

A new paradigm. . .

Zinc® Application Framework"

Programmer’s Guide

Version 3.5

Zinc Software Incorporated
Pleasant Grove, Utah

Copyright © 1990-1993 Zinc Software Incorporated Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no

Back-Cover Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".

TABLE OF CONTENTS

SECTION I
GETTING STARTED

CHAPTER 1 - INTRODUCTION
Overview
System requirements
Using The Manuals
Programmer’s Guide
Programmer’s Reference
Programming Techniques
Typefaces
Terminology
Zinc Technical Support

CHAPTER 2 - INSTALLATION
Installation procedure
Shipping applications

SECTION II
BASIC CONCEPTS

CHAPTER 3 - CONCEPTUAL DESIGN
The software dilemma
An object-oriented solution
The C++ pep talk
The benefits of OOP
Zinc Application Framework
The event manager
The window manager
The screen display
The help system
The error system
Event mapping
Storage and retrieval
Conclusion

CHAPTER 4 - WINDOW OBJECTS ...
Introduction
Basic window objects

Vii

CHAPTER 5 - DOS APPLICATIONS

CHAPTER 7 - OS/2 APPLICATIONS

CHAPTER 8 - MOTIF APPLICATIONS

Button window objects
Combo box window objects
Date window objects
Icon window objects
List window objects
MDI window objects
Menu window objects
Number window objects
String window objects
Text window objects
Time window objects
Tool bar window objects

Introduction
Look and feel
DOS library
Compiler options
main()

Derived objects

CHAPTER 6 - WINDOWS APPLICATIONS

Introduction
Look and feel
Windows library
Compiler options
WinMain()
Derived objects

Introduction
Look and feel
0S/2 library
Compiler options
main()

Derived objects

Introduction
Look and feel
Motif library
Compiler options
main()

viii

Derived objects

CHAPTER 9 — ZINC DESIGNER s 71
Interactive editors
Utilities

Getting around

Creating a window
Creating a window object
Zinc Designer files

SECTION III

ADVANCED CONCEPTS 81
CHAPTER 10 - ZINC LIBRARY CLASSES i 83
Base Classes
UI_ELEMENT
UL_LIST

UI_LIST_BLOCK
Event Manager

Input devices

The input queue
Window Manager
Window objects

Event member functions
Help System

Error System

Screen Displays

Region lists (DOS version only)
Virtual display functions
Event Mapping

Palette Mapping

CHAPTER 11 - C++ FEATURES, 103
Class Definitions
Design issues
Base classes
Derived classes
Multiple inheritance classes
Abstract classes
Friend classes
Class Creation
Using the “new” operator
Scope class construction

Base class construction
Array constructors
Overloaded constructors
Copy constructors

Default arguments

Class Deletion

Using the “‘delete” operator
Scope deletion

Virtual destructors

Base class destruction
Array destruction

Member Variables

Variable definitions

Static member variables
Member Functions
Function definitions

Default arguments

Virtual member functions
Overloaded member functions
Pointers to static member functions
Operator overloads

Static member functions
Conclusion

CHAPTER 12 - SCREEN DISPLAY

Introduction
Coordinate system
Clip regions

CHAPTER 13 - DEFAULT EVENT MAPPING

Overview

Event map table
Algorithm

Default keyboard mapping
Default mouse mapping

SECTION |
GETTING STARTED

Section | — Getting Started 1

2 Zinc Application Framework — Programmer’s Guide

CHAPTER 1 - INTRODUCTION

Overview

Zinc Application Framework is a powerful user interface library that uses unique features
of C++, including virtual functions, class inheritance, operator overloading, multiple
inheritance, etc. This library is developed specifically for C++ and is compatible with
AT&T’s C++ V2.1 and ANSI C.

System requirements

To develop applications for DOS Text and DOS Graphics in real mode you need Zinc
Application Framework 3.5 (Zinc Engine and DOS Key), a C++ compiler for DOS (i.e.,
Borland C++, Microsoft C++ or Zortech C++), DOS 2.1 or later (DOS 3.1 or later is
recommended for accurate country information), and a Microsoft compatible mouse driver.
To develop applications for DOS Text and DOS Graphics in protected mode you also
need a DOS extender SDK (see the READ.ME file for a list of currently supported DOS
extenders).

To develop applications for Microsoft Windows 3.X you need Zinc Application
Framework 3.5 (Zinc Engine and Microsoft Windows Key), a C++ compiler for Microsoft
Windows (i.e., Borland C++, Microsoft C++ or Zortech C++) and Microsoft Windows 3.0
or later. To develop applications for Microsoft Windows NT you need Zinc Application
Framework 3.5 (Zinc Engine and Windows NT Key) a C++ compiler for Windows NT
(i.e., Borland C++, Microsoft C++ or Zortech C++) and the Microsoft Windows NT SDK.

To develop applications for IBM OS/2 2.X you need Zinc Application Framework 3.5
(Zinc Engine and OS/2 Key), a C++ compiler for OS/2 (i.e., Borland C++ or Zortech
C++) and the IBM OS/2 2.0 or later SDK.

To develop applications for OSF/Motif you need Zinc Application Framework 3.5 (Zinc
Engine and Motif Key), a C++ compiler compatible with version 2.1 of the AT&T C++
translator, and OSF/MOTIF 1.1 running on X11 R4. (NOTE: Some source code changes
may be required to use the Motif Key on hardware platforms that are not directly
supported by Zinc. See the README file for a list of currently supported hardware
platforms.)

To develop applications for PenDOS 1.1 you need Zinc Application Framework 3.5 (Zinc
Engine, DOS Key and PenDOS Key), a C++ compiler for DOS (i.e., Borland C++,
Microsoft C++ or Zortech C++), DOS 5.0, CIC PenDOS 1.1 SDK and a PenDOS
compatible digitizer or pen computer.

Chapter 1 — Introduction 3

Using The Manuals

Programmer’s Guide

The documentation for Zinc Application Framework is contained in three manuals: Pro-
grammer’s Guide, Programmer’s Reference and Programming Techniques. The Pro-
grammer’s Guide provides an overview to Zinc Application Framework. It contains the
following sections:

Section I—Getting Started gives an overview of Zinc Application Framework, tells
how to install the library package on your computer and how to ship Zinc Application
Framework based applications.

Section II—Basic Concepts gives a high-level description of Zinc Application
Framework, including the conceptual operation of the library and its major pieces.
Introductions on how to use Zinc to build applications for DOS (real and protected
modes), Microsoft Windows 3.X, Windows NT, IBM 0OS/2 2.X and OSF/Motif as
well as an overview of Zinc Designer, are also given.

Section III—Advanced Concepts gives an in-depth description of Zinc Application
Framework and C++ programming. It is recommended that you read this section
prior to beginning an application.

Programmer’s Reference

The Programmer’s Reference contains descriptions of Zinc Application Framework
classes, the calling conventions used to invoke the class member functions, short code
samples using the class member functions and information about other related classes or
example programs. The Programmer’s Reference contains the following sections:

Class object information—This section (Introduction) contains the class hierarchy
and include file (.HPP) information associated with class objects and structures
available within Zinc Application Framework.

Class object references—This section (Chapters 1 through 71) contains short
descriptions about the class objects (or structures), the public and protected member
variables and functions (private members are not documented) and the calling
conventions used with the class object.

Miscellaneous information—This section (Appendices A through F) contains support

definitions, system event definitions, logical event definitions, class identifications,
storage information and environment specific keyboard information.

4 Zinc Application Framework — Programmer’s Guide

Programming Techniques

The Programming Techniques contains a series of tutorials designed to help the
programmer in learning the features and practical uses of Zinc Application Framework.

Section I—Hello World! describes how to initialize the main components of Zinc
Application Framework.

Section II—Dictionary describes the transition from C programming to C++ pro-
gramming, adding Zinc Application Framework to an existing application and using
the Zinc storage file.

Section III—Zinc Application Program describes the overall design and
implementation issues that should be considered when creating applications using
Zinc Application Framework.

Section IV—Derived Classes contains a set of tutorials that show how Zinc
Application Framework classes can be modified to perform customized operations.
This section should only be read by programmers who want to derive objects in their
applications.

Section V—Portability Issues contains a set of tutorials that present methods for
obtaining program portability. International currency and multi-language programs
are discussed.

Section VI—Persistent Objects contains a set of tutorials that present the concept
of persistent objects (i.e., objects that can be stored to and retrieved from disk).

Section VII—Zinc Designer contains an in-depth description of Zinc Designer and
all of its components. The available objects, their edit windows and general
interaction are described.

Section VIII—Miscellaneous Information (Appendices A through E) contains
compiler considerations, compiling BGI files, example programs, Zinc coding
standards and common questions and answers.

Typefaces

Special typefaces are used throughout the documentation in order to clarify the usage and
meaning of specific terms. Familiarity with the following typeface conventions will be
helpful in working with these manuals:

Chapter 1 — Introduction 5

Boldface Class member functions and reserved words, as well as
captions requiring emphasis, are identified by boldface type.

ALL CAPS Names of constants, classes and enumerations appear in all
capital letters.

Italics Variable names and class member variables are shown in
italics.
Monospace Text as it appears on the screen or within a program is

presented in monospace type.

CAPS BOLDFACE Names of files appear in all capitals and boldface type.
(NOTE: Often the names of constants, classes and enumera-
tions appear in all capital boldface as part of a caption. This
is done only to place emphasis on the words and does not
distinguish them as file names.)

[1] Optional input items that are dependant upon the system you
use are enclosed by square brackets.

<> Include files, specific keys to be entered from the keyboard
and mouse movements are enclosed in angle brackets.

Underline Words that require particular emphasis within text are under-
lined.

Terminology

The following terms are used extensively throughout the documentation:
Field—A window object that can be edited. For example, the border of a window
is not considered to be a “field” whereas a number is considered to be a field. The

figure below shows a window with several fields. (The fields are shown with
outlining borders.)

6 Zinc Application Framework — Programmer’s Guide

Name: [zinc Software Incorporated j

Address: [405 South 100 East —|

|2nd Floor]
City, State, ZIP: E’Ieasant Grove —I uT |a4usz—unﬁ|
Phone:]Eml 785-8900 T

UI_—The prefix identification for all class objects used in Zinc Application
Framework. The “UI” stands for “User Interface.” This prefix allows program-
mers to distinguish the user interface part of their application.

UID_—The prefix identification for all device class objects used in the library. The
“UID” stands for “User Interface Device” object. All UID type objects are derived
from the UI_DEVICE base class.

UIW_—The prefix identification for all window class objects used in the library.
The “UIW” stands for “User Interface Window” object. All UIW type objects are
derived from the UI_WINDOW_OBJECT base class.

Window—A region of the screen that contains one or more window objects. A
window is used by the end user to view or edit information associated with the
application program. A window is represented by the UIW_WINDOW class object.
In the figure below, the window is shown as the main rectangle and all blank portions
within the rectangle. All non-blank portions of the window are window objects (the
border, buttons and title bar).

Chapter 1 — Introduction 7

Window field—A window object that can be edited. This term is synonymous to
“field.”

Window object—A class object derived from the UL WINDOW_OBJECT base
class. Window objects are used in the context of a parent window or are themselves
windows that are attached to the screen display. The figure above shows a window
with several window objects (a border, 3 buttons and a title bar).

Zinc Technical Support

Zinc Software Incorporated offers a complete technical support program to registered
users, so be sure to complete and return the registration card. As a registered user you
will be eligible for the following support services:

Limited warranty—The terms of your limited warranty are explained in the Zinc
Application Framework End User Software License Agreement.

Telephone support—If you need assistance beyond what the Zinc Application
Framework manuals or your reseller can provide, you can call (801) 785-8998
between the hours of 8:00 a.m. and 5:00 p.m. Mountain Standard Time and talk with
one of our technical support representatives at no charge. In Europe call +44 (0)81
855 9918 between 9:00 a.m. and 5:00 p.m. London Time. Technical Support is
closed Saturdays, Sundays and holidays. Please have the following information ready
before you call:

Zinc Application Framework — Programmer’s Guide

* Your Zinc Application Framework version and serial number, as well as the
name under which the product is registered

* Your hardware and operating system configuration (e.g., computer type, mouse
brand, operating system, version number and system setup information)

* Your compiler and version number

Electronic support—You can use our electronic bulletin board system (i.e., BBS)
to exchange ideas with other programmers, to send messages to our technical support
representatives, or to download information. Call (801) 785-8997 with 300-9600
baud (V.32 bis), 8 data bits, no parity and 1 stop bit or call (801) 785-8995 with 300-
9600 baud (HST dual standard), 8 data bits, no parity and 1 stop bit. In Europe call
+44 (0)81 317 2310 with 300-9600 baud (HST dual standard), 8 data bits, no parity
and 1 stop bit. The BBS is operative twenty-four hours a day. You can also have
access to the technical support department via facsimile. Call (801) 785-8996, or +44
(0)81 316 7778 in Europe, twenty-four hours a day.

NOTE: IF YOU NEED TO SEND MORE THAN ONE PAGE OF CODE, DO NOT
USE THE FAX—PLEASE USE THE ZINC BBS.

Special offers—You can receive special promotional offers for new products and product
upgrades.

Chapter 1 — Introduction 9

10 Zinc Application Framework — Programmer’s Guide

CHAPTER 2 — INSTALLATION

The generic Zinc Application Framework install program is a DOS application and
therefore must be run from DOS or a DOS session. Please see the READ.ME file for
environment-specific installation information (e.g., Motif).

The general structure of all screens in the install program is divided into three sections:

INSTRUCTIONS

OPTIONS

KEYBOARD INTERFACE

Instructions—This upper section of the screen gives instructions about the next
install operation to be performed.

Options—This middle section of the screen displays the selectable options at a
particular point in the installation.

Keyboard interface—This lower section of the screen identifies which keys activate
the current operation or how to move within the screen.

Before actually installing Zinc Application Framework, we recommend that you back-up
your distribution disks.

Pressing <Esc> at any time during the installation will cause the program to abort.

Chapter 2 — Installation 11

Installation procedure

12

Installation of Zinc Application Framework requires DOS 2.1 or later, 640K RAM and
a hard disk drive. The installation program copies files to a hard disk or network drive.

Insert “Zinc Engine Disk 17 into the desired drive, make that drive current and invoke
the installation program. For example, to install Zinc Application Framework from drive

A, insert the first disk and type:

a:<Enter>
install<Enter>

The install process is accomplished in seven steps:
Confirmation of license agreements—To install Zinc Application Framework, it is
necessary to confirm that you have read and accepted the Zinc Application
Framework End User Software License Agreement and the Source Code License
Agreement. The license agreements are found at the beginning of this manual. To
confirm and proceed with the installation, select “‘yes.” Otherwise, select “no” and
the installation will abort.

Selecting a drive—You are asked to select a drive to which you want to install Zinc
Application Framework.

Selecting a subdirectory—The default subdirectory is \ZINC. Simply press <Enter>
to accept the default directory or type in the desired directory and then press <Enter>.

Selecting the package option—You are asked to identify which Zinc Application
Framework package(s) you with to install. The options are:

e Zinc Engine (required)
* DOS Key

e Windows Key

* Windows NT Key

e 0S/2 Key

¢ PenDOS Key (requires DOS Key)

Zinc Application Framework — Programmer’s Guide

Selecting the compiler—You are asked which compiler libraries you wish to install.
The options are:

e Borland

e Microsoft

e Zortech

Installation—The program now commences installing the selected material from the
distribution disks to your hard drive. The progress of this installation appears on
your screen. Periodically, a prompt for a new disk will appear. Remove the current
disk from the drive, insert the disk requested and press any key to continue the
installation.

When the process is complete, a message appears on your screen indicating that Zinc
Application Framework has been successfully installed.

NOTE: Be sure to update your system initialization information (e.g., AUTOEXEC.BAT,
CONFIG.0S2) to include the ..\BIN subdirectory in the environment search path. This
will allow you to run the Zinc Application Framework utilities (e.g., DESIGN.EXE,
GENHELP.EXE) without having to specify the full path name.

Shipping applications

Be sure to include the following run-time files (i.e., distributable files) when you ship
your applications:

DAT files generated by GENHELP.EXE (used by the UI_HELP_SYSTEM
class).

DAT files generated by DESIGN.EXE (used by the UI_STORAGE class).

WIN_ZIL.DLL (the DLL version of Zinc Application Framework for use with
Microsoft Windows 3.X).

WNT_ZIL.DLL (the DLL version of Zinc Application Framework for use with
Microsoft Windows NT).

OS2_ZIL.DLL (the DLL version of Zinc Application Framework for use with
IBM 0S/2).

Chapter 2 — Installation 13

You may also need to include the following run-time files used by your compiler:

* Borland .BGI and .CHR files (if the application uses the UI_BGI_DISPLAY
class). (NOTE: .BGI files can be linked into an application.)

e Microsoft .FON files (if the application uses the Ul_MSC_DISPLAY class).

14 Zinc Application Framework — Programmer’s Guide

SECTION II
BASIC CONCEPTS

Section Il — Basic Concepts 15

16 Zinc Application Framework — Programmer’s Guide

CHAPTER 3 — CONCEPTUAL DESIGN

The software dilemma

An

It seems that software developers are constantly trailing behind the advances of hardware
developers. An author commented on this dilemma, “At the onset of the 1990’s, software
lags behind hardware capabilities by at least two processor generations, and the lag is
increasing. There is general agreement that conventional software tools, techniques and
abstractions are rapidly becoming inadequate as software systems grow larger and
increasingly more complex.”!

Conventional (i.e., procedural) programming tools are rarely designed with the
extensibility to easily integrate new technologies. Developers are therefore frequently
forced into starting over in order to include these new technologies in their products.

This dilemma is magnified as software developers struggle to support multiple operating
environments in an effort to maximize market opportunities. Development resources are
almost always scarce and are diluted when they are allocated to “porting” existing
applications rather than being applied to new product development. Additional
development resources are also required to maintain and enhance the different versions
of an application—further compounding the resource problem.

object-oriented solution

Zinc Application Framework is a new generation object-oriented development tool. Zinc
helps you easily solve problems related to the software dilemma. With Zinc’s single-
source support for DOS Text and DOS Graphics (in real and protected modes), Microsoft
Windows 3.X, Windows NT, IBM 0S/2, OSF/Motif and CIC PenDOS porting becomes
a trivial process. You only have one set of source code to maintain so your development
resources aren’t consumed trying to manage several versions of the same product. Zinc’s
object-oriented, event-driven architecture is open and extensible by design. With Zinc’s
modularity you won’t find yourself painted into a corner.

In addition to a robust and comprehensive user interface class library, Zinc also features
the most tightly integrated interactive design tool available with a class library. Zinc
Designer accelerates your development cycle by allowing you to interactively design your
user interface. Because Zinc Designer was created with the Zinc class library you have
direct access to all of the library’s features. For example, you also benefit from Zinc
Designer’s multiplatform storage technology. Screens that you create with Zinc Designer
are saved as platform-independent resources. You can develop your interface using the

Chapter 3 — Conceptual Design 17

Windows version of Zinc Designer, save it to disk and then retrieve it into the Zinc
Designer on any of the other supported platforms.

The C++ pep talk

Like many programmers you may have developed a high degree of proficiency in a
structured language such as C. You might question the need to learn the new features of
C++ (and more importantly, a new approach to programming). However, as you study
this conceptual overview, you will see many compelling benefits of object-orientation.

The transition to object-oriented programming is not a trivial endeavor. But Zinc
Application Framework is a great place to start. Zinc’s class hierarchy is straightforward
and consistent. The constructors will allow you to build a great deal of your application
with very little effort. If you have an existing application that you are updating you will
be able to use a lot of your existing code. And Zinc’s programming techniques and
reference manual will help you understand the features and benefits of object-oriented
programming. Once you develop an appreciation for the benefits of object-oriented
programming with Zinc Application Framework, you should be sufficiently motivated to
start incorporating object-oriented techniques in other parts of your programs.

The benefits of OOP

18

Zinc’s object orientation offers you several significant benefits over procedural approaches
to interface design.

Consistency—Because of its object-oriented nature, Zinc completely eliminates the
problems associated with developing and maintaining multiple versions of source
code for multiple platforms. You can focus your efforts on developing, maintaining
and enhancing one set of source code and let Zinc manage low-level interactions with
the operating environment and screen display, whether it’s DOS Text, DOS Graphics,
Microsoft Windows 3.X, Windows NT, IBM 0S/2, OSF/Motif or PenDOS.

Ease-of-Use—Zinc Designer lets you create your application screens interactively.
Instead of generating source code which is difficult to optimize and not object
oriented, Zinc Designer saves your user interface as platform-independent resources.
These resources are easily modified with Zinc Designer. Zinc’s object-oriented
design uses data abstraction to insulate you from the complexities of the operating
environment without restricting your access to environment specific features, like
Microsoft Windows messages or the raw scan codes from the keyboard. The modular
design of Zinc Application Framework is also conceptually intuitive and easy to
understand.

Zinc Application Framework — Programmer’s Guide

Reusability—Not only are Zinc’s base classes reusable, but any object or class that
you create can become a part of your tool kit. You save time by using classes that
have previously been tested and debugged.

Extensibility—Because Zinc Application Framework is designed from the ground up
as an object-oriented class library, you benefit from a powerful feature of OOP—
inheritance. Rather than developing an object from scratch you can use Zinc’s base
classes (with their existing member functions and data) to derive new classes. For
example, you can create a new input device such as a digitizer by deriving a new
class from Zinc’s device class. Thus, your effort is spent creating only the unique
characteristics of the new class.

Maintenance—Object-oriented applications are much easier to maintain than
structured programs. The data-hiding or encapsulation capability of C++ keeps
relevant data and functions together and allows you to modify an object without
affecting other parts of the application.

Zinc Application Framework

Zinc Application Framework’s simple, yet powerful, architecture (shown below) allows
you to quickly develop full-featured object-oriented applications.

Mouse

y

] Ul_EVENT_MANAGER r

Cursor Keyboard

v —>
(MAIN PROGRAM CONTROL)
- v
SUPPORT RESOURCES | | ULWINDOW_MANAGER j

fHELP SYSTEM \Emon svsn?m| %7 47

LEVENT MAPPING‘ ‘COLOR MAPPING‘ Hello World Wjoriu

{ DISPLAY“| STORAG?'

World Information Window

Chapter 3 — Conceptual Design 19

The main sections of the library are:

Event manager—Controls the flow of end user input and system messages
throughout the application.

Window manager—Controls the presentation of windows and window objects to the
screen display.

Screen display—Controls the low-level screen interface for DOS Text, DOS
Graphics, Microsoft Windows 3.X, Windows NT, IBM 0S/2, OSF/MOTIF and CIC
PenDOS applications.

Help system—Controls the presentation of help information during the run-time
operation of an application.

Error system—Controls the presentation of error information during the run-time
operation of an application.

Event mapping—Controls the mapping of raw input (e.g., Microsoft Windows
messages, OS/2 messages, DOS keyboard scan codes) to logical system events (e.g.,
sizing, moving, redrawing).

Storage and retrieval—Controls the reading and writing of C++ objects to and from
disk.

The event manager

20

As you develop applications with Zinc you will find that it is much more than a collection
of user interface objects. Zinc is a powerful application framework with a backbone
consisting of robust event and window managers. The Event Manager is the skeleton to
which input devices are attached and through which user input and system messages are
passed. The Event Manager also provides an expandable development environment for
integrating user-defined classes (e.g., serial communications).

The Event Manager controls input devices and stores event information such as user input
and system messages that are processed by Zinc Application Framework modules. The
following figure shows the conceptual operation of the Event Manager in a Zinc
application:

Zinc Application Framework — Programmer’s Guide

KEYBOARD MOUSE CURSOR

e R

ULEVENT_MANAGER |
v o
¢ MAIN PROGRAM CONTROL D

—
L UI_WINDOW_MANAGER —l

Most compiler libraries have a set of functions to get input information from the keyboard
(e.g., getch(), getchar()) but seldom have functions to get information from other
devices, such as a mouse. They also don’t provide functions to integrate multiple input
devices. With Zinc Application Framework, all input devices (e. 8., keyboard, mouse and
user-defined input devices) are integrated to let you easily control the user’s input. This
interface is handled by the control part of the Event Manager. The abstract base class
UI_DEVICE serves as a template for all Zinc devices. UI_DEVICE has the following
hierarchy:

DEVICE OBJECT HIERARCHY I

UI_DEVICE

UI_EVENT_MANAGER =

LUID‘KEYBOAHD] { UID_MOUSE —H UID_CURSOR

(other programmer
defined device
objects)

Classes derived from the UL_DEVICE base class include:

UID_KEYBOARD—A BIOS level polled keyboard interface that retrieves keyboard
information from the end user.

Chapter 3 — Conceptual Design 21

22

UID_MOUSE—An interrupt driven mouse interface that receives mouse information
from the end user.

UID_CURSOR—A blinking cursor shown on the screen. In text mode, this device
is implemented as the hardware cursor. In graphics mode, this device paints a
blinking cursor on the screen.

UID_PENDOS—An interrupt driven pen interface that receives pen input and
gestures from the end user.

Other programmer defined device objects—Any other programmer defined device
that conforms to the operating protocol defined by the UI_DEVICE base class (e.g.,
serial communications).

You attach input devices to the Event Manager at run-time. The device feeds input
information to the event queue when polled by the Event Manager, or feeds it directly to
the event queue if it is an interrupt device. The following code shows how to construct
a new event manager class object and how to initialize selected input devices:

// Construct the screen display with the Zinc text display constructor.
UI_DISPLAY *display = new UI_TEXT_DISPLAY () ;

// Construct the event manager and attach the display.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;

// Add the input devices to the event manager using '+’ operator overload.
*eventManager

+ new UID_KEYBOARD

+ new UID_MOUSE

+ new UID_CURSOR;

The Event Manager contains another component called the event queue. All event
information in a Zinc program is passed via the event queue. For example, when the end
user presses a key, the keyboard information is placed into the event queue by the UID_-
KEYBOARD device. You dispatch this event information to the Window Manager via
the application’s event loop. The following code shows how the event loop passes event
information from the Event Manager to the Window Manager:

// declare event structure.

UI_EVENT event;

EVENT_TYPE ccode;

do

{
// Get an event from the event manager.
eventManager->Get (event) ;

// Pass the event to the window manager.

ccode = windowManager->Event (event) ;
} while (ccode != L_EXIT && ccode != S_NO_OBJECT) ;

Zinc Application Framework — Programmer’s Guide

Other elements of Zinc Application Framework use the event queue to send system or
private messages.

The window manager

Zinc’s innovative Window Manager works cohesively with the Event Manager to control
the screen display and pass input information (i.e., events) to the appropriate window or
screen object. The illustration below shows the conceptual operation of the Window
Manager in a Zinc application:

Cursor Keyboard Mouse

y Ul_EVENT MANAGER]

v —>
C_ MAIN PROGRAM CONTROL =
-
SUPPORT RESOURCES | | Ul WINDOW. MANAGER 1
[HELP SYSTEM HEHRORk SYSTElﬂ ﬁ l

{EVENT MAPPING @LOR MAPPING Window |
i Window 1
‘ DISPLAY ‘TSTORAGE

The Window Manager determines the position and priority of windows on the screen and
is used to channel events to the proper windows. For example, the graphic illustration
above shows Window1 overlapping Window2. In this example, the Window Manager
routes all keyboard information to Window 1, since it is the top-most window attached to
the screen. In addition, any mouse information that overlaps Window1 or the region
intersected by Window1 and Window?2 will be sent to Window1 for processing.

The Window Manager maintains a list of windows and minimized windows (i.e., icons).
Additional window objects may be attached to windows. All of these objects are derived
either directly or indirectly from the UL_ WINDOW_OBJECT base class and include:

Bignum—A field used to enter, display or modify
precision numeric information. Bignum numbers are
used for monetary values and high precision numbers.

0.00000000

Chapter 3 — Conceptual Design 23

24

Border—An outlining border drawn around a win-
dow.

Button—A rectangular region of the screen that,
when selected, performs run-time operations that you
specify. The following objects are variations of the
button class:

Bitmapped button—A button control with an
associated bitmap image.

Check box—A button control that allows multi-
ple items in a group to be selected.

Radio button—A button control that allows only
one item in a group to be selected.

Date—A field used to enter, display or modify
country-independent date information.

Combo box—A combination input field and vertical
list box. A combo box can contain buttons, icons and
string fields.

Formatted string—An input field used to enter,
display or modify ASCII string buffers that contain
literal characters or characters that cannot be edited
(e.g., phone numbers, social security numbers).

Group—A box used to provide a physical grouping
of window objects such as radio buttons or check box
buttons.

Horizontal list—A two-dimensional list of related
items. These items are organized in a row/column
fashion and may be any of the objects described in
the window object hierarchy. A horizontal list
contains multiple columns and scrolls horizontally.

Zinc Application Framework — Programmer’s Guide

Check Box A
[J check Box B

() Button
@® Radio Button
{ Check Box

[2-18-1992

|[ao11735-asuo

B Fies File.8
B Fie.s
B Fite.10

Icon—A graphical representation of a selectable item.
This object is similar to the button object, except that

the information is in graphic, rather than textual, i
form.
Integer—A field used to enter, display or modify 100

integer numbers. Integer numbers are used for
quantity values and indices.

Maximize button—A button that, when selected,
changes the size of its parent window to occupy the
entire screen display.

Minimize button—A button that, when selected,
reduces the size of its parent window to the minimum
allowed by the window.

Pop-up item—A selectable item that is shown in the Vi-ltem 1
context of a pop-up menu.

Pop-up menu—A group of related UITW_POP_UP._- Vi-item 1
ITEM objects. The items in this menu are displayed 3;‘::}2,’: :
on multiple lines. Vi-ltem 4
Prompt—A string that is used to describe the con- Fax:

tents of another window field.

Pull-down item—A selectable item that is shown in
the context of a pull-down menu. | File Edit

Pull-down menu—A group of related UIW_PULL,_-
DOWN_ITEM objects. The items in this menu are
displayed across a single, horizontal line.

File Edit

Real—A field used to enter, display or modify 0.00000000
floating point numeric information. Real numbers are
used for computation values and fractional numbers.

Chapter 3 — Conceptual Design 25

Scroll bar—A selectable region used to scroll the
displayed portion of a window, list box or text input
field.

String—A field used to enter, display or modify an
ASCII string buffer.

System button—A button that, when selected, shows
general operations that can be performed on the
parent window.

Text—A field used to enter, display or modify a
multi-line text buffer.

Time—A field used to enter, display or modify
country-independent time information.

Title—An object that occupies the top region of a
window and contains a window’s title information.

Tool bar—A group of related window objects. The
tool bar is similar to a pull-down menu with the
exception that it may contain different types of
objects, such as: bitmapped buttons, dates, icons,
strings, etc.

Vertical list—A one-dimensional list of related items.
These items are organized in a single column and
may be any of the objects described in the window
object hierarchy.

Window—A rectangular region of the screen that is
composed of one or more class objects derived from
the UL WINDOW_OBIJECT base class. A window
may also contain sub-windows (e.g., MDI windows.)

‘Zinc Software J

Sample text.

5:01

Zinc Application Framework — Programmer’s Guide

Other programmer defined window objects—Any other programmer defined
window object that conforms to the operating protocol defined by the UL WIN-
DOW_OBIJECT base class.

Window objects are derived from UI_WINDOW_OBJECT and have the following
hierarchy:

| WINDOW OBJECT HlERARCiW'

UI_WINDOW_OBJECT

UIW_BORDER UIW_ICON

UIW_PROMPT

(other programmer

defined window
UIW_BUTTON [UIW_STRING] [UIW_WINDOW | objects)

IW_MAXIMIZE_BUTTON IW_BIGNUM |_WINDOW_MANAGER
IW_MINIMIZE_BUTTON IW_DATE IW_COMBO_BOX
IW_POP_UP_ITEM IW_FORMATTED_STRING IW_GROUP
IW_PULL_DOWN_ITEM IW_INTEGER IW_HZ_LIST
IW_SYSTEM_BUTTON IW_REAL IW_POP_UP_MENU
IW_TITLE IW_TIME IW_PULL_DOWN_MENU

IW_SCROLL_BAR

IW_TEXT

IW_TOOL_BAR

IW_VT_LIST

You attach windows to the Window Manager at run-time. Once a window is attached,
it receives event information from the Window Manager. The following code shows how
to construct a new window manager class object and how to initialize a selected window:

// Construct the screen display using the Zinc constructor.
UI_DISPLAY *display = new UI_GRAPHICS_DISPLAY;

// Construct the event manager and attach the display and input devices.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;
*eventManager

+ new UID_KEYBOARD // Use the '+’ operator overload or ‘add’ member

+ new UID_MOUSE 1/ funictl onk.

+ new UID_CURSOR;

// Construct the window manager.

UI_WINDOW_MANAGER *windowManager = new UI_WINDOW_MANAGER (display,
eventManager) ;

Chapter 3 — Conceptual Design 27

28

// Add a simple window to the window manager.
UIW_WINDOW *window = new UIW_WINDOW(O, 1, 67, 11);
*window

+ new UIW_BORDER

+ new UIW_MAXIMIZE_BUTTON

+ new UIW_MINIMIZE_BUTTON

+ new UIW_SYSTEM_BUTTON

+ new UIW_TITLE ("Generic Window", WOF_NO_FLAGS) ;
*windowManager + window;

Windows and window objects have distinct representations in DOS Text, DOS Graphics,
Microsoft Windows 3.X, Windows NT, IBM OS/2 and OSF/Motif. For example, the
following shows the MS Windows representation of a simple window:

Window objects that can be edited (String, Formatted String, Text, Number, Date and
Time) support the following features:

Mark—Marks an area of the current field for use with the cut or copy edit features.
Marked regions are shown as shaded regions in a window field.

Cut—Cuts the marked area of the current field and stores the marked contents in a
global paste buffer. This data can later be pasted into any other field, as long as the
information is valid for that field type (e.g., the text 400" could be pasted into a
numeric, string or text field).

Copy—Copies the marked area of the current field and stores the marked contents
in a global paste buffer. This data can later be pasted into any other field, as long

as the information is valid for that field type.

Paste—Copies the contents of the global paste buffer into the current field. Data can
be pasted into any field, as long as the information is valid for that field type.

Zinc Application Framework — Programmer’s Guide

The screen display

Modular display classes are supported by Zinc’s screen display, which controls all low-
level screen output. The following display objects are supported by Zinc Application
Framework:

‘1BPLAY OBJECT HIERARCHY.

—UI_BGI_DISPLAY Al
I {ULFG_DISPLAY |

——{ULGRAPHICS_DISPLAY |

~—{uI_MOTIF_DISPLAY |
@ {u_msc_pIsPLAY]
[{UI_MSWINDOWS_DISPLAY |

—{ui_os2_pispLAY |
—{ULTEXT_DISPLAY |

(other programmer
defined display
objects)

The base class, UI_DISPLAY, serves as a template for all derived display classes. This
ensures that all derived displays have the same functional interface regardless of the actual
display used. Classes derived from the UI_DISPLAY base class include:

UI_BGI_DISPLAY—A graphics display that uses the Borland BGI graphics routines
to display information to the screen. The UI_BGI_DISPLAY class provides support
for CGA, EGA, VGA and Hercules monochrome display adapters running in graphics
mode.

UL_FG_DISPLAY—A graphics display that uses the Zortech Flash Graphics routines
to display information to the screen. The UI_FG_DISPLAY class provides support
for CGA, EGA, VGA, SVGA and Hercules monochrome display adapters running
in graphics mode.

UL_GRAPHICS_DISPLAY—A compiler-independent DOS graphics display that
uses the GFX graphics libraries by C-Source (included with Zinc Application
Framework) to display information to the screen. The UI_GRAPHICS_DISPLAY
class provides support for CGA, EGA, VGA, SVGA and Hercules monochrome
display adapters running in graphics mode.

UI_MOTIF_DISPLAY—A graphics display that uses the Motif 1.1 Widget toolkit
to display information on an X Windows display.

Chapter 3 — Conceptual Design 29

30

UI_MSC_DISPLAY—A graphics display that uses the Microsoft MSC graphics
routines to display information to the screen. The UI_MSC_DISPLAY class provides
support for CGA, EGA, VGA, SVGA and Hercules monochrome display adapters
running in graphics mode.

UI_MSWINDOWS_DISPLAY—A graphics display that uses the Microsoft
Windows 3.X graphics routines to display information to the screen.

UI_OS2_DISPLAY—A graphics display that uses the OS/2 graphics routines to
display information to the screen.

UL_TEXT_DISPLAY—A compiler-independent DOS text display that writes the
display information to screen memory. The UI_TEXT_DISPLAY class provides
support for MDA, CGA, EGA and VGA display adapters running in text mode. This
includes the following modes of operation:

e 25 line x 80 column mode,
e 25 line x 40 column mode,
e 43 line x 80 column mode and
¢ 50 line x 80 column mode.

This class also contains support for snow checking (CGA monitors) and IBM
TopView (which supports operation in Microsoft Windows and Quarterdeck
desqVIEW environments).

Other programmer defined screen display objects—Any other programmer defined
display object that conforms to the operating protocol defined by the UI_DISPLAY
base class. Third party display classes supporting Metawindows by Metagraphics and
GX Graphics by Genus Microprogramming are posted on Zinc’s BBS and are free
to download.

Zinc’s object orientation abstracts the screen display in an application by implementing
modular display classes. This feature gives you the significant advantage of using one
set of source code to produce output for DOS Text, DOS Graphics, Microsoft Windows
3.X, Windows NT, IBM 0S/2, OSF/Motif and CIC PenDOS environments. This modular
approach will allow Zinc to support additional platforms without forcing you to
dramatically alter your source code.

The following code shows how to initialize both graphic and text screen displays in one
executable file:

Zinc Application Framework — Programmer’s Guide

// Initialize the display, trying for graphics first.
UI_DISPLAY *display = new UI_GRAPHICS_DISPLAY;
if (!display->installed)
{
delete display;
display = new UI_TEXT_DISPLAY;

The help system

The help system is used to present help information to the end user during an application
program. The help system uses the Zinc Application Framework windowing system to
present help information.

Zinc Application Framework initially does not use the UL_HELP_SYSTEM so that you
are not forced to have the help system modules linked into your executable program. The
following code shows how to set-up the default help system:

// Add in the help system.
UI_WINDOW_OBJECT: :helpSystem = new UI_HELP_SYSTEM("help.dat",
windowManager) ;

The error system

The error system is used to display error information to the end user during an application
program. The error system uses the Zinc Application Framework windowing system to
present error information.

Zinc Application Framework initially does not use the UL_ERROR_SYSTEM so that you
are not forced to have the error system modules linked into your executable program.
The following code shows how to set-up the default error system:

// Add in the error system.
UI_WINDOW_OBJECT::errorSystem = new UI_ERROR_SYSTEM;

Event mapping

L

Many user interface libraries convert raw input information to logical information when
it is received from the input device. For example, a mouse device may define the left
mouse button click to be the select operation (L_SELECT). These implementations allow
only one logical mapping of a given raw event. You must then decipher the L_SELECT
operation in the context of your operations. This implementation, however, is inadequate
for most applications.

Chapter 3 — Conceptual Design 31

32

Zinc Application Framework has the powerful capability of interpreting raw events,
received from input devices at run-time, at each level of the application according to the
type of operation. For example, the graphic illustration below shows how the <F2> key
and left mouse click would be interpreted at each level in the library (where a text field

is the current window object):

Keyboard Mouse

' E_KEY, F2 %7 E_MOUSE, left down click
\ Ul_EVENT_MANAGER |
v =
(MAIN PROGRAM CONTROL)
UL WINDOW_MANAGER <@~ r UI_WINDOW_MANAGER J

UIW_WINDOW ~a-——-=--—r—-=-=-=-=-=] :
L,B_EGIN_SELECT< Hello World Window

L_BEGIN_SELECT % %

Information Window
UIW_TEXT -
L_BEGIN_MARK

The <F2> key and left-mouse button are processed in the following manner:

« first, the key or mouse information is received by the input device (i.e., UID_-
KEYBOARD or UID_MOUSE) and placed in the event queue.

o second, the Window Manager passes the event to the current window.
 third, the window passes the event to the current window object.

e fourth, the UIW_TEXT window object evaluates both the keyboard and mouse events
as the L BEGIN_MARK command.

« finally, the results of the L_BEGIN_MARK command are returned to the window
and then to the Window Manager.

Zinc Application Framework — Programmer’s Guide

The benefits of logical event mapping are:

* Each object is allowed to interpret the event according to its mode of operation. The
UIW_TEXT object views both events as an L_BEGIN_MARK operation. However,
if the left-click were returned, unprocessed, to the Window Manager, it would be
interpreted as an L_BEGIN_SELECT operation while the <F2> key (which is
unknown by the Window Manager) would remain unprocessed.

* You can define additional input devices that generate their own raw event informa-
tion. With this implementation, you can define logical event mapping for Zinc but
still receive all the raw event information generated by the new input device.

* You can easily redefine key mapping without changing the source code of many
modules. This allows you to customize your application without interfering with the
general operation of Zinc Application Framework.

Storage and retrieval

Zinc Application Framework allows you to store and retrieve C++ objects to and from
disk as platform-independent resources. This is accomplished through low-level file
management routines as well as persistent object technology. These storage and retrieval
classes are used when programmers interactively create and/or modify windows and
window objects using Zinc Designer. You can also use the storage and retrieval classes
without Zinc Designer.

Conclusion

A thorough understanding of the conceptual design of Zinc Application Framework will
assist you as you develop applications. The key components of the library—event
manager, window manager, screen display, help system, error system, event mapping,
storage and retrieval—all work together to give you the most powerful, flexible and easy-
to-use interface library available.

1. Winblad, Ann L., Samuel Edwards, and David R. King. Object-Oriented Software. Reading, MA: Addison-
Wesley, 1990

Chapter 3 — Conceptual Design 33

34 Zinc Application Framework — Programmer’s Guide

CHAPTER 4 — WINDOW OBJECTS

Introduction

“Chapter 3—Conceptual Design™ of this manual briefly describes the types of window
objects that are available with Zinc Application Framework. This chapter shows the
graphic, textual and code implementations of all the supported window class objects. It
also gives a more complete description of each window object along with its normal
modes of operation.

Basic window objects

Most windows created for an application will contain a border, title, maximize button,
minimize button and system button. The figures below show various implementations of
a window with these basic window objects and the code implementation.

DOS Text implementation:

[-] Generic Window [vl[s]

DOS Graphics implementation:

Generic Hindow

Chapter 4 — Window Objects 35

Microsoft Windows 3.X and Windows NT implementation:

IBM 0S/2 2.X implementation:

36 Zinc Application Framework — Programmer’s Guide

OSF/Motif implementation:

*window
+ new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_SYSTEM BUTTON (SYF_GENERIC)
new UIW_TITLE (" Generic Window ");

+ + + +

The actual window is represented by the UITW_WINDOW class object. This object is
used by the Window Manager to reserve a rectangular region of the screen display. The
UIW_WINDOW class object, in turn, controls the operation and presentation of any
associated lower-level window objects (e.g., the border, title and buttons shown above).

The window’s border, shown as the exterior part of the windows above, is represented by
the UIW_BORDER class object. If the application is running in graphics mode, the
border is shown as a 3-dimensional shaded region drawn around the window. If the
application is running in text mode, the border is displayed as a shadow.

The maximize button is shown as the ‘a’ character in DOS and Windows and the ‘[T’
character in OS/2 and Motif. The maximize button, represented by the UIW_-
MAXIMIZE_BUTTON class object, is located on the top-right side of the windows
above. This button is used to change the size of its parent window to occupy the entire
screen display.

The minimize button is shown with the ‘v’ character in DOS and Windows and the ‘00
character in OS/2 and Motif. The minimize button, represented by the UIW_-
MINIMIZE_BUTTON class object, is located on the top-right side of the windows above.
This button is used to reduce the window to an icon.

Chapter 4 — Window Objects 37

6

The system button, shown with the ‘=’ character on the top-left side of the windows
above, is represented by the UIW_SYSTEM_BUTTON class object. This button is used
to select window or system specific commands associated with the window object (e.g.,
size, move, maximize, minimize, close). If menu items are specified with the system
button, a pop-up menu is displayed to the screen.

The title bar, shown with the “Generic Window” information text on the top-center
portion of the windows above, is represented by the UIW_TITLE class object. This
window object is used to display textual information that uniquely identifies the window.

Button window objects

38

A button field is a rectangular region of the screen that, when selected, performs run-time
operations that you specify. In addition to the basic buttons, the following specialized
buttons are available: bitmapped buttons, check boxes and radio buttons. The figure
below shows a window with different types of button fields (UIW_BUTTON) and the
code implementation:

rBaud Rate: rSetup | [Drives
@ 9600 B Full Duplex

O 4so0 0s

O za00 Line Wrap

O 1200 [scron

O 300 |:| Answerback

*window
+ new UIW_TITLE ("Button Window")

// Add the radio buttons.

+ &(*new UIW_GROUP(1, 2, 13, 7, "Baud Rate:")
+ new UIW_BUTTON (2, , 10, "9600", BTF_RADIO_BUTTON)

, 10, "4800", BTF_RADIO_BUTTON)

, 10, "2400", BTF_RADIO_BUTTON)

, 10, "1200", BTF_RADIO_BUTTON)

, 10, "300", BTF_RADIO_BUTTON))

4
+ new UIW_BUTTON(2, 5
+ new UIW_BUTTON (2, 6
+ new UIW_BUTTON (2, 7
+ new UIW_BUTTON(2, 8

// Add the check boxes.

+ & (*new UIW_GROUP(15, 2, 13, 7, "Setup")
+ new UIW_BUTTON (18, 4, 10, "Full Duplex", BTF_CHECK_BOX)
+ new UIW_BUTTON(18, 5, 10, "XON/XOFF", BTF_CHECK_BOX)

Zinc Application Framework — Programmer’s Guide

+ new UIW_BUTTON(18; 6, 10, "Line Wrap", BTF_CHECK_BOX)
+ new UIW_BUTTON(18, 7, 10, "Scroll", BTF_CHECK_BOX)
+ new UIW_BUTTON(18, 8, 10, "Answerback", BTF_CHECK_BOX))

// Add the bitmapped buttons.
+ &(*new UIW_GROUP(29, 2, 13, 7, "Drives")

+ new UIW_BUTTON(38, 4, 10, "A:", BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_BORDER | WOF_JUSTIFY_RIGHT, NULL, 0, softDrive)

+ new UIW_BUTTON(38, 5, 10, "B:", BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_BORDER | WOF_JUSTIFY_RIGHT, NULL, 0, softDrive)

+ new UIW_BUTTON(38, 6, 10, "C:", BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_BORDER | WOF_JUSTIFY_RIGHT, NULL, 0, hardDrive)

+ new UIW_BUTTON(38, 7, 10, "F:", BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_BORDER | WOF_JUSTIFY_RIGHT, NULL, 0, networkDrive)

+ new UIW_BUTTON (38, 8, 10, "R:", BTF_NO_TOGGLE | BTF_AUTO_SIZE,

WOF_BORDER | WOF_JUSTIFY_RIGHT, NULL, 0, networkDrive))

// Add the regular buttons.

+ new UIW_BUTTON (10, 11, 9, "&Save")

+ new UIW_BUTTON (20, 11, 9, "&Cancel")
+ new UIW_BUTTON (32, 11, 9, "&Help");

Bitmapped buttons—Buttons displayed with a graphical bitmap. The buttons function
the same as regular buttons, but they display a bitmap. Bitmapped buttons may be used
in text mode, but the bitmap will not be displayed.

Check boxes—Buttons that are displayed with a ‘X’ when selected or ‘ * when not
selected.

Radio buttons—Buttons that are displayed with a ‘(¢)’ when selected or ‘(') when not
selected. All of the radio buttons in a window, a group, or a list box are considered to
be members of the same group. Only one radio button from a particular group may be
selected at any one time. (NOTE: To have multiple radio button groups on the same
window, create the group object (UTW_GROUP) and add the desired radio buttons to each

group.)

Combo box window objects

A combo box field is a one line string field with an attached button object. When the
button is selected, a vertical list (described below) appears. When an item is selected, it
is copied into the initial string field and the menu disappears. In Motif, however, the
combo box’s vertical list is positioned with the current list item being displayed directly
over the combo box’s string field. As a result, the top of the vertical list is dynamically
positioned according the position of the current list item. The figure below shows a
window with two combo boxes (UITW_COMBO_BOX) and the code implementation:

Chapter 4 — Window Objects 39

*window
+ new UIW_TITLE("Combo Box Window")

+ &(*new UIW_COMBO_BOX (2, 2

+ new UIW_BUTTON(O, O,
WOF_BORDER, bitmapl

+ new UIW_BUTTON (O, O,
WOF_BORDER, bitmap2

+ new UIW_BUTTON (0, O,
WOF_BORDER, bitmap3

+ new UIW_BUTTON (O, O,
WOF_BORDER, bitmap4

+ new UIW_BUTTON (O, O,
WOF_BORDER, bitmap5

+ new UIW_BUTTON(O, O,
WOF_BORDER, bitmap6

+ new UIW_BUTTON(0, O,
WOF_BORDER, bitmap7

Date window objects

Date fields should be used anytime date information is presented to the end user or when
date information is to be entered at an application’s run-time. The figure below shows
a window with several variations of the date class object (UIW_DATE) and the code

implementation:

40

11, 7)

"String", BTF_AUTO_SIZE | BTF_NO_3D,

"F String", BTF_AUTO_SIZE | BTF_NO_3D,

"Text", BTF_AUTO_SIZE | BTF_NO_3D,

"Date", BTF_AUTO_SIZE | BTF_NO_3D,

"Time", BTF_AUTO_SIZE | BTF_NO_3D,

"Number", BTF_AUTO_SIZE | BTF_NO_3D,

"Button", BTF_AUTO_SIZE | BTF_NO_3D,

i

Zinc Application Framework — Programmer’s Guide

Standard: [3-17-1992 | [ln edited aates
should be in the
Military: 17 Mar 1992 range

1-1-90..12-31-99
Long text month: [March 17, 1992]

Short text month: mar. 17, 1992]

Short day-of-week: [Tues. 3-17-1992 |
Slash _zero fill: IIE” 7/1992 j

UI_DATE date;
char *range = "1-1-90..12-31-99";
*window
+ new UIW_TITLE("Dates Window")
+ new UIW_TEXT (43, 1, 20, 6, "All edited dates should be in the range
1-1-90..12-31-99", 128, WNF_NO_FLAGS,
WOF_VIEW_ONLY | WOF_NON_SELECTABLE | WOF_BORDER)

+ new UIW_PROMPT (2, 1, "Standard:")
+ new UIW_DATE (22, 1, 20, &date, range, DTF_SYSTEM)

+ new UIW_PROMPT (2, 2, "Military:")
+ new UIW_DATE (22, 2, 20, &date, range,
DTF_MILITARY_FORMAT | DTF_SYSTEM)

+ new UIW_PROMPT (2, 3, "Long text month:")
+ new UIW_DATE (22, 3, 20, &date, range, DTF_ALPHA_MONTH | DTF_SYSTEM)

+ new UIW_PROMPT (2, 4, "Short text month:")
+ new UIW_DATE (22, 4, 20, &date, range, DTF_SHORT_MONTH | DTF_SYSTEM)

+ new UIW_PROMPT (2, 5, "Short day-of-week:")
+ new UIW_DATE (22, 5, 20, &date, range, DTF_SHORT_DAY | DTF_SYSTEM)

+ new UIW_PROMPT (2, 6, "Slash & zero fill:")
+ new UIW_DATE (22, 6, 20, &date, range, DTF_SLASH | DTF_ZERO_FILL |
DTF_SYSTEM) ;

By default, date class objects are presented and edited in a country-independent fashion.
Default information, however, can be overridden by the following special date presentation
and edit styles:

Long month—The month is shown as an ASCII March 28, 1990
4 i p December 4, 1980
string value so that the entire name of the month is January 3, 2003

displayed.

Dash—Each date variable is separated with a dash, 3-28-1990
12-04-1980

regardless of the default country date separator. 1-3-2003

Chapter 4 — Window Objects 41

42

Day of week—The day-of-week is shown as an
ASCII string value before the date.

European format—The date is forced to be shown
in the European format (i.e., day/month/year), regard-
less of the default country information.

Japanese format—The date is forced to be shown in
the Japanese format (i.e., year/month/day), regardless
of the default country information.

Military format—The date is forced to be shown in
the date format used by the United States Air Force,
regardless of the default country information. The air
force format is ordered by day month year where
month is either a 3 letter abbreviated word and year
is a two-digit year value (if the DTF_SHORT_YEAR
or DTF_SHORT_MONTH flags are set) or month is
spelled out and year is a four-digit value. The air
force style is used as the default. However, in order
to accommodate the formats used in other branches of
the military, other date formatting options (e.g., zero
fill, upper case, etc.) may be used in conjunction with
the standard military format.

Short day of week—A shortened day-of-week value
is displayed with the date.

Short month—A shortened alphanumeric month
value is shown with the date.

Short year—The year is forced to be shown as a
two-digit value.

Slash—Each date value is separated with a slash,
regardless of the default country date separator.

Upper-case—The date is displayed in upper-case
lettering.

Zinc Application Framework — Programmer’s Guide

Monday May 4, 1992
Friday Dec. 5, 1980
Sunday Jan. 4, 2003

28/3/1990
4 December, 1980
3 Jan., 2003

1990/3/28
1980 December 4
2003 Jan. 3

(air force style-
default)

4 Jul 91

4 July 1991

Mon. May 4, 1992
Fri. Dec. 5, 1980
Sun. January 4, 2003

Mar. 28, 1990
Dec. 4, 1980
Jan. 3, 2003

3/28/90
December 4, '80
Jan. 3, '89

3/28/90
12/04/1900
1/3/2003

MARCH 28, 1990
DEC. 4, 1980
SATURDAY JAN 3, 2003

U.S. format—The date is forced to be formatted in 1‘142;2}/11336 1990
the U.S. format (i.e., month/day/year), regardless of Jan 3, 2003

the default country information.

Zero fill—The year, month and day values are forced March 08, 1990
. 12/04/1980
to be zero filled when their values are less than 10. 01/03/2003

Icon window objects

Icons are selectable graphic images that can be attached to a window or directly to the
screen display (if the icon is a minimized window). The figure below shows a window
with several icons (UIW_ICON) and the code implementation:

*window
+ new UIW_BORDER

+ new UIW_MAXIMIZE_BUTTON

+ new UIW_MINIMIZE_BUTTON

+ new UIW_SYSTEM_BUTTON

+ new UIW_TITLE("Icon Window")

+ new UIW_ICON (15, 4, "mouse")

+ new UIW_ICON(32, 4, "disk")

+ new UIW_ICON (49, 4, "letter"

+ new UIW_ICON(66, 4, "logo")

+ new UIW_ICON (15, 8, "phonebk")
+ new UIW_ICON(32, 8, "jolt™")

+ new UIW_ICON (49, 8, "calendar")
+ new UIW_ICON(66, 8, "USA");

Icons can be used anytime you want to present a selectable item in graphical form. The
main drawback of icons is that they only have graphic implementations. However, in text
mode, the icon will still be selectable and its associated text will be displayed.

Chapter 4 — Window Objects 43

List window objects

Yertical List:

Item_ 1
Item 2
Item 3
Item 4
Item 5
Item 6

Horizontal List:

List fields are select only fields (i.e., items within the list object cannot be edited) that are
used to present related information in a vertical column or a horizontal list with one or
more columns. The figure below shows a window with two list fields (UIW_VT_LIST
and UIW_HZ_LIST) and the code implementation:

+ 4+ 4+

T T T -

+ new UIW_TITLE("List Window")

new UIW_SCROLL_BAR

Zinc Application Framework — Programmer’s Guide

+ new UIW_PROMPT (2, 2, "Vertical List:"
*new UIW_VT_LIST (2, 3, 11,
0, 0, 0, 0, SBF_VERTICAL, WOF_NON_FIELD_REGION)

6)

"Item 10"

(
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, O,
UIW_PROMPT (18, 2, "Vertical List:
+ &(*new UIW_HZ_LIST (18, 3, 11, 6)
+ new UIW_SCROLL_BAR(0O, 0, 0, O,
WOF_NON_FIELD_REGION)
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(O, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item
new UIW_STRING(0, 0, 0, "Item

64)

SBF_HORIZONTAL,

4)
4)
4)
4)
4)
4)
4)
4)
4)
64
64
4
4
4

6
6
6

In addition to the standard list fields, the list classes permit the creation of a list object
that takes the complete window region (inside the border). This type of list is created
whenever the WOF_NON_FIELD_REGION window flag is specified for the list object.

MDI window objects

In addition to the standard use of windows (see the “Basic window objects” section of
this chapter), windows may be added to other windows. These types of windows are
known as MDI (multiple-document interface) windows in Microsoft Windows or sub-
windows on other environments. An MDI parent window is the controlling window that
is added to the screen. MDI child windows are those sub-windows that are added to an
MDI parent. The MDI child windows may be maximized, minimized, moved or sized
within the MDI parent. The restriction on MDI child windows is that they cannot move
outside of their parent (i.e., they are clipped at the inside of their parent’s border). The
figure below shows an MDI parent window with an MDI child window and several
minimized MDI child windows. The code implementation is also shown:

MDI Child

.

Mouse Drive Book USA

*window
+ UIW_WINDOW: :Generic (10, 2, 15, 5, "MDI childr, WOF_NO_FLAGS,
WOAF_MDI_OBJECT) ;

Chapter 4 — Window Objects 45

Menu window objects

Menus should be used anytime you want to present selection information to the end user.
Pull-down items should be used when a hierarchal grouping of selection items is to-be
used. The pull-down menu serves as the first level in the selection process. The figure
below shows a window with a pull-down menu and the code implementation:

Control Window Ewvent Help

*windowl
+ new UIW_TITLE("Zinc Demonstration")

+ & (*new UIW_PULL_DOWN_MENU
+ & (*new UIW_PULL_DOWN_ITEM(" &Control)

+ new UIW_POP_UP_ITEM("Option 1.1")

+ new UIW_POP_UP_ITEM("Option 1. 2')

+ new UIW_POP_UP_ITEM("Option 1.3")

+ &(*new UIW_PULL_DOWN_ITEM (" &Window "

+ new UIW_POP_UP_ITEM("Option 2.1")

+ new UIW_POP_UP_ITEM("Option 2.2")

+ new UIW_POP_UP_ITEM("Option 2.3")

+ &(*new UIW_PULL_DOWN_ITEM(" &Event ")
)
)
)

)
&),

)

+ new UIW_POP_UP_ITEM("Option 3.1

+ new UIW_POP_UP_ITEM("Option 3.2"

+ new UIW_POP_UP_ITEM("Option 3.3"
+ &(*new UIW_PULL_DOWN_ITEM(" &Help "

+ new UIW_POP_UP_ITEM("Option 4.1

+ new UIW_POP_UP_ITEM("Option 4.2")

+ new UIW_POP_UP_ITEM("Option 4.3

)

Number window objects

46

Number fields should be used anytime numeric information is presented to the end user
or when numeric information is to be entered at an application’s run-time. Zinc supports
three types of number fields: UIW_BIGNUM, UIW_INTEGER and UIW_REAL. The
UIW_BIGNUM class is used to display large numbers (defaults to 30 digits to the left of
the decimal point and 8 digits to the right). It also handles the formatting of numbers
(e.g., percent, commas, decimal places, etc.). The UIW_INTEGER class handles integer
information (using long integers). The UIW_REAL class handles real number information
(using double values). Scientific notation is also performed by the UIW_REAL class.
The figure below shows a window with several number fields (UIW_BIGNUM) and the
code implementation:

Zinc Application Framework — Programmer’s Guide

Standard: (1000 Al edited numbers
should be in the
Currency: [31 000.00 range
-10,000..10,000
Commas: 1,000

Fixed decimal (4): [1000.0000

Percent: LI 000%
Credit: |[1 000)
char *range = "0..10000";
UI_BIGNUM value = 1000;
UI_BIGNUM dvalue = 1000.0;
UI_BIGNUM nvalue = -1000;

*window
+ new UIW_TITLE ("Bignum Window")

+ new UIW_TEXT (43, 1, 20, 6, "All edited numbers (except the Scientific
entry) should be in the range 0..10,000", 128, WNF_NO_FLAGS,
WOF_VIEW_ONLY | WOF_NON_SELECTABLE | WOF_BORDER)

+ new UIW_PROMPT (2, 1, "Standard: ")
+ new UIW_BIGNUM(22, 1, 20, &value, range)

+ new UIW_PROMPT (2, 2, "Currency: ")
+ new UIW_BGINUM(22, 2, 20, &dvalue, range, NMF_CURRENCY | NMF_DECIMAL(2))

+ new UIW_PROMPT(2, 3, "Commas: ")
+ new UIW_BIGNUM (22, 3, 20, &value, range, NMF_COMMAS)

+ new UIW_PROMPT (2, 4, "Fixed decimal (4): ")
+ new UIW_BIGNUM (22, 4, 20, &dvalue, range, NMF_DECIMAL(4))

+ new UIW_PROMPT (2, 5, "Percent: ")
+ new UIW_BIGNUM (22, 5, 20, &value, range, NMF_PERCENT)

+ new UIW_PROMPT(2, 6, "Credit: ")
+ new UIW_BIGNUM(22, 6, 20, &nvalue, range, NMF_CREDIT) ;

The UIW_BIGNUM class object permits the following presentation and edit styles:

Decimal—Shows the number with a decimal point at ig . 2(5)0 -00
a fixed location. $149.95.
Currency—Shows the number with the country- gblﬁ 3 8 00.00
specific currency symbol. £195

Chapter 4 — Window Objects 47

Credit—Shows the number with the ‘(’ and ‘)’ credit
symbols whenever the number is negative.

Commas—Shows the number with commas in the
appropriate positions.

Percent—Shows the number followed by a percen-
tage symbol.

Scientific numbers are handled by the UIW_REAL class.

displays numbers that are too long for the field, they are
notation so that the entire number may be viewed.

String window objects

(1000)
(23040)
(759)

$10,000.00
45,000
1,195

When the UIW_REAL class

displayed using scientific

Several types of strings are supported by Zinc Application Framework. They include
single line string fields (UIW_STRING) and formatted or masked strings (UIW_-
FORMATTED_STRING). The figure below shows a window containing several string
window objects (UIW_STRING and UIW_FORMATTED_STRING) and the code

implementation:

[IZinc Software Incorporated

Name:

Address: [405 South 100 East

|2nd Floor

City, State, ZIP: |Pleasant Grove

] [uT | [84062-0000

|
|
|
|

Phone: [(801) 785-8900 |
*window
+ new UIW_TITLE("String Window")
+ new UIW_PROMPT (2, 1, "Name:")
+ new UIW_STRING(22, 1, 41, "Zinc Software Incorporated", 256)
+ new UIW_PROMPT (2, 2, "Address:")
+ new UIW_STRING (22, 41, "405 South 100 East", 256)

2,
3, 41, "2nd Floor", 256)

new UIW_STRING (22,

48

Zinc Application Framework — Programmer’s Guide

+ new UIW_PROMPT (2, 4, "City, State, ZIP:")

+ new UIW_STRING (22, 4, 20, "Pleasant Grove", 256)
+ new UIW_STRING (43, 4, 4, "UT", 3)

+

new UIW_FORMATTED_STRING (49, 4, 20, "840620000", "NNNNNLNNNN",

oy afaims hs i)

+

new UIW_PROMPT(2, 6, "Phone:")
+ new UIW_FORMATTED_STRING (22, 6, 20, "8017858900", "LNNNLLNNNLXXXX",
Biliors s Y scaniTiwia ™)

The first string object, shown with the “Zinc Software Incorporated” default string in the
window above, is represented by the UITW_STRING class object. This class object should
be used anytime string information is presented to the end user or when string information
is to be entered at an application’s run-time and that information can best be presented
on a single scrollable line of the screen.

The formatted string objects, shown with the “(801) 785-8900” and “84062-0000”
default information in the windows above, are represented by the UI'W_FORMATTED_-
STRING class object. This class object should be used anytime pre-defined string format
information is presented to the end user or when string information is to be entered at an
application’s run-time. Formatted strings restrict the type of information that an end user
can enter.

Text window objects

Zinc Application Framework supports a multi-line text field (UIW_TEXT). The text
fields may be used with or without word-wrapping capabilities and may be used with both
horizontal and vertical scroll bars. The figure below shows a window containing two text
window objects (UIW_TEXT) and the code implementation:

Four score and twenty

b The UIW_TEXT field is
ears ago...

used to display multiple
line text and can be
scrolled both
horizontally and
vertically.

Chapter 4 — Window Objects 49

50

*window
+ new UIW_TITLE("Text Window")

+ &(*new UIW_TEXT (26, 2, 36, 5, "The UIW_TEXT field is used to display "
"multiple-line text and can be scrolled both horizontally and "
"vertically."))

+ &(*new UIW_TEXT(1l, 2, 36, 5, "Four score and twenty years ago...")
+ new UIW_SCROLL_BAR(0, 0, 0, 0, SBF_VERTICAL, WOF_NON_FIELD_REGION)
+ new UIW_SCROLL_BAR(0, 0, 0, 0, SBF_HORIZONTAL,
WOF_NON_FIELD_REGION)
0:;

+ new UIW_SCROLL_BAR (O, 0, 0, SBF_CORNER, WOF_NON_FIELD_REGION)) ;

The text object, shown with the “The UIW_TEXT field...” default text in the window
above, is represented by the UIW_TEXT class object. This class object should be used
anytime text information is presented to the end user or when text information is to be
entered at an application’s run-time and the information can best be presented on multiple

word-wrapped lines of the screen. Single-line information is best handled by the
UIW_STRING class object.

In addition to the standard text field, the UIW_TEXT class permits the creation of a text
object that takes the complete window region (inside the border). For example, the
graphic image below shows the help window system where the help text is shown in a
text object:

| The second "Hello World!" tutorial shows you how to
| create two windows using Zinc Interface Library and how
to initialize the help and error systems.

Press <F3> to exit help.

SO S S SSS———. |

The system help window is composed of the basic window objects (discussed in the
“Basic window objects” section of this chapter) and an additional UIW_TEXT field that
is dynamically sized to fill the complete window. This type of text object is created
whenever the WOF_NON_FIELD_REGION window flag is specified for the text object.

Zinc Application Framework — Programmer’s Guide

Time window objects

Time fields should be used whenever time information is presented to the end user or
when time information is to be entered at an application’s run-time. The figure below
shows a window with several variations of a time field (UIW_TIME) and the code
implementation:

All edited times
should be in the
range
6:00am._.10:00pm

Standard:

Twenty-four hour: |B:55

Colon _zero fill: LUB:SS a.m.
Seconds: |8:55:13 am.
Hundredths: |3:55:1 3.949 a.m.

UI_TIME time;
char *range = "6:00am..10:00pm";
*window

+ new UIW_TITLE("Time Window")

+ new UIW_TEXT (43, 1, 20, 6,
"All edited times should be in the range 6:00am..10:00pm",
128, WNF_NO_FLAGS, WOF_VIEW_ONLY | WOF_NON_SELECTABLE | WOF_BORDER)

+ new UIW_PROMPT (2, 2, "Standard:")
+ new UIW_TIME (22, 2, 20, &time, range)

+ new UIW_PROMPT(2, 3, "Twenty-four hour:")
+ new UIW_TIME (22, 3, 20, &time, range, TMF_TWENTY_FOUR_HOUR)

+ new UIW_PROMPT(2, 4, "Colon & zero fill:")
+ new UIW_TIME (22, 4, 20, &time, range,
TMF_COLON_SEPARATOR | TMF_ZERO_FILL)

+ new UIW_PROMPT (2, 5, "Seconds:")
+ new UIW_TIME (22, 5, 20, &time, range, TMF_SECONDS)

+ new UIW_PROMPT (2, 6, "Hundredths:")
+ new UIW_TIME (22, 6, 20, &time, range, TMF_HUNDREDTHS) ;

Chapter 4 — Window Objects 51

Colon separator—Separates each time variable with
a colon.

Hundredths—Includes the hundredths value in the
time. (By default the hundredths value is not includ-
ed.)

Lower-case—Shows the time in a lower-case format.

No separator—Does not use any separator characters
to delimit the time values.

Seconds—Includes the seconds value in the time.
(By default the seconds value is not included.)

Twelve-hour clock—Forces the time to be shown
using a 12 hour clock, regardless of the default
country information.

Twenty-four hour clock—Forces the time to be
shown using a 24 hour clock, regardless of the default
country information.

Upper-case—Shows the time in an upper-case
format.

Zero fill—Forces the hour, minute and second values
to be zero filled when their values are less than 10.

Tool bar window objects

52

Zinc Application Framework — Programmer’s Guide

By default, time class objects are presented and edited in a country-independent fashion.
Default information, however, can be overridden by the following special time presenta-
tion and edit styles:

120200
13:00:00
12:00 a.m.

1:05:00:00
23:15:05:99
7:45:59:00 a.m.

12:00 p.m.
1:00 a.m.
7:00 p.m.

120
130000
17500

8:09:30
14:00:00
3:24:59 p.m.

12:00 a.m.
1:00 p.m.
5:00 p.m.

12:00
13:00
17:00

12:00 P.M.
1:00 A.M.
7:00 P.M.

01:10 a.m.
13:05:03
01:01 p.m.

Tool bar objects are very similar to menus, with the exception that they may be used to
display objects of various types, such as icons, buttons with bitmaps, strings, etc. The
figure below shows a window with a tool bar (UIW_TOOL_BAR) and the code
implementation:

o = 5 : -

17 Mar 1992

*window
+ new UIW_TITLE("Tool Bar Window")
+ &(*new UIW_TOOL_BAR(0, 0, 0, 0)

+ new UIW_STRING(0, 0, 0, "Defaults", 64)
+ new UIW_DATE(0, 0, 0, &date)

+ new UIW_BUTTON(O, 0, 5, "", BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_BORDER, NULL, 0, softDrive)

+ new UIW_BUTTON(O, 0, 5, "", BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_BORDER, NULL, 0, hardDrive)

+ new UIW_BUTTON(O, 0, 5, "", BTF_NO_TOGGLE | BTF_AUTO_SIZE,

WOF_BORDER, NULL, 0, networkDrive)
+ new UIW_COMBO_BOX (0, 0, 15, 5)):

Chapter 4 — Window Objects 53

54 Zinc Application Framework — Programmer’s Guide

CHAPTER 5 - DOS APPLICATIONS

Introduction

If you have purchased Zinc Application Framework for DOS (i.e., Zinc Engine and DOS
Key), you will be able to create DOS Text and DOS Graphics applications in real and
protected modes. With Zinc Application Framework, DOS Text, DOS Graphics,
Microsoft Windows, Windows NT, IBM OS/2 and OSF/Motif applications may be created
from the same set of source code. This chapter will discuss those aspects of building a
Zinc application that are specific to DOS. The following figure shows the presentation
of a Zinc application running under DOS:

Zinc Designer - (Untitled)

Look and feel

In DOS, a Zinc application follows IBM’s SAA/CUA specification (where applicable) for
both the screen display and input devices. In order to achieve its multi-platform
capabilities, Zinc Application Framework abstracts hardware and operating system
dependencies. Thus, you don’t have to know the intricacies of the environment but can
still access them directly if desired.

DOS library

The DOS version of Zinc Application Framework has been compiled into a single library
file called DOS_ZIL.LIB. When creating a DOS application, DOS_ZIL.LIB must be
linked into the .EXE file. (NOTE: See “Appendix A—Compiler Considerations” in the
Programming Techniques manual for compiler-specific graphics library and DOS extender
library filenames.)

Chapter 5 — DOS Applications 55

Compiler options

When creating a DOS application, the following compiler options should be selected:

DOS application—If your compiler is able to create applications for other
environments in addition to DOS, you should select the compiler option to create the
application as a DOS executable program.

Large model—Set the compiler option to compile using the large memory model.
Since Zinc Application Framework is shipped only with the large memory model, all
user applications must also be compiled with the large memory model.

See “Appendix A—Compiler Considerations” in the Programming Techniques manual
for more information regarding compiler-specific options.

main()

Ordinary C++ programs begin with calling main() as the first function. Zinc-based
applications for DOS are no different. However, there are two ways to implement the
main() function in your program. The first is to call the UI_APPLICATION class. This
class contains the main() function and also initializes the display, Event Manager and
Window Manager. The following code sample demonstrates this technique:

#include <ui_win.hpp>

// Creating an instance of UI_APPLICATION causes a main() to be
// linked in automatically. This main() calls UI_APPLICATION: :Main(),
// defined by the programmer.

UI_APPLICATION app(argc, argv);

int UI_APPLICATION::Main(void)

{
// The UI_APPLICATION constructor automatically initializes the
// display, eventManager and windowManager variables.

// Return the exit code.
return (0);

}

The second technique is to create the main() function in your program and initializing
the display, Event Manager and Window Manager explicitly. The following code sample
demonstrates this technique:

int main()

{
// Initialize the environment dependent display.
UI_DISPLAY *display = new UI_GRAPHICS_DISPLAY;

56 Zinc Application Framework — Programmer’s Guide

if (!display->installed)
{

delete display;
display = new UI_TEXT_DISPLAY;

}

// Create

the event manager and add devices.

UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;
*eventManager

+ new
+ new
+ new

// Create

UI_WINDOW_

UID_KEYBOARD
UID_MOUSE
UID_CURSOR;

the window manager.
MANAGER *windowManager = new UI_WINDOW_MANAGER (display,

eventManager) ;

// Clean up.

delete windowManager;
delete eventManager;
delete display;

return (0);

Derived objects

C++ offers the powerful ability to derive classes in order to create similar, yet unique,
classes. While there are no limitations regarding the derivation of Zinc classes, it should
be done with caution. For example, each window object contains an Event() function

that processes messages, and these messages differ between environments.

(See the

“Help Bar” tutorial in the Programming Techniques manual for detailed information on
how to create a new object that meets the specifications for all environments.)

Chapter 5 — DOS Applications

57

58 Zinc Application Framework — Programmer’s Guide

CHAPTER 6 — WINDOWS APPLICATIONS

Introduction

If you have purchased Zinc Application Framework for Windows or Windows NT (ie.,
Zinc Engine and Windows Key or Windows NT Key), you will be able to create
Microsoft Windows 3.X or Windows NT applications. With Zinc Application Framework,
DOS Text, DOS Graphics, Microsoft Windows, Windows NT, IBM 0S/2 and OSE/Motif
applications may be created from the same set of source code. This chapter will discuss
those aspects of building a Zinc application that are specific to Windows. The following
figure shows the presentation of a Zinc application running under Windows:

Object Utilities

Look and feel

In Windows, a Zinc application is an actual Windows application built with actual
Windows objects. Because you're creating a Windows application, you have full access
to the Windows API and Windows resources. In order to achieve its multi-platform
capabilities, however, Zinc Application Framework abstracts the Windows environment.
Thus, you don’t have to know the Windows API or its messages, but can still access them
directly if desired.

Windows library

The Windows version of Zinc Application Framework has been compiled into a single
library file called WIN_ZIL.LIB. The Windows NT library file is called WNT_ZIL.-
LIB. When creating a Windows application, WIN_ZIL.LIB (or WNT_ZIL.LIB for
Windows NT) must be linked into the .EXE file.

Chapter 6 — Windows Applications 59

Compiler options

When creating a Windows application, the following compiler options should be selected:

Windows application—If your compiler is able to create applications for other
environments in addition to Windows (or Windows NT), you should select the
compiler option to create the application as a Windows (or Windows NT) executable
program.

Large model—Set the compiler option to compile using the large memory model.
Since Zinc Application Framework is shipped only with the large memory model, all
user applications must also be compiled with the large memory model.

See “Appendix A—Compiler Considerations” in the Programming Techniques manual
for more information regarding compiler-specific options.

WinMain()

60

Ordinary C++ programs begin with calling main() as the first function. However, in
Windows, WinMain() is the first function called. WinMain() is used to allow
Windows to begin execution of an application. Here is the definition of the WinMain():

int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow) ;

There are two ways to implement the WinMain() function in your program. The first
is to call the UL_APPLICATION class. This class contains the WinMain() function and
also initializes the display, Event Manager and Window Manager. The following code
sample demonstrates this technique:

#include <ui_win.hpp>

// Creating an instance of UI_APPLICATION causes a WinMain() to be
// linked in automatically. This WinMain() calls UI_APPLICATION: :Main(),
// defined by the programmer.

UI_APPLICATION app(argc, argv);
int UI_APPLICATION::Main(void)
{

// The UI_APPLICATION constructor automatically initializes the
// display, eventManager and windowManager variables.

// Return the exit code.
return (0);

Zinc Application Framework — Programmer’s Guide

The second technique is to create the WinMain() function in your program and
initializing the display, Event Manager and Window Manager explicitly. The following
code sample demonstrates this technique:

int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow)
{
// Initialize the environment dependent display.
UI_DISPLAY *display = new UI_MSWINDOWS_DISPLAY (hInstance, hPrevInstance,
nCmdShow) ;

// Create the event manager and add devices.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;
*eventManager

+ new UID_KEYBOARD

+ new UID_MOUSE

+ new UID_CURSOR;

// Create the window manager.
UI_WINDOW_MANAGER *windowManager = new UI_WINDOW_MANAGER (display,
eventManager) ;

// Clean up.

delete windowManager;
delete eventManager;
delete display;

return (0);

Derived objects

C++ offers the powerful ability to derive classes in order to create similar, yet unique,
classes. While there are no limitations regarding the derivation of Zinc classes, it should
be done with caution. For example, each window object contains an Event() function
that processes messages, and these messages differ between environments. (See the
“Help Bar” tutorial in the Programming Technigues manual for detailed information on
how to create a new object that meets the specifications for all environments.)

Chapter 6 — Windows Applications 61

62 Zinc Application Framework — Programmer’s Guide

CHAPTER 7 - 0S/2 APPLICATIONS

Introduction

If you have purchased Zinc Application Framework for OS/2 (i.e., Zinc Engine and OS/2
Key), you will be able to create OS/2 applications. With Zinc Application Framework,
DOS Text, DOS Graphics, Microsoft Windows, Windows NT, IBM OS/2 and OSF/Motif
applications may be created from the same set of source code. This chapter will discuss
those aspects of building a Zinc application that are specific to 0S/2. The following
figure shows the presentation of a Zinc application running under OS/2:

¥ mzzsw ﬁ@ml m»x - {Ef@fﬁ +

place object:
{Pull Menu

Look and feel

In OS/2, a Zinc application is an actual OS/2 application built with actual OS/2 objects.
Because you’re creating an OS/2 application, you have full access to the OS/2 API and
OS/2 resources. In order to achieve its multi-platform capabilities, however, Zinc
Application Framework abstracts the OS/2 environment. Thus, you don’t have to know
the OS/2 API or its messages, but can still access them directly if desired.

0S/2 library

The OS/2 version of Zinc Application Framework has been compiled into a single library
file called OS2_ZIL.LIB. When creating an OS/2 application, OS2_ZIL.LIB must be
linked into the .EXE file.

Chapter 7 — OS/2 Applications 63

Compiler options

When creating an OS/2 application, the following compiler options should be selected:

0S/2 application—If your compiler is able to create applications for other
environments in addition to OS/2, you should select the compiler option to create the
application as an OS/2 executable program.

See “Appendix A—Compiler Considerations” in the Programming Techniques manual
for more information regarding compiler-specific options.

main()

64

Ordinary C++ programs begin with calling main() as the first function. Zinc-based
applications for OS/2 are no different. However, there are two ways to implement the
main() function in your program. The first is to call the UIL_APPLICATION class. This
class contains the main() function and also initializes the display, Event Manager and
Window Manager. The following code sample demonstrates this technique:

#include <ui_win.hpp>

// Creating an instance of UI_APPLICATION causes a main() to be
// linked in automatically. This main() calls UI_APPLICATION: :Main(),
// defined by the programmer.

UI_APPLICATION app(argc, argv);

int UI_APPLICATION::Main(void)

{
// The UI_APPLICATION constructor automatically initializes the
// display, eventManager and windowManager variables.

// Return the exit code.
return (0);
}

The second technique is to create the main() function in your program and initializing
the display, Event Manager and Window Manager explicitly. The following code sample
demonstrates this technique:

main ()
{
// Initialize the environment dependent display.
UI_DISPLAY *display = new UI_OS2_DISPLAY;
// Create the event manager and add devices.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;
*eventManager
+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

Zinc Application Framework — Programmer’s Guide

// Create the window manager.
UI_WINDOW_MANAGER *windowManager = new UI_WINDOW_MANAGER (display,
eventManager) ;

// Clean up.

delete windowManager;
delete eventManager;
delete display;

return (0);

Derived objects

C++ offers the powerful ability to derive classes in order to create similar, yet unique,
classes. While there are no limitations regarding the derivation of Zinc classes, it should
be done with caution. For example, each window object contains an Event() function
that processes messages, and these messages differ between environments. (See the
“Help Bar” tutorial in the Programming Techniques manual for detailed information on
how to create a new object that meets the specifications for all environments.)

Chapter 7 — OS/2 Applications 65

66 Zinc Application Framework — Programmer’s Guide

CHAPTER 8 — MOTIF APPLICATIONS

Introduction

If you have purchased Zinc Application Framework for Motif (i.e., Zinc Engine and Motif
Key), you will be able to create Motif applications. With Zinc Application Framework,
DOS Text, DOS Graphics, Microsoft Windows, Windows NT, IBM OS/2 and OSF/Motif
applications may be created from the same set of source code. This chapter will discuss
those aspects of building a Zinc application that are specific to Motif. The following
figure shows the presentation of a Zinc application running under Motif:

Look and feel

In Motif, a Zinc application is an actual Motif application built with actual Motif widgets.
Because you’re creating a Motif application, you have full access to the Motif toolkit, Xt
Intrinsics, X Library and all X resources. In order to achieve its multi-platform capabili-
ties, however, Zinc Application Framework abstracts the host environment. Thus, you
don’t have to know the native API or its messages, but can still access them directly if
desired.

Motif library

The Motif version of Zinc Application Framework has been compiled into a single library
file called lib_mtf_zil.a. When creating a Motif application, lib_mtf_zil.a must be linked
into the executable file. (NOTE: Some source code changes may be required to use the
Motif Key on hardware platforms that are not directly supported by Zinc. See the
README file for a list of currently supported hardware platforms.)

Chapter 8 — Motif Applications 67

Compiler options

When creating a Motif application, the following compiler options should be selected:

Motif application—If your compiler is able to create applications for other
environments in addition to Motif, you should select the compiler option to create the
application as a Motif executable program.

See “Appendix A—Compiler Considerations” in the Programming Techniques manual
for more information regarding compiler-specific options.

main()

68

Ordinary C++ programs begin with calling main() as the first function. Zinc-based
applications for Motif are no different. However, the main() function for Motif does
require the standard argc and argv parameters. These parameters are passed, when the
Motif display is created, to the Xt Intrinsic initialization routines which allows Zinc
applications to take full advantage of X command-line options (e.g., using other displays,
colors, fonts, etc.).

There are two ways to implement the main() function in your program. The first is to
call the Ul_APPLICATION class. This class contains the main() function and also
initializes the display, Event Manager and Window Manager. The following code sample
demonstrates this technique:

#include <ui_win.hpp>

// Creating an instance of UI_APPLICATION causes a main() to be
// linked in automatically. This main() calls UI_APPLICATION::Main(),
// defined by the programmer.

UI_APPLICATION app(argc, argv);

int UI_APPLICATION::Main(void)

{
// The UI_APPLICATION constructor automatically initializes the
// display, eventManager and windowManager variables.

// Return the exit code.
return (0);

}

The second technique is to create the main() function in your program and initializing
the display, Event Manager and Window Manager explicitly. The following code sample
demonstrates this technique:

Zinc Application Framework — Programmer’s Guide

int main(int argc, char *argv([])
{
// Initialize the display.
UI_DISPLAY *display = new UI_MOTIF_DISPLAY (&argc, argv) ;

// Initialize the event manager.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;
*eventManager

+ new UID_KEYBOARD

+ new UID_MOUSE

+ new UID_CURSOR;

// Initialize the window manager.
UI_WINDOW_MANAGER *windowManager =
new UI_WINDOW_MANAGER (display, eventManager) ;

// Clean up.

delete windowManager;
delete eventManager;
delete display;
return (0);

Derived objects

C++ offers the powerful ability to derive classes in order to create similar, yet unique,
classes. While there are no limitations regarding the derivation of Zinc classes, it should
be done with caution. For example, each window object contains an Event() function
that processes messages, and these messages differ between environments. (See the
“Help Bar” tutorial in the Programming Techniques manual for detailed information on
how to create a new object that meets the specifications for all environments.)

Chapter 8 — Motif Applications 69

70 Zinc Application Framework — Programmer’s Guide

CHAPTER 9 - ZINC DESIGNER

This chapter provides an introduction of Zinc Designer and a brief overview of its usage.
For a complete description of Zinc Designer, see “Chapter 21—Getting Started” of the
Programming Techniques manual.

Zinc offers the tightest integration available between an interactive design tool and the
supporting class library. Most Windows developers use a resource tool to help create
their program interface. Resource tools are language and library dependent by design and
therefore cannot access all the features of a given class library. This results in a
fragmented approach to application development with isolated user functions and
non-specific documentation. The developer is saddled with the not-so-obvious details of
integrating his or her code with both the class library and the resource tool. The seamless
integration of Zinc Designer and Zinc Application Framework contrasts sharply with this
a la carte approach.

Zinc Designer is an interactive design tool that was created using Zinc Application
Framework and lets you access all of the available features in the library. Zinc Designer
lets you interactively create your application screens using Zinc objects. You simply
select windows and window objects from the menu or toolbar and place them on the
screen. The output generated by Zinc Designer is portable between all compilers and
operating platforms that are supported by Zinc.

The following figure shows the presentation of Zinc Designer:

Chapter 9 — Zinc Designer 71

Interactive editors

You can easily customize objects with Zinc Designer’s interactive editors. Every Zinc
object that can be customized has an editor in Zinc Designer. These editors are the focal
point for modifying the attributes of the objects that you place on the screen. Each editor
is customized for its specific object, but most of the editors have these general features:

Option Lists—A scrolling list of all general and specific option flags that are
relevant to the object. The general flags are options that apply to more than one
object, such as the system button. The specific flags are options that apply only to
a given object such as the currency flag for the bignum class.

String Identifiers—A field that gives the object a unique ID which you may use to
access the object from a user procedure. This identifier allows you to access a given
object even if it is grouped with several other objects in a window that is saved as
a single resource.

Default Information—A feature of many object editors which allows you to enter
default information and validation ranges for the object (e.g., date ranges for the date
object, number ranges for the number object).

Context Sensitive Help—Can be assigned both at the object and window levels. If
you do not assign a specific help context to an object the object will use the help
context that is assigned to its parent window.

User Functions—A powerful feature of Zinc Designer that allows you to integrate
your user functions and validation routines to specific window objects such as input
fields, buttons and icons. You write and compile your user functions outside of Zinc
Designer and then add the name of the procedure in the object editor. Zinc
automatically calls an assigned user function when the associated object becomes
current, non-current or when it is selected. The user function receives a control code
that will allow it to determine which of these messages will execute the body of your
user function.

Utilities

72

Zinc Designer includes two very useful utilities. The Image Editor allows you to create
and edit bitmaps and icons that can be displayed in graphics modes. Bitmaps and icons
that you create with the Image Editor are assigned to objects (e.g., attach an icon that a
window will minimize to, attach a bitmap to a button) through the object editors.

Zinc Application Framework — Programmer’s Guide

The Help Editor allows you to create and edit help contexts (i.e., help text with a user-
defined help identification). Help contexts that you create with the Help Editor are
assigned to windows or objects through the object editors.

Getting around

File operations are located in the File menu option. Here you will find options allowing
files to be created, deleted, opened or saved. Under the File | Preferences option, you can
set options to control the use of graphics and the number of backups performed by Zinc
Designer.

The Edit menu option contains items used to edit existing window objects. The features
provided include: cut and paste, object deletion, moving, sizing and invoking the object
editors.

The Resource menu option contains items allowing resources to be created, deleted,
edited, loaded, saved or tested. In Zinc Designer, a resource is a window that may
contain various window objects. When a resource is tested, it is temporarily given the
ability to function as it would within a user program. During the testing phase, no other
designer features are available.

The Object menu option provides a means of selecting objects to be added to a resource.
This is used in addition to the tool bar of window objects displayed on the Zinc Designer
control window.

The Utilities menu option is used to invoke the Image Editor (used to create or edit
bitmaps and icons) and the Help Editor (used to create help contexts).

The Help menu option provides help information regarding the features available in Zinc
Designer. The Help | Index brings up a window containing a horizontal list of topics
relating to Zinc Designer. Selecting one of the topics will display a related help screen.

Creating a window

This section is meant to give a taste as to what is involved in using Zinc Designer and
is an adaptation of a similar section in “Chapter 3—Using Zinc Designer” of the
Programming Techniques. The following figure shows the “Hello World Window!”’:

Chapter 9 — Zinc Designer 73

jello, World!

This window is created interactively with the following steps:

1—Select “Resource” from the menu on Zinc Designer’s main control window.
Selecting this option causes the following pop-up menu to be displayed:

2-Select “Create” from the pop-up menu. At this point a new resource (i.e., a
generic window) appears on the screen:

74 Zinc Application Framework — Programmer’s Guide

3—Size the window by pressing the left mouse button on an area of the window’s
border and (while keeping the mouse button depressed) dragging the mouse to the
desired size of the window. You should make the window large enough to handle
the new title information and default “Hello World!” text.

4—Enter an identification for the window by selecting Edit | Object from the main
control menu or by double clicking the left mouse button on the window. Selecting
this option causes the window editor to be displayed:

Chapter 9 — Zinc Designer 75

title:

minlcon:

stringlD:

Objects:

helpContext:

Wﬂne]

RESOURCE_1

[(None)

---Options---

<] Border

[<] Maximize Button

B4 Minimize Button

[4 System Button
---woFlags--—

[] wOF_BORDER

] WOF_MINICELL

[] wOF_NON_FIELD_REGION
[] wOF_NON_SELECTABLE
---woAdvancedFlags---

[] WOAF DIALOG OBJECT

5 Enter Hello World Window in the “title:” field.

6—Enter the window identification by typing HELLO_WORLD_WINDOW in the field
adjacent to the “stringID:” prompt.

7—Save the identification by selecting the “OK” button.

Your window should now look similar to the figure below:

76

Zinc Application Framework — Programmer’s Guide

| s

e

Creating a window object
Creation of the “Hello World!” text is similar to the window creation described above:
1—Select Object | Input | Text from the main control menu.
2—Place the text object in the middle of the “Hello World!” window by positioning

the mouse cursor within the “Hello World Window” and clicking with the left
mouse button. Your window should now have a text field within its border:

3—Change the default information associated with the text object by:

* calling the text editor (e.g., by clicking the left mouse button twice on the text
object)

* typing Hello World! in the field under the “text:” prompt

Chapter 9 — Zinc Designer 77

e typing 256 in the field adjacent to the “maxLength:” prompt

» toggling the WOF_BORDER and WOF_AUTO_CLEAR object flags (located in
the vertical list of flags) from active to inactive

o selecting the WOF_NON_FIELD_REGION object flag (this will cause the text
field to fill the entire window)

The text editor should now look like the figure below:

---options---

[] Vertical Scroll Bar
[] Horizontal Scroll Bar
---wnFlags---
WNF_ND_WRAP
---woFlags---

<] WOF_AUTO_CLEAR
maxLength: WOF_BORDER
userFunction: | | | WOF_INVALID

] WOF_MINICELL

[] WOF_NON_FIELD_REGION
stringlD: FIELD_1 | |C] woF_NON_SELECTABLE
helpContext: |(None) (] WOF_UNANSWERED

text: Hello World!]

After pressing the “OK” to save the new text information, the window should look like
the window shown at the beginning of this section:

78 Zinc Application Framework — Programmer’s Guide

ello, World!

Zinc Designer files

After creating your screens (or resources) you save them to disk by selecting File | Save.
The resource data will be stored in a file with a .DAT extension. You can add these
resources to your application with one line of code. The following code segment
demonstrates how to load a resource called WINDOW _1, with its associated objects, from
a file called SAMPLE.DAT.

// Add a window created with Zinc Designer to the window manager.
*windowManager
+ new UIW_WINDOW ("SAMPLE.DAT~WINDOW_1") ;

Zinc Designer also outputs a .CPP and a .HPP file. The .CPP file contains the “object
table” and ‘‘user table” definitions. This file should never be modified directly by a
programmer since it contains code that provides a means by which objects created in Zinc
Designer can be accessed during program execution. The .HPP file contains defined
values that give a numeric representation to each object’s string identification. This
allows a programmer to use defined constants rather that character strings to refer to
window objects. A more detailed discussion of Zinc Designer is given in “Chapter
3—Using Zinc Designer” of the Programming Techniques.

The resources that you create with Zinc Designer are platform-independent. For example,
resources you create with the Windows version of Zinc Designer can be opened and
edited with the DOS, OS/2 or Motif versions and vice versa.

Zinc Designer’s complete access to the Zinc class library, straightforward integration of
your code and platform-independent storage can dramatically enhance your productivity.

Chapter 9 — Zinc Designer 79

80 Zinc Application Framework — Programmer’s Guide

SECTION lii
ADVANCED CONCEPTS

Section Ill - Advanced Concepts 81

82 Zinc Application Framework — Programmer’s Guide

CHAPTER 10 - ZINC LIBRARY CLASSES

The purpose of the chapters in this section is to familiarize you with the class objects and
C++ features used throughout Zinc Application Framework. This section examines the

library from a conceptual level, whereas all other sections show you how to create actual
applications using the library.

Most of the information contained in this section is based on the concepts illustrated by
the general Zinc Application Framework model:

]

{ Ul_EVENT MANAGER J
" .
(~ MAIN PROGRAM CONTROIV_**?
<7 S ;

SUPPORT RESOURCES ‘ Ul WINDOW_MANAGER 1

’ HELP aéTEMJ ERROR SYSTEM jZ
‘ EVENT MAPPING} COLOR MAPPH@ Hello World Wi

i World Information Window
DISPLAY JFSTORAGE 7

These concepts, as well as others that are fundamental to the operation of Zinc
Application Framework, will be discussed in this chapter. They include:

Base Classes—These are the core classes used within Zinc Application Framework.
This core consists of three classes that support the concepts of lists, list elements and
list blocks (an array of list elements).

Event Manager—This group of classes consists of input devices (e.g., keyboard,

mouse and cursor), the Event Manager and support classes used by the Event
Manager and input devices.

Chapter 10 - Zinc Library Classes 83

Base Classes

UL

84

Window Manager—This group consists of all window objects (e.g., buttons, title
bars and text), the Window Manager and support classes used by the Window
Manager and window objects.

Help System—This class uses a presentation window to show context-sensitive help.

Error System—This class uses a presentation window to inform the user of run-time
errors.

Screen Display—These classes support the low-level screen output, which includes
the management of screen regions on the display.

Event Mapping—This consists of a set of structures, with an accompanying function,
that performs the logical mapping of device input.

Palette Mapping—This consists of a set of structures, with an accompanying
function, that performs the logical mapping of color information.

There are three base classes from which most Zinc Application Framework components
are built: UL_ELEMENT, UI_LIST and UI_LIST_BLOCK.

ELEMENT

The UI_ELEMENT class serves as the base class to input devices and window objects.
It allows derived class objects to be grouped together in a list, even though their internal
definitions and operations may be different. Classes derived from the UI_ELEMENT
base class can be viewed in the following manner:

Zinc Application Framework — Programmer’s Guide

UI_ELEMENT UI_ELEMENT UI_ELEMENT

UI_DEVICE UI_DEVICE UI_DEVICE

Keyboard Mouse Cursor

The two major members associated with the UL ELEMENT class are its Previous() and
Next() member functions.

class EXPORT UI_ELEMENT

{

public:
UI_ELEMENT *Next (void) ;
UI_ELEMENT *Previous (void);

The Previous() and Next() member functions are used to move within a list. For
example, the figure above showed three input devices: keyboard, mouse and cursor. If
we were positioned on the mouse object, a call to Previous() would return a pointer to
the keyboard object, whereas a call to Next() returns a pointer to the cursor object.

UL_LIST

The UI_LIST class is used to group a set of related elements. The following picture
shows how elements derived from the UI_ELEMENT base class can be linked together
in a list:

Chapter 10 — Zinc Library Classes 85

86

Keyboard | . Mouse | . Cursor

There are several major members associated with the UI_LIST class: its First(), Last(),
Add() and Subtract() member functions, along with its + and — operator overloads.

class EXPORT UI_LIST

{
friend class EXPORT UI_LIST_BLOCK;

public:

// Members described in UI_LIST reference chapter.

UI_LIST(int (*_compareFunction) (void *elementl, void *element2) =
NULL) : first (NULL), last(NULL), current (NULL),
compareFunction(_compareFunction);

virtual ~UI_LIST(void);

UI_ELEMENT *Add(UI_ELEMENT *newElement) ;

UI_ELEMENT *Add(UI_ELEMENT *element, UI_ELEMENT *newElement) ;

int Count (void) ;

UI_ELEMENT *Current (void);

virtual void Destroy (void) ;

UI_ELEMENT *First(void);

UI_ELEMENT *Get (int index);

UT_ELEMENT *Get (int (*findFunction) (void *elementl, void *matchbata),
void *matchData) ;

int Index (UI_ELEMENT const *element) ;

UI_ELEMENT *Last(void);

void SetCurrent (UI_ELEMENT *element) ;

void Sort (void);

UI_ELEMENT *Subtract (UI_ELEMENT *element);

UI_LIST &operator+(UI_ELEMENT *element);

UI_LIST &operator-(UI_ELEMENT *element);

protected:
UI_ELEMENT *first, *last, *current;
}

The First() and Last() member functions are used to get the first or last list element.
For example, if you were to call First() with the list shown above, a pointer to the
keyboard object would be returned. A call to Last(), however, would result in a pointer
to the cursor object being returned.

The Add() and Subtract() member functions, along with the + and — operator overloads,
are used to add or subtract list elements to and from the current list object. For example,

Zinc Application Framework — Programmer’s Guide

the list figure above could be created using either the Add() member function or the +
operator overload.

eventManager->Add (keyboard) ;
eventManager->Add (mouse) ;
eventManager->Add (cursor) ;

or

*eventManager
+ keyboard
+ mouse
+ cursor;

UL_LIST_BLOCK

The UI_LIST_BLOCK class works just like a list, but it uses the memory efficiencies of
an array by not only keeping pointers to objects in use (the box shown as list in the figure
below), but also by maintaining a list of free list elements (the box shown as freelList).
The following figure shows how the UI_QUEUE_BLOCK class stores event information
in the form of a list block:

event 1 D
1) event 2
.\\ éb\

event N 6/

The UI_ELEMENT, UI_LIST and UI_LIST_BLOCK classes, along with their conceptual

figures, are used in the library documentation to aid in the presentation of design
concepts.

Event Manager

The event manager class (UL EVENT_MANAGER) serves as the message center for all
internal Zinc communication as well as for all user-entered input information. There are

Chapter 10 — Zinc Library Classes 87

two major aspects of this class—its public UI_LIST derivation and its queueBlock
member variable.

class EXPORT UI_EVENT_MANAGER : public UI_LIST
{
protected:

UI_QUEUE_BLOCK queueBlock;

Input devices

88

The UI_LIST part of the Event Manager contains a programmer-specified set of input
devices that feed user-input into your application. These devices can either be polled
devices, such as a keyboard, or interrupt driven devices, such as a mouse.

The following device classes are defined by Zinc Application Framework:

UID_CURSOR
UID_KEYBOARD
UID_MOUSE
UID_PENDOS

Each class listed above is derived from the UL_DEVICE base class, an abstract class that
defines the general operation and structure of input devices. The most important aspects
of this class are its derivation from the UI_ELEMENT base class and its Event() and
Poll() virtual member functions.

class EXPORT UI_DEVICE : public UI_ELEMENT
{

public:

virtual EVENT_TYPE Event (const UI_EVENT &event) = 0;
protected:

virtual void Poll(void) = 0;

The class derivation from UI_ELEMENT allows input devices to be added to the Event
Manager’s list of input devices. The following code shows how three input devices
(keyboard, mouse and cursor) can all be added to the Event Manager’s list of input
devices:

// Initialize the event manager and add three devices to it.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;
*eventManager

+ new UID_KEYBOARD

+ new UID_MOUSE

+ new UID_CURSOR;

The Event() function is used to communicate changes to a device’s mode of operation.
The type of message is contained in event.rawCode for the DOS version and in

Zinc Application Framework — Programmer’s Guide

event.message for the MS Windows, Windows NT, OS/2 and Motif versions. Here are
some sample messages that can be sent to input devices:

D_OFF—Tells the device to stop feeding input information into the Event Manager’s
input queue. No further input information will be received until a D_ON message
is received.

D_POSITION—Changes the position of a device. For example, if the device
receiving this message were a cursor, the position of the blinking cursor would be
changed to the screen position given by event.position.

DM_WAIT—Changes the mouse pointer to be an hour-glass. This message is only
understood by the UID_MOUSE class.

The Poll() function allows each device to feed input information to the Event Manager’s
input queue. For example, the UID_KEYBOARD class uses the Poll() routine to see if
any keys have been pressed by the user. If a key has been pressed, the UID_KEY-
BOARD::Poll() routine places the key event in the Event Manager’s input queue.

The input queue

The queueBlock member variable stores all information entered by the user and all
internal communications that are waiting to be processed by your application. The
following figure shows how events are stored by queueBlock:

event 1 D
— event 2

event N 6/

There are three major components to the input queue: the UI_EVENT structure, the UI_-
QUEUE_ELEMENT class and the Ul_QUEUE_BLOCK class.

Chapter 10 — Zinc Library Classes 89

90

The UI_EVENT structure contains the actual input information. The definition of this
structure is:

struct UI_EVENT

{
EVENT_TYPE type; // The type of event.
RAW_CODE rawCode;
RAW_CODE modifiers;

#if defined (ZIL_MSWINDOWS)
MSG message;

#elif defined (ZIL_0S2)
QOMSG message;

#elif defined (ZIL_MOTIF)
typedef XEvent message;

#endif

union

{
UI_KEY key;
UI_REGION region;
UI_POSITION position;
UI_SCROLL_INFORMATION scroll;
void *data;

}i

The type of information contained in this structure depends on the type of class object that
generates the message. For example, the UID_KEYBOARD class sets the following
event information:

e event.type always contains the value E_KEY. This lets all receiving objects know
that event.key contains any related keyboard information.

e event.rawCode contains the keyboard’s raw scan-code.
e event.modifiers contains a bit field indicating the keyboard shift-states.
e event.key contains other keyboard information (i.e., the shift state and the scan-code).

The UI_QUEUE_ELEMENT and UI_QUEUE_BLOCK classes store event information
in a list block. The UI_QUEUE_ELEMENT class is derived from Ul_ELEMENT and
contains the actual event information:

class EXPORT UI_QUEUE_ELEMENT : public UI_ELEMENT
{
public:

UI_EVENT event;

The UI_QUEUE_BLOCK class is derived from UI_LIST_BLOCK and is used to store
UI_QUEUE_ELEMENT class objects. The use of these classes allows the input queue

Zinc Application Framework — Programmer’s Guide

to buffer event information before it is processed within your application. The use of a
list block keeps the library from allocating and destroying memory every time it receives

or dispatches a message.

Window Manager

The window manager class (UI_WINDOW_MANAGER) controls the presentation and
operation of all windows and window objects that are displayed on the screen. There are
two major aspects of this class—its public UIW_WINDOW derivation and its virtual

Event() member function.

class EXPORT UI_WINDOW_MANAGER : public UIW_WINDOW

{
public:

virtual EVENT_TYPE Event (const UI_EVENT &event) ;

Window objects

The UIW_WINDOW part of the Window Manager contains the set of windows currently
active on the screen. The following window objects are defined by Zinc Application

Framework:

UIW_BIGNUM
UIW_BORDER
UIW_BUTTON
UIW_COMBO_BOX
UIW_DATE
UIW_FORMATTED_STRING
UIW_GROUP
UIW_HZ_LIST

UIW_ICON

UIW_INTEGER
UIW_MAXIMIZE_BUTTON
UIW_MINIMIZE_BUTTON
UIW_POP_UP_ITEM

UIW_POP_UP_MENU
UIW_PROMPT
UIW_PULL_DOWN_ITEM
UIW_PULL_DOWN_MENU
UIW_REAL
UIW_SCROLL_BAR
UIW_STRING
UIW_SYSTEM_BUTTON
UIW_TEXT

UIW_TIME

UIW_TITLE
UIW_TOOL_BAR
UIW_VT_LIST
UIW_WINDOW

Each class listed above is derived from the UL WINDOW_OBJECT base class. This
class defines the general operation and structure of window objects. The most important
aspects of this class are its derivation from the UL ELEMENT base class and its Event()

virtual member function.

Chapter 10 — Zinc Library Classes

91

class EXPORT UI_WINDOW_OBJECT : public UI_ELEMENT
1
public:
virtual EVENT_TYPE Event (const UI_EVENT &event) ;

The class derivation from UI_ELEMENT allows window objects to be added to the
Window Manager’s list of window objects.

// Initialize the window manager and add two windows to it.

UI_WINDOW_MANAGER *windowManger = new UI_WINDOW_MANAGER (display,
eventManager) ;

UIW_WINDOW *windowl = new UIW_WINDOW(O, O, 40, 10);

UIW_WINDOW *window2 = new UIW_WINDOW(5, 5, 40, 10);

*windowManager
+ windowl
+ window2;

The Event() function is used to send logical or system information to a specific window.
Here are some sample messages that can be interpreted by window objects:

S_CREATE—Tells the window object to initialize its internal information, such as
its size and position within a parent window. The S_CREATE message is always
succeeded by an S_CURRENT, S_DISPLAY_ACTIVE or S_DISPLAY_INACTIVE
message. The S_CREATE message is sent to all of the window objects associated
with a window whenever the window is attached to the Window Manager.

S_DISPLAY_ACTIVE—Tells the window object to display itself according to an
active state. The complement message is S_DISPLAY_INACTIVE.

L_BEGIN_SELECT—Begins the selection process of a window or window object.
For example, if the end user presses the left mouse button, the selection of an object
is initiated. When the mouse button is released (L_END_SELECT), the selection
process is completed.

Event member functions

92

The Event() member function dispatches run-time event information from the Event
Manager to windows. For example, if an application were running with two overlapping
windows, the Window Manager would automatically route normal event information to
the top window, but pass a mouse click to the window affected by the mouse’s position.

There are three types of messages that the Window Manager and window objects
understand:

Zinc Application Framework — Programmer’s Guide

Logical Events—These events are generated by input devices, then interpreted by the
receiving object. For example, a mouse click inside a window would be interpreted
as L_BEGIN_SELECT (i.e., begin a selection process); whereas the same mouse
click inside a text field would be interpreted as L_BEGIN_MARK (i.e., begin
marking a region of the text).

System Events—These events are generated by the Window Manager, or by window
objects as the result of a previous event. For example, the title object generates an
S_MOVE message when the user presses the left mouse button inside its border.
This message is later received by the Window Manager, which in turn moves the
window on the screen.

Environment Specific—These events are generated by the operating system or host
environment in which the Zinc application is running. For example, when running
in Windows, Zinc classes understand and interpret WM_ messages (e.g., WM_-
PAINT, etc.) or any of the other Windows messages. The same holds true for other
operating environments (e.g., Motif and OS/2).

Help System

The help system is used to give end users help during an application. It brings up a help
window whenever help is requested.

The help system contains one important virtual function, DisplayHelp().

class EXPORT UI_HELP_SYSTEM
{
public:

virtual void DisplayHelp (UI_WINDOW_MANAGER *windowManager,
UI_HELP_CONTEXT helpContext = NO_HELP_CONTEXT) ;

A UIW_WINDOW is used to present information to the screen. A picture of this window
is shown below:

Chapter 10 — Zinc Library Classes 93

l The second "Hello World!" tutorial shows you how to
create two windows using Zinc Interface Library and how
o initialize the help and error systems.

| Press <F3> to exit help.

The help window system’s DisplayHelp() member function provides context sensitive
help information during an application. Each help context contains a title (shown on the
title bar), and a help message (shown in the text portion of the window). The helpContext
argument is used as an identifier to a unique title/message pair.

Error System

The error system brings up a window to display error information to end users whenever
an error is detected. The error system contains one important virtual function, Report-
Error().

class EXPORT UI_ERROR_SYSTEM
{
public:
virtual UIS_STATUS ReportError (UI_WINDOW_MANAGER *windowManager,
UIs_STATUS errorStatus, char *format, ...);

The UI_ERROR_SYSTEM class uses a UIW_WINDOW object or an environment
specific error handling mechanism to present error information to the screen. A picture
of this window is shown below (where an invalid path name was entered within an
application):

94 Zinc Application Framework — Programmer’s Guide

c\zincibinY*.exe is invalid.

The error system’s ReportError() member function is used to display information about
the type of error encountered during an application. This function takes printf() style
arguments that are used in the text portion of the window.

Screen Displays

Screen display classes are used to present information to the screen. The following
displays are defined by Zinc Application Framework:

UI_BGI_DISPLAY UIL_MSC_DISPLAY
UL_FG_DISPLAY UI_MSWINDOWS_DISPLAY
UI_GRAPHICS_DISPLAY UI_OS2_DISPLAY
UI_MOTIF_DISPLAY UL_TEXT _DISPLAY

Each class listed above is derived from the UI_DISPLAY base class. This class defines
the general operation and structure of display classes.

class EXPORT UI_DISPLAY
{
public:
int installed;
int isText;
int isMono;
int columns, lines;
int cellwWidth, cellHeight;
int preSpace, postSpace;
long miniNumeratorX, miniDenominatorX;
long miniNumeratorY, miniDenominatory;

static UI_PALETTE *backgroundPalette;
static UI_PALETTE *xorPalette;
static UI_PALETTE *colorMap;

Chapter 10 — Zinc Library Classes 95

96

#if defined(ZIL_MSWINDOWS)

HANDLE hInstance;
HANDLE hPrevInstance;
int nCmdShow;

#elif defined(ZIL_0S2)

HAB hab;

#elif defined (ZIL_MOTIF)

XtAppContext appContext;
Widget topShell;

Display *xDisplay;

Screen *xScreen;

int xScreenNumber;

GC xGc;

char *appClass;

Pixmap interleaveStipple;

#endif

virtual ~UI_DISPLAY (void);
virtual void Bitmap (SCREENID screenlID, int column, int line,
int bitmapWidth, int bitmapHeight, const UCHAR *bitmapArray,
const UI_PALETTE *palette = NULL,
const UI_REGION *clipRegion = NULL, HBITMAP *colorBitmap = NULL,
HBITMAP *monoBitmap = NULL) ;
virtual void BitmapArrayToHandle (SCREENID screenID, int bitmapWidth,
int bitmapHeight, const UCHAR *bitmapArray,
const UI_PALETTE *palette, HBITMAP *colorBitmap,
HBITMAP *monoBitmap) ;
virtual void BitmapHandleToArray (SCREENID screenID, HBITMAP colorBitmap,
HBITMAP monoBitmap, int *bitmapWidth, int *bitmapHeight,
UCHAR **bitmapArray) ;
virtual void Ellipse (SCREENID screenID, int column, int line,
int startAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int xor = FALSE,
const UI_REGION *clipRegion = NULL) ;
virtual void IconArrayToHandle (SCREENID screenlD, int iconWidth,
int iconHeight, const UCHAR *iconArray, const UI_PALETTE *palette,
HICON *icon) ;
virtual void IconHandleToArray (SCREENID screenID, HICON icon,
int *iconWidth, int *iconHeight, UCHAR **iconArray);
virtual void Line (SCREENID screenID, int columnl, int linel,
int column2, int line2, const UI_PALETTE *palette, int width = 1,
int xor = FALSE, const UI_REGION *clipRegion = NULL);
virtual COLOR MapColor (const UI_PALETTE *palette, int isForeground);
virtual void Polygon (SCREENID screenID, int numPoints,
const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int xor = FALSE,
const UI_REGION *clipRegion = NULL) ;
void Rectangle (SCREENID screenID, const UI_REGION ®ion,
const UI_PALETTE *palette, int width = 1, int fill = FALSE,
int xor = FALSE, const UI_REGION *clipRegion = NULL) ;
virtual void Rectangle (SCREENID screenID, int left, int top, int right,
int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int xor = FALSE,
const UI_REGION *clipRegion = NULL) ;
virtual void RectangleXORDiff (const UI_REGION &oldRegion,
const UI_REGION &newRegion) ;
void RegionDefine (SCREENID screenlID, const UI_REGION ®ion);
virtual void RegionDefine (SCREENID screenID, int left, int top,
int right, int bottom) ;
virtual void RegionMove (const UI_REGION &oldRegion, int newColumn,
int newLine, SCREENID oldScreenID = ID_SCREEN,
SCREENID newScreenID = ID_SCREEN) ;
virtual void Text (SCREENID screenID, int left, int top,
const char *text, const UI_PALETTE *palette, int length = -1,
int fill = TRUE, int xor = FALSE,
const UI_REGION *clipRegion = NULL,
LOGICAL_FONT font = FNT_DIALOG_FONT) ;

Zinc Application Framework — Programmer’s Guide

virtual int TextHeight (const char *string,
SCREENID screenlID = ID_SCREEN,
LOGICAL_FONT font = FNT_DIALOG_FONT) ;

virtual int TextWidth(const char *string, SCREENID screenID = ID_SCREEN
LOGICAL_FONT font = FNT_DIALOG_FONT) ;

int VirtualGet (SCREENID screenID, const UI_REGION ®ion) ;

virtual int VirtualGet (SCREENID screenID, int left, int top, int right,
int bottom) ;

virtual int VirtualPut (SCREENID screenID);

'

// ADVANCED functions for mouse and cursor --- DO NOT USE! ---
virtual void DeviceMove (IMAGE_TYPE imageType, int newColumn,
int newLine) ;
virtual void DeviceSet (IMAGE_TYPE imageType, int column, int line,
int width, int height, UCHAR *image);

protected:
struct EXPORT UI_DISPLAY_IMAGE
{
UI_REGION region;
UCHAR *image;
UCHAR *screen;
UCHAR *backup;
Y

UI_DISPLAY_IMAGE displayImage [MAX_DISPLAY_IMAGES];

UI_DISPLAY (int isText) ;
int RegionInitialize (UI_REGION ®ion, const UI_REGION *clipRegion,
int left, int top, int right, int bottom);

Region lists (DOS version only)

The DOS display class derivation from UI_REGION_LIST allows the display to keep
track of regions on the screen. Whenever an object is placed on the screen, a region is
reserved so that the object can paint information. As objects are placed on the screen, the
regions are split up to allow the painting of background regions without destroying the
presentation of higher level objects. This process actually performs the “clipping” of
screen regions according to an object’s identification. For example, the following picture
shows how a screen may be split when two windows are attached to it. The figure shows
the region list equivalent where the screen background is represented by the 0 values and
the two windows are represented by the values 1 and 2.

Chapter 10 — Zinc Library Classes 97

Region lists

have three main components: a UI_REGION structure, UI_REGION_-
ELEMENT class objects and a UI_REGION_LIST class.

The UI_REGION structure contains the actual region to reserve. The definition of this

structure is:

struct EXPORT UI_REGION

{
public:

// Members described in UI_REGION reference chapter.

int

left, top, right, bottom;

#if defined (ZIL_MSWINDOWS)

void Assign(const RECT &rect) ;
#elif defined (ZIL_0S2)

void Assign(const RECTL &rect) ;

#endif

int
int
int
int
int
int
int
int
int

16 WG
UI_]
UT 4
UI_l

}i

Encompassed (const UI_REGION ®ion) ;
Height (void) ;

Overlap (const UI_REGION ®ion) ;
Overlap (const UI_POSITION &position);
Touching (const UI_POSITION *position);
Overlap (const UI_REGION ®ion, UI_REGION &result) ;
width (void) ;

operator==(const UI_REGION ®ion) ;
operator!=(const UI_REGION ®ion) ;
REGION &operator++ (void) ;
REGION &operator--(void);
REGION &operator+=(int offset);
REGION &operator-=(int offset);

The screen coordinates are defined according to the mode of operation, with the top-left
corner always being the coordinates 0, 0. Here are some sample right-bottom coordinates,
based on the type of display mode:

Display mode Right Bottom
Text 80 column x 25 line 79 24
Text 40 column x 25 line 39 24

98

Zinc Application Framework — Programmer’s Guide

Text 80 column x 43 line 79 42

Text 80 column x 50 line 79 49

CGA 320 column x 200 line 319 199
MCGA 320 column x 200 line 319 199
EGA 640 column x 350 line 639 349
VGA 640 column x 480 line 639 479

The UI_REGION_ELEMENT and UL_REGION_LIST classes are used to store the region
information in a list. The UI_REGION_ELEMENT class is derived from Ul_ELEMENT.
It contains the actual region information and an associated screen identification:

class EXPORT UI_REGION_ELEMENT : public UI_ELEMENT
{
public:

SCREENID screenlID;

UI_REGION region;

The first time a window is attached to the Window Manager it is assigned a unique value
that is stored in its screenID member variable. In addition, the screen is re-defined to
contain the window’s region. This area is represented by a new UI_REGION._-
ELEMENT, where screenID is assigned the same value as the window’s screen
identification, and region is assigned the same area occupied by the window. The region
variable is used later by display functions to clip the boundaries of an object before any
screen painting is performed. For example, if two windows were attached to the screen
and information were painted to the background window, the background information
would be clipped so that the painted regions would not overlap the front window.

NOTE: Some operating environments (e.g., MS Windows, Windows NT, OS/2 and
Motif) handle clipping internally. Therefore, their display classes are not derived from
UI_REGION_LIST.

Virtual display functions

Virtual display member functions are used to define an abstract method of drawing
information to the screen. For example, all display classes have the Rectangle() member
function. In text mode, a rectangle is drawn with either a single or a double line. In
graphics mode, however, the same routine draws a single or double pixel rectangle. This
abstract method of drawing is the key to creating single source applications that run in
DOS Text, DOS Graphics, Microsoft Windows, Windows NT, IBM 0S/2 and OSF/Motif
screen modes.

Chapter 10 — Zinc Library Classes 99

Event Mapping

There are two structures used by the MapEvent() function to convert raw input informa-
tion into logical messages: UI_EVENT and UIl_EVENT_MAP.

The UL_EVENT structure was discussed earlier in this chapter. It contains the raw event
information entered by users during an application.

struct EXPORT UI_EVENT

{
EVENT_TYPE type; // The type of event.
RAW_CODE rawCode;
RAW_CODE modifiers;

#if defined (ZIL_MSWINDOWS)
MSG message;

#elif defined (ZIL_0S2)
QOMSG message;

#elif defined (ZIL_MOTIF)
typedef XEvent message;

#endif

}i

The UI_EVENT_MAP structure defines the raw-to-logical mapping of events. Its
definition is shown below:

struct EXPORT UI_EVENT_MAP

{
OBJECTID objectID;
LOGICAL_EVENT logicalValue;
EVENT_TYPE eventType;
RAW_CODE rawCode;
RAW_CODE modifiers;

static LOGICAL_EVENT MapEvent (UI_EVENT_MAP *mapTable,
const UI_EVENT &event,
OBJECTID idl = ID_WINDOW_OBJECT, OBJECTID id2 = ID_WINDOW_OBJECT,
OBJECTID id3 = ID_WINDOW_OBJECT, OBJECTID id4 = ID_WINDOW_OBJECT,
OBJECTID id5 = ID_WINDOW_OBJECT) ;
}i

Whenever an event is received from the system, it is interpreted by the receiving object
using UI_WINDOW_OBJECT::LogicalEvent(). LogicalEvent() calls MapEvent()
using a specified mapTable to match a logical value. If event.type, event.rawCode and
event.modifiers match a particular map-entry’s eventType and rawCode, the entry’s
logicalValue is returned.

NOTE: There are two pre-defined event map tables used in Zinc Application Framework:
eventMapTable and hotKeyMapTable. eventMapTable is used by all UL_WINDOW-
_OBJECT class objects and the Window Manager to determine the logical interpretation
of raw events. hotKeyMapTable is used by all high-level windows to determine sub-

100 Zinc Application Framework — Programmer’s Guide

object hot key equivalents. It is only used when an <Alt> key is pressed to get the logical
interpretation of the hot key.

Palette Mapging”

There are two structures used by the MapPalette() function to provide color palette
information for window objects: UI_PALETTE and UI_PALETTE_MAP.

The UI_PALETTE structure contains the color combinations for text and graphic displays.

struct EXPORT UI_PALETTE
{

// --- Text mode ---

UCHAR fillCharacter; // Fill character.

COLOR colorAttribute; // Color attribute.

COLOR monoAttribute; // Mono attribute.

// --- Graphics mode ---

LOGICAL_PATTERN fillPattern; // Fill pattern.

COLOR colorForeground; // EGA/VGA colors.

COLOR colorBackground;

COLOR bwForeground; // Black & White colors (2 color).
COLOR bwBackground;

COLOR grayScaleForeground; // Monochrome colors (3+ color).

COLOR grayScaleBackground;
Yi

The UI_PALETTE_MAP structure defines the raw-to-logical mapping of palettes. Its
definition is shown below:

struct UI_PALETTE_MAP

{
OBJECTID objectID;
LOGICAL_PALETTE logicalPalette;
UI_PALETTE palette;

static UI_PALETTE *MapEvent (UI_PALETTE_MAP *mapTable,
LOGICAL_PALETTE logicalPalette, OBJECTID idl = ID_WINDOW_OBJECT,
OBJECTID id2 = ID_WINDOW_OBJECT, OBJECTID id3 ID_WINDOW_OBJECT,
OBJECTID id4 = ID_WINDOW_OBJECT, OBJECTID id5 ID_WINDOW_OBJECT) ;

}:

Whenever a window object paints information to the screen, it gets the color palette using
UI_WINDOW_OBJECT::MapPalette(). MapPalette() uses a specified mapTable to
match a logical value with a palette. If the logical value matches a particular map-entry’s
logicalPalette, the entry’s palette is returned.

Chapter 10 — Zinc Library Classes 101

NOTE: There are three pre-defined palette map tables used in Zinc Application
Framework: normalPaletteMapTable, helpPaletteMapTable and errorPaletteMapTable.
normalPaletteMapTable is used by all normal window objects. helpPaletteMapTable is
used by the UI_HELP_SYSTEM window and errorPaletteMapTable is used by the UI_-
ERROR_SYSTEM window.

102 Zinc Application Framework — Programmer’s Guide

CHAPTER 11 - C++ FEATURES |

In this chapter we will look at Zinc Application Framework to examine the many C++
features used to make the product powerful and easy to use. The following general
concepts are discussed:

1—The way Zinc defines class objects. This includes the definition of basic C++
classes, derived classes, abstract classes and friend classes.

2—Several methods used to construct class objects. These methods include using the
new operator, having the constructor called automatically when the scope of a class
object is reached, and the various types of construction that are used by Zinc
Application Framework.

3—Methods used to destroy a class object. These methods correspond to the
construction methods described, as well as some implementation details Zinc
Application Framework uses in conjunction with virtual destructors.

4—Definition of the types of member variables used by Zinc Application Framework.
This includes scope variable definition as well as the use of static member variables.

S—Definition of the types of member functions used by Zinc Application Framework.
This includes the many features provided by C++ including the use of default
arguments, virtual member functions, overloaded functions, pointers to functions,
operator overloads and static member functions.

CIrass pefi?nitions

Design issues

Zinc classes are designed to be consistent and easy to understand. This is accomplished,
in part, by presenting each class in a similar manner. The following rules apply to all
Zinc class definitions:

1—First, all classes have a preceding comment that identifies the class whose
definitions follow. For example, the UI_LIST class has the following lead
information:

Chapter 11 — C++ Features 103

104

1] ===== UI_LIST --------=-mmm—cmmeee—mmeem————————— e

class EXPORT UI_LIST

2—Second, all class definitions are preceded by the reserved word class, an
environment specific identifier, EXPORT, and one of the Zinc prefixes (i.e., “UI_",
“UID_” and “UIW_"). The reserved word class tells the compiler that the
definition not only has structural information, but also contains unique information
that constitutes a class, such as member functions, single and multiple inheritance,
pointers to member functions, etc.

The keyword EXPORT is not part of the C++ language; rather it is a typedef used
by Zinc to facilitate portability. In Windows, for example, classes are defined as
class HUGE UI ELEMENT. In DOS, the class is defined as class Ul_ELEMENT.
In order to provide a single set of source, EXPORT is inserted in the class definition
and typedef’ed according to the requirements of a specific environment.

The prefix “UI_" is used to indicate a “User Interface” type class. The prefix
“UID_” is used to indicate a “User Interface Device” type class. The prefix
“UIW_” is used to indicate a “User Interface Window object” type class. This
allows you to have other classes (such as list and list elements) without worrying that
your definition conflicts with that used by Zinc Application Framework. Some
sample class definitions are given below:

class EXPORT UI_ELEMENT

class EXPORT UI_DEVICE : public UI_ELEMENT

class EXPORT UIW_WINDOW : public UI_WINDOW_OBJECT, public UI_LIST

3—Third, the order of member access control is first public, then protected and last
private. The reason public is defined first is because it is the main part of the class
you are concerned with. If private members were first, you would have to wade
through undocumented variables and functions before you got to the information you
really needed.

Public members can be accessed by any other functions and are documented in
alphabetical order in the Programmer’s Reference. Protected members can only be

Zinc Application Framework — Programmer’s Guide

accessed by the class itself, derived class objects and objects that are given the
special friend class status. These members are also documented in alphabetical order
in the Programmer’s Reference. Private members can only be accessed by the class
itself or by a class granted special friend access. Derived classes cannot access the
private members of another class (unless they are friend classes). Private members
are not documented in any of the Zinc Application Framework manuals.

The UI_DEVICE class shows how this member access order is followed:

class EXPORT UID_KEYBOARD : public UI_DEVICE
{
public:

static EVENT_TYPE breakHandlerSet;

UID_KEYBOARD (DEVICE_STATE state = D_ON)
virtual ~UID_KEYBOARD (void);
virtual EVENT_TYPE Event (const UI_EVENT &event)

i
i

protected:
virtual void Poll (void) ;
}i

4—Finally, member variables and functions are placed in separate logical groups.
Member variables are grouped according to a logical order that may consist of byte
boundary alignment, first use, most common usage, or a number of other factors.
Member functions, however, are organized in alphabetical order with the constructor
and destructor being placed first. The U'W_BUTTON class shows how this grouping
is accomplished.

class EXPORT UIW_BUTTON : public UI_WINDOW_OBJECT
{

friend class EXPORT UIF_BUTTON;
public:

BTF_FLAGS btFlags;

EVENT_TYPE value;

UIW_BUTTON (int left, int top, int width, char *text,
BTF_FLAGS btFlags = BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_FLAGS woFlags = WOF_JUSTIFY_CENTER,

USER_FUNCTION userFunction = NULL, EVENT_TYPE value = 0,
char *bitmapName = NULL) ;

virtual ~UIW_BUTTON (void) ;

virtual EVENT_TYPE Event (const UI_EVENT &event)

char *DataGet (int stripText = FALSE);

void DataSet (char *text):;

virtual void *Information (INFO_REQUEST request, void *data,

OBJECTID objectID = 0);

static EVENT_TYPE Message (UI_WINDOW_OBJECT *object, UI_EVENT &event,

EVENT_TYPE ccode) ;

i

In addition to the class definition rules described above, Zinc Software employees adhere
to a full set of internal coding standards, designed to improve the readability and

Chapter 11 — C++ Features 105

maintenance of code. For a full explanation of these rules see ‘““Appendix D—Zinc
Coding Standards” of the Programming Techniques manual.

Base classes

Base classes are used to define the core operation of objects within an application. The
core of Zinc Application Framework is contained in two base classes: UL_ ELEMENT and
UI_LIST. The definition of these two classes (i.e., their public and protected members)
is given below:

class EXPORT UI_ELEMENT
{
friend class EXPORT UI_LIST;
public:
virtual ~UI_ELEMENT (void) ;
int ListIndex(void) ;
UI_ELEMENT *Next (void) ;
UI_ELEMENT *Previous (void) ;

protected:
UI_ELEMENT *previous, *next;

UI_ELEMENT (void) ;
}i

class EXPORT UI_LIST
{
friend class EXPORT UI_LIST_BLOCK;
public:
int (*compareFunction) (void *elementl, void *element2);

UI_LIST(int (*_compareFunction) (void *elementl, void *element2) = NULL) ;

virtual ~UI_LIST(void);

UI_ELEMENT *Add (UI_ELEMENT *newElement) ;

UI_ELEMENT *Add(UI_ELEMENT *element, UI_ELEMENT *newElement) ;

int Count (void) ;

UI_ELEMENT *Current (void) ;

virtual void Destroy (void) ;

UI_ELEMENT *First (void) ;

UI_ELEMENT *Get (int index);

UI_ELEMENT *Get (int (*findFunction) (void *elementl, void *matchData),
void *matchData) ;

int Index (UI_ELEMENT const *element) ;

UI_ELEMENT *Last (void) ;

void SetCurrent (UI_ELEMENT *element) ;

void Sort (void) ;

UI_ELEMENT *Subtract (UI_ELEMENT *element) ;

UI_LIST &operator+ (UI_ELEMENT *element) ;

UI_LIST &operator- (UI_ELEMENT *element) ;

protected:
UI_ELEMENT *first, *last, *current;
¥i

If you understand the relationship and use of these two classes, you should be able to
understand the underlying design and implementation features of almost all Zinc
Application Framework components. For example, you may recall the general Zinc
Application Framework model:

106 Zinc Application Framework — Programmer’s Guide

Cursor Keyboard Mouse

'

‘ Ul_EVENT MANAGER J

v o
(MAIN PROGRAM CONTROL D)
= v
SUPPORT RESOURCES Ul _WINDOW._ MANAGER |

FELP SYSTE—‘ Fanon SYSTEM

‘EVENT MAPPING] 'COLOH MAF‘PING’ Hello W°"d Wjnou]
World Information Window
DISPLAY ‘ STORAGE J

The Event Manager has two main classes: UI_DEVICE and UL EVENT _MANAGER.
The UI_DEVICE class is derived from Ul_ELEMENT and is used to define the operation
of input devices. Its derivation from UI_ELEMENT allows other classes to be grouped
together, in the form of a list. Since the UI_EVENT_MANAGER class is derived from
UI_LIST, it is able to maintain a list of all attached devices. This derivation also allows
the Event Manager to control the operation and flow of event information from the input
devices.

The Window Manager has three major classes: UL WINDOW_OBJECT, UI_WINDOW_-
MANAGER and UIW_WINDOW. The UI_WINDOW_OBJECT class is derived from
the UL_ELEMENT base class and also serves as the base class for all window objects
(e.g., buttons, icons, menu items). Its derivation from UL ELEMENT allows derived class
objects to be combined in related groups, such as fields inside a parent window. The
UI_WINDOW_MANAGER class’ derivation from UIW_WINDOW allows it to control
the presentation and operation of all window objects attached to the screen. The UIW._-
WINDOW class is unique because it exhibits properties of both a list element (when it
is attached to the Window Manager) and a list (as it controls the operation of sub-objects
such as the border, title-bar, etc.). Appropriately, this class is derived from both the
UI_ELEMENT base class (through the UI_WINDOW_OBIJECT class) and the UI_LIST
base class.

Derived classes

Derived classes have access to all public and protected members of their base class.
Derived classes are useful because they inherit all of the features of their base class and

Chapter 11 — C++ Features 107

108

override the features that need to be unique. One example of class inheritance is
demonstrated by the UID_KEYBOARD class. Its class hierarchy is shown below:

class EXPORT UI_ELEMENT
class EXPORT UI_DEVICE : public UI_ELEMENT

class EXPORT UID_KEYBOARD : public UI_DEVICE

The benefits of the UID_KEYBOARD class’ derivation from the base UI_DEVICE and
UI_ELEMENT classes are:

1—Its derivation from UI_ELEMENT lets the keyboard device be attached to generic
lists. This is beneficial because input devices can be grouped and manipulated by the
generic UI_LIST class.

2—Its derivation from UI_DEVICE allows the Event Manager to call its virtual
Poll() function, giving the device time to feed information into the input queue.

The keyboard is unique because it initializes the keyboard BIOS (through its constructor
when running in DOS) and feeds keyboard information into the Event Manager’s input
queue (through the Poll() member function). These special operations cannot be inherited
from any of the two base classes. (NOTE: This only applies to the DOS environment.)

Another good example of class inheritance is shown by the UIW_MINIMIZE_BUTTON
and UIW_MAXIMIZE_BUTTON classes. These classes exhibit very similar behavior
because they appear on the screen in the form of a 3-dimensional button and because they
perform their operation (maximizing or minimizing a window) when they are clicked upon
by the left mouse button. Their only differences are that they contain different screen
characters (e.g., ‘4’ for the maximize button, ‘v’ for the minimize button in DOS and
Windows) and that selecting the maximize button causes a window to be maximized,
whereas selecting the minimize button causes the window to be minimized. The actual
code difference of these classes is shown below:

Sl UIW_MAXIMIZE_BUTTON
class EXPORT UIW_MAXIMIZE_BUTTON : public UIW_BUTTON
{
friend class EXPORT UIF_MAXIMIZE_BUTTON;
public:
UIW_MAXIMIZE_BUTTON (void) ;

f === UIW_MINIMIZE_BUTTON
class EXPORT UIW_MINIMIZE_BUTTON : public UIW_BUTTON
{

friend class EXPORT UIF_MINIMIZE_BUTTON;

public:
UIW_MINIMIZE_BUTTON (void) ;

Zinc Application Framework — Programmer’s Guide

};

// Class constructors of maximize and minimize buttons.
UIW?MAXIMlZH_BUTTON::UIW_MAXIMIZE_BUTTON(void) 2
UIW_BUTTON(O, 0, 0, NULL, BTF_SEND_MESSAGE | BTF_NO_TOGGLE,
WOF_BORDER | WOF_JUSTIFY_CENTER | WOF_SUPPORT_OBJECT |
WOF_NON_FIELD_REGION, NULL, L_MAXIMIZE)

// Initialize the maximize button information.
UIW_MAXLMIZE_BUTTON::lnformation(INITIALIZE_CLASS, NULL) ;

UIW_MINIMIZE_BUTTON: :UIW_MINIMIZE_BUTTON (void)
UIW_BUTTON(O, 0, 0, NULL, BTF_SEND_MESSAGE | BTF_NO_TOGGLE,
WOF_BORDER | WOF_JUSTIFY_CENTER | WOF_SUPPORT_OBJECT
WOF_NON_FIELD_REGION, NULL, L_MINIMIZE)

// Initialize the minimize button information.
UIW*M[NIMIZE_BUTTON::lnformation(INITLALTZE_CLASS, NULL) ;

The following chart shows the complete Zinc Application Framework class hierarchy.
(Classes that are noted with T have multiple inheritance.)

class UI_APPLICATION

class UI_DISPLAY

—— tclass UI_BGI_DISPLAY
—— tclass UI_FG_DISPLAY

—— tclass UI_GRAPHICS_DISPLAY
—— class UI_MOTIF_DISPLAY
—— tclass UI_MSC_DISPLAY
—— class UI_0OS2_DISPLAY

—— class UI_MSWINDOWS_DISPLAY
—— tclass UI_TEXT DISPLAY

class UI_ELEMENT

class UI_DEVICE
class UID_CURSOR
class UID_KEYBOARD
class UID_MOUSE
class UID_PENDOS

—— class UI_PATH_ ELEMENT

—— class UI_QUEUE_ELEMENT

—— class UI_REGION_ELEMENT

—— class UI_WINDOW_OBJECT

Chapter 11 — C++ Features 109

class

class UIW_BORDER

class UIW_BUTTON
class
class
——— iclass
— class

—— class

L——: c¢class
—— class UIW_ICON

H—— class UIW_PROMPT
—— class UIW_STRING
—— class
—— ¢lass
—— c¢lass
class

— class

“—— class

class
class
—— class
— class
class
class
class
—— class

—— class

class

UI_ERROR_SYSTEM

class UI_HELP_SYSTEM

class UI_INTERNATIONAL

110

class UI_BIGNUM

class UI_DATE

class UI_TIME

UIW_MAXIMIZE_ BUTTON
UIW_MINIMIZE BUTTON
UIW_POP_UP_ITEM
UIW_PULL_DOWN_ITEM
UIW_SYSTEM_BUTTON

UIW_TITLE

UIW_BIGNUM

UIW_DATE
UIW_FORMATTED_STRING
UIW_INTEGER
UIW_REAL

UIW_TIME

—— tclass UIW_WINDOW

UI_WINDOW_MANAGER
UIW_COMBO_BOX
UIW_GROUP
UIW_HZ_LIST
UIW_POP_UP_MENU
UIW_PULL_DOWN_MENU
UIW_SCROLL_BAR
UIW_TEXT
UIW_TOOL_BAR

UIW_VT_LIST

Zinc Application Framework — Programmer’s Guide

class UI_LIST

class UI_EVENT_ MANAGER
—— class UI_LIST_BLOCK
class UI_QUEUE_BLOCK
——— class UI_PATH
—— class UI_REGION_LIST

—— fclass UI_BGI_DISPLAY

tclass UI_FG_DISPLAY
—— fclass UI_GRAPHICS_DISPLAY

—— tclass UI_MSC_DISPLAY

—— tclass UI_TEXT_ DISPLAY

——— tfclass UIW_WINDOW
class UI_STORAGE
class UI_STORAGE_OBJECT
struct UI_EVENT
struct UI_EVENT_MAP
struct UI_ITEM
struct UI_KEY
struct UI_PALETTE
struct UI_PALETTE_MAP
struct UI_POSITION
struct UI_REGION

struct UI_SCROLL_INFORMATION

T - indicates multiple inheritance

Multiple inheritance classes

Multiple inheritance allows a class to gain access to the protected members of more than
one base class. This proves beneficial in the following library classes: UI_BGI_-
DISPLAY, UI_FG_DISPLAY, UI_GRAPHICS_DISPLAY, UI_MSC_DISPLAY, UI -
TEXT_DISPLAY, UIW_WINDOW), etc. The inheritance paths of the preceding classes
are shown below:

class EXPORT UI_DISPLAY

class EXPORT UI_LIST

Chapter 11 — C++ Features 111

class EXPORT UI_REGION_LIST

class EXPORT UI_WINDOW_OBJECT

class EXPORT UI_WINDOW_OBJECT : public UI_ELEMENT

class EXPORT UI_BGI_DISPLAY : public UI_DISPLAY, UI_REGION_LIST
class EXPORT UI_FG_DISPLAY : public UI_DISPLAY, UI_REGION_LIST

class EXPORT UI_GRAPHICS_DISPLAY : public UI_DISPLAY, UI_REGION_LIST
class EXPORT UI_MSC_DISPLAY : public UI_DISPLAY, UI_REGION_LIST
class EXPORT UI_TEXT DISPLAY : public UI_DISPLAY, UI_REGION_LIST

class EXPORT UIW_WINDOW : public UI_WINDOW_OBJECT, public UI_LIST

Most of the display classes are derived from UI_DISPLAY and UI_REGION_LIST so
that the display can manage any window objects attached to the Window Manager. The
displays that are not derived from UI_REGION_LIST are those displays where the host
environment automatically handles the region clipping.

The UIW_WINDOW class is derived from the UI_WINDOW_OBJECT base class so that
it can be displayed to the screen, like a normal window object, and is derived from the
UI_LIST base class so that it can control the presentation and operation of its sub-objects
(e.g., buttons, strings, menus).

Abstract classes

Zinc Application Framework has one class that is considered ‘“‘abstract”: UI_DEVICE.
For a class to be considered abstract, it must have one or more pure virtual functions (i.e.,
functions that have an = 0 at the end of their declaration). A pure virtual function cannot
be called directly; rather it forces the class to become a “template” for defining other
derived classes. The device class has two pure virtual functions: Event() and Poll().

class EXPORT UI_DEVICE : public UI_ELEMENT
{

friend class EXPORT UI_EVENT_MANAGER;
public:

virtual EVENT TYPE Event (const UI_EVENT &event) = 0;

protected:

virtual void Poll(void) = 0;
}i

Abstract classes are beneficial because they let you define the conceptual operation of a
class without associating any specific code with the class.

Zinc Application Framework — Programmer’s Guide

NOTE: The UL_WINDOW_OBJECT looks, and in many ways operates, like an abstract
class, but it is not an abstract class because it has no pure virtual functions.

Friend classes

Friend classes allow a specified class to gain access to the protected and private members
of another class. This is useful when you want to hide the implementation details of one
class but let a similar or corresponding class have special access rights.

There are many situations where a Zinc Application Framework class grants access rights
to another class. The main use of friend classes is with the creation of the designer and
will not be discussed at this time. Of the remaining instances, the first occurs when a
class derived from the Ul ELEMENT base class grants “friend” access to its list
counterpart. This allows the list to optimize the operation and access of its list elements.
The following class relationships show how this is useful:

UI_ELEMENT makes UI_LIST a friend class since the lists are continually manipu-
lating and searching through list elements.

UL_LIST makes UI_LIST BLOCK a friend class since it carries the same
functionality as the UI_LIST except that it is used in array form.

UL_DEVICE makes UIL_EVENT_MANAGER a friend class so that the Event
Manager can set up internal device information (e.g., the display and eventManager
member variables) when the device is attached to the Event Manager.

UI_STORAGE_OBJECT makes UL STORAGE a friend class since the storage
lists are continually manipulating and searching through storage elements.

UIL_WINDOW_OBJECT makes both UI_WINDOW_MANAGER and UIW_-
WINDOW friend classes. Friendship rights are granted to the Window Manager so
that it can set up internal window object information (e.g., the display, eventManager
and windowManager variables) when the window object is attached to the Window
Manager. The window gets friend access because it works similar to the Window
Manager, in that it controls the operation of sub-objects within its scope (e.g., border,
buttons, title bar).

UIW_STRING makes UIW_TEXT a friend class since the text field uses UIW_-
STRING objects to display the “lines” of text.

UIW_VT_LIST makes UIW_COMBO_BOX a friend class since the pull-down list
associated with the combo box is implemented with a UIW_VT_LIST.

Chapter 11 — C++ Features 113

lelss freation

Using the “new” operator

Class objects are created by you, the programmer, using the new operator or by specifying
the new scope of a class object. Here is some sample code that initializes Zinc Applica-
tion Framework’s display, Event Manager and Window Manager using the new operator:

#include <ui_win.hpp>

main ()
{
// Initialize the screen.
UI_DISPLAY *display = new UI_TEXT_DISPLAY;

// Initialize the event manager.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;

// Initialize the window manager.
UI_WINDOW_MANAGER *windowManager = new UI_WINDOW_MANGER (display,
eventManager) ;

}

The use of the new operator lets you initialize a class and maintain its information, even
when the scope of a function ends. For example, the second ‘““Hello, World!” tutorial,
found in the Programming Techniques manual, uses functions to initialize two windows.
If the new operator were not used, the windows would be destroyed when the scope of
the function ended.

Scope class construction

The example above showed how the reserved word new was explicitly used to construct
new classes. Functions can be written to implicitly call the class constructors:

#include <ui_win.hpp>

ExampleFunction ()
{
// Create a window.
UIW_WINDOW window (0, 0, 25, 5);

114 Zinc Application Framework — Programmer’s Guide

In this case, the object is constructed when the scope of its class is reached. (NOTE: In
this example, the window created will be automatically deleted when the scope of the
function ends.)

Base class construction

In addition to the class constructors you use, Zinc Application Framework classes
implicitly use inherited class constructors to initialize their information. For example, the
UI_TEXT_DISPLAY class calls the UL_DISPLAY base class constructor and the UL_-
REGION_LIST class constructor before it initializes any of its own information:

UI_TEXT_DISPLAY: :UI_TEXT_DISPLAY (TDM_MODE mode)
UI_DISPLAY(TRUE), UI_REGION_LIST()
{

}

NOTE: In C++, a base class, with no arguments, is automatically initialized whether or
not it is called from the derived constructor. Although this is legal, these types of base
classes are nonetheless explicitly called throughout Zinc Application Framework in order
to make the code more readable. Notice that UI_REGION_LIST was called from the
constructor of UI_TEXT_DISPLAY.

The UID_KEYBOARD class uses UL_DEVICE to initialize its base class information:

UID_KEYBOARD: : UID_KEYBOARD (DS_STATE initialState)
UI_DEVICE(E_KEY, initialState)
{

}

The UIW_POP_UP_ITEM class calls the UIW_BUTTON class for initialization, which
in turn calls UI_WINDOW_OBJECT for base class initialization. This saves a
tremendous amount of code that would be required to initialize each object separately:

UIW_BUTTON: :UIW_BUTTON (int left, int top, int width, char *_text,
BTF_FLAGS _btFlags, WOF_FLAGS _woFlags, USER_FUNCTION _userFunction,
EVENT_TYPE _value, char *_bitmapName)

UI_WINDOW_OBJECT (left, top, width, 1, _woFlags, WOAF_NO_FLAGS),
text (NULL), btFlags(_btFlags), value(_value), depth(2),
btStatus (BTS_NO_STATUS) , bitmapwidth(0), bitmapHeight (0),
bitmapArray (NULL)

Chapter 11 — C++ Features 115

UIW_POP_UP_ITEM: :UIW_POP_UP_ITEM (void) :

UIW_BUTTON(O0, 0, 1, NULL, BTF_NO_3D, WOF_NO_FLAGS),

menu (0, 0, WNF_NO_FLAGS, WOF_BORDER, WOAF_TEMPORARY | WOAF_NO_DESTROY),
mniFlags (MNIF_SEPARATOR)

Array constructors

The only Zinc class that uses an array constructor is U_QUEUE_BLOCK. The picture
and code below show the design and implementation of event information by the queue-
block class:

o q event 2

/ event 1 2

event N 6/

UI_QUEUE_BLOCK: :UI_QUEUE_BLOCK (int _noOfElements)

{

}

UI_LIST_BLOCK (_noOfElements)

// Initialize the queue block.
UI_QUEUE_ELEMENT *queueBlock = new UI_QUEUE_ELEMENT[_noOfElements];
elementArray = queueBlock;
for (int i = 0; i < _noOfElements; i++)
freeList.Add (NULL, &queueBlock[i]);

This implementation is useful for the Event Manager, because it permits the library to
only perform one big allocation for event information. This prevents the library from
allocating event information each time it comes into the system, then deallocating the
information after it has been used.

Overloaded constructors

116

Overloaded constructors are used to simplify the creation of class objects. For example,
the UI_DATE class overloads its constructor in the following manner:

Zinc Application Framework — Programmer’s Guide

class EXPORT UI_DATE
{

UI_DATE (void) :

UI_DATE (const UI_DATE &date) :

UI_DATE (int year, int month, int day):

UI_DATE (const char *string, DTF_FLAGS dtFlags = DTF_NO_FLAGS) ;

The various overloaded date constructors allow you to create a date object according to:
* the computer’s system date (this method requires no arguments)

* a previously created date class object

 three integer values (i.e., the year, month and day)

* an alphanumeric date. Zinc’s powerful constructor capability lets you specify an
alphanumeric date that can be interpreted in a country-independent fashion.

Each of these constructors is very useful at different points of an application.

All classes derived from UI_WINDOW_OBJECT have at least two overloaded con-
structors: one, or more, for basic run-time setup, and another for persistent object access
(i.e., the constructor that has the file argument). For example, the UIW_POP_UP_ITEM
class has the following definitions:

class EXPORT UIW_POP_UP_ITEM : public UIW_BUTTON
{

UIW_POP_UP_ITEM (void) ;

UIW_POP_UP_ITEM (char *text, MNIF_FLAGS mniFlags = MNIF_NO_FLAGS,
BTF_FLAGS btFlags = BTF_NO_3D, WOF_FLAGS woFlags = WOF_NO_FLAGS,
EVENT_TYPE (*userFunction) (UI_WINDOW_OBJECT *object,

UI_EVENT &event, EVENT_TYPE ccode) = NULL, unsigned value = 0);

// Persistent object constructor.
UIW_POP_UP_ITEM(const char *name, UI_STORAGE *file,
UI_STORAGE_OBJECT *object) ;

The first constructor is used to provide menu item separators. The second is used when
the pop-up item is going to be attached to a parent pop-up menu. The last is used to
construct the pop-up item from disk information.

Copy constructors

Three library classes use copy constructors: UI_BIGNUM, UI_DATE and UL_TIME. A
copy constructor lets you pass a previously created class into the constructor of another
class object. An example of the date constructor is shown below:

Chapter 11 — C++ Features 117

class EXPORT UI_DATE
{

UI_DATE (void) { DataSet(); }
UI_DATE (const UI_DATE &date) { DatasSet(date); }
UI_DATE (int year, int month, int day) { DataSet (year, month, day); }
UI_DATE (const char *string, DTF_FLAGS dtFlags = DTF_NO_FLAGS)
{ DataSet (string, dtFlags); 1}

Default arguments

Default arguments are used in Zinc Application Framework when there is a default mode
of operation that is only occasionally overridden. The use of default arguments allows
you to leave off the ending argument definitions that you either do not need to worry
about, or that you can use only when they are needed for advanced operations. For
example, the text display class provides the following default argument:

class EXPORT UI_TEXT_DISPLAY : public UI_DISPLAY, public UI_REGION_LIST
{
public:

UI_TEXT_DISPLAY (TDM_MODE mode = TDM_AUTO) ;

The default argument for mode is TDM_AUTO, which constructs the display using the
screen’s current mode of operation. While this is the standard mode of operation, six

additional types of text displays may be created:

TDM_BW_25x40—Forces the screen to be initialized in a 25 line by 40 column
black and white mode.

TDM_25x40—Forces the screen to be initialized in a 25 line by 40 column mode.

TDM_BW_25x80—Forces the screen to be initialized in a 25 line by 80 column
black and white mode.

TDM_25x80—Forces the screen to be initialized in a 25 line by 80 column mode.

TDM_MONO_25x80—Forces the screen to be initialized in a 25 line by 80 column
monochrome mode.

TDM_43x80—Forces the screen to be initialized in a 43 line by 80 column mode.
(This is 50 line mode if a VGA card is being used.)

If you do not want to override the default operation of the text display, you can call the
constructor with no arguments:

UI_DISPLAY *display = new UI_TEXT_DISPLAY;

Zinc Application Framework — Programmer’s Guide

Otherwise, you can override the default by providing one of the allowed argument values:

// Force 43 line mode.
UI_DISPLAY *display = new UI_TEXT_DISPLAY (TDM_43x80) ;

There are many other class functions that contain default information. The Programmer’s
Reference contains information about such default arguments, their use, and the steps
required to override their definition.

Class Deletion

Using the “delete” operator

The destruction of classes is either performed by you, if the reserved word new was used
to create the object, or else it is automatically performed when the scope of a class ends.
For example, the initialization code shown earlier would require the following use of
delete:

#include <ui_win.hpp>

main ()
{
// Initialize Zinc Application Framework using the new operator.
UI_DISPLAY *display = new UI_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;
UI_WINDOW_MANAGER *windowManager =
new UI_WINDOW_MANGER (display, eventManager) ;

// Restore the system.
delete windowManager;
delete eventManager;
delete display;

Scope deletion

The use of the new operator requires us to use delete to destroy the class objects in the
first example program. In the example below, however, the class destructor is automati-
cally called when the scope of ExampleFunction ends.

ExampleFunction ()
{
UIW_WINDOW window (0, 0, 25, 5);

// The window is automatically destroyed when the scope of
// ExampleFunction ends.

Chapter 11 — C++ Features 119

NOTE: The order of class creation and destruction is important. In general, those objects
that you create first, must be destroyed last.

Virtual destructors

120

Zinc Application Framework uses virtual member functions for specific class objects. The
most general use of a virtual function is associated with the UL_ELEMENT and UI_LIST
base classes:

class EXPORT UI_ELEMENT
£
public:

virtual “UI_ELEMENT (void);
}:

class EXPORT UI_LIST
{
public:

virtual “UI_LIST(void);
}i

The declaration of virtual destructors is useful because it allows the library to call the
destructor of the base class, rather than the specific derived object. For example, Zinc
Application Framework uses UI_ELEMENT as the base class to all input devices. When
we create the keyboard, cursor and mouse, we are defining three different input devices.
In C, we would have to explicitly call a function to free the memory for each type of
input. In C++, with the use of virtual functions, the class destructor is called
automatically by the controlling list class:

class EXPORT UI_LIST
{
public:
virtual ~“UI_LIST(void) { Destroy(); 1}

}

void UI_LIST: :Destroy (void)
{
UI_ELEMENT *tElement;

// Delete all the elements in the list.
for (UI_ELEMENT *element = first; element;)
{

tElement = element;

element = element->next;

delete tElement;

Zinc Application Framework — Programmer’s Guide

}

In addition to the delete operation called by programmers, Zinc Application Framework
classes explicitly call destructors for derived objects and for objects that have been
attached (e.g., objects attached to a UL_LIST). For example, if the Event Manager were
constructed with a keyboard, cursor and mouse object, the code would be:

// Initialize the event manager and add three devices to it.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;
*eventManager

+ new UID_KEYBOARD

+ new UID_MOUSE

+ new UID_CURSOR;

// Calling the event manager destructor automatically calls the
// destructor for the keyboard, mouse and cursor devices.
delete eventManager;

When the destructor is called for the Event Manager (i.e., delete eventManager;) the
Event Manager automatically calls the destructors for the UID_KEYBOARD, UID_-
MOUSE and UID_CURSOR device classes.

Any class derived from UI_LIST handles the destruction of list elements in a similar
manner. Thus, the programmer does not need to worry about the details of destroying
internal class information, since the information is automatically destroyed when a higher
level object is destroyed.

Base class destruction

Base class destructors are automatically called when a derived class’ destructor is called.
For example, the UITW_BUTTON class has the following destructor:

UIW_BUTTON: : ~UIW_BUTTON (void)
{
if (string)
delete string;
}

After the button class destructor is called and executed, C++ automatically calls the
destructor of UI_WINDOW_OBIJECT, then the destructor for UI_ELEMENT. Thus,
destruction of class objects works in an order opposite of class construction.

Chapter 11 — C++ Features 121

Array destruction

UL_QUEUE_BLOCK is the only library class that uses an array destructor to delete its
queue elements. The code associated with this destruction is shown below.

UI_QUEUE_BLOCK: : ~UI_QUEUE_BLOCK (void)

]
// Free the queue block.
UI_QUEUE_ELEMENT *queueBlock = (UI_QUEUE_ELEMENT *)elementArray;
delete queueBlock;

Array destructors should only be used in conjunction with array constructors.

Member Variables

Variable definitions

Zinc member variables always begin with a lower case alphabetic character and are
organized according to a logical order, such as byte boundary alignment, first use, most
common usage, or a number of other factors. An example of the UI_LIST class, with
several member variables is shown below:

class EXPORT UI_LIST

protected:
UI_ELEMENT *first, *last, *current;
int (*compareFunction) (void *elementl, void *element2);

Most member variables use compiler-defined types such as int, short and long, but some
use a typedef declaration of unsigned values. The following low-level type declarations
are used to define these unsigned values:

typedef unsigned char UCHAR;
typedef unsigned short USHORT;
typedef unsigned long ULONG;

In addition to the types described above, Zinc objects define and use member variables
as bitwise flags. An example of this use is seen with the base UL WINDOW_OBIJECT::-
woFlags member variable:

// --- woFlags ---
typedef unsigned WOF_FLAGS;

const WOF_FLAGS WOF_NO_FLAGS = 0x0000;
const WOF_FLAGS WOF_JUSTIFY_CENTER = 0x0001;
const WOF_FLAGS WOF_JUSTIFY_RIGHT = 0x0002;
const WOF_FLAGS WOF_BORDER = 0x0004;
const WOF_FLAGS WOF_VIEW_ONLY = 0x0010;
const WOF_FLAGS WOF_UNANSWERED = 0x0080;
const WOF_FLAGS WOF_INVALID = 0x0100;
const WOF_FLAGS WOF_NON_FIELD_REGION = 0x0200;

Zinc Application Framework — Programmer’s Guide

const WOF_FLAGS WOF_NON_SELECTABLE = 0x0400;
const WOF_FLAGS WOF_AUTO_CLEAR = 0x0800;
class EXPORT UI_WINDOW_OBJECT : public UI_ELEMENT
{
public:

WOF_FLAGS woFlags;

The base UI_WINDOW_OBIJECT class uses the combined bits of woF lags (i.e., bits that
are OR’d together to form composite values) to determine its mode of operation. (See
the Programmer’s Reference for the individual characteristics that each particular flag
sets.)

Static member variables

Occasionally, classes define static member variables. For example, the UIW_WINDOW
class uses a static function in order to create a generic window:

class EXPORT UIW_WINDOW : public UI_WINDOW_OBJECT, public UI_LIST
{
public:
static UIW_WINDOW *Generic(int left, int top, int width, int height,
char *title, UI_WINDOW_OBJECT *minObject = NULL,
WOF_FLAGS woFlags = WOF_NO_FLAGS, WOAF_FLAGS woAdvancedFlags =
WOAF_NO_FLAGS, UI_HELP_CONTEXT helpContext = NO_HELP_CONTEXT) ;

This definition allows the programmer to make a call to UIW_WINDOW::Generic() in
order to create a window with a border, title, maximize button, minimize button and
system button.

In addition to using static functions, static variables are used to store internal information.
For example, the UI_TIME class uses a static variable to store its string equivalent of
ante- and post-meridian date values:

class EXPORT UI_TIME : public UI_INTERNATIONAL

{

public:
// Members described in UI_TIME reference chapter.
static char *amPtr;
static char *pmPtr;

}

char *UI_TIME::amPtr

nai
char *UI_TIME: :pmPtr b o 1 A

NOTE: C++ requires that when static variables are used as part of a class, space must
be declared for them outside of the class definition.

Chapter 11 — C++ Features 123

Member Functions

Function definitions

Zinc Application Framework functions always begin with an upper case letter and usually
form complete words that are used to describe the function. For example, the UI_-
ELEMENT class has the member functions ListIndex(), Next() and Previous():

class EXPORT UI_ELEMENT

{

public:
int ListIndex(void);
UI_ELEMENT *Next (void) ;
UI_ELEMENT *Previous (void);

Default arguments

Member functions use default arguments to automatically set consistent or advanced
features of a function. For example, the UI_DISPLAY uses many default arguments to
specify advanced display features, such as filling zones and XOR’ing the screen output:

class EXPORT UI_DISPLAY

{
public:

virtual ~UI_DISPLAY (void) ;
virtual void Bitmap (SCREENID screenlID, int column, int line,
int bitmapWidth, int bitmapHeight, const UCHAR *bitmapArray,
const UI_PALETTE *palette = NULL,
const UI_REGION *clipRegion = NULL,
HBITMAP *colorBitmap = NULL, HBITMAP *monoBitmap = NULL) ;
virtual void BitmapArrayToHandle (SCREENID screenID, int bitmapWidth,
int bitmapHeight, const UCHAR *bitmapArray,
const UI_PALETTE *palette, HBITMAP *colorBitmap,
HBITMAP *monoBitmap) ;
virtual void BitmapHandleToArray (SCREENID screenID, HBITMAP colorBitmap,
HBITMAP monoBitmap, int *bitmapWidth, int *bitmapHeight,
UCHAR **bitmapArray) ;
virtual void Ellipse (SCREENID screenID, int column, int line,
int startAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int xor = FALSE,
const UI_REGION *clipRegion = NULL);
virtual void IconArrayToHandle (SCREENID screenID, int iconWidth,
int iconHeight, const UCHAR *iconArray, const UI_PALETTE *palette,
HICON *icon) ;
virtual void IconHandleToArray (SCREENID screenID, HICON icon,
int *iconWidth, int *iconHeight, UCHAR **iconArray);
virtual void Line (SCREENID screenID, int columnl, int linel,
int column2, int line2, const UI_PALETTE *palette, int width = 1,
int xor = FALSE, const UI_REGION *clipRegion = NULL);
virtual COLOR MapColor (const UI_PALETTE *palette, int isForeground);
virtual void Polygon (SCREENID screenlID, int numPoints,
const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int xor = FALSE,
const UI_REGION *clipRegion = NULL) ;
void Rectangle (SCREENID screenID, const UI_REGION ®ion,

124 Zinc Application Framework — Programmer’s Guide

const UI_PALETTE *palette, int width = 1, int fill = FALSE,
int xor = FALSE, const UI_REGION *clipRegion = NULL) ;
virtual void Rectangle (SCREENID screenID, int left, int top, int right,
int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int xor = FALSE,
const UI_REGION *clipRegion = NULL);
virtual void RectangleXORDiff (const UI_REGION &oldRegion,
const UI_REGION &newRegion);
void RegionDefine (SCREENID screenID, const UI_REGION ®ion) ;
virtual void RegionDefine (SCREENID screenID, int left, int top,
int right, int bottom);
virtual void RegionMove (const UI_REGION &oldRegion, int newColumn,
int newLine, SCREENID oldScreenID = ID_SCREEN,
SCREENID newScreenID = ID_SCREEN) ;
virtual void Text (SCREENID screenID, int left, int top,
const char *text, const UI_PALETTE *palette, int length = -1,
int fill = TRUE, int xor = FALSE,
const UI_REGION *clipRegion = NULL,
LOGICAL_FONT font = FNT_DIALOG_FONT) ;
virtual int TextHeight (const char *string,
SCREENID screenID = ID_SCREEN,
LOGICAL_FONT font = FNT_DIALOG_FONT) ;
virtual int TextWidth(const char *string, SCREENID screenID = ID_SCREEN,
LOGICAL_FONT font = FNT_DIALOG_FONT) ;
int VirtualGet (SCREENID screenID, const UI_REGION ®ion) ;
virtual int VirtualGet (SCREENID screenID, int left, int top, int right,
int bottom) ;
virtual int VirtualPut (SCREENID screenID);

Virtual member functions

Virtual member functions are used to ensure that the most-derived object’s member
function is called before any base class member functions are called. For example, the
UI_DEVICE class defines virtual Event() and Poll() routines:

class EXPORT UI_DEVICE : public UI_ELEMENT
{

public:

virtual DS_STATE Event (const UI_EVENT &event) = 0;
protected:

virtual void Poll (void) = 0;

Whenever the Event Manager calls these functions, it wants to communicate with the
actual device, not with the abstract UI_DEVICE class. The use of virtual functions allows
the Event Manager to talk to the objects directly. For example, the following Event
Manager code causes the keyboard, mouse and cursor virtual Poll() routines to be called:

// Initialize the event manager and add three devices to it.
UI_EVENT_MANAGER eventManager (display) ;
eventManager

+ new UID_KEYBOARD

+ new UID_MOUSE

+ new UID_CURSOR;

Chapter 11 — C++ Features 125

int UI_EVENT_MANAGER: :Get (UI_EVENT &event,
{

UI_DEVICE *device;
UI_QUEUE_ELEMENT *element;
int error = -1;

do
{
// Call all the polled devices.
if (!FlagSet (flags, Q_NO_POLL))
{
#if defined (ZIL_MSWINDOWS)
MSG message;
if ((!FlagSet (flags, Q_NO_BLOCK) &&
PeekMessage (&message, 0, 0, O,
{
GetMessage (&message, 0, 0, 0);
UI_EVENT event (E_MSWINDOWS,
message.wParam, message.lParam)

event .message = message;
Put (event, Q_BEGIN) ;
}
#elif defined (ZIL_0S2)
QMSG message;
if ((!FlagSet (flags, Q_NO_BLOCK) &&
WinPeekMsg (display->hab, &message,

{
WinGetMsg (display->hab,
UI_EVENT event (E_0S2, message.hwnd,
message.mpl, message.mp2) ;
event .message = message;
Put (event, Q_BEGIN) ;

}
#elif defined (ZIL_MOTIF)

if (XtAppPending (display->appContext))

{
MSG message;
XtAppNextEvent (display->appContext,
UI_EVENT event (E_MOTIF, message);
Put (event, Q_BEGIN) ;

#endif
for (device = First(); device;

i device->Poll();

Store() functions.

class EXPORT UI_WINDOW_OBJECT
{
public:

public UI_ELEMENT

virtual void Load(const char *name,
UI_STORAGE_OBJECT *object) ;

virtual void Store(const char *name,

UI_STORAGE_OBJECT *object = NULL);

Q_FLAGS flags)

message.hwnd,

&message, 0,

device =

virtual EVENT_TYPE Event (const UI_EVENT &event) ;
virtual void *Information (INFO_REQUEST request,
UI_STORAGE *file,

UI_STORAGE

// Stay in loop while no event conditions are met.

!queueBlock.First()) ||
PM_NOREMOVE))

message.message,

tqueueBlock.First()) ||
0 0, 05

PM_NOREMOVE))

0, 0);
message.msg,

&message) ;

device->Next())

The UL_WINDOW_OBIJECT class defines virtual Event(), Information(), Load() and

void *data);

*file = NULL,

Zinc Application Framework — Programmer’s Guide

When the Window Manager communicates with a window, it accesses the UIW_-
WINDOW::Event() function first so that the window can override any default actions
normally handled by the UI_WINDOW_OBJECT base class. If we create a window, we
can pass event information to its function using window->Event(). If the window cannot
handle the event, it calls the UI_WINDOW_OBJECT::Event() base class function.

The use of virtual functions in these cases lets us communicate with each object, without
having to know the exact implementation details associated with the object. In larger
hierarchies such as that used by Zinc Application Framework, this method becomes
extremely useful.

Let’s look at one more implementation of virtual member functions, using the pop-up item
class as the example. When a message is sent to a pop-up item, it is first handled by the
UIW_POP_UP_ITEM::Event() member function. If the pop-up item does not wish to
handle the message, it passes the information to the UI'W_BUTTON::Event() member
function. This switch of control is shown below:

EVENT_TYPE UIW_POP_UP_ITEM: : Event (const UI_EVENT &event)
{

// Switch on the event type.

EVENT_TYPE ccode = event.type;

switch (ccode)

{

default:
ccode = UIW_BUTTON: :Event (event);
break;

}

// Return the control code.
return (ccode);

}

The UIW_BUTTON class in turn calls UIL_WINDOW_OBJECT::Event() if it does not
have any logical operation to handle the event.

EVENT_TYPE UIW_BUTTON: : Event (const UI_EVENT &event)

{
// Switch on the event type.
EVENT_TYPE ccode = LogicalEvent (event, ID_BUTTON) ;
switch (ccode)

{

default:
ccode = UI_WINDOW_OBJECT: :Event (event) ;
break;

Chapter 11 — C++ Features 127

// Return the control code.
return (ccode) ;

}

This process allows us to go up the class hierarchy, performing only those operations that
are different from the base class definition.

Overloaded member functions

Overloaded member functions are used to access data in various forms. For example, the
UI_DATE class overloads two member functions: DataGet() and DataSet().

// ==== UI_DATE ===--===========——mm i m——mmm—————— oo
class EXPORT UI_DATE
{
public:
void DataGet (int *year, int *month, int *day, int *dayOfWeek = NULL);
void DataGet (char *string, int maxLength,
USHORT dtFlags = DTF_NO_FLAGS) ;

void DataSet (void) ;

void DataSet (const UI_DATE &date);

void DataSet (int year, int month, int day);

void DataSet (const char *string, USHORT dtFlags = DTF_NO_FLAGS) ;

}i

The various overloaded DataGet() functions allow you to get:
» a date based on three integers: year, month and day

e a date based on an alphanumeric value

The various overloaded DataSet() functions allow you to set:
e a system date (this method requires no arguments)

e a date based on a date class object previously constructed
e a date based on three integers: the year, month and day

e a date based on an alphanumeric value

Each of these access functions is very useful at different points of an application.

Zinc Application Framework — Programmer’s Guide

Pointers to static member functions

Pointers to functions are used throughout the library. Zinc Application Framework
supports the addition of user functions to objects. For example, when a UIW_BUTTON
object is created, it is desirable to have that button, when it is clicked, call some function
that is external to the library. The following code shows how a static member function,
userFunction, is called when the button is clicked:

EVENT_TYPE UIW_BUTTON: : Event (const UI_EVENT &event)
{

// Switch on the event type.
EVENT_TYPE ccode = LogicalEvent (event, ID_BUTTON) ;
switch (ccode)

{

case L_SELECT:
{
UI_TIME currentTime;

if (FlagSet(thlags, BTF_DOUBLE_CLICK) && ccode == L_END_SELECT &&
userFunction && !parent->Inherited (ID_LIST) &&
currentTime - lastTime < doubleClickRate)

{
UI_EVENT uEvent = event;
ccode = (*userFunction) (this, uEvent, L_DOUBLE_CLICK) ;

Operator overloads

Operator overloads are used by Zinc Application Framework in two different fashions.
The most common overload allows us to add a class object to an existing list. For

example, the following code can be used to create a window and then attach sub-level
window objects:

// Create a simple window and attach sub-level window objects.
UIW_WINDOW *window = new UIW_WINDOW(5, 5, 40, 6);
*window
+ new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_SYSTEM_BUTTON
new UIW_TITLE("Simple Window") ;

+ 4+ 4+

The use of the + operator in this case allows us to add smaller elements (e.g., border,
maximize button, minimize button, system button, title) to a parent control class (the
window). This type of operator overload is permitted with the following major classes:
UI_LIST, UI_EVENT_MANAGER, UI_WINDOW_MANAGER and UIW_WINDOW.
(In addition, all objects derived from the UIW_WINDOW class inherit the overload
capability.)

Chapter 11 — C++ Features 129

The UI_DATE and UIL_TIME classes also define operations for =, +, -, >, >=, <, <=, ++,
-, +=, -=, == and !=.

/] ==== UI_DATE =—-—-==—= == mm s m e ——mm oo

class EXPORT UI_DATE : public UI_INTERNATIONAL

{

public:
long operator=(long days) { value = days; return (value); }
long operator=(const UI_DATE &date) { value = date.value;

return (value); }

long operator+(long days) { return (value + days); }

long operator-(long days) { return (value - days); }
long operator-(const UI_DATE &date) { return (value - date.value); }
int operator»>(const UI_DATE &date) { return (value > date.value);

}
int operator»>=(const UI_DATE &date) { return (value >= date.value); }
int operator<(const UI_DATE &date) { return (value < date.value); }
int operator<=(const UI_DATE &date) { return (value <= date.value); }
long operator++(void) { value++; return (value); }
long operator--(void) { value--; return (value); }
void operator+=(long days) { value += days; }
void operator-=(long days) { value -= days; }
int operator==(const UI_DATE& date) { return (value == date.value); }
int operator!=(const UI_DATE& date) { return (value != date.value); }

}i
/] === UI_TIME -————— === =mm=—mm——mmmm oo s o m oo —lo— o
class EXPORT UI_TIME : public UI_INTERNATIONAL
{
public:
long operator=(long hundredths) { value = hundredths; return (value); }
long operator=(const UI_TIME &time) { value = time.value;
return (value); }
long operator+(long hundredths) { return (value + hundredths); }
long operator+(const UI_TIME &time) { return (value + time.value); }
long operator-(long hundredths) { return (value - hundredths); }
long operator-(const UI_TIME &time) { return (value - time.value); }
int operator> (UI_TIME& time) { return (value > time.value); }
int operator»>=(UI_TIME& time) { return (value >= time.value); }
int operator<(UI_TIME& time) { return (value < time.value); }
int operator<=(UI_TIME& time) { return (value <= time.value); }
long operator++(void) { value++; return (value); }
long operator--(void) { value--; return (value); }
void operator+=(long hundredths) { value += hundredths; }
void operator-=(long hundredths) { value -= hundredths; }
int operator==(UI_TIME& time) { return (value == time.value); }
int operator!=(UI_TIME& time) { return (value != time.value); }

¥:

These operators are used to compare the chronological value of two date or time objects.
The example below shows how the date operator overloads can be used to compare a date
against special times throughout the year.

UI_DATE currentDate; // Initialize the system date.
UI_DATE newYearsl990("Jan. 1, 1990");
UI_DATE twentyFirstCentury("Jan. 1, 2001");

// Check the dates
if (currentDate == newYearsl990)
printf ("Happy new year!\n");
else if (currentDate < twentyFirstCentury)
printf ("It’s not the twenty-first century.\n");
else
printf("It’s the twenty-first century.\n");

Zinc Application Framework — Programmer’s Guide

Static member functions

Zinc Application Framework uses static member functions for the following reasons:

1—Static member functions are used to set general class information. For example,
the UI_TIME class defines a static member that resets the string values associated
with ante- and post-meridian times.

class EXPORT UI_TIME
{

public:
static void AmPmSet (char *amPtr = NULL, char *pmPtr = NULL) ;

This allows the programmer to reset the time values without constructing a Ul_TIME
object.

2—Static member functions are used to check information before the associated class
constructor is called. A good example of this use is with the UL_STORAGE class,
where the programmer can check the validity of a file or directory path without first
creating a storage unit. This is accomplished by calling the UL_STORAGE::-
ValidName() member function.

class EXPORT UI_STORAGE : public UI_LIST
{
public:
static int ValidName (const char *name, int createStorage = FALSE);

3—Static members are used to perform generic operations. There are two static
members that fit into this category: UIW_WINDOW::Generic() and UIW_-
SYSTEM_BUTTON::Generic(). These member functions are used not only to
construct the class object, but also to place generic sub-objects in their lists. For
example, the definition for UTW_WINDOW::Generic() allows you to make one call
that initializes a window and adds the border, maximize button, minimize button,
system button and title:

UIW_WINDOW *UIW_WINDOW::Generic(int left, int top, int width,
int height, char *title, UI_WINDOW_OBJECT *minObject,
WOF_FLAGS woFlags, WOAF_FLAGS woAdvancedFlags,
UI_HELP_CONTEXT helpContext)

// Create the window and add default window objects.
UIW_WINDOW *window = new UIW_WINDOW(left, top, width, height,

woFlags, woAdvancedFlags, helpContext, minObject) ;
(void) & (*window

+ new UIW_BORDER

+ new UIW_MAXIMIZE_BUTTON

+ new UIW_MINIMIZE_BUTTON

+ new UIW_SYSTEM_BUTTON (SYF_GENERIC)

+ new UIW_TITLE(title));

Chapter 11 — C++ Features 131

// Return a pointer to the new window.
return (window) ;

4—Static members are used to send system messages to the Event Manager. For
example, when the end user presses <ENTER> or clicks the mouse button on a
UIW_BUTTON object whose BTF_SEND_MESSAGE flag is set, the button sends
a message (whose type is UIW_BUTTON::value) to the Event Manager. The
following code shows how this is accomplished:

EVENT_TYPE UIW_BUTTON: :Message (UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode)
(]
// Check for valid button processing.
if (ccode != L_SELECT || FlagSet (object->woStatus, WOS_EDIT_MODE))
return (ccode);

// Process the button value as a system message.
EVENT_TYPE command;

object->Information (GET_VALUE, &command) ;
event.type = command;

event.rawCode = 0;

event .data = object;

if (command == IL_RESTORE || command == L_MOVE || command == L_SIZE
| | command == L_MINIMIZE || command == L_MAXIMIZE |
command == S_CLOSE)

for (UI_WINDOW_OBJECT *tObject = object; tObject;
tObject = tObject->parent)
if (tObject->Inherited(ID_WINDOW) &&
tObject->Inherited (ID_MENU))
{
event.data = tObject;
break;
}
}
object->eventManager->Put (event) ;
return (ccode);

5—Static member functions are used in conjunction with all window objects when
the persistent object constructor is called. Each window object loaded from a .DAT
file (i.e., created by Zinc Designer) has a static member function called New().
When a call is made to an object’s constructor, all code related to the class is linked
into the executable program. However, if the call is made in a static function and the
static function is never called, the linker can link out the object’s code. Since Zinc
creates an object table when persistent objects are used, the New() function proves
very useful. Below is an example of an object’s New():

static UI_WINDOW_OBJECT *New (const char *name, UI_STORAGE *file,
UI_STORAGE_OBJECT *object)
{ return (new UIW_BUTTON (name, file, object)); }

NOTE: This static member should not be directly accessed by programmers.

Zinc Application Framework — Programmer’s Guide

The use of static members is beneficial, if used properly. Many times, however, there is
a tendency to over-use static members to allow structured programming. You should
carefully evaluate your use of static members in your application.

Conclusion

This concludes the discussion of Zinc Application Framework and its implementation of
C++ features. See the Programming Technigues manual for tutorials that are designed
to help you with specific implementation or design skills that will help you write more
effective applications using Zinc Application Framework.

Chapter 11 — C++ Features 133

Zinc Application Framework — Programmer’s Guide

CHAPTER 12 - SCREEN DISPLAY

Introduction

The screen display is a support resource to Zinc Application Framework. It provides low-
level screen support in both graphics and text modes.

The base display class is UI_DISPLAY, which defines the general features needed for
screen output. It is designed as a generic base class so that DOS Text, DOS Graphics,
Windows, OS/2 and Motif modes can be supported without limiting the unique
functionality of any one mode. From UI_DISPLAY eight more specific classes are
derived: UI_BGI_DISPLAY, which controls Borland graphics mode; UI_FG_DISPLAY,
which controls Zortech graphics mode; Ul_GRAPHICS_DISPLAY, which controls the
Zinc graphics mode; UI_MOTIF_DISPLAY, which operates under Motif; Ul_MSC._-
DISPLAY, which controls the Microsoft graphics mode; UI_OS2_DISPLAY, which
operates under OS/2; UI_TEXT_DISPLAY, which controls text mode; and UI -
MSWINDOWS_DISPLAY, which operates under Microsoft Windows. This hierarchy is
represented in the figure below:

DISPLAY OBJECT HIERARCHY'

— UI_BGI_DISPLAY 5]
|
|
|

UI_FG_DISPLAY
UI_GRAPHICS_DISPLAY

[|UI_MOTIF_DISPLAY
il |U_MSC_DISPLAY]
{ULMSWINDOWS_DISPLAY |

|Ul_OS2_DISPLAY |
[[ULTEXT_DISPLAY |

(other programmer
defined display
objects)

Coordinate system

The upper left corner of the screen display is position (0,0). The x-coordinates increase
from the left of the screen to the right, while the y-coordinates increase from the top of

Chapter 12 — Screen Display 135

the screen towards the bottom. The following list shows the coordinates for the bottom
right corner of the modes supported by Zinc Application Framework:

e 25 line x 80 column text mode 24,79

e 25 line x 40 column text mode = 24,39

e 43 line x 80 column text mode = 42,79

e 50 line x 80 column text mode = 49,79

e 200 line x 320 column CGA mode = 199,319

e 200 line x 640 column CGA mode = 199,639

e 200 line x 640 column EGA mode = 199,639

e 350 line x 640 column EGA mode = 349,639

e 348 line x 720 column Hercules mode = 347,719
e 200 line x 320 column Hercules mode = 199,319
e 200 line x 640 column Hercules mode = 199,639
e 400 line x 640 column Hercules mode = 399,639
e 200 line x 640 column VGA mode = 199,639

e 350 line x 640 column VGA mode = 349,639

e 480 line x 640 column VGA mode = 479,639

Clip regions

The DOS display classes handle screen painting by dividing the screen into rectangular
regions and assigning each associated region a unique identification value. Every time
a new window is added, the screen is further divided so that the window can have its own
identification. In order to allow for cascaded windows—where regions often over-
lap—each window may be divided into several regions, but each region within the same
window will be identified by the same value. The overlap region of the two windows
belongs to the window that is on top. For example, the following figure illustrates the
divided regions of a screen with two windows:

Zinc Application Framework — Programmer’s Guide

0

,,,,, - -
ot -

""" 0

The background display always has an identification value of 0, and each window
attached to it has its own identification.

When a message is received that requires updating the screen, all input devices are first
automatically turned off so that they do not interfere. Next, the display, which maintains
a list of all of the regions on the screen according to their identifications, walks through
the list and paints only to the regions that match the identification sent with the update
message.

Chapter 12 — Screen Display 137

Zinc Application Framework — Programmer’s Guide

CHAPTER 13 - DEFAULT EVENT MAPPING |

Overview

“Chapter 3—Conceptual Design” of this manual briefly discussed the implementation of
event mapping in Zinc Application Framework. This chapter describes the default
mapping of events for the UID_KEYBOARD and UID_MOUSE devices. This default
event mapping conforms to the key assignments specified by IBM’s Systems Application
Architecture document—the Common User Access Panel Design and User Interaction
edition.

Zinc Application Framework maintains internal communication through a continuous flow
of event messages. These messages are sent through the event queue portion of the Event
Manager, which determines the proper destination for the event.

Event map table

Interpretation of event messages is determined by event map tables. These tables contain
a listing of all events that can be sent by the various devices and the logical interpretations
of those events. For example, the following portions of eventMapTable (a static table
accessed by UL_WINDOW_OBJECT::eventMapTable) define the interpretations associated
with the selection process on a window object for the keyboard and mouse devices:

static UI_EVENT_MAP eventMapTable[] =
{

{ ID_WINDOW_OBJECT, L_NEXT, E_KEY, TAB },
{ ID_WINDOW_OBJECT, L_PREVIOUS, E-KEY; BACKTAB 1},
{ ID_WINDOW_OBJECT, L_SELECT, E_KEY, ENTER 1},

{ ID_WINDOW_OBJECT, L_CONTINUE_SELECT, E_MOUSE, M_LEFT },

)/ End of array.
{ ID_END, O, 0O, O }
}i

An event map table entry is composed of the identification for the type of object, the
logical event, the device type that produced the message, and the raw scan code of the
event. The first entry above, for example, indicates that a window object will process an
L_NEXT message when a user presses the <Tab> key.

Not only does Zinc Application Framework’s event mapping allow for different devices
to generate the same logical message, but it also allows the same event to be interpreted
differently by various objects. For example, the following table defines event inter-

Chapter 13 — Default Event Mapping 139

pretations for a string object. A string interprets a click on the left mouse button as part
of a mark operation instead of as a select operation:

{ ID_STRING, L_BEGIN_MARK, E_MOUSE, M_LEFT | M_LEFT_CHANGE},

{ ID_STRING, L_CONTINUE_MARK, E_MOUSE, M_LEFT},

{ ID_STRING, L_END_MARK, E_MOUSE, M_LEFT_CHANGE},
Algorithm

When an event message is received by the Window Manager, the mapping algorithm
walks through the event map table and searches for the best match according to the
object’s identification, the device’s identification, the raw scan code and the input modifier
(e.g., keyboard shift state) associated with the event. For example, if the left mouse
button has been pressed while the user is positioned in a string object, the map table will
be scanned until the best possible match is found, which is shown below:

{ ID_STRING, L_BEGIN_MARK, E_MOUSE, M_LEFT | M_LEFT_CHANGE}

As a result, the mark operation will begin within the string object. When the L_END_-
MARK logical message is interpreted, the mark operation will be completed.

Default keyboard mapping

Action Key Description
Begin <Ctrl+Home> Moves to the beginning of the field.

field <Ctrl+Gray Home>

Copy <Ctrl+Ins> Copies the marked portion of the current
window field. The copied section is
stored in a global paste buffer. This key
only has effect in fields that can be
edited.

Cut <Shift+Del> Cuts the marked portion of the current
window field. The cut section is re-
moved and stored in a global paste
buffer. This key only has effect in
fields that can be edited.

Zinc Application Framework — Programmer’s Guide

Delete

Delete

next <Gray+Delete>
character

Delete <Backspace>
previous

character

Delete <Esc>
temporary

window

Delete <Shift+F4>
window

Delete <Ctrl+Del>
word <Ctrl+Gray Delete>

Chapter 13 — Default Event Mapping

Deletes the marked text from the current
window field. The cut section is not
stored in the global paste buffer. This
key only has effect in fields that can be
edited.

Deletes the character beneath the cursor,
leaving the position of the cursor un-
changed. This key only has effect in
fields that can be edited and only where
the cursor is not in the field’s last posi-
tion.

Moves the cursor left one position,
deleting the character to the left of the
cursor (i.e. the character immediately to
the left of the cursor before it is
moved). This key only has effect in
fields that can be edited and only where
the cursor is not in the field’s first char-
acter position.

If the current window is identified as a
temporary window (WOAF_TEMP-
ORARY), pressing <Esc> removes the
current window from the screen display.
For example, when an end user selects
the system button, a pop-up menu ap-
pears. If the user presses <Esc> at this
time, the pop-up menu is erased from
the screen display.

Closes a window that is not temporary.
(NOTE: All temporary windows will be
deleted first.)

Positions the cursor at the beginning of
the word to be deleted, then deletes the
word and any trailing spaces. The cur-
sor remains in its original position after
the deletion.

141

142

Down

Down
page

End
field

End
line

Exit

Help—
context
sensitive

Help—
general

Home

Left

Left
word

<>
<Gray {>

<PgDn>
<Gray PgDn>

<Ctrl+End>
<Ctrl+Gray End>

<End>
<Gray End>

<Alt+F4>
<Shift+F3>
<Ctrl+Break>
<Ctrl+C>

<F1>

<Alt+F1>

<Home>
<Gray Home>

<>
<Gray <>

<Ctrl <>
<Ctrl+Gray <>
<Alt+Gray <>

If the field is a multi-line field and the
cursor is not positioned on the bottom
line, pressing <Down-arrow> moves the
cursor down one line on the display.

If the field is a multi-line field and the
cursor is not positioned on the bottom
line, pressing <PgDn> moves the cursor
down one page in the current field.

Moves to the end of the field.

Moves the cursor to the end of the
current line.

Exits the application program. (NOTE:
The <Ctrl+Break> and <Ctrl+C> key-
strokes can be modified by changing
UID_KEYBOARD::breakHandlerSet)

Displays context sensitive help informa-
tion regarding the current window ob-
ject.

Displays general help information for
the application program.

Moves the cursor to the beginning of the
current line.

If the cursor is not positioned in the first
character position of a field, pressing
<Left-Arrow> moves the cursor one
character to the left.

Moves the cursor to the beginning of the
previous word or to the beginning of the
same word if the cursor was originally
positioned in the middle of that word.

Zinc Application Framework — Programmer’s Guide

Mark <Ctrl+F5>

Maximize <Alt +>
<Alt+F10>

Menu <Alt>
control <F10>

Minimize <Alt —>
<Alt+F9>

Chapter 13 — Default Event Mapping

Begins a marked region on the position
of the cursor (only in fields that can be
edited). When followed by any move-
ment keys and then <Ctrl+Ins>, the
marked text is copied. When followed
by any movement keys and then
<Shift+Del>, the marked text is cut.
The cut section is removed and stored in
a global paste buffer.

Maximizes the size of the current win-
dow (i.e., increases the size of the win-
dow to occupy the whole screen). This
key only has effect when the current
window can be sized and if it is not
already in a maximized state. If the
window is in a maximized state, select-
ing this key causes the window to be
restored to its original size.

Selects the pull-down menu (if any)
associated with the current window.
This changes the highlight field, or
cursor position, from the current field to
the pull-down menu. This key only has
effect when the current window has a
pull-down menu.

Minimizes the size of the current win-
dow (i.e., reduces the size of the win-
dow to the minimum allowed by the
object type). This key only has effect
when the current window can be sized
and if it is not already in a minimized
state. If the window is in a minimized
state, selecting this key causes the win-
dow to be restored to its original size.

144

Move <AIt+F7>
window

Next <Tab>
field <F6>

Next <Alt+F6>
window

Next MDI <Ctrl+F6>
window

Paste <Ctrl+F8>
<Shift+Ins>

Previous <Shift+F6>
field <Shift+Tab>

Refresh <F5>

Restore <Alt+F5>

Moves the current window when fol-
lowed by any movement key and then
<Enter>. When followed by any move-
ment key and then <Esc>, the selected
window is returned to its original posi-
tion.

Moves from the current (or selected)
window field to the next selectable
window field. If the last window field
is currently selected, pressing <Tab>
cycles to the first selectable window
field.

Moves from the current (or selected)
window to the next selectable window in
the Window Manager’s list of windows.

Moves from the current (or selected)
MDI child window to the next selectable
MDI child window within the parent
window’s list of windows.

Retrieves the cut section from the global
paste buffer and pastes it in the current
field. This key only has effect in fields
that can be edited.

Moves from the current (or selected)
window field to the previous selectable
window field. If the first window field
is currently selected, pressing <Back-
Tab> cycles to the last selectable win-
dow field.

Refreshes the screen. (Re-displays all
of the window objects on the screen.)

Restores the original size of the win-
dow. Used with <Alt +> and <Alt ->.

Zinc Application Framework — Programmer’s Guide

Right <>
<Gray —>
Right <Ctrl+—->
word <Ctrl+Gray —>
<Alt+—>

<Alt+Gray —>

Size <Alt+F8>

window
System <Alt+Spacebar>
<Alt+.>
System <Ctrl+Spacebar>
(MDI)
Toggle <Ins>
<Gray Insert>
Up <T>

<Gray T>

Chapter 13 — Default Event Mapping

If the cursor is not positioned in the last
character position of a left-hand field,
pressing <Right-Arrow> moves the
cursor one character to the right.

Moves the cursor to the beginning of the
next word.

Sizes, relative to the top left corner, the
current window when followed by any
movement key. Pressing <Enter> ac-
cepts the alteration in size, while press-
ing <Esc> returns the window to its
original size.

Selects the system button (if any) asso-
ciated with the current window. This
causes the pop-up menu associated with
the current window’s system button to
be displayed on the screen.

Selects the system button (if any) asso-
ciated with the current MDI child win-
dow. This causes the pop-up menu
associated with the current MDI child
window’s system button to be displayed
on the screen.

Toggles the edit mode from insert to
overstrike mode or vice-versa. This key
only has effect in fields that can be
edited.

If the field is a multi-line field and the
cursor is not positioned on the top line,
pressing <Up-arrow> moves the cursor
up one line on the display.

145

Up <PgUp>
page <Gray PageUp>

Default mouse mapping

Action Mouse
Choose <Left-down-click>

Mark <Left-drag>

Select <Left-release>

146 Zinc Application Framework — Programmer’s Guide

If the field is a multi-line field and the
cursor is not positioned on the top line,
pressing <PgUp> moves the cursor up
one page in the current field.

Description
If the end user is on the window’s title

bar, pressing this button moves the
window. If the end user is on the win-
dow’s border, pressing this button sizes
the window. Otherwise, pressing the
left mouse button selects the field posi-
tioned under the mouse cursor (if the
field is selectable).

If the current field is a field that can be
edited, holding the left button down and
dragging the mouse specifies the mark
location.

If the current field is a field that can be
edited, releasing this button completes
the mark specification. Otherwise,
releasing this button completes the select
operation.

INDEX

A

abstract classes 112
agreement v
application
DOS 3, 55
Motif 3, 67
0S/2 3, 63
shipping 13
Windows 3, 59
Windows NT 3
arguments
default 118
array constructors 116
array destruction 122

B

base class construction 115
base class destruction 121
base classes 84, 106
base elements 83
basic window objects 35
BBS 9
begin field 140
BGI display 14, 29
bignum 23, 46, 117
bitmap
editing 72
bitmapped button 24, 38, 39
bitwise flags 122
border 24, 37
Borland
graphics display 14, 29
button 24, 26, 38, 39, 52
bitmapped 24, 38, 39
check box 24, 38, 39
maximize 25, 37
minimize 25, 37
radio 24, 38, 39

Index

system 26, 38
user function 72

C

C++ features 103
C++ pep talk 18
check box 24, 39
child windows 45
choose 146
CIC 3
class definitions 103
class deletion 114, 119
class derivation 109
class design issues 103
class hierarchy 109
classes
base 115
creation of 114
described 83
scope of 114
clip regions 136
clipping 99, 136
window objects 97
combo box 24, 39
compiler options
for DOS applications 56
for OS/2 applications 64
for Motif applications 68
for Windows applications 60
for Windows NT applications 60
conceptual design 17
constructors
copy 117
overloaded 116
context sensitive help
in Zinc Designer 72
coordinates
screen 135
copy 28, 140

147

copy constructors 117
creating applications

for DOS 55

for Motif 67

for OS/2 63

for Windows 59

for Windows NT 59
creating classes 114
creating windows

in Zinc Designer 73
CUA compatibility 55, 139
cursor 22
cut 28, 140

D

date 24, 40
dates
format styles 41
default arguments 118, 124
delete 141
next character 141
previous character 141
temporary window 141
window 141
word 141
delete operator 119
deleting classes 119
derived classes 107
library classes 109
derived objects
DOS 57
Motif 69
0S/2 65
Windows 61
Windows NT 61
designer 71
designer resources
loading 79
destructors
virtual 120
device 83, 88
abstract class 112
cursor 22, 88

148

Event (function) 125
keyboard 21, 88
mouse 22, 88
pen 22, 88
Poll function 89
prefix 7
display 29, 135
BGI 14, 29
Borland graphics 14, 29
clipping 97, 99, 136
FG 29
Microsoft graphics 14, 30
Microsoft Windows 30
Motif 29
MSC 14, 30
0S/2 30
programmer-defined 30
supported 20
text display 30
Zinc graphics 29
Zortech graphics 29
display types
pictures of 35
DisplayHelp (function) 93
distributable files v, 13
documentation
an overview of 4
DOS applications 55, 67
DOS extender 3
down 142
page 142

E

edit fields
date 40
formatted-string 49
multi-line text 50
numeric 46
single line text 49
string 48
time 51
editing features 28
electronic support 9

Zinc Application Framework — Programmer’s Guide

end
field 142
line 142
environments
supported 3
error management 31
window implementation of 31
error system 94
creating 31
reporting errors 94
errorPaletteMapTable 102
Event (function) 88, 92
event manager 20, 83, 87, 107
attaching devices to 22
event map table 139
event mapping 31, 84, 100, 139, 140
algorithm for 140
event queue 22
eventMapTable 100
exit 142
EXPORT
defined 104
Zinc typedef 104

F

facsimile support 9
fax support 9
FG display 29
flags
date 41
numeric 47
time 52
formatted string 24, 49
friend classes 113
function definitions 124

G

GFX 29
graphics

Index

Borland 29
displays 95, 135
DOS' 3,55
Genus 30
GFX 29
Metagraphics 30
Microsoft 30
Motif 29, 67
0S/2 30, 63
Windows 30, 59
Zinc 29
Zortech 29
group 24

H

help contexts
general 142
Help Editor
description of 73
help management 31
context sensitive 142
help system 84, 93
creating 31
helpPaletteMapTable 102
hierarchy
device 21
display 135
window objects 27
home 142
horizontal list 24
hotKeyMapTable 100

icon 25, 43
Image Editor
description of 72
inheritance
list of classes 109
input device 21, 88

149

keyboard 21

mouse 22

pen 22

programmer defined 22
input queue 22, 89
installation 12
installing Zinc 11
integer 25
interactive design tool 71

K

keyboard 21
keyboard mapping
default settings 140

L

left 142
word 142
library files
DOS_ZIL.LIB (for DOS) 55
lib_zil_mtf.a (for Motif) 67
0S2_ZIL.LIB (for OS/2) 63
WIN_ZIL.LIB (for Windows) 59
WNT_ZIL.LIB (for Windows NT) 59
license v
linkable routines v
list 24, 26, 44
logical events 93
benefits of 33
mapping of 139
logical mapping
of colors 84, 101
of raw events 31, 140
look and feel
DOS 55
Motif 67
0S/2 63
Windows 59
Windows NT 59

150 Zinc Application Framework — Programmer’s Guide

M

MapEvent (function) 100
mapping events 31, 139
mark 28, 143, 146
masked string 24
maximize button 25, 37
maximizing a window 143
MDI 144
MDI support 45
member functions 124

overloaded 128

static 131

virtual 125
member variables 122

static 123
memory

model 56, 60, 64
menu control 143
menus 46

pop-up 46

pull-down 25
Microsoft

graphics display 14, 30
Microsoft Windows

graphics display 30
minimize button 25, 37
minimizing a window 143
Motif

display 29
Motif applications 67
Motif widgets 67
mouse 22

mapping 146
mouse event mapping 146
move

window 144
movement

begin field 140

choose 146

down 142

down page 142

end field 142

end line 142

home 142

left 142

left word 142

next field 144

next MDI window 144

next window 144

previous field 144

right 145

right word 145

up 145

up page 146
MSC display 14, 30
multi-line text 50
multiple inheritance 111
multiple-documewnt interface 45

N

new operator 114
next
field 144
MDI window 144
window 144
normalPaletteMapTable 102
number 23, 25, 46
editing styles 47

(o)

object editors
Zinc Designer use of 72
object retrieval 33
object storage 33
object table 79
OooP
benefits 18
OOP solutions 17
operating environments
supported 20
operator overloads 129
option lists
Zinc Designer use of 72
0S/2

Index

graphics 30
OS/2 applications 63
0S/2 display 30
overloading
constructors 116
functions 128
operators 129

P

palette mapping 84, 101
paste 28, 144
platforms

supported 3
Poll (function) 88
pop-up item 25
pop-up menu 25, 46
previous

field 144
private

C++ declaration 104
prompt 25
protected

C++ declaration 104
public

C++ declaration 104
pull-down item 25, 46
pull-down menu 25, 46

R

radio button 24
radio buttons 39
real 25
refresh 144
region lists 97
ReportError (function) 94
restore 144
right 145
word 145
royalties v

151

run-time files v, 13

S

SAA

CUA compatibility 55, 139

scope class construction 114
scope deletion 119
screen
coordinates 135
screen display 84, 135
screen displays 95
supported 20
screenID 99
select 146
selectable objects
border 37
icon 43
maximize button 37
minimize button 37
pull-down item 46
system button 38
title bar 38
selection objects
combo box 24, 39
shipping applications 13
size
window 145
static member functions 131
pointers to 129
static member variables 123
string 26, 48
formatted 49
string identifiers
Zinc Designer use of 72
support 8
electronic 9
fax 9
telephone 8
system 145
system (MDI) 145
system button 26, 38
system events 93
system requirements 3

152

T

technical support 8
telephone support 8
terminology

Zinc use of 6
text 26, 50
text display 30
time 26, 51
times

format styles 52
title 26, 38
toggle 145
tool bar 26, 52
typefaces 5

U

UI_DEVICE (class) 21

UI_DISPLAY (class) 95
UI_ELEMENT (class) 84

UIL_EVENT (class) 100
UI_EVENT_MAP (class) 100
UL_LIST (class) 85

UI_LIST_BLOCK (class) 87
UI_PALETTE (class) 101
UIL_PALETTE_MAP (class) 101
UI_QUEUE_BLOCK (class) 90
UI_QUEUE_ELEMENT (class) 90
UI_REGION (struct) 98
UI_REGION_ELEMENT (class) 98
UIL_REGION_LIST (class) 98
UID_KEYBOARD (class) 90
UIW_BORDER (class) 37
UIW_DATE (class) 40
UIW_FORMATTED_STRING (class) 49
UIW_MAXIMIZE_BUTTON (class) 37
UIW_MINIMIZE_BUTTON (class) 37
UIW_STRING (class) 49
UIW_SYSTEM_BUTTON (class) 38
UIW_TEXT (class) 50

UIW_TIME (class) 51

UIW_TITLE (class) 38

Zinc Application Framework — Programmer’s Guide

UIW_TOOL_BAR (class) 52 radio buttons 39

UIW_WINDOW (class) 37 string 48
up 145 text 49
page 146 time 51
user functions tool bar 52
and Zinc Designer 72 Windows applications 59
user table 79 Windows NT applications 59

\'} y4

variables Zinc Application Framework
defining 122 main sections of 19
member 122 Zinc Designer

vertical list 26 creating a window 73

virtual destructors 120 creating window objects 77

virtual display routines 99 files output by 79

virtual member functions 125 interactive editors 72

introduction 71
loading resources 79

Zortech
W graphics display 29
warranty v
widgets (Motif) 67
window 26, 37

window identification

changing stringID 75
window manager 23, 84, 91, 107

attaching windows to 27
window object 35

programmer defined 27
window objects 35, 91

bitmapped buttons 39

buttons 38

check boxes 39

combo box 39

date 40

description of 23

icons 43

list 44

MDI windows 45

number 46

pull-down menu 46

Index 153

Zinc Application Framework — Programmer’s Guide

	Programmers Guide 35 cover
	ZINC 35 FDL
	Programmers Guide 35

