wv

PROGRAMMER




Zinc™ Interface Library”

Programmer’s Guide

Version 1.0

Zinc Software Incorporated
Pleasant Grove, Utah



Copyright © 1990-1991 Zinc Software Incorporated Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no

Back-Cover Texts. A copy of the license is included in the section entitled "GNU
Free Documentation License".



TABLE OF CONTENTS

DOPORMCHION. o« o o voiei conns s orsrmmin & A0 08 0 55 Snd et bedakar Rt ot oaobmce 6 e sand 1
Chapter 1—Installation .. ........ ... .. .. .. .. .. ... 0 iiiiiininnnnnnnnnn.. 5
Chapter 2—Conceptual Design . ................0 .0ttt 9
Chapter 3—Window Objects .. ............. ... ..., 27
Chapter 4—Default Event Mapping . .......................0oviuuninn.n.. 47
Chapter S—Default Palette Mapping . ...............c.00uuirinrinnnnnn... 57
Chapter 6—Tutorials . ........... ... ... . .. .. i, 63
Hello World!—A simple window example ...................cooouuo.... 64
Phone Book—Interfacing with a simple database ......................... 70
Notepad—Transferring data between windows . .......................... 81
Calendar—Deriving new class Objects . . . .............ouuiieiinnna.. 87
The Custom Application—Customizing colors and key mapping . ............. 94
L e e O P SR 103

vii



INTRODUCTION

System
requirements

Shipping
applications

Suggested
reading

Introduction

The Zinc Interface Library is a powerful user interface library that uses
unique features of C++, including virtual functions, class inheritance,
operator overloading, multiple inheritance, etc. This library is
developed specifically for C++ and is compatible with Borland
International’s Turbo C®++ (which supports AT&T’s C++ V2.0 and
ANSI C).

To develop applications, you need Turbo C++, DOS 2.1 or later (DOS
3.1 or later is recommended), 640K RAM and a hard disk drive. For
mouse support, you need a Microsoft® mouse compatible driver.

To ship applications, you must include the following run-time files:

* Turbo C++ BGI files (if your application runs in graphics mode),

*  Any files generated by the GENHELPEXE program. (This program
generates help screens used by the help window system.)

The use of this product assumes a working knowledge of C++. Some

books that introduce the C++ programming language are:

* Dewhurst, Stephen C. and Stark, Kathy T. Programming in C++,
Englewood Cliffs, New Jersey: Prentice Hall, 1989, 233 pages.

e Eckel, Bruce. Using C++. Berkeley, CA: Osborne/McGraw-Hill,
1989, 617 pages.

* Hansen, Tony L. The C++ Answer Book, Reading, MA: Addison-
Westley, 1990, 578 pages.

* Lippman, Stanley B. C++ Primer. Reading, MA: Addison-Westley,
1989, 464 pages.

* Pohl, Ira. C++ for C Programmer’s. Redwood City, CA: Benjamin/-
Cummings Publishing, 1989, 244 pages.



Programmer’s
Guide

e Stevens, Al. Teach Yourself C++. Portland, OR: MIS Press, 1990,
272 pages.

e Stroustrup, Bjarne. The C++ Programming Language. Reading,
MA: Addison-Westley, 1986, 328 pages.

e Turbo C++, Getting Started. Scotts Valley, CA: Borland Interna-
tional, 1990, 268 pages.

e Wiener, Richard S. and Pinson, Lewis J. An Introduction to Object
Oriented Programming and C++. Reading, MA: Addison-
Westley, 1989, 273 pages.

The documentation for the Zinc Interface Library is contained in two
manuals: Programmer’s Guide and Programmer’s Reference. The
Programmer’s Guide provides an overview to the Zinc Interface Library.
It contains the following sections:

Installation—This section (Chapter 1) tells how to install the library
software on your machine.

Conceptual Design—This section (Chapter 2) gives a high-level
description of the Zinc Interface Library, including the conceptual
operation of the library and its major components.

Window Objects—This section (Chapter 3) describes the types of
window objects supported by the library. It also discusses the
proper use of window objects in an application program.

Default Input Mapping—This section (Chapter 4) describes the
default mapping of keyboard and mouse information.

Default Color Mapping—This section (Chapter 5) describes the
default color combinations of windows and window objects.

Tutorials—This section (Chapter 6) provides 5 tutorials that help

you get started writing application programs that use the Zinc
Interface Library.

Zinc Interface Library — Programmer’s Guide



Programmer’s  The Programmer’s Reference contains descriptions of the Zinc Interface
Reference Library classes, the calling conventions used to invoke the class
information, short code samples using the class member functions and
information about other related classes or example programs. It

contains the following sections:

Class object information—This section (Introduction) contains the
class hierarchy, header file information and global variables
associated with class objects and structures available within the Zinc
Interface Library.

Class object references—This section (Chapters 2 through 48)
contains short descriptions about the class objects (or structures),
the available member variables and functions and the calling
conventions used with the class object.

Terminology  The following terms are used extensively throughout the documentation:

Field—A window object that can be edited. For example, the
border of a window is not considered a “field” whereas a number is
considered a field. The figure below shows a window with several
fields (the fields are shown with outlining borders):

(801) 785-8900

Sample text

NN, ?ﬂg

UI_—The prefix identification for all class objects used in the Zinc
Interface Library. The “UI” stands for “User Interface.” This
prefix allows the programmer to distinguish the user interface part
of their application.

UIW_—The prefix identification for all window class objects used
in the library. The “UIW” stands for “User Interface Window”

Introduction 3




object. All UIW type objects are derived from the UI_WINDOW_-
OBIJECT base class.

Window—A region of the screen that contains one or more window
objects. A window is used by the end-user to view or edit
information associated with the application program. A window is
represented by the UIW_WINDOW class object. In the figure
below, the window is shown as the main rectangle and all blank
portions within the rectangle. All non-blank portions of the
window are window objects (the border, buttons and title bar).

E:.‘-:( B e e ] Né

Window field—A window object that can be edited. This term is
synonymous to “field.”

Window object—A class object derived from the UL_WINDOW_-
OBJECT base class. Window objects are used in the context of a
parent window or are themselves windows that are attached to the
screen display. The figure above shows a window with several
window objects (a border, 3 buttons and a title bar).

Zinc Interface Library — Programmer’s Guide



CHAPTER 1 - INSTALLATION

System
requirements

Introduction

Chapter 1 - Installation

Installation of the Zinc Interface Library requires DOS 2.1 or later
(DOS 3.1 or later is recommended), 640K RAM and a hard disk drive.

Before installing the Zinc Interface Library, we recommend that you
back-up your distribution disks.

The general structure of all screens in the install program is divided into
three sections:

INSTRUCTIONS

OPTIONS

KEYBOARD INTERFACE

Instructions—This upper section of the screen gives instructions
about the next install operation to be performed.

Options—This middle section of the screen displays the selectable
options at a particular point in the installation.

Keyboard interface—This lower section of the screen identifies
which keys activate the current operation or how to move within
the screen.

Pressing <Esc> at any time during the installation will cause the
program to abort.



Installation
procedure

Insert the first distribution disk into the desired drive, make it the
current drive and invoke the installation program. For example, to
install the Zinc Interface Library from drive A, insert the first disk and

type:

a:<Enter>
install<Enter>

The install process is accomplished in five steps:

Confirmation of license agreements—To install the Zinc Interface
Library, it is necessary to confirm that you have read and accepted
the Zinc Interface Library End User Software License Agreement
and Source Code License Agreement, if applicable. The license
agreements are found at the beginning of this manual. If you wish
to proceed, select “yes.” Otherwise, select “no” and the program
will abort.

Selecting a drive—You will be asked to select a drive to which you
want to install. (Be sure to select a hard disk drive.)

Selecting a subdirectory—The default subdirectory is \ZINC.
Simply press <Enter> to select the default directory or type in the
desired directory and then press <Enter>.

Selecting portions to install—You are asked which portions of the
Zinc Interface Library you want to install. The options are:

Demo—A program that demonstrates the features and
capabilities of the library.

Examples—Example C+ + files that show how to use specific
classes defined in the library. These files are referenced in the
Programmer’s Reference.

Include Files—Program header files used by the library class
objects.

Utility Programs—Application programs that are used with the
Zinc Interface Library. For example, one utility program is
used to generate help files.  This program is called
GENHELPEXE.

Zinc Interface Library — Programmer’s Guide



Library Files—Files that contain the compiled library class
objects. These files include small, medium, compact and large
models.

Tutorials—Sample programs that give hands-on experience in
using the Zinc Interface Library. These programs are explained
in “Chapter 6—Tutorials” of this manual.

Selecting “yes” for any of these options will install that portion of
the library to your hard drive.

Installation—The program now commences installing the selected
material from the distribution disks to your hard drive. The
progress of this installation appears on your screen.

Periodically, a prompt for a new disk will appear. Remove the
current disk from the drive, insert the disk requested and press any
key to continue the installation.

When the installation is complete, a message appears on your screen
indicating that you are now free to use the Zinc Interface Library.

Chapter 1 — Installation



Zinc Interface Library — Programmer’s Guide



CHAPTER 2 - CONCEPTUAL DESIGN

Every computer application has special needs. For instance, a particular
application may require:

» A user interface to present information to the user, report run-time
errors and give meaningful help information.

e Access to a database for information storage and retrieval.
* A communications package for modem and serial line support.

e Special math capabilities for statistical modeling or advanced
mathematical operations.

lPIECES OF AN APPLICATION

| A SAMPLE APPLICATION ”

DIIATHI [USER INTEHFACEI BTABASE—I [COMMUNICATIONSI [ETC,..]

The Zinc Interface Library is a user interface tool that supports
programmers with their user interface needs. It is an object-oriented
class library, implemented in C++. The main goals of this product are
to provide:

Consistency—This means consistency between graphics and text
modes of operation, consistency between class objects (e.g., their
parameter passing and modes of operation) and consistency in the
documentation.

Ease-of-use—This includes a run-time presentation that is easily
understood by end-users as well as library code that is quickly
learned by programmers. One ease-of-use aspect is achieved
through consistency, another through a conceptual design that is
easily understood.

Chapter 2 — Conceptual Design 9




10

Flexibility—The C++ object orientation, combined with the
hierarchal method discussed below, provides reusability of code.
This design also provides clear points of entry where programmers
can derive new objects to customize the run-time operation of their
application programs. The Zinc Interface Library product goals are
accomplished through a simple, yet powerful, design and
implementation scheme (shown below).

|ZINC INTERFACE LIBRARY I
)Wzﬁfﬂ Mﬁﬂg’???’?{;n‘?‘xff

s =
| EVENT MANBGER |

|KEYBOARD | [MOUSE |

3 o

( EVENT QUEUE : )

R
—

[ HELP SYSTEM | [ ERROR SYSTEM |
WINDOW 1
[ EVENTMAPPING | [ PALLETTE MAPPING | WINDOW 2

The main sections of the library are:

Event manager—This portion of the library controls the flow of
end-user input and system messages throughout the library.

Window manager—This portion of the library controls the presenta-
tion of windows and window objects to the screen display.

Screen display—This library resource provides low-level graphics or
text screen display support.

Help system—This library resource controls the presentation of help

information during the run-time operation of an application
program.

Zinc Interface Library — Programmer’s Guide



Error system—This library resource controls the presentation of
error information during the run-time operation of an application
program.

Event mapping—This library resource controls the mapping of raw
device events (e.g., keyboard and mouse) to logical system events
(e.g., sizing, moving, redrawing).

Palette mapping—This library resource controls the mapping of
color palette information for windows and window objects.

The event  The event manager serves as the control unit for input devices and as
manager the storage unit for event information that is processed by the Zinc
Interface Library modules (e.g., keyboard input information as well as
system messages). The graphic illustration below shows the conceptual

operation of the event manager within the library:

[ ZINC INTERFACE LIBRAHY]

ISUPPORT RESOURCES_I

I s ]
TRt
I A I

| WINDOW MANAGER |

Most compiler libraries have a set of functions to get input information
from the keyboard (e.g., getch(), getchar()) but seldom have functions
to get information from other devices, such as a mouse. In addition, the
integration of multiple input devices is left to the programmer. With
the Zinc Interface Library, all input devices (e.g., keyboard, mouse) are
integrated to provide smooth control of the user’s input. This interface
is handled by the control portion of the event manager. The following

Chapter 2 — Conceptual Design 11




12

device object hierarchy is understood by the UI_EVENT _MANAGER
class object:

IDEVICE OBJECT HIERARCHY I

UI_LEVENT_MANAGER" l" _DEVI

el

Ul_BIOS_KEYBOARD E.u MS MOUSE] [UI cuasorﬂ

(other programmer
defined device
objects)

Classes derived from the UI_DEVICE base class include:

UI_BIOS_KEYBOARD—A BIOS level polled keyboard interface
that retrieves keyboard information from the end-user.

UI_MS_MOUSE—An interrupt driven mouse interface that receives
mouse information from the end-user.

UI_CURSOR—A blinking cursor shown on the screen. In graphics
mode, this device paints a blinking cursor on the screen. In text
mode, this device is implemented as the hardware cursor.

Other programmer defined device objects—Any other programmer
defined device that conforms to the operating protocol defined by
the UL_DEVICE base class.

Input devices are attached to the event manager at run-time by the
programmer. Once a device is attached, it feeds input information to
the event queue when polled by the event manager, or it feeds directly
to the event queue if it is an interrupt device. The following code shows
how to construct a new event manager class object and how to initialize
selected input devices:

// Construct the screen display.
UI_DOS_TEXT_DISPLAY display;

// Construct the event manager.
UI_EVENT_MANAGER eventManager (100, &display);

Zinc Interface Library — Programmer’s Guide



// Add in the input devices.
eventManager
+ new UI_BIOS_KEYBOARD
+ new UI_MS_ MOUSE
+ new UI_CURSOR;

The event manager contains an additional portion identified as the event
queue. All event information passed through the Zinc Interface Library
is passed via the event queue. For example, when the end-user presses
a key, the event information is placed into the event queue by the
UI_BIOS_KEYBOARD device. The keyboard event information is
then transferred to the proper window object by the window manager.
The following code shows how event information is retrieved from the
event manager and passed to the window manager:

int ccode;
UI_EVENT event;
do

{

// Get an event from the event manager.
eventManager.Get(event, Q_NORMAL) ;

// Pass the event to the window manager.
ccode = windowManager.Event(event);
} while (ccode != L_EXIT);

Other portions of the Zinc Interface Library use the event queue to
send system or private messages.

The window  The window manager serves as the control module for all windows and
manager window objects shown on the screen display. The graphic illustration
below shows the conceptual operation of the window manager within

the Zinc Interface Library:

Chapter 2 — Conceptual Design 13




| ZINC INTERFACE LIBRARY I

| EVENT MANAGER |
I 0
P oo plangy
C EVENT QUEUE
S
[SUPPORT RESOURCES |

l | { ]

I 1 |

The window manager determines the position and priority of windows
on the screen. For example, the graphic illustration above shows
Window1 overlapping Window2. In this example, the window manager
routes all keyboard information to Windowl, since it is the top-most
window attached to the screen. In addition, any mouse information that
overlaps Windowl1 or the region intersected by Window1 and Window2
is sent to Windowl for processing. The following window object
hierarchy is understood by the UI_ WINDOW_MANAGER class object:

[wmnow OBJECT HIERARCHY ]

UI_WINDOW_MANAGER:+essse14 - EJI_WNDOW _OBJECT I

LN

[wv_aonoen ] P.M_F_STRNG [im_icon] Pm_numeer] [Tm_rnom CTILE
[uw_srme] }M_Bu‘rrou]
I_DATE _MAXIMIZE_BUTTON A (other programmer
_TEXT /_MINIMIZE_BUTTON UW_POP_UP_MENU defined window
UW_TIME /_POP_UP_ITEM _PULL_DOWN_MENU  objects)

UW_POR_UP_WINDOW
/_PULL_DOWN_ITEM
_SYSTEM_BUTTON

14 Zinc Interface Library — Programmer’s Guide



Classes derived from the UI_WINDOW_OBJECT base class include:
UIW_BORDER—An outlining border drawn around a window.

UIW_STRING—A field used to enter, display, or modify an ascii
string buffer.

UIW_DATE—A field used to enter, display, or modify country-
independent date information.

UIW_TEXT—A field used to enter, display, or modify a word-
wrapped text buffer.

UIW_TIME—A field used to enter, display, or modify country-
independent time information.

UIW_FORMATTED_STRING—A field used to enter, display, or
modify an ascii string buffer that contains literal characters, or
characters that cannot be edited (e.g., phone numbers, social
security numbers).

UIW_BUTTON—A rectangular region of the screen that, when
selected, performs run-time operations specified by the programmer.

UIW_MAXIMIZE_BUTTON—A button that, when selected,
Changes the size of its parent window to occupy the entire
screen display.

UIW_MINIMIZE_BUTTON—A button that, when selected,
reduces the size of its parent window to the minimum allowed
by the window.

UIW_POP_UP_ITEM—A selectable item that is shown in the
context of a pop-up menu.

UIW_POP_UP_WINDOW—An item that, when selected,
displays additional window information (in the form of a sub-
window) to the screen display.

UIW_PULL_DOWN_ITEM—A selectable item that is shown in
the context of a pull-down menu.

Chapter 2 — Conceptual Design 18



UIW_SYSTEM_BUTTON—A button that, when selected, shows
general operations that can be performed on the parent
window.

UIW_ICON—A pictorial or graphical representation of a selectable
item. This object is similar to the UIW_BUTTON object, except
that the information is in graphic, rather than textual, form.

UIW_NUMBER—A field used to enter, display, or modify numeric
information. This object supports both integer values (e.g., short,
int, long) and real values (e.g., float, double).

UIW_WINDOW—A rectangular region of the screen that is
composed of one or more class objects derived from the
UI_WINDOW_OBIECT base class.

UIW_MATRIX—A two-dimensional list of related items. These
items are organized in a row/column fashion and may be any of
the objects described in the window object hierarchy.

UIW_POP_UP_MENU—A group of related UIW_POP_UP_-
ITEM objects. The items in this menu are displayed on
multiple lines.

UIW_PULL_DOWN_MENU—A group of related UIW_PULL -
DOWN_ITEM objects. The items in this menu are displayed
across a single, horizontal line.

UIW_PROMPT—A string that is used to describe the contents of
another window field.

UIW_TITLE—An object that occupies the top region of a window
and contains a window’s title information.

Other programmer defined window objects—Any other programmer
defined window object that conforms to the operating protocol
defined by the UI_WINDOW_OBIJECT base class.

Windows are attached to the window manager at run-time by the

programmer. Once a window is attached, it receives event information
from the window manager. The following code shows how to construct

Zinc Interface Library — Programmer’s Guide



a new window manager class object and how to initialize a selected
window:

// Construct the screen display.
UI_DOS_TEXT_DISPLAY display;

// Construct the event manager.

UI_EVENT_MANAGER eventManager (100, &display);
eventManager + new UI_BIOS_KEYBOARD + new UI_MS_MOUSE;

// Construct the window manager.

UI_WINDOW_MANAGER windowManager (&display, &eventManager);

// Add a simple window to the window manager.
UIW_WINDOW *window = new UIW _WINDOW(O, 1, 67, 11,
"WOF_NO_FLAGS, WOAF_NO_FLAGS, NO_HELP_CONTEXT) ;

*window

+ new UIW_BORDER

+ new UIW_MAXIMIZE_BUTTON

+ new UIW_MINIMIZE BUTTON

+ new UIW_SYSTEM BUTTON

+ new UIW_TITLE("General objects', WOF_NO_FLAGS);
*windowManager + window;

Windows and window objects have distinct representations in graphics
and text modes of operation. The code shown above would produce the
following graphic and textual representations of a simple window:

0RO R OORRRNHRRRAORRRRGORR RN OO OO OOORCO0TOEOOITT000

r[.) [ General objects ] (41071

Chapter 2 — Conceptual Design 17




Window objects that can be edited (UIW_DATE, UIW_-
FORMATTED_STRING, UIW_NUMBER, UIW_STRING, UIW -
TIME and UIW. _TEXT) support the following features:

Undo—Allows the end-user to roll an editing operation backward.
For example, if an end-user accidently deleted a complete line in a
text field, the information could be retrieved by pressing the
<Ctrl F9> key or by holding the <Alt> key down while pressing
the left mouse button. The undo operation is implemented on a
field-by-field basis. Thus, an end-user could perform edit and undo
operations on one field, move to a different field to perform edit
operations, then return to the original field to perform additional
edit or undo operations.

Redo—Allows the end-user to roll an editing operation forward
(restore information removed with the undo operation). For
example, the undo operation (described above) explained how an
end-user may accidently delete a complete line in a text field. If the
user continued to perform undo operations, then decided some of
the old text was worthwhile, the information could be retrieved by
pressing the <Ctrl F10> key or by holding the <Alt> key down
while pressing the right mouse button. The redo operation is
implemented on a field-by-field basis. Thus, an end-user could
perform edit and undo operations on one field, move to a different
field to perform edit operations, then return to the original field
and perform redo operations.

Mark—Marks an area of the current field for use with the cut or
copy edit features. Marked regions are shown as shaded regions in
a window field.

Cut—Cuts the marked area of the current field and stores the
marked contents in a global paste buffer. This data can later be
pasted into any other field, as long as the information is valid for
that field type (e.g., the text “400” could be pasted into a numeric,
string, or text field).

Copy—Copies the marked area of the current field and stores the
marked contents in a global paste buffer. This data can later be
pasted into any other field, as long as the information is valid for
that field type.

Zinc Interface Library — Programmer’s Guide



Paste—Copies the contents of the global paste buffer into the
current field. Data can be pasted into any field, as long as the
information is valid for that field type.
For more information about window objects see “Chapter 3—Window
Objects” of this manual.

The screen  The screen display is used to control all low-level screen output. The
display following display objects are supported by the Zinc Interface Library:

IDISPLAY OBJECT HIERARCHY I

[U_DOS_BGI_DISPLAY ] [m_oos_mxr_o[spuﬂ

(other programmer
defined display
objects)

Classes derived from the UI_DISPLAY base class include:

UI_DOS_BGI_DISPLAY—A graphics display that uses the Turbo
C++ BGI graphics library package to display information to the
screen. The UI_DOS_BGI_DISPLAY class provides support for
CGA, EGA, VGA and Hercules monochrome display adapters
running in graphics mode.

UI_DOS_TEXT_DISPLAY—A text display that writes the display
information to screen memory. The UI_DOS_TEXT _DISPLAY
class provides support for MDA, CGA, EGA and VGA display
adapters running in text mode. This includes the following modes
of operation:

e 25 line x 80 column mode,
s 25 line x 40 column mode,
e 43 line x 80 column mode and
¢ 50 line x 80 column mode.

Chapter 2 — Conceptual Design 19




This class also contains support for snow checking (CGA monitors)
and IBM TopView® (which supports operation in Microsoft
Windows and Quarterdeck DESQview® environments).

Other programmer defined screen display objects—Any other
programmer defined display object that conforms to the operating
protocol defined by the UI_DISPLAY base class.

The use of multiple display classes allows the application program to be
abstract in its screen display. Thus, one set of source code can be used
to produce output for both graphics- and text-based environments. The
following code shows how to initialize both graphic and textual screen
displays:

// Initialize the display, trying for graphics first.
UI_DISPLAY *display = new UI_DOS_BGI_DISPLAY;
%f (!display->installed)

delete display;
display = new UI_DOS_TEXT_DISPLAY;

The help  The help system is used to present help information to the end-user
system  during an application program. The following help system objects are
supported by the Zinc Interface Library:

|HELP SYSTEM OBJECT HIERARCHY I

| UI_HELP_SYSTEM ]

IEI_HELP_WINDOW_SYSTEMl i i e
help system objects)

Help system classes supported by the Zinc Interface Library include:
UI_HELP_SYSTEM—A help system stub that does not present help

information to the end-user. This class object is used as the base
class for other help system objects.

20 Zinc Interface Library — Programmer’s Guide



UI_HELP_WINDOW_SYSTEM—A help system that uses the Zinc
Interface Library windowing system to present help information to
the end-user.

Other programmer defined help system objects—Any other
programmer defined help system object that conforms to the
operating protocol defined by the UL_HELP_SYSTEM base class.

The Zinc Interface Library initially installs a UI_HELP_SYSTEM object
as the default help system. The window help system is not initialized so
that programmers are not forced to have the window object code
modules included in their application. The following code shows how
to re-define the default help system:

// Add in the full window help system.
_helpSystem = new UI HELP WINDOW_SYSTEM("clock.hlp",
windowManager, HELP_CLOCK);

The error  The error system is used to display error information to the end-user
system  during an application program. The following error system objects are
supported by the Zinc Interface Library:

Ennon SYSTEM OBJECT HIEFMRCHﬂ

| UI_ERROH_SYSTEW

IEI_WINDOW_ERROR_SYSTEW] \

(other programmer detined
error system objects)

Error system classes supported by the Zinc Interface Library include:

UI_ERROR_SYSTEM—An error system stub that does not present
error information to the end-user. This class object is used as the
base class for other error system objects.

UI_ERROR_WINDOW_SYSTEM—An error system that uses the

Zinc Interface Library windowing system to present error informa-
tion to the end-user.

Chapter 2 ~ Conceptual Design 21



Event mapping

22

Other programmer defined error system objects—Any other
programmer defined error system object that conforms to the
operating protocol defined by the UI_ERROR_SYSTEM base class.

The Zinc Interface Library initially installs a Ul_ERROR_SYSTEM
object as the default error system. The window error system is not
initialized so that programmers are not forced to have the window
object code modules included in their application. The following code
shows how to re-define the default error system:

// Add in the full window error system.
_errorSystem = new UI_ERROR_WINDOW_SYSTEM;

Many user interface libraries convert raw input information to logical
information when they are received from the input device. For example,
a mouse device may define the left mouse button click to be the select
operation (M_SELECT). These implementations allow only one logical
mapping of a given raw event. Programmers must then decipher the
M_SELECT operation in the context of their operations. This
implementation is inappropriate for most user interface library
applications.

In the Zinc Interface Library, raw events, received from input devices at
run-time, are interpreted at each level of the application according to
the type of operation. For example, the graphic illustration below
shows how the <F2> key and left mouse click would be interpreted at
each level of the Zinc Interface Library (where a text field is the current
window object):

The <F2> key and left-mouse button are processed in the following
manner:

e first, the key or mouse information is received by the input device
(i.e., UI_BIOS_KEYBOARD and UI_MS_MOUSE) and placed in
the event queue.

« second, the window manager evaluates the event and passes it to the
proper window. The mouse event is interpreted as an L_BEGIN _-
SELECT logical event, while the keyboard event is passed directly
to the window.

Zinc Interface Library — Programmer’s Guide



I EVENT MAPPING .

|KEvaoAncT| [ MOUSE ]

‘ E_KEY, f2 E_MOUSE, left down click

Ul WINDOW_MANAGER <~ -+----sveseeessssseerssssesssssssssesesssssssesand
L_BEGIN_SELECT |

UIW_WINDOW =t [ 1—{ Hello Worid }— | [
L_BEGIN_SELECT

UIW_TEXT <t -oeeeeeeeeeneend Hello, World|
L_BEGIN_MARK

 third, the window evaluates the event and passes it to the proper
window object. The mouse event is interpreted as an L_BEGIN -
SELECT logical event, while the keyboard event is passed directly
to the UIW_TEXT window object.

 finally, the UIW_TEXT window object evaluates both the keyboard
and mouse events as the L_BEGIN_MARK command.

The advantages of logical event mapping are:

» Each object is allowed to interpret the event according to its mode
of operation. The example above shows how the window manager
views the left-click as an L_SELECT operation and does not
interpret the <F2> key, while the UIW_TEXT object views both
events as an L BEGIN_MARK operation.

e The programmer can define additional input devices that generate
their own raw event information. This method allows the
programmer to define new input devices that generate specialized
raw codes. With this implementation, programmers can define
logical event mapping for the Zinc Interface Library but still receive
all the raw event information for their specific application program.

» The programmer can easily re-define key mapping without changing
the source code of many modules. This allows programmers to
customize their application without interfering with the general
operation of the Zinc Interface Library.

Chapter 2 — Conceptual Design 23




24

Palette
mapping

For more information about default event mapping see “Chapter
4—Default Event Mapping” of this manual.

The Zinc Interface Library provides two ways of defining the color
combinations associated with a window object: global color palette
mapping and individual object color palette mapping.

The first method—global palette mapping—is accomplished through a
global palette table. A partial listing of a palette map table is shown
below (where each entry contains color and monochrome attributes):

UI_PALETTE_MAP paletteMapTable[] =

/* ID_WINDOW_OBJECT */

{ ID_WINDOW_OBJECT, PM ANY
T’ *, attrib(WHITE, LIGHTGRAY),
attrib(MONO_NORMAL, MONO BLACK),
SOLID FILL, attrib(BLACK; WHITE),
attrib(BW_BLACK, BW WHITE),
attrib(GS_BLACK, GS_WHITE)'} },

/* ID BORDER */

{ ID_BORDER, PM_ANY,
T’ ', attrib(LIGHTRED, LIGHTGRAY),
attrib(MONO_HIGH, MONO B
SOLID_FILL, attrib(WHITE LIGHTGRAY),
attrib(BW_ BLACK, BW WHITE)
attrib(GS_WHITE, GS_GRAY) } Y

};

The second method—individual object color palette mapping—is
accomplished by setting the palette table pointer associated with a
particular window object. This allows the programmer to define a
specific instance of a window object but does not affect the overall
presentation of the window object. The example below shows how to
re-define the palette table associated with a particular window object:

// Add a simple window to the window manager.

UIW_WINDOW *window = new UIW_WINDOW(O, 1, 67, 11,
“WOF_NO_FLAGS, WOAF_NO_FLAGS, NO_HELP CONTEXT),

*window

new UIW _BORDER

new UIW_MAXIMIZE_BUTTON

new UIW_MINIMIZE BUTTON

new UIW_SYSTEM_BUTTON

new UIW_TITLE(™Window Title", WOF_NO_FLAGS);

++ 4+ +

// Redefine the colors for this window.
extern UI_PALETTE_MAP *_myPaletteTable;
window->paletteTable = _myPaletteTable;
*windowManager + window;

Zinc Interface Library — Programmer’s Guide



For more information about default palette mapping see “Chapter
S5—Default Palette Mapping” of this manual.

The design information given in this document provides a conceptual
view of the Zinc Interface Library. The major sections of this
library—event manager, window manager, screen display, help system,
error system, event mapping and palette mapping—all contribute to the
product’s goals of consistency, ease-of-use and flexibility.

Chapter 2 — Conceptual Design 25




26

Zinc Interface Library — Programmer’s Guide



CHAPTER 3 - WINDOW OBJECTS

Introduction

Basic window
objects

“Chapter 2—Conceptual Design” of this manual briefly describes the
types of window objects that are available with the Zinc Interface
Library. This chapter shows the graphic, textual and code implementa-
tions of all the supported window class objects. It also gives a more
complete description of each window object along with its normal
modes of operation.

Most windows created for an application will contain a border, title,
maximize button, minimize button and system button. The figures
below show graphic, textual and code implementations of a window with
these basic window objects:

{[.] [ General objects ] [4107]

*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE BUTTON
+ new UIW_MINIMIZE BUTTON
+ new UIW_SYSTEM BUTTON
+ new UIW_TITLE(™ General objects *, WOF_JUSTIFY_CENTER) ;

The actual window is represented by the UIW_WINDOW class object.
This object is used by the window manager to reserve a rectangular
region of the screen display. The UIW_WINDOW class object, in turn,

Chapter 3 — Window Objects BT




controls the operation and presentation of any associated lower-level
window objects (e.g., the border, title and buttons shown above).

The window’s border, shown as the exterior part of the windows above,
is represented by the UIW_BORDER class object. If the application is
running in graphics mode, the border is shown as a 3-dimensional
shaded region drawn around the window. If the application is running
in text mode and the window is at the forefront of the screen (the
current window) then the border is shown as a double line. Otherwise,
the border is shown as a single line.

The title bar, shown with the “General objects” information text on the
top-center portion of the windows above, is represented by the
UIW_TITLE class object. This window object is used to display textual
information that uniquely identifies the window.

The maximize button, shown with the ‘t’ character on the top-right side
of the windows above, is represented by the UIW_MAXIMIZE -
BUTTON class object. This button is used to change the size of its
parent window to occupy the entire screen display.

The minimize button, shown with the ‘1’ character on the top-right side
of the windows above, is represented by the UIW_MINIMIZE -
BUTTON class object. This button is used to reduce the size of its
parent window to the minimum allowed by the window.

The system button, shown with the ‘¢’ character on the top-left side of
the windows above, is represented by the UIW_SYSTEM_BUTTON
class object. This button is used to select window or system specific
commands associated with the window object (e.g., size, move, maximize,
minimize, close). If menu items are specified with the system button, a
pop-up menu is displayed to the screen. The graphic image below
shows the selection of a system button that has the “Restore,” “Move,”
“Size,” “Minimize,” “Maximize” and “Close” system button options:

] Mininize

] Maxinize

Zinc Interface Library - Programmer’s Guide



For more information about the basic window objects discussed above
see:

“Chapter 48—UIW_WINDOW,”

“Chapter 26—UIW_BORDER,”

“Chapter 47—UIW_TITLE,”

“Chapter 32—UIW_MAXIMIZE_BUTTON,”
“Chapter 33—UIW_MINIMIZE_BUTTON,” or
“Chapter 4—UIW_SYSTEM_BUTTON”

of the Programmer’s Reference.

Date window  Date fields should be used anytime date information is presented to the
objects  end-user or when date information is to be entered at an application’s
run-time. The figures below show graphic, textual and code implemen-
tations of a window with several variations of the date class object

(UIW_DATE):

T -t
Military H r-_"g
Long teaxt month.... :1-1-80. .12-31-90

Short text month. ..
Short dau-of-weaek..
Slash 8 zero fill..

[e] [ Sample dates ] [L107]
Standard........... [6-6-1990
BLLIRAT Y o cdisinisis sioun [6 Jun 1990 All edited dates

Long text month.... [June 6, 1990
Short text month... [June 6, 1990
Short day-of-week.. [Wed. 6-6-1990
Slash & zero fill.. [06/06/1990

should be in the
range
1-1-90..12-31-99

ot Gt St St Gt

*window
+ new UIW TITLE(" Sample dates ", WOF_JUSTIFY_CENTER)
+ new UIW_TEXT(43, 1, 20, 6, "All edited dates should be in
the range 1-1-90..12-31-99", 128, TXF NO_FLAGS,
WOF_VIEW_ONLY | WOF_NON_SELECTABLE | WOF_BORDER

+ new UIW _PROMPT(2, 1, "Standard........... ", WOF_NO_FLAGS)

+ new UIW DATE(22, 1, 20, &date, "1-1-90..12- 1-99*,
DTF_SYSTEM, WOF_BORDER)

+ new UIW _PROMPT(2, 2, "Military........... ", WOF_NO_FLAGS)

+ new UIW_DATE(22, 2, 20, &date, *1-1-90..12-31-99",

Chapter 3 — Window Objects 29




DTF_MILITARY_FORMAT | DTF_SYSTEM, WOF_BORDER)

+ new UIW_PROMPT(2, 3, "Long text month....", WOF_NO_FLAGS)
+ new UIW DATE(22, 3, 20, &date, "1-1-90..12-31-99",
DTF_ACPHA_MONTH | DTF_SYSTEM, WOF_BORDER)

+ new UIW_PROMPT(2, 4, "Short text month...", WOF_NO_FLAGS)
+ new UIW DATE(22, 4, 20, &date, "1-1-90..12-31-99",
DTF_SHORT_MONTH [ DTF_SYSTEM, WOF_BORDER)

+ new UIW_PROMPT(2, 5, "Short day-of-week..", WOF_NO_FLAGS)
+ new UIW DATE(22, 5, 20, &date, "1-1-90..12-31-99",
DTF_SHORT_DAY | DTF_SYSTEM, WOF_BORDER)

new UIW_PROMPT(2, 6, "Slash & zero fill..", WOF_NO_FLAGS)
new UIW DATE(22, 6, 20, &date, "1-1-90..12-31-99",
DTF_SCASH | DTF_ZERO_FILL | DTF_SYSTEM, WOF_BORDER);

+ +

By default, date class objects are presented and edited in a country-
independent fashion. Default information, however, can be overridden
by the following special date presentation and edit styles:

DTF_ALPHA_MONTH—Shows the month as an ascii string value.
Some example dates with the DTF_ALPHA_MONTH flag set are:
"March 28, 1990," "December 4, 1980" and "January 3, 2003."

DTF_DASH—Separates each date variable with a dash, regardless
of the default country date separator. Some example dates with the
DTF_DASH flag set are: "3-28-1990," "12-04-1980" and "1-3-2003."

DTF_DAY_OF_WEEK—AJds an ascii string day-of-week value to
the date. Some example dates with the DTF_DAY_OF_WEEK flag
set are: "Wednesday March 28, 1990," "Thursday December 4, 1980"
and "Saturday January 3, 2003."

DTF_EUROPEAN_FORMAT—Forces the date to be shown in the
European format (i.e., day/monthfyear), regardless of the default
country information. Some example dates with the DTF_-
EUROPEAN_FORMAT flag set are: "28/3/1990," "4 December,
1980" and "3 Jan., 2003."

DTF_JAPANESE_FORMAT—Forces the date to be shown in the
Japanese format (i.e., year/month/day), regardless of the default
country information. Some example dates with the DTF_-
JAPANESE_FORMAT flag set are: "1990/3/28," "1980 December 4"
and "2003 Jan. 3."

DTF_MILITARY_FORMAT—Forces the date to be shown in the
U.S. Military format (i.e., day/month/year where month is a 3 letter

Zinc Interface Library — Programmer’s Guide



abbreviated word), regardless of the default country information.
Some example dates with the DTF_MILITARY_FORMAT flag set
(army style) are: "28 Mar 1900," "04 Dec 1980," and "03 Jan 2003."
Some example dates with the DTF_MILITARY and DTF -
UPPER_CASE flags set (navy style) are: "28 DEC 1900," "04 DEC
1980," and "03 JAN 2003."

DTF_SHORT_DAY—Adds a shortened day-of-week value to the
date. Some example dates with the DTF_SHORT DAY flag set
are: "Wed. March 28, 1990," "Thurs. December 4, 1980" and
"Sat. January 3, 2003."

DTF_SHORT_MONTH—AGJds a shortened alphanumeric month
value to the date. Some example dates with the DTF_SHORT -
MONTH flag set are: "Mar. 28, 1990," "Dec. 4, 1980" and
"Jan. 3, 2003."

DTF_SHORT_YEAR—Forces the year to be shown as a 2 digit
value. Some example dates with the DTF_SHORT_YEAR flag set
are: "3/28/90," "December 4, ’80" and "Jan. 3, ’89."

DTF_SLASH—Separates each date value with a slash, regardless of
the default country date separator. Some example dates with the
DTF_SLASH flag set are: "3/28/90," "12/04/1900" and "1/3/2003."

DTF_UPPER_CASE—Shows the date in an upper-case format.
Some example dates with the DTF_UPPER_CASE flag set are:
"MARCH 28, 1990, "DEC. 4, 1980" and "SATURDAY JAN 3,
2003."

DTF_US_FORMAT—Forces the date to be formatted in the U.S.
format (i.e., month/day/year), regardless of the default country
information. Some example dates with the DTF_US_FORMAT
flag set are: "March 28, 1990," "12/4/1980" and "Jan 3, 2003."

DTF_ZERO_FILL—Forces the year, month and day values to be
zero filled when their values are less than 10. Some example dates
with the DTF_ZERO_FILL flag set are: "March 08, 1990,"
"12/04/1980" and "01/03/2003."

For more information about the UIW_DATE window object see
“Chapter 28—UIW_DATE” of the Programmer’s Reference.

Chapter 3 — Window Objects 31




Matrix window  Matrix fields should be used to present related information in a

32

objects

row/column fashion. The figures

below show graphic, textual and code

implementations of a window with a matrix field (UIW_MATRIX):

5 Bk
F iy
SR, IPPP PRI PSPPI PRSI IR IIPIFIIIIIFIIID KX

(o] [ Sample matrix ] [410T]y
MALPIX G aiindisoeite,
Item 1.1 Item 1.2
Item 2.1 Item 2.2
Item 3.1 Item 3.2
Item 4.1 Item 4.2
Item 5.1 Item 5.2
*window

+ new UIW_TITLE(" Sample matrix ", WOF_JUSTIFY_CENTER)

+ new UIW-PROMBTUR, 51" P MAXRL X st ais o it s o ", WOF_NO_FLAGS)

+ &(*new UIW MATRIX(22,

15 414:6,-5, 14, 1,..0

MXF_NO FLAGS, WOF BORDER, WOAF_NO_FLAGS
+ new UIW_STRING(O, O, 19, "Item 7.1, 64,
STF_NO_FLAGS, WOF NO FLAGS)

+ new UIW STRING(20,

0, 79, "Item 1.2", 64,

STF_NO_FLAGS, WOF_NO_FLAGS)

+ new UIW STRING(O, 1, 19, "Item 2.1, 64
STF_NO_FLAGS, WOF_NO FLAGS)

+ new UIW STRING(20

: |

79, "Item 2.2", 64,

STF_NO_FLAGS, WOF_NO_FLAGS)

+ new UIW STRING(O, 2, 19, "Item 3.1, 64
STF_NO_FLAGS, WOF_NO_FLAGS)

+ new UIW STRING(20,

£

2, 79, 'Item 3.2", 64,

STF_NO_FLAGS, WOF_NO_FLAGS)
+ new UIW STRING(0, 3, 19, "Item 4.1", 64,
STF_NO_FLAGS, WOF_NO_FLAGS)

+ new UTW_STRING(20,

3, 79, 'Item 4.2", 64,

STF_NO_FLAGS, WOF_NO_FLAGS)

+ new UIW STRING(O,

4, 19, "Item 5.1", 64,

STF_NO_FLAGS, WOF_NO_FLAGS)

+ new UIW STRING(20,

4, 79, "Item 5.2", 64,

STF_NO_FLAGS, WOF_NO_FLAGS));

In addition to the standard matrix field, the UIW_MATRIX class
permits the creation of a matrix object that takes the complete window

Zinc Interface Library — Programmer’s Guide



2

\COMPILER\BTCPP100~\

d ATT .BGI

] BQIDEMO.C

] BGIOBJ.EXE

] cea.Bal

1 CGA.0BJ
 CHAPXMPL .ZIP
i CPP.EXE

i EGAVGA .BGI

i EGAVGA .0BJ

{ EMSTEST .com

IBM8514.8BGI
LITT .CHR
MAKE .EXE
MANUAL .DOC
MMACROS .ZIP
OBJXREF .COM
OLDSTR.DOC
PC3270 .8GI
PRJCNUT .EXE
READ

TASMZMSG .EXE
TC.EXE

TCC .EXE
TCCONFIG.TC
TCDEF .DPR
TCDEF .DSK
TCHELP .TCH
TCINST .EXE

TDH386 .SYS
TDHELP .TDH
TDINST .EXE
TDMAP .EXE
TDMEM .EXE
TDNMI .COM
TDPACK . EXE

TDREMOTE .EXE [

TDRF .EXE
TDSTRIP .EXE

region (inside the border). For example, the graphic image below shows
a directory window with a pull-down menu and a single matrix field:

This type of matrix is created whenever the WOF_NON_FIELD -
REGION window flag is specified for the matrix object.

For more information about the UIW_MATRIX window object see
“Chapter 31—UIW_MATRIX” of the Programmer’s Reference.

Menu window
objects

Pop-up menus should be used anytime you want to present selection
information to the end-user. Pull-down items should be used when a
hierarchal grouping of selection items is to be used. The pull-down
menu serves as the first level in the selection process. The figures below
show graphic, textual and code implementations of a window with a
pull-down and pop-up menu. (The pull-down menu is shown as the
horizontal line with the Item1-3 pull-down items. The pop-up menu is
shown as the vertical group of Option1-5 pop-up items.)

Chapter 3 - Window Objects 33




§
§
§
H
|
|
g
i
¥
s

153
Item1 Item2 Item3

—

Sample menus ] [4107]5

Pop-up menu........ [ Option 1 ]
[ Option 2 ] A pull-down menu
[ Option 3 ] is shown at the
[ Option 4 ] top of the window.
[ Option 5 ]

*window
+ new UIW_TITLE(" Sample menus ", WOF_JUSTIFY_CENTER)

+ &(*new UIW_PULL DOWN MENU(O, WOF_NO_FLAGS, WOAF_NO FLAGS)
+ &(*new UIW PULL_DOWN ITEM(® Ttem~1 *, MNF_NO_FLAGS,0)
+ new UIN POP_UP_ITEM('Option 1.1*, O,
MNIF_NO_FLCAGS, BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UIW POP_UP_ITEM(™Option 1.2*, 0,
MNIF _No _FLAGS, BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UIW POP_UP_ITEM(™Option 1.3", 0,
MNIF _No FLAGS, BTF_NO_TOGGLE, WOF_NO_FLAGS))
+ &(*new UIW PULL DOWN ITEM(" Item~2 ", MNF_NO_FLAGS,0)
+ new UIW POP_UP_ITEM('Option 2.1", O,
MNIF _No_FLCAGS, BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UIN_POP_UP_ITEM(™Option 2.2", 0,
MNIF NO _FLAGS, BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UIW POP_UP_ITEM(™Option 2.3", 0,
MNIF_NO FCAGS, BTF _NO_TOGGLE, WOF _NO FLAGS))
+ &(*new UIW PULL_DOWN_ITEM(" Item~3 *, MNF_NO_FLAGS,0)
+ new UIW POP_UP_ITEM("Option 3.1", 0,
MNIF No FLCAGS, BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UIW POP_UP_ITEM(™Option 3.2*, 0,
MNIF_No_FLCAGS, BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UIW_POP_UP_ITEM(®Option 3.3", 0,
MNIF_No_FLCAGS, BTF_NO_TOGGLE, WOF_NO_FLAGS)))
+ new UIW_TEXT (43, 1, 20, 5,
"A pull-down menu is shown at the top of the window.",
128, TXF_NO_FLAGS, WOF_VIEW_ONLY | WOF_NON_SELECTABLE |
WOF_BORDER)

+ new UIW_PROMPT(2, 1, "Pop-up menu........ *, WOF_NO_FLAGS)
+ &(*new UIW_POP_UP_MENU(22, 1, MNF_SELECT_ONE, WOF_BORDER,
WOAF_NO_FLAGS)
+ new UIW_POP_UP_ITEM(" Option 1 *, 0, MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UIW_POP_UP_ITEM(™ Option 2 ", 0, MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
new UIW_POP_UP_ITEM(™ Option 3 *, 0, MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UIW_POP_UP_ITEM(™ Option 4 *, 0, MNIF_NO_FLAGS,

+

34 Zinc Interface Library - Programmer’s Guide



BTF_NO_TOGGLE, WOF_NO_FLAGS)
+ new UIW POP_UP_ITEM(™ Option 5 *, 0, MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS)) ;

In addition to the default field options, pop-up and pull-down menus
can be attached directly to the screen without being part of a window.
The figures below show the graphic and code implementations of a pull-
down menu that is attached directly to the screen display:

Control DRisplay MHWindow Event Help Ecror]
Clear screen

How to order...
About the demonstration. ..

Exit

For more information about the menu window objects discussed above
see:

“Chapter 38—UIW_POP_UP_MENU,”
“Chapter 35—UIW_POP_UP_ITEM,”

“Chapter 41—UIW_PULL_DOWN_MENU,” or
“Chapter 40—UIW_PULL_DOWN_ITEM”

of the Programmer’s Reference.

Number  Number fields should be used anytime numeric information is presented
window objects  to the end-user or when numeric information is to be entered at an
application’s run-time. The figures below show graphic, textual and
code implementations of a window with several variations of a number

field (UIW_NUMBER):

Chapter 3 — Window Objects 35




&Esg-"é“ﬁoum be

%
&
§
:
§
§
§
&
2
8
i

e[e] [ Sample numbers ] [4][T]5
Standard........... [1000 ]
Curreney. .. ¢ivivoas [$10.00 ] |All edited
Commas.....cooeunnes [1,000 ] |numbers should be
Fixed decimal (2).. [10.00 ] |in the range
Peroent. . isi v [1000% ] |0..10,000
Scientific......... [1.2345E3 ]

*window

+ new UIW_TITLE(" Sample numbers ", WOF_JUSTIFY_CENTER)

+ new UIW_TEXT(43, 1, 20, 6, "All edited numbers should be
in the range 0. s 105 000' 128, TXF_NO_FLAGS
WOF_VIEW_ONLY | WOF NON SELECTABLE | "WOF BORDER)

+ new UIW PROMPT(2, 1, "Standard........... e WOF _NO_FLAGS)
+ new UIVFNIIBER(ZZ 1, 20, &ivalue, "0..10000
NMF_NO_FLAGS, WOF BORDER)

+ new UIW PROMPT(2 27 TouPreney ik e ", WOF_NO_FLAGS)
+ new UIW_NUMBER (2 2 2 20, &ivalue, "0..10000"
NMF_CURRENCY | NMF DECIMAL(2), WOF BORDER)

+ new UIW PROMPT(2, 3, "Commas............. *, WOF_NO_FLAGS)
+ new UIVI-NUIBER(22 3 20, &ivalue, "0..10000",
NMF_COMMAS, WOF BORDER)

+ new UIW PROMPT(2, 4, "Fixed decimal (2)..", WOF_NO_FLAGS)
+ new UIN”NUIBER(22 4 20, &ivalue, "0..10000",
NMF_DECIMAL (2), WOF BORDER)

+ new UIW PROMPT(2, 5, "Percent............ ", WOF_NO_FLAGS)

+ new UIVFNUIBER(22 5 20, &ivalue, "0..10000",
NMF_PERCENT, WOF BORDER R)

+ new UIW_PROMPT (2, 6, "Scientific......... e WOF_NO_FLAGS)

+ new UIW—NUHBER(ZZ 6 20, &dvalue, "0..10000",
NMF_SCIENTIFIC, WwoF BORDER),

The UIW_NUMBER class supports the following numeric types:

char—A number whose value is between -128 and 127 (8 bits,
signed).

Zinc Interface Library — Programmer’s Guide



unsigned char—A number whose value is between 0 and 255 (8
bits, unsigned).

short—A number whose value is between -32,768 and 32,767 (16
bits, signed).

unsigned short—A number whose value is between 0 and 65,535
(16 bits, unsigned).

int—A number whose value is machine dependent.

unsigned int—A number whose unsigned value is machine
dependent.

long—A number whose value is between -2,147,483,648 and
2,147,483,647 (32 bits, signed).

unsigned long—A number whose value is between 0 and
4,294,967,295 (32 bits, unsigned).

float—A single precision floating point number.
double—A double precision floating point number.

The number class object also permits the following presentation and
edit styles:

NMF_DECIMAL—Shows the number with a decimal point at a
fixed location. = Some example numbers with the NMF_-
DECIMAL(2) flag set are: "10,000.00," "43.45" and "$149.95."

NMF_CURRENCY—Shows the number with the country-specific
currency symbol. Some example numbers with the NMF -
CURRENCY flag set are: "$10,000.00," "DM100" and "£195."

NMF_CREDIT—Shows the number with the ‘C and )’ credit
symbols whenever the number is negative. For example, if the value
-10000 were entered and the NMF_CREDIT flag were set, the value
would be shown as "(10000)."

Chapter 3 — Window Objects 37




String window

38

objects

NMF_COMMAS—Shows the number with commas. Some example
numbers with the NMF_COMMAS flag set are: "$10,000.00,"
"45,000" and "1,195."

NMF_PERCENT—Shows the number with a percentage symbol.
Some example numbers with the NMF_PERCENT flag set are:
"100%," "4.5%" and "10%."

NMF_SCIENTIFIC—Shows the number in scientific format. This
flag only has effect on real numeric types. Some example real
numbers with the NMF_SCIENTIFIC flag set are: "1.0E+3,"
"4.5E-40" and "1.195E+0."

For more information about the UIW_NUMBER window object see
“Chapter 34—UIW_NUMBER?” of the Programmer’s Reference.

Several types of strings are supported by the Zinc Interface library.
They include single line string fields (UIW_STRING), multi-line text
fields (UIW_TEXT) and formatted or masked strings (UIW_FORMAT-
TED_STRING). The figures below show graphic, textual and code
implementations of these string window objects:

& la strin
' Formatted strines.. [(801) 785-8S00
4 Sarnple taxt

rle] [ Sample strings ] [L][T1]5
SYCABE S st s s [Sample string ]
Formatted strings.. [(801) 785-8900 ] [84602-0000 ]
WXL ¢ wroin's Grove wwwiw s

Sample text

*window
+ new UIW_TITLE(" Sample strings ", WOF_JUSTIFY_CENTER)

Zinc Interface Library - Programmer’s Guide



+ new UIW PROMPT(2, 1, "String............. ", WOF_NO_FLAGS)
+ new UIW STRING(22, 1, 41, "Sample string", 256,
STF_NO_FLAGS, WOF_BORDER)

+ new UIW PROMPT(2, 2, "Formatted strings..", WOF_NO_FLAGS)
+ new UIW FORMATTED STRING(22, 2, 20, '8017858900™,

*LNNNCLNNNLXXXX™, *(...) ...-....", WOF_BORDER)

+ new UIW FORIATTED_STRING(43‘ 2, 20, "846020000",
"NNNNNLNNNN*, *T.... -+...", WOF_BORDER)

+ new UIW _PROMPT(2, 3, "Text......ocoveunn. *, WOF_NO_FLAGS)

+ new UIW TEXT(22, 3, 41, 4, "Sample text", 1028,
TXF_NO_FLAGS, WOF_BORDER) ;

The string object, shown with the “Sample string” default string in the
windows above, is represented by the UIW_STRING class object. This
class object should be used anytime string information is presented to
the end-user or when string information is to be entered at an
application’s run-time and that information can best be presented on a
single scrollable line of the screen. Multi-line information is handled by
the UIW_TEXT class object.

The formatted string objects, shown with the “(801) 785-8900” and
“84602-0000” default information in the windows above, are represented
by the UIW_FORMATTED_STRING class object. This class object
should be used anytime pre-defined string format information is
presented to the end-user or when string information is to be entered
at an application’s run-time. Formatted strings restrict the type of
information that an end-user can enter.

The text object, shown with the “Sample text” default text in the
windows above, is represented by the UIW_TEXT class object. This
class object should be used anytime text information is presented to the
end-user or when text information is to be entered at an application’s
run-time and the information can best be presented on multiple word-
wrapped lines of the screen. Single-line information is best handled by
the UIW_STRING class object.

In addition to the standard text field, the UIW_TEXT class permits the
creation of a text object that takes the complete window region (inside
the border). For example, the graphic image below shows the help
window system where the help text is shown in a text object:

Chapter 3 — Window Objects ‘ 39




Time window
objects

40

leons.t? Zlnc‘}? {‘vc",l’__ lsrnruzfﬁn?ngt ration
IH SESAured- corY LN T ARA R St T 10t FAcE, cATte L ibrary

n!l.fc:?‘"”“"ﬂ}"“ ateearts 2H TR 1{Br2 LT “baa the
nr.t:. $ Rau™In éonb’nat‘on J?R ?’r"gtntngtgi
HonookS” th2 RudBlmnptisn b2 HiRASY ADaU"° 57201

P ess ¢Esc> to eontlnu-

222
e i
o XA R R R TR R YR KK Yo

The system help window is composed of the basic window objects
(discussed in the “Basic window objects” section of this chapter) and an
additional UIW_TEXT field that is dynamically sized to fill the
complete window. This type of text object is created whenever the
WOF_NON_FIELD_REGION window flag is specified for the text
object.

For more information about the string objects discussed above see:

“Chapter 43—UIW_STRING,”
“Chapter 29—UIW_FORMATTED_STRING,” or
“Chapter 45—UIW_TEXT”

of the Programmer’s Reference.

Time fields should be used whenever time information is presented to
the end-user or when time information is to be entered at an
application’s run-time. The figures below show graphic, textual and
code implementations of a window with several variations of a time field
(UIW_TIME):

Zinc Interface Library — Programmer’s Guide



Twanty-four hour. .. 3:
Colon & zero fill..

O IR IR IR IR I IR ITIIIITIIIIIIRKD

e[e] [ Sample times ] [41rr]

Standard........... [5:45 P.M.
Twenty-four hour... [17:45

Colon & zero fill.. [05:45 P.M.
BOCONAS s v-oais cinson [5:45:43 P.M.

All edited times
should be in the
range

6:00am. .10:00pm

— it et et

*window
+ new UIW_TITLE(" Sample times ", WOF_JUSTIFY_CENTER)

+ new UIW_TEXT (43, 1, 20, 6, |

*All edited times should be in the range

6:00am..10:00pm", 128, TXF NO FLAGS

WOF_VIEW_ONLY | WOF_NON_SELECTABLE | WOF_BORDER)
|
\
\
I

+ new UIW PROMPT(2, 2, *Standard........... ", WOF_NO_FLAGS)
+ new UIW TIME(22, 2, 20, &time, *6:00am..10:00pm™,
TMF_NO_FLAGS, WOF_BORDER)

+ new UIW PROMPT(2, 3, "Twenty-four hour...", WOF NO_FLAGS)
+ new UIW TIME(22, 3, 20, &time, "6:00am..10:00pm™,
TMF_TWENTY_FOUR_HOUR, WOF_BORDER)

new UIW PROMPT(2, 4, "Colon & zero fill..", WOF NO_FLAGS)
new UIW TIME(22, 4, 20, &time, “6:00am..10:00pm™,
TMF_COLON_SEPARATOR I TMF_ZERO_FILL, WOF_BORDER)

++

+ new UIW PROMPT(2, 5, "Seconds........... *, WOF_NO_FLAGS)
+ new UIW TIME(22, 5§, 20, &time, *6:00am..10:00pm",
TMF_SECONDS, WOF_BORDER) ;

By default, time class objects are presented and edited in a country-
independent fashion. Default information, however, can be overridden
by the following special time presentation and edit styles:

TMF_COLON_SEPARATOR—Separates each time variable with a
colon. Some example times with the TMF_COLON_SEPARATOR
flag set are: "12:00," "13:00:00" and "12:00 a.m."

Chapter 3 — Window Objects 41



42

TMF_HUNDREDTHS—Includes the hundredths value in the time.
(By default the hundredths value is not included.)

TMF_LOWER_CASE—Shows the time in a lower-case format.
Some example times with the TMF_LOWER_CASE flag set are:
"12:00 p.m." and "1:00 a.m."

TMF_NO_SEPARATOR—Does not use any separator characters to
delimit the time values. Some example times with the TMF_NO _-
SEPARATOR flag set are: "1200" and "130000."

TMF_SECONDS—Includes the seconds value in the time. (By
default the seconds value is not included.)

TMF_TWELVE_HOUR—Forces the time to be shown using a 12
hour clock, regardless of the default country information. Some
example times with the TMF_TWELVE_HOUR flag set are: "12:00
am.," "1:00 p.m." and "5:00 p.m."

TMF_TWENTY_FOUR_HOUR—Forces the time to be shown using
a 24 hour clock, regardless of the default country information.
Some example times with the TMF_TWENTY_FOUR_HOUR flag
set are: "12:00," "13:00" and "17:00."

TMF_UPPER_CASE—Shows the time in an upper-case format.
Some example times with the TMF_UPPER_CASE flag set are:
"12:00 PM." and "1:00 A.M."

TMF_ZERO_FILL—Forces the hour, minute and second values to
be zero filled when their values are less than 10. Some example
times with the TMF_ZERO _FILL flag set are: "01:10 a.m,"
"13:05:03" and "01:01 p.m."

Other window  There are two additional object types supported by the Zinc Interface

objects

Library: icons and pop-up windows.

Icons are selectable graphic images that can be attached to a window or
directly to the screen display. The figures below show graphic and
partial code implementations (only 1 bit map is shown) of a window
with 3 icons (UIW_ICON). In addition the same 3 icons are shown
attached directly to the screen display.

Zinc Interface Library — Programmer’s Guide



S

%
&
i

¥

XXX OO

?tatic USHORT handBitmapi[] =

32, 15,
0x0001, 0x8000, 0x0006, 0x6000,
0xOF18, Ox1FFO, OXODEO, 0x0808,
0x0D00, 0x0808, 0x0D01, OXFFFO,
0x0D02, 0x0080, 0x0D02, 0x0080,
0x0D01, OXFF00, 0x0D02, 0x0100,
0x0D02, 0x0100, 0x0DO1, OXFEOO,
OXODE1, 0x0200, OXOF1F, 0x0200,

0x0001, OxFEOO
}-
UéHORT *handBitmaps[] = { handBitmapi, 0 };

static UI_PALETTE handPalettes[] = { {
’\260’, attrib(BLACK, WHITE), attrib(MONO_DIM, MONO_BLACK),
INTERLEAVE FILL, attrib(BLACK, WHITE),
attrib(BW_WHITE, BW_WHITE), attrib(GS_GRAY, GS_GRAY) } };

*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW TITLE("Example Icons"', WOF_JUSTIFY_CENTER)
+ new UIW_ICON(7, 3, handBitmaps, handPalettes,
ICF_NO_FLAGS, WOF_NO_FLAGS)
+ new UIW_TICON(15, 2, zincBitmaps, zincPalettes,
ICF_NO_FLAGS, WOF_NO_FLAGS)
+ new TCON(25, 1, worldBitmaps, worldPalettes,
ICF_NO_FLAGS, WOF_NO_FLAGS);
*windowManager
+ new UIW_ICON(7, 3, handBitmaps, handPalettes,
ICF_NO_FLAGS, WOF_NO_FLAGS)
+ new UIW_TCON(15, 2, zincBitmaps, zincPalettes,
ICF_NO_FLAGS, WOF_NO_FLAGS)
+ new UIW TCON(25, 1, worldBitmaps, worldPalettes,
ICF_NO_FLAGS, WOF_NO_FLAGS);

Icons can be used anytime you want to present a selectable item in
graphical form. The main drawback of icons is that they only have

Chapter 3 — Window Objects 43




44

graphic implementations. Your application will be less portable (to text
environments) if extensive use of icons is used.

Pop-up windows should be used to show additional information that
cannot fit in the parent window or whose presentation is enhanced by
a separate window. The figures below show the graphic, textual and
code implementations of a pop-up window (shown as the Salary
Information window):

%
5

PR R R R

Joe Programner
L e P R

Address .. |[Pleasant Groue‘ UT

Emp loynant Info.. [See Sub-

Salary Info... See Sub-Window

2

Starting Date. ...
Starting Salary..
Current Salary...
Comments . ..

R RRL LR A AA X

ORI XRIAIIAOHVOIN X

¢[e ]==[Employee Information] [L1[71]
Name..... [Joe Programmer
Address.. [Pleasant Grove, UT ]

Employment Info.. [See Sub-Window]
Salary Info...... [See Sub-Window]
[Salary Sub-Window]

Starting Date.... [ ]
Starting Salary.. [ ]
Current Salary... [ ]
Comments...

Hourly Wages

*popupz
new UIW_BORDER

+ new UIW_TITLE("Salary Sub-Window", WOF_JUSTIFY_CENTER)
+ new UIW_PROMPT(2, 1, "Starting Date...."', WOF_NO_FLAGS)
+ new UIW_PROMPT (2, 2, 'Starting Salary..", WOF_NO_FLAGS)
+ new UIW_PROMPT(2, 3, "Current Salary...", WOF_NO_FLAGS)
+ new UIW_PROMPT(2, 4 "Comments...", WOF _NO_FLAGS)

+ new UIW_DATE(20, 1, 15, &UI_DATE(), "*,”

Zinc Interface Library — Programmer’s Guide



DTF_NO_FLAGS, WOF_BORDER)

+ new UTW STRING(20, 2, 15, **, 64,
STF_NO_FLAGS, WOF B ORDER)

+ new UIW §TRING(20 3,15, ", 64,
STF_NO FLAGS, WOF BORDER)

+ new UIW TEXT(14, 4,723, 3,
1024, TXF_NO_| FLAGS, WOF BORDER),

*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE BUTTON
+ new UIW_SYSTEM BUTTON
+ new UIW’TITLE('Employee Information , WOF_JUSTIFY_CENTER)
+ new UIW—PROMPT( , 1, "Name..... *, WOF_NO_FLAGS)
+ new UIW_PROMPT (2, 2, 'Address b WOF NO_FLAGS)
+ new UIW_PROMPT(2, 5, 'Employment Info..", WOF_NO_FLAGS)
+ new UIW_PROMPT(2, 6, "Salary Info...... *, WOF_NO_FLAGS)
+ new UIW—STRING(12 1, 25, "Joe Programmer", 63,

STF_NO FLAGS, WOF BORDER)
new UIW '§TRING(12 2, 25, 'Pleasant Grove, UT", 64,
STF_NO_FLAGS, WOF BORDER)
+ new UTW §TRING(12 3,25, "", 64,
STF_NO FLAGS, WOF BORDER)
+ new UIW POP UP mm(z 5, 15, "See Sub-Window",
popupT, BTF _NO FLAGS, WOF NO FLAGS),
+ new UIW_POP UP WINDOW(2O 6, 15, "See Sub-Window",
popup2, BTF_NO_FLAGS, WOF NO FLAGS),

+

For more information about the additional window objects discussed
above see:

“Chapter 30—UIW_ICON,”
“Chapter 38—UIW_POP_UP_WINDOW”

of the Programmer’s Reference.

Chapter 3 — Window Objects 45




46 Zinc Interface Library — Programmer’s Guide




CHAPTER 4 - DEFAULT EVENT MAPPING

Overview “Chapter 2—Conceptual Design” of this manual briefly discussed the
implementation of event mapping in the Zinc Interface Library. This
chapter describes the default mapping of events for the UI_BIOS -
KEYBOARD and UI_MS _MOUSE devices. This default event
mapping conforms to the key assignments specified by IBM’s Systems
Application Architecture document—the Common User Access Panel
Design and User Interaction edition.

The default event map information, provided below, can be changed by
the programmer by redefining the system event map table _eventMap-
Table. A complete discussion of how to change the default mapping is
given in “Chapter 14—UI_EVENT MAP” of the Programmer’s

Reference.
Default Action Key Description
keyboard Begin <Ctrl Home> Moves to the beginning of the field.

mapping field <Ctrl Grey Home>

Cancel <F12> Generates the logical S_ CANCEL
command.
Copy <Ctrl F7> Copies the entire contents of the

current window field. The copied
section is stored in a global paste
buffer. This key only has effect in
fields that can be edited.

Cut <Ctrl F6> Cuts the entire contents of the
current window field. The cut
section is removed and stored in a
global paste buffer. This key only
has effect in fields that can be

edited.

Delete <Alt Del> Deletes all characters from the

line <Alt Grey Delete>  current cursor position to the end of
the line.

Chapter 4 — Default Event Mapping 47




48

Delete <Del>
next <Gray Delete>
character

Delete  <Backspace>
previous
character

Delete <Esc>
temporary
window

Delete <F3>
window <Alt F4>

Delete <Ctrl Del>

word <Ctrl Grey Delete>

Down <i>
<Gray | >

Deletes the character underneath the
cursor, leaving the position of the
cursor unchanged. This key only has
effect in fields that can be edited and
only where the cursor is not in the
field’s last position.

Moves the cursor left one position,
deleting the character underneath
the cursor (i.e. the character
immediately to the left of the cursor
before it is moved). This key only
has effect in fields that can be edited
and only where the cursor is not in
the field’s first character position.

If the current window is identified as
a temporary window (WOAF _-
TEMPORARY), pressing <Esc>
removes the current window from
the screen display. For example,
when an end-user selects the system
button, a pop-up menu appears. If
the user presses <Esc> at this time,
the pop-up menu is erased from the
screen display.

Closes a window that is not
temporary.

Positions the cursor at the beginning
of the word to be deleted, then
deletes the word and any trailing
spaces. The cursor remains in its
original position after the deletion.

If the field occupies a single line on
the screen or the cursor is
positioned on the bottom line of a
multi-line field, pressing <Down-
arrow> moves from the current (or
selected) window field to the window

Zinc Interface Library — Programmer’s Guide



field immediately below the current
field. The left or right edge of the
field above must be on the same
boundary as the current field (i.e.,
their left edges or right edges must
have the same pixel or cell
coordinate). If the field is a multi-
line field and the cursor is not
positioned on the bottom line,
pressing <Down-arrow> moves the
cursor down one line on the display.

Down <PgDn> If the field occupies a single line on

page <Gray PgDn> the screen or the cursor is
positioned on the bottom line of a
multi-line field, pressing <PgDn>
moves from the current (or selected)
window field to the last window
field. If the field is a multi-line field
and the cursor is not positioned on
the bottom line, pressing <PgDn>
moves the cursor down one page in
the current field.

End <Ctrl End> Moves to the end of the field.
field <Ctrl Grey End>

End <End> Moves the cursor to the end of the
line <Grey End> current line.
Exit <Shift F3> Exits the application program.
<Ctrl Break>
<Ctrl C>
Help— <F1> Displays context sensitive help
context information regarding the current
sensitive window.
Help— <Alt F1> Displays general help information
general for the application program.

Chapter 4 — Default Event Mapping 49




Home <Home>
<Grey Home>

Left <+>
<Gray +>

Left <Ctrl +>
word <Ctrl Grey +>
<Alt +>
<Alt Grey +>

Mark <Ctrl F5>

Maximize <Alt +>
<Alt F10>

Menu <Alt>
control <F10>

Moves the cursor to the beginning of
the current line.

If the cursor is positioned in the first
character position of a right-hand
field, pressing <Left-Arrow> moves
the cursor to the last character
position of a left-hand field.
Otherwise, pressing <Left-Arrow>
moves the cursor one character to
the left.

Moves the cursor to the beginning of
the previous word or to the
beginning of the same word if the
cursor was originally positioned in
the middle of that word. (word left)

Begins a marked region on the
position of the cursor (only in fields
that can be edited). When followed
by any movement keys and then
<Enter>, the marked text is
copied. When followed by any
movement keys and then <Del>,
the marked text is cut. The cut
section is removed and stored in a
global paste buffer.

Maximizes the size of the current
window (i.e., increases the size of the
window to occupy-the entire screen).
This key only has effect when the
current window can be sized and if it
is not already in a minimized state.
If the window is in a maximized
state, selecting this key causes the
window to be restored to its original
size.

Selects the pull-down menu (if any)
associated with the current window.

50 Zinc Interface Library — Programmer’s Guide



This changes the highlight field, or
cursor position, from the current
field to the pull-down menu. This
key only has effect when the current
window has a pull-down menu.

Minimize <Alt -> Minimizes the size of the current

<Alt F9> window (i.e., reduces the size of the
window to the minimum allowed by
the object type). This key only has
effect when the current window can
be sized and if it is not already in a
maximized state. If the window is in
a minimized state, selecting this key
causes the window to be restored to
its original size.

Move <Alt F7> Moves the current window when

window followed by any movement key and
then <Enter>. When followed by
any movement key and then <Esc>,
the selected window is returned to
its original position.

Next <Enter> Moves from the current (or selected)

field <Gray Enter> window field to the next selectable
<Tab> window field. If the last window
<Fé6> field is currently selected, pressing

<Tab> cycles to the first selectable
window field.

Next <Alt F6> Moves from the current (or selected)

window window to the next selectable
window in the window manager’s list
of windows.

Paste <Ctrl F8> Retrieves the cut section from the

global paste buffer and pastes it in
the current field. This key only has
effect in fields that can be edited.

Chapter 4 — Default Event Mapping 51



Previous <BackTab> Moves from the current (or selected)
field <Shift F6> window field to the previous
<Shift Tab> selectable window field. If the first
window field is currently selected,
pressing <BackTab> cycles to the
last selectable window field.

Redo <Ctrl F10> Restores, in the current field, the
most recent changes executed using
the undo function (<F9>) in that
field. For example, the undo
operation below explains how an
end-user may accidently delete a
complete line in a text field. If the
user continued to perform undo
operations, then decided some of the
old text was worthwhile, the
information could still be retrieved
by pressing the <Ctrl F10> key or
the <Alt Right> mouse button
(hold the <Alt> key while pressing
the right mouse button). The redo
operation is implemented on a field-
by-field basis. Thus, an end-user
could perform edit and undo
operations on one field, move to a
different field to perform edit
operations, then return to the
original field and perform redo
operations.

Refresh ~ <F5> Refreshes the screen. (Re-displays
all of the window objects on the
screen.)

Restore  <Alt F5> Restores the original size of the
window. Used with <Alt +> and
<Alt ->.

Right <-=+> If the cursor is positioned in the last

<Gray —+> character position of a left-hand
field, pressing <Right-Arrow>

52 Zinc Interface Library — Programmer’s Guide




moves the cursor to the first
character position of a right-hand
field. Otherwise, pressing <Right-
Arrow> moves the cursor one
character to the right.

Right <Ctrl =»> Moves the cursor to the beginning of
word <Ctrl Gray —=> the next word. (word right)

<Alt =»>

<Alt Gray ->
Size <Alt F8> Sizes, from the bottom right corner,
window the current window when followed

by any movement key. Pressing
<Enter> accepts the alteration in
size, while pressing <Esc> returns
the window to its original size.

System  <Alt Spacebar> Selects the system button (if any)
<Alt .> associated with the current window.
This causes the pop-up menu
associated with the current window’s
system button to be displayed on the

screen.
Toggle <Ins> Toggles the edit mode from insert to
<Gray Insert> overstrike mode or vise-versa. This
key only has effect in fields that can
be edited.
Undo <Ctrl F9> Undoes the most recent changes in

the current field. For example, if an
end-user accidently deleted a
complete line in a text field, the
information could be retrieved by
pressing the <Ctrl F9> key or the
<Alt Left> mouse button (i.e.,
holding the <Alt> key while
pressing the left mouse button).
The undo operation is implemented
on a field-by-field basis. Thus, an

Chapter 4 — Default Event Mapping 53




Up <t>
<Gray t>
Up <PgUp>

page <Gray PageUp>

Default mouse Action Mouse
mapping Choose <Left-down-click>

end-user could perform edit and
undo operations on one field, move
to a different field to perform edit
operations, then return to the
original field and continue edit or
undo operations.

If the field occupies a single line on
the screen or the cursor is
positioned on the top line of a
multi-line field, pressing <Up-
arrow> moves from the current (or
selected) window field to the window
field immediately above the current
field. The left or right edge of the
field above must be on the same
boundary as the current field (i.e.,
their left edges or right edges must
be on the same pixel or cell
coordinate). If the field is a multi-
line field and the cursor is not
positioned on the top line, pressing
<Up-arrow> moves the cursor up
one line on the display.

If the field occupies a single line on
the screen or the cursor is
positioned on the top line of a
multi-line field, pressing <PgUp>
moves from the current (or selected)
window field to the first window
field. If the field is a multi-line field
and the cursor is not positioned on
the top line, pressing <PgUp>
moves the cursor up one page in the
current field.

Description
If the end-user is on the window’s

title bar, pressing this button moves
the window. If the end-user is on

54 Zinc Interface Library — Programmer’s Guide



the window’s border, pressing this
button sizes the window. Otherwise,
pressing the left mouse button
selects the field positioned under the
mouse cursor (if the field is
selectable).

Copy <Left-drag, If the user is in an edit field and a
Right-down-click> region has been marked, pressing
these buttons copies the marked
portion of the current window field.

Cut <Right-down-click> If the user is in an edit field and a
region has been marked, pressing
this button cuts the marked portion
of the current window field. If the
user is in an edit field and a region
has not been marked, pressing this
button pastes the contents of the
global paste buffer (if any) to the
current field.

Mark <Left-drag> If the current field is an field that
can be edited, holding the left
button down and dragging the
mouse specifies the mark location.

Paste <Right-down-click> If the user is in an edit field and a
region has been previously cut or
copied, pressing these buttons
together copies the marked portion
of the current window field into the
global paste buffer.

Redo <Alt Restores, in the current field, the
Right-down-click> most recent changes executed using

the undo function (<F9>) in that
field. For example, the undo
operation below explains how an
end-user may accidently delete a
complete line in a text field. If the
user continued to perform undo
operations, then decided some of the

Chapter 4 — Default Event Mapping 55




56

Select

Undo

<Left-release>

<Alt
Left-down-click>

old text was worthwhile, the
information could still be retrieved
by pressing the <Ctrl F10> key or
the <Alt Right> mouse button
(holding the <Alt> key while
pressing the right mouse button).
The redo operation is implemented
on a field-by-field basis. Thus, an
end-user could perform edit and
undo operations on one field, move
to a different field to perform edit
operations, then return to the
original field and perform redo
operations.

If the current field is a field that can
be edited, releasing this button
completes the mark specification.
Otherwise, releasing this button
completes the select operation.

Undoes the most recent changes in
the current field. For example, if an
end-user accidently deleted a
complete line in a text field, the
information could be retrieved by
pressing the <Ctrl F9> key or the
<Alt Left> mouse button (holding
the <Alt> key while pressing the
left mouse button). The undo
operation is implemented on a field-
by-field basis. Thus, an end-user
could perform edit and undo
operations on one field, move to a
different field to perform edit
operations, then return to the
original field and continue edit or
undo operations.

Zinc Interface Library — Programmer’s Guide



CHAPTER 5 - DEFAULT PALETTE MAPPING

Introduction

“Chapter 2—Conceptual Design” of this manual briefly discusses the
implementation of palette mapping in the Zinc Interface Library. This
chapter describes the default mapping of color palettes for all the
window objects.

The default palette map information, provided below, can be changed
by the programmer by redefining the following global palette map
tables:

_normalPaletteMapTable,
_helpPaletteMapTable and
_errorPaletteMapTable.

A complete discussion of how to change the default mapping is given in
“Chapter 20—UI_PALETTE_MAP” of the Programmer’s Reference.

The following naming convention is used by the palette tables shown
below:

BORDER—The UIW_BORDER class object.

BUTTON—The UIW_BUTTON class object, which includes the
following derived classes: UIW_MAXIMIZE BUTTON,
UIW_MINIMIZE_BUTTON and UIW_SYSTEM_BUTTON.

Color Attributes—The colors used by the Zinc Interface Library.
The following colors are used: black, blue, green, cyan, red,
magenta, brown, lightgray, darkgray, lightblue, lightgreen,
lightcyan, lightred, lightmagenta, yellow, white, black, dim,
normal, high.

CURRENT—Refers to the current or selected window or window
object.

COLOR GRAPHICS—Refers to a color graphics display.

COLOR TEXT—Refers to a color text display.

Chapter 5 — Default Palette Mapping 57




58

MENU—Refers to the objects displayed as menus and includes the
following class objects: UIW_POP_UP_ITEM, UIW_POP_-
UP_MENU, UIW_PULL_DOWN_ITEM and UIW_PULL_-
DOWN_MENU.

MONOCHROME GRAPHICS—Refers to a monochrome graphics
display.

MONOCHROME TEXT—Refers to a monochrome text display.

NON-CURRENT—Refers to a non-current window or window
object.

PROMPT—The UIW_PROMPT class object.
TITLE—The UIW_TITLE class object.
WINDOW—The UIW_WINDOW class object.

WINDOW OBJECT—The Ul_WINDOW_OBIJECT class object.

Zinc Interface Library — Programmer’s Guide



Standard
window colors

table are shown in the table below:

Standard window colors are obtained from the _normalPaletteMapTable
global palette table. The default color combinations for this palette

OBJECT DISPLAY FOREGROUND BACKGROUND
BORDER COLOR CURRENT darkgray darkgray
GRAPHICS
NON-CURRENT darkgray darkgray
COLOR CURRENT white lightgray
TEXT
NON-CURRENT white lightgray
MONOCHROME | CURRENT black white
GRAPHICS
NON-CURRENT black white
MONOCHROME | CURRENT high black
TEXT
NON - CURRENT normal black
BUTTON COLOR CURRENT darkgray lightgray
GRAPHICS
NON - CURRENT darkgray lightgray
COLOR CURRENT white lightgray
TEXT
NON - CURRENT white lightgray
MONOCHROME | CURRENT black white
GRAPHICS
NON-CURRENT black white
MONOCHROME | CURRENT high black
TEXT
NON-CURRENT normal black
MENU COLOR CURRENT black lightgray
GRAPHICS
NON - CURRENT black white
COLOR CURRENT lightgray darkgray
TEXT
NON-CURRENT darkgray lightgray
MONOCHROME | CURRENT white black
GRAPHICS
NON-CURRENT black white
MONOCHROME | CURRENT black normal
TEXT
NON-CURRENT normal black
PROMPT COLOR CURRENT black white
GRAPHICS
NON-CURRENT black white
(continued on the next page)
Chapter 5 — Default Palette Mapping 59




60

(continued from the previous page)

PROMPT COLOR CURRENT yellow lightgray
TEXT
NON - CURRENT yellow lightgray
MONOCHROME | CURRENT black white
GRAPHICS
NON-CURRENT black white
MONOCHROME | CURRENT high black
TEXT
NON-CURRENT high black
TITLE COLOR CURRENT yellow blue
GRAPHICS
NON-CURRENT blue white
COLOR CURRENT yellow lightgray
TEXT
NON - CURRENT white lightgray
MONOCHROME | CURRENT white black
GRAPHICS
NON-CURRENT black white
MONOCHROME | CURRENT high black
TEXT
NON-CURRENT normal black
WINDOW COLOR CURRENT black white
GRAPHICS
NON-CURRENT black white
COLOR CURRENT white lightgray
TEXT
NON-CURRENT white lightgray
MONOCHROME | CURRENT white black
GRAPHICS
NON-CURRENT white black
MONOCHROME CURRENT normal black
TEXT
NON-CURRENT normal black
WINDOW COLOR CURRENT black white
OBJECT GRAPHICS
NON-CURRENT black white
COLOR CURRENT black white
TEXT
NON-CURRENT black lightgray
MONOCHROME | CURRENT black white
GRAPHICS
NON-CURRENT black white
MONOCHROME | CURRENT black normal
TEXT
NON-CURRENT normal black

Zinc Interface Library — Programmer’s Guide




Help window  The help window system uses the default window colors specified in the
colors  _helpPaletteMapTable global palette table. The default color combina-
tions for this palette table are shown in the table below:

OBJECT DISPLAY FOREGROUND  BACKGROUND
BORDER COLOR CURRENT lightgray lightgray
GRAPHICS
NON - CURRENT lightgray lightgray
Cgkgﬁ CURRENT lightgreen lightgray
T
NON-CURRENT lightgreen lightgray
MONOCHROME | CURRENT white black
GRAPHICS
NON-CURRENT white black
MONOCHROME | CURRENT high black
TEXT
NON-CURRENT normal black
BUTTON COLOR CURRENT lightgreen lightgray
GRAPHICS
NON-CURRENT darkgray lightgray
$0LOR CURRENT lightgreen lightgray
EXT
NON-CURRENT lightgreen lightgray
MONOCHROME | CURRENT white black
GRAPHICS
NON-CURRENT white black
MONOCHROME | CURRENT normal black
TEXT
NON-CURRENT normal black
TITLE GRAPHICS CURRENT yellow green
NON-CURRENT green white
TEXT CURRENT yellow lightgray
NON - CURRENT lightgreen lightgray
MONOCHROME | CURRENT black white
GRAPHICS
NON-CURRENT white black
MONOCHROME | CURRENT high black
TEXT
NON - CURRENT normal black

Chapter 5 — Default Palette Mapping

61




Error window The error window system uses the default window colors specified in the
colors  _errorPaletteMapTable global palette table. The default color combina-
tions for this palette table are shown in the table below:

OBJECT DISPLAY FOREGROUND  BACKGROUND

BORDER COLOR CURRENT lightgray lightgray
GRAPHICS
COLOR CURRENT lightred lightgray
TEXT
MONOCHROME | CURRENT white black
GRAPHICS
MONOCHROME | CURRENT high black
TEXT

BUTTON COLOR CURRENT darkgray lightgray
GRAPHICS
COLOR CURRENT lightred lightgray
TEXT
MONOCHROME | CURRENT white black
GRAPHICS
MONOCHROME | CURRENT normal black
TEXT

TIELE COLOR CURRENT yellow red
GRAPHICS
COLOR CURRENT yellow lightgray
TEXT
MONOCHROME | CURRENT black white
GRAPHICS
MONOCHROME | CURRENT high black
TEXT

62 Zinc Interface Library — Programmer’s Guide




CHAPTER 6 - TUTORIALS

Overview

The following tutorials will help you get started using the Zinc Interface
Library (“ZIL’). It is assumed that you are familiar with the basic
concepts of the C++ language and know how to compile, link and
execute the programs provided. A sample MAKEFILE is included with
the tutorials. It is used with Borland’s MAKE utility to compile and
link each of the programs and can be modified for the specific
environment of your system. The tutorials move through a large
number of examples with comments on the particular features and ZIL
objects used. Particular attention should be paid to the code itself as
this is the easiest way to quickly understand difficult concepts.

The following tutorials demonstrate the basic Zinc Interface Library
elements:

e “Hello World!” is a simple window with text. It shows how the
display, event manager and window manager are constructed.

e “Notepad” is program with multiple windows containing data
that can be moved between them. It shows how the help and
error systems are used. In addition, the cut, copy, paste, undo
and redo capabilities are demonstrated.

e “Calendar” is a short program which shows how to derive
objects from ZIL class objects.

e “The Custom Application” is a continuation of the “Calendar”
tutorial and shows how colors and key mapping can be
customized.

»  “Phone Book” is a simple data base. It uses data entry fields
inside a window to collect and save names and phone numbers
to a file.

The five tutorials range from the simplest program “Hello World” to a
more complex and useful phone book program. Each tutorial program
is found in the TUTORIAL directory. For more help or for specific
examples of the ZIL class objects, see the example programs in the
EXAMPLES directory and refer to the Programmer’s Reference.

Chapter 6 — Tutorials 63



Hello World!

64

Creating the
display

This first tutorial program demonstrates how to set up the basic Zinc
Interface Library elements. Using a slight modification of the classic
sample program “Hello World,” this tutorial sets up the display, creates
a simple window and displays the text inside the window.

The final program will produce a screen similar to one of the following,
depending on the graphics or text display mode:

[¢]===[ Hello World Window ]===[l1][T]
Hello, World!

The code for the “Hello World!” program is located in \ZINC-
\TUTORIAL\HELLO.CPP. Be sure that the C++ compiler directory is
in the path. The executable program is made by typing “make
hello.exe” at the command line while in the TUTORIAL directory.

This window is created by following some simple steps. At the top of
the program the header file UI_WIN.HPP is included by using the
following code:

#include <ui_win.hpp>

This header file contains all of the class prototypes for windows and
window objects. Because of ZILs header file hierarchy all of the header
files required by ZIL objects are also included. (See the “Introduction”
in the Programmer’s Guide for more information about the header
files.) To gain access to the ZIL header files, list them with the
INCLUDE environment variable (in TURBOC.CFG) or in the IDE
configuration file.

In the first few lines of the main program you must initialize the screen
display, event manager and window manager. These modules are used

Zinc Interface Library — Programmer’s Guide



by all of the higher level ZIL objects. The following code segment
initializes the screen display:

// Initialize the display, trying for graphics first.
UI_DISPLAY *display = new UI_DOS_BGI_DISPLAY;
if (!display->installed)

delete display;
display = new UI_DOS_TEXT_DISPLAY;

The screen display is the first object that must be set up. The code
above uses the new operator to construct a display object. The new
operator calls the graphics display class constructor and allocates
memory for each of its members. If this fails (i.e., a graphics compatible
card does not exist) then the graphics display object is deleted and a text
display object is created. If a graphics display is used, the Turbo C++
BGI files must be in the environment PATH in order to run the final
program. The BGI files include important graphics display information
that is needed at run-time.

If the text display is to be the default display, then the following code
segment should be used in place of the code segment above:

UI_DISPLAY *display = new UI_DOS_TEXT_DISPLAY;

Both of the examples above auto-detect the particular default display
mode.

The event The following code segment creates the event manager and input
manager devices:

// Initialize the event manager.
UI_EVENT_MANAGER eventManager (100, display);
eventManager

+ new UI_BIOS_KEYBOARD

+ new UI_MS_MOUSE

+ new UI_CURSOR;

The event manager is constructed in the first line. It requires two
parameters:

e 100 is the maximum number of elements in the event queue.

s display is a pointer to the screen display.

Chapter 6 — Tutorials 65



The window
manager

Creating the
window

66

The event manager polls each device in its device list for events. When
an event occurs (i.e., a key is pressed) or a message is sent, it is added
to the event queue. The event is then channeled to the correct receiving
object (e.g., the window manager).

Adding devices to the event manager is very easy with the
UI_EVENT_MANAGER::operator+ operator overload. The keyboard,
mouse and cursor devices are added to the event manager in the
example above using the + operator. These devices and others can be
added or subtracted (using the UI_EVENT_MANAGER::operator-
operator overload) from the event manager at other places in the
program also.

The window manager is created in a similar way to the event manager.

// Initialize the window manager.
UI_WINDOW_MANAGER windowManager (display, &eventManager);

The window manager is constructed with two parameters:
 display is a pointer to the screen display.
e &eventManager is a pointer to the event manager.

The window manager controls the presentation and operation of
windows and window objects on the screen. It routes all events from
the event manager devices to windows attached to the window manager.
Once a window is attached, it receives event information from the
window manager.

The example below calculates the screen center by using information
from the screen display and then creates a new window with basic
window objects (border and button) and a text field:

// Create a window in the screen center with text inside.
int centerX = display->columns / display->cellWidth / 2;
int centerY = display->lines / display->cellHeight / 2;
UIW_WINDOW *window = new UIW WINDOW(centerX - 20, centerY - 3,

40, 6, WOF_NO_FLAGS, WOAF_NO_FLAGS);
*window

+ new UIW_BORDER

+ new UIW_MAXIMIZE_BUTTON

+ new UIW_MINIMIZE BUTTON

+ new UIW_SYSTEM_BUTTON

+ new UIW_TITLE(™ Hello World Window ",

WOF_JUSTIFY_CENTER)

Zinc Interface Library — Programmer’s Guide



+ new UIW TEXT(O, 0, O, O, "Hello, World!", 256,
TXF_NO_FLAGS, WOF NON FIELD REGION)),

Each window object is created and added to the window using the
UIW_WINDOW::operator+ operator overload.

In addition, the text object is created using the WOF_NON_-
FIELD_REGION flag. This flag tells the parent window that the text
region will cover all of the window. (See “Chapter—25 Ul_WINDOW_-
OBJECT” of the Programmer’s Reference for more information about
WOF flags.)

Adding the The window must be added to the window manager in order to be
window displayed to the screen and receive event information. The UIL_-
WINDOW_MANAGER::operator+ operator overload is used to add the

window to the window manager.

windowManager + window;

The event loop  After the display, event manager and window manager have been
initialized, the following loop is used to retrieve input from the user:

// Wait for user response.
int ccode;

UI_EVENT event;

do

{
// Get input from the user.
eventManager.Get(event, Q_NORMAL);

// Interpret an <Esc> as an L_EXIT message.
if (event.type == E_KEY && event.rawCode == ESCAPE)
event.type = L_EXIT;

// Send event information to the window manager.
ccode = windowManager.Event(event);
} while (ccode != L_EXIT);

The first step calls the event manager to get an event. At run-time the
event manager polls all of the attached input devices until an event
occurs. The returned event is then checked by the program before it is
passed on to the window manager. In this example, the <Esc> key is
retrieved by the main program loop and changed to an exit message
(L_EXIT) before the window manager receives it. If the L_EXIT key
is interpreted or passed back from the window manager, the program
ends.

Chapter 6 — Tutorials 67



68

Clean up

Run-time
features

At the conclusion of the program you must manually destroy any objects
you have created using the new operator. Any objects that have been
added to the event manager or window manager, however, are
automatically destroyed by the manager’s destructor routine. In this
tutorial the event manager and window manager destructors are called
automatically when the scope of main ends.

The delete operator calls the class destructor and de-allocates memory
used by the class object. The following code deletes the screen display:

// Clean up.
delete display;

Some of the best features of the Zinc Interface Library are inherently
available to windows and the objects attached to them. Running the
program you see the window with the text “Hello World!” inside. This
window can be moved to another place on the screen (or off the screen)
using either the keyboard or mouse. You can perform the following
actions on the “Hello World!” window at run-time:

Move—Pressing the left mouse button with the mouse pointer on
the window’s title bar and “dragging” the mouse or pressing
<Alt F7> and using the arrow keys allows you to move the window
to any part of the screen.

Size—Moving the mouse pointer to one of the corner or border
regions on the window and ‘“dragging” the corner or pressing
<Ali F8> and using the arrow keys allows you to size the window.

Minimize—Clicking the mouse on the minimize button (shown as
a button at the right top of the window with a ‘1’ character) or
pressing <Alt F9> reduces the window to the minimum size
allowed by the window.

Maximize—Clicking the mouse on the maximize button (shown as
a button at the right top of the window with a ‘t’ character) or
pressing <Alt F10> changes the window size to occupy the entire
screen display.

Restore—Clicking the mouse on the maximize button after the

window is maximized (or on the minimize button if minimized) or
pressing <Alt F5> changes the window size to the former size.

Zinc Interface Library — Programmer’s Guide



Exit—Clicking on the system button (shown as a button on the left
top side of the window with a ‘¢’ character), pressing <Esc>, or
pressing <Alt F10>, closes the window and exits the program.

Chapter 6 — Tutorials 69



Notepad

This tutorial demonstrates the following:

¢ How to create two windows with fields that allow interactive editing
at run-time.

e How to create a help file.

e How to initialize the help and error systems.

Creating fields allows the user to cut, copy and paste between various
windows on the screen at run-time. Together with the undo/redo

capabilities of each data field in each window, this allows you to have
greater flexibility in customizing the final product to any need.

The final program will produce a screen similar to one of the following,
depending on the graphics or text display mode:

Notepad 1

To: [Everyone 7] Date: [Qune 8, 1880 ]

e ey

[Notepad 1]
To: [Everyone 1 Date: [May 31, 1990 ]
Message:
1
{-.[.] [Notepad 2] (L1011
To: [Everyone ] Date: [May 31, 1990 ]
Message:

The code for the “Notepad” program is located in
\ZINC\TUTORIAL\NOTEPAD.CPP. Be sure that the C++ compiler

70 Zinc Interface Library - Programmer’s Guide



directory is in the path. The executable program is made by typing
“make notepad.exe” at the command line while in the TUTORIAL
directory.

The help  For a complete application to be user friendly, a context sensitive help
system  system must be installed. Using the help system supplied with the Zinc
Interface Library, you can easily create and modify help information that

can be accessed throughout your application.

Each help context—a page or more of specific information—can be
attached to any number of windows or be assigned to the general help
context. At run-time, the help key (defaulted to <F1>) displays the
help information assigned to the current window. If you do not assign
a help context to a particular window then the general help information
is presented. You may also call the help system at any time to display
a particular help context.

The help context information is read from a binary help file on the disk
when needed. This file is created from a text file using the
GENHELP.EXE utility which is supplied with the Zinc Interface Library.
For example, the text file NOTEPAD.TXT below was converted into a
binary help file using GENHELPEXE:

--- HELP_GENERAL 1 ---

General Help

This application demonstrates how to mark, cut, copy and
paste between windows.

' Press <Esc> to continue...
--- HELP_NOTEPAD 2 ---

Notepad Help
Use the following keys to move information between the windows.

Mark - <Ctrl F5> or <Left-drag> on the mouse \
Cut - <Ctrl F6> or <Right-down-click> on the mouse \
Copy - <Ctrl F7> or <Left-down><Right-down-click> the mouse \
Paste - <Ctrl F8> or <Right-down-click> on the mouse \
Undo - <Ctrl F9> \
Redo - <Ctrl F10>

Press <Esc> to continue...

There are two help contexts in the example above. Each one is
preceded by the help context name and unique identification number,
enclosed by three dashes on both sides. The first line after the help
context name is the title that is displayed in the help window at run-
time. All lines between the title and the next help context or file end
are displayed inside the scrollable help window. Each of these lines is

Chapter 6 — Tutorials 71



Generating the

72

help file

Initialization

displayed in the window without the carriage return at the end of the
line, unless it is followed by either a blank line or a backslash. For
example, two consecutive lines without a backslash would be equivalent
to one long line.

Typing “genhelp notepad.txt” at the DOS command line generates two
files. Be sure that the file GENHELPEXE, located in the UTIL
directory, is included in the environment PATH variable.

The first file generated is the binary help file NOTEPAD.HLP and the
second file is a header file named NOTEPAD.HLH. The header file
should be included in each module of your program, since it contains
declarations for the constants used to reference the help context
information. The generated header file appears as follows:

// This file was created by the genhelp utility.
// PLEASE DO NOT MODIFY WITH AN EDITOR!.

const int HELP_GENERAL

; // General Help
const int HELP_NOTEPAD /

1
2; / Notepad Help

The help context information in the text file can be modified and
regenerated without recompiling the program if the help context names
do not change. This is very useful if you have international versions of
your application that require different help files.

Creating two windows with editable fields is just as easy as creating the
window for the “Hello World!” tutorial. Two header files are included
at the top of the “Notepad” program:

#include <ui_win.hpp>
#include "notepad.hlh"

The first is the ZIL header file containing class prototypes of ZIL
objects. The second is the help header file that contains the help
context name declarations.

A display class object is constructed in the following manner. (This is
exactly the same as the code example in the “Hello World!” tutorial.)

// Initialize the display, trying for graphics first.
UI_DISPLAY *display = new UI_DOS_BGI_DISPLAY;
%f (!display->installed)

delete display;

Zinc Interface Library — Programmer’s Guide



display = new UI_DOS_TEXT_DISPLAY;

The event manager and window manager are constructed next.

// Initialize the event manager.
UI_EVENT MANAGER *eventManager =

new UI_EVENT_MANAGER (100, display);
*eventManager

+ new UI_BIOS_KEYBOARD

+ new UI_MS_MOUSE

+ new UI_CURSOR;

// Initialize the window manager.
UI_WINDOW MANAGER *windowManager =
new UT_WINDOW_MANAGER (display, eventManager);

The creation of the event and window managers is different in this
tutorial than the way that they were created in the “Hello World!”
tutorial. In the “Hello World!” example the two managers were created
in scope (without the new operator). There are two advantages in using
the new operator to construct the event manager and window manager:

* You can create them in separate initialization procedures (i.e.,
outside main). If the new operator is not used, the managers are
destroyed automatically when the scope of the initialization
procedure ends.

» The managers can be accessed by other routines. For instance, in
most large applications, it is helpful to have global variables that
point to these managers. The “Phone Book” tutorial program
(given later in this chapter) uses global variables so that all routines
have direct access to the event manager and window manager.

(See the C++ compiler user’s guide for more information about scope.)

Help window  The next step in the initialization constructs the help window system.
system  The new help system is assigned to the global variable _helpSystem using
the following code:

_helpSystem = new UI_HELP_WINDOW SYSTEM(‘“notepad.hlp",
&windowManager, HELP_GENERAL) ;

The help window system constructor has three parameters:

* "notepad.hlp" is name of the binary help file (generated from an ascii
text file using GENHELPEXE).

Chapter 6 — Tutorials 78



74

Error window
system

Creating two
notepads

e &windowManager is a pointer to the window manager.

e HELP GENERAL is the name of the general help context listed in
the help file.

If you do not have any general help context information, then the third
parameter is not needed.

The help system uses the help file generated earlier in this tutorial to
display context sensitive help in a window. (See “Chapter 16—UI_-
HELP_WINDOW_SYSTEM” for more information about the help
window system and the difference between the help system and help
window system.)

The basic error system that is installed automatically with the Zinc
Interface Library warns the user of an error with a simple beep on the
computer’s speaker. In this tutorial the error window system is used.
This allows you to tailor error messages to be announced when errors
occur. The following code segment initializes the error system.

// Initialize the error window system.
_errorSystem = new UI_ERROR_WINDOW_SYSTEM;

At run-time the error system will report an error message for any
invalid date that is entered by the user in the date field on either
notepad. (In the “Phone book” tutorial, later in this chapter, you will
see how the programmer can define custom error messages.)

The Zinc Interface Library does not include the help window system or
error window system automatically. This allows you as the programmer
to specify and create your own help or error system. The files
G_HELP.CPP and G_ERROR.CPP are included in \ZINC\UTIL as
example files of the basic help and error systems.

(See “Chapter 11—UI_ERROR_WINDOW_SYSTEM?” of the Program-

mer’s Reference for more information on the error window system.)

The two notepads are created as windows with two data entry “fields”
which are editable window objects attached to a window. In this tutorial
three fields and two prompt objects, along with the border and system

Zinc Interface Library — Programmer’s Guide



buttons, are attached to each notepad window. The construction of the
notepad windows is shown in the code segment below:

UIW_WINDOW *notepadi = new UIW WINDOW(5, 5, 68, 12,
“WOF_NO_FLAGS, WOAF_NO_FLAGS);

UIW_WINDOW *notepad2 = new UIW_WINDOW(10, 10, 68, 12,
"WOF_NO_FLAGS, WOAF_NO_FLAGS) ;

Notepadl is in the upper left-hand corner of the screen. Notepad2
window is created in the same way and is positioned below and to the
right of notepadl.

Adding window  Several window objects are added to the notepad windows as shown in
objects  the code segment below for notepadl:

*notepadi
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE("Notepad 1", WOF_JUSTIFY_CENTER)

The border, system buttons and title are constructed and added to the
notepadl window. This section is the similar to how the “Hello,
World!” window was created. Each one is added to the notepad window
using the UI_WINDOW::operator+ operator overload.

Prompts Each data entry field (or several related fields) should have a prompt
associated with it. A prompt is used to describe the field following it.
The prompt window object is constructed using four parameters as
shown below:

+ new UIW _PROMPT(2, 1, "To:", WOF_NO_FLAGS)
+ new UIW STRING(6, 1, 15, "Everyone™, 40, STF_NO_FLAGS,
WOF_BORDER)

+ new UIW _PROMPT (22, 1, "Date:", WOF_NO_FLAGS)
+ new UIW DATE(22, 1, 20, &UI_DATE(), "™,
DTF_NO_FLAGS, WOF_BORDER)

++

new UIW_PROMPT (2, 2, 'Message:', WOF _NO_FLAGS)
new UIW TEXT(2, 3, 60, 4, "", 1028, TXF_NO_FLAGS,
WOF_BORDER) ;

The first prompt describes the string field in which the name is entered:

+ new UIW_PROMPT(2, 1, "To:", WOF_NO_FLAGS)

Chapter 6 — Tutorials 75



e 2 and ] are left and top coordinate positions of the prompt string
(relative to the upper left corner of the window). These coordinates
are relative cell coordinates inside the window and are zero based.
For example, this prompt is located one character below the title of
the window and two characters to the right of the window’s left
border. (These two parameters are common to most window
objects.)

e "To:"is the text that is displayed at the position specified by the first
two parameters.

e« WOF_NO_FLAGS indicates that no special window object flags are
specified. This parameter allows you to specify flags that control
the display of the window.

(See “Chapter 38—UIW_PROMPT” of the Programmer’s Reference for
more information about the prompt window object and WOF flags.)

String field  The first editable field is a string window object.

+ new UIW_STRING(6, 1, 15, "Everyone", 40, STF_NO_FLAGS,
WOF_BORDER)

This field is used at run-time to enter the name of the person receiving
the message. The string constructor is passed seven parameters:

6 and 1 are the top and left coordinates of the field inside the
window.

e 15 is the display width of the string field. If more than 15
characters are entered in the field at run-time then the string buffer
is scrolled left until the string’s maximum length (40) is reached.

» "Everyone" is the initial information string that is to be displayed in
the field. You can change this text at run-time since the field can
be edited.

e 40 is the maximum length of the string. At run-time, the user can
enter up to 40 characters even though only 15 characters (display
length) are shown in the field.

76 Zinc Interface Library — Programmer’s Guide




* STF_NO_FLAGS indicates that no special string flags are specified.
This causes the string to be left justified.

» WOF_BORDER specifies that a simple border will surround the
string edit region at run-time.

(See “Chapter 41—UIW_STRING” of the Programmer’s Reference for
more information about the string window object.)

Date field The next field appears on the right side of the top line in the window
and is the date field:

+ new UIW DATE(22, 1, 20, &UI_DATE(), "'*,
DTF_NO_FLAGS, WOF_BORDER)

The first three parameters passed to this field specify the field’s position
and display width. (See the string field above). The other parameters
passed to the date field object include:

» &UI_DATE() passes a pointer to the system date which is then
copied into the date field’s data. The UIW_DATE window object
uses the UI_DATE object internally to store the date information.

. indicates that no date range is set. For example, if the dates were
only valid from 1980 to 1999 then this is set to "1-1-90..12-31-90."

* DTF_NO_FLAGS indicates that no special date field flags are
specified.

* WOF_BORDER specifies that a simple border will surround the
string edit region at run-time.

(See “Chapter 3—UI_DATE” and “Chapter 28—UIW_DATE” in the
Programmer’s Reference for more information about the date object
and the date window object.)

Text field  The last field added to notepadl is the text field (used for the note
itself). The text field object is very similar to the string field. The two
parameters which are different are shown below:

+ new UIW TEXT(2, 3, 60, 4, "*, 1028, TXF_NO_FLAGS,
WOF_BORDER) ;

Chapter 6 — Tutorials 77



Adding the

notepads to the

window
manager

The event loop

78

Clean up

e 4 is the height of the text edit region.

e TXF_NO_FLAGS indicates that no special text field flags are
specified.

(See “Chapter 43—UIW_TEXT” of the Programmer’s Reference for
more information about the text window object.)

The two notepad windows are added to the window manager using the
UI_WINDOW_MANAGER::operator+ operator overload.

*windowManager
+ notepadi
+ notepad2;

The last window added to the window manager is always the current
window at run-time.

After both notepads have been set up, the following loop is used to
receive input from the user:

// Wait for user response.
int ccode;

UI_EVENT event;

do

eventManager->Get(event, Q_NORMAL) ;
if (event.type == E_KEY && event.rawCode == ESCAPE)
event.type = L_EXIT;
ccode = windowManager->Event(event);
} while (ccode != L_EXIT);

This code segment is almost the same (the ‘->’ is used instead of ’) as
the event loop section in the “Hello World!” tutorial.

At the end of the program you must destroy the managers, the display
and other objects you have created. Any objects that have been added
to the event manager or window manager are automatically destroyed
by the manager’s destructor routine which is called when the manager
is destroyed. The delete operator calls the class destructor and de-
allocates memory used by the class object. The following code deletes
the display screen, event manager, window manager and window help
system:

Zinc Interface Library — Programmer’s Guide



// Clean up.

delete _helpSystem;
delete windowManager;
delete eventManager;
delete display;

The order in which the screen display, event manager, window manager,
and other window objects are created and destroyed is very important.
The event manager constructor depends on the existence of the display
object; likewise, the window manager constructor depends on the
existence of the event manager and the help system depends on the
window manager. Be sure to destroy all objects (using the delete
operator) in the opposite order.

In this tutorial the help system is created last and deleted first. The
window manager is the next to be destroyed and it in turn destroys all
windows and window objects attached to it. The event manager is
created second and deleted second from last along with all objects
attached to it. Finally, the display object is deleted last because it was
constructed first.

If the screen display, event manager and window manager had been
created in scope (as in “Hello World!”) then they would be
automatically destroyed in the opposite order in which they were
created.

Run-time  Each of the notepads created in the program can be moved and sized
features like the “Hello World!” window was at run-time. In addition, the
following actions can be performed at run-time:

Next Window—Pressing the left mouse button with the mouse
pointer on one of the notepads selects that notepad as the current
window. The current window is indicated by the color of the title
bar at the top of the window. Also, pressing <Alt F6> cycles from
the current window to the next window.

Next Field—Pressing the left mouse button with the mouse pointer
on one of the fields selects that as the current field. The current
field is indicated by the color of the field region and the cursor.
Also pressing <Tab> cycles from the current field to the next field.

Mark—Moving the mouse pointer to one of editable fields and
“dragging” the mouse across the text or pressing <Ctrl FS> and

Chapter 6 — Tutorials 79



80

using the arrow keys will mark that text region. This is usually
followed by cutting or copying the information.

Cut—After marking a region of text in an editable field, clicking the
right mouse button or pressing <Ctrl F6> will cut (erase) the text
from the region and place it in the global paste buffer.

Copy—After marking a region of text in an editable field, clicking
the right mouse button with the left button still held down or
pressing <Ctrl F7> will copy the text and place it in the global
paste buffer.

Paste—After cutting or copying, clicking the right mouse button or
pressing <Ctrl F6> will paste (copy) the text into the current field
from the global paste buffer. To paste the text in another field or
another window (in the other notepad) first select the window and
field and then paste the information.

Undo—Pressing <Ctrl F9> or <Alt> in combination with the left
mouse button undoes the most recent changes in the current field.
Each field has its own undo buffer. (See “Chapter 4—Default
Event Mapping” for more information about undo.)

Redo—Pressing <Ctrl F10> or <Alt> and the right mouse button
restores the most recent changes in the current field. This function
allows you to ‘undo’ the undo action. (See “Chapter 4—Default
Event Mapping” for more information about redo.)

Edit—After selecting a field, any key typed will be entered into the
field. When you leave the date field (select another field) the date
editor checks the validity of any entered date and formats it into the
format specified by the programmer.

Zinc Interface Library — Programmer’s Guide



Calendar

Creating the
calendar

This tutorial is the first of two parts of the complete calendar program.
In this tutorial you will learn about deriving a programmer defined
object from a window object. The final program will produce a calendar
with the current month on the screen at run-time similar to one of the
following, depending on the graphics or text display mode:

§

The second part, “The Custom Application” tutorial, contains
information about how to modify the color palettes and event mappings.
The final application will allow you to use the <PgUp> and <PgDn>
keys to change the months displayed on the calendar. Also, the color
combinations will be changed.

The code for the first “Calendar” program is located in \ZINC-
\TUTORIAL\CALENDR1.CPP. Be sure that the C++ compiler
directory is in the path. The executable program is made by typing
“make calendar.exe” at the DOS command line while in the TUTOR-
IAL directory.

The calendar program is created by deriving a CALENDAR class object
from the UIW_WINDOW class. Deriving objects from ZIL class
objects takes advantage of the inheritance features of C++. Inheritance
allows customization of some member functions and complete
inheritance of others. The CALENDAR class used in this tutorial

Chapter 6 — Tutorials 81



82

contains member functions to construct the class, interpret events
received from the event manager and inherited window functions to
manipulate the window.

The following is the CALENDAR class definition:

class CALENDAR : public UIW_WINDOW

1§

public:
CALENDAR (int left, int top, int offset);
virtual “CALENDAR(void) {}

virtual int Event(const UI_EVENT &event);

private:
UI DATE date;
UIW_TITLE 'title,
UIW_TEXT *calendarText;
int year;
} int month;
’

Because the calendar class above is derived from a UIW_WINDOW
class, it inherits the UIW_WINDOW class object attributes. For
example, the CALENDAR class object inherits the UIW_-
WINDOW::operator+ operator overload that enables other window
objects to be attached to it. In addition, the calendar can be added to
the window manager as a window. The calendar will receive events
passed to it by the window manager when it is the current window. It
is always the current window in this program since it is the only window
on the screen.

The calendar is constructed (by calling the calendars constructor
CALENDAR::CALENDAR) in the main program below:

main()
{

// Initialize the display.
UI_DISPLAY *display = new UI_DOS_BGI_DISPLAY();
if (!display->installed)

delete displa
display = new 01 _DOS_TEXT_DISPLAY();

// Initialize the event and window managers.
UI_EVENT_MANAGER *eventManager =

new UI_EVENT_MANAGER (100,display);
*eventManager

+ new UI_BIOS_KEYBOARD + new UI_MS_MOUSE + new UI_CURSOR;
UI_WINDOW MANAGER *windowManager =

new UT_WINDOW_MANAGER (display, eventManager);

// Create the calendar.
int centerX display->columns / display->cellWidth / 2;
int centerY display->lines / display->cellHeight / 2;

Zinc Interface Library — Programmer’s Guide



int offset = (display->isText) ? 1 : 0;
*windowManager + new CALENDAR(centerX, centerY, offset);

// Process the events.
int ccode;

UI_EVENT event;

do

eventManager->Get(event, Q_NORMAL) ;
ccode = windowManager->Event(event);
} while (ccode != L_EXIT);

// Clean up.
delete windowManager;
delete eventManager;
delete display;

}

The main program portion is similar to the “Notepad” program in the
previous tutorial except for two lines (highlighted above). In these two
lines the calendar is constructed:

int offset = (display->isText) 7 1 : 0;
*windowManager + new CALENDAR(centerX, centerY, offset);

The calendar constructor is called with parameters that specify the
screen center coordinates and text display offset. The offser (not
required) helps the calendar have an even appearance in both graphics
and text modes. Based on whether the screen display has been
initialized as a graphics or text display, the offset is determined using
the screen display member variable display- >isText.

The screen member functions for the calendar (to create, move and size
the window) are inherited from the UIW_WINDOW base class. Two
additional member functions are required:

CALENDAR::CALENDAR—THhis constructor initializes the calendar
information and constructs the calendar window.

CALENDAR::Event—This member function interprets events sent
to the calendar window by the window manager.

Calendar The first, the CALENDAR::CALENDAR constructor, is used to create
constructor and add window objects to the calendar window.

CALENDAR: : CALENDAR (int centerX, int centerY, int offset)
UIW_WINDOW(centerX - 11, centerY - 4, 24, 8 + offset,
"WOF_NO_FLAGS, WOAF_NO_SIZE)

// Get the current year and month.
date.Export(&year, &month, 0, 0);

Chapter 6 — Tutorials 83



84

// Create the window objects.
*this
+ new UIW_BORDER
+ (title = new UIW_TITLE("", WOF_JUSTIFY_CENTER))
+ new UIW_STRING(O, 0, 24, * S M T W T F S", 23,
STF_NO_FLAGS, WOF VIEw ONLY | WOF_NON SELECTABLE)
+ (calendarText Z new UIW TEXT(0 + offset, 1,
24 - offset, 6, "", 256, WOF_VIEW ONLY |
WOF_NON SELECTABLE | (w0F BORDER ¥ loffset)));

// Initialize the current months calendar.
UI_EVENT event;

event.type = L_CURRENT_MONTH;
Event(event);

}

Initializing the base class
The base class UIW_WINDOW constructor is called to create the

calendar window:

UIW_WINDOW(centerX - 11, centerY - 4, 24, 8 + offset,
WOF_NO_FLAGS, WOAF_NO_SIZE)

It is passed parameters that specify the position and size of the window
to be created. In addition, the WOAF_NO_SIZE flag specifies that the
window size cannot be changed by the user at run-time. This flag is
used because the size of the calendar will not change (i.e., there are only
seven days in a week). (See “Chapter 48—UIW_WINDOW?” of the
Programmer’s Reference for a description of other advanced window
object flags.)

Adding window objects
Adding the window objects is the next step inside the CALENDAR
constructor:

// Create the window objects.
*this
+ new UIW_BORDER
+ (title = new UIW TITLE("', WOF JUSTIFY _CENTER))
+ new UIW_STRING(O, 24, ° ™ T T "FE. 8"
STF_NO_FLAGS, WOF VIEW ONLY | WOF NON SELECTABLE)
+ (calendarText = new UIW TEXT(0 + offset, 1,
24 - offset, 6, "", 256, WOF_VIEW ONLY |
WOF_NON_SELECTABLE | (WOF BORDER * loffset)));

All four window objects have been used in the two previous tutorials
with the following differences:

1—The UIW_TITLE object is assigned to the CALENDAR
member variable title before being added to the calendar window.
The title bar will contain the month name and must be updated
periodically.

Zinc Interface Library — Programmer’s Guide



2—The two window object flags WOF_VIEW _ONLY and WOF -
NON_SELECTABLE are combined together in both the string and
text field constructors. This indicates that the field cannot be edited
nor selected.

3—The UIW_TEXT field is assigned to the CALENDAR member
variable calendarText before being added to the calendar window.
It displays the days of the month in the field and is updated when
the month is changed.

Event function  The CALENDAR::Event member function is used to process events sent
from the window manager. In the next tutorial, the event map table is
redefined to include mapping for the logical events of L_PREVIOUS _-
MONTH and L_NEXT MONTH. These are programmer defined
events and are assigned numbers between 10,000 and 99,000 in the
program. Inside the Event function these events are interpreted and
some action performed.

const int L_PREVIOUS MONTH = 10000;
const int L_NEXT_MONTH = 10001;
const int L_CURRENT_MONTH = 10002;

These events are used to update the calendar string inside the text field
and the month name in the title bar.

The CALENDAR::Event function below maps real device events (e.g.,
pressing a key) to logical events (e.g.,, L_NEXT_MONTH) and performs
some action according to what was pressed:

int CALENDAR::Event(const UI_EVENT &event)
{

static char text[256];
static char monthString[20];

// Switch on the event type.
int ccode = UI_WINDOW_OBJECT::LogicalEvent(event, ID_CALENDAR);
switch (ccode)

{
case L_CURRENT_MONTH:

// Change the window data to reflect new month.
title->DataSet (monthString);
calendarText->DataSet (text, 256);

break;

Chapter 6 — Tutorials 85



default:
// Call the window event to process other events.
ccode = UIW_WINDOW: :Event (event);
break;

}
// Return the control code.
return (ccode);

}
The CALENDAR::Event function consists of three parts:

1—Calling the LogicalEvent function to map the device events to
logical events. In the next tutorial you will learn how to change the
event map table to map keys and mouse events to the logical events
listed above.

2—Interpreting the logical event and performing some action
because of it. This includes using the DataSet functions of the
various fields to update the information. (See “Chapter 28—UIW_-
DATE” and “Chapter 48—UIW_TEXT” of the Programmer’s
Reference for more information about DataSet.)

3—Calling the UI_WINDOW::Event function of the inherited class.
All events that are not specific to the calendar class are passed to
the base class Event function to be interpreted. For example, the
events that relate to moving the window would be passed to
UI_WINDOW::Event.

86 Zinc Interface Library — Programmer’s Guide




The Custom Application

This tutorial, the second part of the calendar program, demonstrates:
e Setting up the color palette map table for customized colors.
» Changing the background color palette.

* Adding entries to and modifying the event map table (mouse and
keyboard events) for an application.

This tutorial is a continuation of the “Calendar” tutorial. It is assumed
that you have studied the previous tutorial before beginning this one.
The same calendar program is used with emphasis on how the map
tables are set up.

The final program will produce a screen similar to one of the following,
depending on the graphics or text display mode:

[June 1990]
S M T WTF S

1 2
S8 T8 9
10 11 12 13 14 15 16
17 18 19 20.21 22 23
24 25 26 27 28 29 30

Chapter 6 — Tutorials 87



88

Palette
mapping

The Zinc Interface Library provides two ways of defining the color
combinations associated with a window object. The first, global color
palette mapping, determines the default color combinations of window
objects on the screen. The second, individual window object mapping,
is attached to a window or window object and determines color
combinations for that specific window or window object.

In this tutorial, the second method, individual window object mapping,
is used. The following palette map table is attached to the calendar. It
is used at run-time to define the color mapping of the calendar window
and its attached objects:

// Palette map table
static UI_PALETTE_MAP calendarPaletteMapTable[] =

{
// ID WINDOW_OBJECT
{ ID_WINDOW_OBJECT, PM_ANY,
b Ghaddale attrib(BLACK RED), attrib (MONO_NORMAL ,MONO_BLACK) ,
SOLID_FILL, attrib(BLACK, WHITE),
attrib(BW_ WHITE BW_BLACK) , attrib(GS WHITE, GS_BLACK)} },

// ID_STRING

{ ID_STRING, PM_ANY,
T ' ’, attrib(BLACK, RED), attrib(MONO_NORMAL, MONO_BLACK),
SOLID FILL, attrib(BLACK, RED
attrib(BW_BLACK, BW WHITE), attrib(GS_BLACK, GS_WHITE)} },

// ID BORDER

{ ID_BORDER, PM_ANY,
T ' ’, attrib(BLUE, RED), attrib(MONO_HIGH, MONO_BLACK),
SOLID FILL,attrib(LIGHTGRAY,BLUE),
attrib(BW WHITE, BW_BLACK), attrib(GS_WHITE, GS_GRAY) } },

[/ ID TITLE
{ ID_TITLE, PM_ANY,
Loty attrib(WHITE LIGHTGRAY) ,
attrib(MONO_NORMAL, MONO BLACK) ,
INTERLEAVE FILL, attribTBLACK WHITE) ,
attrib (BW_| ELACK BW_WHITE) , attrib(GS BLACK GS_WHITE) } },
{ 1D TITLE, PM | ACTIVE
et attrib(YELLOW RED), attrib(MONO_NORMAL ,MONO_BLACK) ,
SoLID FILL, attrib(BLACK LIGHTBLUE) ,
attrib(BW_ BLACK BW. WHITE), attrib(GS BLACK, GS_WHITE) } },

// End of array

{ ID_END, O, { 0, 0,0,0,0,01}}
Palette entry contents
This palette map table consists of five palette entries. Each entry
defines the colors for a window object. Other palette entries can be
added by the programmer to define other objects if needed. For
example, the fourth palette in the palette map table defines the colors
to be used for a string window object:

Zinc Interface Library — Programmer’s Guide



// ID_STRING

{ ID_STRING, PM_ANY,
T’ *, attrib(BLACK, RED), attrib(MONO_NORMAL, MONO_BLACK),
SOLID FILL, attrib(BLACK, RED),
attrib(BW_BLACK, BW WHITE), attrib(GS_BLACK, GS_WHITE)} },

This palette structure contains the following items:

ID_STRING is the window object identification. It indicates that
this palette mapping is used for a window object with the
ID_STRING identification (i.e., UIW_STRING objects).

PM_ANY is a status flag that indicates the status that an object
needs in order to use this particular palette.

’ ’ is the text fill character. It is used to fill all blank space on the
window object when the screen display is created in text mode.

attrib(BLACK, RED) are the attributes of the foreground and
background colors respectively for color text display mode.

attrib(MONO_NORMAL, MONO_BLACK) are the attributes of the
foreground and background colors respectively for monochrome text
display mode.

SOLID_FILL is the graphics fill pattern. It is used when the screen
display is created in graphics mode to fill all blank space on the
window object.

attrib(BLACK, RED) are the attributes of the foreground and
background colors respectively for VGA, VGA monochrome and
EGA graphics display modes.

attrib(BW_BLACK, BW _WHITE) are the attributes of the
foreground and background colors respectively for CGA and
Hercules graphics display modes.

attrib(GS_BLACK, GS_WHITE) are the attributes of the foreground
and background colors respectively for EGA monochrome graphics
display mode.

Palette identification

Each window object class has its own unique identification and
understands the identifications of the base class window objects from

Chapter 6 — Tutorials

89



90

which it has been derived. The UIW_STRING object is derived from
the UIW_WINDOW_OBJECT class and thus has a unique identifica-
tion of ID_STRING, but it also understands that it is derived from an
object with an identification of ID_WINDOW_OBJECT.

All window objects that do not have a unique identification listed in the
palette map will use the next identification that the window object
understands. For example, the text object that is added to the calendar
window later in this tutorial has a unique identification of ID_TEXT.
ID_TEXT it is not listed in the palette map table above, so the text
object defaults to ID_STRING, since it is derived from the
UIW_STRING class. If an ID_STRING entry did not exist then the
text object would default to ID_WINDOW_OBJECT. (See “Chapter
20—UI_PALETTE_MAP” of the Programmer’s Reference for more
information about the palette map table.)

Palette status

The status of an object is also important in determining which palette
in the palette map table is used. In each palette entry, the second item
(e-g., PM_ANY) determines what status an object needs to use the
palette:

// ID_TITLE
{ ID_TITLE, PM_ANY,

' ', attrib(WHITE, LIGHTGRAY),
attrib (MONO_NORMAL ,MONO_BLACK) ,
INTERLEAVE FILL, attrib(BLACK, WHITE),
attrib(BW BLACK,BW_WHITE), attrib(GS_BLACK, GS_WHITE) } },
{ ID_TITLE, PM_ACTIVE,

{ ' ', attrib(YELLOW, RED), attrib(MONO_NORMAL,MONO BLACK),
SOLID FILL, attrib(BLACK, LIGHTBLUE),
attrib(BW_BLACK, BW_WHITE), attrib(GS_BLACK, GS_WHITE) } },

When the title status is active (e.g., the window to which it is attached
is the current window), the second palette entry (with the PM_ACTIVE
status) is used. The title object uses the first palette with PM_ANY to
obtain color combinations for any other status. (See “Chapter
20—UI_PALETTE_MAP” for a complete listing of possible status
indicators.)

Assigning specific palette information

In the CALENDAR::CALENDAR constructor, one line is added to
attach the palette map table described above to the calendar window.
After the window objects have been added to the window, the calendar
is assigned a unique palette map table:

Zinc Interface Library — Programmer’s Guide



paletteMapTable = calendarPaletteMapTable;

The calendar will look in this table to get color information for the
calendar window and all objects attached to it. The global palette map
table is used if no unique palette map table is defined (as in the
previous tutorial).

Background The palette associated with the screen display background can also be
palette  modified to allow different color combinations. The global variable
_backgroundPalette points to the current background palette. In this
tutorial it is reassigned to the following calendarBackgroundPalette

defined in the program:

// Background palette.

static UI_PALETTE calendarBackgroundPalette = { ’\305’,
attrib(CYAN, BLACK), attrib(MONO_DIM, MONO_BLACK),
XHATCH_FILL, attrib(CYAN, CYAN),
attrib(BW_WHITE, BW WHITE), attrib(GS_GRAY, GS_GRAY) };

UI_PALETTE *_backgroundPalette = &calendarBackgroundPalette;

The background palette contains the same structure as a palette entry
in the palette map table. For this example the background is filled with
a cross-hatch pattern created using the ’}* (ascii 305 octal) character for
text mode and the XHATCH_FILL pattern for graphics. The global
default background palette is used if no other background palette is
defined (as in the previous tutorial).

See “Chapter 5—Default Palette Mapping” of the Programmer’s Guide
for a listing of the default color combinations available in ZIL. The
following files, included in the \ZINC\UTIL directory, give complete
listings of the palette map tables:

G_PNORM—Contains the normal default palette map table used
for general windows and window objects.

G_PHELP.CPP—Contains the help window palette map table used
for the help window system.

G_PERROR.CPP—Contains the error window palette map table
used for the error window system.

G_PBACK.CPP—Contains the default background palette.

Chapter 6 — Tutorials 91



Event mapping

92

These files can be modified directly and linked in with your application
to change the normal, help and error default palette mapping.

Like the palette mapping, logical event mapping is done through the
event map table. Raw events received from the various input devices at
run-time are interpreted at each level of the application according to the
type of operation. The simplified event map table below contains events
and the logical events to which they are mapped:

// Event map table -
// { windowlID, logicalvalue, event.type, event.rawCode }
static UI_EVENT_MAP myEventMapTable[] =

{
// ID WINDOW_MANAGER
{ ID_WINDOW_MANAGER, L_EXIT, E_KEY, SHIFT F3 },
ID_WINDOW_MANAGER, L_ EXIT ET KEY ESCAPE },
ID_WINDOW MANAGER, L_EXIT, E_ MOUSE M_LEFT | M_RIGHT},
1D WINDOW_MANAGER L7 WINDOW MOVE, E_KEY, ALT_F7 },

{
{
{
// ID_WINDOW_OBJECT
i ID_WINDOW_OBJECT, L_SELECT, E_KEY, ENTER },

ID_WINDOW OBJECT, L SELECT, E_ KEY GRAY ENTER },
{ ID_WINDOW OBJECT, L_VIEW, E _MOUSE, 0 },”
{ ID_WINDOW OBJECT, L BEGIN_ SELECT "e_moUsE,

MLEFT T M LEFT CHANGE ¥,

{ ID WINDOW OBJECT, L_CONTINUE SELECT, E_MOUSE, M_LEFT },
{ ID_WINDOW_OBJECT, L”END_SELECT, E_MOUSE, M_LEFT_CHANGE },
/
{
{
{
{
/
{

/ ID_CALENDAR

ID_CALENDAR, L_PREV_MONTH, E_KEY, WHITE PGUP },
ID_CALENDAR, L_PREV_MONTH, E_KEY, GRAY_PGUP },
ID_CALENDAR, L_NEXT_MONTH, E_KEY,WHITE PGDN },
ID_CALENDAR, L_NEXT_MONTH, E_KEY,GRAY_PGDN },

/ End of array.
ID_END, O, O, O }

)-
Ui_EVENT_MAP *_eventMapTable = myEventMapTable;

Event map entry contents
Each event map entry contains information about how the event should

be interpreted. For example, the key <Shift><F3> is mapped to the
L_EXIT message:

{ ID_WINDOW_MANAGER, L_EXIT, E_KEY, SHIFT F3 },

The entry above contains the following information:

e ID_WINDOW _MANAGER indicates that this entry should be used
to interpret events for the window manager.

e L_EXIT indicates that the event should be interpreted as an exit
message.

Zinc Interface Library — Programmer's Guide



e E _KFEY indicates that the information is for a key type event.

e SHIFT F3 indicates that <Shift><F3> is to be interpreted to be
the L_EXIT message above.

At run-time, events are interpreted at each level of operation. For
example, pressing <Shift><F3> puts an E_KEY event with a raw code
of SHIFT_F3 on the event queue. This event is then passed to the
window manager. The window manager, since it performs the highest
level of operation, tries to interpret the event first and then passes it on
to other window objects. This event (<Shift><F3>) is mapped to the
L_EXIT logical event which is a message that causes the program to
end.

Multiple mappings

Each logical event can be mapped to various input device events. In
this tutorial, three different device events are mapped to the L_EXIT
logical event:

{ ID_WINDOW_MANAGER, L_EXIT, E_KEY, SHIFT F3 },
{ ID_WINDOW MANAGER, L_EXIT, E_KEY, ESCAPE },
{ ID_WINDOW_MANAGER, L_EXIT, E_| MOUSE M_LEFT | M_RIGHT },

Pressing <Shift><F3>, <Esc>, or holding down both the left and
right mouse buttons at run-time cause an L_EXIT message to be
generated and sent to objects with the ID_WINDOW_MANAGER
identification (i.e., window manager).

See “Chapter 4—Default Event Mapping” of the Programmer’s Guide
for a listing of logical events and the device events to which they are
mapped. A complete listing of the default event mapping can be found
in the file G_EVENT.CPP in the \ZINC\UTIL directory. This file can
be modified directly and linked in with your application to change the
default event mapping.

Chapter 6 — Tutorials 93



Phone Book

94

This tutorial program creates a simple data base containing addresses
and phone numbers. The program illustrates the following features:

e Creating and using control menus.
e Saving information entered at run-time in window fields.
e Displaying custom error messages.

The final program will produce a screen similar to one of the following,
depending on the graphics or text display mode:

Eila

Open book . . .
Close book. ..
Help. ..

Exit

PHONEBK .DAT g
4 Previous Next Add

Zinc Software Inc.

prm s s e
Addrass . . . 405 S. 100 E. Suite #201
Pleasant Grove. UT 84062
Phona..... (123> 456-7890

R S R S SRR

| File

Open book...
Close book...
Help...

Exit

[PHONEBK.DAT]
Previous Next Add

# 1

Name...... [Zinc Software Inc. ]
Address. .. [405 S. 100 E. Suite #201)]
[Pleasant Grove, UT 84062]

Phone..... [(123) 456-7890 ]

Zinc Interface Library — Programmer’s Guide



It is assumed that you have read about deriving new class objects in the
“Calendar” tutorial earlier in this chapter. The code for the “Phone
Book” program is located in \ZINC\TUTORIAL\PHONEBK.CPP. Be
sure that the C++ compiler directory is in the path. The executable
program is made by typing “make phonebk.exe” at the DOS command
line while in the TUTORIAL directory.

Creating the  The phone book program, like the calendar program in the previous

phone book tutorial, is created using an object derived from the UIW_WINDOW
class. The PHONE_BOOK class structure shown below contains all of
the information and member functions necessary to read, write and
display names and addresses from a disk file:

class PHONE_BOOK : public UIW_WINDOW

{
public:
static int fileHandle;

PHONE_BOOK(char *filename, int left, int top);
~“PHONE_BOOK(void) ;

static void PHONE_BOOK::AddRecord(void *item, UI_EVENT &event);
static void PHONE_BOOK::NextRecord(void 'ltem UI_EVENT &event);
static void PHONE_BOOK::PrevRecord(void *item,UI “EVENT &event);

private:
static int newRecord;
static int recordNumber;
static PHONE_RECORD record
static PHONE_RECORD tmpnecord

static void PHONE_BOOK::ReadRecord(void);
static void PHONE_BOOK::WriteRecord(void);
}

This phone book class inherits the UIW_WINDOW class object
attributes.

The phone book constructor, listed below, initializes the phone book
window and each of the data entry fields attached to it.

PHONE_BOOK: : PHONE BOOK(char *filename, int left, int top)
uIw WINDOW(le t - 20, top - 5, 40, 9, WOF No FLAGS,
WOAF_NO_FLAGS, HELP RECORD)

newRecord = FALSE;

record.name[0] =
record.address1[0]
record.address2[0]
record.phone[0] = *\0’;

tmpRecord = record;

// Open the file and read the first record.
fileHandle = open(filename, O_RDWR);
if (fileHandle < 0)

Chapter 6 — Tutorials 95




96

fileHandle = open(filename, O_CREAT, S_IREAD | S_IWRITE);
it (fileHandle < 0)

return;
ReadRecord() ;

// Create the window menu.
UIW_PULLDOWN_MENU menu (0, WOF_NO_FLAGS, WOAF_NO_FLAGS) ;
menu
+ new UIW _PULL DOWN_ITEM("' ~“Previous ", MNIF_NO_FLAGS,
PHONE_BOOK: :PrevRecord)
+ new UIW_PULL_DOWN_ITEM("' ~Next *, MNIF_NO_FLAGS,
PHONE_BOOK: :NextRecord)
+ new UIW_PULL_DOWN_ITEM(* ~Add *, MNIF_NO_FLAGS,
PHONE_BOOK: :AddRecord) ;

// Create the phone book record entry window.
*this
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE BUTTON
+ new UIW_SYSTEM_BUTTON
+ zew UIW_TITLE(Tilename, WOF_JUSTIFY_CENTER)
+ &menu

new UIW_PROMPT (32, 0, "#", WOF_NO_FLAGS)
new UIW NUMBER(34, 0, 6, &recordNumber, "', NMF_NO_FLAGS,
WOF_NO_ALLOCATE_DATA f WOF_NON_SELECTABLE)

+ new UIW_PROMPT(2, 1, "Name...... ", WOF_NO_FLAGS)
+ new UIW STRING(15, 1, 21, tmpRecord.name, 20,
STF_NO_FLAGS, WOF_BORDER | WOF_NO_ALLOCATE_DATA)

+ new UIW_PROMPT(2, 2, "Address...", WOF_NO_FLAGS)

+ new UIW STRING(15, 2, 21, tmpRecord.addressi, 20,
STF_NO_FLAGS, WOF_BORDER | WOF_NO_ALLOCATE_DATA)

+ new UIW STRING(15, 3, 21, tmpRecord.address2, 20,
STF_NO_FLAGS, WOF_BORDER | WOF_NO_ALLOCATE_DATA)

+ new UIW_PROMPT(2, 4, "Phone..... ", WOF_NO_FLAGS) ;

+ new UIW FORMATTED STRING(15, 4, 21, tmpRecord.phone,
"LNNNCLNNNLXXXX™, "(.00) e,
WOF_BORDER | WOF_NO_ALLOCATE_DATA) ;

++

// Make the ( File | Close ) option active and re-display menu.
closeOption->woFlags &= “WOF_NON_SELECTABLE;

This constructor performs the following steps to set up a phone book:
e Clears the record information structures.

e Opens or creates the phone book file specified by the user. The file
name is passed as a parameter to the constructor.

e Initializes the control menu to be added to the window. Each menu
item that is created and added to the menu has an associated
function that is performed when the item is selected. The menu
and menu items are discussed in more detail later in this tutorial.

Zinc Interface Library — Programmer’s Guide



Creates and adds the fields to the window for entering names,
addresses and phone numbers at run-time.

Modifies the main control menu item (File | Close) to be a
selectable item. This allows the phone book file to only be closed
after it is opened.

The following are the other member functions which are used to
perform operations on the phone book:

~PHONE_BOOK—The destructor closes the phone book file.

AddRecord, NextRecord and PrevRecord—These three member
functions allow the user to move through the phone book file at
run-time to enter or modify phone number records.

ReadRecord and WriteRecord—These two functions read and write
the records respectively from the phone book file.

Besides the PHONE_BOOK constructor, each of the functions above
and the simple algorithms used to read and write to a file will not be
described. Refer to the file \ZINC\TUTORIAL\PHONEBK.CPP for a
complete listing of the program.

User supplied In order to display the phone numbers located in a phone book file, the
data information must be read and then placed in the window fields. There
are two ways to move data from window fields to a file or memory

structure:

Chapter 6 — Tutorials

Copying the new information into a field using the field’s DataSet
function and then retrieving the information from the field (after it
has been modified by the user at run-time) using the field’s DataGet
function. This method was used in the CALENDAR::Event in the
previous tutorial to update the new month name to the window
title.

Passing a pointer to the actual record as a parameter to the field’s
constructor and using the WOF_NO_ALLOCATE_DATA flag.
This method allows the data to be tied directly to the field. When
the field is destroyed (when the window manager and window are
destroyed) the data pointed to by the actual record is not destroyed.

97




98

Updating
changed data

Initialization

In the phone book program the second method is used, because it
allows much more simplicity in this case. For example, the name field
is tied directly to the trmpRecord.name by using the following:

+ new UIW_PROMPT(2, 1, "Name...... ", WOF_NO_FLAGS)
+ new UIW_STRING(15, 1, 21, tmpRecord.name, 20,
STF_NO_FLAGS, WOF_BORDER | WOF_NO_ALLOCATE_DATA)

The tmpRecord.name contains the initial string that will appear in the
field at run-time. When the user edits the name, the information is
changed directly in tmpRecord.name.

If the flag WOF_NO_ALLOCATE_DATA were not used in the
example above then the information in zmpRecord.name would be copied
to a temporary buffer that is allocated by the string editor. The
information in this temporary buffer could then be transferred back to
the tmpRecord.name (after the user had changed the name information)
by using the following code segment:

UIW_STRING *field = UIW STRING(15, 1, 21, tmpRecord.name, 20,
STF_NO_FLAGS, WOF_BORDER) ;
window + field;

char *string = field->DataGet();
strcpy (tmpRecord.name, string);

If the data in impRecord.name is changed in the program (e.g., the next
name read from the file) then the screen display must be updated to
reflect this change. The easiest way to accomplish this for all fields on
the window, since all were changed when the new record was read, is to
re-add the window to the window manager. If the window already exists,
the window manager will re-display the window and all of its objects.
The following code segment, taken from the ReadRecord function,
accomplishes this:

if (book)
*_windowManager + book;

Using the data acquisition routines DataGet and DataSet automatically
updates the changed field.

The main procedure for the phone book program is very similar to all
of the other tutorial main procedures. It consists of the following steps:

Zinc Interface Library — Programmer’s Guide



1—Initialize the screen display. If it cannot be constructed as a
graphics display then it is constructed as a text display.

2—Construct the event manager and window managers. The
keyboard, mouse and cursor devices are also added to the window
manager in this step.

3—Initialize the help window system and error window system. The
help file is set up to be read from PHONEBK.HLP with the help
context HELP_GENERAL used as the general help.

4—Create the main control menu. This sets up the menu along the
screen top that can be accessed at all times.

5—Wait for the user to respond. This loop continually accepts
events from the input devices and then passes them to the window
manager to be processed until an exit message is received.

6—Delete all objects in the opposite order in which they were
constructed. The window manager and event managers
automatically delete all objects attached to them when they are
deleted. Objects that are created in scope are deleted at the end of
the main.

Creating menus  The phone book program consists of two pull down menus. The first
is the main menu that controls the program usage. It is constructed and
attached directly to the window manager. At run-time, the user can
access the menu at all times. The following code segment inside the
CreateMenu procedure constructs the main menu:

static void CreateMenu(void)

// Create the main control menu.

controlMenu = new UIW_PULL_DOWN_MENU (0, WOF_NO_FLAGS,
WOAF_NO_FLAGS) ;

controlMenu->woAdvancedFlags |= WOAF_LOCKED | WOAF_NON_CURRENT;

// ( File ) option pull down menu (Close is inactive).
UIW_PULL_DOWN_ITEM *fileOption = new UIW_PULL_DOWN_ITEM(
* “File ", MNF_NO FLAGS, 0);
closeOption = new UIW POP_UP_ITEM("'~Close book...",
MNIF_NO_FLAGS, BTF_NO TOGGLE, WOF_NO FLAGS, CloseBook);
closeOption->woFlags |= WOF_NON_SELECTABLE;
*fileOption
+ new UIW POP_UP_ITEM("~Open book...", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS, OpenBook)
+ closeOption
+ new UIW POP_UP_ITEM("“Help...", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS, Help)

Chapter 6 — Tutorials 99




100

+ new UIW_POP_UP_ITEM
+ new UIW_POP_UP_ITEM("E-xit", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS, Exit);

// Add the option menus to the control menu.
*controlMenu + fileOption;
*_windowManager + controlMenu;

}

One pull down item for ‘File’ operations is created and added to the
window. Four pop up items are added to the ‘File’ option to create the
pull down option list. The UIW_PULL_DOWN_ITEM::operator +
operator overload is used to add the options to the ‘File’ option and the
UIW_PULL_DOWN_MENU::operator+ operator overload is used to
add the ‘File’ option to the control menu. The control menu is then
added directly to the window manager using the UI_WINDOW._-
MANAGER::operator+ operator overload.

Each of the pop up items added to the ‘File’ option are constructed with
five parameters that indicate how it is displayed and what action takes
place when it is selected:

+ new UIW POP_UP_ITEM("~Open book...", MNIF_NO_FLAGS,
BTF_NO_TOGGLE, WOF_NO_FLAGS, OpenBook)

* "7 Open book..." is the text displayed in that menu option. The ‘hot
key’ is preceded by a ~. The option can be selected by clicking the
mouse on the option region or pressing <Alt> in combination with
the ‘hot key.’

* MNIF_NO_FLAGS indicates that no special menu item flags are
specified.

* BTF_NO_TOGGLE indicates that the item is not to be toggled on
and off.

» WOF_NO_FLAGS indicates that no special window object flags are
specified.

e OpenBook is the function that will be called when the user selects
this menu option at run-time. This function is called with two
parameters; the event that selected the item and a pointer to the
pop up item object.

The ‘File | Close’ option above is set to be non-selectable in the
CreateMenu procedure:

Zinc Interface Library — Programmer’s Guide



closeOption->woFlags |= WOF_NON_SELECTABLE;

At run-time the user can see this option but is not able to select it.
After a phone book file is opened in the program this option is changed
to be selectable as shown below:

closeOption->woFlags &= ~“WOF_NON_SELECTABLE;

The second menu is used inside the phone book data entry window to
move between records. It is set up in the same way as the control menu
above. The second menu is added to the window instead of the window
manager and is located below the title bar inside the window.

Menu functions  When one of the menu items described above is selected, a function is
called to perform some action. For example, when the ‘File | Help’
option is selected the following function is called:

// Control menu ( File | Help ) option to _display general help.
#pragma argsused
static void Help(void *item, UI_EVENT &event)

// Call the help system to _display general help.
_helpSystem->DisplayHelp (_windowManager, HELP_GENERAL) ;

This function then calls the help system to display the general help
context information.

Another example, listed below, places an exit message on the event
queue when the ‘File | Exit’ option is selected:

// Control menu ( File | Exit ) option to exit the program.
#pragma argsused
static void Exit(void *item, UI_EVENT &event)

// Put an EXIT message on the event queue.
event.type = L_EXIT;
_eventManager->Put (event, Q_BEGIN);

Error messages In the second tutorial, using the “Notepad” program, you learned how
to initialize the error window system. You can define and display your
own error messages along with those automatically associated with the
field editors. The code segment below displays an error message if the
phone book file cannot be created:

Chapter 6 — Tutorials 101



102

Conclusion

// Add the new phone book to the window manager if no error.
%f (book->fileHandle < 0)

_errorSystem- >ReportError( _windowManager, -1,
"Error opening file.");
delete book;

(See “Chapter 11—UI_ERROR_WINDOW_SYSTEM?” for more infor-
mation about the ReportError function.)

This concludes the tutorial section of the Programmer’s Guide.
However, there are additional resources for your use. These include:
the example programs found in the \ZINC\EXAMPLES subdirectory,
the many sample applications found on the Zinc BBS, free telephone
support, etc.

Zinc Interface Library - Programmer’s Guide



INDEX

UI_EVENT_MANAGER 66

UI_WINDOW 75

UI_ WINDOW_MANAGER 67, 78

UIW_WINDOW 67, 82, 84
_backgroundPalette 91
_errorPaletteMapTable 62
_eventMapTable 47
_helpPaletteMapTable 61
_normalPaletteMapTable 59

A

Application requirements 9
attrib 89

B

BBS 5

Begin field 47

Border 15, 28, 66
Borland Turbo C++ 1
Button 15

C

C++ books 1
CALENDAR class 81
Cancel 47
ccode 67, 85
char

signed 36

Index

unsigned 37
Choose 54
Copy 18, 47, 55, 80
CUA compatibility 47
Cursor device 12
Customer support S
Cut 18, 47, 55, 80

D

DataSet 86
Date 15, 29
Delete
line 47
next character 48
previous character 48
temporary window 48
window 48
word 48
delete operator 68
Distributable files 1
double 37
Down 438
page 49

E

End
field 49
line 49

End-user license 3

Error system 11, 21, 74
default 21, 74
programmer-defined 22

103




window 21, 74

Event function 85

Event loop 67, 78

Event manager 10, 11, 66, 67, 78
initialization 65, 73

Event mapping 11, 22, 47, 92

Event queue 13, 65

Exit 49, 69, 92

F

Field 3, 74
string 76
text 77
Flags
palette 89, 90
window object 77, 85
window object advanced 84
window objects 67, 76, 77
float 37
Format flags
UIW_DATE 30, 77
UIW_NUMBER 37 ]
UIW_STRING 77
UIW_TIME 41
Formatted string 15, 38

G

GENHELPEXE 1, 71

Global variables
_errorPaletteMapTable 57
_event MapTable 47
_helpPaletteMapTable 57
_normalPaletteMapTable 57

Graphics display 19

104

H

Help
context sensitive 49, 71
general 49, 71, 74
generating 71

Help system 10, 20, 71, 78
default 20
programmer-defined 21
window 20, 73

helpSystem 73

Home 50

Icon 16
IDE configuration 64
Initialization

event manager 65

help system 73

screen display 65, 72, 73

window 66

window manager 66, 73
Input devices

cursor 12, 66

keyboard 12, 66

mouse 12, 66

programmer-defined 12
int

signed 37

unsigned 37

K

Keyboard device 12
mapping 47

Zinc Interface Library — Programmer’s Guide



L

Left 50

word 50
License 3
Logical event 85
long

signed 37

unsigned 37

make 64, 70
Make file
Hello World! 64
Notepad 70
Makefile 63
Mapping
error colors 62
event 11, 22, 92
events 47
help colors 61
palette 11, 24, 57, 88
standard colors 59
Mark 18, 50, 55, 79
Matrix 16, 32
Maximize 50, 68
Maximize button 28, 66
Menu 33
control 50
Minimize 51, 68
Minimize button 28, 66
Mouse device 12
mapping 54
Move
window 51, 68
Movement
begin-field 47
choose 54
down 48

Index

down-page 49
end-field 49
end-line 49
home 50

left 50
left-word 50
next-field 51
next-window 51
previous-field 52
right 52
right-word 53
up 54

up-page 54

N

new operator 73
News §
Next
field 51, 79
window 51, 79
Non-field region 33, 40
Number 16, 35

(0

operator

+ 66, 67, 75, 78, 82, 84

delete 68, 73, 78
new 75

P

Palette identification 89

Palette mapping 11, 24, 57, 88

105



Paste 19, 51, 55, 80
Pop-up item 15, 33
Pop-up menu 16, 33
Previous
field 52
Programmer’s Guide 2
Programmer’s Reference 3
Programmer-defined
error systems 22
help systems 21
input devices 12
screen displays 20
window objects 16
Prompt 16, 75
Pull-down item 15, 33
Pull-down menu 16, 33

R

Redo 18, 52, 55, 80
Refresh 52
Registration 5
Restore 52, 68
Right 52

word 53
Run-time files 1

S

SAA
CUA compatibility 47
Scope 68, 73
Screen display 10, 19, 65, 66, 68, 78
graphics 19
initialization 65, 72
isText 83
programmer-defined 20
text 19

106

Select 56
Shipping applications 1
short

signed 37

unsigned 37
Signed

char 36

int 37

long 37

short 37
Size

window 53, 68
Software support program 5
Status 90
String 15, 38, 76
Suggested reading 1
Support 5§
System 53
System button 16, 28
System requirements 1

T

Telephone support 5
Terminology 3
Text 15, 38, 66, 77
Text display 19
Time 15, 40
Title 16, 28
Toggle 53
Turbo C++ 1
BGI files 1
Tutorials
Calendar 81
Hello World! 64
Notepad 70
The Custom Application 87

Zinc Interface Library — Programmer’s Guide



U

Ul 3

UI_BIOS_KEYBOARD 12

UI_CURSOR 12

UI_DEVICE
programmer-defined 12

UI_DISPLAY 19, 65
programmer-defined 20

UI_DOS_BGI_DISPLAY 19, 65

UI_DOS_TEXT DISPLAY 19, 65

UI_ERROR_SYSTEM 21
programmer-defined 22

UI_ERROR_WINDOW_SYSTEM 21,

74
UI_EVENT_MANAGER 65
UI_HELP_SYSTEM 20

programmer-defined 21
UI_HELP_WINDOW_SYSTEM 20
UI_MS_MOUSE 12
UI_WINDOW

Event 86
UI_WINDOW_OBIJECT 15

programmer-defined 16
UIW 3
UIW_BORDER 15, 28, 84
UIW_BUTTON 15
UIW_DATE 15, 29, 86

format flags 30
UIW_FORMATTED_STRING 15, 38
UIW_ICON 16
UIW_MATRIX 16, 32
UIW_MAXIMIZE BUTTON 15
UIW_MAXIMIZE BUTTON 15, 28
UIW_MINIMIZE BUTTON 15
UIW_MINIMIZE_BUTTON 15, 28
UIW_NUMBER 16, 35

format flags 37
UIW_POP_UP_ITEM 15, 33
UIW_POP_UP_MENU 16, 33
UIW_PROMPT 18, 76
UIW_PULL_DOWN_ITEM 15, 33

Index

UIW_PULL_DOWN_MENU 16, 33
UIW_STRING 15, 38, 76, 85
UIW_SYSTEM_BUTTON 16, 28
UIW_TEXT 15, 38, 77, 85, 86
UIW_TIME 15, 40

format flags 41
UIW_TITLE 16, 28, 84
UIW_WINDOW 16, 27, 82, 84
Undo 18, 53, 56, 80
unsigned

char 37

int 37

long 37

short 37
Up 54

page 54
Update pricing 5

W

Warranty 5

Window 4, 16, 27, 66
field 4
object 4

Window manager 10, 13, 67, 78
initialization 73

Window objects 15
border 15, 28, 66
button 15
date 15
formatted string 15
icon 16
matrix 16
maximize button 15, 28, 66
minimize button 15, 28, 66
number 16
pop-up item 15
pop-up menu 16
programmer-defined 16
prompt 16

107




pull-down item 15
pull-down menu 16
string 15
system button 16, 28
text 15, 66
time 15
title 16, 28
window 16, 27, 82
WOAF flags 84
WOF flags 67, 76, 77, 85

Z

Zinc Interface Library
design 10
features 1,9
system requirements 1, 5
terminology 3

108 Zinc Interface Library — Programmer’s Guide




GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation,
<http://fsf.org/>

Everﬁone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free"™ in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute It,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft”, which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or_other work, in_any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document™, below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you'". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section”™ is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document"s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
cgmmercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections'™ are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. |If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain_zero
Invariant Sections. |If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent'” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that i1s suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input

Inc.



to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque'.

Examples of suitable formats for Transparent copies include plain
ASCI1 without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only b
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page™ means, for a printed book, the title ?age itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page' means
the text near the most prominent appearance of the work®s title,
preceding the beginning of the body of the text.

The "publisher™ means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as ""Acknowledgements",
"Dedications', "Endorsements'™, or "History'".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. |If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also_ lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

IT you publish printed copies (or cogies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document®s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers iIn addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

IT the required texts for either cover are too voluminous to fit
legibly, you should put the Ffirst ones listed (as many as Ffit _
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

IT you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy



a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
IT you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version_ of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version Tilling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of 1t. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
iT the original publisher of that version gives permission.

B. List on_the Title Page, as authors, one or more persons or_ entities

responsible for authorship of the modifications in the Modified

Version, together with at least five of the principal authors of the

Document (all of its principal authors, if it has fewer than five),

unless they release you from this requirement.

State on the Title page the name of the publisher of the

Modified Version, as the publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.

Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the

terms of this License, in the form shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections

and required Cover Texts given in the Document®s license notice.

H. Include an unaltered copy of this License.

Preserve the section Entitled "History", Preserve its Title, and add

to it an item stating at least the title, year, new_authors, and

publisher of the Modified Version as given on the Title Page. |ITF
there is no section Entitled "History”™ in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified

Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.

You may omit a network location for a work that was ﬁublished at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements'™ or "Dedications",
Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements'™. Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

0. Preserve any Warranty Disclaimers.

m mo O

IT the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version"s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements', provided it contains



nothing but endorsements of your Modified Version by various
arties--for example, statements of peer review or_that the_ text has
eendapgroved by an organization as the authoritative definition of a
standard.

You may add a passage of up to Five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made b¥? any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalft of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their_names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique b{
adding at the end of it, in parentheses, the name of the origina
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in_the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and _any sections Entitled *"Dedications'”. You must delete all sections
Entitled "Endorsements'.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You mag extract a single document from such a collection, and

distribute it individually under this License, provided you iInsert a
copy of this License into the extracted document, and follow this
éicense in all other respects regarding verbatim copying of that
ocument.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate™ if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation®s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

IT the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document®s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.



8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copYright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

IT a_section in the Document is Entitled "Acknowledgements™,
"Dedications', or "History", the requirement (section 4) to Preserve
|tsIT|tIe (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to CO?Y, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and Ffinally
terminates your license, and_(b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. |If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new_ versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
IT the Document specifies that a particular numbered version of this
License "or any later version" applies to it, Kou have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (nhot as a draft) by the
Free Software Foundation. If the Document does not speci a version
number of this License, you may choose any version ever published (nhot
as a_draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy"s public statement of acceptance of a
Bersion permanently authorizes you to choose that version for the
ocument.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site') means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybodY can edit is an example of such a server. A
"Massive Multiauthor Collaboration” (or "MMC™) contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit



corporation with a principal place of business in _San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is "eli%ible for relicensing” if it is licensed under this
License, and it all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License_in the document and put the following copyright and
license notices just after the title page:

Copyright (¢) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License'.

IT you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with.._Texts.”™ line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

IT you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

IT your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,

to permit their use in free software.



	Programmers Guide Zinc1 Cover
	Page 1

	Programmers Guide Zinc1 Intro
	Programmers Guide Zinc1

