


Message passing. . .




Zinc" Interface Library™

Programmer’s Tutorial

Version 3.0

Zinc Software Incorporated
Pleasant Grove, Utah




Copyright © 1990-1992 Zinc Software Incorporated Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no

Back-Cover Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".



TABLE OF CONTENTS

Introduction

SECTION I—HELLO WORLD!

Chapter 1—Initializing the Library
Include files
The screen display
The event manager
The window manager
A simple window
Program flow
Cleanup
Run-time features

Chapter 2—Help and Error Systems . . . . .............................. 21
The help system
The error system
Multiple windows
Program flow
Cleanup
Run-time features

Chapter 3—Using Zinc Designer . . ............... ... ................. 37 i
Creating a file ‘
Creating a window
Creating a window object
Creating additional windows
Saving the file
Window access
Run-time features

SECTION II—DICTIONARY

Chapter 4—Discovering the Object of C++
Discovering objects
Data hiding
Constructors and destructors




Why use classes?

Deriving classes/Inheritance
Function overloading
Operator overloading

Local variables

Conclusion

Chapter 5—EvVent FIOW . . . ..cwmww e s sws o be s snaih § g s os s sis s esins
Program execution
Class definitions
Creating the window
Following events
Conclusion

Chapter 6—The Zinc Data File . . . .. ....... ... . ... . ... .. ..........
Program execution
Class definitions
Creating the window
Using the data file
UI_STORAGE_OBIJECT
UI_STORAGE
Conclusion

SECTION III—ZINC APPLICATION PROGRAM

Chapter 7—Getting the Right Design . ... ........ ... .. ... ............
Goals
High level design
Implementation
Accelerator keys
Structured programming

Chapter 8—Control Options . . .. ......... ... ... ... ... .. ...
Control program flow

Chapter 9—Display Options . ... ......... ... . ... .. ... . ... . ....
Display program flow

Chapter 10—Window Options . ... .......... .. .. ... .. ..
Window program flow

vi




Chapter 11—Event Options . .. .................... . ...
Event program flow
Monitoring library events

Chapter 12—Help Options . . ... ............ .. ... ...
Help program flow
General library help

SECTION IV—DERIVED CLASSES

Chapter 13—Macro Device . . . .......... .. .. . . .. .
Program execution
Class definition
Conceptual operation
Class information
Enhancements

Chapter 14—Help Bar . ... ... ... ... ... . . . . .
Program execution
Class definitions
Using HELP_BAR
Event function (DOS)
Event function (Windows)
Information function
Enhancements

Chapter 15—Virtual List . ... ... . ... ... ... ... . . . . ..
Program execution
Class definitions
Conceptual operation
VIRTUAL_ELEMENT
VIRTUAL_LIST
Enhancements

Chapter 16—Customized Displays . . . . ......... ... ... ... .. .........
Conceptual design
Class implementation
Conclusion

Vii




SECTION V—PERSISTENT OBJECTS

Chapter 17—Graphic Objects . . .. .......... ... ... ... ... ... ... 181
C and C++
Basic storage and retrieval
Abstract storage and retrieval

Chapter 18—Zinc Window Objects . . .. .............................. 195
Lists and class abstraction
Implementation
Conclusion

SECTION VI — MISCELLANEOUS INFORMATION

Appendix A—Compiler Considerations . .............................. 203
Borland
Integrated Development Environment (IDE)
Makefiles
Zortech
Workbench (ZWB)
Makefiles
Microsoft
Programmer’s Workbench (PWB)
Makefiles

Appendix B—Compiled BGL Files . . .. ................ ... ............. 209

Appendix C—Example Programs . .................................. 213
ANALOG
BIO
CALC
CALENDAR
CHECKBOX
CLOCK
COMBOBOX
DIRECT
DRAW
DISPLAY
ERROR
FILEEDIT
GRAPH

viii



MESSAGES
NOTEPAD
PERIODIC
PHONEBK
PIANO
PUZZLE
SATELLIT
SERIAL
SPY
VALIDATE

Appendix D—Zinc Coding Standards . ............................... 219
Naming
Classes and structures
Functions
Variables
Constants
Organization
Class scopes
Files
Comments
Files
Functions
Variables
Blocks
Indentation
Classes and structures
Functions
Function calls
Case statements
If and for statements
Multi-line equates

Appendix E—Questions and Answers . ............... ... ... .. ... 229
Ahh!...getting help
Borland BGI dependencies
Borland IDE compiling
Borland linker warnings
Changing object flags
Changing the map tables
Checking the selected objects
Closing the current window
Display/Mouse remaining active




DOS extenders
Finding an object in a window

Finding the current window

Finding the parent window

Fix-up overflow errors

International language

Making a window current

Making a window object current

Other platforms

“Qut-of-memory’’ errors

Preventing the modification of objects
Putting a single object in multiple windows
Re-displaying objects and windows
Royalties

Undetected graphics mode

Using the Q_NO_BLOCK flag

Using member functions as user functions
Using .ICO and .BMP files



INTRODUCTION

The purpose of this manual is to help you get started using Zinc Interface Library and to
teach you the theories used in the design and implementation of the library. Although
most of the concepts and programming styles presented in this book can be understood
by beginning C++ programmers, if you have problems we recommend you use an
accompanying book on C++ as a cross-reference. Some books that introduce the C++
programming language are:

e Borland C++, Programmer’s Guide. Scotts Valley, CA: Borland International, 1991,
444 pages.

e Ellis, Margaret A. and Bjarne Stroustrup Annotated C++ Reference Manual Reading,
MA: Addison-Wesley, 1990, 447 pages.

e Dewhurst, Stephen C. Kathy T. and Stark Programming in C++, Englewood Cliffs,
New Jersey: Prentice Hall, 1989, 233 pages.

e Eckel, Bruce. Using C++. Berkeley, CA: Osborne/McGraw-Hill, 1990, 617 pages.

e Gorlen, Keith; Stanford Orlow and Perry Plexico. Data Abstraction and Object-
Oriented Programming in C++ New York, NY: John Wiley & Sons, 1990, 403
pages.

e Hansen, Tony L. The C++ Answer Book, Reading, MA: Addison-Westley, 1990, 578
pages.

e Laurel, Brenda, ed. The Art of Human-Computer Interface Design Reading, MA:
Addison-Wesley, 1990. (50 essays related to effective user-interface design)

e Lippman, Stanley B. C++ Primer. Reading, MA: Addison-Westley, 1989, 464 pages.

*  Microsoft C/C++, C++ Language Reference. Redmond, WA: Microsoft Corporation,
1992, 452 pages.

¢ Petzold, Charles. Programming Windows. Redmond, WA: Microsoft Press, 1990, 944
pages.

e Pohl, Ira C++ for C Programmers. Redwood City, CA: Benjamin/Cummings
Publishing, 1989, 244 pages.

Introduction 1




Stevens, Al Teach Yourself C++. Portland, OR: MIS Press, 1990, 272 pages.

e Stroustrup, Bjarne The C++ Programming Language. Reading, MA: Addison-
Westley, 1986, 328 pages.

e Voss, Greg and Paul Chui Turbo C++ DiskTutor Berkeley, CA: Osborne/McGraw-
Hill, 1990.

e  Wiener, Richard S. and Lewis J. Pinson An Introduction to Object Oriented
Programming and C++. Reading, MA: Addison-Westley, 1989, 273 pages.

e Winblad, Ann L.; King, Samuel D. and King, David R. Object-Oriented Winblad,
Ann L., Edwards, Samuel D. and King, David R. Object-Oriented Software
Reading, MA: Addison-Wesley, 1990, 291 pages.

e Zortech C++, Compiler Reference. Arlington, MA: Zortech Incorporated, 1990, 483
pages.

In addition, you should have the Programmer’s Reference available, as many of the
tutorials refer to constructors, member variables and member functions that are described
in detail in the reference manual.

Every section is designed to stand on its own and to teach a particular set of design and
implementation issues. In addition, the tutorials in each section range from beginning to
advanced. Here is a brief introduction of the topics covered in this manual:
Section 1—Hello World! tells you how to initialize (first four tutorials) and modify
(last tutorial) the main components of Zinc Interface Library. Concepts covered in
this section include:

e initializing the screen display (first tutorial).

e creating input devices, such as the keyboard and a mouse, along with their
controlling object, the Event Manager (first tutorial).

e constructing windows with sub-objects and then attaching them to their
controlling object, the Window Manager (first tutorial).

e overriding the pre-defined help and error system stubs with Zinc supported help
and error window systems (second tutorial).

Zinc Interface Library—Programmer’s Tutorial



e using persistent window objects created with the interactive design tool (third
tutorial).

e re-defining the keyboard and color mapping associated with Zinc class objects
(fourth tutorial).

We recommend you read this section before later sections, so you understand the
Zinc initialization process used by all subsequent tutorials in this manual.

Section 2—Dictionary describes the transition from C to C++, building Zinc
Interface Library applications, using Zinc Designer, and using the Zinc data file for
load/store operations.

Section 3—Zinc Application Program describes the overall design and
implementation issues you should be concerned about when creating applications
using C++ and Zinc Interface Library. This set of tutorials examines an application
program to show how Zinc Interface Library’s event driven, object-oriented
architecture can be used to create effective and easy-to-use applications in a fraction
of the time needed to create normal applications.

Section 4—Derived Classes contains a set of tutorials that show how Zinc Interface
Library classes can be modified to perform customized operations. The following
tutorials are contained in this section:

Macro device—This tutorial shows how to derive a macro device from the Ul_-
DEVICE base input class. The macro input device looks for certain keyboard
characters (F5 through F8) and then converts the special ‘keys to macro
operations.

Help bar—This tutorial shows you how to create a help bar class from the UI_-
WINDOW_OBJECT base window object and how to cause other window objects
to interact with it.

Virtual list—This tutorial shows you how to create a low-level virtual list class,
then how to derive a presentation virtual list class from the UIW_WINDOW base
class. This class is useful when you want to present a lot of list information that
is contained on disk.

Customized display—This tutorial explains how graphics display classes are
implemented from the base UI_DISPLAY class.

Section 5—Persistent Objects contains a set of tutorials that present the concept of
persistent objects (i.e., objects that can be stored to and be retrieved from disk).

Introduction 3




These tutorials begin by comparing the basic storage techniques employed by both
C and C++. They then progresses to a discussion of the implementation techniques
used to store Zinc window objects.

Section 6—Appendixes addresses other topics that may be useful when developing
applications. The following information is contained in appendix chapters:

Compiler considerations—This appendix tells about the compiler dependencies
that need to be set when you are using Zinc Interface Library. It addresses
Borland’s IDE and makefile dependencies, Zortech’s ZWB and makefile
dependencies, and Microsoft’s PWB and makefile dependencies.

Compiled BGI files—This appendix shows you how to compile and link
Borland BGI files into your application program.

Example Programs—This appendix lists support programs that are designed to
help you with specific implementation issues you may have while using Zinc
Interface Library.

Zinc Coding Standards—This appendix gives you the coding standards Zinc
Software employees use when coding the library, example, and tutorial source
code modules. This appendix is included to help you get “up-to-speed” with
the coding style you see throughout the tutorial programs, example programs, and
example code contained in the Zinc Interface Library manuals.

Common Questions and Answers—This appendix contains a set of commonly
asked technical support questions about Zinc Interface Library.

NOTE: All the figures in these tutorial were taken from the Windows
environment. The actual presentation of a particular window may vary slightly,
depending on the type of display mode you are currently using.

If you need assistance with the tutorial programs or example programs, or have questions
in general, please contact our technical support group (801) 785-8998. They are available
on weekdays between the hours of 8:00 a.m. and 5:00 p.m., mountain standard time.

In addition, our bulletin board system is continually up-to-date with example programs,
updates and ideas concerning Zinc Interface Library. This service is available 24 hours
a day by calling (801) 785-8997 with 300-2400 baud or by calling (801) 785-8995 with
300-9600 baud. The Zinc bulletin board system operates at 8 data bits, no parity and 1

Zinc Interface Library—Programmer’s Tutorial



No set of tutorials can address all the questions that you could have concerning the design
and implementation of applications. We are confident however, that you will find the
tutorial programs, example programs, technical support and bulletin board service
invaluable in your effort to learn C++ and Zinc Interface Library.

Introduction 5




Zinc Interface Library—Programmer’s Tutorial



SECTION |
HELLO WORLD!

Section | — Hello World! 7




8 Zinc Interface Library — Programmer’s Tutorial



CHAPTER 1 - INITIALIZING THE LIBRARY

The first tutorial program in this section shows you how to set up the basic Zinc Interface
Library elements. The basis for this tutorial comes from the classic ‘“Hello, world”
example given in several programming language books. For example, page 12 of The
C++ Programming Language (Stroustrup, Bjarne. Reading, MA: Addison-Westley, 1986)
implements the following C++ code for the “‘Hello, world” program:

#include <iostream.h>

main ()
{
cout << "Hello, world\n";

}

This program prints the text “Hello, world” to the screen. The program to be presented
in this chapter plays on this theme by displaying the text ‘“Hello, World!” in a window.
The figure below show how the window will look once the program is complete.

Hello, World!

The code for this tutorial is located in \ZINC\TUTOR\HELLO\HELLO1.CPP. The
major steps involved in the creation of this program are:

e Declaration of include files

e Definition of the screen display (graphics and text) ‘
e Definition of the event manager with input devices (mouse, keyboard)

e Definition of the window manager

e Creation of the simple “Hello World!” window

e The main program loop that coordinates input information

Chapter 1 — Initializing the Library 9




e Cleanup

If you are not familiar with the process involved in compiling source code modules, you
should take a minute to read “Appendix A—Compiler Considerations.” Most of the
programs in these tutorials are have been created to run in either DOS or Microsoft
Windows.

Running the program

Before the Hellol program can be run, it must be compiled. To compile the DOS version
of Hellol, using Borland C++, type the following:

make -fborland.mak hellol.exe

and then press return. To compile the MS Windows version of Hellol, type the
following:

make =fborland.mak whellol.exe

and then press return. (A similar process is used to compile using the Microsoft or
Zortech compilers.)

Once the executable programs have been compiled, they can be run by typing:
hellol

at the DOS prompt. The MS Windows version of the program must be run from inside
Windows or by typing: win whellol while starting Windows from the command line.
To exit either version of the program hold down the <Alt> key and press <F4> or click
on the system button with the mouse.

Include files

The first step in writing the “Hello World!” program is declaring the proper include file.
Zinc Interface Library allows access to the following include files:

UI_GEN.HPP—Contains the definitions of low-level classes used throughout the
library, including UI_ELEMENT and UI_LIST.

UI_DSP.HPP—Contains the definition of all display related class information.

Zinc Interface Library — Programmer’s Tutorial



UI_EVT.HPP—Contains information used by the event manager and window objects
when they communicate to or receive information from the event manager.

UL WIN.HPP—Contains the class definitions for the window manager, as well as
all windows and window objects.

These files do not require nor contain any compiler specific include files. (The Microsoft
Windows version does include the WINDOWS.H header file in UI_GEN.HPP.) This
makes it possible to create applications without having to determine whether or not any
compiler include files have already been incorporated. The hierarchy observed by Zinc
Interface Library include files is represented in the figure below:

/' / /" /ULGENHPP\

/" UIDSP.HPP \\
UI_EVT.HPP
UI_WIN.HPP

Since the “Hello World!” program creates a window to display its text, the UI_WIN.-
HPP include file is needed. Accordingly, it is declared at the top of HELLO1.CPP:

#include <ui_win.hpp>

Because of the include file hierarchy, declaring the UL_WIN.HPP file also causes the
UI_EVT.HPP, UI_DSP.HPP, and UL_GEN.HPP files to be included.

The screen display

The next step in writing the “Hello World!” program requires that you set up the screen.
This is accomplished through the following code:

#if defined (__BCPLUSPLUS_ ) | defined (__TCPLUSPLUS__)
// Borland version.
// Initialize the display, trying for graphics first.
UI_DISPLAY *display = new UI_BGI_DISPLAY;
if (!display->installed)
{
delete display;
display = new UI_TEXT_DISPLAY;
}

Chapter 1 — Initializing the Library 11




12

#endif
#if defined _MSC_VER
// Microsoft version.
// Initialize the display, trying for graphics first.
UI_DISPLAY *display = new UI_MSC_DISPLAY;
if (!display->installed)
{

delete display;
display = new UI_TEXT_DISPLAY;
}
#endif
#if defined __ZTC___
// Zortech version.
// Initialize the display, trying for graphics first.
UI_DISPLAY *display = new UI_FG_DISPLAY;
if (!display->installed)
{
delete display:
display = new UI_TEXT_DISPLAY;
}
#endif
#ifdef _WINDOWS
// Microsoft Windows version.
// Initialize the Windows display.
UI_DISPLAY *display = new UI_MSWINDOWS_DISPLAY (hInstance, hPrevInstance,
nCmdShow) ;
#endif

The UI_DISPLAY class is used by all Zinc Interface Library classes that present
information to the screen, whether in text or graphics modes of operation. The “Hello
World!” program ensures that the highest resolution display is used by first trying to
create a graphics display. If no graphics display is available, it then creates a text display.
A forced 25x80 text display could have been created by replacing the code above with:

// Initialize the display.
UI_DISPLAY *display = new UI_TEXT_DISPLAY (TDM_25x80) ;

The Windows display is initialized by three parameters: hlnstance, hPrevinstance and
nCmdShow. These parameters are passed into the program by the windows system and
need only be passed directly on to the UI_MSWINDOWS_DISPLAY constructor. This
will be presented again later in this tutorial.

You may have noticed that the display variable is declared as UI_DISPLAY and not as
UI_MSC_DISPLAY, or any other type of display that is actually constructed. The
UI_DISPLAY class is an abstract class from which all Zinc Interface Library text and
graphics displays are derived. Thus, when a window is shown on the screen, it uses UI_-
DISPLAY member functions to draw screen information. This concept is illustrated
below:

Zinc Interface Library — Programmer’s Tutorial



S
UI_WINDOW_OBJECT ——» UI_DISPLAY

UI_BGI_DISPLAY
UI_FG_DISPLAY
UI_MSC_DISPLAY
UI_MSWINDOWS_DISPLAY

UI_TEXT_DISPLAY

The event manager

After the display class has been created, the event manager and input devices must be
created. This is accomplished with the following code:

// Initialize the event manager and add three devices to it.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;
*eventManager

+ new UID_KEYBOARD

+ new UID_MOUSE

+ new UID_CURSOR;

The event manager is constructed in the first line. It requires one parameter:

e display is used by the input devices to display information on the screen. For
example, the UID_CURSOR device uses the display argument to paint a blinking
cursor on the screen (in graphics mode).

After the event manager is created, three input devices (i.e., keyboard, mouse, cursor) are
attached to it using the overload operator UL_ EVENT_MANAGER::operator +.

The Conceptual Design chapter of the Programmer’s Guide discusses the interaction
between input devices and the event manager within Zinc Interface Library. The figure
below reviews this interaction:

Chapter 1 — Initializing the Library 13




KEYBOARD MOUSE CURSOR

Y v v

1 ULEVENT MANAGER |
v — >
€ MAIN PROGRAM CONTROL )
- v
UI_WINDOW_MANAGER ‘

The window manager

The final basic component of Zinc Interface Library is the window manager, which is
added with the following code:

// Initialize the window manager.
UI_WINDOW_MANAGER *windowManager = new UI_WINDOW_MANAGER (display,
eventManager) ;

The window manager is constructed with two parameters:

e display is used to send window information to the screen (such as commands to draw
lines, fill regions, or display text on the screen).

* eventManager is used to send system and input information through Zinc Interface
Library.

The Conceptual Design also briefly discusses the interaction of the window manager
within Zinc Interface Library. The figure below reviews this interaction:

14 Zinc Interface Library — Programmer’s Tutorial



UI_EVENT_MANAGER
v —>
C MAIN PROGRAM CONTROL D)

TR v
1 UI_WINDOW_MANAGER \

v

WINDOW 1

WINDOW 2

In this program, only one window is attached to the window manager. Thus, all relevant
information passed to the window manager will be passed to that window.

A simple window

You are now ready to create the “Hello World!” window and to attach it to the screen.
Let’s examine the original picture of the ‘“Hello World!”” window to identify the major
window objects that need to be created:

ello, World!

These window objects are:

e the window itself (This object is not visible, but it is used to store all the related
window objects identified below.)

e the border (Shown as the exterior shaded region of the window.)

Chapter 1 — Initializing the Library 15




16

e the maximize button (Shown as a button at the right top of the window with a ‘s’
character.)

e the minimize button (Shown as a button at the right top of the window with a ‘v’
character.)

» the system button (Shown as a button on the left top side of the window with a ‘—’
character.)

e the title (Shown with the “Hello World Window” text on the top center of the
window.)

e the text field containing the ‘“Hello World!” message.

Now that we have identified the objects, let’s look at the code used to create them:

// Create the "Hello World!" window.
UIW_WINDOW *window = new UIW_WINDOW(5, 5, 40, 6);

// Add the window objects to the window.
*window
+ new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_SYSTEM_BUTTON
new UIW_TITLE ("Hello World Window")
new UIW_TEXT(0, 0, 0, 0, "Hello World!", 256, WNF_NO_FLAGS,
WOF_NON_FIELD_REGION) ;

+ 4+ + + +

// Add the window to the window manager.
*windowManager + window;

Notice how logical and consistent code creation is! The window is created first with the
following arguments:

e 5and 5 are cell coordinates that specify the left-top position of the window on the
screen.

e 40 and 6 specify the width and height of the window.

The window objects are created next, using the new operator. Once a window object is
created, it is added to the window, using the UIW_WINDOW::operator + operator
overload. (See the Programmer’s Reference for more information about an individual

window object and the protocol used in its construction.)

Finally, the window is attached to the window manager, again using the + operator
(overloaded by the UI_WINDOW_MANAGER class).

Zinc Interface Library — Programmer’s Tutorial



Program flow

In general, the conceptual flow of object oriented programs is different from structured

programs. The “Hello World!”* program has a very simple program flow, as is illustrated
in the figure below:

’ UI_EVENT_MANAGER

B ——
C MAIN PROGRAM CONTROL D
3 < ; 2

UI_WINDOW_MANAGER I

v

Hello World Window

The code implementation of this flow is shown below. (NOTE: The step identifiers to the
right are not part of the actual code.)

// Wait for user response.
EVENT_TYPE ccode;
do
{
// Get input from the user.
UI_EVENT event;
eventManager->Get (event) ; (1)

// Send event information to the window manager.
ccode = windowManager->Event (event) ; (2)
} while (ccode != L_EXIT && ccode != S_NO_OBJECT) ; (3)

The figure and code above should help you to understand the high level operation of the
program, which can be outlined as follows:

1—The user enters information by pressing a keyboard key or by pressing a mouse
button.

2—The event information is passed to the window manager. At this point, the
window manager sends the event information to the current window.

3—The window manager’s return code is examined to determine whether or not to

continue program execution. If execution does continue, it will return to the first
step.

Chapter 1 — Initializing the Library 47




Cleanup

The following code is used to delete the window manager, event manager, and display:

// Clean up.

delete windowManager;
delete eventManager;
delete display;

The order of deletion is important! The deletion of the window manager, event manager
and display must be in the reverse order of their construction. Any objects attached to
the event or window managers (e.g., UID_KEYBOARD, UID_MOUSE, the ‘“Hello
World!” window, etc.) are automatically destroyed when their respective manager is
destroyed.

Run-time features

18

Once the application is running, you should see the following window on your display:

ello, World!

Some of the best features of Zinc Interface Library are inherently available to windows
and the objects attached to them. For example, the following operations are available
using the keyboard:

Move—Press <Alt+F7> then use the arrow keys (up, down, left, right) to change the
window position. Press <Enter> to complete the move operation or <Esc> to cancel
the operation.

Size—Press <Alt+F8> then use the arrow keys (up, down, left, right) to change the
window size. Press <Enter> to complete the size operation or <Esc> to cancel the

operation.

Minimize—Press <Alt+F9> or <Alt -> to reduce the size of the window to the
minimum allowed by the UIW_WINDOW class object.

Zinc Interface Library — Programmer’s Tutorial



Maximize—Press <Alt+F10> or <Alt +> to increase the size of the window to
occupy the whole screen.

Restore—Press <Alt+F5> to restore the original size of the window before it was
minimized or maximized. This operation only works when the window is in a
maximized or minimized state.

Exit—Press <Alt+F4> to exit the program. This operation causes the window to be
removed from the screen and program execution to terminate.

In addition to the keyboard operations, the same operations described above may be
performed using a mouse:

Move—Press the left button down after positioning the mouse pointer over the title
bar. You can move the window by continuing to hold the left button down while
moving the mouse pointer across the screen. Window movement ends when the left
button is released.

Size—Press the left button down after positioning the mouse pointer on some area
of the border. (The mouse pointer will give information about the sizing directions.)
You can size the window by continuing to hold the left button down while moving
the mouse pointer across the screen. The window size operation ends when the left
button is released.

Minimize—Click the left button (down press then release) while the mouse pointer
is positioned on the minimize button to minimize the window.

Maximize—Click the left button while the mouse pointer is positioned on the
maximize button to maximize the window.

Restore—Click the left button while the mouse pointer is positioned on the maximize
button (if the window is in a maximized state) or on the minimize button (if the
window is in a minimized state) to restore the original window size.

Exit—Click the left button while the mouse pointer is positioned on the system
button to exit the program.

This concludes the first “‘Hello World!” tutorial. The next tutorial tells you how to add
the help and error window systems in Zinc Interface Library.

Chapter 1 — Initializing the Library 19




20 Zinc Interface Library — Programmer’s Tutorial



CHAPTER 2 — HELP AND ERROR SYSTEMS

Congratulations on completing the first tutorial, where you learned how to set up the basic
Zinc Interface Library elements. This tutorial extends the capabilities of the first “Hello
World!” tutorial to add windowed help and error systems, an exit function, as well as a
“World Information” window. The final outcome should be similar to the following:

_\ Hello World Window
Hello, World!

World Information Window

Age: ’At least 4 1/2 billion years. J
012 YWeight: 6.0 sextillion metric tons. J
Size: |24,901.55 miles [equatorial circumf |

. |oxygen — 46.6%
Makeup: silicon — 27.7%
aluminum — 8.1%
iron —5.0%
calcium — 3.6%
other — 9.0%

The earth is the third planet in distance
outward from the sun. Itis the only
planetary body in the solar system
known to have conditions suitable for life.

The code for this tutorial is located in \ZINC\TUTOR\HELLO\HELLO2.CPP.

Chapter 2 — Help and Error Systems 21




Since this program is an extension of the original “‘Hello World!”” program, only the new
components of it will be discussed in this tutorial. These new components are:

e Creation of the help system

e Creation of the error system

* Addition of the exit function

e Addition of the “World Information” window

e Cleanup

The help system

The default help system for Zinc Interface Library is a stub. This allows you to create
your own help system without automatically bringing in a help system that has its own
overhead. In addition to the default help system, Zinc Interface Library supports a
windowed help system that you can enable during an application.

The following figure shows an example of a help system window:

The second "Hello World!" tutorial shows you how to create
two windows using Zinc Interface Library and how to initialize
the help and error systems.

Press {Alt+F4> to continue...

The help window system is included by adding the following code to the tutorial program:

UI_WINDOW_OBJECT: :helpSystem new UI_HELP_SYSTEM("hello.dat",
&windowManager, HELP_GENERAL) ;

The help window system constructor arguments are:

Zinc Interface Library — Programmer’s Tutorial



e hello.dat is the name of the binary help file (generated from an ASCII text file using
GENHELP.EXE or produced from the interactive designer).

e windowManager is a pointer to the window manager. This argument is used to
display information if an error is encountered while initializing the help system.

e HELP_GENERAL is the name of the help context that will be used if no other help
context is specified within the program.

Notice that not only must you create a help system class object, but you must also assign
it to the UL WINDOW_OBJECT member variable helpSystem.

Objects make requests to the help system whenever help is requested by an end-user
during an application. This interaction is represented in the figure below:

(f\/\
UI_WINDOW_OBJECT ———» UI_HELP_SYSTEM

N—

UI_HELP_SYSTEM

This flow of interaction can be outlined as follows:

1—The window calls the help system with a message:

EVENT_TYPE UI_WINDOW_OBJECT: :Event (const UI_EVENT &event)
{

case L_HELP:
// Display help for the current window.
helpSystem->DisplayHelp (windowManager, helpContext) ;
break;

The arguments used by the help system are:

e windowManager, which is a pointer to the window manager that will be used to
display the help information on the screen.

Chapter 2 — Help and Error Systems 23




24

e helpContext, which specifies the help information to be displayed.

2—The help system attaches its help information window to the screen via the
window manager:

void UI_HELP_SYSTEM: :DisplayHelp (UI_WINDOW_MANAGER *windowManager,
HELP_CONTEXT helpContext)
{

*windowManager + helpWindow;

In this program, there is only one help window associated with the help system, thus
only one help window is added to the window manager. (If the help window is
already visible on the screen, its title and help text are updated to reflect the current
help context.)

3—Program flow continues as normal. The help window is now present on the
screen and will receive all input messages, as long as it is the current window.

The help information associated with a window is created in an ASCII text file. This
tutorial uses the HELLO.TXT file to store the following help information:

--- HELP_GENERAL

General help

The second "Hello World!" tutorial shows you

how to create two windows using Zinc Interface
Library and how to initialize the help and error
systems.

For more information about one of the windows
presented in this application press <F1l> while
the window is at the front of the display.

Press <Alt+F4> to continue...
-—-- HELP_HELLO_WORLD
Hello World

--- HELP_WORLD_INFORMATION
World Information

Each help context contains the following elements:

Help context name—This name is converted to a C++ constant and specifies the
help context index referenced in your code. This name must be preceded by "---",
which is used as a parsing token. (The first help context name above is HELP_-
GENERAL.)

Zinc Interface Library — Programmer’s Tutorial



Help context title—The title is used at the top of the help window as its title field.
It should be a descriptive string that tells what help context is being viewed. (The
first help context title above is “General Help.”)

Help information—The help information is text that is displayed in the body of the
help window. It should contain all the help information needed to describe the
particular help being requested.

The ASCII help text file is converted using the GENHELP.EXE utility (located in the
\ZINC\BIN directory). To convert the “Hello World!” help file, type:

genhelp hello.txt <Enter>

The help generation program performs the following operations:
Creates a HELLO.DAT file—This file contains the help information along with help
contexts. This file is stored in binary form and should not be modified by the

programmer. It is the only file used during the application. (You do not need to ship
the .HPP or .TXT file with your application.)

Creates a HELLO.HPP file—This file contains the C++ definitions for the help
contexts.

The generated HELLO.HPP file is shown below:

#define HELP_GENERAL 1 // General help.
#define HELP_HELLO_WORLD 2 // Hello World.
#define HELP_WORLD_INFORMATION 3 // World Information.

You must include the application .HPP file in all modules that make reference to help
indexes. The HELLO2.CPP file has the following modified include file list:

#include <ui_win.hpp>
#include "hello.hpp"

The error system

The implementation of the error system is very similar to that of the help system in that
a stub is provided as the default by Zinc Interface Library. In addition, also similar to the
help system, an error window system can be defined that will override the default stub.
The figure below shows an example of an error window:

Chapter 2 — Help and Error Systems 25




26

The date, “Jaan 3, 92', has an invalid month.

The default error system is overridden by re-defining the error system variable in the
following manner:

UI_WINDOW_OBJECT: :errorSystem = new UI_ERROR_SYSTEM;

The flow of control with the error system is outlined as follows:

1—A window object calls the error system. In the example shown above, UIW_-
DATE is the window object that calls the error system with an error message from
its error message table.

int UIW_DATE::Validate(int processError)
{

for (int i = 0; errorTable([i].message; i++)
if (errorTable[i].errorCode == errorCode)
{
errorSystem->ReportError (windowManager, WOS_INVALID,
errorTable[i] .message, stringDate, range);
break;

2—The error system attaches a modal error window to the screen display:

UIS_STATUS UI_ERROR_SYSTEM: :ReportError (UI_WINDOW_MANAGER
*windowManager, UIS_STATUS errorStatus, char *format, ...)
{

*windowManager + window;

Modal windows prevent the end-user from interacting with any window other than
the current window—in this case the error window—until the window is closed.
Since the error window is modal, it will receive all event information until it is
closed.

3—Once a method of correction is selected (either “Ok™ or “Cancel” - available

on some windows) the error system returns the selection to the object where the error
occurred. Consequently, the error window is removed.

Zinc Interface Library — Programmer’s Tutorial



4—The object that sent the error request processes the error response and program
flow continues.

Exit Function

When a program is about to terminate execution, it is sometimes desirable to perform
special cleanup or to inform the user that the program will exit. To facilitate this, UI_-
WINDOW_MANAGER has a special member variable, exitFunction (passed as a para-
meter), which is a user function that is called when the window manager receives an
L_EXIT or L_EXIT_FUNCTION message.

The following window is displayed when <Alt+F4> is pressed:

ﬁ This will close "Hello World".

The exit function can have any function name, but must have the following declaration:

static EVENT TYPE ExitFunction(UI_DISPLAY *display, UI_EVENT_ MANAGER *,
UI_WINDOW MANAGER *windowManager)

This declaration allows the exit function to have pointers to the current display, event
manager, and window manager. The exit function must be declared to be a static so that
its address may be taken at compile time.

In the following example, an “OK” button and a “Cancel” button are displayed. These
buttons have the BTF_SEND_MESSAGE flag set. The purpose of this flag is to create
an event that has the type field set to the button’s value and then to put it onto the event
queue. When the “OK” button is pressed, an L_EXIT message is passed to the window
manager and the application ends. When the““Cancel” button is pressed, the S_CLOSE
message is sent and the current window (i.e., exit function window) is closed. The
following code shows the implementation of the exit function:

Chapter 2 — Help and Error Systems 27




static EVENT_TYPE ExitFunction(UI_DISPLAY *display, UI_EVENT_ MANAGER *,

UI_WINDOW_MANAGER *windowManager)

4
int width = 42;
int height = 7;

int left = (display->columns / display->cellwidth - width) / 2;

int top = (display->lines

/ display->cellHeight - height) / 2;

UIW_WINDOW *window = new UIW_WINDOW(left, top, width, height,
WOF_NO_FLAGS, WOAF_MODAL | WOAF_NO_SIZE) ;

*window
+ new UIW_BORDER

+ & (*new UIW_SYSTEM_BUTTON

+ new UIW_POP_UP_ITEM("&Move", MNIF_MOVE)

+ new UIW_POP_UP_ITEM("&Close\tAlt+F4", MNIF_CLOSE))
+ new UIW_TITLE("Hello World Tutorial");

if (display->isText)
*window

+ new UIW_PROMPT (4, 1, "This will close \"Hello World\".");

else
*window
+ new UIW_ICON(2,

1, "ASTERISK")

+ new UIW_PROMPT (8, 1, "This will close \"Hello World\".");

*window
+ new UIW_BUTTON(9, 4,
BTF_SEND_MESSAGE,

10, "~OK", BTF_NO_TOGGLE | BTF_AUTO_SIZE |
WOF_JUSTIFY_CENTER, NULL, L_EXIT)

+ new UIW_BUTTON(21, 4, 10, "~Cancel", BTF_NO_TOGGLE | BTF_AUTO_SIZE
| BTF_SEND_MESSAGE, WOF_JUSTIFY_CENTER, NULL, S_CLOSE) ;

*windowManager + window;
return (S_CONTINUE) ;

Multiple windows

28

The first tutorial presented the following window:

ello, World!

// Create the hello world window.
UIW_WINDOW *window = new UIW_WINDOW(5, 5, 40, 6);

// Add the window objects to the window.

*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON

Zinc Interface Library — Programmer’s Tutorial



new UIW_MINIMIZE_BUTTON

new UIW_SYSTEM_BUTTON

new UIW_TITLE("Hello World Window")

new UIW_TEXT(0, 0, 0, 0, "Hello World!", 256, WNF_NO_FLAGS,
WOF_NON_FIELD_REGION) ;

+ + + +

To simplify the code associated with this window, we introduce the concept of ““Generic”
static functions. Two high level Zinc Interface Library objects have a Generic( )
function: UIW_WINDOW and UIW_SYSTEM_BUTTON. The UIW_WINDOW::Gen-
eric( ) member function automatically creates a window with the border, maximize button,
minimize button, system button, and title. The following code shows how we can replace
this code:

static UIW_WINDOW *HelloWorldwindowl ()
{
// Create the standard Hello World! window.
UIW_WINDOW *window = UIW_WINDOW: :Generic(2, 2, 40, 6,
"Hello World Window", NULL, WOF_NO_FLAGS, WOAF_NO_FLAGS,
HELP_HELLO_WORLD) ;

// Add the window objects to the window.
*window
+ new UIW_TEXT(0, 0, 0, 0, "Hello World!", 256,
WNF_NO_FLAGS, WOF_NON_FIELD_REGION) ;

// Return a pointer to the window.
return (window) ;

Using this method, the new operator is not required for window creation. The UIW_-
WINDOW::Generic( ) function actually calls the new operator for the UIW_WINDOW
class object, as well as for all the default objects attached to the window. It then returns
a pointer to the UIW_WINDOW class object.

The window created above contains a non-field region text object. This means that the
text object occupies all of the remaining space of the window not taken by the previously
added window objects (border, buttons, and title). Under normal circumstances, a non-
field region object takes up the entire remaining window space and any field region
objects will be covered up. However, more than one non-field region object may reside
with field region objects within a single window. This is an advanced concept and is not
addressed in this tutorial (see example program BIO.CPP as an example.)

Field window objects do not set the WOF_NON_FIELD_REGION flag. These types of
window objects are generally used to present several pieces of information in an organized
manner.

The “World Information” window created in this program is an example of a window
that uses field window objects to display information. This window is shown below:

Chapter 2 — Help and Error Systems 29




30

Hello, World!

Hello World Window

World Information Window

Age: At least 4 1/2 billion years. |
] YWeight: |E_[l sextillion metric tons. |
Size: [24,901.55 miles (equatorial circumf

Mak - |oxygen — 46.6%
akeup- | ilicon — 27.7%

aluminum — 8.1%
iron — 5.0%
calcium — 3.6%
other — 9.0%

The earth is the third planet in distance
outward from the sun. Itis the only
planetary body in the solar system
known to have conditions suitable for life. |

The following code is used to create this window:

static UIW_WINDOW *HelloWorldWindow?2 ()
{
// Create the world information window.
UIW_WINDOW *window = UIW_WINDOW::Generic(5, 5, 52, 15,
"World Information Window", NULL, WOF_NO_FLAGS, WOAF_NO_SIZE,
HELP_WORLD_INFORMATION) ;

// Add the window objects to the window.

*window
+ new UIW_PROMPT (2, 1, "Age...... ")
+ new UIW_STRING (12, 1, 36, "At least 4 1/2 billion years.", 50)
+ new UIW_PROMPT (2, 2, "Weight...")
+ new UIW_STRING(12, 2, 36, "6.0 sextillion metric tons.", 50)
+ new UIW_PROMPT (2, 3, "Size..... L)

Zinc Interface Library — Programmer’s Tutorial



+ new UIW_STRING (12, 3, 36,

"24,901.55 miles (equatorial circumference).", 50)
+ new UIW_PROMPT (2, 4, "Makeup...")
+ & (*new UIW_VT_LIST(12, 4, 20, 4)

+ new UIW_STRING(0, 0, 0, "oxygen -- 46.6%")

+ new UIW_STRING(0, 0, 0, "silicon -- 27.7%"

+ new UIW_STRING(0, 0, 0, "aluminum -- 8.1%"

+ new UIW_STRING(0, 0, 0, "iron -- 5.0%")

+ new UIW_STRING(0, 0, 0, "calcium -- 3.6%"

+ new UIW_STRING(0, 0, 0, "other -- 9.0%"))

+ & (*new UIW_TEXT(2, 8, 46, 4,
"The earth is the third planet in distance "
"outward from the sun. It is the only "
"planetary body in the solar system known to "
"have conditions suitable for life.", 2048)
+ new UIW_SCROLL_BAR(0, 0, 0, 0, SBF_VERTICAL));

// Return a pointer to the window.
return (window) ;

Notice the difference between the code used to create the text object in this window (1)
and that used to create the first window (2):

new UIW_TEXT (2, 8, 46, 4, (1)
"The earth is the third planet in distance "
"outward from the sun. It is the only "

"planetary body in the solar system that has
"conditions suitable for life, at least known "
"to modern science.", 2048, WNF_NO_FLAGS, WOF_BORDER) ;

new UIW_TEXT(0, 0, 0, O,
"Hello World!", 256, TXF_NO_FLAGS, (
WOF_NON_FIELD_REGION) ;

[\S})

The first code sample defines a position and size indicator and does not set the WOF_-
NON_FIELD_REGION flag. Instead, it uses WOF_BORDER to display the boundaries
of the field’s region.

Program flow

Now that the help system, error system, and world windows have been added, let’s look
at the initial program flow:

Chapter 2 — Help and Error Systems 31




Cursor Keyboard

Mouse

;

;

‘ UI_EVENT_MANAGER

4|>

( MAIN PROGRAM CONTROL

D

’ Ul_HELP_SYSTEM ‘

‘UI_ERROR_SYSTEN%

=
{ UI_WINDOW_MANAGER ]

v

v

|

Hello World W

ndow ‘ v

World Information Window

Notice that this program flow is the same as that discussed in the previous tutorial, except
that there are two windows on the screen instead of one. This flow remains unchanged
until an error occurs or until help is requested. When the help or error system adds its
window to the screen, the window manager changes its control to allow interaction with

the third window:

32

Zinc Interface Library — Programmer’s Tutorial



Cursor Keyboard Mouse

v vy

‘ Ul_EVENT MANAGER ‘

ELLET, -2
C MAIN PROGRAM CONTROL D
<— v
’ Ul_WINDOW_MANAGER ‘
| UL_HELP_SYSTEM | Hello World| Help Window %

tion Window
\un_ERRorLSYSTEM‘

Cleanup

Since new help and error window systems were created within the program, they must be
destroyed at the end of the application. Although they are attached to
UI_WINDOW_OBIJECT, they must be destroyed explicitly since they are attached by
static pointers.

// Clean up.

delete UI_WINDOW_OBJECT::errorSystem;
delete UI_WINDOW_OBJECT::helpSystem;
delete windowManager;

delete eventManager;

delete display;

Run-time features

The first screen that appears when you run the application should be similar to the
following:

Chapter 2 — Help and Error Systems 33




34

Hello World Window
Hello, World!

World Information Window

Age: | At least 4 1/2 billion years. |
s YWeight: |8-l] sextillion metric tons. |
Size: |24,BD1.55 miles [equatorial circumf l

Makeup: |9¥¥gen — 46_6%
gilicon — 27.7%
aluminum — 8.1%
iron — 5.0%
calcium — 3.6%
other — 9.0%

The earth is the third planet in distance
outward from the sun. Itis the only
planetary body in the solar system
known to have conditions =uitable for life_ |

The added run-time features of this tutorial program are:

Field movement—Either select the window object with the mouse (by clicking the
left mouse button while positioned over the object) or press:

*  <Tab> to move to the next field on the window.
e <Shift+Tab> to move to the previous field on the window.
e <Up-Arrow> to move to the field immediately above the current field. The

current field will be changed only if its left border is vertically aligned with the
left border of the field above it.

Zinc Interface Library — Programmer’s Tutorial



e <Down-Arrow> to move to the field immediately below the current field. The
current field will be changed only if its left border is vertically aligned with the
left border of the field below it.

Select—Position the mouse pointer on top of a window, then click the left button to
select a new current window. To select a new current window from the keyboard,
press <Alt+F6>.

Restore, Maximize, Minimize, Move, and Size—The system button created in the
UIW_WINDOW::GENERIC( ) allows you to select these options directly from a
menu. Position the mouse pointer on top of the system button and click the left
button to make the menu appear. Then select the desired option from the menu by
clicking on it. To select this button from the keyboard, press <Alt .> or <Alt+space>.

Delete window—Press <Alt+F4> to delete the top window. This will delete the top
window but still allows the application to continue running as long as there is at least
one window on the screen.

This concludes the second tutorial program in this section. The next tutorial demonstrates
how Zinc’s Interactive Designer can be used to reduce the code information associated
with windows and sub-window objects.

Chapter 2 — Help and Error Systems 35




36 Zinc Interface Library — Programmer’s Tutorial



CHAPTER 3 - USING ZINC DESIGNER

The third “Hello World!” tutorial lets us take a step back to see how window creation
can be accomplished in a manner of minutes (and a single line of code) using Zinc
Designer. The code for this tutorial is located in \ZINC\TUTOR\HELLO\HELLO3.-
CPP.

Zinc Designer lets you create windows interactively and then incorporate them inside your
program. The interactive designer is located in \ZINC\BIN\DESIGN.EXE. To invoke
this program, first make sure you have \ZINC\BIN in your PATH environment variable,
then type:

design <Enter>

Once the application is running, the following window should be visible on the screen:

Creating a file

The following steps are used to create a file that will store the ‘““Hello World!” windows:

1—Select “File” from the main control menu. Selecting this option causes the
following pop-up menu to be displayed:

Chapter 3 — Using Zinc Designer 37




_ Zinc Designer - [Unt
Resource

|

Qpen.;.“
Save
Save As...

Delete...

Preferences...

Exit

2—Select “New..” from the pop-up menu. After you select this item a new window
appears:

File Name || |

Directory: jihdesign
Drives: Directories: Files:
.. design.dat

3—Enter the file name by typing hello in the field adjacent to the “File name”
prompt.

This name is used when the world windows are saved to disk.

38 Zinc Interface Library — Programmer’s Tutorial



4—Create the file by selecting the “OK™ button.
Once the OK button has been selected, Zinc Designer does the following:

« creates a HELLO.DAT file that will be used to store the ‘“Hello World!”” windows

¢ removes the “New” window from the screen

e updates the control window’s title to reflect the active HELLO.DAT file

Creating a window

The window we created in the second ‘“‘Hello, world” was:

ello, World

This window is created interactively in the following steps:

1—Select “Resource” from the main control menu. Selecting this option causes the
following pop-up menu to be displayed:

Chapter 3 — Using Zinc Designer 39




40

| File Edit j ities Help

Load.
Store
Store As...

Eoi- objectNone ___|

Clear
Delete...

Test...

2-Select “Create” from the pop-up window. At this point a generic window appears
on the screen:

3—Size the window by pressing <Alt+F8> and using the arrow keys or by pressing
the left mouse button on an area of the window’s border. You should make the

window large enough to handle the new title information and default “Hello World!”
text.

4—Enter an identification for the window by selecting Edit | Object from the main
control menu or by double clicking the left mouse button on the window. Selecting
this option causes the window editor to be displayed:

Zinc Interface Library — Programmer’s Tutorial



—Options—

B Border

[ Maximize Button
[ Minimize Button

| [X] System Button

— |K Tite

helpContext: I[None] @ [] 8croll Bar Corner
Objects: [] vertical Scroll Bar
[] Horizontal Scroll Bar
—woFlags—
[JwWOF_BORDER

D wWOF_MINICELL

title: [mitte]

minlcon: Iﬂ*lcme]

stringID: [RESOURCE 1

S—Enter the window identification by typing HELLO_WORLD_WINDOW in the field
adjacent to the “stringID:” prompt.

6—Save the identification by selecting the “OK” button.
7—Enter Hello World Window in the “title:” field.

Your window should now look similar to the figure below:

Chapter 3 — Using Zinc Designer 41




Creating a window object

Creation of the ‘“Hello World!” text is similar to the window creation described above:
1—Select Object | Input | Text from the main control menu.

2—Place the text object in the middle of the “Hello World!”” window. Your window
should now have a text field within its border:

3—Change the default information associated with the text object by:
e calling the text editor

e typing 256 in the field adjacent to the “maxLength:” prompt

e typing Hello World! in the field under the “text:” prompt

e toggling the WOF_BORDER and WOF_AUTO_CLEAR object flags from active
to inactive

¢ selecting the WOF_NON_FIELD_REGION object flag (this will cause the text
field to fill the entire window)

The text editor should now look like the figure below:

42 Zinc Interface Library — Programmer’s Tutorial



text: Hello World! —wnFlags—

X WNF_NO_WRAP

—woFlags—

WOF_AUTO_CLEAR

X woF_BORDER

[JwoOF_INVALID

[ wOF_MINICELL

maxLengtt []WOF_NO_ALLOCATE_D

WOF_NON_FIELD_REGI¢

I [JwOF_NON_SELECTABLE

[0 wWOF_UNANSWERED

| [ woOF_VIEW_ONLY
—woAdvancedFlags—

[JWOAF_NON_CURRENT

userFuncﬁon1

stringID: |FIELD_o

helpContext:

Once you save the new text information, the window should look like the window we
created in the first “Hello World!” tutorial:

ello, World!

Creating additional windows

The world information window, created in the second ‘“Hello World!” tutorial was:

Chapter 3 — Using Zinc Designer 43




44

6.0 sextillion metric tons.

24,901.55 miles [equatorial circumf

oxygen — 46 6%
gilicon — 27.7%
aluminum — 8.1%
iron — 5.0%
calcium — 3.6%
other — 9.0%

Makeup:

The earth is the third planet in distance
outward from the sun. Itis the only
planetary body in the solar system
known to have conditions suitable for life.

The steps used to create this window are:
1—Create the window by selecting Resource | Create from the control menu. Make
sure the window is large enough so that the accompanying field information fits

within the window’s border.

2—Change the window identification by calling the window editor and entering
WORLD_ INFORMATION_WINDOW as the stringID.

3—Change the window title by calling the title editor and entering the title World
Information Window.

Zinc Interface Library — Programmer’s Tutorial



4—Create the age prompt by selecting Object | Static | Prompt from the control
menu, then place the field at the left-top corner of the window. Call the prompt
editor, from the window’s edit window, and enter Age: as the prompt’s text.

5—Create the age string field by selecting Object | Input | String from the control
menu, then place the field next to the age prompt. Double click, on the object, with
the mouse, to enter 50 as the default length for the string field and enter At least
4 1/2 billion years in the text field.

6—Create the weight prompt by selecting Object | Input | String from the control
menu, then place the field under the age prompt. Change the prompt’s text to
Weight:.

7—Create the weight string field by selecting Object | Input | String from the control
menu, then place the field next to the weight prompt. Enter 6.0 sextillion
metric tons as the text for this field.

8—Create the size prompt by selecting Object | Static | Prompt from the control
menu, then place the field under the weight prompt. Set Size: as the prompt’s text.

9—Create the size string by selecting Object | Input | String from the control menu,
then place the field next to the size prompt. Set the length for this object to be 50
and the text is 24,901.55 miles (equatorial circumference).

10—Create the makeup prompt by selecting Object | Input | Prompt from the control i
menu, then place the field under the size prompt. Set the prompt’s text to be
Makeup:.

11—Create the makeup list box by selecting Object | Input | Vt-List from the control
menu, then place the field next to the makeup prompt.

12—Each makeup item is created by selecting Object | Input | String from the control
menu. After you select this option, place the object anywhere inside the list by
clicking on the list box with the mouse. The list automatically provides a default
position and size for the newly created item. Additional information can be edited
using the string editor.

The only information you need to change is the default text associated with each
makeup item. The text for the first item is oxygen -- 46.6%.

Each additional makeup item should be added in a similar manner. The following
items were provided in the original world information window:

Chapter 3 — Using Zinc Designer 45




e silicon --27.7%

* aluminum -- 8.1%
e iron -- 5.0%

e calcium -- 3.6%

e other -- 9.0%

13—Create the world information text field by selecting Object | Input | Text from
the control menu, then place the field under the makeup list. The default length for
this field is 100 and the default text is The earth is the third planet

in distance outward from the sun. It is the only planetary
body in the solar system known to have conditions suitable
for life.

You have now completed the creation of the “Hello World!” information window.

Saving the file

The “Hello World!”” windows are saved when you select File | Save from the control
menu. Zinc Designer performs the following operations when the windows are saved:

A HELLO.DAT file is created—This file contains the binary information associated
with the objects saved during the design session. You may recall the second tutorial

where we created a help file. Help contexts and window objects reside in the same
.DAT file.

A HELLO.CPP file is created—This file contains the definition for the objectTable.
This structure provides read access points for objects saved to disk. The code inside
this function depends on the type of objects that were created in the designer.

A HELLO.HPP file is created—This file contains the numeric identifications (those
strings you entered next to the *“StringID”” prompt) and the help context definitions.
The string identification for each field within a window is unique. The items within
sub-windows, combo boxes, or list boxes have unique numeric identifications within
that scope.

46 Zinc Interface Library — Programmer’s Tutorial



Window access

The code used in this tutorial has the same initialization process as each preceding tutorial
in that they all follow the same three steps:

*  Create the display
e Create the event manager and add input devices
e Create the window manager

After the window manager is created, however, the program adds the two world
information windows to the window manager:

*windowManager
+ new UIW_WINDOW ("HELLO“HELLO_WORLD_WINDOW")
+ new UIW_WINDOW ("HELLO HELLO_WORLD_INFORMATION") ;

In the code above, HELLO_WORLD_WINDOW and HELLO_WORLD_INFORMATION
are retrieved from the HELLO.DAT data file and then are added to the window manager.

An alternative way of reading the objects from disk is shown below:

*windowManager
+ UI_WINDOW_OBJECT: :New ("HELLO HELLO_WORLD_WINDOW" )
+ UI_WINDOW_OBJECT: :New ("HELLO HELLO_WORLD_INFORMATION") ;

This method allows for error correction. If, for example, one of the windows was not
found in the file, New( ) will return a NULL value. When a NULL value is added to the
window manager, no change is made.

The cleanup associated with this program is the same as that of the previous tutorials.
As you may recall, the designer created a HELLO.CPP code file. This file must be

compiled and linked with the Hello3 program. It contains an essential object table which
is used by window object constructors to read class object information from the data file.

Chapter 3 — Using Zinc Designer 47




Run-time features

48

The run-time features associated with this tutorial are the same as that of previous
tutorials. The persistent window objects contain all the information necessary to ensure
that the application runs as if each object were created with the code shown in previous
tutorials.

This concludes the third tutorial program in this section. The final “Hello World!”

tutorial introduces you to the color and event mapping systems used by Zinc Interface
Library.

Zinc Interface Library — Programmer’s Tutorial



SECTION 1i
DICTIONARY

Section Il — Dictionary 49




50 Zinc Interface Library — Programmer’s Tutorial



Chapter 4 — DISCOVERING THE OBJECT OF C++

Now that you have completed the ‘“Hello World™ tutorials, let’s step back and take a look
at what an object-oriented language (i.e., C++) has to offer. Any C program may be a
C++ program since C++ is a superset of C, but any C++ program is not a C program.
C is a very powerful language with proven strong points. C++ utilizes these strong points
and combines them with the advantages of an object oriented language.

A simple dictionary program has been created, first in C and then in C++, to illustrate the
differences between the two languages. WORDIA.EXE is the C version and
WORDI1B.EXE is the C++ version. After completing this tutorial, you should be able
to understand:

e classes

e data hiding

e constructors and destructors

e deriving classes and inheritance
e function overloading

e operator overloading

e local variable declaration

e dynamic variable initialization.

In order to run the programs, it is necessary to compile them. To compile WORDI1A.-
EXE, type the following:

make wordla.exe
and then press return. To compile WORD1B.EXE, type the following:
make wordlb.exe

and then press return.

Once the executable programs have been compiled, they can be run by typing the program
name followed by the word to be looked up in the dictionary. Since this is a tutorial,
there are only four words available: bad, begin, end, and good. To run the program
type the following at the DOS prompt:

WORD1B good

and then press return. You should see the following printed on the screen:

Chapter 4—Discovering the Object of C++ 51




good - Having positive or desirable qualities.
synonyms - generous, kind, honest.
antonyms - bad, poor, adverse.

Discovering objects

52

The purpose of any object-oriented language is to provide a logical means of code and
data encapsulation. In C++, this is accomplished with an object known as a class. A
class is a user defined type structure. Although it may seem strange to think of a type
structure as containing code, this is the heart of C++ and is very powerful. Before we
study classes, let’s take a look at the file WORDI1A.H, the header file from the C
program.

typedef struct
{

char string[64];
} SYNONYM, ANTONYM;

typedef struct WORD_STRUCT

{
char string[64];
char definition([1024];
int synonymCount;
SYNONYM synonym([10];
int antonymCount;
ANTONYM antonym[10];

} WORD;

The preceding C structure declarations are useful in that they encapsulate the data for the
dictionary word entries. The problem with this type of programming is that there is no
functionality directly associated with the data in this structure. Now let’s take a look at
the C++ version:

class D_WORD : public UI_ELEMENT
{
public:
char *string;
char *definition;
WORD_LIST antonymList;
WORD_LIST synonymList;

D_WORD(FILE *file) ;
~D_WORD (void) { delete string; delete definition; }
D_WORD *Next (void) { return ((D_WORD *)next); }
void Print (void);

}i

Notice that the C++ version of the word structure uses the keyword class. The first line
of the class declaration gives the class name, D_WORD, and the inheritance list. The
inheritance list will be described later on in this chapter. Classes provide a more logical
association between code and data since they are both members of the same structure.

Zinc Interface Library — Programmer’s Tutorial



The functions listed in a class declaration are actually just function prototypes. When one
of these member functions is implemented, it must specify that it is part of the class. For
example, consider the implementation of the function Print( ):

void D_WORD: :Print (void)
{

}

The first line of the function Print, lists the following items: the return type, the class
name, the scope resolution operator (i.e., ::), the function name and the parameter list.
The class name followed by the :: is listed to tell the compiler that the function is a
member of the D_WORD class.

Data hiding

After the opening curly brace, in the declaration of the class D_WORD, the line public:
appears. The keyword, public, denotes the level of data hiding. Members within a class
may be declared as public, protected, or private. Since the default data hiding level is
private, public has been specified in order to make the data and functions accessible
outside of the class.

Public class members are available to any function that has a pointer to an instance of the
D_WORD class. Protected class members may only be used by functions within the same
class and functions within derived classes. Private members may only be used by other
member functions and members of friend classes.

Constructors and destructors

When an instance of a class is created, it is sometimes desirable to initialize certain
member variables. This is done with a special type of member function called a
constructor. A constructor automatically gets called when an instance of the class is
created. Although the constructor may receive parameters, in C++, it may not have a
return value. A class constructor is easily identified, because it has the same name as that
class. The class D_WORD is a good example.

class D_WORD : public UI_ELEMENT
{
public:

char *string;

char *definition;

Chapter 4—Discovering the Object of C++ 53




D_WORD(FILE *file);
~D_WORD (void) {delete string; delete definition;}

The complement of a constructor is the destructor. This function is automatically called
when an instance of a class is deleted. Destructors are useful functions, because they
allow actions to occur, such as freeing memory, when the class is destroyed. A destructor
can be easily identified, because it has the same name as the class with the exception that
it is preceded by a ~.

Why use classes?

54

The following loop, taken from inside the main function if the file WORD1A.C, is used
to read a word from the dictionary, check to see if the word is the same as the search
word and then to print it out.

while (!feof (file))
{
ReadWord (file, &word) ;
if (!strcmpi(word.string, argv([1]))
{
PrintWord (&word) ;
break;

}

The loop must be present in order for the operation to work correctly. While this
implementation does the job and is fairly easy to read, C++ allows you to construct
objects (i.e., classes) that contain the data and functions necessary find and print a word.
Consider the following C++ version of the above code:

// Create the dictionary.
DICTIONARY dictionary;

// Search for a word match.
D_WORD *word = dictionary.Get (argv[1l]);
if (word)
word->Print () ;
else
printf ("The word \"%s\" could not be found.\n");

The DICTIONARY class has a member function called Get( ) that is used to find a word
that matches its character string parameter. Get( ) returns a pointer to a D_WORD class
that uses one of its member functions, Print( ), to print the appropriate data on the screen.
This way D_WORD knows how to print itself and you, as the programmer, just need to

Zinc Interface Library — Programmer’s Tutorial



tell it to do so. By using classes, a program can be more logically organized into objects
that utilize member functions to perform specific tasks.

Deriving classes/inheritance

Once an object has been created, it is possible to expand it without modifying the original
class. This process is known as deriving a class. The derived class will inherit all of the
attributes and functions of the base class. A good example of this is found in the file
WORDI1B.HPP. Consider the following:

class D_WORD_LIST : public UI_LIST
{
public:
static int FindWord(void *element, void *matchData)
|
D_WORD *First(void) { return ((D_WORD *)first); }
}i

class DICTIONARY : public D_WORD_LIST
{
public:

int found;

DICTIONARY (void) ;

D_WORD *Get (const char *word) {...}
bi

An inheritance list is specified, after the *:”’, on the first line of the class definition. The
class DICTIONARY has been derived from the base class D_WORD_LIST.
DICTIONARY is said to inherit D_WORD_LIST. When the inheritance list is declared,
the same levels of data hiding apply as in the body of the class definition. In this case
the base class was declared as public, which means that the public members of the base
class will be publicly accessible in the derived class.

Derived classes are very useful, since they can be tailored to fit special situations without
having to create a whole new class or modifying the original. In the classes declared
above, the class D_WORD_LIST is a special type of UI_LIST and the class
DICTIONARY is a special type of D_WORD_LIST. The following diagram illustrates
the relationship between these three classes:

Chapter 4—Discovering the Object of C++ 55




UI_LIST

D_WORD_LIST

DICTIONARY

Function overloading

C++ supports polymorphism, also known as overloading, which allows one name to be
used for different, yet similar purposes. Overloaded functions are functions that have the
same name, but have different parameters. For example, let’s take a look at the Get( )
functions in the UI_LIST class from the file LIST.HPP:

UI_ELEMENT *Get (int index) ;
UI_ELEMENT *Get (int (*findFunction) (void *elementl, void
*matchData), void *matchData) ;

These two functions both return a pointer to a particular UI_ELEMENT, but the method
that they use and the parameters they require are different. The compiler distinguishes
overloaded functions by their parameters lists. Overloading functions allows you to create
a generic type of operation while the individual functions define the exact method to be
used.

Operator overloading

56

The operators, in C++, can be overloaded in much the same way that functions can. One
use for overloaded operators is with a linked list class. The program WORDI1B.EXE
uses a linked list class called UI_LIST that implements overloaded operators. For
example:

UI_LIST &operator+ (UI_ELEMENT *element) { ... };
UI_LIST &operator- (UI_ELEMENT *element) { ... }:

Zinc Interface Library — Programmer’s Tutorial



The ’+’ and ’-’ operators have been overloaded to perform add and subtract operations
on the linked list. It is important to note that the original operators have not been
disabled. The line of code "int count = 3 + 9;" will still give the desired value. As with
function overloading, the operands will allow the compiler to differentiate which function
is called. Here is an example of how to use these operators:

UI_LIST list;
UI_ELEMENT element;

list + element;

This use of overloaded operators provides for a much more intuitive piece of code.

Local variables

Local variables, in C, must be declared at the start of the current block. As an example,
let’s look at the function main in the C file WORD1A.C:

main (int argc, char *argvl(])
{

WORD word;

FILE *file;

// Make sure there is a word.

if (argc < 2)

{
printf ("Usage: WORDI1A <word>\n");
return(0) ;

}

// Make sure the dictionary exists.
file = fopen("word.dct", "rt");

}

Notice that the variable file must be declared at the start of the current block even though
it is not used until later. If this variable were declared in the middle of the block where
it is used, it would cause an error in C.

In C++, variables may be declared as they are needed. This conforms more closely to the
idea of data encapsulation that was mentioned earlier. Now let’s examine the C++ main
function, taken from the function main of WORD1B.CPP:

main (int argc, char *argvl[])
{

// Make sure there is a word.

Chapter 4—Discovering the Object of C++ 57




if (argc < 2)
{

printf ("Usage: WORD1B <word>\n");
return(0) ;

}

// Create the dictionary.
DICTIONARY dictionary;

if (!dictionary.found)

{

}

// Search for a word match.
D_WORD *word = dictionary.Get(argv([1l]):;
}

This C++ example shows two very important concepts: local variable declaration and
dynamic initialization. As has already been mentioned, variables, in C++, may be

declared where they are used and not just at the top of the current block.

Any local and global variables, in C++, can be dynamically initialized using any valid
expression. For example, the variable word, from the above piece of code, is initialized,
at run-time, with the return value from a call to dictionary.Get( ). This is very different
from C which requires that a variable’s initial value be known at compile time. Dynamic
initialization will allow a variable to be initialized based on the value of another variable
or on the return value of a function.

Conclusion

58

You should now be familiar with the major differences between C and C++. If you
implement the ideas that were discussed in this chapter, you will be on your way to
writing concise, easily maintainable, and powerful code.

Zinc Interface Library — Programmer’s Tutorial



CHAPTER 5 — EVENT FLOW

This tutorial demonstrates how Zinc Interface Library can be used to enhance an existing
C++ program and how events are handled throughout the system. When you are finished,
you should understand:

e how a window and its fields are created

e the use of window objects to display information and receive input from the user
e the use of user functions to check data input

*  how events are handled throughout the system

In this tutorial, we will examine a modified version of the dictionary program that was
discussed in the previous chapter. The program WORD2.EXE will be used to
demonstrate these new concepts.

The source code associated with this program is located in \ZINC\TUTOR\WORD. It
contains the following files:

WORD2.CPP—This file contains the main( ) and WinMain( ) (for Microsoft
Windows) functions. It, also, contains the implementation of the DICTIONARY _-
WINDOW, DICTIONARY and D_WORD classes.

WORD2.HPP—This file contains the declarations for the DICTIONARY_-
WINDOW, DICTIONARY and D_WORD classes.

WORD.DCT—This file is the dictionary data base file.

BORLAND.MAK, MICROSFT.MAK, and ZORTECH.MAK—These are the
makefiles associated with the virtual list program. You can compile the DOS
version, WORD2.EXE, by typing make -fborland.mak word2.exe at the
command line prompt. To make the Windows version, WORD2.EXE, type make
-fborland.mak word2.exe at the command line. (NOTE: When compiling
with either Microsoft or Zortech, substitute the name of that compiler as the name of
the make file on the command line.)

WWORD.DEF—This is the definition file used when compiling a Microsoft
Windows application.

Chapter 5 — Event Flow 59




WWORD.RC—This is the resource file used when compiling a Microsoft Windows
application.

Program execution

The operation of the dictionary can be seen by compiling and running the application
WORD2.EXE. The following should appear on the screen:

Enter a word: ||

Definition:

Antonyms: I —l

Synonyms: L |

To look up a word, position the cursor on the “Enter a word” field by either clicking on
it with the left mouse button or pressing <TAB> until the cursor appears in the field.
Once the field becomes current, simply type a word and press enter. If the word is in the
dictionary, the definition, antonyms and synonyms will be displayed. If the word is not
in the dictionary and cannot be displayed, an error message will appear saying *“That
word was not found in the dictionary.” Remember, as in the previous tutorial, that good,
bad, begin, and end are the only words available.

When you are finished using the dictionary, exit the program by either selecting ““Close”
from the system button’s pop-up menu or by pressing <Alt+F4>.

Class definitions

60

The dictionary window is implemented with a class called DICTIONARY_WINDOW.
The actual dictionary is comprised of the classes: DICTIONARY, D_WORD and
WORD_ELEMENT. The definition for the DICTIONARY_WINDOW class is given
below:

Zinc Interface Library — Programmer’s Tutorial



class DICTIONARY_WINDOW : public UIW_WINDOW
{
public:
DICTIONARY_WINDOW () ;
~DICTIONARY_WINDOW () ;

int dictionaryOpened;

private:
DICTIONARY *dictionary;
UIW_STRING *inputField;
UIW_TEXT *definitionField;
UIW_STRING *antonymField;
UIW_STRING *synonymField;

static EVENT_TYPE LookUpWord (UI_WINDOW_OBJECT *string, UI_EVENT &event,
EVENT_TYPE ccode) ;
}i

DICTIONARY_WINDOW uses the following member variables:

e dictionaryOpened is a variable that tells if the dictionary was successfully opened.
Since constructors cannot return values, we must set a flag to denote the dictionary
status. This value is public so that the controlling program can verify that the
dictionary was created.

e dictionary is the pointer to this dictionary itself. The instance of DICTIONARY that
is pointed to by this pointer is allocated in the constructor for DICTIONARY _-
WINDOW. This variable is only used by the DICTIONARY_WINDOW class and
therefore is made private.

e inputField is a pointer to the UIW_STRING field that is used to collect the input
word from the user. This variable is only used by the DICTIONARY_WINDOW
class and therefore is made private.

* definitionField is a pointer to the UIW_TEXT field that is used to display the
definition for the input word. This variable is only used by the DICTIONARY _-
WINDOW class and therefore is made private.

* antonymField is a pointer to the UIW_STRING field that is used to display the
antonyms for the input word. This variable is only used by the DICTIONARY _-
WINDOW class and therefore is made private.

o synonymField is a pointer to the UIW_STRING field that is used to display the
synonyms for the input word. This variable is only used by the DICTIONARY _-
WINDOW class and therefore is made private.

The definition for the DICTIONARY class is given below:

Chapter 5 — Event Flow 61




class DICTIONARY : public UI_LIST
{
public:

int opened;

DICTIONARY (char *name) ;

static int FindWord(void *element, void *matchData);
D_WORD *First (void);
D_WORD *Get (const char *word) ;

}i

DICTIONARY uses the following member variable:

* opened is a variable that tells if the dictionary was successfully opened.  Since
constructors cannot return values, we must set a flag to denote the dictionary status.
This value is public so that the controlling program can verify that the dictionary was
created.

The definition for the D_WORD class is given below:

class D_WORD : public UI_ELEMENT
(
public:

char *string;

char *definition;

UI_LIST antonymList;

UI_LIST synonymList;

D_WORD (FILE *file);
~D_WORD (void) ;

D_WORD *Next (void) ;
I

D_WORD uses the following member variables:

* string is a variable that contains the actual word entry in the dictionary.
*  definition is a variable that contains the definition string of the word.

* antonymlList is a list of antonyms that apply to the dictionary entry.

*  synonymList is the list of synonyms that apply to the dictionary entry.

The definition for the WORD_ELEMENT class is given below:

class WORD_ELEMENT : public UI_ELEMENT
{
public:

char *string;

WORD_ELEMENT (const char *a_string);
~WORD_ELEMENT (void) ;

62 Zinc Interface Library — Programmer’s Tutorial



WORD_ELEMENT *Next (void) ;
bi

WORD_ELEMENT uses the following member variables:

* string is a variable that contains a character string. In this example, it is used to hold
either antonyms or synonyms.

Creating the window

In this version of the dictionary program, we will create a specialized window class called
DICTIONARY_WINDOW that will be derived from the Zinc window class UIW_-
WINDOW. Instead of using the existing UIW_WINDOW class, we will derive one that
will not only handle the I/O with the window fields, but will also maintain the commun-
ication with the dictionary itself.

When the DICTIONARY_WINDOW constructor is called, the window itself is auto-
matically created since UIW_WINDOW was declared as the base class. Once inside the
constructor, each of the fields is created and then added to the window. Objects are
added to the window using the C++ reserved word this and the overloaded + operator.
The DICTIONARY_WINDOW constructor is shown below:

DICTIONARY_WINDOW: : DICTIONARY_WINDOW () : UIW_WINDOW(16, 6, 41, 14)
(

1

if (dictionaryOpened)
{
// Create the window fields.

inputField = new UIW_STRING(17, 1, 20, "", 40, STF_NO_FLAGS,
WOF_BORDER | WOF_AUTO_CLEAR, DICTIONARY_WINDOW: : LookUpWord) ;

definitionField = new UIW_TEXT (17, 3, 20, 4,"", 100, TXF_NO_FLAGS,
WOF_BORDER) ;

antonymField = new UIW_STRING(17, 8, 20, "", 50, TXF_NO_FLAGS,
WOF_BORDER) ;

synonymField = new UIW_STRING(17, 10, 20, "", 50, TXF_NO_FLAGS,

WOF_BORDER) ;

Chapter 5 — Event Flow 63




64

*this

+ new UIW_BORDER

+ new UIW_MAXIMIZE_BUTTON

+ new UIW_MINIMIZE_BUTTON

+ new UIW_SYSTEM_BUTTON

+ new UIW_TITLE("Dictionary")

+ new UIW_PROMPT (2, 1, "Enter a word:")
+ inputField

+ new UIW_PROMPT (2, 3, "Definition:")
+ definitionField

+ new UIW_PROMPT (2, 8, "Antonyms:")
+ antonymField

+ new UIW_PROMPT (2, 10, "Synonyms:")
+ synonymField;

}

The necessary objects are added to the window inside the constructor so that when the
DICTIONARY_WINDOW class created, only a few lines are required to create it and
display it on the screen. Examine the following piece of code taken from the main
function in the WORD2.CPP file:

// Create the dictionary window.
DICTIONARY WINDOW *dictionary = new DICTIONARY_WINDOW() ;

// If the dictionary was opened, add it to the window manager.
if (dictionary->dictionaryOpened)
*windowManager + dictionary;
else
{
dictionary->errorSystem->ReportError (windowManager, -1,
"The dictionary file 'WORD.DCT’ was not found.");
delete dictionary;

}

If the objects were not added in the constructor, but added to the newly created instance
of the DICTIONARY_WINDOW class, then each time the class was created, there would
be a significant duplication of code. Adding the objects inside the constructor provides
a stronger encapsulation of data and code.

The user function

This version of the dictionary tutorial allows the user to type a word in the “Enter a
word” field and press <ENTER> to display either the word’s data or an error message.
This is done through the use of a user function. We will use the user function to compare
the data entered into the object’s field to the words in the dictionary. User functions can
be assigned to any editable window object through the object’s constructor. Look at the
DICTIONARY_WINDOW constructor:

Zinc Interface Library — Programmer’s Tutorial



inputField = new UIW_STRING(17, 1, 20, "", 40, STF_NO_FLAGS,
WOF_BORDER | WOF_AUTO_CLEAR, DICTIONARY_ WINDOW: : LookUpWord) ;

When the UIW_STRING field is constructed, the last parameter references the user
function. Adding a user function allows the UIW_STRING object to call this function
whenever the string field is made current, non-current, or the <ENTER> key is pressed.

In order for the compiler to generate an address, user functions must be declared as static.
The user function LookUpWord( ) has the following parameters (required for all user
functions):

e returnValue,, is the result of the operation. Most often ccode is the value returned.
However, if -1 is returned, the calling window object will be informed that some
error occurred and that it should remain the current object.

e object, is a U_WINDOW_OBIJECT pointer to the object that invoked this function.
In this case, the calling object is a UIW_STRING field whose parent is a
DICTIONARY_WINDOW object. This pointer must be typecast by the programmer
if object specific information is needed.

* event, is the event that caused this function to be called.
* ccode,, is the logical interpretation of the event that caused this function to be called.

Consider the implementation of LookUpWord( ):

#pragma argsused

EVENT_TYPE DICTIONARY WINDOW: : LookUpWord (UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_ TYPE ccode)

{

}

Since the user function is called when the string field receives the S_CURRENT,
S_NON_CURRENT, or L_SELECT messages, the first step is to determine if the ccode
is S_CURRENT. In the dictionary tutorial, if the input string field is just becoming
current, then a new word has not be entered and the function returns without doing
anything. Examine the initial check in LookUpWord( ):

// Return if the field is just becoming current.
if (ccode == S_CURRENT)
return errorCode;

If the input field is becoming non-current, then the dictionary must be called to verify the
input word. To do this, it must have a pointer to the current dictionary object. Note that

Chapter 5 — Event Flow 65 ‘




the input string and the dictionary pointer are both members of the DICTIONARY _-
WINDOW class. Therefore, it is easy to get a pointer to the correct instance of
DICTIONARY_WINDOW, since object’s parent is the DICTIONARY_WINDOW. The
following code segment demonstrates how to get a pointer to the parent, DICTIONARY _-
WINDOW:

DICTIONARY_WINDOW *dictionaryWindow = (DICTIONARY_WINDOW *)object->parent;

With the dictionaryWindow pointer, access can be made to the public variables and
functions of the DICTIONARY_WINDOW class, including the variable dictionary. In
order to see if the word is in the dictionary, the user function calls the function
DICTIONARY::Get( ) by using the dictionaryWindow pointer that was initialized above.
This function will either return a NULL, if the word is not found, or a pointer to a
D_WORD structure that contains the input word and it’s associated information. If the
return value is a valid pointer, then the word’s information is written to the appropriate
window fields by calling each field’s DataSet( ) function. In the event of error, an error
message is displayed. The return value for the user function is 0 upon success or -1 upon
erTor.

Following events

Now that a windowing system has been added to the dictionary program, let’s study how
events are passed through the system. For example, what happens between the time that
a user types a character (e.g., “‘g”) in the “Enter a word” field, and the time that the
letter appears on the screen? In this section, we will examine event flow in DOS and in
Windows.

Event flow—DOS

When a key is pressed, the character is placed in the computer’s bios keyboard buffer.
This is done by the computer and is independent of any application software that is
running. The “do” loop in the main function of the program controls the dispatching of
events.

do
{
// Get input from the user.
UI_EVENT event;
eventManager->Get (event) ;
// Send event information to the window manager.
ccode = windowManager->Event (event) ;
} while (ccode != L_EXIT && ccode != S_NO_OBJECT) ;

Zinc Interface Library — Programmer’s Tutorial



When eventManager->Get( ) is called, each of the devices attached to the event manager
is polled. If a device, such as the keyboard, has an event waiting, a UI_EVENT structure
is created, filled with the proper data and put on the end of the event queue. Let’s
assume that there were no other events on the queue when the “g” key event was put on
the queue. After polling and putting new events on the queue, the Get( ) function
removes the first event from the queue (i.e., the “g” key event) and returns it to the
calling function. When program control returns from the Get( ) function, the event

returned is given to the window manager with the call windowManager->Event( ).

Once the window manager has control, it sends the event to the current window object.
Each time an object gets the event, it passes it to it’s current child object. It continues
to do this until it gets to the bottom of the hierarchy. Once the control gets to the bottom-
most object, the object tries to interpret the event. If it can, it does and then returns a
control code. If it cannot, it returns an S_UNKNOWN message to it’s parent and it’s
parent tries to interpret the event, and so on. In this manner, the events are interpreted
from the bottom up. If an S_UNKNOWN message is returned to the window manager
and the event carries an specified region (such as with a mouse click), the window
manager checks to see if another object should become current. If so, that object is made
current and the event is passed to the current object. If no window can handle the event,
then the window manager just returns an S_UNKNOWN message and the event is
ignored.

In the case of the “g” key in the dictionary example, the window manager’s current
object is the dictionary window. The window receives the event and sends it to it’s own
current object which is the UIW_STRING field. The string’s Event( ) function receives
the event and calls UL WINDOW_OBJECT::LogicalEvent( ) to try to find a logical
mapping of the event. Once it determines that the event is a keystroke and that it contains
a ““g” character, the character is copied into the string’s memory buffer. A call is made
to UIW_STRING::Redisplay( ) which in turn calls display->Text( ), to actually paint
the character on the screen. A control code is then returned to the object’s parent and
finally to the window manager which returns to the main do loop where the sequence
starts over again.

Event flow—MS Windows

The MS Windows version of Zinc Interface Library is somewhat simpler than the DOS
version. This is due to the fact that Windows does the 1/O itself and Zinc only handles
the resulting messages. When a UIW_STRING field is created, Zinc creates an actual
Windows string object. In the Windows version, Zinc serves as a layer between the
existing Windows system and the user application that was written using Zinc. This
model allows programs to be easily ported to any of the environments that Zinc supports.

Chapter 5 — Event Flow 67




In order to follow an event through the Zinc system, while running under Windows, it is
necessary to explain something about the way in which Windows passes messages. First
of all, Windows messages are put on a Windows message queue where they can be
dispatched directly to the current field on the current object. Messages are passed to an
object via a special member function known as a “callback” function. A callback
function is a Windows function used for sending messages.

APl

Now, let’s consider the example of the “g” key being pressed while a UIW_STRING
field is current. First, Windows creates and message and puts it on the Windows message
queue. Look at the “do” loop in the function WinMain( ):

do

{
// Get input from the user.
UI_EVENT event;
eventManager->Get (event) ;

// Send event information to the window manager.
ccode = windowManager->Event (event) ;
} while (ccode != L_EXIT && ccode != S_NO_OBJECT) ;

When eventManager->Get( ) is called, it doesn’t return until Windows has generated a
message. Once this is done, the call to windowManager->Event( ) instructs Windows
to dispatch the message. When a message is dispatched, Windows calls the appropriate
object’s callback function (i.e., UIW_STRING in this case) saying that the character *“g”
was pressed. In this case, the string object’s callback function sends the message to the
string object’s jump procedure which in turn calls UIW_STRING::Event( ). At this
point, the event continues in the same manner as with the DOS version. After Zinc
handles the message, it is passed back to Windows so that the character may be painted
on the screen.

Conclusion

68

You should now understand how a window and its fields are created, how window objects
are used to display information and receive input from the user, how user functions can
be used to check data input, and how events are handled throughout the system. If you
wish to interface with a separate data base you can use this program as a template and
instead of using the class DICTIONARY, you will make the appropriate calls to your data
base program.

Zinc Interface Library — Programmer’s Tutorial



CHAPTER 6 — THE ZINC DATA FILE

This tutorial demonstrates data base interaction with Zinc Interface Library and the use
of the Zinc data file. After finishing this tutorial, you should be able to understand:

e the use of the Zinc data file
e how to add and delete user-defined objects within the Zinc data file.

In this tutorial, we will examine a new version of the dictionary program that has been
used in previous chapters. The program WORD3.EXE will be used to demonstrate these
new concepts.

The source code associated with this program is located in \ZINC\TUTOR\WORD. 1t
contains the following files:

WORD3.CPP—This file contains the main( ) and WinMain( ) (for Microsoft
Windows) functions. It also contains the implementation of the DICTIONARY_-
WINDOW, DICTIONARY, and D_WORD classes.

WORD3.HPP—This file contains the declarations for the DICTIONARY_-
WINDOW, DICTIONARY and D_WORD classes.

WORD_WIN.CPP—This file contains the object table for the objects that were
created in the designer.

WORD_WIN.DAT—This file is the data file that was created by the designer. It
contains the data information necessary to create the dictionary window and its fields.

WORD_WIN.HPP—This file contains the header information for the WORD_-
WIN.DAT file. This file contains the #define directives for the stringID’s of the file
objects in the data file. It also contains the help file header information for the
WORD_WIN.DAT file.

BORLAND.MAK, MICROSFT.MAK, and ZORTECH.MAK—These are the
makefiles associated with the dictionary program. You can compile the DOS version,
WORD3.EXE, by typing make -fborland.mak word3.exe at the command
line prompt. To make the Windows version, WWORD3.EXE, type make -
fborland.mak wword3.exe at the command line. (NOTE: When compiling
with either Microsoft or Zortech, substitute the name of that compiler as the name of
the make file on the command line.)

Chapter 6 — The Zinc Data File 69




WORD.DEF—This is the definition file used when compiling a Microsoft Windows
application.

WORD.RC—This is the resource file used when compiling a Microsoft Windows
application.

Program execution

The operation of this version of the dictionary program can be seen by running the
application WORD3.EXE. The following should appear on the screen:

Enter a word: || J

Definition:

Antonyns: ‘

L

Synonyms: I

At this point, the dictionary data base will be empty. To add words to the dictionary,
simply type the word, definition, antonyms and synonyms in the appropriate fields and
press the “Save” button on the bottom of the window. To look up a word, type the word
in the “Enter a word:” field and press the “Lookup’ button. To delete a word, type the
word in the “Enter a word:” field and press the “Delete” button.

When you are finished using the dictionary, exit the program by either selecting “Close”
from the system button’s pop-up menu or by pressing <Shift+F4>.

Zinc Interface Library — Programmer’s Tutorial



Class definitions

The dictionary window is implemented with a class called DICTIONARY_WINDOW.
The definition of the DICTIONARY_WINDOW class is given below:

class EXPORT DICTIONARY_WINDOW : public UIW_WINDOW
{
public:
DICTIONARY_WINDOW (char *dictionaryName) ;
~DICTIONARY_WINDOW () ;

EVENT_TYPE Event (const UI_EVENT &event) ;

private:
DICTIONARY *dictionary;
UIW_STRING *inputField;
UIW_TEXT *definitionField;
UIW_STRING *antonymField;.
UIW_STRING *synonymField;

static EVENT_TYPE ButtonFunction (UI_WINDOW_OBJECT *item,
UI_EVENT &event, EVENT_TYPE ccode);
}i

DICTIONARY_WINDOW uses the following member variables:

e dictionary is the pointer to the dictionary itself. The instance of DICTIONARY that
is pointed to by this pointer is allocated in the constructor for DICTIONARY _-
WINDOW. This variable is only used by the DICTIONARY_WINDOW class and
therefore is made private.

e inputField is a pointer to the UIW_STRING field that is used to collect the input
word from the user. This variable is only used by the DICTIONARY_WINDOW
class and therefore is made private.

* definitionField is a pointer to the UIW_TEXT field that is used to display the
definition for the input word. This variable is only used by the DICTIONARY _-
WINDOW class and therefore is made private.

e antonymField is a pointer to the UIW_STRING field that is used to display the
antonyms for the input word. This variable is only used by the DICTIONARY_-
WINDOW class and therefore is made private.

*  synonymField is a pointer to the UIW_STRING field that is used to display the
synonyms for the input word. This variable is only used by the DICTIONARY _-
WINDOW class and therefore is made private.

Chapter 6 — The Zinc Data File 71




The definition for the DICTIONARY is as follows:

class EXPORT DICTIONARY : public UI_STORAGE

{

public:
DICTIONARY (char *name) : UI_STORAGE (name, TRUE) ;
~DICTIONARY () ;

D_WORD *Get (const char *word) ;
}i

The definition for the D_WORD class is as follows:

class D_WORD : public UI_STORAGE_OBJECT
{
public:

int wasLoaded;

char *word;

char *definition;

char *antonym;

char *synonym;

D_WORD (const char *name, UI_STORAGE *file, UI_STORAGE_OBJECT *object) ;

D_WORD (const char *name) ;

~D-WORD() ;

static D_WORD *New(const char *name, UI_STORAGE *file,
UI_STORAGE_OBJECT *object) ;

void Store(const char *name, UI_STORAGE *file,
UI_STORAGE_OBJECT *object);

}i

D_WORD uses the following member variables:

e word is a variable that contains the actual word entry in the dictionary.
e definition is a variable that contains the definition string of the word.

e antonym is a the list of antonyms that apply to the dictionary entry.

e synonym is the list of synonyms that apply to the dictionary entry.

Creating the window

72

The window for this program was created using Zinc Designer and is contained in the file
WORD_WIN.DAT. You may recreate this window by starting Zinc Designer and build
it as it appears in the “Program execution” section. Steps on using the designer are
contained in the “Using Zinc Designer” chapter.

When a field is created, the designer gives it a default stringID. A string identification

is a label that is used to uniquely identify each object. The default stringID’s are of the
form: FIELD 1, FIELD 2, etc. In most cases, the default stringID is sufficient.

Zinc Interface Library — Programmer’s Tutorial



However, in order to access a particular field, it is helpful to specify a new stringID. In
the designer, an object’s string identification can be changed by bringing up the object’s
edit window and entering a new string identification in the ‘“stringID:” field. For
example, to change the “Lookup” button’s stringID, make the button current and bring
up its edit window. The new stringID for the “Lookup” button is LOOKUP_BUTTON
and should be entered in the edit window (shown below):

text: | &Loakup] | [0 BTF_CHECK_BOX
) [] BTF_DOUBLE_CLICK
value; b ] [] BTF_DOWN_CLICK
userFunction] | |®BTF_NO_TOGGLE
bitmap: l s []BTF_NO_3D
] |[[]BTF_RADIO_BUTTON

[ BTF_REPEAT

[0 BTF_SEND_MESSAGE
—woFlags—

[ woF_BORDER

K wWOF_JUSTIFY_CENTE H s

stringID: [FIELD_8

helpContext: INone

Now that the window has been set up, it is necessary to connect the “Lookup’ button to
the function that will look up the word. This is done by assigning a function to the
button’s userFunction member variable. To get a pointer to the button, create the window
that contains the button. In this example the window is created when the
DICTIONARY_WINDOW constructor is called. Then call the window’s Information( )
function with the numberID (numberID is available by using the #define values created
by the designer.) of the “Lookup” button. This will return a UL_WINDOW_OBJECT
pointer that points to the button, so it will need to be cast as a UIW_BUTTON *. These
steps are shown by the following piece of code:

DICTIONARY_WINDOW: : DICTIONARY_WINDOW (char * dictionaryName)
UIW_WINDOW ( "WORD_WIN.DAT~WINDOW_DICTIONARY")
{

Chapter 6 — The Zinc Data File 73




// Set the user functions to the buttons.
unsigned short id = LOOKUP_BUTTON;
UIW_BUTTON *button;

button = (UIW_BUTTON *)INFORMATION (GET_NUMBERID_OBJECT, &id, ID_WINDOW) ;
button->userFunction = DICTIONARY WINDOW::ButtonFunction;

}

With a pointer to the button, the ButtonFunction( ) can be assigned as the userFunction.
ButtonFunction( ) is a generic function that all the DICTIONARY_WINDOW buttons
call. This way they can be dispatched through a single static function instead of having
a static user function for each of the buttons on the window.

Using the data file

The Zinc data file is used by the designer to store persistent objects. However, it can also
be used to store user-defined objects. Using the data file will allow us to take advantage
of the existing data base functions such as: add, delete, and lookup. Although we will
only discuss the Zinc data file, it is also possible to implement this example using a third
party database library. The following two sections, UL_STORAGE_OBJECT and UI_-
STORAGE, describe the Zinc data file.

UI_STORAGE_OBJECT

The D_WORD class is derived from UI_STORAGE_OBIJECT so that it can be stored as
an object in the Zinc data file. The UL_STORAGE_OBJECT class takes storage infor-
mation and makes it available in a list format. It is used in conjunction with the
UL_STORAGE class to identify an object’s location within a file.

Although D_WORD is derived from UI_STORAGE_OBIJECT, there are three functions
that must be set up properly in order for it to function as a persistent object. These
functions are: constructor, New( ), and Store( ).

The constructor

There are two constructors used for the D_WORD class. This first takes a const

char * as a parameter and is used to create a D_WORD class for a new word that is
not in the data file.

Zinc Interface Library — Programmer’s Tutorial



D_WORD: :D_WORD (const char *name)

{
// Used to create a new word that is not in the file.
word = definition = antonym = synonym = NULL;

The second constructor is used to read in the D_WORD from the data file or if it is not
found, it will create one with all of the fields set to NULL.

#pragma argsused
D_WORD: :D_WORD (const char *name, UI_STORAGE *file,
UI_STORAGE_OBJECT *object)
{
UI_STORAGE_OBJECT *element = file->FindFirstObject (name) ;
if (!element)
{
// The object was not found in the file.
wasLoaded = FALSE;
word = definition = antonym = synonym = NULL;
}
else
{
wasLoaded = TRUE;

// Load the word.

unsigned long stringLength;

file->Load (&stringLength) ;

if (stringLength)

{
word = new char([stringLength+1];
file->Load (word, stringLength) ;
word[stringLength] = ’“\0’;

}

// Load the definition.

file->Load (&stringLength) ;

if (stringLength)

{
definition = new char[stringLength+1];
file->Load (definition, stringLength) ;
definition[stringLength] = “\0’;

}

// Load the antonyms.

file->Load (&stringLength) ;

if (stringLength)

{
antonym = new char[stringLength+1];
file->Load (antonym, stringLength) ;
antonym([stringLength] = ’'\0’;

}

// Load the synonyms.

file->Load (&stringLength) ;

if (stringLength)

{
synonym = new char[stringLength+1];
file->Load (synonym, stringLength);
synonym[stringLength] = ’\0’;

Chapter 6 — The Zinc Data File 75




If the word entry is found in the file, then its entire object is read in. In turn, each of the
object’s fields are read. Each field is preceded by an unsigned long that gives the size,
in bytes, of the field to follow. Then the number of bytes comprising the field itself are
read in. Since each object stores its’ own fields, the constructor knows how many fields
to read in.

The New function

When a word is looked up in the dictionary and its related information read in, a function
called D_WORD::New( ) is called. The New( ) function discussed here is a member of
a class and not the new operator of C++.

In this tutorial, the New( ) function is used only to distinguish between constructors. The
reason for having a static New( ) function in a class is to be able to take the address of
a procedure that will call the constructor. A good example of this can be seen in the
implementation of an object list. Examine the following object table taken from the file
WORD_WIN.CPP:

UI_ITEM _UI_WINDOW_OBJECT::objectTablel[] =

{

ID_BORDER, &UIW_BORDER: :New, "BORDER", 0 },

ID_BUTTON, &UIW_BUTTON::New, "BUTTON", O },

ID_PROMPT, &UIW_PROMPT: :New, "PROMPT", 0 }

ID_STRING, &UIW_STRING: :New, "STRING", 0 }

ID_TEXT, &UIW_TEXT::New, "TEXT", 0 },

ID_WINDOW, &UIW_WINDOW::New, "WINDOW", 0 1},
ID_OBJECT_LIST, &UIW_OBJECT_LIST::New, "OBJECT_LIST", 0 1},
ID_END, NULL, NULL, O }

1.
I

This object table is the one generated when the window for DICTIONARY_WINDOW
was created in the designer. The designer automatically creates an object table adding an
entry for each type of object used. If you desire to create persistent objects without using
the designer, you will need to create a similar object table.

When an object is read in, the object’s type is loaded and checked against the object table
to see which object is to be created. If the object’s type is ID_WINDOW, for example,
and there is an entry for it in the object table, the UIW_WINDOW::New( ) will be
called.

The Store function

The purpose of the Store( ) function is to store the object into the file. Each of the
object’s members are saved. Succeeding fields are saved in the same manner. Each

Zinc Interface Library — Programmer’s Tutorial




Ul

object is stored with a call to Store( ). In order to “commit” the object to permanent
storage, UI_STORAGE::Save( ) must be called.

STORAGE

The class DICTIONARY is derived from UI_STORAGE. The UI_STORAGE class is
used to read or write Zinc Interface Library files. It is created as a class so that the file
can be treated as an object, which handles file input and output.

The UI_STORAGE class can be thought of as a file system. Thus, one can make
directories, change directories, and add and delete “files” (i.e., objects) within the file.
The main difference between a UI_STORAGE class and a regular file is that the
UI_STORAGE file is constructed so that specific objects can be saved and retrieved.
These objects can be persistent objects and the user can store items or objects of different
types to the file. Since the class DICTIONARY is derived from UI_STORAGE, it can
use inherited functions such as: Load( ), Store( ) and Subtract( ) to manage the words
in the dictionary.

Conclusion

You should now be able to understand how to use the Zinc data file and how to add
objects to it. You should also be able to use a window created in the designer within an
application and add user functions to buttons on the window. Some enhancements ideas
for DICTIONARY program include: creating multiple types of persistent objects for use
in the same data file or using a third party data base instead of the Zinc data file.

Chapter 6 — The Zinc Data File 77




78 Zinc Interface Library — Programmer’s Tutorial



SECTION 1l
ZINC APPLICATION PROGRAM

Section Il — Zinc Application Program 79




80 Zinc Interface Library — Programmer’s Tutorial



CHAPTER 7 — GETTING THE RIGHT DESIGN

The next several tutorials are designed to help you understand Zinc design and coding
features, which will help you write efficient applications. The source code associated with
this program is located in ZINC\TUTOR\ZINCAPP. It contains the following files:

ZINCAPP.CPP—This file contains the main( ) and WinMain( ) (for Microsoft
Windows) functions. These functions are used to initialize and restore the
application.

ZINCAPP.HPP—This file contains the constant definitions for the display, window,
event, and help messages that are passed through the system when a pop-up item is
selected from the main control window. In addition, this file contains the declarations
for the ZINCAPP_WINDOW_MANAGER, CONTROL_WINDOW, and EVENT_-
MONITOR classes.

CONTROL.CPP—This file contains the following member functions:

CONTROL_WINDOW::CONTROL_WINDOW( )
CONTROL_WINDOW::Event( )
CONTROL_WINDOW::Message( )
ZINCAPP_WINDOW_MANAGER::Event( )
ZINCAPP_WINDOW_MANAGER::ExitFunction( )

These functions are used to create the main control menu and to handle all main
control throughout the application.

SUPPORT.CPP—This file contains the object table that must be compiled with the
application if persistent window objects are to be used.

SUPPORT.DAT—This is a binary data file that contains the help context and
persistent window object information.

SUPPORT.HPP—This file contains the help context constant information used to
associate a help context with a window. This file also contains the persistent object
identification values entered as the stringID field for each object in the .DAT file.

DISPLAY.CPP—This file contains the CONTROL_WINDOW::Option_Display( )
member function. This function is used to change the type of display used.

Chapter 7 — Getting the Right Design 81




EVENT.CPP—This file contains the CONTROL_WINDOW::Option_Event( ) and
EVENT_MONITOR( ) member functions. These functions are used to process all
the messages that are produced when an “Event” menu item is selected from the
main control window.

HELP.CPP—This file contains the CONTROL_WINDOW::Option_Help( )
member function. It processes all the messages that are produced when a “Help”
menu item is selected from the main control window.

BORLAND.MAK, MICROSFT.MAK, and ZORTECH.MAK—These are the
makefiles associated with the virtual list program. You can compile the DOS
version, ZINCAPP.EXE, by typing make -fborland.mak zincapp.exe at
the command line prompt. To make the Windows version, WZINCAPP.EXE, type
make -fborland.mak wzincapp.exe at the command line. (NOTE: When
compiling with either Microsoft or Zortech, substitute the name of that compiler as
the name of the make file on the command line.)

WINDOW.CPP—This file contains the CONTROL_WINDOW::Option_-
Window( ) member function. This function is used to invoke the proper window that
was selected from the main control window.

These functions process all the messages that are produced when a menu item is selected
from the main control window.

Goals

82

The first step in designing an effective application—after you have identified your
audience and the major objectives you want to achieve—is defining the high-level
operation of your program.

The Zinc application program is designed with the following main areas of emphasis:
General control—The goal of this area is to provide a consistent easy-to-use
program that will be familiar to users. This goal is accomplished by providing a
consist interface that conforms to the Common User Access (CUA) standards.
Screen features—The goal of this area is to show the flexible and versatile nature

of the screen display. This goal is accomplished by letting users switch display
modes from text to graphics, or vise versa during the application.

Zinc Interface Library — Programmer’s Tutorial



Window objects—The goal of this area is to show Zinc Interface Library as a
complete user interface package. This goal is accomplished by showing the many
different types of user interface objects that can be created using the library.

Event information—The goal of this area is to show the flexible nature of input
information and the advanced event driven architecture. This goal is accomplished
by showing how input information is entered then processed by objects within the
system.

Help contexts—The goal of this area is to make the application user friendly. This
is accomplished by providing help at every aspect of the application, and by
considering the many different types of help questions a user may have.

High-level design

Once we have identified the major goals and the general methods of implementation, we
need to decide how the information will be presented. The Zinc application program
presents the major areas through a single control window with the items placed as pull-
down items within the window. This window is shown below:

Control Display Window Ewvent Help

From a conceptual level, the main window serves as the control unit to all the areas of
emphasis we have identified by pull-down items. Each sub-module controls the operation
of items within its scope. For example, the main control window may pass control to
some screen features control unit. It, in turn, will either send a message through the
system, requesting that some action be performed, perform the action itself, or pass
control to some other function where the operation can be performed. The representation
of this control can be shown by the figure below.

Chapter 7 — Getting the Right Design 83




program

management
general screen window event help

control features objects information context

Each item has the following options: 1) call function or 2) send message

This model is very consistent, and, when implemented, will be easily understood and
maintained by other programmers.

Implementation

Now that we have the high-level design, let’s look at the implementation details of the
application. This program uses an event driven, object-oriented architecture. The
following provides a conceptual overview to how the program is organized:

1—The controlling window is created, then attached to the window manager. This
window is a class object derived from the base UIW_WINDOW class. Its derivation
from a window allows us to override the Event( ) virtual function to determine what
messages are being passed to the window, and then lets us dispatch those messages
in a clean fashion through class member functions (described later in this chapter).

class CONTROL_WINDOW : public UIW_WINDOW
1
public:
CONTROL_WINDOW (void) ;
virtual EVENT_TYPE Event (const UI_EVENT &event) ;

The constructor is used to set up the window and pop-up menu items. A partial
listing of this initialization is shown below:

CONTROL_WINDOW: : CONTROL_WINDOW () : UIW_WINDOW(0, 0, 76, 6, WOF_NO_FLAGS,
WOAF_LOCKED)

{

// Control menu items.
UI_ITEM controlItems[] =

Zinc Interface Library — Programmer’s Tutorial




{ S_DEINITIALIZE, Message, "&Clear\tShift+F5"
MNIF_NO_FLAGS 1},

{ S_REDISPLAY, Message, "gRefresh\tShift+F6"
MNIF_NO_FLAGS 1},

{0, 0, g
MNIF_NO_FLAGS 1}, // item separator

{ L_EXIT_FUNCTION, Message, "E&xit\tAlt+F4",

MNIF_NO_FLAGS 1},
{0, 0, 0, 0} // End of array.
}i

// Attach the sub-window objects to the control window.
*this
+ new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_SYSTEM_BUTTON (SYF_GENERIC)
new UIW_TITLE("Zinc Application")
& (*new UIW_PULL_DOWN_MENU
+ new UIW_PULL_DOWN_ITEM("&Control", WNF_NO_FLAGS,
controlItems)
+ new UIW_PULL_DOWN_ITEM ("&Display", WNF_NO_FLAGS,
displayItems)
+ & (*new UIW_PULL_DOWN_ITEM ("&Window", WNF_NO_FLAGS)
+ new UIW_PULL_DOWN_ITEM("&Control objects",
WNF_NO_FLAGS, controlObjectItems)
+ new UIW_PULL_DOWN_ITEM("&Input objects", WNF_NO_FLAGS,
inputObjectItems)
+ new UIW_PULL_DOWN_ITEM("&Selection objects",
WNF_NO_FLAGS, selectionObjectItems))
+ new UIW_PULL_DOWN_ITEM ("&Event", WNF_NO_FLAGS, eventItems)
+ new UIW_PULL_DOWN_ITEM ("&Help", WNF_NO_FLAGS, helpItems));

+ + + 4+ +

}

The most important aspect of this construction is the use of the UL_ITEM structures
that contain the definition for all pull-down items. Each pull-down item has an
associated UI_ITEM array. The elements of this array are:

 the internal message that will be passed through the system. This is the first
field in the UI_ITEM structure. For example, the first Control menu item
(Clear) contains the message S_DEINITIALIZE. This message will be passed
through the system whenever the Control | Clear menu item is selected.

e the static member function that is called when the user selects a menu item. All
menu items specify CONTROL_WINDOW::Message( ) as their user-function.
This function is responsible for the actual dispatching of messages via the event
manager.

 the string information to be displayed to the screen. In the case of the Clear

menu item this string is *“~Clear\tShift+F5”. (The “Shift+F5" portion of the
string is discussed later in this chapter.)

Chapter 7 — Getting the Right Design 85

!




2—The window manager dispatches all messages to the front window (in our case
the main control window). When the main control window receives its input it
dispatches the information according to its logical type.

The class members responsible for the first sub-level of control are shown below:

class CONTROL_WINDOW : public UIW_WINDOW
{
protected:
void OptionDisplay (EVENT_TYPE item) ;
void OptionEvent (EVENT_TYPE item) ;
void OptionHelp (EVENT_TYPE item) ;
void OptionWindow (EVENT_TYPE item) ;
}:

In our application there are four types of messages that can be received:

Display option messages—These types of messages are generated when a
“Display”” menu item has been selected from the main control window. They
are processed by the OptionDisplay( ) member function.

Window option messages—These types of messages are generated when a
“Window™ menu item has been selected from the main control window. They
are processed by the OptionWindow( ) member function.

Event option messages—These types of messages are generated when an
“Event” menu item has been selected from the main control window. They are
processed by the OptionEvent( ) member function.

Help option messages—These types of messages are generated when a “Help”
menu item has been selected from the main control window. They are processed
by the OptionHelp( ) member function.

All other messages are passed to the UIW_WINDOW::Event( ) member function
for processing.

NOTE: The control option messages are automatically processed by the window
manager since they are operations that it knows how to handle.

3—When an option member function is selected, it has the option of either sending
a message back through the system, or of calling another member function that is
appropriate based on the type of message. For example, the “Display control”
function (OptionDisplay) sends a message through the system rather than resetting
the display itself:

Zinc Interface Library — Programmer’s Tutorial



void CONTROL_WINDOW: :OptionDisplay (EVENT_TYPE item)
{
#ifndef _Windows

// Set up the default event.

UI_EVENT event (S_RESET_DISPLAY, TDM_NONE) ;

// Decide on the new display type.

if (item == MSG_25x40_MODE)

: event .rawCode = TDM_25x40;

else if (item == MSG_25x80_MODE)
event.rawCode = TDM_25x80;

else if (item == MSG_43x80_MODE)
event .rawCode = TDM_43x80;

// Send a message to reset the display.
// (Code resides in main program loop) .
eventManager->Put (event) ;

#endif

}

The Event control function (OptionEvent), on the other hand, creates an event
monitor class object and attaches it directly to the window manager. No additional
messaging is required.

The implementation details of each menu item is given in the next five tutorial chapters.
These chapters are organized in the following manner:

“Chapter 8—Control Options™ contains information about program flow when one
of the “Control” menu items is selected from the main control window.

“Chapter 9—Display Options” contains information about program flow when one
of the “Display” menu items is selected from the main control window.

“Chapter 10—Window Options” contains information about program flow when one
of the “Window” menu items is selected from the main control window.

“Chapter 11—Event Options” contains information about program flow when one
of the “Event” menu items is selected from the main control window.

“Chapter 12—Help Options™ contains information about program flow when one of
the “Help”” menu items is selected from the main control window.

The remaining parts of this chapter address the implementation of accelerator keys and

a brief discussion of how structured programming is often used with Zinc Interface
Library.

Accelerator keys

There are four accelerator keys defined for this program:

Chapter 7 — Getting the Right Design 87




<Shift+F5>—Pressing this key combination causes all but the main control window
to be removed from the screen.

<Shift+F6>—Pressing this key combination causes the window manager to clear the
screen and redisplay each window that is attached to the window manager’s list of
window objects.

<Alt+F4>—Pressing this key combination causes the exit application window to
appear on the screen.

The accelerator keys are implemented in the CONTROL_WINDOW::Event( ) function.

EVENT_TYPE CONTROL_WINDOW: : Event (const UI_EVENT &event)

{

}

// Check for an accelerator key.

EVENT_TYPE ccode = event.type;

if (ccode == L_EXIT_FUNCTION)
eventManager7>Put(UI#EVENT(L_EXIT_FUNCTION));

if (ccode == E_KEY)
{
// Define the set of accelerator keys.
static struct ACCELERATOR_PAIR
i
RAW_CODE rawCode;
LOGICAL_EVENT logicalType;
} acceleratorTable[] =
{

{ SHIFT_F5, S_DEINITIALIZE },
{ SHIFT_F6, S_REDISPLAY }
{ ALT_F4, L_EXIT_FUNCTION },
{0 1@ Ok // End of array.
}i
for (int i = 0; acceleratorTable[i].rawCode; i++)
if (event.rawCode == acceleratorTable[i] .rawCode)
{
UI_EVENT tEvent (acceleratorTable[i] .logicalType);
eventManager->Put (tEvent); // Put the accelerator key
return (ccode); // into the system.

}

// Process the event according to its type.
if (ccode >= MSG_HELP)

OptionHelp (event.type) ; // Help menu option selected.
else if (ccode >= MSG_EVENT)

OptionEvent (event.type) ; // Event menu option selected.
else if (ccode >= MSG_WINDOW)

OptionWindow (event.type) ; // Window menu option selected.
else if (ccode >= MSG_DISPLAY)

OptionDisplay (event.type) ; // Display menu option selected.
else

ccode = UIW_WINDOW::Event (event) ; // Unknown event.

// Return the control code.
return (ccode);

This implementation is described by the following steps:

Zinc Interface Library — Programmer’s Tutorial




1—The Event( ) function receives all input from the window manager.

2—If the event is a normal key the control window searches its list of raw-
code/logical type pairs. The definition of the four accelerator keys is given by the
acceleratorTable static array (shown above).

3—If an accelerator key is detected, its logical value is placed into the event
manager. This value is later interpreted by the window manager, when the main
program loop gets the next key using eventManager->Get( ).

NOTE: The accelerator keys described above are only available when the main control
window is at the front of the screen. The accelerator implementation given above only
applies to the scope for which it applies.

Structured programming

Quite often, structured programming techniques are used to program with Zinc Interface
Library. If this program were re-written to incorporate this type of programming, each
menu item could be assigned a function that was executed when the item was selected.
Here is some sample code that shows how the “Display, Help” options specified in the
CONTROL_WINDOW constructor could be re-written to call specific help functions
rather than calling a message passing function, as is currently employed. (This code is
not contained in any of the ZincApp program files. It is presented as a conceptual
alternative.)

CONTROL_WINDOW: : CONTROL_WINDOW (void) :
UIW_WINDOW(O, 0, 52, 13, WOF_NO_FLAGS, WOAF_LOCKED)
{
extern EVENT_TYPE HelpKeyboard(UI_WINDOW_OBJECT *item, UI_EVENT &event,
EVENT_TYPE ccode) ;
extern EVENT_TYPE HelpMouse (UI_WINDOW_OBJECT *item, UI_EVENT &event,
EVENT_TYPE ccode) ;
extern EVENT_TYPE HelpCommands (UI_WINDOW_OBJECT *item, UI_EVENT &event,
EVENT_TYPE ccode) ;
extern EVENT_TYPE HelpProcedures (UI_WINDOW_OBJECT *item,
UI_EVENT &event, EVENT_TYPE ccode) ;
extern EVENT_TYPE HelpHelp (UI_WINDOW_OBJECT *item, UI_EVENT &event,
EVENT_TYPE ccode) ;
extern EVENT_TYPE HelpZincApp (UI_WINDOW_OBJECT *item, UI_EVENT &event,
EVENT_TYPE ccode) ;

Chapter 7 — Getting the Right Design 89




UI_ITEM help[] = // Help menu items.
{

& 0y HelpKeyboard, "&Keyboard", MNIF_NO_FLAGS 1},

{ 0, HelpMouse, "&Mouse", MNIF_NO_FLAGS 1},

{ 0, HelpCommands, "&Commands", MNIF_NO_FLAGS 1},

{0, HelpProcedures, "&Procedures", MNIF_NO_FLAGS 1},

{0, HelpObjects, "&Objects", MNIF_NO_FLAGS },

{ 0, HelpHelp, "&Using help", MNIF_NO_FLAGS },

{ 0, a., ., 0 }, // item separator
{0, HelpZincApp, "§About ZincApp...", MNIF_NO_FLAGS 1},
{0, 0., 0, 0 } // end of array

}

You can see how each item could have an associated function that performed a particular
operation based on the type of menu item that was selected. To implement this design
throughout the program, we would need to define functions for each of the menu items
specified in the main control window. Here is an example of how the HelpIndex( )
function might be implemented:

EVENT_TYPE HelpKeyboard (UI_WINDOW_OBJECT *item, UI_EVENT &event,
EVENT_TYPE ccode)
{

}

item->helpSystem->DisplayHelp (item->windowManager, HELP_KEYBOARD) ;

While this method of implementation works, it has several drawbacks:

1—It causes you to have a lot of duplicate definitions and operations. You can see
from the help example above, it would take seven functions to do the work the
CONTROL_WINDOW::Option_Help( ) function did. This wastes compiler time
and executable space.

2—1It forces you back into a structured method of programming. Learning an eve
nt driven architecture takes time. It can become very confusing if the application you
write contains elements of an event driven system and elements of structured
programming methods.

3—1It doubles the effort of Zinc Interface Library. Since Zinc is based on an event
driven architecture, a structured functions approach implements a second type of
design architecture. This increases the amount of time and effort involved in creating
and debugging your applications.

There are many advantages to the object-oriented, event driven architecture employed by

Zinc Interface Library. As you work with the library, you will begin to see how these
features combine to make a powerful, consistent library architecture.

Zinc Interface Library — Programmer’s Tutorial



CHAPTER 8 — CONTROL OPTIONS

The ZincApp program’s control options are shown under the “Control” menu item:

. Display Window Event Help

The array used to initialize these options is defined in the CONTROL_WINDOW
constructor. It contains the following information:

CONTROL_WINDOW: : CONTROL_WINDOW () : UIW_WINDOW(O, O, 76, 6, WOF_NO_FLAGS,
WOAF_LOCKED)
{
// Control menu items.
UI_ITEM controlItems[] =
{

{ S_DEINITIALIZE, Message, "&Clear\tShift+F5"
MNIF_NO_FLAGS 1},

{ S_REDISPLAY, Message, "&Refresh\tShift+F6"
MNIF_NO_FLAGS 1},

{0, 0, i // item separator

{ L_EXIT_FUNCTION, Message, "E&xXIit\tAlt+F4",

MNIF_NO_FLAGS 1},
{0, 0, 0, 0} // End of array.
}i

// Attach the sub-window objects to the control window.
*this
+ new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_SYSTEM_BUTTON (SYF_GENERIC)
new UIW_TITLE ("Zinc Application")
& (*new UIW_PULL_DOWN_MENU
+ new UIW_PULL_DOWN_ITEM("&Control", WNF_NO_FLAGS,
controlItems)
+ new UIW_PULL_DOWN_ITEM("&Display", WNF_NO_FLAGS,
displayItems)
+ &(*new UIW_PULL_DOWN_ITEM ("&Window", WNF_NO_FLAGS)
+ new UIW_PULL_DOWN_ITEM("&Control objects",
WNF_NO_FLAGS, controlObjectItems)
+ new UIW_PULL_DOWN_ITEM("&Input objects", WNF_NO_FLAGS,
inputObjectItems)
+ new UIW_PULL_DOWN_ITEM("&Selection objects",
WNF_NO_FLAGS, selectionObjectItems))

+ 4+ + + +

Chapter 8 — Control Options 91




+ new UIW_PULL_DOWN_ITEM("&Event", WNF_NO_FLAGS, eventItems)
+ new UIW_PULL_DOWN_ITEM("&Help", WNF_NO_FLAGS, helpItems));

Control program flow

When a control option is selected, it is handled in five major steps. A complete
explanation of these steps follows (the corresponding steps are shown by the circled
numbers in the figure):

,,,,,,, >{ UI_EVENT_MANAGER J

e
C MAIN PROGRAM CONTROL D
ad < + {7
3 [ ZINCAPP_WINDOW_MANAGER |

3b) Control Window
Clear
Refresh screen
Exit
1
3a) * &
event information (2
- { CONTROL_WINDOW::Message }

1—The CONTROL_WINDOW::Message( ) function is called by the UIW_POP_-
UP_ITEM::Event( ) function. (The pop-up item inherits the code below from the
UIW_BUTTON class.)

EVENT_TYPE UIW_BUTTON: :Event (const UI_EVENT &event)
{

case L_SELECT:
case L_END_SELECT:
UI_EVENT tEvent = event;
if (userFunction)
(*userFunction) (this, tEvent, ccode);

The arguments passed to Message( ) are a pointer to the selected control option
(this), a copy of the event that caused the user function to be called (tEvent), and the
logical interpretation (ccode) of the event that caused Event( ) to be called. (NOTE:

Zinc Interface Library — Programmer’s Tutorial



the variable tEvent needs to be a copy of event since event is a constant variable
whose values cannot be modified.)

2—The CONTROL_WINDOW::Message( ) function sends a request to remove the
temporary control options menu by sending an S_CLOSE_TEMPORARY message
through the system via the event manger. It then sends the control request through
the system by setting event.type to be the menu item’s value (i.e., the S_RE-
DISPLAY, S_CASCADE or L_EXIT values defined in the controlOptions array) and
then by sending another message through the system.

EVENT_TYPE CONTROL_WINDOW: :Message (UI_WINDOW_OBJECT *data,
UI_EVENT &event, EVENT_TYPE ccode)
{
if (ccode == L_SELECT)
{
for (UI_WINDOW_OBJECT *tObject = object->windowManager->First();
tObject && FlagSet (tObject->woAdvancedFlags,
WOAF_TEMPORARY) ; tObject = tObject->Next ());
object->eventManager->Put (UI_EVENT (S_CLOSE_TEMPORARY) ) ;
event.type = ((UIW_POP_UP_ITEM *)object)->value;
object->eventManager->Put (event) ;
}
return (ccode);

}

3—Control returns to the main loop by first exiting CONTROL_WINDOW::-
Message( ) and then by exiting the UTW_POP_UP_ITEM, CONTROL_WINDOW,
and UL_WINDOW_MANAGER classes’ Event( ) virtual functions.

| UIL_EVENT_MANAGER ‘
(4a) (5a) —P
3 MAIN PROGRAM CONTROL )
, @b
3¢ ‘ ZINCAPP_WINDOW_MANAGER—‘
5b)

Control Window

4—The main loop picks up the program generated messages by calling event-
Manager->Get( ). The first message received is S_CLOSE_TEMPORARY. This

Chapter 8 — Control Options 93




message is handled by the window manager and causes the control options to be
removed from the screen.

5—The second message received is the control message determined by the selected
menu item. This message is passed to the window manager by calling window-
Manger->Event( ). The window manager performs the following actions according
to the type of message:

S_CLEAR—Causes all but the main control window to be removed from the
screen.

S_REDISPLAY—Causes the window manager to clear the screen and redisplay
each window that is attached to the window manager’s list of window objects.

L_EXIT FUNCTION—The window manager calls the CONTROL._-
WINDOW::Exit( ) function which displays an exit window on the screen. A
picture of this window is shown below:

This will close the Zinc Application.

If the user selects “OK” an L_EXIT message is sent through the system via the
event manager. The main program uses the L_EXIT to break from its main loop
and exit the application.

// Wait for user response.
EVENT_TYPE ccode;

do

{

} while (ccode != S_NO_OBJECT && ccode != L_EXIT);

Since the window manager recognizes and processes all of these messages, no control
is passed to the control window; rather, program flow returns to the main loop.

Zinc Interface Library — Programmer’s Tutorial




The most interesting part of the flow information discussed above is how CONTROL_-
WINDOW::Message( ) generates an event that is later interpreted by the window
manager and that the message requires no special handling on our part. This control
works correctly because the events are passed through the system via the event manager.

Chapter 8 — Control Options 95




96 Zinc Interface Library — Programmer’s Tutorial



CHAPTER 9 - DISPLAY OPTIONS

The ZincApp program’s display options are shown under the “Display” menu item:

Control Window Event Help

2-25x80 text mode
3-(43/50)x80 text mode
4-Graphics mode

The array used to initialize these options is defined in the CONTROL_WINDOW
constructor. It contains the following information:

UI_ITEM displayItems[] =
{
#ifdef _Windows

{ MSG_25x40_MODE, Message, "&1-25%x40 text mode",
MNIF_NON_SELECTABLE },

{ MSG_25x80_MODE, Message, "&2-25x80 text mode",
MNIF_NON_SELECTABLE },

{ MSG_43x80_MODE, Message, "&3-(43/50)x80 text mode",
MNIF_NON_SELECTABLE },

{ MSG_GRAPHICS_MODE, Message, "&4-Graphics mode",
MNIF_NON_SELECTABLE },

{ MSG_WINDOWS_MODE, Message, "&5-Windows 3.x mode",
MNIF_NO_FLAGS 1},

ftels

{ MSG_25x40_MODE, Message, "&1-25x40 text mode",
MNIF_NO_FLAGS 1},

{ MSG_25x80_MODE, Message, "&2-25%80 text mode",
MNIF_NO_FLAGS 1},

{ MSG_43x80_MODE, Message, "&3-(43/50)x80 text mode",
MNIF_NO_FLAGS 1},

{ MSG_GRAPHICS_MODE, Message, "&4-Graphics mode",
MNIF_NO_FLAGS 1},

{ MSG_WINDOWS_MODE, Message, "&5-Windows 3.x mode",
MNIF_NON_SELECTABLE 1},

fendif
{0, 0, 0h0,0} // End of array.

}i

// Attach the sub-window objects to the control window.
*this
+ new UIW_BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE_BUTTON

new UIW_SYSTEM_BUTTON (SYF_GENERIC)

new UIW_TITLE("Zinc Application")

& (*new UIW_PULL_DOWN_MENU
+ new UIW_PULL_DOWN_ITEM("&Control", WNF_NO_FLAGS, controlItems)
+ new UIW_PULL_DOWN_ITEM("&Display", WNF_NO_FLAGS, displayItems)
+ & (*new UIW_PULL_DOWN_ITEM ("&Window", WNF_NO_FLAGS)

+ 4+ + + +

Chapter 9 — Display Options 97




new UIW_PULL_DOWN_ITEM("&Control objects", WNF_NO_FLAGS,
controlObjectItems)
+ new UIW_PULL_DOWN_ITEM ("&Input objects", WNF_NO_FLAGS,
inputObjectItems)
+ new UIW_PULL_DOWN_ITEM("&Selection objects", WNF_NO_FLAGS,
selectionObjectItems))
+ new UIW_PULL_DOWN_ITEM("&Event", WNF_NO_FLAGS, eventItems)
+ new UIW_PULL_DOWN_ITEM("&Help", WNF_NO_FLAGS, helpItems)) ;

Display program flow

When a display option is selected, initial program flow is handled the same way that the
control options are handled. At the fifth step however, program flow is directed to the
Options_Display( ) member function.

A complete explanation of this flow follows (the corresponding steps are shown by the
circled numbers in the figure):

,,,,,,, >[ UI_EVENT_MANAGER J

;i>
MAIN PROGRAM CONTROL
B -

3¢ ‘ ZINCAPP4W|NDOW_MANAGERJ

* 3 y

3b Control Window
25 x 40
25x 80
43 x 80
Graphics 1

, & o v
event information (2 l
= | | CONTROL_WINDOW::Message ‘

1—The CONTROL_WINDOW::Message( ) function is called by the UIW_POP_-
UP_ITEM::Event( ) function. (The pop-up item inherits the code below from the
UIW_BUTTON class.)

EVENT_TYPE UIW_BUTTON: : Event (const UI_EVENT &event)
{

case L_SELECT:
case L_END_SELECT:
UI_EVENT tEvent = event;

Zinc Interface Library — Programmer’s Tutorial



if (userFunction)
(*userFunction) (this, tEvent, ccode);

The arguments passed to Message( ) are a pointer to the selected display option
(this), a copy of the event that caused the user function to be called (tEvent), and the
logical interpretation (ccode) of the event that caused Event( ) to be called. (NOTE:
the variable tEvent needs to be a copy of event since event is a constant variable
whose values cannot be modified.)

2—The CONTROL_WINDOW::Message( ) function sends a request to remove the
temporary display options menu by sending an S_CLOSE_TEMPORARY message
through the system via the event manger. It then sends the display request through
the system by setting event.fype to be the menu item’s value (i.e., one of the
MSG_DISPLAY values defined in the displayOptions array) and sending this
message through the system.

EVENT_TYPE CONTROL_WINDOW: :Message (UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode)
{
if (ccode == L. SELECT)
{
for (UI_WINDOW_OBJECT *tObject = object->windowManager->First();
tObject && FlagSet (tObject->woAdvancedFlags,
WOAF_TEMPORARY) ;
tObject = tObject->Next ())
object->eventManager->Put (UI_EVENT (S_CLOSE_TEMPORARY) ) ;
event.type = ((UIW_POP_UP_ITEM *)object)->value;
object->eventManager->Put (event) ;
}
return (ccode);

}

3 Control returns to the main loop by first exiting CONTROL_WINDOW::-
Message( ) and then by exiting the U'W_POP_UP_ITEM, CONTROL_WINDOW,
and UL WINDOW_MANAGER classes’ Event( ) virtual functions.

Chapter 9 — Display Options 99




‘ UI_EVENT_MANAGER ‘
4a — 5a
( MAIN PROGRAM CONTROL )
3d -«
ap
3c ‘ ZINCAPP_WINDOW_MANAGER ‘ 6

Control Window 5¢

v

’CONTROL_WINDOW::Message 6

4—The main loop picks up the program generated messages by calling event-
Manager->Get( ). The first message received is S_CLOSE_TEMPORARY. This
message is handled by the window manager and causes the display options to be
removed from the screen.

5—The second message received is the display message determined by the selected
menu item. This message is passed by the main loop to the window manager, then
is dispatched by the window manager to CONTROL_WINDOW::Event( ) since the
control window is the front window on the screen. The control window evaluates
event.type (in this case a MSG_DISPLAY message)—resulting in the Option-
Display( ) member function being called.

The code responsible for this control is shown below:

EVENT_TYPE CONTROL_WINDOW: : Event (const UI_EVENT &event)
{

// Process the event according to its type.
if (ccode >= MSG_HELP)

OptionHelp (event.type) ; // Help menu option selected.
else if (ccode >= MSG_EVENT)

OptionEvent (event.type) ; // Event menu option selected.
else if (ccode >= MSG_WINDOW)

OptionWindow (event.type) ; // Window menu option selected.
else if (ccode >= MSG_DISPLAY)

OptionDisplay(event.type); // Display menu option selected.
else

ccode = UIW_WINDOW: :Event (event) ; // Unknown event.

Zinc Interface Library — Programmer’s Tutorial



// Return the control code.
return (ccode);

}

6—The OptionDisplay( ) member function evaluates item’s value (passed down
through the item argument) to determine which type of display has been requested.
At this stage however, no display is re-created. Instead, an S_RESET_DISPLAY is
generated and passed through the system. The operation of creating and deleting
displays must be handled at the highest level of the program since that is the place
where the display object was initialized and the place where the display is destroyed
(when the scope of main ends). The following code shows how this message is sent.

void CONTROL_WINDOW: :OptionDisplay (EVENT_TYPE item)
{
#ifndef _Windows

// Set up the default event.

UI_EVENT event (S_RESET_DISPLAY, TDM_NONE) ;

// Decide on the new display type.

if (item == MSG_25x40_MODE)
event .rawCode = TDM_25x40;
else if (item == MSG_25x80_MODE)

event .rawCode = TDM_25x80;
else if (item == MSG_43x80_MODE)
event .rawCode = TDM_43x80;

// Send a message to reset the display.
// (Code resides in main program loop) .
eventManager->Put (event) ;

fendif

3

7—Control returns once again to the main program loop by exiting the associated
Event( ) functions (see step 3).

| UI_EVENT_MANAGER

—
C MAIN PROGRAM CONTROL D@
) - *

(ZINCAPFLWINDOW,MANAGER |

8—The main loop picks up the S_RESET_DISPLAY message by calling event-
Manager->Get( ). This message causes the program to:

A—Tell the event and window managers that the old display is about to be

deleted. This allows the managers to un-initialize any display dependent
information they may have.

Chapter 9 — Display Options 101




B—The new display is constructed. The type of display is determined by
event.rawCode.

C—After the display has been reset, we must set event.data to point to the new
display object and call the event and window managers so they can re-initialize
themselves according to the new display and coordinate system.

The code associated with this process is shown below. (This code is taken from the
main( ) function.)

// Wait for user response.
EVENT_TYPE ccode;

do
{
// Get input from the user.
UI_EVENT event;
eventManager->Get (event) ;
// Check for a screen reset message.
if (event.type == S_RESET_DISPLAY)
{
event.data = NULL;
windowManager->Event (event) ; // Tell the managers we are
eventManager->Event (event) ; // changing the display.
delete display;
if (event.rawCode == TDM_NONE)
#if defined(___BCPLUSPLUS__ ) | defined(__TCPLUSPLUS_ )
display = new UI_BGI_DISPLAY;
#endif
#ifdef __ZTC__
display = new UI_FG_DISPLAY;
#endif
#ifdef _MSC_VER
display = new UI_MSC_DISPLAY;
#endif
else
display = new UI_TEXT_DISPLAY (event.rawCode) ;
if (!display->installed)
{
delete display;
display = new UI_TEXT_DISPLAY;
}
event.data = display;
eventManager->Event (event) ; // Tell the managers we
ccode = windowManager->Event (event) ; // changed the display.
}
else
ccode = windowManager->Event (event) ;
} while (ccode != L_EXIT && ccode != S_NO_OBJECT) ;

Zinc Interface Library — Programmer’s Tutorial




If you carefully examine the CONTROL_WINDOW::OptionDisplay( ) member function
and the code in the main program loop, you may recognize that we could have removed
the OptionDisplay( ) function if we were to intercept all MSG_DISPLAY messages in
the main loop. The reason we did not put the display code in the main loop is mainly an
issue of consistency. Up until this point, we have let the control window and associated
member functions handle the program specific messages. In this case we are generating
a system message from the display member function, then intercepting the request at the
main level before letting the window manager process it.

Chapter 9 — Display Options 103




104 Zinc Interface Library — Programmer’s Tutorial



CHAPTER 10 — WINDOW OPTIONS

The ZincApp program’s window options are shown under the “Window” menu item:

Control Display

Control objects
~ Input objects

|__le window...
Menu window...
Tool Bar window...

The array used to initialize these options is defined in the CONTROL_WINDOW
constructor. It contains the following information:

// Input window object menu items.
UI_ITEM inputObjectItems([] =
{

{ MSG_DATE_WINDOW, Message, "&Date window...", MNIF_NO_FLAGS 1},
{ MSG_NUMBER_WINDOW, Message, "&Number window...",MNIF_NO_FLAGS },
{ MSG_STRING_WINDOW, Message, "&String window...",MNIF_NO_FLAGS },
{ MSG_TEXT_WINDOW, Message, "&Text window...", MNIF_NO_FLAGS 1},
{ MSG_TIME_WINDOW, Message, "&Time window...", MNIF_NO_FLAGS 1},
{ 0, 0, 0, 0} // End of array.

}i

// Selection window object menu items.
UI_ITEM selectionObjectItems[] =
{

{ MSG_COMBO_BOX_WINDOW, Message, "&Combo Box window...", MNIF_NO_FLAGS },
{ MSG_LIST_WINDOW, Message, "§¢List window...", MNIF_NO_FLAGS 1},
{ MSG_MENU_WINDOW, Message, "&Menu window...", MNIF_NO_FLAGS 1},
{ MSG_TOOL_BAR_WINDOW, Message, "&Tool Bar window...", MNIF_NO_FLAGS 1},
{

0, 0, 0, 0} // End of array.
bi

// Control window object menu items.
UI_ITEM controlObjectItems[] =
{

{ MSG_BUTTON_WINDOW, Message, "&Button window...", MNIF_NO_FLAGS 1},
{ MSG_GENERIC_WINDOW, Message, "&Generic window...", MNIF_NO_FLAGS 1},
{ MSG_ICON_WINDOW, Message, "&Icon window...", MNIF_NO_FLAGS },
{ MSG_MDI_WINDOW, Message, "&MDI window...", MNIF_NO_FLAGS 1},
{

0, 0, 0, 9} // End of array.
}:

// Attach the sub-window objects to the control window.
*this

+ new UIW_BORDER

+ new UIW_MAXIMIZE_BUTTON

+ new UIW_MINIMIZE_BUTTON

+ new UIW_SYSTEM_BUTTON (SYF_GENERIC)

Chapter 10 — Window Options 105




+ new UIW_TITLE("Zinc Application")
+ & (*new UIW_PULL_DOWN_MENU
+ new UIW_PULL_DOWN_ITEM("&Control", WNF_NO_FLAGS, controllItems)
+ new UIW_PULL_DOWN_ITEM("&Display", WNF_NO_FLAGS, displaylItems)
+ &(*new UIW_PULL_DOWN_ITEM("&Window", WNF_NO_FLAGS)
+ new UIW_PULL_DOWN_ITEM("&Control objects", WNF_NO_FLAGS,
controlObjectItems)
+ new UIW_PULL_DOWN_ITEM("&Input objects", WNF_NO_FLAGS,
inputObjectItems)
+ new UIW_PULL_DOWN_ITEM("&Selection objects", WNF_NO_FLAGS,
selectionObjectItems))
+ new UIW_PULL_DOWN_ITEM("&Event", WNF_NO_FLAGS, eventItems)
+ new UIW_PULL_DOWN_ITEM("&Help", WNF_NO_FLAGS, helplItems));

Window program flow

When a window option is selected, initial program flow is handled the same way that the
display options are handled. At the fifth step however, program flow is directed to the
OptionsWindow( ) member function. A complete explanation of this flow follows (the
corresponding steps are shown by the circled numbers in the figure):

_______ B ULEVENT MANAGER |
—{>
C MAIN PROGRAM CONTROL )
3d — * %7
3c ‘ ZINCAPP_WINDOW_MANAGER ‘
3b Control Window
Control Objects  »
Input Objects >
Selection Objects »
1)
3a + %
event information (2 |
- | CONTROL_WINDOW::Message ‘

1—The CONTROL_WINDOW::Message( ) function is called by UIW_POP_UP_-

ITEM::Event( ). (The pop-up item inherits this calling sequence from the UIW_-
BUTTON class.)

EVENT_TYPE UIW_BUTTON: :Event (const UI_EVENT &event)
{

106 Zinc Interface Library — Programmer’s Tutorial



case L_SELECT:
case L_END_SELECT:
UI_EVENT tEvent = event;
if (userFunction)
(*userFunction) (this, tEvent, ccode);

The arguments passed to Message( ) are a pointer to the selected window option
(this), a copy of the event that caused the user function to be called (tEvent), and the
logical interpretation (ccode) of the event that caused Event( ) to be called. (NOTE:
the variable tEvent needs to be a copy of event since event is a constant variable
whose values cannot be modified.)

2—The CONTROL_WINDOW::Message( ) function sends a request to remove the
temporary window options menu by sending an S_CLOSE_TEMPORARY message
through the system via the event manger. It then sends the window request through
the system by setting event.type to be the menu item’s value (i.e., one of the
ZINCAPP_WINDOW values defined in the windowOptions array) and then by
sending another message through the system.

EVENT_TYPE CONTROL_WINDOW: :Message (UI_WINDOW_OBJECT *data,
UI_EVENT &event, EVENT_TYPE ccode)
{
if (ccode == L_SELECT)
{
for (UI_WINDOW_OBJECT *tObject = object->windowManager->First();
tObject && FlagSet (tObject->woAdvancedFlags,
WOAF_TEMPORARY) ;
tObject = tObject->Next ())
object->eventManager->Put (UI_EVENT (S_CLOSE_TEMPORARY)) ;
event.type = ((UIW_POP_UP_ITEM *)object)->value;
object->eventManager->Put (event) ;
}
return (ccode) ;

}

3—Control returns to the main loop by first exiting CONTROL_WINDOW::-
Message( ) and then by exiting the UIW_POP_UP_ITEM, CONTROL_WINDOW,
and UI_EVENT_MANAGER classes’ Event( ) virtual functions.

Chapter 10 — Window Options 107




, UI_EVENT_MANAGER '

4a — 5a
C MAIN PROGRAM CONTROL
e N
4b

3c ’ ZINCAPP_WINDOW?MANAGER}

3b Control Window

R |

3a CONTROL?WINDOW::Option_Window{ 6

4—The main loop picks up the program generated messages by calling event-
Manager->Get( ). The first message received is S_CLOSE_TEMPORARY. This
message is handled by the window manager and causes the window options to be
removed from the screen.

5—The second message received is the window request determined by the selected
menu item. This message is passed by the main loop to the window manager, then
dispatched by the window manager to CONTROL_WINDOW::Event( ) since the
control window is the front window on the screen. The control window evaluates
event.type (in this case a MSG_WINDOW message)—resulting in the Option_-
Window( ) member function being called.

The code responsible for this control is shown below:

EVENT_TYPE CONTROL_WINDOW: : Event (const UI_EVENT &event)
{

// Process the event according to its type.
if (ccode >= MSG_HELP)

OptionHelp (event.type) ; // Help menu option selected.
else if (ccode >= MSG_EVENT)

OptionEvent (event.type) ; // Event menu option selected.
else if (ccode >= MSG_WINDOW)

OptionwWindow (event.type) ; // Window menu option selected.
else if (ccode >= MSG_DISPLAY)

OptionDisplay (event.type) ; // Display menu option selected.
else

ccode = UIW_WINDOW: :Event (event) ; // Unknown event.

Zinc Interface Library — Programmer’s Tutorial



// Return the control code.
return (ccode) ;

6—The Option_Window( ) member function evaluates the item’s value (passed
down through the item argument) to determine which type of window has been
requested. It then calls the associated member function that constructs the window.
The new window is attached to the window manager using the + operator overload.
The following code shows how this is done:

void CONTROL_WINDOW: :OptionWindow (EVENT_TYPE item)
{
// Get the specified window.
UI_WINDOW_OBJECT *object = NULL;
switch(item)
{
case MSG_COMBO_BOX_WINDOW:
object = WindowComboBox () ;
break;

case MSG_DATE_WINDOW :
object = WindowDate() ;
break;

case MSG_GENERIC_WINDOW :
object = WindowGeneric();
break;

case MSG_TICON_WINDOW :
object = WindowIcon() ;

break;

case MSG_LIST_WINDOW:
object = WindowList () ;
break;

case MSG_MENU_WINDOW :
object = WindowMenu () ;
break;

case MSG_NUMBER_WINDOW:
object = WindowNumber () ;
break;

case MSG_STRING_WINDOW:
object = WindowString() ;
break;

case MSG_TEXT_WINDOW:
object = WindowText () ;
break;

case MSG_TIME_WINDOW :
object = WindowTime () ;
break;

case MSG_BUTTON_WINDOW:
object = WindowButton() ;
break;

case MSG_TOOL_BAR_WINDOW:

object = WindowToolBar () ;
break;

Chapter 10 — Window Options 109




case MSG_MDI_WINDOW:
object = WindowMDI () ;
break;

}

// Add the window object to the window manager.
if (object)
*windowManager + object;
}

You may have noticed that the object variable is defined to be a UL WINDOW _-

OBJECT pointer instead of a UIW_WINDOW pointer. This generic declaration

allows us to expand the program to attach other non-window objects (e.g., an icon).
At this point the new window is displayed on the screen and it becomes the front window
of the application. All subsequent events are processed by the new window until a change
is requested by the end-user. A description of the types of windows presented in this
menu item follows:

Generic—This window shows the basic window objects that are usually provided as
default objects to a window. These objects include:

e the window’s border (UIW_BORDER),

* the maximize button (UIW_MAXIMIZE_BUTTON),

* the minimize button (UIW_MINIMIZE_BUTTON),

* system button (UIW_SYSTEM_BUTTON), and

* the title bar (UIW_TITLE).

In this function, the window is created by calling the constructors for each individual
window objects. The operations performed in this function are equivalent to calling

UIW_WINDOW::Generic( ).

Button—This window shows the different types of buttons that can be used: regular
buttons, radio buttons, check boxes, and bitmapped buttons.

Combo box—This window shows two combo box objects. One of the combo boxes
was implemented with string objects and the other with bitmapped buttons.

Date—This window shows the many variations available with the date class object.

Icon—This window shows several types of icon images that can either be attached
to a parent window, or directly to the screen.

Zinc Interface Library — Programmer’s Tutorial




List—This window shows the implementation of both a horizontal and a vertical list.

MDI window—This window was implemented as an MDI parent window that
contains an MDI child window as well as some minimized windows.

Menu—This window shows the use of pull-down and pop-up menus. The source
code shows you how to create and attach pull-down and pop-up items into their
respective pull-down and pop-up menus.

Number—This window shows several implementations of the UIW_BIGNUM,
UIW_INTEGER, and UIW_REAL class objects.

String—This window shows several types of string objects that can be created with
Zinc Interface Library. These objects include the basic UTW_STRING object, two
types of UIW_FORMATTED_STRING class objects, and a multi-line text field
(UIW_TEXT) that only occupies part of its parent window.

Text—This window shows a full-window implementation of a UIW_TEXT object
and an associated vertical scroll bar.

Time—This window shows the many variations that can be used with the UIW_-
TIME class object.

Tool bar—This window shows a tool bar object that contains various window
objects.

Chapter 10 — Window Options 111




112 Zinc Interface Library — Programmer’s Tutorial



CHAPTER 11 — EVENT OPTIONS

The ZincApp program’s event option is shown under the “Event” menu item:

Control Display Window

The array used to initialize this option is defined in the CONTROL_WINDOW
constructor. It contains the following information:

UI_ITEM eventOptions[] =
{

{ MSG_EVENT_MONITOR, CONTROL_WINDOW: :Message, "“Event monitor"
MNIF_NO_FLAGS 1},
{0, 0, 01} // end of array

}i

// Attach the sub-window objects to the control window.
*this
+ new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_SYSTEM_BUTTON (SYF_GENERIC)
new UIW_TITLE("Zinc Application")
& (*new UIW_PULL_DOWN_MENU
+ new UIW_PULL_DOWN_ITEM("&Control", WNF_NO_FLAGS, controllItems)
+ new UIW_PULL_DOWN_ITEM("&Display", WNF_NO_FLAGS, displayltems)
+ &(*new UIW_PULL_DOWN_ITEM("&Window", WNF_NO_FLAGS)
+ new UIW_PULL_DOWN_ITEM("&Control objects", WNF_NO_FLAGS,
controlObjectItems)
+ new UIW_PULL_DOWN_ITEM("&Input objects", WNF_NO_FLAGS,
inputObjectItems)
+ new UIW_PULL_DOWN_ITEM("&Selection objects", WNF_NO_FLAGS,
selectionObjectItems))
+ new UIW_PULL_DOWN_ITEM("&Event", WNF_NO_FLAGS, eventItems)
+ new UIW_PULL_DOWN_ITEM("&Help", WNF_NO_FLAGS, helpItems));

+ 4+ 4+ ¥ +

Event program flow

When the event option is selected, initial program flow is handled the same way that the
window options are handled. At the fifth step however, program flow is directed to the
OptionsEvent( ) member function.

Chapter 11 — Event Options 113




A complete explanation of this flow follows (the corresponding steps are shown by the
circled numbers in the figure):

------- >{ UI_EVENT_MANAGER ’
T
< MAIN PROGRAM CONTROL )
Rl I S
i 3¢ ‘ ZINCAPP_WINDOW_MANAGER }
3b Control Window
Event Monitor
1
S S
event information (2 \
| | CONTROL_WINDOW::Message ‘

1—The CONTROL_WINDOW::Message( ) function is called by the UIW_POP_-
UP_ITEM::Event( ) function. (The pop-up item inherits the code below from the
UIW_BUTTON class.)

EVENT_TYPE UIW_BUTTON: :Event (const UI_EVENT &event)
{

case L_SELECT:
case L_END_SELECT:
UI_EVENT tEvent = event;
if (userFunction)
(*userFunction) (this, tEvent, ccode);

The arguments passed to Message( ) are a pointer to the selected event option (this),
a copy of the event that caused the user function to be called (tEvent), and the logical
interpretation (ccode) of the event that caused Event( ) to be called. (NOTE: the
variable tEvent needs to be a copy of event since event is a constant variable whose
values cannot be modified.)

2—The CONTROL_WINDOW::Message( ) function sends a request to remove the

temporary event option menu by sending an S_CLOSE_TEMPORARY message
through the system via the event manger. It then sends the event request through the

114 Zinc Interface Library — Programmer’s Tutorial



system by setting event.type to be MSG_EVENT and then by sending another
message through the system.

EVENT_TYPE CONTROL_WINDOW: :Message (UI_WINDOW_OBJECT *data,
UI_EVENT &event, EVENT_TYPE ccode)
{
if (ccode == L_SELECT)
{
for (UI_WINDOW_OBJECT *tObject = object->windowManager->First();
tObject && FlagSet (tObject->woAdvancedFlags,
WOAF_TEMPORARY) ;
tObject = tObject->Next ())
object->eventManager->Put (UI_EVENT (S_CLOSE_TEMPORARY) ) ;
event.type = ((UIW_POP_UP_ITEM *)object)->value;
object->eventManager->Put (event) ;
}
return (ccode);
}

3—Control returns to the main loop by first exiting CONTROL_WINDOW::-
Message( ) and then by exiting the UIW_POP_UP_ITEM, CONTROL_WINDOW,
and UL_WINDOW_MANAGER classes’ Event( ) virtual functions.

L UI_EVENT_MANAGER J
4a) —P 5a
( MAIN PROGRAM CONTROL )
R N
4b
‘ ZINCAPP_WINDOW_MANAGER | G

Control Window

T

|CONTROLAWINDOW::OptionEvent 6

4—The main loop picks up the program generated messages by calling event-
Manager->Get( ). The first message received is S_CLOSE_TEMPORARY. This
message is handled by the window manager and causes the event option to be
removed from the screen.

5—The second message received is the event message MSG_EVENT. This message
is passed by the main loop to the window manager, then is dispatched by the window
manager to CONTROL_WINDOW::Event( ) since the control window is the front
window on the screen. The control window evaluates event.type (in this case the

Chapter 11 — Event Options 115




MSG_EVENT message)—resulting in the OptionEvent( ) member function being
called.

The code responsible for this control is shown below:

EVENT_TYPE CONTROL_WINDOW: : Event (const UI_EVENT &event)
{

// Process the event according to its type.
if (ccode >= MSG_HELP)

OptionHelp (event.type) ; // Help menu option selected.
else if (ccode >= MSG_EVENT)

OptionEvent (event.type); // Event menu option selected.
else if (ccode >= MSG_WINDOW)

OptionWindow (event.type) ; // Window menu option selected.
else if (ccode >= MSG_DISPLAY)

OptionDisplay (event.type) ; // Display menu option selected.
else

ccode = UIW_WINDOW::Event (event) ; // Unknown event.

// Return the control code.
return (ccode);

}

6—The OptionEvent( ) member function creates the event monitor window and
attaches it to the window manager. (A full description of the event monitor is given
below.) The following code shows how this is done.

void CONTROL_WINDOW: :OptionEvent (EVENT_TYPE item)
{
// Create the event monitor and attach it to the window manager.
*windowManager
+ new EVENT_MONITOR;
}

At this point the event monitor is displayed on the screen and it becomes the front
window of the application. All subsequent events will either be processed directly
or indirectly by the monitor. (Events are only handled directly if the event monitor
is the front window on the screen.)

Monitoring library events

Monitoring events in the ZincApp program requires the definition and use of two derived
classes: EVENT_MONITOR and ZINCAPP_WINDOW_MANAGER.

Event Monitor
The event monitor window is used to show the type of messages being processed by the

library.

Zinc Interface Library — Programmer’s Tutorial



A picture of this window is shown below.

Last key:

Last mouse

Last event: Add Object

This window has three sections:

Last key—The last key section shows the end-user the last keyboard key that has
been pressed. There are three items displayed next to the “Last key:” prompt: the
key’s raw DOS scan code, the current keyboard shift-state, and the ASCII value. For
example, if the user pressed <Ctrl+F1>, the raw scan code would be 0x5E00, the
shift-state value would be 0x0004, and the ASCII value would be O (the low 8 bits
of the scan code).

Last mouse—The last mouse section shows the end-user the last mouse event. There
are three items displayed next to the “Last mouse:” prompt: the mouse button status,
its screen column position, and its screen line position. For example, if the user
pressed the left-mouse button, the button state would be 1100 and the column and
line values would depend on the mouse position on the screen.

Last event—The last event section shows the interpreted value of the last event.
This can be any of the Zinc Interface Library system or logical messages, or the
interpreted keyboard or mouse code.

This window is implemented through a class called EVENT_MONITOR. The definition
of this class is defined in ZINCAPP.HPP. Its members are shown below:

class EVENT_MONITOR : public UIW_WINDOW
{
public:
EVENT_MONITOR (void) ;
EVENT_TYPE Event (const UI_EVENT &event) ;

private:
UIW_STRING *keyboard[3];

Chapter 11 — Event Options 117




118

UI_EVENT kEvent;
UIW_STRING *mousel[3];
UI_EVENT mEvent;
UIW_STRING *system;
UI_EVENT sEvent;

Yi

A description of the class’ derivation and members follows:

UIW_WINDOW is the base class for the EVENT_MONITOR class. The main reason
for deriving from the base UIW_WINDOW is that it provides a very clean way of
attaching a window to the screen that can receive message information, and a clean
way of removing the window and monitoring capability once it is removed from the
screen.

EVENT_MONITOR( ) is the constructor. When the event monitor window is attached
to ZincApp’s window manager (described below), it receives all events that pass
through the system, after the front window has processed the event. This allows the
front window to process the event normally, then for the event monitor to look at the
type of action that was performed. If we were to derive the event monitor from UI_-
DEVICE (such as the MACRO_HANDLER discusses in a later section) we would
only receive raw input information. By positioning ourselves in the window manager,
we are able to see how raw events are handled by an object. For example, pressing
the left-mouse button on the title bar produces a series of messages ending in
“Move.” Pressing the left-mouse button in a text field however, produces the
“Begin mark” message. If this class were positioned in the event manager, it would
only interpret a left-down click for both types of events.

Event( ) is the function that processes the logical event. There are two types of
events the EVENT_MONITOR::Event( ) function can receive. The first type are
messages passed to the window in the normal course of operation. These messages
would be passed to the window if it were the front window on the screen, or if a
mouse message overlapped the window’s screen region. The second type of message
is sent to the event monitor as a result of it being a monitor type window. These
messages are received after they have been processed by the window manager. In
addition, these special events are packaged by the window manager into a new event,
then passed to the member function, by the window manager. The window manager
packages these events in the following fashion:

event.type is the logical event returned by the receiving object.
event.rawCode is always OxFFFF if the event has already been passed to the
front window. This special value lets us determine whether the original message

was intended for our window (if we are the front window on the screen) or
whether the event has already been passed through the system.

Zinc Interface Library — Programmer’s Tutorial



event.data is the original event that was passed through the system.

There are four main sections to EVENT_MONITOR::Event( ). The last three are
described where the keyboard, mouse and system variables are described. The first
section sets up the event information and determines whether the event is intended
for the window interpretation, or whether the event needs to be passed to the base
UIW_WINDOW class object for processing. The code associated with this section
is shown below:

EVENT_TYPE EVENT_MONITOR: :Event (const UI_EVENT &event)
{

// See if it is a normal event. (section 1)
if (event.rawCode != OxFFFF)
return (UIW_WINDOW::Event (event));

// Check for new keyboard event. (section 2)
UI_EVENT *tEvent = (UI_EVENT *)event.data;
if (tEvent->type == E_KEY)

// Check for new mouse event. (section 3)
else if (tEvent->type == E_MOUSE)

// Check for new logical event. (section 4)
if (sEvent.type != event.type)

// Return the logical event.
return (event.type);

e keyboard and kEvent contain information about the last key that was pressed (see the
“Last key” description above). The variable kEvent keeps track of the last event for
optimization so that only those parts of the key that have changed will be updated.
When the EVENT_MONITOR::Event( ) routine is called, these variables are
changed to reflect the new event (passed as an argument to the event monitor’s
Event( ) function). The code responsible for this change is shown below.

EVENT_TYPE EVENT_MONITOR: :Event (const UI_EVENT &event)
{

UI_EVENT *tEvent = (UI_EVENT *)event.data;

// Check for new keyboard event.

Chapter 11 — Event Options 119




if (tEvent->type == E_KEY)
{

char string(32];

if (kEvent.rawCode != tEvent->rawCode)

{
sprintf (string, "%04x", tEvent->rawCode);
keyboard[0]->Information (SET_TEXT, string);

}

if (kEvent.key.shiftState != tEvent->key.shiftState)

{
sprintf (string, "%02x", tEvent->key.shiftState);
keyboard[1l]->Information (SET_TEXT, string);

if (kEvent.key.value != tEvent->key.value)

sprintf (string, "%c", tEvent->key.value);
keyboard[2]->Information (SET_TEXT, string);
}
kEvent = *tEvent;

e mouse and mEvent contain information about the last mouse event (see the ‘““Last
mouse” description above). These variables work just like the keyboard variables
keyboard and kEvent except the information is maintained for the mouse. The
variable mEvent keeps track of the last event for optimization so that only those parts
of the mouse that have changed will be updated. @ When the EVENT_-
MONITOR::Event( ) routine is called, these variables are changed to reflect the new
event (passed as an argument to the event monitor’s Event( ) function). The code
responsible for this change is shown below.

EVENT_TYPE EVENT_MONITOR: :Event (const UI_EVENT &event)
{
UI_EVENT *tEvent = (UI_EVENT *)event.data;

// Check for new mouse event.
else if (tEvent->type == E_MOUSE)
{
char string[32];
if (mEvent.rawCode != tEvent->rawCode)
{
sprintf (string, "%04x", tEvent->rawCode) ;
mouse[0]->Information (SET_TEXT, string):;
}
if (mEvent.position.column != tEvent->position.column)
{
sprintf (string, "%$03d", tEvent->position.column) ;
mouse[l]->Information (SET_TEXT, string);
}
if (mEvent.position.line != tEvent->position.line)
{
sprintf (string, "%03d", tEvent->position.line);
mouse[2]->Information (SET_TEXT, string);
}

mEvent = *tEvent;

e system and sEvent contain information about the last interpreted event that was
returned by the window object (see the “Last event” description above). These

120 Zinc Interface Library — Programmer’s Tutorial



variables work just like the mouse variables mouse and mEvent except the
information is maintained for the logical or system event. The variable sEvent keeps
track of the last event for optimization so that only changes in the event cause the
event field to be updated. When the EVENT_MONITOR::Event( ) routine is
called, these variables are changed to reflect the new event (passed as an argument
to the event monitor’s Event( ) function). The code responsible for this change is
shown below (only a partial list of the event/string pair table is shown).

EVENT_TYPE EVENT_MONITOR: :Event (const UI_EVENT &event)
{
UI_EVENT *tEvent = (UI_EVENT *)event.data;

// Declare the event type/name pairs.
static struct EVENT_PAIR
{
int type;
char *name;
} eventTable[] =
{

{ E_KEY, "Key" 1}, // Raw events.

{ E_MOUSE, "Mouse" 1},

{ E_CURSOR, ECUYsor™ ),

{ E_DEVICE, "Device" },

{ S_ERROR, "Error" }, // System events.
{ S_MINIMIZE, "Minimize" },

{ S_MAXIMIZE, "Maximize" },

{ L_EXIT, ExitT }, // Logical events.
{ L_VIEW, "View" 1},

{ L_SELECT, "Select" },

{ MSG_25x40_MODE, "25x40 Text Mode" },// ZINCAPP events
{ MSG_25x80_MODE, "25x80 Text Mode" },

{ MSG_43x80_MODE, "43x80 Text Mode" },

{ MSG_GRAPHICS_MODE, "Graphics Mode" },

{ MSG_GENERIC_WINDOW, "Generic Window" },

{ 0, 0} // End of array.

Chapter 11 — Event Options 121




122

// Check for new logical event.

if (sEvent.type != event.type)
{
char *name = "<Unknown>";
for (int i = 0; eventTable[i].type; i++)
if (event.type == eventTable[i].type)

{
name = eventTable[i].name;
break;
}
system->Information (name) ;
sEvent = event;

Window Manager

The event monitor (described previously) receives all interpreted messages by attaching
itself to a Zinc Application window manager class called ZINCAPP_WINDOW_-
MANAGER.

The definition of the MSG_WINDOW_MANAGER class is defined in ZINCAPP.HPP.
Its definition is shown below:

class ZINCAPP_WINDOW_MANAGER : public UI_WINDOW_MANAGER
{

public:
7ZINCAPP_WINDOW_MANAGER (UI_DISPLAY *display,
UI_EVENT_MANAGER *eventManager)
UI_WINDOW_MANAGER (display, eventManager,
7ZINCAPP_WINDOW_MANAGER: :ExitFunction) { }
virtual EVENT_TYPE Event (const UI_EVENT &event) ;

private:
static EVENT_TYPE ExitFunction(UI_DISPLAY *display,
UI_EVENT_MANAGER *eventManager, UI_WINDOW_MANAGER *windowManager) ;
}i

A description of the class’ derivation and members follows:

e public U_WINDOW_MANAGER is the base class for the ZINCAPP_WINDOW_-
MANAGER class. The derivation from this class allows us to get all interpreted
messages before they are passed to the main control loop and to send the event
information to any event monitor windows.

e« ZINCAPP_WINDOW_MANAGER( ) is the ZincApp window manager constructor.
It calls the base UI_WINDOW_MANAGER with the display and eventManager
supplied by its arguments but also provides an exitFunction pointer that is the
ZINCAPP_WINDOW_MANAGER::ExitFunction( ) static member function
(described below). The ZincApp window manager class is constructed in the main
section of our program, just the way a normal window manager would be
constructed. The code below shows how this is done:

Zinc Interface Library — Programmer’s Tutorial



main ()

// Initialize the ZincApp window manager and add the control window.
ZINCPP_WINDOW_MANAGER *windowManager =
new ZINCAPP_WINDOW_MANAGER(display, &eventManager,
ZINCAPP_WINDOW_MANAGER: :ExitFunction);
*windowManager
+ new CONTROL_WINDOW;

e Event( ) is the function that processes the event information. It contains two major
sections:

EVENT_TYPE ZINCAPP_WINDOW_MANAGER: : Event (const UI_EVENT &event)
{

// Allow the base window manager to process the event.

EVENT_TYPE ccode = UI_WINDOW_MANAGER: :Event (event) ; (section 1)
// Send the event to any event monitor windows.
for (UI_WINDOW_OBJECT *object = First(); object;

object = object->Next())

if (object->userFlags == MSG_EVENT_MONITOR) (section 2)

{
UI_EVENT tEvent (event.type, OXFFFF);
tEvent.data = (void *)&event;
object->Event (tEvent) ;

}

// Return the control code.
return (ccode) ;

The first section calls UI_WINDOW_MANAGER::Event so it can dispatch the
message to the proper window.

The second section is used to dispatch the interpreted message to any event
monitoring windows. It determines these windows by looking at the object’s
userFlags. If the flag is set to be MSG_EVENT_MONITOR the message is sent to
the device. This event is modified to contain the logical code in event.type the value
OxFFFF in event.rawCode and the raw event is pointed to by event.data.

*  ExitFunction( ) is a function that displays a modal exit window to the screen.

A picture of this window is shown below:

Chapter 11 — Event Options 123




This will close the Zinc Application.

If the user selects “OK” an L_EXIT message is passed through the system via the
event manager and program execution ceases. Otherwise, the window is removed
from the screen and program flow continues in a normal fashion.

Zinc Interface Library — Programmer’s Tutorial



CHAPTER 12 — HELP OPTIONS

The ZincApp program’s help options are shown under the ‘“Help” menu item:

Control Display Window Event

Mouse
Commands
Procedures

Objects
Using help

About ...

The array used to initialize these options is defined in the CONTROL_WINDOW

constructor. It contains the following information:

UI_ITEM helpOptions[] =
{

MNIF_NO_FLAGS
MNIF_NO_FLAGS
MNIF_NO_FLAGS
MNIF_NO_FLAGS
MNIF_NO_FLAGS
MNIF_NO_FLAGS

b
i
i
},
}
}

'
’

5 0, ", MNIF_SEPARATOR 1},
MSG_HELP_ZINCAPP, "&About vy . .Y, MNIF_NO_FLAGS },

0, 0, 0, 0}

Message,
// End of array.

{ MSG_HELP_KEYBOARD, Message, "&Keyboard",

{ MSG_HELP_MOUSE, Message, "&Mouse",

{ MSG_HELP_COMMANDS, Message, "&Commands"

{ MSG_HELP_PROCEDURES, Message, "&Procedures",
{ MSG_HELP_OBJECTS, Message, "&Objects",

{ MSG_HELP_HELP, Message, "&Using help",
{

{

{

¥i

// Attach the sub-window objects to the control window.
*this
+ new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_SYSTEM_BUTTON (SYF_GENERIC)
new UIW_TITLE ("Zinc Application")
& (*new UIW_PULL_DOWN_MENU
+ new UIW_PULL_DOWN_ITEM ("&Control", WNF_NO_FLAGS, controllItems)
+ new UIW_PULL_DOWN_ITEM ("&Display", WNF_NO_FLAGS, displayItems)
+ & (*new UIW_PULL_DOWN_ITEM("&Window", WNF_NO_FLAGS)
+ new UIW_PULL_DOWN_ITEM("&Control objects", WNF_NO_FLAGS,
controlObjectItems)
+ new UIW_PULL_DOWN_ITEM ("&Input objects", WNF_NO_FLAGS,
inputObjectItems)
+ new UIW_PULL_DOWN_ITEM("&Selection objects", WNF_NO_FLAGS,
selectionObjectItems))
new UIW_PULL_DOWN_ITEM("&Event", WNF_NO_FLAGS, eventItems)
+ new UIW_PULL_DOWN_ITEM("&Help", WNF_NO_FLAGS, helpItems));

+ 4+ + + +

+

Chapter 12 — Help Options 125




Help program flow

When a help option is selected, initial program flow is handled the same way that the
event options are handled. At the fifth step however, program flow is directed to the
OptionsHelp( ) member function. A complete explanation of this flow follows (the
corresponding steps are shown by the circled numbers in the figure):

- >{ UI_EVENT_MANAGER }
SRR
( MAIN PROGRAM CONTROL )
. f 3

3¢ } ZINCAPP_WINDOW_MANAGER ’

3b Control Window
Keyboard
Mouse
Commands
Procedures
Objects
RSod "eP
1
3 " v
i event information 2 |
- | CONTROL_WINDOW::Message |

1—The CONTROL_WINDOW::Message( ) function is called by UITW_POP_UP_-
ITEM::Event( ). (The pop-up item inherits the code below from UIW_BUTTON.)

EVENT_TYPE UIW_BUTTON: :Event (const UI_EVENT &event)
{

case L_SELECT:
case L_END_SELECT:
UI_EVENT tEvent = event;
if (userFunction)
(*userFunction) (this, tEvent, ccode);

The arguments passed to Message( ) are a pointer to the selected help option (zhis)
and a copy of the event that caused the user function to be called (tEvent). (NOTE:
the variable tEvent needs to be a copy of event since event is a constant variable
whose values cannot be modified.)

2—The CONTROL_WINDOW::Message( ) function sends a request to remove the

temporary help options menu by sending an S_CLOSE_TEMPORARY message
through the system via the event manger. It then sends the help request through the

Zinc Interface Library — Programmer’s Tutorial



system by setting event.type to be the menu item’s value (i.e., one of the MSG_HELP
values defined in the helpOptions array) and then by sending another message
through the system.

EVENT_TYPE CONTROL_WINDOW: :Message (UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode)
{
if (ccode == L_SELECT)
£
for (UI_WINDOW_OBJECT *tObject = object->windowManager->First();
tObject && FlagSet (tObject->woAdvancedFlags,
WOAF_TEMPORARY) ; tObject = tObject->Next());
object->eventManager->Put (UI_EVENT (S_CLOSE_TEMPORARY) ) ;
event.type = ((UIW_POP_UP_ITEM *)object)->value;
object->eventManager->Put (event) ;

return (ccode);

}

3—Control returns to the main loop by first exiting CONTROL_WINDOW::-
Message( ) and then by exiting the UIW_POP_UP_ITEM, CONTROL_WINDOW,
and UI_EVENT_MANAGER classes’ Event( ) virtual functions.

’ UI_EVENT_MANAGER ‘

4a — 5a
C MAIN PROGRAM CONTROL =)
TR N
4b
| ZINCAPP_WINDOW_MANAGER } e

Control Window

v

] CONTROL_WINDOW::OptionHelp |(6

4—The main loop picks up the program generated messages by calling event-
Manager->Get( ). The first message received is S_CLOSE_TEMPORARY. This
message is handled by the window manager and causes the help options to be
removed from the screen.

5—The second message received is the help message determined by the selected
menu item. This message is passed by the main loop to the window manager, then
is dispatched by the window manager to CONTROL_WINDOW::Event( ) since the
control window is the front window on the screen. The control window evaluates

Chapter 12 — Help Options 127




event.type (in this case a MSG_HELP message)—resulting in the OptionHelp( )
member function being called. The code responsible for this control is shown below:

EVENT_TYPE CONTROL_WINDOW: :Event (const UI_EVENT &event)

{

6—The OptionHelp( ) member function evaluates the item’s value (passed down
through the item argument) to determine which type of help context has been

requested. It then sends the help request to the help system by calling Display-

EVENT_TYPE ccode = event.type;

// Process the event according to its type.
if (ccode >= MSG_HELP)

OptionHelp (event.type) ; // Help option.
else if (ccode >= MSG_EVENT)

OptionEvent (event.type) ; // Event option.
else if (ccode >= MSG_WINDOW)

OptionWindow (event.type) ; // Window option.
else if (ccode >= MSG_DISPLAY)

OptionDisplay (event.type) ; // Display option.
else

ccode = UIW_WINDOW: :Event (event) ; // Unknown event.

// Return the control code.
return (ccode);

Help( ). The following code shows how this is done:

void CONTROL_WINDOW: :OptionHelp (EVENT_TYPE item)
{

// Declare the help message/context pairs.
static struct HELP_PAIR
{
int itemvalue;
USHORT helpContext;
} helpTable[] =
{

{ MSG_HELP_KEYBOARD, HELP_KEYBOARD 1},

{ MSG_HELP_MOUSE, HELP_MOUSE 1},

{ MSG_HELP_COMMANDS, HELP_COMMANDS 1},

{ MSG_HELP_PROCEDURES, HELP_PROCEDURES 1},
{ MSG_HELP_OBJECTS, HELP_OBJECTS 1},

{ MSG_HELP_HELP, HELP_HELP 1},

{ MSG_HELP_ZINCAPP, HELP_GENERAL },
{0, 01} // End of array.

¥

// Get the help context then call the help system.
USHORT helpContext = NO_HELP_CONTEXT;
for (int i = 0; helpTable[i].itemValue; i++)
if (item == helpTable[i].itemValue)
{
helpContext = helpTable[i] .helpContext;
break;
}
helpSystem->DisplayHelp (windowManager, helpContext);

Zinc Interface Library — Programmer’s Tutorial



Once the help system’s DisplayHelp( ) function has been called the help window is
attached to the window manager.

For example, the help request MSG_HELP_ZINCAPP causes the following help window
to appear:

elcome to the Zincapp tutorial program. This tutorial
provides an introduction to the various components found in
Zinc Interface Library.

Press <F1> at any time for help information.

Press {Alt+F4> to exit.

At this point the help window becomes the front window of the application. All
subsequent events are processed by the help window until a change is requested by the
end-user.

NOTE: The help window is not a modal window, thus other windows can be
selected while the help window is on the screen. In addition, only one help
window is defined for an application. If the help window is already present, or
if it has been moved and sized by a previous help request, the window is
presented in its last position with the new help information shown in its title and
text fields.

General library help

In addition to the help information provided through the main control menu, context
sensitive help is available by simply pressing <F1> during the application. Each window
created in the ZincApp program has a pre-defined help context. This context is specified
when the window is constructed. For example, the main control window has HELP_-
MAIN_CONTROL specified as its help context. The code below shows where this
context is specified:

Chapter 12 — Help Options 129




130

CONTROL_WINDOW: : CONTROL_WINDOW (void) :
UIW_WINDOW (O, 0, 52, 13, WOF_NO_FLAGS, WOAF_LOCKED, HELP_MAIN_CONTROL)

{

}

In general, window help is managed by the UIW_WINDOW::Event( ) function. This
control is similar to that shown in the steps above. After the <F1> key is pressed the
window manager dispatches the message to the front window. If the window has an
accompanying help context, the help system is called with the type of help associated with
the window. (In the case of the control window it would be a request for the HELP_-
MAIN_CONTROL help context.) Otherwise, general help is requested by sending NO
_HELP_CONTEXT to the helpSystem->DisplayHelp( ) function. The help system
receives this messages and replaces it with the general help specified when the help
window system was constructed. In our application the general help was specified to be
HELP_GENERAL.

main ()

{

// Initialize the help and error systems.

UI_WINDOW_OBJECT: :errorSystem = new UI_ERROR_SYSTEM;

UI_WINDOW_OBJECT: :helpSystem = new UI_HELP_WINDOW_SYSTEM("support",
windowManager, HELP_GENERAL) ;

Zinc Interface Library — Programmer’s Tutorial



SECTION IV
DERIVED CLASSES

Section IV — Derived Classes 131




132 Zinc Interface Library — Programmer’s Tutorial



CHAPTER 13 - MACRO DEVICE

This tutorial shows you how to create a keyboard macro input device. When we are
finished, you should understand:

the design used to implement a simple keyboard macro

the basic design rules that control the operation of input devices within Zinc Interface
Library

the type of information needed to initialize the UI_DEVICE base class

The source code associated with this program is located in \ZINC\TUTOR\MA CRO.
It contains the following files:

MACRO.CPP—This file contains the macro device member functions MACRO_-
HANDLER::Event( ) and MACRO_HANDLER::Poll( ), as well as the main
program loop (main( ) or WinMain( )).

MACRO.HPP—This file contains the macro device class definition.

BORLAND.MAK, MICROSFT.MAK, and ZORTECH.MAK—These are the
makefiles associated with the macro program. You can compile the DOS version,
MACRO.EXE, by typing make -fborland.mak macro.exe at the command
line prompt. To make the Windows version, WMACRO.EXE, type make
-fborland.mak wmacro.exe at the command line. (NOTE: When compiling
with either Microsoft or Zortech, substitute the name of that compiler as the name of
the make file on the command line.)

Program execution

Let’s begin by looking at how the keyboard macro operates in a sample application. To
do this, compile and run the application MACRO.EXE. The following window should
appear on the screen:

Chapter 13 — Macro Device 133




‘ The current object in the window is a text object. (It is a non-field region so it takes up

l‘ the entire region within the window.) You should be able to type text information into
this window. In addition to typing normal text, four simple macro keys have been
implemented:

Pressing <F5> causes the text ““Macro #1” to be entered into the text window.
Pressing <F6> causes the text “Macro #2”’ to be entered into the text window.
Pressing <F7> causes the text “Macro #3” to be entered into the text window.
Pressing <F8> causes the text “Macro #4” to be entered into the text window.

When you are finished experimenting with the program, exit by either selecting “Close”
from the system button’s pop-up menu, or by pressing <Alt+F4>.

Class definition

The macro keys described above are implemented as a single input device called
MACRO_HANDLER. This device is created and attached to the event manager using the
+ operator. The following code shows this implementation for DOS and Microsoft
Windows environments:

UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;
*eventManager

+ new UID_KEYBOARD

+ new UID_MOUSE

+ new UID_CURSOR;
*eventManager

+ new MACRO_HANDLER (macroTable) ;

134 Zinc Interface Library — Programmer’s Tutorial



The definition of the macro device is given below:

const EVENT_TYPE E_MACRO = 89;
class MACRO_HANDLER : public UI_DEVICE
{
publies
struct MACRO_PAIR
{
RAW_CODE rawCode;
char *macro;
}i

MACRO_HANDLER (MACRO_PAIR *_macroTable) : UI_DEVICE(E_MACRO, D_OFF),
macroTable (_macroTable) { installed TRUE; 7%
EVENT_TYPE Event (const UI_EVENT &event) ;

private:
MACRO_PAIR *macroTable;
MACRO_PAIR *currentMacro;
int offset;
void Poll (void) ;

}i

This class uses the following definitions and member variables:

e E_MACRO is a constant value that is used to uniquely identify the macro device. Zinc
Interface Library pre-defines the values for the keyboard, mouse, and cursor devices, but
leaves other values open for programmer-defined input devices. The significance of the
value 89 will be discussed later in this chapter.

e MACRO_PAIR is a structure that allows you to define a keyboard/macro equivalent pair.
The definition of the four macro keys we used in our sample program is shown below:

MACRO_PAIR macroTable[] =
{
"Macro #1."
"Macro #2:"
"Macro #3."
"Macro #4."
NULL }

};

The entry { 0, NULL } is used as an end-of-array indicator. In addition, the use of F5,
F6, F7 and F8 in the array above requires us to define a constant value called
USE_RAW_KEYS. This definition allows us to have access to the raw DOS scan codes
defined in UI_EVT.HPP.

*  macroTable is a pointer to the table that contains the rawCode/macro pairs to be matched.
In our program this table is macroTable (shown above).

e currentMacro is a pointer to the current, or active, macro (if any). This value is reset
whenever a new macro key is pressed.

Chapter 13 — Macro Device 135




offset is a value that gives the position of the current keyboard input within the
currentMacro->macro character array. It is used when the macro device feeds keyboard
information into the event manager’s input queue. (The terms “‘input queue” and “event
queue’ are synonymous.)

Conceptual operation

The conceptual operation of the macro device, after it has been attached to the event
manager, is shown in the figure below:

Keyboard Mouse Cursor Macro

CIVAZ)

' UI_EVENT_MANAGER

&) Z% %7
C MAIN LOOP 3

VIS

[ Ul_WINDOW_MANAGER ‘

This operation can be described through the following steps. (The corresponding steps
are shown by the circled numbers in the figure.)

1—The device is polled (i.e., its Poll( ) routine is called) whenever the programmer
calls eventManager—>Get( ). If a macro key has just been pressed, the process goes
to the second step. If the macro device is currently enabled (i.e., feeding information
into the input queue) the process goes to the third step. Otherwise, program flow
returns to the main. The code associated with this step is shown below. (NOTE:
The step identifications to the right are not part of the actual code.)

void MACRO_HANDLER: :Poll(void) (step 1)
{

// See if any events are in the event manager’s input queue.
UI_EVENT event;
int emptyQueue = eventManager->Get (event,

Q NO_POLL | Q NO_BLOCK | Q NO_DESTROY | Q_BEGIN) ;

Zinc Interface Library — Programmer’s Tutorial



/ See if the event is a macro key. (step 2)

if (state == D_OFF && !emptyQueue && event.type == E_KEY)

{

}

// Put macro information into the input queue. (step 3)
if (state == D_ON && emptyQueue)

}

You may have noticed that eventManager->Get( ) is called with several parameters.
Since we are getting input while in an input device function, we must be very care
ful not to recursively call eventMangager->Get( ). The way we protect against
further recursion is to set the Q_NO_POLL flag. This prevents the event manager
from calling any other input devices. The Q_NO_BLOCK flag prevents the event
manager from stopping program execution until an event is detected. We just wan
t to “‘check” the input queue to see if something is available. Since Q_NO_BLOCK
is set, the status of the input queue will be returned by the event manager’s function.
(The return value is O if there is currently input information in the queue, or it is
negative if there is no information.)

Next, we do not want to destroy the contents of the queue since we are only looking
for special keyboard values. The way this is done is by setting the Q_NO_-
DESTROY flag. This allows us to obtain a copy of the event information without
removing it from the queue. The Q_BEGIN flag is used to get information from the
beginning of the queue, rather than from the end.

2—The second step is only executed if a new macro key has been pressed and the
key has been entered into the input queue by the UID_KEYBOARD device. In this
step the type of macro is determined. If a valid macro key has been entered, all other
input devices are shut off so that they won’t feed additional information into the
queue while we are putting in our macro keys. Next, the original macro key is
removed from the event manager’s input queue and the macro device is enabled. The
first character of the new macro is placed into the input queue by continuing to the
third step (i.e., setting the emptyQueue flag to be TRUE causes step 3 to be
executed). The code below shows how this step is implemented:

void MACRO_HANDLER: :Poll (void) (step 1)
{
// See if any events are in the event manager’s input queue.
UI_EVENT event;
int emptyQueue = eventManager->Get (event,
Q_BEGIN | Q_NO_DESTROY | Q_NO_BLOCK | Q_NO_POLL) ;

Chapter 13 — Macro Device 137




// See if the event is a macro key. (step 2)

if (state == D_OFF && !emptyQueue && event.type == E_KEY)

for (int i = 0; macroTable[i].rawCode; i++)

if (event.rawCode == macroTable[i].rawCode)

{
// Turn off all other devices while we feed the macro.
eventManager->DeviceState (E_DEVICE, D_OFF);
eventManager->Get (event, Q BEGIN | Q _NO_POLL) ;
currentMacro = &macroTable[i];
offset = 0;
state = D_ON;
// Set emptyQueue to be TRUE so we go to the next step.
emptyQueue = TRUE;

break;
}
}
// Put macro information into the input queue. (step 3)
if (state == D_ON && emptyQueue)

{

3—The third step is only executed if the macro device has been enabled. Once the
macro device is enabled, it feeds one event into the input queue each time its Poll( )
routine is called, but only if there are no other events waiting to be processed by the
event manager. Once the macro device runs out of input information, it changes its
state to D_OFF. This prevents the third step from being executed until another
macro key is pressed.

void MACRO_HANDLER: :Poll (void) (step 1)
{
// See if any events are in the event manager’s input queue.
UI_EVENT event;
int emptyQueue = eventManager->Get (event,
Q_BEGIN | Q_NO_DESTROY | Q_NO_BLOCK | Q_NO_POLL) ;

// See if the event is a macro key. (step 2)

if (state == D_OFF && !emptyQueue && event.type == E_KEY)
{

Zinc Interface Library — Programmer’s Tutorial



// Put macro information into the input queue. (step 3)
if (state == D_ON && emptyQueue)
{
event.type = E_KEY;
event.rawCode = currentMacro->macro[offset];
event.key.value = event.rawCode;
event.key.shiftState = 0;
eventManager->Put (event, Q END);
if (!currentMacro->macro[++offset])
{
eventManager->DeviceState (E_DEVICE, D_ON);
state = D_OFF;

}

4—Program flow is returned to the programmer in two stages. First, control returns
to the event manager when the input devices return from their Poll( ) functions, then
if an event is present in the input queue, program control returns to the main loop.

5—The main program loop processes all event information, including the macro key
expansions, by calling windowManager->Event( ). The main program loop then
exits if the L_EXIT message is received, or it returns to the first step to get the next
event.

Class information

The MACRO_HANDLER class constructor is defined as an in-line function.

class MACRO_HANDLER : public UI_DEVICE
{

public:
MACRO_HANDLER (MACRO_PAIR *_macroTable) : UI_DEVICE(E_MACRO, D_OFF),
macroTable (_macroTable) { installed = TRUE; }

Base class initialization

The base UI_DEVICE class constructor is called before any class specific information is
set. It requires the specification of the device’s type (E_MACRO) and its initial state
(D_OFF).

The event manager uses the input device type to determine the device’s order in the event
manager’s list of devices. Input devices are arranged in the device list in ascending type
order. Thus, the order of our four input devices we attached to the event manager is:

UID_KEYBOARD—Its value is 10, the number associated with the constant variable
E_KEY.

Chapter 13 — Macro Device 139




140

UID_MOUSE—Its value is 30, the number associated with the constant variable
E_MOUSE.

UID_CURSOR—Its value is 50, the number associated with the constant variable
E_CURSOR.

MACRO_HANDLER—We assigned it the value 89, so that it would be the last
device in the list.

We need the macro handler to be the last device in the list so that its Poll( ) function can
review any activity that has been performed since the last call to eventManager->Get( ).
For example, if the user presses <F5>, the keyboard’s Poll( ) function will put the
character <F5> into the event manager’s input queue. Later, the macro device’s Poll( )
function will be called. When it is, the macro handler will find the <F5> value entered
by the keyboard. If we assign the macro handler a lower number than that assigned to
the keyboard, the macro handler will always check the input queue before the keyboard
feeds its information and will never see the <F5> key (i.e., it will be passed to the main
control before the macro handler is called again).

The initial state of the macro device needs to be off so that we don’t think macro
information is being fed into the input queue. The event manager does not look at the
state of devices, but devices generally use the information internally to determine what
types of operations to perform. The macro device can be in one of the following two
states:

D_OFF—If the macro device is in this state, no macro information is being entered
into the input queue.

D_ON—If the macro device is in this state, it is currently feeding information into
the input queue.

The event manager and base UI_DEVICE classes set three other variables:

e  enabled is used as a second-level state indicator. The base device class sets this
variable to be TRUE, but it is ignored by the macro device.

e display is a pointer to the screen display that was created in the main program loop.

This variable is not set until the macro device is attached to the event manager. The
macro device does not use this pointer.

Zinc Interface Library — Programmer’s Tutorial



e eventManager is a pointer to the event manager where the macro device is attached.
The macro device uses this pointer to make queries on and feed information to the
input queue.

Member variable initialization

The class member macroTable is initialized to point to the constructor argument _macro-
Table. This variable is used as the search table for keyboard/macro expansions. The
array specified in this argument must not be destroyed until the class is destroyed by the
event manager.

The last thing the class constructor does is override the base class member installed. The
value specified is TRUE. This value is not used by the event manager, but does provide
consistency when checking for device installation.

The class members currentMacro and offset are not set until the state of the device

changes to D_ON.

The Poll function

The MACRO_DEVICE::Poll( ) function was described in the conceptual operation part
of this chapter. In general, Poll( ) functions should be used:

1—to feed information to or get information from the event manager’s input queue.
The keyboard, mouse, and Microsoft Windows message devices all have poll routines
that feed information into the input queue.

2—when an object needs to be called on a periodic basis. Many environments do not
support multi-tasking. (In these environments the use of a poll routine is beneficial
because it ensures that all devices will be polled each time the eventManager->
Get( ) function is called.) The cursor device uses this method to paint and remove
an xor region to the screen, simulating a blinking cursor. It does this by keeping
track of time intervals and blinking the cursor in a consistent fashion.

The macro device feeds information to and gets information from the event manager.
Information is fed into the input queue when the device is “on” and checks the input
when it is “off.”

Chapter 13 — Macro Device 141




The Event function

The MACRO_DEVICE::Event( ) function is defined as an in-line stub.

class MACRO_HANDLER : public UI_DEVICE
{
public:
EVENT_TYPE int Event (const UI_EVENT &event) ;

This routine must be declared by the macro device since the base UI_DEVICE class
declares it a pure virtual function (i.e., a function with an = 0 statement at the end).

class UI_DEVICE : public UI_ELEMENT
{
public:
virtual EVENT_TYPE Event (const UI_EVENT &event) = 0;

In general, Event( ) functions are used to change the state of an input device.

Enhancements

142

Now that we have discussed the basic design and implementation of a keyboard macro
device, let’s evaluate some variations you could implement to make the device more
powerful. (NOTE: The actual implementation of these ideas is left to the reader.)

1—Stuff the input buffer all at once, rather than one character at a time. This could
be accomplished by modifying the Poll( ) routine to put all macro characters into the
input queue in one step. The benefits of this method are that it simplifies the process
of the macro device and that it allows us to not disable all other input devices. The
problem with this implementation is two-fold. First, the macro may fill the input
buffer, in which case we will have to write code to wait until the buffer is not full.
Second, the macro may itself contain a character that is a macro key. This would
require modification to our member variables and may cause recursion of macro
events.

2—Modify the static variables UI_WINDOW_OBJECT::pasteBuffer and UI_-
WINDOW_OBJECT: :pasteLength to contain the macro, then send an L_PASTE
message through the system. This is a slick implementation whose only drawbacks
are that it wipes out the old information in the global paste buffer and that the
receiving object may not be a simple text field, like the window created in our
application.

3—Extend the macro device to enable the addition or deletion of macro pairs. This

could be accomplished by overloading the + and - operators for the MACRO_-
HANDLER class. The class variable macroTable would need to be modified to

Zinc Interface Library — Programmer’s Tutorial



support the addition and deletion of macro pairs, but it shouldn’t be too hard to
implement.

4—Extend the macro pair to handle logical, system, or normal keyboard information.
In this scenario, you would need to modify the definition of MACRO_PAIR.macro
to support UL_EVENT information rather than simple character values. In addition,
you would probably want to write an editor so that the macro could be easily edited
and modified. This would require that you set up an edit window (using the UIW_-
WINDOW class) that contained the macro key, a list of mapping events, and menu-
items or buttons that would let you add, delete, or modify the contents of the list.

You should now understand the design associated with a macro device and the basic
design and implementation rules associated with input devices in general. If you are able
to understand this information you are well on your way to understanding the operation
of the event manager within Zinc Interface Library and the way in which input devices
operate within the library.

Chapter 13 — Macro Device 143




Zinc Interface Library — Programmer’s Tutorial



CHAPTER 14 - HELP BAR

This tutorial shows you how to create a help bar object. When we are finished, you
should understand:

how window objects can communicate with the help bar class

the design used to implement an object that displays help text at the bottom of the
parent window

the basic design rules that control the operation of windows and window objects
within Zinc Interface Library

how to derive a new window object from the UL_WINDOW_OBIJECT base class

how to implement a new window object in Microsoft Windows.

The source code associated with this program is located in \ZINC\TUTOR\HELPBAR.
It contains the following files:

HELPBAR.CPP—This file contains the static functions SetHelp( ) and Action-
Function( ) as well as the main program loop (main( ) or WinMain( )).

HLPBAR.CPP—This file contains the HELP_BAR class source code.
HLPBAR.HPP—This file contains the HELP_BAR class definition.

BORLAND.MAK, MICROSFT.MAK, and ZORTECH.MAK—These are the
makefiles associated with the help bar program. You can compile the DOS version,
HELPBAR.EXE, by typing make -fborland.mak helpbar.exe at the
command line prompt. To make the Windows version, WHELPBAR.EXE, type
make -fborland.mak whelpbar.exe at the command line. (NOTE: When
compiling with either Microsoft or Zortech, substitute the name of that compiler as
the name of the make file on the command line.)

WHELPBAR.DEF—This is the definition file for the help bar program. It is used
to set constants associated with the executable program (Windows only).

WHELPBAR.RC—This is the resource file for the help bar program. It is used to
add resources to the executable program (Windows only).

Chapter 14 — Help Bar 145




Program execution

The operation of help bar objects can be seen by compiling and running the application
HELPBAR.EXE in DOS or WHELPBAR.EXE in Windows.

Two copies of the following window should appear on the screen:

First Name : Il I

Last Name : | |

Address :

Phone : [ [

There is no direct interaction with the help bar object; it is simply used to display help
information associated with the current window object. For example, making the *“Phone
Number” field current will cause the following text to be displayed on the help bar:

146 Zinc Interface Library — Programmer’s Tutorial



First Name : [ |

Last Name : | I

Address :

Phone : |[] e

When you are done experimenting with the help bar tutorial program, exit either by
selecting the “Exit” button, the “Exit” option from the system button’s menu, or by
typing <Alt+F4>.

Class definition

The help bar object is implemented with a class called HELP_BAR. The HELP_BAR
definition is given below:

// Help bar objectID.
const OBJECTID ID_HELP_BAR = 3005;

class HELP_BAR : public UI_WINDOW_OBJECT
{
public:
HELP_BAR (char *text = NULL) ;
~HELP_BAR (void) ;
EVENT_TYPE Event (const UI_EVENT &event) ;
virtual void *Information (INFO_REQUEST request, void *data,
OBJECTID objectID = 0);

static UI_WINDOW_OBJECT *New (const char *, UI_STORAGE *,
UI_STORAGE_OBJECT *) ;
virtual void Store(const char *, UI_STORAGE *, UI_STORAGE_OBJECT *);

protected:
char *text;
}i

Chapter 14 — Help Bar 147




This class uses one member variable:

e text is a pointer to the text to be displayed on the help bar field.

Using HELP_BAR

148

The HELP_BAR class is defined to occupy the bottom line of its parent window. When
the parent window is moved or sized, the help bar will also be moved and sized so that
it still occupies the bottom line of the window. This feature is achieved by setting the
WOF_NON_FIELD_REGION flag on the help bar object. (This will be discussed later
on in this chapter.)

The help bar displays textual information when it receives a request via its Information( )
function. Window objects, in this tutorial, use a user function to send help display
requests to the help bar. Each window object calls the following user function:

// Help bar message indices.

enum HELP_BAR_MESSAGE

{
HELP_FIRST_NAME = 1,
HELP_LAST_NAME,
HELP_ADDRESS,
HELP_PHONE,
HELP_CLOSE_WINDOW,
HELP_EXIT

}i

// User function to set help bar information.
static EVENT_TYPE SetHelp (UI_WINDOW_OBJECT *object, UI_EVENT &,
EVENT_TYPE ccode)
{
// Declare the help message/context pairs.
static struct HELP_PAIR
{
UI_HELP_CONTEXT helpContext;
char *message;
} helpMessageTable[] =
{

{ HELP_FIRST_NAME, "First name of customer" 1},

{ HELP_LAST_NAME, "Last name of customer" },

{ HELP_ADDRESS, "Address of customer" 1},

{ HELP_PHONE, "Phone number of customer" 1},

{ HELP_CLOSE_WINDOW, "This will close the window" },
{ HELP_EXIT, "This will exit the program" },
{

0, 0 } // End of array.
}:

// 1f you are not setting or clearing the help bar then just exit.
if (ccode != S_CURRENT && ccode != S_NON_CURRENT)
return (0);
// Find the parent window.
for (UI_WINDOW_OBJECT *parentWindow object; parentWindow->parent; )
parentWindow = parentWindow->parent;

Zinc Interface Library — Programmer’s Tutorial



// Get the help bar.
UI_WINDOW_OBJECT *helpBar =
(UI_WINDOW_OBJECT *)parentWindow->Information (GET_STRINGID_OBJECT,
"HELP_BAR") ;

// If there was a help bar then set or clear its message.
if (helpBar)
{

// Set default message to clear bar.

char *message = "";

if (ccode == S_CURRENT)
{
// Get the message associated with the help context.
for (int i = 0; helpMessageTable[i].helpContext; i++)
if (object->helpContext == helpMessageTable[i].helpContext)
{
message = helpMessageTable[i] .message;
break;

}

// Update the help bar text.

helpBar->Information (SET_TEXT, message, ID_HELP_BAR);
}
return (0);

}

The user function should perform the following essential steps:

1—Find the parent window. In order for the calling window object to obtain a
pointer to the help bar (without the use of global or special pointers), it is necessary
to get a pointer to the parent window. All windows maintain a list of their sub-
objects. Since the calling object and the help bar share the same parent window, we
can trace the objects parent pointer until it points at the parent window. Getting a
pointer to the parent window in this manner will allow access to the help bar without
the use of a global or a special help bar pointer.

2—Get the help bar. With a pointer to the parent window, we can query the window
to see if a help bar object has been added. If the window contains a help bar object
(i.e., it has the ID_HELP_BAR identification code) the window returns a UL -
WINDOW_OBIJECT pointer to it.

3—Get the help information. If the parent window contained a help bar, get the help
information associated with the calling window object. In this example, the help text
is cleared when the calling window object is becoming non-current. This allows for
the help bar to remain blank if the window object that will become current does not
have any associated help information.

Chapter 14 — Help Bar 149




4—Send the display help request. Using the helpBar pointer that we set in step 2,
we can set the help bar’s text by calling its Information( ) function. Although
helpBar is a pointer to a Ul_WINDOW_OBIJECT, the Information( ) function
associated with the help bar will be called since this function was declared as virtual.

Event function—DOS

150

A DOS version of the HELP_BAR::Event( ) is created to enable the help bar to receive
the messages which cause it to be initialized, sized, or displayed when the help bar is
running in DOS mode. Since some of the low-level messages are environment-specific,
one event function is created for DOS and another for Windows. Other than this
exception, the source code for the help bar is portable across DOS and Windows. All
events are passed to UL_ WINDOW_OBJECT::Event( ). The following event messages
are also processed by HELP_BAR::Event( ):

S_CREATE—When this message is received, it is passed to U_WINDOW_OBJECT
to initialize the object’s information. Since the help bar was declared as a non-field
region, it will (by default) occupy the entire available window space. At this time,
changes are made to the help bar’s region (i.e., member variable true) so that it only
occupies the bottom line of the window. This is demonstrated by the following code:

if (display->isText)
true.top = true.bottom;
else
{
true.left--; true.right++;
true.top = ++true.bottom - display->cellHeight + 1;

S_DISPLAY_ACTIVE and S_DISPLAY_INACTIVE—These messages cause the
help bar and its associated text, if any, to be displayed on the window. In text mode,
this is simple since it only requires setting the correct color palette and then
displaying text.

UI_REGION region = true;
UI_PALETTE *palette = LogicalPalette(ccode, ID_BUTTON) ;
DrawText (screenlID, region, text, palette, TRUE, ccode);

In graphics mode, displaying the help bar is a little more complicated since, in
addition to the text, there is also a graphical field to be drawn. The graphical field
is similar in appearance to a depressed button. The following code shows how the
help bar is drawn:

UI_REGION region = true;
if (FlagSet (woFlags, WOF_BORDER) )
DrawBorder (screenID, region, FALSE, ccode);

Zinc Interface Library — Programmer’s Tutorial



UI_PALETTE *palette = LogicalPalette(ccode, ID_BUTTON) ;

display->Rectangle(screenID, region, palette, 0, TRUE, FALSE, &clip);

region.left += display->cellWidth;

region.top += HELP_OFFSET;

region.right -= display->cellWidth;

region.bottom -= (HELP_OFFSET + 1);

palette = LogicalPalette(ccode, ID_DARK_SHADOW) ;

display->Line(screenID, region.left, region.bottom - 1,
region.left, region.top, palette, 1, FALSE, &clip);

display->Line(screenID, region.left, region.top,
region.right - 1, region.top, palette, 1, FALSE, &clip);

palette = LogicalPalette(ccode, ID_WHITE_SHADOW) ;

display->Line(screenID, region.right, region.top,
region.right, region.bottom, palette, 1, FALSE, &clip):

display->Line(screenID, region.right, region.bottom,
region.left, region.bottom, palette, 1, FALSE, &clip);

region.left += HELP_OFFSET; region.top++;

region.right -= HELP_OFFSET; region.bottom--;

palette = LogicalPalette(ccode, ID_BUTTON) ;

DrawText (screenID, region, text, palette, TRUE, ccode);

woStatus &= ~WOS_REDISPLAY;

Event function—Windows

A Windows version of the Event( ) is created for the help bar to enable it to receive the
messages which cause it to be initialized, sized, or displayed when the help bar is running
in Windows mode. Since some of the low-level messages are environment-specific, one
Event( ) is created for DOS and another for Windows. Other than this exception, the
source code for the help bar is portable across DOS and Windows. All events are passed
to U_WINDOW_OBJECT::Event( ). The following event messages are also processed
by HELP_BAR::Event( ):

S_INITIALIZE—This message is used to set the static pointer _helpbarJump-
Instance to the function HelpbarJumpProcedure( ).

S_SIZE and S_CREATE—When this message is received, it is passed to UI_-
WINDOW_OBJECT to set up the object’s information. Since the help bar was
declared as a non-field region, it will (by default) occupy the entire available window
space. At this time, changes are made to the help bar’s region (i.e., member variable
true) so that it only occupies the bottom line of the window.

When objects are used within Windows, they must first be registered by a call to the
Windows’ function RegisterObject( ).

RegisterObject ("HELP_BAR", "STATIC", &_helpbarOffset,
&_helpbarJumpInstance, &_helpbarCallback, NULL) ;

The purpose of this call is to set Helpbar JumpProcedure( ) as the function to be called,
by Windows, when the help bar object is passed events. HelpbarJumpProcedure( ) gets

Chapter 14 — Help Bar 151




a pointer to the receiving object creates a Zinc event and then passes the event to the
‘ receiving object.

long FAR PASCAL _export HelpbarJumpProcedure (HWND hWnd, WORD wMsg,
WORD wParam, LONG lParam)

{

HELP_BAR *object = (HELP_BAR *)GetWindowLong (hWnd, _helpbarOffset) ;
return (object->Event (UI_EVENT (E_MSWINDOWS, hwWnd, wMsg,

lParam))) ;

wParam,

Upon return from object->Event( ), the default callback function is automatically invoked
to pass the message back to the default windows procedure (i.e., DefWindowProc).

WM_PAINT—This is a Windows message similar to the Zinc messages S_-
DISPLAY_ACTIVE and S_DISPLAY_INACTIVE. The graphical help bar field is
similar, in appearance, to a depressed button. The following code shows how the
help bar is drawn. (Note: The majority of this code uses Windows’ calls.)

1E

{

152

((ccode == S_REDISPLAY && screenID) ||
(event.type == E_MSWINDOWS && message == WM_PAINT))
if (ccode == S_REDISPLAY)

InvalidateRect (screenID, NULL, FALSE);
PAINTSTRUCT ps;
HDC hDC = BeginPaint (screenID, &ps);
RECT region;
GetClientRect (screenlID, &region);

// Fill the background.

HBRUSH fillBrush = CreateSolidBrush (RGB_LIGHTGRAY) ;
FillRect (hDC, &region, fillBrush);

DeleteObject (fillBrush) ;

// Draw the shadow.

region.left += display->cellWidth;

region.top += HELP_OFFSET;

region.right -= display->cellWidth;

region.bottom -= (HELP_OFFSET + 1);

HPEN darkShadow = CreatePen (PS_SOLID, 1,
GetSysColor (COLOR_BTNSHADOW) ) ;

SelectObject (hDC, darkShadow) ;

MoveTo (hDC, region.left, region.bottom - 1);

LineTo(hDC, region.left, region.top):;

LineTo(hDC, region.right, region.top);

DeleteObject (darkShadow) ;

HPEN lightShadow = GetStockObject (WHITE_PEN) ;

SelectObject (hDC, lightShadow) ;

LineTo(hDC, region.right, region.bottom);

LineTo(hDC, region.left - 1, region.bottom);

DeleteObject (1ightShadow) ;

Zinc Interface Library — Programmer’s Tutorial



// Draw the text.

region.left += HELP_OFFSET; region.top++;

region.right -= HELP_OFFSET; region.bottom--;

SetTextColor (hDC, RGB_BLACK) ;

SetBkColor (hDC, RGB_LIGHTGRAY) ;

: :DrawText (hDC, (LPSTR)text, strlen(text), &region,
DT_SINGLELINE | DT_VCENTER | DT_LEFT);

EndPaint (screenID, &ps);

Information function

Each derived window object should have an associated virtual Information( ) function.
The purpose of the Information( ) function is to handle information requests. HELP_-
BAR::Information( ) function handles two requests:

GET_TEXT—This request returns the text information associated with the help bar.
If this request is used, data (passed as a value parameter) must be a pointer to a
programmer-defined string large enough to contain the help bar text information.

case GET_TEXT:
if (!data)
return (text);
* (char **)data = text;
break;

SET_TEXT—This request sets the text information associated with the help bar. If
this request is used, data (passed as a value parameter) must be a pointer to a
programmer-defined string containing the help bar text information. When the text
is copied into the help bar’s text, a S_REDISPLAY message is sent to the help bar
to display the new text.

case SET_TEXT:

if (text)
delete text;
text = data ? strdup((char *)data) : NULL;
HELP_BAR: :Event (UI_EVENT (S_REDISPLAY)) ;
break;
Enhancements

There are several enhancements that can be made to HELP_BAR to provide a different
look or implementation. Some of these ideas are described below. (NOTE: The actual
implementation of these ideas is left to the reader.)

1—Store the help context information into a .DAT file. Using a .DAT file would
require the use of the UL_STORAGE and UI_STORAGE_OBJECT classes.

Chapter 14 — Help Bar 153




154

2—In addition to the field specific help, general help could be provided. This way,
whenever a field does not have its own help context, the help bar will not be blank.

3—Bitmaps could added to the HELP_BAR class to be displayed in addition to the
text information.

4—In this tutorial, the help bar consists of a single line of text information.

HELP_BAR could be modified to allow for multiple fields on the same help bar line.
Some of these extra fields could be buttons that invoke a hyper-text help window.

Zinc Interface Library — Programmer’s Tutorial



CHAPTER 15 - VIRTUAL LIST

This tutorial shows you how to create a virtual list that presents database information to
the screen (i.e., a list that gets its information from disk). When we are finished, you
should understand:

the design used to implement a virtual list.

the basic design rules that control the operation of windows and window objects
within Zinc Interface Library.

the type of information needed to initialize the base UIW_WINDOW base classes.

The source code associated with this program is located in the \ZINC\TUTOR\VLIST.
It contains the following files:

VLIST.CPP—This file contains the following member functions:

VIRTUAL_LIST::VIRTUAL_LIST( )
VIRTUAL_LIST::"VIRTUAL_LIST( )
VIRTUAL_ELEMENT::Event( )
VIRTUAL_LIST::Event( )
VIRTUAL_LIST::LoadNext( )
VIRTUAL_LIST::Seek( )

In addition, this file contains the main program loop (main( ) or WinMain( )).

VLIST.DAT—This file contains 100 records that are dynamically read from disk
when needed by the virtual list.

VLIST.HPP—This file contains the virtual list and the element class definitions.

BORLAND.MAK, MICROSFT.MAK, and ZORTECH.MAK—These are the
makefiles associated with the virtual list program. You can compile the DOS
version, VLIST.EXE, by typing make -fborland.mak vlist.exe at the
command line prompt. To make the Windows version, WVLIST.EXE, type make
-fborland.mak wvlist.exe at the command line. (NOTE: When compiling
with either Microsoft or Zortech, substitute the name of that compiler as the name of
the make file on the command line.)

Chapter 15 — Virtual List 155




Program execution

The operation of this program can be examined by compiling and running the application

VLIST.EXE.

The following window should appear when you run the program:

Bad - Not achieving an adequate standard.
Bell - Hollow object that rings.

Benefit - Help received, charity entertainment.
Betray - Reveal wanted information; deceive.
Bilious - Bad-tempered; relating to bile.

The current object in the window is the virtual list. Each line of the list contains
information about a different record in the database, where each record is comprised of

a word and an associated definition.

You should be able to use the following keys to move within the window:

Action Key
First element <Ctrl+Home>
Last element <Ctrl+End>

Previous element <Shift+Tab>
<T>
<Gray+T>

Next element <Enter>
<Gray Enter>
<Tab>
<>
<Gray |>

156

Description
Moves to the first database element.

Moves to the last database element.

Moves to the previous database element. If
the highlight is positioned on the first element
of the window, the previous element is
retrieved from the database.

Moves to the next database element. If the
highlight is positioned on the last element
of the window, the next element is retrieved
from the database.

Zinc Interface Library — Programmer’s Tutorial



Page-up <PgUp> Moves up one page in the database.
<Gray PgUp>

Page-down <PgDn> Moves down one page in the database.
<Gray PgDn>

In addition, the left mouse button can be used to select an object, or to scroll the
window’s list information.

When you are finished experimenting with the program, exit by either selecting “Close”
from the system button’s pop-up menu, or by pressing <Shift+F4>.

Class definitions

The virtual list you see in the window is implemented with two classes: VIRTUAL_LIST
and VIRTUAL_ELEMENT. The virtual list class controls the presentation of individual
virtual elements that are placed within the window. The virtual element objects represent
a single database record. They are automatically created and destroyed as needed by the
virtual list class. The following code shows how the VIRTUAL_LIST class is added to
a parent window, then attached to the window manager using the + operator:

// Initialize the window manager.
UI_WINDOW_MANAGER windowManager (display, eventManager);

// Create the virtual list then attach it to the window manager.
windowManager
+ & (*UIW_WINDOW: :Generic (5, 5, 30, 12, "Virtual List")
+ & (*new VIRTUAL_LIST("vlist", 12)
+ new UIW_SCROLL_BAR(0O, 0, 0, 0, SBF_VERTICAL,
WOF_NON_FIELD_REGION)) ;

The definition for the VIRTUAL_ELEMENT class is given below:

class EXPORT VIRTUAL_ELEMENT : public UIW_STRING
{
void DataSet (int column, int line, int width, int height);
void DataSet (const VIRTUAL_ELEMENT *element) ;
virtual int Event (const UI_EVENT &event) ;
VIRTUAL_ELEMENT *Next (void) ;
VIRTUAL_ELEMENT *Previous (void) ;

private:
friend class VIRTUAL_LIST;

int recordNumber;
VIRTUAL_ELEMENT (int left, int top, int width, int height);
}i

This class uses the following member variables. (Its member functions and conceptual
operation will be discussed later in this chapter.)

Chapter 15 — Virtual List 157




e recordNumber is the number of the record in the database. Record numbers start
from the number 0 and increment to one less than the total number of records in the
database. For example, if the database has 100 records, recordNumber for the last
database record would be 99.

The VIRTUAL_LIST class definition is:

class EXPORT VIRTUAL_LIST : public UIW_VT_LIST

{

public:
VIRTUAL_LIST (const char *fileName, int aRecordLength) ;
“VIRTUAL_LIST (void) ;
VIRTUAL_ELEMENT *Current (void) ;
virtual int Event (const UI_EVENT &event) ;
VIRTUAL_ELEMENT *First (void);
VIRTUAL_ELEMENT *Last (void) ;
void LoadFirst (VIRTUAL_ELEMENT *element) ;
void LoadLast (VIRTUAL_ELEMENT *element) ;
void LoadNext (VIRTUAL_ELEMENT *element) ;
void LoadPrevious (VIRTUAL_ELEMENT *element) ;
void Seek(int recordNumber) ;

private:
FILE *file;
const int recordLength;
int currentRecord;
int lastRecord;
}i

This class uses the following member variables:

e file is a pointer to the database. This pointer is set when the virtual list class is
created.

e recordLength is the total number of bytes each record occupies in the database. The
database we have implemented is a simple flat file with 80 character fixed-length
records.

* currentRecord tells at what record the file pointer is positioned. For instance, if a
read operation were performed, without changing the position of the file pointer,
currentRecord would be the record that would be read from disk.

e lastRecord is the number of the last record in the database. Record numbers start

from the number O and increment to one less than the total number of records in the
database. For example, lastRecord is 99 for our database, since we have 100 records.

Conceptual operation

The conceptual operation of the virtual list can be illustrated by the following figure:

158 Zinc Interface Library — Programmer’s Tutorial



DATABASE

record 1
WINDOW
Dictionary | ]
record 1
record 2
record N
record N

This operation can be described through the following steps:

1—The virtual list is derived from the UIW_VT_LIST base class and occupies all
space within the parent window’s border. This is accomplished by setting the WOF_-
NON_FIELD_REGION flag. Thus, anytime the window is sized, the virtual list
occupies all of the space inside the border. The code below shows how the list is
initialized and how it inherits the size capability from the base UIW_VT_LIST class.

VIRTUAL_LIST: :VIRTUAL_LIST (const char *fileName, int aRecordLength)
UIW_VT_LIST(0, 0, 0, 0, WOF_NON_FIELD REGION), currentRecord(0),
recordLength (aRecordLength)

}
EVENT_TYPE VIRTUAL_LIST: :Event (const UI_EVENT &event)
{
// Process virtual list information.
EVENT_TYPE ccode = UI_WINDOW_OBJECT: :LogicalEvent (event, ID_MATRIX) ;
UI_EVENT tEvent = event;
VIRTUAL_ELEMENT *element = Current();
VIRTUAL_ELEMENT *tElement;
switch (ccode)
{
case S_CREATE:
case S_SIZE:
// Get the original size.
UIW_VT_LIST::Event (event);

Chapter 15 — Virtual List 159




160

2—The list creates virtual elements to fill its window space. The height of each
element is the default height of a window object (determined by the display->
cellHeight variable). When the list is created, it automatically determines the number
of elements required to fill the screen, then constructs each element. The information
associated with each element is read from disk using the LoadNext( ) function. This
function is responsible for setting the UIW_STRING: :text and recordNumber variables
associated with the element. The code responsible for this initialization is shown
below:

void VIRTUAL_LIST: :LoadNext (VIRTUAL_ELEMENT *element)
i

char *text = new char (recordLength+l);

// Load the record.

fread(&element->text[1], recordLength, 1, file);
text[0] = ' *;

text [recordLength - 1] = "\0’;

UIW_STRING: :DataSet (text) ;
element->recordNumber = currentRecord++;

}

EVENT_TYPE VIRTUAL_LIST::Event (const UI_EVENT &event)
{
// Process virtual list information.
EVENT_TYPE ccode = UIW_VT_LIST::LogicalEvent (event, ID_VT_LIST);
UI_EVENT tEvent event;
VIRTUAL_ELEMENT *element = Current();
VIRTUAL_ELEMENT *tElement;
switch (ccode)
{
case S_CREATE:
case S_SIZE:
// Get the original size.
UIW_VT_LIST: :Event (event) ;

// Calculate the number of elements that will fit on the screen.

int line = 0;

int width = true.right - true.left + 1;

int maxElements = (true.bottom - true.top) /
display->cellHeight;

element = First();
for (int i = 0; i < maxElements; i++)
{

if (!element)

{
element = new VIRTUAL_ELEMENT(0, line, width,
display->cellHeight);
if (i == 0)
Seek (0) ;
LoadNext (element) ;
UI_LIST::Add(element) ;

NOTE: Only those elements that are visible within the window are stored in memory.
All other element information is retained on disk.

Zinc Interface Library — Programmer’s Tutorial



3—If the user moves to virtual list elements that are visible on the screen, the event
is passed by the VIRTUAL_LIST::Event( ) function to the base UIW_VT_LIST::-
Event( ) function for processing.

If the user moves to a record that is not present on the screen, the virtual list
““scrolls” all visible record information on the screen (up or down, depending on the
new position selected) and reads the new record. The new record is then displayed
to the screen. For example, if the first eight records of the database were visible on
the screen and the user were positioned on the eighth element and pressed the down
arrow key, the list would scroll elements 2 through 8 up one cell position, then
display the ninth element on the screen. The information associated with the first
element would be replaced when the information was scrolled. The picture below
shows conceptually how movement works (the element numbers in the picture are
representative of the database records):

element 1 element 2
element 2 element 3
element 3 element 4
element 4 <DOWN> element 5
element 5 —p element 6
element 6 element 7 ‘
element 7 element 8 |
element 8 element 9 |

4—The virtual list information is deleted when the class is deleted. This operation
is performed when the window is “‘closed”, or when the application is terminated.

VIRTUAL_ELEMENT

The VIRTUAL_ELEMENT class is derived from the base UIW_STRING class so that
it can effectively present information within a window. The VIRTUAL_ELEMENT
constructor is defined as private and is an in-line function. (Only the VIRTUAL_LIST
class has access to the constructor by virtue of it’s friend class status.)

class VIRTUAL_ELEMENT : public UIW_STRING
{
private:

friend class VIRTUAL_LIST;

VIRTUAL_ELEMENT (int left, int top, int width, int height);

Chapter 15 — Virtual List 161




162

The class constructor initializes information as follows:

left, top, width, and height give the height of the object in text or pixel coordinates.
Earlier we presented the virtual list code (VIRTUAL_LIST::Event( )) that creates
virtual elements.

// Calculate the number of elements that will fit on the screen.

int line = 0;
int width = true.right - true.left + 1;

int maxElements = (true.bottom - true.top) / display->cellHeight;

element = new VIRTUAL_ ELEMENT(0, line, width, display->cellHeight);

Since the virtual list has already been set up to display in either graphics or text
mode, it uses graphics or text coordinates when setting up the boundaries of the
virtual elements. The virtual element knows that the application is running in
graphics mode if height is greater than 1, and it sets the woStatus accordingly later
in the constructor (at the position where WOS_GRAPHICS flag is set).

woFlags is specified as WOF_NO_FLAGS by the virtual element. This prevents the
object from having a border drawn around it.

woAdvancedFlags is specified as WOAF_NO_FLAGS by the virtual element. This
tells the controlling window that the object occupies normal space within the parent
window.

All other member variables are set by the base UIW_STRING constructor and by the
parent window (VIRTUAL_LIST) when the window is attached to the window manager.

The two overloaded DataSet( ) functions are used by VIRTUAL_LIST to set the
information contained within the list. The first overloaded function takes four integer
arguments. This overloaded function is used when a new virtual list element is created.
The four arguments give the relative position of the object within the virtual list. The
second overloaded function resets the UIW_STRING: :text and recordNumber information
associated with the element. This function is used by the virtual list to shift record
information from one position on the screen to another (in the scrolling operations). Both
of these functions are in-line, and both are presented below:

Zinc Interface Library — Programmer’s Tutorial



void DataSet (int column, int line, int width, int height)

{ relative.left = column, relative.right = column + width - 1,
relative.top = line, relative.bottom = line + height - 1;
if (height > 1) woStatus |= WOS_GRAPHICS;

else woStatus &= “WOS_GRAPHICS; }
void DataSet (const VIRTUAL_ELEMENT *element)
{ UIW_STRING: :DataSet (element->text); recordNumber =
element->recordNumber; }

VIRTUAL_LIST

The virtual list class is derived from the base class UIW_VT_LIST. This derivation
allows the list to inherit many of the field movement features implemented by the base
class (e.g., moving up and down within the window).

The virtual list constructor initializes the database and base class information. Its
definition is shown below:

VIRTUAL_LIST::VIRTUAL_LIST (const char *fileName, int aRecordLength)
UIW_VT_LIST(0, 0, 0, 0, WOF_NON_FIELD_REGION),
currentRecord(0), recordLength(aRecordLength)

// Open the database.

file = fopen(fileName, "rb");

fseek(file, 0L, SEEK_END) ;

lastRecord = (int) (ftell(file) / recordLength) - 1;
fseek (file, 0L, SEEK_SET) ;

Base class initialization

The base UIW_VT_LIST class constructor is called before any class specific information
is set. It requires the specification of object boundaries (the first four arguments) and the
specification of any special window object flags. The boundary arguments are all zero
since we are setting the WOF_NON_FIELD_REGION flag. This flag ensures that we
will get the remaining space within the parent window’s border.

In addition to the boundary information, the base UIW_VT_LIST object and window
manager classes set several other variables:

e the UI_WINDOW_OBJECT part of the class is initialized with the information passed |
by the UIW_WINDOW class. This includes the boundary arguments specified by our
constructor as well as the default arguments specified by the UIW_WINDOW
constructor. These arguments are shown below:

class EXPORT UIW_VT_LIST : public UIW_WINDOW
{

publie:

Chapter 15 — Virtual List 163




UIW_VT_LIST(int left, int top, int width, int height,

int (*compareFunction) (void *elementl, void *element2) = NULL,
WNF_FLAGS wnFlags = WNF_NO_WRAP, WOF_FLAGS woFlags = WOF_BORDER,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS) ;

}:
UIW_VT_LIST::UIW_VT_LIST(int left, int top, int width, int height,
int (*_compareFunction) (void *elementl, void *element2),

WNF_FLAGS _wnFlags, WOF_FLAGS _woFlags, WOAF_FLAGS _woAdvancedFlags)
. UIW_WINDOW(left, top, width, height, _woFlags, _woAdvancedFlags)

}

e the UIW_WINDOW class is initialized to contain no window objects. (In our class
the objects will be VIRTUAL_ELEMENT objects.)

Member initialization

The remaining part of the constructor initializes the specific member information
associated with the VIRTUAL_LIST class:

e file is set to point to the file open using the fopen( ) function call. This file is
opened for read only access.

e recordLength is set to the argument passed down by the constructor. In our example,
the record length is 80 bytes.

e currentRecord is set to 0, since we will begin reading from the front of the file.
e lastRecord is determined by computing the end-of-file position, then by dividing that

number by the size of each record. Then, 1 is subtracted from the number since we
begin record counts at 0.

The Event function

Various parts of the VIRTUAL_LIST::Event( ) function were described in previous parts
of this chapter. The most important thing to understand about this function is that it only
overrides events that cause the presentation of information to change. All other events
are passed to UITW_WINDOW for handling. The following list describes how information
is overridden by the VIRTUAL_LIST::Event( ) function:

164 Zinc Interface Library — Programmer’s Tutorial



S_CREATE and S_SIZE cause the virtual list to recompute the number of virtual
elements that can be presented to the screen. These elements are then retrieved from
disk. When a subsequent display message is passed to the virtual list’s Event( )
function, the message is passed to the UIW_WINDOW::Event( ) member function
for processing. This causes the list element’s to be displayed to the screen.

L_DOWN and L_NEXT are not overridden unless the next element in the virtual list
resides on disk. If the element is not present on the screen, the current element
information is scrolled up in the window and the next element is retrieved from disk.
This element is presented to the screen by calling the element->Event( ) function
with the message S_REDISPLAY.

L_UP and L_PREVIOUS are not overridden unless the previous element in the
virtual list resides on disk. If the element is not present on the screen, the current
element information is scrolled down in the window and the previous element is
retrieved from disk. This element is presented to the screen by calling the element->
Event( ) function with the message S_REDISPLAY.

L_PGUP, L_PGDN, L_FIRST, and L_LAST cause all of the current elements to
be replaced by new elements from the disk.

The Load function

The VIRTUAL_LIST load functions allow us to read information from various parts of
the database. The VIRTUAL_LIST::LoadNext( ) function is the only function that
actually performs read operations from disk. All other load functions first call the
VIRTUAL_LIST::Seek( ) function, then call VIRTUAL_LIST::LoadNext( ).

The Seek function

The VIRTUAL_LIST::Seek( ) function allows us to move to a different position in the
database. It contains some optimization so that we don’t have to seek from the beginning
of the file every time we want to read information from disk.

Enhancements

The information presented in this chapter should help you understand the operation of the
UIW_WINDOW class and the implementation of a virtual list that uses many of the
features of its base class but optimizes the presentation of large amounts of data. There
are many variations and enhancements that could be made to the virtual list and element

Chapter 15 — Virtual List 165




classes described above. Let’s look at some variations you could implement to make the
virtual list more powerful and flexible. (NOTE: The actual implementation of these ideas
is left to the reader.)

1—Make the base class abstract by declaring pure virtual functions for the
LoadNext( ) function. Doing this would allow you to read non-ascii text into the
record and to display the record information in various formats.

2—Allow a buffer of records before and after the list elements presented to the
screen, so that you don’t need to read record information every time the bottom or
top of the window is reached.

If you are able to envision the extensions and variations presented above, you are well on

your way to understanding the operation of windows and window objects within Zinc
Interface Library.

166 Zinc Interface Library — Programmer’s Tutorial



CHAPTER 16 — CUSTOMIZED DISPLAYS

This tutorial tells you the design features you should be aware of when deriving your own
display classes. We will use the UI_BGI_DISPLAY library class as our example. When
you are finished with this tutorial you should understand:

e the details required to implement the Borland BGI display

e the basic design rules that control the operation of display classes used within Zinc
Interface Library.

e the type of information needed to initialize the base UI_DISPLAY class.

The source code associated with this program is located in the \ZINC\TUTOR\-
DISPLAY. It contains the following files:

BGIDSP.CPP—This file contains the BGI class constructor, destructor, and
associated display member functions.

TEST.CPP—This file contains a graphics test program.

BORLAND.MAK—These are the makefiles associated with the display program.
You can compile TEST.EXE, by typing make -fborland.mak test.exe at
the command line prompt.

NOTE: The UI_BGI_DISPLAY class requires the use of GRAPHICS.LIB and the
associated BGI file (e.g., EGAVGA.BGI, CGA.BGI, HERC.BGI). These files are not
provided on any of the Zinc Interface Library distribution diskettes—they are provided
with the Borland compiler. If you do not have the Borland compiler, it is still
recommended you read this tutorial so that you understand the theory and implementation
details of Zinc Interface Library display classes.

Conceptual design

The main purpose of setting up a display class object is to control all presentation made
to the screen. An additional benefit of a display class is that it allows the abstraction of
screen painting. For example, if we want to draw a rectangular box, all we need to do
with Zinc Interface Library is to call display->Rectangle( ). The actual details of
drawing a rectangle are left to the device dependent Rectangle( ) function. We do not
need to know whether we are running under Borland’s BGI graphics, Zortech’s Flash
Graphics, Microsoft’s MSC graphics, or even in text mode.

Chapter 16 — Customized Displays 167




168

There are three key aspects to the implementation of display classes. The first is the
abstract definition of the base UI_DISPLAY class. This class defines the general
operation of all displays but leaves the implementation to derived display classes. For
example, the function responsible for drawing a rectangle is declared as pure virtual by
the base UI_DISPLAY class:

class EXPORT UI_DISPLAY

{
public:
virtual void Rectangle (SCREENID screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int xor = FALSE,
const UI_REGION *clipRegion = NULL) = 0;

This declaration requires each derived display class to have an implementation for the
Rectangle( ) function.

The second aspect to the implementation of display classes is the dynamic coordinate
system that can change at run-time depending on whether the program is running in
various text or graphics modes. The coordinate system is left-top zero based (i.e., 0,0 is
the coordinate of the left-top corner of the screen) where the right-bottom coordinates are
determined by the type of display and the mode in which it is running. Some example
display mode/coordinates are shown below.

Display mode Right Bottom
Text 80 column x 25 line 79 24
Text 40 column x 25 line 39 24
Text 80 column x 43 line 79 42
Text 80 column x 50 line 79 49
CGA 320 column x 200 line 319 199
MCGA 320 column x 200 line 319 199
EGA 640 column x 350 line 639 349
VGA 640 column x 480 line 639 479

Last, each display class maintains screen information by assigning unique identifications
to rectangular regions of the screen. For example, if the following two windows were
attached to the screen, the display would contain several rectangular regions with different
identifications:

Zinc Interface Library — Programmer’s Tutorial



This is window #1.

0
"""""""" ] 2l - 4
s o] | e glm daiig]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .

Class implementation

The declaration for the BGI display class is defined in UI_DSP.HPP. Its declaration is
almost identical to all of the other types of derived displays supported by Zinc Interface
Library, with the exception of the constructor and destructor names:

class EXPORT UI_BGI_DISPLAY : public UI_DISPLAY, public UI_REGION_LIST
{
public:
struct BGIFONT
{
int font;
int charSize;
int multX, divX;

Chapter 16 — Customized Displays 169




int multy, divy;
int maxWidth, maxHeight;

}i
typedef char BGIPATTERN[8];

static UI_PATH *searchPath;
static BGIFONT fontTable[MAX_LOGICAL_FONTS] ;
static BGIPATTERN patternTable[MAX_LOGICAL_PATTERNS];

UI_BGI_DISPLAY(int driver = 0, int mode = 0);

virtual ~UI_BGI_DISPLAY(void);

virtual void Bitmap (SCREENID screenID, int column, int line,
int bitmapWidth, int bitmapHeight, const UCHAR *bitmapArray,
const UI_PALETTE *palette = NULL,
const UI_REGION *clipRegion = NULL) ;

virtual void Ellipse (SCREENID screenID, int column, int line,
int startAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int xor = FALSE,
const UI_REGION *clipRegion = NULL);

virtual void Line (SCREENID screenID, int columnl, int linel,
int column2, int line2, const UI_PALETTE *palette, int width =
int xor = FALSE, const UI_REGION *clipRegion = NULL) ;

1,

virtual COLOR MapColor (const UI_PALETTE *palette, int isForeground) ;

virtual void Polygon (SCREENID screenID, int numPoints,
const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int xor = FALSE,
const UI_REGION *clipRegion = NULL) ;

virtual void Rectangle (SCREENID screenID, int left, int top, int right,

int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int xor = FALSE,
const UI_REGION *clipRegion = NULL) ;
virtual void RectangleXORDiff (const UI_REGION &oldRegion,
const UI_REGION &newRegion) ;
virtual void RegionDefine (SCREENID screenID, int left, int top,
int right, int bottom) ;
virtual void RegionMove (const UI_REGION &oldRegion, int newColumn,
int newLine, SCREENID oldScreenID = ID_SCREEN,
SCREENID newScreenID = ID_SCREEN) ;
virtual void Text (SCREENID screenID, int left, int top,
const char *text, const UI_PALETTE *palette, int length = -1,
int fill = TRUE, int xor = FALSE,
const UI_REGION *clipRegion = NULL,
LOGICAL_FONT font = FNT_DIALOG_FONT) ;
virtual int TextHeight (const char *string,

SCREENID screenID = ID_SCREEN, LOGICAL_FONT font = FNT_DIALOG_FONT) ;
virtual int TextWidth(const char *string, SCREENID screenID = ID_SCREEN,

LOGICAL_FONT font = FNT_DIALOG_FONT) ;

virtual int VirtualGet (SCREENID screenID, int left, int top, int right,

int bottom) ;
virtual int VirtualPut (SCREENID screenlID) ;

// ADVANCED functions for mouse and cursor --- DO NOT USE! -

virtual void DeviceMove (IMAGE_TYPE imageType, int newColumn,
int newLine);

virtual void DeviceSet (IMAGE_TYPE imageType, int column, int line,
int width, int height, UCHAR *image) ;

protected:
int maxColors;

void SetFont (LOGICAL_FONT logicalFont) ;
void SetPattern(const UI_PALETTE *palette, int xor);
}i

NOTE: You may have noticed that almost all the member functions are defined with the
reserved word virtual. Zinc Interface Library uses virtual so that you can derive classes

Zinc Interface Library — Programmer’s Tutorial



from any of the supported library classes. If you derive a display class, the use of virtual
is not necessary.

#include files

Whenever you derive a display class, you need to include the proper header files
associated with the display that give you access to their functions. The Borland graphics
package requires the use of the header file GRAPHICS.H before the definition of the
member functions (NOTE: GRAPHICS.H is only included in the BGIDSP.CPP file,
Zinc programs do not need to include this file.):

#include <graphics.h>

Display Construction

The base UI_DISPLAY class constructor requires one argument:
UI_DISPLAY (int isText);

The argument, isText, tells whether a text or graphics display has been created. Since we
are implementing a graphics display, this value should be TRUE. This value is used by
the base display to set the UI_DISPLAY::isText variable.

In addition to this variable the UI_DISPLAY class provides default settings for the
following members:

» installed is a flag that tells whether the display has been installed. This member is
set to FALSE by the base UI_DISPLAY class. You should set this variable to be
TRUE if the graphics display installs correctly.

e isMono is a flag that tells whether the display is operating in monochrome mode.

e columns and lines are both set to 0. They must be set when you determine the type
of display available.

o preSpace denotes the size (in pixels) of the white space between the top border of a
string field and the tallest character.

»  postSpace denotes the size (in pixels) of the white space between the bottom border
of a string field and the lowest character.

Chapter 16 — Customized Displays 171




172

e miniNumeratorX and miniDenominatorX are values used to determine the width of
a mini-cell. miniNumeratorX is set to 1 and miniDenominatorX is set to 10. (These
values default to 1/10th of a cellwidth.)

e miniNumeratorY and miniDenominatorY are values used to determine the height of
a mini-cell. miniNumeratorY is set to 1 and miniDenominatorY is set to 10. (These
values default to 1/10th of a cellheight.)

e backgroundPalette is a pointer to the background color palette.

e xorPalette is a pointer to the XOR color palette.

colorMap is a pointer to the normal color palette.

After the base class initialization is complete, we must initialize any display-specific
information. A listing of the UI_BGI_DISPLAY constructor is shown below. (NOTE:
The step identifiers to the right are not part of the actual code.)

UI_BGI_DISPLAY::UI_BGI_DISPLAY (int driver, int mode)
UI_DISPLAY (FALSE)
{
// Register the system, dialog, and small fonts that were linked in.
BGIFONT BGIFont = {O, O, 1, 1, 1, 1, 0, 0 }; (Step 1)
BGIFont.font = registerbgifont (SmallFont) ;
if (BGIFont.font >= 0)
{
BGIFont.charSize [0}
BGIFont .maxWidth 10;
BGIFont .maxHeight = 11;
UI_BGI_DISPLAY::fontTable[FNT_SMALL_FONT] = BGIFont;

}
BGIFont.font = registerbgifont (DialogFont) ;
if (BGIFont.font >= 0)
{
BGIFont.charSize 0
BGIFont .maxWidth 11;
BGIFont.maxHeight = 11;
UI_BGI_DISPLAY::fontTable[FNT_DIALOG_FONT] = BGIFont;

}
BGIFont.font = registerbgifont (SystemFont) ;
if (BGIFont.font >= 0)
{
BGIFont.charSize 0;
BGIFont .maxWidth il
BGIFont .maxHeight = 13;

UI_BGI_DISPLAY::fontTable[FNT_SYSTEM_FONT] = BGIFont;
}
// Find the type of display and initialize the driver. (Step 2)
if (driver == DETECT)

detectgraph (&driver, &mode) ;
int tDriver, tMode;

// Use temporary path if not installed in main().
int pathInstalled = searchPath ? TRUE : FALSE; (Step 3)
if (!pathInstalled)

searchPath = new UI_PATH;

Zinc Interface Library — Programmer’s Tutorial



const char *pathName = searchPath->FirstPathName () ;
do
{
tDriver = driver;
tMode = mode;
initgraph (&tDriver, &tMode, pathName) ;
pathName = searchPath->NextPathName () ;
} while (tDriver == -3 && pathName) ;
if (tDriver < 0)
return;
driver = tDriver;
mode = tMode;

// Delete path if it was installed temporarily.
if (!pathInstalled)
{

delete searchPath;

searchPath = NULL;

olumns = getmaxx() + 1; (Step 4)

lines = getmaxy () + 1;

maxColors = getmaxcolor () + 1;

// Fill the screen according to the specified palette. (Step 5)

SetFont (FNT_DIALOG_FONT) ;

cellWidth = (fontTable[FNT_DIALOG_FONT].font == DEFAULT_FONT) ?
TextWidth ("M", ID_SCREEN, FNT_DIALOG_FONT) : // Bitmap font.
TextWidth ("M", ID_SCREEN, FNT_DIALOG_FONT) - 2; // Stroked font.

cellHeight = TextHeight (NULL, ID_SCREEN, FNT_DIALOG_FONT) +
preSpace + postSpace + 4 + 4; // 4 above and 4 below the text.

SetPattern (backgroundPalette, FALSE);

setviewport (0, 0, columns - 1, lines - 1, TRUE);

bar (0, 0, columns - 1, lines - 1);

// Define the screen display region.

Add (NULL, new UI_REGION_ELEMENT (ID_SCREEN, 0, 0, eolumns - 1,
lines - 1));

installed = TRUE;

The main steps in this initialization are:

1—The first step is to register the system, dialog, and small fonts that were linked
in. These fonts are contained in the .CHR files in \ZINC\SOURCE. The fonts can
be modified with the Borland font editor and must be compiled with the Borland
utility BGI2OBJ.EXE. Once in .OBJ files, the fonts can be linked into the user
application. (NOTE: These fonts are automatically linked into ZIL.LIB.)

2—The second step requires that we find out what type of display can be created.
In the Borland graphics library this is done by calling detectgraph( ). The driver
and mode arguments allow the programmer to override this default detection.

3—The third step required to set up the Borland graphics package (not required by
Zortech’s graphics library) is that we find the associated graphics driver. The
UI_PATH class object is used as a searching area where the driver may be found.
The current working directory is the first place to be searched, the second is the

Chapter 16 — Customized Displays 173




originating directory of the application, and finally the UI_PATH class searches the
directories specified by the environment variable “PATH.” If the driver cannot be
found, initialization ends, with the installed flag remaining FALSE. Otherwise, the
graphics display is initialized and the process continues to the third step.

4—This step sets up columns, lines, and maxColors variables. A description of these
variables was discussed previously in this chapter.

5—The final step requires us to set up the default font, initialize cellWidth and

cellHeight fill the background screen, and define the new display region (i.e., entire
screen). Since the display was installed, installed is set to TRUE.

Display Destructor

The class destructor for UI_BGI_DISPLAY is straight-forward. All we need to do is call
closegraph( ), which restores the screen.

UI_BGI_DISPLAY:: UI_BGI_DISPLAY (void)
{
// Restore the display.
if (installed)
closegraph () ;

Paint Member Functions

174

All painting functions work under a set of similar principles. To illustrate these principles
we will examine the UI_BGI_DISPLAY::Rectangle( ) function. (NOTE: The step
identifications to the right are not part of the actual code.)

void UI_BGI_DISPLAY::Rectangle (SCREENID screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width, int fill,
int xor, const UI_REGION *clipRegion)

// Assign the rectangle to the region structure. (step 1)

UI_REGION region, tRegion;

if (!RegionInitialize(region, clipRegion, left, top, right, bottom))
return;

// Draw the rectangle on the display.
int changedScreen = FALSE;
for (UI_REGION_ELEMENT *dRegion = First(); dRegion; (step 2)
dRegion = dRegion->Next ())
if (xor || screenID == ID_DIRECT ||
(screenID == dRegion->screenlID &&
dRegion->region.Overlap(region, tRegion)))

if (xor || screenID == ID_DIRECT)
tRegion = region;
if (!changedScreen)

{

Zinc Interface Library — Programmer’s Tutorial



changedScreen = VirtualGet (screenlID, region.left,
region.top, region.right, region.bottom);
SetPattern (palette, xor);

}

setviewport (tRegion.left, tRegion.top, tRegion.right, (step 3)
tRegion.bottom, TRUE) ;
if (All && xor) // Patch for Borland bar() xor bug.

{
for (int 1 = 0; i < tRegion.right - tRegion.left; i++)
line(i, top - tRegion.top, i, bottom - tRegion.top);
}
else if (fill)
bar (left - tRegion.left, top - tRegion.top,
right - tRegion.left, bottom - tRegion.top);

for (int i = 0; 1 < width; i++)
rectangle(left - (tRegion.left - i), top -
(tRegion.top - i), right - (tRegion.left + 1)
bottom - (tRegion.top + 1));
if (xor || screenID == ID_DIRECT)
break;
}
// Update the screen. (step 4)

if (changedScreen)
VirtualPut (screenlD) ;

}

1—The first step for any painting function is to set up the desired region that is to
be painted on the screen. In the case of the Rectangle( ) function, the programmer
can specify up to two regions. The first region is given by four coordinates: left, top,
right, and bottom. This is the region where the programmer wants to draw the
rectangle or fill region. The second region is specified by clipRegion. This region
is used to describe a constraining screen region where the object should be clipped.
The clip region is useful within Zinc Interface Library because unique screen
identifications (described below) are only set up at the window level. Thus a window
may contain several different sub-fields (e.g., buttons, title-bar, border) but all the
objects share the same identification. The way to ensure that one sub-object does not
draw over another sub-object is by specifying a clipRegion that is the true coordinates
of the object that wants to paint to the screen. The object’s true screen coordinates
are contained in the public UI_WINDOW_OBJECT: :true variable.

2—1In the conceptual discussion of display classes we saw how each display keeps
track of reserved areas on the screen. The second step of each paint routine is used
to determine what areas of the screen have the same identification as that passed
down by the screenID argument. This is done by walking through the list of region
elements and checking their identifications with that specified by screenID. 1If the
identifications match, and if there is overlap between the screen region and the region
specified by the programmer, the third step is executed. The best way to do this
“clipping”” would be to set up all the clip regions at once and then paint the image.
Unfortunately, no graphics libraries have this multiple-clip region capability. We
must therefore walk through the list of regions and display the image each time an
overlapping region is found.

Chapter 16 — Customized Displays 175




176

3—This step performs the actual operation of drawing information to the screen. The
type of low-level display calls made in this step depend on the type of function that
is called (e.g., Rectangle( ), Ellipse( ), Polygon( )) and whether the fill parameter is
set to TRUE or FALSE.

5—In order to make the screen drawing faster, the VirtualGet( ) and VirtualPut( )
functions have been added. They allow an entire section of the display to be updated
at once and not line-by-line. (See “UI_BGI_DISPLAY” in the Programmer’s Refer-
ence for more details.)

Confused? It is really quite simple in theory, it’s just the implementation that gets messy.
You will find each graphics library has its own way of doing things and that you need to
understand the operation of the whole system, even though you are at a very low-level in
the library. The main things to remember are to be very consistent in what you do, make
sure that you set up the clip regions properly, and be sure that you understand where you
really want to paint the image.

Information Member Functions

There are two information functions associated with the display. TextHeight( ) is used
to get the maximum height of the current font. If the current font, logicalFont, is 0, the
Borland textheight( ) function is called. TextWidth( ) is used to get the maximum width
of the current font. Its operation is similar to that of TextHeight( ).

int UI_BGI_DISPLAY::TextHeight (const char *string, SCREENID,
LOGICAL_FONT logicalFont)
{
SetFont (logicalFont) ;
if (fontTable[logicalFont].maxHeight)
return (fontTable[logicalFont].maxHeight) ;
else if (string && *string)
return (textheight ((char *)string));
else
return (textheight ("Mg"));
}

int UI_BGI_DISPLAY::TextWidth(const char *string, SCREENID,
LOGICAL_FONT logicalFont)
{

if (Sstring || I (*string))
return (0);
SetFont (logicalFont) ;
int length = textwidth((char *)string);
if (strchr(string, ‘&'))
length -= textwidth("&");
return (length) ;

Zinc Interface Library — Programmer’s Tutorial



Graphic display information functions must return the width and height of a string in pixel
values. In addition, the text width or height should be returned, not the cell height and
width (defined by the cellWidth and cellHeight values).

Color mapping

Most graphics libraries have special ways of implementing colors. The UI_BGI_-
DISPLAY has a protected member function called MapColor( ) that maps Zinc UL_-
PALETTE structure information to colors understood by the Borland graphics library.
The code responsible for this conversion is shown below:

COLOR UI_BGI_DISPLAY::MapColor (const UI_PALETTE *palette, int foreground)
{
// Match the color request based on the type of display.
if (maxColors == 2)
return (foreground ? palette->bwForeground : palette->bwBackground) ;
else if (maxColors < 16)
return (foreground ? palette->grayScaleForeground :
palette->grayScaleBackground) ;
return (foreground ? palette->colorForeground :
palette->colorBackground) ;

}

If you derive a display class from a different library package, you will need to write a
map function for your display.

Conclusion

You should now have a basic understanding of the display operation within Zinc Interface
Library. If you want to support additional displays, use this tutorial as a template for your
implementation.

Chapter 16 — Customized Displays 177




178 Zinc Interface Library — Programmer’s Tutorial



SECTION V
PERSISTENT OBJECTS

Section V — Persistent Objects 179




180 Zinc Interface Library — Programmer’s Tutorial



CHAPTER 17 — GRAPHIC OBJECTS

The next two tutorials are centered around the topic of persistence. These tutorials are
written so that you can understand the underlying design and implementation of persistent
objects (used for the storage and retrieval of window objects) within Zinc Interface
Library.

Webster’'s New Universal Unabridged Dictionary has the following definitions of
persistence:

1. the act of persisting; stubborn or enduring continuance, as in a chosen course or
purpose.

2. a persistent or lasting quality; resoluteness, tenacity.
3. continuous existence; endurance, as of a headache.

4. the continuance of an effect after the cause which first gave rise to it is removed;
as persistence of vision causes visual impressions to continue upon the retina for
some time.

OBJECT ORIENTATION Concepts, Languages, Databases, User Interfaces (Khoshafian
& Abnous. John Wiley & Sons, Inc., 1990, pages 274-275) describes the use of
persistence within computer languages:

“The data manipulated by an object-oriented database can be either transient or
persistent. Transient data is only valid inside a program or transaction; it is lost
once the program or transaction terminates. . . . Persistent data is stored outside
of a transaction context, and so survives transaction updates. There are several
levels of persistence. Usually the term persistent data is used to indicate the
databases that are shared, accessed, and updated across transactions. . . . The
least persistent objects are those that are created and destroyed in procedures data
(local data). Next are objects that persist within the workspace of a transaction,
but that are invalidated when the transaction terminates (aborts or commits).
... The only type of objects that persist across transactions (and sessions for that
matter) are permanent objects that typically are shared by multiple users.”

Traditional C programming allows for the storage of structures and data within a file. In
C++ however, class objects not only contain structural information, but also contain
unique information that constitutes a class; such as member functions, single and multiple
inheritance, pointers to member functions, etc.

Chapter 17 — Graphic Objects 181




are a circle, a rectangle and a triangle:

We will use three graphic objects to introduce the concept of persistence. These objects

C and C++

The three graphic objects we chose require the following basic information:

Circle—A central screen point and radius value (column, line, and radius)

Rectangle—Four rectangle points (left, top, right, and bottom)

Triangle—Three triangular points (left-top, left-bottom, and right-bottom)

Before we examine the use of persistent objects in C++, let’s examine the code used to
display our graphic objects and justify the use of C++ in our implementation. (The code
is contained in PERSIST1.C and was compiled with the Borland compiler.)

#ifdef _ BORLANDC___
#include <conio.h>
#include <stdlib.h>
#include <graphics.h>

main ()

{

int triangle[] = { 400, 100, 350,

/* Initialize the screen. */

int mode;

int driver = DETECT;

initgraph(&driver, &mode, OL);

if (graphresult() != grok)
exit (1) ;

/* Draw the graphic objects. */
circle (100, 150, 50);

rectangle (200, 100, 300, 200);
drawpoly (4, triangle);

200, 450, 200,

400, 100 };

Zinc Interface Library — Programmer’s Tutorial




/* Get user input then restore the screen. */
getch();
closegraph() ;

return (0);
}#endif

The code shown above compiles with both C and C++ compilers. The conceptual flow
of this program is quite easy to follow:

1—The program initializes the screen (initgraph( )).

2—The three objects (circle( ), rectangle( ), drawpoly( )) are drawn to different
areas of the screen.

3—The program waits for user response from the keyboard (getch( )).
4—The program restores the screen (closegraph( )).

Although this code is very simple, its main drawbacks are that the presentation of each
graphic object is compiler specific, and that there is virtually no concept of a circle,
rectangle, or triangle. Some of these problems can be fixed using well structured C code.
Let’s look at another way we could set up a program to display the graphic objects. (This
code resides in PERSIST2.C.)

#define NULL 0L
#include <conio.h>
#include <graphics.h>

struct CIRCLE
{

int column, line, radius;
}i

struct RECTANGLE
{

int left, top, right, bottom;
}i

struct TRIANGLE
{

int triangle[8];
}i

void DrawCircle(struct CIRCLE *sCircle)
{

}

circle(sCircle->column, sCircle->line, sCircle->radius);

void DrawRectangle(struct RECTANGLE *sRectangle)
{
rectangle (sRectangle->left, sRectangle->top, sRectangle->right,
sRectangle->bottom) ;

Chapter 17 — Graphic Objects 183




184

void DrawTriangle(struct TRIANGLE *sTriangle)
{

}

drawpoly (4, sTriangle.triangle);

void InitializeDisplay(void)
{
int mode;
int driver = DETECT;
initgraph (&driver, &mode, NULL) ;
if (graphresult() != grOk)
exit(1);
}

void RestoreDisplay(void)
{

}

closegraph () ;

main()
{
/* Initialize the screen and graphic objects. */
struct CIRCLE circle = { 100, 150, 50 };
struct RECTANGLE rectangle = { 200, 100, 300, 200 };
struct TRIANGLE triangle = { 400, 100, 350, 200, 450, 200, 400, 100 };

InitializeDisplay();

/* Draw the objects. */
DrawCircle(&circle);
DrawRectangle (&rectangle) ;
DrawTriangle (&triangle) ;

/* Wait for user response then restore the screen. */
getch() ;

RestoreDisplay();
return (0);

This implementation shows the following features:

Structures—Structures are used to represent the graphic objects. Each basic
structure contains data information that is needed to display the object.

Display initialization—This consists of routines that hide the details of screen
initialization and restoration. The functions provided above are InitializeDisplay( )
and RestoreDisplay( ). The InitializeDisplay( ) function for Zortech’s Flash
Graphics is as follows:

void ImitializeDisplay(void)
{
if (ifg_init())
exit (1) ;

Object display function—Each graphic object has an associated Draw( ) function
(i.e., DrawCircle( ), DrawRectangle( ) and DrawTriangle( )) that displays the

Zinc Interface Library — Programmer’s Tutorial



object to the screen. The file DRAW.C also contains functions that support
Microsoft C/C++, Microsoft Windows, and Zortech’s Flash Graphics.

Features of C allow us to revise the code associated with the actual implementation of
paint functions, but provide little benefit with problems of abstraction, encapsulation and
data hiding. An alternative C design (contained in PERSIST3.C), which helps with the
problem of abstraction, is shown below:

struct CIRCLE
{

int column, line, radius;
Yi

struct RECTANGLE
{

}:

int left, top, right, bottom;

struct TRIANGLE
{

int triangle(8];
}:

struct GRAPHIC_OBJECT
{
int type;
union
{
struct TRIANGLE triangle;
struct RECTANGLE rectangle;
struct CIRCLE circle;
} graphic;
}:

void DrawObject (struct GRAPHIC_OBJECT *object)
{
if (object->type == ID_CIRCLE)

DrawCircle (object->graphic.circle.column,
object->graphic.circle.line, object->graphic.circle.radius);

else if (object->type == ID_RECTANGLE)

DrawRectangle (object->graphic.rectangle.left,
object->graphic.rectangle.top, object->graphic.rectangle.right,
object->graphic.rectangle.bottom) ;

else if (object->type == ID_TRIANGLE)
DrawTriangle (object->graphic.triangle.triangle) ;

The super structure and function defined above allows us to provide a level of abstraction
on the graphic objects, but presents several new problems. First, the design is quite
inflexible. For instance, if we were to define a new line object, the GRAPHIC_OBJECT
structure would need to be modified and the DrawObject( ) function would need to be
modified. As more and more objects were defined, the GRAPHIC_OBIJECT structure
would become increasingly complex. Second, the link program, which produces
executable files, would never be able to remove any graphic object’s code from the
executable, even if we never used the object!

The C++ solution to the problems presented above involves:

Chapter 17 — Graphic Objects 185




The code implementation of these concepts is shown below.
contained in the file PERSIST4.CPP. These examples contain storage and retrieval
functions which will be discussed later on in this chapter.)

Defining an abstract graphic object class with an abstract display routine, then
declaring compiler specific instances of the class.

#define NULL 0L
#include <conio.h>
#include <graphics.h>

class GRAPHIC_OBJECT // Abstract graphic class.
{

public:
virtual void Draw(void) = 0;
static GRAPHIC_OBJECT *New (FILE *file);
virtual void Store(FILE *file)
{ fwrite(&type, sizeof (type), 1, file); }

protected:
short type;
GRAPHIC_OBJECT (int _type) : type(_type) { }
GRAPHIC_OBJECT (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
{ if (! (flags & L_SKIP_TYPE)) fread(&type, sizeof (type), 1, file);
private:

struct JUMP_ELEMENT
{

short type;

GRAPHIC_OBJECT * (*newFunction) (FILE *file, LOAD_FLAGS flags) ;
}i

static JUMP_ELEMENT _jumpTablel[];
}i

class CIRCLE : public GRAPHIC_OBJECT
{
public:

CIRCLE (int _column, int _line, int _radius)
GRAPHIC_OBJECT (ID_CIRCLE), column(_column), line(_line),
radius (_radius) { }

CIRCLE(FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
GRAPHIC_OBJECT (file, flags)

{ fread(&column, sizeof (column), 1, file);
fread(&line, sizeof(line), 1, file);
fread(&radius, sizeof (radius), 1, file); }

virtual void Draw(void)

{ DrawCircle(column, line, radius); }
static GRAPHIC_OBJECT *New (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
{ return (new CIRCLE (file, flags)); }

void Store(FILE *file)
{ GRAPHIC_OBJECT: :Store(file);

fwrite(&column, sizeof (column), 1, file);
fwrite(&line, sizeof(line), 1, file);
fwrite(&radius, sizeof (radius), 1, file); }

private:
int column, line, radius;

Y

(The actual code is

}

Zinc Interface Library — Programmer’s Tutorial



class RECTANGLE : public GRAPHIC_OBJECT

{
public:

RECTANGLE (int _left, int _top, int _right, int _bottom)
GRAPHIC_OBJECT (ID_RECTANGLE), left(_left), top(_top),
right (_right), bottom(_bottom) { }

RECTANGLE (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
GRAPHIC_OBJECT (file, flags)

{ fread(&left, sizeof(left), 1, file);
fread (&top, sizeof(top), 1, file);
fread (&right, sizeof(right), 1, file);
fread (&bottom, sizeof (bottom), 1, file); }

virtual void Draw(void)
{ DrawRectangle(left, top, right, bottom); }
static GRAPHIC_OBJECT *New (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
{ return (new RECTANGLE (file, flags)); }
void Store(FILE *file)
{ GRAPHIC_OBJECT: :Store (file) ;
fwrite(&left, sizeof(left), 1, file);
fwrite(&top, sizeof (top), 1, file);
fwrite(&right, sizeof(right), 1, file);
fwrite(&bottom, sizeof (bottom), 1, file); }

private:
int left, top, right, bottom;
}i

class TRIANGLE : public GRAPHIC_OBJECT
{
public:
TRIANGLE (int columnl, int linel, int column2, int line2,
int column3, int line3) :
GRAPHIC_OBJECT (ID_TRIANGLE)

{ triangle[0] = triangle[6] = columnl,
triangle[l] = triangle[7] = linel,
triangle(2] = column2, triangle[3] = line2,
triangle[4] = column3, triangle([5] = line3; }

TRIANGLE (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
GRAPHIC_OBJECT (file, flags)
{ fread(triangle, sizeof(triangle), 1, file); }

virtual void Draw(void)

{ DrawTriangle(triangle); }
static GRAPHIC_OBJECT *New (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
{ return (new TRIANGLE (file, flags)); }

void Store(FILE *file)
{ GRAPHIC_OBJECT: :Store(file) ;
fwrite(triangle, sizeof (triangle), 1, file); }

private:
int triangle(8];
}:

main ()

{
// Initialize the screen.
InitializeDisplay () ;

// Initialize the graphics objects.

GRAPHIC_OBJECT *object[3];

object[0] = new CIRCLE(100, 150, 50);

object[1] = new RECTANGLE (200, 100, 300, 200);
object[2] = new TRIANGLE (400, 100, 350, 200, 450, 200);

Chapter 17 — Graphic Objects 187




// Draw the objects.
for (int 1 = 0; 1 < 3; i++)

{

object [i]->Draw() ;
delete object[i];
}

// Get user input then restore the screen.
getch();

RestoreDisplay () ;

return (0);

}

The C++ solutions are manifest through the following features:

Classes—The use of class definitions allows us to encapsulate the definition and
description of each graphic object. The C definition required that we define a
structure with each type of object, but had no way of grouping the structure and
function information together. Each object’s structure and functions are disjoint,
except for the naming conventions we used to conceptually tie the object and function
together (e.g., CIRCLE, DrawCircle( )).

Class scope—The use of “public”, “protected” and “‘private” members allows us
to hide the implementation details of data and display. For example, in C the
structure CIRCLE contained three variables: column, line, and radius. These
variables could be seen throughout the application. In C++, however, this data is
hidden. The circle is created with three arguments, but its implementation is hidden,
so far as external functions are concerned.

Abstraction—The abstraction of the graphics class is accomplished through
inheritance and the use of virtual and pure virtual functions. In addition to the
function abstraction, class abstraction is provided by the graphic object base classes.

Encapsulation—One method of encapsulation can be seen by the late definition of
the window objects. In C, we had to define the structures that would contain the
graphic objects at the front of the routine: with C++ we can wait until the object is
needed. Another method is provided by the class object definitions where both data
and member functions are provided for the CIRCLE, RECTANGLE and TRIANGLE
classes.

The main drawback of the C++ code shown above is the level of complexity placed on
the definition of objects. What originally was a short program has blossomed to over 100
lines. This discrepancy is hard to justify when you deal with simple designs. The real
benefit of what we are doing shows up when more objects are declared, or when more
displays are defined.

188 Zinc Interface Library — Programmer’s Tutorial



Basic storage and retrieval

We are now ready to examine the code required to store and retrieve the graphic
information. At this point, we will limit our discussion to the C++ implementation of
storage.

In C++, the storage and retrieval of graphic information is quite easy to implement and
to modify. The following code shows how the TRIANGLE class implements a storage
and a retrieval scheme using a Store( ) member function and overloaded class constructor.
(The file PERSISTS.CPP contains the code required to store all the graphics objects.)

class GRAPHIC_OBJECT
{
public:
virtual void Draw(void) = 0;
static GRAPHIC_OBJECT *New (FILE *file);
virtual void Store(FILE *file)
{ fwrite(&type, sizeof (type), 1, file); }

protected:
short type;

GRAPHIC_OBJECT (int _type) : type(_type) { }
GRAPHIC_OBJECT (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
{ if (!(flags & L_SKIP_TYPE)) fread(&type, sizeof (type), 1, file); }
private:

struct JUMP_ELEMENT
{

short type;

GRAPHIC_OBJECT * (*newFunction) (FILE *file, LOAD_FLAGS flags) ;
}i

static JUMP_ELEMENT _jumpTablel[];
}i

class TRIANGLE : public GRAPHIC_OBJECT
{

public:
TRIANGLE (int columnl, int linel, int column2, int line2,
int column3, int line3) : GRAPHIC_OBJECT (ID_TRIANGLE)
{ triangle[0] = triangle[6] = columnl,
triangle(l] = triangle[7] = linel,
triangle([2] = column2, triangle[3] = line2,
triangle(4] = column3, triangle[5] = line3; }

TRIANGLE (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS) :
GRAPHIC_OBJECT (file, flags)
{ fread(triangle, sizeof(triangle), 1, file); }

virtual void Draw(void)

{ DrawTriangle(triangle); }
static GRAPHIC_OBJECT *New (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
{ return (new TRIANGLE (file, flags)); }

void Store(FILE *file)
{ GRAPHIC_OBJECT: :Store (file);
fwrite(triangle, sizeof (triangle), 1, file); }

private:

int triangle[8];
}:

Chapter 17 — Graphic Objects 189




main ()

{

// Initialize the graphics objects.

GRAPHIC_OBJECT *object[3];

object[0] = new CIRCLE(100, 150, 50);

object[1] new RECTANGLE (200, 100, 300, 200);
object[2] new TRIANGLE (400, 100, 350, 200, 450, 200);

o

// Store the objects.
FILE *file = fopen("persist.dat", "wb");
printf ("Generating GRAPHICS.DAT ");
for: (int 1 = 0: 1< 3Bi T#4)
{
DELHCE (Y*v) 2
object[i] ->Store(file);
delete object[i];
}
printf (" Done!\n");
fclose(file);

return (0);

With this implementation, each graphics object has an associated Store( ) function and
overloaded file constructor. The Store( ) function is declared virtual by the base
GRAPHIC_OBIJECT class so that the derived class’ store functions will be called when
we store each of our objects. The code above shows how all three graphic objects can
be stored to disk. The code required to read the same three objects from disk is shown
below (contained in PERSIST6.CPP):

main ()

{
// Set up the graphics screen display.
InitializeDisplay () ;

// Load the graphics objects.

FILE *file = fopen("persist.dat", "rb");
GRAPHIC_OBJECT *object[3];

object[0] = new CIRCLE(file);

object[1l] = new RECTANGLE (file);
object[2] = new TRIANGLE (file);
fclose(file);

// Draw the objects.
for (int i = 0; 1 < 3; i++)
{
object[i]->Draw() ;
delete object[i];
}

// Get user input then restore the screen.
getch();

RestoreDisplay () ;

return (0);

Abstract storage and retrieval

190

The only drawback with the first implementation of storage was its requirement for us to

Zinc Interface Library — Programmer’s Tutorial



call specific class constructors (e.g., CIRCLE::CIRCLE(file)). Complete abstraction
requires us to make three subtle but significant modifications to our design. You may
recall, up to this point, we had to know the type of object we were reading and writing.
The only way to remove this restriction is to push the work on the base class
GRAPHIC_OBIJECT. The way we do this is to first re-define the base Store( ) function
to store the type of graphic object before the object stores its information. (The DOS
version of this code is contained in PERSIST7.CPP and the Windows version is
contained in PERSISTS.CPP.)

class GRAPHIC_OBJECT
{
public:
virtual void Store(FILE *file)
{ fwrite(&type, sizeof(type), 1, file); }

Yi

Next, we need to change the derived object classes so they call GRAPHIC_OBJECT::-
Store( ) before they store any information. An example of how this change is
implemented is shown by the RECTANGLE class:

class RECTANGLE : public GRAPHIC_OBJECT

{

public:

void Store(FILE *file)
{ GRAPHIC_OBJECT: :Store(file);

fwrite(&left, sizeof(left), 1, file);
fwrite(&top, sizeof (top), 1, file);
fwrite (&right, sizeof (right), 1, file);
fwrite (&bottom, sizeof (bottom), 1, file); 1}

}

The second major change we must make concerns object retrieval. This change requires
us to write static New( ) functions for all graphic objects, including the base GRAPHIC_-
OBIJECT class. The code below shows how the RECTANGLE and GRAPHIC_OBJECT
classes are modified.

class GRAPHIC_OBJECT
{
public:
virtual void Draw(void) = 0;
virtual void Store(FILE *file)
{ fwrite(&type, sizeof (type), 1, file); }
static GRAPHIC_OBJECT *New(FILE *file);

Chapter 17 — Graphic Objects 191




class RECTANGLE : public GRAPHIC_OBJECT
{
public:
RECTANGLE (FILE *file, LOAD_FLAGS flags = L_NO_FLAGS)
GRAPHIC_OBJECT (file, flags)
{ fread(&left, sizeof(left), 1, file);
fread (&top, sizeof(top), 1, file);
fread(&right, sizeof(right), 1, file);
fread (&bottom, sizeof (bottom), 1, file); 1}
static GRAPHIC_OBJECT *New(FILE *file)
{ return (new RECTANGLE (file)); }
}i

The New( ) functions associated with derived graphic objects are used to provide a
jumping point to the object’s class constructor. (In C++, we cannot get the address of a
constructor directly.)

The base GRAPHIC_OBJECT::New( ) function uses a privately defined jump table that
contains four entries: one for CIRCLE, one for RECTANGLE, one for TRIANGLE, and
one that is used as an end-of-array indicator.

class GRAPHIC_OBJECT
{

private:
struct JUMP_ELEMENT
{
short type;
GRAPHIC_OBJECT * (*newFunction) (FILE *file);
}i

static JUMP_ELEMENT _jumpTable[];
Y

GRAPHIC_OBJECT: : JUMP_ELEMENT GRAPHIC_OBJECT::_jumpTable[] =
{

ID_CIRCLE, CIRCLE::New },

ID_RECTANGLE, RECTANGLE::New },

ID_TRIANGLE, TRIANGLE::New },

0, NULL }

A

K

The derived base class New( ) function is used as the abstract constructor and is not
placed in the table. Let’s look at how our code changes when we use GRAPHIC._-
OBJECT::New( ) instead of each graphic object’s constructor.

main ()

{
// Set up the graphics screen display.
InitializeDisplay () ;

FILE *file = fopen("persist.dat", "rb");
int fileObjects = 1;
do

{
GRAPHIC_OBJECT *object = GRAPHIC_OBJECT: :New(file);
if (object)
{

192 Zinc Interface Library — Programmer’s Tutorial



object->Draw () ;
delete object;
}
else
fileObjects = 0;
} while (fileObjects);
fclose (file) ;

// Get user input then restore the screen.
getch();

RestoreDisplay () ;

return (0);

}

You can see that there is no specific reference to any particular graphics object, only the
base GRAPHIC_OBIJECT class. When GRAPHIC_OBJECT::New( ) is called, it reads
the type information from disk. Then it searches its jump table to find the identification
found when the type was read. Once that identification is found, it calls the associated
New function for the type.

This implementation gives us the total abstraction we wanted at a relatively small
inconvenience. Let’s review the steps required to implement the simple persistence for
graphic objects:

1—We defined an abstract GRAPHIC_OBJECT class that contains a pure virtual
Draw( ) function that is used by derived classes to paint information to the screen.

2—We defined a virtual Store( ) function that is used to store the graphic object
information. The base GRAPHIC_OBJECT::Store( ) function just stores the object
type, whereas the derived classes each store their private information.

3—We defined a static New( ) function for each graphic object class. The derived
objects New( ) functions are used by the base GRAPHIC_OBJECT::New( )
function to provide jump points to the class constructors. The base New( ) function
is used by our program to provide abstract retrieval of graphic objects.

This concludes the introduction of persistent objects. The next tutorial shows you how
Zinc actually implements this strategy to store and retrieve window objects that you can
use in your applications.

Chapter 17 — Graphic Objects 193




194 Zinc Interface Library — Programmer’s Tutorial



CHAPTER 18 — ZINC WINDOW OBJECTS

The previous tutorial should give you a good introduction of how simple persistent objects
are implemented. Zinc Interface Library retrieves window objects created by the

interactive design tool. For example, the ‘“Hello, World!” tutorial loaded the following
two windows from disk:

— Hello World Window
Hello, World!

=] World Information Window

Age: [Atieast 4 172 billion years.

Weight: 6.0 sextillion metric tons. l

Size: |24,901 .55 miles [equatorial circumf

. |oxygen — 46.6%
Makeup: | ilicon — 27.7%
aluminum — 8.1%
iron —5.0%
calcium — 3.6%
other — 9.0%

The earth is the third planet in distance
outward from the sun. Itis the only
planetary body in the solar system
known to have conditions suitable for life.

The retrieval of these two objects from disk required only two lines of constructor code
This code is shown below:

// Add two windows to the window manager.
*windowManager

+ new UIW_WINDOW ("HELLO HELLO_WORLD_WINDOW")
+ new UIW_WINDOW ("HELLO WORLD_INFORMATION_WINDOW") ;

Implementation details

The basic design of persistent objects in Zinc Interface Library is centered around four
fundamental points: class object storage, class object retrieval, and low-level file support.

Chapter 18 — Zinc Window Objects

195




A discussion of these points requires that you understand the window object hierarchy
supported by Zinc Interface Library:

IWINDOW OBJECT HIERARCHY.

UI_WINDOW_OBJECT

l UIW_BORDER } { UIW_ICON I | UIW_PROMPT |
(other programmer
defined window
[ uw_sutTon | [ uw.stAnG | [ um_winoow | - obiect)
IW_MAXIMIZE_BUTTON IW_BIGNUM |_WINDOW_MANAGER
IW_MINIMIZE_BUTTON IW_DATE IW_COMBO_BOX
IW_POP_UP_ITEM IW_FORMATTED_STRING IW_GROUP
IW_PULL_DOWN_ITEM IW_INTEGER IW_HZ_LIST
IW_SYSTEM_BUTTON IW_REAL IW_POP_UP_MENU
IW_TITLE IW_TIME IW_PULL_DOWN_MENU
IW_SCROLL_BAR
IW_TEXT
IW_TOOL_BAR
IW_VT_LIST

Class object storage

Zinc objects store information to disk through the use of virtual Store( ) member
functions. The base UL WINDOW_OBIJECT class contains the initial definition of
Store( ). The code below shows the base class definition of Store( ):

class UI_WINDOW_OBJECT : public UI_ELEMENT
{
public:
virtual void Store(const char *name, UI_STORAGE *file = NULL,
UI_STORAGE_OBJECT *object = NULL);

The arguments passed to this function are used in the following manner:

*  name contains the object name, or a name that contains the drive, directory, file, and
object path name. The name of the object is distinguished from a drive path by using
the “ (tilde) character. A full path name is required if no file is specified. Some
example path names are shown below:

D:\ZIL\DATA\MYFILE“WINDOW
WINDOW.DAT HELLO
WORLD_INFORMATION_WINDOW

196 Zinc Interface Library — Programmer’s Tutorial



e file is a pointer to the file that contains the object information. The default argument
NULL allows you to read an object from disk without first opening a file. In this
case, UI_WINDOW_OBJECT::Store( ) object opens the file, then the top-level
object closes the file.

e object is a pointer to the object to be stored. The default argument is NULL to allow
you to store this object (i.e., the object that contains the Store( ) function) to disk.

Whenever we derive an object from the base Ul_WINDOW_OBJECT class, we define
a virtual Store( ) function for the derived object. For example, the UIW_BUTTON class
contains a virtual function with the same parameters as the base class.

class UIW_BUTTON : public UI_WINDOW_OBJECT
{
public:
virtual void Store(const char *name, UI_STORAGE *file = NULL,
UI_STORAGE_OBJECT storeFlags = NULL);

}

When an object is stored, its Store( ) function is called by the controlling class. It calls
the base class object before storing any information itself so that the base object can store
information common to all window objects. As the object works its way back down the
inheritance tree, each class stores the information it will need when the object is read back

from disk. The code below shows how the UIW_POP_UP_ITEM class implements two
levels of inheritance:

void UIW_POP_UP_ITEM: :Store(const char *name, UI_STORAGE *directory,
UI_STORAGE_OBJECT *file)
{
// Store the pop-up item information.
UIW_BUTTON: :Store(name, directory, file);
file->Store (mniFlags) ;
menu.Store (NULL, directory, file);

}

void UIW_BUTTON: :Store(const char *name, UI_STORAGE *directory,
UI_STORAGE_OBJECT *file)
{

}

void UI_WINDOW_OBJECT::Store(const char *name, UI_STORAGE *file,
UI_STORAGE_OBJECT *object)
{

// Write the base object information to disk.

Chapter 18 — Zinc Window Objects 197




Class object retrieval

Window objects are loaded from disk in a manner similar to that used when storing the
object. Instead of a Store( ) function, however, the control is provided by an overloaded
constructor that takes the object name, file pointer, and special load flags. Here is an
example of how the UIW_BUTTON class object defines this retrieve capability:

class UIW_BUTTON : public UI_WINDOW_OBJECT
{
public:
UIW_BUTTON (const char *name, UI_STORAGE *file = NULL,
UI_STORAGE_OBJECT *object);

}

The inheritance code works in a similar manner to that used by the store operation. For
example, here is the inheritance code that loads the UIW_POP_UP_ITEM class:

UIW_POP_UP_ITEM: :UIW_POP_UP_ITEM(const char *name, UI_STORAGE *file,
UI_STORAGE_OBJECT *object): UIW_BUTTON(name, file, object)
{

}

UIW_BUTTON: : UIW_BUTTON (const char *name, UI_STORAGE *directory,
UI_STORAGE_OBJECT *file): UI_WINDOW_OBJECT(name, directory,
file), btStatus (BTS_NO_STATUS), userFunction(NULL), getString(NULL),
value (0)

// Read the button information.

}

UI_WINDOW_OBJECT: :UI_WINDOW_OBJECT (const char *name, UI_STORAGE *object,
UI_STORAGE_OBJECT *file)
{

// Read the base object information.

}

In this example, the pop-up item first calls the button class, then the button class calls the
base class file constructor. The benefit of overloading the constructor of classes, rather
than using a “new” and subsequent “load” operation, is that it only requires one call.
The constructor can initialize its information based on the disk information, rather than
doubling the effort by initializing variables that will later be over-written.

198 Zinc Interface Library — Programmer’s Tutorial



Low-level file support

The final component is low-level file support. In Zinc, the low-level storage and retrieval
operations are performed by a class called UI_STORAGE_OBJECT. This class has
several member functions that are designed specifically for persistent object
implementation. A partial listing of the class is given below:

class EXPORT UI_STORAGE_OBJECT
{

friend class EXPORT UI_STORAGE;
public:

int objectError;

OBJECTID objectID;

char stringID[32];

UI_STORAGE_OBJECT (void) ;
UI_STORAGE_OBJECT (UI_STORAGE &file, const char *name,
OBJECTID nobjectID, UIS_FLAGS pflags UIS_READWRITE) ;
~UI_STORAGE_OBJECT (void) ;
int Load(char *value);
int Load (UCHAR *value) ;
int Load(short *value);
(
(

int Load (USHORT *value) ;

int Load(long *value);

int Load (ULONG *value) ;

int Load(void *buff, int size, int len);
int Load(char *string, int len);

int Load(char **string);

void Touch (void) ;

UI_STATS_INFO *Stats (void);

UI_STORAGE *Storage(void)

int Store(char value);

int Store(UCHAR value) ;

int Store (short value);

int Store (USHORT value) ;

int Store(long value;

int Store (ULONG value) ;

int Store(void *buff, int size, int len);
int Store(const char *string);

}i

The main components of this class are:

e Load( ) is an overloaded function that allows objects to read portable information to
disk.

o Store( ) is an overloaded function that allows objects to write portable information
to disk.

Conclusion

There are two catches to the implementation scheme described in this chapter. First, we
need to maintain an object table that gives us a handle on the file constructors. This table

Chapter 18 — Zinc Window Objects 199




200

is automatically created by Zinc Interface Library when you store information to disk.
You just need to compile and link the file in your application.

Second, the use of virtual Store( ) functions and the overloaded file constructor is not
handled properly by current versions of compilers. They are not able to link out virtual
functions that are never used. The way we get around this problem is to use #ifdef
statements around the persistent object functions. The library source code contains the
#ifdef directive ZIL_PERSISTENCE. 1If you re-compile the source code, with
ZIL_PERSISTENCE not defined, a version of Zinc without persistent object capabilities
will be created. This may be useful for applications that are known to never use
persistent objects, since it will keep the .EXE size smaller.

You should now be familiar with the implementation details associated with persistent

objects. Their use can greatly improve the size and implementation of windows in your
application.

Zinc Interface Library — Programmer’s Tutorial



SECTION VI
APPENDIXES

Section VI — Appendixes 201




202 Zinc Interface Library — Programmer’s Tutorial



APPENDIX A — COMPILER CONSIDERATIONS

This appendix explains the initial configuration you must implement in order to compile
your applications with Zinc Interface Library.

Borland

Integrated Development Environment (IDE)

To compile applications for DOS in the IDE, the following options must be selected
within the IDE:

o Select Optionsl/Compiler/lCode Generation. Choose the Large model, turn Word
alignment off, and turn Unsigned characters off.

e Select OptionsiDirectories. In the include directory, enter the path of your Zinc
include file. For example, if Zinc is installed on Drive C, the include file directory
would be C:\ZINC\INCLUDE.

o Select ProjectlOpen to create a project file. You must include both your source files
and the proper Zinc library.

To compile applications for Windows in the IDE, the following options must be selected
within the IDE:

e Select Options|Application, then select Window App.
o Select OptionslCompilerlCode Generation, then select the Large model.

NOTE: Although you can compile from within the IDE, you must be in Windows in
order to actually run a Windows application.

Makefiles

To compile applications using a makefile, the TCC, BCC, or BCCX command-line
compilers must be used. Each tutorial program has a sample makefile, BORLAND.-
MAK, that can be used as a template for other programs. The options listed next to
CPP_OPTS in the makefile are recommended by Zinc. The makefile can be run by
typing the following:

Appendix A — Compiler Considerations 203




204

make -fborland.mak

Before using the makefile the following may need to be changed:

e Be sure to update your TURBOC.CFG file in the compiler’s BIN directory. The
following lines should be changed to reflect the path of the compiler and Zinc
Interface Library:

-I.;C:\ZINC\INCLUDE;C:\BORLANDC\INCLUDE
-L.;C:\ZINC\LIB;C: \BORLANDC\LIB

¢ The following line should also be changed in TLINK.CFG to reflect the path of the
compiler and Zinc Interface Library:

-L.;C:\ZINC\LIB;C:\BORLANDC\LIB

¢ In order to compile Microsoft Windows applications, you must be using Microsoft
Windows Version 3.X and Borland C++ Version 3.0 or later. All of the options
specified in the tutorial Borland makefiles must be used. In addition, the -WE
compiler option and /Twe link option, which compiles the application as a Windows
executable program, must be included.

e The appropriate Zinc .LIB files—either ZIL.LIB for DOS or ZILW.LIB for
Windows—should be linked in.

Here is a sample “‘generic”’ makefile:

# Makefile for GENERIC example program

# Uses Zinc Interface Library Version 3.00 and Borland C++ 3.00

# Be sure to update your TURBOC.CFG file to include the Zinc paths, e.g.:
B -I.;C:\ZINC\INCLUDE;C:BORLANDC\INCLUDE

# -L.;C:\ZINC\LIB;C:BORLANDC\LIB

# and your TLINK.CFG file to include the Zinc paths, e.g.:

# -L.;C:\ZINC\LIB;C:BORLANDC\LIB

# make -fborland.mak generic.exe (makes the generic example for DOS)
# make -fborland.mak wgeneric.exe (makes the generic example for

# Windows)

## Compiler and linker: (Add -v to CPP_OPTS and /v to LINK_OPTS for debug.)
CPP=bcc

LINK=tlink

CPP_OPTS=-c -ml -01 -w

LINK_OPTS=/c /x

WCPP_OPTS=-c -ml -01 -WE -w

WLINK_OPTS=/c /C /Twe /x

## Libraries

C_OBJS=c01

C_LIBS=zil graphics emu mathl cl
WC_OBJS=c0wl

WC_LIBS=zilw mathwl import cwl

Zinc Interface Library — Programmer’s Tutorial



.cpp.obj:
$ (CPP) S$(CPP_OPTS) {S< }

.Cpp.obw:
$(CPP) $(WCPP_OPTS) -o$*.obw {$< }

generic.exe: generic.obj
S(LINK) $(LINK_OPTS) @&&!

$ (C_OBJS) +generic.obj

$*, ,$(C_LIBS)

|

wgeneric.exe: generic.obw
S (LINK) $(WLINK_OPTS) @&&!
$ (WC_OBJS) +generic.obw
$*, ,$(WC_LIBS),wgeneric.def
|

rc wgeneric.rc $<

Zortech

Workbench (ZWB)

To compile applications in the ZWB, the following options must be selected within the
ZWB:

»  Select CompilelCompile OptionslCode Generation. Choose the Large Memory Model,
select OS Support of DOS or Windows, set Structure Alignment to BYTE, turn
CHAR==UCHAR off, turn Integer Only off, and turn SS!=DS on.

Makefiles

Each tutorial program has a sample makefile, ZORTECH.MAK, that can be used as a
template for other programs. The options listed next to CPP_OPTS in the makefile are
recommended by Zinc. The makefile can be run by typing the following:

make -fzortech.mak

Before using the makefile the following may need to be changed:
e Change the environment variable for your include files’ path by entering set
include=, followed by the paths for your Zortech include files and your Zinc

include files. For example, if your include files are all on Drive C, enter:

set include=.;C:\ZINC\INCLUDE;C:\ZORTECH\INCLUDE

Appendix A — Compiler Considerations 205




Change the environment variable for the libraries by entering set 1ib=, followed by

the paths for your Zortech libraries and your Zinc libraries. For example, if your
libraries are all on Drive C, enter:

set lib=.;C:\ZINC\LIB;C:\ZORTECH\LIB

NOTE: Probably the easiest place to change the environment variables is in your

AUTOEXEC.BAT file.

In order to compile Microsoft Windows applications, you must be using Microsoft
Windows Version 3.X. All of the options specified in the tutorial Zortech makefiles
must be used. In addition, the -W2 compiler option, which compiles the application
as a Windows executable program, must be included.

The appropriate Zinc .LIB files—either ZIL.LIB for DOS or ZILW.LIB for

Windows—should be linked in.

Here is a sample “generic”’ makefile:

# Makefile for GENERIC example program
# Uses Zinc Interface Library Version 3.00 and Zortech C++ 3.00

# Be sure to set the LIB and INCLUDE environment variables for Zinc, e.g.:

i set LIB=.;C:\ZINC\LIB;C:\ZTC\LIB

# set INCLUDE=.;C:\ZINC\INCLUDE;C:\ZTC\INCLUDE

# make -fzortech.mak generic.exe (makes the generic example for DOS)

# make -fzortech.mak wgeneric.exe (makes the generic example for

# Windows)

## Compiler and linker: (Add -g to CPP_OPTS and /CO to LINK_OPTS for debug.)
CPP=cl

LINK=1ink

CPP_OPTS=-¢ -ml -al -br
LINK_OPTS=/NOI

WCPP_OPTS=-c -ml -al -br -W2
LINK_OPTS=/NOI

## Libraries
C_OBJS=
C_LIBS=zil fg
WC_OBJS=
WC_LIBS=

+Cpp Job]
S (CPP) $(CPP_OPTS) S$<

.Cpp.obw:

$ (CPP) $(WCPP_OPTS) -oS$*.obw $<

generic.exe: generic.obj

S (LINK) $(LINK_OPTS) $(C_OBJS)+generic.obj,$*, ,$(C_LIBS),NUL

wgeneric.exe: generic.obw
S (LINK) $ (WLINK_OPTS)

S (WC_OBJS) +generic.obw, $*,

Zinc Interface Library — Programmer’s Tutorial



,$ (WC_LIBS),wgeneric.def
rc -k wgeneric.rc $<

Microsoft

Programmers Workbench (PWB)

To compile applications in the PWB, the following options must be selected within the
PWB:

e Select OptionslLanguage OptionsIC++. Choose the Large Memory Model.

Makefiles

Each tutorial program has a sample makefile, MICROSFT.MAK, that can be used as a
template for other programs. The options listed next to CPP_OPTS in the makefile are
recommended by Zinc. The makefile can be run by typing the following:

nmake -fmicrosft.mak
Before using the makefile the following may need to be changed:

e Change the environment variable for your include files’ path by entering set
include=, followed by the paths for your Microsoft include files and your Zinc
include files. For example, if your include files are all on Drive C, enter:

set include=.;C:\ZINC\INCLUDE;C:\C700\INCLUDE

e Change the environment variable for the libraries by entering set 1ib=, followed
by the paths for your Microsoft libraries and your Zinc libraries. For example, if
your libraries are all on Drive C, enter:

set 1lib=.;C:\ZINC\LIB;C:\C700\LIB

NOTE: Probably the easiest place to change the environment variables is in your
AUTOEXEC.BAT file.

e In order to compile Microsoft Windows applications, you must be using Microsoft
Windows Version 3.x. All of the options specified in the tutorial Microsoft makefiles
must be used. In addition, the -Gsw compiler option, which compiles the application
as a Windows executable program, must be included.

Appendix A — Compiler Considerations 207




The appropriate Zinc .LIB files—either ZIL.LIB for DOS or ZILW.LIB for
Windows—should be linked in.

Here is a sample ‘“‘generic”’ makefile:

# Makefile for GENERIC example program

# Uses Zinc Interface Library Version 3.00 and Microsoft C++ 7.00

# Be sure to set the LIB and INCLUDE environment variables for Zinc, e.g.:
# set LIB=.;C:\ZINC\LIB;C:\C700\LIB

# set INCLUDE=.;C:\ZINC\INCLUDE;C:\C700\INCLUDE

# nmake -fmicrosft.mak generic.exe (makes the generic example for DOS)
# nmake -fmicrosft.mak wgeneric.exe (makes the generic example for

Windows)

## Compiler and linker: (Add -Zi to CPP_OPTS and /CO to LINK_OPTS for

## debug.)
CPP=cl
LINK=1ink

CPP_OPTS=-c -AL -BATCH -Gs
LINK_OPTS=/NOD /NOI /BATCH
WCPP_OPTS=-c -AL -BATCH -Gsw -DWINVER=0x0300
WLINK_OPTS=/NOD /NOI /BATCH

## Libraries

C_OBJS=

C_LIBS=zil llibce graphics oldnames
WC_OBJS=

WC_LIBS=zilw libw llibcew oldnames

LCPp.0b7 :
$(CPP) $(CPP_OPTS) S$<

.Cpp.obw:
S (CPP) $(WCPP_OPTS) -Fo$*.obw S$<

generic.exe: generic.obj
$(LINK) $(LINK_OPTS) @<<zil.rsp
$ (C_OBJS) +generic.obj
$*, ,$(C_LIBS),NUL
<<

wgeneric.exe: generic.obw
$ (LINK) $(WLINK_OPTS) @<<zil.rsp
$ (WC_OBJS) +generic.obw
$*, ,$(WC_LIBS),wgeneric.def
<<
rc -30 -k wgeneric.rc $<

Zinc Interface Library — Programmer’s Tutorial




APPENDIX B - COMPILED BGI FILES

The Borland compiler converts .BGI files to .OBJ files so that you can link the graphics
driver into your program. This appendix shows how you can use .OBJ graphics files in
your program. For simplicity we will modify the first “Hello World!” tutorial program.
To change the screen initialization, add the following code (shown as the bold regions of
the program):

// HELLOl.CPP - Initializing the display, event manager and window manager.
// COPYRIGHT (C) 1990-1992. All Rights Reserved.
// Zinc Software Incorporated. Pleasant Grove, Utah USA

#include <ui_win.hpp>
#include <graphics.h>

main ()
{
// Initialize the screen display, trying for graphics mode first.
// The graphics overlay files are linked into the application program.
int mode;
int driver = DETECT;
detectgraph(&driver, &mode) ;
switch(driver)
{
case EGA:
case EGAMONO:
case VGA:
registerbgidriver (EGAVGA_driver);
break;

case CGA:
registerbgidriver (CGA_driver);
break;

case HERCMONO:
registerbgidriver (Herc_driver);
break;

}

// Construct the new display.
UI_DISPLAY *display = new UI_BGI_DISPLAY;
if (!display->installed)
{
delete display;
display = new UI_TEXT_DISPLAY;
}

// Initialize the event manager and add three devices to it.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;
*eventManager

+ new UID_KEYBOARD

+ new UID_MOUSE

+ new UID_CURSOR;

Appendix B — Compiled BGI Files 209




// Initialize the window manager.
UI_WINDOW_MANAGER *windowManager = new UI_WINDOW_MANAGER (display,
eventManager) ;

// Create the hello world window.
UIW_WINDOW *window = new UIW_WINDOW(5, 5, 40, 6);

// Add the window objects to the window.
*window
+ new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_SYSTEM_BUTTON
new UIW_TITLE ("Hello World Window")
new UIW_PROMPT (0, 0, "Hello World!");

+ 4+ o+ + o+

// Add the window to the window manager.
*windowManager + window;

// Wait for user response.

EVENT_TYPE ccode;

do

{
// Get input from the user.
UI_EVENT event;
eventManager->Get (event) ;

// Send event information to the window manager.
ccode = windowManager->Event (event) ;
} while (ccode != L_EXIT && ccode != S_NO_OBJECT) ;
// Clean up.
delete windowManager;
delete eventManager;
delete display;

return (0);
}

The only change you need to make to your source code are the changes that explicitly call
detectgraph( ) and registerbgidriver( ). All other parts of your code remain the same.

The Borland compiler has a support program called BGIOBJ.EXE that converts .BGI
files to .OBJ files. The following steps are required to compile a .BGI file:

1—Change to the directory that contains the .BGI file you want to convert.

2—Convert the .BGI file by executing the BGIOBJ program with the .BGI file as
the argument (no extension is required) by typing:

bgiobj.exe <bgiFileName>

After the .OBJ file is produced, include it in your program’s makefile or project file so
that it is linked into the executable program.

210 Zinc Interface Library — Programmer’s Tutorial



For example, the following command line remakes the hello world program with the
EGAVGA driver (you should have the TURBOC.CFG file set so that the include and
library paths for Zinc Interface Library are defined):

bcc -ml -P hellol.cpp egavga.obj zil.lib graphics.lib

Compiled .BGI files are useful because the Ul_BGI_DISPLAY constructor does not need
to search your PATH environment to try and find the .BGI files. (If no file is found the
graphics display is not initialized.) The drawback with compiled .BGI files is that you
must compile all possible display types and link them into your application. This will
cause the executable file to be larger than that produced without the compiled files.

Appendix B — Compiled BGlI Files 211




212 Zinc Interface Library — Programmer’s Tutorial



APPENDIX C — EXAMPLE PROGRAMS

Zinc Software continually improves and updates example programs that provide additional
help for programmers on particular library topics. The following list describes the
example programs that are available in the Zinc Interface Library examples directory. For
additional updates and examples, keep in contact with our Bulletin Board Service and the
Zinc Software technical support group.

Each .ZIP file contains several compressed files with different extensions. An
explanation of these extensions follows:

HPP—A header file to be used with the example code.
.CPP—A file containing example code.

TXT—A text file to be used with the GENHELP utility in preparing the .HPP and
the .DAT files needed for use with the UI_HELP_SYSTEM.

READ.ME—A text file explaining the functionality of each example.

.MAK—A make file that will compile and link the example program. The syntax
to be used in making the executable file is:

make -f<make file name> <program name>

(NOTE: The make file name is either: BORLAND.MAK, MICROSFT.MAK, or
ZORTECH.MAK depending upon which compiler you are using.)

ANALOG

This program displays two constantly updating, sizeable analog clocks to the graphics
display. This is accomplished by implementing a multiple inheritance class derived from
UI_DEVICE and UIW_WINDOW.

BIO

This program uses a class derived from UI_WINDOW_OBIJECT to display sine wave
representations of a person’s biorhythm in the lower portion of a window, while allowing
the user to enter date information in the upper portion of the window. The window is

Appendix C — Example Programs 213




sizeable, and the sine wave graphics are dynamically sized within the window by use of
the WOF_NON_FIELD_REGION flag.

CALC

This program uses a CALCULATOR class derived from UIW_WINDOW to display a
calculator, which consists of a UIW_BIGNUM class object and several UIW_BUTTON
class objects inside of a window. This program demonstrates how to attach user functions
to UIW_BUTTON class objects and how to call a non-static class member function from
a static user function.

CALENDAR

This program creates a sizeable calendar for which the spacing of the days and weeks is
dynamically changed according to the size of the calendar. This is accomplished by
deriving classes from UIW_VT_LIST and UIW_WINDOW.

CHECKBOX

This program derives a checkbox and radio button class from the UL_WINDOW_OBJECT
base class and demonstrates the implementation of these classes. The classes
CHECKBOX and RADIO BUTTON use the UI_DISPLAY::Bitmap( ) function to
display themselves in graphics mode and the UL_WINDOW_OBJECT::Text( ) function
to display themselves in text mode. The class RADIO_BUTTON allows for any number
of groups of radio buttons to be created, with only one button in a group being selected
at one time.

CLOCK

This program displays a constantly updating digital clock to the graphics or text display.
This is accomplished by implementing a multiple inheritance class derived from UI_-
DEVICE and UIW_WINDOW.

COMBOBOX

This program derives a combo box class from the UIW_WINDOW class. The
COMBO_BOX class demonstrates how to pass information between two windows and
how to implement the logical association of two classes (eg. UIW_STRING with a
UIW_BUTTON) as one class (e.g., U_COMBO_BOX).

Zinc Interface Library — Programmer’s Tutorial



DIRECT

This program displays filenames as UIW_STRING class objects attached to a
UIW_VT_LIST class object. The program allows the user to change directories by
selecting UIW_STRING class objects which are attached to a UIW_VT_LIST class object.
If the user clicks on a file name, the UIW_STRING class object will call a user function
that will display the file name, file size, and file date in a window.

DRAW

This program paints information to the screen using the UI_DISPLAY::Rectangle( )
function and the UL_EVENT_MANAGER class.

DISPLAY

This program demonstrates the functionality of the UI_BGI_DISPLAY, UIL -
FG_DISPLAY, UI_MSC_DISPLAY, UI_TEXT_DISPLAY and UI_MSWINDOWS_-
DISPLAY classes. The program uses the RegionDefine( ), Rectangle( ), Text( ), and
TextWidth( ) member functions to draw graphics information to the screen.

ERROR

This program toggles between using the UI_ERROR_SYSTEM and the Ul_ERROR_-
SYSTEM when a function key is pressed.

FILEEDIT

This program implements a file text editor complete with directory and file manipulation
functionality. This program uses classes derived from the UIW_WINDOW class. It also
uses the UI_HELP_SYSTEM class.

FREESTOR

This program implements a free store exception handler. When the new( ) operator fails
to allocate memory, the Freestor can be used to allow the user application to recover
gracefully.

Appendix C — Example Programs 215




GRAPH

This program displays line graphs, bar graphs, and pie graphs inside of several
overlapping windows.

MESSAGES

This program displays two buttons in a window. If either button is pressed, a menu
window appears, displaying several options. If any of the options in the menu window
are then selected, the menu window will disappear, and the selected option’s text will
appear on the button that was originally selected. This is accomplished by using a class
derived from UIW_BUTTON which understands a programmer-defined event type. A
UI_EVENT class object of this type then uses its ‘data’ member to point to the new
character array.

NOTEPAD

This program creates two “note pad” windows, each with a UIW_STRING, a
UIW_DATE, and a UIW_TEXT class object attached to it. These windows are attached
to the window manager, allowing the end-user to cut and paste text between the windows,
etc.

PERIODIC

This program creates a periodic table of elements. Periodic implements user functions
and uses the Zinc data file.

PHONEBK

This program implements a phone number storage/retrieval system. It uses the
UIL_STORAGE and UI_STORAGE_OBIJECT classes to save the phone number entries in
the Zinc data file.

PIANO

This program uses objects of a class derived from UIW_BUTTON to display a piano
keyboard in a window. The keys can be selected with the mouse or with the keyboard
in order to play music. This program also demonstrates how to assign hot keys to
window objects, and the use of the WOAF_HOT_REGION flag.

Zinc Interface Library — Programmer’s Tutorial




PUZZLE

This program creates a “15’s” puzzle using a class derived from UIW_WINDOW and
a group of UIW_BUTTON class objects. This program demonstrates how to size button
objects and move them within a window.

SATELLITE

This program computes the elevation and azimuth of a satellite (for your latitude and
longitude). It uses the UIW_REAL class.

SERIAL

This program implements a simple RS-232 communications device. It allows two users
to “chat” between two machines via a serial connection. Multiple inheritance is used to
derive a new window from UIW_WINDOW and UI_DEVICE. Adding user devices to
the event manager is addressed.

SPY

This program displays the textual representation of event types in a window as the events
occur in a typical Zinc application. This is accomplished by deriving a device class from
the UI_DEVICE class. This device class, which is of type E_DEVICE, intercepts all
events as they occur and outputs their textual representation to an object of the example
class TTY_WINDOW.

VALIDATE

This program attaches a validate function to several UIW_BIGNUM class objects in order
to display the sum of these objects in an additional non-selectable UIW_BIGNUM class
object. This program demonstrates how to call a non-static class member function using
a static validate function.

Appendix C — Example Programs 217




218 Zinc Interface Library — Programmer’s Tutorial



APPENDIX D - ZINC CODING STANDARDS

Zinc Software has an internal document that specifies standards for all code written for
internal, as well as external, distribution. The purpose of these standards is to improve
the readability, organization, and maintenance of source code and header files. This
document is printed in this appendix so that you can understand the coding standards we
use when writing the example programs, tutorial programs, and source code modules you
receive when you purchase this product.

Naming

Classes and structures

Class names should be self-explanatory and should be in upper-case lettering, with
underscores used to separate words. Some example class and structure names are shown
below.

struct UI_EVENT

struct UI_PALETTE_MAP

class UI_ELEMENT

class UI_EVENT_MANAGER : public UI_LIST
class UIW_BUTTON : UI_WINDOW_OBJECT

class UIW_WINDOW : UI_WINDOW_OBJECT

In addition, the following prefixes are used in conjunction with Zinc Interface Library:
UL_ is used to denote a general user interface class object or structure.
UID_ is used to denote a device class object or structure.

UIW_ is used to denote a window interface class object or structure.

Functions

Functions should be self explanatory and should be in name-case format (i.e., first letter
upper-case lettering, all remaining character in lower-case lettering) with no underscores
used to separate words. In addition, the function name should describe the operation that
is performed by the function.

Appendix D — Zinc Coding Standards 219




Some example class and regular function names are shown below:

UI_ELEMENT *Previous (void) ;
EVENT_TYPE Event (const UI_EVENT &event) ;

static UI_WINDOW_OBJECT *New(const char *name, UI_STORAGE *directory,
UI_STORAGE_OBJECT *object) ;

Variables

Variable names should be self-explanatory and should be in lower-case lettering for the
first word, then be name-case for each word thereafter. Global variables should be
preceded by an underscore. Some example variable names are shown below.

extern UI_STORAGE *_storage;
int UIW_BORDER::width = 4;
static UI_EVENT_MAP *eventMapTable;

UI_PALETTE_MAP *paletteMapTable;

Each variable should be declared on a separate line when it is needed by the function.
When declaring a list of variables, the following order should be followed:

1—External variables
2—Static variables
3—Variables with complex structures
4—All other variables according to need within the application
In addition, only one space (not tabs) should exist between the type and the variable.

Comments should be aligned evenly after the variable list.

Constants

Constant variables should be self-explanatory and should be in upper-case lettering, with
an underscore separating the words.

Some example constant names are shown below:

const int TRUE
const int FALSE

i n
o

220 Zinc Interface Library — Programmer’s Tutorial



const WOF_NO_FLAGS WOF_NO_FLAGS
const WOF_NO_FLAGS WOF_JUSTIFY_ CENTER

0x0000;
0x0001;

]

In addition to the information described above:

e Constants should be placed before the definition of the class for which they apply,
or at the beginning of the module.

o If several related constants are defined, the definitions should be grouped together
with a preceding comment.

e Constant values should be tab aligned to the right.

e Comments for each line, if needed, should be aligned to the right of the value.

Organization

Class scopes

The declaration of a class in an include file should list public members first, protected
members next, and private members last. Each major section should list static member
variables first, member variables next, and member functions last, listed in alphabetical
order. (The constructor and destructor should be listed first.) In addition, each scope
section should contain a short comment telling where its members are documented. The
following example shows a class containing the three scope sections:

class EXPORT UI_TIME : public UI_INTERNATIONAL
{
public:

static char *amPtr;

static char *pmPtr;

UI_TIME (void) ;
virtual ~UI_TIME (void);

Appendix D — Zinc Coding Standards 221




void Export (char *string, TMF_FLAGS tmFlags);

long operator=(long hundredths) ;
private:

long value;

};

Files

Source code modules that contain class member functions should contain the copyright
notice, then any include files, followed by static member variables, and finally, member
functions, described in alphabetical order. An example of BORDER.CPP file layout is
shown below:

// Zinc Interface Library - BORDER.CPP
// ~COPYRIGHT (C) 1990-1992. All Rights Reserved.
// Zinc Software Incorporated. Pleasant Grove, Utah USA

#include "ui_win.hpp"
#include <string.h>

int UIW_BORDER: :width = 4;
UIW_BORDER: : UIW_BORDER (void)

UI_WINDOW_OBJECT (0, 0, 0, 0, WOF_NON_FIELD_REGION, WOAF_NON_CURRENT)
{

}

UIW_BORDER: : “"UIW_BORDER (void)
{

}

EVENT_TYPE UIW_BORDER: :Event (const UI_EVENT &event)
{

222 Zinc Interface Library — Programmer’s Tutorial



Comments

Files

Each source file (.CPP or .HPP) should contain a three line comment that contains the
library or program name, the name of the file, and copyright information. A sample
header is shown below:

// Zinc Interface Library - BUTTON.CPP
// COPYRIGHT (C) 1990-1992. All Rights Reserved.
// Zinc Software Incorporated. Pleasant Grove, Utah USA

The copyright information should be copied as shown above. The copyright year should
include the original year when the product was created and all subsequent years when
major revisions were made.

Functions

Each routine may be preceded by a short description giving the routine’s purpose and any
related algorithms. If the routine name intuitively describes the routine, no comment is
needed. The example below shows the use of a function comment:

// This member function displays the biorhythm information in the window.
// As the size of the window object changes (by changing the parent window)
// the size of the biorhythm chart also changes. A horizontal change

// results in a change in the number of days displayed. A vertical change
// results in a dynamic change in the height of the biorhythm curve.

void BIORHYTHM: :UpdateBiorhythm/()

{

Variables

Function arguments and local variables should only have descriptive comments if their
names are not descriptive. These comments should be lined up on a right tab region. In
addition, all comments should start with a capital letter and be followed by a period. An
example of three variable declarations is shown below.

FORM *cardForm; // The card form structure.
long fileOffset;

int cardFile; // File handle for the disk file.

Appendix D — Zinc Coding Standards 223




Blocks

Block comments are used to describe a group of related code. Most block comments
should be one line, if possible, and reside immediately above the block being commented.
If more than a one line comment is needed, the extra lines should each begin with the
double slash.

Block comments should be indented to match the indentation of the line of code following
it. A single blank line should precede the comment and the block of code should follow
immediately after. Small blocks of code that do a specific job should be commented but
not individual lines (unless the line is complex or not intuitive). Some example block
comments are shown below.

// Release the memory associated with the card form.
DestroyPortal (cardForm->portalNumber) ;
DestroyForm(cardForm) ;

// Build and display a menu and allow the user to interact with it.
// When the user selects an option execute the appropriate menu

// action procedure.

switch (option)

{

Indentation

Classes and structures

Structures and classes should have all members listed on individual lines and should be
indented with one tab from the left margin. Several sample indentations are shown below:

struct EXPORT UI_POSITION
{

int column, line;

};

class EXPORT UI_DEVICE : public UI_ELEMENT
{

friend class EXPORT UI_EVENT_MANAGER;
public:

static ALT_STATE altState;

static UI_DISPLAY *display;

static UI_EVENT_MANAGER *eventManager;

int installed;

DEVICE_TYPE type;
DEVICE_STATE state;

224 Zinc Interface Library — Programmer’s Tutorial



virtual ~UI_DEVICE (void);
virtual EVENT_TYPE Event (const UI_EVENT &event) = 0;

// List members.
UI_DEVICE *Next (void);
UI_DEVICE *Previous(void);

protected:
UI_DEVICE (DEVICE_TYPE _type, DEVICE_STATE _state);
static int CompareDevices (void *devicel, void *device2);
virtual void Poll(void) = 0;

}i

Functions

The main body of routines should have braces below the function declaration. All
function code should be indented one tab. An example of this indentation is shown
below:

void UIW_BUTTON: :DataSet (const char *string)
{

// Reset the button’s string information.

Function calls

Parameters in a function call should be listed with each argument, followed by a comma
and one space. If a routine call cannot fit on one line on the screen, it should be broken
with the next half of the call indented one tab farther over. It should be split after a
comma or logic symbol if possible. Several examples of this calling convention are
shown below:

UIW_WINDOW *UIW_WINDOW::Generic(int left, int top, int width, int height,
char *title, UI_WINDOW_OBJECT *minObject, WOF_FLAGS woFlags,
WOAF_FLAGS woAdvancedFlags, UI_HELP_CONTEXT helpContext)

// Create the window and add default window objects.
UIW_WINDOW *window = new UIW_WINDOW(left, top, width, height,
woFlags, woAdvancedFlags, helpContext, minObject);

}

UIW_WINDOW *window = UIW_WINDOW::Generic(2, 2, 40, 6, "Hello World Window",
NULL, WOF_NO_FLAGS, WOAF_NO_FLAGS, HELP_HELLO_WORLD) ;

// Add the window objects to the window.
*window
+ new UIW_TEXT(0, 0, 0, 0, "Hello, World!", 256,

Appendix D — Zinc Coding Standards 225




WNF_NO_FLAGS, WOF_NON_FIELD_REGION) ;

Case statements

The reserved word case should be aligned with the switch statement, but all code
information should be indented an additional tab. Each additional level of logic should
be indented one tab. The colon should immediately follow each case and the statement(s)
should start on a new line. The break should also be on a separate line. An example of
this organization is shown below:

EVENT_TYPE UIW_PROMPT: :Event (const UI_EVENT &event)
{

// Switch on the event type.

EVENT_TYPE ccode = event.type;

switch (ccode)

{

case S_CREATE:

case S_SIZE:

Ereak;

case S_CURRENT:
case S_NON_CURRENT:
case S_DISPLAY_ACTIVE:
case S_DISPLAY_INACTIVE:
if (UI_WINDOW_OBJECT: :NeedsUpdate (event, ccode))
UI_WINDOW_OBJECT: : Text (prompt, 0, ccode, lastPalette);
break;

default:
ccode = UI_WINDOW_OBJECT: :Event (event) ;
break;

}

// Return the control code.
return (ccode);

If and for statements

Statements following an if or for should be indented one tab, and simple conditionals
should use the in-line ? operator.

226 Zinc Interface Library — Programmer’s Tutorial



An example of these statements is shown below:

left = (left < 1) ? 1 : right;
if (event->type == E_KEY &&
(event->rawCode == ESCAPE || event->rawCode == BACKSPACE |
event->rawCode == ENTER))
{
offset = length;
length = 0;

for (number = 0; number < noOfCalls; number++)
; // Do nothing.

The braces enclosing the block should be aligned with the “if” or “for.” If no statement
exists for the “for”” loop, the semicolon should be placed on the next line.

Multi-line equates

Each multi-line equate should be listed on a separate line as shown below:

windowID[0] =
windowID [
windowID [
windowID|
windowID[

1]
2]
3]
4] ID_WINDOW_OBJECT;

Each of the successive equates are indented one tab more than the first.

Appendix D — Zinc Coding Standards 227




228 Zinc Interface Library — Programmer’s Tutorial



APPENDIX E - QUESTIONS AND ANSWERS

This appendix addresses some of the most frequent questions addressed by the technical
support group. Each question is addressed in the form of a question and short answer,
with the concept being identified in the side title.

Ahh!...getting help

Question: What technical support services does Zinc offer?

Answer: Zinc currently offers the following technical support services to registered
users at no charge:

United States

e Telephone support:
(801) 785-8998, 8:00 a.m. to 5:00 p.m. Mountain Standard Time
NOTE: After 5:00 p.m. this number provides additional
connections to the Zinc BBS.

e BBS:
(801) 785-8997, 9600 V.32 bis (8,N,1), 24 hours
(801) 785-8995, 9600 HST dual standard (8,N,1), 24 hours
(801) 785-8998, 2400 (8,N,1), 5:00 p.m. to 8:00 a.m. Mountain
Standard Time

e FAX:
(801) 785-8996, allow 2-5 business days for a response. If you
need to send more than one page of code, please use the BBS.

Europe

e Telephone support:
+44 (0)81 855 9918, 9:00 a.m. to 5:00 p.m. London Time

e BBS:
+44 (0)81 317 2310, 2400 (8,N,1), 24 hours

« FAX:
+44 (0)81 316 7778, allow 2-5 business days for a response. If you
need to send more than one page of code, please use the BBS.

Appendix E — Questions and Answers 229




Borland BGI dependencies

Question:  How can a program avoid being dependent on the Borland .BGI files at run-
time?

Answer: The .BGI files may be converted to .OBJ files and be included in the
project. An explanation of the steps required to convert .BGI files is given
in “Appendix B—Compiled BGI Files” of the Programmer’s Tutorial
manual.

Borland IDE compiling

230

Question: How can programs written with Zinc Interface Library be compiled and
linked with the Borland IDE (Integrated Development Environment)?

Answer: Do the following:
1—In the Options|CompilerlCode Generation menu of the IDE:
*  Set memory model to Large.
*  Turn Word alignment option off.
*  Turn Unsigned characters option off.
¢ Turn Treat enums as ints option on.
2—In the Options|CompilerlAdvanced C++ options menu of the IDE:
*  Set C++ member pointers to Support all cases.
*  Set Virtual base pointers to Always near.
e Turn off all the Options.
3—For DOS applications, set the Graphics library option to on in the
Options|Linker[Libraries menu of the IDE.
4—In the Options/Directories menu of the IDE, set the Include
directories to include ZINCINCLUDE and BORLANDC\AINCLUDE
directories. More than one directory can be included in a field by using

a semicolon. For example, the following directive includes the Zinc and
Borland directories:

Zinc Interface Library — Programmer’s Tutorial



. ;C2ZINC\INCLUDE; C : BORLANDC\ INCLUDE;

5—Create a project by selecting ProjectlOpen Project and entering a
project name (for example: HELLO.PRJ).

6—Press <Ins> to add items to the project list, and add the source file
(ex: HELLO.CPP) and the proper Zinc library (i.e., ZIL.LIB for DOS
large memory model).

7—You should now be able to compile, link and run your program by
selecting RUN, or by pressing <Ctrl+F9>.

Borland linker warnings

Question: Why are there several linking warning messages of conflicting destructors
when linking Zinc Interface Library applications with the Borland linker?

Answer: Anytime a derived class is compiled with debugging turned on, a warning
message occurs. These warnings only appear when the debug option is
selected. In this case, the warnings can be ignored.

Changing object flags

Question: How can the flags of an object be changed after the object has been
constructed?

Answer: The |= operator can be used to set flags, the &= operator to clear flags and
the A= operator can be used to toggle flags. The following example code
shows how this is accomplished:

// Set the non-current flag of an object.
object->woAdvancedFlags |= WOAF_NON_CURRENT;

// Clear the auto-clear flag of an object.
object->woFlags &= “WOF_AUTO_CLEAR;

// Toggle the selected status of an object.
object->woStatus "“= WOS_SELECTED;

Changing the map tables

Question: How can changes be made to the global event map table and/or to the global
palette map table at compile time?

Appendix E — Questions and Answers 231




Answer:  Edit the files G_EVENT.CPP and/or G_PNORM.CPP and include them
in the project before the Zinc library file, and they will override the default
tables included in the library. (NOTE: The palette map table cannot be
changed for Windows programs.)

Checking for selected objects

Question: How can the program determine if an object is in the selected state? (e.g.
check box on, radio button on, etc.)

Answer: Test the woStatus of the item for the WOS_SELECTED flag. The following
code shows how this can be done:

if (FlagSet (item->woStatus, WOS_SELECTED) )
{

Closing the current window

Question: How can the current window be closed in a user function?

Answer: In order to close the current window in a user function, the following code
can be used:

event.type S_CLOSE;
object->eventManager->Put (event) ;

Do not use the following code in a user function:

event.type = S_CLOSE;
object->windowManager->Event (event) ;

or

*object->windowManager
- currentWindow;
delete currentWindow;

If the window is closed before leaving the user function, the window could
be deleted. If the window is deleted, the object calling the user function
will also be deleted. Then when the user function is exited, it returns to an
address which has been freed. In other words, this can be compared to
climbing out on a limb and attempting to cut out the section of the limb
between you and the main trunk. The freed memory may be corrupted—the
results are unpredictable.

232 Zinc Interface Library — Programmer’s Tutorial



Display/Mouse remaining active

Question: Why might the display and the mouse remain active after exiting the
program, even if the program deleted them?

Answer: This can occur as a result of the ‘Word alignment’ option being set
improperly when the program is compiled. In the Borland IDE:

Options|CompilerlCode Generation,
Word alignment must be off,
Unsigned characters must be off and
Treat enums as ints must be on.
Otherwise, calls to the library will be done incorrectly.
In Zortech Workbench
CompilelCompile OptionslCode Generation menu and
“Align”

must be set to Byte and the CHAR == UCHAR option must be off.

DOS extenders
Question: Does Zinc plan to support DOS extenders, and if so, when will this support

become available?

Answer: Zinc is developing versions of Zinc Interface Library for popular DOS
extenders (e.g., Ergo, PharLap, Rational). This support is currently
scheduled for the 2nd quarter of 1992.

Finding an object in a window

Question:  Given a pointer to a window, how can a pointer to an object in that window
be found?

Appendix E — Questions and Answers 233




Answer:

The following code will get a pointer to the n™ object in a window. Similar
code will get the n™ object in a list, menu or any other object derived from
window.

UI_WINDOW_OBJECT *object =
(UI_WINDOW_OBJECT *)window->UI_LIST: :Get (n);

If the object has a string ID or a number ID it can be found by using the
following code:

UI_WINDOW_OBJECT *object = (UI_WINDOW_OBJECT *)
window->Information (GET_STRINGID_OBJECT, stringID);
or
UI_WINDOW_OBJECT *object = (UI_WINDOW_OBJECT *)

window->Information (GET_NUMBERID_OBJECT, &numberID);

Finding the current window

Question 1: How can you determine which window is the current window attached to the

Answer:

window manager?

The member function windowManager->First( ) will return a pointer to the
current window.

Question 2: Given a pointer to a window, how can the current object in that window be

Answer:

found?

The member function window->Current( ) will return a pointer to the
current field in the window. (NOTE: That field may have sub-fields.)

Finding the parent window

Question:

Answer:

234

Given a pointer to an object in a window, how can you find the parent
window?

Given a pointer to an object, such as in a user function, the following loop
will exit with a pointer to the parent window named parentWindow:

for (UI_WINDOW_OBJECT *parentWindow = object;
parentWindow->parent; parentWindow = parentWindow->parent)

7

Zinc Interface Library — Programmer’s Tutorial



Fix-up overflow errors

Question:

Answer:

What causes fix-up overflow errors?

Fix-up overflow indicates that the .OBJ files are not linking properly with
each other or the .LIB files. This can be caused by compiling .OBJ files
in some model other than large and trying to link with Zinc Interface
Library (which was compiled for large model). It can also be cause by
compiling the .OBJ files with one version of the compiler and trying to link
with Zinc Interface Library that compiled with another. This is especially
a problem when using Borland C++ 2.0 instead of Borland C++ 3.0.
(Contact Customer Support about support for previous versions of
compilers.)

International language

Question:

Answer:

Does Zinc Interface Library provide any international language support?

Zinc uses the country information provided by the operating system to
determine the appropriate format and edit controls for dates, times, and
numbers. You can also build language specific data files using Zinc
Designer and pass them to your application depending on the country
information.

Making a window current

Question:

Answer:

How can a different window be made to be the current window?

Add the window to be current to the window manager. The following code
shows how this can be done:

*windowManager + windowl;

Making a window object current

Question:

How can a certain window object be changed to be the current object?

Appendix E — Questions and Answers 235




Answer:

This can be done by leaving an L_BEGIN_SELECT message if the top, left
hand corner of the object is visible. (NOTE: The L_BEGIN_SELECT
message also requires a position or region argument.)

eventManager->Put (UI_EVENT (L_BEGIN_SELECT, 0, object->true));

Other platforms

Question:

Answer:

Does Zinc plan to support other platforms in addition to Windows 3.X, DOS
Graphics, and DOS Text, and if so, when will they become available?

Zinc is developing versions of Zinc Interface Library for OS/2, UNIX and
Apple Macintosh platforms. Support for OS/2 and UNIX is currently
scheduled for the 3rd quarter of 1992.

“Out-of-memory” errors

Question:

Answer:

What causes ‘Out of Memory’ errors when compiling Zinc Interface Library
programs with Borland’s compiler?

Two things can cause this error. First, the source file could be too large for
the compiler to handle. If so, the source file needs to be broken into smaller
modules. Also, stringing too many add operations can cause the compiler
to run out of memory during the compile. The example below shows how
this can be accomplished:

*window + objectl + object2 + .... + object20;
This could be written as:

*window + objectl + object2 + object3 + objectd;
*window + object5 + object6 + object7 + object8;
*window + object9 + objectl0 + objectll + objectl2;
*window + objectl3 + objectld + objectl5 + objectl6;
*window + objectl7 + objectl8 + objectl9 + object20;

Preventing the modification of objects

Question:

236

How can a window object be changed to be non-selectable in order to
prevent users from being able to change it?

Zinc Interface Library — Programmer’s Tutorial



Answer:

The WOF_VIEW_ONLY or the WOF_NON_SELECTABLE flags can be
set by using one of the following lines of code:

object->woflags |= WOF_VIEW_ONLY;
object->woflags |= WOF_NON_SELECTABLE;

The same flags could be turned off again with the following code:

object->woflags &= “WOF_VIEW_ONLY;
object->woflags &= “WOF_NON_SELECTABLE;

Putting a single object in multiple windows

Question:

Answer:

Why can’t a single instance of an object be added to two different windows?

Each object derived from UI_ELEMENT has pointers included in the class
so it can be placed in a UI_LIST. Because there is only one copy of these
pointers, it can only be placed in one list. If you try to put an object into
a second list, without subtracting it from the first list, the pointers are
overwritten, and the first list becomes corrupt. This can result in the system
hanging.

Re-displaying objects and windows

Question:

Answer:

Royalties

Question:

Answer:

How can a window object or an entire window be re-displayed?
To re-display a window object re-add it to its parent.

To re-display an entire window, including all of the objects attached to the
window, re-add the window to the window manager.

If T build an application with Zinc Interface Library, can I distribute it
without having to pay Zinc any royalties?

You can distribute your application royalty-free as long as: 1) it bears a
valid copyright notice, 2) it is not a library-type product, development tool
or operating system, or 3) it is not competitive with or used in lieu of Zinc.
(Please refer to the Zinc Interface Library End User License Agreement.)

Appendix E — Questions and Answers 237




Undetected graphics mode

Question:

Answer:

Why might a Borland compiled program not run in graphics mode, even
when a graphics monitor is being used?

In order to run in graphic mode, Borland’s .BGI (Borland Graphics
Interface) files must be found. When using the UI_BGI_DISPLAY, DOS
will search the in directories stated in the APPEND, and Zinc will search for
them in the directories stated in the PATH environment variable. Otherwise,
the graphics driver will not be installed, and the program will run in text
mode only.

Using the Q_NO_BLOCK flag

Question:

Answer:

If the Q_NO_BLOCK flag is used when calling eventManager->Get( ),
how can it be determined if a valid event was received, or if no events were
in the event queue?

If the Q_NO_BLOCK flag is set, the return value from eventManager->
Get( ) will be zero if an event was detected: otherwise, it will be a negative
value (i.e., -1 or -2). The example below shows how you can check the
status:

UI_EVENT event;
EVENT_TYPE ccode = eventManager->Get (event) ;
if (ccode == 0) // An event was returned.

else // An event was not present.

Using member functions as user functions

238

Question:

Answer:

How can a member function be used as a user function?
A member function must be declared as static in order to be used as a user

function. (See the VALIDATE example for a demonstration of a static user
function calling a non-static user function.)

Zinc Interface Library — Programmer’s Tutorial



Using .ICO and .BMP files

Question: How can previously created, .ICO or .BMP files be use with Zinc Interface
Library?

Answer: Use the Zinc file conversion program to convert them to resources in a
.DAT file. They may then be used as persistent objects.

Appendix E — Questions and Answers 239




240 Zinc Interface Library — Programmer’s Tutorial



INDEX

.BGI 209-211, 230, 238
.CHR 173

.OBJ 173, 209, 210, 230, 235
_WINDOWS 12, 87, 97, 101

A

abstract 12, 166, 168, 186, 190, 192, 193

accelerator keys 87-89

access 10, 46, 47, 66, 73, 82, 135, 149, 161,
164, 171

Add 13, 16, 19, 21, 28-30, 47, 57, 64, 69, 70,
74, 77, 110, 123, 143, 145, 160, 173, 195,
204, 206, 208-210, 225, 231, 235-237

ANALOG 213

B

backgroundPalette 172, 173

base class 3, 55, 63, 118, 122, 133, 139, 141,
145, 159, 163, 165, 166, 172, 191, 192,
196-198, 214

BBS 229

BIO 29, 213

block comments 224

books 1,9

border 15, 16, 19, 28, 29, 31, 34, 35, 40, 42,
44, 63-65, 76, 85, 91, 97, 105, 110, 113,
125, 150, 159, 162-164, 171, 175, 210,
220, 222

Borland BGI dependencies 230

Borland compiler 167, 182, 209, 210

Borland IDE 230, 233

Borland linker warnings 231

boundaries 31, 162, 163

bulletin board service 5, 213

Index

CALC 214

CALENDAR 214

cascade 93

cell 16, 161, 172, 177

cellHeight 28, 150, 160, 162, 172-174, 177

cellWidth 28, 151, 152, 172-174, 177

Changing object flags 231

Changing the map tables 231

check box 232

CHECKBOX 214

class derivation 55

cleanup 10, 18, 22, 27, 33, 47

CLOCK 214

Closing the current window 232

coding standards 4, 219

color mapping 3, 177

combo box 105, 110, 214

COMBOBOX 214

compiling 10, 59, 60, 69, 70, 82, 133, 145,
146, 155, 156, 230, 235, 236

conceptual design 13, 14, 167

constant names 220

construction 16, 18, 85, 171

constructor 12, 22, 53, 54, 61, 63, 64, 71,
73-76, 84, 89, 91, 97, 105, 113, 118, 122,
125, 139, 141, 161-164, 167, 169, 171,
172, 189, 190, 192, 195, 198, 200, 211,
221, 53

context name 24

context title 25

conversion 177, 239

coordinates 9, 16, 162, 168, 175

creating windows 63

creation 9, 16, 22, 29, 37, 42, 46

D

data file usage 74

241




data files 235

data hiding 53

database 74, 155-158, 161, 163, 165, 181

date 4, 26, 105, 109, 110, 213, 215, 216

default arguments 163

default information 42

dependencies 4, 230

derived 3, 12, 53, 55, 63, 74, 77, 84, 116,
131, 153, 159, 161, 163, 168, 169,
190-193, 197, 213, 214-217, 231, 234,
237

derived classes 3, 53, 55, 116, 131, 193, 55

derived object 191, 197

design.exe 37

destructors 51, 53, 54, 231, 53

device (derived)

macro 133

DIRECT 146, 174, 175, 215

directory 25, 173, 174, 196-198, 203, 204,
210, 213, 215, 220, 230

display 2-4, 9-14, 18, 23, 24, 26-29, 31, 33,
47, 59, 61, 64, 67, 68, 71, 81, 82, 85, 86,
87-89, 91, 97-103, 106, 108, 113, 116,
122, 123, 125, 128, 134, 140, 146, 148,
150-153, 157, 160-162, 165-177, 182-184,
186, 188, 190, 192, 209-211, 213-217,
224, 226, 233, 237, 238

creating new 167

Display/Mouse remaining active 233

DRAW 12, 14, 152, 153, 167, 174, 175, 182,
184-191, 193, 215

E

encapsulation 52, 57, 64, 185, 188

ERROR 2, 19, 21-27, 31-33, 47, 57, 60,
64-66, 121, 130, 215, 236

error system 2, 22, 25, 26, 31, 32, 25

errors 235, 236

Event 2, 3,9, 11, 13, 17, 18, 23, 26-28, 47,
48, 59, 61, 65-68, 71, 81-90, 92-95, 98,
99, 100-102, 106-109, 113-128, 130,
133-143, 147, 148, 150-153, 155,
157-162, 164, 165, 209, 210, 215-217,

219, 220, 222, 224-227, 231, 232, 236,
238
Event (function)
DOS 150
Windows 151
event driven 3, 83, 84, 90
event flow
DOS 66
Windows 67
event manager 2,9, 11, 13, 18, 27, 47, 67,
85, 89, 94, 95, 118, 124, 134, 136-141,
143, 209, 217
event passing 66
eventMapTable 220
example programs 4, 5, 213, 219
executable programs 10, 51
Exit 19
exit function 21, 22, 27

F

field information 44

field movement 34, 163

file layout 222

FILEEDIT 215

Finding an object in a window 233
Finding the current window 234
Finding the parent window 234
Fix-up overflow errors 235
Flash Graphics 167, 184, 185
font 169, 170, 172-174, 176
fonts 172, 173

free store exception 215

friend classes 53

242 Zinc Interface Library — Programmer’s Tutorial



G

Generic 29, 30, 35, 40, 56, 74, 85, 91, 97,
105, 109, 110, 113, 121, 125, 157,
204-206, 208, 225

genhelp.exe 23, 25

getting help 229

GRAPH 216

graphic objects 181-185, 188, 190-193

graphics 3, 9, 11-13, 82, 97, 121, 150, 162,
163, 167, 168, 171, 173-177, 182-190,
192, 193, 204, 208, 209, 211, 213-215,
230, 236, 238

graphics display 3, 12, 171, 174, 211, 213

graphics driver 173, 209, 238

grouping 188

H

height 16, 28, 157, 160-164, 170, 172, 176,
177,223, 225

Hello World! 2, 7, 9-12, 15-19, 21, 22, 24,
25, 29, 31, 37, 39, 40, 42, 43, 46, 48,
209, 210

help 1-4, 17, 19, 21-25, 29-33, 46, 69, 81-83,
85-90, 92, 98, 100, 106, 108, 113, 116,
125, 126-130, 145-154, 165, 213, 215,
225, 229

help bar 145

help information 23-25, 129, 146, 149

help system 22-25, 31, 128-130, 22

help window 22, 24, 25, 129, 130, 154

hierarchy 11, 67, 196

Index

icon 28, 105, 109, 110
IDE 4, 203, 230, 233
include files
UI_DSP.HPP 10
UL_EVT.HPP 11
UI_GEN.HPP 10
UIL_WIN.HPP 11
indentation 224, 225
Information 3, 4, 9-17, 19, 21-26, 29, 30, 35,
40, 42-48, 59, 65, 66, 68, 69, 73, 74, 76,
81, 83, 85-87, 91, 95, 97, 101, 105, 113,
118-123, 125, 129, 133, 134, 136-143,
146-151, 153, 154, 155-157, 159-168,
172, 176, 177, 181, 182, 184, 188, 189,
191, 193, 195-200, 210, 213, 214, 215,
221, 223, 225, 226, 234, 235
inheritance 51, 52, 55, 181, 188, 197, 198,
213, 214, 217, 55
input devices 2, 9, 13, 47, 133, 135, 137, 139,
142, 143
input queue 136-142
isText 28, 150, 171
item array 85

L

library file 232

linker warnings 231

lists 4, 53, 56

Load 3, 75, 77, 160, 165, 186, 187, 189, 190,
192, 198, 199

local variables 57

logical events 121

243




macro device 3, 133, 135-138, 140-143

makefiles 59, 69, 82, 133, 145, 155, 167,
203-207

Making a window current 235

Making a window object current 235

map tables 231

mapping 3, 48, 67, 143, 177

Maximize 16, 19, 28, 29, 35, 64, 85, 91, 97,
105, 110, 113,.121,:125,-210, 19

maximize button 16, 19, 29, 110

menus 111

message passing i, 89

MESSAGES 24, 65, 67, 68, 81, 82, 84-86,
93, 94, 100, 103, 108, 115-118, 122, 127,
130, 150, 151, 152, 216, 231

Microsoft 1, 4, 10-12, 59, 60, 69, 70, 81, 82,
133, 134, 141, 145, 155, 167, 185, 204,
206-208

Microsoft Windows 10-12, 59, 60, 69, 70, 81,
134, 141, 145, 185, 204, 206, 207

Minimize 18, 19

monitor 81, 82, 87, 113, 116-123, 238

monitoring 116, 118, 123

monitoring events 116

Move 18, 19, 28, 34, 35, 118, 156, 165, 217

window 19
multiple inheritance 181, 213, 214, 217
multiple windows 28, 237

N

names 169, 196, 219, 220, 223

New 1, 11-14, 16, 22, 26, 28-31, 33, 35,
38-40, 43, 47, 55, 59, 63-65, 67, 69,
72-76, 85, 87, 91, 92, 97, 98, 101, 102,
105, 106, 109, 110, 113, 116, 118-123,
125, 129, 130, 134, 135, 137, 145, 147,
153, 157, 160-162, 165, 172-174, 181,
185-187, 189-193, 195, 198, 209, 210,
215, 216, 217, 220, 225, 226

New (function) 76

244 Zinc Interface Library — Programmer’s Tutorial

new operator 16, 29, 76
NOTEPAD 216

o)

object retrieval 191, 195, 198, 190
object storage 195, 196, 190

object table 47, 69, 76, 81, 199
object-oriented 1-3, 51, 52, 84, 90, 181
object-oriented programming 1

objects (C++) 52

operators 56, 57, 142

out of memory 236

overloaded functions 56

overloaded operators 56, 57, 56

P

paint functions 185

PERIODIC 141, 216

persistence 181, 182, 193, 200

PHONEBK 216

PIANO 216

Poll 133, 135-142, 225

Poll (function)

function 141

polymorphism 56

pop-up item 81, 92, 98, 106, 114, 126, 197,
198

Preventing the modification of objects xi, 236

program design 81

pure virtual 142, 166, 168, 188, 193

pure virtual functions 166, 188

Putting a single object in multiple windows
237

PUZZLE 217

PWB 4, 207



R

radio button 214, 232

Re-displaying objects and windows 237
ReportError 26, 64

Restore 19

S

satellite 217

scope 46, 53, 83, 89, 101, 188, 221
scope resolution operator 53
scopes 221

screen display 2, 9, 11, 26, 82, 140, 173, 190,

192, 209

screenID 150-153, 168, 170, 174-176

serial 217

Size

window 18, 19

SPY 217

storage 4, 72, 74, 75, 77, 147, 153, 181, 186,
189, 190, 195-199, 216, 220

Store (function) 76

structured 17, 87, 89, 90, 183

system events 121

T

technical support 4, 5, 213, 229

Index

U

UI_DEVICE 3, 118, 133, 135, 139, 140, 142,
213, 214, 217, 224, 225

UI_DSP.HPP 10

UI_EVT.HPP 11

UI_GEN.HPP 10

UIL_WIN.HPP 11

UI_WINDOW_MANAGER 14, 16, 24, 26-28,
93, 99, 115, 122, 123, 157, 210

undetected 238

Undetected graphics mode 238

user function 27, 64-66, 74, 92, 99, 107, 114,
126, 148, 149, 214, 215, 232, 234, 238

using classes 54

Using member functions as user functions 238

Using the Q_NO_BLOCK flag 238

V

VALIDATE 26, 217, 238
virtual list 3, 59, 82, 155-163, 165, 166

W

WOF_NON_FIELD_REGION 16, 29, 31, 42,
148, 157, 159, 163, 214, 222, 226
Workbench 205, 207, 233

y 4

ZIL_PERSISTENCE 200

Zinc Designer 3, 37, 39, 46, 72, 235, 37

Zinc Interface Library 1-5, 9-14, 18, 19, 21,
22, 25, 29, 48, 59, 67, 69, 77, 83, 87, 89,
90, 111, 117, 133, 135, 143, 145, 155,
166, 167, 169, 170, 175, 177, 181, 195,

245




196, 200, 203, 204, 206, 208, 211, 213,
219,222, 223, 230,231, 233, 235237,
239

Zortech 2, 4, 10, 12, 59, 69, 82, 133, 145,
155, 167, 173, 184, 185, 205, 206, 213,
233

ZWB 4, 205

246

Zinc Interface Library — Programmer’s Tutorial






	Programmers Tutorial 30 cover
	ZINC 30 FDL
	Programmers Tutorial 30

