

S
20
=

=

S

NV

=

Q

<
<

Zinc™ Interface Library”

Programmer’s Guide |

Version 3.0

Zinc Software Incorporated
Pleasant Grove, Utah

Copyright © 1990-1992 Zinc Software Incorporated Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no

Back-Cover Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".

TABLE OF CONTENTS

Section I—GETTING STARTED

Chapter 1—Introduction

Overview

System requirements

Using the manuals
Programmer’s Guide
Programmer’s Reference
Programmer’s Tutorial
Typefaces
Terminology

Zinc technical support

Chapter 2—Installation
Installation procedure
Shipping applications

Section II—BASIC CONCEPTS

Chapter 3—Conceptual Design 15

The software dilemma

An object-oriented solution

The C++ pep talk

The benefits of OOP

Zinc Interface Library
The event manager
The window manager
The screen display
The help system
The error system
Event mapping
Storage and retrieval
Conclusion

Chapter 4—Window Objects i, ... 33
Introduction
Basic window objects
Button window objects

Vii

Combo box window objects
Date window objects
Icons

List window objects
MDI Windows

Menu window objects
Number window objects
String window objects
Text window objects
Time window objects
Tool bar window objects

Chapter 5—Windows Applications 53
Introduction
Windows library
Compiler options
WinMain
Derived objects

Section III—ZINC DESIGNER

Chapter 6—Introductiont 57
Interactive ditors
Utilities
Getting round
Zinc Designer files

Chapter 7—Getting Started oo 61
The Designer screen
How to start
Chapter 8—File Optionst 67
New
Open
Save
Save As
Delete
Preferences
Exit

viii

Chapter 9—Edit Options

Object

Cut

Copy

Paste

Delete

Move

Size

Chapter 10—Resource Options 87
Create
Load
Store
Store As
Edit
Clear
Delete
Test

Chapter 11—Object Options it 97

Chapter 12—Input Objects i 101
String
Formatted string
Text
Date
Time
Bignum
Integer
Real

Chapter 13—Control Objects 129
Button
Radio button
Check box
Vertical list
Horizontal list
Combo box
Vertical scroll bar
Horizontal scroll bar
Child window

Chapter 14—Menu Objects
Pull-down menu
Pull-down item

Pop-up menu

Pop-up item

Tool bar

Chapter 15—Static Objects

Chapter 16—Utilities Options

Chapter 17—Help Options

Chapter 18—Zinc Library Classes

Prompt
Group
Icon

Image editor
Help editor

Index

File

Edit

Object
Resource
Utilities

About Designer

Section IV—ADVANCED CONCEPTS

Base Classes
UI_ELEMENT
UL_LIST
UI_LIST_BLOCK

Event Manager
Input devices
The input queue

Window Manager
Window objects
Event member functions

Help System

Error System

Screen displays

Region lists

Virtual display functions
Event Mapping
Palette Mapping

Chapter 19—C++ Features 221
Class definitions
Design issues
Base classes
Derived classes
Multiple inheritance classes
Abstract classes
Friend classes
Class creation
Using the ““new’ operator
Scope class construction
Base class construction
Array constructors
Overloaded constructors
Copy constructors
Default arguments
Class deletion
Using the ““‘delete’ operator
Scope deletion
Virtual destructors
Base class destruction
Array destruction
Member variables
Variable definitions
Static member variables
Member functions
Function definitions
Default arguments
Virtual member functions
Overloaded member functions
Pointers to static member functions
Operator overloads
Static member functions
Conclusion

Xi

Chapter 20—Screen Display

Introduction
Coordinate system
Clip regions

Chapter 21—Default Event Mapping

Overview

Event map table
Algorithm

Default keyboard mapping
Default mouse mapping

Xii

SECTION |
GETTING STARTED

Section | — Getting Started 1

Zinc Interface Library — Programmer’s Guide

CHAPTER 1 - INTRODUCTION

Overview

Zinc Interface Library is a powerful user interface library that uses unique features of
C++, including virtual functions, class inheritance, operator overloading, multiple
inheritance, etc. This library is developed specifically for C++ and is compatible with
AT&T’s C++ V2.1 and ANSI C.

System requirements

To develop applications for DOS you need Zinc Interface Library (DOS version), a C++
compiler for DOS (i.e., Borland C++, Microsoft C++, or Zortech C++), DOS 2.1 or later
(DOS 3.1 or later is recommended for accurate country information), 640K RAM and a
hard disk drive. For mouse support, you need a mouse and a Microsoft mouse compatible
driver.

To develop applications for Microsoft Windows 3.X you need Zinc Interface Library
(DOS and Windows version), a C++ compiler for Windows (i.e., Borland C++, Microsoft
C++, or Zortech C++) and Microsoft Windows 3.0 or later.

Using The Manuals

Programmer’s Guide

The documentation for Zinc Interface Library is contained in three manuals: Program-
mer’s Guide, Programmer’s Reference, and Programmer’s Tutorials. The Programmer’s
Guide provides an overview to Zinc Interface Library. It contains the following sections:

Section 1—Getting Started gives an overview of Zinc Interface Library, tells how
to install the library package on your computer, and how to ship Zinc Interface
Library based applications.

Section 2—Basic Concepts gives a high-level description of Zinc Interface Library,
including the conceptual operation of the library and its major pieces. An introduc-
tion on how to use Zinc for Windows applications is also given.

Section 3—Zinc Designer explains how to create application screens and help
information using Zinc’s interactive design tool.

Chapter 1 — Introduction 3

Section 4—Advanced Concepts gives an indepth description of Zinc Interface
Library and C++ programming. It is recommended that you read this section prior
to beginning an application.

Programmer’s Reference

The Programmer’s Reference contains descriptions of Zinc Interface Library classes, the
calling conventions used to invoke the class member functions, short code samples using
the class member functions, and information about other related classes or example
programs. The Programmer’s Reference contains the following sections:

Class object information—This section (Introduction) contains the class hierarchy
and include file (HPP) information associated with class objects and structures
available within Zinc Interface Library.

Class object references—This section (Chapters 1 through 66) contains short
descriptions about the class objects (or structures), the public and protected member
variables and functions, and the calling conventions used with the class object.

Miscellaneous information—This section (Appendix A through F) contains support
definitions, system event definitions, logical event definitions, class identifications,
storage information and raw DOS keyboard scan code information.

Programmer’s Tutorial

The Programmer’s Tutorial contains a series of tutorials designed to help the programmer
in learning the features and practical uses of Zinc Interface Library.

Section 1—Hello World! tells you how to initialize (first four tutorials) and modify
(last tutorial) the main components of Zinc Interface Library.

Section 2—Dictionary describes the transition from C programming to C++ pro-
gramming, adding Zinc Interface Library to an existing application, and using the
Zinc storage file.

Section 3—Zinc Application Program describes the overall design and implementa-
tion issues you should be concerned about when creating applications using Zinc
Interface Library.

4 Zinc Interface Library — Programmer’s Guide

Section 4—Derived Classes contains a set of tutorials that show how Zinc Interface
Library classes can be modified to perform customized operations. This section
should only be read by programmers who want to derive objects in their applications.

Section 5—Persistent Objects contains a set of tutorials that present the concept of
persistent objects (i.e., objects that can be stored to and retrieved from disk).

Section 6—Miscellaneous Information (Appendix A through E) contains compiler
considerations, compiled BGI files, example programs, Zinc coding standards and
common questions and answers.

Special typefaces are used throughout the documentation in order to clarify the usage and
meaning of specific terms. Familiarity with the following typeface conventions will be
helpful in working with these manuals:

Boldface

ALL CAPS

Italics

Monospace

CAPS BOLDFACE

[]

Chapter 1 — Introduction

Class member functions and reserved words, as well as
captions requiring emphasis, are identified by boldface type.

Names of constants, classes, and enumerations appear in all
capital letters.

Variable names and class member variables are shown in
italics.

Text as it appears on the screen or within a program is
presented in monospace type.

Names of files appear in all capitals and boldface type. (Note:
Often the names of constants, classes, and enumerations appear
in all capital boldface as part of a caption. This is done only
to place emphasis on the words and does not distinguish them
as file names.)

Optional input items that are dependant upon the system you
use are enclosed by square brackets.

Include files, specific keys to be entered from the keyboard,
and mouse movements are enclosed in angle brackets.

Underline Words that require particular emphasis within text are under-
lined.

Terminology

The following terms are used extensively throughout the documentation:

Field—A window object that can be edited. For example, the border of a window
is not considered to be a ‘“field” whereas a number is considered to be a field. The
figure below shows a window with several fields. (The fields are shown with
outlining borders.)

Name: [IZinc Software Incorporated I
Address: [405 South 100 East]

|2nd Floor]
City, State, ZIP: |Pleasant Grove | [UT | |84nsz—noou |
Phone: [(801) 785-8300 |

UI_—The prefix identification for all class objects used in Zinc Interface Library.
The “UI” stands for “User Interface.” This prefix allows programmers to distin-
guish the user interface part of their application.

UID_—The prefix identification for all device class objects used in the library. The
“UID” stands for “User Interface Device™ object. All UID type objects are derived
from the UI_DEVICE base class.

UIW_—The prefix identification for all window class objects used in the library.
The “UIW” stands for “User Interface Window” object. All UIW type objects are
derived from the UL_WINDOW_OBIJECT base class.

Window—A region of the screen that contains one or more window objects. A

window is used by the end user to view or edit information associated with the
application program. A window is represented by the UIW_WINDOW class object.

6 Zinc Interface Library — Programmer’s Guide

In the figure below, the window is shown as the main rectangle and all blank portions
within the rectangle. All non-blank portions of the window are window objects (the
border, buttons and title bar).

Window field—A window object that can be edited. This term is synonymous to
“field.”

Window object—A class object derived from the UI_WINDOW_OBJECT base
class. Window objects are used in the context of a parent window or are themselves
windows that are attached to the screen display. The figure above shows a window
with several window objects (a border, 3 buttons and a title bar).

Zinc Technical Support S

Zinc Software Incorporated offers a complete technical support program to registered
users, so be sure to complete and return the registration card. As a registered user you
will be eligible for the following support services:

Limited warranty—The terms of your limited warranty are explained in the Zinc
Interface Library End User Software License Agreement.

Telephone support—If you need assistance beyond what the Zinc Interface Library
manuals or your reseller can provide, you can call (801) 785-8998 between the hours
of 8:00 a.m. and 5:00 p.m. Mountain Standard Time and talk with one of our
technical support representatives at no charge. In Europe call +44 (0)81 855 9918
between 9:00 a.m. and 5:00 p.m. London Time. Technical Support is closed on

Chapter 1 — Introduction 7

Saturdays, Sundays, and holidays. Please have the following information ready
before you call:

e Your Zinc Interface Library version and serial number, as well as the name
under which the product is registered

e Your compiler and the version number
¢ Your hardware configurations (e.g., computer type and mouse brand)

Electronic support—You can use our electronic bulletin board system (i.e., BBS)
to exchange ideas with other programmers, to send messages to our technical support
representatives, or to download information. Call (801) 785-8997 with 300-9600
baud (V.32 bis), 8 data bits, no parity and 1 stop bit or call (801) 785-8995 with 300-
9600 baud (HST dual standard), 8 data bits, no parity and 1 stop bit. In Europe call
+44 (0)81 317 2310 with 300-2400 baud, 8 data bits, no parity and 1 stop bit. The
BBS is operative twenty-four hours a day. You can also have access to the technical
support department via facsimile. Call (801) 785-8996, or +44 (0)81 316 7778 in
Europe, twenty-four hours a day. (If you need to send more than one page of code,
please use the BBS.)

Special offers—You can receive special promotional offers for new products and product
upgrades.

Zinc Interface Library — Programmer’s Guide

CHAPTER 2 - INSTALLATION

The general structure of all screens in the install program is divided into three sections:

INSTRUCTIONS

OPTIONS

KEYBOARD INTERFACE

Instructions—This upper section of the screen gives instructions about the next
install operation to be performed.

Options—This middle section of the screen displays the selectable options at a
particular point in the installation.

Keyboard interface—This lower section of the screen identifies which keys activate
the current operation or how to move within the screen.

Before actually installing Zinc Interface Library, we recommend that you back-up your
distribution disks.

Pressing <Esc> at any time during the installation will cause the program to abort.

Installation procedure

Installation of Zinc Interface Library requires DOS 2.1 or later, 640K RAM, and a hard
disk drive. The installation program copies files to a hard disk or network. It does not
modify any system file (e.g., AUTOEXEC.BAT, CONFIG.SYS.)

Chapter 2 — Installation 9

Insert the first distribution disk into the desired drive, make it the current drive and invoke
the installation program. For example, to install Zinc Interface Library from drive A,
insert the first disk and type:

as<Enter>
install<Enter>

The install process is accomplished in five steps:
Confirmation of license agreements—To install Zinc Interface Library, it is
necessary to confirm that you have read and accepted the Zinc Interface Library End
User Software License Agreement and the Source Code License Agreement (if
applicable). The license agreements are found at the beginning of this manual. To
confirm and proceed with the installation, select “yes.” Otherwise, select “no” and
the installation will abort.

Selecting a drive—You are asked to select a drive to which you want to install.

Selecting a subdirectory—The default subdirectory is \ZINC. Simply press <Enter>
to select the default directory or type in the desired directory and then press <Enter>.

Selecting the package option—You are asked to identify which Zinc Interface
Library package you purchased. The options are:

e ZIL 3.0 for DOS only
e ZIL 3.0 for DOS with source
e ZIL 3.0 for DOS and Windows
e ZIL 3.0 for DOS and Windows with source
Selecting the compiler—You are asked which compiler libraries you wish to install.

Selecting portions to install—You are asked which portions of Zinc Interface
Library you want to install. The options are:

DOS Library Files—Contains all library class functions for the DOS version of
Zinc Interface Library.

e ZIL.LIB—Contains all library class functions for the DOS version of
Zinc Interface Library.

10 Zinc Interface Library — Programmer’s Guide

Windows Library Files—Contains all library class functions for the Windows
version of Zinc Interface Library.

e ZILW.LIB—Contains all library class functions for the Windows
version of Zinc Interface Library.

Utility Programs—Application programs that are used with Zinc Interface
Library.

e DESIGN.EXE—Utility program used to interactively create or modify
windows and window objects.

¢ GENHELP.EXE—Utility program used to generate help files.

Tutorials—Sample programs that give hands-on experience in using Zinc
Interface Library.

Examples—Example C++ files that show how to use specific classes defined in
the library. These files are referenced in Appendix C of the Programmer’s
Tutorial.

Selecting ““yes” for any of these options will install that portion of the library to
your hard drive.

Installation—The program now commences installing the selected material from the
distribution disks to your hard drive. The progress of this installation appears on
your screen.

Periodically, a prompt for a new disk will appear. Remove the current disk from the
drive, insert the disk requested and press any key to continue the installation.

When the process is complete, a message appears on your screen indicating that Zinc
Interface Library has been successfully installed.

Shipping applications

Be sure to include the following run-time files (i.e., Distributable Files) when you ship
your applications:

e .DAT files generated by GENHELP.EXE (used by the UI_HELP_SYSTEM
class).

Chapter 2 — Installation 11

12

e .DAT files generated by DESIGN.EXE (used by the UL_STORAGE class).

e ZILD.DLL file is the DLL version of Zinc Interface Library for use with
Microsoft Windows 3.X.

You may also need to include the following run-time files used by your compiler:

e Borland .BGI and .CHR files (if the application uses the UI_BGI_DISPLAY
class). Please note that the .BGI files can be linked into an application.

¢ Microsoft .FON files (if the application uses the Ul_MSC_DISPLAY class).

Zinc Interface Library — Programmer’s Guide

SECTION i
BASIC CONCEPTS

Section Il — Basic Concepts 13

14

Zinc Interface Library — Programmer’s Guide

CHAPTER 3 - CONCEPTUAL DESIGN

The software dilemma

An

It seems that software developers are constantly trailing behind the advances of hardware
developers. An author commented on this dilemma, ‘‘At the onset of the 1990’s, software
lags behind hardware capabilities by at least two processor generations, and the lag is
increasing. There is general agreement that conventional software tools, techniques and
abstractions are rapidly becoming inadequate as software systems grow larger and
increasingly more complex.”"

Conventional (i.e., procedural) programming tools are rarely designed with the
extensibility to easily integrate new technologies. Developers are therefore frequently
forced into starting over in order to include these new technologies in their products.

This dilemma is magnified as software developers struggle to support multiple operating
environments in an effort to maximize market opportunities. Development resources are
almost always scarce and are diluted when they are allocated to “‘porting” existing
applications rather than being applied to new product development. Additional
development resources are also required to maintain and enhance the different versions
of an application—further compounding the resource problem.

object-oriented solution

Zinc Interface Library 3.0 is a new generation object-oriented development tool. Zinc 3.0
helps you easily solve problems related to the software dilemma. With Zinc’s single-
source support for DOS and Windows, porting becomes a trivial process. You only have
one set of source code to maintain so your development resources aren’t consumed trying
to manage several versions of the same product. Zinc’s object-oriented, event-driven
architecture is open and extensible by design. With Zinc’s modularity you won’t find
yourself painted into a corner.

In addition to a robust and comprehensive user interface class library, Zinc 3.0 also
features the most tightly integrated interactive design tool available with a class library.
Zinc Designer accelerates your development cycle by allowing you to interactively design
your user interface. Because Zinc Designer was created with the Zinc class library you
have direct access to all of the library’s features. You also benefit from Zinc Designers’
multiplatform storage technology. Screens that you create with Zinc Designer are saved
as platform-independent resources. You can develop your interface using the Windows
version of Zinc Designer, save it to disk and then retrieve it into the DOS version of Zinc
Designer and vice versa.

Chapter 3 — Conceptual Design 15

The C++ pep talk

Like many programmers you may have developed a high degree of proficiency in a
structured language such as C. You might question the need to learn the new features of
C++ (and more importantly, a new approach to programming). However, as you study
this conceptual overview will see many compelling benefits of object-orientation.

The transition to object-oriented programming is not a trivial endeavor. But Zinc
Interface Library is a great place to start. Zinc’s class hierarchy is straightforward and
consistent. The constructors will allow you to build a great deal of your application with
very little effort. If you have an existing application that you are updating you will be
able to use a lot of your existing code. And Zinc’s tutorial and reference manual will
help you understand the features and benefits of object-oriented programming. Once you
develop an appreciation for the benefits of object-oriented programming with Zinc
Interface Library, you should be sufficiently motivated to start incorporating object-
oriented techniques in other parts of your programs.

The benefits of OOP

16

Zinc’s object orientation offers you several significant benefits over procedural approaches
to interface design.

Consistency—Because of its object-oriented nature, Zinc completely eliminates the
problems associated with developing and maintaining multiple versions of source
code for multiple platforms. You can focus your efforts on developing, maintaining
and enhancing one set of source code and let Zinc manage low-level interactions with
the operating environment and screen display, whether it’s DOS Text, DOS Graphics
or Microsoft Windows.

Ease-of-Use—Zinc Designer lets you create your application screens interactively.
Instead of generating source code which is difficult to optimize and not object
oriented, Zinc Designer saves your user interface as platform-independent resources.
These resources are easily modified with Zinc Designer. Zinc’s object-oriented
design uses data abstraction to insulate you from the complexities of the operating
environment without restricting your access to environment specific features, like
Microsoft Windows messages or the raw scan codes from the keyboard. The modular
design of Zinc Interface Library is also conceptually intuitive and easy to understand.

Reusability—Not only are Zinc’s base classes reusable, but any object or class that

you create can become a part of your tool kit. You save time by using classes that
have previously been tested and debugged.

Zinc Interface Library — Programmer’s Guide

Extensibility—Because Zinc Interface Library is designed from the ground up as an
object-oriented class library, you benefit from a powerful feature of OOP—
inheritance. Rather than developing an object from scratch you can use Zinc’s base
classes (with their existing member functions and data) to derive new classes. For
example, you can create a new input device such as a digitizer by deriving a new
class from Zinc’s device class. Thus, your effort is spent creating only the unique
characteristics of the new class.

Maintenance—Object-oriented applications are much easier to maintain than
structured programs. The data-hiding or encapsulation capability of C++ keeps
relevant data and functions together and allows you to modify an object without
affecting other parts of the application.

Zinc Interface Library’s simple, yet powerful, architecture (shown below) allows you to
quickly develop full-featured object-oriented applications.

Cursor A’ Keyboard Mouse

!

[W Ul_EVENT MANAGER]

—
(MAIN PROGRAM CONTROL)
- v
SUPPORT RESOURCES ‘ UL WINDOW._MANAGER [

‘ HELP SYSTEM HERROR SYSTEE H
Hello World Windo:

’EVENT MAPPI@ ‘COLOR MAPPING‘ —
— World Information Window

"7 DISPLAY J STORAGE ‘

The main sections of the library are:

Event manager—Controls the flow of end user input and system messages
throughout the application.

Chapter 3 — Conceptual Design 17

Window manager—Controls the presentation of windows and window objects to the
screen display.

Screen display—Controls the low-level screen interface for DOS Text, DOS
Graphics or Microsoft Windows 3.X applications.

Help system—Controls the presentation of help information during the run-time
operation of an application.

Error system—Controls the presentation of error information during the run-time
operation of an application.

Event mapping—Controls the mapping of raw input (e.g., Microsoft Windows
messages, keyboard scan codes) to logical system events (e.g., sizing, moving,
redrawing).

Storage and retrieval—Controls the reading and writing of C++ objects to and from
disk.

The event manager

18

As you develop applications with Zinc 3.0, you will find that it is much more than a
collection of user interface objects. Zinc 3.0 is a powerful application framework with
a backbone consisting of powerful event and window managers. The event manager is
the skeleton to which input devices are attached and through which user input and system
messages are passed. The event manager also provides a powerful development
environment for integrating user-defined classes (e.g., serial communications, pen based
input).

The event manager controls input devices and stores event information such as user input
and system messages that are processed by Zinc Interface Library modules. The
following figure shows the conceptual operation of the event manager in a Zinc
application:

Zinc Interface Library — Programmer’s Guide

KEYBOARD MOUSE CURSOR

Y v vy

| UI_EVENT_MANAGER
¥ —
¢ MAIN PROGRAM CONTROL)
- v
ULWINDOW_MANAGER |

Most compiler libraries have a set of functions to get input information from the keyboard
(e.g., getch(), getchar()) but seldom have functions to get information from other
devices, such as a mouse. They also don’t provide functions to integrate multiple input
devices. With Zinc Interface Library, all input devices (e.g., keyboard, mouse, and user-
defined input devices) are integrated to let you easily control the user’s input. This
interface is handled by the control part of the event manager. The UI_DEVICE class
object has the following device object hierarchy:

DEVICE OBJECT HIERARCHY I

UI_EVENT_MANAGER | | UI_DEVICE 1

LU'D, KEYBOARD l UID_MOUSE ‘ UID_CURSOR

(other programmer
defined device
objects)

Classes derived from the UI_DEVICE base class include:

UID_KEYBOARD—A BIOS level polled keyboard interface that retrieves keyboard
information from the end user.

UID_MOUSE—An interrupt driven mouse interface that receives mouse information
from the end user.

Chapter 3 — Conceptual Design 19

UID_CURSOR—A blinking cursor shown on the screen. In text mode, this device
is implemented as the hardware cursor. In graphics mode, this device paints a
blinking cursor on the screen.

Other programmer defined device objects—Any other programmer defined device
that conforms to the operating protocol defined by the UI_DEVICE base class (e.g.,
serial communications, pen based input).

You attach input devices to the event manager at run-time. The device feeds input
information to the event queue when polled by the event manager, or feeds it directly to
the event queue if it is an interrupt device. The following code shows how to construct
a new event manager class object and how to initialize selected input devices:

// Construct the screen display with the Zinc text display constructor.
UI_DISPLAY *display = new UI_TEXT_DISPLAY();

// Construct the event manager and attach the display.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;

// Add the input devices to the event manager using '+’ operator overload.
*eventManager

+ new UID_KEYBOARD

+ new UID_MOUSE

+ new UID_CURSOR;

The event manager contains another component called the event queue. All event
information in a Zinc program is passed via the event queue. For example, when the end
user presses a key, the keyboard information is placed into the event queue by the UID_-
KEYBOARD device. You dispatch this event information to the window manager via the
applications event loop. The following code shows how the event loop passes event
information from the event manager to the window manager:

EVENT_TYPE ccode;

do

{
// declare event structure.
UI_EVENT event;

// Get an event from the event manager.
eventManager->Get (event) ;

// Pass the event to the window manager.
ccode = windowManager->Event (event) ;
} while (ccode != L_EXIT);

Other elements of Zinc Interface Library use the event queue to send system or private
messages.

The window manager

20

Zinc’s innovative window manager works cohesively with the event manager to control

Zinc Interface Library — Programmer’s Guide

the screen display and pass input information to the appropriate window or screen object.
The illustration below shows the conceptual operation of the window manager in a Zinc
application:

Cursor Keyboard Mouse

'

l ULEVENT MANAGER |

__4>
@ MAIN PROGRAM CONTROL P
<
SUPPORT RESOURCES | ULWINDOW_MANAGER |

‘ HELP SYSTEM HEHROR SYSTEM‘ %7
Window 2 .

‘éVENT MAPPING‘ ICOLOR MAPPING‘ ey o

, DISPLAY W STORAGEJ 1

The window manager determines the position and priority of windows on the screen. For
example, the graphic illustration above shows Window1 overlapping Window?2. In this
example, the window manager routes all keyboard information to Window1, since it is the
top-most window attached to the screen. In addition, any mouse information that overlaps
Window1 or the region intersected by Window1 and Window2 will be sent to Window1
for processing.

The window manager maintains a list of windows and window objects. These objects are
all derived either directly or indirectly from the UL_WINDOW_OBJECT base class and
include:

Bignum—A field used to enter, display, or modify 0.00000000 J
precision numeric information. Bignum numbers are
used for monetary values and high precision numbers.

Border—An outlining border drawn around a win-
dow.

Button—A rectangular region of the screen that,
when selected, performs run-time operations that you
specify. The following objects are variations of the
button class:

Chapter 3 — Conceptual Design 21

22

Bitmapped button—A button control with an
associated bitmap image.

Check box—A button control that allows multi-
ple items in a group to be selected.

Radio button—A button control that allows only
one item in a group to be selected.

Date—A field used to enter, display, or modify
country-independent date information.

Combo box—A combination input field and vertical
list box. A combo box can contain buttons, icons and
string fields.

Formatted string—An input field used to enter,
display or modify ascii string buffers that contain
literal characters or characters that cannot be edited
(e.g., phone numbers, social security numbers).

Group—A box used to provide a physical grouping
of window objects such as radio buttons or check box
buttons.

Horizontal list—A two-dimensional list of related
items. These items are organized in a row/column
fashion and may be any of the objects described in
the window object hierarchy. A horizontal list
contains multiple columns and scrolls horizontally.

Icon—A graphical representation of a selectable item.
This object is similar to the button object, except that
the information is in graphic, rather than textual,
form.

Zinc Interface Library — Programmer’s Guide

X check Box A
[check Box B

() Button

@® Radio Button
() Check Box

|2-18-1992

|[au11735-saou|

B Files
B File.7
B Files

B Fite.s
B Fie?

desianer

BiFiles
B File.s
B File.10

B Fite.11

Integer—A field used to enter, display, or modify 100
integer numbers. Integer numbers are used for
quantity values and indices.

Maximize button—A button that, when selected,
changes the size of its parent window to occupy the
entire screen display.

Minimize button—A button that, when selected,
reduces the size of its parent window to the minimum
allowed by the window.

Pop up item—A selectable item that is shown in the viltem 1
context of a pop-up menu.

Pop up menu—A group of related UITW_POP_UP_- Vi-Item 1 ‘
ITEM objects. The items in this menu are displayed :{:::22 g ‘1
on multiple lines. Vi-ltem 4
Prompt—A string that is used to describe the con- Fax:

tents of another window field.

Pull down item—A selectable item that is shown in
the context of a pull-down menu.

Pull down menu—A group of related UIW_PULL_-
DOWN_ITEM objects. The items in this menu are
displayed across a single, horizontal line.

Real—A field used to enter, display, or modify rﬂ.DDUDDUUU
floating point numeric information. Real numbers are
used for computation values and fractional numbers.

Scroll bar—A selectable region used to scroll the
displayed portion of a window, list box or text input
field.

Chapter 3 — Conceptual Design 23

String—A field used to enter, display, or modify an
ASCII string buffer.

System button—A button that, when selected, shows
general operations that can be performed on the
parent window.

Text—A field used to enter, display, or modify a
multi-line text buffer.

Time—A field used to enter, display, or modify
country-independent time information.

Title—An object that occupies the top region of a
window and contains a window’s title information.

Tool bar—A group of related window objects. The
tool bar is similar to a pull-down menu with the
exception that it may contain different types of
objects, such as: bitmapped buttons, dates, icons,
strings, etc.

Vertical list—A one-dimensional list of related items.
These items are organized in a single column and
may be any of the objects described in the window
object hierarchy.

Window—A rectangular region of the screen that is
composed of one or more class objects derived from
the UI_WINDOW_OBIJECT base class. A window
may also contain sub-windows (e.g., MDI windows.)

Zinc Software

Sample text.

[5:01

B e\
> work
& docs

& compiler

Zinc Interface Library — Programmer’s Guide

Other programmer defined window objects—Any other programmer defined
window object that conforms to the operating protocol defined by the UI_WIN-
DOW_OBJECT base class.

The UL_WINDOW_MANAGER class object has the following window object hierarchy:

IlNINDOW OBJECT HIERAFICHY'

UI_WINDOW_OBJECT

UIW_ICON

UIW_BORDER

UIW_PROMPT

(other programmer
defined window

UIW_BUTTON | 1 UIW_STRING | [UIW_WINDOW | objects)
IW_MAXIMIZE_BUTTON IW_BIGNUM I_WINDOW_MANAGER
IW_MINIMIZE_BUTTON IW_DATE IW_COMBO_BOX '
IW_POP_UP_ITEM IW_FORMATTED_STRING IW_GROUP
IW_PULL_DOWN_ITEM IW_INTEGER IW_HZ_LIST
IW_SYSTEM_BUTTON IW_REAL IW_POP_UP_MENU
IW_TITLE IW_TIME IW_PULL_DOWN_MENU

IW_SCROLL_BAR
IW_TEXT
IW_TOOL_BAR
IW_VT_LIST

You attach windows to the window manager at run-time. Once a window is attached, it
receives event information from the window manager. The following code shows how
to construct a new window manager class object and how to initialize a selected window:

// Construct the screen display using the Zinc constructor.
UI_DISPLAY *display = new UI_MSWINDOWS_DISPLAY;

// Construct the event manager and attach the display and input devices.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER (display) ;

*eventManager
+ new UID_KEYBOARD // Use the '+’ operator overload or ‘add’ member
+ new UID_MOUSE // function.

+ new UID_CURSOR;

// Construct the window manager and attach it to the event manager.
UI_WINDOW_MANAGER *windowManager = new UI_EVENT_MANAGER (display,
eventManager) ;

// Add a simple window to the window manager.
UIW_WINDOW *window = new UIW_WINDOW (0, 1, 67, 11);
*window

+ new UIW_BORDER

+ new UIW_MAXIMIZE_BUTTON

+ new UIW_MINIMIZE_BUTTON

+ new UIW_SYSTEM_BUTTON

+ new UIW_TITLE ("General objects", WOF_NO_FLAGS) ;

Chapter 3 — Conceptual Design 25

*windowManager + window;

Windows and window objects have distinct representations in DOS Text, DOS Graphics,
and Microsoft Windows. For example, the following shows the MS Windows
representation of a simple window:

Window objects that can be edited (String, Formatted String, Text, Number, Date and
Time) support the following features:

Mark—Marks an area of the current field for use with the cut or copy edit features.
Marked regions are shown as shaded regions in a window field.

Cut—Cuts the marked area of the current field and stores the marked contents in a
global paste buffer. This data can later be pasted into any other field, as long as the
information is valid for that field type (e.g., the text “400” could be pasted into a
numeric, string, or text field).

Copy—Copies the marked area of the current field and stores the marked contents
in a global paste buffer. This data can later be pasted into any other field, as long
as the information is valid for that field type.

Paste—Copies the contents of the global paste buffer into the current field. Data can

be pasted into any field, as long as the information is valid for that field type.

The screen display

Modular display classes are supported by Zinc’s screen display, which controls all low-

26 Zinc Interface Library — Programmer’s Guide

level screen output. The following display objects are supported by Zinc Interface
Library:

’DISPLAY OBJECT HIERARCHY'

UI_DISPLAY

sy
3

L / &
) | | \ |
‘ LJLBGLDISPLAY ”ULMSCJ:NSPLAV 7U|,TEXT7£)|SF’LAY HE
UI_FG_DISPLAY I

(other programmer
defined display

UI_MSWINDOWS_DISPLAY | copc)

Classes derived from the UI_DISPLAY base class include:

UI_BGI_DISPLAY—A graphics display that uses the Borland BGI graphics routines
to display information to the screen. The UI_BGI_DISPLAY class provides support
for CGA, EGA, VGA and Hercules monochrome display adapters running in graphics
mode.

UI_FG_DISPLAY—A graphics display that uses the Zortech Flash Graphics routines
to display information to the screen. The UI_FG_DISPLAY class provides support
for CGA, EGA, VGA, SVGA and Hercules monochrome display adapters running
in graphics mode.

UI_MSC_DISPLAY—A graphics display that uses the Microsoft MSC graphics
routines to display information to the screen. The Ul_MSC_DISPLAY class provides
support for CGA, EGA, VGA and Hercules monochrome display adapters running
in graphics mode.

UI_MSWINDOWS_DISPLAY—A graphics display that uses the Microsoft
Windows 3.X graphics routines to display information to the screen.

UIL_TEXT_DISPLAY—A text display that writes the display information to screen
memory. The UIL_TEXT_DISPLAY class provides support for MDA, CGA, EGA
and VGA display adapters running in text mode. This includes the following modes
of operation:

e 25 line x 80 column mode,

Chapter 3 — Conceptual Design 27

e 25 line x 40 column mode,
¢ 43 line x 80 column mode and
e 50 line x 80 column mode.

This class also contains support for snow checking (CGA monitors) and IBM
TopView (which supports operation in Microsoft Windows and Quarterdeck
desqVIEW environments).

Other programmer defined screen display objects—Any other programmer defined
display object that conforms to the operating protocol defined by the UI_DISPLAY
base class. 3rd party display classes supporting Metagraphics and Genus graphics
libraries are posted on Zinc’s BBS and are free to download.

Zinc’s object orientation abstracts the screen display in an application by implementing
modular display classes. This feature gives you the significant advantage of using one
set of source code to produce output for DOS Text, DOS Graphics and MS Windows 3.0
environments. This modular approach will allow Zinc to support additional platforms
without forcing you to dramatically alter your source code.

The following code shows how to initialize both graphic and text screen displays in one
executable file:

// Initialize the display, trying for graphics first.
UI_DISPLAY *display = new UI_MSC_DISPLAY;
if (!display->installed)
{
delete display;
display = new UI_TEXT_DISPLAY;

The help system

28

The help system is used to present help information to the end user during an application
program. The help system uses the Zinc Interface Library windowing system to present
help information.

Zinc Interface Library initially does not initialize the UI_HELP_SYSTEM so that you are
not forced to have the window help system modules included in your application. The
following code shows how to set-up the default help system:

// Add in the help system.
UI_WINDOW_OBJECT: :helpSystem = new UI_HELP_SYSTEM("help.dat",
windowManager) ;

Zinc Interface Library — Programmer’s Guide

1N

The error system is used to display error information to the end user during an application
program. The error system uses the Zinc Interface Library windowing system to present
error information.

Zinc Interface Library initially does not initialize the UI_ERROR_SYSTEM so that you
are not forced to have the window error system modules included in your application.
The following code shows how to set-up the default error system:

// Add in the error system.
UI_WINDOW_OBJECT: :errorSystem = new UI_ERROR_SYSTEM;

vent mapbpin

Many user interface libraries convert raw input information to logical information when
it is received from the input device. For example, a mouse device may define the left
mouse button click to be the select operation (L_SELECT). These implementations allow
only one logical mapping of a given raw event. You must then decipher the L_SELECT
operation in the context of your operations. This implementation, however, is inadequate
for most applications.

Zinc Interface Library has the powerful capability of interpreting raw events, received
from input devices at run-time, at each level of the application according to the type of
operation. For example, the graphic illustration below shows how the <F2> key and left
mouse click would be interpreted at each level in the library (where a text field is the
current window object):

Chapter 3 — Conceptual Design 29

30

Keyboard Mouse

% E_KEY, F2 %7 E_MOUSE, left down click
‘ UI_EVENT_MANAGER }
—
C MAIN PROGRAM CONTROL D
Ul WINDOW_MANAGER <@ { UI_WINDOW_MANAGER ‘

UIW_WINDOW -~~~ .
L,BEGIN,SELECT< Hello World Window

L_BEGIN_SELECT % é

Information Window
UIW_TEXT -~
L_BEGIN_MARK

The <F2> key and left-mouse button are processed in the following manner:

e first, the key or mouse information is received by the input device (i.e., UID_-
KEYBOARD or UID_MOUSE) and placed in the event queue.

* second, the window manager passes the event to the current window.
e third, the window passes the event to the current window object.

e fourth, the UIW_TEXT window object evaluates both the keyboard and mouse events
as the L_BEGIN_MARK command.

= finally, the results of the L_BEGIN_MARK command are returned to the window
and then to the window manager.

The benefits of logical event mapping are:

* Each object is allowed to interpret the event according to its mode of operation. The
UIW_TEXT object views both events as an L_BEGIN_MARK operation. However,
if the left-click were returned, unprocessed, to the window manager, it would be
interpreted as an L_BEGIN_SELECT operation while the <F2> key (which is
unknown by the window manager) would remain unprocessed.

Zinc Interface Library — Programmer’s Guide

e You can define additional input devices that generate their own raw event informa-
tion. With this implementation, you can define logical event mapping for Zinc but
still receive all the raw event information generated by the new input device.

* You can easily re-define key mapping without changing the source code of many
modules. This allows you to customize your application without interfering with the
general operation of Zinc Interface Library.

Storage and retrieval

Zinc Interface Library allows you to store and retrieve C++ objects to and from disk as
platform-independent resources. This is accomplished through low-level file management
routines as well as persistent object technology. These storage and retrieval classes are
used when programmers interactively create and/or modify windows and window objects
using Zinc Designer. You can also use the storage and retrieval classes without Zinc
Designer.

Conclusion

A thorough understanding of the conceptual design of Zinc Interface Library will assist
you as you develop applications. The key components of the library—event manager,
window manager, screen display, help system, error system, event mapping, storage and
retrieval—all work together to give you the most powerful, flexible and easy-to-use
interface library available.

1. Winblad, Ann L., Samuel Edwards, and David R. King. Object-Oriented Software. Reading, MA: Addison-
Wesley, 1990

Chapter 3 — Conceptual Design 31

32

Zinc Interface Library — Programmer’s Guide

CHAPTER 4 - WINDOW OBJECTS

Introduction

“Chapter 3—Conceptual Design” of this manual briefly describes the types of window
objects that are available with Zinc Interface Library. This chapter shows the graphic,
textual and code implementations of all the supported window class objects. It also gives
a more complete description of each window object along with its normal modes of
operation.

5ic window ob
Most windows created for an application will contain a border, title, maximize button,
minimize button and system button. The figures below show MS Windows, DOS
Graphics, DOS Text, and code implementations of a window with these basic window
objects:

Chapter 4 — Window Objects 33

34

Generic Hindow

[-] Generic window [v](a

*window
+ new UIW_BORDER
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_SYSTEM_ BUTTON (SYF_GENERIC) ;
new UIW_TITLE (" General objects ");

+F 44

The actual window is represented by the UIW_WINDOW class object. This object is
used by the window manager to reserve a rectangular region of the screen display. The
UIW_WINDOW class object, in turn, controls the operation and presentation of any
associated lower-level window objects (e.g., the border, title, and buttons shown above).

The window’s border, shown as the exterior part of the windows above, is represented by
the UITW_BORDER class object. If the application is running in graphics mode, the
border is shown as a 3-dimensional shaded region drawn around the window. If the
application is running in text mode, the window is displayed with a shadow.

The title bar, shown with the “General objects” information text on the top-center portion

of the windows above, is represented by the UIW_TITLE class object. This window
object is used to display textual information that uniquely identifies the window.

Zinc Interface Library — Programmer’s Guide

The maximize button, shown with the ‘4’ character on the top-right side of the windows
above, is represented by the UIW_MAXIMIZE _BUTTON class object. This button is
used to change the size of its parent window to occupy the entire screen display.

The minimize button, shown with the ‘v’ character on the top-right side of the windows

above, is represented by the UIW_MINIMIZE_BUTTON class object. This button is used

to reduce the window to an icon.

The system button, shown with the ‘=’ character on the top-left side of the windows 1
above, is represented by the UIW_SYSTEM_BUTTON class object. This button is used :
to select window or system specific commands associated with the window object (e.g.,
size, move, maximize, minimize, close). If menu items are specified with the system
button, a pop-up menu is displayed to the screen.

Button window objects

A button field is a rectangular region of the screen that, when selected, performs run-time
operations that you specify. In addition to the basic buttons, the following specialized
buttons are available: bitmapped buttons, check boxes, and radio buttons. The figure
below shows a window with different types of button fields (UIW_BUTTON): w

rBaud Rate: rS8etup— | [Drives
@ gs00 [Full Duplex

O 4800 WP =}

O 2400 [E Line Wrap

O 1200 O scron

O 300 |:| Answerback

*window
+ new UIW_TITLE ("Button Window")

// Add the radio buttons.

+ & (*new UIW_GROUP(1, 2,
+ new UIW_BUTTON (2,
+ new UIW_BUTTON (2
+ new UIW_BUTTON (2
+ new UIW_BUTTON (2
+ new UIW_BUTTON (2

13, 7, "Baud Rate:")
4, "9600", BTF_RADIO_BUTTON)
5, "4800", BTF_RADIO_BUTTON)
6, "2400", BTF_RADIO_BUTTON)
7, "1200", BTF_RADIO_BUTTON)
, "300", BTF_RADIO_BUTTON))

.
'
Sy
’

<

Chapter 4 — Window Objects 35

// Add the check boxes.
+ & (*new UIW_GROUP(15, 2, 13, 7, "Setup:")

+ new UIW_BUTTON (18, 4, "Full Duplex", BTF_CHECK_BOX)
+ new UIW_BUTTON(18, 5, "XON/XOFF", BTF_CHECK_BOX)

+ new UIW_BUTTON (18, 6, "Line Wrap", BTF_CHECK_BOX)

+ new UIW_BUTTON (18, 6, "Scroll", BTF_CHECK_BOX)

+ new UIW_BUTTON (18, 7, "Answerback", BTF_CHECK_BOX))

// Add the bitmapped buttons.
+ & (*new UIW_GROUP(29, 2, 13, 7, "Drives:")

+ new UIW_BUTTON (38, 4, "A:", BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_BORDER | WOF_JUSTIFY_RIGHT, NULL, 0, softDrive)

+ new UIW_BUTTON (38, 5, "B:", BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_BORDER | WOF_JUSTIFY_RIGHT, NULL, 0, softDrive)

+ new UIW_BUTTON (38, 6, "C:", BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_BORDER | WOF_JUSTIFY_RIGHT, NULL, 0, hardDrive)

+ new UIW_BUTTON (38, 7, "F:", BTF_NO_TOGGLE | BTF_AUTO_SIZE,

WOF_BORDER | WOF_JUSTIFY_RIGHT, NULL, 0, networkDrive)
+ new UIW_BUTTON (38, 7, "R:", BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_BORDER | WOF_JUSTIFY_RIGHT, NULL, 0, networkDrive))

// Add the regular buttons.

+ new UIW_BUTTON(10, 11, "&Save")

+ new UIW_BUTTON (20, 11, "&Cancel")
+ new UIW_BUTTON (32, 11, "&Help");

Bitmapped buttons—are buttons displayed with a graphical bitmap. The buttons function
the same as the regular buttons, but they display a bitmap. Bitmapped buttons may be
used in text mode, but the bitmap will not be displayed.

’

Check boxes—are buttons that are displayed with a ‘X’ when selected or * * when not

selected.

Radio buttons—are buttons that are displayed with a ‘(¢)” when selected or ‘()’ when
not selected. All of the radio buttons in a window, a group, or a list box are considered
to be members of the same group. Only one radio button from a particular group may
be selected at any one time. NOTE: to have multiple radio button groups on the same
window, create the group object (UIW_GROUP) and add the desired radio buttons to each
group.

Combo box window objects

36

A combo box field is a one line string field with an attached button object. When the
button is selected, a vertical list (described below) appears. When an item is selected, it
is copied into the initial string field and the menu disappears. The figure below shows
a window with two combo boxes (UIW_COMBO_BOX):

Zinc Interface Library — Programmer’s Guide

*window
+ new UIW_TITLE ("Combo Box Window")

+ & (*new UIW_COMBO_BOX (2, 2, 11, 7)
+ new UIW_BUTTON(O, O, , "String", BTF AUTO SIZE | BTF_NO: 3D,
WOF_BORDER, bitmapl
+ new UIW_BUTTON (0, O,
WOF_BORDER, bitmap2
+ new UIW_BUTTON (O, O,
WOF_BORDER, bitmap3

0
)
0, "F String", BTF_AUTO_SIZE | BTF_NO_3D,
)
0
)
+ new UIW_BUTTON(O, 0, 0, "Date", BTF_AUTO_SIZE | BTF_NO_3D,
)
0
)
0
)
0
)

, "Text", BTF_AUTO_SIZE | BTF_NO_3D,

WOF_BORDER, bitmap4
+ new UIW_BUTTON(0, O,
WOF_BORDER, bitmap5
+ new UIW_BUTTON (0O, O,
WOF_BORDER, bitmapé
+ new UIW_BUTTON (O, O,
WOF_BORDER, bitmap7

, "Time", BTF_AUTO_SIZE | BTF_NO_3D,

, "Number", BTF_AUTO_SIZE | BTF_NO_3D,
, "Button", BTF_AUTO_SIZE | BTF_NO_3D,
I

Date window objects

Date fields should be used anytime date information is presented to the end user or when
date information is to be entered at an application’s run-time. The figure below shows
a window with several variations of the date class object (UIW_DATE):

Chapter 4 — Window Objects 37

38

Standard:

| 3-17-1992

Military: [17 Mar 1992

Long text month: IMarch 17, 1992

Shorttext month: [Mar. 17, 1992

Short day-of-week: | Tues. 3-17-1992

Slash _zero fill: (0371771992

Al edited dates
should be in the
range

1-1-90..12-31-99

UI_DATE date;
char *range =
*window
+ new UIW_TITLE("Dates Window")
+ new UIW_TEXT (43, 1, 20, 6,
1-1-90..12-31-99", 128, WNF_NO_FLAGS,
WOF_VIEW_ONLY | WOF_NON_SELECTABLE |

*1-1-90..12~-31-99%;

+ new UIW_PROMPT (2, 1,

+ new UIW_DATE (22, 1, 20, &date, range,
+ new UIW_PROMPT (2, 2, "Military...........)
+ new UIW_DATE (22, 2, 20, &date, range,

DTF_MILITARY_FORMAT | DTF_SYSTEM)
+ new UIW_PROMPT (2, 3,

+ new UIW_DATE(22, 3, 20, &date, range,
+ new UIW_PROMPT (2, 4,

+ new UIW_DATE (22, 4, 20, &date, range,
+ new UIW_PROMPT (2, 5,

+ new UIW_DATE (22, 5, 20, &date, range,

+ new UIW_PROMPT (2, 6, "Slash & zero fill..")

+ new UIW_DATE (22, 6, 20, &date, range,
DTF_SYSTEM) ;

"grandardill MFRER SO ")
DTF_SYSTEM)

"Long text month....")
DTF_ALPHA_MONTH |

"Short text month...")
DTF_SHORT_MONTH |

"Short day-of-week..")
DTF_SHORT_DAY |

DTF_SLASH |

"All edited dates should be in the range

WOF_BORDER)

DTF_SYSTEM)

DTF_SYSTEM)

DTF_SYSTEM)

DTF_ZERO_FILL |

By default, date class objects are presented and edited in a country-independent fashion.
Default information, however, can be overridden by the following special date presentation

and edit styles:

Long month—The month shown as an ascii string
value so that the entire name of the month is dis-
played.

Dash—Each date variable is separated with a dash,
regardless of the default country date separator.

March 28, 1990
December 4, 1980
January 3, 2003

3-28-1990
12-04-1980
1-3-2003

Zinc Interface Library — Programmer’s Guide

Day of week—The day-of-week is shown as an ascii
string value before the date.

European format—The date is forced to be shown
in the European format (i.e., day/month/year), regard-
less of the default country information.

Japanese format—The date is forced to be shown in
the Japanese format (i.e., year/month/day), regardless
of the default country information.

Military format—The date is forced to be shown in
the U.S. Military format (i.e., day/month/year where
month is a 3 letter abbreviated word), regardless of
the default country information.

Short day of week—A shortened day-of-week value
is displayed with the date.

Short month—A shortened alphanumeric month
value is shown with the date.

Short year—The year is forced to be shown as a
two-digit value.

Slash—Each date value is separated with a slash,
regardless of the default country date separator.

Upper-case—The date is displayed in upper-case
lettering.

U.S. format—The date is forced to be formatted in
the U.S. format (i.e., month/day/year), regardless of
the default country information.

Zero fill—The year, month, and day values are
forced to be zero filled when their values are less than
10.

Chapter 4 — Window Objects

Monday May 4, 1992
Friday Dec. 5, 1980
Sunday Jan. 4, 2003
28/3/1990

4 December, 1980

3 Jan., 2003
1990/3/28

1980 December 4

2003 Jan. 3

(army style)
28 Mar 1900
03 Jan 2003

(navy style)
28 MAR 1900

03 JAN 2003
Mon. May 4, 1992
Fri. Dec. 5, 1980
Sun. January 4, 2003
Mar. 28, 1990
Dec. 4, 1980
Jan. 3, 2003
!
3/28/90

December 4, ’80

Jans 8,789

3/28/90
12/04/1900
L3 /2003

MARCH 28, 1990
DEC. 4, 1980
SATURDAY JAN 3,

March 28,
12/4/1980
Jan 3, 2003

1990

March 08, 1990
12/04/1980

01/03/2003

2003

39

lcons

Icons are selectable graphic images that can be attached to a window or directly to the
screen display (if the icon is a minimized window). The figure below shows a window
with several icons (UIW_ICON):

*window
new UIW_BORDER
new UIW_SYSTEM_BUTTON
new UIW_MAXIMIZE_BUTTON
new UIW_MINIMIZE_BUTTON
new UIW_TITLE ("Icon Window")
new UIW_ICON(15, 4, "mouse")
new UIW_ICON(32, 4, "disk")
new UIW_ICON(49, 4, "letter")
new UIW_ICON(66, 4, "logo")
new UIW_ICON(15, 8, "phonebk")
8,
8
8,

o+

new UIW_ICON (32, Yol E
new UIW_ICON (49, "calendar")
new UIW_ICON (66, "UsSA") ;

I i T

Icons can be used anytime you want to present a selectable item in graphical form. The
main drawback of icons is that they only have graphic implementations. However, in text
mode, the icon will still be selectable and its associated text will be displayed.

List window objects

40

List fields are select only fields (i.e., items within the list object cannot be edited) that are
used to present related information in a vertical column or a horizontal list with one or
more columns. The figure below shows a window with two list fields (UIW_VT_LIST
and UIW_HZ_LIST):

Zinc Interface Library — Programmer’s Guide

Yertical List: Horizontal List:

Item 7
Item 8
Item 9
Item 10
Item 11
Item 12

*window
+ new UIW_TITLE("List Window")

+ new UIW_PROMPT(2, 2, "Vertical List:")
+ &(*new UIW_VT_LIST(2, 3, 11, 6)

+ new UIW_SCROLL_BAR(0, 0, 0, SBF_VERTICAL, WOF_NON_FIELD_REGION)
+ new UIW_STRING(0, 0, O, "Item 1", 64)

+ new UIW_STRING(0, 0, 0, "Item 2", 64)

+ new UIW_STRING(0, 0, 0, "Item 3", 64)

+ new UIW_STRING(0, 0, 0, "Item 4", 64)

+ new UIW_STRING(0, 0, 0, "Item 5", 64)

+ new UIW_STRING(0, 0, 0, "Item 6", 64)

+ new UIW_STRING(0, 0, 0, "Item 7", 64)

+ new UIW_STRING(0, 0, 0, "Item 8", 64)

+ new UIW_STRING(0, 0, 0, "Item 9", 64)

+ new UIW_STRING(0, 0, O, "Item 10", 64));

In addition to the standard list fields, the list classes permit the creation of a list object
that takes the complete window region (inside the border). This type of list is created
whenever the WOF_NON_FIELD_REGION window flag is specified for the list object.

MDI windows

In addition to the standard use of windows (see the “Basic window objects” section of
this chapter), windows may be added to other windows. These types of windows are
known as MDI (multiple-document interface) windows. An MDI parent window is the
controlling window that is added to the screen. MDI child windows are those sub-
windows that are added to an MDI parent. The MDI child windows may be maximized,
minimized, moved, or sized within the MDI parent. The restriction on MDI child
windows is that they cannot move outside of their parent (i.e., they are clipped at the
inside of their parent’s border). The figure below shows an MDI parent window with a
MDI child window and several minimized MDI child windows:

Chapter 4 — Window Objects 41

MDI Child

Mouse Drive Book USA

*window
+ UIW_WINDOW: :Generic (10, 2, 15, 5, "MDI Child", WOF_NO_FLAGS,
WOAF_MDI_OBJECT) ;

Menu window objects

42

Menus should be used anytime you want to present selection information to the end user.
Pull-down items should be used when a hierarchal grouping of selection items is to be
used. The pull-down menu serves as the first level in the selection process. The figures
below show Windows implementations of a window with a pull-down menu and a
window with a pop-up menu. (The pull-down menu is shown as the horizontal line with
the Control, Window, Event, and Help pull-down items. The pop-up menu is shown as
the vertical group of Item1-10 pop-up items.)

Zinc Interface Library — Programmer’s Guide

“Control Window Event Help

A pop-up menu
is used to display

selectable pop-up
items on a|window.

*windowl
+ new UIW_TITLE ("Zinc Demonstration")

+ & (*new UIW_PULL_DOWN_MENU (0)

+ & (*new UIW_PULL_DOWN_ITEM(" &Control ")
+ new UIW_POP_UP_ITEM("Option 1.1")
+ new UIW_POP_UP_ITEM("Option 1.2")
+ new UIW_POP_UP_ITEM("Option 1.3"

+ & (*new UIW_PULL_DOWN_ITEM (" &Window
+ new UIW_POP_UP_ITEM("Option 2.1"
+ new UIW_POP_UP_ITEM("Option 2.2"

))
)
)
+ new UIW_POP_UP_ITEM("Option 2.3"))
)
)
)
)

"y

+ & (*new UIW_PULL_DOWN_ITEM(" &Event "
+ new UIW_POP_UP_ITEM("Option 3.1

+ new UIW_POP_UP_ITEM("Option 3.2"
3

+ new UIW_POP_UP_ITEM("Option 3.
+ & (*new UIW_PULL_DOWN_ITEM (" &Help

)

Chapter 4 — Window Objects 43

*windowl

+ new UIW_
+ & (*new UIW_POP_UP_MENU (22,
UIW_POP_UP_ITEM("
UIW_POP_UP_ITEM
UIW_POP_UP_ITEM
UIW_POP_UP_ITEM
UIW_POP_UP_ITEM
UIW_POP_UP_ITEM
UIW_POP_UP_ITEM
UIW_POP_UP_ITEM
UIW_POP_UP_ITEM
UIW_POP_UP_ITEM
UIW_TEXT (43,
"A pop-up menu is used to display selectable "
"pop-up items on a window",

4

+ 4+ 4+ o+ o+

=
+ new

Number window objects

Number fields should be used anytime numeric information is presented to the end user
or when numeric information is to be entered at an application’s run-time. Zinc supports
three types of number fields: UIW_BIGNUM, UIW_INTEGER, and UIW_REAL. The
UIW_BIGNUM class is used to display large numbers (defaults to 30 digits to the left of
the decimal point and 8 digits to the right). It also handles the formatting of numbers
(e.g., percent, commas, decimal places, etc.). The UIW_INTEGER class handles integer
information (using long integers). The UIW_REAL class handles real number information
(using double values). Scientific notation is also performed by the UIW_REAL class.
The figure below shows a window with several variations of number fields (UIW_BIG-

+

new UIW_POP_UP_ITEM("Option 4
new UIW_POP_UP_ITEM("Option 4
new UIW_POP_UP_ITEM ("Option 4.

"Pop-up menu:")
1, MNF_SELECT_ONE)

Option
Option
Option
Option
Option
Option
Option
Option
Option
Option

NUM, UIW_INTEGER, and UIW_REAL):

Zinc Interface Library — Programmer’s Guide

128);

Fixed decimal (4): [1000.0000

Standard: (1000 Il edited numbers
should be in the
Currency: Iﬂ 000.00 range
-10,000..10,000
Commas: 1,000

Percent: |1nou%
Credit: [[1000]
char *range = "0..10000";
UI_BIGNUM value = 1000;
UI_BIGNUM dvalue = 1000.0;
double sNumber = 1010000000000000;

*window
+ new UIW_TITLE("Bignum Window")

+ new UIW_TEXT (43, 1, 20, 6,

NMF_CURRENCY |

"All edited numbers should be in

the range 0..10,000", 128, WNF_NO_FLAGS,
WOF_VIEW_ONLY | WOF_NON_SELECTABLE | WOF_BORDER)

+ new UIW_PROMPT (2, 1, "Standard: ")

+ new UIW_BIGNUM (22, 1, 20, &value, range)

+ new UIW_PROMPT(2, 2, "Currency ")

+ new UIW_BGINUM(22, 2, 20, &dvalue, range,

+ new UIW_PROMPT(2, 3, "Commas: ")

+ new UIW_BIGNUM(22, 3, 20, &value, range, NMF_COMMAS)

+ new UIW_PROMPT (2, 4, "Fixed decimal (2): ")

+ new UIW_BIGNUM(22, 4, 20, &dvalue, range,
+ new UIW_PROMPT (2, 5, "Percent: ")
+ new UIW_BIGNUM (22, 5, 20, &value, range,

+ new UIW_PROMPT(2, 6, "Scientific: ")
+ new UIW_REAL (22, 6, 20, &sNumber, range);

The UIW_BIGNUM class object permits the following presentation and edit styles:

Decimal—Shows the number with a decimal point at
a fixed location.

Currency—Shows the number with the country-
specific currency symbol.

Chapter 4 — Window Objects

NMF_DECIMAL (2))

NMF__PERCENT)

10,000.00
43.45
$149:95:

$10,000.00
DM100
£195

NMF_DECIMAL(2))

45

Credit—Shows the number with the ‘(" and ‘)’ credit
symbols whenever the number is negative.

Commas—Shows the number with commas in the

appropriate positions.

Percent—Shows the numbe
tage symbol.

Scientific numbers are handled b

r followed by a percen-

y the UIW_REAL class.

(1000)
(23040)
(759)

$10,000.00
45,000
1,195

100%
4.5%
10%

When the UIW_REAL class

displays numbers that are too long for the field, they are displayed using scientific
notation so that the entire number may be viewed.

String window objects

46

Several types of strings are supported by Zinc Interface Library. They include single line
string fields (UIW_STRING) and formatted or masked strings (UIW_FORMATTED_-
STRING). The figure below shows a window containing several string window objects

(UIW_STRING):

Name:

Address:

City, State, ZIP:

Phone:

I[Zinc Software Incorporated

[405 South 100 East

|2nd Floor

[F‘Ieasant Grove

| IUT | 84062-0000

|
|
|
|

|[au1] 785-8900 |

*window
+ new

+ new
+ new

UIW_PROMPT (2, 1,
UIW_STRING (22, 1
+ new UIW_PROMPT (2, 2,
+ new

+ new
+ new

UIW_PROMPT (2, 3,

UIW_STRING (22, 2,

UIW_STRING (22, 3,

UIW_TITLE ("Strings Window")

YESEXINg. ce o em v o aies wl
, 41, "Zinc Software Incorporated", 256)
L 16 i 1o (AR ")
41, "405 South 100 East 2nd Floor", 256)
COEF TGS 5 ¢ s 5 508 § Bun s iy
20, "Pleasant Grove", 256)

Zinc Interface Library — Programmer’s Guide

+ new UIW_STRING (43, 3, 4, "UT", 3)

new UIW_PROMPT (2, 2, "Formatted strings..")
+ new UIW_FORMATTED_STRING (22, 2, 20, "8017858900", "LNNNLLNNNLXXXX",
Lk T LR R
+ new UIW_FORMATTED_STRING (43, 2, 20, "840620000", "NNNNNLNNNN",

The first string object, shown with the “Zinc Software Incorporated” default string in the
window above, is represented by the UIW_STRING class object. This class object should
be used anytime string information is presented to the end user or when string information
is to be entered at an application’s run-time and that information can best be presented
on a single scrollable line of the screen.

The formatted string objects, shown with the “(801) 785-8900” and ‘‘84062-0000”
default information in the windows above, are represented by the U'W_FORMATTED_-
STRING class object. This class object should be used anytime pre-defined string format
information is presented to the end user or when string information is to be entered at an
application’s run-time. Formatted strings restrict the type of information that an end user
can enter.

Text window objects

Zinc Interface Library supports a multi-line text field (UIW_TEXT). The text fields may
be used with or without word-wrapping capabilities and may be used with both horizontal

and vertical scroll bars. The figure below shows a window containing two text window
objects (UTW_TEXT):

Four score and twenty

b The UIW_TEXT field is |
ears ago... i

used to display multiple
line text and can be
scrolled both
horizontally and
vertically.

Chapter 4 — Window Objects 47

48

*window
+ new UIW_TITLE ("Text Window")

+ &(*new UIW_TEXT(26, 2, 36, 5, "The UIW_TEXT field is used to display "
"multiple-line text and can be scrolled both horizontally and "
"vertically."))

+ &(*new UIW_TEXT(1l, 2, 36, 5, "For score and twenty years ago...")
+ new UIW_SCROLL_BAR(O, 0, 0, 0, SBF_VERTICAL, WOF_NON_FIELD_REGION)
+ new UIW_SCROLL_BAR(0, 0, 0, 0, SBF_HORIZONTAL,
WOF_NON_FIELD_REGION)
0

+ new UIW_SCROLL_BAR(O, , 0, 0, SBF_CORNER, WOF_NON_FIELD_REGION)) ;

The text object, shown with the “The UIW_TEXT field...”” default text in the window
above, is represented by the UIW_TEXT class object. This class object should be used
anytime text information is presented to the end user or when text information is to be
entered at an application’s run-time and the information can best be presented on multiple
word-wrapped lines of the screen. Single-line information is best handled by the
UIW_STRING class object.

In addition to the standard text field, the UIW_TEXT class permits the creation of a text
object that takes the complete window region (inside the border). For example, the
graphic image below shows the help window system where the help text is shown in a
text object:

| The second "Hello World!" tutorial shows you how to
| create two windows using Zinc Interface Library and how
to initialize the help and error systems.

Press <F3> to exit help.

The system help window is composed of the basic window objects (discussed in the
“Basic window objects’ section of this chapter) and an additional UIW_TEXT field that
is dynamically sized to fill the complete window. This type of text object is created
whenever the WOF_NON_FIELD_REGION window flag is specified for the text obje
ct.

Zinc Interface Library — Programmer’s Guide

Time window objects

Time fields should be used whenever time information is presented to the end user or
when time information is to be entered at an application’s run-time. The figure below
shows a window with several variations of a time field (UIW_TIME):

Standard: |$@ m|
Twenty-four hour: |8:55

All edited times
should be in the
range
6:00am._.10:00pm

Colon _zero fill: |l]3:55 a.m.
Seconds: [8:55:13 am.
Hundredths: [8:55:13.94 a.m.

UI_TIME time;
char *range = "6:00am..10:00pm";
*window

+ new UIW_TITLE("Time Window")

+ new UIW_TEXT (43, 1, 20, 6,
"All edited times should be in the range 6:00am..10:00pm",
128, WNF_NO_FLAGS, WOF_VIEW_ONLY | WOF_NON_SELECTABLE | WOF_BORDER)

+ new UIW_PROMPT(2, 2, "Standard........... oy
+ new UIW_TIME (22, 2, 20, &time, range)

+ new UIW_PROMPT (2, 3, "Twenty-four hour...")
+ new UIW_TIME (22, 3, 20, &time, range, TMF_TWENTY_FOUR_HOUR)

+ new UIW_PROMPT(2, 4, "Colon & zero fill..")
+ new UIW_TIME (22, 4, 20, &time, range,
TMF_COLON_SEPARATOR | TMF_ZERO_FILL)

+ new UIW_PROMPT(2, 5, "SecondS........c... ")
+ new UIW_TIME (22, 5, 20, &time, range, TMF_SECONDS)

+ new UIW_PROMPT (2, 6, "Hundredths......... ")
+ new UIW_TIME (22, 6, 20, &time, range, TMF_HUNDREDTHS) ;

By default, time class objects are presented and edited in a country-independent fashion.
Default information, however, can be overridden by the following special time
presentation and edit styles:

Colon separator—Separates each time variable with g : 88 -
a colon. 12:00 a.m.

Chapter 4 — Window Objects 49

Hundredths—Includes the hundredths value in the
time. (By default the hundredths value is not includ-
ed.)

Lower-case—Shows the time in a lower-case format.

No separator—Does not use any separator characters
to delimit the time values.

Seconds—Includes the seconds value in the time.
(By default the seconds value is not included.)

Twelve-hour clock—Forces the time to be shown
using a 12 hour clock, regardless of the default
country information.

Twenty-four hour clock—Forces the time to be
shown using a 24 hour clock, regardless of the default
country information.

Upper-case—Shows the time in an upper-case
format.

Zero fill—Forces the hour, minute and second values
to be zero filled when their values are less than 10.

Tool bar window objects

1:05:00:00
23:15:05:99
7:45:59:00 a.m.

12:00 p.m.
1:00 a.m.
700 pm

120
130000
17500

8:09:30
14:00:00
3:24:59 p.m.

12:00 .a.m.
1:00 p.m.
5:00 p.m.

12:00
13:00
17:00

12:00 P.M.
1:00 A.M.
74007 B M,

01:10 a.m.
13405303
01:01 p.m.

Tool bar objects are very similar to menus, with the exception that they may be used to
display objects of various types, such as icons, buttons with bitmaps, strings, etc. The
figure below shows a window with a tool bar (UIW_TOOL_BAR):

Zinc Interface Library — Programmer’s Guide

*window
+ new UIW_TITLE ("Tool Bar Window")
+ & (*new UIW_TOOL_BAR(O, 0, 0, 0)
+ new UIW_STRING(0, 0, 0, "Defaults", 64)
+ new UIW_DATE(O, 0, 0, &date)
+ new UIW_BUTTON (38, 5, "", BTF_NO_TOGGLE |
WOF_BORDER, NULL, 0, softDrive)

+ new UIW_BUTTON(38, 6, "", BTF_NO_TOGGLE |
WOF_BORDER, NULL, 0, hardDrive)
+ new UIW_BUTTON (38, 7, "", BTF_NO_TOGGLE |

WOF_BORDER, NULL, 0, networkDrive)
+ new UIW_COMBO_BOX (0, 0, 15, 5));

Chapter 4 — Window Objects

BTF_AUTO_SIZE,
BTF_AUTO_SIZE,

BTF_AUTO_SIZE,

51

52

Zinc Interface Library — Programmer’s Guide

Introduction

If you have purchased Zinc Interface Library for Windows you will be able to create
Windows applications. With Zinc Interface Library, DOS and Windows applications may
be created from the same set of source code. Since a Windows executable program (i.e.,
a file with the .EXE extension) is different than a DOS executable program, it is
necessary to create two separate .EXE files. Any Windows application can only be run
from within Microsoft Windows. This chapter will describe the few differences required
to create a Windows application using Zinc.

Windows library

The Windows version of Zinc Interface Library has been compiled into a single library
file called ZILW.LIB. When creating a Windows application, ZILW.LIB must be linked
into the .EXE file. Be careful not to link in more than one library file (i.e., do not link
the DOS library in as well.)

Compiler options

When creating a Windows application, the following compiler options should be selected:

Windows application—If your compiler is able to create applications for both DOS
and Windows environments, you should select the compiler option to create the
application as a Windows executable program.

Large model—Set the compiler option to compile using the large memory model.
Since Zinc Interface Library is shipped only with the large memory model, all user
applications must also be compiled with the large memory model.

WinMain

Ordinary C++ programs begin with calling main() as the first function. However, in
Windows, WinMain() is the first function called. WinMain is used to allow Windows
to begin execution of an application. Here is the definition of the WinMain:

int PASCAL WinMain (HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow) ;

Chapter 5 — Windows Applications 53

rlll.lllllllllllllIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIlllIIlIIIIIIIIIIIIIIIIIIIIIIIIII

In order to maintain a single set of source code, Zinc Interface Library uses compiler
directives (e.g., #ifdef) to separate code that is specific to a particular environment. The
following code shows the format of the main routines for both DOS and Windows:

#ifdef _WINDOWS

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow)

{

#else
main(int argc, char *argv[])

{

#endif

Derived objects

C++ offers the powerful ability to derive classes in order to create similar, yet unique,
classes. While there are no limitations regarding the derivation of Zinc classes, it should
be done with caution. For example, each object contains an Event function that processes
messages, and these messages differ between DOS and Windows. See the “‘Help Bar”
tutorial in the Programmer’s Tutorial for detailed information on how to create a new
object that meets the specifications for both DOS and Windows.

54 Zinc Interface Library — Programmer’s Guide

SECTION il
ZINC DESIGNER

Section Ill — Zinc Designer 55

56

Zinc Interface Library — Programmer’s Guide

CHAPTER 6 - INTRODUCTION

Zinc 3.0 offers the tightest integration available between an interactive design tool and the
supporting class library. Most Windows developers use a resource tool to help create
their program interface. Resource tools are language and library dependent by design and
therefore cannot access all the features of a given class library. This results in a
fragmented approach to application development with isolated user functions and
non-specific documentation. The developer is saddled with the not-so-obvious details of
integrating his or her code with both the class library and the resource tool. The seamless
integration of Zinc Designer and Zinc 3.0 contrasts sharply with this a la carte approach.

Zinc Designer was created with Zinc Interface Library and lets you access all of the
available features in the library. Zinc Designer lets you interactively create your
application screens using Zinc objects. You simply select windows and window objects
from the menu or toolbar and place them on the screen.

Interactive Editors

You can easily customize objects with Zinc Designer’s interactive editors. Every Zinc
object that can be customized has an editor in Zinc Designer. These editors are the focal
point for modifying the attributes of the objects that you place on the screen. Each editor
is customized for its specific object but most of the editors have these general features:

Option Lists—A scrolling list of all general and specific option flags that are
relevant to the object. The general flags are options that apply to more than one
object such as borders. The specific flags are options that apply only to a given
object such as the currency flag for the bignum class.

String identifiers—A field that gives the object a unique ID which you may use to
access the object from a user procedure. This identifier allows you to access a given
object even if it is grouped with several other objects in a window and saved as a
single resource.

Default information—Many object editors allow you to enter default information and
validation ranges for the object (e.g., date ranges for the date object, number ranges
for the number object).

Context sensitive help—Help can be attached both at the object and window levels.
If you do not attach a specific help screen to an object then the object will use the
help screen that is attached to its parent window.

Chapter 6 — Introduction 57

User Functions—A powerful feature of Zinc Designer that allows you to integrate
your user functions and validation routines to specific window objects such as menus,
input fields, buttons and icons. You write and compile your user functions outside
of Zinc Designer and then add the name of the procedure in the object editor. Zinc
automatically passes three messages from an object to an attached user function:
when the object becomes current; when the object becomes non-current; and when
the object is selected. You can determine which of these messages will execute the
body of your user function.

Utilities

Zinc Designer includes two very useful utilities. The Image Editor allows you to create
and edit bitmaps and icons for Windows and DOS Graphics modes. Bitmaps and Icons
that you create with the Image Editor are assigned to objects (e.g., attach an icon that a
window will minimize to, attach a bitmap to a button) through the object editors. A
combo box allows you to select the desired bitmap or icon.

The Help Editor allows you to create and edit help information. Help screens that you
create with the Help Editor are assigned to windows or objects through the object editors.
A combo box allows you to select the appropriate help screen for the window or object.

Getting around

Most applications associate one file for each document. File operations are usually
located in the File menu. Zinc Designer adds the concept of resources to this model. A
given Zinc Designer file, ending with an extension of .DAT, may contain one or more
resources. A resource is a window with its associated objects. In order to create and save
resources Zinc Designer uses a Resource Menu in addition to the File menu. The
Resource Menu contains the commands that allow you to create, store, edit and delete
multiple resources in a single .DAT file.

Zinc Designer files

58

After creating your screens (or resources) you save them to disk in a file with a .DAT
extension. You add these resources to your application with one line of code. The
following code segment demonstrates how to load a resource called WINDOW_I, with
its associated objects, from a file called SAMPLE.DAT.

// Add a window created with Zinc Designer to the window manager.
*windowManager
+ new UIW_WINDOW ("SAMPLE.DAT~WINDOW_1") ;

Zinc Interface Library — Programmer’s Guide

The resources that you create with Zinc Designer are platform-independent. Resources
you create with the Windows version of Zinc Designer can be opened and edited with the
DOS version and vice versa.

Zinc Designer’s complete access to the Zinc class library, straightforward integration of
your code and platform-independent storage can dramatically enhance your productivity.

Chapter 6 — Introduction 59

60

Zinc Interface Library — Programmer’s Guide

CHAPTER 7 - GETTING STARTED

Zinc Designer is an interactive tool created in order to save you, the programmer, time
and effort in developing Zinc Interface Library applications. This chapter discusses the
overall layout of the interactive design tool, as well as the basic procedures used in
creating resources with it.

THE DESIGNER SCREEN

Overview

When you enter Zinc Designer, a main control window similar to the following appears:

This control window includes eight main elements with which you should be familiar:
* Actitle bar that identifies this window as the main control window of Zinc Designer.
When a specific application is being created, the title also includes the name of the

current file.

* A system button, which, when selected, displays the following pop-up menu:

Chapter 7 — Getting Started 61

62

Move

Size
Minimize
Maximize

Close Alt+F4

Switch To... Ctrl+Esc

Restore—Restores the window to its original size if it is in either a maximized
or a minimized state.

Move—Allows the window to be moved.
Size—Allows the window to be sized relative to the top left corner.
Minimize—Reduces the window to a minimized object (i.e., icon).
Maximize—Enlarges the window to its maximum size.
Close—Removes the window from the screen and exits the program.
A maximize button that, when selected, enlarges the window so that it occupies the
entire screen. Selecting this button when the window is already in its maximized
state causes the window to return to its original size.
A minimize button that, when selected, reduces the window to its smallest
representable form. Selecting this button when the window is already in its
minimized state causes the window to return to its original size.
A pull-down menu from which the main action items can be selected for interaction
within the Designer. The options associated with the menu bar are described in
further detail below.
An object bar containing buttons that display various window objects. Selecting one

of these buttons allows the associated object to be added to the current resource.
Interaction with the object bar is described in further detail below.

Zinc Interface Library — Programmer’s Guide

* A status bar, which displays information associated with the current object. The
fields associated with the status bar are described in further detail below.

* A help bar, which displays the help context associated with the current field.

The menu bar

Using the options presented as menus in the main window of Zinc Designer, applications
can be created and saved for use at run-time. Selecting some menu items causes an
action to take place immediately, while selecting others causes a related window to
appear, from which more options are available. Menu items that cause another window
to appear are distinguished by ellipses (...). A brief explanation of each menu item
follows:

File—This menu consists of options that control the creation of files and exiting from
the program. The selectable items on this menu are: New..., Open..., Save, Save
As..., Delete..., Preferences..., and Exit.

Edit—This menu consists of options that edit or control the operation and
presentation of objects within an application. The edit options are: Object..., Cut,
Copy, Paste, Delete, Move, and Size.

Resource—This menu consists of options that control the creation of resources within
the current file. The selectable items are: Create, Load..., Store, Store As..., Edit...,
Clear, Delete..., and Test...

Object—This menu presents the objects, divided into four groups, that can be created
with the Designer. The four groups presented in the first pull-down menu are: Input,
Control, Menu, and Static. Selecting one of these items causes another menu to
appear which contains the actual window objects of that group.

Utilities—This menu allows access to the two utility editors of Zinc Designer. The
selectable options are Image Editor and Help Editor.

Help—This menu provides a list of the following selectable help contexts: Index,
File, Edit, Object, Resource, Utilities, and About designer.

All of these menu items are discussed in more detail in their respective chapters that
follow.

Chapter 7 — Getting Started 63

—

The object bar

The object bar presents some of the available window objects within Zinc Designer. It
is designed to allow you to easily select these items with a mouse and then attach them
directly to your current resource. When one of the objects is selected, its name appears
in the “place object” field on the status bar, where it remains until it is attached to a
window, or until another object is selected from the object bar. The object is attached to
a resource by positioning the cursor on the desired location and clicking the mouse button.

By default the objects on the object bar are displayed by their bitmap representations, but
they can also be displayed as text only or as text and bitmaps. (Refer to the Preferences
section in Chapter 8 of this manual for information on how to alter the object bar
defaults.)

NOTE: All of the window objects available in Zinc Designer are not represented on the
object bar. For the complete set of objects, the Object option must be used.

For more information on creating and modifying window objects, refer to Chapters 11

through 15, which discuss each object in detail.

The status bar

The status bar displays the state of the current resource on the screen. The following
fields are present:

object—Indicates what the current object is.
stringlD—Displays the string identification of the current object.

pos—Indicates the position, in cell coordinates, of the current object. If the current
object is attached to a parent window, its position is relative to that parent window.

size—Indicates the size, in cells, of the current object (i.e., width by height).
place object—Indicates the object that has been most recently selected from the

object bar (or from the Object options menu) that is ready to be placed on a resource
window.

64 Zinc Interface Library — Programmer’s Guide

HOW TO START

Once you have entered Zinc Designer, the following steps can be followed for creating
a basic application:

1—Open a new file for the application by selecting File | New... Select the drive and
directory to which the file is to be saved, and enter a name for the file at the “File
Name™ prompt. If all of the information is correct, select the “OK” button. (To
move between fields without a mouse, use the <Tab> key.)

2—Create a new resource by selecting Resource | Create. A generic window will
appear on the screen that can be moved and sized.

3—Attach the desired objects to the window:

a) Select the objects with the mouse directly from the object bar, or select them
from the Objects options.

b) Position the cursor in the window at the desired location and press the left
mouse button.

4—Edit the objects:

a) Call the editor by double clicking on the object itself, or double click on the
resource window and then select the object from the “Objects” field.

b) Change the default information by positioning the cursor on a field, press the
left mouse button, and enter the new information. Flags are toggled by clicking
on the associated check box. (Refer to Chapters 11 through 15 for specific
information on the capabilities of each object.) When all of the necessary
information is entered, select the “OK” button.

5—Save the current resource by selecting Resource | Store As... If you want to name
the resource something other than the default “RESOURCE 1” enter a name for it
at the “StringID”” prompt. Select the “OK” button to close the window and store
the resource.

6—Save the current file by selecting File | Save.

7—Test the resource by selecting Resource | Test... and interacting with the objects.
When you are done testing it, select the “Exit Test”” button.

Chapter 7 — Getting Started 65

8—Create the help contexts to be associated with the resource window and its fields:
a) Select Utilities | Help Editor.

b) Select Context | New and enter a name for the context name at the “Context
Name” prompt. Select the “OK™ button.

c) Enter the title to be displayed on the help window’s title bar.

d) Move the cursor to the “message” field and enter the text to be displayed in
the help window.

e) Save the context by selecting Context | Save.

f) Repeat steps ‘b’ through ‘e’ for each context to be created.

g) Close the help editor by selecting Context | Exit.

h) Call the editor for each object and select the help context to be associated
with it from the ‘“helpContext” combo box list. Select the editor’s “OK”
button.

9_Repeat steps 5 and 6 to save the new information to the resource and the file.

10—To add other resources to the current file, repeat steps 2 through 9.

Zinc Interface Library — Programmer’s Guide

CHAPTER 8 - FILE OPTIONS

The File category options control the general operations of Zinc Designer. Selecting File
causes the following menu to appear:

Edit

Open...
Save
Save As...

Delete...

Preferences...

Exit

NEW

The “New...” option allows you to create a new file. Selecting it causes a window
similar to the following to appear:

Chapter 8 — File Options 67

File Name I

Directory: jAtutorshello

Drives: Directories: Files:
b: e .. hello.dat
&= f:

= g:
& i

File name

If you want to open a new file for an application, enter the name for the new file here.

If you do not include it yourself, a “.DAT” postfix will be automatically attached to the
name when the file is actually created.

Directory

The current directory is shown at the “Directory” prompt. Your file will be saved to this
directory. Since this item is not selectable, if you want to make a different directory the
current one, it must be done by selecting a new directory from the Directories menu

(discussed below).
Drives

This field displays other drives that are available on your system. Selecting a drive causes
the files and directories on that drive to be displayed in their respective fields.

68 Zinc Interface Library — Programmer’s Guide

Directories

9

This field displays other available directories of the current drive. represents the
parent directory, and, if selected, will display the other sub-directories of the current path,
all of which are also selectable.

Files

Other .DAT files created with Zinc Designer that belong to the current directory are listed
in the scrollable field below “Files.” If one of these files is selected, its name will
appear at the “File name” prompt, indicating that it is to be opened. (For more
information on opening a previously created file, see the explanation for the “Open”
option below.)

OK

Selecting this button causes a file to be created which will be given the name entered at
the “File name” prompt. If creation of the file is successful, the “New” window will
close and the title bar of the control window will be updated to include the name of the
current file. If no information has been entered within the ‘“New” window and the
“OK” button is selected, you will receive an error message.

Cancel

Selecting this button causes the window to close without executing any changes.

Help

Additional information about creating new files appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the fields
of the “New” window.

OPEN

”

The “Open...” option allows you to open a previously created file. Selecting it causes
a window to appear that is similar to the “New” window:

Chapter 8 — File Options 69

File Name

Directory: jAtutorshello

Drives: Directories: Files:
= hello.dat

3 a:

To open an existing file, you can enter the name at the “‘File name” prompt, or you can
select it from the ““Files” field, and the name of the file will automatically appear at the
prompt.

Directory

The current directory is shown at the “Directory” prompt. Since this item is not
selectable, if you want to make a different directory the current one, it must be done by
selecting a new directory from the “Directories” menu (discussed below).

Drives

This field displays other drives that are available on your system.

Directories

[T L)

This field displays other available directories. represents the parent directory, and,
if selected, will display the other sub-directories of the current path, all of which are also
selectable.

70 Zinc Interface Library — Programmer’s Guide

Files

Other .DAT files created with Zinc Designer that belong to the current directory are listed
in the scrollable field below Files. If one of these files is selected, its name will appear
at the File name prompt.

OK

Selecting this button causes the file specified at the “File name” prompt to be opened.
If the open procedure is successful, the window will close and the title bar of the control
window will be updated to include the name of the current file. If the file entered at the
“File name” prompt does not exist, you will receive an error message at this time. If no
information has been entered within the “Open” window, you will receive an error
message.

Cancel

Selecting this button causes the window to close without executing any changes.

Help

Additional information about opening existing files appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the fields
of the “Open” window.

SAVE

Selecting the “Save” option causes the current file to be saved in its present condition.
If the file has never been named, the “Save As” window will appear and allow you to
name it by entering a name at the “File name” prompt. When you select the “OK”
button, the “Save As” window will close and the file will be saved under that name.
(See the “Save As” section for further details on how to save a file for the first time.)

Upon every save operation, Zinc Designer automatically creates three files for the
application:

Chapter 8 — File Options 71

e a “.DAT” file, which contains the binary information associated with the objects
saved in the application

¢ a “.CPP” file, which contains the definition for _objectTable, an array that provides
the function read access points for objects saved to disk

e an “.HPP” file, which contains the numeric identifications (entered as StringID’s)
unique to each field

e one or more “.BK#” (i.e., backup) file, depending on your choice entered in File |
Preferences. (Backup files are created only if a previous .DAT file existed.)

SAVE AS

“Save As...” is usually used to either save a file that has not been previously named or
to save the current file under another name. Selecting it causes a window to appear that
is similar to the “New” and “Open” windows:

File Name Il
Directory: ji’Atutornhello

Drives: Directories: Files:
e hello.dat

72 Zinc Interface Library — Programmer’s Guide

Enter a name for the file at the “File name” prompt, or select it from the “Files” field,
and the name of the file will automatically appear at the prompt. If you do not include
it yourself when entering the name at the prompt, a “.DAT” postfix will be automatically
attached when the file is actually created. A new file will be created under that name that
includes the latest changes to the current application.

Directory

The current directory is shown at the Directory prompt. Since this item is not selectable,
if you want to make a different directory the current one, it must be done by selecting a
new directory from the Directories menu (discussed below).

Drives

This field displays other drives that are available on your system.

Directories
This field displays other available directories. “..” represents the parent directory, and,
if selected, will display the other sub-directories of the current path, all of which are also
selectable.

Files

Other .DAT files created with Zinc Designer that belong to the current directory are listed
in the scrollable field below Files. If one of these files is selected, its name will appear
at the File name prompt, and the current application can be saved to the specified file
when the “OK” button is selected.

OK

Selecting this button causes the file to be saved under the name entered at the “File
name” prompt. If the save operation is successful, the “Save As” window closes.

If you have entered a file name that already exists, a modal window will appear,
indicating such. If you select the “Yes™ button of this window, the current information
replaces the previous information of that file, and both the modal window and the ‘““Save
As” windows close. Selecting the “No” button simply closes the modal window and
allows you to enter information again in the “Save As” window.

Chapter 8 — File Options 73

If no information has been entered within the “Save As” window and you select the
“OK” button, the window will close and no other action will take place.

Cancel

Selecting this button causes the window to close without executing any changes.

Help
Additional information about saving files appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the
fields of the “Save As’ window.

DELETE

The “Delete...” option allows you to delete a file. Selecting it causes a window similar
to the following to appear:

File Name [I

Directory: jiAbishem
Drives: Directories: Files:
B ..

74 Zinc Interface Library — Programmer’s Guide

File name

To delete a file, you can enter the name at the “File name” prompt, or you can select it
from the “Files” field, and the name of the file will automatically appear at the prompt.

Directory

The current directory is shown at the Directory prompt. Since this item is not selectable,
if you want to make a different directory the current one, it must be done by selecting a i
new directory from the Directories menu (discussed below). ‘;

|

Drives

This field displays other drives that are available on your system. Selecting one of the
drives causes the directories and files on that drive to be displayed in their respective |
fields. ‘

Chapter 8 — File Options 75

Directories
This field displays other available directories. ‘..” represents the parent directory, and,
if selected, will display the other sub-directories of the current path, all of which are also
selectable.

Files

Other files created with Zinc Designer that belong to the current directory are listed in the
scrollable field below Files. If one of these files is selected, its name will appear at the
File name prompt.

OK

Selecting this button causes a modal window to appear which is similar to the following:

jAtutorshelloxtemp . dat

This file will be deleted

The purpose of this window is to make sure that you want to delete the file. If you select
the “OK” button, the file indicated at the “File name” prompt is deleted, and both the
modal window and the “Delete”” window close. If you choose the “Cancel’ button, the
file is not deleted and just the modal window closes.

If the name of the current file is entered, or if the file entered does not exist, you will
receive an error message when the “OK” button is selected.

If no information has been entered within the window, selecting “OK” causes an error
message to appear.

76 Zinc Interface Library — Programmer’s Guide

Cancel

Selecting this button causes the window to close without executing any changes.

Help

Additional information about deleting files appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the
fields of the “Delete” window.

PREFERENCES

The “Preferences...” option allows you to change the default settings of Zinc Designer.
Selecting it causes a window similar to the one below to appear:

Mini-Cell
Backups (0..9): [0 | width:

rOptions [1 | 7 [10 |
X object Bar [Help Bar height:

[status Bar Bitmaps in Menus [1 I 7 |1n l

Object Bar Buttons:

[Pop Menu Object Buttons
[Tool Bar @® Bitmap

B Prompt

[l Group O Text

[1con

O Bitmap and Tex

Backups

Enter in this field the number of backups that you would like the designer to make each

Chapter 8 — File Options 7

time a save operation is performed. Each backup file will be saved under the same name
as the main file but with a postfix that indicates the backup number of the copy. For
example, a file with the name of TEST.DAT will have a backup copy called TEST.BK1
if only “1” is entered at the prompt. If any number greater than ““1” is entered at the
prompt, each time a save operation occurs another backup file will be created, up to the
maximum specified. For example, a “3” at the prompt will cause the creation of a
TEST.BK1 file at the first save operation, a TEST.BK2 file at the second save, and a
TEST.BK3 at the third save. Thereafter, these three backup files would be updated on
subsequent saves, with the most recent information being saved in TEST.BK1 and the
oldest information in TEST.BK3.

Options

This field presents the options for what can be displayed in Zinc Designer’s windows.
Each is presented as a check box that toggles, and any number can be selected at one
time. The options available are:

Object Bar—Causes an object bar to be displayed in the upper-most available region
of the window. (NOTE: An object bar will always appear above a status bar if both

are present within a window.)

Status Bar—Causes a status bar to be displayed in the upper-most available region
of the window.

Help Bar—Causes a help bar to be displayed in the lower-most available region of
the window.

Bitmaps in Menus—Allows bitmap images to be displayed in menus.

Mini-Cell

This field allows you to set the default coordinate mini-cell ratios. The default width and
height are 1/10.

Object Bar Buttons

78

This field contains the objects that can be included in an object bar. Selecting one causes
it to be represented on the tool bar in the format specified by “Object Buttons™ (i.e.,
bitmap and/or text). Each is presented as a check box that toggles, and any number can
be selected at one time.

Zinc Interface Library — Programmer’s Guide

Object Buttons

This field contains the options for the presentation of object buttons.
Bitmap—Allows only bitmap images to be displayed on an object button.
Text—Allows only text to be displayed on an object button.

Bitmap and Text—Allows both bitmaps and text to be displayed on an object
button.

OK

Selecting this button closes the ‘‘Preferences” window and causes the information
selected to take effect. If no information has been entered within the window, it will
close and no other action will take place.

Cancel

Selecting this button causes the window to close without executing any changes.

Help

Additional information about default settings appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the fields
of the “Preferences” window.

EXIT

Selecting the “Exit” option allows you to exit Zinc Designer. If you have not saved the
current file, a modal window will appear that asks whether or not you want to save it
before exiting. Selecting the “Yes™ button causes the file to be saved and then exits out
of the program. Selecting “No” causes the program to exit without saving the current
file (i.e., any changes made since the last save operation will be lost). Selecting the
“Cancel” button simply closes the modal window.

Chapter 8 — File Options 79

80

If you have not made any changes within Zinc Designer, selecting “Exit” causes a modal
window to appear which is similar to the following:

This will close Zinc Designer.

The purpose of this window is to make sure that you want to exit Zinc Designer. If you
select the “OK” button, the program exits. If you choose the “Cancel” button, the
program does not exit and the modal window closes.

Zinc Interface Library — Programmer’s Guide

CHAPTER 9 - EDIT OPTIONS

The Edit category options are used to edit the appearance and performance of objects
within the current file. Selecting “Edit” causes the following menu to appear:

Cut
Copy

Paste
Delete

OBJECT

Each object created with Zinc Designer can be modified through interaction with its object
editor. Selecting “Object...” causes the editor for the current object to appear, which is
similar to the following:

Chapter 9 — Edit Options 81

82

text: M l —wnFlags—

[] WNF_NO_WRAP
xajue: D []WNF_BITMAP_CHILDRE|
userFunction: | | |OwNF_auTo_soRT
—btFlags—
[]BTF_DOUBLE_CLICK
stringID: [FIELD_2 | [BTF_DOWN_CLICK

[0 BTF_REPEAT

[0 BTF_SEND_MESSAGE
—woFlags—

0 woF_MINICELL .
[JWOF_NO_ALLOCATE_D4
[wWOF_NON_SELECTABLF
[]WOF_VIEW_ONLY =

helpContext: ﬁNane]

Objects:

The object editor controls the general presentation of the object. Since each object has
its own specific requirements, the fields of each editor will vary, but all contain one or
more of the following fields:

text—This field allows you to enter information to be displayed within the object
exactly as you want it to appear in your application. Objects that use the “‘text”
field are: string, text, button, radio button, check box, pull-down item, pop-up item,
prompt, and group. Some objects have a field similar to “‘text,” but they use the
name of the object in place of “text.” These objects are: date, time, bignum, integer,
and real.

userFunction and compareFunction—If you want to have a user function or a
compare function associated with the object, you can enter the name of it in this field.
The function must be defined somewhere in your code under the same name that is
entered so that Zinc Designer can find it and execute the designated action. (For
more information on creating user functions and compare functions, refer to the
description of the object’s constructor in the Programmer’s Reference.)

stringID—This field contains the string identification for the object and is present in
every object editor (except for horizontal and vertical scroll bars). The default string
identification for a resource window is “RESOURCE” plus a unique number
corresponding with the order in which it was created. For example, the screen

Zinc Interface Library — Programmer’s Guide

identification for the first resource window created on the screen would be
“RESOURCE_1.” The default string identification for an object attached to another
object is “FIELD” plus a unique number corresponding with the order in which it
was attached to the parent resource. The number given to the first object is actually
0, so, for example, the screen identification for the second object created within a
resource window would be “FIELD_1.”

Because these objects appear in lists in other locations within the program, it is
recommended that you override the default identification and enter a string that more
specifically identifies the object. The identification will appear in all locations
exactly as you have entered it in the object’s editor.

objects—This field displays the objects, listed in the order in which they were
created, that are attached to the current object. To access the editor of one of these
listed objects, select it with a mouse or scroll to it and press <Enter>.

options and flags field—This field is located on the right side of every object’s
editor, and it displays flags or options which control the general presentation and
operation of the current object. All of these items are listed with check boxes, which
display a ‘X’ when they are currently in effect. To toggle a flag or option from non-
current to current or vice versa, select it by either clicking on it with the mouse or
by scrolling to it and pressing <Enter>. There is no limit to the number of flags that
can be in effect at a given time; however, if two flags are selected that present
conflicting information, such as “Center Justify” and “Right Justify,”” only the flag
listed first in the field will have effect.

Other fields that are more specific to individual objects are discussed in chapters 7
through 10.

Each object editor also includes three buttons, which operate in the following manner:

OK—Selecting this button saves the edit information and closes the object editor
window. The current object will reflect the editing changes immediately. If no
information has been entered within the object editor, its window will close with no
other action taking place.

Cancel—Selecting this button causes the window to close without executing any
changes.

Help—Additional information about the current object appears when this button is
selected.

Chapter 9 — Edit Options 83

A help bar is also included in each object editor that displays help on how to interact with
the edit window’s fields.

CuT

Selecting the Cut option removes the current object from the screen and places it in a
global paste buffer.

COPY

Selecting the Copy option copies the current object and places the copy in a global paste
buffer.

Selecting ‘““Paste” allows you to recall and position on the screen the contents of the
global paste buffer (placed there by Cut or Copy procedures). After selecting ‘“Paste,”
position the cross hair cursor (+) where you would like the paste to occur and press the
left mouse button.

DELEEE,

Selecting “Delete’”” removes the current object from the screen and deletes it from the
file.

MOVE

Selecting “Move” allows you to move the current object either by dragging the mouse
or by using the arrow keys.

84 Zinc Interface Library — Programmer’s Guide

SIZE

Selecting “Size” allows you to size the selected region from the bottom right corner !
either by dragging the mouse or by using the arrow keys. l

Chapter 9 — Edit Options 85

86

Zinc Interface Library — Programmer’s Guide

CHAPTER 10 - RESOURCE OPTIONS

The Resource category options allow you to create, modify, and retrieve objects in the
current file. Only windows can be saved as resources, but they can have any number of
objects attached to them. Selecting “Resource” causes the following menu to appear:

Load...
Store
Store As...

p =i Gl

Delete...

CREATE

Selecting ““Create” automatically places the following window on the screen, complete
with a title bar, a system button, and minimize and maximize buttons.

Chapter 10 — Resource Options 87

Any object can be attached to this window by selecting it from the object bar, or from the
Object menu, and positioning it in the resource window. (Refer to the Object Category
chapter of this manual for more information on creating window objects.)

“Load...” is used to recall a previously created resource from the current file. Selecting
it causes a window similar to the following to appear:

88 Zinc Interface Library — Programmer’s Guide

StringID: ||

Resources
[None])

StringID

Enter the string identification of the resource to be loaded, or by selecting it from the
“Resources” field, the stringID will automatically be displayed at the ‘““StringID”
prompt.

Resources

This field displays the resources that are available in the current file. The resources are
listed by their stringID’s in alphabetical order. If one of these is selected, its string
identification will appear at the ““StringID”” prompt.

OK

Selecting this button causes the resource designated at the ““StringID” prompt to be
loaded. If the load operation is successful, the “Load Resource” window closes and the
resource window, containing its child objects (if any), appears on the screen in the exact
location and condition it was last stored.

Chapter 10 — Resource Options 89

If nothing has been entered at the ““StringID”” prompt, or if the stringID entered does not
exist, upon selecting the “OK” button you will receive a message indicating that the
resource cannot be found.

Cancel

Selecting this button causes the window to close without executing any changes.

Help

Additional information about loading resources appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the
fields of the “Load Resource” window.

Once the resource has been loaded and appears on the screen, it is the current object and
can be modified in any way. When the Resource | Store option is subsequently selected,
the resource will be saved in its present condition, replacing the original version. (Refer
to the Store and Store As sections of this chapter for more information on storing
resources.)

STORE

90

Selecting the ““Store” option causes the current resource to be saved in its present con-
dition to the current file. The name given the resource will be the string identification
which appears at the *“StringID”” prompt of both the resource window’s editor and on the
control window’s status bar. If you have not entered a different name for the resource
in its editor or through a “Store As” operation, the stringID given it will be “RE-
SOURCE” plus a unique number corresponding with the order in which it was created.
For example, the screen identification for the first resource created in a file would be
“RESOURCE_1.”

Each time a store operation is performed, the previous contents of the resource are
completely replaced by the current information.

Zinc Interface Library — Programmer’s Guide

STORE AS

“Store As...” is usually used to store the current resource under another name. Selecting
it causes a window to appear that is similar to the following:

StringlD: |S%

Resource:
[(None)

StringID

Enter a name for the resource at the “StringID” prompt, or, if you want to replace a
previously created resource with the current information, select one from the “Resources”
field, and the string identification for that resource will automatically appear at the
prompt.

Resources

This field displays the resources that are available in the current file. The resources are
listed by their stringID’s in alphabetical order. If one of these is selected, its string
identification will appear at the “StringID” prompt and the current application will
replace the previous contents of that resource when the “OK™ button is selected.

Chapter 10 — Resource Options 91

OK

Selecting this button causes the resource to be stored under the identification entered at
the “StringID” prompt. If the save operation is successful, the “Store As” window
closes.

If no information has been entered within the “Store As” window and you select the
“OK” button, the window will close and no other action will take place.

Cancel

Selecting this button causes the window to close without executing any changes.

Help

Additional information about storing resources appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the
fields of the “Store As” window.

EDIT

Each object created with Zinc Designer can be modified through interaction with its object
editor. Selecting “Edit...” causes the editor of the current object to appear. The object
editor controls the general presentation of the object. It can also be called by selecting
Edit | Object while the object is current or by clicking twice on an object. (Refer to
Chapter 6 of this manual for further information on object editors.)

CLEAR

Selecting “Clear” causes the current resource to be removed from the screen. It does
not, however, delete the resource from the file. If you have not stored the current
resource immediately before, selecting “Clear” causes a modal window to appear that
asks if you want to store it before clearing it from the screen. Selecting ““Yes” causes
it to be stored and then cleared, selecting “No” causes it to be cleared without storing
it first, and selecting “Cancel” simply closes the modal window and the resource is
neither stored nor cleared.

92 Zinc Interface Library — Programmer’s Guide

DELETE

The “Delete...”” option allows you to delete a resource from the current file. Selecting
it causes a window similar to the following to appear:

Resources

|
|
StringiD: || t
l
|

(None)

StringID

Enter the string identification of the resource to be deleted, or by selecting it from the
“Resources” field, the stringID will automatically be displayed at the prompt.

Resources

This field displays the resources that are available in the current file. The resources are
listed by their stringID’s in alphabetical order. If one of these is selected, its string
identification will appear at the “StringID”” prompt.

Chapter 10 — Resource Options 93

OK

Selecting this button causes a modal window to appear which is similar to the following:

0 This resource will be deleted

The purpose of this window is to make sure that you want to delete the resource. If you
select the “OK”™ button, the resource indicated at the *“StringID”’ prompt is deleted from
the current file, and both the top modal window and the “Delete Resource” window
close. If you choose the “Cancel” button, the resource is not deleted and just the top
window closes.

If the name of the current file is entered, or if the file entered does not exist, you will
receive an error message when the “OK” button is selected.

If no information has been entered within the window, selecting “OK” causes an error
message to appear.

If the delete operation is successful, the “Delete Resource” window closes and the
resource window, including its child objects (if any), is removed from the screen and is
deleted from the current file.

Cancel

94

Selecting this button causes the window to close without executing any changes.

Zinc Interface Library — Programmer’s Guide

Help

Additional information about deleting resources appears when this button is selected.

The help bar at the bottom of the window displays instructions for interaction with the
fields of the “‘Delete Resource” window.

TEST

The “Test” option allows you to test the objects of your current application resource so
that you can see how they will function for an end user. Selecting “Test” causes the

control window to be cleared from the screen and moves your application into test mode,
which looks something like the following:

Testing

Title

@' Radio-button
O Radio-button
] check-box

] check-box

In test mode the objects of your application will look and act as they will for an end user.
For example, check box and radio buttons will actually toggle and scroll bars will actually
scroll information. No objects can be created or modified while in test mode.

When you have finished testing the resource, select the “Exit Test” button and the screen
will return to normal mode. The control window will be displayed again, and you will
be able to modify your application in any manner.

Chapter 10 — Resource Options 95

96

Zinc Interface Library — Programmer’s Guide

CHAPTER 11 - OBJECT OPTIONS

The Object category provides options that allow you to actually create objects. Selecting
“Object” causes the following menu to appear:

Control
Menu

RESOUF{CE‘1

Each of the options on this menu is a category under which several window objects are
classified. Selecting one of the options causes another associated menu to appear, which
lists the actual window objects of that category.

To create an object, select it from the associated menu. Position the cross hair cursor (+)
where you want the object to appear on the resource window and either press the left
mouse button or press <Enter>.

NOTE: All objects must be attached to a resource parent window; they cannot be attached
directly to the screen. (For more information on creating resource windows, see Chapter
10 of this manual.)

The editor of each of these objects can be accessed by any of the following methods:

e Select Edit | Object while the object is current

e Select Resource | Edit while the parent resource window is current; then select the
desired object from the edit window’s list of objects

e Press <Enter> while the object is current

e Click twice on the object with the mouse

Chapter 11 — Object Options 97

Each editor varies according to the specific object, but the general format of all editors
is similar to the following:

text: | Sring] | —stFlags—

[] STF_LOWER_CASE
maxLangtt [] STF_PASSWORD
userFunction] | |00 sTF_UPPER_cASE

[0 sTF_YARIABLE_NAME

—woFlags—
stringlD: [FIELD_o |] WOF_AUTO_CLEAR
helpContext: [(None) WOF_BORDER

The object editor controls the general presentation of the object. Since each object has
its own specific requirements, the fields of each editor will vary, but all contain one or
more of the following fields:

text—This field allows you to enter information to be displayed within the object
exactly as you want it to appear in your application. Objects that use the “text”
field are: string, text, button, radio button, check box, pull-down item, pop-up item,
prompt, and group. Some objects have a field similar to “text,” but they use the
name of the object in place of ‘“‘text.” These objects are: date, time, bignum,
integer, and real.

userFunction and compareFunction—If you want to have a user function or a
compare function associated with the object, you can enter the name of it in this field.
The function must be defined somewhere in your code under the same name that is
entered so that Zinc Designer can find it and execute the designated action. (For
more information on creating user functions and compare functions, refer to the
description of the object’s constructor in the Programmer’s Reference.)

stringID—This field contains the string identification for the object and is present in
every object (editor except for horizontal and vertical scroll bars). The default string
identification for a resource window is “RESOURCE” plus a unique number
corresponding to the order in which it was created. For example, the screen
identification for the first resource window created on the screen would be

Zinc Interface Library — Programmer’s Guide

“RESOURCE_1.” The default string identification for an object attached to another :
object is “FIELD” plus a unique number corresponding to the order in which it was ,
attached to the parent resource. The number given to the first object is actually O,
so, for example, the screen identification for the second object created within a |
resource window would be “FIELD_1.”

I
Because these objects appear in lists in other locations within the program, it is %
recommended that you override the default identification and enter a string that more l
specifically identifies the object. The identification will appear in all location exactly ’
as you have entered it in the object’s editor. E

objects—This field displays the objects, listed in the order in which they were
created, that are attached to the current object. To access the editor of one of these :
listed objects, select it with the mouse or scroll to it and press <Enter>. '

flags and options field—This field is located on the right side of every object’s 1
editor, and it displays flags or options which control the general presentation and ‘
operation of the current object. All of these items are listed with check boxes, which

display a ‘X’ when they are currently in effect. To toggle a flag or option from non-

current to current or vice versa, select it by either clicking on it with the mouse or

by scrolling to it and pressing <Enter>. There is no limit to the number of flags that

can be in effect at a given time; however, if two flags are selected that present

conflicting information, such as “Center Justify”” and ““Right Justify,” only the flag

listed first in the field will have effect.

Other fields that are more specific to individual objects are discussed in chapters 7
through 10.

Each object editor also includes three buttons, which operate in the following manner:

OK—Selecting this button saves the edit information and closes the object editor
window. The current object will reflect the editing changes immediately. If no
information has been entered within the object editor, its window will close with no
other action taking place.

Cancel—Selecting this button causes the window to close without executing any
changes.

Help—Additional information about the current object appears when this button is
selected.

A help bar is also included in each object editor that displays help on how to interact with
the edit window’s fields.

Chapter 11 — Object Options 99

100

To test how an object will actually appear and function for the end user, try it in test
mode, which is accessed by selection Resource | Test while the parent resource is active.
(For more information on test mode, refer to the Test section in Chapter 5 of this manual.)

A description of each window object, grouped according to its category type, is

documented in the following four chapters. For more specific information on how these
objects are created, refer to the respective chapters of the Programmer’s Reference.

Zinc Interface Library — Programmer’s Guide

CHAPTER 12 - INPUT OBJECTS

The input category includes objects that are used specifically for date input. Selecting the
“Input” option causes the following associated menu to appear:

Control
Menu

Formatted String
Text

Date
Time

Bignum
Integer
Real

STRING

A string object is used to present and collect alphanumeric string information. Selecting
“String” causes the following object to appear:

String

To modify the string object, call its editor by double clicking the mouse on the object.
The following window will appear:

Chapter 12 — Input Objects 101

text: E

userFunciiun1

stringID: [FIELD_o

helpContext: |[None]

text

Enter text in this field exactly as you want it to appear in the string object. If it contains
more characters than the “maxLength” limitation allows, only the number of characters
that fall within the limit will be displayed. If the string object is not long enough to
display all of the entered text, it can be sized using the mouse or the arrow keys.

maxLength

The number in this field determines the number of characters that the string object will

—stFlags—

[0 STF_LOWER_CASE

[8TF_PASSWORD

[0 8sTF_UPPER_CASE

[J STF_VARIABLE_NAME
—woFlags—

K WOF_AUTO_CLEAR

) WOF_BORDER

display. The default length is 20. The maximum length is 32,767.

userFunction

If you want to have a user function associated with the string object, enter in this field
the name of the function. This user function must be defined somewhere in your code
so that Zinc Designer can retrieve it.

stringlD

Enter in this field a string that will distinguish the string object from other objects.

102

Zinc Interface Library — Programmer’s Guide

helpContext

This field designates the help context to be associated with the string. Select the combo
box button to view a list of the available help contexts. If you select one of the help
contexts listed, the help message of that context will be displayed whenever the user
positions on the string and requests help. (For information on creating help contexts, see
the Help Editor section in Chapter 17 of this manual.)

flags

The flags that control the presentation of the string object are listed in the field on the
right half of the window. The flags are:

STF_LOWER_CASE—Converts all character input to lowercase values.

STF_PASSWORD—Causes the characters entered into the string field to not be
echoed to the screen; rather, the ““.”” character is printed for each character typed.

STF_UPPER_CASE—Converts all character input to uppercase values.
STF_VARIABLE_NAME—Converts the space character to an underscore value.

WOF_AUTO_CLEAR—Automatically clears the string buffer if the end user
positions on the first character of the string field (from another window field) then
presses a key (without first having pressed any movement or editing keys).

WOF_BORDER—Draws a single line border around the object in graphics mode.
(In text mode, no border is drawn.)

WOF_INVALID—Sets the initial status of the string field to be “invalid.” By
default, all string information is valid. A programmer may specify a string field as
invalid by setting this flag upon creation of the string object or by re-setting the flag
through the user function (discussed above). For example, a string field may initially
be set to be blank, but the final string edited by the end user must contain some
instructional information. In this case the initial string information does not fulfill
the programmer’s requirements.

WOF_JUSTIFY_CENTER—Center-justifies the string information within the string
field.

WOF_JUSTIFY_RIGHT—Right-justifies the string information within the string
field.

Chapter 12 — Input Objects 1083

WOF_MINICELL—Uses mini-cell values to determine the mini-cell heights.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the string to not be a form field. If this
flag is set the string will occupy all the remaining space of its parent window.

WOF_NON_SELECTABLE—Prevents the string object from being selectable. If
this flag is set, the end user will not be able to edit, or position on, the string
information.

WOF_UNANSWERED—Sets the initial status of the string field to be “unan-
swered.” An unanswered string field is displayed as blank space on the screen.

WOF_VIEW_ONLY—Prevents the string from being edited. If this flag is set, the

end user will not be able to edit the string information but will be able to browse
through the string.

WOAF_NON_CURRENT—The string cannot be made current. If this flag is set,
users will not be able to select the string from the keyboard nor with the mouse.

FORMATTED STRING

A formatted string object is used to display and collect information that requires a specific
format. For example, telephone numbers and zip codes are best presented as formatted
strings. Selecting “Formatted String” causes the following object to appear:

To modify the formatted string object, call its editor. The following window appears:

104 Zinc Interface Library — Programmer’s Guide

—woFlags—
K WOF_AUTO_CLEAR
X woF_BORDER

compressedTe: Il

editMask |

|

|
deleteText: | | |[OwoF_invaLID

| [WOF_JUSTIFY_CENTER

[WOF_JUSTIFY_RIGHT

[WOF_MINICELL
[]WOF_NO_ALLOCATE_D
[] WOF_NON_FIELD_REGI

userFunction: I

stringID: [FIELD_o

helpContext: |[Nune]

compressedText

Enter text in this field as you want it to initially appear in the formatted string object. It
must conform to the specifications set by the “editMask” and ‘“‘deleteText” fields. For
example, a string “8017858900”" would be appropriate for a formatted telephone number.

editMask

This field determines the type of characters that the formatted string will accept. The
following characters can be used to define the edit mask:

a—Allows the end user to enter a space (‘) or any letter (i.e., ‘a’ through ‘z’ or ‘A’
through ‘7).

A—Same as the ‘a’ character option except that a lower-case letter is automatically
converted to an upper-case letter.

c—Allows the end user to enter a space (), a number (i.e., ‘0’ through ‘9’), or any
alphabetic character (i.e., ‘a’ through ‘z’ or ‘A’ through ‘Z2’).

C—Same as the ‘c’ character option except that a lower-case character is automati-
cally converted to upper-case.

Chapter 12 — Input Objects 105

L—Uses this position as a literal place holder. Using this character causes the
formatted string to get the character to be read and displayed from the literal mask.
The end user cannot position on nor edit this character.

N—Allows the end user to enter any digit.
x—Allows the end user to enter any printable character (i.e., * * through ‘~").

X—Same as the ‘x’ character option except that a lower-case letter is automatically
converted to an upper-case alphanumeric character.

Enter in the ‘editMask” field a string of characters that will define the acceptable format
for the string. For example, an edit mask of “LNNNLLNNNLNNNN” would be
appropriate for a formatted telephone number.

deleteText

Enter into this field a string of literal characters that will be used whenever a character
is deleted from a particular position in the formatted string. For example, a string of
“(...) ...-....” would be appropriate for a formatted telephone number.

userFunction

If you want to have a user function associated with the formatted string object, enter in
this field the name of the function. This user function must be defined somewhere in
your code so that Zinc Designer can retrieve it.

stringlD

Enter in this field a string that will distinguish the formatted string object from other
objects.

helpContext

This field designates the help context to be associated with the formatted string. Select
the combo box button to view a list of the available help contexts. If you select one of
the help contexts listed, the help message of that context will be displayed whenever the
user positions on the formatted string and requests help. (For information on creating help
contexts, see the Help Editor section in Chapter 17 of this manual.)

106 Zinc Interface Library — Programmer’s Guide

flags

The flags that control the presentation of the formatted string object are listed in the field
on the right half of the window. The flags are:

WOF_AUTO_CLEAR—Automatically clears the string buffer if the end user
positions on the first character of the field (from another window field) then presses
a key (without first having pressed any movement or editing keys).

WOF_BORDER—Draws a border around the formatted string object. In graphics
mode, setting this option draws a single line border around the object. In text mode,
no border is drawn.

WOF_INVALID—Sets the initial status of the formatted string field to be “invalid.”
By default, all formatted string information is valid. A programmer may specify a
formatted string field as invalid by setting this flag upon creation of the string object
or by re-setting the flag through the user function (discussed above). For example,
a formatted string field for a phone number may initially be set to (000) 000-0000,
but the final string edited by the end user must contain some valid phone number.
In this case the initial string information does not fulfill the programmer’s require-
ments.

WOF_JUSTIFY_CENTER—Center-justifies the text information within the
formatted string field.

WOF_JUSTIFY_RIGHT—Right-justifies the text information within the formatted
string field.

WOF_MINICELL—Uses mini-cell values to determine the mini-cell heights.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF _NON_FIELD REGION—Causes the formatted string to not be a form field.
If this flag is set the formatted string will occupy all the remaining space of its parent
window.

WOF_NON_SELECTABLE—Prevents the formatted string object from being
selected. If this flag is set, the end user will not be able to edit or position on the
formatted string information.

WOF_UNANSWERED—Sets the initial status of the formatted string field to be
“unanswered.” An unanswered formatted string field is displayed as blank space on
the screen.

Chapter 12 — Input Objects 107

WOAF_NON_CURRENT—The formatted string object cannot be made current.
If this flag is set, users will not be able to select the formatted string from the
keyboard or with the mouse.

TEXT

A text object is used to present and collect alphanumeric textual information in a multi-
line format. Selecting “Text” causes the following box to appear:

Text

To modify the text object, call its editor. The following window will appear:

108 Zinc Interface Library — Programmer’s Guide

text: Tex —options—
[] vertical Scroll Bar
[] Horizontal Scroll Bar
—wnFlags—
K] WNF_NO_WRAP
—woFlags—
[l WOF_AUTO_CLEAR
maxLength] WOF_BORDER

[WOF_INYALID
J [J wWOF_MINICELL
[WOF_NO_ALLOCATE_D
[0 wWOF_NON_FIELD_REGI
[wWOF_NON_SELECTABL
helpContext: I[None] g []WOF_UNANSWERED

userFunction1

stringID: [FIELD_o |

text

Enter text in this field exactly as you want it to appear in the text object. If it contains
more characters than the ‘“maxLength” limitation allows, only the number of characters
that fall within the limit will be displayed. If the text object is not long enough to display
all of the entered text, it can be sized using the mouse or the arrow keys.

maxLength

The number in this field determines the number of characters that the text object will
display. The default length is 100. The maximum length is 32,767.

userFunction

If you want to have a user function associated with the text object, enter in this field the
name of the function. This user function must be defined somewhere in your code so that
the user table created by Zinc Designer can accesses it.

Chapter 12 — Input Objects 109

stri

ngiD

Enter in this field a string that will distinguish the text object from other objects.

helpContext

This field designates the help context to be associated with the text field. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user
positions on the text field and requests help. (For information on creating help contexts,
see the Help Editor section in Chapter 17 of this manual.)

options and flags

110

The options that control the presentation of the text field are listed in the upper portion
of the field on the right half of the window. These options are:

Vertical Scroll Bar—Places a vertical scroll bar inside the right border of the text
field.

Horizontal Scroll Bar—Places a horizontal scroll bar inside the bottom border of the
text field.

The flags that control the presentation of the text object are listed in the field in the lower
portion of the field on the right half of the window. The flags are:

WNF_NO_WRAP—Disables the default word wrap in the text field.

WOF_AUTO_CLEAR—Automatically clears the text buffer if the end user positions
on the first character of the text field (from another window field) and then presses
a key (without having previously pressed any movement or editing keys).

WOF_BORDER—Draws a single line border around the text object. In text mode,
no border is drawn.

WOF_INVALID—Sets the initial status of the text field to be “invalid.” By
default, all text information is valid. For example, a text field may initially be set to
be blank, but the final text field edited by the end user must contain some instruction-
al text. In this case the initial text information does not fulfill the programmer’s
requirements.

Zinc Interface Library — Programmer’s Guide

WOF_MINICELL—Uses mini-cell values to determine the mini-cell heights.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

field. If this flag is set the text occupies any remaining space within the parent
window.

WOF _NON_SELECTABLE—Prevents the text object from being selected. If this

|
WOF_NON_FIELD_REGION—Prevents the text object from being a normal form i
flag is set, the user will not be able to edit nor move within the text field. !

WOF_UNANSWERED—Sets the initial status of the text field to be “unanswered.”
An unanswered text field is displayed as blank space on the screen. r

WOF_VIEW_ONLY—Prevents the text object from being edited. If this flag is set,
the end user will not be able to edit the text information but will be able to browse 1
through the text field. '

WOAF_NON_CURRENT—The text object cannot be made current. If this flag is
set, users will not be able to select the text object from the keyboard nor with the i

mouse. |

DATE |

A date field displays and collects date information. Selecting “Date” causes a date field
to appear that contains the current date, similar to the figure below:

4-10-1992

To modify the date, call its editor. The following window will appear:

Chapter 12 — Input Objects 111

date: [DTF_SHORT_YEAR
[ODTF_SLASH
[ODTF_SYSTEM

[0 DTF_UPPER_CASE
[DTF_US_FORMAT
[ODTF_ZERO_FILL
—woFlags—

B WOF_AUTO_CLEAR

range: I

userFunctionL

stringlD: [FIELD_o

helpContext: I[None]

date

Enter in this field the date that you want to appear in the date object. The default format
to which this date will be automatically converted is month-day-year, with spaces being
automatically converted to hyphens (-). (If another flag is set that designates a different
separator for the date, such as DTF_SLASH, spaces will be converted accordingly.)

range

If you want to specify a certain range of acceptable dates, enter in this field the valid date
ranges. For example, if you want to accept only those dates within the 1992 calendar
year, enter the range of “1-1-92..12-31-92.” If no range is entered, any date will be
accepted.

userFunction

If you want to have a user function associated with the date object, enter in this field the
name of the function. This user function must be defined somewhere in your code so that
the user table created by Zinc Designer can retrieve it.

112 Zinc Interface Library — Programmer’s Guide

stringlD

Enter in this field a string that will distinguish the date object from other objects.

helpContext

This field designates the help context to be associated with the date field. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user
positions on the date and requests help. (For information on creating help contexts, see
the Help Editor section in Chapter 17 of this manual.)

flags

The flags that control interpretation and presentation of the date object are listed in the
field on the right side of the window. These flags are:

DTF_ALPHA_MONTH—Formats the month to be displayed as an ASCII string
value.

DTF_DASH—Separates each date variable with a dash, regardless of the default
country date separator.

DTF_DAY_OF_WEEK-—Adds an ASCII string day-of-week value to the date.

DTF_EUROPEAN_FORMAT—Forces the date to be displayed and interpreted in
the European format (i.e., day/month/year), regardless of the default country
information.

DTF_JAPANESE_FORMAT—Forces the date to be displayed and interpreted in
the Japanese format (i.e., year/month/day), regardless of the default country
information.

DTF_MILITARY_FORMAT—Forces the date to be displayed and interpreted in
the U.S. Military format (i.e., day/month/year where month is a 3 letter abbreviated
word), regardless of the default country information.

DTF_SHORT_DAY—Adds a shortened day-of-week to the date.
DTF_SHORT_MONTH—Uses a shortened alphanumeric month in the date.

DTF_SHORT_YEAR—Forces the year to be displayed as a two-digit value.

Chapter 12 — Input Objects 113

114

DTF_SLASH—Separates each date value with a slash, regardless of the default
country date separator.

DTF_SYSTEM—Fills a blank date with the system date. For example, if a blank
ASCII date were entered by the end user and the DTF_SYSTEM flag were set, the
date would be set to the system date.

DTF_UPPER_CASE—Converts the alphanumeric date to upper-case.

DTF_US_FORMAT—Forces the date to be displayed and interpreted in the U.S.
format (i.e., month/day/year), regardless of the default country information.

DTF_ZERO_FILL—Forces the year, month, and day values to be zero filled when
their values are less than 10.

WOF_AUTO_CLEAR—Automatically clears the date buffer if the end user
positions on the first character of the date field (from another window field) then
presses a key (without first having pressed any movement or editing keys).

WOF_BORDER—Draws a border around the date object. In graphics mode, setting
this option draws a single line border around the object. In text mode, no border is
drawn.

WOF_INVALID—Sets the initial status of the date field to be “‘invalid.” An
invalid date fits in the absolute range determined by the object type (i.e., “1-1-
100..12-31-32767"") but does not fulfill all the requirements specified by the program.
For example, a date may initially be set to 3-12-90 but the final date, edited by the
end user, must be in the range *“12-1-90..12-31-90.”” The initial date in this example
fits the absolute requirements of a date class object but does not fit into the specified
range.

WOF_JUSTIFY_CENTER—Center-justifies the date information within the date
field.

WOF_JUSTIFY_RIGHT—Right-justifies the date information within the date field.
WOF_MINICELL—Uses mini-cell values to determine the mini-cell heights.

Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

Zinc Interface Library — Programmer’s Guide

WOF_NON_FIELD_REGION—Causes the date object to not be a form field. If |
this flag is set the date object will occupy all the remaining space of its parent
window.

WOF_NON_SELECTABLE—Prevents the date object from being selected. If this
flag is set, the user will not be able to edit the date information.

WOF_UNANSWERED—Sets the initial status of the date field to be ‘“‘unan-
swered.” An unanswered date field is displayed as blank space on the screen.

WOF_VIEW_ONLY—Prevents the date object from being edited. If this flag is set,
the end user will not be able to edit a date object’s information but will be able to
browse through the information.

WOAF_NON_CURRENT—The date object cannot be made current. If this flag is
set, users will not be able to select the date object from the keyboard nor with the
mouse.

TIME

A time field displays and collects time information. Selecting “Time” causes a time field
to appear that contains the current time, similar to the figure below:

10:07 p.m.

To modify the time object, call its editor. The following window will appear:

Chapter 12 — Input Objects 115

time: [6:48 p.m. | [JDTF_uPPER_CASE

| | [DTF_SHORT_YEAR
[]DTF_SHORT_MONTH

userFunction] | |0 oTF_sSHORT_DAY

[]DTF_ZERO_FILL

[JDTF_SYSTEM

stringlD: |FIELD_o | | Zworteps—

helpContext: |(None) @ [WOF_AUTO_CLEAR

range:

time

Enter in this field the time that you want to appear in the time object. The default format
to which this time will be automatically converted is hour:minutes a.m. or hour:minutes
p-m.. A space between numbers will be interpreted as a colon, and necessary periods (for
“am.” and “p.m.”) are automatically inserted. Since any hour value under 12 is
interpreted as morning, it is necessary to enter “pm’’ if the hour value is meant to be in
post-meridian time and you are using a 12-hour clock. If you enter the time value accor-
ding to a 24-hour clock, there is no need to enter “a.m.” or “p.m.”—the object will
interpret and convert the value into the default format.

range

If you want to specify a certain range of acceptable time values, enter in this field the
valid time ranges. For example, if you want to accept only those times whose values fall
in post-meridian time, enter the range of “12:01pm..11:59:59pm.” If no range is entered,
any time value will be accepted.

userFunction

If you want to have a user function associated with the time object, enter in this field the
name of the function. This user function must be defined somewhere in your code so that
the user table created by Zinc Designer can retrieve it.

Zinc Interface Library — Programmer’s Guide

stringlD

Enter in this field a string that will distinguish the time object from other objects.

helpContext

This field designates the help context to be associated with the time field. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user
positions on the time and requests help. (For information on creating help contexts, see
the Help Editor section in Chapter 17 of this manual.)

flags

The flags that control interpretation, presentation, and operation of the time information
are listed in the field on the right. These flags are:

TMF_COLON_SEPARATOR—Separates each time variable with a colon.

TMF_HUNDREDTHS—Includes the hundredths value in the time. (By default the
hundredths value is not included.)

TMF_LOWER_CASE—Converts the time to lower-case.

TMF_NO_HOURS—Does not display nor interpret an hour value for the UI_TIME
object.

TMF_NO_MINUTES—Does not display nor interpret a minute value for the
UIW_TIME class object.

TMF_NO_SEPARATOR—Does not use any separator characters to delimit the time
values.

TMF_SECONDS—Includes the seconds value in the time. (By default the seconds
value is not included.)

TMF_SYSTEM—Fills a blank time with the system time. For example, if a blank
ASCII time value were entered by the end user and the TMF_SYSTEM flag were set,
the time would be set to the current system time.

TMF_TWELVE_HOUR—Forces the time to be displayed and interpreted using a
12 hour clock, regardless of the default country information.

Chapter 12 — Input Objects 117

118

TMF_TWENTY_FOUR_HOUR—Forces the time to be displayed and interpreted
using a 24 hour clock, regardless of the default country information.

TMF_UPPER_CASE—Converts the time to upper-case.

TMF_ZERO_FILL—Forces the hour, minute, and second values to be zero filled
when their values are less than 10.

WOF_AUTO_CLEAR—Automatically clears the time buffer if the end user
positions on the first character of the time field (from another window field) and then
presses a key (without first having pressed any movement or editing keys).

WOF_BORDER—Draws a border around the time object. In graphics mode, setting
this option draws a single line border around the object. In text mode, no border is
drawn.

WOF_INVALID—Sets the initial status of the time field to be “invalid.” An
invalid time fits in the absolute range determined by the object type (i.e., 1 2:00pm..-
11:59:59pm”) but does not fulfill all the requirements specified by the program. For
example, a time field may initially be set to 8:15am, but the final time, edited by the
end user, must be in the range “12:00pm..11:59:59pm.” The initial time in this
example fits the absolute requirements of a time class object but does not fit into the
specified range.

WOF_JUSTIFY_CENTER—Center-justifies the time information within the time
field.

WOF_JUSTIFY_RIGHT—Right-justifies the time information within the time field.

WOF_MINICELL—Uses mini-cell values to determine the mini-cell heights.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the time object to not be a form field. If
this flag is set the time object will occupy all the remaining space of its parent
window.

WOF_NON_SELECTABLE—Prevents the time object from being selectable. If
this flag is set, the user will not be able to edit the time information.

WOF_UNANSWERED—Sets the initial status of the time field to be ‘“‘un-
answered.” An unanswered time field is displayed as blank space on the screen.

Zinc Interface Library — Programmer’s Guide

WOF_VIEW_ONLY—Prevents the time string from being modified. This flag will
still allow the time field to become current.

WOAF _NON_CURRENT—The time object cannot be made current. If this flag
is set, users will not be able to select the time object from the keyboard nor with the

mouse. |

BIGNUM 7 i

A bignum object is used to display and collect numeric information. It can be formatted
in various ways, such as for numbers presented as percentages, currency, and credit.
Selecting “Bignum’’ causes the following object to appear: i

0.00000000 ‘

To modify the bignum object, call its editor. The following window will appear:

bignum [0.00000000 | [JNMF_DECIMAL(4)
' [NMF_DECIMAL(5)

hs) | [] NMF_DECIMAL(6)
userFunction]| | |00 NMF_DECIMAL(7)
[0 NMF_DECIMAL(8)
] NMF_DECIMAL(S)
stringID: [FIELD_0 | | —arines—

] [BIWOF_AUTO_CLEAR

helpContext: I[None]

Chapter 12 — Input Objects 119

bignum

Enter in this field the number that you want to appear in the bignum field. The number
will be displayed with the number of decimal places designated by the flags you have set.
A bignum object can have up to thirty digits to the left of the decimal place and up to
eight digits to the right of the decimal place.

range

If you want to specify a certain range of acceptable bignum values, enter in this field the
valid ranges. For example, if you want to accept only numbers between 100 and 100,000,
enter the range of *“100..100000.” If no range is entered, any numeric value will be
accepted.

userFunction

If you want to have a user function associated with the bignum object, enter in this field
the name of the function. This user function must be defined somewhere in your code
so that Zinc Designer can retrieve it.

stringlD

Enter in this field a string that will distinguish the bignum object from other objects.

helpContext

This field designates the help context to be associated with the bignum field. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user
positions on the bignum field and requests help. (For information on creating help
contexts, see the Help Editor section in Chapter 17 of this manual.)

flags

The flags that control the presentation and operation of the bignum information are listed
in the field on the right. These flags are:

NMF_CURRENCY—Displays the number with the country-specific currency
symbol.

120 Zinc Interface Library — Programmer’s Guide

the number is negative.

|
|
NMF_CREDIT—Displays the number with the ‘(" and ‘)’ credit symbols whenever ’
NMF_COMMAS—Displays the number with commas. i

NMF_DECIMAL(decimal)—Displays the number with a decimal point at a fixed
location. decimal is the number of decimal places to be displayed. Valid decimal
values range from 0 to 8.

NMF_PERCENT—Displays the number with a percentage symbol.

WOF_AUTO_CLEAR—Automatically clears the numeric buffer if the end user
positions on the first character of the bignum field (from another window field) then
presses a key (without first having pressed any movement or editing keys). k

setting this option draws a single line border around the object. In text mode, no

WOF_BORDER—Draws a border around the bignum object. In graphics mode, f
i
border is drawn. This is the default argument. |

|

WOF_INVALID—Sets the initial status of the bignum field to be “‘invalid.”
Invalid numbers fit in the absolute range determined by the object type but do not
fulfill all the requirements specified by the program. For example, a bignum may
initially be set to 200, but the final number, edited by the end user, must be in the |
range *““10..100.” The initial number in this example fits the absolute requirements
of a bignum class object but does not fit into the specified range.

WOF_JUSTIFY_CENTER—Center-justifies the numeric information associated
with the number object.

WOF_JUSTIFY_RIGHT—Right-justifies the numeric information associated with
the number object.

WOF_NON_SELECTABLE—Prevents the bignum object from being selected. If
this flag is set, the user will not be able to edit the bignum information.

WOF_UNANSWERED—Sets the initial status of the bignum field to be ‘“‘unan-
swered.” An unanswered number field is displayed as blank space on the screen.

WOF_VIEW_ONLY—Prevents the bignum object from being edited. However, the
bignum object may become current.

Chapter 12 — Input Objects 121

INTEGER

An integer number object is used to present and collect numeric information for integers.
It cannot be formatted. (The bignum object must be used for numbers requiring special
formatting capabilities.) Selecting “Integer” causes the following object to appear:

0

To modify the integer object, call its editor. The following window appears:

integer: Iﬁ | —woFlags—

1 [WOF_AUTO_CLEAR
[wOF_BORDER
userFunction:|] O WOF_INVALID
O wWoOF_JusTIFY_CENTER
O wWoF_JusTIFY_RIGHT
stringlD: |FIELD_I] | [] WOF_MINICELL
helpContext: [(None) [JWOF_NO_ALLOCATE_D 3]

range: [

integer

Enter in this field the integer that you want to appear in the integer field.

range

If you want to specify a certain range of acceptable integer values, enter in this field the
valid ranges. For example, if you want to accept only numbers between 100 and 100,000,
enter the range of *“100..100000.” If no range is entered, any integer value will be
accepted.

122 Zinc Interface Library — Programmer’s Guide

userFunction

If you want to have a user function associated with the integer object, enter in this field
the name of the function. This user function must be defined somewhere in your code
so that the user table, created by Zinc Designer, can retrieve it.

stringlD

Enter in this field a string that will distinguish the integer object from other objects.

helpContext

This field designates the help context to be associated with the integer field. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user
positions on the integer field and requests help. (For information on creating help
contexts, see the Help Editor section in Chapter 17 of this manual.)

flags

The flags that control the presentation and operation of the integer information are listed
in the field on the right. These flags are:

WOF_AUTO_CLEAR—Automatically clears the numeric buffer if the end user
positions on the first character of the integer field (from another window field) then
presses a key (without first having pressed any movement or editing keys).

WOF_BORDER—Draws a border around the integer object. In graphics mode,
setting this option draws a single line border around the object. In text mode, no
border is drawn. This is the default argument.

WOF_INVALID—Sets the initial status of the integer field to be “invalid.” Invalid
numbers fit in the absolute range determined by the object type but do not fulfill all
the requirements specified by the program. For example, a integer may initially be
set to 200, but the final number, edited by the end user, must be in the range
*10..100.”” The initial number in this example fits the absolute requirements of an
integer class object but does not fit into the specified range.

WOF_JUSTIFY_CENTER—Center-justifies the numeric information associated
with the number object.

Chapter 12 — Input Objects 1283

HEAL.,

124

WOF_JUSTIFY_RIGHT—Right-justifies the numeric information associated with
the integer object.

WOF_MINICELL—Uses mini-cell values to determine the mini-cell heights.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the integer field to not be a form field. If
this flag is set the integer field will occupy all the remaining space of its parent
window.

WOF_NON_SELECTABLE—Prevents the integer object from being selected. If
this flag is set, the user will not be able to edit the integer information.

WOF_UNANSWERED—Sets the initial status of the integer field to be “‘unan-
swered.” An unanswered integer field is displayed as blank space on the screen.

WOF_VIEW_ONLY—Prevents the integer object from being edited. However, the
integer object may become current.

WOAF_NON_CURRENT—The integer field cannot be made current. If this flag
is set, users will not be able to select the integer object from the keyboard nor with
the mouse.

A real number object is used to present and collect floating-point numeric information.
Decimal numbers will be displayed using decimal notation. When the decimal strings are
too large for the input field, they are automatically converted to scientific notation.
Selecting ““‘Real” causes the following object to appear:

0

To modify the real number object, call its editor. The following window appears:

Zinc Interface Library — Programmer’s Guide

resl | |] —woFlags—
WOF_AUTO_CLEAR
X WOF_BORDER
userFunction] | |OwoF_iNnvaLID

(] WOF_JUSTIFY_CENTER
(] WOF_JUSTIFY_RIGHT
stringlD: |FIELD_2 | [WOF_MINICELL
helpContext: I[None] [WOF_NO_ALLOCATE_D4

range: I J

real

Enter in this field the number that you want to appear in the real number field.

range

If you want to specify a certain range of acceptable real number values, enter in this field
the valid ranges. For example, if you want to accept only numbers between 100 and
100,000, enter the range of ““100..100000.”” If no range is entered, any real number value
will be accepted.

userFunction

If you want to have a user function associated with the real number object, enter in this
field the name of the function. This user function must be defined somewhere in your
code so that the user table created by Zinc Designer can retrieve it.

stringlD

Enter in this field a string that will distinguish the real object from other objects.

Chapter 12 — Input Objects 125

helpContext

This field designates the help context to be associated with the real number field. Select
the combo box button to view a list of the available help contexts. If you select one of
the help contexts listed, the help message of that context will be displayed whenever the
user positions on the real number field and requests help. (For information on creating
help contexts, see the Help Editor section in Chapter 17 of this manual.)

flags

126

The flags that control the presentation and operation of the real number information are
listed in the field on the right. These flags are:

WOF_AUTO_CLEAR—Automatically clears the numeric buffer if the end user
positions on the first character of the real number field (from another window field)
then presses a key (without first having pressed any movement or editing keys).

WOF_BORDER—Draws a border around the real number object. In graphics mode,
setting this option draws a single line border around the object. In text mode, no
border is drawn. This is the default argument.

WOF_INVALID—Sets the initial status of the real number field to be “invalid.”
Invalid numbers fit in the absolute range determined by the object type but do not
fulfill all the requirements specified by the program. For example, a real number
may initially be set to 200, but the final number, edited by the end user, must be in
the range *“10..100.” The initial number in this example fits the absolute require-
ments of a real number class object but does not fit into the specified range.

WOF_JUSTIFY_CENTER—Center-justifies the numeric information associated
with the real object.

WOF_JUSTIFY_RIGHT—Right-justifies the numeric information associated with
the real object.

WOF_MINICELL—Uses cell widths and cell heights that are 1/10 the size of
regular cell coordinates. This flag is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the real number field to not be a form field.

If this flag is set the real number field will occupy all the remaining space of its
parent window.

Zinc Interface Library — Programmer’s Guide

WOF_NON_SELECTABLE—Prevents the real number object from being selected. \
If this flag is set, the user will not be able to edit the real number information.

WOF_UNANSWERED—Sets the initial status of the real number field to be 5
“unanswered.” An unanswered number field is displayed as blank space on the
screen.

WOF_VIEW_ONLY—Prevents the real number object from being edited. However, |
the real number object may become current.

WOAF_NON_CURRENT—The real number field cannot be made current. If this
flag is set, users will not be able to select the real number field from the keyboard
nor with the mouse.

Chapter 12 — Input Objects 127

128 Zinc Interface Library — Programmer’s Guide

CHAPTER 13 - CONTROL OBJECTS

The control category includes objects that are used to control the various operations of an
application, its windows and window objects. Selecting the “Control” option causes the
following associated menu to appear:

. '&;,[’

File Edit B\esuurcev _ Utilities Help
I EElET oot | sl

Menﬁ : : F_{a‘dio Buﬂon '
Static Check Box
Vt-List
Hz-List
Combo Box /
Vt-Scroll Bar -
Hz-Scroll Bar

Child Window

None

one o

BUTTON

A button is used to provide a selectable option that relates to a window. Selecting
“Button” causes the following object to appear:

l- 3uﬂun" I

To modify the button, call its editor. The following window will appear:

Chapter 13 — Control Objects 129

text: | Button | [0BTF_CHECK_BOX
lue: I—:] [0 BTF_DOUBLE_CLICK

o [] BTF_DOWN_CLICK

userFunction] X BTF_NO_TOGGLE

bitmap: |[None] [O0BTF_NO_3D
[JBTF_RADIO_BUTTON
[0 BTF_REPEAT
[JBTF_SEND_MESSAGE
—woFlags—

stringlD: IEELD_O l []WOF_BORDER

helpContext: |(None) [WOF_JUSTIFY, CENTEF.

text

Enter in this field text exactly as you want it to appear on the button. It will be
automatically centered vertically. If the text string is longer than the length of the button,
the button must be sized in order to display the entire text.

value

This field allows you to enter in a value that serves as a unique identification for a button.
For example, you could associate the value O with an ok button and a value of 1 with
a “‘cancel” button. This allows you to define one user-function that looks at the button
values, instead of several user-functions that are tied to each button object. If the
BTF_SEND_MESSAGE flag is set, the value must be an event type.

userFunction

If you want to have a user function associated with the button, enter in this field the name
of the function. This user function must be defined somewhere in your code so that the
user table, created by Zinc Designer, can retrieve it.

130 Zinc Interface Library — Programmer’s Guide

bitmap

|
|
This field designates the bitmap image to be associated with the button. Select the combo l
box button to view a list of the available bitmaps. If you select one of the bitmaps listed, i
it will be displayed on the button when a bitmap option is current in the File | Preferences ;
window. (For information on creating bitmap images, see the Image Editor section in ‘
Chapter 16 of this manual.) ,

I

i

stringlD

Enter in this field a string that will distinguish the button object from other objects.

helpContext

This field designates the help context to be associated with the button. Select the combo |
box button to view a list of the available help contexts. If you select one of the context
contexts listed, the help message of that context will be displayed whenever the user
positions on the button and requests help. (For information on creating help contexts, see ‘
the Help Editor section in Chapter 17 of this manual.) |

flags

The flags that control the presentation and operation of the button are listed in the field
on the right half of the window. The flags are:

BTF_AUTO_SIZE—Automatically computes the run-time height of the button. If
the application is running in text mode, the height is set to 1. If the application is
running in graphics mode, the button is approximately 120% of the default cell
height.

BTF_CHECK_BOX—Creates a check box that can be toggled when selected. The
WOS_SELECTED flag is set when the button is selected. In graphics mode, a
square box is drawn that is marked with an ‘X’ when selected. In text mode the
check box is represented by ‘[]” when it is not selected and ‘[X]” when it is selected.
(NOTE: A check box can also be created by selecting Object | Control | Check Box
or by selecting it from the object bar. For more information on check boxes, see the
Check Box section in this chapter.)

BTF_DOUBLE_CLICK—Completes the button action when the button has been
selected twice within a period of time specified by UI_WINDOW_OBJECT::-
doubleClickRate.

Chapter 13 — Control Objects 131

132

BTF_DOWN_CLICK—Completes the button action on a button down-click, rather
than on a down-click and release action.

BTF_NO_TOGGLE—Does not toggle the button’s WOS_SELECTED status flag.
If this flag is set, the WOS_SELECTED window object status flag is not set when
the button is selected.

BTF_NO_3D—Causes the button to be displayed without shadowing.

BTF_RADIO_BUTTON—Causes the button to appear and function as a radio
button. In graphics mode, a graphical radio button is drawn, while in text mode, it
appears as ‘(®)’ when selected or ‘()’ when not selected. All of the radio buttons
in a group, list box, or window are considered to be members of the same group.
Only one radio button in a group may be selected at any one time. (NOTE: A radio
button can also be created by selecting Object | Control | Radio Button or by selecting
it from the object bar. For more information on radio buttons, see the Radio Button
section in this chapter.)

BTF_REPEAT—Causes the button to be re-selected (i.e., the user function is called)

if it remains selected for a period of time greater than that specified by UI_-
WINDOW_OBJECT: :repeatRate.

BTF_SEND_MESSAGE—Causes the event associated with the button’s value to be
created and put on the event manager when the button is selected. Any temporary
windows are removed from the display when this message is sent.

WOF_BORDER—Draws a single-line border around the object in graphics mode.
In text mode, it causes a shadow to be displayed on the button.

WOF_JUSTIFY_CENTER—Center-justifies the text within the button.
WOF_JUSTIFY_RIGHT—Right-justifies the text within the button.

WOF_MINICELL—Uses cell widths and cell heights that are 1/10 the size of
regular cell cordinates. This flag is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the button object to not be a form field.

If this flag is set the button object will occupy all the remaining space of its parent
window.

WOF_NON_SELECTABLE—Prevents the button object from being selected. If
this flag is set, the user will be able to see, but not select, the button.

Zinc Interface Library — Programmer’s Guide

is set, users will not be able to select the button object from the keyboard nor with
the mouse; however, clicking it with the mouse or pressing the hotkey will cause it
to depress and have its user function called.

i
WOAF_NON_CURRENT—The button object cannot be made current. If this flag I
i
I

A radio button is a type of button that displays not only text, but also an indicator that
toggles. All of the radio buttons in a group, list box, or window are considered to be
members of the same group. Only one radio button in a group may be selected at any
one time. Selecting “Radio Button™ causes the following object to appear (in graphics
mode):

1
RADIO BUTTON 1

() Radio-button

NOTE: To have multiple radio button groups on the same window use the group object.
(For information on creating groups, refer to the Group section in Chapter 10 of this

manual.)

|
!
In text mode, the radio button appears as ‘(*)’ when selected or ‘()’ when not selected. '
To modify the radio button object, call its editor. The following window will appear: !
}
i

Chapter 13 — Control Objects 133

text:

] —btFlags—

[0BTF_AUTO_SIZE
[0 BTF_CHECK_BOX

userFunciion1

[0 BTF_DOUBLE_CLICK

bitmap: [(None)

[0 BTF_DOWN_CLICK

[0BTF_NO_TOGGLE
K BTF_NO_3D
[BTF_RADIO_BUTTON

stringID: |FIELD_0

[0 BTF_REPEAT
| I BTF_SEND_MESSAGE

helpContext: [(None)

—woFlags—

Notice that the editor for the radio button is actually the editor for the standard button
object but with the BTF_RADIO_BUTTON flag set. If this flag is toggled, or if the
BTF_CHECK_BOX flag is selected, the button will no longer be displayed as a radio

button.

text

Enter in this field text exactly as you want it to appear on the radio button. It will be
automatically centered vertically. If the text string is longer than the length of the butt -
on, the button must be sized in order to display the entire text.

value

134

This field allows you to enter in a value that serves as a unique identification for a radio
button. For example, you could associate the value 0 with an “ok” button and a value
of 1 with a “cancel” button. This allows you to define one user-function that looks at
the button values, instead of several user-functions that are tied to each button object. If
the BTF_SEND_MESSAGE flag is set, the value must be an event type.

Zinc Interface Library — Programmer’s Guide

userFunction

If you want to have a user function associated with the radio button, enter in this field the
name of the function. This user function must be defined somewhere in your code so that
the user table, created by Zinc Designer, can retrieve it.

bitmap

This field designates the bitmap image to be associated with the radio button. Select the
combo box button to view a list of the available bitmaps. If you select one of the bitmaps
listed, it will be displayed on the radio button when a bitmap option is current in the File |
Preferences window. (For information on creating bitmap images, see the Image Editor
section in Chapter 16 of this manual.)

stringlD

Enter in this field a string that will distinguish the radio button object from other objects.

helpContext

This field designates the help context to be associated with the radio button. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user
positions on the radio button and requests help. (For information on creating help
contexts, see the Help Editor section in Chapter 17 of this manual.)

flags

The flags that control the presentation and operation of the radio button are listed in the
field on the right half of the window. The flags are:

BTF_AUTO_SIZE—Automatically computes the run-time height of the radio button.
If the application is running in text mode, the height is set to 1. If the application is
running in graphics mode, the radio button is approximately 120% of the default cell
height.

BTF_CHECK_BOX—Creates a check box, instead of a radio button, that can be
toggled when selected. The WOS_SELECTED flag is set when the button is
selected. In graphics mode, a square box is drawn that is marked with an ‘X’ when
selected. In text mode the check box is represented by ‘[]’ when it is not selected

Chapter 13 — Control Objects 135

136

and ‘[X]” when it is selected. (NOTE: A check box can also be created by selecting
Object | Control | Check Box or by selecting it from the object bar. For more
information on check boxes, see the Check Box section in this chapter.)

BTF_DOUBLE_CLICK—Completes the radio button action when the button has
been selected twice within a period of time specified by UI_WINDOW_OBJECT::-
doubleClickRate.

BTF_DOWN_CLICK—Completes the radio button action on a button down-click,
rather than on a down-click and release action.

BTF_NO_TOGGLE—Causes the radio button to not be toggled when it is selected.
BTF_NO_3D—Causes the radio button to be displayed without shadowing.

BTF_RADIO_BUTTON—Causes the button to appear and function as a radio
button. In graphics mode, a graphical radio button is drawn, while in text mode, it
appears as ‘(®)” when selected or ‘()’ when not selected. All of the radio buttons
in a group, list box, or window are considered to be members of the same group.
Only one radio button in a group may be selected at any one time. This flag is set
by default. If it is toggled to not be selected, the radio button becomes a regular
button.

BTF_REPEAT—Causes the radio button to be re-selected (i.e., the user function is
called) if it remains selected for a period of time greater than that specified by UI_-
WINDOW_OBJECT: :repeatRate.

BTF_SEND_MESSAGE—Causes the event associated with the radio button’s value
to be created and put on the event manager when the radio button is selected. Any

temporary windows are removed from the display when this message is sent.

WOF_BORDER—Draws a single-line border around the object. In text mode,
setting this setting is displayed as a shadow on the radio button.

WOF_JUSTIF Y_CENTER—Center-justifies the text within the radio button.
WOF_JUSTIFY_RIGHT—Right-justifies the text within the radio button.

WOF_MINICELL—Uses cell widths and cell heights that are 1/10 the size of
regular cell cordinates. This flag is valid in graphics modes only.

Zinc Interface Library — Programmer’s Guide

WOF_NON_FIELD_REGION—Causes the radio button object to not be a form
field. If this flag is set the radio button object will occupy all the remaining space
of its parent window.

WOF_NON_SELECTABLE—Prevents the radio button object from being selected.
If this flag is set, the user will be able to see, but not select, the radio button.

|
WOAF_NON_CURRENT—The radio button object cannot be made current. If this !

flag is set, users will not be able to select the radio button object from the keyboard
nor with the mouse.

CHECK BOX

A check box is a type of button that displays not only text, but also an indicator that
toggles. Any number of check boxes in a group may be selected at one time. Selecting
“Check box” causes the following object to appear (in graphics mode):

D Check-box

In text mode the check box is represented by ‘[]” when it is not selected and ‘[X]” when
it is selected.

To modify the check box object, call its editor. The following window will appear:

Chapter 13 — Control Objects 137

text: Che | [—btFlags—
T l:’ [0BTF_AUTO_SIZE
i BTF_CHECK_BOX
userFunction] []BTF_DOUBLE_CLICK
o — [(None) [0 BTF_DOWN_CLICK
[OBTF_NO_TOGGLE
I BTF_NO_3D
[0BTF_RADIO_BUTTON
’ [0BTF_REPEAT
stringID: |FIELD_0 | []BTF_SEND_MESSAGE

—woFlags—

helpContext: |[None]

Notice that the editor for the check box is actually the editor for the standard button object
but with the BTF_CHECK_BOX flag set. If this flag is toggled, or if the BTF_RADIO_-
BUTTON flag is selected, the button will no longer be displayed as a check box.

text

Enter in this field text exactly as you want it to appear on the check box object. It will
be automatically centered vertically. If the text string is longer than the length of the
button, the button must be sized in order to display the entire text.

value

This field allows you to enter in a value that serves as a unique identification for a check
box object. For example, you could associate the value 0 with an “ok’ button and a
value of 1 with a “‘cancel” button. This allows you to define one user-function that looks
at the button values, instead of several user-functions that are tied to each button object.
If the BTF_SEND_MESSAGE flag is set, the value must be an event type.

138 Zinc Interface Library — Programmer’s Guide

userFunction

If you want to have a user function associated with the check box, enter in this field the
name of the function. This user function must be defined somewhere in your code so that
the user table, created by Zinc Designer, can retrieve it.

bitmap

This field designates the bitmap image to be associated with the check box button. Select
the combo box button to view a list of the available bitmaps. If you select one of the
bitmaps listed, it will be displayed on the check box button when a bitmap option is
current in the File | Preferences window. (For information on creating bitmap images, see
the Image Editor section in Chapter 16 of this manual.)

stringlD

Enter in this field a string that will distinguish the check box object from other objects.

helpContext

This field designates the help context to be associated with the check box button. Select
the combo box button to view a list of the available help contexts. If you select one of
the help contexts listed, the help message of that context will be displayed whenever the
user positions on the check box and requests help. (For information on creating help
contexts, see the Help Editor section in Chapter 17 of this manual.)

flags

The flags that control the presentation and operation of the check box button are listed in
the field on the right half of the window. The flags are:

BTF_AUTO_SIZE—Automatically computes the run-time height of the check box
button. If the application is running in text mode, the height is set to 1. If the
application is running in graphics mode, the check box button is approximately 120%
of the default cell height.

BTF_CHECK_BOX—Creates a check box that can be toggled when selected. The
WOS_SELECTED flag is set when the button is selected. In graphics mode, a
square box is drawn that is marked with an ‘X’ when selected. In text mode the
check box is represented by ‘[]” when it is not selected and ‘[X]” when it is selected.

Chapter 13 — Control Objects 139

140

This flag is set by default. If it is toggled to not be selected, the check box becomes
a regular button.

BTF_DOUBLE_CLICK—Completes the check box action when the button has been
selected twice within a period of time specified by UI_WINDOW_OBJECT::-
doubleClickRate.

BTF_DOWN_CLICK—Completes the check box action on a button down-click,
rather than on a down-click and release action.

BTF_NO_TOGGLE—Causes the radio button to not be toggled when it is selected.
BTF_NO_3D—Causes the check box button to be displayed without shadowing.

BTF_RADIO_BUTTON—Causes the button to appear and function as a radio
button, instead of a normal button. In graphics mode, a graphical radio button is
drawn, while in text mode, it appears as ‘(*)’ when selected or ‘()’ when not
selected. All of the radio buttons in a group, list box, or window are considered to
be members of the same group. Only one radio button in a group may be selected
at any one time. (NOTE: A radio button can also be created by selecting Object |
Control | Radio Button or by selecting it from the object bar. For more information
on radio buttons, see the Radio Button section in this chapter.)

BTF_REPEAT—Causes the check box to be re-selected (i.e., the user function is
called) if it remains selected for a period of time greater than that specified by UI_-
WINDOW_OBJECT: :repeatRate.

BTF_SEND_MESSAGE—Causes the event associated with the check box’s value
to be created and put on the event manager when the check box is selected. Any

temporary windows are removed from the display when this message is sent.

WOF_BORDER—Draws a single-line border around the object. In text mode,
setting this setting is displayed as a shadow on the check box button.

WOF_JUSTIFY_CENTER—Center-justifies the text within the check box button.
WOF_JUSTIFY_RIGHT—Right-justifies the text within the check box button.

WOF_MINICELL—Uses cell widths and cell heights that are 1/10 the size of
regular cell cordinates. This flag is valid in graphics modes only.

Zinc Interface Library — Programmer’s Guide

WOF_NON_FIELD REGION—Causes the check box object to not be a form field.
If this flag is set the check box object will occupy all the remaining space of its
parent window.

WOF_NON_SELECTABLE—Prevents the check box object from being selected. "‘
If this flag is set, the user will be able to see, but not select, the check box.

WOAF_NON_CURRENT—The check box object cannot be made current. If this
flag is set, users will not be able to select the check box object from the keyboard nor
with the mouse.

VERTICAL LIST

A vertical list is used to display items in a single-column fashion. The list is is only
scrollable vertically. Selecting “Vt-List” causes the following object to appear:

Notice that the list is initially empty. A vertical list is actually a framework to which
other objects can be attached. For example, a list of strings could be added to a vertical
list by repeatedly selecting the string object from the menu or the toolbar and placing the
string within the list. These objects will be aligned in a single-column fashion
automatically. When more items are added to the Isit than can be displayed, a vertical
scroll bar is automatically added. {

To modify the vertical list object, call its editor. The following window will appear:

Chapter 13 — Control Objects 141

compare: u

I —options—

[] vertical Scroll Bar
—wnFlags—

stringID: [FIELD_o

] WNF_NO_WRAP

helpContext: I[NDHEJ

[wWNF_SELECT_MULTIPL|

Objects:

[JWNF_BITMAP_CHILDRE
[OWNF_AUTO_SORT
—woFlags—

K wOF_BORDER

[woF_MINICELL

O WOF_NON_FIELD_F{EGI@

compare

If you want to have a compare function associated with the vertical list, enter in this field
the name of the function. A compare function determines the order of list items and must
be defined somewhere in your code so that the user table, created by Zinc Designer, can
retrieve it. (For more information on compare functions for vertical lists, refer to the
UI_LIST and UIW_VT_LIST chapters of the Programmer’s Reference.)

stringID

Enter in this field a string that will distinguish the vertical list object from other objects.

helpContext

This field designates the help context to be associated with the vertical list. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user
positions on the vertical list and requests help. (For information on creating help contexts,
see the Help Editor section in Chapter 17 of this manual.)

142

Zinc Interface Library — Programmer’s Guide

Objects V

This field displays the objects, listed by their string identifications, that are currently
attached to the vertical list. !

options and flags |

The options and flags that control the presentation and operation of the vertical list are
listed in the field on the right half of the window. The flags are:

Vertical Scroll Bar—Places a vertical scroll bar inside the right border of the text
field.

WNF_AUTO_SORT—Assigns a compare function to alphabetize the strings within
the list. If this flag is used, the compare function value should be NULL.

WNF_BITMAP_CHILDREN—Used to denote that some of the list’s sub objects
contain bitmaps. This flag must be set if the list will contain non-string objects.

WNF_NO_WRAP—Causes the list not to wrap when scrolling. By default, if the
highlight is positioned on the last item in the list and the down key is pressed, the list
will wrap and position itself on the first item in the list. The WNF_NO_WRAP flag
disables this feature.

WNF_SELECT_MULTIPLE—Allows multiple items within the vertical list to be
selected.

WOF_BORDER—In graphics mode, this flag draws a single line border around the ‘
list box. In text mode, no border is drawn. 1

WOF_MINICELL—Uses cell widths and cell heights that are 1/10 the size of
regular cell cordinates. This flag is valid in graphics modes only.

WOF_NON_FIELD_REGION—The list box is not a form field. If this flag is set
the list box will occupy any remaining space within the parent window.

WOF_NON_SELECTABLE—Prevents the list from being selected. If this flag is
set, the user will not be able to position on the list.

Chapter 13 — Control Objects 143

HORIZONTAL LIST

144

A horizontal list is used to display related information in a multiple-column fashion within
a window. The list is only scrollable horizontally. Selecting “Hz-List” causes the
following object to appear:

Notice that the list is initially empty. A horizontal list is actually a framework to which
other objects can be attached. For example, a list of strings could be added to a
horizontal list by repeatedly selecting the string object from the menu or the toolbar and
placing it within the list. The items will be aligned automatically in rows and columns.
When more items are added to the list than can be displayed, a horizontal scroll bar is
automatically added.

To modity the horizontal list object, call its editor. The following window will appear:

Zinc Interface Library — Programmer’s Guide

cellwidth: —options—
. [] Horizontal Scroll Bar
—wnFlags—

compare: | | |wNF_NO_wRAP
[OWNF_SELECT_MULTIPLE
[wNF_BITMAP_CHILDREN
stringID: [FIELD_o | [JWNF_AUTO_SORT
helpContext: l[None] —woFlags—

K wOF_BORDER

[wOF_MINICELL

[0 wWOF_NON_FIELD_REGION
[WOF_NON_SELECTABLE

Objects:

cellWidth

Enter in this field a number to specify the maximum cell width of a single list item. If
the list is wider than the specified width, it will be displayed with multiple columns. The
default width is “10.”

cellHeight

Enter in this field a number to specify the maximum cell height of a single list item. If
the list is taller than the specified height, it will be displayed with multiple rows. The
default height is ““1.”

compare

If you want to have a compare function associated with the horizontal list, enter in this
field the name of the function. A compare function determines the order of list items and
must be defined somewhere in your code so that the user table, created by Zinc Designer,

Chapter 13 — Control Objects 145

can retrieve it. (For more information on compare functions for horizontal lists, refer to
the UI_LIST and UIW_HZ_LIST chapters of the Programmer’s Reference.)

stringlD

Enter in this field a string that will distinguish the horizontal list object from other objects.

helpContext

This field designates the help context to be associated with the horizontal list. Select the
combo box button to view a list of the available help contexts. If you select one of the
help contexts listed, the help message of that context will be displayed whenever the user
positions on the horizontal list and requests help. (For information on creating help
contexts, see the Help Editor section in Chapter 17 of this manual.)

Objects

This field displays the objects, listed by their string identifications, that are currently
attached to the horizontal list.

options and flags

The options and flags that control the presentation and operation of the horizontal list are
listed in the field on the right half of the window. The flags are:

Horizontal Scroll Bar—Places a horizontal scroll bar inside the bottom border of the
text field.

WNF_AUTO_SORT—Assigns a compare function to alphabetize the strings within
the list. If this flag is used, the compare function value should be NULL.

WNF_BITMAP_CHILDREN—Used to denote that some of the list’s sub objects
contain bitmaps. This flag must be set if the list will contain non-string objects.

WNF_NO_WRAP—Causes the list not to wrap when scrolling. By default, if the
highlight is positioned on the last item in the list and the arrow key is pressed, the
list will wrap and position itself on the first item in the list. The WNF_NO_WRAP
flag disables this feature.

146 Zinc Interface Library — Programmer’s Guide

WNF_SELECT_MULTIPLE—Allows multiple items within the horizontal list to I
be selected. ‘

WOF_BORDER—In graphics mode, this flag draws a single line border around the
list box. In text mode, no border is drawn.

WOF_MINICELL—Uses cell widths and cell heights that are 1/10 the size of
regular cell cordinates. This flag is valid in graphics modes only.

WOF_NON_FIELD_REGION—The list box is not a form field. If this flag is set
the list box will occupy any remaining space within the parent window.

WOF_NON_SELECTABLE—Prevents the list from being selected. If this flag is
set, the user will not be able to position on the list.

COMBO BOX

A combo box is a combination of a string field and a scrollable list box. It is used to
display a list of selectable items. When one of the items is selected, it appears in the
string field. Selecting “Combo Box™ causes the following object to appear:

The scrollable list is displayed when the button to the right of the string field is selected.
When one of the items of that list is selected, it is copied into the string field and the list
box disappears. If the string field is editable, the user can enter text and the item in the
list that most closely matches the characters typed will be highlighted. The user can then
select the item to copy it back into the string field.

Objects are added to the combo box’s list by selecting them from the menu or object bar
and placing them on the combo box object. By default, they will be automatically aligned

in a single column in the order in which they were created.

To modify the combo box object, call its editor. The following window will appear:

Chapter 13 — Control Objects 147

title: [Titte] | [—Options—
— | Border
i : N ;
minlcon: |[ons] @ [X] Maximize Button
[X] Minimize Button
stringID: [RESOURCE 1 | [System Button

B Tite

[] scronl Bar Corner

[vertical Scroll Bar
[Horizontal Scroll Bar
—woFlags—

[wOF_BORDER

[woOF_MINICELL

helpContext: [(None)

Objects:

compare

If you want to have a compare function associated with the combo box, enter in this field
the name of the function. A compare function determines the order of list items and must
be defined somewhere in your code so that the user table, created by Zinc Designer, can
retrieve it. (For more information on compare functions for combo boxes, refer to the
UI_LIST and UIW_COMBO_BOX chapters of the Programmer’s Reference.)

stringlD

Enter in this field a string that will distinguish the combo box object from other objects.

helpContext

This field designates the help context to be associated with the combo box. Select the
help context field’s combo box button to view a list of the available help contexts. If you
select one of the help contexts listed, the help message of that context will be displayed
whenever the user positions on the combo box and requests help. (For information on
creating help contexts, see the Help Editor section in Chapter 17 of this manual.)

148 Zinc Interface Library — Programmer’s Guide

Objects

This field displays the objects, listed by their string identifications, that are currently
attached to the combo box.

The flags that control the presentation and operation of the combo box are listed in the

y
x
!
|
options and flags
field on the right half of the window. The flags are: ’

Vertical Scroll Bar—Places a vertical scroll bar inside the right border of the combo
box list field.

WNF_AUTO_SORT—Assigns a compare function to alphabetize the strings within
the list. If this flag is used, the compare function value should be NULL.

WNF_BITMAP_CHILDREN—Should be set when items other than strings are
added to the combo box.

list by cursoring down at the bottom of the list.

WOF_AUTO_CLEAR—Automatically clears the edit buffer if the end-user positions

|
[
WNF_NO_WRAP—Does not allow the user to scroll to the top of the combo box I
on the combo box (from another window field) and presses a non-movement key. !

WOF_BORDER—Draws a border around the combo box object. In graphics mode, ‘
setting this option draws a single-pixel border around the object. In text mode, no |
border is drawn.

|
WOF_JUSTIFY_CENTER—Center-justifies the string associated with the combo :
box’s string field. |

{

WOF_JUSTIFY_RIGHT—Right-justifies the string associated with the combo box’s ‘
string field.

WOF_MINICELL—Uses cell widths and cell heights that are 1/10 the size of
regular cell cordinates. This flag is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the combo box to not be a form field. If
this flag is set the combo box will occupy all the remaining space of its parent
window.

Chapter 13 — Control Objects 149

WOF_NON_SELECTABLE—Prevents the combo box object from being selected.
If this flag is set, the user will be able to see, but not select, the combo box.

WOF_UNANSWERED—Sets the initial status of the combo box to be ‘‘unan-
swered,”which is displayed as blank space on the screen.

WOF_VIEW_ONLY—Prevents the combo box from being edited. If this flag is set,
the end-user will not be able to edit a combo box’s information but will be able to
browse through the information.

WOAF_NON_CURRENT—The combo box cannot be made current. If this flag
is set, users will not be able to select the combo box from the keyboard nor with the
mouse.

VERTICAL SCROLL BAR

150

A vertical scroll bar is most often used to move vertically through information in an
associated window, vertical list box, or text field so that additional data which is hidden
outside of the displayed portion can be viewed. The “Vt-Scroll Bar’ option, however,
is not designed for such use. Instead, creating a vertical scroll bar directly from the menu
(or object bar) causes it to be added to the current resource, independent of any other
object. For example, such a scroll bar could be used as a volume control for an
application. Selecting “Vt-Scroll Bar” causes the following object to appear:

NOTE: To associate a vertical scroll bar with a window, a text field, or a vertical list,
simply select the vertical scroll bar option or flag available in the editor for each of these
objects.

Zinc Interface Library — Programmer’s Guide

To modify the scroll bar, call its editor. The following window will appear:

stringlD: || J —sbFlags—

[] sBF_CORNER

[l SBF_YERTICAL

[8BF_HORIZONTAL
—woFlags—

B wWOF_BORDER
[[1WOF_MINICELL

Notice that the editor for the vertical scroll bar is actually an editor for a generic scroll
bar object but with the SBF_VERTICAL flag set. If this flag is toggled, or if another
SBF flag is set, the scroll bar will no longer be displayed as a vertical one.

flags

The flags that control the presentation and operation of the vertical scroll bar are listed
in the center field of the window. The flags are:

SBF_HORIZONTAL—Defines the scroll bar object to be a horizontal scroll bar.
SBF_VERTICAL—Defines the scroll bar object to be a vertical scroll bar.
WOF_BORDER—Draws a single line border around the scroll bar object.

WOF_MINICELL—Uses cell widths and cell heights that are 1/10 the size of
regular cell cordinates. This flag is valid in graphics modes only.

WOF _NON_FIELD REGION—Causes the vertical scroll bar to not be a form
field. If this flag is set the vertical scroll bar will occupy all the remaining space of
its parent window.

WOF_NON_SELECTABLE—Prevents the vertical scroll bar from being selected.
If this flag is set, the user will not be able to position on the scroll bar.

Chapter 13 — Control Objects 151

HORIZONTAL SCROLL BAR

152

A horizontal scroll bar is most often used to move horizontally through information in an
associated window, horizontal list box, or text field so that additional data which is hidden
outside of the displayed portion can be viewed. The “Hz-Scroll Bar” option, however,
is not designed for such use. Instead, creating a horizontal scroll bar directly from the
menu (or object bar) causes it to be added to the current resource, independent of any
other object. For example, such a scroll bar could be used as a volume control for an
application. Selecting “Hz-Scroll Bar” causes the following object to appear:

NOTE: To associate a horizontal scroll bar with a window, a text field, or a horizontal
list, simply select the horizontal scroll bar option or flag available in the editor for each
of these objects.

To modify the scroll bar, call its editor. The following window will appear:

stringiD: || | |—sbFlags—

[] sBF_CORNER

[0 sBF_VYERTICAL

[SBF_HORIZONTAL
—woFlags—

] wOF_BORDER
[[1WOF_MINICELL

Notice that the editor for the horizontal scroll bar is actually an editor for a generic scroll
bar object but with the SBF_HORIZONTAL flag set. If this flag is toggled, or if another
SBF flag is set, the scroll bar will no longer be displayed as a horizontal one.

Zinc Interface Library — Programmer’s Guide

flags E

The flags that control the presentation and operation of the horizontal scroll bar are listed
in the center field of the window. The flags are:

SBF_HORIZONTAL—Defines the scroll bar object to be a horizontal scroll bar.
SBF_VERTICAL—Defines the scroll bar object to be a vertical scroll bar.
WOF_BORDER—Draws a single line border around the scroll bar object.

WOF_MINICELL—Uses cell widths and cell heights that are 1/10 the size of
regular cell cordinates. This flag is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the horizonal scroll bar to not be a form
field. If this flag is set the horizontal scroll bar will occupy all the remaining space
of its parent window.

CHILD WINDOW

A window is used as a controlling structure for displaying and interacting with other
objects. This object is known as a child window in order to distinguish it from the main
resource window to which it must be attached. Selecting “Child Window” causes the
following object to appear:

By default, the window is created with a title, a system button, a maximize button, and
a minimize button. Other objects can be added by simply selecting them from the menu
or object bar and placing them on the window.

To modify the child window object, call its editor. The following window will appear:

Chapter 13 — Control Objects 153

—Options—
[Border
[Maximize Button
] Minimize Button
stringlD: IFIELD_I | X S_ystem Button

B Title
. [] vertical Scroll Bar
Objects: [JHorizontal Scroll Bar
—woFlags—
[JwoOF_BORDER
[WOF_MINICELL
[WOF_NON_FIELD_REGI
1] - - -

title: |

te|

minlcon: |[None]

helpContext: [(None)

minlcon

This field designates the icon to be associated with the window when it is minimized.
Select the combo box button to view a list of the available icon images. If you select one
of the icons listed, the window will be represented by it when in a minimized state. The
end user will be able to click on the icon in order to restore the window to its original
size on the screen. (For information on creating icon images, see the Image Editor section
in Chapter 16 of this manual.)

stringIlD

Enter in this field a string that will distinguish the child window from other objects.

helpContext

This field designates the help context to be associated with the child window. Select the
field’s combo box button to view a list of the available help contexts. If you select one
of the help contexts listed, the help message of that context will be displayed whenever

154 Zinc Interface Library — Programmer’s Guide

the user positions on the child window and requests help. (For information on creating
help contexts, see the Help Editor section in Chapter 17 of this manual.)

Objects

This field displays the objects, listed by their string identifications, that are currently
attached to the child window.

options and flags

The options that control the presentation of the child window are listed in the upper
portion of the field on the right half of the window. The options are:

Border—Draws a three-dimensional border around the outer permimeter of the
window. (NOTE: This is an actual UIW_BORDER object, unlike the WOF_-
BORDER flag, which basically just outlines the window field.)

Maximize Button—Attaches a maximize button to the window that will enlarge the
window to its maximum size on the screen when selected.

Minimize Button—Attaches a minimize button to the window that will reduce the
window to its minimum size on the screen when selected.

System Button—Attaches a system button to the window. When selected, a system
button displays the following selectable options: Restore, Move, Size, Minimize,
Maximize, and Close.

Title—Attaches a title to the window. A title is used to display short textual
information about its parent window and, when clicked on with a mouse, allows you
to move the window on the screen.

Scroll Bar Corner—Attaches a scroll bar corner to the window. A scroll bar corner
is the grey area between a horizontal and a vertical scroll bar. 1

Vertical Scroll Bar—Attaches a vertical scroll bar to the window, allowing the
information within the window to be scrolled vertically. The scroll bar will auto-
matically occupy the furthest available position inside the window’s right border.

Horizontal Scroll Bar—Attaches a horizontal scroll bar to the window, allowing the
information within the window to be scrolled horizontally. The scroll bar will

Chapter 13 — Control Objects 155

156

automatically occupy the furthest available position inside the window’s bottom
border.

The flags that control the presentation and operation of the child window are listed in the
lower portion of the field on the right half of the window. The flags are:

WOF_BORDER—Draws a single line border around the window. If the application
program is running in text mode, no border is drawn.

WOF_MINICELL—Uses mini-cell values to determine the mini-cell heights.
Initially, a mini-cell is set to 1/10 of a cell coordinate. This flag allows for more
precise positioning of objects and is valid in graphics modes only.

WOF_NON_FIELD_REGION—Causes the window to not be a form field. If this
flag is set the window will occupy all the remaining space of its parent window.

WOF_NON_SELECTABLE—Prevents the window from being selected. If this flag
is set, the user will not be able to position, nor edit, on the window.

WOAF_DIALOG_OBJECT—Creates the window as a dialog box. A dialog box
is a temporary window used to display or receive information from the user. Using
this flag will cause a dialog style border to be displayed.

WOAF_LOCKED—Prevents the user from removing the window from the screen
display.

WOAF_MDI_OBJECT—Creates the window as an MDI window. If the MDI
window is added to the window manager, it becomes an MDI parent (i.e., it can
contain MDI child objects.) If the MDI window is added directly to an MDI
window, it will become an MDI child object. MDI child windows can be moved or
sized, but will remain entirely within the MDI parent window.

WOAF_MODAL—Prevents any other window from receiving event information
from the window manager. A modal window receives all event information until it
is removed from the screen display.

WOAF_NO_DESTROY—Prevents the window manager from calling the window’s
destructor. If this flag is set, the window can be removed from the screen display,
but the programmer must call the destructor associated with the window to actually
destroy it.

WOAF_NO_MOVE—Prevents the end user from changing the screen location of
the window during an application.

Zinc Interface Library — Programmer’s Guide

WOAF _NON_CURRENT—The window cannot be made current. If this flag is set,
users will not be able to select the window from the keyboard nor with the mouse.

WOAF_NO_SIZE—Prevents the end user from changing the size of the window
during an application.

WOAF_TEMPORARY—Causes the window to only occupy the screen temporarily.
Once another window is selected from the screen, the temporary window is removed
from the window manager (i.e., erased from the display). Once removed, a
temporary window will be destroyed if the WOAF_NO_DESTROY flag is not set.

Chapter 13 — Control Objects 157

158 Zinc Interface Library — Programmer’s Guide

CHAPTER 14 - MENU OBJECTS

The menu category includes objects used specifically for creating menus that display
selectable options. Selecting “Menu” causes the following associated menu to appear:

Pop-Up Menu
Tool Bar

PULL-DOWN MENU wg

A pull-down menu acts as a structure for selectable menu items that appear in a single
horizontal line. It automatically occupies the length of the top portion of the window to
which it is attached. Selecting the “Pull-Down Menu™ option and attaching it to a
window causes the following object to appear:

A multi-level selectable menu is created by adding pull-down items and pop-up items to |
the pull-down menu. The pull-down menu object is automatically created with one pull- y}
down item attached to it. (For information on adding more items, see “Add Item” of this ‘;:

section.)

|
To modify the pull-down menu, call its editor. The following window will appear: ;g
|

Chapter 14 — Menu Objects 1569

stringlD:

| Objects:

helpContext: |[None]

= FIELD_1

—woFlags—

Xl wOF_BORDER
[JWOF_NON_SELECTABLE
—wnFlags—
COWNF_AUTO_SORT
[JWNF_NO_WRAP

stringlD

helpContext

This field designates the help context to be associated with the pull-down menu. Select
the combo box button to view a list of the available help contexts. If you select one of
the help contexts listed, the help message of that context will be displayed whenever the
user positions on the pull-down menu and requests help. (For information on creating
help contexts, see the Help Editor section in Chapter 17 of this manual.)

Objects

This field displays the pull-down items, listed by their string identifications, that are
currently attached to the pull-down menu. Select one of these items, and its editor will
» appear. (Refer to the Pull-down Item section below for more information on pull-down

items.)

160

\

|

Enter in this field a string that will distinguish the pull-down menu object from other
objects.

Zinc Interface Library — Programmer’s Guide

flags

The flags that control the presentation of the pull-down menu object are listed in the field
on the right half of the window. The flags are:

WOF_BORDER—In graphics mode, this flag draws a single line border around the
pull-down menu. In text mode, no border is drawn.

WOF_NON_SELECTABLE—Prevents the pull-down menu from being selected.
If this flag is set, the user will not be able to position on the pull-down menu.

WNF_AUTO_SORT—Assigns a compare function to alphabetize the items within
the pull-down menu.

WNF_NO_WRAP—Causes the pull-down menu not to wrap when scrolling. By
default, if the highlight is positioned on the last item in the pull-down menu and the
right-arrow key is pressed, the pull-down menu will wrap and position itself on the
first item in the pull-down menu. The WNF_NO_WRAP flag disables this feature.

Add ltem

Selecting this button causes a pull-down item to be added to the pull-down menu. (For
more information on pull-down items, refer to the Pull-Down Item section below.)

PULL-DOWN ITEM

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>