X offset) if N = 1

N: unaffected
Z: unaffected
V: unaffected

| C: unaffected

Tests the state of the N bit and causes a branch if N is set. Used to test the sign
(most significant bit) of the result of the previous operation.

BNE

Branch if not equal 001000

15 08 07 00

0] 0 0 0 0 0 1 0 OFFSET
| l i]] |] i L i 1 1 i |

Type: PC

Operation:

Condition Codes:

Description:

PC — PC + (2 X offset) if Z = 0

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Tests the state of the Z bit and causes a branch if the Z bit is clear. BNE is the
complementary operation to BEQ. It is used to test inequality following a CMP,
to test that some bits set in the destination were also in the source, following a
bit, and, generally, to test that the result of the previous operation was not 0.

7-22

BPL

Branch if plus 100000

15 08 07 00

1 0 0 0 0 0 0 OFFSET

Type: PC

Operation: PC — PC + (2 X offset) if N = 0

Condition Codes:

Description:

N: unaffected
Z: unaffected
V: unaffected

C: unaffected

Tests the state of the N bit and causes a branch if N is clear. BPL 1s the com-

plementary operation of BMI.

BPT

Breakpoint trap 000003

15 00

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Type: PC

Operation; — (SP) — PS
— (SP) — PC
PC — (14)
PS — (16)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 14. Used to call debug-
ging aids. The user is cautioned against employing code 000003 in programs run
under these debugging aids. No information is transmitted in the low byte.

BR

Branch 000400

15 08 07 00

0 o o 0o o o 1 OFFSET
| L - 1 | H J | }] 1 | |

MR-2742

Type: PC

Operation: PC — PC + (2 X offset)

Condition Codes: N: unaffected
Z: unaffected
V: unaffected

C: unaffected

Description: Provides a way of transferring program control within a range of —128 to +127
words with a 1-word instruction. An unconditional branch.

BVC

Branch if V bit clear 102000

15 08 07 00 |

1 0 0 0 0 1 0 0 OFFSET

Type: PC

Operation: PC — PC + (2 X offset) if V=10

Condition Codes: N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description: Tests the state of the V bit and causes a branch if the V bit is clear. BVC is the
complementary operation to BVS. .

BVS

Branch if V bit set 102400

15 08 07 00

1 0 0 0 0 1 0 1 OFFSET

Type: PC

Operation: PC — PC 4+ (2 X offset) if V = 1

Condition Codes: N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description: Tests the state of the V bit (overflow) and causes a branch if the V bit is set.
BVS is used to detect arithmetic overflow in the previous operation.

1-24

CCC

Clear all condition code bits 000257

15 00

0 0 0 0 0 0 0 1 0 1 0 1 1 1 1

| | N | 1 L e]] 1 |] I l |

Type: CC

Description: Sets and clears condition code bits. Selectable combinations of these bits may be
cleared or set together. Condition code bits corresponding to bits in the condition
code operator (bits 0-3) are modified according to the sense of bit 4, the
set/clear bit of the operator; i.e., the program sets the bit specified by bit 0, 1, 2,
or 3, if bit 4 is a 1. Clears corresponding bits if bit 4 = 0.

CLC

Clear C 000241

15 00

0 0 0 0 0 0 0 1 0 1 0 0 0 0 1

Type: CC

Description: Sets and clears condition code bits. Selectable combinations of these bits may be
cleared or set together. Condition code bits corresponding to bits in the condition
code operator (bits 0-3) are modified according to the sense of bit 4, the
set/clear bit of the operator; i.e., the program sets the bit specified by bit 0, 1, 2,
or 3, if bit 4 is a 1. Clears corresponding bits if bit 4 = 0.

CLN

Clear N 000250

15 00

0 0 0 0 0 0 0 1 0 1 0 1 0 0 0

Type: CC

Description: Sets and clears condition code bits. Selectable combinations of these bits may be
cleared or set together. Condition code bits corresponding to bits in the condition
code operator (bits 0-3) are modified according to the sense of bit 4, the
set/clear bit of the operator; i.e., the program sets the bit specified by bit 0, 1, 2,
or 3, if bit 4 is a 1. Clears corresponding bits if bit 4 = 0.

7-25

CLR/CLRB

Clear 0050DD
1050DD

15 06 05 00

0/1 0 0 1 0 1 0 0 0 D D D D D D

1] L | 1 L 1 | i i |] | L

Type: SO

Operation: (dst) — 0O

Condition Codes: N: cleared
Z: set
V: cleared
C: cleared

Description: Contents of specified destination are replaced with Os.

NOTE
As a performance optimization, the last bus cycle of
a CLR (or CLRB) is a DATO (or DATOB).
Previous LSI-11 processors performed a DATIO
cycle for the last bus cycle as a “don’t care’” for
hardware minimization.

CLV

Clear V 000242

15 00

0 0 0 0 0 0 0 1 0 1 0 0 0 1 0

Type: CC

Description: Sets and clears condition code bits. Selectable combinations of these bits may be
cleared or set together. Condition code bits corresponding to bits in the condition
code operator (bits 0-3) are modified according to the sense of bit 4, the
set/clear bit of the operator; i.e., the program sets the bit specified by bit 0, 1, 2,
or 3, if bit 4 is a 1. Clears corresponding bits if bit 4 = 0.

CLZ

Clear Z 000244

MR-2750

7-26

Type: CC

Description: Sets and clears condition code bits. Selectable combinations of these bits may be
cleared or set together. Condition code bits corresponding to bits in the condition
code operator (bits 0-3) are modified according to the sense of bit 4, the
set/clear bit of the operator; i.e., the program sets the bit specified by bit 0, 1, 2,
or 3, if bit 4 is a 1. Clears corresponding bits if bit 4 = 0.

CMP/CMPB

Compare 02SSDD
12SSDD

15 12 11 06 05 00

01 1 0 S S S S S S D D D D D D

Type: DO

Operation: (src) — (dst) [in detail (src) + (dst) + 1]

Condition Codes: N: set if result << 0

Z: set if result = 0

V: set if there is arithmetic overflow; i.e., if the operands were of opposite signs
and the sign of the destination is the same as the sign of the result

C: cleared if there is a carry from the most significant bit of the result

Description: Compares the source and destination operands and sets the condition codes,
which may then be used for arithmetic and logical conditional branches. Both
operands are unaffected. The only action is to set the condition codes. The com-
pare is customarily followed by a conditional branch instruction.

COM/COMB

Complement 0051DD

1051DD

15 06 05 00

0/1 0 0 1 0 1 0 0 1 D D D D D D

Type: SO

Operation: (dst) — ~ (dst)

7-27

Condition Codes: N: set if most significant bit of result = 0
Z: set if result = 0
V. cleared
C: set

Description: Replaces the contents of the destination address by their logical complements
(each bit equal to O set and each bit equal to 1 cleared).

DEC/DECB

Decrement 0053DD
1053DD

15 06 05 00

0/1 0 0 1 0 ! 0 1 1 D D D D D D

Type: SO

Operation: (dst) — (dst) — 1

Condition Codes: N: set if result < 0
Z: set if result = 0
V: set if (dst) was 100000
C: not affected

Description: Subtract 1 from the contents of the destination.

DIV

Divide 071RSS

15 09 08 06 05 00

0 1 1 0 0 1 R R R S S S S S S

Type: DO

Operation: R, RV IR, RV l/(src)

Condition Codes: N: set if quotient << 0

Z: set if quotient = 0

7-28

Description:

V: set if source = O or if the absolute value of the register is larger than the
absolute value of the instruction in the source. (In this case the instruction is
aborted because the quotient would exceed 15 bits.)

C: set if divide by 0 attempted

The 32-bit 2’s complement integer in R and R V 1is divided by the source oper-
and. The quotient is left in R; the remainder is of the same sign as the dividend.
R must be even.

EMT

Emulator trap 104000

08 07 00

[I] i] l l 1] i]] L

Type:

Operation:

Condition Codes:

MR.27%5

PC

_ (SP) — PS
— (SP) — PC
PC — (30)
PS — (32)

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: All operation codes from 104000 to 104377 are EMT instructions and may be
used to transmit information to the emulating routine (e.g., function to be per-
formed). The trap vector for EMT is at address 30. The new PC is taken from
the word at address 30; the new processor status (PS) is taken from the word at
address 32.

CAUTION
EMT is used frequently by DIGITAL system soft-
ware and is therefore not recommended for general
use.

HALT

000000

MR-2756

7-29

Type: MS

Condition Codes: N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description: Causes program execution to cease and enters console ODT. (If memory man-

agement is present, program execution ceases only if in kernel mode; a trap to
location 10 occurs if in user mode).

INC/INCB

Increment 0052DD
1052DD

15 06 05 00

01 0 0 1 0 1 0] 0 D D D

Type: SO

Operation: (dst) — (dst) + 1

Condition Codes: N: set if result << 0
Z: set if result = 0O
V: set if dst was 077777
C: not affected

Description: Adds 1 to the contents of the destination.

10T

1/0 trap 000004

15 00

0 0 0 0 0 0 0 0 0 0 0 0

Type: PC

Operation: — (SP) — PS
— (SP) — PC
PC — (20)
PS — (22)

7-30

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 20. Used to call the 1/0
executive routine 10X in the paper tape software system and for error reporting
in the disk operating system. No information is transmitted in the low byte.

JMP

Jump 0001DD

15 06 05 00

0 0 0 a 0 0 0 0 1 D D D D D D

| | |] 1 J i]] | |)\ o

Type: PC

Operation: PC — (dst)

Condition Codes:

Description:

N: unaffected

Z: unaffected
V: unaffected

C: unaffected

JMP provides more flexible program branching than provided with the branch
instruction. JMP is not limited to +177g and —200g words as are branch in-
structions. JMP does generate a second word, however, which makes it slower
than branch instructions. Control may be transferred to any location in memory
(no range limitation) and can be accomplished with the full flexibility of the ad-
dressing modes (with the exception of register mode 0). Execution of a jump
with mode 0 will cause an illegal instruction condition and a trap to location 4.
(Program control cannot be transferred to a register.) Register-deferred mode is
legal and will cause program control to be transferred to the address held in the
specified register.

NOTE
Instructions are word data and therefore must be
fetched from an even-numbered address.

7-31

JSR

Jump to subroutine 004RDD

Type:

Operation:

Condition Codes:

Description:

PC

(tmp) «— (dst) (tmp is an internal processor register) — (SP) — reg

(push reg contents onto processor stack)

reg — PC (PC holds location following JSR; this address now put in reg)

PC — (tmp) (PC now points to subroutine address)

N: unaffected

Z: unaffected
V: unaffected
C: unaffected

In execution of the JSR, the old contents of the specified register (the linkage
pointer) are automatically pushed onto the processor stack and new linkage in-
formation placed in the register. Thus, subroutines nested within subroutines to
any depth may all be called with the same linkage register. There is no need ei-
ther to plan the maximum depth at which any particular subroutine will be
called or to include instructions in each routine to save and restore the linkage
pointer. Further, since all linkages are saved in a reentrant manner on the proces-
sor stack, execution of a subroutine may be interrupted, and the same subroutine
reentered and executed by an interrupt service routine. Execution of the initial
subroutine can then be resumed when other requests are satisfied. This process

(called nesting) can proceed to any level.

JSR PC, dst is a special case of the subroutine call suitable for subroutine calls

that transmit parameters. JSR PC saves the use of an extra register.

In both JSR and JMP the address is used to load the program counter, R7. Thus,
for example, a JSR is destination mode 1 for general register R1 (where (R1) =
100) will access a subroutine at location 100. This is effectively one level less of
deferral than operate instructions such as ADD.

A JSR with mode 0 will result in an illegal instruction and a trap through the

trap vector address 4.

7-32

MARK

0064NN

Type:

Operation:

Condition Codes:

MR-2761

PC

SP — PC + 2 X NN
PC — R3S
R5 — (SP) +
nn = number of parameters

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description: Used as part of the standard subroutine return convention. MARK facilitates the
stack clean-up procedures involved in subroutine exit. Assembler format is:
MARK N

MFPD/MFPI

Move from previous data space 0065SS
Move from previous instruction space . 1065SS

15 06 05 00

0/1 0 0 1 1 0 1 0 1 S S S S S S

Type: MS

Operation: (tmp) — (src)

Condition Codes:

Description:

— (SP) — (temp)

N: set if the source << 0
Z: set if the source = 0
V: cleared
C: unaffected

Pushes a word onto the current stack from an address in the previous space. The
source address is computed using the current registers and memory map. Since
data space does not exist in the KDF11, MFPD executes in the same way as an
MFPI does.

7-33

MFPS

1067DD

Type:

Operation:

Condition Codes:

MR-2763

MS

(dst) — PS

dst lower 8 bits

N:setif PSbit 7 = |
Z:setif PS <0:7> =0

V: cleared
C: unaffected

Description: The 8-bit contents of the PS are moved to the effective destination. If destination
mode is 0, PS bit 7 is sign-extended through the upper byte of the register. The
destination operand is treated as a byte address.

The KDF11-BA implements the PS address 17777776, which can be used as an-
other method of accessing the PS. This method can be used on all PDP-11s ex-
cept previous LSI-11 processors.

MFPT

Move from processor type | 000007

15 00

0 ©o o ©0o o o0 0 o 0 0 0 0o 1 1 1
| | | l L | L 4 l 1 i i | | |

Type: MS

Operation: RO — 000003

Condition Codes:

Description:

N: unaffected

Z: unaffected
V: unaffected

C: unaffected

A unique number assigned to each PDP-11 processor model is loaded into gener-
al register RO. The KDFI11-BA processor number is 000003 and can be used to
indicate which processor a program is being executed on. LSI-11 and LSI1-11/2
processors treat this op code as a reserved instruction trap.

7-34

MOV/MOVB

Move 01SSDD
11SSDD

Type:

Operation:

Condition Codes:

Description:

DO

(dst) — (src)

N: set if (src) < 0
Z:setif (src) =0
V: cleared

C: not affected

Moves the source operand to the destination location. The previous contents of
the destination are lost. The source operand is not affected.

Byte: Same as MOV. The MOVB to a register (mode 0), which is unique among
byte instructions, extends the most significant bit of the low-order byte (sign ex-
tension) into the high byte of the selected register. Otherwise, MOVB operates
on bytes exactly as MOYV operates on words.

As a performance optimization, the last bus cycle of
a MOV (or MOVB) is a DATO (or DATOB).
Previous LSI-11 processors performed a DATIO
cycle for MOVB as a “don’t care” for hardware
minimization.

MTPD/MTPI

Move to previous data space
Move to previous instruction space

1066SS
0066SS

00

D

Type:

Operation:

Condition Codes:

MS

(temp) — (SP) +
(dst) — (temp)

. set if the source << 0
: set if the source = 0
. cleared
: unaffected O

<
N
 Z

MR-2765

Description: This instruction pops a word off the current stack determined by PS bits 15 and
14 and stores that word into an address in the previous space (PS bits 13 and 12).
The destination address is computed using the current registers and memory
map.

Since data space does not exist in the KDF11, MTPD executes in the same way
as MTPI does.

NOTE
As a performance optimization, the last bus cycle of
a MTPD and MTPI is a DATO. This instruction
was not implemented on previous LSI-11 processors.

MTPS

1064SS

Type:

Operation:

Condition Codes:

Description:

MRA-2786

-MS

PS — (SRC)

N: set according to effective src operand bits 0-3
Z: same
V: same
C: same

The eight bits of the effective operand replace the current low-byte contents of
the PS, if in kernel mode. Only PS bits 0 through 3 are affected if in user mode.
The source operand address is treated as a byte address. Note that PS bit 4 (T
bit) cannot be set with this instruction in either kernel or user mode. The src
operand remains unchanged.

The KDF11-BA implements the PS address 17777776, which can be used as an-
other method of accessing the PS. This method can be used on all PDP-11s ex-
cept previous LSI-11 processors.

MUL

Multiply 070RSS

MR.-2767

7-36

Type:

Operation:

Condition Codes:

DO

R, RV I~ R X (src)

N: set if product < 0
Z: set if product = 0
V: cleared

C: set if the result is less than —2!5 or greater than or equal to 215 — 1.

Description: The contents of the destination register and source taken as 2’s complement in-
tegers are multiplied and stored in the destination register and the succeeding
register, if R is even. If R is odd, only the low-order product is stored. Assembler
syntax 1s: MUL S, R. (Note that the actual destination is R, R V |, which reduc-

es to just R when R is odd.)

NEG/NEGB

Negate 0054DD
1054DD

15 06 05 00

0/1 0 0 1 0 1 1 0 D D D b D D D

Type: SO

Operation: (dst) — (dst)

Condition Codes: N: set if result < 0
Z: set if result = 0
V: set if result = 100000
C: cleared if result = 0

Description: Replaces the contents of the destination address by its 2’s complement. Note
that 100000 is replaced by itself.

RESET

000005

15 00

0 0 0 0 0 0 0 0 C 0 0 0 1 0 1

Type: MS

Operation: PC(SP)
PS(SP)

1-37

Condition Codes: : unaffected
: unaffected
: unaffected
: unaffected O

<
N
7
Z

Description: Causes bus signal BINIT L to be asserted for 10 us and then unasserted for 90
us. Used to initialize I/O devices attached to the bus. In addition, memory man-
agement status registers SRO and SR3 are cleared.

ROL/ROLB

Rotate left 0061DD

1061DD

15 06 05 00

01 0 0 1 1 0 0 0 1] D D D D D

1 l] 1 L I "] 1 1 |] A

Type:

Operation:

Condition Codes:

MR-2770

SO

(dst) — (dst)
rotate left one place

N: set if the high-order bit of the result word is set (result > 0)

Z: set if all bits of the result word = 0

V: loaded with the exclusive OR of the N bit and C bit (as set by the completion
of the rotate operation)

C: loaded with the high-order bit of the destination

Description: Rotates all bits of the destination left one place. The high-order bit is loaded into
the C bit of the status word and the previous contents of the C bit are loaded into
the low-order bit of the destination.

ROR/RORB

Rotate right 0060DD
1060DD

15 06 05 00

0/1 0 0 1 1 0 0 0 0 D D D D D D

Type: SO

Operation: (dst) — (dst)
rotate right one place

7-38

Condition Codes: N: set if high-order bit of the result is set
Z: set if all bits of result are 0
V: loaded with the exclusive OR of the N bit and the C bit as set by ROR
C: loaded with the low-order bit of the destination

Description: Rotates all bits of the destination right one place. The low-order bit is loaded into
the C bit and the previous contents of the C bit are loaded into the high-order bit
of the destination.

RTI

000002
15

00

0 0 0 0 0 0] 0 0 0 0 0 0 0 1 0

Type: MS

Operation: PC — (SP) +
PS — (SP) +

Condition Codes:

Description:

N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Used to exit from an interrupt or trap service routine. The PC and PS are restor- ed (popped from the processor stack). If the RTI sets the T bit in the PS, a trace trap will occur prior to executing the next instruction.

RTS

Return from subroutine
00020R

03 02 00

0 0 0 0 0 0 1 0 0 0 0 R R R

Type:

Operation:

condition Codc\s:

MR-2773

PC

PC — (reg)
(reg) — SP +

N1 unaffected

Z: unaffected
V: unaffected

C: unaffected

7-39

Description: Loads the contents of the register into the PC and pops the top element of the
processor stack into the specified register. Return from a nonreentrant sub-
routine is typically made through the same register that was used in its call.
Thus, a subroutine called with a JSR PC, dst exits with an RTS PC, and a sub-
routine called with a JSR RS, dst may pick up parameters with addressing
modes (R5)+, X(RS), or @X (R5) and finally exit, with an RTS RS5.

RTT

000006

Type:

Operation:

Condition Codes:

Description:

MR-2774

MS

PC — (SP) +
PS — (SP) +

N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Used to exit from a trace trap (T bit) service routine and executes in the same
way as the RTT instruction does, with one exception. If the RTT sets the T bit in
the PS, the next instruction will be executed and then the trace trap will be pro-
cessed. However, if an RTI sets the T bit in the PS, a trace trap will occur before
the next instruction is executed.

SBC/SBCB

Subtract carry 0056DD
1056DD

06 05 00

0 0 1 0 1 1 1 0 D D D D D D

Type:

Operation:

MR.-2775

SO

(dst) — (dst) — C

7-40

-

Condition Codes: N: set if result << 0
Z: set if result = 0
V:set if (dst) = 100000 and C = 1
C: cleared if (dst) = 0 and C = 1

Description: Subtract the contents of the C bit from the destination. This permits the carry
from the subtraction of the low-order words/bytes to be subtracted from the
high-order part of the result in order to perform double-precision subtraction.

SCC

Set all condition code bits 000277
15

00

0 0 0 0 0 0 0 1 0 1 1 1 1 1 1

Type: CC

Description: Sets and clears condition code bits. Selectable combinations of these bits may be
cleared or set together. Condition code bits corresponding to bits in the condition
code operator (bits 0-3) are modified according to the sense of bit 4, the
set/clear bit of the operator; i.e., the program sets the bit specified by bit 0, 1, 2,
or 3, if bit 4 is a 1. Clears corresponding bits if bit 4 = 0.

SEC

Set C
000261

15
00

0 0 0 0 0 0 0 1 0 1 1 0 0 D 1

Type: CC

Description: Sets and clears condition code bits. Selectable combinations of these bits may be
cleared or set together. Condition code bits corresponding to bits in the condition
code operator (bits 0-3) are modified according to the sense of bit 4, the
set/clear bit of the operator; i.e., the program sets the bit specified by bit 0, 1, 2,
or 3, 1f bit 4is a 1. Clears corresponding bits if bit 4 = 0.

SEN

Set N 000270

MR.-2778

7-41

Type: CC

Description: Sets and clears condition code bits. Selectable combinations of these bits may be
cleared or set together. Condition code bits corresponding to bits in the condition
code operator (bits 0-3) are modified according to the sense of bit 4, the
set/clear bit of the operator; i.e., the program sets the bit specified by bit 0, 1, 2,
or 3, 1f bit 4 is a 1. Clears corresponding bits if bit 4 = 0,

SEV

Set 'V 1000262

15 00

0 0 0 0 0 0 0 1 0 1 1 0 0 1 0

Type: CC

Description: Sets and clears condition code bits. Selectable combinations of these bits may be
cleared or set together. Condition code bits corresponding to bits in the condition
code operator (bits 0-3) are modified according to the sense of bit 4, the
set/clear bit of the operator; i.e., the program sets the bit specified by bit 0, 1, 2,
or 3, if bit 4 is a 1. Clears corresponding bits if bit 4 = 0.

SEZ

Set Z 000264

15 00

0 0 0 0 Q 0 0 1 0 1 1 0 1 0 0

Type: CC

Description: Sets and clears condition code bits. Selectable combinations of these bits may be
cleared or set together. Condition code bits corresponding to bits in the condition code operator (bits 0-3) are modified according to the sense of bit 4, the set/ cl-ear t)it of the operator; i.e., the program sets the bit specified by bit 0, 1, 2 or 3, if 4 is a 1. Clears corresponding bits if bit 4 — 0, o

7-42

SOB

Subtract one and branch if not equal to 0 077R00 + offset

09 08 06 05 00

1 1 1 1 i R R R OFFSET

4] | | i i) i) I |

Type:

Operation:

Condition Codes:

MR-2781

PC

R — R — 1:if this result does not = 0 then PC — PC — (2 X offset)

N: unaffected

Z: unaffected
V: unaffected

C: unaffected

Description: The register is decremented. If it is not equal to 0, twice the offset is subtracted
from the PC (now pointing to the following word). The offset is interpreted as a
6-bit positive number. This instruction provides a fast efficient method of loop
control. Assembler syntax is: SOB R, A where A is the address to which transfer
is to be made if the decremented R is not equal to 0. Note that the SOB instruc-
tion cannot be used to transfer control in the forward direction.

SUB

Subtract 16SSDD

15 12 11 06 05 00

1 1 0 S S S S S S D b D D D D

1 1 . . | i I i i] | L

Type: DO

Operation: (dst) — (dst) — (src)

Condition Codes:

Description:

N: set if result << 0

Z: setif result = 0

V: set if there 1s arithmetic overflow as a result of the operation, i.e., if the oper-
ands were of opposite signs and the sign of the source is the same as the sign
of the result

C: cleared if there is a carry from the most significant bit of the result

Subtracts the source operand from the destination operand and leaves the result
at the destination address. The original contents of the destination are lost. The
contents of the source are not affected. For double-precision arithmetic, the C
bit indicates a borrow when set.

7-43

SWAB

Swap byte 0003DD

15 06 05 00

0 0 0 0 0 0 0 1 1 D D D D O D

Type: SO

Operation: byte 1/byte 0

Condition Codes:

byte 0/byte 1

N: set if high-order bit of low-order byte (bit 7) of result is set

Z: set if low-order byte of result = 0

V: cleared

C: cleared

Description: Exchanges the high-order byte and low-order byte of the destination, which must
be a word address.

SXT

Sign extend 0067DD

15 06 05 00

0 0 0 1 1 0 1 1 1 D D D D D D

Type: SO

Operation: (dst) — O if N is clear

Condition Codes:

Description:

(dst) — — 1 if N bit is set

N: unaffected
Z: set if N bit clear

V: cleared
C: unaffected

[f the condition code bit N is set, a —1 is placed in the destination operand; if N

bit is clear, a 0 is placed in the destination operand. This instruction is particular-
ly useful in multiple-precision arithmetic because it permits the sign to be ex-
tended through multiple words.

7-44

NOTE
As a performance optimization, the last bus cycle of
a SXT is a DATO. Previous LSI-11 processors per-
formed a DATIO cycle for the last bus cycle as a
“don’t care” for hardware minimization.

TRAP

104400104777

15) 08 07 00

1 0 0 0 1 0 0 1

1 | 1 1 i | | 1 Il | | . 1 !

Type: PC

Operation: — (SP) — PS
— (SP) — PC
PC — (34)
PS — (36)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Operation codes from 104400 to 104777 are TRAP instructions. TRAPs and
EMTs are identical in operation, except that the trap vector for TRAP 1s at ad-
dress 34.

- NOTE
Since DIGITAL software makes frequent use of
EMT, the TRAP instruction is recommended for
general use.

TST/TSTB

Test 0057DD
— 1057DD

15 06 05 00

0/1 0 0 0 1 0 i 1 1 1 D D D D D D

Type: SO

Operation: (dst) — (dst)

7-45

Condition Codes: N: set if result < 0
Z: set if result = 0

V: cleared
C: cleared

Description: Sets the condition codes N and Z according to the contents of the destination
address.

WAIT

000001

15
00

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Type: MS

Operation:

Condition Codes: N: unaffected

Z: unaffected
V: unaffected

C: unaffected

Description: Provides a way for the processor to relinquish use of the bus while it waits for an
external interrupt. Having been given a WAIT command, the processor will not
compete for the instructions or operands from memory. This permits higher
transfer rates between device and memory since no processor-induced latencies
will be encountered by bus requests from the device. In WAIT, as in all instruc-
tions, the PC points to the next instruction following the WAIT operation. Thus,
when an interrupt causes the PC and PS to be pushed onto the stack, the address
of the next instruction following the WAIT is saved. The exit from the interrupt
routine (i.e., execution of an RTI instruction) will cause resumption of the inter-
rupted process at the instruction following the WAIT.

XOR

074RDD

08 06 05 00

Type:

Operation:

DO

(dst) — R V (dst)

MR.278B8

7-46

Condition Codes: N: set if the result < 0
Z: set if result = 0
V: cleared

C: unaffected

Description: The exclusive OR of the register and destination operand is stored in the destina-
tion address. The contents of the register are unaffected. Assembler format is:
XOR R, D.

7-47

CHAPTER 8
MEMORY MANAGEMENT

8.1 INTRODUCTION
The KDF11-BA processor implements a 2 megaword physical address space. The mapping or trans-
lation of 16-bit virtual addresses to 18- or 22-bit physical addresses is implemented in one 40-pin
MOS/LSI integrated circuit. This chip is designated the memory management unit (MMU). The
memory management functionality is software-compatible with other PDP-11 processors (e.g., PDP-
11/34, PDP-11/60 and PDP-11/70). Eight programmable relocation registers are used to accomplish
the mapping function. These registers are added to the 16-bit virtual address to form a 18- or 22-bit
physical address. The actual physical address transformation occurs transparently to an executing pro-
gram. The MMU chip also contains some of the floating-point registers in addition to the relocation
registers. |

8.1.1 Programming
The memory management hardware has been designed for a multiuser operating system environment.
The processor can operate in two modes (kernel and user) to provide memory relocation and protection
in a multiuser environment. When in kernel mode, software has complete control and can execute all
instructions. Monitors and supervisory programs are executed in this mode.

In a multiuser environment several user programs reside in memory at any given time. The kernel soft-
ware normally does the following.

1. Controls execution of the various user programs.

2. Allocates memory and peripheral device resources.

3. Safeguards the integrity of the system as a whole by careful control of each user program.

When in user mode, software 1s executed in a restricted environment and is prevented from executing
certain instructions that could be destructive to the entire software system. This restricted environment
prevents the following.

Modification of the kernel program.
Halting the computer.
[nitializing the system.
Using memory space assigned to the kernel or to other users. N

S

In a multiuser system the memory management unit assigns pages (relocatable memory segments) to 4
user’s program and prevents the user from making any unauthorized access to pages outside his/her
assigned areca. Thus, a user can effectively be prevented from accidental or willful destruction of any
other user’s program or of the system executive program.

Hardware-implemented features enable the operating system to dynamically allocate memory upon de-
mand while a program is being run.

8.1.2 Basic Addressing
The PDP-11 family word length 1s 16 bits; however, the extended LSI-11 bus and the KDF11-BA ad-
dressing logic are 22 bits wide. While a 16-bit word can generate up to 32K words (64K bytes) of vir-
tual address references, the CPU and extended LSI-11 bus can reference up to 2 megawords (4 me-
gabytes) of physical 22-bit addresses. The extra six bits of addressing logic provide the basic framework
for expanding memory references.

The uppermost 4K words of address space is reserved for 1/0O device registers. The 2 megawords of
physical address space that can be referenced with memory management consist of 2,093,056 words of
user memory and 4,096 words of 1/0O device registers.

8.1.3 Active Page Registers
The memory management unit uses two sets of eight 32-bit active page registers (APRs) (see Figure 8-
1). An APR is actually a pair of 16-bit registers: a page address register (PAR) and a page descriptor
register (PDR). These registers are always used as a pair and contain all the information needed to
describe and relocate the currently active memory pages.

One set of APRs is used in kernel mode, and the other in user mode. The set to be used is determined
by the current CPU mode (CM) contained in the processor status word, bits 15 and 14.

CM PM PROCESSOR STATUS WORD
1 1] 1 i] 1 1 !] i] 1

KERNEL (00) USER (11)

APR O APR 0

APR 1 APR 1

APR 2 APR 2 ACTIVE

APR 3 APR 3 PAGE

APR 4 APR 4 REGISTERS
APR 5 APR 5

APR 6 APR 6

APR 7 APR 7 PAR | PDR

-~ e

-7 ’A S
-~ ~

-~ / \ ~
-~ ~

-~ / \ ~
- ~

- / \ ~ o
[00 / \ 15 ~ L 00

PAR |- PDR

PAGE ADDRESS REGISTER PAGE DESCRIPTION REGISTER

MR-3648

Figure 8-1 Active Page Registers

8-2

8.1.4 Capabilities Provided by Memory Management

Memory Size (words) 2 megawords (minus 4K words for 1/O Page)

Address Space Virtual (16 bits)
Physical (18 or 22 bits)

Modes of Operation Kernel and user

Stack Pointers 2 (one for each mode)

Memory Relocation

Number of Pages 16 (8 for each mode)
Page Length 32 to 4,096 words

Memory Page Protection No access
Read-only
Read/write

8.2 MEMORY RELOCATION
When the memory management unit is operating, the normal 16-bit direct byte address is no longer
interpreted as a direct physical address (PA) but as a virtual address (VA) containing information to be
used in constructing a new 18- or 22-bit physical address. Information contained in the virtual address is
combined with relocation and description information contained in the active page register to yield an
18- or 22-bit physical address.

Because addresses are relocated automatically, the computer may be considered to be operating in vir-
tual address space. This means that regardless of where a program is loaded into physical memory, it
will not have to be relinked; it always appears to be at the same virtual location in memory.

The virtual address space is divided into eight 4K-word pages. Each page is relocated separately. This is
a useful feature in multiprogrammed timesharing systems. It permits a new large program to be loaded
into discontinuous blocks of physical memory.

A basic function of the memory management unit is to perform memory relocation and provide extend-
ed memory addressing capability for systems with more than 32K words of physical memory. Two sets
of page address registers are used to relocate virtual addresses to physical addresses in memory. These
sets are used as hardware relocation registers that permit several users’ programs, each starting at vir-
tual address O, to reside simultaneously in physical memory.

8.2.1 Program Relocation
The page address registers are used to determine the starting physical address of each relocated pro-
gram in physical memory. Figure 8-2 shows a simplified example of the relocation concept. Program A
starting address O is relocated by a constant to provide physical address 64005g.

If the next program virtual address is 2, the relocation constant will then cause physical address 64023
(the second item of program A) to be accessed. When program B is running, the relocation constant is
changed to 100000g. Then, program B virtual addresses starting at O are relocated to access physical
addresses starting at 100000g. Using the active page address registers to provide relocation eliminates
the need to relink a program each time it is loaded into a different physical memory location. The pro-
gram always appears to start at the same address.

8-3

(VA} =0

VIRTUAL
ADDRESS

RELOCATION

CONSTANT

A = 6400

B = 100000 PHYSICAL MEMORY

PHYSICAL ADDRESS

_'__/\._.N

e e

PROGRAM B
100000g

h--”fid_~_—/i

PROGRAM A

006400g

M

MR-3650

Figure 8-2 Memory Relocation, Simplified Block Diagram

A program is relocated in pages consisting of from 1 to 128 blocks. Each block is 32 words in length.
Thus, the maximum length of a page is 4096 (128 X 32) words. Using all the eight available active
page registers in a set, a maximum program length of 32,768 words can be accommodated. Each of the
eight pages can be relocated anywhere in physical memory, as long as each relocated page begins on a
boundary that is a multiple of 32 words. However, for pages smaller than 4K words, only the memory
actually allocated to the page may be accessed. Refer to the relocation example shown in Figure 8-3.

Figure 8-3 illustrates several points about memory relocation.

1.

VIRTUAL ADDRESS

RANGES

160000-177776

140000-157776

120000137776

100000-117776

060000077776

040000-057776

020000-037776

000000--017776

RELOCATION

CONSTANT

071500

000000

001000

000200

000600

002500

137200

004000

3-4

PHYSICAL MEMORY
SPACE

13720000-13737776

07150000—-07167776

00400000—-00417776

00250000--00267776

00100000—-00117776

00060000—-00077776

00020000—-00037776

00000000—-00017776

MR-5929

Figure 8-3 Relocation of a 32K-Word Program into 2 Megawords of Physical Memory

Although the program appears to the processor to be in contiguous address space, the 32K-
word physical address space is actually scattered through several separate areas of physical
memory. As long as the total available physical memory space is adequate, a program can be
loaded.

2. Pages may be relocated to physical addresses higher or lower in respect to their virtual ad-
dress ranges. In this example, page 1 is relocated to a higher range of physical addresses,
page 4 is relocated to a lower range.

3. All the pages shown in the example start on 32-word boundaries.

4. Each page is relocated independently. There is no reason why two or more pages could not be
relocated to the same physical memory space. Using more than one page address register in
the set to access the same space would be one way of providing different memory access
rights to the same data, depending on which part of the program was referencing that data.

8.2.2 Memory Units

Block 32 words

Page 1 to 128 blocks (32 to 4,096 words)

Number of pages 8 per mode

Size of relocatable memory 32,768 words, maximum (8 X 4,096)

8.3 MEMORY MANAGEMENT REGISTERS
The memory management unit uses two sets of page address registers (PARs) and page descriptor reg-
isters (PDRs) referred to as PAR/PDR pairs. One set of PAR/PDR register pairs is used in kernel
mode and the other set of register pairs in user mode. The choice of which set is to be used is deter-
mined by the current processor mode contained in processor status word (PS) bits <15:12>. The
MMU also contains four status registers (SRO through SR3) that implement various memory manage-
ment functions. The memory management register functions are described in the following paragraphs.

8.3.1 Page Address Register (PAR)
The page address register contains the 16-bit page address field (PAF), which specifies the starting
address of the page as a block number in physical memory. The page address register is shown in Figure
8-4.

15 00

L | L 1 1 i | - i 1 1 | A 1 H

MR-5930

Figure 8-4 Page Address Register

The page address register may be thought of as a relocation constant, or as a base register containing a
base address. Either interpretation indicates the basic function of the page address register (PAR) in
the relocation scheme.

8.3.2 Page Descriptor Register (PDR)

The page descriptor register is a 16-bit register that contains information relative to page expansion,
page length, and access control. The page descriptor register bit assignments are shown in Figure 8-5.

8-5

15 14 08 07 06 03 02 01 00

0 .~ . O] ~ D
NOTE: ALL UNIMPLEMENTED BITS READ AS ZEROS.

Figure 8-5 Page Descriptor Register

8.3.2.1 Access Control Field (ACF) - This 2-bit field (bits 2 and 1) of the PDR describes the access
rights to a particular page. The access codes or keys specify the manner in which a page may be ac-
cessed, and whether or not a given access should result in an abort of the current operation. A memory
reference that causes an abort is not completed and is terminated immediately.

Aborts are caused by attempts to access nonresident pages, by page-length errors, or by access viola-
tions, such as attempts to write into a read-only page. Traps are used as an aid in gathering memory
management information.

In the context of access control, the term “write” is used to indicate the action of any instruction that
modifies the contents of any addressable word. A write is synonymous with what is usually called a
“store” or “modify” in many computer systems. Table 8-1 lists the ACF keys and their functions. The
ACF is written into the PDR under program control.

Table 8-1 Access Control Field Keys

AFC Key Description Function

00 0 Nonresident Abort any attempt to access this
nonresident page.

01 2 Resident Abort any attempt to write
read-only into this page.

10 4 (Unused) Abort all accesses.

11 6 Resident Read or write allowed;
read /write No trap or abort occurs.

NOTE
A memory management abort causes the program to
trap to location 250g.

8.3.2.2 Expansion Direction (ED) - Bit 3 of the page description register (PDR) specifies in which
direction the page expands. If ED = 0, the page expands upward from block number O to include
blocks with higher addresses; if ED = 1, the page expands downward from block number 127 to in-
clude blocks with lower addresses. Upward expansion is usually used for program space while down-
ward expansion is used for stack space. An example of page expansion upward is shown in Figure 8-6.

When the expansion direction is downward (ED = 1), the page length is increased by the addition of
blocks with lower relative addresses. Downward expansion is specified for stack pages so that more
stack space can be added. An example of page expansion downward is shown in Figure 8-7.

8-6

PAR POR

ooo0o 001 111 000 o 0101001 0OO0O0CO0C O 110

\ v - \ v - W‘J

PAF =0170 j T {i

PLF =51g = 4119 = NUMBER OF BLOCKS

ED =0 = UPWARD EXPANSION

ACF = 6 = READ/WRITE

NOTE: To specify a biock length of 42 for an up-

ward expandable page, write highest authorized

block number directly into high byte of PDR. Bit

15 is not used because the highest allowable block

number is 177g.

7 BLOCK 1778/ W

/;é/ ;;;;47 ANY BLOCK NUMBER /BLOCK176
ADDRESS RANGE 8 % GREATER THAN 4141g(51g)

EXPANSION BY WILL CAUSE A PAGE

CHANGING THE PLF LENGTH ABORT.

///////
’ BLOCK 52g

{ . //J
024176

BLOCK 51g
024100

AUTHORIZE PAGE "//T

OR O THRU B1g = BLOCK 2
52g BLOCKS 017200

017176
BLOCK 1

017100

017176
BLOCK O

017000
! «— BASE ADDRESS OF PAGE

MR-3655

Figure 8-6 Example of an Upward-Expandable Page

8.3.2.3 Write Access Bit (W) (Bit 6) — This bit indicates whether or not this page has been modified

(1 e., written into) since either the PAR or PDR was loaded. (W = 1 is affirmative). The W bit is useful

in apphcatlons that involve disk swapping and memory overlays. It is used to determine which pages

have been modified (and hence must be saved in their new form) and which pages have not been modi-

fied and can simply be overlaid. Note that the W bit is “reset” to “0” whenever either PAR or PDR is

modified (written into).

8.3.2.4 Page Length Field (PLF) — The 7-bit PLF located in PDR <14:08> specifies the authorized
length of the page in 32-word blocks. The PLF holds block numbers from 0 to 177, thus allowing any
page length from 1 to 128)¢ blocks. The PLF is written into the PDR under program control.

8-7

e—ACTIVE PAGE REGISTER CONTENTS—
PAR PDR

000 001 111 000 ||£1010110 00001 110

—— N

PAF = 0170 —— ‘
PLF = 1268= 8610

ED= 1= DOWNWARD EXPANSION

TO SPECIFY PAGE LENGTH FOR A DOWNWARD EXPANDABLE PAGE
WRITE COMPLEMENT OF BLOCKS REQUIRED INTO HIGH BYTE OF PDR.

IN THIS EXAMPLE, A 42-BLOCK PAGE IS REQUIRED PLF IS DERIVED AS FOLLOWS;
4210 =52g: TWO'S COMPLEMENT = 1264

BLOCK 177g DOWNWARD
! 036776 FIRST BLOCK OF

036700 EXPANDABLE PAGE

036676
BLOCK 176g

036600

AUTHORIZED PAGE 036576
LENGTH = 4219 BLOCKS BLOCK 175g

036500

L
031676

BLOCK 126g
031600

7//////////////
?BLOCK 1248 /)

ADDRESS RANGE 2///////// 7] | AsLock numBE
REFERENCE LESS

OF POTENTIAL PAGE THAN 1268

EXPANSION BY (VA<12:06> LESS THAN 126g) CHANGING THE PLF /) WILL CAUSE A PAGE
7 //////; NGTH _ ,Z{/o/c/j?omm LENGTH ABORT

A

2 K 1 /////////

0 0190 7
/ L0000 011076 4

Yy 5 i 7 w35y I <«—— BASE ADDRESS OF PAGE

MR-6173

P drd /

Figure 8-7 Example of a Downward-Expandable Page

When the page expands upward, the PFL must be set to 1 less than the number of blocks authorized for
that page. For the example shown in Figure 8-6, since 525 (42) blocks are authorized, the PLF is set
to 51g (419). The hardware compares the virtual address block number (VA<<12:06>) with the PLF
to determine if the virtual address is within the authorized page length.

When VA<(12:06> is less than or equal to the PLF, the virtual address is within the authorized page
length. If VA <<12:06> is greater than the PLF, a page-length fault (address too high) is detected by
the hardware and an MMU abort occurs.

When the page is to be downward-expandable, the PLF must be set to 200g (12810) minus the length of
the page (in blocks). For the example shown in Figure 8-7, since 52 (421¢) blocks are authorized, the
PLF is set to 1265 (86¢).

8-8

When VA < 12:06> is greater than or equal to the PLF, the virtual address is within the authorized

page length. If VA< 12:06>> is less than the PLF, a page-length fault (address too low) is detected by

the hardware and an MMU abort occurs.

The downward-expandable example in Figure 8-7 uses the same PAF as the upward-expandable ex-

ample in Figure 8-6. This is so to emphasize that the base address points to the lowest possible address

of the 128 block page, whether the page is upward- or downward-expandable. As shown in Figure 8-7,

the base address may not even be within the authorized page length of a downward-expandable page.

8.3.3 PAR/PDR Address Assignments
Addresses are assigned to the kernel and user active page registers as PAR/PDR register pairs. The

PAR/PDR register addresses are listed in Table 8-2.

Table 8-2 PAR/PDR Address Assignments

Kernel Active Page Registers User Active Page Registers

No. PAR PDR No. PAR PDR

0 17772340 17772300 0 17777640 17777600
1 17772342 17772302 1 17777642 17777602

2 17772344 17772304 2 17777644 17777604

3 17772346 17772306 3 17777646 17777606
4 17772350 17772310 4 17777650 17777610
5 17772352 17772312 5 17777652 17777612
6 17772354 17772314 6 17777654 17777614
7 17772356 17772316 7 17777656 17777616

8.3.4 Status Register 0 (SR0) — Address: 177775723

SRO contains abort error flags, memory management enable, and other information essential for an

operating system to recover from an abort or to service a memory management trap. The format of SRO

is shown in Figure 8-8.

07 06 05 04 03 01 00

LENGTH ERROR

ABORT - READ ONLY
ACCESS VIOLATION

MODE

PAGE NUMBER

ENABLE MANAGEMENT

Figure 8-8 Format of Status Register 0 (SRO)

8-9

The enable management bit (SRO bit 0) is set and cleared under program control to enable and disable
memory management. The abort flag bits (SR0O<<15:13>>) can also be set and cleared under program
control, but they cause an MMU abort only when set automatically by an MMU abort condition. After
an MMU abort has occurred, the program must clear SRO<<15:13> in order to resume monitoring
memory management status.

The abort flags are in priority order in that flags to the right are less significant and should be ignored
when a more significant flag is asserted. For example, a nonresident abort service routine would ignore
the page-length bit (14) and read-only access viclation bit (13). A page-length abort service routine
would ignore the read-only access violation bit.

The mode bits (SR0O<<06:05>) and the page number bits (SR0<03:01>>) are loaded automatically
when an MMU abort occurs. The status of these bits is frozen whenever one of the abort flags
(SRO<<15:13>) is set. The SRO is cleared by the RESET instruction, power-up or restart.

8.3.4.1 Abort Nonresident — Bit <<15> is the abort nonresident bit. It is set by attempting to access a
page with an access control field (ACF) key equal to 0 or 4, or by enabling relocation with an illegal
mode in the PSW.

8.3.4.2 Abort Page Length - Bit <<14>> is the abort page-length bit. It is set by attempting to access a
location in a page with a block number (virtual address bits <<12:06>) that is outside the area author-
1zed by the page-length field (PLF) of the PDR for that page.

8.3.4.3 Abort Read-Only - Bit <<13> is the abort read-only bit. It is set by attempting to write-in a
read-only page. Read-only pages have an access control field (ACF) key of 2g.

NOTE
There are no restrictions against abort bits being set
simultaneously by the same access attempt.

8.3.4.4 Mode of Operation — Bits <<06:05> indicate the CPU mode (user or kernel) associated with
the page causing the abort. (Kernel = 00, user = 11.)

8.3.4.5 Page Number - Bits <<03:01> refer to the virtual page number that caused a memory man-
agement fault. Pages, like blocks, are numbered from O upward. The page number bits are used by the
error recovery routine to identify the page being accessed if an abort occurs.

8.3.4.6 [Enable Relocation and Protection — Bit <<0>> is the enable bit. When it is set to 1, all address-
es are relocated and protected by the memory management unit. When this bit is set to 0, the memory
management unit is disabled and addresses are neither relocated nor protected.

8.3.5 Status Register 1 (SR1) — Address: 17777574g
SR1 is a read-only register that always reads as zero.

8.3.6 Status Register 2 (SR2) — Address: 17777576g
SR2 is loaded with a 16-bit virtual address (VA) during each instruction fetch, but is not updated if the
instruction fetch fails. SR2 is read-only; a write attempt will not modify its contents. SR2 is the virtual
address program counter. The content of SR2 is frozen whenever one of the abort flags
(SRO<<15:13>) is set. The format of SR2 is shown in Figure 8-9.

8-10

16-BIT VIRTUAL ADDRESS

MA-3660

Figure 8-9 Format of Status Register 2 (SR2)

8.3.7 Status Register 3 (SR3) — Address: 177725165
SR3 bit <<4>> enables or disables the memory management 22-bit mapping. If memory management is
not enabled (SRO bit 0 is clear), bit 4 is ignored and the 16-bit address is not mapped. If memory man-
agement 1s enabled (SRO bit O is set) and bit 4 is clear, the computer uses 18-bit mapping. If memory
management is enabled and bit 4 is set, the computer uses 22-bit mapping.

SR3 bit <<5> is a read/write bit that has no effect on KDF11-BA operation. On systems that contain
an /O map (e.g., the PDP-11/24), bit 5 is set to enable 1/O map relocation and is cleared to disable
relocation. Status register 3 is cleared by the RESET instruction, power-up or restart. The format of
SR3 is shown in Figure 8-10.

MR-3661

Figure 8-10 Format of Status Register 3 (SR3)

8.4 VIRTUAL AND PHYSICAL ADDRESSES
The memory management unit is located between the central processor unit and the LSI-11 bus address
lines. When the memory management unit is operating, the normal 16-bit direct byte address is no long-
er interpreted as a direct physical address (PA) but as a virtual address (VA) containing information to
be used in constructing a new 18- or 22-bit physical address. The information contained in the virtual
address (VA) is combined with relocation information to yield an 18- or 22-bit physical address (PA).
Using the memory management unit, memory can be dynamically allocated in pages, each page com-
posed of from 1 to 128 integral blocks of 32 words.

The starting physical address of each page is an integral multiple of 32 words, and each page has a
maximum size of 4096 words. Pages may be located anywhere within the physical address space. The
current mode of the processor (kernel or user) determines which set of 16 PAR/PDR registers is used
to construct the physical address.

8.4.1 Construction of a Physical Address
The basic information needed for the construction of a physical address (PA) comes from the virtual
address (VA), which is illustrated in Figure 8-11, and the appropriate APR set.

APF DF

] i | L i] i]] l I l] i

ACTIVE PAGE FIELD DISPLACEMENT FIELD

MA-3656

Figure 8-11 Interpretation of a Virtual Address

The virtual address consists of the following.

1. The active page field (APF) — This 3-bit field determines which of eight active page registers
(APRO-APR7) will be used to form the physical address (PA).

The displacement field (DF) — This 13-bit field contains an address relative to the beginning
of a page. This permits page lengths of up to 4K words (213 = 8K bytes). The DF is divided
into two fields as shown in Figure 8-12.

BN DiB
I 1 1 | L i i 1 | | 1

BLOCK NUMBER DISPLACEMENT IN BLOCKS

MR-3657

Figure 8-12 Displacement Field of Virtual Address

The displacement field (DF) consists of the following.

1. The block number (BN) — This 7-bit field is interpreted as the block number within the cur-
rent page.

The displacement in block (DIB) — This 6-bit field contains the displacement within the
block referred to by the block number.

The remainder of the information needed to construct the physical address comes from the 12- or 16-bit
page address field (PAF) (contained in the active page register), specifying the starting address of the
memory that APR describes. The PAF is actually a block number in the physical memory; for example,
PAF = 3 indicates a starting address of 96 (3 X 32 = 96) in physical memory. The formation of the
physical address is illustrated in Figure 8-13.

The logical sequence involved in forming a physical address is as follows.

1. Select a set of active page registers. (Selection depends on the current mode specified by
PS<15:14>))

The active page field of the virtual address is used to select an active page register
(APRO-APR7).

The page address field of the selected APR contains the starting address of the currently
active page as a block number in physical memory.

8-12

B
Z
E
S

H
I
N

S
S
3
y
A
a
v

T
V
O
I
S
A
H
d

H
3
1
S
1
9
3
4

3
9
v
d

IAILDVY

S
S
3
H
A
A
Y

A
V
N
L
H
I
A

(
S
M
2
0
7
9

NI
L
N
I
N
I
D
V
I
4
S
i
a
)

S
S
I
P
P
V

[BOISAUJ
®

JO
uonjewao]

¢[-§
2In31]

!
|

1
|

|
{

|
I

1
|

|
|

!
|

'

gg
2

=
=
=

ON
2
0
7
8

1
V
D
I
S
A
H
d

_fi
50

90
q

4

T
|

]
]

|
T

T
T

T
!

|
T

1
T

Q1314
SS3YQAQAY

IOVd

00
bt

zl
Gl

,
)

,
~T

T
!

Y
T

|
T

T
!

_
T

T

91q
ON

2
0
1
8

4dV

S0
90

ZL
€l

Gl

8-13

The block number from the virtual address is added to the block number from the page ad-
dress field to yield the number of the block in physical memory that will contain the physical
address being constructed.

The displacement in blocks from the displacement field of the virtual address is joined to the
physical block number to yield a 22-bit physical address.

8.4.2 Determining the Program Physical Address
A 16-bit virtual address can specify up to 32K words, in the range of 000000 to 177776z (word bound-
aries are even numbers). The three most significant virtual address bits designate the PAR/PDR pair
to be referenced during page address relocation. Table 8-3 lists the virtual address ranges that specify
each of the PAR/PDR sets.

Table 8-3 Relating Virtual Address Ranges to PAR/PDR Sets

Virtual Address Range PAR/PDR Set

000000-17776
020000-37776
040000-57776
060000-77776
100000-117776
120000-137776
140000-157776
160000-177776 ~

t
O
N

DN

h
l
w
N
—
 O

NOTE
Any use of page lengths of less than 4K words
causes unaddressable “‘holes” in the virtual address

space.

8.5 PROTECTION

A timesharing system performs multiprogramming; that is, it allows several programs to reside in mem-
ory simultaneously, executing each sequentially. Access to these programs, and the memory space they
occupy, must be strictly defined and controlled. A timesharing system requires several types of memory
protection. - |

1.

3.

4.

User programs must not be allowed to expand beyond their allocated space unless authorized
to do so by the system.

Users must be prevented from modifying common subroutines and algorithms that are resi-
dent for all users.

Users must be prevented from gaining control of or modifying the operating system software.

Users must be prevented from accessing or modifying memory occupied by other users.

Memory management provides the hardware facilities to implement all the types of memory protection
listed above.

8-14

8.5.1 Inaccessible Memory
Each page has a 2-bit access control key associated with it. The key 1s part of the page descriptor regis-
ter (PDR). (The access control key functions are described in Table 8-1.) The key is assigned under
operating system control. When the key is set to O, the page is defined as nonresident. Any attempt by a
user program to access a nonresident page is prevented from doing so by an immediate abort. Using this
feature to provide memory protection, only those pages associated with the current program are set to
legal access keys. The access control keys of all other program pages are set to 0, which prevents illegal
memory references.

8.5.2 Read-Only Memory
The access control key for a page can be set to 2, which allows read (fetch) memory references to the
page but immediately halts any attempt to write into that page. This read-only type of memory pro-
tection can be afforded to pages that contain common data, subroutines, or shared algorithms. It also
allows the access rights to a given memory area to be user-dependent. That is, the access right to a
memory area may be varied for different users by altering the access control key.

A page address register in each of the sets (in kernel and user modes) may be set up to reference the
same physical page in memory, and each may be keyed for different access rights. For example, the
user access control key might be 2 (read-only access for user programs), and the kernel access control
key might be 4 (allowing complete read/write access for the operating system).

8.5.3 Multiple Address Space
Two complete PAR/PDR sets are provided: one for kernel mode and one for user mode. This affords
the operating system software another type of memory protection. The mode of operation is specified
by the processor status word’s current mode field, or previous mode field, as determined by the current
instruction. Each mode has its own corresponding stack pointer (R6) for protection as well as software
considerations.

A user mode program is relocated by its own PAR/PDR set, as is a kernel program. This makes it
impossible for a program running in one mode to reference space allocated to another mode acciden-
tally, when the active page registers are set correctly. For example, a user cannot transfer to kernel
space. The kernel mode address space may be reserved for resident system monitor functions, such as
the basic input/output control routines, memory management trap handlers, and timesharing sched-
uling modules. By dividing the types of timesharing system programs functionally between the kernel
and user modes, a minimum of space control housekeeping is required as the timeshared operating sys-
tem sequences from one user program to the next. For example, only the user PAR/PDR set needs to
be updated as each new user program is serviced. (The PAR and PDR register formats are shown in
Figures 8-4 and 8-5.)

8.5.3.1 Mode Specification in the Processor Status Word - PS<(15:14> specify the current memory
management mode. These bits are used to select the corresponding PAR/PDR set to be used for the
currently executing program. PS<13:12> specify the previous memory management mode. These bits
are used by the memory management instructions to communicate between kernel and user address
spaces. When an implicit mode change occurs, the previous mode bits (PS<13:12>) are loaded by
hardware with the contents of the current mode bits (PS<15:14>). This change can occur whenever
an interrupt or trap is processed. PS<15:12> are cleared when power is applied. Clearing these bits
selects kernel mode. PS<C15:12> are encoded as shown below.

8-15

PS<15:14>
or

PS<13:12> PAR/PDR Set Enabled Stack Pointer Selected

00 Kernel Kernel (KSP)

01 Reserved for future DIGITAL Supervisor (SSP);
use; specifies supervisor reserved for future
mode on some PDP-11s; does DIGITAL use.
not cause a halt.

10 Illegal; does not cause a Reserved for future
halt. DIGITAL use.

11 User USER (USP)

Each mode selects its own corresponding stack pointer. Thus, all program references to register R6 use
a different register as specified by PS<15:14>. Stack pointer selection occurs whether the MMU is
enabled or not (SRO bit 0 1s a 1). The different stack pointers are initialized by loading the appropriate
mode value in PS<(15:14>, and can be examined by console ODT.

8.5.3.2 Processor Status Word Protection — There are various software methods of affecting
PS <15:00>. Since kernel mode is defined to allow software access to all hardware features, free ac-
cess to the PS is allowed. Since user mode is defined for operating user programs, and thus, protecting
the operating system software, certain PS bits such as the mode and priority level fields are protected.
Table 8-4 shows how all PS bits are affected.

8.5.3.3 User Mode Restrictions — User mode is intended for executing user programs. In user mode
the program is restricted from using those hardware features that could disrupt system integrity. The
following hardware features are protected in user mode.

1. HALT instruction — Instead of entering console ODT, a HALT instruction causes a trap to
kernel location 10g. The intent is not to allow a user program to halt the operating system.

2. RESET instruction — Instead of causing a BUS initialize, a RESET instruction is executed
as an NOP instruction. The intent here is to prevent the user program from initializing 1/0
devices.

3. Access to PS<<03:00> only — All other PS bits are vital to system operations and cannot be
affected.

8.5.3.4 Interrupt and Trap Processing — All interrupt and trap vectors are forced by hardware to be
used always in kernel mode when the new PC and PS are fetched. The processor’s first step in process-
ing the interrupt or trap is to fetch the new PS value from the interrupt or trap location plus 2. This
determines which mode (and consequently, which stack pointer) to use for pushing the old PC and PS.
The KDF11-BA copies the old PS into a temporary register and then loads the new PS value.
PS<15:14> are loaded from the memory location to select the new current mode. PS<<13:12> (pre-
vious mode) are loaded with the old value in PS<<15:14>, to keep a record of what the previous mode
was. This is the only place where the PS previous mode bits copy the current mode bits.

331n0s
33IN0S

101594
101934

yoels
<
p
1
:
S
1
>
S
d

woJj
wodj

wodj
woJj

wod}
padueyoun

P
O

palea))
J|qQISSIIDBUON]

2]qISSIIIBUON
papeo]

papeoT]
papeo

|
papeo]

papeo]
u3LInD)

33INnos
32.Inos

<
t
[
-
S
1
>
S
d

<
v
1
-
S
1
>
S
d

AorIS
<
?
l
'
t
1
>
S
d

woJij
wouj

wodj
woJdj

wouj
pa3ueyou)

P
O

paJed|)
3|qQISSIIDBUON]

I[GISSADIIBUON
papeo]

papeo]
paido)

paido)
papeo]

SNOIAI]

33IN0S
33JNn0S

101924
1019934

b
AT

yoeys
woJj

woJj
WwoJdj

wolj
woij

wolj
<
8
>
S
d

paied[)
3[QISSAIOBUON

J[QISSIIIBUON]
papeo]

p
a
p
e
o

papeo]
p
a
p
e
o

papeo]
papeo]

1S

"3P020IDIW
10

‘$7
uonedo|

' L
A
O

01
dn

paiomod
uaym

paiea|)
351N0S

32IN0S
221N0S

101594
101024

yorls
<G

L
>
S
d

"deJis100q
01

dn
wolj

pagdueyoun
woi)

Wwoij
woJ)j

wolj
wotj

padueyosun
K
o
t
y

patomod
uaym

199
papeo]

papeo]
papeo]

papeo]
papeo]

papeo]
1dniinu|

J
0
1
9
3
2
A

J
0
1
2
2
3
A

J
o
e
l
s

¥
O
E
l
S

palead|)
p
a
g
u
e
y
o
u
n
)

p
a
d
u
e
y
o
d
u
n

p
a
g
u
e
y
s
u
n

p
a
g
u
e
y
o
u
n

wolj
wolj

wol)
wouj

<
p
>
S
d

papeo’]
papeoT]

papeo’]
papeo]

ng
der|

324N0S
921N0S

32Inos
321nN0S

101094
101234

3oerls
Joels

<
(
:
€
>
S
d

wodj
woaj

woJj
toa)

woJj
woJd}j

woJtj
woJj

apod
paied|)

papeo]
papeo]

papeoT]
papeo]

papeoT]
papeo]

p
a
p
e
o

papeor]
uonipuo))

[PuI3y
13s()

EJTEY
|

S
N

ELTRESY|
s

[PUIay
13s)

sng
Sd

dn-1amog
SdLIA

$S320Y
Sd

MdNdxy
sidnisdjuf

pue
sdea j,

L
L
Y

‘1LY

U01}32)01J
PIOAA

SMIBIS
1
0
§
0
1

-8
AIqeL

8-17

This process allows communication between mode address spaces using the memory management in-
structions. The remaining PS bits are loaded from the memory location. Thus, interrupt and trap ser-
vice routines can be executed in either kernel or user mode, depending on the contents of the vector
plus 2 locations.

8.6 MEMORY MANAGEMENT INSTRUCTIONS
Memory management provides communications between two spaces, as determined by the current
memory management mode bits (PS<15:14>) and previous memory management mode bits
(PS<<13:12>) of the processor status word (PS). The following instructions are directly applicable to
memory management.

Mnemonic Instruction Op Code

MFPI Move from previous instruction space 0065SS
MTPI Move to previous instruction space 0066DD
MFPD Move from previous data space 1065SS
MTPD Move to previous data space 1066DD

Refer to Chapter 7 for a more detailed description. These instructions are directly compatible with
larger PDP-11 computers.

CHAPTER 9
FLOATING-POINT ARITHMETIC

9.1 INTRODUCTION
Forty-six floating-point instructions are available as a microcode option (KEF11-AA) for use with the

- KDFI11-BA processor. The KEF11-AA is completely software-compatible with the FP11-A used on the
PDP-11/34, the FP11-E used on the PDP-11/60, and the FP11-C used on the PDP-11/70. Both single-
and double-precision floating-point capability are available with other features, including floating-to-
integer and integer-to-floating conversion.

The KEFI11-AA consists of two MOS/LSI chips contained in one 40-pin package. Operation of the
KEF11-AA requires the MMU chip, in addition to the base MOS/LSI chips, because all the floating-
point accumulators and status registers reside in the MMU.

9.2 FLOATING-POINT DATA FORMATS
Mathematically, a floating-point number may be defined as having the form (2 ** K) * f, where K is an
integer and f is a fraction. For a nonvanishing number, K and f are uniquely determined by imposing
the condition 1/2 f < 1. The fractional part (f) of the number is then said to be normalized. For the
number 0, f must be assigned the value 0, and the value of K is indeterminate.

The floating-point data formats are derived from this mathematical representation for floating-point
numbers. Two types of floating-point data are provided. In single-precision, or floating mode, the data is
32 bits long. In double-precision, or double mode, the data is 64 bits long. Sign magnitude notation is
used.

9.2.1 Nonvanishing Floating-Point Numbers
The fractional part (f) is assumed normalized, so that its most significant bit must be 1. This 1 is the
“hidden” bit: it is not stored explicitly in the data word, but the microcode restores it before carrying
out arithmetic operations. The floating and double modes reserve 23 and 55 bits, respectively, for f.
These bits, with the hidden bit, imply effective word lengths of 24 bits and 56 bits.

Eight bits are reserved for storage of the exponent K in excess 128 (200g) notation (i.e., as K + 200g),
giving a biased exponent. Thus, exponents from — 128 to 4127 could be represented by 0 to 3773, or 0
to 255;¢. For reasons given below, a biased exponent of O (the true exponent of —200g), is reserved for
floating-point 0. Therefore, exponents are restricted to the range —127 to + 127 inclusive (—177g to
+177g) or, in excess 200g notation, 1 to 3775.

The remaining bit of the floating-point word is the sign bit. The number is negative if the sign bitisa 1.

9.2.2 Floating-Point Zero
Because of the hidden bit, the fractional part is not available to distinguish between 0 and nonvanishing
numbers whose fractional part is exactly 1/2. Therefore, the FPP (floating-point processor) reserves a
biased exponent of O for this purpose, and any floating-point number with a biased exponent of 0 either
traps or is treated as if it were an exact 0 in arithmetic operations. An exact or “clean” 0 is represented
by a word whose bits are all 0s. A “dirty” 0 is a floating-point number with a biased exponent of 0 and a
nonzero fractional part. An arithmetic operation for which the resulting true exponent exceeds 2775 is
regarded as producing a floating overflow; if the true exponent is less than — 177, the operation is
regarded as producing a floating underflow. A biased exponent of 0 can thus arise from arithmetic
operations as a special case of overflow (true exponent = —200g). (Recall that only eight bits are re-
served for the biased exponent.) The fractional part of results obtained from such overflow and under-
flow is correct. |

9.2.3 The Undefined Variable
An undefined variable is any bit pattern with a sign bit of 1 and a biased exponent of 0. The term
“undefined variable” is used, for historical reasons, to indicate that these bit patterns are not assigned a
corresponding floating-point arithmetic value. Note that the undefined variable is frequently referred to
as —0 elsewhere in this chapter.

A design objective of the FPP was to assure that the undefined variable would not be stored as the
result of any floating-point operation in a program run with the overflow and underflow interrupts dis-
abled. This is achieved by storing an exact O on overflow and underflow, if the corresponding interrupt
is disabled. This feature, together with an ability to detect reference to the undefined variable (imple-
mented by the FIOV bit discussed later), is intended to provide the user with a debugging aid: if —0
occurs becomes present, it did not result from a previous floating-point arithmetic instruction.

9.2.4 Floating-Point Data

Floating-point data is stored in words of memory as illustrated in Figures 9-1 and 9-2.

The FPP provides for conversion of floating-point to integer format and vice-versa. The processor recog-
nizes single-precision integer (I) and double-precision integer long (L) numbers, which are stored in
standard 2’s complement form. (See Figure 9-3.)

F FORMAT, FLOATING POINT SINGLE PRECISION

15 00

+2 FRACTION <15:0>

| L 1 | l I | i] |]] i | L

15 14 07 06 00

MEMORY +0 S EXP FRACT <22:16>
] | | 1 L]] ; i i]]]

MR-3604

Figure 9-1 Single-Precision Format

9-2

D FORMAT, FLOATING POINT DOUBLE PRECISION

15 00

+6 FRACTION <15:0>

{ |] I 1 1 [L 3 1 1 1 | { |

15 00

+4 FRACTION <31:16>

] 1 { g |] L L L 1 1 i 1 i 1

15 00

+2 FRACTION <47:32>

1 1 | 1]] L | 1 1]] 4 1]

15 07 06 00

MEMORY +0 S EXP FRACT <54:48>

1] [1 1]] L 1 L] 1 1

S = SIGN OF FRACTION

EXP = EXPONENT IN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL
FOR NON-VANISHING NUMBERS.

FRACTION = 23 BITS IN F FORMAT, 55 BITS IN D FORMAT + ONE HIDDEN

BIT (NORMALIZATION). THE BINARY RADIX POINT IS TO THE LEFT.

MA-3605

Figure 9-2 Double-Precision Format

| FORMAT, INTEGER SINGLE PRECISION

15 14 00

S NUMBER <15:0>

1 1 i] i 3 1 I I] I L i 1

L FORMAT, DOUBLE PRECISION INTEGER LONG
15 14 00

MEMORY +0 | S NUMBER <30:16>
1 i 1] | | 1 i] L i i L i

15 00

+2 NUMBER <15:0>

] 1 1 1 : 1 1 i]] 1 1 1]] i

WHERE S = SIGN OF NUMBER

NUMBER = 15 BITS IN | FORMAT, 31 BITS IN L FORMAT.
MR-3606

Figure 9-3 2’s Complement Format

9.3 FLOATING-POINT STATUS REGISTER (FPS)
This register provides mode and interrupt control for the floating-point unit and conditions resulting
from the execution of the previous instruction. (See Figure 9-4.) In this discussion a set bit = 1 and a
reset bit = 0. Three bits of the FPS register control the modes of operation.

1. Single/Double — Floating-point numbers can be either single- or double-precision.

2. Long/Short — Integer numbers can be 16 bits or 32 bits.

3. Chop/Round — The result of a floating-point operation can be either “chopped” or “round-
ed.” The term “chop” is used instead of “truncate’ in order to avoid confusion with trunca-
tion of series used in approximations for function subroutines.

15 14 13 12 1110 09 08 07 06 05 04 03 02 01 00

7 V 7
FER | FID Fiov| FIv| Fiv | Fic | D | FL | FT PN | Frz | pv | Fe

%% 7
h 4

RESERVED RESERVED
MR-3607

Figure 9-4 Floating-Point Status Register

The FPS register contains an error flag and four condition codes (5 bits): carry, overflow, zero, and

negative, which are analogous to the processor status condition codes.

The FPP recognizes six floating-point exceptions:

Detection of the presence of the undefined variable in memory
Floating overflow
Floating underflow
Failure of floating-to-integer conversion
Attempt to divide by O
Illegal floating op code

For the first four of these exceptions, bits in the FPS register are available to individually enable and
disable interrupts. An interrupt on the occurrence of either of the last two exceptions can be disabled
only by setting a bit that disables interrupts on al/ six of the exceptions, as a group.

Of the 13 FPS bits, 5 are set by the FPP as part of the output of a floating-point instruction: the error
flag and condition codes. Any of the mode and interrupt control bits may be set by the user; the LDFPS
instruction is available for this purpose. These thirteen bits are stored in the FPS register as shown in
Figure 9-4. The FPS register bits are described in Table 9-1.

9.4 FLOATING EXCEPTION CODE AND ADDRESS REGISTERS
One interrupt vector is assigned to take care of all floating-point exceptions (location 244g). The six
possible errors are coded in the 4-bit floating exception code (FEC) register as follows.

Floating op-code error
Floating divide by 0
Floating-to-integer conversion error
Floating overflow
Floating underflow
Floating undefined variable [\

N
an
ii
e

o
o

N
LN

|0

p
—

p
—

Table 9-1 FPS Register Bits

Bit Name Description

15 Floating Error (FER) The FER bit is set by the FPP if:

1. division by zero occurs,

2. an illegal op code occurs,

3. any one of the remaining floating-point exceptions occurs
and the corresponding interrupt is enabled.

Note that the above action is independent of whether the FID
bit is set or clear.

Note also that the FPP never resets the FER bit. Once the
FER bit is set by the FPP, it can be cleared only by an
LDFPS instruction (note the RESET instruction does not
clear the FER bit). This means that the FER bit is up-to-date
only if the most recent floating-point instruction produced a
floating-point exception.

14 Interrupt Disable (FID) If the FID bt is set, all floating-point interrupts are disabled.

NOTE

1. The FID bit is primarily a maintenance feature. It should
normally be clear. In particular, it must be clear if one
wishes to assure that storage of —0 by the FPP is always
accompanied by an interrupt.

2. Throughout the rest of this chapter assume that the FID bit
is clear in all discussions involving overflow, underflow, oc-
currence of —0, and integer conversion errors.

13 Reserved for future DIGITAL use.

12 Reserved for future DIGITAL use.

11 Interrupt on Undefined An interrupt occurs if FIUV is set and a —0 is obtained from
Variable (FIUV) memory as an operand of ADD, SUB, MUL, DIV, CMP,

MOD, NEG, ABS, TST, or any LOAD instruction. The in-

terrupt occurs before execution on the KEF11-A except on
NEG, ABS, and TST for which it occurs after execution.

When FIUV is reset, —0 can be loaded and used in any FPP
operation. Note that the interrupt is not activated by the pres-
ence of —0 in an AC operand of an arithmetic instruction; in
particular, trap on —0 never occurs in mode 0.

The KEF11-AA will not store a result of —0 without the si-

multaneous occurrence of an interrupt.

9-5

Table 9-1 FPS Register Bits (Cont)

Bit Name Description

10 Interrupt on Under-
flow (FIU)

Interrupt on Overflow
(FIV)

Interrupt on Integer
Conversion Error (FIC)

Floating Double-
Precision Mode (FD)

Floating Long-
Integer Mode (FL)

When the FIU bit is set, floating underflow will cause an in-
terrupt. The fractional part of the result of the operation caus-
ing the interrupt will be correct. The biased exponent will be
too large by 400g, except for the special case of 0, which is
correct. An exception is discussed later in the detailed de-
scription of the LDEXP instruction.

If the FIU bit is reset and if underflow occurs, no interrupt
occurs and the result is set to exact O.

When the FIV bit is set, floating overflow will cause an inter-
rupt. The fractional part of the result of the operation causing
the overflow will be correct. The biased exponent will be too
small by 400s.

If the FIV is reset and overflow occurs, there is no interrupt.
The FPP returns exact O.

Special cases of overflow are discussed in the detailed de-
scriptions of the MOD and LDEXP instruction.

When the FIC bit is set and a conversion to integer instruc-
tion fails, an interrupt will occur. If the interrupt occurs, the
destination is set to 0, and all other registers are left un-
touched.

If the FIC bit is reset, the result of the operation will be the

same as detailed above, but no interrupt will occur.

The conversion instruction fails if it generates an integer with
more bits than can fit in the short or long integer word speci-
fied by the FL bit.

The FD bit determines the precision that is used for floating-
point calculations. When set, double-precision is assumed;
when reset, single-precision is used.

The FL bit is active in conversion between integer and float-
ing-point formats. When set, the integer format assumed is
double-precision, 2’s complement (i.e., 32 bits). When reset,
the integer format is assumed to be single-precision, 2’s com-
plement (i.e., 16 bits).

9-6

Table 9-1 FPS Register Bits (Cont)

Bit Name Description

5 Floating Chop Mode (FT) When the FT bit is set, the result of any arithmetic operation
is chopped (truncated). When reset, the result is rounded.

4 Reserved for future DIGITAL use.

3 Floating Negative (FN) FN is set if the result of the last operation was negative; oth-
erwise it is reset.

2 Floating Zero (FZ) FZ is set if the result of the last operation was 0; otherwise it
is reset.

] Floating Overflow (FV) FV 1s set if the last operation resulted in an exponent over-
flow; otherwise it is reset.

0 Floating Carry (FC) FC is set 1f the last operation resulted in a carry of the most
significant bit. This can only occur in floating or double-to-
integer conversions.

The address of the instruction producing the exception is stored in the floating exception address (FEA)
register. The FEC and FEA registers are updated only when one of the following occurs.

Division by 0.
Illegal op code.

Any of the other four exceptions with the corresponding interrupt enabled.

This implies that only when the FER bit is set by the FPP are the FEC and FEA registers updated.

NOTE
1. If one of the last four exceptions occurs with the

corresponding interrupt disabled, the FEC and
FEA are not updated.

. If an exception occurs, inhibition of interrupts
by the FID bit does not inhibit updating of the
FEC and FEA.

. The FEC and FEA are not updated if no excep-
tion occurs. This means that the STST (store
status) instruction will return current informa-
tion only if the most recent floating-point in-
struction produced an exception.

. Unlike the FPS, no instructions are provided for
storage into the FEC and FEA registers.

9-7

9.5 FLOATING-POINT PROCESSOR INSTRUCTION ADDRESSING
Floating-point processor instructions use the same type of addressing as the central processor instruc-
tions. A source or destination operand is specified by designating one of eight addressing modes and one
of eight central processor general registers to be used in the specified mode. The modes of addressing
are the same as those of the central processor, except in mode 0. In mode 0 the operand is located in the
designated floating-point processor accumulator rather than in a central processor general register. The
modes of addressing are as follows.

0 = FPP accumulator

1 = Deferred
2 = Autoincrement

3 = Autoincrement-deferred
4 = Autodecrement
5 = Autodecrement-deferred
6 = Indexed
7 = Indexed-deferred

Autoincrement and autodecrement operate on increments and decrements of 4g for F format and 10g
for D format.

In mode O users can make use of all six FPP accumulators (ACO-ACS5) as their source or destination.
Specifying FPP accumulators AC6 or AC7 will result in an illegal op code trap. In all other modes,
which involve transfer of data to or from memory or the general registers, users are restricted to the
first four FPP accumulators (AC0-AC3). When reading or writing a floating-point number from or to
memory, the low memory word contains the most significant word of the floating-point number, and the
high memory word the least significant word.

9.6 ACCURACY
General comments on the accuracy of the FPP are presented here. The descriptions of the individual
instructions include the accuracy at which they operate. An instruction or operation is regarded as
“exact” if the result is identical to an infinite precision calculation involving the same operands. The a
priori accuracy of the operands is thus ignored. All arithmetic instructions treat an operand whose
biased exponent is 0 as an exact O (unless FIUV is enabled and the operand is —0, in which case an
interrupt occurs). For all arithmetic operations, except DIV, a 0 operand implies that the instruction is
exact. The same statement holds for DIV if the 0 operand is the dividend. But if it is the divisor, divi-
sion is undefined and an interrupt occurs.

For nonvanishing floating-point operands, the fractional part is binary normalized. It contains 24 bits or
56 bits for floating mode and double mode, respectively. For ADD, SUB, MUL, and DIV, two guard
bits are necessary and sufficient for the general case to guarantee return of a chopped or rounded result
identical to the corresponding infinite precision operation chopped or rounded to the specified word
length. Thus, with two guard bits, a chopped result has an error bound of one least significant bit
(LSB); a rounded result has an error bound of 1/2 LSB. These error bounds are realized by the KEF11-
AA of all instructions. Both the FP11-A and the FP11-E have an error bound greater than I /2 LSB for
ADD and SUB.

In the rest of this chapter, an arithmetic result is called exact if no nonvanishing bits would be lost by
chopping. The first bit lost in chopping is referred to as the “rounding” bit. The value of a rounded
result is related to the chopped result as follows.

9-8

1. If the rounding bit is 1, the rounded result is the chopped result incremented by an LSB.

2. If the rounding bit is 0, the rounded and chopped results are identical.

It follows that:

1. If the result is exact: rounded value = chopped value = exact value.

2. If the result is not exact, its magnitude is:

a. always decreased by chopping.
b. decreased by rounding if the rounding bit 1s O.
c. increased by rounding if the rounding bit is 1.

Occurrence of floating-point overflow and underflow is an error condition: the result of the calculation

cannot be correctly stored because the exponent is too large to fit into the eight bits reserved for it.

However, the internal hardware has produced the correct answer. For the case of underflow, replace-

ment of the correct answer by 0 is a reasonable resolution of the problem for many applications. This is

done by the KEF11-A if the underflow interrupt is disabled. The error incurred by this action 1s an

absolute rather than a relative error; it is bounded (in absolute value) by 2 ** (—128). There is no such

simple resolution for the case of overflow. The action taken, if the overflow interrupt is disabled, is

described under FIV (bit 9) in Table 9-1.

The FIV and FIU bits (of the floating-point status word) provide users with an opportunity to imple-

ment their own correction of an overflow or underflow condition. If such a condition occurs and the

corresponding interrupt is enabled, the microcode stores the fractional part and the low eight bits of the
biased exponent. The interrupt will take place and users can identify the cause by examination of the

FV (floating overflow) bit of the FEC (floating exception) register. You can readily verify that (for the

standard arithmetic operations ADD, SUB, MUL, and DIV) the biased exponent returned by the in-
struction bears the following relation to the correct exponent generated by the microcode.

1. On overflow, it is too small by 400g.

2. On underflow, if the biased exponent is 0, it is correct. If the biased exponent is not 0, 1t 1s too

large by 400g.

Thus, with the interrupt enable, enough information is available to determine the correct answer. Users

may, for example, rescale their variables (via STEXP and LDEXP) to continue a calculation. Note that

the accuracy of the fractional part is unaffected by the occurrence of underflow or overflow.

9.7 FLOATING-POINT INSTRUCTIONS
Each instruction that references a floating-point number can operate on either single- or double-preci-

sion numbers, depending on the state of the FD mode bit. Similarly, there is a mode bit FL that deter-

mines whether a 32-bit integer (FL = 1) or a 16-bit integer (FL = 0) is used in conversion between

integer and floating-point representations. FSRC and FDST operands use floating-point addressing

modes (see Figure 9-5); SRC and DST operands use CPU addressing modes.

9-9

DOUBLE'OPERAND ADDRESSING

05 00

FSRC,FDST,SRC,DST
| i)\] |

SINGLE-OPERAND ADDRESSING

15 12 11 06 05 00

0ocC
1 1 | | |] |

FSRC, FDST, SRC, DST
i] i] 1

OC = OPCODE =17

FOC = FLOATING OPCODE

AC = FLOATING POINT ACCUMULATOR (ACQ-AC3)

FSRC AND FDST USE FPP ADDRESSING MODES

SPC AND DST USE CPU ADDRESSING MODES

MRA-3608

Figure 9-5 Floating-Point Addressing Modes

Terms Used in Instruction Definitions

XL =largest fraction that can be represented:

] — 2 ** (—24), FD = 0; single-precision

] — 2 **(—-56), FD = 1; double-precision

XLL =smallest number that is not identically zero

2 ¥* (—128)—(2 ** (—127)) * 1/2

XUL =largest number that can be represented =

2% (127) * XL

JL =largest integer that can be represented:

2 ** (15) — 1; FL = 0; short integer
2 ** (31) — 1; FL = 1; long integer

ABS (address) = absolute value of (address)

EXP (address) = biased exponent of (address)

.LT. =*less than”

.LE. ="*‘less than or equal to”

.GT. =*“greater than”

.GE. =*“greater than or equal to”

LSB =least significant bit

9-10

Boolean Symbols

N = AND

V = inclusive OR

V¥ = exclusive OR

~ = NOT

ABSF/ABSD

Make absolute floating/double 1706 FDST

15 12 1i 06 05 00

1 1 1 1 0 0 0 1 1 0 FDST

Format: ABSF FDST

Operation: If (FDST) < 0, (FDST) — —(FDST).

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

If EXP(FDST) = 0, (FDST) — exact 0.

For all other cases, (FDST) — (FDST).

FC —0
FV — 0
FZ — 1 if (FDST) = 0, ¢else FZ — 0
FN — 0

Set the contents of FDST to its absolute value.

If FIUV is enabled, trap on —0 occurs after execution. Overflow and underflow

cannot occur.

These instructions are exact.

If a —0 1s present in memory and the FIUV bit is enabled, an exact 0 is stored in
memory. The condition codes reflect an exact 0 (FZ — 1).

ADDF/ADDD

Add floating/double

15

172(AC)FSRC

12 11 08 07 06 05 00

MR-3611

Format;:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

ADDF FSRC,AC

Let SUM = (AC) + (FSRCQC)

If underflow occurs and FIU is not enabled, AC — exact 0.

If overflow occurs and FIV is not enabled, AC — exact 0.

For all others cases, AC — SUM.

FC — 0
FV — 1 if overflow occurs, else FV — 0

FZ — 11f (AC) = 0,¢lse FZ — 0
FN — 11f (AC) < 0, else FN — 0

Add the contents of FSRC to the contents of AC. The addition is carried out in
single- or double-precision and is rounded or chopped in accordance with the val-
ues of the FD and FT bits in the FPS register. The result is stored in AC except
for:

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact O is stored in AC.

If FIUV is enabled, trap on —0 in FSRC occurs before execution. If overflow or

underflow occurs, and if the corresponding interrupt is enabled, the trap occurs
with the faulty result in AC. The fractional parts are correctly stored. The expo-
nent part is too small by 400g for overflow. It is too large by 400g for underflow,
except for the special case of 0, which is correct.

Errors due to overflow and underflow are described above. If neither occurs, then:
for oppositely signed operands with exponent difference of O or 1, the answer re-
turned 1s exact if a loss of significance of one or more bits can occur. Note that
these are the only cases for which loss of significance of more than one bit can
occur. For all other cases the result is inexact with error bounds of:

1. LSB in chopping mode with either single- or double-precision.
2. 1/2 LSB in rounding mode with either single- or double-precision.

The undefined variable —0 can occur only in conjunction with overflow or under-
flow. It will be stored in AC only if the corresponding interrupt is enabled.

CFCC

Copy floating condition codes 170000

9-12

Format: CFCC

Operation: C —FC
V — FV
Z — FZ
N — FN

Description: Copy the FPP condition codes into the CPU’s condition codes.

CLRF/CLRD

Clear floating /double 1704 FDST

15 12 11 06 05 00

1 1 1 1 0 0 0 1 0 0 FDST

Format: CLRF FDST

Operation: (FDST) «— exact 0

Condition Codes: FC — 0
FV — 0
FZ — 1
FN <0

Description: Set FDST to 0. Set FZ condition code and clear other condition code bits.

Interrupts: No interrupts will occur. Overflow and underflow cannot occur.

Accuracy: These instructions are exact.

CMPF/CMPD

Compare floating/double 173(AC+4)FSRC

15 12 11 08 0?7 06 05 00

1 1 1 1 0 1 1 1 AC FSRC

| |] 1 1 1 | —l | —l R | —

Format: CMPF FSRC,AC

Operation: (FSRC) «— (AC)

Condition Codes: FC —~ 0
FV —0

FZ — 1 if (FSRC) = 0, else FZ — 0
FN — 1 if (FSRC) < 0, else FN «— 0

9-13

Description:

Interrupts:

Accuracy:

Special Comment:

Compare the contents of FSRC with the accumulator. Set the appropriate float-
ing-point condition codes. FSRC and the accumulator are left unchanged except
as noted below.

If FIUV is enabled, trap on —0 occurs before execution.

These instructions are exact.

An operand that has a biased exponent of O is treated as if it were an exact 0. In
this case, where both operands are 0, the FPP will store an exact 0 in AC.

DIVF/DIVD

Divide floating/double 174(AC+4)FSRC

15 1211 08 07 06 05 | 00

111 vooo 0 AC ., FsRe

Format: DIVF FSRC,AC

Operation: If EXP(FSRC) = 0, (AC) — (AC) and the instruction is aborted.

Condition Codes:

Description:

If EXP(AC) = 0, (AC) — exact 0.

For all other cases, let QUOT = (AC)/(FSRCQC).

If underflow occurs and FIU is not enabled, AC — exact 0.

If overflow occurs and FIV is not enabled, AC — exact 0.

For all others cases, AC — QUOT.

FC «— 0
FV — 1 if overflow occurs, else FV — 0

FZ — 1 if (AC) = 0, else FZ — 0
FN — 1if (AC) < 0, else FN — 0

If either operand has a biased exponent of 0, it is treated as an exact 0. For FSRC
this would imply division by 0; in this case the instruction is aborted, the FEC
register is set to 4, and an interrupt occurs. Otherwise, the quotient is developed to
single- or double-precision with two guard bits for correct rounding. The quotient
is rounded or chopped in accordance with the values of the FD and FT bits in the
FPS register. The result is stored in the AC except for:

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact O is stored in AC.

9-14

e

0

Interrupts:

Accuracy:

Special Comment:

If FIUV is enabled, trap on —0 in FSRC occurs before execution. If (FSRC) =
0, interrupt traps on an attempt to divide by 0. If overflow or underflow occurs,
and if the corresponding interrupt is enabled, the trap occurs with the faulty result
in AC. The fractional parts are correctly stored. The exponent part is too small by
400g for overflow. It is too large by 400g for underflow, except for the special case
of 0, which is correct.

Errors due to overflow and underflow are described above. If none of these occurs,
the error in the quotient will be bounded by 1 LSB in chopping mode and by 1 /2
LSB in rounding mode.

The undefined variable —O0 can occur only in conjunction with overflow or under-
flow. It will be stored in AC only if the corresponding interrupt is enabled.

LDCDF/LDCFD

Load and convert from double-to-floating
and from floating-to-double 177(AC+4)FSRC

15 12 1N 08 07 06 05 00

1 1 1 1 1 1 1 1 AC | FSRC

Format:

Operation:

Condition Codes:

Description:

Interrupts:

MR-3618

LDCDF FSRC,AC

If EXP(FSRC) = 0, AC — exact 0.

If FD = 1, FT = 0, FIV = 0 and rounding causes overflow, AC — exact 0.

In all other cases, AC — Cxy(FSRC), where Cxy specifies conversion from float-
ing mode x to floating mode y.

= D,y = F if FD = 0 (single) LDCDF
= F,y = D if FD = 1 (double) LDCFD

FV — 1 if conversion produces overflow, else FV — 0
FZ — 1if (AC) =0, else FZ — 0
FN — 1 if (AC) < 0, else FN «— 0

" If the current mode is floating mode (FD = 0), the source is assumed to be a
double-precision number and is converted to single-precision. If the floating chop
bit (FT) is set, the number is chopped,; otherwise, the number is rounded.

If the current mode is double mode (FD = 1), the source is assumed to be a
single-precision number and is loaded left-justified in AC. The lower half of AC is
cleared.

If FIUV is enabled, trap on —0 occurs before execution. However, the condition
codes will reflect a fetch of —O0 regardless of the FIUV bit. Overflow cannot oc-
cur for LDCFD.

9-15

A trap occurs if FIV is enabled, and if rounding with LDCDF causes overflow.
AC — overflowed result. This result must be +0 or — 0. Underflow cannot occur.

Accuracy: LDCEFD is an exact instruction. Except for overflow, described above, LDCDF
incurs an error bounded by 1 LSB in chopping mode and by 1/2 LSB in rounding
mode.

LDCIF/LDCID/LDCLF/LDCLD

Load and convert integer or long integer
to floating or double-precision 177(AC)SRC

15 12 i1 08 07 06 05 00

1 1 1 1 1 1 1 0 AC SRC

Format: LDCIF SRC,AC

Operation: AC — Cjx(SRC), where Cjx specifies conversion from integer mode j to floating
mode vy.

j=I1ifFL =0,j=Lif FL = 1
x =Fif FD=0,x = Dif FD = 1

Condition Codes: FC — 0

FV —0
FZ — 11f (AC) = 0, else FZ — O
FN — 11if (Ac) << 0, else FN — 0

Description: Conversion is performed on the contents of SRC from a 2’s complement integer
with precision j to a floating-point number of precision x. Note that j and x are
determined by the state of the mode bits FL and FD.

If a 32-bit integer is specified (L mode) and (SRC) has an addressing mode of O or
immediate addressing mode is specified, the 16 bits of the source register are left-
justified and the remaining 16 bits loaded with Os before conversion.

In the case of LDCLF, the fractional part of the floating-point representation is
chopped or rounded to 24 bits for FT = 1 or 0, respectively.

L

Interrupts: None; SRC is not floating-point, so trap on —0 cannot occur.

Accuracy: LDCIF, LDCID, and LDCLD are exact instructions. The error incurred by
LDCLF is bounded by 1 LSB in chopping mode and by 1/2 LSB in rounding
mode.

9-16

LDEXP

Load exponent 176(AC+4)SRC

15 12 11 08 07 06 05 | 00

1 1 1 1 1 i 0 i AC SRC

Format: LDEXP SRC,AR

Operation: NOTE: 177 and 200, appearing below, are octal numbers.

If —200 << SRC < 200, EXP(AC) — SRC + 200 and the rest of AC is un-
changed.

If (SRC) > 177 and FIV is enabled, EXP(AC) — [(SRC) + 200]<7:0>.

If (SRC) > 177 and FIV is disabled, AC — exact 0.

If <SRC) << —177 and FIU is enabled, EXP(AC) — [(SRC) + 200]<7:0>.

If (SRC) << —177 and FIU i1s disabled, AC — exact O.

Condition Codes: FC — 0
FV — 11f (SRC) > 177, else FV — 0
FZ — 1 1f (AC) = 0, else FZ — 0
FN — 1 1f (AC) < 0, else FN «— 0

Description: Change AC so that its unbiased exponent = (SRC). That is, convert (SRC) from
2’s complement to excess 200 notation and insert it into the EXP field of AC. This
is a meaningful operation only if ABS(SRC) LE 177.

If SRC > 177, tue result 1s treated as overflow. If SRC << —177, the result is

treated as underflow. Note that the KEF11-A does not treat these abnormal con-
ditions the same as the FP11-C and FP11-B do, but it does treat them the same as

the FP11-A and FP11-E do.

Interrupts: No trap on —0 in AC occurs, even if FIUV is enabled. If SRC > 177 and FIV is
enabled, trap on overflow will occur. If SRC < — 177 and FIU is enabled, trap on
underflow will occur.

Accuracy: Errors due to overflow and underflow are described above. If EXP(AC) = 0 and
(SRC) # —200, AC changes from a floating-point number treated as 0 by all
floating arithmetic operations to a non-0 number. This happens because the in-
sertion of the “hidden” bit in the microcode implementation of arithmetic instruc-
tions is triggered by a nonvanishing value of EXP.

For all other cases, LDEXP implements exactly the transformation of a floating-
point number (2 ** K) * f into (2 ** (SRC)) * f where 1/2 .LE. ABS(f) .LT. 1.

9-17

LDF/LDD

Load floating/double 172(AC+4)FSRC

15 12 1 08 07 06 05 00

1 1 1 1 0 1 0 1 AC FSRC

Format: LDF FSRC,AC

Operation: AC — (FSRC)

Condition Codes: FC « 0
FV — 0
FZ — 1if (AC) = 0,else FZ — 0
FN — 11if (AC) < 0, else FN — 0

Description: Load single- or double-precision number into AC.

Interrupts: If FIUV is enabled, trap on —0 occurs before AC is loaded. However, the condi-
tion codes will reflect a fetch of —0 regardless of the FIUV bit. Overflow and
underflow cannot occur.

Accuracy: These instructions are exact.

Special Comment: These instructions permit use of —0 in a subsequent floating-point instruction if
FIUV is not enabled and (FSRC) = —0.

LDFPS

Load FPP’s program status 1701 SRC

15 12 1 06 05 00

1 1 1 | 1] 1 0 1 0 1 0 | 0 1 0 1 1 1 | STC ‘ 1

Format: LDFPS SRC

Operation: FPS — (SRO)

Description: Load FPP’s status register from SRC.

Special Comment: Users are cautioned not to use bits 13, 12, and 4 for their own purposes, since
these bits are not recoverable by the STFPS instruction.

9-18

MODF/MODD

Multiply and separate integer
and fraction floating/double 171(AC+4)FSRC

15 12 1 08 07 06 05 00

1 1 1 1 0 0 1 1 AC FSRC

Format: MODF FSRCAC

Description
and Operation; This instruction generates the product of its two floating-point operands, separates

the product into integer and fractional parts, and then stores one or both parts as
floating-point numbers.

Let PROD = (AC) * (FSRC) so that in

Floating-point: ABS(PROD) = (2 ** K) * f, where

1/2 .LE. f .LT. 1, and
EXP(PROD) = (200 + K)g

Fixed-point binary: PROD = N + g, where

N = INT(PROD) = integer part of PROD, and

g = PROD — INT(PROD) = fractional part of
PROD with 0 .LE. F .LT. 1.

Both N and f have the same sign as PROD. They are returned as follows:

If AC is an even-numbered accumulator (0 or 2), N is stored in AC+1 (1 or
3), and f is stored in AC.

If AC is an odd-numbered accumulator, N is not stored and g is stored in AC.

The two statements above can be combined as follows:

N is returned to AC V 1 and g is returned to AC.

Five special cases occur, as indicated in the following formal description with L =
24 for floating mode and L = 56 for double mode.

1. If PROD overflows and FIV is enabled, AC VV 1 — N, chopped to L bits, AC
— exact 0.

Note that EXP(IN) is too small by 400g and that —O0 can be stored in AC V 1.

If FIV is not enabled, AC VV 1 « exact 0, AC — exact 0, and —O0 will never

be stored.

9-19

Condition Codes:

Interrupts:

Accuracy:

Applications:

2. If 2 ** L .LE. ABS(PROD) and no overflow, ACV 1 — N, chopped to L
bits, AC — exact 0.

The sign and EXP of N are correct, but low-order bit information, such as
parity, is lost.

If 1 .LE. ABS(PROD) .LT.2 ** L, AC V 1 — N, AC — g.

The integer part N is exact. The fractional part g is normalized, and chopped
or rounded in accordance with FT. Rounding may cause a return of * unity
for the fractional part. For L = 24, the error in g is bounded by 1 LSB in
chopping mode and by 1/2 LSB in rounding mode. For L = 56, the error in g
increases from the above limits as ABS(N) increases above 8 because only 64
bits of PROD are generated.

If 2**p.LE. ABS(N) .LT. 2 ** (p + 1), with p > 7, the low order p — 7 bits
of g may be in error.

If ABS(PR)D) .LT. 1 and no underflow, AC V 1 « exact 0 and AC — g.

There 1s no error in the integer part. The error in the fractional part is bounded
by 1 LSB in chopping mode and 1/2 LSB in rounding mode. Rounding may
cause a return of + unity for the fractional part.

If PROD underflows and FIU is enabled, AC V 1 «— exact 0 and AC — g.

Errors are as in case 4, except that EXP(AC) will be too large by 400g (if EXP
= (), it 1s correct). Interrupt will occur and —0 can be stored in AC.

If FIU 1s not enabled, AC V 1 — exact 0 and AC — exact O.

For this case the error in the fractional part is less than 2 ** (—128).

FC — 0
FV — 1 if PROD overflows, else FV — 0
FZ — 1 if (AC) = 0, ¢else FZ —~ 0
FN — 1if (AC) < 0, else FN «— 0

If FIUYV is enabled, trap on —0 in FSRC occurs before execution. Overflow and
underflow are discussed above.

Discussed above.

1. Binary-to-decimal conversion of a proper fraction. The following algorithm,
using MOD, will generate decimal digits D(1), D(2) . . . from left to right.

Initialize: I — 0O

X «— number to be converted;

ABS(X) < 1;
While X # 0 do
Begin PROD — X * 10;

I —1+ 1;

D(I) — INT(PROD);
X — PROD - INT(PROD);
End;

9-20

This algorithm is exact. It is case 3 in the description because the number of
nonvanishing bits in the fractional part of PROD never exceeds L, and hence

neither chopping nor rounding can introduce error.

2. To reduce the argument of a trigonometric function.

ARG * 2/PI = N + g. The low two bits of N identify the quadrant, and g is
the argument reduced to the first quadrant. The accuracy of N + g is limited
to L bits because of the factor 2/PI. The accuracy of the reduced argument
thus depends on the size of N.

3. To evaluate the exponential function e ** x, obtain x * (log e base 2) = N +
g, thene **x = (2 ** N) * (e ** (g * In 2)).

The reduced argument is g * 1n2 << 1 and the factor 2 ** N 1s an exact power
of 2, which may be scaled in at the end via STEXP, ADD N to EXP and

LDEXP. The accuracy of N + g is limited to L bits because of the factor (log
e base 2). The accuracy of the reduced argument thus depends on the size of
N.

MULF/MULD

Multiply floating /double 171(AC)FSRC

15 12 11 08 07 06 05 00

1 1 1 1 0 0 1 0 AC FSRC

Format: MULF FSRCAC

Operation: Let PROD = (AC) * (FSRC)

If underflow occurs and FIU is not enabled, AC — exact O.

If overflow occurs and FIV 1s not enabled, AC — exact 0.

For all others cases, AC — PROD.

Condition Codes: FC — 0
FV — 1 if overflow occurs, else FV — 0
FZ — 11f (AC) =0, else FZ — 0

FN — 1 if (AC) << 0, else FN — 0

Description: If the biased exponent of either operand is 0, (AC) — exact 0. For all other cases
PROD is generated to 32 bits for floating mode and 64 bits for double mode. The
product is rounded or chopped for FT = 0 or 1, respectively, and is stored in AC
except for:

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

9-21

For these exceptional cases, an exact 0 is stored in AC.

Interrupts: If FIUV is enabled, trap on —0 in FSRC occurs before execution. If overflow or
underflow occurs, and if the corresponding interrupt is enabled, the trap occurs
with the faulty result in AC. The fractional parts are correctly stored. The expo-
nent part is too small by 400g for overflow. It is too large by 400g for underflow,
except for the special case of 0, which is correct.

Accuracy: Errors due to overflow and underflow are described above. If neither occurs, the
error incurred is bounded by 1 LSB in chopping mode and 1/2 LSB in rounding
mode.

Special Comment: The undefined variable —0 can occur only in conjunction with overflow or under-
flow. It will be stored in AC only if the corresponding interrupt is enabled.

NEGF/NEGD

Negate floating /double 1707 FDST

15 12 N 06 05 00

1 1 1 1 0 0 0 1 1 1 FDST

Format: NEGF FDST

Operation: (FDST) — (FDST) if (FDST) # 0, else (FDST) — exact 0

Condition Codes: FC — 0
FV—90
FZ — 1 if (FDST) = 0, else FZ — 0
FN — 11if (FDST) < 0, else FN — 0

Description: Negate the single- or double-precision number; store result in same location
(FDST).

Interrupts: If FIUV is enabled, trap on —0 occurs after execution. Overflow and underflow
cannot occur.

Accuracy: These instructions are exact.

Special Comment: If a —0 is present in memory and the FIUV bit is enabled, the KEF11-AA stores
an exact 0 in memory. The condition codes reflect an exact 0 (FZ — 1).

SETD

Set f'loating double mode | | 170011

1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1

MR-3628

9-22

Format: SETD

Operation: FD — 1

Description: Set the FPP in double-precision mode.

SETF

Set floating mode 170001

15 12 11 00

1 1 1 1 0 0 0 0 0 0 1

Format: SETF

Operation: FD —~ 0

Description: Set the FPP in single-precision mode.

SETI

Set integer mode 177002

15 1211 00

1 1 1 1 0 0 0 0 0 0 0

Format: SETI |

Operation: FL — 0

Description: Set the FPP for short-integer data.

SETL

Set long-interger mode 177012

15 12 11 00

1 1 1 1 0 0 0 0 0 0 0

Format:

Operation:

Description;

SETL

FL — 1

Set the FPP for long-integer data.

9-23

STCFD/STCDF

Store and convert from floating-to-double
and from double-to-floating 176(AC)FDST

15 12 11 08 07 06 05 00

1 1 1 1 1 1 0 0 AC FOST

Format: STCFD AC,FDST

Operation: If (AC) = 0, (FDST) «— exact 0.

If FD = 1, FT = 0, FIV = 0 and rounding causes overflow, (FDST) — exact 0.

In all other cases, (FDST) «— Cxy(AC), where Cxy specifies conversion from
floating mode x to floating mode v.

X

X

F,vy

D,y

D if FD = 0 (single) STCFD
Fif FD = 1 (double) STCDF

Condition Codes: FC «— 0
FV — 1 if conversion produces overflow, else FV — 0
FZ — 11f (AC) = 0, else FZ — 0
FN — 1 i1f (AC) < 0, else FN «— 0

Description: If the current mode is single-precision, the accumulator is stored left-justified in
FDST and the lower half is cleared.

If the current mode is double-precision, the contents of the accumulator are con-
verted to single-precision, chopped or rounded depending on the state of FT, and
stored in FDST.

Interrupts: Trap on —O0 will not occur even if FIUV is enabled because FSRC is an accu-
mulator. Underflow cannot occur. Overflow cannot occur for STCFD.

A trap occurs if FIV is enabled, and if rounding with STCDF causes overflow.
(FDST) — overflowed result. This must be +0 or —0.

Accuracy: STCFD is an exact instruction. Except for overflow, described above, STCDF in-
curs an error bounded by 1 LSB in chopping mode and by 1/2 LSB in rounding
mode.

STCFI/STCFL/STCDI/STCDL

Store and convert from floating or double
to integer or long integer 175(AC+4)DST

15 12 11 08 07 06 05 00

1 1 1 1 1 0 1 1 AC DST

| 1 1 1 1 1 i) 1 | l]

MR-3621

9-24

Format;

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

STCFI AC,DST

(DST) — Cxj(AC) if —JL — 1 << Cxj)(AC) < JL + 1, else (DST) — 0, where
Cjx specifies conversion from floating mode x to integer mode).

j=I1if FL=0,j=LifFL = 1
x =Fif FD = 0,x = Dif FD = 1

JL is the largest integer.

2** 15 —1forFL =0
2**32 — 1 forFL =1

C,FC —0if —JL — 1 < Cxj(AC) < JL + 1, else C, FC 1
V,FV —0
Z,FZ — 1if (DST) = 0, else Z, FZ — 0O
N, FN — 1 if (DST) < 0, else N, FN — 0

Conversion is performed from a floating-point representation of the data in the
accumulator to an integer representation.

If the conversion is to a 32-bit word (L mode), and an addressing mode of O or
immediate addressing mode is specified, only the most significant 16 bits are
stored in the destination register.

If the operation is out of the integer range selected by FL, FC is set to | and the
contents of the DST are set to 0.

Numbers to be converted are always chopped (rather than rounded) before they
are converted. This is true even when the chop mode bit FT is cleared in the FPS
register.

These instructions do not interrupt if FIUV is enabled, because the —O0, if present,

is in AC, not in memory. If FIC is enabled, trap on conversion failure will occur.

These instructions store the integer part of the floating-point operand, which may
not be the integer most closely approximating the operand. They are exact if the
integer part is within the range implied by FL.

STEXP

Store exponent 175(AC)DST

1 1 1 0 1 0 AC DST

| 1 1 1 1 i 1 |] 1 |

Format:

Operation:

MR-3623

STEXP AC,DST

(DST) — EXP(AC) — 200g

9-25

Condition Codes: C,FC — 0
V,FV — 0
Z, FZ — 1 if (DST) = 0, else Z, FZ — 0
N, FN — 1 if (DST) < 0, else N, FN — 0

Description: Convert AC’s exponent from excess 200 notation to 2’s complement and store the
result in DST.

Interrupts: This instruction will not trap on —0. Overflow and underflow cannot occur.

Accuracy: This instruction is exact.

STF/STD

Store floating /double 174(AC)FDST

1 1 1 1 0 0 0 AC

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-3610

STF AC,FDST

(FDST) — AC

FC — FC
FV — FV
FZ — FZ
FN — FN

Store single- or double-precision number from AC.

These instructions do not interrupt if FIUYV is enabled, because the —O0, if present,

is in AC, not in memory. Overflow and underflow cannot occur.

These instructions are exact.

These instructions permit storage of a —0 in memory from AC. There are two
conditions in which —0 can be stored in AC of the KEF11-A. One occurs when
underflow or overflow is present and the corresponding interrupt is enabled. A
second occurs when an LDF, LDD, LDCDF, or LDCFD instruction is executed
and the FIUV bit is disabled.

STFPS

Store FPP’s program status 1702 DST

9-26

Format:

Operation:

Description:

Special Comment:

STFPS DST

(DST) — FPS

Store FPP’s status register in DST.

Bits 13, 12, and 4 are loaded with 0. All other bits are the corresponding bits in
the FPS.

STST

Store FPP’s status 1703 DST

15 12 1 06 05 00

1 1 1 1 0 0 0 0 1 1 DST

Format: STST DST

Operation: (DST) — FEC
(DST + 2) — FEA

Description: Store the FEC and FEA in DST and DST+ 2. Note the following.

1. If the destination mode specifies a general register or immediate addressing,
only the FEC is saved.

2. The information in these registers is current only if the most recently executed
floating-point instruction caused a floating-point exception.

SUBF/SUBD

Subtract floating/double 173(AC)FSRC

15 12 1 | 08 07 06 05 00

1 1 1 0 1 1 0 AC FSRC

Format: SUBF FSRC,AC

Operation: Let DIFF = (AC) — (FSRC)

If underflow occurs and FIU is not enabled, AC — exact 0.

If overflow occurs and FIV is not enabled, AC — exact 0.

For all others cases, AC — DIFF.

9-27

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

FC — 0
FV — 1 if overflow occurs, else FV — 0
FZ — 11if (AC) = 0, else FZ — 0
FN — 1 if (AC) < 0, else FN — 0

Subtract the contents of FSRC from the contents of AC. The subtraction is car-
ried out in single- or double-precision and is rounded or chopped in accordance
with the values of the FD and FT bits in the FPS register. The result is stored in
AC except for:

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is stored in AC.

[f FIUV is enabled, trap on —0 in FSRC occurs before execution. If overflow or
underflow occurs, and if the corresponding interrupt is enabled, the trap occurs
with the faulty result in AC. The fractional parts are correctly stored. The €Xpo-
nent part 1s too small by 400g for overflow. It is too large by 400g for underflow,
except for the special case of 0, which is correct.

Errors due to overflow and underflow are described above. If neither occurs: for
like-signed operands with exponent difference of 0 or 1, the answer returned is
exact if a loss of significance of one or more bits can occur. Note that these are
the only cases for which loss of significance of more than one bit can occur. For all
other cases the result is inexact with error bounds of:

. LSB in chopping mode with either single- or double-precision.
2. 1/2 LSB in rounding mode with either single- or double-precision.

The undefined variable —0 can occur only in conjunction with overflow or under-
flow. It will be stored in AC only if the corresponding interrupt is enabled.

TSTF/TSTD

Test floating /double 1705 FDST

15 12 11 06 05 00

1 1 1 1 0 0 0 1 0 1 FDST

Format: TSTF FDST

Operation: (FDST)

Condition Codes: FC — 0
FV «— 0

Description:

FZ — 1 if (FDST) = 0, else FZ — 0
FN — 1 if (FDST) < 0, else FN — 0

Set the FPP condition codes according to the contents of FDST.

9-28

Interrupts: If FIUV is set, trap on — 0 occurs after execution. Overflow and underflow cannot
occur.

Accuracy: These instructions are exact.

9-29

CHAPTER 10
PROGRAMMING TECHNIQUES

10.1 INTRODUCTION
The KDF11-BA offers a great deal of programming flexibility and power. Utilizing the combination of
the instruction set, the addressing modes, and the programming techniques makes it possible to develop
new software or to utilize old programs effectively. The programming techniques in this chapter show
the capabilities of the KDF11-BA. The techniques discussed involve position-independent coding
(PIC), stacks, subroutines, interrupts, reentrancy, coroutines, recursion, processor traps, programming

peripherals, and conversion.

10.2 POSITION-INDEPENDENT CODE
The output of a MACRO-11 assembly is a relocatable object module. The task builder or linker binds
one or more modules together to create an executable task image. Once built, a task can only be loaded
and executed at the virtual address specified at link time. This is so because the linker has had to modi-
fy some instructions to reflect the memory locations in which the program is to run. Such a body of
code is considered position-dependent (i.e., dependent on the virtual addresses to which it was bound).

The KDF11-BA processor offers addressing modes that make it possible to write instructions that do
not depend on the virtual addresses to which they are bound. This type of code is termed position-inde-
pendent and can be loaded and executed at any virtual address. Position-independent code can improve
system efficiency, both in use of virtual address space and in conservation of physical memory.

In multiprogramming systems like RSX-11M, it is important that many tasks be able to share a single
physical copy of common code (a library routine, for example). To make the optimum use of a task’s
virtual address space, shared code should be position-independent. Code that is not position-independ-
ent can also be shared, but it must appear in the same virtual locations in every task using it. This
restricts the placement of such code by the task builder and can result in the loss of virtual addressing
space.

10.2.1 Use of Addressing Modes in the Construction of Position-Independent Code
The construction of position-independent code is closely linked to the proper use of addressing modes.
The remainder of this explanation assumes you are familiar with the addressing modes described in
Chapter 6.

The following addressing modes, which involve only register references, are position-independent.

R Register mode
(R) Register-deferred mode
(R)+ Autoincrement mode
@*R)+ Autoincrement-deferred mode
—(R) Autodecrement mode
@—(R) Autodecrement-deferred mode

10-1

When employing these addressing modes, the user is guaranteed position independence, providing the
contents of the registers have been supplied independently of a particular virtual memory location.

Two relative addressing modes are position-independent when a relocatable address is referenced from
a relocatable instruction:

A Relative mode
@A Relative-deferred mode

Relative modes are not position-independent when an absolute address (that is, a nonrelocatable ad-
dress) is referenced from a relocatable instruction. In such case, absolute addressing (i.e., @#A) may be
employed to make the reference position-independent.

Index modes can be either position-independent or position-dependent, according to their use in the
program:

X(R) Index mode
@X(R) Index-deferred mode

If the base, X, is an absolute value (e.g., a control block offset), the reference is position-independent.

The following is an example.

MOV 2(SP),RO ;POSITION-INDEPENDENT
N=4 -

MOV N(SP),R0 ;POSITION-INDEPENDENT

If, however, X is a relocatable address, the reference is position-dependent, as the following example
shows.

CLR ADDR(R1) -POSITION-DEPENDENT

Immediate mode can be either position-independent or not, according to its use. Immediate mode refer-
ences are formatted as follows.

#IN Immediate mode

When an absolute expression defines the value of N, the code is position-independent. When a reloca-
table expression defines N, the code is position-dependent. That is, immediate mode references are posi-
tion-independent only when N is an absolute value.

Absolute mode addressing is position-independent only in those cases where an absolute virtual location
is being referenced. Absolute mode addressing references are formatted as follows.

@#A Absolute mode

10-2

An example of a position-independent absolute reference is a reference to the processor status word
(PS) from a relocatable instruction, as in this example.

MOV @#PSW, RO ;RETRIEVE STATUS AND PLACE IN REGISTER

10.2.2 Comparison of Position-Dependent and Position-Independent Code
The RSX-11 library routine, PWRUP, is a FORTR AN-callable subroutine for establishing or removing
a user power failure asynchronous system trap (AST) entry point address. Imbedded within the routine
is the actual AST entry point that saves all registers, effects a call to the user-specified entry point,
restores all registers on return, and executes an AST exit directive. The following examples are excerpts
from this routine. The first example has been modified to illustrate position-dependent references. The
second example is the position-independent version.

Position-Dependent Code

PWRUP::
CLR —(SP) :ASSUME SUCCESS
CALL X.PAA :PUSH (SAVE)

-ARGUMENT ADDRESSES
‘ONTO STACK

.WORD 1.,.$PSW :CLEAR PSW, AND
‘SET R1=R2SP

MOV $OTSV R4 :GET OTS IMPURE
‘AREA POINTER

MOV (SP)+,R2 ‘GET AST ENTRY
:POINT ADDRESS

BNE 108 -IF NONE SPECIFIED,
:SPECIFY NO POWER

CLR —(SP) ‘RECOVERY AST SERVICE

BR 20% ;
10$: ;

MOV R2,F.PF(R4) :SET AST ENTRY POINT
MOV #BA,—(SP) :PUSH AST SERVICE

:ADDRESS

2089: ;
CALL X.EXT JISSUE DIRECTIVE, EXIT.
BYTE 109.,2. .

BA: MOV RO, —(SP) :PUSH (SAVE) RO
MOV R1,—(SP) ;PUSH (SAVE) R1
MOV R2,—(SP) :PUSH (SAVE) R2

10-3

Position-Independent Code

PWRUP::
CLR —(SP) ‘ASSUME SUCCESS
CALL X.PAA ‘PUSH ARGUMENT

:ADDRESSES ONTO
STACK

WORD 1., $PSW ‘CLEAR PSW, AND
:SET R1=R2—-SP.

MOV @#$0OTSV, R4 :GET OTS IMPURE
:AREA POINTER

MOV (SP)+,R2 :GET AST ENTRY
:POINT ADDRESS

BNE 10$:IF NONE SPECIFIED,
‘SPECIFY NO POWER

CLR —(SP) 'RECOVERY AST SERVICE
BR 209

108. ;
MOV R2,F.PF(R4) 'SET AST ENTRY POINT
MOV PC,—(SP) ‘PUSH CURRENT LOCATION
ADD #BA —.,(SP) ‘COMPUTE ACTUAL LOCATION

‘OF AST

208:
CALL X.EXT ‘ISSUE DIRECTIVE, EXIT.
.BYTE 109.,2.

‘ACTUAL AST SERVICE ROUTINE:

: 1) SAVE REGISTERS
. 2) EFFECT A CALL TO SPECIFIED
- SUBROUTINE
; 3) RESTORE REGISTERS
; 4) ISSUE AST EXIT DIRECTIVE

BA: MOV RO, —(SP) ;PUSH (SAVE) RO
MOV R1,—(SP) :PUSH (SAVE) R1
MOV R2,—(SP) :PUSH (SAVE) R2

The position-dependent version of the subroutine contains a relative reference to an absolute symbol
($OTSYV) and a literal reference to a relocatable symbol (BA). Both references are bound by the task
builder to fixed memory locations. Therefore, the routine will not execute properly as part of a resident
library if its location in virtual memory is not the same as the location specified at link time.

In the position-independent version, the reference to SOTSV has been changed to an absolute refer-
ence. In addition, the necessary code has been added to compute the virtual location of BA based upon
the value of the program counter. In this case, the value is obtained by adding the value of the program
counter to the fixed displacement between the current location and the specified symbol. Thus, execu-
tion of the modified routine is not affected by its location in the image’s virtual address space.

10.3 STACKS
The stack is part of the basic design architecture of the KDF11-BA. It is an area of memory set aside
by the programmer or the operating system for temporary storage and linkage. It is handled on a LIFO
(last-in/first-out) basis, where items are retrieved in the reverse of the order in which they were stored.
A stack starts at the highest location reserved for it and expands linearly downward to lower addresses
as items are added.

10-4

It is not necessary to keep track of the actual locations into which data is being stacked. This is done
automatically through a stack pointer. To keep track of the last item added to the stack, a general
register is used to store the memory address of the last item in the stack. Any register except register 7
(the PC) may be used as a stack pointer under program control; however, instructions associated with
subroutine linkage and interrupt service automatically use register 6 as a hardware stack pointer. For
this reason, R6 is frequently referred to as the system SP. Stacks may be maintained in either full-word
or byte units. This is true for a stack pointed to by any register except R6, which must be organized in
full-word units only. Byte stacks (see Figure 10-1) require instructions capable of operating on bytes
rather than full words.

WORD STACK

007100 ITEM # 1
007076 ITEM # 2
007074 ITEM # 3
007072 ITEM # 4 «—sp [007072]
007070
007066
007064

BYTE STACK

007100 ITEM # 1
007077 ITEM # 2
007076 ITEM # 3 .
007075 ITEM #4 - SP | 007075 |

NOTE:
BYTES ARE
ARRANGED IN
WORDS AS FOLLOWING:

BYTE3 | BYTE 2

BYTE 1 | BYTEO

LW v
Y

WORD

MR-3862

Figure 10-1 Word and Byte Stacks

10.3.1 Pushing onto a Stack

Items are added to a stack using the autodecrement addressing mode. Adding items to the stack is
called PUSHing, and is accomplished by the following instructions.

MOV Source,— (SP) ; MOV contents of source word
;onto the stack

or
MOVB Source,—(SP) ;MOVB source byte onto

:the stack

Data i1s thus PUSHed onto the stack.

10-5

10.3.2 Popping from a Stack
Removing data from the stack is called POPping. This operation is accomplished using the autoincre-
ment mode.

MOV (SP)+ ,Destination :MOYV destination word

:off the stack
or

MOVB (SP) + ,Destination ;MOYVB destination byte
;off the stack

After an item has been popped, its stack location is considered free and available for other use. The
stack pointer points to the last-used location, implying that the next lower location is free. Thus, a stack
may represent a pool of sharable temporary storage locations. (See Figure 10-2.)

HIGH MEMORY
«<«— SP

stack ¥ EO <SP EO
AREA) E1 «— SP

LOW MEMORY -
1 AN EMPTY STACK AREA 2 PUSHING A DATUM 3 PUSHING ANOTHER

ONTO THE STACK DATUM ONTO THE
STACKS

EQ EO A E2 EO
E1 E1 - SP E1

¢ E2 <SP ¢ E3 5P

4 ANOTHER PUSH 5 POP 6 PUSH

E3

E0
E1l «— SP

7 POP

MR-3863

Figure 10-2 Push and Pop Operations

10.3.3 Deleting Items from a Stack
The following techniques may be used to delete from a stack. To delete one item use:

INC SP or TSTB(SP)+ for a byte stack

To delete two items use:

ADD#2,SP or TST(SP)+ for word stack

To delete fifty items from a word stack use:

ADD#100.,SP

10-6

10.3.4 Stack Uses
A stack is used in the following ways.

1. Often one of the general-purpose registers must be used in a subroutine or interrupt service

routine and then returned to its original value. The stack can be used to store the contents of

the registers involved.

The stack is used in storing linkage information between a subroutine and its calling pro-
gram. The JSR instruction, used in calling a subroutine, requires the specification of a link-

age register along with the entry address of the subroutine. The content of this linkage regis-

ter is stored on the stack, so as not to be lost, and the return address is moved from the PC to
the linkage register. This provides a pointer back to the calling program so that successive
arguments may be transmitted easily to the subroutine.

If no arguments need be passed by stacking them after the JSR instruction, the PC may be
used as the linkage register. In this case, the result of the JSR is to move the return address
in the calling program from the PC onto the stack and replace it with the entry address of the

called subroutine.

In many cases, the operations performed by the subroutine can be applied directly to the data
located on or pointed to by a stack without the need to move the data into the subroutine

area.

Example:

;CALLING PROGRAM
MOYV SP,R1 ;R1 IS USED AS THE STACK
JSR PC,SUBR ;POINTER HERE.

;SUBROUTINE
ADD (R1)+,(R1) ;ADD ITEM #1 TO #2, PLACE

;RESULT IN ITEM #2,
;R1 POINTS TO
; ITEM #2 NOW

Because the hardware already uses general-purpose register R6 to point to a stack for saving
and restoring PC and processor status word (PS) information, it is convenient to use the same
stack to save and restore immediate results and to transmit arguments to and from sub-
routines. Using R6 in this manner permits extreme flexibility in nesting subroutines and in-
terrupt service routines.

Since arguments may be obtained from the stack by using some form of register-indexed ad-
dressing, it is sometimes useful to save a temporary copy of R6 in some other register which
has been saved at the beginning of a subroutine. If R6 is saved in RS at the beginning of the
subroutine, R5 may be used to index the arguments. During this time R6 is free to be in-
cremented and decremented while being used as a stack pointer. If R6 had been used directly
as the base for indexing and not “copied,” it might be difficult to keep track of the position in
the argument list, since the base of the stack would change with every autoincre-
ment/decrement that occurred.

However, if the contents of R6 (SP) are saved in RS before any arguments are pushed onto
the stack, the position relative to R5 would remain constant.

10-7

Return from a subroutine also involves the stack, as the return instruction, RTS, must re-

trieve information stored there by the JSR.

When a subroutine returns, it is necessary to “clean up” the stack by eliminating or skipping
over the subroutine arguments. One way this can be done is by insisting that the subroutine
keep the number of arguments as its first stack item. Returns from subroutines then involve
calculating the amount by which to reset the stack pointer, resetting the stack pointer, then
storing the original contents of the register that were used as the copy of the stack pointer.

Stack storage is used in trap and interrupt linkage. The program counter and the processor
status word of the executing program are pushed on the stack.

When the system stack is being used, nesting of subroutines, interrupts, and traps to any level
can occur until the stack overflows its legal limits.

The stack method is also available for temporary storage of any kind of data. It may be used
as a LIFO list for storing inputs, intermediate results, etc.

10.3.5. Stack Use Examples
As an example of stack use, consider this situation: a subroutine (SUBR) wants to use registers 1 and 2,
but these registers must be returned to the calling program with their contents unchanged. The sub-
routine could be written as follows.

Not using the stack:

Assembler
Address Octal Code Syntax Comments

076322 010167 SUBR: MOV RI1,TEMPI ;save R1
076324 000074 ¥
076326 010267 MOV R2,TEMP2 ;save R2
076330 000072 *

076410 016701 MOV TEMPI,R1 ;restore R1
076412 000006 ¥
076414 0167902 MOV TEMP2,R2 ;restore R2
076416 000004 *
076420 000297 RTS PC
076422 000000 TEMPI1:0
076424 000000 TEMP2:0

*Index constants

10-8

Using the stack:
R3 has been previously set to point to the end of an unused block of memory.

Assembler
Address Octal Code Syntax Comments

010020 010143 SUBR: MOV R1,—(R3) ;push R1
010022 010243 MOV R2,—(R3) ;push R2

010130 | 012302 MOV (R3)+,R2 .pop R2
010132 012301 MOV (R3)+,R1 ;pop R1
010134 000207 RTS PC

Note: In this case R3 was used as a stack pointer.

The second routine uses four fewer words of instruction code and two words of temporary “stack’” stor-
age. Another routine could use the same stack space at some later point. Thus, the ability to share
temporary storage in the form of a stack is a way to save on memory use.

As another example of stack use, consider the task of managing an input buffer from a terminal. As
characters come in, the user may wish to delete characters from the line; this is accomplished very
easily by maintaining a byte stack containing the input characters. Whenever a backspace is received, a
character is ““popped” off the stack and eliminated from consideration. In this example, “popping”
characters to be eliminated can be done by using either the MOVB (MOVE BYTE) or INC (IN-
CREMENT) instructions.

Note that in this case the increment instruction (INC) is preferable to MOVB, since it accomplishes
the task of eliminating the unwanted character from the stack by readjusting the stack pointer without
the need for a destination location. Also, the stack pointer (SP) used in this example cannot be the
system stack pointer because R6 may point only to word (even) locations. (See Figure 10-3.)

001011

001010

001007

001006

001005

001004

001003

001002

001001

INC R3

M
m
O

C
|
I
O

<«R3| 001002 |

N
l

|
m
|
z
|
o
l
4
|
w
|
i
c
|
o

«-R3| 001001 |

MR-3664

Figure 10-3 Byte Stack Used as a Character Buffer

10-9

10.3.6 Subroutine Linkage
The contents of the linkage register are saved on the system stack when a JSR is executed. The effect is
the same as if a MOV reg,—(R6) had been performed. Following the JSR instruction, the same register
is loaded with the memory address (the contents of the current PC), and a jump is made to the entry

location specified.

Figure 10-4 shows the conditions before and after executing the subroutine instructions JSR RS, 1064.

BEFORE AFTER

(R5) = 000132 (R5) = 001004

(R6) = 001776 (R6) = 001774

(PC) = {R7) = 001000 (PC) = (R7) = 001064

002000 nnnnnn 002000 nnnnnn

001776 mmmmmm | e-SP| 001776 | 001776 | mmmmmm

001774 001774 000132 <«spP| 001774 |
001772 001772

MRA-3665

Figure 10-4 JSR Stack Condition Example

Because hardware already uses general-purpose register R6 to point to a stack for saving and restoring
PC and PS (processor status word) information, it is convenient to use that stack to save and restore
intermediate results and to transmit arguments to and from subroutines. Using R6 this way permits
nesting subroutines and interrupt service routines.

10.3.6.1 Return from a Subroutine — An RTS instruction provides for a return from the subroutine to
the calling program. The RTS instruction must specify the same register as the one the JSR instruction
used in the subroutine call. When the RTS is executed, the register specified is moved to the PC, and
the top of the stack is placed in the register specified. Thus, an RTS PC has the effect of returning to
the address specified on the top of the stack.

10.3.6.2 Subroutine Advantages — There are several advantages to the subroutine calling procedure

affected by the JSR instruction.

1. Arguments can be passed quickly between the calling program and the subroutine.

2. If there are no arguments, or the arguments are in a general register or on the stack, the JSR
PC,DST mode can be used so that none of the general-purpose registers are used for linkage.

3. Many JSRs can be executed without the need to provide any saving procedure for the linkage
information, since all linkage information is automatically pushed onto the stack in sequen-
tial order. Returns can be made by automatically popping this information from the stack in
the order opposite to the JSRs.

Such linkage address bookkeeping is called automatic “nesting” of subroutine calls. This feature en-
ables construction of fast. efficient linkages in a simple, flexible manner. It also permits a routine to call

itself.

10.3.7 Interrupts
An interrupt is similar to a subroutine call, except that it is initiated by the hardware rather than by the
software. An interrupt can occur after the execution of an instruction.

10-10

Interrupt-driven techniques are used to reduce CPU waiting time. In direct program data transfer, the
CPU loops to check the state of the DONE/READY flag (bit 7) in the peripheral interface. Using
interrupts, the CPU can handle other functions until the peripheral initiates service by setting the
DONE bit in its control/status register. The CPU completes the instruction being executed and then
acknowledges the interrupt, and vectors to an interrupt service routine. The service routine will transfer
the data and may perform calculations with it. After the interrupt service routine has been completed,
the computer resumes the program that was interrupted by the peripheral’s high-priority request.

10.3.7.1 Interrupt Service Routines — With interrupt service routines, linkage information is passed so
that a return to the main program can be made. More information is necessary for an interrupt se-
quence than for a subroutine call because of the random nature of interrupts. The complete machine
state of the program immediately prior to the occurrence of the interrupt must be preserved in order to
return to the program without any noticeable effects. This information is stored in the processor status
word (PS). Upon interrupt, the contents of the program counter (PC) (address of next instruction) and
the PS are automatically pushed onto the R6 system stack. The effect is the same as if:

MOV PS,—(SP) ;Push PS
MOV PC,—(SP) ;Push PC

had been executed. The new contents of the PC and PS are loaded from two preassigned consecutive
memory locations which are called “vector addresses.”

The first word contains the interrupt service routine entry address (the address of the service routine
program sequence), and the second word contains the new PS that will determine the machine status,
including the operational mode and register set to be used by the interrupt service routine. The contents
of the vector address are set under program control.

After the interrupt service routine has been completed, an RTI (return from interrupt) is performed.
The top two words of the stack are automatically “popped” and placed in the PC and PS, respectively,
thus resuming the interrupted program. Interrupt service programming is intimately involved with the
concept of CPU and device priority levels.

10.3.7.2 Nesting — Interrupts can be nested in much the same manner that subroutines are nested. Itis
possible to nest any arbitrary mixture of subroutines and interrupts without any confusion. When the
respective RTI and RTS instructions are used, the proper returns are automatic. (See Figure 10-5.)

10.3.8 Reentrancy
Other advantages of the KDF11-BA stack organization occur in programming systems that handle sev-
eral tasks. Multitask program environments range from simple single-user applications that manage a
mixture of 1/O interrupt service and background data processing (as in RT-11), to large, complex mul-
tiprogramming systems that manage an intricate mixture of executive and multiuser programming situ-
ations (as in RSX-11). In all these situations, using the stack as a programming technique provides
flexibility and time/memory economy by allowing many tasks to use a single copy of the same routine
with a simple straightforward way of keeping track of complex program linkages.

The ability to share a single copy of a program among users or among tasks is called reentrancy. Reen-
trant program routines differ from ordinary subroutines in that it is not necessary for reentrant routines
to finish processing a given task before they can be used by another task. Multiple tasks can exist at any
time in varying stages of completion in the same routine. Thus, the situation as shown in Figure 10-6
may occur.

10-11

PROCESS 0 IS RUNNING; SP IS
POINTING TO LOCATION PO.

INTERRUPT STOPS PROCESS O WITH

PC =PCO, AND STATUS = PSO; STARTS

PROCESS 1.

PROCESS 1 USES STACK FOR TEM-

PORARY STORAGE (TEO, TE1).

PROCESS 1 INTERRUPTED WITH PC

= PC1 AND STATUS = PS1; PROCESS

2 IS STARTED.

PROCESS 2 IS RUNNING AND DOES
A JSR R7,ATO SUBROUTINE A WITH

PC = PC2.

SUBROUTINE A IS RUNNING AND

USES STACK FOR TEMPORARY

STORAGE.

sp—po [

SP i

0

PO

SP =i

SP wwete

SP ——uip

PSO

PCO

PSO

PCO

TEO
TEN

PSQ

PCO

TEO

TE1

ST
PCI

PSO

PCO

TEO

TE1

PS1

PC1

PC2

PSO

PCO
TEO
TE1

PS1
PC1

PC2
TA1

TA2

10.

11.

SUBROUTINE A RELEASES THE
TEMPORARY STORAGE HOLDING

TA1 AND TA2.

SUBROUTINE A RETURNS CONTROL
TO PROCESS 2WITH AN RTS R7; PC
IS RESET TO PC2.

PROCESS 2 COMPLETESWITH AN

RT1 INSTRUCTIONS (DISMISSES

INTERRUPT) PC IS RESET OT PC (1)
AND STATUS IS RESET TO PS1;
PROCESS 1 RESUMES'

PROCESS 1 RELEASES THE TEMPO-
RARY STORAGE HOLDING TEO AND
TE1.

PROCESS 1 COMPLETES ITS

OPERATION WITH AN RT1,PC IS

RESET TO PCO, AND STATUS IS

RESET TO PSO0.

PO

SP —tp

SP —a>

Figure 10-5 Nested Interrupt Service Routines and Subroutines

10-12

TE1

PSO

PCO

MAR-3808

MEMORY MEMORY

////////7//////
PROGRAM 1 PROGRAM 1 %SUBROUTINE A/
PROGRAM 2 | SUBROUTINE A L L L L
PROGRAM 3

7//////////////7

PROGRAM 2 /SUBROUTiNEA /
J IS I I I P I PSPPI

LA A7),

PROGRAM 3 VSUBROUT”\IEA
DI Ir PP PP Pr PN

KDF11-BA APPROACH CONVENTIONAL APPROACH

PROGRAMS 1, 2, AND 3 CAN SHARE A SEPARATE COPY OF SUBROUTINE A

SUBROUTINE A. MUST BE PROVIDED FOR EACH PROGRAM.

MR-3657

Figure 10-6 Reentrant Routines

10.3.8.1 Reentrant Code — Reentrant routines must be written in pure code (that is, any code that

consists exclusively of instructions and constants). The value of using pure code whenever possible is
that the resulting code has the following characteristics.

1. It is generally considered easier to debug.
2. It can be kept in read-only memory (is read-only protected).

Using reentrant code, control of a routine can be shared as follows. (See Figure 10-7.)

Task A requests processing by reentrant routine Q.
Task A temporarily gives up control of reentrant routine Q before it completes processing.
Task B starts processing the same copy of reentrant routine Q.
Task B completes processing by reentrant routine Q.
Task A regains use of reentrant routine Q and resumes where it stopped. N

h

L
=

[Task A |

| 1 REENTRANT

®1 ROUTINE Q

|
| Task 8 |

Figure 10-7 Sharing Control of a Routine

10.3.8.2 Writing Reentrant Code - In an operating system environment, when one task is executing
and is interrupted to allow another task to run, a context switch occurs in which the processor status
word and current contents of the general-purpose registers (GPRs) are saved and replaced by the appro-
priate values for the task being entered. Therefore, reentrant code should use the GPRs and the stack
for any counters, pointers, or data that must be modified or manipulated in the routine.

The context switch occurs whenever a new task is allowed to execute. It causes all of the GPRs, the PS,
and often other task-related information to be saved in an impure area. It then reloads these registers
and locations with the appropriate data for the task being entered. Notice that one consequence of this
is that a new stack pointer value is loaded into R6, thereby causing a new area to be used as the stack
when the second task is entered. |

10-13

The following should be observed when writing reentrant code.

1. All data should be in or pointed to by one of the general-purpose registers.

2. A stack can be used for temporary storage of data or pointers to impure areas within the task
space. The pointer to such a stack would be stored in a GPR.

3. Parameter addresses should be used by indexing and indirect reference rather than by put-
ting them into instructions within the code.

4. When temporary storage is accessed within the program, it should be by indexed addresses,
which can be set by the calling task in order to handle any possible recursion.

10.3.9 Coroutines
In some programming situations it happens that several program segments or routines are highly inter-
active. Control is passed back and forth between the routines, each going through a period of suspension
before being resumed. Since the routines maintain a symmetric relationship with each other, they are
called coroutines.

Coroutines are two program sections, either subordinate to the call of the other. The nature of the call is
“I have processed all I can for now, so you can execute until you are ready to stop, then I will contin-
ue.” The coroutine call and return are identical, each being a jump to subroutine instruction with the
destination address being on top of the stack and the PC serving as the linkage register, as follows.

JSR PC,@(R6)+

10.3.9.1 Coroutine Calls — The coding of coroutine calls is made simple by the stack feature. Initially,
the entry address of the coroutine is placed on the stack, and from that point the

JSR PC,@*R6)+

instruction i1s used for both the call and the return statements. This JSR instruction results in an ex-
change of the contents of the PC and the top element of the stack; this permits the two routines to swap
control and resume operation where each was terminated by the previous swap. An example is shown in
Figure 10-8. Notice that the coroutine linkage cleans up the stack with each control transfer.

10.3.9.2 Coroutines Versus Subroutines — Coroutines can be compared to subroutines in the following
ways.

1. A subroutine can be considered to be subordinate to the main or calling routine, but a corout-
ine is considered to be on the same level, as each coroutine calls the other when it has com-
pleted current processing.

2. When called, a subroutine executes to the end of its code. When called again, the same code
will execute before returning. A coroutine executes from the point after the last call of the
other coroutine. Therefore, the same code will not be executed each time the coroutine is

called. An example is shown in Figure 10-9.

3. The call and return instructions for coroutines are the same:

JSR PC,@(SP) +

10-14

This one instruction also cleans up the stack with each call. The last coroutine call will leave
an address on the stack that must be popped if no further calls are to be made. Refer to
Paragraph 10.3.6.1 for information on the return from subroutine instruction.

Each coroutine call returns to the coroutine code at the point after the last exit with no need
for a specific entry point label, as would be required with subroutines.

ROUTINE A STACK ROUTINE B COMMENTS

LOC IS PUSHED
ONTO THE STACK

: . TO PREPARE FOR
MOV #LOC,-(SP} LOC +«SP THE COROUTINE

CALL.

LOC:

JSR PC,@(SP)+ PCO +SP . WHEN THE CAL’

(PCO) ' . IS EXECUTED,

THE PC FROM

ROUTINE A IS

PUSHED ON THE

STACK AND EXE-

CUTION CONTIN-

UES AT LOC.

JSR PC,@(SP)+ ROUTINE B CAN

PC1 SP {PC1) RETURN CONTROL

TO ROUTINE A

BY ANOTHER

COROUTINE CALL.

PCO IS POPPED

FROM THE STACK

AND EXECUTION
RESUMES IN

ROUTINE A JUST

AFTER THE CALL

TO ROUTINE B,

I.E., AT PCO.

PC1 IS SAVED

ON THE STACK
FOR A LATER

RETURN TO

ROUTINE B.

MR-3669

Figure 10-8 Coroutine Example

COROUTINES MAIN PROGRAMS SUBROUTINES

A B 1ST LOC:

!
/

JSR PC,@ (SP)+ S JSR Rn, LOC

\j

JSR PC,@ (SP)+ ,
1

RTS
4

JSR PC,@ (SP)+ {
|

JSR Rn, LOC

Y

JSR PC,@ (SP)+

 J

MR-36870

Figure 10-9 Coroutines Versus Subroutines

10-15

10.3.9.3 Using Coroutines — Coroutines should be used in the following situations.

1. Whenever two tasks must be coordinated in their execution without obscuring the basic
structure of the program. For example, in decoding a line of assembly language code, the
results at any one position might indicate the next process to be entered. A detected label
must be processed. If no label is present, the operator must be located, etc.

2. To add clarity to the process being performed, to ease-in the debugging phase, etc.

An assembler must perform a lexicographic scan of each assembly language statement during pass 1 of
the assembly process. The various steps in such a scan should be separated from the main program flow
to add to the program’s clarity and to aid in debugging by isolating many details. Subroutines would not
be satisfactory here, as too much information would have to be passed to the subroutine each time it
was called. Such a subroutine would be too isolated. Coroutines could be effectively used here with one
routine being the assembly-pass-1 routine and the other extracting one item at a time from the current
input line. Figure 10-10 illustrates this example.

ROUTINE A ROUTINE B

START AND SKIP

BLANKS

NONBLANK

1

READ NAME o1 PROCESS NAME

SKIP BLANKS

PROCESS MNEMONICS READ MNEMONICS

i

READ ADDRESSES
LINE

SEMICO LON TERMINATOR

!

SKIP COMMENT END

MR-3571

Figure 10-10 Coroutine Path

10-16

Coroutines can be utilized in I/O processing. The example above shows coroutines used in double-buf-
fered 1/0 using I0X. The flow of events might be described as:

Write Ol

Read 11 concurrently,

Process 12

then

Write 02

Read 12 concurrently.
Process 11

Figure 10-11 illustrates a coroutine swapping interaction.

ROUTINE #1 1S OPERATING, IT THEN
EXECUTES:

MOV #PC2,-(R6)
JSR PC,@(R6)+

WITH THE FOLLOWING RESULTS:

1. PC2IiS POPPED FROM THE STACK
AND THE SP AUTOINCREMENTED. P —» PC2

2. SP 1S AUTODECREMENTED AND
THE OLD PC (I.E., PC1) IS PUSHED. l

3. CONTROL IS TRANSFERRED TO THE SP—o PC2 PC2
LOCATION PC2 (I.E., ROUTINE #2).

ROUTINE #2 IS OPERATING, IT THEN
EXECUTES: l

JSR PC.@(R6)+
WITH THE RESULT THAT PC2 IS P o o |
EXCHANGED FOR PC1 ON THE
STACK AND CONTROL IS
TRANSFERRED BACK TO ROUTINE #1.

MR-3672

Figure 10-11 Coroutine Interaction

When routine #1 is operating; it executes:

MOV #PC2,—(R6)

JSR PC,@(R6)+

with the following results.

1. PC2 is popped from the stack and the SP autoincremented.

2. SP is autodecremented and the old PC (i.e., PC1) is pushed.

3. Control is tranferred to the location PC2 (i.e., routine 2).

When routine #2 is operating; it executes:

JSR PC,@(R6)+

with the result that PC2 is exchanged for PC1 on the stack and control is transferred back to routine 1.

10-17

10.3.10 Recursion

An interesting aspect of a stack facility, other than its providing for automatic handling of nested sub-
routines and interrupts, is that a program may call on itself as a subroutine just as it can call on any
other routine. Each new call causes the return linkage to be placed on the stack, which, as it is a last-

in/first-out queue, sets up a natural unraveling to each routine just after the point of departure. Typical
flow for a recursive routine might resemble that shown in Figure 10-12.

MAIN PROGRAM

b
sSuB 1

SuB 2

SuUB 2

MR-3673

Figure 10-12 Recursive Routine Flow

The main program calls function 1, SUB 1, which calls function 2, SUB 2, which recurses once before
returning.

Example:

DNCF: ,

BEQ 18 .TO EXIT RECURSIVE LOOP
JSR R5.DNCF .RECURSE

1$,

RTS RS .RETURN TO 1$ FOR
;EACH CALL, THEN TO
;MAIN PROGRAM

The routine DNCEF calls itself until the variable tested becomes equal to 0, then it exits to 1$ where the
RTS instruction is executed, returning to the 1% once for each recursive call and a final time to return
to the main program.

In general, recursion techniques will lead to slower programs than the corresponding interactive tech-
niques, but recursion will produce shorter programs, and thus save memory space. Both the brevity and
clarity produced by recursion are important in assembly language programs.

Uses of Recursion — Recursion can be used in any routine in which the same process is required several
times. For example, a function to be integrated may contain another function to be integrated, as in
solving for XM, where

10-18

SM =1 4+ F(X) -

and

F(X) = G(X)

Another use for a recursive function could be in calculating a factorial function, because

FACT(N) = FACT(N — 1) * N

Recursion should terminate when N = 1.

The macroprocessor within MACRO-11, for example, is itself recursive since it can process nested
macrodefinitions and calls. For example, within a macrodefinition, other macros can be called. When a

macro call is encountered within definition, the processor must work recursively; that is, it must process
one macro before it is finished with another, then continue with the previous one. The stack is used for a
separate storage area for the variables associated with each call to the procedure.

As long as nested definitions of macros are available, it is possible for a macro to call itself. However,

unless conditionals are used to terminate this expansion, an infinite loop could be generated.

10.3.11 Processor Traps
Certain errors and programming conditions cause the KDF11-BA processor to enter the “service” state
and trap to a fixed location. A trap is an interrupt generated by software. Pending conditions are arbi-
trated according to a priority. The following list describes the priority from highest to lowest.

Condition Description

Memory Management Violation* | A memory management violation causes an abort and traps to loca-
(MMUERR) tion 250g.

Timeout Error* (BUSERR) No response from a bus device during a bus transaction causes an
abort and traps to location 4g.

Parity Error* (PARERR) A parity error signal received by the processor during a bus transac-
tion causes an abort and traps to location 114g.

Trace (T) Bit* If PS bit 4 is set at the end of instruction execution, the processor
traps to location 14g.

Stack Overflow* (STKOVF) If the kernel stack pointer was pushed below 400g during an instruc-
tion execution, the processor traps to location 4g at the end of the
instruction.

Power Fail* (PFAIL) If bus signal power OK (BPOKH) became negated during instruc-
tion execution, the processor traps to location 24g at the end of the
instruction.

(Continued)

*Nonmaskable software cannot inhibit the condition. CTLERR, MMUERR, BUSERR, PARERR are mutually exclusive

when the processor is executing a program.

10-19

Condition Description

Interrupt Level 7(BIRQ7) If device interrupt requests are asserted and PS<07:05> are prop-
(Maskable by PS<07:05>) erly set, the processor at the end of the present instruction execution
Interrupt Level 6 (BIRQ6) will initiate an interrupt vector sequenced on the bus.
(Maskable by PS<07:05>)
Interrupt Level 5 (BIRQS) PS<07:05> Levels Inhibited
(Maskable by PS<07:05>)
Interrupt Level 4 (BIRQ4) 7 All
(Maskable by PS<<07:05>) 6 6, 5, 4

5 5,4
4 4
0-3 None

Halt Line If the BHALT L bus signal is asserted during the service state, the
processor will enter ODT mode.

10.3.11.1 Trap Instructions — Trap instructions provide for calls to emulators, 1/O monitors, debug-
ging packages, and user-defined interpreters. When a trap occurs, the contents of the current program
counter (PC) and program status word (PS) are pushed onto the processor stack and replaced by the
contents of a 2-word trap vector containing a new PC and new PS. The return sequence from a trap
involves executing an RTI or RTT instruction, which restores the old PC and old PS by popping them
from the stack. Trap vectors are located at permanently assigned fixed addresses.

The EMT (trap emulator) and TRAP instructions do not use the low-order byte of the word in their
machine language representation. This allows user information to be transferred in the low-order byte.
The new value of the PC loaded from the vector address of the TRAP or EMT instructions is typically
the starting address of a routine to access and interpret this information. Such a routine is called a trap
handler. -

A trap handler must accomplish several tasks. It must save and restore all necessary GPRs, interpret
the low byte of the trap instruction and call the indicated routine, serve as an interface between the
calling program and this routine by handling any data that needs to be passed between them, and, final-
ly, cause the return to the main routine.

A trap handler can be useful as a patching technique. Jumping out to a patch area is often difficult
because a 2-word jump must be performed. However, the 1-word TRAP instruction may be used to
dispatch to patch areas. A sufficient number of slots for patching should first be reserved in the dis-
patch table of the trap handler. The jump can then be accomplished by placing the address of the patch
area into the table and inserting the proper TRAP instruction where the patch is to be made.

10-20

10.3.11.2 Use of Macro Calls — The trap handler can be used in a program to dispatch execution to any
one of several routines. Macros may be defined to cause the proper expansion of a call to one of these
routines, as in the example below.

.MACRO SUB2 ARG
MOV ARG, RO
TRAP +1
ENDM

When expanded, this macro sets up the one argument required by the routine in RO and then causes the
trap instruction with the number 1 in the lower byte. The trap handler should be written so that it
recognizes a 1 as a call to SUB2. Notice that ARG here is being transmitted to SUB2 from the calling
program. It may be data required by the routine or it may be a pointer to a longer list of arguments.

In an operating system environment like RT-11, the EMT instruction is used to call system or monitor
routines from a user program. The monitor of an operating system necessarily contains coding for many
functions, such as I/QO, file manipulation, etc. This coding is made accessible to the program through a
series of macro calls that expand into EMT instructions with low bytes, indicating the desired routine or
group of routines to which the desired routine belongs. Often a GPR is designated to be used to pass an
identification code to further indicate to the trap handler which routine is desired. For example, the
macro expansion for a resume execution command in RT-11 is as follows.

.MACRO .RSUM
CM3, 2.
.ENDM

CM3 is defined:

MACRO CM3 CHAN, CODE
MOV #CODE *400,R0

JIF NB HAN,BISB CHAN,RO
EMT 374
.ENDM

Note that the EMT low byte is 374. This is interpreted by the EMT handler to indicate a group of
routines. Then the contents of RO (high byte) are tested by the handler to identify exactly which routine
within the group is being requested — in this case routine number 2. (The CM3 call of the .RSUM is set
up to pass the identification code.)

10.3.12 Conversion Routines

Almost all assembly language programs require the translation of data or results from one form to an-
other. Code that performs such a transformation is called a conversion routine in this guide. Several
commonly used conversion routines follow. |

Almost all assembly language programs involve some type of conversion routine. Octal-to-ASCII, octal-
to-decimal, and decimal-to-ASCII are a few of the most widely used.

Arithmetic multiply and divide routines are fundamental to many conversion routines. Division is typi-
cally approched in one of two ways.

10-21

The division can be accomplished through a combination of rotates and subtractions.

Example:

Assume the following code and register data; to make the example easier, also assume a 3-bit
word.

DIV: MOV #3,—(SP) .SET UP DIGIT COUNTER
CLR —(SP) :CLEAR RESULT

1$ ASL (SP)
ASL R1
ROL RO
CMP RO,R3
BLT 2%
SUB R3,R0 ;RO CONTAINS REMAINDER
INC (SP) . INCREMENT RESULT

2$ DEC 2 (SP) ‘DECREMENT COUNTER
BNE $1

Therefore, to divide 7 by 2:

RO = 000 remainder
R1 =111 7 (multiplicand)
R3 =010 2 (multiplier)
Chit =0

STACK
011 counter
000 quotient

Following through the coding, the quotient, remainder, and dividend all shift left, manipu-
lating the most significant digit first, etc.

At the conclusion of the routine:

RO = 001 remainder
R1 = 000
R3 =010

STACK
000 counter

011 quotient

The second method of division works by repeated subtraction of the powers of the divisor,
keeping a count of the number of subtractions at each level.

Example:

To divide 221 by 10, first try to subtract powers of 10 until a nonnegative value is obtained,
counting the number of subtractions of each power.

221
— 1000

10-22

Negative, so go to the next lower power, and count for 103 = 0.

221
—100

121 count for 102 = 1
— 100

21 count = 2

— 100

Negative, so reduce power, and count for 10% = 2.

21
—10

11 count for 10 = 1.

i1
—10

1 count = 2
— 10

Negative, so count for 10! = 2.

No lower power, so remainder 1s 1.

Answer = 022, remainder 1.

Multiplication can be done with a combination of rotates and additions or with repetitive additions.

Example:

Assume the following code and a 3-bit word.

CLR RO :-HIGH HALF OF ANSWER

MOV #3,CNT SET UP COUNTER

MOV R1,MULT,; ‘MULTIPLICAND

MORE: ROR R2
BCC NOW
ADD MULT,RO ;1F INDICATED,

ADD
-MULTIPLICAND

NOW; ROR RO
R04 R1
DEC CNT

BNE MORE

MULT: 0
CNT: 0

10-23

The following conditions exist for 6 times 3:

RO = 000 high-order half of result
R1 =110 multiplicand
R3 = 011 multiplier

After the routine is executed:

Example:

RO = 010 high-order half of result
R1 = 010 low-order half of result
R2 =100
CNT =0
MULT = 110

Multiplication of RO by 50g(101000).

MULS5O0:

If RO contains 7:

After execution:

RO =111

‘RO = 100011000
(7 * 508 = 430y).

MOV RO,—(SP)
ASL RO
ASL RO
ADD (SP)+,R0
ASL RO
ASL RO
ASL RO
RETURN

ASCII Conversions — The conversion of ASCII characters to the internal representation of a number, as
well as the conversion of an internal number to ASCII in 1/O operations, presents a challenge. The
following routine takes the 16-bit word in R1 and stores the corresponding six ASCII characters in the
buffer addressed by R2.

OUT: MOV #5,R0 ;.LOOP COUNT
LOOP: MOV R1,—(SP) ;,COPY WORD INTO STACK

BIC #177770,@SP ;.ONE OCTAL VALUE
ADD #0,@SP ;.CONVERT TO ASCII
MOVB (SP)+,—(R2) .STORE IN BUFFER
ASR R1 .SHIFT
ASR RI :RIGHT
ASR R1 ;THREE
DEC RO ;TEST IF DONE
BNE LOOP :NO, DO IT AGAIN
BIC #177776,R1 .GET LAST BIT
ADD #0,R1 ;.CONVERT TO ASCII
MOVB R5,—(R2) .STORE IN BUFFER
RTS PC .DONE,RETURN

10-24

10.4 PROGRAMMING THE PROCESSOR STATUS WORD
The current processor status can be read and written using several programming techniques on the PS.
The PS has an 1/O address of 17777776. The KDF11-BA and other PDP-11 processors implement this
address, whereas LSI-11 and LSI-11/2 processors do not. One technique is to use the I/O address as a
source or destination address with any instruction.

CLR @#17777776
MOV @#17777776, RO

The first instruction clears the PS and the second instruction moves the contents of the PS to general
register RO.

The PS explicit address (17777776) can be accessed on a word or byte basis. The KDF11-BA will rec-
ognize the PS odd address (17777777) and the access result will be identical to an odd memory address
reference.

Another technique is to use the two dedicated PS instructions, MTPS and MFPS. These instructions
only reference the even byte. If memory management is enabled certain PS bits are protected. Refer to
Paragraph 8.5.3.2 for more details.

10.5 PROGRAMMING PERIPHERALS |
Programming LSI-11 bus-compatible modules (devices) is simple. A special class of instructions that
deal with input/output operations is unnecessary. The bus structure permits a unified addressing struc-
ture in which control, status, and data registers for devices are directly addressed as memory locations.

Therefore, all operations on these registers, such as tranferring information into or out of them or ma-
nipulating data within them, are performed by normal memory reference instructions.

The use of all memory reference instructions on device registers greatly increases the flexibility of in-
put/output programming. For example, information in a device register can be compared directly with
a value and a branch made on the result.

CMP RBUF, #101
BEQ SERVICE

In this case, the program looks for 101 in the DLVI11 receiver data buffer register (RBUF) and
branches if it finds it. There i1s no need to transfer the information into an intermediate register for
comparison.

When the character is of interest, a memory reference instruction can transfer the character into a user
buffer in memory or to another peripheral device. The instruction:

MOV DRINBUF LOC

transfers a character from the DRV11 data input buffer (DRINBUF) into a user-defined location.

All arithmetic operations can be performed on a peripheral device register. For example, the instruction
ADD #10, DROUT BUF will add 10 to the DRV11’s output buffer. All read/write device registers can

be treated as accumulators. There is no need to funnel all data transfers, arithmetic operations, and
comparisons through one or a small number of accumulator registers.

10-25

10.6 PDP-11 PROGRAMMING EXAMPLES
The programming examples on the following pages show how the instruction set, the addressing modes,
and the programming techniques can be used to solve some simple problems. The format used is either
PAL-11 or MACRO-11.

Program

Address

000500

000504

000510

000514

000520

000524
000526
000430
000532
000534
000536
000540
000542

000544

000546

000700
000702
000704
000706
000710

001000
001002
001004
001006
001010

Program

Contents

000000
000001
000002
000003
000004
000005
000006
000007

000500
012706
000500
012701
000700
012702
000712
012703
001000
012704
001012

005000
005005
062105
020102
001375
062300
020304
001375

160500

000000

000700
000001
000002
000003
000004
000005

001000

000004
000005
000006
000007
000010

000500

Label

START:

SUM1:

SUM2:

DIFF:

Op Code Operand

RO=%0
R1-%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

.=500

MOV

MOV

MOV

MOV

MOV

CLR

CLR

ADD

CMP
BNE

ADD
CMP

BNE

SUB

HALT

=700

#.,SP

$#700,R1

$712,R2

#1000,R3

#1012,R4

RO
R5
(R1)+,R5
R1,R2
SUM1
(R3)+,R0
R3,R4
SUM2

RS, RO

WORD 1,2,3,4,5

=1000
WORD 4,5,6,7,8

END

10-26

Comments

; PROGRAMMING EXAMPLE

; SUBTRACT CONTENTS OF LOCS 700-710

; FROM CONTENTS OF LOCS 1000-1010

; INIT STACK POINTER

: START ADDING
; FINISHED ADDING?
; IF NOT BRANCH BACK
; START ADDING
: FINISHED ADDING?
; IF NOT BRANCH BACK

i SUBTRACT RESULTS

; THAT'S ALL FOLKS

Program Program

Address Contents Label

START:

CHECK:

BPL NEXT
INC RO

NEXT:

BNE CHECK
HALT

VALUES:

. END

START:

CHECK:

NO:

AVERAGE:

SCORES*

Op Code Operand

RO=%0
R1=%1
R2=%2
SP=%6
PC=%7

.=500

MOV#.,SP
MOV #VALUE,R1
MOV #VALUES+40.,R2
CLR RO

TST

CMP R1,R2

R0O=%0
Rl1=%1
R2=%2
R3=%3
SP=%6
PC=%7

.=500

MOV #.,SP
MOV #16.,R1

(R1)+

MOV #SCORES,R2
MOV #AVERAGE,R3

CLR RO

CMP (R2)+, (R3)

BLE NO

INC RO

DEC Rl

BNE CHECK

HALT
65.

Comments

; PROGRAM TO COUNT NEGATIVE NUMBERS

;IN A TABLE

;20. SIGNED WORDS

;BEGINNING AT LOC VALUES

; COUNT HOW MANY ARE NEGATIVE IN RO

; SET UP STACK

; SET UP POINTER

; SET UP COUNTER

; TEST NUMBER

; POSITIVE?

;NO, INCREMENT

;s COUNTER

;YES, FINISHED?

:NO, GO BACK

;YES, STOP

; PROGRAM TO COUNT ABOVE AVERAGE QUIZ SCORES

; LIST OF 16. QUIZ SCORES

; BEGINNING AT LOC SCORES

; KNOWN AVERAGE IN LOC AVERAGE

; COUNT IN RO SCORES ABOVE AVERAGE

;SET UP STACK
; SET UP COUNTER
;SET UP POINTER

; COMPARE SCORE AND AVERAGE
; LESS THAN OR EQUAL
; TO AVERAGE?
;NO, COUNT
;YES, DECREMENT COUNTER
; FINISHED? NO, CHECK
;YES, STOP

25.,70.,100.,60.,80.,80,,40.
55.,75.,100.,65.,90.,70.,65.,70.

.END

10-27

Program

Address

Program
Contents

OUT:

SAVE:

Label

START:
MOV

MOV

IN:

ECHO:

BPL

MOVB

MovB

DEC
BNE

MOV

MOV

TSTB

BPL

MOVB
DEC

BNE

HALT

.BYTE

.=.+20,
L] END

Op Code Operand Comments

; PROGRAMMING EXAMPLE

; ACCEPT (IMMEDIATE ECHO) AND
; STORE 20. CHARS
; FROM THE KEYBOARD, OUTPUT CR & LF

; ECHO ENTIRE STRING FROM STORAGE

RO=%0

R1=%1

SP=%6

CR=15

LF=12

TKS=177560

TKB=TKS+2

TPS=TKB+2
TPB=TPS+2

.TITLE ECHO

.=1000
MOV %.,5P ; INITIALIZE STACK POINTER
#SAVE+2,R0 ; SA OF BUFFER

; BEYOND CR & LF
$20.,R1 ; CHARACTER COUNT

TSTB R#TKS ; CHAR IN BUFFER?
BPL IN ; IF NOT BRANCH BACK

; AND WAIT
TSTB @#TPS ;CHECK TELEPRINTER

; READY STATUS
ECHO
@#TKB ,@Q#TPB ; ECHO CHARACTER
@¥TKB, (RO) + ; STORE CHARACTER AWAY
R1
IN ; FINISHED INPUTTING?

#SAVE RO ; SA OF BUFFER INCLUDING
;CR & LF

$22.,R1 ; COUNTER OF BUFFER
; INCLUDING CR & LF

QRTPS ; CHECK TELEPRINTER
; READY STATUS

ouT
(RO)+,@%TPB ; OUTPUT CHARACTER
R1
ouT ; FINISHED OUTPUTTING?

10-28

Program Program

Address Contents Label Op Code Operand Comments

; PROGRAMMING EXAMPLE
; SUBROUTINE TO INPUT TEN VALUES

INPUT: MOV #BUFFER,RO ;SET UP SA OF
; STORAGE BUFFER

MOV #-10.,R1 ; SET UP COUNTER
IN: TSTB @#TKS ; TEST KYBD READY STATUS

BPL IN
OUT: TSTB @#TPS ; TEST TTO READY STATUS

BPL OUT
MOVB @#TKB,@#TPB ; ECHO CHARACTER
MOVB @#TKB, (RO)+ ;s STORE CHARACTER
INC R1 ; INC COUNTER

BNE IN

RTS PC sEXIT

; PROGRAMMING EXAMPLE

; SUBROUTINE TO SORT TEN VALUES

SORT : MOV #-10.,R4
NEXT: MOV COUNT,R3

MOV #BUFFER+9.,RO0
ADD R3,RO
MOVB {RO)+,R1

LOOP: CMPB (RO)+,R1
BGE GT

LT : MOVB - (RO) ,R2
| MOVB R1, (RO)+

MOV R2,R1
GT: INC R3

BNE LOOP
INSERT: MOVB R1,BUFFER+10. (R4)

INC R4
INC COUNT
BNE NEXT -
MOV #-9.,COUNT : RESTORE LOCATION COUNT
RTS PC s EXIT

COUNT: .WORD -9,

LINEl: .ASCII/INPUT ANY TEN SINGLE-DIGIT VALUES (0-9); I'LL/

.ASCII/SORT AND OUTPUT THEM IN/

LINE2: .ASCII/SMALLEST TO LARGEST ORDER./
BUFFER: .=.+10. |

| .END INITSP ; FINISHED! !}

10-29

Program Program
Address Contents Label

INITSP:

CRLF:

LNFD:

OUTPUT:

AGAIN:

Op Code Operand

RO=%0
Ri=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7
TKS=177560

Comments

; PROGRAMMING EXAMPLE

; SUBROUTINE EXAMPLE
; INPUT TEN VALUES, SORT, AND

;OUTPUT THEM IN SMALLEST TO LARGEST ORDER

(address of terminal control status register)

TKB=TKS+2 - (terminal data buffer register)

TPS=TKB+2
(terminal output control and status registers)
TPB=TPS+2 - (terminal output data buffer)

.=3000

MOV #.,SP
JSR PC,CRLF
JSR R5, OUTPUT
LINE1
69,

JSR PC,CRLF
JSR RS5,0UTPUT
LINE2
26.
JSR PC,CRLF
JSR PC,INPUT
JSR PC,SORT
JSR PC,CRLF
JSR R5,0UTPUT
BUFFER
10.
JSR PC,CRLF
HALT

TSTB @#TPS

BPL CRLF

MOVB #15,@#TPB

TSTB @#TPS

BPL LNFD

MOVB #12,@#TPB

RTS PC

MOV (R5)+,RO0
MOV (RS5)+,R1
NEG R1
TSTB @#TPS
BPL AGAIN
MOVB (RO)+,Q4#TPB

INC R1
BNE AGAIN

RTS R5

10-30

;INITIALIZE STACK POINTER
;GO TO CRLF SUBROUTINE
;GOT TO OUTPUT SUBROUTINE
;SA OF LINE 1 BUFFER
; NUMBER OF OUTPUTS
;GO TO CRLF SUBROUTINE
:GO TO OUTPUT SUBROUTINE
;SA OF LINE 2 BUFFER
; NUMBER OF OUTPUTS
;GO TO CRLF SUBROUTINE
;GO TO INPUT SUBROUTINE
;GO TO SORT SUBROUTINE
;GO TO CRLF SUBROUTINE
:GO TO OUTPUT SUBROUTINE
; INPUT BUFFER AREA
s NUMBER OF OUTPUTS

; THE ENDI!!!

; PROGRAMMING EXAMPLE

; SUBROUTINE TO OUTPUT A CR & LF

s TEST TTO READY STATUS

; OUTPUT CARRIAGE RETURN

; TEST TTO READY STATUS

;OUTPUT LINE FEED
s EXIT

; SUBROUTINE TO OUTPUT A
; VARIABLE LENGTH MESSAGE
;PICK UP SA OF DATA BLOCK
: PICK UP NUMBER OF OUTPUTS
;NEGATE IT
; TEST TTO READY STATUS

; OUTPUT CHARACTER

;BUMP COUNTER

10.7 LOOPING TECHNIQUES
Looping techniques are illustrated in the program segments below. The segments are used to clear a 50-
word table.

l. Autoincrement (pointer address in GPR)

LOOP:

RO = %0
MOV #TBL,RO
CLR (RO)+
CMP RO, #TBL + 100.
BNE LOOP

Autodecrement (pointer and limit values in GPR)

LOOP:

RO=%0
R1=%]1
MOV #TBL,RO
MOV #TBL +100.,R1
CLR - (R1)
CMP R1,R0
BNE LOOP

Counter (decrementing a GPR containing count)

LOOP:

RO=%0
R1=%l
MOV #TBL,R0
MOV #50.,R1
CLR (R0O)+
DEC R1
BNE LOOP

Index Register Modification (indexed mode; modifying index value)

LOOP:

RO=%0
CLR RO
CLR TBL (RO)
ADD #2,R0
CMP RO,#100.
BNE LOOP

Faster Index Register Modification (storing values in GPR)

LOOP:

10-31

RO=%0
R1=%1
R2=%2
MOV #2 R1
MOYV #100.,R2
CLR RO
CLR TBL (RO)
ADD R1,R0
CMP RO,R2
BNE LOOP

6. Address Modification (indexed mode; modifying base address)

LOOP:

10-32

RO=2%0
MOV #TBL,R0
CLR 0(R0)
ADD #2,LOOP 42
CMP LOOP+2,#100.
BNE LOOP

CHAPTER 11
BOOTSTRAP AND DIAGNOSTIC LOGIC

11.1 INTRODUCTION
The bootstrap and diagnostic logic features three hardware registers and two ROM sockets for 2K, 4K
or 8K of 16-bit read-only memory. This 16-bit read-only memory typically contains diagnostic programs
and a selection of bootstrap programs. These programs are user-selectable by setting eight switches on a
16-pin DIP switch pack (E102). Programming the bootstrap and diagnostic logic consists of setting the
switches for the programs desired and the supplying of inputs by the console operator. The boot-
strap/diagnostic switch configurations and console operator responses are described in Chapter 2, Para-
graph 2.2.4.1. The diagnostic programs test the processor, the memory and the user’s console.

The KDF11-BA includes two BDV11-compatible 2K X 8 ROMs that are installed in ROM sockets
E126 (low byte) and E127 (high byte). The BDV programs include both CPU and memory diagnostics
as well as bootstrap programs for loading memory from a variety of LSI-11-compatible peripherals.
Paragraphs 2.2.4.1 and 11.4 present specific information on the operation of the BDV ROM programs.

Alternatively, users may install ROMs or EPROMSs containing programs of their choice in the ROM
sockets. In such case the features of the BDV ROM programs would no longer be applicable unless
specifically included in the new ROMs.

11.2 BOOTSTRAP AND DIAGNOSTIC REGISTERS
The bootstrap and diagnostic logic contains three hardware registers that are software-addressable.
(One of the registers is a dual-purpose, functioning as the configuration register when read and the
display register when written.) These registers are assigned individual addresses that cannot be changed
or modified. The designations and addresses of these registers are listed in Table 11-1 The registers and
associated logic are described in the following paragraphs.

These three registers, along with the line clock register and the ROM addresses, can be disabled by
inserting a jumper from J10 to J15.

Table 11-1 Register Address Assignments

Read/ Bit
Register Write Size Address

Page Control 1\ 12 17777520

Read/Write R/W 16 17777522
Maintenance
Configuration* R 8 17777524

Display* W 4 17777524

*Dual-purpose register.

11.2.1 Page Control Register (PCR) — Address: 17777520
The page control register (PCR) is a write-only register that is both word- and byte-addressable. Only
bits <C13:8> and <<5:0> can be loaded. Whenever the KDF11-BA read-only memory is accessed, ei-
ther the PCR high byte (bits <<13:8>>) or the PCR low byte (bits < 5:0>) is used for the six most
significant bits of the ROM address.

The read-only memory is accessed by bus addresses 17773000 through 17773777. The eight least signif-
icant bits (bits <<7:0>) of the bus address become the low-order bits of the ROM address. If bus ad-
dress bit 8 is zero (17773000-17773377), PCR bits <<5:0> become the six most significant bits of the
ROM address. If bus address bit 8 is one (17773400-17773777), PCR bits <13:8> become the six
most significant bits of the ROM address. The format for the page control register is shown in Figure
11-1. This register is cleared by power-up and when the system is rebooted.

15 14 13 08 07 06 05 00
L, 1 I | 1 i L7 Y T T Y T

W PCR HB 7/% PCR LB
A | \ 1 | | 77, \ | | L |

v - D g

SELECTS ROM ADDRESS SELECTS ROM ADDRESS

IN 17773400-17773777 RANGE IN 17773000-17773377

MR -7109

Figure 11-1 Page Control Register Format

11.2.2 Read/Write Maintenance Register (R/W) — Address: 17777522
The read /write maintenance register (R/W) is a 16-bit read /write register that is both word- and byte-
addressable. It is used by the ROM diagnostics to test various read/write functions before accessing
main memory. This register is cleared by power-up and by system reset.

11.2.3 Configuration and Display Register (CDR) — Address: 17777524
The configuration and display register (CDR) is actually made up of two independent registers that
share the same address. The read-only configuration register is accessed when the CDR is read. The
write-only display register is loaded by a write transfer to the CDR.

Configuration register bits <C15:8> always read as zero; bits <<7:0> reflect the status of eight switch-
es on the KDF11-BA module at location E102. The interpretation of these switches is determined by
the ROM boot and diagnostic programs. Diagnostic/bootstrap program selection for the KDF11-BA is
described in Tables 2-7 and 2-8.

Display register bits <<3:0> allow for program control of a diagnostic LED display on the KDF11-BA
module. Writing a 0 into one of these bits lights its corresponding LED. Writing a 1 into one of these
bits turns its corresponding LED off. Display register bits <<15:4> are not used. The display register is
cleared (and the four LEDs are lit) by power-up or system restart.

11.3 KDF11-BA ROM MEMORY (ADDRESSES: 17773000-17773777)
The KDF11-BA boot and Diagnostic option has two ROM sockets for either 2K, 4K, or 8K of 16-bit
read-only memory.

Addressing ROM Memory |
The KDF11-BA ROM memory responds to bus addresses 17773000-17773777. The eight least signifi-
cant bits of the bus address (bits <<7:0>) become the low byte of the ROM address. If bus address bit
8 1s zero (17773000-17773377), the PCR bits <<5:0> become the six most significant bits of the 14-bit
ROM address. If bus address bit 8 is one (17773400-17773777), PCR bits <13:8> become the six
most significant bits of the ROM address.

The KDF11-BA includes a pair of 2K X 8 ROMs that only require a 12-bit ROM address. The two
most significant ROM address bits (PCR bits <<13:12> or <<5:4>) must be zero. Figures 11-2 and 11-
3 show the formation of the ROM address by the PCR LO byte and the PCR HI byte, respectively.

FIXED ADDRESS 17773 VARIABLE 000-377
A A

— \L \
21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 0504 03 02 01 00

PROGHAM T +© T LS L T L L T i 1 L [| T f T T

ADDRESS |1 1+ v v v 1 1 1 1 1 0 1 1 0 VARIABLE <07:00>

L1 1 2 £ 1 o b1 i i 1 | I W U IO R |
-

SELECTS PCR T
LOW BYTE
WHEN “0"

0504 03 02 01 00
1 1 1 | |

PCR LO BYTE] PCR LB <05:00>

ROM ADDRESS

MR-7110

Figure 11-2 ROM Address Format Using PCR LO Byte

FIXED ADDRESS 17773 VARIABLE 400-777
Al A

r N »

212019 18 17 16 15 14 13 12 11 10 09 08 07 06 0504 Q3 02 01 QO
L B I | | p—| r 1 1 1 1T 1 T T T T 1T 7 T

PROGRAM .
ADDRESS LA Y I I R A A S A R ¢ I I B VARIABLE <07.00>

L S N BN TR SR SR
1 . J

SELECTS PCR
HIGH BYTE
WHEN ll1lf

i - | | i A 1 1 " L 1 1

13 12 11 10 09 08
T T T 1

PCR HI BYTE § PCR HB <13:08>

1 ' 1 L

S >

I A
r N ™\

13 12 11 10 09 08 07 06 0504 03 02 01 00
T I Ll T L) T ! T ¥ | 1 L

ROM ADDRESS

1 i I | o | Il L | 1] L

MRZ111

Figure 11-3 ROM Address Format Using PCR HI Byte

11.4 KDF11-BA BOOTSTRAP AND DIAGNOSTIC ROM FUNCTIONALITY
The KDF11-BA ROM programs include both CPU and memory diagnostics as well as bootstrap pro-
grams for loading memory from a variety of LSI-11-compatible perpherals. Paragraph 2.2.4.1 describes
the use of the configuration register switches in selecting the diagnostic and bootstrap programs. The
LED displays and error halts used by the ROM programs are described below.

11.4.1 KDF11-BA LED Display
The KDF11-BA ROM programs use the four red LEDs to indicate which programs and program seg-
ments are running. If the program performs an error halt or if it hangs up waiting for data from a
peripheral device, these LEDs serve as an error indication.

11-3

The four red LEDs present an octal number from 0 (all LEDs off) to 17 (all LEDs on). The most
significant LED is separated from the other three LEDs by the green power-on LED. An octal code of
0 indicates that the diagnostics and bootstrap programs have been successfully executed. Codes 1 and 2
are lit during the CPU and memory tests, respectively. Codes 3 and 4 are lit when the ROM programs
are typing a message on the console device or waiting for a console input, respectively. Codes 5-12 are

lit during various phases of the bootstrap routines. (Code 12 indicates a ROM bootstrap error and
should never occur on the KDF11-BA which, unlike the BDV11, does not have sockets for additional
ROM boot code.) If the memory diagnostic is disabled, the ROM code still verifies the existence of
memory locations 0—6, indicating an error with LED code 13. Code 17 indicates that the ROM pro-
grams are unable to begin running, either because the halt switch is on, or because of a hardware fail-
ure. Table 11-2 lists the errors indicated by their corresponding LED display pattern.

Table 11-2 KDF11-BA LED Display

Display MSD LSD
(Octal) Bit 3 Bit 2 Bit 1 Bit (Type of Error

01 Off Off Off On CPU test error.

02 Off Off On Off Memory test error.

03 Off Off On On Waiting for console terminal transmitter
READY flag.

04 Off On Off Off Waiting for console terminal receiver DONE
flag.

05 Off On Off On Load device status error.

06 Off On On Off Bootstrap code incorrect;

07 Off On On On DECnet waiting for response from host.

10 On Off Off Off DECnet waiting for message completion.

11 On Off Off On DECnet processing received message.

12 On Off On Off ROM bootstrap error (not used on KDF11-BA).

13 On Off On On Special memory test failure on locations 0--6.
(Can occur when memory test is disabled.)

17 On On On On System hung, halt switch on, or not power-up
mode 2.

NOTE
The errors indicated above are valid only if the KDF11-BA BDV ROMs (part numbers 23-339E2-00 and 23-340E2-00) are
installed in ROM sockets E126 (low byte) and E127 (high byte).

11-4

11.4.2 KDF11-BA Error Halts
A failure in a diagnostic test or bootstrap program causes the error to be indicated by the display and

an error halt instruction is carried out by the processor. When entering the halt mode, the processor

outputs on the console terminal the PC address at the time of the error. The actual error address is one

word less than the terminal printout. In halt mode, the processor responds to the console ODT com-

mands and allows the operator to troubleshoot the error. Table 11-3 lists the error halts that can result

when the KDF11-BA ROM diagnostics and boostrap programs detect an error condition.

Table 11-3 List of Error Halts

Address Display
of Error* (Octal) Cause of Error

173036 01 CP1ERR, RO contains address of error.

173040 05 SLU switch selection incorrect; error in switches.

173046 05 SLU error; CSR address for selected device in error. Check CSR for selected

device in floating CSR address area.

173200 12 ROM loader error; checksum on data block.

173232 02 Memory error 2; write address into itself.

Test 0-30K words with MMU off if present.
R1 = Address in error and expected data
R5 = Failing data

173236 01 CP4ERR, RO points to cause of error.

173240 01 CP3ERR, RO contains address of error.

173262 02 Memory error 3; odd parity pattern (072527) using byte addressing. Failure

in this test usually will indicate problem in byte logic.

Test 0-30K words with MMU off if present.
R1 = Failing address
R4 = Expected data
R5 = Failing data

173302 02 Memory error in prememory data test for locations 000-776.

R2 = Failing data
R3 = Expected data
R5 = Failing address (000-776)

173316 02 Memory error; bit 15 set in one of the parity CSRs (772100-772136). Failing

memory should have parity error light on.

R4 = Address of failing CSR
(Contents of failing CSR identifies which 1K-word bank of memory caused
error.)

*Contents of R7 after halt.

11-5

Table 11-3 List of Error Halts (Cont)

Address Display
of Error* (Octal) Cause of Error

173364 12 ROM loader error; checksum on address block.

173376 12 ROM loader error; jump address is odd.

173526 05 RLO1/RLO02 device error.

173652 05 RKO5 device error.

173654 01 Switch mode halt; match was not made with switches.

173660 02 Memory error in 0000-2044K words of the 22-bit memory test. This is a com-
mon error halt for six different tests.

[f R3 = 0, there is an error in test 1-5; R4 determines failing test.
R4 = Expected data
R5 = Failing data

Contents Test Test Description
of R4 No.

20000-27776 1 Address test bits 11-0
177777 2 Data test
000000 3 Data test
072527 4 Odd parity pattern test
125125 5 Byte addressing test

| For tests 1-5 (R3 = 0), determine 22-bit failing address as follows:

R1 bits 11-00 = failing address bits 11-00
R2 bits 15-06 = failing address bits 21-12

Example:
R2 = 123400 R1 = 027776
R2 = 1234XX R1 = XX7776

Ignore the upper two octal digits of R1 and the lower two octal digits of R2.
Failing 22-bit address = 12347776

Errors in address uniqueness test.
Test checks address bits 21-06. Test 6.
If R3 is not equal to 0, an error is in this test.

R4 = Expected data
R5 = Failing data
R2 = 22-bit failing physical address bits 21-06.
Failing address bits 05-00 are always O.

*Contents of R7 after halt.

11-6

Table 11-3 List of Error Halts (Cont)

Address Display
of Error* (Octal) Cause of Error

Example:
R2 = 024566
Failing address = 02456600

173664 02 Memory error in prememory address test for locations 000—776.
R2 = Failing data
R5 = Failing address and expected data

173670 0l Error CPU Test 9; JSR R3 failed.

173700 01 Error CPU Test 9; JSR PC failed.

173704 05 RX01/RXO02 device error.

173714 04 A NO typed in console terminal test.

173736 02 Memory error 1; data test failed.

Test 0-30K words with MMU off if present.
R1 = Failing address
R4 ; Expected data (either 0 or 177777)
R5 = Failing data

173740 01 Error CPU Test 9; RTS return failed.

173742 03/04 Console terminal test; no DONE flag.

173760 05 TUSR error halt.

*Contents of R7 after halt.

11-7

CHAPTER 12
LINE FREQUENCY CLOCK

12.1 INTRODUCTION
The line clock logic generates bus request level 6 interrupts to the processor at time intervals deter-
mined by the BEVENT L signal. The BEVENT L signal is obtained from the power supply via module
pin BR1 at 16 2/3 ms or 20 ms intervals, depending on the line frequency source (60 Hz or 50 Hz,
respectively). The line clock logic is shown in Figure 5-11.

Recognition of the BEVENT L signal is typically enabled and disabled under program control using bit
6 of the line clock status register (LKS). When the line clock register is disabled, or if clock interrupts
are to be always enabled, recognition of BEVENT L is held enabled by inserting the jumper from J10
to J11.

12.2 LINE CLOCK STATUS REGISTER (LKS) (ADDRESS: 17777546)
The line clock status register (LKS) contains the read/write line clock interrupt enable bit (6), which
enables and disables recognition of the BEVENT L line. The remaining bits are not used and always
read as zero.

Program recognition of this register, along with the boot and diagnostic registers and ROM memory,
can be disabled by inserting a jumper from J10 to J15 on the KDF11-BA module. The line clock status
register bit assignment is described in Table 12-1.

Table 12-1 Line Clock Status Register Bit Assignment

Bit Mnemonic | Meaning and Operation

15:07 Unused.

06 LCIE Line Clock Interrupt Enable — When set, this read /write bit allows the LSI-11
BEVENT line to initiate program interrupt requests. When this bit is clear,
line clock interrupts are disabled. LCIE is cleared by power-up and BINIT.
LCIE is held set when the LTC ENJ L (J10 to J11) jumper is installed.

05:00 Unused.

12.3 LINE CLOCK OPERATION
When the line clock interrupt bit is set (either under program control or by a jumper from J10 to J11),
assertion of BEVENT L generates an interrupt request at level 6. If the current processor priority is 6
or 7, the processor ignores this request. If the priority is 5 or less, the processor traps to a service routine
via vector address 100. Memory location 100 must contain the starting address of the service routine;
location 102 contains the new processor status word.

Interrupt vector address: 100
Priority level: 6

12-1

CHAPTER 13
SERIAL-LINE UNITS

13.1 INTRODUCTION
The two full-duplex asynchronous serial-line units (console serial-line unit and the second serial-line
unit) provide the KDF11-BA with an EIA interface that is compatible with RS-232-C and RS-423. The
serial-line baud rates are determined by a clock signal from an internal baud rate generator or an exter-
nal clock signal via connectors J1 and J2. Jumpers are provided to select either the internal clock or the
external clock. If the internal clock is jumper-selected, the serial-line baud rates are switch-selectable
from 50 to 19.2K baud. The console serial line and the second serial line may operate at different baud
rates, but each serial line will transmit and receive data at the same selected rate. The serial lines pro-
vide error indicator bits for overrun error, framing error, and parity error.

The console serial-line unit may be configured to respond to a break signal received from the console
terminal. Both serial lines interrupt the processor at bus interrupt priority request level 4 (BR4).

The character format for each of the serial-line units is selected by wirewrap jumpers. The format may
consist of seven or eight data bits, one or two stop bits, parity or no parity, and even or odd parity. The
wirewrap jumper configuration and baud rate switch configuration for the serial lines are described in
Chapter 2.

The console serial-line unit is connected to the con_sole terminal via connector J1. The second serial-line
unit is connected to a line printer, the TUS8 cassette tape, or an additional terminal via connector J2. A

block diagram of the serial-line units is shown in Figure 5-12.

13.2 SERIAL-LINE UNIT REGISTERS
The program communicates with and transfers data to and from the external peripheral devices via four
registers associated with each serial line. Two of the registers (RCSR and TCSR) contain con-
trol /status information for receiver and transmitter operation. The other two registers (RBUF and
TBUF) contain data received from and data to be transmitted to the peripheral device. The addresses
assigned to the console and second serial-line registers are listed in Table 13-1.

Register Bit Assignments
The console and second serial-line registers have the same bit assignments with the exception of bit O of
the TCSR. Bit 0 1s used as a transmit break bit (TX BRK) in the second serial-line register (TCSR2)
and it is unused in the console serial-line register (TCSR1).

The bit formats for the registers are shown in Figure 13-1. The register bit assignments are described in
Tables 13-2 through 13-5.

13-1

Table 13-1 Serial-Line Register Addresses

Console Line Second Serial Line
Register Address* Register Address

RCSRI1 17777560 RCSR2 17776500** 17776540%**

RBUF1 17777562 RBUF2 17776502 17776542

TCSRI1 17777564 TCSR2 17776504 17776544

TBUFI 17777566 TBUF2 17776506 17776546

*DL1 DISJ L (J14) must be ungrounded.
**DL2 DISJ L (J13) and DL2 ADRJ L (J12) must be ungrounded.

***DL2 DISJ L (J13) must be ungrounded and DL2 ADRJ L (J12) must be grounded.

13 12 11 10 09 08 07 06 05 04 03 02 01 00
T L} T T L ¥ L] ¥ LJ

RCSR 0 0 0O O 0O O 0 O l | l 0 g O l 0 0 0]
4 A '} Y 1L L] '}

“ J — J —y —_—

NOT USED NOT USED

RECEIVER DONE (READ ONLY)

RECEIVER INTERRUPT ENABLE (READ/WRITE)

14 13 12 11 _10 09 08 07 06 05 04 03 02 01 0O
| 1 Li 1 T I T

RBUFLwl] I]0:0:0.01 L : \
\ v A ~ J

NOT USED RECEIVE DATA

ERROR (7,8 BIT DATA IS RIGHT-JUSTIFIED)

(READ ONLY) IF BIT 07 UNUSED =7 DATA BITS

OVERRUN ERROR PARITY ERROR (READ ONLY)

{READ ONLY) FRAMING ERROR (READ ONLY)

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
T T T T L | ¥ Y Y T Y T

TCSRI 0 O 0 0 ¢ O 0 0O] | IU 0 0O 0 O I I
L 'l 3 L 1 1 I L 1 I 1

R Y
NOT USED NOT USED

TRANSMIT READY (READ ONLY)

TRANSMIT INTERRUPT ENABLE (READ/WRITE)

TRANSMIT BREAK {READ/WRITE)

TRANSMIT BREAK BIT 01S USED ONLY IN TCSR2. IT {SNOT USED IN TCSR1.

13 12 11 10 09 08 0Q7 06
L § 1 T T Ll

TBUF I 0O O 0 0 c O 0 o
5 I L)| 'l A L 'l I } " 'l '

06 04 03 02 01 00
L]

Y Y
NOT USED TRANSMIT DATA

(7,8 BIT IS RIGHT-JUSTIFIED) ON

{(WRITE ONLY). ON READ =0

MRA-5892

Figure 13-1 Serial-Line Register Formats

13-2

Table 13-2 RCSRI1 and RCSR2 Bit Assignments

Bits Mnemonic Description

15-08 Unused. Read as zeros.

07 RX DONE | Receiver Done. This read-only bit is set when an entire character has been
received and is ready to be read from the RBUF Register. This bit 1s auto-
matically cleared when RBUF is read. It is also cleared by power-up and
BUS INIT.

06 RX IE Receiver Interrupt Enable. This read/write bit is cleared by power-up and
BUS INIT. If both RCVR DONE and RCVR INT ENB are set, a program
interrupt is requested.

05-00 Unused. Read as zeros.

Table 13-3 RBUF1 and RBUF2 Bit Assignments

Bits Mnemonic Description

15 ERR Error. This read-only bit is set if any RBUF bit (14—-12) is set. ERR is clear
if all RBUF bits (14-12) are clear. This bit cannot generate a program in-
terrupt.

14 OVR ERR | Overrun Error. This read-only bit is set if a previously received character
was not read before being overwritten by the present character.

13 FRM ERR | Framing error. This read-only bit is set if the present character had no valid
stop bit. Also used to detect a break condition.

12 PAR ERR Parity Error. This read-only bit is set if received parity does not agree with
expected parity. Always O if no parity is selected.

NOTE
Error conditions remain in effect until the next character is received, at
which point, the error bits are updated. The error bits are cleared by power-
up and BUS INIT.

11-08 Unused. Read as zeros.

07-00 Received Data Bits. These read-only bits contained the last received charac-
ter. If less than eight bits are selected, the character will be right-justified
with the most significant bit(s) reading zero.

13-3

Table 13-4 TCSR1 and TCSR2 Bit Assignments

Bits Mnemonic Description

15-08 Unused. Read as zeros.

07 TX RDY Transmitter Ready. This read-only bit is cleared when TBUF is loaded and
is set when TBUF can receive another character. XMT RDY is set by pow-
er-up and by BUS INIT.

06 TX 1E Transmitter Interrupt Enable. This read/write bit is cleared by power-up
and BUS INIT. If both XMT RDY and XMT INT ENB are set, a program
interrupt is requested.

02-01 Unused. Read as zeros.

00 TX BRK Break. When set, this read /write bit transmits a continuous space. This bit
is cleared by power-up and SYSTEM INIT. This bit is used only in TCSR2;
it is unused in TCSR1.

Table 13-S TBUF1 and TBUF2 Bit Assignments

Bits Mnemonic Description

15-08 Unused. Read as zeros.

07-00 TBUF TBUF bits 07-00 are write-only bits used to load the transmitted character.
If less than eight bits are selected, the character must be right-justified.

13.3 INTERRUPT VECTORS AND INTERRUPT PRIORITY
Two interrupt vectors are provided for the console SLU: one for the SLU transmitter and the other for
the SLU receiver. Four interrupt vectors are provided for the second SLU, but only two may be used at
any given time. The two vectors that are used by the second SLU depend on the DL2 ADRJ L (J12)
jumper configuration. Table 13-6 lists the vectors provided for the console and second serial-line units.
The interrupt priority for both SLUs is BR4.

13.4 CONSOLE SLU BREAK RESPONSE
The KDF11-BA console serial-line unit may be configured either to perform a halt operation or to have
no response when a break condition is received. A halt operation will cause the processor to halt and
enter the on-line debugging technique (ODT) microcode.

If the console SLU is disabled (J14 connected to J10), the halt-on-break feature must also be disabled.
The halt-on-break feature is disabled by removing the jumper between J3 and J4 and connecting a
jumper between J4 and J3.

13.5 SERIAL-LINE I/0 SIGNALS |
The two SLUs’ input/output signals interface to the console terminal and peripheral device via two
connectors (J1 and J2). The connector pin functions for both SLUSs are identical and are described in
Table 13-7. The 10 pins on each connector (Digital part No. 12-13506-04) are arranged in two rows
with five pins in each row.

13-4

Table 13-6 Console and Second SLU Interrupt Vectors

Console SLU Second SLU*

Receiver Transmitter Receiver Transmitter

060 064 300%* 304

304 *** 344

*DL2 DISJ L (J13) must be ungrounded to enable the Second SLU.

**DL2 ADRJ L (12) must be ungrounded.

***D[.2 ADRJ L (J12) must be grounded to J10.

Table 13-7 SLU Connector Pin Functions

Pin | Signal Function ; ?

] EXT CLK Input for optional external clock signal.* ‘ T opeas ij

2 Ground

3 XMIT+ Transmitter output.

4 Ground

5 Ground

6 NC Key; pin not provided.

7 RCV — Receiver input (most negative).

8 RCV + Receiver input (most positive).

9 Ground

10 +12 V Power for external options; fused at 1 A.

*Paragraph 2.2.7 describes the internal/external SLU clock jumpers.

PB-25

Junnpaer

8= 20

/7> 1

435>

13-5

CHAPTER 14
COMMERCIAL INSTRUCTION SET

14.1 INTRODUCTION
The commercial instruction set (CIS) provided by the KEF11-BB option is a series of instructions for

manipulating byte strings in order to improve COBOL performance, text editing, and word processing

capabilities. CIS includes instructions that operate on character strings and on decimal numbers. Each
generic type of instruction is provided in two forms. The essential difference between the two forms is
the manner in which operands are delivered to the instruction. The first form is the “register” form,
where operands are implicitly obtained from the general registers. The second form is the “in-line”
form, where operands or word address pointers to operands follow the op-code word in the instruction
stream. The mnemonic for the in-line form is the mnemonic for the register form suffixed with the
letter “1.” The condition codes are set identically for both forms. The in-line forms minimize register

modifications.

The CIS also includes commercial load descriptor instructions used for instruction control. These 1n-
structions augment the character and form instructions by efficiently loading operands (string descrip-
tors) into the general registers. Descriptors consist of the starting address of the string and the length of

the string. Two forms of instructions are provided. The first form of the instruction loads two string

descriptors into the general registers. The second form loads three string descriptors into the general

registers.

The instructions in the PDP-11 CIS consist of the following extended instruction groups.

07602X Commercial Load 2 Descriptors
07603X Character String Move
07604X Character String Search
07605X Numeric String
07606X Commercial Load 3 Descriptors
07607X Packed String
07613X Character String Move (in-line)
07614X Character String Search (in-line)
07615X Numeric String (in-line)
07617X Packed String (in-line)

14.2 UNPREDICTABLE CONDITIONS
A result of an instruction or the effect of an instruction can be ‘“‘unpredictable.” Unpredictable de-
scribes an outcome that is indeterminate and nonrepeatable. When the results of an instruction are un-
predictable, the condition codes and destination operands (but not their descriptors) will contain unpre-
dictable values; destinations may not even contain valid results. When the effect of an instruction is
unpredictable, the entire user or process state, and not only the portion typically used by the instruction,
will be unpredictable. In a machine with multiple modes and address spaces, and unpredictable oper-
ation in a less privileged mode will not affect the state of a more privileged mode, nor will it result in
accesses to memory from user mode that are outside the mapped limits of the user’s program.

14-1

Note that architectural constraints exist on unpredictable effects. In particular, an unpredictable effect
that manifests itself as a trap must meet all the requirements for the particular trap.

14.3 CHARACTER DATA TYPES
There are three different character data types.

1. A “character,” a single byte with an abbreviated string of length 1.
2. A “character string,” a contiguous group of bytes in memory.

3. A “character set,” a subset of the 256 possible characters that can be encoded in a byte.

14.3.1 Character
A character is an 8-bit byte, as shown in Figure 14-1.

07 00
1 T Y Y Y T T

i L 1 L | L

MR-5903

Figure 14-1 8-Bit Byte Character

A character is used as an operand by CIS instructions. When one appears in a general register, it is in
the low-order half; the high-order half of the register must be zero. When it appears in the instruction
stream, the character is in the low-order half of a word: the high-order half of the word must be zero. If
the high-order half of a word that contains a character is nonzero, the effect of the instruction that uses
it will be unpredictable.

14.3.2 Character String
A character string is a contiguous sequence of bytes in memory that begins and ends on a byte bound-
ary. It is addressed by its most significant character (lowest address). The highest address is the least
significant character. A character string is specified by a 2-word descriptor with the attributes of length
and lowest address. The length is an unsigned binary integer that represents the number of characters
in the string and may range from 0 to 65,535. A character string with zero length is said to be vacant;
its address is ignored. A character string with nonzero length is said to be occupied.

The character string descriptor is used as an operand by CIS instructions. The descriptor appears in two
consecutive general registers, or in two consecutive words in memory pointed to by a word in the in-
struction stream. Figure 14-2 shows the descriptor for a character string of length “n” starting at ad-
dress “A” in memory.

RX PTR

OR !

RX+1 PTR+2

—

B —
—

o

~
—

o
—

—
>

—
-
L

=

=

— — . — =

MR.6904

Figure 14-2 Character String Descriptor

14-2

Figure 14-3 shows the character string as it would be placed in memory.

07 00
1 1 T i 1 ¥ 1

A MOST SIG CHAR

1 | 1 i 1 l L

07 — - _ 00
T T T L L T 1

A+1

| 1 L I | | 1

\j
07 00

! 1 L ¥ ¥ 1 1

A+N-1 LEAST SiG CHAR

| | 1 | 1 |]

MR -6905

Figure 14-3 Character String in Memory

14.3.3 Character Set

A character set is a subset of the 256 possible characters that can be encoded in a byte. It is specified

by a descriptor that consists of the address of a 256-byte table and an 8-bit mask. The address is of byte

0 in the table. Each byte in the table specifies up to eight orthogonal character subsets of which the

corresponding character is a member. The mask selects which combinations of these orthogonal subsets

comprise the entire character set. In effect, each bit in the mask corresponds to one of eight orthogonal

subsets that may be encoded by the table. The mask specifies the union of the selected subsets into the

character set. Typical sets would be: uppercase, lowercase, nonzero digits, end-of-line, etc.

Operationally, a character (char) is considered to be in the character set if the evaluation of

(M[table.adr +char].mask) is not equal to zero. The character is not in the character set if the cval-

uation is zero. Each byte in the table indicates of which combination of up to eight orthogonal character

subsets (i.e., one for each of the eight bit vectors: 00000001(2), 00000010(2), 00000100(2),

00001000(2), 00010000(2), 00100000(2), 01000000(2) and 10000000(2)) the corresponding character

is a member. The mask specifies which union of the eight orthogonal character subsets comprises the

total character set. For example, if (a) the 8-bit vector 00000001(2) appearing in the table corresponds

to the character subset of all uppercase alphabetic characters, (b) 00000010(2) appearing in the table

corresponds to the character subset of all lowercase alphabetic characters, and (c) 00000100(2) appear-

ing in the table corresponds to the decimal digits, then using the mask 00000011(2) with this table

specifies the character set of all alphabetic characters, and using the mask 00000111(2) specifies the

character set of all alphanumeric characters.

The character set descriptor is used as an operand by CIS instructions. It appears in two consecutive

general registers, or in two consecutive words of memory pointed to by a word in the instruction stream.

If the high-order half of the first descriptor word is nonnzero, the effect of an instruction that uses a

character set will be unpredictable. The character set format is shown in Figure 14-4.

14-3

RX PTR

\ 1 L | i { l l
OR ! ! t | T ! ! t

RX+1 PTR+2 TABLE ADDRESS

| 1 l | 1 | | L 1 | l 1 1 | 1

—
 (
)

-

= > w
 ~

e
 .

-

L

e

MR.-6906

Figure 14-4 Character Set Format

14.3.4 Character String Instructions

Character string operatlons conveniently provide most of the common, as well as time-consuming, func-
tions that are encountered in commercial data and text processing applications. Instructions are provid-
ed to move and to search character strings.

The character string move instructions use character string descriptors as operands. These descriptors
specify a source and a destination character string. The contents of the source are moved to the destina-
tion with alignment at either the most significant character, as in MOVC(I) and MOVTC(]), or the
least significant character, as in MOVRC(I). If the source is longer than the destination, characters are
truncated from the side opposite that of the alignment; if the destination is longer than the source, the
destination is completed with fill characters on the side opposite that of the alignment. The MOVTC(])
instructions move a translated source string to a destination string. The character string move instruc-
tions are summarized below.

Character String Move Instructions

MOVC(I) Move character
MOVRC(I) Move reverse-justified character
MOVTC(I) Move translated character

The character string search instructions use a character string descriptor as one operand. The other
operand is either a character, a character string descriptor, or a character set descriptor. These instruc-
tions are used to examine the source string to find the presence or absence of characters. The source
string is processed from most significant to least significant character. The character string search in-
structions are summarized below.

Character String Search Instructions

LOCC(I) Locate character
SKPC(I) Skip character
SCANC(I) Scan character
SPANC(I) Span character
CMPC(I) Compare character
MATC() Match character

Conceptually, the character string search instructions may be divided into three classes.

1. Character String Searches — CMPC(I) compares two character strings. The condition codes
are set according to the comparison of the corresponding most significant unequal characters.
MATC(I) finds an object string within a source string. This is the “in-string” function that
languages and text processing systems provide.

14-4

2. Character Searches — LOCC(]) finds the first occurrence of a given character in a string.

SKPC(I) skips to the first nonoccurrence of a given character in a string.

3. Character Set Searches — In these instructions, a string is examined until a member of a

character set is either found, as in SCANC(I), or found, as in SPANC(I). This aids the

search for one of several delimiters, such as the slash (/), comma (,), CR, LF, FF, etc., or the

passing of combinations of characters such as blanks, tabs, etc. LOCC(I) and SKPC(I) are

optimizations of SCANC(I) and SPANC(I), in which the set consists of a single character.

The setting of condition codes reflects the results of the character string operations. For character
string moves, the condition codes indicate whether the source and destination strings were of equal

length, the source was shorter than the destination so that fill characters were used, or the source was

longer than the destination so that characters were truncated. This is accomplished by setting the condi-

tion codes on the result of an arithmetic comparison of the initial source and destination lengths. For

CMPC(I) the condition codes are the result of arithmetically comparing the most significant corre-

sponding pair of unequal characters. For the other search instructions they show whether or not the
operand strings were completely examined.

The condition codes for some character string search instructions may be interpreted according to the

notion of success or failure. Success is the accomplishment of the instruction’s task; failure is the in-

ability to accomplish the task. Since the condition codes are set based on the results of the instruction,

there is an indirect correspondence between these settings and success or failure. This correspondence

is invariant within an instruction, but it is not the same for all search instructions. Therefore, different

branch instructions must be used to test the operation of each instruction. The branch instructions are

summarized below.

Instruction Success | Failure

LOCC(I) BNE BEQ

SCANC(]) BNE BEQ

CMPC(I) BEQ BNE

MATC(I) BNE BEQ

The “register form” of character string instructions implicitly finds operands in the general registers.

These operands include character, character string descriptor, character set descriptor, and translation

table address. If an instruction does not use a register, its contents will be undisturbed. RO—R1 general-

ly contain a source character string descriptor; R2-R3 generally contain a second source character

string descriptor, or the destination string descriptor. The low-order half of R4 is used as an explicit
character. R4—RS are used to contain a character set descriptor. RS contains the starting address of a
256-byte table, which is used for character translation.

When move instructions terminate, RO contains the number of unmoved source characters, and R1, R2,
and R3 are cleared. For search instructions, the registers are updated to represent descriptors for the

resulting strings.

The “in-line” form of character string instructions finds operands, or pointers to operands, in the in-
struction stream immediately following the op-code word. Operands that appear directly in the instruc-
tion stream include characters and translation table addresses. Descriptors are represented in the in-

14-5

struction stream by a single word whose contents are interpreted as a word address pointer to the 2-
word descriptor. These descriptors specify character strings and character sets. Some instructions re-
turn a character string descriptor in RO-R1.

In general, all character string instructions are unaffected by the overlapping of source or destination
strings. The result of the move instructions is equivalent to having read the entire source string before
storing characters in the destination. If the destination string of the MOVTC(I) instructions overlaps
the translation table, the characters stored in the destination string will be unpredictable.

144 DECIMAL STRING DATA TYPES
Two classes of decimal string data types — numeric strings and packed strings — are defined. Both have
similar arithmetic and operational properties; they differ primarily in their representation of signs and
the placement of their digits in memory.

The numeric string data types are signed zoned, unsigned zoned, trailing overpunched, leading over-
punched, trailing separate, and leading separate. The packed string data types are signed packed and
unsigned packed. Instructions that operate on numeric strings permit each numeric string operand to be
separately specified; similarly, packed string instructions permit each packed string operand to be sepa-
rately specified. Thus, within each of the two classes of decimal strings, the operands of an instruction
may be of any data type within the appropriate class.

Decimal strings exist in memory as contiguous bytes that begin and end on a byte boundary. They rep-
resent numbers consisting of 0 to 31;¢ digits, in either sign-magnitude or absolute-value form. Sign-
magnitude strings (signed) may be positive or negative; absolute-value strings (unsigned) represent the
absolute value of the magnitude. Decimal numbers are whole integer values with an implied decimal
radix point immediately after the least significant digit; they may be extended conceptually with the
addition of Os before the most significant digit.

A 4-bit binary coded decimal representation is used for most digits in decimal strings. A 4-bit half byte
is called a “nibble” and may be used to contain a binary bit pattern that represents the value of a
decimal digit. The following shows the binary nibble contents associated with each decimal digit.

Digit Nibble

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Each decimal string data type may have several representations. These representations permit a certain
latitude when accepting source operands. Decimal string data types have a “preferred” representation,
which is a valid source representation used to construct the destination string. Also, “alternate” repre-
sentations are provided for some decimal data types when accepting source operands.

14-6

Decimal strings used as source operands are not checked for validity. Instructions will produce unpre-
dictable results if a decimal string used as a source operand contains invalid digit encoding, an invalid
sign designator, or, in the case of overpunched numbers, invalid sign/digit encoding. When used as a
course, decimal strings with zero magnitude are unique, regardless of sign. Thus, positive zero and
negative zero have identical interpretations.

Conceptually, decimal string instructions first determine the correct result, then store the decimal
string representation of the correct result in the destination string. A result of zero magnitude is consid-
ered to be positively signed. If the destination string can contain more digits than are significant in the
result, the excess most significant destination string digits have zero digits stored in them. If the desti-
nation string cannot contain all significant digits of the result, the excess most significant result digits
are not stored; the instruction will indicate decimal overflow. Note that negative zero is stored in the
destination string as a side effect of decimal overflow where the sign of the result is negative and the
destination is not large enough to contain any nonzero digits of the result.

If the destination string has zero length, no resulting digits will be stored. The sign of the result will be
stored in separate and packed strings, but not in zoned and overpunched strings. Decimal overflow will
indicate a nonzero result.

14.4.1 Decimal String Descriptors
Decimal strings are represented by a 2-word descriptor. The descriptor contains the length, data type,
and address of the string. It appears in two consecutive general registers (in the register form of instruc-
tions), or in two consecutive words in memory pointed to by a word in the instruction stream (in the in-
line form of instructions). The unused bits are reserved by the architecture and must be Os. The effect
of an instruction using a descriptor will be unpredictable if any nonzero reserved field in the descriptor
contains nonzero values or a reserved data type encoding is used. The design of the numeric and packed
string descriptors are identical:

First Word

(L) length <<4:0> Number of digits specified as an unsigned binary integer.

(T) data type <14:12> Specifies which decimal data type representation is used.

Second Word |

(A) address <<15:0> Specifies the address of the byte that contains the most significant digit
of the decimal string.

The descriptor format for a decimal string of data type T whose length is L and whose most significant
digit is at address A is shown in Figure 14-5.

RX PTR 0 T

OR —t
RX+1 PTR+2

—
—

O

—

-

—
—

—

b
I

MR-6907

Figure 14-5 Decimal String Descriptor

14-7

The encodings (in binary) for the “numeric” string data type field are

000 Signed zoned
001 Unsigned zoned
010 Trailing overpunched
011 Leading overpunched
100 Trailing separate
101 Leading separate
110 Reserved for use by DIGITAL
111 Reserved for use by DIGITAL

The encodings (in binary) for the packed string data type field are

000 Reserved for use by DIGITAL
001 Reserved for use by DIGITAL
010 Reserved for use by DIGITAL
011 Reserved for use by DIGITAL
100 Reserved for use by DIGITAL
101 Reserved for use by DIGITAL
110 Signed packed
111 Unsigned packed

14.4.2 Packed Strings | |

Packed strings can store two decimal digits in each byte. The least significant (highest addressed) byte
contains the sign of the number in bits <<3:0> and the least significant digit in bits <7:4>.

Signed Packed Strings — The preferred positive sign designator is 1100,; alternate positive sign designa-
tors are 1010,, 11107 and 11115. The preferred negative sign designator is 11015; the alternate negative
sign designator is 1011;. Source strings will properly accept both the preferred and alternate designa-
tors; destination strings will be stored with the preferred designator.

Unsigned Packed Strings — The unsigned signed designator is 11115.

Packed Sign Nibble

Sign Preferred Alternate
Nibble Designator Designator(s)

Positive 1100, 10105, 11105, 11115

Negative 11015 1011,
Unsigned 11115

For other than the least significant byte, bytes contain two consecutive digits — the one of lower signifi-
cance 1n bits <<3:0> and the one of higher significance in bits <<7:4>. For numbers whose length is
odd, the most significant digit is in bits <<7:4> of the lowest addressed byte. Numbers with an even
length have their most signicant digit in bits <<3:0> of the lowest addressed byte; bits <7:4> of this
byte must be zero for source strings, and are cleared to 0000 for destination strings. Numbers with a
length of one occupy a single byte and contain their digit in bits <<7:4>. The number of bytes that
represents a packed string is [length/2] + 1 (integer division where the fractional portion of the
quotient is discarded).

The format for a packed string with an odd number of digits is shown in Figure 14-6, and the format for
a packed string with an even number of digits is shown in Figure 14-7.

14-8

07 04 03 00
1 1 ¥ L T 1

A MSD
1 § 1 | 1 1

07 ' 04 03 00
T ¥ T L] T 1]

A+1
| | |] | 1

v

07 | 04 03 00
H 1 T T 1 T

A+(LENGTH/2) LSD SIGN
] 1 | | 1 1

MR-6908

Figure 14-6 Packed String — Odd Digits

07 04 03 00
1] ¥) T 1

A 0 MSD
| | 1 1 |]

07 04 03 00
4 T L T T T

At
| { |] | H

'
07 04 03 00

1 |4 1) LI T

A+{LENGTH/2) LSD SIGN
1 Fl } | 1 H

MR-6909

Figure 14-7 Packed String — Even Digits

A zero-length packed string occupies a single byte of storage; bits <<7:4> of this byte must be zero for
source strings, and are cleared to 0000 for destination strings. Bits <3:0> must be a valid sign for
source strings, and are used to store the sign of the result for destination strings. When used as a source,
zero-length strings represent operands with zero magnitude. When used as a destination, they can only
reflect a result of zero magnitude without indicating overflow. The format for a packed string with a
zero length is shown in Figure 14-8.

07 04 03 00
] T L y L 1

A 0 SIGN

§ i 1 I 1 |

MR-6910

Figure 14-8 Packed String — Zero Length

14-9

The following are the characteristics of a valid string.

A length of 0 to 31 digits.

Every digit nibble is in the range 0000 to 10015.

For even-length sources, bits <<7:4> of the lowest addressed byte are 0000.

Signed packed strings — sign nibble is either 10105, 1011,, 11005, 11015, 11105 or 11115.

Unsigned packed strings — sign nibble is 11115. D
B
 N

—

14.4.3 Zoned Strings
Zoned strings represent one decimal digit in each byte. Each byte is divided into two portions — the
high-order nibble (bits <<7:4>) and the low-order nibble (bits <<3:0>). The low-order nibble contains
the value of the corresponding decimal digit. Zoned strings may be either signed or unsigned. The for-
mat for zoned strings is shown in Figure 14-9.

07 04 03 00
1 F 1 T T T

A MSD
| | i 1 l]

07 04 03 00
1 T T Y Y T

A+l

| L 1 | 1 L

 J

07 04 03 00
1 1 T T T T

A+N-1 SIGN LSD “SIGN™ IS PRESENT ONLY
i L |]] | SIGNED ZONED STRINGS

MR-6911

Figure 14-9 Zoned Strings

Signed Zoned Strings — When used as a source string, the high-order nibble of the least significant byte
contains the sign of the number; the high-order nibbles of all other bytes are ignored. Destination
strings are stored with the sign in the high-order nibble of the least significant byte, and 00115 in the
high-order nibble of all other bytes. In the high-order nibble 0011, corresponds to the ASCII encoding
for numeric digits. The positive sign designator is 00115,; the negative sign designator is 01115.

Unsigned Zoned Strings — When used as a source string, the high-order nibbles of all bytes are ignored.
Destination strings are stored with 0011, in the high-order nibble of all bytes. The number of bytes
needed to contain a zoned string is identical to the length of the decimal number.

A zero-length zoned string does not occupy memory; the address portion of its descriptor is ignored.
When used as a source, zero-length strings provide operands with zero magnitude; when used as a desti-
nation, they can only accurately reflect a result of zero magnitude (the sign of the operation is lost). An
attempt to store a nonzero result will be indicated by the setting of overflow. The following are the
characteristics of a valid zoned string.

1. A length of 0 to 31;¢ digits.

14-10

2. The low-order nibbles of each byte are in the range 0000 to 10015.

3. Signed zoned strings — The high-order nibble of the least significant byte is either 00115 or
Oll15,.

14.4.4 Overpunched Strings

Overpunched strings represent one decimal digit in each byte. Trailing overpunched strings combine
the encoding of the sign and the least significant digit; leading overpunched strings combine the encod-
ing of the sign and the most significant digit. Bytes other thar the byte in which the sign is encoded are
divided into two portions — the high-order nibble (bits <<7:4>) and the low-order nibble (bits <3:0>).
The low-order nibble contains the value of the corresponding decimal digit. When used as a source
string, the high-order nibble of all bytes that do not contain the sign are ignored. Destination strings are
stored with 00113 in the high-order nibble of all bytes that do not contain the sign. In the high-order
nibble 0011, corresponds to the ASCII encoding for numeric digits.

The list below shows the sign of the decimal string and the value of the digit encoded in the sign byte.
Source strings will properly accept both the preferred and alternate designators; destination strings will
store the preferred designator. The preferred designators correspond to the ASCII graphics A to R, and
the open and close brace ({ and }). The alternate designators correspond to the ASCII graphics 0 to 9,
the open and close brackets ([and]), a question mark (?), exclamation point ('), and colon (©).

Overpunched Sign/Digit Byte

Overpunched Preferred Alternate
Sign / Digit Designator Designator(s)

+0 01111011, 001100005, 010110115, 00111111,
+1 01000001, 00110001,
+2 01000010, 00110010,
+3 01000011, 00110011,
+4 01000100, 00110100,
+5 01000101, 00110101,
+6 01000110, 00110110,
+7 01000111, 00110111,
+8 01001000, 00111000,
+9 01001001, 001110015
—0 01111101, 01011101,, 001000015, 00111010,
—1 01001010,
—2 01001011,
-3 01001100,
—4 01001101,
—35 01001110,
—6 01001111,
—17 01010000,
—8 010100015,
—9 01010010,

The number of bytes needed to contain an overpunched string is identical to the length of the decimal
number. The format for a trailing overpunched string is shown in Figure 14-10. The leading over-
punched string is shown in Figure 14-11.

14-11

07 04 03 00
I T T I

A MSD

1] i l | 1

07 04 03 00
I | ' Y L I

A+1

L | 1 | | |

!
07 04 03 00

T T T T Y Y H

A+N-1 SIGN AND LSD

|] 1 | i i 1

MR-6912

Figure 14-10 Trailing Overpunched String

07 04 03 00
I T T ¥ L 1 1

A SIGN AND MSD

] i] i |] 1

07 04 03 00
|] 1 v I I

A+1

1 1 1] | 1

j
07 04 03 00

1 ¥ T L Y T

A+N-1 LSD

1 1 | | i I

MRA-8913

Figure 14-11 Leading Overpunched String

A zero-length overpunched string does not occupy memory; the address portion of its descriptor is ig-
nored. When used as a source, zero-length strings provide operands with zero magnitude; when used as
a destination, they can only accurately reflect a result of zero magnitude (the sign of the operation is
lost). An attempt to store a nonzero result will be indicated by the setting of overflow. The following are
the characteristics of a valid overpunched string.

1. A length of 0 to 31;¢ digits.

2. The low-order nibble of each digit byte is in the range 0000 to 10015,.

3. The encoded sign/digit byte contains values from the above list of preferred and alternate
overpunched sign/digit values.

14-12

14.4.5 Separate Strings
Separate strings represent one decimal digit in each byte. Trailing separate strings encode the sign in
the byte immediately after the least significant digit; leading separate strings encode the sign in the
byte immediately before the most significant digit. Bytes other than the byte in which the sign is en-
coded are divided into two portions — the high-order nibble (bits <<7:4>) and the low-order nibble (bits
<23:0>). The low-order nibble contains the value of the corresponding decimal digit.

When used as a source string, the high-order nibbles of all digit bytes are ignored. Destination strings
are stored with 0011, in the high-order nibble of all digit bytes. In the high-order nibble 0011, corre-
sponds to the ASCII encoding for numeric digits. The preferred positive sign designator is 00101011,
and the alternate positive sign designator is 00100000,. The negative sign designator is 001011015.
These designators correspond to the ASCII encoding for the plus sign (+), a space, and minus sign

(—).

Separate Sign Byte

Sign Preferred Alternate
Byte Designator Designator

Positive 00101011, 00100000+
Negative 00101101,

The number of bytes needed to contain a leading or trailing separate string is identical to the length +
1. The format for a trailing separate string is shown in Figure 14-12. The leading separate string is
shown in Figure 14-13.

07 04 03 00
I 1 1 T T 1

A MSD

1 |] 1 | l

07 04 03 00
H T T Y T T

A+t

jl 1 1 i]]

v

07 04 03 00
T I M M ! 1

A+N-1 LSD

i | l l | 1

07 |) | 00
| 1 1 T T "1 T

A+N SIGN

i i L | i I L

MR-6914

Figure 14-12 Trailing Separate String

14-13

07 04 03 00
I I T |

A-1 SIGN

i |) | | i |

07 | 04 03 00
T T T Y T |

A MSD

1 | i | i]

07 , 04 03 00
T T T T T T

A+1
1 1 1] 1]

 J

07 04 03 00
] 1 T L T T

A+N-1 LSD

i 1 1 | | 1

MR-6915

Figure 14-13 Leading Separate String

A zero-length separate string occupies a single byte of memory that contains the sign of the string.
When used as a source, zero-length strings provide operands with zero magnitude; when used as a desti-
nation, they can only reflect a result of zero magnitude without indicating overflow. The sign of the
result is stored.

The format for a zero-length trailing separate string is shown in Figure 14-14. The zero-length leading
separate string is shown in Figure 14-15.

07 00
1 I

] i |]] | 1

MR.-6916

Figure 14-14 Zero-Length Trailing Separate String

A-1 SIGN

MR-6917

Figure 14-15 Zero-Length Leading Separate String

The following are the characteristics of a valid separate string.

1. A length of 0 to 31;¢ digits.

2. The low-order nibble of each digit byte is in the range 0000 to 10015.

3. The sign byte is either 001000005, 001010115 or 001011015.

14-14

14.4.6 Long Integer
Long integers are 32-bit binary 2’s complement numbers organized as two words in consecutive regis-
ters or in memory - no descriptor is used. One word contains the high-order 15 bits. The sign is in bit
<15>; bit <<14> is the most significant. The other word contains the low-order 16 bits with bit <0>
the least significant. The range of numbers that can be represented is —2,147,483,648 to
+2,147,483,647.

The register form of decimal convert instructions uses a restricted form of long-integer format with the
number in the general register pair R2-R3. The format for the register form of decimal convert instruc-
tions is shown in Figure 14-16.

R2 S HIGH

R3 LOW

MR-6918

Figure 14-16 Decimal Convert (Register Form)

The in-line form of decimal convert instructions reference the long integer by a word address pointer,
which is part of the instruction stream. The format for the in-line form of decimal convert instructions
is shown in Figure 14-17.

PTR LOW

—
 —
f
—

p—

—

-

—

—

—
—

-

e

PTR+2 | S HIGH

MR-6218

Figure 14-17 Decimal Convert (In-Line Form)

Note that these two representations of long integers differ. There is no single representation of long
integers among EAE, EIS, FPP and software. The “register’” form was selected to be compatible with
EIS; the “in-line” form was selected to be compatible with current standard software usage.

14.4.7 Decimal String Instructions
Decimal string instructions aid in the manipulation of decimal data. Several numeric (byte) and packed
decimal data types are supported. Instructions are provided for basic arithmetic operations, as well as
for compare, shift, and convert functions.

Each arithmetic, shift and compare instruction operates on a single class of data type. Both numeric
and packed string instructions are provided for most operations. Convert instructions have a source op-
erand of one data type and a destination operand of another data type. Decimal string instructions spec-
ify to which class each of their decimal string operands belong. The data type supplied as part of each
operand’s descriptor may be any valid data type of the class. This permits a general mixing of data
types within numeric and packed classes. The data types on which an instruction operates are desig-
nated by the last letter(s) of the op-code mnemonic. N denotes numeric strings, P denotes packed
strings, and L denotes long binary integers.

14-15

The arithmetic instructions are ADDN(I), ADDP(1), SUBN(I), SUBP(I), MULP(I) AND DIVP(]).
ASHN(I) and ASHP(I) shift a decimal string by a specified number of digit positions (in either direc-
tion) with optional rounding, and store the result in the destination string. Thus, they effectively multi-
ply or divide by a power of 10. If the shift count is zero, these shift instructions can be used simply to
move decimal strings (destinations are stored with preferred representation). Move negated may be ac-
complished by using SUBN(I) or SUBP(I). Arithmetic comparison instructions, CMPN(I) and
CMPP(I), are provided to examine the relative difference between two decimal strings.

CVTNL() and CVTPL(I) convert a decimal string to a long (32-bit) 2’s complement integer.
CVTLN() and CVTLP(I) convert a long integer to a decimal string. CVTNP(I) and CVTPN(I) con-
vert between numeric and packed decimal strings.

The following is a list of the decimal string instructions.

Packed String Instructions

ADDP(I) Add packed
SUBP(I) Subtract packed
MULP(I) Multiply packed
DIVP(I) Divide packed
ASHP(I) Arithmetic shift packed
CMPP(I) Compare packed

Numeric String Instructions

ADDN(I) Add numeric
SUBN(I) Subtract numeric
ASHN(I) Arithmetic shift numeric
CMPN() Compare numeric

Convert Instructions

CVTNL Convert numeric to long
CVTLN Convert long to numeric
CVTPL Convert packed to long
CVTLP Convert long to packed
CVTNP Convert numeric to packed
CVTPN Convert packed to numeric

14.4.8 Condition Codes
For instructions that store a value in a destination string, the N and Z bits reflect the value stored. The
N bit indicates a negative destination; the Z bit indicates a destination having zero magnitude. A desti-
nation string with zero magnitude is considered to be positive (even if a negative zero was stored as a
consequence of decimal overflow). Thus, the setting of N and Z are mutually exclusive.

The V bit indicates whether the destination string accurately represents the result of the instruction. It
is also set if division by zero was attempted. If the V bit is set, the destination string will represent the
least significant portion of the result (truncated). If the V bit is cleared, the destination represents the
true result. |

For DIVP(I), C indicates division by zero. Otherwise, C is always cleared. For comparisons using the
CMPN(I) and CMPP(]) instructions, the N and Z bits reflect the signed relationship between the
source strings. The signed branch instructions can test the result. V and C are cleared.

14-16

For instructions that return a long-integer value, N reflects the sign of the 2’s complement integer, and
Z indicates whether it was zero. V indicates whether the long integer could not contain all significant
digits and sign of the result. CVTNL(I) and CVTPL(I) also use C to represent a borrow from a more
significant portion of the long binary result. Otherwise, C is cleared.

14.4.9 Operand Delivery
The “register”’ form of decimal string instructions implicitly finds the operands in the general registers.
These operands include decimal string descriptors, long binary integers, and shift descriptor words. If
an instruction does not use a register, its contents will be undisturbed. RO-R 1 generally contain the first
source descriptor, R2—-R3 the second source descriptor, and R4-RS5 the destination descriptor. ASHN
and ASHP use R4 to contain a shift descriptor word. CVTLN, CVTLP, CVTNL and CVTPL use
RO-R1 to contain a decimal string descriptor, and R2—R3 for the long integer. When an instruction is
completed, the source descriptor registers are cleared.

The “in-line” form of the decimal string instructions finds the operands, or pointers to descriptors, in
the instruction stream immediately following the op-code word. Operands that appear directly in the
instruction stream are shift descriptor words. Operands that are represented in the instruction stream
by a pointer containing the word address of the descriptor are decimal string descriptors and long bina-
ry integers. No in-line form of decimal string instructions modifies RO—R6.

14.4.10 Data Overlap
The operation of decimal string instructions is unaffected by an overlap of the source operands, provid-
ed that each source operand is a valid representation of the specified data type. The overlap of the
destination string and any of the source strings will, in general, produce unpredictable results. However,
ADDN(I), ADDP(I), SUBN(I) and SUBP(I) will permit the destination string to overlap either or both
source strings only if all corresponding digits of the strings are in coincident bytes in memory. This
facilitates 2-address arithmetic.

14.5 COMMERCIAL LOAD DESCRIPTOR INSTRUCTIONS
The commercial load descriptor instructions augment the character and decimal string instructions by
efficiently loading the general registers with string descriptors. Two forms of instructions are provided.
The first form, the L2Dr instructions, load two string descriptors into the general registers. The first
descriptor 1s loaded into RO-R1 and the second descriptor is loaded into R2-R3. This instruction sup-
ports equal-length character string move, equal-length character string compare, character string
matching, and decimal string compare. The second form, the L3Dr instructions, take three descriptors.
The first is loaded into RO-R1, the second into R2-R3, and the third into R4-RS5. The instruction sup-
ports 3-address arithmetic. The condition codes are not affected for either form of instruction.

Words containing the addresses of the descriptors (two for L2Dr and three for L3Dr) are in consecutive
locations in memory. The descriptor addresses are found by applying the addressing mode @(Rr)+
once for each descriptor. The value of r is encoded as the low-order three bits of the instruction’s op-
code. If O r 5, r can be thought of as the base address of a small table in memory, where each entry in
the table contains the address of a descriptor. If r = 6, the instructions effectively pop the addresses of
descriptors off the stack. If r = 7, the descriptor addresses are contiguous with the instruction’s op-
code word. -

The string descriptors are two words long. The address of the descriptor is that of the low-order word. It
is loaded into the corresponding even register. The high-order word of the descriptor is loaded into the
corresponding odd register. Note that although these instructions are described in terms of string de-
scriptors, they are applicable for instances where two consecutive words in memory referenced by a
pointer are to be copied into even-odd general register pairs. The following is a list of the commercial
load descriptor instructions.

14-17

Command Load 2 descriptors
using:

L2D0 @(RO)+

L2D1 @(R1)+
L2D2 @(R2)+
L2D3 @(R3)+
L2D4 @(R4)+
L2D5 @(R5)+
L2D6 @(R6)+
L2D7 @(R7)+

Load 3 descriptors
using:

L3DO0 @(RO)-+
L3Dl1 @(R1)+

L3D2 @(R2)+
L3D3 @(R3)+
L3D4 @(R4)+
L3D5 @(RS5)+
L3D6 @(R6)+
L3D7 @(R7)+

14.6 INSTRUCTION SUSPENSION
The intent in defining instruction suspendability is to establish a means for providing reasonable inter-
rupt latency and does not presume to endow CIS instructions with an ability to recover from trap condi-
tions from which sequences of basic instructions cannot recover.

Suspension events refer primarily to events that occur asynchronously with the instruction’s execution:
these are specifically the interrupts generated by 1/O peripheral devices, power-fail traps, and floating-
point processor exceptions. Secondarily, suspension-events can refer also to those synchronous trap
events that occur only for information notification purposes and do not imply that the integrity of the
Instruction’s execution is in jeopardy. Such suspension events include “yellow zone” traps.

Potentially suspendable instructions have a defined architectural mechanism (PS< 8> as described be-
low) by which they can be suspended in midexecution to allow the processor to service suspension
events. The instructions are subsequently resumed from the point where they had been suspended.

The presence of suspension events may cause certain CIS instructions to be suspended on some proces-
sors. If the instruction is suspended, PS<<8> will be set, R7 will be backed up to address the op-code
word, and the suspension event will be serviced. When the instruction is resumed, PS< 8> indicates
that execution of the instruction had been in progress.

In order to make these instructions suspendable on all processors, the instruction state is part of the user
state saved by interrupt handling routines. The instruction state includes the general registers, condition
codes, and memory. This state is processor-dependent when suspended. Software should not attempt to
interpret or modify this state; it must only be saved and restored.

Up to 64o words of the internal instruction state may also have been pushed onto the stack. This state
must not be modified by software also. The instruction will remove this state from the stack when it is
resumed.

14-18

If PS<<8> is set prior to the execution of a potentially suspendable instruction, the effect of the in-
struction is unpredictable. PS<<8> is cleared upon normal completion of a potentially suspendable in-
struction. PS<<8> represents “instruction suspension” and has the corresponding mnemonic “IS.”

All suspendable instructions use PS<<8> to indicate instruction suspension. If, when a potentially sus-
pendable instruction is executed, PS<<8>> is clear, the instruction is being commenced; if the bit is set,
the instruction is being resumed. PS<<8> is cleared when:

1. A suspended instruction is successfully completed.

2. The processor powers up.

3. A new PS is fetched from a vector location with PS<<8> clear.

4. RTI or RTT is executed with a new PS<<8> clear.

5 It 1s explicitly cleared by an instruction.

PS <<8> is set when:

1 A potentially suspendable instruction is interrupted and requests to be suspended.

2. A new PS is fetched from a vector location with PS<<8> set.

3. RTI or RTT 1s executed with PS<(8> set.

4. It 1s explicitly set by an instruction.

The setting of this bit has no effect on instructions that are not potentially suspendable; such instruc-
tions do implicitly modify this bit.

When an instruction is suspended, the state that follows may contain information vital to the resump-
tion of the instruction. The information must be preserved and restored prior to restarting the sus-
pended instruction. The nature of the information may vary from one execution of the instruction to
another; it may comprise any of the following.

1. General registers RO-RS5.

2. Condition code bits (PS<3:0>).

3. Up to 649 words on the stack of the context in which the suspended instruction had been
executing.

4. Any destinations used by the instruction.

Stack Utilization
CIS instructions may use the R6 stack for temporary “scratch’ state storage. The maximum number of
additional words an extended instruction may claim on the R6 stack is 641g. The reason for imposing a
limit 1s to ensure that system software can adequately provide for worst-case stack allocation require-
ments. In addition to the above restriction, the normal PDP-11 stack-limit mechanism remains in effect

for extended instructions just as it does for any other instruction.

If insufficient stack space exists, the instruction will terminate by a memory management abort in such
a way that if additional stack space is allocated, the instruction will successfully restart.

Notation

dst Destination string
srcl Source string 1
src2 Source string 2
dscr Descriptor

14-19

14.7 EXTENDED INSTRUCTION DEFINITIONS
The commercial instruction set contains instructions to manipulate various data types and strings, in-
cluding character, numeric and decimal data. The operations performed include data type conversions,
string search operations, block moves, and arithmetic operations. The definitions of the 52 instructions
that compose the CIS are described in Paragraphs 14.7.1 through 14.7.20.

14.7.1 ADDN/ADDP/ADDNI/ADDPI

Purpose: Add Decimal

Operation: dst src2 + srcl

Condition Codes: N: set if dst << 0; cleared otherwise

Z: set if dst = 0; cleared otherwise

V: set if dst cannot contain all significant digits of the result; cleared otherwise

C: cleared

Op Codes: ADDN 076050
ADDP 076070
ADDNI 076150
ADDPI 076170

Description: Srcl is added to src2, and the result is stored in the destination string. The condi-
tion codes reflect the value stored in the destination string, and whether all sig-
nificant digits were stored.

Register Form — ADDN and ADDP

When the instruction starts, the operands must have been placed in the general registers: the first
source descriptor must be in RO-R1, the second source descriptor in R2—R3, and the destination de-
scriptor in R4-RS5. The add decimal format is shown in Figure 14-18.

15 00
| | { { T { I | T T | T T T T

RO

— SRCL.DSCR —_—

R1

} 1] | | l l |] | i i 1] i
| | | ! T | 1 | ' | T T J 1 !

R2

— SRC2.DSCR —_

R3
] 1 | | | 1 | l | i] l | Il }
T 1 1 I | I | 1 T | { T f 1 1

R4

— DST.DSCR —

R5

]]] i |]] 1] L |]]] K|

MRA-6920

Figure 14-18 Add Decimal Format

14-20

When the instruction is completed, the source descriptor registers are cleared, as shown in Figure 14-
19.

00
T T T T T Y T T T | T 1 T T T

RO 0
l |] 1 1]] | L] l] l J }
T T T T J | I | | I | | T | T

R1 0
|] |] | | | | | | \ l | [l |
{ ! J { | 1 i | ! { ! ! { ' I

R2 0
{ i] | ! 1] i } i } | 1 l |
| | 1 | | ! T | | 1 ' 1 | T .

R3 0
|] l l] 1 l { 1 | l }] 1 l
1] | ¥ 1 T 1 | { | | ! { 1 |

R4

— DST.DSCR —

R5
] i |)]] |]]]] i 1 1 1

MR-5921

Figure 14-19 Add Decimal Format (Cleared)

In-Line Form - ADDNI and ADDPI
Each word address pointer that follows the op-code word in the instruction stream refers to a 2-word
decimal string descriptor. RO—R6 are unchanged when the instruction is completed.

Notes:

1. The operation of these instructions is unaffected by any overlap of the source strings, provided
that each source string is a valid representation of the specified data type.

2. Source strings may overlap the destination string only if all corresponding digits of the strings are
in coincident bytes in memory.

14.7.2 ASHN/ASHP/ASHNI/ASHPI

Purpose:

Operation:

Condition Codes:

Op Codes:

Description:

Arithmetic Shift Decimal

dst src = 10** (shift count)

N: set if dst << 0; cleared otherwise

V: set if dst cannot contain all significant digits of the result; cleared otherwise

Z: set if dst = O; cleared otherwise

C: cleared

ASHN 076056

ASHP 076076

ASHNI 076156

ASHPI 076176

The decimal number specified by the source descriptor is arithmetically shifted
and stored in the area specified by the destination descriptor. The shifted result
is aligned with the least significant digit position in the destination string. The
shift count is a 2’s complement byte whose value ranges from —128;g to
+127,0. If the shift count is positive, a shift in the direction of least to most

14-21

significant digits is performed. A negative shift count performs a shift from most
to least significant digit. Thus, the shift count is the power of 10 by which the
source 1s multiplied; negative powers of 10 effectively divide. Zero digits are sup-
plied for vacated digit positions. A zero shift count will move the source to the
destination. The condition codes reflect the value stored in the destination string,
and whether all significant digits are stored.

A negative shift count invokes a rounding operation. The result is constructed by
shifting the source the specified number of digit positions. The rounding digit is
then added to the most significant digit that was shifted out. If this sum is less
than 1019 the shifted result is stored in the destination string. If the sum is 1010
or greater the magnitude of the shifted result is increased by 1 and then stored in
the destination string. If no rounding is desired, the rounding digit should be
Zero.

The shift count and rounding digit are represented in a single word referred to as
the shift descriptor. Bits <<15:12> of this word must be zero. The shift descrip-
tor format is shown in Figure 14-20.

15 12 1" 08 07 00
! 1 | } 1 | T T T T

0 RND.DGT SHIFT.CNT
i | l I |] ! j] | | l J

MR-6922

Figure 14-20 Shift Descriptor Format

Register Form — ASHN and ASHP
When the instruction starts, the operands must have been placed in the general registers: the source
descriptor must be in RO-R1, the destination descriptor in R2-R3, and the shift descriptor in R4. The
arithmetic shift decimal format is shown in Figure 14-21.

15 00
1 ! I | T | T T T T T T | T |

RO

— SRC.DSCR —

R1
| 1] ! i i] { | | | | | | }] ! 1 1 I] ! 1 | J J T 1 T]

R2

— DST.DSCR -

R3
I 1 | | | l | |]]] t]] | {] | | J | | J | T ! ! { T 1

R4 SHIFT.DSCR
| |] | 1 | 1 | |] I | | i |

MA-6923

Figure 14-21 Arithmetic Shift Decimal Format

When the instruction is completed, the source descriptor registers and shift descriptor register are
cleared, as shown in Figure 14-22. |

14-22

1 1 1 1 1 1 | 1 1 1 1 1 || 1 1

RO 0

| | |] | 1 { | | l | l { |]
I 1 I | I | 1) 1 I 1 i 1 1 1

R1 0

| l 1 | l |] ! l ! { | i | |
I | | 1 ! ' 1 1 | 1 ! t | 1 i

R2

— DST.DSCR —

R3
| L | i] | | | | | l l | | l
I 1 | 1 | I | I | I 1 | | 1 i

R4 0

| |]] | L] | 1] | | L | |

MR-6924

Figure 14-22 Arithmetic Shift Decimal Format (Cleared)

In-Line Form - ASHNI and ASHPI
The words followong the op-code word in the instruction stream are a word address pointer to a 2-word

decimal string source descriptor, a word address pointer to a 2-word decimal string destination descrip-
tor, and a shift descriptor word. RO—R6 are unchanged when the instruction is completed.

Notes:

1. If bits <<15:12> of the shift descriptor word are not zero, the effect of the instruction is unpredic-
table. |

2. If bits <<11:8> of the shift descriptor are not a valid decimal digit, the results of the instruction

are unpredictable.

3. Any overlap of the source and destination strings will produce unpredictable results.

14.7.3 CMPC/CMPCI

Purpose: Compare Character

Operation: Srcl is compared with src2 (srcl — src2).

Condition Codes: The condition codes are based on the arithmetic comparison of the most signifi-
cant pair of unequal srcl and src2 characters (srcl.byte — src2.byte)

N: set if dst << 0; cleared otherwise

Z: set if dst = O; cleared otherwise

V: set if there was arithmetic overflow, that 1is, srcl.byte<7> and
src2.byte<<7> were different, and src2.byte <<7> was the same as bit <<7>
of <<srcl.byte — src2.byte); cleared otherwise

C: cleared if there was a carry from the most significant bit of the result; set
otherwise

Op Codes: CMPC 076044
CMPCI 076144

14-23

Description: Each character of srcl is compared with the corresponding character of src2 by
examining the character strings from most significant to least significant charac-
ters. If the character strings are of unequal length, the shorter character string is
conceptually extended to the length of the longer character string with fill char-
acters after its least significant character. The instruction terminates when the
first corresponding unequal characters are found or when both character strings
are exhausted. The condition codes reflect the last comparison, permitting the
unsigned branch instructions to test the result.

Register Form - CMPC
When the instruction starts, the operands must have been placed in the general registers: the first
source character string descriptor must be in RO-R1, the second source character string descriptor in
R2-R3, the fill character in R4<7:0>, and R4<15:8> must be zero. The compare character format
is shown in Figure 14-23.

15 08 07 00
1 i 1 | I | 1 l |] I I LD} 1 |

RO

— SRC1.DSCR .

R1

l 1 | l | i | | | | 1 1] 1 |
| 1 | | 1 1 J 1 i 1 | | 1 1 1

R2

— SRC2.DSCR —]
R3

{ |)| | i i | 1 1 | l | | |
1 1 1 1 I I | 1 ¥ 1 1 ! 1)

R4 0 FILL

1 | | | | i L i | | | | | i

MR-6925

Figure 14-23 Compare Character Format

The instruction terminates with substring descriptors in RO-R1 and R2-R3 that represent the portion
of each source character string beginning with the most significant corresponding unequal characters.
RO-R1 contain a descriptor for the unequal portion of the original srcl string; R2-R3 contain a de-
scriptor for the unequal portion of the original src2 string. A vacant character string descriptor in-
dicates that the entire source character string was equal to the corresponding portion of the other
source character string, including extension by the fill character. The vacant character string descrip-
tor’s address is one greater than that of the least significant character of the character string. The com-
pare character format when the instruction terminates is shown in Figure 14-24.

15 08 07 00
! T T T Y T T T Y T T T T T T

RO

T SUB.SRC1.DSCR —

R1

l | | | { { l | l | l | { | Il
| 1 |) I I 1 I 1] I | | 1 1

R2

- SUB.SRC2.DSCR —

R3

l 1 | | | | 1l | H |] | l l
| 1 | | { | 1 |] { 1 1 1 !

R4 0 FILL

| 1 { |] |] 1] | |] 1 |

MR.6926

Figure 14-24 Compare Character Termination Format

14-24

In-Line Form - CMPCI
The words following the op-code word in the instruction stream are a word address pointer to a 2-word
character string srcl descriptor, a word address pointer to a 2-word character string src2 descriptor,
and a word whose low-order half contains the fill character and whose high-order half must be zero.
RO-R6 are unchanged when the instruction is completed.

Notes:

1. The operation of this instruction is unaffected by any overlap of the source character strings.

2. If the srcl character string is vacant, the fill character will be compared with src2. If the src2
character string is vacant, the fill character will be compared with srcl. If both character strings
are vacant, the condition codes will indicate equality.

3. CMPC - If an initial source character string descriptor is vacant, the resulting substring descrip-
tor is the same as the original character string descriptor.

4. A test for success is BEQ; a test for failure is BNE.

5. When the instruction terminates, the condition codes will be set as if a CMPB instruction operated

on the most significant unequal characters. If both strings are initially vacant or are identical, the
condition codes will be set as if the last characters to be compared were identical. This results in
equality with N, V, and C cleared, and Z set.

6. Both CMPC and CMPCI update the condition codes. CMPC returns substring descriptors.

14.7.4 CMPN/CMPP/CMPNI/CMPPI

Purpose: Compare Decimal

Operation: Srcl is compared with src2 (srcl — src2).

Condition Codes: - set if srcl << src2; cleared otherwise
set if srcl = src2; cleared otherwise

Q
<
N
Z

cleared
cleared

Op Codes: CMPN 076052
CMPP 076072
CMPNI 076152
CMPPI 076172

Description: Srcl is arithmetically compared with src2, with the condition codes reflecting
the comparison. The signed branch instruction can be used to test the result.

Register Form - CMPN and CMPP
When the instruction starts, the operands must have been placed in the general registers: the first
source descriptor must be in RO-R 1, and the second source descriptor in R2-R3. The compare decimal
format is shown in Figure 14-25. |

14-25

15 00 | | [1 J | J T 1 T T T T ! !
RO

— SRC1.DSCR —

R1

| 1 l l | | | {] | | | l |]
I V r I { | J ! | T | f I . l

R2

= SRC2.DSCR —

R3

I] J |] 1 |] 1] 1 j)] il

Figure 14-25 Compare Decimal Format

When the instruction is completed, the source descriptor registers are cleared, as shown in Figure 14-
26.

15 00
T T T T T T ! T T T ! | | T T

RO 0
} ! l | }] |] | |] } i | |
1 | | 1 1 { | 1 { T 1 T J j T

R1 0

i | 1 | { l l] } i | | | | J
| I { 1 { | I |] I | I T 1 1

R2 0
l J) l |] i } } | } l l |]
T | I | I J | | | T | ! T i I

R3 0
L]] 1] 1] i] | 1 1 |]]

MR.6928

Figure 14-26 Compare Decimal Format (Cleared)

In-Line Form — CMPNI and CMPPI
Each word address pointer following the op-code word in the instruction stream refers to a 2-word deci-
mal string descriptor. RO—R6 are unchanged when the instruction is completed.

Note:

1. The operation of these instructions is unaffected by any overlap of the source strings, provided
that each source string is a valid representation of the specified data type.

14.7.5 CVTLN/CVTLP/CVTLNI/CVTLPI

Purpose: Convert Long-to-Decimal)

Operation: decimal string long integer

Condition Codes: N: set if dst << 0; cleared otherwise

Z: set if dst = O; cleared otherwise

V: set if dst cannot contain all significant digits of the result; cleared otherwise

C: cleared

Op Codes: CVTLN 076057
CVTLP 076077
CVTLNI 076157
CVTLPI 076177

14-26

Description: The source long integer is converted to a decimal string. The condition codes re-
flect the result stored in the destination decimal string, and whether all signifi-
cant digits are stored.

Register Form - CVTLN and CVTLP
When the instruction starts, the operands must have been placed in the general registers: the destina-
tion descriptor must be in RO-R1, and the source long integer in R2-R3. The convert long-to-decimal
format is shown in Figure 14-27.

15 00
1 1 1 1 | | 1 1 1 1 1 1 1 1 1

RO

o DST.DSCR —

R1

1 | J l i i
| 1 1 1 | I —+

-+

-+

g

.

o

R2

— SRC.LONG —

R3

L i | L |]] |] | i | | | |

MA-6329

Figure 14-27 Convert Long-to-Decimal Format

When the instruction is completed, the source long-integer registers are cleared, as shown in Figure 14-

28.

15 00
T T J T T T T T T T J T T T T

RO

— DST.DSCR .

R1
l 1 } l 1 { | 1 }] | |] | 1
| |] I | I 1 ' ! !] { 1 1 [

R2 0
| l] i]] ! |] |]]] | !
i I V J J T I I ! | T T] J \

R3 0
|] 1]] |] | 1 A L]] 1]

MR-6930

Figure 14-28 Convert Long-to-Decimal Format (Cleared)

In-Line Form — CVTLNI and CVTLPI
The words following the op-code word in the instruction stream are a word address pointer to a 2-word
decimal string descriptor, and a word address pointer to a 2-word long-integer source. RO—R6 are un-
changed when the instruction is completed.

Notes:

1. Register forms use a long integer oriented with the sign and high-order portion of R2, and the low-

order portion in R3.

2. In-line forms use a long integer oriented with the low-order portion in src.long, and the sign and
high-order portion in src.long + 2.

14-27

14.7.6 CVTNL/CVTPL/CVTNLI/CVTPLI

Purpose:

Operation:

Condition Codes:

Op Codes:

Description:

Convert Decimal-to-Long

long integer decimal string

The condition codes are based on the long-integer destination and on the sign of
the source decimal string.

N: set if long.integer << 0; cleared otherwise

Z: set if long.integer = 0; cleared otherwise

V: set if long.integer dst cannot correctly represent the 2’s complement form of
the result; cleared otherwise

: set if src << 0 and long.integer# 0; cleared otherwise

CVTNL 076053
CVTPL 076073
CVTNLI 076153
CVTPLI 076173

The source decimal string is converted to a long integer. The condition codes re-
flect the result of the operation, and whether significant digits were not con-
verted.

Register Form - CVTNL and CVTPL
When the instruction starts, the operand must have been placed in the general registers: the source
decimal string descriptor must be in the RO—R 1. The convert decimal-to-long format is shown in Figure
14-29.

RO

R1

MR-6931

Figure 14-29 Convert Decimal-to-Long Format

When the instruction is completed, the source decimal string descriptors are cleared, and the destina-
tion long integer is returned in R2-R3, as shown in Figure 14-30.

15 00

RO

R1

- - - g

—
p
n

—

—
e

O

-

O

-

- -

R2

R3

DST.LONG

i i 1 1 1] | 1 1 1 1 |] |

MRA-6932

Figure 14-30 Convert Decimal-to-Long Format (Cleared)

14-28

In-Line Form — CVTNLI and CVTPLI
The words following the op-code word in the instruction stream are a word address pointer to a 2-word
decimal string source descriptor, and a word address pointer to a 2-word long integer destination.
R0O-R6 are unchanged when the instruction is completed.

Notes:

1. Register forms use a long integer oriented with the sign and high-order portion in R2, and the low-
order portion in R3.

2. In-line forms use a long integer oriented with the low-order portion in dst.long, and the sign and
high-order portion in dst.long + 2.

3. If the V bit is set, the contents of the long-integer destination are the least significant 32 bits of the

result.

4. A source whose value is +231 can be represented as a 32-bit binary integer. However, since the
destination is a 2’s complement long integer, the resulting condition codes will be: N set, Z
cleared, V set, and C cleared.

14.7.7 CVTNP/CVTPN/CVTNPI/CVTPNI

Purpose: Convert Decimal

Operation: CVTNP/CVTNPI packed string numeric string
CVTPN/CVTPNI numeric string packed string

Condition Codes: N: set if dst << 0; cleared otherwise

Z: set if dst = 0; cleared otherwise

V: set if dst cannot contain all significant digits of the result; cleared otherwise

C: cleared

Op Codes: CVTNP 076055
CVTPN 076054
CVTNPI 076155
CVTPNI 076154

Description: These instructions convert between numeric and packed decimal strings. The
source decimal string is converted and moved to the destination string. The con-
dition codes reflect the result of the operation, and whether all significant digits
were stored.

Register Form - CVTNP and CVTPN
When the instruction starts, the operands must have been placed in the general registers: the source
descriptor must be in RO-R1, and the destination descriptor in R2—R3. The convert decimal format is

shown in Figure 14-31.

14-29

T ! T T T] T | T T T T T T |
RO

— SRC.DSCR —

R1

] | 1 | | { | | | | 4 | | }]
1] I 1 1 I I T I ¥ | ! I T T

R2

— DST.DSCR —

R3

i 1] 1] | A] 1 | | 1] 1 |

MR-6933

Figure 14-31 Convert Decimal Format

When the instruction is completed, the source descriptor registers are cleared, as shown in Figure 14-
32.

15 00
T T ! T T T T T T T T J T T T

RO 0
1 | | 1] l | l | | l l | |]
1 | | | I T { ! 1 | 1 T J f T

R 0

i | i |] ! | | l | 1 1 | |]
| T J I | i I | ! | J | 1 1 !

R2

— DST.DSCR —

R3
1 | i I] 1 | |] i 1 |] 1]

Figure 14-32 Convert Decimal Format (Cleared)

In-Line Form - CVTNPI and CVTPNI
Each word address pointer following the op-code word in the instruction stream refers to a 2-word deci-
mal string descriptor. RO-R6 are unchanged when the instruction is completed.

Notes:

1. The results of the instruction are unpredictable if the source and destination strings overlap.

2. These instructions use both a numeric and packed decimal string descriptor.

14.7.8 DIVP/DIVPI

Purpose: Divide Decimal

Operation: dst src2/srcl

Condition Codes: N: set if dst << 0; cleared otherwise

Z: set if dst = O; cleared otherwise

V: set if dst cannot contain all significant digits of the result or if srcl = 0;
cleared otherwise

C: set if srcl = 0; cleared otherwise

Op Codes: DIVP 076075
DIVPI 076175

14-30

Description: Src2 is divided by srcl, and the quotient (fraction truncated) is stored in the des-
tination string. The condition codes reflect the value stored in the destination
string, and whether all significant digits were stored.

Register Form - DIVP

When the instruction starts, the operands must have been placed in the general registers: the first
source descriptor must be in RO-R1, the second source descriptor in R2-R3, and the destination de-

scriptor in R4-R5. The divide decimal format is shown in Figure 14-33.

15 00
| | 1 | | 1 | | | T I 1 || T 1

RO

— SRC1.DSCR —

R1
i 1 1 | { | 1 | | [1 1] L 1
1 | i | i 1 1 1 | | 1 1 I 1 1

R2

— SRC2.DSCR —

R3
1 | 1 [| i 1 | | 1 [| } i [1
1 T | 1 1 1 | 1 | 1 1 T 1 13 1

R4

— DST.DSCR -

RS
] 1 | | |] i 1 | | I | 1 1 |

MRA-6935

Figure 14-33 Divide Decimal Format

When the instruction is completed, the source descriptor registers are cleared, as shown in Figure 14-
34.

15 00
T T ! T T T T T T T T T T ' T

RO 0
L |] { l | | [1] } | | | 1
T T V 1 | { T 1 | | I | T I |

R1 0
l] | 1 | | | | !] | | !]]
I T | l | I I | I] { { t T T

R2 0
} |] 1 1 } | l] | | } } { |
T T | T 1 | I T | T | | | j |

R3 0
} l i | | } | | 1 | } |] | i
T T] | f | T 1 i | 1 | { T |

R4
— DST.DSCR —

RS
1 i 1 i] |] 1] | 1] 1] L

MA-6936

Figure 14-34 Divide Decimal Format (Cleared)

In-Line Form ~-DIVPI
Each word address pointer following the op-code word in the instruction stream refers to a 2-word deci-
mal string descriptor. RO-R6 are unchanged when the instruction is completed.

Notes:

1. The operation of these instructions is unaffected by any overlap of the source strings, provided
that each source string is a valid representation of the specified data type.

14-31

2. The results of the instruction are unpredictable if the source and destination strings overlap.

3. Division by zero will set the V and C bits. The destination string, and the N and Z condition code
bits will be unpredictable.

4. No numeric string divide instruction is provided.

14.7.9 LOCC/LOCCI

Purpose: Locate Character

Operation: Search source character string for a character.

Condition Codes: The condition codes are based on the final contents of RO.

N: set if RO <<15> is set; cleared otherwise
Z: set if RO = 0; cleared otherwise
V: cleared
C: cleared

Op Codes: LOCC 076040
LOCCI 076140

Description: The source character string is searched from most significant to least significant
character until the first occurrence of the search character. A character string
descriptor is returned in RO-R1 that represents the portion of the source charac-
ter string beginning with the located character. If the source character string
contains only characters not equal to the search character, the instructions re-
turn a vacant character string descriptor with an address one greater than that of
the least significant character of the source character string. The condition codes
reflect the result value in RO.

Register Form — LOCC
When the instruction starts, the operands must have been placed in the general registers: the source
character string descriptor must be in RO-R1, the search character in R4 <7:0>, and R4 <15:8>
must be zero. The register form of the locate character format is shown in Figure 14-35.

RO

- SRC.DSCR S

R1

1 1 i | 1 i | 1 | 1 I 1 | 1 L

R4 0 CHAR

L 1]] |] | i i] i] 1]

MR-8937

Figure 14-35 Locate Character Format (Register Form)

14-32

When the instruction is completed, RO—R1 contain a character set descriptor that represents the sub-
string of the source character string, beginning with the looated character, as shown in Figure 14-36.

15 08 07 00

RO

F— SUB.SRC.DSCR —

R1

i 1 Il | 1 1 1 | | | L] 1 1 |

R4 0 CHAR
i | |]] |] i L 1 |] | AL

Figure 14-36 Locate Character Termination Format

In-Line Form - LOCCI
The words following the op-code word in the instruction stream are a word address pointer to a 2-word
character string source descriptor, and a word whose low-order half contains the search character and
whose high-order half must be zero. When the instruction is completed, RO—R1 contain a character
string descriptor that represents the substring of the source character string beginning with the located
character. R2-R6 are unchanged. The in-line form of the locate character format is shown in Figure
14-37.

RO

R1

MR-6939

Figure 14-37 Locate Character Format (In-Line)

Notes: |

1. If the initial source character string descriptor is vacant, the instruction terminates with the condi-
tion codes indicating that no match was found. The original source character string descriptor is
returned in RO-R1.

2. A test for success is BNE; a test for failure is BEQ.

3. The condition codes will be set as if this instruction were followed by TST RO.

14.7.10 L2DR

Purpose: Load Two Descriptors

Operation: Load word pairs into RO-R1 and R2-R3.

: not affected
not affected
not affected

not affected

Condition Codes:

QO
 <
N
Z

14-33

Op Code:

Description:

L2DR 07602r

This instruction augments the character and decimal string instructions by ef-
ficiently loading string descriptors into the general registers. A descriptor “al-
pha” 1s loaded into RO-R1; a second descriptor “beta” is loaded into R2-R3.
The address of the descriptors is determined by the addressing mode @ (Rr)+
where r is the low-order three bits of the op-code word. The address of the de-
scriptor “alpha” is derived by applying this addressing mode once; the address of
the descriptor “beta” is derived by applying this addressing mode a second time.
The addressing mode autoincrements the indicated register by two. The address-
ing mode computation is not affected by the descriptors loaded into the general
registers. The words containing the addresses of the descriptors are in con-
secutive words in memory; the descriptors themselves may be anywhere in mem-
ory. The condition codes are not affected.

When the instruction is completed, the “alpha’ descriptor is in RO-R 1 and the
“beta’ descriptor is in R2—R3. The load two descriptors format is shown in Fig-
ure 14-38.

00

RO

R1

| | I I ! \ 1 { | | 1 | i T

ALPHA.DSCR —

R2

R3

-
 —

B —t
p

——
p—

 i } | |
I 1 I I .

e

—

BETA.DSCR —

| | i | 1 | 1 | |] |]] |

14.7.11 L3DR

Purpose:

Operation:

Condition Codes:

Op Code:

Description:

MR.-6940

Figure 14-38 Load Two Descriptors Format

Load Three Descriptors

Load word pairs into RO-R1, R2-R3, and R4-R5.

: not affected

not affected
not affected

not affected A
<
N
Z

L3DR 07606t

This instruction augments the character and decimal string instructions by ef-
ficiently loading string descriptors into the general registers. A descriptor “al-
pha” is loaded into RO—R1; a second descriptor “beta” is loaded into R2-R3; a

third descriptor “gamma” is loaded into R4-R5. The address of the descriptors
is determined by the addressing mode @(Rr)+ where r is the low-order three
bits of the op-code word. The address of the descriptor “alpha” is derived by
applying this addressing mode once. The address of the descriptor “beta” is de-
rived by applying this addressing mode a second time. The address of the de-

14-34

RO

R1

R2

R3

R4

R5

15

scriptor “gamma” is derived by applying this addressing mode a third time. The
addressing mode autoincrements the indicated register by two. The addressing
mode computation is not affected by the descriptors loaded into the general reg-
isters. The words containing the addresses of the descriptors are in consecutive
words in memory; the descriptors themselves may be anywhere in memory. The
condition codes are not affected.

When the instruction is completed, the “alpha” descriptor is in RO-R1, the

“beta” descriptor 1s in R2-R3, and the “gamma” descriptor is in R4-R5. The
load three descriptors format is shown in Figure 14-39.

00

ALPHA.DSCR —

L
 —
—
 i |

1 L | | | e

—

——
—

—r

—

=

BETA.DSCR —

—

-

==

=

—

GAMMA _DSCR —

1 | | 1 i 1 | 1 1 i L | | i

MR-6941

Figure 14-39 Load Three Descriptors Format

14.7.12 MATC/MATCI

Purpose:

Operation:

Condition Codes:

Op Codes:

Description:

Match Character

Search source character string for object character string.

The condition codes are based on the final contents of RO.

N: set if RO<<15> 1s set; cleared otherwise

Z: set if RO = 0; cleared otherwise

V: cleared

C: cleared

MATC 076045
MATCI 076145

The source character string is searched from most significant to least significant
character for the first occurrence of the entire object character string. A charac-
ter string descriptor is returned in RO-R1 that represents the portion of the origi-
nal source character string, from the most significant character that completely
matches the object character string to the end of the source character string. If
the object character string does not completely match any portion of the source
character string, the character descriptor returned in RO-R1 is vacant, with an
address one greater than the least significant character in the source string. The

14-35

condition codes reflect the resulting value in RO. If the Z bit is cleared, the en-
tire object character string was successfully matched with the source character
string; if the Z bit is set, the match failed.

Register Form - MATC
When the instruction starts, the operands must have been placed in the general registers: the source
character string descriptor must be in RO-R1, and the object character string descriptor in R2-R3. The
register form of the match character format is shown in Figure 14-40.

15 00
¥ T T T ! T 1 { T T | 1 ! T 1

RO

— SRC.DSCR —
R1

!]) | | | |] | i | i]] {
| ! T | 1 T 1 1] J T T 1 | I

R2

— OBJ.DSCR o

R3
1 i L 1 I 1] L] I] | 1 1]

MR-6942

Figure 14-40 Match Character Format (Register Form)

The instruction terminates with a character substring descriptor returned in RO-R1 that represents the
portion of the original source character string, beginning with the most significant character to com-
pletely match the object character string. The format of the match character after termination is shown
in Figure 14-41.

I I T T] | T | T T T | T | T
RO

— SUB.SRC.DSCR —

R1

i |
| —

—
—

e i

—

- - l i
1 | fl

—

- i

- —f
p—

L

R2

- OBJ.DSCR —

R3

| 1] 1 i | | | 1 | i | 1 | |

MR-6943

Figure 14-41 Match Character Termination Format

In-Line Form - MATCI
The words following the op-code word in the instruction stream are a word address pointer to a 2-word
character string source descriptor, and a word address pointer to a 2-word character string object de-
scriptor. The instruction terminates with a character substring descriptor returned in RO—R 1 that repre-
sents the portion of the original source character string, beginning with the most significant character to
completely match the object character string. R2-R6 are unchanged when the instruction is completed.
The in-line form of the match character format is shown in Figure 14-42.

14-36

T T] T T ! I T T T Y T T ! V

RO

— SUB.SRC.DSCR —

R1

Figure 14-42 Match Character Format (In-Line)

Notes:

1. The operation of this instruction is unaffected by any overlap of the source and object character
strings.

2. A vacant object character string matches any nonvacant source character string. A vacant source
character string will not match any object character string. If the initial source character string
descriptor is vacant, the instruction terminates with the condition codes indicating that no match
was found. The original source character string descriptor is returned in RO-R1.

3. If the length of the object character string is greater than that of the source character string, no
match is found; RO-R1 and the condition codes will be updated.

4. A test for success is BNE; a test for failure i1s BEQ.

5. The condition codes will be set as if this instruction were followed by TST RO.

14.7.13 MOVC/MOVCI

Purpose: Move Character

Operation: dst src

Condition Codes: The condition codes are based on the arithmetic comparison of the initial charac-
ter string lengths (result = src.len—dst.len).

N: set if result << 0; cleared otherwise

Z: set if result = 0; cleared otherwise

V: set if there was arithmetic overflow, that is, src.len<<15> and dst.len<15>

were different, and dst.len<<15> was the same as bit <15> of
(src.len—dst.len); cleared otherwise

C: cleared if there was a carry from the most significant bit of the result; set

otherwise

Op Codes: MOVC 076030
MOVCI 076130

14-37

Description: The character string specified by the source descriptor is moved into the area
specified by the destination descriptor. It is aligned by the most significant char-
acter. The condition codes reflect an arithmetic comparison of the original
source and destination lengths. If the source string is shorter than the destination
string, the fill character is used to complete the least significant part of the desti-
nation string. This is indicated by the C bit set. If the source string is longer than
the destination string, the least significant characters of the source string are not
moved. This is indicated by the Z and C bits’ being cleared. If the source and
destination strings are of equal length, all characters are moved with neither

truncation nor filling. This is indicated by the Z bit’s being set. The unsigned
branch instructions may test the result of the instruction.

Register Form - MOVC
When the instruction starts, the operands must have been placed in the general registers: the source
character string descriptor must be in RO-R1, the destination character string descriptor in R2-R3, the
fill character in R4<7:0>, and R4<15:8> must be zero. The move character format is shown in
Figure 14-43.

15 08 Q7 00
1 ¥ 1 1 1 1 ' 1 I | 1 1 I ' |

RO

- SRC.DSCR —

R1

| } l |] l | | | | l |] |]
T | | | ¥ | { ! T T | ! | { {

R2

— DST.DSCR —

R3
] } | i 1 1 l] } i }] } |
| I { T ! | | 1 I ! | { | {

R4 0 FILL
i]] 1 I]] 1]] i |] 1

Figure 14-43 Move Character Format

When the instruction is completed, RO contains the number of unmoved source string characters, and
R1-R3 are cleared, as shown in Figure 14-44.

15 08 07 00
! T T T T J T T T T | |] J 1

RO MAX(0,SRC.LEN-DST.LEN)
| { | i | | I |] } | i } | l
{ J ! | { J 1 T 1 T T J T T 1

R1 0

l | 1 | | | i] l i 1 i]] }
| I J 1 1 T T 1 T T { | T 1 T

R2 0

| l | | l { |] l] i ! | l |
| l T T {] | { T | J 1 | | T

R3 0

| |] | l ! |] ! l | l | l
1 { 1 I T | T | { 1 1 T T 1

R4 0 FILL

] i I] i] i] 1 l | 1 i]

MR-G946

Figure 14-44 Move Character Format (Cleared)

In-Line Form - MOVCI
The words following the op-code word in the instruction stream are a word address pointer to a 2-word
character string source descriptor, a word address pointer to a 2-word character string destination de-
scriptor, and a word whose low-order half contains the fill character and whose high-order half must be
zero. RO-R6 are unchanged when the instruction is completed.

14-38

Notes:

1. The operation of this instruction is unaffected by any overlap of the source and destination strings.
The result is equivalent to having read the entire source string before storing characters in the

destination.

2. If the source string is vacant, the fill character will be propagated through the destination string.
If the destination string is vacant, no characters will be moved. The condition codes will be up-

dated. MOVC will update the general registers.

3. MOVC — When the instruction terminates, RO is zero only if Z or C is set.

4. The condition codes will be set as if this instruction were preceded by CMP src.len, dst.len.

14.7.14 MOVRC/MOVRCI

Purpose: Move Reverse-Justified Character

Operation: dst reverse-justified src

Condition Codes: The condition codes are based on the arithmetic comparison of the initial charac-
ter strings (result = src.len—dst.len).

N: set if result << O; cleared otherwise

Z: set if result = O; cleared otherwise

V: set if there was arithmetic overflow, that 1s, srclen<<15> and dst.len<<15>

were different, and dstlen<<15> was the same as bit <15> of

(src.len—dst.len); cleared otherwise

C: cleared if there was a carry from the most significant bit of the result; set
otherwise

Op Codes: MOVRC 076031
MOVRCI 076131

Description: The character string specified by the source descriptor is moved into the area
specified by the destination descriptor. It is aligned by the least significant char-
acter. The condition codes reflect an arithmetic comparison of the original
source and destination lengths. If the source string is shorter than the destination
string, the fill character is used to complete the most significant part of the desti-
nation string. This is indicated by the C bit’s being set. If the source string is
longer than the destination string, the most significant characters of the source
string are not moved. This is indicated by the Z and C bits’ being cleared. If the
source and destination strings are of equal length, all characters are moved with
neither truncation nor filling. This is indicated by the Z bit’s being set. The un-

signed branch instructions may test the result of the instruction.

Register Form - MOVRC
When the instruction starts, the operands must have been placed in the general registers: the source
character string descriptor must be in RO-R 1, the destination character string descriptor in R2-R3, the
fill character in R4 <7:0>, and R4<<15:8> must be zero. The move reverse-justified character for-
mat 1s shown in Figure 14-45.

14-39

1 A 1 1 1 1 1 L) 1 || 1 1 1 1 |

RO

— SRC.DSCR —

R1

{ 1 |] l |] i []] | 1 1 I
| | T ! | | | 1] | | I T | |

R2

— DST.DSCR —

R3

1 i 1 1 { 1] 1 i l 1 1 1 1
| T | | | T | | | | T | H |

R4 o FILL

| 1]] 1 | | | | l l [} 1 l

MR-6947

Figure 14-45 Move Reverse-Justified Character Format

When the instruction is completed, RO contains the number of unmoved source string characters, and
RI1-R3 are cleared, as shown in Figure 14-46.

15 08 07 00
] 1 1 | 1 1) T T 1 | 1 1] 1 ||

RO MAX(0,SRC.LEN-DST.LEN)
i 1 [\ i | 1] | | 1 1 1 | 1 |
1 1 | 1 \ | 1 1 | T 1 | 1 | § 1

R1 0
| | i 1 i i 1] L 1 1 1 1 1 |
1 1 1 | |} ¥ 1 1 1 | 1 1] 1 1

R2 0
i 1 1 1 | |] | | l | 1 | | |

1 1 1) 1 1 1] 1 | 1§ | 1 1 I T T

R3 0
| 1 i 1 1 1 i] 1 1 | i i }
1 ¥ T 1 1 ¥ 1 | 1 T T 1 1 1

R4 0 FILL
1 { l I 1 1]] i [1 1 1]

MR-6948

Figure 14-46 Move Reverse-Justified Character Format (Cleared)

In-Line Form - MOVRCI
The words following the op-code word in the instruction stream are a word address pointer to a 2-word
character string source descriptor, a word address pointer to a 2-word character string destination de-
scriptor, and a word whose low-order half contains the fill character and whose high-order half must be
zero. RO-R6 are unchanged when the instruction is completed.

Notes:

1. The operation of this instruction is unaffected by any overlap of the source and destination strings.
The result is equivalent to having read the entire source string before storing characters in the
destination.

2. If the source string is vacant, the fill character will be propagated through the destination string.
If the destination string is vacant, no characters will be moved. Condition codes will be updated.

MOVRC will update the general registers.

3. MOVRC - When the instruction terminates, RO is zeroonly if Z or C are set.

4. The condition codes will be set as if this instruction were preceded by CMP src.len, dst.len.

14-40

14.7.15 MOVTC/MOVTCI

Purpose:

Operation:

Condition Codes:

Op Codes:

Description:

Move Translated Character

dst translated src

The condition codes are based on the arithmetic comparison of the initial charac-
ter string lengths (result = src.len—dst.len).

N: set if result << 0; cleared otherwise

Z: set if result = 0; cleared otherwise

V: set if there was arithmetic overflow, that is, src.len<<15> and dst.len<<15>

were different, and dstlen<<15> was the same as bit <15> of
(src.len—dst.len); cleared otherwise

C: cleared if there was a carry from the most significant bit of the result; set
otherwise

MOVTC 076032
MOVTCI 076132

The character string specified by the source descriptor 1s translated and moved
into the area specified by the destination descriptor. It is aligned by the most
significant character. Translation is accomplished by using each source charac-
ter as an 8-bit positive integer index into a 256-byte table, the address of which is
an operand of the instruction. The byte at the indexed location in the table is
stored in the destination string. The condition codes reflect an arithmetic com-
parison of the original source and destination lengths.

If the source string is shorter than the destination string, the untranslated fill
character is used to complete the least significant part of the destination string.
This is indicated by the C bit’s being set. If the source string is longer than the
destination string, the least significant characters of the source string are not
moved. This i1s indicated by the Z and C bits’ being cleared. If the source and
destination strings are of equal length, all characters are translated and moved
with neither truncation nor filling. This is indicated by the Z bit’s being set. The
unsigned branch instructions may test the result of the instruction.

Register Form - MOVTC
When the instruction starts, the operands must have been placed in the general registers: the source
character string descriptor must be in RO-R1, the destination character string descriptor in R2—R3, the
fill character in R4<<7:0>, R4<15:8> must be zero, and the translation table address in R5. The
move translated character format is shown in Figure 14-47.

14-41

T ¥]]] ¥ 1 1 1 T 1 1 | | ¥

RO

[SRC.DSCR —

R1

1 { 1 1 i 1 |] l 1 | L 1 i l
| | | ! | I 1 T I 1 T T T] |

R2

- DST.DSCR R
R3

i l L 1 L L L 1 { 1 1 I L l
I | | { |] { | | | T | { [

R4 0 FILL

L 1] | | i | | L l | i 1 {
| T T | ! T { | 1 1 i ! | {

R5 TABLE.ADR

]] \ | 1 1 | 1 1] | L 1 1 i

MR-5949

Figure 14-47 Move Translated Character Format

When the instruction is completed, RO contains the number of unmoved source string characters, and

R1-R3 are cleared, as shown in Figure 14-48.

15 08 07 00
| | | 1 | | 1 1 ! | I ¥ T 1 L)

RO MAX({O0,SRC.LEN-DST.LEN)
| 1l 1 | 1 i i { i } l l | i i
| | J I I 1 | I { | T 1 I I |

R1 0

| 1 1 | | | | | | l | | |] i
{ i | 1 I | 1 | I i T 1 1 T 1

R2 0

] l i l | | | | | { l | | | |
| 1 I 1) t L] 1 | T T T T 1

R3 0

i i] | | | | | | l | i | |
i 1 I ' i | 1 { 1 I |) 1 1

R4 0 FILL

|] | i 1 | i | | l 1 | 1 |
I I | 1 ! | L] 1 1 { 1 1 ! 1

R5 TABLE.ADR

| i | | i | | i 1 | I 1 1 | |

Figure 14-48 Move Translated Character Format (Cleared)

In-Line Form — MOVTCI
The words following the op-code word in the instruction stream are a word address pointer to a 2-word
character string source descriptor, a word address pointer to a 2-word character string destination de-
scriptor, a word whose low-order half contains the fill character and whose high-order half must be
zero, and a word containing the address of the translation table. RO—R6 are unchanged when the in-
struction is completed.

Notes:

1. The operation of this instruction is unaffected by any overlap of the source and destination strings.
The result is equivalent to having read the entire source string before storing characters in the
destination.

2. If the destination string overlaps the translation table in any way, the results of the instruction will
be unpredictable.

14-42

3. If the source string is vacant, the untranslated fill character will be propagated through the desti-
nation string. If the destination string is vacant, no characters will be moved. Condition codes will
be updated. MOVTC will update the general registers.

4. MOVTC — When the instruction terminates, RO is zero only if Z or C are set.

5. The condition codes will be set as if this instruction were preceded by CMP src.len, dst.len.

6. The effect of the instruction is unpredictable if the entire 256-byte translation table is not in read-
able memory.

14.7.16 MULP/MULPI

Purpose: Multiply Decimal

Operation: dst src2 * srcl

Condition Codes: N: set if dst << 0; cleared otherwise

Z: set if dst = O; cleared otherwise

V: set if dst cannot contain all significant digits of the result; cleared otherwise
C: cleared

Op Codes: MULP 076074
MULPI 076174

Description: Srcl and src2 are multiplied, and the result is stored in the destination string.
The condition codes reflect the value stored in the destination string, and whetb-
er all significant digits were stored.

Register Form - MULP
When the instruction starts, the operands must have been placed in the general registers: the first
source descriptor must be in RO-R1, the second source descriptor in R2-R3, and the destination de-
scriptor in R4-R35. The multiply decimal format is shown in Figure 14-49.

15 00
1 1 1 ! 1 I 1 L 1 1] | i 1 1

RO

- SRC1.DSCR —

R1

| | | 1 l } | | l } | l] | !
T T ! I | | ¥ 1 T 1 T 1 | ! {

R2

p— SRC2.DSCR —

R3

! 1 i ! | 1 i | 1 | | l l) |
I { | J ! { T | { ! | T | { 1

R4

‘_ DST.DSCR —

R5

] 1 |] 1] ! i]] 1 1]] 1

MR-6951

Figure 14-49 Multiply Decimal Format

14-43

When the instruction is complete, the source descriptor registers are cleared, as shown in Figure 14-30.

15 00
T 1 T | ! ! ! ! T T T T T T T

RO 0

| | | | | i | i 1 1 1 | | |]
T T T T T 1 I T T T 1 | ! { 1

R1 0

L l { l | { i Il] l i L I]]
T 1 ! I T J T T 1 ! ! ! T 1 |

R2 0

1 i 1 I i l L] i l |]] l l
] ! T T | ! 1 ' 1 | | T 1 L |

R3 0

i 1 L L { 1 | | | | 1 i | l |
| 1 T !] T T T | i 1 1 T T 1

R4

= DST.DSCR B

R5

| | |] S | | i I L] 1 1 1 1

MRA.-6952

Figure 14-50 Multiply Decimal Format (Cleared)

In-Line Form - MULPI
Each word address pointer following the op-code word in the instruction stream refers to a 2-word deci-
mal string descriptor. RO—R6 are unchanged when the instruction is completed.

Notes:

1. The operation of these instructions is unaffected by any overlap of the source strings, provided
that each source string is a valid representation of the specified data type.

2. The results of the instruction are unpredictable if the source and destination strings overlap.

3. No numeric string multiply instruction is provided.

14.7.17 SCANC/SCANCI

Purpose:

Operation:

Condition Codes:

Op Codes:

Description:

Scan Character

Search source character string for a member of the character set.

The condition codes are based on the final contents of RO.

N: set if RO<<15> is set; cleared otherwise
Z: set if RO = 0; cleared otherwise
V: cleared
C: cleared

SCANC 076042
SCANCI 076142

The source character string is searched from most significant to least significant
character until the first occurrence of a character that is a member of the char-
acter set. A character string descriptor is returned in RO-R1 that represents the
portion of the source character string, beginning with the located member of the
character set. If the source character string contains only characters that are not

14-44

in the character set, the instructions return a vacant character string descriptor
with an address one greater than that of the least significant character of the
source character string. The condition codes reflect the resulting value in RO.

Register Form — SCANC
When the instruction starts, the operands must have been placed in the general registers: the source
character string descriptor must be in RO-R1, and the character set descriptor in R4-R5. The scan
character format is shown in Figure 14-51.

| T] T T ! T T 1 T T T T T T

RO

- SRC.DSCR —

R1

R4

— SET.DSCR]

Rb
1 1 1 1 1 d | 1 l 1 1 J I | H

MR-6953

Figure 14-51 Scan Character Format

When the instruction is completed, RO—R1 contain a character string descriptor that represents the
substring of the source character string, beginning with the most significant character that is a member
of the character set. The format of the scan character after termination is shown in Figure 14-52.

15 _ | _ 00
] 1 | 1 | 1 1 1 1 1 1 1 | 1]

RO

- SUB.SRC.DSCR —

R1
] { |]] 1 { | 1 1 { i] | 1

] T 1 1 1 I 1 1 | I 1 |] 1 |

R4

— SET.DSCR —

R&
i | | | 1] 1 | | | 1 { | 1 {

MR-6954

Figure 14-52 Scan Character Termination Format

In-Line Form — SCANCI |
The words following the op-code word in the instruction stream are a word address pointer to a 2-word
character string source descriptor, and a word address pointer to a 2-word character set descriptor.
When the instruction 1s completed, RO—R1 contain a character string descriptor that represents the
substring of the source character string, beginning with the most significant character that is a member
of the character set. R2—-R6 are unchanged. The in-line format of the scan character is shown in Figure
14-53.

14-45

RO

— SUB.SRC.DSCR —

R1

| l l 1 i 1 | 1 \ | | i ! | |

Figure 14-53 Scan Character Format (In-Line)

Notes:

1. If the initial source character string descriptor is vacant, the instruction terminates with the condi-
tion codes indicating that no character in the set was found. The original source character string
descriptor is returned in RO-R1.

2. The source character string and character set table may overlap in any way.

3. A test for success is BNE; a test for failure is BEQ.

4. The condition codes will be set as if this instruction were followed by TST RO.

5. The effect of the instruction is unpredictable if the entire 256-byte character set table is not in
readable memory.

14.7.18 SKPC/SKPCI

Purpose: Skip Character

Operation: Search source character string until a character other than the search character
is found.

Condition Codes: The condition codes are based on the final contents of RO.

N: set if RO<<15> is set; cleared otherwise
Z: set if RO = 0; cleared otherwise
V: cleared
C: cleared

Op Codes: SKPC 076041
SKPCI 076141

Description: The source character string is searched from most significant to least significant
character until the first occurrence of a character that is not the search charac-
ter. A character string descriptor is returned in RO-R1 that represents the por-
tion of the source character string, beginning with the most significant character

that was not equal to the search character. If the source character string contains
only characters equal to the search character, the instruction returns a vacant
character string descriptor with an address one greater than that of the least sig-
nificant character of the source character string. The condition codes reflect the
resulting value in RO.

14-46

Register Form - SKPC
When the instruction starts, the operands must have been placed in the general registers: the source
character string descriptor must be in RO-R1, the search character in R4<7:0>, and R4<15:8>
must be zero. The format of the register form of a skip character instruction is shown in Figure 14-54.

15 | 08 07 00
] L T 1 | A | 1 1 1 T 1 1 1 1 ¥

RO

= SRC.DSCR —

R1

1 i 1] AL 1 1 1 | 1 1 | l | 1

T T T 1

R4 0 CHAR

| . | }] | | i i | | 1 | | |

MR.6956

Figure 14-54 Skip Character Format (Register Form)

When the instruction is completed, RO—R1 contain a character string descriptor that represents the
substring of the source character string, beginning with the most significant character that was not
equal to the search character. The format of the skip character after termination is shown in Figure 14-
55.

15 08 07 00
1 |11 1 1 1§) T T 1] 1 1 1 1 L

RO

I SUB.SRC.DSCR R

R1

] |] | | i 1] L L 1 1 1 | L

¥ I | | 1] 1 I 1 1 T Y T T

R4 0 CHAR

\ L | I J | B ! i | | i |

MR.6957

Figure 14-55 Skip Character Termination Format

In-Line Form - SKPCI
The words following the op-code word in the instruction stream are a word address pointer to a 2-word
character string source descriptor, and a word whose low-order half contains the search character and
whose high-order half must be zero. When the instruction is completed, RO-R1 contain a character
string descriptor that represents the substring of the source character string, beginning with the most
significant character that was not equal to the search character. R2-R6 are unchanged. The format of
the in-line form of the skip character is shown in Figure 14-56.

14-47

RO

R1

MR.6958

Figure 14-56 Skip Character Format (In-Line)

Notes:

1. If the initial source character string descriptor is vacant, the instruction terminates with the condi-
tion codes indicating the character string only contained search characters. The original source
character string descriptor is returned in RO-R1.

2. The condition codes will be set as if this instruction were followed by TST RO.

14.7.19 SPANC/SPANCI

Purpose: Span Character

Operation: Search source character string for a character that is not a member of the char-
acter set.

Condition Codes: The condition codes are based on the final contents of RO.

N: set if RO<<15> 1is set; cleared otherwise
Z: set if RO = 0; cleared otherwise
V: cleared
C: cleared

Op Codes: SPANC 076043
SPANCI 076143

Description: The source character string is searched from most significant to least significant
character until the first occurrence of a character that is not a member of the
character set. A character string descriptor is returned in RO-R1 that represents
the portion of the source character string, beginning with the character that is
not a member of the character set. If the source character string contains only
characters that are in the character set, the instruction returns a vacant charac-
ter string descriptor with an address one greater than that of the least significant
character of the source character string. The condition codes reflect the resulting
value of RO.

Register Form - SPANC
When the instruction starts, the operands must have been placed in the general registers: the source
character string descriptor must be in RO-R1, and the character set descriptor in R4-RS5. The format
of the register form of the span character is shown in Figure 14-57.

14-48

1 1 | | 1 T 1 1 Al 1 I |] ¥ 1

RO

— SRC.DSCR —

R1
1 1 i 1 1 1 | | | £ 1 4 1 I }

I 1 | 1 1 1 | 1 1 1 1 R ¥ 1 1

R4

— SET.DSCR —_

RS
] i L i 1 A 1 1 L L I \] L i

MR-6859

Figure 14-57 Span Character Format (Register Form)

When the instruction is completed, RO—R1 contain a character string descriptor that represents the
substring of the source character string, beginning with the most significant character that is not a
member of the character set. The format of the span character after termination is shown in Figure 14-
58.

15 _ 00
1 L} T 1 1 ' 1 ! 1 1 Y I 1 | 1

RO

T SUB.SRC.DSCR —

R1
1] l] I 1 1 L 1 i 1 1 1 1 s

] T T ! ! T | T ! V 1 T ! ' ‘
R4

— SET.DSCR —

R&
| | | 1] 1] 1] | | L i | 1

MR -68 50

Figure 14-58 Span Character Termination Format

In-Line Form - SPANCI
The words following the op-code word in the instruction stream are a word address pointer to a 2-word
character string source descriptor, and a word address pointer to a 2-word character set descriptor.
When the instruction is completed, RO-R1 contain a character string descriptor that represents the
‘substring of the source character string, beginning with the most significant character that is not a
member of the character set. R2-R6 are unchanged. The format of the in-line form of the span charac-
ter is shown in Figure 14-59

RO

R1

MR .8961

Figure 14-59 Span Character Format (In-Line)

14-49

Notes:

1. If the initial source character string descriptor is vacant, the instruction terminates with the condi-
tion codes indicating that only characters in the set were found. The original source character
string descriptor is returned in RO-R1.

2. The source character string and character set table may overlap in any way.

3. The condition codes will be set as if this instruction were followed by TST RO.

4. The effect of the instruction is unpredictable if the entire 256-byte character set table is not in
readable memory.

14.7.20 SUBN/SUBP/SUBNI/SUBPI

Purpose: Subtract Decimal

Operation: dst sr¢2 — srcl

Condition Codes: N: set if dst << O; cleared otherwise

Z: set if dst = 0; cleared otherwise

V: set if dst cannot contain all significant digits of the result; cleared otherwise

C: cleared

Op Codes: SUBN 076051
SUBP 076071
SUBNI 076151
SUBPI 076171

Description: Srcl is subtracted from src2, and the result is stored in the destination string.
The condition codes reflect the value stored in the destination string, and wheth-
er all significant digits were stored.

Register Form - SUBN and SUBP
When the instruction starts, the operands must have been placed in the general registers: the first
source descriptor must be in RO-R1, the second source descriptor in R2—R3, and the destination de-
scriptor in R4-R5. The subtract decimal format is shown in Figure 14-60.

15 00
' T T 1 T Y | T T T T T Y T T T

RO

— SRC1.DSCR —
R1

| 1 1 l 1 i i l 1 1 1 L 1] 1
) 1 1 I 1] 1 1 ¥ 1 1 1] 1 1

R2
— SRC2.DSCR —

R3
| i 1 | | i 1 | | 1 1l i | | 1
1 | 1 1 I 1 1 | 1 1 |]]] 1

R4
—— DST.DSCR —_

R5
] 1 i 1 | |] 1 | 1 |]]]]

MR-5962

Figure 14-60 Subtract Decimal Format

14-50

When the instruction is completed, the source descriptor registers are cleared, as shown in Figure 14-
61.

15 00
1 1 | 1 1 1] 1 1 | 1 i 1 | 1

RO 0
1 l 1 1 I | i | { 1 i { l 1 1
| L) 1 1] I | i ¥ | 1 ¥ 1 i 1

R1 0
L | 1 1 \ i 1 I i l [1 L 1 {
1 1 1 1 | 1 T 1 1 T 1 | 1 1 1

R2 0
1 1 | 1 | | 1 b { | | 1 i i {
H 1 1 1 1 1 T 1 1 1 1 1] 1

R3 0
| 1 1 1 1 1L | I t l | l l L i
1 | | | i 1 1 1] 1 ¥ 1 1 i 1 T

R4

— DST.DSCR —

R5
] |] | | | 1 | | 1 | 1 1 1 1

MR-6963

Figure 14-61 Subtract Decimal Format (Cleared)

In-Line Form — SUBNI and SUBPI
Each word address pointer that follows the op-code word in the instruction stream refers to a 2-word
decimal string descriptor. RO—R6 are unchanged when the instruction is completed.

Notes:

1. The operation of these instructions is unaffected by any overlap of the source strings, provided
that each source string is a valid representation of the specified data type.

2. Source strings may overlap the destination string only if all corresponding digits of the strings are
in coincident bytes in memory.

14-51

APPENDIX A
GENERAL REFERENCE INFORMATION

A.1 SUMMARY OF KDF11 INSTRUCTIONS

WORD FORMAT

15 4 12 1 09 08 06 05 03 02 00

BINARY OCTAL
REPRESENTATION

ADDRESSING MODES MODE R

Mode Name Symbolic Description

0 register R (R) is operand [ex. R2 = 9,2]
1 register deferred (R) (R) is address

2 auto-increment (R)+ (R) is adrs; (R) 4+(1 or 2)
3 auto-incr deferred @(R)+ (R) is adrs of adrs; (R) 42

4 auto-decrement —(R) (R) —(1 or 2); is adrs
5 auto-decr deferred @ —(R) (R) —2; (R) is adrs of adrs

6 index X(R) (R) + X is adrs
7 index deferred @ X(R) (R) + X is adrs of adrs

PROGRAM COUNTER ADDRESSING Reg =7

MODE 7
I i 1 |

MR 2BB7

2 immediate #n operand n follows instr

3 absolute @ #A address A follows instr

6 relative A instr adrs + 4 + X is adrs

7 relative deferred @A instr adrs 4+ 4 4+ X is adrs of adrs

LEGEND

Op Codes Operations

B = O for word/1 for byte () — contents of

SS = source field (6 bits) S — contents of source
DD = destination field (6 bits) d = contents of destination

R — gen register (3 bits), r — contents of register
Oto7

XXX = offset (8 bits), 4127 « — becomes
to —128

Op Codes Operations

N — number (3 bits) X — relative address
NN = number (6 bits) % — register definition

Boolean Condition Codes

< = AND ¥ — conditionally set/cleared
> — inclusive OR — — not affected
> — exclusive OR 0 — cleared

~ = NOT 1 — set

SINGLE OPERAND: OPR dst

15 : : : r l : : 06 05 . : : 00

OP CODE SSOR DD

Mne-

monic Op Code Instruction dstResult N Z

General

CLR(B) m 050DD clear 0 01
COM(B) I 051DD complement (1's) ~d
INC(B) W 052DD increment d+1 y

DEC(B) B 053DD decrement d—1

NEG(B) W 054DD negate (2's compl) —d ¥
TST(B) W 057DD test d

Rotate & Shift

ROR(B) MW 060DD rotate right - C,d ¢
ROL(B) @ 061DD rotate left C,d+« &

ASR(B) W 062DD arith shift right d/2 "
ASL(B) W 063DD arith shift left 2d
SWAB 0003DD swap bytes

Multiple Precision

ADC(B) B 055DD add carry d+4+ C

SBC(B) W 056DD subtract carry d—-C #

SXT 0067DD sign extend Oor—1 -

Processor Status (PS) Operators |

MFPS 1067DD move byte from PS d <PS
MTPS 10645S5S move byte to PS PS <s g

DOUBLE OPERAND: OPR src, dst OPR src, R or OPR R, dst

11 06 05

OP CODE

i i 1

09 08 06 05
T

i 1)

1

OP CODE

]

A-2

Mne- N z VvV C
monic Op Code Instruction Operation

General

MOV(B) B 1SSDD ‘move de<s 0 -
CMP(B) B 2SSDD comapare s —d o
ADD 06SSDD add de<s+d £
SUB 16SSDD subtract d<d—s

Logical

BIT(B) # 3SSDD bit test (AND) s d GO O B
BIC(B) W 4SSDD bit clear d<(~s) d %0 -
BIS(B) H 5SSDD bit set (OR) d<svd ox 0 -
XOR 074RDD exclusive (OR) d<rvd o 0 -

EIS

MUL O70RSS multiply r<rxs 0
DIV O71RSS divide r<r/s
ASH 072RSS shift arithmetically
ASHC 073RSS arith shift combined X

BRANCH: B—Ilocation

If condition is satisfied
Branch to location,

New PC < Updated PC 4 (2 x offset)

adrs of brinstr 4+ 2

08 07 00
Y

BASE CODE

v ! T T Y

XXX

Op Code — Base Code + XXX

Mne- Base
monic Code Instruction Branch Condition

Branches

BR 000400 branch (unconditional) (always)
BNE 001000 br if not equal (to O) + 0 Z =0

BEQ 001400 br if equal (to 0)) Z =1
BPL 100000 branch if plus + N =0

BMI 100400 branch if minus — N =1
BVC 102000 br if overflow iIs clear vV =0

BVS 102400 br if overflow is set vV =1

Mne- Base
monic Code Instruction Branch Condition

BCC 103000 br if carry is clear C =0
BCS 103400 br if carry is set C =1

Signed Conditional Branches

BGE 002000 br if greater or =0 Nvv=0
equal (to 0)

BLT 002400 br if less than (0) <0 NvVvV=1
BGT 003000 br if greater than (0) >0 IZv(NvV)=0

BLE 003400 briflessorequal (to0) <0 Zv(NvV)=1

Unsigned Conditional Branches

BHI 101000 branch if higher > CvZ=0

BLOS 101400 branch if lower or same < CvZ=1
BHIS 103000 branch if higher or same = C =0
BLO 103400 branch if lower < C =1

JUMP & SUBROUTINE

Mne-

monic Op Code Instruction Notes

JMP 0001DD jump PC « dst
JSR 0O04RDD jump to subroutine 1

RTS 00020R return from use same R
subroutine)

MARK O064NN mark aid in subr return

SOB O77RNN subtract 1 & br (R) — 1, then if (R) -~ O:

(if ~ 0) PC <« Updated PC —

(2 x NN)

TRAP & INTERRUPT:

Mne-

monic Op Code Instruction Notes

EMT 104000 emulator trap PC at 30, PS at 32
to 104377 (not for general use)

TRAP 104400 trap PC at 34, PS at 36
to 104777

BPT 000003 breakpoint trap PC at 14, PS at 16
10T 000004 input/output trap PC at 20, PS at 22
RTI 000002 return from interrupt

RTT 000006 return from interrupt inhibit T bit trap

MISCELLANEOUS
Mnemonic Op Code Instruction

HALT 000000 halt
WAIT 000001 wait for interrupt
RESET 000005 reset external bus

NOP 000240 (no operation)
MFPI 0065SS move from previous instr space

MTPI 0066DD move to previous instr space

MFPD 1065S5S move from previous data space

MTPD 1066DD move to previous data space

CONDITION CODE OPERATORS:

15 '

OP CODE BASE=000240
1

O = CLEAR SELECTED COND. CODE BITS
1=S5 ET SELECTED COND. CODE BITS

Mnemonic Op Code Instruction N Z v C

CLC 000241 clear C - - = 0
CLV 000242 clear V - - 0 -
CLZ 000244 clear Z - 0 - -
CLN 000250 clear N 0O - - -

CCC 000257 clear all cc bits O 0 0 O

SEC 000261 set C - - =1
SEV 000262 set V - - 1 -
SEZ 000264 set Z -1 - -
SEN 000270 set N 1 - - -
SCC 000277 set all cc bits 1 1 1 1

OPTIONAL FLOATING POINT:

Data Formats

FFORMAT FLOATING POINT SINGLE PRECISION
L. 15 00

V2 FRACTION 150
e 1

15 14 0’ 06 00

MEMORY +0 S ExXP FRACT 22 16

L L

A-5

OPTIONAL FLOATING POINT:

Data Formats (Cont)

+6

+4

+2

MEMORY +0

MEMORY -0

D FORMAT, FLOATING POINT DOUBLE PRECISION

15 00

FRACTION - 15-0

| 1 1 i] L , 1 i 1 1 I3

15 00

FRACTION -.31 16 -

L 1 L i { 1 1 1 ! i]

15 00

FRACTION - 47:32 -

| 1 1 L L i 3 1 1 3 I

15 07 00

S EXP FRACT - 54 48

] 1 | L 1 1 Fl H t

S=SIGN QF FRACTION

EXP = EXPONENT IN EXCESS 200 NQTATION, RESTRICTED TO Y TO 377 OCTAL

FOR NON VANISHING NUMBERS.

FRACTION = 23BITSINF FORMAT S5BITS IND FORMAT « ONE HIDDEN

BIT{NORMALIZATION) THE BINARY RADIX POINT IS TO THE LEFT

Al gy

TFORMAT INTEGER SINGLE PRECISION

15 14 00

5 NUMBER - 15.0 -

' L i 1 [1 1 1 1 1

L FORMAT DOUBLE PRECISION INTEGER LONG

15 14 00

S NUMBER - 30 16

| 1 L. L 4 L 1 L i 1

15 00

1 1 1 1

NUMBER -
|

15 0.
A

NUMBER

WHERE S S1GN OF NUMBER

15 BITSINFFORMAT, 31 BITS IN L FORMAT

MH 16060

Addressing Formats

DOUBLE OPERAND ADDRESSING

15 12 IR 08 a7 06 05 00

ocC FOC AC FSRC FDST SRC DST

SINGLE OPERAND ADDRESSING

15 12 (B! 06 05 00

0OC FOC FSRC FDST, SRC, DST

0C OPCODE 17

FOC FLOATING OPCOOE

AC FLOATING POINT ACCUMULATOR (ACO AC3)

FSRC AND FDST USE FPP ADDRESSING MODES

SPC AND DST USE CPU ADDRESSING MODES

Mnemonic Op Code Instruction Notes

CFCC 170000 copy fl cond codes

SETF 170001 set floating mode FD <0
SETI 170002 set integer mode FL<O
SETD 170011 set fl dbl mode FD <1

SETL 170012 set long integer mode FL <1

LDFPS 1701 src load FPP prog status

STFPS 1702 dst store FPP prog status

STST 1703 dst store (exc codes & adrs)

CLRF, CLRD 1704 fdst clear floating/double fdst < 0
TSTF, TSTD 1705 fdst test fl/dbl

ABSF, ABSD 1706 fdst make absolute fl/dbl fdst < fdst

NEGF, NEGD 1707 fdst negate fl/dbl fdst « —fdst

MULF, MULD 171 (AC) fsrc multiply fl/dbl AC <« AC x fsrc
MODF, MODD 171 (AC + 4) fsrc multiply & integerize

ADDF, ADDD 172 (AC) fsrc add fl/dbl AC « AC + fsrc
LDF, LDD 172 (AC + 4) fsrc load fl/dbl AC < fsrc
SUBF, SUBD 173 (AC) fsrc subtract fl/dbl AC < AC - fsrc

CMPF, CMPD 173 (AC + 4) fsrc compare fi/dbl {to AC)

STF,STD 174 (AC) fdst store fl/dbl fdst « AC
DIVF, DIVD 174 (AC + 4) fsrc divide fi/dbl AC < AC/fsrc

STEXP 175 (AC) dst store exponent
STCFI, STCFL } store & convert fi or ' +
stcol, stcoL S 170 (ACHA)dst { dbl to int or long int
STCFD, STCDF

LDEXP
LDCIF, LDCIF
LDCLF, LDCLD }
LDCDF, LDCFD

176 (AC) fdst

176 (AC + 4) src

177 (AC) src

177 (AC + 4) fsrc

store & convert (dbi-fl)

load exponent

load & convert int or

long int to fl or dbi

load & convert {dbl-fl)

A-7

A.2 NUMERICAL OP CODE LIST

Mne-

Op Code monic

00 00 00 HALT

00 00 01 WAIT

00 00 02 RTI

00 00 03 BPT
00 00 04 10T

00 00 05 RESET
00 00 06 RTT

00 00 07 MFPT

00 00 10 } (unused]
00 00 77

00 01 DD JMP

00 02 OR RTS

00 02 10

(reserved)

00 02 27

00 02 40 NOP

00 02 41

cond

codes

00 02 77

00 03 DD SWAB

07 7R NN SOB

10 00 XXX BPL
10 04 XXX BMI
10 10 XXX BHI

10 14 XXX BLOS

10 20 XXX BVC
10 24 XXX BVS

10 30 XXX BCC,

BHIS
10 34 XXX BCS,

BLO

10 40 00)

fEMT

10 43 77

Mne-

Op Code monic

00 04 XXX BR
00 10 XXX BNE

00 14 XXX BEQ

00 20 XXX BGE
00 24 XXX BLT

00 30 XXX BGT

00 34 XXX BLE

00 4R DD JSR

00 50 DD CLR

00 51 DD COM
00 52 DD INC

00 53 DD DEC
00 54 DD NEG

00 55 DD ADC

00 56 DD SBC

00 57 DD TST

00 60 DD ROR
00 61 DD ROL

00 62 DD ASR
00 63 DD ASL

00 64 NN MARK

00 66 SS MFPI

00 66 DD MTPI

00 67 DD SXT

10 44 00"
» TRAP

10 47 77

10 50 DD CLRB

10 51 DD COMB
10 52 DD INCB

10 53 DD DECB

10 54 DD NEGB

10 55 DD ADCB
10 56 DD SBCB

10 57 DD TSTB

10 60 DD RORB
10 61 DD ROLB

10 62 DD ASRB

A-8

Op Code

00 70 00)

00

01
02
03
04
05
06

07
07
07
07
07

07
07

07
07

07

07

10
10
10

10

10

11

12
13
14
15
16

17

17

Mne-

monic

> (unused)

MOV
CMP
BIT
BIC
BIS
ADD

MUL
DIV
ASH
ASHC
XOR

FADD
FSUB

FMUL
FDIV

40

> (reserved)

77 |

DD ASLB
SS MTPS
SS MFPD

DD MTPD
DD MFPS

DD MOVB

DD CMPB
DD BITB
DD BICB
DD BISB
DD SuUB

00
floating

point
77

A.3 PROCESSOR STATUS WORD (PS) 17777776
15 14 13 12 11 09 08 07 05 04 03 02 01 00

PRIORTY
CMm PM St LEVEL T N Zz Y C

| 1 \ \ 1 | 4 ‘
1 - | !)

RESERVED TRACE 4 '
NEGATIVE PREVIOUS MEMORY

MANAGEMENT MODE ZERO

CURRENT MEMORY OVERFLOW
MANAGEMENT MODE CARRY

SUSPENDED
INSTRUCTION

MA 3638

Ad

ABSOLUTE LOADER BOOTSTRAP LOADER

Address Contents | Address Contents

Starting Address: — 500 | — 744 016 701 — 764 000 002

Memory Size: — 746 000 026 - 766 — 400

4K 017 —750 012702 - 770 005 267

8K 037 — 752 000 352 — 772 177 756

12K 057 — 754 000 211 — 774 000 765

16K 077 — 756 105 711 — 776 177 560 (TTY)

20K 117 — 760 100 376 or 177 550 (PC11)

24K 137 — 762 116 162

28K 157

(or larger) 773 000 Paper Tape Bootstrap

773 100 Disk/DECtape Bootstrap
773 200 Card Reader Bootstrap

773 300 Cassette Bootstrap

773 400 Floppy Disk Bootstrap

A-9

A5 DEVICE REGISTER ADDRESSES AND VECTORS

Device Interrupt

Device Register Address Vector

Console Terminal

Input Control/Status RCSR 17777560 60

Input Buffer RBUF 17777562

Output Control/Status XCSR 17777564 64

Output Buffer XBUF 17777566

2nd SLU Terminal

Input Control/Status RCSR 17776500* | 300

17776540** | 340

Input Buffer RBUF 17776502*

17776542**

Output Control/Status XCSR 17776504* | 304

17776544** | 344

Output Buffer XBUF 17776506*

17776546

KDF11-B Boot/Diagnostic

Page Control PCR 17777520

Read Control RWR 17777522

Lights Switches CDR 17777524

Unused 17777526

Boot/Diagnostic ROM 17773000

17774000

Line Frequency Clock LKS 17777546 100

RLV12 Disk 160

Status CSR 17774400

Bus Address BAR 17774402

Disk Address DAR 17774404

Multipurpose MPR 17774406

Bus Address Extension BAE 17777546

LPV 11 High Speed Printer 200

Printer Status LPS 17777514

Printer Buffer LPB 17777516

*¥*J13 and J12 must be ungrounded.

**J13 must be ungrounded and J12 must be grounded.

MMU Status Registers

MMU Register Address

Status Register 0 | SRO 17777572

Status Register 1 | SR1 17777574

Status Register 2 | SR2 17777576

Status Register 3 | SR3 17772516

PAR/PDR Address Assignments

Kernel Active Page Registers User Active Page Registers

No. PAR PDR No. PAR PDR

0 772340 772300 0 777640 777600

1 772342 772302 1 777642 777602

2 772344 772304 2 777644 777604

3 772346 772306 3 777646 777606

4 772350 772310 4 777650 777610

5 772352 772312 5 777652 777612

6 772354 772314 6 777654 777614

7 772356 772316 7 777656 777616

RESERVED TRAP and INTERRUPT VECTORS

Vector Description

000 (Reserved)

004 Bus Timeout and lilegal Instructions (e.g., JMP RO)

(Odd Address Trap Not Implemented on LSI-11/23)

010 [llegal and Reserved Instruction

014 BPT Instruction and T Bit

020 |OT Instruction

024 Power Fail

030 EMT Instruction

034 TRAP Instruction

060 Console Input Device

064 Console Output Device
100 External Event Line Interrupt
114 Parity Error

160 RLV12

200 LPV 11

244 KEF11-A (Floating Point)

250 Memory Management Abort

264 RXV11, RXV21

300 Floating Vectors start here

A.6 CONSOLE ODT COMMANDS*

Command Symbol Description

Slash / Prints the contents of a specified

location.

Carriage Return <CR> Closes an open location.

Line Feed <LF> Closes an open location and then

opens the next contiguous

location.

Internal Register | $or R Opens a specific processor register.

Designator

Processor Status | S Opens the PS, must follow an *'$"’

Word Designator or “R"” command.

Go G Starts program execution.

Proceed P Resumes execution of a program.

Binary Dump Control-Shift-S Manufacturing use only.

H Reserved for DIGITAL use.

* All addresses in ODT must be 18-bit addresses between 0 and 777776.

A.7 7-BIT ASCII CODE

Octal Octal Octal Octal

Code Char Code Char Code Char Code Char

000 NUL 040 SP 100 @ 140 b

001 SOH 041 ! 101 A 141 a
002 STX 042 ‘“ 102 B 142 b

003 ETX 043 # 103 C 143 C
004 EOT 044 $ 104 D 144 d

005 ENQ 054 % 105 E 145 e

006 ACK 046 & 106 F 146 f
007 BEL 047 ‘ 107 G 147 g
010 BS 050 (110 H 150 h

011 HT 051) 111 | 151 i

012 LF 052 112 J 152 j

013 VT 053 + 113 K 153 k
014 FF 054 ’ 114 L 154 l

015 CR 055 - 115 M 155 m
0l6 SO 056 . 116 N 156 n

017 Sl 057 / 117 O 157 o)
020 DLE 060 0 120 P 160 p

021 DC1 061 1 121 Q 161 q

022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 S 163 S

024 DC4 064 4 124 T 164 t

025 NAK 065 5 125 U 165 u

026 SYN 066 6 126 vV 166 Vv
027 ETB 067 7 127 W 167 w

030 CAN 070 8 130 X 170 X
031 EM 071 9 131 Y 171 y

032 SUB 072 : 132 Z 172 Z
033 ESC 073 ; 133 [173 {

034 FS 074 < 134 AN 174 |
035 GS 075 — 135 Jor 1 175)

036 RS 076 > 136 A 176 —~

037 us 077 ? 137 — or « 177 DEL

A-13

APPENDIX B
INSTRUCTION TIMING

B.1 GENERAL INFORMATION
The KDF11-BA CPU executes PDP-11 instructions as a series of microcode cycles. A data fetch con-
sists of an address cycle and a bus DIN cycle. A data write consists of an address cycle and a bus
DOUT cycle. An instruction fetch consists of an address cycle, a bus DIN cycle, and a non-1/0 cycle.

The execution of an instruction typically consists of one or more non-I1/O cycles. Floating-point instruc-
tions also include interchip DIN and DOUT cycles that move data between the DATA and MMU
chips. The execution time for an instruction depends on the type of the instruction, the modes of ad-
dressing used, the type of memory referenced and whether the memory management unit is enabled or
disabled.

Each microcode cycle consists of an integral number of clock pulses, one occurring every 75 ns. The
number of clock pulses and the time required to complete the most common microcode cycles are listed
in Table B-1. The time required for bus DIN or DOUT microcode cycles accessing either the memory
management registers (MMU DIN or DOUT) or the KDF11-BA on-board peripherals (IDAL bus DIN
or DOUT) are listed in Table B-2. The KDF11-BA module’s peripherals include the bootstrap and diag-
nostic ROMs, the line clock logic, and the serial-line units.

1. The KDF11-BA detects RRPLY assertion within 112.5 ns of the time it asserts TDIN. (This
is typical for peripherals that assert TRPLY as soon as they receive RDIN asserted.)

2. The KDF11-BA detects RRPLY assertion within 337.5 ns of the time it asserts TSYNC.

(This 1s typical for the MSV11-P parity memory.)

3. The KDF11-BA detects RRPLY assertion within 150 ns of the time it asserts TDOUT. (This
1s typical for peripherals and memories that assert TRPLY as soon as they receive RDOUT
asserted. This includes the MSV11-P parity memory.)

Table B-1 KDF11-BA Common Microcode Cycle Times

Type of Cycle Clock Pulses Time (ns)

Address (no relocation) 5 375
Address (relocation) 8 600
LSI-11 bus DIN (1) 10 750
LSI-11 bus DIN (2) 11 825
LSI-11 bus DOUT (3) 11 825
Interchip DIN | 5 375
Interchip DOUT 5 375
Non-I/0O (micro-NOP) 4 300

Table B-2 KDF11-BA Peripheral Microcode Cycle Times

Type of Cycle Clock Pulses Time (ns)

IDAL bus DIN 8 600
IDAL bus DOUT 8 600
MMU DIN 7 525
MMU DOUT 7 525

B.2 BASIC INSTRUCTION TIMING
The source, destination, and fetch/execute times for the KDF11-BA basic instruction set appear below.
KDF11-BA instruction times are calculated using the following equation:

Instruction Time = Basic Time + Source Time + Destination Time

(Basic Time = Fetch Time + Execute Time)

The basic, source, and destination times were calculated from the microcode cycle times listed in Table

B-1. LSI-11 bus DIN (2) and DOUT (3) times of 825 ns were used for the MSV11-P parity memory,
which has its specifications listed in Table B-3.

The instruction execution times for systems with memory management enabled or disabled are listed in
Tables B-4 through B-7.

Table B-3 MSV11-P Parity Memory

Bus Cycle Access Time (ns) Cycle Time (ns)
Typical Maximum Typical Maximum

DATI 240 260 560 590
DATO(B) 90 120 610 640
DATIO(B) 660 690 1175 1210

Table B-4 Source Address Times

Time (us) with
Source Memory Memory Management

Instructions Mode Cycles Enabled Disabled

ADD, SUB 0 0 0 0
MOV(B), CMP(B) 1 1 1.425 1.200
BIS(B), BIC(B) 2 1 1.425 1.200
BIT(B) 3 2 2.850 2.400

4 1 1.725 1.500
5 2 3.150 2.700
6 2 3.150 2.700
7 3 4.575 3.900

B-2

Table B-4 Source Address Times (Cont)

Time (us) with
Source Memory Memory Management

Instructions Mode Cycles Enabled Disabled

MUL,DIV 0 0 1.275 1.275
ASH, ASHC] 1 1.725 1.450
MFPI, MFPD 2 1 1.725 1.450
MTPS 3 2 2.850 2.400

4 1 1.725 1.500
5 2 3.150 2.700

6 2 3.150 2.700
7 3 4.575 3.900

Table B-5 Destination Address Times

Time (us) with
Source Memory Memory Management

Instructions Mode Cycles Enabled Disabled

MOV(B), CLR(B) 0 0 0 0
SXT, MFPS] 1 2.025 1.800
MTPI, MTPD 2 1 2.025 1.800

3 2 3.150 2.700
4 | 2.025 1.950
5 2 3.450 3.000
6 2 3.450 3.000
7 3 4.875 4.500

CMP(B), BIT(B) 0 0 0 0
TST(B) 1 | 1.725 1.500

2 1 1.725 1.500
3 2 2.850 2.400
4 1 1.725 1.500
5 2 3.150 2.700
6 2 3.150 2.700
7 3 4.575 3.900

ADD, SUB 0 0 0 0
INC(B), DEC(B) 1 1 2.850 2.625
COM(B), NEG(B) 2 1 2.850 2.625
ROR(B), ROL(B) 3 2 4.275 3.825
ASR(B), ASL(B) 4 1 2.850 2.625
BIS(B), BIC(B) 5 2 4.575 4.125
ADC, SBC 6 2 4.575 4.125
XOR, SWAB 7 3 6.000 5.325

Table B-6 Basic (Fetch and Execute) Times

Time (us) with
Memory Memory Management

Instructions Cycles Enabled Disabled

MOU, CMP, BIT,] 2.025 1.800
BIC, BIS, ADD,
SUB, SXT, CLR,
TST, COM, INC,
DEC, NEG, ADC,
SBC, ROR, ROL,
ASR, ASL,
SWAB, MFPS

MTPS] 3.600 3.375
MFPI, MFPD 2 4.050 3.600
MTPI, MTPD 2 4.725 4.275

SOB (NO BRANCH) 1 2.625 2.400
SOB (BRANCH) 1 2.925 2.700

ALL BRANCH 1 2.025 1.800

CLN, CLE, CLV,] 2.925 2.700
CLC, SEN, SEZ,
SEV, SEC, CCC,
SCC

RTS 2 3.750 3.300
MARK 2 5.325 4.875
RTI 3 6.225 5.550
RTT 3 7.500 6.825
10T, BPT 5 10.500 9.375
EMT, TRAP 5 9.525 8.850
WAIT 1 3.375 3.150

MUL 1 33.300 33.075
DIV 1 49.650 49.425
ASH] 24.825 24.600
ASHC 1 46.050 45.825

NOTES

I The instruction times for MUL, DIV, ASH, and ASHC are operand-dependent and could be less than the values given
above.

2. The instruction times for the RESET and HALT instructions are mode /option-dependent.

Table B-7 Jump Instruction Times

Time (us) with
Dest. Memory Memory Management

Instruction Mode Cycles Enabled Disabled

JMP] 1 2.325 2.100
2 1 2.625 2.400
3 2 3.450 3.000
4 1 2.625 2.400
5 2 3.750 3.300
6 2 3.750 3.300
7 3 5.175 4.500

JSR] 2 4.350 3.900
2 2 4.650 4.200
3 3 5.475 4.800
4 2 4.650 4.200
5 3 5.775 5.100
6 3 5.775 5.100
7 4 7.200 6.300

B.3 DMA AND INTERRUPT LATENCIES
DMA latency is the time required for the first DMA device to obtain bus mastership after it asserts a
direct memory access request (BDMR L). The DMA latency is 1.35 us (maximum). The maximum
DMA latency was calculated for a relocated address cycle followed by a DOUT cycle. The processor
disables DMA grant (BDMGO L) from the end of the address cycle phase time for four 75 ns intervals
after the DOUT cycle phase time.

Interrupts (BR requests) are acknowledged by the processor at the end of the current instruction. Inter-
rupt latency is defined as the time required by the KDFI1-BA to assert an interrupt acknowledge
(BIAKO L) after it receives an interrupt request. Interrupt service time is defined as the time required
by the processor to fetch the first service routine instruction after the assertion of BIAKO L. The inter-
rupt latency time and the interrupt service time must be added to obtain the total time from the recep-
tion of the interrupt request to the fetch of the first service routine instruction. The specifications for
interrupt latency and interrupt service times are as follows.

Interrupt Latency 5.475 us, typical [MOV X(R7),R0]
12.600 us, maximum (except EIS)
54.225 wus, maximum (including EIS)

Interrupt Service 8.625 us (memory management Off)
9.750 us (memory management On)

NOTE

1. Interrupt and DMA latencies assume a KDF11-
BA with memory management enabled and using
MSV11-P memory.

2. The maximum interrupt latencies were calcu-
lated for ADD @X(R7), @Y(R7), and DIV
@X(R7).

B-5

APPENDIX C
LSI-11, KDF11/PDP-11 PROGRAMMING AND

OPERATIONAL DIFFERENCES

The table on the following pages compares the programming and operational features of the KDF11-
BA, KDF11-AA, LSI-11, and PDP-11 processors.

ACTIVITY LSI-11
KDF11-
AA and BA

PDP-11/
04 | 34 05/10 15/20 35/40 45

OPR%R, (R)+ or OPR%R, X
and —~(R) using the same regis-
ter as both source and destina-
tion: contents of R are
incremented (or decremented)
by 2 before being used as the
source operand.

OPR%R, (R)+ or OPR%R, X X | X X X
and —(R) using the same regis-
ter as both register and desti-
nation: initial contents of R are
used as the source operand.

2. OPR%R, @(R)+ or OPR%R, X X X
and @—(R) using the same
register as both source and
destination: contents of R are
incremented (or decremented)
by 2 before being used as the
source operand.

OPR%R, @(R)+ or OPR%R, | X X 1X X

and @—(R) using the same

register as both source and
destination: initial contents

of R are used as the source

operand.

3. OPR PC, X(R); OPR PC, X X X
@X(R); OPR PC, @A; OPR
PC, A:location A will contain

the PC of OPR + 4.

C-1

ACTIVITY LSI-11
KDF11-

AA and BA

PDP-11/
04 34 05/10 15/20 35/40 45

OPR PC, X(R); OPR PC,
@X(R), OPR PC, A; OPR PC,
@A location A will contain the
PC of OPR + 2.

JMP (R)+ or JSR reg, (R)+:
contents of R are incremented
by 2, then used as the new PC
address.

JMP (R)+ or JSR reg, (R)+:

initial contents of R are used

as the new PC.

JMP %R or JSR reg, %R traps
to 4 (illegal instruction).

JMP %R or JSR reg, %R traps
to 10 (illegal instruction).

SWAB does not change V.

SWAB clears V.

Register addresses
(177700-177717) are valid
program addresses when used

by CPU.

Register addresses
(177700-177717) timeout
when used as a program ad-
dress by the CPU. Can be ad-
dressed under console
operation. Note addresses can-
not be addressed under console
for LSI-11 or KDFI11.

Basic instructions noted in

PDP-11 Processor Handbook.

SOB, MARK, RTT, SXT

instructions.

ASH, ASHC, DIV, MUL

XOR instruction.

X X

ACTIVITY LSI-11
KDF11-
AA and BA

PDP-11/
04 |34 05/10 15/20 35/40 45

The external option KE11-A
provides MUL, DIV, and
SHIFT operation in the same
data format.

The KE11-E (expansion in-
struction set) provides the
instructions MUL, DIV, ASH,

and ASHC. These new instruc-
tions are PDP-11/45-
compatible.

The KE11-F adds unique
stack-ordered floating-point
instructions: FADD, FSUB,

FMUL, FDIV.

The KEV-11 adds EIS/FIS

instructions.

SPL instruction.

Power-fail during RESET in-
struction is not recognized un-
til after the instruction is
finished (70 ms). RESET in-
struction consists of a 70 ms
pause with INIT occurring
during the first 20 ms.

Power-fail immediately ends
the RESET instruction and
traps if an INIT is in progress.
A minimum INIT of 1 us oc-
curs if instruction aborted.

Power-fail acts the same as in
the PDP-11/45 (22 ms with
about 300 ns minimum).
Power-fail during RESET
fetch is fatal with no power-
down sequence.

RESET instruction consists of

10 us of INIT followed by a
90 us pause. Power-fail is not
recognized until the instruc-
tion 1s complete.

C-3

ACTIVITY LSI-11
KDF11-

AA and BA

PDP-11/
04 34 05/10 15/20 35/40 45

10.

11.

13.

14.

15.

No RTT instruction.

If RTT sets the T bit, the T bit

trap occurs after the instruc-
tion following RTT.

If RTI sets the T bit, T bit trap
is acknowledged after the in-
struction following RTI.

If RTI sets the T bit, T bit trap
is acknowledged immediately
following RTI.

If an interrupt occurs during
an instruction that has the T
bit set, the T bit trap is ac-
knowledged before the
interrupt.

If an interrupt occurs during
an instruction and the T bit is
set, the interrupt is acknowl-

edged before the T bit trap.

T bit trap will sequence out of
WAIT instruction.

T bit trap will not sequence out
of WAIT instruction. Waits
until an interrupt.

Explicit reference (direct ac-
cess) to PS can load T bit. Con-
sole can also load T bit.

Only implicit references (RTI,
RTT, traps and interrupts) can

- load T bit. Console cannot load

T bit.

Odd address/nonexistent refer-
ences using the SP cause a
HALT. This is a case of double
bus error with the second error
occurring in the trap servicing
the first error. Odd address
trap not in LSI-11 or F11.

C-4

ACTIVITY LSI-11
KDF11- PDP-11/
AAand BA | 04 |34 | 05/10 15/20 35/40 45

16.

7.

18.

19.

20.

Odd address/nonexistent refer-
ences using the stack pointer

cause a fatal trap. On bus error
in trap service, new stack cre-

ated at 0/2.

The first instruction in an in-
terrupt routine will not be ex-
ecuted if another interrupt
occurs at a higher priority level
than assumed by the first
interrupt.

The first instruction in an in-

terrupt service is guaranteed to
be executed.

Eight general-purpose
registers.

Sixteen general-purpose
registers.

PS address, 177776, not imple-
mented; must use new instruc-
tions, MTPS (move to PS) and
MFPS (move from PS).

PS address implemented,
MTPS and MFPS not
implemented.

PS address and MTPS and

MFPS implemented.

Only one interrupt level (BR4)
exists.

Four interrupt levels exist.

Stack overflow is not

implemented.

Stack overflow below 400 is
implemented.

Red- and yellow-zone stack
overflow is implemented.

C-5

ACTIVITY LSI-11
KDF11-
AA and BA

PDP-11/
04 | 34 05/10 15/20 35/40 45

21.

22.

23.

24.

25.

26.

27.

Odd address trap is not
implemented.

Odd address trap is
implemented.

FMUL and FDIV instructions
implicitly use R6 (one push
and pop); hence R6 must be
set up correctly.

FMUL and FDIV instructions
do not implicitly use R6.

Due to their execution time,

EIS instructions can abort be-
cause of a device interrupt.

EIS instructions do not abort
because of a device interrupt.

Due to their execution time,

FIS instructions can abort be-

cause of a device interrupt.

EIS instructions do a DATIP
and DATO bus sequence when
fetching a source operand.

EIS instructions do a DATI
bus sequence when fetching a
source operand.

MOV instruction just does a
DATO bus sequence for the
last memory cycle.

MOV instruction does a

- DATIP and DATO bus se-

quence for the last memory
cycle.

If the PC contains a nonexis-

tent memory address and a bus
error occurs, the PC will have
been incremented.

ACTIVITY LSI-11
KDF11-
AA and BA

PDP-11/
04 34 | 05/10 15/20 35/40 [45

28.

29.

30.

31.

If the PC contains nonexistent

memory address and a bus er-
ror occurs, the PC will be

unchanged.

[f a register contains nonexis-
tent memory address in mode 2
and a bus error occurs, the reg-
ister will be incremented.

Same as above but the register
1s unchanged.

If a register contains an odd
value in mode 2 and a bus er-

ror occurs, the register will be
incremented.

If a register contains an odd
value in mode 2 and a bus error
occurs, the register will be
unchanged.

Condition codes restored to
original values after FIS inter-
rupt abort (EIS does not abort
on the PDP-35/40).

Condition codes that are re-

stored after EIS/FIS interrupt
abort are indeterminate.

Op codes 075040-075377 un-
conditionally trap to 10 as re-
served op codes.

[f the KEV-11 option is pre-
sent, op codes 075040-075377
perform a memory read using
the register specified by the
low-order three bits as a
pointer. If the register contents
are a nonexistent address, a
trap-to-4 occurs. If the register
contents are an existent ad-
dress, a trap-to-10 occurs if
user microcode is not present.
If no KEV-11 option is present,
a trap-to-10 occurs.

C-7

ACTIVITY LSI-11
KDF11-
AA and BA

PDP-11/
04 |34 05/10 15/20 35/40 45

32.

33.

34.

Op codes 210--217 trap to 10
as reserved op codes.

Op codes 210-217 are used as
maintenance instructions.

Op codes 075040~-075777 trap
to 10 as reserved op codes.

Only if KEV-11 option is pre-
sent, op codes 075040-075377
can be used as escapes to user
microcode. Op codes
075400-075777 can also be
used.

Used as escapes to user mi-
crocode, and KEV-11 option
need not be present. If no user
microcode exists, a trap-to-10
occurs.

Op codes 170000-177777 trap
to 10 as reserved instructions.

Op codes 170000-177777 are
implemented as floating-point
instructions.

Op codes 170000~177777 can
be used as escapes to user
microcode. 1f no user micro-
code exists, a trap-to-10
OCCurs.

C-8

APPENDIX D
KDF11-BA BACKPLANE PIN ASSIGNMENT COMPARISON

The KDF11-BA module (M8189) uses four bused spare lines that were reserved for future expansion to
implement 22-bit addressing. The KDF11-BA also uses two spare pins for the RUN light signal and one
spare pin for battery backup control of the power-up code 1 jumper signal (PUP CD1J L). The KDF11-
BA uses the AM2 pin in slot 1 for the input of a microcycle enable signal (MCENB H), which may be
externally negated to disable the master clock control for testing purposes. Pin AM2 in slots 2 through
9 is used by peripheral option modules as an input pin for the BIAKI signal. Two pairs of CD slot
signals can be connected together to provide continuity for the interrupt acknowledge (BIAK) and.bus
grant (BDMG) signals when the KDF11-BA is used in an LSI-11/LSI-11 backplane.

Certain pins of the A and B backplane rows are used for different functions by the KDF11-BA,
KDF11-AA, KD11-HA, and KD11-F processors. A comparison of the backplane pin assignment for the
processors is shown in Table D-1. The assignment of the remaining backplane pins of rows A and B are
identical for all four processors. The backplane pin assignment for rows C and D of the KDFI11-BA
module is listed in Table D-2.

Table D-1 Backplane Pin Assignment Comparison (Rows A and B)

Bus Backplane Backplane Pin Utilization
Pin Signal Name KDF11-BA KDF11-AA FD11-HA KD11-F

AAl BIRQS L BIRQS5 L BIRQS5 L Not used Not used
ABI BIRQ6 L BIRQ6 L BIRQ6 L Not used Not used
BP1 BIRQ7 L BIRQ7 L BIRQ7 L Not used Not used
ACI BDALI6 L BDALI6 L BDALI16 L Not used Not used
ADI1 BDAL17 L BDAL17 L BDAL17 L Not used Not used

AE]l SSPAREI Not used Single Step STOP L Not used
AFlI SSPARE2 SRUN L SRUN L SRUN L SRUNL
AHI SSPARE3 SRUN L SRUN L SRUN L Not used
AKl MSPAREA Not used Not used MTOE L Not used
ALI MSPAREA Not used Not used GND Not used

AM?2 BIAKI L MCENBH MMU STRH Not used Not used
AR] BREF L BCTRL L Not used* Not used* BREF L
AR2 BDMGI L Not used UBMAPL Not used Not used
BCl1 SSPARE4 BDALIS L MMU DALISH | SCLK3 H Not used
BD1 SSPARES BDALIS L MMU DALI9SH | SWMIBI8 H | Not used

*Not used on the KDF11-AA and KD11-HA but terminated in the inactive state to prevent problems with older memories.

D-1

Table D-1 Backplane Pin Assignment Comparison (Rows A and B) (Cont)

Bus Backplane Backplane Pin Utilization
Pin Signal Name KDF11-BA KDF11-AA FD11-HA KD11-F

BEI SSPAREG6 BDAL20 L MMU DAL20H | SWMIBI9H | Not used
BF1 SSPARE?7 BDAL2I L MMU DAL21 H | SWMIB20H | Not used
BHI SSPARESR PUPCDI1JL| CLK DISL SWMIB21 H | Not used
BK MSPAREB Not used Not used Not used 4K RAM BIAS
BLI MSPAREB Not used Not used Not used 4K RAM BIAS

Table D-2 KDF11-BA Backplane Pin Assignment (Rows C and D)

Bus Pin Bus Pin Bus Pin Bus Pin
Pin Utilization | Pin Utilization Pin Utilization Pin Utilization

CAl - CA2 + 5 DAl — DA?2 +35

CBl1 — CB2 — DBl — DB2 —

CCl1 — CC2 GND DCl1 — DC2 GND

CDlI - CD2 - DDl — DD?2 -

CE]l — CE2 — DEI — DE2 —

CF1 —~ CF2 — DFI — DF2 —

CHI1 ~ CH?2 — DHI1 — DH?2 -

CJ1 — CJ2 — DJ1 — DJ2 —

CKl1 - CK2 - DK - DK2 -

CL1 - CL2 — DL1 — DL2 -

CMI1 — CM2 BIAKI L DM — DM?2 —

CNI — CN2 BIAKO L DN — DN?2 =

CP1 — CP2 — DPI — DP2 -

CRI1 — CR2 BDMGI L DRI - DR2 —

CSl1 — CS2 BDMGO L DSI1 — DS?2 —

CT1 GND CT2 — DT1 GND DT2 ~

CUI — Cu2 — DUI1 — DU2 —

CVl1 — CV2 — DV1 — DV2 —

D-2

APPENDIX E
MICRO-ODT DIFFERENCES

A number of differences exist between the ways the LSI-11 (KD11-F), LSI-1 1/2 (KD11-HA), LSI-
11/23 (KDF11-A) and LSI-11/23B (KDF11-BA) CPUs interpret the same console ODT commands.
Notably, the LSI-11/23 and LSI-11/23B do not support the L command. The following list describes
these differences.

In most cases, if you are using ODT from a console terminal, your program will not be affected. How-
ever, the slight difference in response to some commands may impact users who have programmed a
host computer to emulate a console terminal to down-line load programs to the LSI-11.

LSI-11 and LSI-11/2 LSI-11/23 and LSI-11/23B
(KD11-F and KD11-HA) (KDF11-AA and KDF11-BA)

1. All characters that are input are echoed ex- 1. All characters that are input in any com-
cept when in the APT command mode, mand mode except the APT mode are ech-
where no characters are echoed. An echoed oed except the octal codes 0, 2, 10, 12, 200,
line feed <<LF> will be followed by a car- 202, 210, and 212. This suppresses echoing
riage return <CR> only (no second <LF>s, nulls (0), STXs (2), and BSx (10)
< LF> or padding nulls). This method cre- because an automatic <CR> and <LF>
ates a potential timing problem with a TTY follow. In the APT command mode, no in-
ASR33, which types the next character be- put characters are echoed.
fore the printhead has completely returned.

2. When an address location is open, another 2. An address location must be explicitly
location can be opened without explicitly closed by a <CR> or <<LF> command
closing the first location. For example, before another is opened or else an error (?)
1000/123456 2000/054321 will occur and any open location will auto-

matically be closed without its contents be-
ing altered.

3. “!” will open the previous location. 3. “T is illegal and micro-ODT prints
7<CR><LF>a@.

4. “@” will open a location using indirect ad- 4. "@” 1s illegal and micro-ODT prints
dressing. 7<CR><LF>@.

5. “~" will open a location using relative ad- 5. "7 is illegal and micro-ODT prints
dressing. T<CR><LF>a@.

E-1

LSI-11/23 and LSI-11/23B
(KDF11-AA and KDF11-BA)

6.

10.

11.

12.

13.

14.

“M” will print the contents of an internal
CPU register.

Rubout (ASCII 177) will delete the last
character typed in.

“L” is the boot loader command that will

load the absolute loader from the specified
device.

Control-shift-S command mode (ASCII 23)
accepts 2 bytes forming a 16-bit address
and dumps 10 bytes in binary format. The 2
input bytes are not echoed.

Up to a 16-bit address and 16-bit data may
be entered. Leading zeros are assumed.

Incrementing <LF>, the address 177776
results in the address 000000.

Incrementing a PDP-11 register from R7
prints out “R8” and the contents of RO.

The 1/O page is in the address group
17XXXX.

The micro-ODT mode can be entered from

the following sources.

a. A PDP-11 HALT instruction.

b. A double bus error.

¢. An asserted HALT line.

LSI-11 and LSI-11/2
(KD11-F and KD11-HA)

6.

10.

11,

12.

13.

14.

E-2

“M” is illegal and micro-ODT prints
T<CR><LF>a@.

Rubout is illegal and micro-ODT prints
7<CR><«<LF>@.

“L” 1s illegal and micro-ODT prints
T<CR><LF>@.

Control-shift-S command mode (ASCII 23)
accepts 2 bytes forming an 18-bit address
with bits <<17:16> always zeros and
dumps 10 bytes in binary format. The 2 in-
put bytes are not echoed.

Up to an 18-bit address and 18-bit data may
be entered. Leading zeros are assumed.

Incrementing <LF>, the addresses
177776, 377776, 577776 and 777776 result
in the addresses 000000, 200000, 400000,
and 600000, respectively. That is, the upper
2 bits of the 18-bit address are not affected;
they must be explicitly set.

Incrementing a PDP-11 register from R7
prints out “R0” and the contents of RO.

The I/O page is in the address group
T77XXXX, where address bits <<17:12>
must be explicit ones.

The micro-ODT mode can be entered from
the following sources.

a. A PDP-11 HALT instruction when In

kernel mode; the POKL line is low and

the HALT jumper option strap is pre-
sent.

b. An asserted HALT line.

c. A power-up option.

LSI-11/23 and LSI-11/23B
(KDF11-AA and KDF11-BA)

135.

16.

d.

h.

1.

A power-up option.

An asserted HALT line caused by a
DLVI11 framing error.

A micro-ODT bus error.

A memory refresh bus error.

An interrupt vector timeout.

A nonexistent micro PC address.

A carriage return <CR> is echoed and
followed by a line feed <<LF> only.

No “H” command.

*14.

T16.

LSI-11 and LSI-11/2
(KD11-F and KD11-HA)

d. An asserted HALT line caused by a
DLVI11 framing error.

e. A micro-ODT bus error.

(See NOTE*)

15.

16.

A carriage return <CR> is echoed and
followed by another <<CR> and a line feed
<LF>.

“H” causes the LSI-11/23 to execute micro-
code routine that, in effect, does nothing. }

The micro-ODT mode can be entered on the LSI-11/23B from the following sources.

A PDP-11 HALT instruction when in kernel mode, if the HALT TRAP jumper (J16 to J18) is not installed. l.

2.

3.

An asserted HALT line.

Power-up mode option 1 selected.

“H" causes the LSI-11/23B to echo the “H” and print a prompt character rather than a *“?”, which is the invalid char-
acter response. No other operation is performed.

E-3

APPENDIX F

FUNCTIONAL DESCRIPTION OF BUS SIGNALS

The following Table F-1 offers a functional description of the extended LSI-11 bus signals.

Table F-1 Extended LSI-11 Bus Signal Functions

Bus | Signal
Pin | Mnemonic Signal Function

AA1l | BIRQS L Interrupt request priority level 3.

AB1 | BIRQ6 L Interrupt request priority level 6.

AC1 | BDALI6 L Address line 16 during addressing protocol; parity control line during data
transfer protocol.

ADI | BDALI7 L Address line 17 during addressing protocol; parity control line during data
transfer protocol.

AEl | SSPAREI Special spare — Not assigned or bused in DIGITAL cable or backplane assem-
alternate blies; available for user connection. This pin may be used optionally for +5 V

+5B battery (+ 5B) backup power to keep critical circuits alive during power fail-
ures. A jumper i1s required on LSI-11 bus options to open (disconnect) the
+ 5B circuit in systems that use this line as SSPAREIL.

AF1 |SSPARE2 Special spare — Not assigned or bused in DIGITAL cable or backplane assem-
SRUN blies; available for user interconnection. In the highest priority device slot, the

processor may use this pin for a signal to indicate its RUN state.

AH1 |SSPARE3 Special spare — Not assigned nor bused in DIGITAL cable or backplane as-
semblies; available for user interconnection.

AJl |GND Ground — System signal and dc return.

AK1 |MSPAREA Maintenance spare — Normally connected together on the backplane at each
ALl |MSPAREB option location (not a slot-to-slot bused connection).

AMI1 |GND Ground — System signal and dc return.

ANI1 | BDMRL Direct memory access (DMA) request — Device asserts this signal to request
bus mastership.

Table F-1 Extended LSI-11 Bus Signal Functions (Cont)

Bus | Signal
Pin | Mnemonic Signal Function

AP1 | BHALT L Processor halt — When BHALT L is asserted, the processor responds by going
into its halt state (generally console ODT mode.)

AR1 | BREF L Memory refresh — Used during refresh protocol to override memory bank se-
lection decoding and to cause all banks to be selected.

Asserted or negated with BRPLY by block mode slave devices to indicate to
the bus master whether the slave can accept another block mode DIN or
DOUT transfer.

AS1 | +5Bor +12B| +12 or +5 Vdc battery backup power to keep critical circuits alive during
battery power failures. This signal is not bused to BS1 in all DIGITAL backplanes. A

jumper 1s required on all LSI-11 bus options to open (disconnect) the backup
circuit from the bus in systems that use this line at the alternate voltage.

AT! | GND Ground — Systems signal and dc return.

AUl | PSPAREI Power spare 1 (not assigned a function; not recommended for use) — If a back-
plane is busing —12 V (on pin BB2) and a module is accidentally inserted up-
side down in the backplane, — 12 Vdc appears on pin AU1. If AU1 is unused
on the module, no damage will occur.

AVIl | +5B + 35 V battery backup power — For keeping critical circuits alive during power
fatlures.

BAl | BDCOK H DC power OK (power supply) — Generated signal that is asserted when there
is sufficient dc voltage available to sustain reliable system operation.

BB1 | BPOK H AC power OK — Asserted by the power supply when primary power is normal.
When negated during processor operation, a power-fail trap sequence is in-
itiated.

BC1 | SSPARE 4 Special spares <<7:4> in standard LSI-11 bus systems (16- and 18-address-bit
BDI1 | SSPARE 5 systems). Not assigned or bused in standard LSI-11 bus cable or backplane
BE1 | SSPARE 6 assemblies. These pins are used to bus address lines <<21:18> in extended
BF1 | SSPARE 7 LSI-11 cable and backplane assemblies.

CAUTION
These pins may have been used as test points in some DIGITAL or customer
options. These options must be modified or designated incompatible with ex-
tended L.SI-11 bus backplanes.

BHI1 | SSPARE & Special spare — Not assigned or bused in DIGITAL cable or backplane assem-
blies; available for user interconnection.

BJ1 | GND Ground — System signal ground and dc¢ return.

F-2

Table F-1 Extended LSI-11 Bus Signal Functions (Cont)

Bus | Signal
Pin | Mnemonic Signal Function

BK1 | MSPAREB Maintenance spares — Normally connected together on the backplane at each
BL1 | MSPAREB option location (not a bused connection).

BM1| GND Ground — System signal ground and dc return.

BN1 | BSACK L This signal is asserted by a DMA device in response to the processor’s
BDMGO L signal, indicating that the DMA device is accepting bus master-
ship. Device remains bus master until it negates BSACK L.

BP1 | BIRQ 7L Interrupt request priority level 7.

BR1 | BEVNT L External event interrupt request — The processor latches the leading edge and
arbitrates as an interrupt. A typical use of this signal is a line-time clock inter-
rupt.

BS1 | +12B + 12 Vdc battery backup power (not bused to ASI in all DIGITAL back-
planes).

BT! | GND Ground - System signal ground and dc return.

BU1 | PSPARE2 Power spare 2 (not assigned a function, not recommended for use) — If a back-
plane is busing —12 V (on pin AB2) and a module is accidentally inserted
upside down in the backplane, —12 Vdc appears on pin BUI. If BU1 is
unused on the module, no damage will occur.

BV1 | +5 +35 V power — Normal +5 Vdc system power.

AA2 | +5 +5 V power — Normal +5 Vdc system power.

AB2 | —12 —12 V Power — — 12 Vdc (optional) power for devices requiring this voltage.

AC2 | GND Ground — System signal and dc return.

AD2 | +12 +12 V power — Normal + 12 Vdc system power.

AE2 | BDOUT L Data output — When asserted, BDOUT implies that valid data is available on
BDAL <15:0> L and that an output transfer, with respect to the bus master
device, is taking place. BDOUT L is deskewed with respect to data on the bus.

AF2 | BRPLY L Reply — BRPLY L is asserted in response to BDIN L or BDOUT L and dur-
ing [AK transaction. It is generated by a slave device to indicate that it will
place its data on the BDAL bus or that it will accept data from the bus, ac-
cording to the appropriate protocol.

Table F-1 Extended LSI-11 Bus Signal Functions (Cont)

Bus | Signal
Pin | Mnemonic Signal Function

AH2 | BDIN L Data input — BDIN L is used for two types of bus operation:

1. When asserted during BSYNC L time, BDIN L implies an input transfer
with respect to the current bus master and requires a response (BRPLY
L) from the addressed slave.

2. The interrupt fielding processor initiates interrupt service by asserting
TDIN L followed by TIACK L.

AJ2 | BSYNCL Synchronize — BSYNC L is asserted by the bus master device to indicate that
it has placed an address on the bus. The transfer is in process until BSYNC L
is negated. In block mode BSYNC L remains asserted until the last transfer
cycle is completed.

AK2 | BWTBT L Write/byte — BWTBT L is used in two ways to control a bus cycle:

1. Itis asserted during the address portion of a cycle to indicate that an out-
put cycle is to follow DATO or DATO(B) rather than an input cycle.

2. It 1s asserted during the data portion of a DATO(B) or DATIO(B) bus
cycle, to indicate a byte rather than a word transfer is to take place.

AL2 | BIRQ4 L Interrupt request priority level 4.

AM?2 | BIAKI L Interrupt acknowledge — In accordance with interrupt protocol, the processor
AN2 | BIAKO L asserts BIAKO L to acknowledge an interrupt. The bus transmits this to

BIAKI L of the next priority device (electrically closest to the processor). This
device accepts the interrupt acknowledge if:

1. The device requested the bus by asserting an interrupt, BIRQX L.

2. The device had the highest priority interrupt request on the bus at the
time of the preceding BDIN L assertion.

If both these conditions are not met, the device asserts BIAKO L to the next

device on the bus. This process continues in a daisy-chain fashion until the de-
vice with the highest interrupt priority receives the interrupt acknowledge
(IAK) signal and proceeds with interrupt protocol.

AP2 |BBS7 L Bank 7 select — When the bus master asserts TADDR, it asserts BBS7 L to

reference the 1/0O page (including that portion of the I/O page reserved for
nonexistent memory). The address on BDAL <<12:0> L when BBS7 L is as-
serted is the address within the 1/0O page.

F-4

Table F-1 Extended LSI-11 Bus Signal Functions (Cont)

Bus | Signal
Pin | Mnemonic Signal Function

AR2 | BDMGI L Direct memory access grant — The bus arbitrator asserts this signal to grant
AS2 | DBMGO L bus mastership to a requesting device, according to bus mastership protocol.

The signal is passed in a daisy-chain from the arbitrator (as BDMGO L)
through the bus to BDMGI L of the next priority device (electrically closest
device on the bus). This device accepts the grant only if it requested to be bus
master (by asserting BDMR L). If it did not, the device passes the grant (as-
serts BDMGO L) to the next device on the bus. This process continues until
the requesting device acknowledges the grant by asserting BSACK L after
BRPLY L and BSYNC L are both negated.

AT2 | BINIT L Initialize — This signal is used for system reset. All devices on the bus are to
return to a known, initial state; that is, registers are reset to zero, all bus driv-

ers are disabled, and logic is reset to state 0, ready to be addressed for oper-
ations. Exceptions should be completely documented in programming and en-
gineering specifications for the device.

AU2 | BDALO L Data/address line 00 — Specifies high or low byte during address for
DATO(B) and DATIO(B) cycles.

AV2 | BDALI L Data/address line Ol.

BA2 | +5 +5 Vdc power.

BB2 | —12 —12 Vdc power (optional, not required for DIGITAL LSI-11 or F11 hard-

ware options).

BC2 | GND Power supply return.

BD2 | +12 + 12 Vdc power.

BE2 | BDAL2 L Data/address line 02.

BF2 | BDAL3 L Data/address line 03.

BH2 | BDAL4 L Data /address line 04.

BJ2 | BDALS L Data/address line 05.

BK2 | BDAL6 L Data/address line 06.

BL2 | BDAL7 L Data/address line 07.

BM2| BDALS L Data/address line 08.

F-5

Table F-1 Extended LSI-11 Bus Signal Functions (Cont)

Bus | Signal
Pin | Mnemonic Signal Function

BN2 | BDALS L Data/address line 09.

BP2 | BDALIO L Data/address line 10.

BR2 | BDALII1 L Data/address line 11.

BS2 | BDALI2 L Data/address line 12.

BT2 | BDALI3 L Data/address line 13.

BU2 | BDAL14 L Data/address line 14.

BvV2 | BDALIS L Data/address line 15.

KDF11-BA CPU Module User’s Guide | Reader’s Comments
EK-KDFEB-UG-001

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our

publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well

written, etc.? Is it easy to use?

What features are most useful?

What faults or errors have you found in the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

0 Please send me the current copy of the Technical Documentation Catalog, which contains information on

the remainder of DIGITAL’s technical documentation.

Name _ Street

Title - City

Company State/Country

Department Zip

Additional copies of this document are available from:

Digital Equipment Corporation
444 Whitney Street

Northboro, MA 01532

Attention: Printing and Circulating Service (NR2/M15)

Customer Services Section

Order No. EK-KDFEB-UG

Do Not Tear — Fold Here and Staple

Eflgflnan No Postage

Necessary

if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD, MA.

POSTAGE WiLL BE PAID BY ADDRESSEE

Digital Equipment Corporation

Educational Services Development and Publishing

200 Forest Street (MR1-2/T17)

Marlboro, MA 01752

I

