
Open Watcom C/C++

Compiler and Tools

User’s Guide for QNX

3rd Edition

Notice of Copyright
Copyright  2002-2008 the Open Watcom Contributors. Portions Copyright  1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit http://www.openwatcom.org/

ISBN 1-55094-xxx-y

ii

Preface
Open Watcom C is an implementation of ISO/ANSI 9899:1990 Programming Language C. The standard
was developed by the ANSI X3J11 Technical Committee on the C Programming Language. In addition to
the full C language standard, the compiler supports numerous extensions for the Intel 80x86-based personal
computer environment. The compiler is also partially compliant with the ISO/IEC 9899:1999
Programming Language C standard.

Open Watcom C++ is an implementation of the Draft Proposed International Standard for Information
Systems Programming Language C++ (ANSI X3J16, ISO WG21). In addition to the full C++ language
standard, the compiler supports numerous extensions for the Intel 80x86-based personal computer
environment.

Open Watcom is well known for its language processors having developed, over the last decade, compilers
and interpreters for the APL, BASIC, COBOL, FORTRAN and Pascal programming languages. From the
start, Open Watcom has been committed to developing portable software products. These products have
been implemented on a variety of processor architectures including the IBM 370, the Intel 8086 family, the
Motorola 6809 and 68000, the MOS 6502, and the Digital PDP11 and VAX. In most cases, the tools
necessary for porting to these environments had to be created first. Invariably, a code generator had to be
written. Assemblers, linkers and debuggers had to be created when none were available or when existing
ones were inadequate.

Over the years, much research has gone into developing the "ultimate" code generator for the Intel 8086
family. We have continually looked for new ways to improve the quality of the emitted code, never being
quite satisfied with the results. Several major revisions, including some entirely new approaches to code
generation, have ensued over the years. Our latest version employs state of the art techniques to produce
very high quality code for the 8086 family. We introduced the C compiler in 1987, satisfied that we had a
C software development system that would be of major benefit to those developing applications in C for the
IBM PC and compatibles.

The Open Watcom C/C++ Compiler and Tools User’s Guide for QNX describes how to use Open Watcom
C/C++ on Intel 80x86-based personal computers to build QNX applications. The User’s Guide is covers
the following topics:

• The Open Watcom C/C++ compiler including compiler options, benchmarking, include file
processing, the preprocessor, predefined macros and keywords, based pointers, precompiled headers,
and libraries

• 16-bit memory models, calling conventions, and pragmas

• 32-bit memory models, calling conventions, and pragmas

• In-line assembly language

• The Open Watcom Linker

• The Open Watcom Library Manager

• The Open Watcom Assembler

• The Open Watcom Disassembler

• The Open Watcom Strip Utility

iii

• Environment Variables

• C Diagnostic Messages

• C++ Diagnostic Messages

• Open Watcom C/C++ Run-Time Messages

Additional copies of this documentation may be ordered from:

QNX Software Systems Ltd.
175 Terence Matthews Crescent
Kanata, Ontario
CANADA K2M 1W8
Phone: 613-591-0931
Fax: 613-591-3579

Acknowledgements
This book was produced with the Open Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCII text editor to create source files containing
text annotated with tags. These tags label the structural elements of the document, such as chapters,
sections, paragraphs, and lists. The Open Watcom GML software, which runs on a variety of operating
systems, interprets the tags to format the text into a form such as you see here. Writers can produce output
for a variety of printers, including laser printers, using separately specified layout directives for such things
as font selection, column width and height, number of columns, etc. The result is type-set quality copy
containing integrated text and graphics.

The Plum Hall Validation Suite for C/C++ has been invaluable in verifying the conformance of the Open
Watcom C/C++ compilers to the ISO C Language Standard and the Draft Proposed C++ Language
Standard.

Many users have provided valuable feedback on earlier versions of the Open Watcom C/C++ compilers and
related tools. Their comments were greatly appreciated. If you find problems in the documentation or have
some good suggestions, we would like to hear from you.

July, 1997.

Trademarks Used in this Manual

iv

Table of Contents
Open Watcom C/C++ User’s Guide ... 1

1 About This Manual ... 3

2 Open Watcom C/C++ Compiler Options ... 7

3 The Open Watcom C/C++ Compilers .. 9
3.1 Open Watcom C/C++ Command Line Format .. 9
3.2 Environment Variables .. 10
3.3 Open Watcom C/C++ Command Line Examples .. 11
3.4 Benchmarking Hints .. 13
3.5 Compiler Diagnostics ... 15
3.6 Open Watcom C/C++ #include File Processing .. 16
3.7 Open Watcom C/C++ Preprocessor ... 18
3.8 Open Watcom C/C++ Predefined Macros ... 20
3.9 Open Watcom C/C++ Extended Keywords ... 25
3.10 Based Pointers .. 32

3.10.1 Segment Constant Based Pointers and Objects ... 33
3.10.2 Segment Object Based Pointers ... 34
3.10.3 Void Based Pointers .. 34
3.10.4 Self Based Pointers .. 35

3.11 The __declspec Keyword ... 36
3.12 The Open Watcom Code Generator ... 40

4 Precompiled Headers .. 43
4.1 Using Precompiled Headers ... 43
4.2 When to Precompile Header Files ... 43
4.3 Creating and Using Precompiled Headers ... 43
4.4 The "-fh[q]" (Precompiled Header) Option ... 44
4.5 Consistency Rules for Precompiled Headers ... 44

5 The Open Watcom C/C++ Libraries .. 47
5.1 Open Watcom C/C++ Library Directory Structure .. 47
5.2 Open Watcom C/C++ C Libraries ... 47
5.3 Open Watcom C 16-bit Shared Library ... 48
5.4 Open Watcom C/C++ Class Libraries ... 48
5.5 Open Watcom C/C++ Math Libraries .. 49
5.6 Open Watcom C/C++ 80x87 Math Libraries ... 50
5.7 Open Watcom C/C++ Alternate Math Libraries .. 51
5.8 The Open Watcom C/C++ Run-time Initialization Routines ... 51

16-bit Topics ... 53

6 16-bit Memory Models ... 55
6.1 Introduction .. 55
6.2 16-bit Code Models .. 55
6.3 16-bit Data Models ... 55
6.4 Summary of 16-bit Memory Models .. 56
6.5 Mixed 16-bit Memory Model .. 56
6.6 Linking Applications for the Various 16-bit Memory Models .. 57
6.7 Memory Layout .. 57

v

Table of Contents
7 16-bit Assembly Language Considerations .. 59

7.1 Introduction .. 59
7.2 Data Representation ... 59

7.2.1 Type "char" .. 59
7.2.2 Type "short int" .. 60
7.2.3 Type "long int" .. 60
7.2.4 Type "int" ... 60
7.2.5 Type "float" ... 60
7.2.6 Type "double" .. 61

7.3 Memory Layout .. 62
7.4 Calling Conventions for Non-80x87 Applications .. 63

7.4.1 Passing Arguments Using Register-Based Calling Conventions 63
7.4.2 Sizes of Predefined Types ... 64
7.4.3 Size of Enumerated Types ... 65
7.4.4 Effect of Function Prototypes on Arguments .. 65
7.4.5 Interfacing to Assembly Language Functions ... 66
7.4.6 Functions with Variable Number of Arguments ... 69
7.4.7 Returning Values from Functions .. 69

7.5 Calling Conventions for 80x87-based Applications .. 72
7.5.1 Passing Values in 80x87-based Applications .. 72
7.5.2 Returning Values in 80x87-based Applications .. 73

8 16-bit Pragmas .. 75
8.1 Introduction .. 75
8.2 Using Pragmas to Specify Options .. 76
8.3 Using Pragmas to Specify Default Libraries .. 77
8.4 The ALIAS Pragma (C Only) .. 78
8.5 The ALLOC_TEXT Pragma (C Only) .. 79
8.6 The CODE_SEG Pragma ... 79
8.7 The COMMENT Pragma ... 80
8.8 The DATA_SEG Pragma ... 81
8.9 The DISABLE_MESSAGE Pragma (C Only) .. 81
8.10 The DUMP_OBJECT_MODEL Pragma (C++ Only) ... 82
8.11 The ENABLE_MESSAGE Pragma (C Only) .. 82
8.12 The ENUM Pragma .. 82
8.13 The ERROR Pragma .. 83
8.14 The EXTREF Pragma .. 83
8.15 The FUNCTION Pragma ... 84
8.16 The INCLUDE_ALIAS Pragma .. 85
8.17 Setting Priority of Static Data Initialization (C++ Only) ... 85
8.18 The INLINE_DEPTH Pragma (C++ Only) ... 86
8.19 The INLINE_RECURSION Pragma (C++ Only) ... 87
8.20 The INTRINSIC Pragma ... 87
8.21 The MESSAGE Pragma ... 88
8.22 The ONCE Pragma .. 88
8.23 The PACK Pragma ... 89
8.24 The READ_ONLY_FILE Pragma ... 90
8.25 The TEMPLATE_DEPTH Pragma (C++ Only) .. 90
8.26 The WARNING Pragma (C++ Only) .. 91
8.27 Auxiliary Pragmas .. 91

8.27.1 Specifying Symbol Attributes ... 91
8.27.2 Alias Names ... 92

vi

Table of Contents
8.27.3 Predefined Aliases ... 94

8.27.3.1 Predefined "__cdecl" Alias ... 94
8.27.3.2 Predefined "__pascal" Alias .. 95
8.27.3.3 Predefined "__watcall" Alias .. 95

8.27.4 Alternate Names for Symbols .. 96
8.27.5 Describing Calling Information ... 97

8.27.5.1 Loading Data Segment Register .. 99
8.27.5.2 Defining Exported Symbols in Dynamic Link Libraries 99
8.27.5.3 Defining Windows Callback Functions .. 100
8.27.5.4 Forcing a Stack Frame .. 100

8.27.6 Describing Argument Information .. 100
8.27.6.1 Passing Arguments in Registers .. 101
8.27.6.2 Forcing Arguments into Specific Registers .. 103
8.27.6.3 Passing Arguments to In-Line Functions .. 104
8.27.6.4 Removing Arguments from the Stack ... 104
8.27.6.5 Passing Arguments in Reverse Order .. 105

8.27.7 Describing Function Return Information .. 105
8.27.7.1 Returning Function Values in Registers .. 106
8.27.7.2 Returning Structures .. 107
8.27.7.3 Returning Floating-Point Data .. 108

8.27.8 A Function that Never Returns .. 109
8.27.9 Describing How Functions Use Memory .. 109
8.27.10 Describing the Registers Modified by a Function ... 113
8.27.11 An Example ... 114
8.27.12 Auxiliary Pragmas and the 80x87 ... 115

8.27.12.1 Using the 80x87 to Pass Arguments ... 115
8.27.12.2 Using the 80x87 to Return Function Values 118
8.27.12.3 Preserving 80x87 Floating-Point Registers Across Calls 118

32-bit Topics ... 119

9 32-bit Memory Models ... 121
9.1 Introduction .. 121
9.2 32-bit Code Models .. 121
9.3 32-bit Data Models ... 121
9.4 Summary of 32-bit Memory Models .. 122
9.5 Flat Memory Model ... 122
9.6 Mixed 32-bit Memory Model .. 122
9.7 Linking Applications for the Various 32-bit Memory Models .. 123
9.8 Memory Layout .. 123

10 32-bit Assembly Language Considerations .. 125
10.1 Introduction .. 125
10.2 Data Representation ... 125

10.2.1 Type "char" .. 125
10.2.2 Type "short int" .. 126
10.2.3 Type "long int" .. 126
10.2.4 Type "int" ... 126
10.2.5 Type "float" ... 126
10.2.6 Type "double" .. 127

10.3 Memory Layout .. 128

vii

Table of Contents
10.4 Calling Conventions for Non-80x87 Applications .. 129

10.4.1 Passing Arguments Using Register-Based Calling Conventions 129
10.4.2 Sizes of Predefined Types ... 130
10.4.3 Size of Enumerated Types ... 131
10.4.4 Effect of Function Prototypes on Arguments .. 131
10.4.5 Interfacing to Assembly Language Functions ... 132
10.4.6 Using Stack-Based Calling Conventions ... 135
10.4.7 Functions with Variable Number of Arguments ... 138
10.4.8 Returning Values from Functions .. 138

10.5 Calling Conventions for 80x87-based Applications .. 140
10.5.1 Passing Values in 80x87-based Applications .. 141
10.5.2 Returning Values in 80x87-based Applications .. 142

11 32-bit Pragmas .. 143
11.1 Introduction .. 143
11.2 Using Pragmas to Specify Options .. 144
11.3 Using Pragmas to Specify Default Libraries .. 145
11.4 The ALIAS Pragma (C Only) .. 146
11.5 The ALLOC_TEXT Pragma (C Only) .. 147
11.6 The CODE_SEG Pragma ... 147
11.7 The COMMENT Pragma ... 148
11.8 The DATA_SEG Pragma ... 149
11.9 The DISABLE_MESSAGE Pragma (C Only) .. 149
11.10 The DUMP_OBJECT_MODEL Pragma (C++ Only) ... 150
11.11 The ENABLE_MESSAGE Pragma (C Only) .. 150
11.12 The ENUM Pragma .. 150
11.13 The ERROR Pragma .. 151
11.14 The EXTREF Pragma .. 151
11.15 The FUNCTION Pragma ... 152
11.16 The INCLUDE_ALIAS Pragma .. 153
11.17 Setting Priority of Static Data Initialization (C++ Only) ... 153
11.18 The INLINE_DEPTH Pragma (C++ Only) ... 154
11.19 The INLINE_RECURSION Pragma (C++ Only) ... 155
11.20 The INTRINSIC Pragma ... 155
11.21 The MESSAGE Pragma ... 156
11.22 The ONCE Pragma .. 156
11.23 The PACK Pragma ... 157
11.24 The READ_ONLY_FILE Pragma ... 158
11.25 The TEMPLATE_DEPTH Pragma (C++ Only) .. 158
11.26 The WARNING Pragma (C++ Only) .. 159
11.27 Auxiliary Pragmas .. 159

11.27.1 Specifying Symbol Attributes ... 159
11.27.2 Alias Names ... 160
11.27.3 Predefined Aliases ... 162

11.27.3.1 Predefined "__cdecl" Alias ... 163
11.27.3.2 Predefined "__pascal" Alias .. 163
11.27.3.3 Predefined "__stdcall" Alias ... 163
11.27.3.4 Predefined "__syscall" Alias ... 164
11.27.3.5 Predefined "__watcall" Alias (register calling convention) 164
11.27.3.6 Predefined "__watcall" Alias (stack calling convention) 165

11.27.4 Alternate Names for Symbols .. 165
11.27.5 Describing Calling Information ... 167

viii

Table of Contents
11.27.5.1 Loading Data Segment Register .. 168
11.27.5.2 Defining Exported Symbols in Dynamic Link Libraries 169
11.27.5.3 Forcing a Stack Frame .. 169

11.27.6 Describing Argument Information .. 170
11.27.6.1 Passing Arguments in Registers .. 170
11.27.6.2 Forcing Arguments into Specific Registers 173
11.27.6.3 Passing Arguments to In-Line Functions .. 173
11.27.6.4 Removing Arguments from the Stack ... 174
11.27.6.5 Passing Arguments in Reverse Order .. 174

11.27.7 Describing Function Return Information .. 175
11.27.7.1 Returning Function Values in Registers .. 175
11.27.7.2 Returning Structures .. 176
11.27.7.3 Returning Floating-Point Data .. 177

11.27.8 A Function that Never Returns .. 178
11.27.9 Describing How Functions Use Memory .. 179
11.27.10 Describing the Registers Modified by a Function ... 182
11.27.11 An Example ... 183
11.27.12 Auxiliary Pragmas and the 80x87 ... 184

11.27.12.1 Using the 80x87 to Pass Arguments ... 184
11.27.12.2 Using the 80x87 to Return Function Values 187
11.27.12.3 Preserving 80x87 Floating-Point Registers Across Calls 187

In-line Assembly Language .. 189

12 In-line Assembly Language .. 191
12.1 In-line Assembly Language Default Environment .. 191
12.2 In-line Assembly Language Tutorial ... 192
12.3 Labels in In-line Assembly Code ... 197
12.4 Variables in In-line Assembly Code .. 197
12.5 In-line Assembly Language using _asm .. 199
12.6 In-line Assembly Directives and Opcodes ... 200

Open Watcom Tools ... 205

The Open Watcom Linker .. 207

13 The Open Watcom Linker .. 209
13.1 Using the SYSTEM Directive .. 210
13.2 Linking 16-bit QNX Executable Files ... 212
13.3 Linking 32-bit QNX Executable Files ... 212

14 Linker Directives and Options .. 213
14.1 The ALIAS Directive ... 215
14.2 The ARTIFICIAL Option .. 216
14.3 The CACHE Option ... 217
14.4 The CASEEXACT Option ... 218
14.5 The # Directive ... 219
14.6 The CVPACK Option .. 220
14.7 The DEBUG Directive ... 221

ix

Table of Contents
14.7.1 Line Numbering Information - DEBUG WATCOM LINES 223
14.7.2 Local Symbol Information - DEBUG WATCOM LOCALS 223
14.7.3 Typing Information - DEBUG WATCOM TYPES .. 223
14.7.4 All Debugging Information - DEBUG WATCOM ALL 224
14.7.5 Global Symbol Information ... 224
14.7.6 Global Symbols for the NetWare Debugger - DEBUG NOVELL 224
14.7.7 The ONLYEXPORTS Debugging Option .. 224
14.7.8 Using DEBUG Directives .. 224
14.7.9 Removing Debugging Information from an Executable File 225

14.8 The DISABLE Directive .. 226
14.9 The DOSSEG Option ... 227
14.10 The ELIMINATE Option ... 228
14.11 The ENDLINK Directive ... 229
14.12 The FARCALLS Option .. 230
14.13 The FILE Directive .. 231
14.14 The FILLCHAR Option ... 233
14.15 The FORMAT Directive .. 234
14.16 The @ Directive ... 241
14.17 The LANGUAGE Directive .. 244
14.18 The LIBFILE Directive .. 245
14.19 The LIBPATH Directive .. 246
14.20 The LIBRARY Directive ... 247

14.20.1 Searching for Libraries Specified in Environment Variables 247
14.20.2 Converting Libraries Created using Phar Lap 386|LIB 248

14.21 The LINEARRELOCS Option .. 249
14.22 The LONGLIVED Option ... 250
14.23 The MANGLEDNAMES Option .. 251
14.24 The MAP Option .. 252
14.25 The MAXERRORS Option .. 253
14.26 The MODFILE Directive ... 254
14.27 The MODTRACE Directive .. 255
14.28 The NAME Directive ... 256
14.29 The NAMELEN Option ... 257
14.30 The NODEFAULTLIBS Option .. 258
14.31 The NOEXTENSION Option .. 259
14.32 The OPTION Directive .. 260
14.33 The OPTLIB Directive ... 261

14.33.1 Searching for Optional Libraries Specified in Environment Variables 261
14.34 The ORDER Directive ... 263
14.35 The OSNAME Option ... 266
14.36 The OUTPUT Directive ... 267
14.37 The PATH Directive .. 269
14.38 The PRIVILEGE Option .. 270
14.39 The QUIET Option .. 271
14.40 The REDEFSOK Option .. 272
14.41 The REFERENCE Directive .. 273
14.42 The SHOWDEAD Option ... 274
14.43 The SORT Directive .. 275
14.44 The STACK Option ... 276
14.45 The START Option .. 277
14.46 The STARTLINK Directive .. 278
14.47 The STATICS Option .. 279

x

Table of Contents
14.48 The SYMFILE Option ... 280
14.49 The SYMTRACE Directive ... 281
14.50 The SYSTEM Directive ... 282

14.50.1 Special System Names ... 284
14.51 The UNDEFSOK Option ... 285
14.52 The VERBOSE Option .. 286
14.53 The VFREMOVAL Option .. 287

15 The QNX Executable File Format .. 289
15.1 Memory Layout .. 291

16 Open Watcom Linker Diagnostic Messages .. 293

The Open Watcom Library Manager .. 311

17 The Open Watcom Library Manager .. 313
17.1 Introduction .. 313
17.2 The Open Watcom Library Manager Command Line ... 313
17.3 Open Watcom Library Manager Module Commands .. 315
17.4 Adding Modules to a Library File .. 315
17.5 Deleting Modules from a Library File ... 315
17.6 Replacing Modules in a Library File ... 316
17.7 Extracting a Module from a Library File ... 316
17.8 Creating Import Libraries ... 317
17.9 Creating Import Library Entries ... 317
17.10 Commands from a File or Environment Variable .. 318
17.11 Open Watcom Library Manager Options ... 318

17.11.1 Suppress Creation of Backup File - "b" Option ... 318
17.11.2 Case Sensitive Symbol Names - "c" Option .. 318
17.11.3 Specify Output Directory - "d" Option .. 319
17.11.4 Specify Output Format - "f" Option .. 319
17.11.5 Generating Imports - "i" Option .. 319
17.11.6 Creating a Listing File - "l" Option ... 320
17.11.7 Display C++ Mangled Names - "m" Option .. 320
17.11.8 Always Create a New Library - "n" Option ... 320
17.11.9 Specifying an Output File Name - "o" Option ... 321
17.11.10 Specifying a Library Record Size - "p" Option ... 321
17.11.11 Operate Quietly - "q" Option ... 321
17.11.12 Strip Line Number Records - "s" Option ... 322
17.11.13 Trim Module Name - "t" Option ... 322
17.11.14 Operate Verbosely - "v" Option .. 322
17.11.15 Explode Library File - "x" Option ... 322

17.12 Librarian Error Messages ... 323

The Open Watcom Assembler .. 327

18 The Open Watcom Assembler .. 329
18.1 Introduction .. 329
18.2 Assembly Directives and Opcodes ... 331
18.3 Unsupported Directives .. 335

xi

Table of Contents
18.4 Open Watcom Assembler Specific .. 335

18.4.1 Naming convention .. 335
18.4.2 Open Watcom "C" name mangler ... 336
18.4.3 Calling convention ... 336

18.5 Open Watcom Assembler Diagnostic Messages .. 336

The Open Watcom Disassembler .. 345

19 The Object File Disassembler ... 347
19.1 Introduction .. 347
19.2 Changing the Internal Label Character - "i=<char>" ... 348
19.3 The Assembly Format Option - "a" ... 348
19.4 The External Symbols Option - "e" ... 348
19.5 The No Instruction Name Pseudonyms Option - "fp" ... 349
19.6 The No Register Name Pseudonyms Option - "fr" .. 349
19.7 The Alternate Addressing Form Option - "fi" .. 349
19.8 The Uppercase Instructions/Registers Option - "fu" .. 350
19.9 The Listing Option - "l[=<list_file>]" .. 350
19.10 The Public Symbols Option - "p" ... 350
19.11 Retain C++ Mangled Names - "m" ... 351
19.12 The Source Option - "s[=<source_file>]" .. 351
19.13 An Example .. 352

20 Optimization of Far Calls ... 357

The Open Watcom Strip Utility .. 359

21 The Open Watcom Strip Utility ... 361
21.1 Introduction .. 361
21.2 The Open Watcom Strip Utility Command Line ... 361
21.3 Strip Utility Messages .. 362

Appendices .. 365

A. Use of Environment Variables ... 367
A.1 FORCE .. 367
A.2 INCLUDE ... 367
A.3 LIB .. 367
A.4 PATH .. 368
A.5 TMPDIR .. 368
A.6 WATCOM ... 368
A.7 WCC .. 369
A.8 WCC386 .. 369
A.9 WCGMEMORY .. 369
A.10 WD .. 370
A.11 WD_PATH .. 370
A.12 WPP ... 371
A.13 WPP386 ... 371

xii

Table of Contents
B. Open Watcom C Diagnostic Messages ... 373

B.1 Warning Level 1 Messages ... 374
B.2 Warning Level 2 Messages ... 379
B.3 Warning Level 3 Messages ... 380
B.4 Warning Level 4 Messages ... 382
B.5 Error Messages .. 382
B.6 Informational Messages ... 402
B.7 Pre-compiled Header Messages .. 403
B.8 Miscellaneous Messages and Phrases ... 404

C. Open Watcom C++ Diagnostic Messages .. 405
C.1 Diagnostic Messages ... 406

D. Open Watcom C/C++ Run-Time Messages ... 597
D.1 Run-Time Error Messages .. 597
D.2 errno Values and Their Meanings ... 598

D.2.1 Shared Library Errors ... 600
D.2.2 Non-blocking and Interrupt I/O .. 601
D.2.3 IPC/Network Software -- Argument Errors .. 601
D.2.4 IPC/Network Software -- Operational Errors ... 601
D.2.5 QNX Specific .. 602

D.3 Math Run-Time Error Messages ... 602

xiii

xiv

Open Watcom C/C++ User’s Guide

Open Watcom C/C++ User’s Guide

2

1 About This Manual

This manual contains the following chapters:

Chapter 1 — "About This Manual".

This chapter provides an overview of the contents of this guide.

Chapter 2 — "Open Watcom C/C++ Compiler Options" on page 7.

This chapter provides a summary and reference section for all the C and C++ compiler
options.

Chapter 3 — "The Open Watcom C/C++ Compilers" on page 9.

This chapter describes how to compile an application from the command line. This chapter
also describes compiler environment variables, benchmarking hints, compiler diagnostics,
#include file processing, the preprocessor, predefined macros, extended keywords, and the
code generator.

Chapter 4 — "Precompiled Headers" on page 43.

This chapter describes the use of precompiled headers to speed up compilation.

Chapter 5 — "The Open Watcom C/C++ Libraries" on page 47.

This chapter describes the Open Watcom C/C++ library directory structure, C libraries,
class libraries, math libraries, 80x87 math libraries, alternate math libraries, the "NO87"
environment variable, and the run-time initialization routines.

Chapter 6 — "16-bit Memory Models" on page 55.

This chapter describes the Open Watcom C/C++ memory models (including code and data
models), the tiny memory model, the mixed memory model, linking applications for the
various memory models, creating a tiny memory model application, and memory layout in
an executable.

Chapter 7 — "16-bit Assembly Language Considerations" on page 59.

This chapter describes issues relating to 16-bit interfacing such as parameter passing
conventions.

Chapter 8 — "16-bit Pragmas" on page 75.

This chapter describes the use of pragmas with the 16-bit compilers.

Chapter 9 — "32-bit Memory Models" on page 121.

About This Manual 3

Open Watcom C/C++ User’s Guide

This chapter describes the Open Watcom C/C++ memory models (including code and data
models), the flat memory model, the mixed memory model, linking applications for the
various memory models, and memory layout in an executable.

Chapter 10 — "32-bit Assembly Language Considerations" on page 125.

This chapter describes issues relating to 32-bit interfacing such as parameter passing
conventions.

Chapter 11 — "32-bit Pragmas" on page 143.

This chapter describes the use of pragmas with the 32-bit compilers.

Chapter 12 — "In-line Assembly Language" on page 191.

This chapter describes in-line assembly language programming using the auxiliary pragma.

Chapter 13 — "The Open Watcom Linker" on page 209.

This chapter introduces the Open Watcom Linker.

Chapter 14 — "Linker Directives and Options" on page 213.

This chapter describes the Open Watcom Linker directives and options that apply to QNX
in alphabetical order.

Chapter 15 — "The QNX Executable File Format" on page 289.

This chapter describes the QNX executable file format.

Chapter 16 — "Open Watcom Linker Diagnostic Messages" on page 293.

This chapter explains the Open Watcom Linker error messages.

Chapter 17 — "The Open Watcom Library Manager" on page 313.

This chapter describe the Open Watcom Library Manager.

Chapter 18 — "The Open Watcom Assembler" on page 329.

This chapter describe the Open Watcom Assembler.

Chapter 19 — "The Object File Disassembler" on page 347.

This chapter describe the Open Watcom Disassembler.

Chapter 20 — "Optimization of Far Calls" on page 357.

This chapter describes the optimization of far calls.

Chapter 21 — "The Open Watcom Strip Utility" on page 361.

This chapter describe the Open Watcom Strip Utility.

4 About This Manual

About This Manual

Appendix A. — "Use of Environment Variables" on page 367.

This appendix describes all the environment variables used by the compilers and related
tools.

Appendix B. — "Open Watcom C Diagnostic Messages" on page 373.

This appendix lists all of the Open Watcom C diagnostic messages with an explanation for
each.

Appendix C. — "Open Watcom C++ Diagnostic Messages" on page 405.

This appendix lists all of the Open Watcom C++ diagnostic messages with an explanation
for each.

Appendix D. — "Open Watcom C/C++ Run-Time Messages" on page 597.

This appendix lists all of the C/C++ run-time diagnostic messages with an explanation for
each.

About This Manual 5

Open Watcom C/C++ User’s Guide

6 About This Manual

2 Open Watcom C/C++ Compiler Options

This chapter describes all the compiler options that are available.

Open Watcom C/C++ Compiler Options 7

Open Watcom C/C++ User’s Guide

8 Open Watcom C/C++ Compiler Options

3 The Open Watcom C/C++ Compilers

This chapter covers the following topics.

• Command line syntax (see "Open Watcom C/C++ Command Line Format")

• Environment variables used by the compilers (see "Environment Variables" on page 10)

• Examples of command line syntax (see "Open Watcom C/C++ Command Line Examples" on page
11)

• Interpreting diagnostic messages (see "Compiler Diagnostics" on page 15)

• #include file handling (see "Open Watcom C/C++ #include File Processing" on page 16)

• Using the preprocessor built into the compilers (see "Open Watcom C/C++ Preprocessor" on page
18)

• System-dependent macros predefined by the compilers (see "Open Watcom C/C++ Predefined
Macros" on page 20)

• Additional keywords supported by the compilers (see "Open Watcom C/C++ Extended Keywords"
on page 25)

• Based pointer support in the compilers (see "Based Pointers" on page 32)

• Notes about the Code Generator (see "The Open Watcom Code Generator" on page 40)

3.1 Open Watcom C/C++ Command Line Format
The formal Open Watcom C/C++ command line syntax is shown below.

compiler_name [options] [file_spec] [options] [@extra_opts]

The square brackets [] denote items which are optional.

compiler_name is one of the Open Watcom C/C++ compiler command names.

wcc is the Open Watcom C compiler for 16-bit Intel platforms.
wpp is the Open Watcom C++ compiler for 16-bit Intel platforms.
wcc386 is the Open Watcom C compiler for 32-bit Intel platforms.
wpp386 is the Open Watcom C++ compiler for 32-bit Intel platforms.

Open Watcom C/C++ Command Line Format 9

Open Watcom C/C++ User’s Guide

file_spec is the file name specification of one or more files to be compiled. If file_spec is specified
as the single character ".", an input file is read from standard input and the output file name
defaults to stdin.obj.

If no path is specified, the current working directory is assumed. If the file is not in the
current directory, an adjacent "C" directory (i.e., ../c) is searched if it exists.

If no file extension is specified, the compiler will check for a file with one of the following
extensions in the order listed:

.cpp (C++ only)

.cc (C++ only)

.c (C/C++)

A QNX filename extension consists of that portion of a filename containing the last "." and
any characters which follow it.

Example:
File Specification Extension
/home/john.doe/foo (none)
/home/john.doe/foo. .
/home/john.doe/foo.bar .bar
/home/john.doe/foo.goo.bar .bar

If a period "." is specified but not the extension, the file is assumed to have no filename
extension.

If only the compiler name is specified then the compiler will display a list of available
options.

options is a list of valid compiler options, each preceded by a dash ("−"). Options may be specified
in any order.

extra_opts is the name of an environment variable or file which contains additional command line
options to be processed. If the specified environment variable does not exist, a search is
made for a file with the specified name. If no file extension is included in the specified
name, the default file extension is ".occ". A search of the current directory is made. If not
successful, an adjacent "OCC" directory (i.e., ../occ) is searched if it exists.

3.2 Environment Variables
Environment variables can be used to specify commonly used compiler options. There is one environment
variable for each compiler (the name of the environment variable is the same as the compiler name). The
Open Watcom C/C++ environment variable names are:

WCC used with the Open Watcom C compiler for 16-bit Intel platforms

Example:
$ export "WCC=-d1 -ot"

WPP used with the Open Watcom C++ compiler for 16-bit Intel platforms

10 Environment Variables

The Open Watcom C/C++ Compilers

Example:
$ export "WPP=-d1 -ot"

WCC386 used with the Open Watcom C compiler for 32-bit Intel platforms

Example:
$ export "WCC386=-d1 -ot"

WPP386 used with the Open Watcom C++ compiler for 32-bit Intel platforms

Example:
$ export "WPP386=-d1 -ot"

The options specified in environment variables are processed before options specified on the command line.
The above examples define the default options to be "d1" (include line number debugging information in
the object file), and "ot" (favour time optimizations over size optimizations).

Once a particular environment variable has been defined, those options listed become the default each time
the associated compiler is used. The compiler command line can be used to override any options specified
in the environment string.

Hint: If you use the same compiler options all the time, you may find it handy to define the
environment variable in your user initialization file.

3.3 Open Watcom C/C++ Command Line Examples
The following are some examples of using Open Watcom C/C++ to compile C/C++ source programs.

Example:
$ compiler_name report -d1 -s

The compiler processes report.c(pp) producing an object file which contains source line number
information. Stack overflow checking is omitted from the object code.

Example:
$ compiler_name -mm -fpc calc

The compiler compiles calc.c(pp) for the Intel "medium" memory model and generates calls to
floating-point library emulation routines for all floating-point operations. Memory models are described in
the chapter entitled "16-bit Memory Models" on page 55.

Example:
$ compiler_name kwikdraw -2 -fpi87 -oaxt

The compiler processes kwikdraw.c(pp) producing 16-bit object code for an Intel 286 system
equipped with an Intel 287 numeric data processor (or any upward compatible 386/387, 486DX, or Pentium
system). While the choice of these options narrows the number of microcomputer systems where this code
will execute, the resulting code will be highly optimized for this type of system.

Open Watcom C/C++ Command Line Examples 11

Open Watcom C/C++ User’s Guide

Example:
$ compiler_name -mf -3s calc

The compiler compiles calc.c(pp) for the Intel 32-bit "flat" memory model. The compiler will
generate 386 instructions based on 386 instruction timings using the stack-based argument passing
convention. The resulting code will be optimized for Intel 386 systems. Memory models are described in
the chapter entitled "32-bit Memory Models" on page 121. Argument passing conventions are described in
the chapter entitled "32-bit Assembly Language Considerations" on page 125.

Example:
$ compiler_name kwikdraw -4r -fpi87 -oaimxt

The compiler processes kwikdraw.c(pp) producing 32-bit object code for an Intel 386-compatible
system equipped with a 387 numeric data processor. The compiler will generate 386 instructions based on
486 instruction timings using the register-based argument passing convention. The resulting code will be
highly optimized for Intel 486 systems.

Example:
$ compiler_name ../source/modabs -d2

The compiler processes ../source/modabs.c(pp) (a file in a directory which is adjacent to the
current one). The object file is placed in the current directory. Included with the object code and data is
information on local symbols and data types. The code generated is straight-forward, unoptimized code
which can be readily debugged with the Open Watcom Debugger.

Example:
$ export "compiler_name=-i=/includes -mc"
$ compiler_name /cprogs/grep.tst -fi=iomods.c

The compiler processes the program contained in the file /cprogs/grep.tst. The file iomods.c is
included as if it formed part of the source input stream. The include search path and memory model
options are defaults each time the compiler is invoked. The memory model option could be overridden on
the command line. After looking for an "include" file in the current directory, the compiler will search each
directory listed in the "i" path. See the section entitled "Open Watcom C/C++ #include File Processing" on
page 16 for more information.

Example:
$ compiler_name grep -fo=../obj/

The compiler processes the program contained in the file grep.c(pp) which is located in the current
directory. The object file is placed in the directory ../obj under the name grep.o.

Example:
$ compiler_name -dDBG=1 grep -fo=../obj/.dbo

The compiler processes the program contained in the file grep.c(pp) which is located in the current
directory. The macro "DBG" is defined so that conditional debugging statements that have been placed in
the source are compiled. The object file is placed in the directory ../obj and its filename extension will
be ".dbo" (instead of ".o"). Selection of a different filename extension permits easy identification of object
files that have been compiled with debugging statements.

Example:
$ compiler_name -g=GKS -s /gks/gopks

12 Open Watcom C/C++ Command Line Examples

The Open Watcom C/C++ Compilers

The compiler generates code for gopks.c(pp) and places it into the "GKS" group. If the "g" option had
not been specified, the code would not have been placed in any group. Assume that this file contains the
definition of the routine gopengks as follows:

void far gopengks(int workstation, long int h)
{

.

.

.
}

For a small code model, the routine gopengks must be defined in this file as far since it is placed in
another group. The "s" option is also specified to prevent a run-time call to the stack overflow check
routine which will be placed in a different code segment at link time. The gopengks routine must be
prototyped by C routines in other groups as

void far gopengks(int workstation, long int h);

since it will appear in a different code segment.

3.4 Benchmarking Hints
The Open Watcom C/C++ compiler contains many options for controlling the code to be produced. It is
impossible to have a certain set of compiler options that will produce the absolute fastest execution times
for all possible applications. With that said, we will list the compiler options that we think will give the
best execution times for most applications. You may have to experiment with different options to see
which combination of options generates the fastest code for your particular application.

The recommended options for generating the fastest 16-bit Intel code are:

Pentium Pro -onatx -oh -oi+ -ei -zp8 -6 -fpi87 -fp6

Pentium -onatx -oh -oi+ -ei -zp8 -5 -fpi87 -fp5

486 -onatx -oh -oi+ -ei -zp8 -4 -fpi87 -fp3

386 -onatx -oh -oi+ -ei -zp8 -3 -fpi87 -fp3

286 -onatx -oh -oi+ -ei -zp8 -2 -fpi87 -fp2

186 -onatx -oh -oi+ -ei -zp8 -1 -fpi87

8086 -onatx -oh -oi+ -ei -zp8 -0 -fpi87

The recommended options for generating the fastest 32-bit Intel code are:

Pentium Pro -onatx -oh -oi+ -ei -zp8 -6 -fp6

Pentium -onatx -oh -oi+ -ei -zp8 -5 -fp5

486 -onatx -oh -oi+ -ei -zp8 -4 -fp3

Benchmarking Hints 13

Open Watcom C/C++ User’s Guide

386 -onatx -oh -oi+ -ei -zp8 -3 -fp3

The "oi+" option is for C++ only. Under some circumstances, the "ob" and "ol+" optimizations may also
give better performance with 32-bit Intel code.

Option "on" causes the compiler to replace floating-point divisions with multiplications by the reciprocal.
This generates faster code (multiplication is faster than division), but the result may not be the same
because the reciprocal may not be exactly representable.

Option "oe" causes small user written functions to be expanded in-line rather than generating a call to the
function. Expanding functions in-line can further expose other optimizations that couldn’t otherwise be
detected if a call was generated to the function.

Option "oa" causes the compiler to relax alias checking.

Option "ot" must be specified to cause the code generator to select code sequences which are faster without
any regard to the size of the code. The default is to select code sequences which strike a balance between
size and speed.

Option "ox" is equivalent to "obmiler" and "s" which causes the compiler/code generator to do branch
prediction ("ob"), generate 387 instructions in-line for math functions such as sin, cos, sqrt ("om"), expand
intrinsic functions in-line ("oi"), perform loop optimizations ("ol"), expand small user functions in-line
("oe"), reorder instructions to avoid pipeline stalls ("or"), and to not generate any stack overflow checking
("s"). Option "or" is very important for generating fast code for the Pentium and Pentium Pro processors.

Option "oh" causes the compiler to attempt repeated optimizations (which can result in longer compiles but
more optimal code).

Option "oi+" causes the C++ compiler to expand intrinsic functions in-line (just like "oi") but also sets the
inline_depth to its maximum (255). By default, inline_depth is 3. The inline_depth can also be changed by
using the C++ inline_depth pragma.

Option "ei" causes the compiler to allocate at least an "int" for all enumerated types.

Option "zp8" causes all data to be aligned on 8 byte boundaries. The default is "zp2" for the 16-bit
compiler and "zp8" for 32-bit compiler. If, for example, "zp1" packing was specified then this would pack
all data which would reduce the amount of data memory required but would require extra clock cycles to
access data that is not on an appropriate boundary.

Options "0", "1", "2", "3", "4", "5" and "6" emit Intel code sequences optimized for processor-specific
instruction set features and timings. For 16-bit Intel applications, the use of these options may limit the
range of systems on which the application will run but there are execution performance improvements.

Options "fp2", "fp3", "fp5" and "fp6" emit Intel floating-point operations targetted at specific features of
the math coprocessor in the Intel series. For 16-bit Intel applications, the use of these options may limit the
range of systems on which the application will run but there are execution performance improvements.

Option "fpi87" causes in-line Intel 80x87 numeric data processor instructions to be generated into the
object code for floating-point operations. Floating-point instruction emulation is not included so as to
obtain the best floating-point performance in 16-bit Intel applications.

For 32-bit Intel applications, the use of the "fp5" option will give good performance on the Intel Pentium
but less than optimal performance on the 386 and 486. The use of the "5" option will give good

14 Benchmarking Hints

The Open Watcom C/C++ Compilers

performance on the Pentium and minimal, if any, impact on the 386 and 486. Thus, the following set of
options gives good overall performance for the 386, 486 and Pentium processors.

-onatx -oh -oi+ -ei -zp8 -5 -fp3

3.5 Compiler Diagnostics
If the compiler prints diagnostic messages to the screen, it will also place a copy of these messages in a file
in your current directory. The file will have the same file name as the source file and an extension of ".err".
The compiler issues two types of diagnostic messages, namely warnings or errors. A warning message
does not prevent the production of an object file. However, error messages indicate that a problem is
severe enough that it must be corrected before the compiler will produce an object file. The error file is a
handy reference when you wish to correct the errors in the source file.

Just to illustrate the diagnostic features of Open Watcom C/C++, we will modify the "hello" program in
such a way as to introduce some errors.

Example:
#include <stdio.h>

int main()
{

int x;
printf("Hello world\n");
return(y);

}

The equivalent C++ program follows:

Example:
#include <iostream.h>
#include <iomanip.h>

int main()
{

int x;
cout << "Hello world" << endl;
return(y);

}

In this example, we have added the lines:

int x;

and

return(y);

and changed the keyword void to int.

We compile the program with the "warning" option.

Compiler Diagnostics 15

Open Watcom C/C++ User’s Guide

Example:
$ compiler_name hello -w3

For the C program, the following output appears on the screen.

hello.c(7): Error! E1011: Symbol ’y’ has not been declared
hello.c(5): Warning! W202: Symbol ’x’ has been defined, but not

referenced
hello.c: 8 lines, included 174, 1 warnings, 1 errors

For the C++ program, the following output appears on the screen.

hello.cpp(8): Error! E029: (col 13) symbol ’y’ has not been declared
hello.cpp(9): Warning! W014: (col 1) no reference to symbol ’x’
hello.cpp(9): Note! N392: (col 1) ’int x’ in ’int main(void)’

defined in: hello.cpp(6) (col 9)
hello.cpp: 9 lines, included 1628, 1 warning, 1 error

Here we see an example of both types of messages. An error and a warning message have been issued. As
indicated by the error message, we require a declarative statement for the identifier y. The warning
message indicates that, while it is not a violation of the rules of C/C++ to define a variable without ever
using it, we probably did not intend to do so. Upon examining the program, we find that:

1. the variable x should have been assigned a value, and
2. the variable y has probably been incorrectly typed and should have been entered as x.

The complete list of Open Watcom C/C++ diagnostic messages is presented in an appendix of this guide.

3.6 Open Watcom C/C++ #include File Processing
When using the #include preprocessor directive, a header is identified by a sequence of characters
placed between the "<" and ">" delimiters (e.g., <file>) and a source file is identified by a sequence of
characters enclosed by quotation marks (e.g., "file"). Open Watcom C/C++ makes a distinction between
the use of "<>" or quotation marks to surround the name of the file to be included. The search techniques
for header files and source files are slightly different. Consider the following example.

Example:
#include <stdio.h> /* a system header file */
#include "stdio.h" /* your own header or source file */

You should use "<" and ">" when referring to standard or system header files and quotation marks when
referring to your own header and source files.

The character sequence placed between the delimiters in an #include directive represents the name of
the file to be included. The file name may include node, path, and extension.

It is not necessary to include the node and path specifiers in the file specification when the file resides on a
different node or in a different directory. Open Watcom C/C++ provides a mechanism for looking up
include files which may be located in various directories and disks of the computer system. Open Watcom
C/C++ searches directories for header and source files in the following order (the search stops once the file
has been located):

1. If the file specification enclosed in quotation marks ("file-spec") or angle brackets (<file-spec>)
contains the complete node and path specification, that file is included (provided it exists). No

16 Open Watcom C/C++ #include File Processing

The Open Watcom C/C++ Compilers

other searching is performed. The node need not be specified in which case the current node is
assumed.

2. If the file specification is enclosed in quotation marks, the current directory is searched.

3. Next, if the file specification is enclosed in quotation marks, the directory of the file containing
the #include directive is searched. If the current file is also an #include file, the directory
of the parent file is searched next. This search continues recursively through all the nested
#include files until the original source file’s directory is searched.

4. Next, if the file specification enclosed in quotation marks ("file-spec") or in angle brackets
(<file-spec>), each directory listed in the "i" path is searched (in the order that they were
specified).

5. Next, each directory listed in the <os>_INCLUDE environment variable is searched (in the
order that they were specified). The environment variable name is constructed from the current
build target name. The default build targets are:

DOS when the host operating system is DOS,

OS2 when the host operating system is OS/2,

NT when the host operating system is Windows NT/95, or

QNX when the host operating system is QNX.

LINUX when the host operating system is Linux.

For example, the environment variable OS2_INCLUDE will be searched if the build target is
"OS2". The build target would be OS/2 if:

1. the host operating system is OS/2 and the "bt" option was not specified, or
2. the "bt=OS2" option was explicitly specified.

6. Next, each directory listed in the INCLUDE environment variable is searched (in the order that
they were specified).

7. Finally, if the file specification is enclosed in quotation marks, an adjacent "H" directory (i.e.,
../h) is searched if it exists.

In the above example, <stdio.h> and "stdio.h" could refer to two different files if there is a
stdio.h in the current directory and one in the Open Watcom C/C++ include file directory
(/usr/include) and the current directory is not listed in an "i" path or the INCLUDE environment
variable.

The compiler will search the directories listed in "i" paths (see description of the "i" option) and the
INCLUDE environment variable in a manner analogous to that which the operating system shell will use
when searching for programs by using the PATH environment variable.

The "export" command is used to define an INCLUDE environment variable that contains a list of
directories. A command of the form

export INCLUDE=path:path...

Open Watcom C/C++ #include File Processing 17

Open Watcom C/C++ User’s Guide

is issued before running Open Watcom C/C++ the first time.

We illustrate the use of the #include directive in the following example.

Example:
#include <stdio.h>
#include <time.h>
#include <dos.h>

#include "common.c"

int main()
{

initialize();
update_files();
create_report();
finalize();

}

#include "part1.c"
#include "part2.c"

If the above text is stored in the source file report.c in the current directory then we might issue the
following commands to compile the application.

Example:
$ export INCLUDE=/usr/include://1/headers
$ compiler_name report -fo=../obj/ -i=../source

In the above example, the "export" command is used to define the INCLUDE environment variable. It
specifies that the /usr/include directory (of the current node) and the /headers directory (a
directory on node 1) are to be searched.

The Open Watcom C/C++ "i" option defines a third place to search for include files. The advantage of the
INCLUDE environment variable is that it need not be specified each time the compiler is run.

3.7 Open Watcom C/C++ Preprocessor
The Open Watcom C/C++ preprocessor forms an integral part of Open Watcom C/C++. When any form of
the "p" option is specified, only the preprocessor is invoked. No code is generated and no object file is
produced. The output of the preprocessor is written to the standard output file, although it can also be
redirected to a file using the "fo" option. Suppose the following C/C++ program is contained in the file
msgid.c.

18 Open Watcom C/C++ Preprocessor

The Open Watcom C/C++ Compilers

Example:
#define _IBMPC 0
#define _IBMPS2 1

#if _TARGET == _IBMPS2
char *SysId = { "IBM PS/2" };
#else
char *SysId = { "IBM PC" };
#endif

/* Return pointer to System Identification */

char *GetSysId()
{

return(SysId);
}

We can use the Open Watcom C/C++ preprocessor to generate the C/C++ code that would actually be
compiled by the compiler by issuing the following command.

Example:
$ compiler_name msgid -plc -fo -d_TARGET=_IBMPS2

The file msgid.i will be created and will contain the following C/C++ code.

#line 1 "msgid.c"

char *SysId = { "IBM PS/2" };
#line 9 "msgid.c"

/* Return pointer to System Identification */

char *GetSysId()
{

return(SysId);
}

Note that the file msgid.i can be used as input to the compiler.

Example:
$ compiler_name msgid.i

Since #line directives are present in the file, the compiler can issue error messages in terms of the
original source file line numbers.

Open Watcom C/C++ Preprocessor 19

Open Watcom C/C++ User’s Guide

3.8 Open Watcom C/C++ Predefined Macros
In addition to the standard ISO-defined macros supported by the Open Watcom C/C++ compilers, several
additional system-dependent macros are also defined. These are described in this section. See the Open
Watcom C Language Reference manual for a description of the standard macros.

The Open Watcom C/C++ compilers run on various host operating systems including DOS, OS/2,
Windows NT, Windows 95 and QNX. Any of the supported host operating systems can be used to develop
applications for a number of target systems. By default, the target operating system for the application is
the same as the host operating system unless some option or combination of options is specified. For
example, DOS applications are built on DOS by default, OS/2 applications are built on OS/2 by default,
and so on. But the flexibility is there to build applications for other operating systems/environments.

The macros described below may be used to identify the target system for which the application is being
compiled. (Note: In several places in the following text, a pair of underscore characters appears as __
which resembles a single, elongated underscore.)

The Open Watcom C/C++ compilers support both 16-bit and 32-bit application development. The
following macros are defined for 16-bit and 32-bit target systems.

16-bit 32-bit

======== ========
__X86__ __X86__
__I86__ __386__
M_I86 M_I386
_M_I86 _M_I386
_M_IX86 _M_IX86

Notes:

1. The __X86__ identifies the target as an Intel environment.

2. The __I86__,M_I86 and_M_I86 macros identify the target as a 16-bit Intel environment.

3. The __386__,M_I386 and_M_I386 macros identify the target as a 32-bit Intel
environment.

4. The _M_IX86 macro is identically equal to 100 times the architecture compiler option value (-0,
-1, -2, -3, -4, -5, etc.). If "-5" (Pentium instruction timings) was specified as a compiler option,
then the value of _M_IX86 would be 500.

The Open Watcom C/C++ compilers support application development for a variety of operating systems.
The following macros are defined for particular target operating systems.

Target Macros
====== ======================================
DOS __DOS__, _DOS, MSDOS
OS/2 __OS2__
QNX __QNX__, __UNIX__
Netware __NETWARE__, __NETWARE_386__
NT __NT__
Windows __WINDOWS__, _WINDOWS, __WINDOWS_386__
Linux __LINUX__, __UNIX__

20 Open Watcom C/C++ Predefined Macros

The Open Watcom C/C++ Compilers

Notes:

1. The __DOS__,_DOS and MSDOS macros are defined when the build target is "DOS" (16-bit
DOS or 32-bit extended DOS).

2. The __OS2__ macro is defined when the build target is "OS2" (16-bit or 32-bit OS/2).

3. The __QNX__ and__UNIX__ macros are defined when the build target is "QNX" (16-bit or
32-bit QNX).

4. The __NETWARE__ and__NETWARE_386__ macros are defined when the build target is
"NETWARE" (Novell NetWare).

5. The __NT__ macro is defined when the build target is "NT" (Windows NT and Windows 95).

6. The __WINDOWS__ macro is defined when the build target is "WINDOWS" or one of the "zw",
"zW", "zWs" options is specified (identifies the target operating system as 16-bit Windows or
32-bit extended Windows but not Windows NT or Windows 95).

7. The _WINDOWS macro is defined when the build target is "WINDOWS" or one of the "zw",
"zW", "zWs" options is specified and you are using a 16-bit compiler (identifies the target
operating system as 16-bit Windows).

8. The __WINDOWS_386__ macro is defined when the build target is "WINDOWS" or the "zw"
option is specified and you are using a 32-bit compiler (identifies the target operating system as
32-bit extended Windows).

9. The __LINUX__ and__UNIX__ macros are defined when the build target is "LINUX" (32-bit
Linux).

The following macros are defined for the indicated options.

Option Macro
====== ==================
bm _MT
br _DLL
fpi __FPI__
fpi87 __FPI__
j __CHAR_SIGNED__
oi __INLINE_FUNCTIONS__
xr _CPPRTTI (C++ only)
xs _CPPUNWIND (C++ only)
xss _CPPUNWIND (C++ only)
xst _CPPUNWIND (C++ only)
za NO_EXT_KEYS
zw __WINDOWS__
zW __WINDOWS__
zWs __WINDOWS__

The following memory model macros are defined for the indicated memory model options.

Open Watcom C/C++ Predefined Macros 21

Open Watcom C/C++ User’s Guide

Option All 16-bit only 32-bit only
====== =========== ================= =================
mf __FLAT__ M_386FM _M_386FM
ms __SMALL__ M_I86SM _M_I86SM M_386SM _M_386SM
mm __MEDIUM__ M_I86MM _M_I86MM M_386MM _M_386MM
mc __COMPACT__ M_I86CM _M_I86CM M_386CM _M_386CM
ml __LARGE__ M_I86LM _M_I86LM M_386LM _M_386LM
mh __HUGE__ M_I86HM _M_I86HM

The following macros indicate which compiler is compiling the C/C++ source code.

__cplusplus Open Watcom C++ predefines the macro __cplusplus to identify the compiler as a
C++ compiler.

__WATCOMC__
Open Watcom C/C++ predefines the macro __WATCOMC__ to identify the compiler as one
of the Open Watcom C/C++ compilers.

The value of the macro depends on the version number of the compiler. The value is 100
times the version number (version 8.5 yields 850, version 9.0 yields 900, etc.). Note that
for Open Watcom 1.0, the value of this macro is 1200, for Open Watcom 1.1 it is 1210 etc.

__WATCOM_CPLUSPLUS__
Open Watcom C++ predefines the macro __WATCOM_CPLUSPLUS__ to identify the
compiler as one of the Open Watcom C++ compilers.

The value of the macro depends on the version number of the compiler. The value is 100
times the version number (version 10.0 yields 1000, version 10.5 yields 1050, etc.). Note
that for Open Watcom 1.0, the value of this macro is 1200, for Open Watcom 1.1 it is 1210
etc.

The following macros are defined for compatibility with Microsoft.

__CPPRTTI Open Watcom C++ predefines the __CPPRTTI macro to indicate that C++ Run-Time
Type Information (RTTI) is in force. This macro is predefined if the Open Watcom C++
"xr" compile option is specified and is not defined otherwise.

__CPPUNWIND
Open Watcom C++ predefines the __CPPUNWIND macro to indicate that C++ exceptions
supported. This macro is predefined if any of the Open Watcom C++ "xs", "xss" or "xst"
compile options are specified and is not defined otherwise.

_INTEGRAL_MAX_BITS
Open Watcom C/C++ predefines the _INTEGRAL_MAX_BITS macro to indicate that
maximum number of bits supported in an integral type (see the description of the "__int64"
keyword in the next section). Its value is 64 currently.

_PUSHPOP_SUPPORTED
Open Watcom C/C++ predefines the _PUSHPOP_SUPPORTED macro to indicate that
#pragma pack(push) and #pragma pack(pop) are supported.

_STDCALL_SUPPORTED
Open Watcom C/C++ predefines the _STDCALL_SUPPORTED macro to indicate that the
standard 32-bit Win32 calling convention is supported.

22 Open Watcom C/C++ Predefined Macros

The Open Watcom C/C++ Compilers

The following table summarizes the predefined macros supported by the compilers and the values that the
respective compilers assign to them. A "yes" under the column means that the compiler supports the macro
with the indicated value. Note that the C and C++ compilers sometime support the same macro but with
different values (including no value which means the symbol is defined without a value).

Open Watcom C/C++ Predefined Macros 23

Open Watcom C/C++ User’s Guide

Predefined Macro Supported by Compiler
and Setting wcc wcc386 wpp wpp386

--------------------------- ------ ------ ------ ------
__386__=1 Yes Yes
__3R__=1 Yes
_based=__based Yes Yes Yes Yes
_cdecl=__cdecl Yes Yes Yes Yes
cdecl=__cdecl Yes Yes Yes Yes
__cplusplus=1 Yes Yes
_CPPRTTI=1 Yes Yes
_CPPUNWIND=1 Yes Yes
_export=__export Yes Yes Yes Yes
_far16=__far16 Yes Yes Yes Yes
_far=__far Yes Yes Yes Yes
far=__far Yes Yes Yes Yes
_fastcall=__fastcall Yes Yes Yes Yes
__FLAT__=1 Yes Yes
_fortran=__fortran Yes Yes Yes Yes
fortran=__fortran Yes Yes Yes Yes
__FPI__=1 Yes Yes Yes Yes
_huge=__huge Yes Yes Yes Yes
huge=__huge Yes Yes Yes Yes
__I86__=1 Yes Yes
_inline=__inline Yes Yes Yes Yes
_INTEGRAL_MAX_BITS=64 Yes Yes Yes Yes
_interrupt=__interrupt Yes Yes Yes Yes
interrupt=__interrupt Yes Yes Yes Yes
_loadds=__loadds Yes Yes Yes Yes
_M_386FM=1 Yes
M_386FM=1 Yes
_M_I386=1 Yes Yes
M_I386=1 Yes Yes
_M_I86=1 Yes Yes
M_I86=1 Yes Yes
_M_I86SM=1 Yes Yes
M_I86SM=1 Yes Yes
_M_IX86=0 Yes Yes
_M_IX86=500 Yes Yes
_near=__near Yes Yes Yes Yes
near=__near Yes Yes Yes Yes
__NT__=1 (on Win32 platform) Yes Yes Yes Yes
_pascal=__pascal Yes Yes Yes Yes
pascal=__pascal Yes Yes Yes Yes
_saveregs=__saveregs Yes Yes Yes Yes
_segment=__segment Yes Yes Yes Yes
_segname=__segname Yes Yes Yes Yes
_self=__self Yes Yes Yes Yes
__SMALL__=1 Yes Yes
SOMDLINK=__far Yes
SOMDLINK=_Syscall Yes Yes
SOMLINK=__cdecl Yes
SOMLINK=_Syscall Yes Yes
_STDCALL_SUPPORTED=1 Yes Yes
__SW_0=1 Yes Yes
__SW_3R=1 Yes Yes
__SW_5=1 Yes Yes
__SW_FP287=1 Yes
__SW_FP2=1 Yes
__SW_FP387=1 Yes
__SW_FP3=1 Yes
__SW_FPI=1 Yes Yes Yes Yes
__SW_MF=1 Yes Yes
__SW_MS=1 Yes
__SW_ZDP=1 Yes Yes Yes Yes
__SW_ZFP=1 Yes Yes Yes Yes
__SW_ZGF=1 Yes Yes
__SW_ZGP=1 Yes Yes
_stdcall=__stdcall Yes Yes Yes Yes
_syscall=__syscall Yes Yes Yes Yes
__WATCOM_CPLUSPLUS__=1280 Yes Yes
__WATCOMC__=1280 Yes Yes Yes Yes

24 Open Watcom C/C++ Predefined Macros

The Open Watcom C/C++ Compilers

__X86__=1 Yes Yes Yes Yes

3.9 Open Watcom C/C++ Extended Keywords
Open Watcom C/C++ supports the use of some special keywords to describe system dependent attributes of
functions and other object names. These attributes are inspired by the Intel processor architecture and the
plethora of function calling conventions in use by compilers for this architecture. In keeping with the ISO
C and C++ language standards, Open Watcom C/C++ uses the double underscore (i.e., "__") or single
underscore followed by uppercase letter (e.g., "_S") prefix with these keywords. To support compatibility
with other C/C++ compilers, alternate forms of these keywords are also supported through predefined
macros.

__near Open Watcom C/C++ supports the __near keyword to describe functions and other object
names that are in near memory and pointers to near objects.

Open Watcom C/C++ predefines the macros near and _near to be equivalent to the
__near keyword.

__far Open Watcom C/C++ supports the __far keyword to describe functions and other object
names that are in far memory and pointers to far objects.

Open Watcom C/C++ predefines the macros far, _far and SOMDLINK (16-bit only) to
be equivalent to the __far keyword.

__huge Open Watcom C/C++ supports the __huge keyword to describe functions and other object
names that are in huge memory and pointers to huge objects. The 32-bit compilers treat
these as equivalent to far objects.

Open Watcom C/C++ predefines the macros huge and _huge to be equivalent to the
__huge keyword.

__based Open Watcom C/C++ supports the __based keyword to describe pointers to objects that
appear in other segments or the objects themselves. See the section entitled "Based
Pointers" on page 32 for an explanation of the __based keyword.

Open Watcom C/C++ predefines the macro _based to be equivalent to the __based
keyword.

__segment Open Watcom C/C++ supports the __segment keyword which is used when describing
objects of type segment. See the section entitled "Based Pointers" on page 32 for an
explanation of the __segment keyword.

Open Watcom C/C++ predefines the macro _segment to be equivalent to the
__segment keyword.

__segname Open Watcom C/C++ supports the __segname keyword which is used when describing
segname constant based pointers or objects. See the section entitled "Based Pointers" on
page 32 for an explanation of the __segname keyword.

Open Watcom C/C++ predefines the macro _segname to be equivalent to the
__segname keyword.

Open Watcom C/C++ Extended Keywords 25

Open Watcom C/C++ User’s Guide

__self Open Watcom C/C++ supports the __self keyword which is used when describing self
based pointers. See the section entitled "Based Pointers" on page 32 for an explanation of
the __self keyword.

Open Watcom C/C++ predefines the macro _self to be equivalent to the __self
keyword.

__restrict Open Watcom C/C++ provides the __restrict type qualifier as an alternative to the ISO C99
restrict keyword; it is supported even when C99 keywords aren’t visible. This type
qualifier is used as an optimization hint. Any object accessed through a restrict qualified
pointer may only be accessed through that pointer and the compiler may assume that there
will be no aliasing.

_Packed Open Watcom C/C++ supports the _Packed keyword which is used when describing a
structure. If specified before the struct keyword, the compiler will force the structure to be
packed (no alignment, no gaps) regardless of the setting of the command-line option or the
#pragma controlling the alignment of members.

__cdecl Open Watcom C/C++ supports the __cdecl keyword to describe C functions that are
called using a special convention.

Notes:

1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument
is pushed first. The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a
structure is returned, the called routine returns a pointer in register AX/EAX to
the return value which is stored in the data segment (DGROUP).

4. For the 16-bit compiler, registers AX, BX, CX and DX, and segment register ES
are not saved and restored when a call is made.

5. For the 32-bit compiler, registers EAX, ECX and EDX are not saved and
restored when a call is made.

Open Watcom C/C++ predefines the macros cdecl, _cdecl,_Cdecl and SOMLINK
(16-bit only) to be equivalent to the __cdecl keyword.

__pascal Open Watcom C/C++ supports the __pascal keyword to describe Pascal functions that
are called using a special convention described by a pragma in the "stddef.h" header file.

Open Watcom C/C++ predefines the macros pascal, _pascal and_Pascal to be
equivalent to the __pascal keyword.

__fortran Open Watcom C/C++ supports the __fortran keyword to describe functions that are
called from FORTRAN. It converts the name to uppercase letters and suppresses the "_"
which is appended to the function name for certain calling conventions.

Open Watcom C/C++ predefines the macros fortran and _fortran to be equivalent to
the __fortran keyword.

26 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

__interrupt Open Watcom C/C++ supports the __interrupt keyword to describe a function that is
an interrupt handler.

Example:
#include <i86.h>

void __interrupt int10(union INTPACK r)
{

.

.

.
}

The code generator will emit instructions to save all registers. The registers are saved on
the stack in a specific order so that they may be referenced using the "INTPACK" union as
shown in the DOS example above. The code generator will emit instructions to establish
addressability to the program’s data segment since the DS segment register contents are
unpredictable. The function will return using an "IRET" (16-bit) or "IRETD" (32-bit)
(interrupt return) instruction.

Open Watcom C/C++ predefines the macros interrupt and _interrupt to be
equivalent to the __interrupt keyword.

__declspec(modifier)
Open Watcom C/C++ supports the __declspec keyword for compatibility with
Microsoft C++. The __declspec keyword is used to modify storage-class attributes of
functions and/or data. There are several modifiers that can be specified with the
__declspec keyword: thread, naked, dllimport, dllexport, __pragma(
"string"), __cdecl,__pascal,__fortran,__stdcall, and
__syscall. These attributes are a property only of the declaration of the object or
function to which they are applied. Unlike the __near and__far keywords, which
actually affect the type of object or function (in this case, 2- and 4-byte addresses), these
storage-class attributes do not redefine the type attributes of the object itself. The
__pragma modifier is supported by Open Watcom C++ only. The thread attribute
affects data and objects only. The naked, __pragma,__cdecl,__pascal,
__fortran,__stdcall, and__syscall attributes affect functions only. The
dllimport and dllexport attributes affect functions, data, and objects. For more
information on the __declspec keyword, please see the section entitled "The __declspec
Keyword" on page 36.

__export Open Watcom C/C++ supports the __export keyword to describe functions and other
object names that are to be exported from a Microsoft Windows DLL, OS/2 DLL, or
Netware NLM. See also the description of the "zu" option.

Example:
void __export _Setcolor(int color)
{

.

.

.
}

Open Watcom C/C++ predefines the macro _export to be equivalent to the __export
keyword.

Open Watcom C/C++ Extended Keywords 27

Open Watcom C/C++ User’s Guide

__loadds Open Watcom C/C++ supports the __loadds keyword to describe functions that require
specific loading of the DS register to establish addressability to the function’s data
segment. This keyword is useful in describing a function that will be placed in a Microsoft
Windows or OS/2 1.x Dynamic Link Library (DLL). See also the description of the "nd"
and "zu" options.

Example:
void __export __loadds _Setcolor(int color)
{

.

.

.
}

If the function in an OS/2 1.x Dynamic Link Library requires access to private data, the
data segment register must be loaded with an appropriate value since it will contain the DS
value of the calling application upon entry to the function.

Open Watcom C/C++ predefines the macro _loadds to be equivalent to the __loadds
keyword.

__saveregs Open Watcom C/C++ recognizes the __saveregs keyword which is an attribute used by
C/C++ compilers to describe a function that must save and restore all registers.

Open Watcom C/C++ predefines the macro _saveregs to be equivalent to the
__saveregs keyword.

__stdcall (32-bit only) The __stdcall keyword may be used with function definitions, and
indicates that the 32-bit Win32 calling convention is to be used.

Notes:

1. All symbols are preceded by an underscore character.

2. All C symbols (extern "C" symbols in C++) are suffixed by "@nnn" where
"nnn" is the sum of the argument sizes (each size is rounded up to a multiple of 4
bytes so that char and short are size 4). When the argument list contains "...", the
"@nnn" suffix is omitted.

3. Arguments are pushed on the stack from right to left. That is, the last argument
is pushed first. The called routine will remove the arguments from the stack.

4. When a structure is returned, the caller allocates space on the stack. The address
of the allocated space will be pushed on the stack immediately before the call
instruction. Upon returning from the call, register EAX will contain address of
the space allocated for the return value. Floating-point values are returned in
80x87 register ST(0).

5. Registers EAX, ECX and EDX are not saved and restored when a call is made.

__syscall (32-bit only) The __syscall keyword may be used with function definitions, and
indicates that the calling convention used is compatible with functions provided by 32-bit
OS/2.

28 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

Notes:

1. Symbols names are not modified, that is, they are not adorned with leading or
trailing underscores.

2. Arguments are pushed on the stack from right to left. That is, the last argument
is pushed first. The calling routine will remove the arguments from the stack.

3. When a structure is returned, the caller allocates space on the stack. The address
of the allocated space will be pushed on the stack immediately before the call
instruction. Upon returning from the call, register EAX will contain address of
the space allocated for the return value. Floating-point values are returned in
80x87 register ST(0).

4. Registers EAX, ECX and EDX are not saved and restored when a call is made.

Open Watcom C/C++ predefines the macros _syscall, _System, SOMLINK (32-bit
only) and SOMDLINK (32-bit only) to be equivalent to the __syscall keyword.

__far16 (32-bit only) Open Watcom C/C++ recognizes the __far16 keyword which can be used
to define far 16-bit (far16) pointers (16-bit selector with 16-bit offset) or far 16-bit function
prototypes. This keyword can be used under 32-bit OS/2 to call 16-bit functions from your
32-bit flat model program. Integer arguments will automatically be converted to 16-bit
integers, and 32-bit pointers will be converted to far16 pointers before calling a special
thunking layer to transfer control to the 16-bit function.

Open Watcom C/C++ predefines the macros _far16 and_Far16 to be equivalent to the
__far16 keyword. This keyword is compatible with Microsoft C.

In the OS/2 operating system (version 2.0 or higher), the first 512 megabytes of the 4
gigabyte segment referenced by the DS register is divided into 8192 areas of 64K bytes
each. A far16 pointer consists of a 16-bit selector referring to one of the 64K byte areas,
and a 16-bit offset into that area.

A pointer declared as,

[type] __far16 *name;

defines an object that is a far16 pointer. If such a pointer is accessed in the 32-bit
environment, the compiler will generate the necessary code to convert between the far16
pointer and a "flat" 32-bit pointer.

For example, the declaration,

char __far16 *bufptr;

declares the object bufptr to be a far16 pointer to char.

A function declared as,

[type] __far16 func([arg_list]);

declares a 16-bit function. Any calls to such a function from the 32-bit environment will
cause the compiler to convert any 32-bit pointer arguments to far16 pointers, and any int

Open Watcom C/C++ Extended Keywords 29

Open Watcom C/C++ User’s Guide

arguments from 32 bits to 16 bits. (In the 16-bit environment, an object of type int is only
16 bits.) Any return value from the function will have its return value converted in an
appropriate manner.

For example, the declaration,

char * __far16 Scan(char *buffer, int len, short err);

declares the 16-bit function Scan. When this function is called from the 32-bit
environment, the buffer argument will be converted from a flat 32-bit pointer to a far16
pointer (which, in the 16-bit environment, would be declared as char __far *. The
len argument will be converted from a 32-bit integer to a 16-bit integer. The err
argument will be passed unchanged. Upon returning, the far16 pointer (far pointer in the
16-bit environment) will be converted to a 32-bit pointer which describes the equivalent
location in the 32-bit address space.

_Seg16 (32-bit only) Open Watcom C/C++ recognizes the _Seg16 keyword which has a similar
but not identical function as the __far16 keyword described above. This keyword is
compatible with IBM C Set/2 and IBM VisualAge C++.

In the OS/2 operating system (version 2.0 or higher), the first 512 megabytes of the 4
gigabyte segment referenced by the DS register is divided into 8192 areas of 64K bytes
each. A far16 pointer consists of a 16-bit selector referring to one of the 64K byte areas,
and a 16-bit offset into that area.

Note that _Seg16 is not interchangeable with __far16.

A pointer declared as,

[type] * _Seg16 name;

defines an object that is a far16 pointer. Note that the _Seg16 appears on the right side of
the * which is opposite to the __far16 keyword described above.

For example,

char * _Seg16 bufptr;

declares the object bufptr to be a far16 pointer to char (the same as above).

The _Seg16 keyword may not be used to describe a 16-bit function. A #pragma directive
must be used instead. A function declared as,

[type] * _Seg16 func([parm_list]);

declares a 32-bit function that returns a far16 pointer.

For example, the declaration,

char * _Seg16 Scan(char * buffer, int len, short err);

declares the 32-bit function Scan. No conversion of the argument list will take place.
The return value is a far16 pointer.

30 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

__pragma Open Watcom C++ supports the __pragma keyword to support in-lining of member
functions. The __pragma keyword must be followed by parentheses containing a string
that names an auxiliary pragma. Here is a simplified example showing usage and syntax.

Example:
#pragma aux fast_mul = \

"imul eax,edx" \
parm caller [eax] [edx] \
value struct;

struct fixed {
unsigned v;

};

fixed __pragma("fast_mul") operator *(fixed, fixed);

fixed two = { 2 };
fixed three = { 3 };

fixed foo()
{

return two * three;
}

See the chapters entitled "16-bit Pragmas" on page 75 and "32-bit Pragmas" on page 143
for more information on pragmas.

__int64 Open Watcom C/C++ supports the __int64 keyword to define 64-bit integer data objects.

Example:
static __int64 bigInt;

Also supported are signed and unsigned 64-bit integer constants.

signed __int64 Use the "i64" suffix for a signed 64-bit integer constant.

Example:
12345i64
12345I64

unsigned __int64 Use the "ui64" suffix for an unsigned 64-bit integer constant.

Example:
12345Ui64
12345uI64

The run-time library supports formatting of __int64 items (see the description of the
printf library function).

Open Watcom C/C++ Extended Keywords 31

Open Watcom C/C++ User’s Guide

Example:
#include <stdio.h>
#include <limits.h>

void main()
{

__int64 bigint;
__int64 bigint2;

bigint2 = 8I64 * (LONG_MAX + 1I64);
for(bigint = 0;

bigint <= bigint2;
bigint += bigint2 / 16) {

printf("Hello world %Ld\n", bigint);
}

}

Restrictions

switch An __int64 expression cannot be used in a switch statement.

bit fields More than 32 bits in a 64-bit bitfield is not supported.

3.10 Based Pointers
Near pointers are generally the most efficient type of pointer because they are small, and the compiler can
assume knowledge about what segment of the computer’s memory the pointer (offset) refers to. Far
pointers are the most flexible because they allow the programmer to access any part of the computer’s
memory, without limitation to a particular segment. However, far pointers are bigger and slower because
of the additional flexibility.

Based pointers are a compromise between the efficiency of near pointers and the flexibility of far pointers.
With based pointers, the programmer takes responsibility to tell the compiler which segment a near pointer
(offset) belongs to, but may still access segments of the computer’s memory outside of the normal data
segment (DGROUP). The result is a pointer type which is as small as and almost as efficient as a near
pointer, but with most of the flexibility of a far pointer.

An object declared as a based pointer falls into one of the following categories:

• the based pointer is in the segment described by another object,
• the based pointer, used as a pointer to another object of the same type (as in a linked list), refers to
the same segment,

• the based pointer is an offset to no particular segment, and must be combined explicitly with a
segment value to produce a valid pointer.

To support based pointers, the following keywords are provided:

__based
__segment
__segname
__self

The following operator is also provided:

32 Based Pointers

The Open Watcom C/C++ Compilers

:>

These keywords and operator are described in the following sections.

Two macros, defined in malloc.h, are also provided:

_NULLSEG
_NULLOFF

They are used in a manner similar to NULL, but are used with objects declared as __segment and
__based respectively.

3.10.1 Segment Constant Based Pointers and Objects
A segment constant based pointer or object has its segment value based on a specific, named segment. A
segment constant based object is specified as:

[type] __based(__segname("segment")) object_name;

and a segment constant based pointer is specified as:

[type] __based(__segname("segment")) *object-name;

where segment is the name of the segment in which the pointer or object is based. As shown above, the
segment name is always specified as a string. There are three special segment names recognized by the
compiler:

"_CODE"
"_CONST"
"_DATA"

The "_CODE" segment is the default code segment. The "_CONST" segment is the segment containing
constant values. The "_DATA" segment is the default data segment. If the segment name is not one of the
three recognized names, then a segment will be created with that name. If a segment constant based object
is being defined, then it will be placed in the named segment. If a segment constant based pointer is being
defined, then it can point at objects in the named segment.

The following examples illustrate segment constant based pointers and objects.

Example:
int __based(__segname("_CODE")) ival = 3;
int __based(__segname("_CODE")) *iptr;

ival is an object that resides in the default code segment. iptr is an object that resides in the data
segment (the usual place for data objects), but points at an integer which resides in the default code
segment. iptr is suitable for pointing at ival.

Based Pointers 33

Open Watcom C/C++ User’s Guide

Example:
char __based(__segname("GOODTHINGS")) thing;

thing is an object which resides in the segment GOODTHINGS, which will be created if it does not
already exist. (The creation of segments is done by the linker, and is a method of grouping objects and
functions. Nothing is implicitly created during the execution of the program.)

3.10.2 Segment Object Based Pointers
A segment object based pointer derives its segment value from another named object. A segment object
based pointer is specified as follows:

[type] __based(segment) *name;

where segment is an object defined as type __segment.

An object of type __segment may contain a segment value. Such an object is particularly designed for
use with segment object based pointers.

The following example illustrates a segment object based pointer:

Example:
__segment seg;
char __based(seg) *cptr;

The object seg contains only a segment value. Whenever the object cptr is used to point to a character,
the actual pointer value will be made up of the segment value found in seg and the offset value found in
cptr. The object seg might be assigned values such as the following:

• a constant value (e.g., the segment containing screen memory),
• the result of the library function _bheapseg,
• the segment portion of another pointer value, by casting it to the type __segment.

3.10.3 Void Based Pointers
A void based pointer must be explicitly combined with a segment value to produce a reference to a memory
location. A void based pointer does not infer its segment value from another object. The :> (base)
operator is used to combine a segment value and a void based pointer.

For example, on a personal computer running DOS with a color monitor, the screen memory begins at
segment 0xB800, offset 0. In a video text mode, to examine the first character currently displayed on the
screen, the following code could be used:

Example:

34 Based Pointers

The Open Watcom C/C++ Compilers

extern void main()
{

__segment screen;
char __based(void) *scrptr;

screen = 0xB800;
scrptr = 0;
printf("Top left character is ’%c’.\n",

*(screen:>scrptr));
}

The general form of the :> operator is:

segment :> offset

where segment is an expression of type __segment, andoffset is an expression of type __based(
void) *.

3.10.4 Self Based Pointers
A self based pointer infers its segment value from itself. It is particularly useful for structures such as
linked lists, where all of the list elements are in the same segment. A self based pointer pointing to one
element may be used to access the next element, and the compiler will use the same segment as the original
pointer.

The following example illustrates a function which will print the values stored in the last two members of a
linked list:

Example:
struct a {

struct a __based(__self) *next;
int number;

};

extern void PrintLastTwo(struct a far *list)
{

__segment seg;
struct a __based(seg) *aptr;

seg = FP_SEG(list);
aptr = FP_OFF(list);
for(; aptr != _NULLOFF; aptr = aptr->next) {

if(aptr->next == _NULLOFF) {
printf("Last item is %d\n",

aptr->number);
} else if(aptr->next->next == _NULLOFF) {

printf("Second last item is %d\n",
aptr->number);

}
}

}

The argument to the function PrintLastTwo is a far pointer, pointing to a linked list structure anywhere
in memory. It is assumed that all members of a particular linked list of this type reside in the same segment
of the computer’s memory. (Another instance of the linked list might reside entirely in a different

Based Pointers 35

Open Watcom C/C++ User’s Guide

segment.) The object seg is given the segment portion of the far pointer. The object aptr is given the
offset portion, and is described as being based in the segment stored in seg.

The expression aptr->next refers to the next member of the structure stored in memory at the offset
stored in aptr and the segment implied by aptr, which is the value stored in seg. So far, the behavior
is no different than if next had been declared as,

struct a *next;

The expression aptr->next->next illustrates the difference of using a self based pointer. The first
part of the expression (aptr->next) occurs as described above. However, using the result to point to
the next member occurs by using the offset value found in the next member and combining it with the
segment value of the pointer used to get to that member, which is still the segment implied by aptr,
which is the value stored in seg. If next had not been declared using __based(__self), then
the second pointing operation would refer to the offset value found in the next member, but with the
default data segment (DGROUP), which may or may not be the same segment as stored in seg.

3.11 The __declspec Keyword
Open Watcom C/C++ supports the __declspec keyword for compatibility with Microsoft C++. The
__declspec keyword is used to modify storage-class attributes of functions and/or data.

__declspec(thread) is used to define thread local storage (TLS). TLS is the mechanism by which each
thread in a multithreaded process allocates storage for thread-specific data. In standard
multithreaded programs, data is shared among all threads of a given process, whereas
thread local storage is the mechanism for allocating per-thread data.

Example:
__declspec(thread) static int tls_data = 0;

The following rules apply to the use of the thread attribute.

• The thread attribute can be used with data and objects only.

• You can specify the thread attribute only on data items with static storage
duration. This includes global data objects (both static and extern), local static
objects, and static data members of classes. Automatic data objects cannot be
declared with the thread attribute. The following example illustrates this error:

Example:
#define TLS __declspec(thread)
void func1()
{

TLS int tls_data; // Wrong!
}

int func2(TLS int tls_data) // Wrong!
{

return tls_data;
}

36 The __declspec Keyword

The Open Watcom C/C++ Compilers

• The thread attribute must be used for both the declaration and the definition of a
thread local object, whether the declaration and definition occur in the same file or
separate files. The following example illustrates this error:

Example:
#define TLS __declspec(thread)
extern int tls_data; // This generates an error,
because the
TLS int tls_data; // declaration and the
definition differ.

• Classes cannot use the thread attribute. However, you can instantiate class
objects with the thread attribute, as long as the objects do not need to be
constructed or destructed. For example, the following code generates an error:

Example:
#define TLS __declspec(thread)
TLS class A // Wrong! Classes are not objects
{

// Code
};
A AObject;

Because the declaration of objects that use the thread attribute is permitted, these
two examples are semantically equivalent:

Example:
#define TLS __declspec(thread)
TLS class B
{

// Code
} BObject; // Okay! BObject declared thread
local.

class C
{

// Code
};
TLS C CObject; // Okay! CObject declared thread
local.

• Standard C permits initialization of an object or variable with an expression
involving a reference to itself, but only for objects of non-static extent. Although
C++ normally permits such dynamic initialization of an object with an expression
involving a reference to itself, this type of initialization is not permitted with thread
local objects.

Example:
#define TLS __declspec(thread)
TLS int tls_i = tls_i; // C and C++ error
int j = j; // Okay in C++; C
error
TLS int tls_k = sizeof(tls_k); // Okay in C and
C++

The __declspec Keyword 37

Open Watcom C/C++ User’s Guide

Note that a sizeof expression that includes the object being initialized does not
constitute a reference to itself and is allowed in C and C++.

__declspec(naked) indicates to the code generator that no prologue or epilogue sequence is to be
generated for a function. Any statements other than "_asm" directives or auxiliary pragmas
are not compiled. _asm Essentially, the compiler will emit a "label" with the specified
function name into the code.

Example:
#include <stdio.h>

int __declspec(naked) foo(int x)
{

_asm {
#if defined(__386__)

inc eax
#else

inc ax
#endif

ret
}

}

void main()
{

printf("%d\n", foo(1));
}

The following rules apply to the use of the naked attribute.

• The naked attribute cannot be used in a data declaration. The following declaration
would be flagged in error.

Example:
__declspec(naked) static int data_object = 0;

__declspec(dllimport) is used to declare functions, data and objects imported from a DLL.

Example:
#define DLLImport __declspec(dllimport)

DLLImport void dll_func();
DLLImport int dll_data;

Functions, data and objects are exported from a DLL by use of
__declspec(dllexport), the__export keyword (for which
__declspec(dllexport) is the replacement), or through linker "EXPORT"
directives.

Note: When calling functions imported from other modules, it is not strictly necessary to
use the __declspec(dllimport) modifier to declare the functions. This modifier
however must always be used when importing data or objects to ensure correct behavior.

__declspec(dllexport) is used to declare functions, data and objects exported from a DLL. Declaring
functions as dllexport eliminates the need for linker "EXPORT" directives. The
__declspec(dllexport) attribute is a replacement for the __export keyword.

38 The __declspec Keyword

The Open Watcom C/C++ Compilers

__declspec(__pragma("string")) is used to declare functions which adhere to the conventions described
by the pragma identified by "string".

Example:
#include <stdio.h>

#pragma aux my_stdcall "_*" \
parm routine [] \
value struct struct caller [] \
modify [eax ecx edx];

struct list {
struct list *next;
int value;
float flt_value;

};

#define STDCALL __declspec(__pragma("my_stdcall"))

STDCALL struct list foo(int x, char *y, double z);

void main()
{

int a = 1;
char *b = "Hello there";
double c = 3.1415926;
struct list t;

t = foo(a, b, c);
printf("%d\n", t.value);

}

struct list foo(int x, char *y, double z)
{

struct list tmp;

printf("%s\n", y);
tmp.next = NULL;
tmp.value = x;
tmp.flt_value = z;
return(tmp);

}

The __pragma modifier is supported by Open Watcom C++ only.

__declspec(__cdecl) is used to declare functions which conform to the Microsoft compiler calling
convention.

__declspec(__pascal) is used to declare functions which conform to the OS/2 1.x and Windows 3.x
calling convention.

__declspec(__fortran) is used to declare functions which conform to the __fortran calling convention.

The __declspec Keyword 39

Open Watcom C/C++ User’s Guide

Example:
#include <stdio.h>

#define DLLFunc __declspec(dllimport __fortran)
#define DLLData __declspec(dllimport)

#ifdef __cplusplus
extern "C" {
#endif

DLLFunc int dll_func(int, int, int);
DLLData int dll_data;

#ifdef __cplusplus
};
#endif

void main()
{

printf("%d %d\n", dll_func(1,2,3), dll_data);
}

__declspec(__stdcall) is used to declare functions which conform to the 32-bit Win32 "standard" calling
convention.

Example:
#include <stdio.h>

#define DLLFunc __declspec(dllimport __stdcall)
#define DLLData __declspec(dllimport)

DLLFunc int dll_func(int, int, int);
DLLData int dll_data;

void main()
{

printf("%d %d\n", dll_func(1,2,3), dll_data);
}

__declspec(__syscall) is used to declare functions which conform to the 32-bit OS/2 __syscall calling
convention.

3.12 The Open Watcom Code Generator
The Open Watcom Code Generator performs such optimizations as common subexpression elimination,
global flow analysis, and so on.

In some cases, the code generator can do a better job of optimizing code if it could utilize more memory.
This is indicated when a

Not enough memory to optimize procedure ’xxxx’

message appears on the screen as the source program is compiled. In such an event, you may wish to make
more memory available to the code generator.

40 The Open Watcom Code Generator

The Open Watcom C/C++ Compilers

A special environment variable may be used to obtain memory usage information or set memory usage
limits on the code generator. The WCGMEMORY environment variable may be used to request a report
of the amount of memory used by the compiler’s code generator for its work area.

Example:
$ export "WCGMEMORY=?"

When the memory amount is "?" then the code generator will report how much memory was used to
generate the code.

It may also be used to instruct the compiler’s code generator to allocate a fixed amount of memory for a
work area.

Example:
$ export "WCGMEMORY=128"

When the memory amount is "nnn" then exactly "nnnK" bytes will be used. In the above example, 128K
bytes is requested. If less than "nnnK" is available then the compiler will quit with a fatal error message. If
more than "nnnK" is available then only "nnnK" will be used.

There are two reasons why this second feature may be quite useful. In general, the more memory available
to the code generator, the more optimal code it will generate. Thus, for two personal computers with
different amounts of memory, the code generator may produce different (although correct) object code. If
you have a software quality assurance requirement that the same results (i.e., code) be produced on two
different machines then you should use this feature. To generate identical code on two personal computers
with different memory configurations, you must ensure that the WCGMEMORY environment variable is
set identically on both machines.

The Open Watcom Code Generator 41

Open Watcom C/C++ User’s Guide

42 The Open Watcom Code Generator

4 Precompiled Headers

4.1 Using Precompiled Headers
Open Watcom C/C++ supports the use of precompiled headers to decrease the time required to compile
several source files that include the same header file.

4.2 When to Precompile Header Files
Using precompiled headers reduces compilation time when:

• You always use a large body of code that changes infrequently.

• Your program comprises multiple modules, all of which use the same first include file and the same
compilation options. In this case, the first include file along with all the files that it includes can be
precompiled into one precompiled header.

Because the compiler only uses the first include file to create a precompiled header, you may want to create
a master or global header file that includes all the other header files that you wish to have precompiled.
Then all source files should include this master header file as the first #include in the source file. Even
if you don’t use a master header file, you can benefit from using precompiled headers for Windows
programs by using #include <windows.h> as the first include file, or by using #include
<afxwin.h> as the first include file for MFC applications.

The first compilation — the one that creates the precompiled header file — takes a bit longer than
subsequent compilations. Subsequent compilations can proceed more quickly by including the precompiled
header.

You can precompile C and C++ programs. In C++ programming, it is common practice to separate class
interface information into header files which can later be included in programs that use the class. By
precompiling these headers, you can reduce the time a program takes to compile.

Note: Although you can use only one precompiled header (.PCH) file per source file, you can use
multiple .PCH files in a project.

4.3 Creating and Using Precompiled Headers
Precompiled code is stored in a file called a precompiled header when you use the precompiled header
option (-fh or -fhq) on the command line. The -fh option causes the compiler to either create a
precompiled header or use the precompiled header if it already exists. The -fhq option is similar but
prevents the compiler from issuing informational or warning messages about precompiled header files. The
default name of the precompiled header file is one of WCC.PCH, WCC386.PCH, WPP.PCH, or
WPP386.PCH (depending on the compiler used). You can also control the name of the precompiled

Creating and Using Precompiled Headers 43

Open Watcom C/C++ User’s Guide

header that is created or used with the -fh=filename or -fhq=filename ("specify precompiled header
filename") options.

Example:
-fh=projectx.pch
-fhq=projectx.pch

4.4 The "-fh[q]" (Precompiled Header) Option
The -fh option instructs the compiler to use a precompiled header file with a default name of WCC.PCH,
WCC386.PCH, WPP.PCH, or WPP386.PCH (depending on the compiler used) if it exists or to create
one if it does not. The file is created in the current directory. You can use the -fh=filename option to
change the default name (and placement) of the precompiled header. Add the letter "q" (for "quiet") to the
option name to prevent the compiler from displaying precompiled header activity information.

The following command line uses the -fh option to create a precompiled header.

Example:
wpp -fh myprog.cpp
wpp386 -fh myprog.cpp

The following command line creates a precompiled header named myprog.pch and places it in the
/projpch directory.

Example:
wpp -fh=/projpch/myprog.pch myprog.cpp
wpp386 -fh=/projpch/myprog.pch myprog.cpp

The precompiled header is created and/or used when the compiler encounters the first #include directive
that occurs in the source file. In a subsequent compilation, the compiler performs a consistency check to
see if it can use an existing precompiled header. If the consistency check fails then the compiler discards
the existing precompiled header and builds a new one.

The -fhq form of the precompiled header option prevents the compiler from issuing warning or
informational messages about precompiled header files. For example, if you change a header file, the
compiler will tell you that it changed and that it must regenerate the precompiled header file. If you specify
-fhq then the compiler just generates the new precompiled header file without displaying a message.

4.5 Consistency Rules for Precompiled Headers
If a precompiled header file exists (either the default file or one specified by -fh=filename), it is compared
to the current compilation for consistency. A new precompiled header file is created and the new file
overwrites the old unless the following requirements are met:

• The current compiler options must match those specified when the precompiled header was created.

• The current working directory must match that specified when the precompiled header was created.

• The name of the first #include directive must match the one that was specified when the
precompiled header was created.

44 Consistency Rules for Precompiled Headers

Precompiled Headers

• All macros defined prior to the first #include directive must have the same values as the macros
defined when the precompiled header was created. A sequence of #define directives need not
occur in exactly the same order because there are no semantic order dependencies for #define
directives.

• The value and order of include paths specified on the command line with -i options must match
those specified when the precompiled header was created.

• The time stamps of all the header files (all files specified with #include directives) used to build
the precompiled header must match those that existed when the precompiled header was created.

Consistency Rules for Precompiled Headers 45

Open Watcom C/C++ User’s Guide

46 Consistency Rules for Precompiled Headers

5 The Open Watcom C/C++ Libraries

The Open Watcom C/C++ library routines are described in the Open Watcom C Library Reference
manual, and the Open Watcom C++ Class Library Reference manual.

5.1 Open Watcom C/C++ Library Directory Structure
The Open Watcom C/C++ libraries are located under the /usr/lib directory.

/usr

|
---.---------+---------.---

| |
lib include
| |

5.2 Open Watcom C/C++ C Libraries
Due to the many code generation strategies possible in the 80x86 family of processors, a number of
versions of the libraries are provided. You must use the libraries which coincide with the particular code
generation strategy or model that you have selected. For the type of code generation strategy or model that
you intend to use, refer to the description of the "m?" memory model compiler option. The various code
models supported by Open Watcom C/C++ are described in the chapters entitled "16-bit Memory Models"
on page 55 and "32-bit Memory Models" on page 121.

We have selected a simple naming convention for the libraries that are provided with Open Watcom
C/C++. Letters are affixed to the file name to indicate the particular strategy with which the modules in the
library have been compiled.

16-bit only

S denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"small" memory model (small code, small data).

M denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"medium" memory model (big code, small data).

C denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"compact" memory model (small code, big data).

L denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"large" memory model (big code, big data).

H denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"huge" memory model (big code, huge data).

Open Watcom C/C++ C Libraries 47

Open Watcom C/C++ User’s Guide

32-bit only

3R denotes a version of the Open Watcom C/C++ libraries that will be used by programs
which have been compiled for the "flat/small" memory models using the "3r", "4r" or "5r"
option.

3S denotes a version of the Open Watcom C/C++ libraries that will be used by programs
which have been compiled for the "flat/small" memory models using the "3s", "4s" or "5s"
option.

The Open Watcom C/C++ 16-bit libraries are listed below.

clibs.lib (small model support)
clibm.lib (medium model support)
clibc.lib (compact model support)
clibl.lib (large model support)
clibh.lib (huge model support)

The Open Watcom C/C++ 32-bit libraries are listed below.

clib3r.lib (flat/small models, "3r", "4r" or "5r" option)
clib3s.lib (flat/small models, "3s", "4s" or "5s" option)

5.3 Open Watcom C 16-bit Shared Library
A portion of the 16-bit Open Watcom C Library is also stored in a memory-resident library called the
system shared library. On multi-tasking systems, it makes sense that commonly-used library routines such
as read and write be shared among processes. By sharing the same code, the memory requirement for
applications is reduced. The functions in the shared library are memory model independent so they can be
used by any small/large code, small/large/huge data applications.

5.4 Open Watcom C/C++ Class Libraries
The Open Watcom C/C++ Class Library routines are described in the Open Watcom C++ Class Library
Reference manual.

The Open Watcom C++ 16-bit Class Libraries are listed below.

48 Open Watcom C/C++ Class Libraries

The Open Watcom C/C++ Libraries

(iostream and string class libraries)

plibs.lib (small model support)
plibm.lib (medium model support)
plibc.lib (compact model support)
plibl.lib (large model support)
plibh.lib (huge model support)

(complex class library for "fpc" option)
cplxs.lib (small model support)
cplxm.lib (medium model support)
cplxc.lib (compact model support)
cplxl.lib (large model support)
cplxh.lib (huge model support)

(complex class library for "fpi..." options)
cplx7s.lib (small model support)
cplx7m.lib (medium model support)
cplx7c.lib (compact model support)
cplx7l.lib (large model support)
cplx7h.lib (huge model support)

These libraries are independent of the operating system. The "7" designates a library compiled with the "7"
option.

The Open Watcom C++ 32-bit Class Libraries are listed below.

(iostream and string class libraries)
plib3r.lib (flat models, "3r", "4r" or "5r" option)
plib3s.lib (flat models, "3s", "4s" or "5s" option)

(complex class library for "fpc" option)
cplx3r.lib (flat models, "3r", "4r" or "5r" option)
cplx3s.lib (flat models, "3s", "4s" or "5s" option)

(complex class library for "fpi..." options)
cplx73r.lib (flat models, "3r", "4r" or "5r" option)
cplx73s.lib (flat models, "3s", "4s" or "5s" option)

These libraries are independent of the operating system. The "3r" and "3s" suffixes refer to the argument
passing convention used. The "7" designates a library compiled with the "7" option.

5.5 Open Watcom C/C++ Math Libraries
In general, a Math library is required when floating-point computations are included in the application. The
Math libraries are operating-system independent. The Math libraries are placed under the /usr/lib
directory.

The following situations indicate that one of the Math libraries should be included when linking the
application.

1. When one or more of the functions described in the math.h header file is referenced, then a
Math library must be included.

2. If an application is linked and the message

"_fltused_ is an undefined reference"

appears, then a Math library must be included.

Open Watcom C/C++ Math Libraries 49

Open Watcom C/C++ User’s Guide

3. (16-bit only) If an application is linked and the message

"__init_87_emulator is an undefined reference"

appears, then one of the modules in the application was compiled with one of the "fpi", "fpi87",
"fp2", "fp3" or "fp5" options. If the "fpi" option was used, the 80x87 emulator library (
emu87.lib) or the 80x87 fixup library (noemu87.lib) should be included when linking
the application.

If the "fpi87" option was used, the 80x87 fixup library noemu87.lib should be included when
linking the application.

4. (32-bit only) If an application is linked and the message

"__init_387_emulator is an undefined reference"

appears, then one of the modules in the application was compiled with one of the "fpi", "fpi87",
"fp2", "fp3" or "fp5" options. If the "fpi" option was used, the 80x87 emulator library (
emu387.lib) should be included when linking the application.

If the "fpi87" option was used, the empty 80x87 emulator library noemu387.lib should be
included when linking the application.

Normally, the compiler and linker will automatically take care of this. Simply ensure that the WATCOM
environment variable includes the location of the Open Watcom C/C++ libraries.

5.6 Open Watcom C/C++ 80x87 Math Libraries
One of the following Math libraries must be used if any of the modules of your application were compiled
with one of the Open Watcom C/C++ "fpi", "fpi87", "fp2", "fp3" or "fp5" options and your application
requires floating-point support for the reasons given above.

16-bit libraries:

math87s.lib (small model)
math87m.lib (medium model)
math87c.lib (compact model)
math87l.lib (large model)
math87h.lib (huge model)
noemu87.lib
emu87.lib (QNX dependent)

32-bit libraries:

math387r.lib (flat/small models, "3r", "4r" or "5r" option)
math387s.lib (flat/small models, "3s", "4s" os "5s" option)
emu387.lib (QNX dependent)

The "fpi" option causes an 80x87 numeric data processor emulator to be linked into your application in
addition to any 80x87 math routines that were referenced. For QNX, there is a common 80x87 emulator
task that is used so that there is one copy of the emulator in memory at any one time. This emulator will
decode and emulate 80x87 instructions when an 80x87 is not present in the system.

50 Open Watcom C/C++ 80x87 Math Libraries

The Open Watcom C/C++ Libraries

When the "fpi87" option is used exclusively, the emulator is not included. In this case, the application must
be run on personal computer systems equipped with the numeric data processor.

5.7 Open Watcom C/C++ Alternate Math Libraries
One of the following Math libraries must be used if any of the modules of your application were compiled
with the Open Watcom C/C++ "fpc" option and your application requires floating-point support for the
reasons given above. The following Math libraries include support for floating-point which is done
out-of-line through run-time calls.

16-bit libraries:

maths.lib (small model)
mathm.lib (medium model)
mathc.lib (compact model)
mathl.lib (large model)
mathh.lib (huge model)

32-bit libraries:

math3r.lib (flat/small models, "3r", "4r" or "5r" option)
math3s.lib (flat/small models, "3s", "4s" os "5s" option)

Applications which are linked with one of these libraries do not require a numeric data processor for
floating-point operations. If one is present in the system, it will be used; otherwise floating-point
operations are simulated in software.

5.8 The Open Watcom C/C++ Run-time Initialization Routines
Source files are included in the package for the Open Watcom C/C++ application startup (or initialization)
sequence.

(16-bit only) These files are located in the directory:

/usr/lib/src/startup (QNX initialization)

The following is a summary list of the startup files for QNX.

cstart_s.asm (startup for small memory model)
cstart_m.asm (startup for medium memory model)
cstart_c.asm (startup for compact memory model)
cstart_l.asm (startup for large memory model)
cstart_h.asm (startup for huge memory model)
models.inc (included by cstart_*.asm)
cstart.asm (included by cstart_*.asm)
mdef.inc (macros included by cstart.asm)
cmain.c (final part of initialization sequence)

The assembler file cstart.asm contains the first part of the initialization code and the remainder is
continued in the file cmain.c. The assembler files, cstart_*.asm, define the type of memory model
and include cstart.asm. It is cmain.c that calls your mainline routine (main).

The Open Watcom C/C++ Run-time Initialization Routines 51

Open Watcom C/C++ User’s Guide

(32-bit only) These files are located in the directory:

/usr/lib/src/startup (QNX initialization)

The following is a summary list of the startup files for QNX.

cstrt386.asm (startup for small memory model)
mdef.inc (macros included by cstrt386.asm)
cmain.c (final part of initialization sequence)

The assembler file cstrt386.asm contains the first part of the initialization code and the remainder is
continued in the file cmain.c. It is cmain.c that calls your mainline routine (main).

The source code is provided for those who wish to customize the initialization sequence for special
applications.

52 The Open Watcom C/C++ Run-time Initialization Routines

16-bit Topics

16-bit Topics

54

6 16-bit Memory Models

6.1 Introduction
This chapter describes the various 16-bit memory models supported by Open Watcom C/C++. Each
memory model is distinguished by two properties; the code model used to implement function calls and the
data model used to reference data.

6.2 16-bit Code Models
There are two code models;

1. the small code model and
2. the big code model.

A small code model is one in which all calls to functions are made with near calls. In a near call, the
destination address is 16 bits and is relative to the segment value in segment register CS. Hence, in a small
code model, all code comprising your program, including library functions, must be less than 64K.

A big code model is one in which all calls to functions are made with far calls. In a far call, the destination
address is 32 bits (a segment value and an offset relative to the segment value). This model allows the size
of the code comprising your program to exceed 64K.

Note: If your program contains less than 64K of code, you should use a memory model that employs
the small code model. This will result in smaller and faster code since near calls are smaller instructions
and are processed faster by the CPU.

6.3 16-bit Data Models
There are three data models;

1. the small data model,
2. the big data model and
3. the huge data model.

A small data model is one in which all references to data are made with near pointers. Near pointers are 16
bits; all data references are made relative to the segment value in segment register DS. Hence, in a small
data model, all data comprising your program must be less than 64K.

A big data model is one in which all references to data are made with far pointers. Far pointers are 32 bits
(a segment value and an offset relative to the segment value). This removes the 64K limitation on data size
imposed by the small data model. However, when a far pointer is incremented, only the offset is adjusted.
Open Watcom C/C++ assumes that the offset portion of a far pointer will not be incremented beyond 64K.

16-bit Data Models 55

16-bit Topics

The compiler will assign an object to a new segment if the grouping of data in a segment will cause the
object to cross a segment boundary. Implicit in this is the requirement that no individual object exceed 64K
bytes. For example, an array containing 40,000 integers does not fit into the big data model. An object
such as this should be described as huge.

A huge data model is one in which all references to data are made with far pointers. This is similar to the
big data model. However, in the huge data model, incrementing a far pointer will adjust the offset and the
segment if necessary. The limit on the size of an object pointed to by a far pointer imposed by the big data
model is removed in the huge data model.

Notes:

1. If your program contains less than 64K of data, you should use the small data model. This will
result in smaller and faster code since references using near pointers produce fewer instructions.

2. The huge data model should be used only if needed. The code generated in the huge data model
is not very efficient since a run-time routine is called in order to increment far pointers. This
increases the size of the code significantly and increases execution time.

6.4 Summary of 16-bit Memory Models
As previously mentioned, a memory model is a combination of a code model and a data model. The
following table describes the memory models supported by Open Watcom C/C++.

Memory Code Data Default Default
Model Model Model Code Data

Pointer Pointer
-------- -------- -------- -------- --------
tiny small small near near
small small small near near
medium big small far near
compact small big near far
large big big far far
huge big huge far huge

6.5 Mixed 16-bit Memory Model
A mixed memory model application combines elements from the various code and data models. A mixed
memory model application might be characterized as one that uses the near, far, or huge keywords when
describing some of its functions or data objects.

For example, a medium memory model application that uses some far pointers to data can be described as a
mixed memory model. In an application such as this, most of the data is in a 64K segment (DGROUP) and
hence can be referenced with near pointers relative to the segment value in segment register DS. This
results in more efficient code being generated and better execution times than one can expect from a big
data model. Data objects outside of the DGROUP segment are described with the far keyword.

56 Mixed 16-bit Memory Model

16-bit Memory Models

6.6 Linking Applications for the Various 16-bit Memory
Models

Each memory model requires different run-time and floating-point libraries. Each library assumes a
particular memory model and should be linked only with modules that have been compiled with the same
memory model. The following table lists the libraries that are to be used to link an application that has
been compiled for a particular memory model.

Memory Run-time Floating-Point Floating-Point
Model Library Calls Library Library (80x87)
------- -------- -------------- ---------------

small clibs.lib maths.lib math87s.lib
+(no)emu87.lib*

medium clibm.lib mathm.lib math87m.lib
+(no)emu87.lib*

compact clibc.lib mathc.lib math87c.lib
+(no)emu87.lib*

large clibl.lib mathl.lib math87l.lib
+(no)emu87.lib*

huge clibh.lib mathh.lib math87h.lib
+(no)emu87.lib*

* One of emu87.lib or noemu87.lib will be used with the 80x87 math libraries depending on the use
of the "fpi" (include emulation) or "fpi87" (do not include emulation) options.

6.7 Memory Layout
The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS" or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. This segment is initialized with the hexadecimal byte pattern "01" and is the first segment in
group "DGROUP" so that storing data at location 0 can be detected.

Memory Layout 57

16-bit Topics

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
data in segments belonging to group "DGROUP". Segments belonging to class "STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes "BSS" and
"STACK" are last in the segment ordering so that uninitialized data need not take space in the executable
file.

In addition to these special segments, the following conventions are used by Open Watcom C/C++.

1. The "CODE" class contains the executable code for your application. In a small code model, this
consists of the segment "_TEXT". In a big code model, this consists of the segments
"<module>_TEXT" where <module> is the file name of the source file.

2. The "FAR_DATA" class consists of the following:

(a) data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(c) literals whose size exceeds the data threshold in large data memory models (the
data threshold is 32K unless changed using the "zt" compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.

You can override the default naming convention used by Open Watcom C/C++ to name segments.

1. The Open Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for a big code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

58 Memory Layout

7 16-bit Assembly Language Considerations

7.1 Introduction
This chapter will deal with the following topics.

1. The data representation of the basic types supported by Open Watcom C/C++.

2. The memory layout of a Open Watcom C/C++ program.

3. The method for passing arguments and returning values.

4. The two methods for passing floating-point arguments and returning floating-point values.

One method is used when one of the Open Watcom C/C++ "fpi" or "fpi87" options is specified
for the generation of in-line 80x87 instructions. When the "fpi" option is specified, an 80x87
emulator is included from a math library if the application includes floating-point operations.
When the "fpi87" option is used exclusively, the 80x87 emulator will not be included.

The other method is used when the Open Watcom C/C++ "fpc" option is specified. In this case,
the compiler generates calls to floating-point support routines in the alternate math libraries.

An understanding of the Intel 80x86 architecture is assumed.

7.2 Data Representation
This section describes the internal or machine representation of the basic types supported by Open Watcom
C/C++.

7.2.1 Type "char"
An item of type "char" occupies 1 byte of storage. Its value is in the following range.

0 <= n <= 255

Note that "char" is, by default, unsigned. The Open Watcom C/C++ compiler option "j" can be used to
change the default from unsigned to signed. If "char" is signed, an item of type "char" is in the following
range.

-128 <= n <= 127

You can force an item of type "char" to be unsigned or signed regardless of the default by defining them to
be of type "unsigned char" or "signed char" respectively.

Data Representation 59

16-bit Topics

7.2.2 Type "short int"
An item of type "short int" occupies 2 bytes of storage. Its value is in the following range.

-32768 <= n <= 32767

Note that "short int" is signed and hence "short int" and "signed short int" are equivalent. If an item of type
"short int" is to be unsigned, it must be defined as "unsigned short int". In this case, its value is in the
following range.

0 <= n <= 65535

7.2.3 Type "long int"
An item of type "long int" occupies 4 bytes of storage. Its value is in the following range.

-2147483648 <= n <= 2147483647

Note that "long int" is signed and hence "long int" and "signed long int" are equivalent. If an item of type
"long int" is to be unsigned, it must be defined as "unsigned long int". In this case, its value is in the
following range.

0 <= n <= 4294967295

7.2.4 Type "int"
An item of type "int" occupies 2 bytes of storage. Its value is in the following range.

-32768 <= n <= 32767

Note that "int" is signed and hence "int" and "signed int" are equivalent. If an item of type "int" is to be
unsigned, it must be defined as "unsigned int". In this case its value is in the following range.

0 <= n <= 65535

If you are generating code that executes in 16-bit mode, "short int" and "int" are equivalent, "unsigned short
int" and "unsigned int" are equivalent, and "signed short int" and "signed int" are equivalent. This may not
be the case in other environments where "int" and "long int" are 4 bytes.

7.2.5 Type "float"
A datum of type "float" is an approximate representation of a real number. Each datum of type "float"
occupies 4 bytes. If m is the magnitude of x (an item of type "float") then x can be approximated if

2-126 <= m < 2128

or in more approximate terms if

1.175494e-38 <= m <= 3.402823e38

Data of type "float" are represented internally as follows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

60 Data Representation

16-bit Assembly Language Considerations

+---+---------+---------------------+
| S | Biased | Significand |
| | Exponent| |
+---+---------+---------------------+
31 30-23 22-0

Notes

S S = Sign bit (0=positive, 1=negative)

Exponent The exponent bias is 127 (i.e., exponent value 1 represents 2-126; exponent value 127
represents 20; exponent value 254 represents 2127; etc.). The exponent field is 8 bits long.

Significand The leading bit of the significand is always 1, hence it is not stored in the significand field.
Thus the significand is always "normalized". The significand field is 23 bits long.

Zero A real zero quantity occurs when the sign bit, exponent, and significand are all zero.

Infinity When the exponent field is all 1 bits and the significand field is all zero bits then the
quantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity
is a special value called a NAN (Not-A-Number).

When the exponent field is all 0 bits and the significand field is non-zero then the quantity
is a special value called a "denormal" or nonnormal number.

7.2.6 Type "double"
A datum of type "double" is an approximate representation of a real number. The precision of a datum of
type "double" is greater than or equal to one of type "float". Each datum of type "double" occupies 8 bytes.
If m is the magnitude of x (an item of type "double") then x can be approximated if

2-1022 <= m < 21024

or in more approximate terms if

2.2250738585072e-308 <= m <= 1.79769313486232e308

Data of type "double" are represented internally as follows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

+---+---------+--------------------------------------+
| S | Biased | Significand |
| | Exponent| |
+---+---------+--------------------------------------+
63 62-52 51-0

Data Representation 61

16-bit Topics

Notes:

S S = Sign bit (0=positive, 1=negative)

Exponent The exponent bias is 1023 (i.e., exponent value 1 represents 2-1022; exponent value 1023
represents 20; exponent value 2046 represents 21023; etc.). The exponent field is 11 bits
long.

Significand The leading bit of the significand is always 1, hence it is not stored in the significand field.
Thus the significand is always "normalized". The significand field is 52 bits long.

Zero A double precision zero quantity occurs when the sign bit, exponent, and significand are all
zero.

Infinity When the exponent field is all 1 bits and the significand field is all zero bits then the
quantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity
is a special value called a NAN (Not-A-Number).

When the exponent field is all 0 bits and the significand field is non-zero then the quantity
is a special value called a "denormal" or nonnormal number.

7.3 Memory Layout
The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS" or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. This segment is initialized with the hexadecimal byte pattern "01" and is the first segment in
group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
data in segments belonging to group "DGROUP". Segments belonging to class "STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes "BSS" and
"STACK" are last in the segment ordering so that uninitialized data need not take space in the executable
file.

In addition to these special segments, the following conventions are used by Open Watcom C/C++.

62 Memory Layout

16-bit Assembly Language Considerations

1. The "CODE" class contains the executable code for your application. In a small code model, this
consists of the segment "_TEXT". In a big code model, this consists of the segments
"<module>_TEXT" where <module> is the file name of the source file.

2. The "FAR_DATA" class consists of the following:

(a) data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(c) literals whose size exceeds the data threshold in large data memory models (the
data threshold is 32K unless changed using the "zt" compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.

You can override the default naming convention used by Open Watcom C/C++ to name segments.

1. The Open Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for a big code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

7.4 Calling Conventions for Non-80x87 Applications
The following sections describe the calling convention used when compiling with the "fpc" compiler
option.

7.4.1 Passing Arguments Using Register-Based Calling Conventions
How arguments are passed to a function with register-based calling conventions is determined by the size
(in bytes) of the argument and where in the argument list the argument appears. Depending on the size,
arguments are either passed in registers or on the stack. Arguments such as structures are almost always
passed on the stack since they are generally too large to fit in registers. Since arguments are processed
from left to right, the first few arguments are likely to be passed in registers (if they can fit) and, if the
argument list contains many arguments, the last few arguments are likely to be passed on the stack.

The registers used to pass arguments to a function are AX, BX, CX and DX. The following algorithm
describes how arguments are passed to functions.

Initially, we have the following registers available for passing arguments: AX, DX, BX and CX. Note that
registers are selected from this list in the order they appear. That is, the first register selected is AX and the
last is CX. For each argument Ai, starting with the left most argument, perform the following steps.

1. If the size of Ai is 1 byte, convert it to 2 bytes and proceed to the next step. If Ai is of type
"unsigned char", it is converted to an "unsigned int". If Ai is of type "signed char", it is
converted to a "signed int". If Ai is a 1-byte structure, the padding is determined by the
compiler.

2. If an argument has already been assigned a position on the stack, Ai will also be assigned a
position on the stack. Otherwise, proceed to the next step.

Calling Conventions for Non-80x87 Applications 63

16-bit Topics

3. If the size of Ai is 2 bytes, select a register from the list of available registers. If a register is
available, Ai is assigned that register. The register is then removed from the list of available
registers. If no registers are available, Ai will be assigned a position on the stack.

4. If the size of Ai is 4 bytes, select a register pair from the following list of combinations: [DX
AX] or [CX BX]. The first available register pair is assigned to Ai and removed from the list of
available pairs. The high-order 16 bits of the argument are assigned to the first register in the
pair; the low-order 16 bits are assigned to the second register in the pair. If none of the above
register pairs is available, Ai will be assigned a position on the stack.

5. If the type of Ai is "double" or "float" (in the absence of a function prototype), select [AX BX
CX DX] from the list of available registers. All four registers are removed from the list of
available registers. The high-order 16 bits of the argument are assigned to the first register and
the low-order 16 bits are assigned to the fourth register. If any of the four registers is not
available, Ai will be assigned a position on the stack.

6. All other arguments will be assigned a position on the stack.

Notes:

1. Arguments that are assigned a position on the stack are padded to a multiple of 2 bytes. That is,
if a 3-byte structure is assigned a position on the stack, 4 bytes will be pushed on the stack.

2. Arguments that are assigned a position on the stack are pushed onto the stack starting with the
rightmost argument.

7.4.2 Sizes of Predefined Types
The following table lists the predefined types, their size as returned by the "sizeof" function, the size of an
argument of that type and the registers used to pass that argument if it was the only argument in the
argument list.

Basic Type "sizeof" Argument Registers
Size Used

char 1 2 [AX]
short int 2 2 [AX]
int 2 2 [AX]
long int 4 4 [DX AX]
float 4 8 [AX BX CX DX]
double 8 8 [AX BX CX DX]
near pointer 2 2 [AX]
far pointer 4 4 [DX AX]
huge pointer 4 4 [DX AX]

Note that the size of the argument listed in the table assumes that no function prototypes are specified.
Function prototypes affect the way arguments are passed. This will be discussed in the section entitled
"Effect of Function Prototypes on Arguments".

64 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

Notes:

1. Provided no function prototypes exist, an argument will be converted to a default type as
described in the following table.

Argument Type Passed As

char unsigned int
signed char signed int
unsigned char unsigned int
float double

7.4.3 Size of Enumerated Types
The integral type of an enumerated type is determined by the values of the enumeration constants. In strict
ISO/ANSI C mode, all enumerated constants are of type int. In the extensions mode, the compiler will
use the smallest integral type possible (excluding long ints) that can represent all values of the enumerated
type. For instance, if the minimum and maximum values of the enumeration constants are in the range
−128 and 127, the enumerated type will be equivalent to a signed char (size = 1 byte). All references
to enumerated constants in the previous instance will have type signed char. An enumerated constant
is always promoted to an int when passed as an argument.

7.4.4 Effect of Function Prototypes on Arguments
Function prototypes define the types of the formal parameters of a function. Their appearance affects the
way in which arguments are passed. An argument will be converted to the type of the corresponding
formal parameter in the function prototype. Consider the following example.

void prototype(float x, int i);

void main()
{

float x;
int i;

x = 3.14;
i = 314;
prototype(x, i);
rtn(x, i);

}

The function prototype for prototype specifies that the first argument is to be passed as a "float" and the
second argument is to be passed as an "int". This results in the first argument being passed in registers DX
and AX and the second argument being passed in register BX.

If no function prototype is given, as is the case for the function rtn, the first argument will be passed as a
"double" and the second argument would be passed as an "int". This results in the first argument being
passed in registers AX, BX, CX and DX and the second argument being passed on the stack.

Note that even though both prototype and rtn were called with identical argument lists, the way in
which the arguments were passed was completely different simply because a function prototype for
prototype was specified. Function prototyping is an excellent way to guarantee that arguments will be
passed as expected to your assembly language function.

Calling Conventions for Non-80x87 Applications 65

16-bit Topics

7.4.5 Interfacing to Assembly Language Functions
Consider the following example.

Example:
void main()
{

long int x;
int i;
long int y;

x = 7;
i = 77;
y = 777;
myrtn(x, i, y);

}

myrtn is an assembly language function that requires three arguments. The first argument is of type "long
int", the second argument is of type "int" and the third argument is again of type "long int". Using the rules
for register-based calling conventions, these arguments will be passed to myrtn in the following way:

1. The first argument will be passed in registers DX and AX leaving BX and CX as available
registers for other arguments.

2. The second argument will be passed in register BX leaving CX as an available register for other
arguments.

3. The third argument will not fit in register CX (its size is 4 bytes) and hence will be pushed on the
stack.

Let us look at the stack upon entry to myrtn.

Small Code Model
Offset

+----------------+
0 | return address | <- SP points here

+----------------+
2 | argument #3 |

| |
+----------------+

6 | |

Big Code Model
Offset

+----------------+
0 | return address | <- SP points here

| |
+----------------+

4 | argument #3 |
| |
+----------------+

8 | |

66 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

Notes:

1. The return address is the top element on the stack. In a small code model, the return address is 1
word (16 bits); in a big code model, the return address is 2 words (32 bits).

Register SP cannot be used as a base register to address the third argument on the stack. Register BP is
normally used to address arguments on the stack. Upon entry to the function, register BP is set to point to
the stack but before doing so we must save its contents. The following two instructions achieve this.

push BP ; save current value of BP
mov BP,SP ; get access to arguments

After executing these instructions, the stack looks like this.

Small Code Model
Offset

+----------------+
0 | saved BP | <- BP and SP point here

+----------------+
2 | return address |

+----------------+
4 | argument #3 |

| |
+----------------+

8 | |

Big Code Model
Offset

+----------------+
0 | saved BP | <- BP and SP point here

+----------------+
2 | return address |

| |
+----------------+

6 | argument #3 |
| |
+----------------+

10 | |

As the above diagrams show, the third argument is at offset 4 from register BP in a small code model and
offset 6 in a big code model.

Upon exit from myrtn, we must restore the value of BP. The following two instructions achieve this.

mov SP,BP ; restore stack pointer
pop BP ; restore BP

The following is a sample assembly language function which implements myrtn.

Calling Conventions for Non-80x87 Applications 67

16-bit Topics

Small Memory Model (small code, small data)
DGROUP group _DATA, _BSS
_TEXT segment byte public ’CODE’

assume CS:_TEXT
assume DS:DGROUP
public myrtn_

myrtn_ proc near
push BP ; save BP
mov BP,SP ; get access to arguments

;
; body of function
;

mov SP,BP ; restore SP
pop BP ; restore BP
ret 4 ; return and pop last arg

myrtn_ endp
_TEXT ends

Large Memory Model (big code, big data)
DGROUP group _DATA, _BSS
MYRTN_TEXT segment byte public ’CODE’

assume CS:MYRTN_TEXT
public myrtn_

myrtn_ proc far
push BP ; save BP
mov BP,SP ; get access to arguments

;
; body of function
;

mov SP,BP ; restore SP
pop BP ; restore BP
ret 4 ; return and pop last arg

myrtn_ endp
MYRTN_TEXT ends

Notes:

1. Global function names must be followed with an underscore. Global variable names must be
preceded with an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and AX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option.

3. The direction flag must be clear before returning to the caller.

4. In a small code model, any segment containing executable code must belong to the segment
"_TEXT" and the class "CODE". The segment "_TEXT" must have a "combine" type of
"PUBLIC". On entry, CS contains the segment address of the segment "_TEXT". In a big code
model there is no restriction on the naming of segments which contain executable code.

5. In a small data model, segment register DS contains the segment address of the group
"DGROUP". This is not the case in a big data model.

68 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

6. When writing assembly language functions for the small code model, you must declare them as
"near". If you wish to write assembly language functions for the big code model, you must
declare them as "far".

7. In general, when naming segments for your code or data, you should follow the conventions
described in the section entitled "Memory Layout" in this chapter.

8. If any of the arguments was pushed onto the stack, the called routine must pop those arguments
off the stack in the "ret" instruction.

7.4.6 Functions with Variable Number of Arguments
A function prototype with a parameter list that ends with ",..." has a variable number of arguments. In this
case, all arguments are passed on the stack. Since no prototyping information exists for arguments
represented by ",...", those arguments are passed as described in the section "Passing Arguments".

7.4.7 Returning Values from Functions
The way in which function values are returned depends on the size of the return value. The following
examples describe how function values are to be returned. They are coded for a small code model.

1. 1-byte values are to be returned in register AL.

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public Ret1_

Ret1_ proc near ; char Ret1()
mov AL,’G’
ret

Ret1_ endp
_TEXT ends

end

2. 2-byte values are to be returned in register AX.

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public Ret2_

Ret2_ proc near ; short int Ret2()
mov AX,77
ret

Ret2_ endp
_TEXT ends

end

3. 4-byte values are to be returned in registers DX and AX with the most significant word in
register DX.

Calling Conventions for Non-80x87 Applications 69

16-bit Topics

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public Ret4_

Ret4_ proc near ; long int Ret4()
mov AX,word ptr CS:Val4+0
mov DX,word ptr CS:Val4+2
ret

Val4 dd 7777777
Ret4_ endp
_TEXT ends

end

4. 8-byte values, except structures, are to be returned in registers AX, BX, CX and DX with the
most significant word in register AX.

Example:
.8087

_TEXT segment byte public ’CODE’
assume CS:_TEXT
public Ret8_

Ret8_ proc near ; double Ret8()
mov DX,word ptr CS:Val8+0
mov CX,word ptr CS:Val8+2
mov BX,word ptr CS:Val8+4
mov AX,word ptr CS:Val8+6
ret

Val8: dq 7.7
Ret8_ endp
_TEXT ends

end

The ".8087" pseudo-op must be specified so that all floating-point constants are generated in
8087 format. When using the "fpc" (floating-point calls) option, "float" and "double" are
returned in registers. See section "Returning Values in 80x87-based Applications" when using
the "fpi" or "fpi87" options.

5. Otherwise, the caller allocates space on the stack for the return value and sets register SI to point
to this area. In a big data model, register SI contains an offset relative to the segment value in
segment register SS.

70 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public RetX_

;
; struct int_values {
; int value1, value2, value3, value4, value5;
; };
;
RetX_ proc near ; struct int_values RetX()

mov word ptr SS:0[SI],71
mov word ptr SS:4[SI],72
mov word ptr SS:8[SI],73
mov word ptr SS:12[SI],74
mov word ptr SS:16[SI],75
ret

RetX_ endp
_TEXT ends

end

When returning values on the stack, remember to use a segment override to the stack segment
(SS).

The following is an example of a Open Watcom C/C++ program calling the above assembly language
subprograms.

#include <stdio.h>

struct int_values {
int value1;
int value2;
int value3;
int value4;
int value5;

};

extern char Ret1(void);
extern short int Ret2(void);
extern long int Ret4(void);
extern double Ret8(void);
extern struct int_values RetX(void);

void main()
{

struct int_values x;

printf("Ret1 = %c\n", Ret1());
printf("Ret2 = %d\n", Ret2());
printf("Ret4 = %ld\n", Ret4());
printf("Ret8 = %f\n", Ret8());
x = RetX();
printf("RetX1 = %d\n", x.value1);
printf("RetX2 = %d\n", x.value2);
printf("RetX3 = %d\n", x.value3);
printf("RetX4 = %d\n", x.value4);
printf("RetX5 = %d\n", x.value5);

}

Calling Conventions for Non-80x87 Applications 71

16-bit Topics

The above function should be compiled for a small code model (use the "ms" or "mc" compiler option).

7.5 Calling Conventions for 80x87-based Applications
When a source file is compiled by Open Watcom C/C++ with one of the "fpi" or "fpi87" options, all
floating-point arguments are passed on the 80x86 stack. The rules for passing arguments are as follows.

1. If the argument is not floating-point, use the procedure described earlier in this chapter.

2. If the argument is floating-point, it is assigned a position on the 80x86 stack.

7.5.1 Passing Values in 80x87-based Applications
Consider the following example.

Example:
extern void myrtn(int,float,double,long int);

void main()
{

float x;
double y;
int i;
long int j;

x = 7.7;
i = 7;
y = 77.77
j = 77;
myrtn(i, x, y, j);

}

myrtn is an assembly language function that requires four arguments. The first argument is of type "int" (
2 bytes), the second argument is of type "float" (4 bytes), the third argument is of type "double" (8 bytes)
and the fourth argument is of type "long int" (4 bytes). These arguments will be passed to myrtn in the
following way:

1. The first argument will be passed in register AX leaving BX, CX and DX as available registers
for other arguments.

2. The second argument will be passed on the 80x86 stack since it is a floating-point argument.

3. The third argument will also be passed on the 80x86 stack since it is a floating-point argument.

4. The fourth argument will be passed on the 80x86 stack since a previous argument has been
assigned a position on the 80x86 stack.

Remember, arguments are pushed on the stack from right to left. That is, the rightmost argument is pushed
first.

Any assembly language function must obey the following rule.

1. All arguments passed on the stack must be removed by the called function.

72 Calling Conventions for 80x87-based Applications

16-bit Assembly Language Considerations

The following is a sample assembly language function which implements myrtn.

Example:
.8087

_TEXT segment byte public ’CODE’
assume CS:_TEXT
public myrtn_

myrtn_ proc near
;
; body of function
;

ret 16 ; return and pop arguments
myrtn_ endp
_TEXT ends

end

Notes:

1. Function names must be followed by an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and EAX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option. In this example, AX does not have to be saved as it was used to pass the first argument.
Floating-point registers can be modified without saving their contents.

3. The direction flag must be clear before returning to the caller.

4. This function has been written for a small code model. Any segment containing executable code
must belong to the class "CODE" and the segment "_TEXT". On entry, CS contains the segment
address of the segment "_TEXT". The above restrictions do not apply in a big code memory
model.

5. When writing assembly language functions for a small code model, you must declare them as
"near". If you wish to write assembly language functions for a big code model, you must declare
them as "far".

7.5.2 Returning Values in 80x87-based Applications
Floating-point values are returned in ST(0) when using the "fpi" or "fpi87" options. All other values are
returned in the manner described earlier in this chapter.

Calling Conventions for 80x87-based Applications 73

16-bit Topics

74 Calling Conventions for 80x87-based Applications

8 16-bit Pragmas

8.1 Introduction
A pragma is a compiler directive that provides the following capabilities.

• Pragmas allow you to specify certain compiler options.

• Pragmas can be used to direct the Open Watcom C/C++ code generator to emit specialized
sequences of code for calling functions which use argument passing and value return techniques that
differ from the default used by Open Watcom C/C++.

• Pragmas can be used to describe attributes of functions (such as side effects) that are not possible at
the C/C++ language level. The code generator can use this information to generate more efficient
code.

• Any sequence of in-line machine language instructions, including QNX function calls, can be
generated in the object code.

Pragmas are specified in the source file using the pragma directive. The following notation is used to
describe the syntax of pragmas.

keywords A keyword is shown in a mono-spaced courier font.

program-item A program-item is shown in a roman bold-italics font. A program-item is a symbol name
or numeric value supplied by the programmer.

punctuation A punctuation character shown in a mono-spaced courier font must be entered as
is.

A punctuation character shown in a roman bold-italics font is used to describe syntax.
The following syntactical notation is used.

[abc] The item abc is optional.

{abc} The item abc may be repeated zero or more times.

a|b|c One of a, b or c may be specified.

a ::= b The item a is defined in terms of b.

(a) Item a is evaluated first.

The following classes of pragmas are supported.

Introduction 75

16-bit Topics

• pragmas that specify options

• pragmas that specify default libraries

• pragmas that describe the way structures are stored in memory

• pragmas that provide auxiliary information used for code generation

8.2 Using Pragmas to Specify Options
Currently, the following options can be specified with pragmas:

unreferenced The "unreferenced" option controls the way Open Watcom C/C++ handles unused symbols.
For example,

#pragma on (unreferenced);

will cause Open Watcom C/C++ to issue warning messages for all unused symbols. This is
the default. Specifying

#pragma off (unreferenced);

will cause Open Watcom C/C++ to ignore unused symbols. Note that if the warning level
is not high enough, warning messages for unused symbols will not be issued even if
"unreferenced" was specified.

check_stack The "check_stack" option controls the way stack overflows are to be handled. For
example,

#pragma on (check_stack);

will cause stack overflows to be detected and

#pragma off (check_stack);

will cause stack overflows to be ignored. When "check_stack" is on, Open Watcom C/C++
will generate a run-time call to a stack-checking routine at the start of every routine
compiled. This run-time routine will issue an error if a stack overflow occurs when
invoking the routine. The default is to check for stack overflows. Stack overflow checking
is particularly useful when functions are invoked recursively. Note that if the stack
overflows and stack checking has been suppressed, unpredictable results can occur.

If a stack overflow does occur during execution and you are sure that your program is not
in error (i.e. it is not unnecessarily recursing), you must increase the stack size. This is
done by linking your application again and specifying the "STACK" option to the Open
Watcom Linker with a larger stack size.

It is also possible to specify more than one option in a pragma as illustrated by the
following example.

#pragma on (check_stack unreferenced);

76 Using Pragmas to Specify Options

16-bit Pragmas

reuse_duplicate_strings (C only) (C Only) The "reuse_duplicate_strings" option controls the way Open
Watcom C handles identical strings in an expression. For example,

#pragma on (reuse_duplicate_strings);

will cause Open Watcom C to reuse identical strings in an expression. This is the default.
Specifying

#pragma off (reuse_duplicate_strings);

will cause Open Watcom C to generate additional copies of the identical string. The
following example shows where this may be of importance to the way the application
behaves.

Example:
#include <stdio.h>

#pragma off (reuse_duplicate_strings)

void poke(char *, char *);

void main()
{

poke("Hello world\n", "Hello world\n");
}

void poke(char *x, char *y)
{

x[3] = ’X’;
printf(x);
y[4] = ’Y’;
printf(y);

}
/*
Default output:
HelXo world
HelXY world
*/

8.3 Using Pragmas to Specify Default Libraries
Default libraries are specified in special object module records. Library names are extracted from these
special records by the Open Watcom Linker. When unresolved references remain after processing all
object modules specified in linker "FILE" directives, these default libraries are searched after all libraries
specified in linker "LIBRARY" directives have been searched.

By default, that is if no library pragma is specified, the Open Watcom C/C++ compiler generates, in the
object file defining the main program, default libraries corresponding to the memory model and
floating-point model used to compile the file. For example, if you have compiled the source file containing
the main program for the medium memory model and the floating-point calls floating-point model, the
libraries "clibm" and "mathm" will be placed in the object file.

If you wish to add your own default libraries to this list, you can do so with a library pragma. Consider the
following example.

Using Pragmas to Specify Default Libraries 77

16-bit Topics

#pragma library (mylib);

The name "mylib" will be added to the list of default libraries specified in the object file.

If the library specification contains characters such as ’/’, ’:’ or ’,’ (i.e., any character not allowed in a C
identifier), you must enclose it in double quotes as in the following example.

#pragma library ("/usr/lib/graph.lib");

If you wish to specify more than one library in a library pragma you must separate them with spaces as in
the following example.

#pragma library (mylib "/usr/lib/graph.lib");

8.4 The ALIAS Pragma (C Only)
The "alias" pragma can be used to emit alias records in the object file, causing the linker to substitute
references to a specified symbol with references to another symbol. Either identifiers or names (strings)
may be used. Strings are used verbatim, while names corresponding to identifiers are derived as
appropriate for the kind and calling convention of the symbol. The following describes the form of the
"alias" pragma.

#pragma alias (alias, subst) [;]

where description:

alias is either a name or an identifier of the symbol to be aliased.

subst is either a name or an identifier of the symbol that references to alias will be replaced
with.

Consider the following example.

extern int var;

void fn(void)
{

var = 3;
}

#pragma alias (var, "other_var");

Instead of var the linker will reference symbol named "other_var". Symbol var need not be defined,
although "other_var" has to be.

78 The ALIAS Pragma (C Only)

16-bit Pragmas

8.5 The ALLOC_TEXT Pragma (C Only)
The "alloc_text" pragma can be used to specify the name of the text segment into which the generated code
for a function, or a list of functions, is to be placed. The following describes the form of the "alloc_text"
pragma.

#pragma alloc_text (seg_name, fn {, fn}) [;]

where description:

seg_name is the name of the text segment.

fn is the name of a function.

Consider the following example.

extern int fn1(int);
extern int fn2(void);
#pragma alloc_text (my_text, fn1, fn2);

The code for the functions fn1 and fn2 will be placed in the segment my_text. Note: function
prototypes for the named functions must exist prior to the "alloc_text" pragma.

8.6 The CODE_SEG Pragma
The "code_seg" pragma can be used to specify the name of the text segment into which the generated code
for functions is to be placed. The following describes the form of the "code_seg" pragma.

#pragma code_seg (seg_name [, class_name]) [;]

where description:

seg_name is the name of the text segment optionally enclosed in quotes. Also, seg_name may be a
macro as in:

#define seg_name "MY_CODE_SEG"
#pragma code_seg (seg_name);

class_name is the optional class name of the text segment and may be enclosed in quotes. Please note
that in order to be recognized by the linker as code, a class name has to end in "CODE".
Also, class_name may be a macro as in:

#define class_name "MY_CODE"
#pragma code_seg ("MY_CODE_SEG", class_name);

Consider the following example.

The CODE_SEG Pragma 79

16-bit Topics

#pragma code_seg (my_text);

int incr(int i)
{

return(i + 1);
}

int decr(int i)
{

return(i - 1);
}

The code for the functions incr and decr will be placed in the segment my_text.

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragma code_seg ();

8.7 The COMMENT Pragma
The "comment" pragma can be used to place a comment record in an object file or executable file. The
following describes the form of the "comment" pragma.

#pragma comment (comment_type [, "comment_string"]) [;]

where description:

comment_type specifies the type of comment record. The allowable comment types are:

lib Default libraries are specified in special object module records. Library
names are extracted from these special records by the Open Watcom
Linker. When unresolved references remain after processing all object
modules specified in linker "FILE" directives, these default libraries are
searched after all libraries specified in linker "LIBRARY" directives have
been searched.

The "lib" form of this pragma offers the same features as the "library"
pragma. See the section entitled "Using Pragmas to Specify Default
Libraries" on page 77 for more information.

"comment_string" is an optional string literal that provides additional information for some comment
types.

Consider the following example.

#pragma comment (lib, "mylib");

80 The COMMENT Pragma

16-bit Pragmas

8.8 The DATA_SEG Pragma
The "data_seg" pragma can be used to specify the name of the segment into which data is to be placed. The
following describes the form of the "data_seg" pragma.

#pragma data_seg (seg_name [, class_name]) [;]

where description:

seg_name is the name of the data segment and may be enclosed in quotes. Also, seg_name may be
a macro as in:

#define seg_name "MY_DATA_SEG"
#pragma data_seg (seg_name);

class_name is the optional class name of the data segment and may be enclosed in quotes. Also,
class_name may be a macro as in:

#define class_name "MY_CLASS"
#pragma data_seg ("MY_DATA_SEG", class_name);

Consider the following example.

#pragma data_seg (my_data);

static int i;
static int j;

The data for i and j will be placed in the segment my_data.

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragma data_seg ();

8.9 The DISABLE_MESSAGE Pragma (C Only)
The "disable_message" pragma disables the issuance of specified diagnostic messages. The form of the
"disable_message" pragma is as follows.

#pragma disable_message (msg_num {, msg_num}) [;]

where description:

msg_num is the number of the diagnostic message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages" on page 373. Make sure to strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

The DISABLE_MESSAGE Pragma (C Only) 81

16-bit Topics

See also the description of "The ENABLE_MESSAGE Pragma (C Only)".

8.10 The DUMP_OBJECT_MODEL Pragma (C++ Only)
The "dump_object_model" pragma causes the C++ compiler to print information about the object model for
an indicated class or an enumeration name to the diagnostics file. For class names, this information
includes the offsets and sizes of fields within the class and within base classes. For enumeration names,
this information consists of a list of all the enumeration constants with their values.

The general form of the "dump_object_model" pragma is as follows.

#pragma dump_object_model class [;]
#pragma dump_object_model enumeration [;]
class ::= a defined C++ class free of errors
enumeration ::= a defined C++ enumeration name

This pragma is designed to be used for information purposes only.

8.11 The ENABLE_MESSAGE Pragma (C Only)
The "enable_message" pragma re-enables the issuance of specified diagnostic messages that have been
previously disabled. The form of the "enable_message" pragma is as follows.

#pragma enable_message (msg_num {, msg_num}) [;]

where description:

msg_num is the number of the diagnostic message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages" on page 373. Make sure to strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

See also the description of "The DISABLE_MESSAGE Pragma (C Only)" on page 81.

8.12 The ENUM Pragma
The "enum" pragma affects the underlying storage-definition for subsequent enum declarations. The forms
of the "enum" pragma are as follows.

#pragma enum int [;]
#pragma enum minimum [;]
#pragma enum original [;]
#pragma enum pop [;]

82 The ENUM Pragma

16-bit Pragmas

where description:

int Make int the underlying storage definition (same as the "ei" compiler option).

minimum Minimize the underlying storage definition (same as not specifying the "ei" compiler
option).

original Reset back to the original compiler option setting (i.e., what was or was not specified on the
command line).

pop Restore the previous setting.

The first three forms all push the previous setting before establishing the new setting.

8.13 The ERROR Pragma
The "error" pragma can be used to issue an error message with the specified text. The following describes
the form of the "error" pragma.

#pragma error "error text" [;]

where description:

"error text" is the text of the message that you wish to display.

You should use the ISO #error directive rather than this pragma. This pragma is provided for compatibility
with legacy code. The following is an example.

#if defined(__386__)

...
#elseif defined(__86__)

...
#else
#pragma error ("neither __386__ or __86__ defined");
#endif

8.14 The EXTREF Pragma
The "extref" pragma is used to generate a reference to an external function or data item. The form of the
"extref" pragma is as follows.

#pragma extref name [;]

The EXTREF Pragma 83

16-bit Topics

where description:

name is the name of an external function or data item. It must be declared to be an external
function or data item before the pragma is encountered. In C++, when name is a function,
it must not be overloaded.

This pragma causes an external reference for the function or data item to be emitted into the object file even
if that function or data item is not referenced in the module. The external reference will cause the linker to
include the module containing that name in the linked program or DLL.

This is useful for debugging since you can cause debugging routines (callable from within debugger) to be
included into a program or DLL to be debugged.

In C++, you can also force constructors and/or destructors to be called for a data item without necessarily
referencing the data item anywhere in your code.

8.15 The FUNCTION Pragma
Certain functions, such as those listed in the description of the "oi" and "om" options, have intrinsic forms.
These functions are special functions that are recognized by the compiler and processed in a special way.
For example, the compiler may choose to generate in-line code for the function. The intrinsic attribute for
these special functions is set by specifying the "oi" or "om" option or using an "intrinsic" pragma. The
"function" pragma can be used to remove the intrinsic attribute for a specified list of functions.

The following describes the form of the "function" pragma.

#pragma function (fn {, fn}) [;]

where description:

fn is the name of a function.

Suppose the following source code was compiled using the "om" option so that when one of the special
math functions is referenced, the intrinsic form will be used. In our example, we have referenced the
function sin which does have an intrinsic form. By specifying sin in a "function" pragma, the intrinsic
attribute will be removed, causing the function sin to be treated as a regular user-defined function.

#include <math.h>
#pragma function(sin);

double test(double x)
{

return(sin(x));
}

84 The FUNCTION Pragma

16-bit Pragmas

8.16 The INCLUDE_ALIAS Pragma
In certain situations, it can be advantageous to remap the names of include files. Most commonly this
occurs on systems that do not support long file names when building source code that references header
files with long names.

The form of the "include_alias" pragma follows.

#pragma include_alias ("alias_name", "real_name") [;]
#pragma include_alias (<alias_name>, <real_name>) [;]

where description:

alias_name is the name referenced in include directives in source code.

real_name is the translated name that the compiler will reference instead.

The following is an example.

#pragma include_alias("LongFileName.h", "lfn.h")
#include "LongFileName.h"

In the example, the compiler will attempt to read lfn.h when LongFileName.h was included.

Note that only simple textual substitution is performed. The aliased name must match exactly, including
double quotes or angle brackets, as well as any directory separators. Also, double quotes and angle
brackets may not be mixed a single pragma.

The value of the predefined __FILE__ symbol, as well as the filename reported in error messages, will be
the true filename after substitution was performed.

8.17 Setting Priority of Static Data Initialization (C++ Only)
The "initialize" pragma sets the priority for initialization of static data in the file. This priority only applies
to initialization of static data that requires the execution of code. For example, the initialization of a class
that contains a constructor requires the execution of the constructor. Note that if the sequence in which
initialization of static data in your program takes place has no dependencies, the "initialize" pragma need
not be used.

The general form of the "initialize" pragma is as follows.

#pragma initialize [before | after] priority [;]

priority ::= n | library | program

Setting Priority of Static Data Initialization (C++ Only) 85

16-bit Topics

where description:

n is a number representing the priority and must be in the range 0-255. The larger the
priority, the later the point at which initialization will occur.

Priorities in the range 0-20 are reserved for the C++ compiler. This is to ensure that proper initialization of
the C++ run-time system takes place before the execution of your program. The "library" keyword
represents a priority of 32 and can be used for class libraries that require initialization before the program is
initialized. The "program" keyword represents a priority of 64 and is the default priority for any compiled
code. Specifying "before" adjusts the priority by subtracting one. Specifying "after" adjusts the priority by
adding one.

A source file containing the following "initialize" pragma specifies that the initialization of static data in the
file will take place before initialization of all other static data in the program since a priority of 63 will be
assigned.

Example:
#pragma initialize before program

If we specify "after" instead of "before", the initialization of the static data in the file will occur after
initialization of all other static data in the program since a priority of 65 will be assigned.

Note that the following is equivalent to the "before" example

Example:
#pragma initialize 63

and the following is equivalent to the "after" example.

Example:
#pragma initialize 65

The use of the "before", "after", and "program" keywords are more descriptive in the intent of the pragmas.

It is recommended that a priority of 32 (the priority used when the "library" keyword is specified) be used
when developing class libraries. This will ensure that initialization of static data defined by the class
library will take place before initialization of static data defined by the program. The following "initialize"
pragma can be used to achieve this.

Example:
#pragma initialize library

8.18 The INLINE_DEPTH Pragma (C++ Only)
When an in-line function is called, the function call may be replaced by the in-line expansion for that
function. This in-line expansion may include calls to other in-line functions which can also be expanded.
The "inline_depth" pragma can be used to set the number of times this expansion of in-line functions will
occur for a call.

The form of the "inline_depth" pragma is as follows.

86 The INLINE_DEPTH Pragma (C++ Only)

16-bit Pragmas

#pragma inline_depth [(] n [)] [;]

where description:

n is the depth of expansion. If n is 0, no expansion will occur. If n is 1, only the original call
is expanded. If n is 2, the original call and the in-line functions invoked by the original
function will be expanded. The default value for n is 3. The maximum value for n is 255.
Note that no expansion of recursive in-line functions occur unless enabled using the
"inline_recursion" pragma.

8.19 The INLINE_RECURSION Pragma (C++ Only)
The "inline_recursion" pragma controls the recursive expansion of inline functions. The form of the
"inline_recursion" pragma is as follows.

#pragma inline_recursion [(] on | off [)] [;]

Specifying "on" will enable expansion of recursive inline functions. The depth of expansion is specified by
the "inline_depth" pragma. The default depth is 3. Specifying "off" suppresses expansion of recursive
inline functions. This is the default.

8.20 The INTRINSIC Pragma
Certain functions, those listed in the description of the "oi" option, have intrinsic forms. These functions
are special functions that are recognized by the compiler and processed in a special way. For example, the
compiler may choose to generate in-line code for the function. The intrinsic attribute for these special
functions is set by specifying the "oi" option or using an "intrinsic" pragma.

The following describes the form of the "intrinsic" pragma.

#pragma intrinsic (fn {, fn}) [;]

where description:

fn is the name of a function.

Suppose the following source code was compiled without using the "oi" option so that no function had the
intrinsic attribute. If we wanted the intrinsic form of the sin function to be used, we could specify the
function in an "intrinsic" pragma.

The INTRINSIC Pragma 87

16-bit Topics

#include <math.h>
#pragma intrinsic(sin);

double test(double x)
{

return(sin(x));
}

8.21 The MESSAGE Pragma
The "message" pragma can be used to issue a message with the specified text to the standard output without
terminating compilation. The following describes the form of the "message" pragma.

#pragma message ("message text") [;]

where description:

"message text" is the text of the message that you wish to display.

The following is an example.

#if defined(__386__)

...
#else
#pragma message ("assuming 16-bit compile");
#endif

8.22 The ONCE Pragma
The "once" pragma can be used to indicate that the file which contains this pragma should only be opened
and processed "once". The following describes the form of the "once" pragma.

#pragma once [;]

Assume that the file "foo.h" contains the following text.

Example:
#ifndef _FOO_H_INCLUDED
#define _FOO_H_INCLUDED
#pragma once

.

.

.
#endif

The first time that the compiler processes "foo.h" and encounters the "once" pragma, it records the file’s
name. Subsequently, whenever the compiler encounters a #include statement that refers to "foo.h", it

88 The ONCE Pragma

16-bit Pragmas

will not open the include file again. This can help speed up processing of #include files and reduce the
time required to compile an application.

8.23 The PACK Pragma
The "pack" pragma can be used to control the way in which structures are stored in memory. There are 4
forms of the "pack" pragma.

The following form of the "pack" pragma can be used to change the alignment of structures and their fields
in memory.

#pragma pack (n) [;]

where description:

n is 1, 2, 4, 8 or 16 and specifies the method of alignment.

The alignment of structure members is described in the following table. If the size of the member is 1, 2, 4,
8 or 16, the alignment is given for each of the "zp" options. If the member of the structure is an array or
structure, the alignment is described by the row "x".

zp1 zp2 zp4 zp8 zp16

sizeof(member) \---------------------------------------
1 | 0 0 0 0 0
2 | 0 2 2 2 2
4 | 0 2 4 4 4
8 | 0 2 4 8 8
16 | 0 2 4 8 16
x | aligned to largest member

An alignment of 0 means no alignment, 2 means word boundary, 4 means doubleword boundary, etc. If the
largest member of structure "x" is 1 byte then "x" is not aligned. If the largest member of structure "x" is 2
bytes then "x" is aligned according to row 2. If the largest member of structure "x" is 4 bytes then "x" is
aligned according to row 4. If the largest member of structure "x" is 8 bytes then "x" is aligned according
to row 8. If the largest member of structure "x" is 16 bytes then "x" is aligned according to row 16.

If no value is specified in the "pack" pragma, a default value of 2 is used. Note that the default value can be
changed with the "zp" Open Watcom C/C++ compiler command line option.

The following form of the "pack" pragma can be used to save the current alignment amount on an internal
stack.

#pragma pack (push) [;]

The following form of the "pack" pragma can be used to save the current alignment amount on an internal
stack and set the current alignment.

The PACK Pragma 89

16-bit Topics

#pragma pack (push, number) [;]

The following form of the "pack" pragma can be used to restore the previous alignment amount from an
internal stack.

#pragma pack (pop) [;]

8.24 The READ_ONLY_FILE Pragma
Explicit listing of dependencies in a makefile can often be tedious in the development and maintenance
phases of a project. The Open Watcom C/C++ compiler will insert dependency information into the object
file as it processes source files so that a complete snapshot of the files necessary to build the object file are
recorded. The "read_only_file" pragma can be used to prevent the name of the source file that includes it
from being included in the dependency information that is written to the object file.

This pragma is commonly used in system header files since they change infrequently (and, when they do,
there should be no impact on source files that have included them).

The form of the "read_only_file" pragma follows.

#pragma read_only_file [;]

For more information on make dependencies, see the section entitled "Automatic Dependency Detection
(.AUTODEPEND)" in the Open Watcom C/C++ Tools User’s Guide.

8.25 The TEMPLATE_DEPTH Pragma (C++ Only)
The "template_depth" pragma provides a hard limit for the amount of nested template expansions allowed
so that infinite expansion can be detected.

The form of the "template_depth" pragma is as follows.

#pragma template_depth [(] n [)] [;]

where description:

n is the depth of expansion. If the value of n is less than 2, if will default to 2. If n is not
specified, a warning message will be issued and the default value for n will be 100.

The following example of recursive template expansion illustrates why this pragma can be useful.

90 The TEMPLATE_DEPTH Pragma (C++ Only)

16-bit Pragmas

Example:
#pragma template_depth(10);

template <class T>
struct S {

S<T*> x;
};

S<char> v;

8.26 The WARNING Pragma (C++ Only)
The "warning" pragma sets the level of warning messages. The form of the "warning" pragma is as
follows.

#pragma warning msg_num level [;]

where description:

msg_num is the number of the warning message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C++ Diagnostic
Messages" on page 405. If msg_num is "*", the level of all warning messages is changed
to the specified level. Make sure to strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

level is a number from 0 to 9 and represents the level of the warning message. When a value of
zero is specified, the warning becomes an error.

8.27 Auxiliary Pragmas
The following sections describe the capabilities provided by auxiliary pragmas.

8.27.1 Specifying Symbol Attributes
Auxiliary pragmas are used to describe attributes that affect code generation. Initially, the compiler defines
a default set of attributes. Each auxiliary pragma refers to one of the following.

1. a symbol (such as a variable or function)
2. a type definition that resolves to a function type
3. the default set of attributes defined by the compiler

When an auxiliary pragma refers to a particular symbol, a copy of the current set of default attributes is
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to the specified symbol and can only be changed by another auxiliary pragma that refers to the same
symbol.

An example of a type definition that resolves to a function type is the following.

Auxiliary Pragmas 91

16-bit Topics

typedef void (*func_type)();

When an auxiliary pragma refers to a such a type definition, a copy of the current set of default attributes is
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to each function whose type matches the specified type definition.

When "default" is specified instead of a symbol name, the attributes specified by the auxiliary pragma
change the default set of attributes. The resulting attributes are used by all symbols that have not been
specifically referenced by a previous auxiliary pragma.

Note that all auxiliary pragmas are processed before code generation begins. Consider the following
example.

code in which symbol x is referenced
#pragma aux y <attrs_1>;
code in which symbol y is referenced
code in which symbol z is referenced
#pragma aux default <attrs_2>;
#pragma aux x <attrs_3>;

Auxiliary attributes are assigned to x, y and z in the following way.

1. Symbol x is assigned the initial default attributes merged with the attributes specified by
<attrs_2> and <attrs_3>.

2. Symbol y is assigned the initial default attributes merged with the attributes specified by
<attrs_1>.

3. Symbol z is assigned the initial default attributes merged with the attributes specified by
<attrs_2>.

8.27.2 Alias Names
When a symbol referred to by an auxiliary pragma includes an alias name, the attributes of the alias name
are also assumed by the specified symbol.

There are two methods of specifying alias information. In the first method, the symbol assumes only the
attributes of the alias name; no additional attributes can be specified. The second method is more general
since it is possible to specify an alias name as well as additional auxiliary information. In this case, the
symbol assumes the attributes of the alias name as well as the attributes specified by the additional auxiliary
information.

The simple form of the auxiliary pragma used to specify an alias is as follows.

#pragma aux (sym, alias) [;]

92 Auxiliary Pragmas

16-bit Pragmas

where description:

sym is any valid C/C++ identifier.

alias is the alias name and is any valid C/C++ identifier.

Consider the following example.

#pragma aux push_args parm [] ;
#pragma aux (rtn, push_args) ;

The routine rtn assumes the attributes of the alias name push_args which specifies that the arguments
to rtn are passed on the stack.

Let us look at an example in which the symbol is a type definition.

typedef void (func_type)(int);

#pragma aux push_args parm [];
#pragma aux (func_type, push_args);

extern func_type rtn1;
extern func_type rtn2;

The first auxiliary pragma defines an alias name called push_args that specifies the mechanism to be
used to pass arguments. The mechanism is to pass all arguments on the stack. The second auxiliary
pragma associates the attributes specified in the first pragma with the type definition func_type. Since
rtn1 and rtn2 are of type func_type, arguments to either of those functions will be passed on the
stack.

The general form of an auxiliary pragma that can be used to specify an alias is as follows.

#pragma aux (alias) sym aux_attrs [;]

where description:

alias is the alias name and is any valid C/C++ identifier.

sym is any valid C/C++ identifier.

aux_attrs are attributes that can be specified with the auxiliary pragma.

Consider the following example.

#pragma aux MS_C "_*" \

parm caller [] \
value struct float struct routine [ax]\
modify [ax bx cx dx es];

#pragma aux (MS_C) rtn1;
#pragma aux (MS_C) rtn2;
#pragma aux (MS_C) rtn3;

Auxiliary Pragmas 93

16-bit Topics

The routines rtn1, rtn2 and rtn3 assume the same attributes as the alias name MS_C which defines the
calling convention used by the Microsoft C compiler. Whenever calls are made to rtn1, rtn2 and
rtn3, the Microsoft C calling convention will be used.

Note that if the attributes of MS_C change, only one pragma needs to be changed. If we had not used an
alias name and specified the attributes in each of the three pragmas for rtn1, rtn2 and rtn3, we would
have to change all three pragmas. This approach also reduces the amount of memory required by the
compiler to process the source file.

WARNING! The alias name MS_C is just another symbol. If MS_C appeared in your source code, it
would assume the attributes specified in the pragma for MS_C.

8.27.3 Predefined Aliases
A number of symbols are predefined by the compiler with a set of attributes that describe a particular
calling convention. These symbols can be used as aliases. The following is a list of these symbols.

__cdecl __cdecl orcdecl defines the calling convention used by Microsoft compilers.

__fastcall __fastcall orfastcall defines the calling convention used by Microsoft compilers.

__fortran __fortran orfortran defines the calling convention used by Open Watcom
FORTRAN compilers.

__pascal __pascal orpascal defines the calling convention used by OS/2 1.x and Windows 3.x
API functions.

__stdcall __stdcall orstdcall defines the calling convention used by Microsoft compilers.

__watcall __watcall orwatcall defines the calling convention used by Open Watcom
compilers.

The following describes the attributes of the above alias names.

8.27.3.1 Predefined "__cdecl" Alias

#pragma aux __cdecl "_*" \

parm caller [] \
value struct float struct routine [ax] \
modify [ax bx cx dx es]

Notes:

1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the called routine allocates space for the return value and returns a pointer to the return value in
register AX.

94 Auxiliary Pragmas

16-bit Pragmas

4. Registers AX, BX, CX and DX, and segment register ES are not saved and restored when a call
is made.

8.27.3.2 Predefined "__pascal" Alias

#pragma aux __pascal "^" \

parm reverse routine [] \
value struct float struct caller [] \
modify [ax bx cx dx es]

Notes:

1. All symbols are mapped to upper case.

2. Arguments are pushed on the stack in reverse order. That is, the first argument is pushed first,
the second argument is pushed next, and so on. The routine being called will remove the
arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the caller allocates space on the stack. The address of the allocated space will be pushed on the
stack immediately before the call instruction. Upon returning from the call, register AX will
contain address of the space allocated for the return value.

4. Registers AX, BX, CX and DX, and segment register ES are not saved and restored when a call
is made.

8.27.3.3 Predefined "__watcall" Alias

#pragma aux __watcall "*_" \

parm routine [ax bx cx dx] \
value struct caller

Notes:

1. Symbol names are followed by an underscore character.

2. Arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have
been exhausted). Arguments that are passed on the stack are pushed from right to left. The
calling routine will remove the arguments if any were pushed on the stack.

3. When a structure is returned, the caller allocates space on the stack. The address of the allocated
space is put into SI register. The called routine then places the return value there. Upon
returning from the call, register AX will contain address of the space allocated for the return
value.

4. Floating-point values are returned using 80x86 registers ("fpc" option) or using 80x87
floating-point registers ("fpi" or "fpi87" option).

5. All registers must be preserved by the called routine.

Auxiliary Pragmas 95

16-bit Topics

8.27.4 Alternate Names for Symbols
The following form of the auxiliary pragma can be used to describe the mapping of a symbol from its
source form to its object form.

#pragma aux sym obj_name [;]

where description:

sym is any valid C/C++ identifier.

obj_name is any character string enclosed in double quotes.

When specifying obj_name, some characters have a special meaning:

where description:

* is unmodified symbol name

^ is symbol name converted to uppercase

! is symbol name converted to lowercase

is a placeholder for "@nnn", where nnn is size of all function parameters on the stack; it is
ignored for functions with variable argument lists, or for symbols that are not functions

\ next character is treated as literal

Several examples of source to object form symbol name translation follow:

In the following example, the name "MyRtn" will be replaced by "MyRtn_" in the object file.

#pragma aux MyRtn "*_";

This is the default for all function names.

In the following example, the name "MyVar" will be replaced by "_MyVar" in the object file.

#pragma aux MyVar "_*";

This is the default for all variable names.

In the following example, the lower case version "myrtn" will be placed in the object file.

#pragma aux MyRtn "!";

In the following example, the upper case version "MYRTN" will be placed in the object file.

#pragma aux MyRtn "^";

In the following example, the name "MyRtn" will be replaced by "_MyRtn@nnn" in the object file. "nnn"
represents the size of all function parameters.

96 Auxiliary Pragmas

16-bit Pragmas

#pragma aux MyRtn "_*#";

In the following example, the name "MyRtn" will be replaced by "_MyRtn#" in the object file.

#pragma aux MyRtn "_*\#";

The default mapping for all symbols can also be changed as illustrated by the following example.

#pragma aux default "_*_";

The above auxiliary pragma specifies that all names will be prefixed and suffixed by an underscore
character (’_’).

8.27.5 Describing Calling Information
The following form of the auxiliary pragma can be used to describe the way a function is to be called.

#pragma aux sym far [;]
or

#pragma aux sym near [;]
or

#pragma aux sym = in_line [;]

in_line ::= { const | (seg id) | (offset id) | (reloff id)
| (float fpinst) | "asm" }

where description:

sym is a function name.

const is a valid C/C++ integer constant.

id is any valid C/C++ identifier.

fpinst is a sequence of bytes that forms a valid 80x87 instruction. The keyword float must
precede fpinst so that special fixups are applied to the 80x87 instruction.

seg specifies the segment of the symbol id.

offset specifies the offset of the symbol id.

reloff specifies the relative offset of the symbol id for near control transfers.

asm is an assembly language instruction or directive.

In the following example, Open Watcom C/C++ will generate a far call to the function myrtn.

#pragma aux myrtn far;

Auxiliary Pragmas 97

16-bit Topics

Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, a far call will be generated even if you are compiling for a memory model with a
small code model.

In the following example, Open Watcom C/C++ will generate a near call to the function myrtn.

#pragma aux myrtn near;

Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, a near call will be generated even if you are compiling for a memory model with a
big code model.

In the following DOS example, Open Watcom C/C++ will generate the sequence of bytes following the "="
character in the auxiliary pragma whenever a call to mode4 is encountered. mode4 is called an in-line
function.

void mode4(void);
#pragma aux mode4 = \

0xb4 0x00 /* mov AH,0 */ \
0xb0 0x04 /* mov AL,4 */ \
0xcd 0x10 /* int 10H */ \
modify [AH AL];

The sequence in the above DOS example represents the following lines of assembly language instructions.

mov AH,0 ; select function "set mode"
mov AL,4 ; specify mode (mode 4)
int 10H ; BIOS video call

The above example demonstrates how to generate BIOS function calls in-line without writing an assembly
language function and calling it from your C/C++ program. The C prototype for the function mode4 is not
necessary but is included so that we can take advantage of the argument type checking provided by Open
Watcom C/C++.

The following DOS example is equivalent to the above example but mnemonics for the assembly language
instructions are used instead of the binary encoding of the assembly language instructions.

void mode4(void);
#pragma aux mode4 = \

"mov AH,0", \
"mov AL,4", \
"int 10H" \
modify [AH AL];

If a sequence of in-line assembly language instructions contains 80x87 floating-point instructions, each
floating-point instruction must be preceded by "float". Note that this is only required if you have specified
the "fpi" compiler option; otherwise it will be ignored.

The following example generates the 80x87 "square root" instruction.

double mysqrt(double);
#pragma aux mysqrt parm [8087] = \

float 0xd9 0xfa /* fsqrt */;

A sequence of in-line assembly language instructions may contain symbolic references. In the following
example, a near call to the function myalias is made whenever myrtn is called.

98 Auxiliary Pragmas

16-bit Pragmas

extern void myalias(void);
void myrtn(void);
#pragma aux myrtn = \

0xe8 reloff myalias /* near call */;

In the following example, a far call to the function myalias is made whenever myrtn is called.

extern void myalias(void);
void myrtn(void);
#pragma aux myrtn = \

0x9a offset myalias seg myalias /* far call */;

8.27.5.1 Loading Data Segment Register

An application may have been compiled so that the segment register DS does not contain the segment
address of the default data segment (group "DGROUP"). This is usually the case if you are using a large
data memory model. Suppose you wish to call a function that assumes that the segment register DS
contains the segment address of the default data segment. It would be very cumbersome if you were forced
to compile your application so that the segment register DS contained the default data segment (a small data
memory model).

The following form of the auxiliary pragma will cause the segment register DS to be loaded with the
segment address of the default data segment before calling the specified function.

#pragma aux sym parm loadds [;]

where description:

sym is a function name.

Alternatively, the following form of the auxiliary pragma will cause the segment register DS to be loaded
with the segment address of the default data segment as part of the prologue sequence for the specified
function.

#pragma aux sym loadds [;]

where description:

sym is a function name.

8.27.5.2 Defining Exported Symbols in Dynamic Link Libraries

An exported symbol in a dynamic link library is a symbol that can be referenced by an application that is
linked with that dynamic link library. Normally, symbols in dynamic link libraries are exported using the
Open Watcom Linker "EXPORT" directive. An alternative method is to use the following form of the
auxiliary pragma.

Auxiliary Pragmas 99

16-bit Topics

#pragma aux sym export [;]

where description:

sym is a function name.

8.27.5.3 Defining Windows Callback Functions

When compiling a Microsoft Windows application, you must use the "zW" option so that special
prologue/epilogue sequences are generated. Furthermore, callback functions require larger
prologue/epilogue sequences than those generated when the "zW" compiler option is specified. The
following form of the auxiliary pragma will cause a callback prologue/epilogue sequence to be generated
for a callback function when compiled using the "zW" option.

#pragma aux sym export [;]

where description:

sym is a callback function name.

Alternatively, the "zw" compiler option can be used to generate callback prologue/epilogue sequences.
However, all functions contained in a module compiled using the "zw" option will have a callback
prologue/epilogue sequence even if the functions are not callback functions.

8.27.5.4 Forcing a Stack Frame

Normally, a function contains a stack frame if arguments are passed on the stack or an automatic variable is
allocated on the stack. No stack frame will be generated if the above conditions are not satisfied. The
following form of the auxiliary pragma will force a stack frame to be generated under any circumstance.

#pragma aux sym frame [;]

where description:

sym is a function name.

8.27.6 Describing Argument Information
Using auxiliary pragmas, you can describe the calling convention that Open Watcom C/C++ is to use for
calling functions. This is particularly useful when interfacing to functions that have been compiled by
other compilers or functions written in other programming languages.

The general form of an auxiliary pragma that describes argument passing is the following.

100 Auxiliary Pragmas

16-bit Pragmas

#pragma aux sym parm { pop_info | reverse | {reg_set} } [;]

pop_info ::= caller | routine

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used for
argument passing. A register set is a list of registers separated by spaces and enclosed in
square brackets.

8.27.6.1 Passing Arguments in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to pass
arguments to a particular function.

#pragma aux sym parm {reg_set} [;]

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used for
argument passing. A register set is a list of registers separated by spaces and enclosed in
square brackets.

Register sets establish a priority for register allocation during argument list processing. Register sets are
processed from left to right. However, within a register set, registers are chosen in any order. Once all
register sets have been processed, any remaining arguments are pushed on the stack.

Note that regardless of the register sets specified, only certain combinations of registers will be selected for
arguments of a particular type.

Note that arguments of type float and double are always pushed on the stack when the "fpi" or "fpi87"
option is used.

double Arguments of type double can only be passed in the following register combination:
AX:BX:CX:DX. For example, if the following register set was specified for a routine
having an argument of type double,

[AX BX SI DI]

the argument would be pushed on the stack since a valid register combination for 8-byte
arguments is not contained in the register set. Note that this method for passing arguments
of type double is supported only when the "fpc" option is used. Note that this argument
passing method does not include the passing of 8-byte structures.

Auxiliary Pragmas 101

16-bit Topics

far pointer A far pointer can only be passed in one of the following register pairs: DX:AX, CX:BX,
CX:AX, CX:SI, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX, CX:DX, DX:DI, DI:SI,
SI:BX, BX:AX, DS:CX, DS:DX, DS:DI, DS:SI, DS:BX, DS:AX, ES:CX, ES:DX, ES:DI,
ES:SI, ES:BX or ES:AX. For example, if a far pointer is passed to a function with the
following register set,

[ES BP]

the argument would be pushed on the stack since a valid register combination for a far
pointer is not contained in the register set.

long int, float The only registers that will be assigned to 4-byte arguments (e.g., arguments of type long
int,) are: DX:AX, CX:BX, CX:AX, CX:SI, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX,
SI:AX, CX:DX, DX:DI, DI:SI, SI:BX and BX:AX. For example, if the following register
set was specified for a routine with one argument of type long int,

[ES DI]

the argument would be pushed on the stack since a valid register combination for 4-byte
arguments is not contained in the register set. Note that this argument passing method
includes 4-byte structures. Note that this argument passing method includes arguments of
type float but only when the "fpc" option is used.

int The only registers that will be assigned to 2-byte arguments (e.g., arguments of type int)
are: AX, BX, CX, DX, SI and DI. For example, if the following register set was specified
for a routine with one argument of type int,

[BP]

the argument would be pushed on the stack since a valid register combination for 2-byte
arguments is not contained in the register set.

char Arguments whose size is 1 byte (e.g., arguments of type char) are promoted to 2 bytes and
are then assigned registers as if they were 2-byte arguments.

others Arguments that do not fall into one of the above categories cannot be passed in registers
and are pushed on the stack. Once an argument has been assigned a position on the stack,
all remaining arguments will be assigned a position on the stack even if all register sets
have not yet been exhausted.

Notes:

1. The default register set is [AX BX CX DX].

2. Specifying registers AH and AL is equivalent to specifying register AX. Specifying registers
DH and DL is equivalent to specifying register DX. Specifying registers CH and CL is
equivalent to specifying register CX. Specifying registers BH and BL is equivalent to specifying
register BX.

3. If you are compiling for a memory model with a small data model, or the "zdp" compiler option
is specified, any register combination containing register DS becomes illegal. In a small data
model, segment register DS must remain unchanged as it points to the program’s data segment.
Note that the "zdf" compiler option can be used to specify that register DS does not contain that

102 Auxiliary Pragmas

16-bit Pragmas

segment address of the program’s data segment. In this case, register combinations containing
register DS are legal.

Consider the following example.

#pragma aux myrtn parm [ax bx cx dx] [bp si];

Suppose myrtn is a routine with 3 arguments each of type long int.

1. The first argument will be passed in the register pair DX:AX.
2. The second argument will be passed in the register pair CX:BX.
3. The third argument will be pushed on the stack since BP:SI is not a valid register pair for

arguments of type long int.

It is possible for registers from the second register set to be used before registers from the first register set
are used. Consider the following example.

#pragma aux myrtn parm [ax bx cx dx] [si di];

Suppose myrtn is a routine with 3 arguments, the first of type int and the second and third of type long
int.

1. The first argument will be passed in the register AX.
2. The second argument will be passed in the register pair CX:BX.
3. The third argument will be passed in the register set DI:SI.

Note that registers are no longer selected from a register set after registers are selected from subsequent
register sets, even if all registers from the original register set have not been exhausted.

An empty register set is permitted. All subsequent register sets appearing after an empty register set are
ignored; all remaining arguments are pushed on the stack.

Notes:

1. If a single empty register set is specified, all arguments are passed on the stack.

2. If no register set is specified, the default register set [AX BX CX DX] is used.

8.27.6.2 Forcing Arguments into Specific Registers

It is possible to force arguments into specific registers. Suppose you have a function, say "mycopy", that
copies data. The first argument is the source, the second argument is the destination, and the third
argument is the length to copy. If we want the first argument to be passed in the register SI, the second
argument to be passed in register DI and the third argument to be passed in register CX, the following
auxiliary pragma can be used.

void mycopy(char near *, char *, int);
#pragma aux mycopy parm [SI] [DI] [CX];

Note that you must be aware of the size of the arguments to ensure that the arguments get passed in the
appropriate registers.

Auxiliary Pragmas 103

16-bit Topics

8.27.6.3 Passing Arguments to In-Line Functions

For functions whose code is generated by Open Watcom C/C++ and whose argument list is described by an
auxiliary pragma, Open Watcom C/C++ has some freedom in choosing how arguments are assigned to
registers. Since the code for in-line functions is specified by the programmer, the description of the
argument list must be very explicit. To achieve this, Open Watcom C/C++ assumes that each register set
corresponds to an argument. Consider the following DOS example of an in-line function called
scrollactivepgup.

void scrollactivepgup(char,char,char,char,char,char);
#pragma aux scrollactivepgup = \

"mov AH,6" \
"int 10h" \
parm [ch] [cl] [dh] [dl] [al] [bh] \
modify [ah];

The BIOS video call to scroll the active page up requires the following arguments.

1. The row and column of the upper left corner of the scroll window is passed in registers CH and
CL respectively.

2. The row and column of the lower right corner of the scroll window is passed in registers DH and
DL respectively.

3. The number of lines blanked at the bottom of the window is passed in register AL.

4. The attribute to be used on the blank lines is passed in register BH.

When passing arguments, Open Watcom C/C++ will convert the argument so that it fits in the register(s)
specified in the register set for that argument. For example, in the above example, if the first argument to
scrollactivepgup was called with an argument whose type was int, it would first be converted to
char before assigning it to register CH. Similarly, if an in-line function required its argument in register
pair DX:AX and the argument was of type short int, the argument would be converted to long int before
assigning it to register pair DX:AX.

In general, Open Watcom C/C++ assigns the following types to register sets.

1. A register set consisting of a single 8-bit register (1 byte) is assigned a type of unsigned char.

2. A register set consisting of a single 16-bit register (2 bytes) is assigned a type of unsigned short
int.

3. A register set consisting of two 16-bit registers (4 bytes) is assigned a type of unsigned long int.

4. A register set consisting of four 16-bit registers (8 bytes) is assigned a type of double.

8.27.6.4 Removing Arguments from the Stack

The following form of the auxiliary pragma specifies who removes from the stack arguments that were
pushed on the stack.

104 Auxiliary Pragmas

16-bit Pragmas

#pragma aux sym parm (caller | routine) [;]

where description:

sym is a function name.

"caller" specifies that the caller will pop the arguments from the stack; "routine" specifies that the called
routine will pop the arguments from the stack. If "caller" or "routine" is omitted, "routine" is assumed
unless the default has been changed in a previous auxiliary pragma, in which case the new default is
assumed.

8.27.6.5 Passing Arguments in Reverse Order

The following form of the auxiliary pragma specifies that arguments are passed in the reverse order.

#pragma aux sym parm reverse [;]

where description:

sym is a function name.

Normally, arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have been
exhausted). Arguments that are passed on the stack are pushed from right to left.

When arguments are reversed, the rightmost arguments are passed in registers and the leftmost arguments
are passed on the stack (if the registers used for argument passing have been exhausted). Arguments that
are passed on the stack are pushed from left to right.

Reversing arguments is most useful for functions that require arguments to be passed on the stack in an
order opposite from the default. The following auxiliary pragma demonstrates such a function.

#pragma aux rtn parm reverse [];

8.27.7 Describing Function Return Information
Using auxiliary pragmas, you can describe the way functions are to return values. This is particularly
useful when interfacing to functions that have been compiled by other compilers or functions written in
other programming languages.

The general form of an auxiliary pragma that describes the way a function returns its value is the following.

#pragma aux sym value {no8087 | reg_set | struct_info} [;]
struct_info ::= struct {float | struct | (routine | caller) | reg_set}

Auxiliary Pragmas 105

16-bit Topics

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used for
argument passing. A register set is a list of registers separated by spaces and enclosed in
square brackets.

8.27.7.1 Returning Function Values in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to return
a function’s value.

#pragma aux sym value reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

Note that the method described below for returning values of type float or double is supported only when
the "fpc" option is used.

Depending on the type of the return value, only certain registers are allowed in reg_set.

1-byte For 1-byte return values, only the following registers are allowed: AL, AH, DL, DH, BL,
BH, CL or CH. If no register set is specified, register AL will be used.

2-byte For 2-byte return values, only the following registers are allowed: AX, DX, BX, CX, SI or
DI. If no register set is specified, register AX will be used.

4-byte For 4-byte return values (except far pointers), only the following register pairs are allowed:
DX:AX, CX:BX, CX:AX, CX:SI, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX,
CX:DX, DX:DI, DI:SI, SI:BX or BX:AX. If no register set is specified, registers DX:AX
will be used. This form of the auxiliary pragma is legal for functions of type float when
using the "fpc" option only.

far pointer For functions that return far pointers, the following register pairs are allowed: DX:AX,
CX:BX, CX:AX, CX:SI, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX, CX:DX, DX:DI,
DI:SI, SI:BX, BX:AX, DS:CX, DS:DX, DS:DI, DS:SI, DS:BX, DS:AX, ES:CX, ES:DX,
ES:DI, ES:SI, ES:BX or ES:AX. If no register set is specified, the registers DX:AX will be
used.

8-byte For 8-byte return values (including functions of type double), only the following register
combination is allowed: AX:BX:CX:DX. If no register set is specified, the registers
AX:BX:CX:DX will be used. This form of the auxiliary pragma is legal for functions of
type double when using the "fpc" option only.

106 Auxiliary Pragmas

16-bit Pragmas

Notes:

1. An empty register set is not allowed.

2. If you are compiling for a memory model which has a small data model, any of the above
register combinations containing register DS becomes illegal. In a small data model, segment
register DS must remain unchanged as it points to the program’s data segment.

8.27.7.2 Returning Structures

Typically, structures are not returned in registers. Instead, the caller allocates space on the stack for the
return value and sets register SI to point to it. The called routine then places the return value at the location
pointed to by register SI.

The following form of the auxiliary pragma can be used to specify the register that is to be used to point to
the return value.

#pragma aux sym value struct (caller|routine) reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

"caller" specifies that the caller will allocate memory for the return value. The address of the memory
allocated for the return value is placed in the register specified in the register set by the caller before the
function is called. If an empty register set is specified, the address of the memory allocated for the return
value will be pushed on the stack immediately before the call and will be returned in register AX by the
called routine. It is assumed that the memory for the return value is allocated from the stack segment (the
stack segment is contained in segment register SS).

"routine" specifies that the called routine will allocate memory for the return value. Upon returning to the
caller, the register specified in the register set will contain the address of the return value. An empty
register set is not allowed.

Only the following registers are allowed in the register set: AX, DX, BX, CX, SI or DI. Note that in a big
data model, the address in the return register is assumed to be in the segment specified by the value in the
SS segment register.

If the size of the structure being returned is 1, 2 or 4 bytes, it will be returned in registers. The return
register will be selected from the register set in the following way.

1. A 1-byte structure will be returned in one of the following registers: AL, AH, DL, DH, BL, BH,
CL or CH. If no register set is specified, register AL will be used.

2. A 2-byte structure will be returned in one of the following registers: AX, DX, BX, CX, SI or DI.
If no register set is specified, register AX will be used.

Auxiliary Pragmas 107

16-bit Topics

3. A 4-byte structure will be returned in one of the following register pairs: DX:AX, CX:BX,
CX:AX, CX:SI, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX, CX:DX, DX:DI, DI:SI, SI:BX
or BX:AX. If no register set is specified, register pair DX:AX will be used.

The following form of the auxiliary pragma can be used to specify that structures whose size is 1, 2 or 4
bytes are not to be returned in registers. Instead, the caller will allocate space on the stack for the structure
return value and point register SI to it.

#pragma aux sym value struct struct [;]

where description:

sym is a function name.

8.27.7.3 Returning Floating-Point Data

There are a few ways available for specifying how the value for a function whose type is float or double is
to be returned.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are not to be returned in registers. Instead, the caller will allocate space on the stack for the
return value and point register SI to it.

#pragma aux sym value struct float [;]

where description:

sym is a function name.

In other words, floating-point values are to be returned in the same way structures are returned.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are not to be returned in 80x87 registers when compiling with the "fpi" or "fpi87" option.
Instead, the value will be returned in 80x86 registers. This is the default behaviour for the "fpc" option.
Function return values whose type is float will be returned in registers DX:AX. Function return values
whose type is double will be returned in registers AX:BX:CX:DX. This is the default method for the "fpc"
option.

#pragma aux sym value no8087 [;]

where description:

sym is a function name.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are to be returned in ST(0) when compiling with the "fpi" or "fpi87" option. This form of
the auxiliary pragma is not legal for the "fpc" option.

108 Auxiliary Pragmas

16-bit Pragmas

#pragma aux sym value [8087] [;]

where description:

sym is a function name.

8.27.8 A Function that Never Returns
The following form of the auxiliary pragma can be used to describe a function that does not return to the
caller.

#pragma aux sym aborts [;]

where description:

sym is a function name.

Consider the following example.

#pragma aux exitrtn aborts;
extern void exitrtn(void);

void rtn()
{

exitrtn();
}

exitrtn is defined to be a function that does not return. For example, it may call exit to return to the
system. In this case, Open Watcom C/C++ generates a "jmp" instruction instead of a "call" instruction to
invoke exitrtn.

8.27.9 Describing How Functions Use Memory
The following form of the auxiliary pragma can be used to describe a function that does not modify any
memory (i.e., global or static variables) that is used directly or indirectly by the caller.

#pragma aux sym modify nomemory [;]

where description:

sym is a function name.

Consider the following example.

Auxiliary Pragmas 109

16-bit Topics

#pragma off (check_stack);

extern void myrtn(void);

int i = { 1033 };

extern Rtn() {
while(i < 10000) {

i += 383;
}
myrtn();
i += 13143;

};

To compile the above program, "rtn.c", we issue the following command.

$ wcc rtn -oai -d1
$ wpp rtn -oai -d1
$ wcc386 rtn -oai -d1
$ wpp386 rtn -oai -d1

For illustrative purposes, we omit loop optimizations from the list of code optimizations that we want the
compiler to perform. The "d1" compiler option is specified so that the object file produced by Open
Watcom C/C++ contains source line information.

We can generate a file containing a disassembly of rtn.o by issuing the following command.

$ wdis rtn -l -s -r

The "s" option is specified so that the listing file produced by the Open Watcom Disassembler contains
source lines taken from rtn.c. The listing file rtn.lst appears as follows.

Module: rtn.c
Group: ’DGROUP’ CONST,_DATA

Segment: ’_TEXT’ BYTE 0026 bytes

#pragma off (check_stack);

extern void MyRtn(void);

int i = { 1033 };

extern Rtn()
{

0000 52 Rtn_ push DX
0001 8b 16 00 00 mov DX,_i

while(i < 10000) {
0005 81 fa 10 27 L1 cmp DX,2710H
0009 7d 06 jge L2

i += 383;
}

000b 81 c2 7f 01 add DX,017fH
000f eb f4 jmp L1

110 Auxiliary Pragmas

16-bit Pragmas

MyRtn();
0011 89 16 00 00 L2 mov _i,DX
0015 e8 00 00 call MyRtn_
0018 8b 16 00 00 mov DX,_i

i += 13143;
001c 81 c2 57 33 add DX,3357H
0020 89 16 00 00 mov _i,DX

};
0024 5a pop DX
0025 c3 ret

No disassembly errors

--

Segment: ’_DATA’ WORD 0002 bytes
0000 09 04 _i - ..

No disassembly errors

--

Let us add the following auxiliary pragma to the source file.

#pragma aux myrtn modify nomemory;

If we compile the source file with the above pragma and disassemble the object file using the Open
Watcom Disassembler, we get the following listing file.

Module: rtn.c
Group: ’DGROUP’ CONST,_DATA

Segment: ’_TEXT’ BYTE 0022 bytes

#pragma off (check_stack);

extern void MyRtn(void);
#pragma aux MyRtn modify nomemory;

int i = { 1033 };

extern Rtn()
{

0000 52 Rtn_ push DX
0001 8b 16 00 00 mov DX,_i

while(i < 10000) {
0005 81 fa 10 27 L1 cmp DX,2710H
0009 7d 06 jge L2

i += 383;
}

000b 81 c2 7f 01 add DX,017fH
000f eb f4 jmp L1

MyRtn();
0011 89 16 00 00 L2 mov _i,DX
0015 e8 00 00 call MyRtn_

i += 13143;
0018 81 c2 57 33 add DX,3357H
001c 89 16 00 00 mov _i,DX

};
0020 5a pop DX
0021 c3 ret

Auxiliary Pragmas 111

16-bit Topics

No disassembly errors

--

Segment: ’_DATA’ WORD 0002 bytes
0000 09 04 _i - ..

No disassembly errors

--

Notice that the value of i is in register DX after completion of the "while" loop. After the call to myrtn,
the value of i is not loaded from memory into a register to perform the final addition. The auxiliary
pragma informs the compiler that myrtn does not modify any memory (i.e., global or static variables) that
is used directly or indirectly by Rtn and hence register DX contains the correct value of i.

The preceding auxiliary pragma deals with routines that modify memory. Let us consider the case where
routines reference memory. The following form of the auxiliary pragma can be used to describe a function
that does not reference any memory (i.e., global or static variables) that is used directly or indirectly by the
caller.

#pragma aux sym parm nomemory modify nomemory [;]

where description:

sym is a function name.

Notes:

1. You must specify both "parm nomemory" and "modify nomemory".

Let us replace the auxiliary pragma in the above example with the following auxiliary pragma.

#pragma aux myrtn parm nomemory modify nomemory;

If you now compile our source file and disassemble the object file using wdis, the result is the following
listing file.

Module: rtn.c
Group: ’DGROUP’ CONST,_DATA

Segment: ’_TEXT’ BYTE 001e bytes

#pragma off (check_stack);

extern void MyRtn(void);
#pragma aux MyRtn parm nomemory modify nomemory;

int i = { 1033 };

112 Auxiliary Pragmas

16-bit Pragmas

extern Rtn()
{

0000 52 Rtn_ push DX
0001 8b 16 00 00 mov DX,_i

while(i < 10000) {
0005 81 fa 10 27 L1 cmp DX,2710H
0009 7d 06 jge L2

i += 383;
}

000b 81 c2 7f 01 add DX,017fH
000f eb f4 jmp L1

MyRtn();
0011 e8 00 00 L2 call MyRtn_

i += 13143;
0014 81 c2 57 33 add DX,3357H
0018 89 16 00 00 mov _i,DX

};
001c 5a pop DX
001d c3 ret

No disassembly errors

--

Segment: ’_DATA’ WORD 0002 bytes
0000 09 04 _i - ..

No disassembly errors

--

Notice that after completion of the "while" loop we did not have to update i with the value in register DX
before calling myrtn. The auxiliary pragma informs the compiler that myrtn does not reference any
memory (i.e., global or static variables) that is used directly or indirectly by myrtn so updating i was not
necessary before calling myrtn.

8.27.10 Describing the Registers Modified by a Function
The following form of the auxiliary pragma can be used to describe the registers that a function will use
without saving.

#pragma aux sym modify [exact] reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

Specifying a register set informs Open Watcom C/C++ that the registers belonging to the register set are
modified by the function. That is, the value in a register before calling the function is different from its
value after execution of the function.

Registers that are used to pass arguments are assumed to be modified and hence do not have to be saved
and restored by the called function. Also, since the AX register is frequently used to return a value, it is

Auxiliary Pragmas 113

16-bit Topics

always assumed to be modified. If necessary, the caller will contain code to save and restore the contents
of registers used to pass arguments. Note that saving and restoring the contents of these registers may not
be necessary if the called function does not modify them. The following form of the auxiliary pragma can
be used to describe exactly those registers that will be modified by the called function.

#pragma aux sym modify exact reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

The above form of the auxiliary pragma tells Open Watcom C/C++ not to assume that the registers used to
pass arguments will be modified by the called function. Instead, only the registers specified in the register
set will be modified. This will prevent generation of the code which unnecessarily saves and restores the
contents of the registers used to pass arguments.

Also, any registers that are specified in the value register set are assumed to be unmodified unless
explicitly listed in the exact register set. In the following example, the code generator will not generate
code to save and restore the value of the stack pointer register since we have told it that "GetSP" does not
modify any register whatsoever.

Example:
unsigned GetSP(void);
#if defined(__386__)
#pragma aux GetSP = value [esp] modify exact [];
#else
#pragma aux GetSP = value [sp] modify exact [];
#endif

8.27.11 An Example
As mentioned in an earlier section, the following pragma defines the calling convention for functions
compiled by Microsoft C.

#pragma aux MS_C "_*" \

parm caller [] \
value struct float struct routine [ax]\
modify [ax bx cx dx es];

Let us discuss this pragma in detail.

"_*" specifies that all function and variable names are preceded by the underscore character (_)
when translated from source form to object form.

parm caller [] specifies that all arguments are to be passed on the stack (an empty register set was
specified) and the caller will remove the arguments from the stack.

value struct marks the section describing how the called routine returns structure information.

114 Auxiliary Pragmas

16-bit Pragmas

float specifies that floating-point arguments are returned in the same way as
structures are returned.

struct specifies that 1, 2 and 4-byte structures are not to be returned in registers.

routine specifies that the called routine allocates storage for the return structure and
returns with a register pointing at it.

[ax] specifies that register AX is used to point to the structure return value.

modify [ax bx cx dx es]

specifies that registers AX, BX, CX, DX and ES are not preserved by the called routine.

Note that the default method of returning integer values is used; 1-byte characters are returned in register
AL, 2-byte integers are returned in register AX, and 4-byte integers are returned in the register pair
DX:AX.

8.27.12 Auxiliary Pragmas and the 80x87
This section deals with those aspects of auxiliary pragmas that are specific to the 80x87. The discussion in
this chapter assumes that one of the "fpi" or "fpi87" options is used to compile functions. The following
areas are affected by the use of these options.

1. passing floating-point arguments to functions,
2. returning floating-point values from functions and
3. which 80x87 floating-point registers are allowed to be modified by the called routine.

8.27.12.1 Using the 80x87 to Pass Arguments

By default, floating-point arguments are passed on the 80x86 stack. The 80x86 registers are never used to
pass floating-point arguments when a function is compiled with the "fpi" or "fpi87" option. However, they
can be used to pass arguments whose type is not floating-point such as arguments of type "int".

The following form of the auxiliary pragma can be used to describe the registers that are to be used to pass
arguments to functions.

#pragma aux sym parm {reg_set} [;]

where description:

sym is a function name.

reg_set is a register set. The register set can contain 80x86 registers and/or the string "8087".

Auxiliary Pragmas 115

16-bit Topics

Notes:

1. If an empty register set is specified, all arguments, including floating-point arguments, will be
passed on the 80x86 stack.

When the string "8087" appears in a register set, it simply means that floating-point arguments can be
passed in 80x87 floating-point registers if the source file is compiled with the "fpi" or "fpi87" option.
Before discussing argument passing in detail, some general notes on the use of the 80x87 floating-point
registers are given.

The 80x87 contains 8 floating-point registers which essentially form a stack. The stack pointer is called ST
and is a number between 0 and 7 identifying which 80x87 floating-point register is at the top of the stack.
ST is initially 0. 80x87 instructions reference these registers by specifying a floating-point register number.
This number is then added to the current value of ST. The sum (taken modulo 8) specifies the 80x87
floating-point register to be used. The notation ST(n), where "n" is between 0 and 7, is used to refer to the
position of an 80x87 floating-point register relative to ST.

When a floating-point value is loaded onto the 80x87 floating-point register stack, ST is decremented
(modulo 8), and the value is loaded into ST(0). When a floating-point value is stored and popped from the
80x87 floating-point register stack, ST is incremented (modulo 8) and ST(1) becomes ST(0). The
following illustrates the use of the 80x87 floating-point registers as a stack, assuming that the value of ST is
4 (4 values have been loaded onto the 80x87 floating-point register stack).

+----------------+

0 | 4th from top | ST(4)
+----------------+

1 | 5th from top | ST(5)
+----------------+

2 | 6th from top | ST(6)
+----------------+

3 | 7th from top | ST(7)
+----------------+

ST -> 4 | top of stack | ST(0)
+----------------+

5 | 1st from top | ST(1)
+----------------+

6 | 2nd from top | ST(2)
+----------------+

7 | 3rd from top | ST(3)
+----------------+

Starting with version 9.5, the Open Watcom compilers use all eight of the 80x87 registers as a stack. The
initial state of the 80x87 register stack is empty before a program begins execution.

Note: For compatibility with code compiled with version 9.0 and earlier, you can compile with
the "fpr" option. In this case only four of the eight 80x87 registers are used as a stack.
These four registers were used to pass arguments. The other four registers form what was
called the 80x87 cache. The cache was used for local floating-point variables. The state of
the 80x87 registers before a program began execution was as follows.

1. The four 80x87 floating-point registers that form the stack are uninitialized.
2. The four 80x87 floating-point registers that form the 80x87 cache are initialized

with zero.

116 Auxiliary Pragmas

16-bit Pragmas

Hence, initially the 80x87 cache was comprised of ST(0), ST(1), ST(2) and ST(3). ST had
the value 4 as in the above diagram. When a floating-point value was pushed on the stack
(as is the case when passing floating-point arguments), it became ST(0) and the 80x87
cache was comprised of ST(1), ST(2), ST(3) and ST(4). When the 80x87 stack was full,
ST(0), ST(1), ST(2) and ST(3) formed the stack and ST(4), ST(5), ST(6) and ST(7) formed
the 80x87 cache. Version 9.5 and later no longer use this strategy.

The rules for passing arguments are as follows.

1. If the argument is not floating-point, use the procedure described earlier in this chapter.

2. If the argument is floating-point, and a previous argument has been assigned a position on the
80x86 stack (instead of the 80x87 stack), the floating-point argument is also assigned a position
on the 80x86 stack. Otherwise proceed to the next step.

3. If the string "8087" appears in a register set in the pragma, and if the 80x87 stack is not full, the
floating-point argument is assigned floating-point register ST(0) (the top element of the 80x87
stack). The previous top element (if there was one) is now in ST(1). Since arguments are
pushed on the stack from right to left, the leftmost floating-point argument will be in ST(0).
Otherwise the floating-point argument is assigned a position on the 80x86 stack.

Consider the following example.

#pragma aux myrtn parm [8087];

void main()
{

float x;
double y;
int i;
long int j;

x = 7.7;
i = 7;
y = 77.77;
j = 77;
myrtn(x, i, y, j);

}

myrtn is an assembly language function that requires four arguments. The first argument of type float (4
bytes), the second argument is of type int (2 bytes), the third argument is of type double (8 bytes) and the
fourth argument is of type long int (4 bytes). These arguments will be passed to myrtn in the following
way.

1. Since "8087" was specified in the register set, the first argument, being of type float, will be
passed in an 80x87 floating-point register.

2. The second argument will be passed on the stack since no 80x86 registers were specified in the
register set.

3. The third argument will also be passed on the stack. Remember the following rule: once an
argument is assigned a position on the stack, all remaining arguments will be assigned a position
on the stack. Note that the above rule holds even though there are some 80x87 floating-point
registers available for passing floating-point arguments.

Auxiliary Pragmas 117

16-bit Topics

4. The fourth argument will also be passed on the stack.

Let us change the auxiliary pragma in the above example as follows.

#pragma aux myrtn parm [ax 8087];

The arguments will now be passed to myrtn in the following way.

1. Since "8087" was specified in the register set, the first argument, being of type float will be
passed in an 80x87 floating-point register.

2. The second argument will be passed in register AX, exhausting the set of available 80x86
registers for argument passing.

3. The third argument, being of type double, will also be passed in an 80x87 floating-point register.

4. The fourth argument will be passed on the stack since no 80x86 registers remain in the register
set.

8.27.12.2 Using the 80x87 to Return Function Values

The following form of the auxiliary pragma can be used to describe a function that returns a floating-point
value in ST(0).

#pragma aux sym value reg_set [;]

where description:

sym is a function name.

reg_set is a register set containing the string "8087", i.e. [8087].

8.27.12.3 Preserving 80x87 Floating-Point Registers Across Calls

The code generator assumes that all eight 80x87 floating-point registers are available for use within a
function unless the "fpr" option is used to generate backward compatible code (older Open Watcom
compilers used four registers as a cache). The following form of the auxiliary pragma specifies that the
floating-point registers in the 80x87 cache may be modified by the specified function.

#pragma aux sym modify reg_set [;]

where description:

sym is a function name.

reg_set is a register set containing the string "8087", i.e. [8087].

This instructs Open Watcom C/C++ to save any local variables that are located in the 80x87 cache before
calling the specified routine.

118 Auxiliary Pragmas

32-bit Topics

32-bit Topics

120

9 32-bit Memory Models

9.1 Introduction
This chapter describes the various 32-bit memory models supported by Open Watcom C/C++. Each
memory model is distinguished by two properties; the code model used to implement function calls and the
data model used to reference data.

9.2 32-bit Code Models
There are two code models;

1. the small code model and
2. the big code model.

A small code model is one in which all calls to functions are made with near calls. In a near call, the
destination address is 32 bits and is relative to the segment value in segment register CS. Hence, in a small
code model, all code comprising your program, including library functions, must be less than 4GB.

A big code model is one in which all calls to functions are made with far calls. In a far call, the destination
address is 48 bits (a 16-bit segment value and a 32-bit offset relative to the segment value). This model
allows the size of the code comprising your program to exceed 4GB.

Note: If your program contains less than 4GB of code, you should use a memory model that employs
the small code model. This will result in smaller and faster code since near calls are smaller instructions
and are processed faster by the CPU.

9.3 32-bit Data Models
There are two data models;

1. the small data model and
2. the big data model.

A small data model is one in which all references to data are made with near pointers. Near pointers are 32
bits; all data references are made relative to the segment value in segment register DS. Hence, in a small
data model, all data comprising your program must be less than 4GB.

A big data model is one in which all references to data are made with far pointers. Far pointers are 48 bits
(a 16-bit segment value and a 32-bit offset relative to the segment value). This removes the 4GB limitation
on data size imposed by the small data model. However, when a far pointer is incremented, only the offset
is adjusted. Open Watcom C/C++ assumes that the offset portion of a far pointer will not be incremented
beyond 4GB. The compiler will assign an object to a new segment if the grouping of data in a segment will

32-bit Data Models 121

32-bit Topics

cause the object to cross a segment boundary. Implicit in this is the requirement that no individual object
exceed 4GB.

Note: If your program contains less than 4GB of data, you should use the small data model. This will
result in smaller and faster code since references using near pointers produce fewer instructions.

9.4 Summary of 32-bit Memory Models
As previously mentioned, a memory model is a combination of a code model and a data model. The
following table describes the memory models supported by Open Watcom C/C++.

Memory Code Data Default Default
Model Model Model Code Data

Pointer Pointer
-------- -------- -------- -------- --------

flat small small near near

small small small near near

medium big small far near

compact small big near far

large big big far far

9.5 Flat Memory Model
In the flat memory model, the application’s code and data must total less than 4GB in size. Segment
registers CS, DS, SS and ES point to the same linear address space (this does not imply that the segment
registers contain the same value). That is, a given offset in one segment refers to the same memory location
as that offset in another segment. Essentially, a flat model operates as if there were no segments.

9.6 Mixed 32-bit Memory Model
A mixed memory model application combines elements from the various code and data models. A mixed
memory model application might be characterized as one that uses the near, far, or huge keywords when
describing some of its functions or data objects.

For example, a medium memory model application that uses some far pointers to data can be described as a
mixed memory model. In an application such as this, most of the data is in a 4GB segment (DGROUP) and
hence can be referenced with near pointers relative to the segment value in segment register DS. This
results in more efficient code being generated and better execution times than one can expect from a big
data model. Data objects outside of the DGROUP segment are described with the far keyword.

122 Mixed 32-bit Memory Model

32-bit Memory Models

9.7 Linking Applications for the Various 32-bit Memory
Models

Each memory model requires different run-time and floating-point libraries. Each library assumes a
particular memory model and should be linked only with modules that have been compiled with the same
memory model. The following table lists the libraries that are to be used to link an application that has
been compiled for a particular memory model. Currently, only libraries for the flat/small memory model
are provided.

Memory Run-time Floating-Point Floating-Point
Model Library Library (80x87) Library (f-p calls)
---------- ---------- --------------- -------------------
flat/small clib3r.lib math387r.lib math3r.lib

clib3s.lib math387s.lib math3s.lib
plib3r.lib cplx73r.lib cplx3r.lib
plib3s.lib cplx73s.lib cplx3s.lib

The letter "r" or "s" which is affixed to the file name indicates the particular strategy with which the
modules in the library have been compiled.

r denotes a version of the Open Watcom C/C++ 32-bit libraries which have been compiled
for the "flat/small" memory models using the "3r", "4r" or "5r" option.

s denotes a version of the Open Watcom C/C++ 32-bit libraries which have been compiled
for the "flat/small" memory models using the "3s", "4s" or "5s" option.

9.8 Memory Layout
The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. all "USE16" segments. These segments are present in applications that execute in both real
mode and protected mode. They are first in the segment ordering so that the "REALBREAK"
option of the "RUNTIME" directive can be used to separate the real-mode part of the application
from the protected-mode part of the application. Currently, the "RUNTIME" directive is valid
for Phar Lap executables only.

2. all segments not belonging to group "DGROUP" with class "CODE"

3. all other segments not belonging to group "DGROUP"

4. all segments belonging to group "DGROUP" with class "BEGDATA"

5. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS" or "STACK"

6. all segments belonging to group "DGROUP" with class "BSS"

7. all segments belonging to group "DGROUP" with class "STACK"

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
data in segments belonging to group "DGROUP". Segments belonging to class "STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes "BSS" and

Memory Layout 123

32-bit Topics

"STACK" are last in the segment ordering so that uninitialized data need not take space in the executable
file.

In addition to these special segments, the following conventions are used by Open Watcom C/C++.

1. The "CODE" class contains the executable code for your application. In a small code model, this
consists of the segment "_TEXT". In a big code model, this consists of the segments
"<module>_TEXT" where <module> is the file name of the source file.

2. The "FAR_DATA" class consists of the following:

(a) data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(c) literals whose size exceeds the data threshold in large data memory models (the
data threshold is 32K unless changed using the "zt" compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.

You can override the default naming convention used by Open Watcom C/C++ to name segments.

1. The Open Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for a big code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

124 Memory Layout

10 32-bit Assembly Language Considerations

10.1 Introduction
This chapter will deal with the following topics.

1. The data representation of the basic types supported by Open Watcom C/C++.

2. The memory layout of a Open Watcom C/C++ program.

3. The method for passing arguments and returning values.

4. The two methods for passing floating-point arguments and returning floating-point values.

One method is used when one of the Open Watcom C/C++ "fpi" or "fpi87" options is specified
for the generation of in-line 80x87 instructions. When the "fpi" option is specified, an 80x87
emulator is included from a math library if the application includes floating-point operations.
When the "fpi87" option is used exclusively, the 80x87 emulator will not be included.

The other method is used when the Open Watcom C/C++ "fpc" option is specified. In this case,
the compiler generates calls to floating-point support routines in the alternate math libraries.

An understanding of the Intel 80x86 architecture is assumed.

10.2 Data Representation
This section describes the internal or machine representation of the basic types supported by Open Watcom
C/C++.

10.2.1 Type "char"
An item of type "char" occupies 1 byte of storage. Its value is in the following range.

0 <= n <= 255

Note that "char" is, by default, unsigned. The Open Watcom C/C++ compiler option "j" can be used to
change the default from unsigned to signed. If "char" is signed, an item of type "char" is in the following
range.

-128 <= n <= 127

You can force an item of type "char" to be unsigned or signed regardless of the default by defining them to
be of type "unsigned char" or "signed char" respectively.

Data Representation 125

32-bit Topics

10.2.2 Type "short int"
An item of type "short int" occupies 2 bytes of storage. Its value is in the following range.

-32768 <= n <= 32767

Note that "short int" is signed and hence "short int" and "signed short int" are equivalent. If an item of type
"short int" is to be unsigned, it must be defined as "unsigned short int". In this case, its value is in the
following range.

0 <= n <= 65535

10.2.3 Type "long int"
An item of type "long int" occupies 4 bytes of storage. Its value is in the following range.

-2147483648 <= n <= 2147483647

Note that "long int" is signed and hence "long int" and "signed long int" are equivalent. If an item of type
"long int" is to be unsigned, it must be defined as "unsigned long int". In this case, its value is in the
following range.

0 <= n <= 4294967295

10.2.4 Type "int"
An item of type "int" occupies 4 bytes of storage. Its value is in the following range.

-2147483648 <= n <= 2147483647

Note that "int" is signed and hence "int" and "signed int" are equivalent. If an item of type "int" is to be
unsigned, it must be defined as "unsigned int". In this case its value is in the following range.

0 <= n <= 4294967295

If you are generating code that executes in 32-bit mode, "long int" and "int" are equivalent, "unsigned long
int" and "unsigned int" are equivalent, and "signed long int" and "signed int" are equivalent. This may not
be the case in other environments where "int" and "short int" are 2 bytes.

10.2.5 Type "float"
A datum of type "float" is an approximate representation of a real number. Each datum of type "float"
occupies 4 bytes. If m is the magnitude of x (an item of type "float") then x can be approximated if

2-126 <= m < 2128

or in more approximate terms if

1.175494e-38 <= m <= 3.402823e38

Data of type "float" are represented internally as follows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

126 Data Representation

32-bit Assembly Language Considerations

+---+---------+---------------------+
| S | Biased | Significand |
| | Exponent| |
+---+---------+---------------------+
31 30-23 22-0

Notes

S S = Sign bit (0=positive, 1=negative)

Exponent The exponent bias is 127 (i.e., exponent value 1 represents 2-126; exponent value 127
represents 20; exponent value 254 represents 2127; etc.). The exponent field is 8 bits long.

Significand The leading bit of the significand is always 1, hence it is not stored in the significand field.
Thus the significand is always "normalized". The significand field is 23 bits long.

Zero A real zero quantity occurs when the sign bit, exponent, and significand are all zero.

Infinity When the exponent field is all 1 bits and the significand field is all zero bits then the
quantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity
is a special value called a NAN (Not-A-Number).

When the exponent field is all 0 bits and the significand field is non-zero then the quantity
is a special value called a "denormal" or nonnormal number.

10.2.6 Type "double"
A datum of type "double" is an approximate representation of a real number. The precision of a datum of
type "double" is greater than or equal to one of type "float". Each datum of type "double" occupies 8 bytes.
If m is the magnitude of x (an item of type "double") then x can be approximated if

2-1022 <= m < 21024

or in more approximate terms if

2.2250738585072e-308 <= m <= 1.79769313486232e308

Data of type "double" are represented internally as follows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

+---+---------+--------------------------------------+
| S | Biased | Significand |
| | Exponent| |
+---+---------+--------------------------------------+
63 62-52 51-0

Data Representation 127

32-bit Topics

Notes:

S S = Sign bit (0=positive, 1=negative)

Exponent The exponent bias is 1023 (i.e., exponent value 1 represents 2-1022; exponent value 1023
represents 20; exponent value 2046 represents 21023; etc.). The exponent field is 11 bits
long.

Significand The leading bit of the significand is always 1, hence it is not stored in the significand field.
Thus the significand is always "normalized". The significand field is 52 bits long.

Zero A double precision zero quantity occurs when the sign bit, exponent, and significand are all
zero.

Infinity When the exponent field is all 1 bits and the significand field is all zero bits then the
quantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity
is a special value called a NAN (Not-A-Number).

When the exponent field is all 0 bits and the significand field is non-zero then the quantity
is a special value called a "denormal" or nonnormal number.

10.3 Memory Layout
The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. all "USE16" segments. These segments are present in applications that execute in both real
mode and protected mode. They are first in the segment ordering so that the "REALBREAK"
option of the "RUNTIME" directive can be used to separate the real-mode part of the application
from the protected-mode part of the application. Currently, the "RUNTIME" directive is valid
for Phar Lap executables only.

2. all segments not belonging to group "DGROUP" with class "CODE"

3. all other segments not belonging to group "DGROUP"

4. all segments belonging to group "DGROUP" with class "BEGDATA"

5. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS" or "STACK"

6. all segments belonging to group "DGROUP" with class "BSS"

7. all segments belonging to group "DGROUP" with class "STACK"

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
data in segments belonging to group "DGROUP". Segments belonging to class "STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes "BSS" and
"STACK" are last in the segment ordering so that uninitialized data need not take space in the executable
file.

128 Memory Layout

32-bit Assembly Language Considerations

In addition to these special segments, the following conventions are used by Open Watcom C/C++.

1. The "CODE" class contains the executable code for your application. In a small code model, this
consists of the segment "_TEXT". In a big code model, this consists of the segments
"<module>_TEXT" where <module> is the file name of the source file.

2. The "FAR_DATA" class consists of the following:

(a) data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(c) literals whose size exceeds the data threshold in large data memory models (the
data threshold is 32K unless changed using the "zt" compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.

You can override the default naming convention used by Open Watcom C/C++ to name segments.

1. The Open Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for a big code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

10.4 Calling Conventions for Non-80x87 Applications
The following sections describe the calling convention used when compiling with the "fpc" compiler
option.

10.4.1 Passing Arguments Using Register-Based Calling Conventions
How arguments are passed to a function with register-based calling conventions is determined by the size
(in bytes) of the argument and where in the argument list the argument appears. Depending on the size,
arguments are either passed in registers or on the stack. Arguments such as structures are almost always
passed on the stack since they are generally too large to fit in registers. Since arguments are processed
from left to right, the first few arguments are likely to be passed in registers (if they can fit) and, if the
argument list contains many arguments, the last few arguments are likely to be passed on the stack.

The registers used to pass arguments to a function are EAX, EBX, ECX and EDX. The following
algorithm describes how arguments are passed to functions.

Initially, we have the following registers available for passing arguments: EAX, EDX, EBX and ECX.
Note that registers are selected from this list in the order they appear. That is, the first register selected is
EAX and the last is ECX. For each argument Ai, starting with the left most argument, perform the
following steps.

1. If the size of Ai is 1 byte or 2 bytes, convert it to 4 bytes and proceed to the next step. If Ai is of
type "unsigned char" or "unsigned short int", it is converted to an "unsigned int". If Ai is of type
"signed char" or "signed short int", it is converted to a "signed int". If Ai is a 1-byte or 2-byte
structure, the padding is determined by the compiler.

Calling Conventions for Non-80x87 Applications 129

32-bit Topics

2. If an argument has already been assigned a position on the stack, Ai will also be assigned a
position on the stack. Otherwise, proceed to the next step.

3. If the size of Ai is 4 bytes, select a register from the list of available registers. If a register is
available, Ai is assigned that register. The register is then removed from the list of available
registers. If no registers are available, Ai will be assigned a position on the stack.

4. If the type of Ai is "far pointer", select a register pair from the following list of combinations:
[EDX EAX] or [ECX EBX]. The first available register pair is assigned to Ai and removed from
the list of available pairs. The segment value will actually be passed in register DX or CX and
the offset in register EAX or EBX. If none of the above register pairs is available, Ai will be
assigned a position on the stack. Note that 8 bytes will be pushed on the stack even though the
size of an item of type "far pointer" is 6 bytes.

5. If the type of Ai is "double" or "float" (in the absence of a function prototype), select a register
pair from the following list of combinations: [EDX EAX] or [ECX EBX]. The first available
register pair is assigned to Ai and removed from the list of available pairs. The high-order 32
bits of the argument are assigned to the first register in the pair; the low-order 32 bits are
assigned to the second register in the pair. If none of the above register pairs is available, Ai will
be assigned a position on the stack.

6. All other arguments will be assigned a position on the stack.

Notes:

1. Arguments that are assigned a position on the stack are padded to a multiple of 4 bytes. That is,
if a 3-byte structure is assigned a position on the stack, 4 bytes will be pushed on the stack.

2. Arguments that are assigned a position on the stack are pushed onto the stack starting with the
rightmost argument.

10.4.2 Sizes of Predefined Types
The following table lists the predefined types, their size as returned by the "sizeof" function, the size of an
argument of that type and the registers used to pass that argument if it was the only argument in the
argument list.

Basic Type "sizeof" Argument Registers
Size Used

char 1 4 [EAX]
short int 2 4 [EAX]
int 4 4 [EAX]
long int 4 4 [EAX]
float 4 8 [EDX EAX]
double 8 8 [EDX EAX]
near pointer 4 4 [EAX]
far pointer 6 8 [EDX EAX]

Note that the size of the argument listed in the table assumes that no function prototypes are specified.
Function prototypes affect the way arguments are passed. This will be discussed in the section entitled
"Effect of Function Prototypes on Arguments".

130 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

Notes:

1. Provided no function prototypes exist, an argument will be converted to a default type as
described in the following table.

Argument Type Passed As

char unsigned int
signed char signed int
unsigned char unsigned int
short unsigned int
signed short signed int
unsigned short unsigned int
float double

10.4.3 Size of Enumerated Types
The integral type of an enumerated type is determined by the values of the enumeration constants. In strict
ISO/ANSI C mode, all enumerated constants are of type int. In the extensions mode, the compiler will
use the smallest integral type possible (excluding long ints) that can represent all values of the enumerated
type. For instance, if the minimum and maximum values of the enumeration constants are in the range
−128 and 127, the enumerated type will be equivalent to a signed char (size = 1 byte). All references
to enumerated constants in the previous instance will have type signed char. An enumerated constant
is always promoted to an int when passed as an argument.

10.4.4 Effect of Function Prototypes on Arguments
Function prototypes define the types of the formal parameters of a function. Their appearance affects the
way in which arguments are passed. An argument will be converted to the type of the corresponding
formal parameter in the function prototype. Consider the following example.

void prototype(float x, int i);

void main()
{

float x;
int i;

x = 3.14;
i = 314;
prototype(x, i);
rtn(x, i);

}

The function prototype for prototype specifies that the first argument is to be passed as a "float" and the
second argument is to be passed as an "int". This results in the first argument being passed in register EAX
and the second argument being passed in register EDX.

If no function prototype is given, as is the case for the function rtn, the first argument will be passed as a
"double" and the second argument would be passed as an "int". This results in the first argument being
passed in registers EDX and EAX and the second argument being passed in register EBX.

Calling Conventions for Non-80x87 Applications 131

32-bit Topics

Note that even though both prototype and rtn were called with identical argument lists, the way in
which the arguments were passed was completely different simply because a function prototype for
prototype was specified. Function prototyping is an excellent way to guarantee that arguments will be
passed as expected to your assembly language function.

10.4.5 Interfacing to Assembly Language Functions
Consider the following example.

Example:
void main()
{

double x;
int i;
double y;

x = 7;
i = 77;
y = 777;
myrtn(x, i, y);

}

myrtn is an assembly language function that requires three arguments. The first argument is of type
"double", the second argument is of type "int" and the third argument is again of type "double". Using the
rules for register-based calling conventions, these arguments will be passed to myrtn in the following
way:

1. The first argument will be passed in registers EDX and EAX leaving EBX and ECX as available
registers for other arguments.

2. The second argument will be passed in register EBX leaving ECX as an available register for
other arguments.

3. The third argument will not fit in register ECX (its size is 8 bytes) and hence will be pushed on
the stack.

Let us look at the stack upon entry to myrtn.

Small Code Model
Offset

+----------------+
0 | return address | <- ESP points here

+----------------+
4 | argument #3 |

| |
+----------------+

12 | |

132 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

Big Code Model
Offset

+----------------+
0 | return address | <- ESP points here

| |
+----------------+

8 | argument #3 |
| |
+----------------+

16 | |

Notes:

1. The return address is the top element on the stack. In a small code model, the return address is 1
double word (32 bits); in a big code model, the return address is 2 double words (64 bits).

Register EBP is normally used to address arguments on the stack. Upon entry to the function, register EBP
is set to point to the stack but before doing so we must save its contents. The following two instructions
achieve this.

push EBP ; save current value of EBP
mov EBP,ESP ; get access to arguments

After executing these instructions, the stack looks like this.

Small Code Model
Offset

+----------------+
0 | saved EBP | <- EBP and ESP point here

+----------------+
4 | return address |

+----------------+
8 | argument #3 |

| |
+----------------+

16 | |

Big Code Model
Offset

+----------------+
0 | saved EBP | <- EBP and ESP point here

+----------------+
4 | return address |

| |
+----------------+

12 | argument #3 |
| |
+----------------+

20 | |

As the above diagrams show, the third argument is at offset 8 from register EBP in a small code model and
offset 12 in a big code model.

Upon exit from myrtn, we must restore the value of EBP. The following two instructions achieve this.

Calling Conventions for Non-80x87 Applications 133

32-bit Topics

mov ESP,EBP ; restore stack pointer
pop EBP ; restore EBP

The following is a sample assembly language function which implements myrtn.

Small Memory Model (small code, small data)
DGROUP group _DATA, _BSS
_TEXT segment byte public ’CODE’

assume CS:_TEXT
assume DS:DGROUP
public myrtn_

myrtn_ proc near
push EBP ; save EBP
mov EBP,ESP ; get access to arguments

;
; body of function
;

mov ESP,EBP ; restore ESP
pop EBP ; restore EBP
ret 8 ; return and pop last arg

myrtn_ endp
_TEXT ends

Large Memory Model (big code, big data)
DGROUP group _DATA, _BSS
MYRTN_TEXT segment byte public ’CODE’

assume CS:MYRTN_TEXT
public myrtn_

myrtn_ proc far
push EBP ; save EBP
mov EBP,ESP ; get access to arguments

;
; body of function
;

mov ESP,EBP ; restore ESP
pop EBP ; restore EBP
ret 8 ; return and pop last arg

myrtn_ endp
MYRTN_TEXT ends

Notes:

1. Global function names must be followed with an underscore. Global variable names must be
preceded with an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and AX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option.

3. The direction flag must be clear before returning to the caller.

4. In a small code model, any segment containing executable code must belong to the segment
"_TEXT" and the class "CODE". The segment "_TEXT" must have a "combine" type of
"PUBLIC". On entry, CS contains the segment address of the segment "_TEXT". In a big code
model there is no restriction on the naming of segments which contain executable code.

134 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

5. In a small data model, segment register DS contains the segment address of the group
"DGROUP". This is not the case in a big data model.

6. When writing assembly language functions for the small code model, you must declare them as
"near". If you wish to write assembly language functions for the big code model, you must
declare them as "far".

7. In general, when naming segments for your code or data, you should follow the conventions
described in the section entitled "Memory Layout" in this chapter.

8. If any of the arguments was pushed onto the stack, the called routine must pop those arguments
off the stack in the "ret" instruction.

10.4.6 Using Stack-Based Calling Conventions
Let us now consider the example in the previous section except this time we will use the stack-based calling
convention. The most significant difference between the stack-based calling convention and the
register-based calling convention is the way the arguments are passed. When using the stack-based calling
conventions, no registers are used to pass arguments. Instead, all arguments are passed on the stack.

Let us look at the stack upon entry to myrtn.

Small Code Model
Offset

+----------------+
0 | return address | <- ESP points here

+----------------+
4 | argument #1 |

| |
+----------------+

12 | argument #2 |
| |
+----------------+

16 | argument #3 |
| |
+----------------+

24 | |

Big Code Model
Offset

+----------------+
0 | return address | <- ESP points here

| |
+----------------+

8 | argument #1 |
| |
+----------------+

16 | argument #2 |
| |
+----------------+

20 | argument #3 |
| |
+----------------+

28 | |

Calling Conventions for Non-80x87 Applications 135

32-bit Topics

Notes:

1. The return address is the top element on the stack. In a small code model, the return address is 1
double word (32 bits); in a big code model, the return address is 2 double words (64 bits).

Register EBP is normally used to address arguments on the stack. Upon entry to the function, register EBP
is set to point to the stack but before doing so we must save its contents. The following two instructions
achieve this.

push EBP ; save current value of EBP
mov EBP,ESP ; get access to arguments

After executing these instructions, the stack looks like this.

Small Code Model
Offset

+----------------+
0 | saved EBP | <- EBP and ESP point here

+----------------+
4 | return address |

+----------------+
8 | argument #1 |

| |
+----------------+

16 | argument #2 |
| |
+----------------+

20 | argument #3 |
| |
+----------------+

28 | |

Big Code Model
Offset

+----------------+
0 | saved EBP | <- EBP and ESP point here

+----------------+
4 | return address |

| |
+----------------+

12 | argument #1 |
| |
+----------------+

20 | argument #2 |
| |
+----------------+

24 | argument #3 |
| |
+----------------+

32 | |

As the above diagrams show, the argument are all on the stack and are referenced by specifying an offset
from register EBP.

Upon exit from myrtn, we must restore the value of EBP. The following two instructions achieve this.

136 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

mov ESP,EBP ; restore stack pointer
pop EBP ; restore EBP

The following is a sample assembly language function which implements myrtn.

Small Memory Model (small code, small data)
DGROUP group _DATA, _BSS
_TEXT segment byte public ’CODE’

assume CS:_TEXT
assume DS:DGROUP
public myrtn

myrtn proc near
push EBP ; save EBP
mov EBP,ESP ; get access to arguments

;
; body of function
;

mov ESP,EBP ; restore ESP
pop EBP ; restore EBP
ret
; return

myrtn endp
_TEXT ends

Large Memory Model (big code, big data)
DGROUP group _DATA, _BSS
MYRTN_TEXT segment byte public ’CODE’

assume CS:MYRTN_TEXT
public myrtn

myrtn proc far
push EBP ; save EBP
mov EBP,ESP ; get access to arguments

;
; body of function
;

mov ESP,EBP ; restore ESP
pop EBP ; restore EBP
ret
; return

myrtn endp
MYRTN_TEXT ends

Notes:

1. Global function names must not be followed with an underscore as was the case with the
register-based calling convention. Global variable names must not be preceded with an
underscore as was the case with the register-based calling convention.

2. All used 80x86 registers except registers EAX, ECX and EDX must be saved on entry and
restored on exit. Segment registers DS and ES must also be saved on entry and restored on exit.
Segment register ES does not have to be saved and restored when using a memory model that is
not a small data model. Note that segment registers only have to be saved and restored if you are
compiling your application with the "r" option.

3. The direction flag must be clear before returning to the caller.

Calling Conventions for Non-80x87 Applications 137

32-bit Topics

4. In a small code model, any segment containing executable code must belong to the segment
"_TEXT" and the class "CODE". The segment "_TEXT" must have a "combine" type of
"PUBLIC". On entry, CS contains the segment address of the segment "_TEXT". In a big code
model there is no restriction on the naming of segments which contain executable code.

5. In a small data model, segment register DS contains the segment address of the group
"DGROUP". This is not the case in a big data model.

6. When writing assembly language functions for the small code model, you must declare them as
"near". If you wish to write assembly language functions for the big code model, you must
declare them as "far".

7. In general, when naming segments for your code or data, you should follow the conventions
described in the section entitled "Memory Layout" in this chapter.

8. The caller is responsible for removing arguments from the stack.

10.4.7 Functions with Variable Number of Arguments
A function prototype with a parameter list that ends with ",..." has a variable number of arguments. In this
case, all arguments are passed on the stack. Since no prototyping information exists for arguments
represented by ",...", those arguments are passed as described in the section "Passing Arguments".

10.4.8 Returning Values from Functions
The way in which function values are returned depends on the size of the return value. The following
examples describe how function values are to be returned. They are coded for a small code model.

1. 1-byte values are to be returned in register AL.

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public Ret1_

Ret1_ proc near ; char Ret1()
mov AL,’G’
ret

Ret1_ endp
_TEXT ends

end

2. 2-byte values are to be returned in register AX.

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public Ret2_

Ret2_ proc near ; short int Ret2()
mov AX,77
ret

Ret2_ endp
_TEXT ends

end

138 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

3. 4-byte values are to be returned in register EAX.

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public Ret4_

Ret4_ proc near ; int Ret4()
mov EAX,7777777
ret

Ret4_ endp
_TEXT ends

end

4. 8-byte values, except structures, are to be returned in registers EDX and EAX. When using the
"fpc" (floating-point calls) option, "float" and "double" are returned in registers. See section
"Returning Values in 80x87-based Applications" when using the "fpi" or "fpi87" options.

Example:
.8087

_TEXT segment byte public ’CODE’
assume CS:_TEXT
public Ret8_

Ret8_ proc near ; double Ret8()
mov EDX,dword ptr CS:Val8+4
mov EAX,dword ptr CS:Val8
ret

Val8: dq 7.7
Ret8_ endp
_TEXT ends

end

The ".8087" pseudo-op must be specified so that all floating-point constants are generated in
8087 format.

5. Otherwise, the caller allocates space on the stack for the return value and sets register ESI to
point to this area. In a big data model, register ESI contains an offset relative to the segment
value in segment register SS.

Example:
_TEXT segment byte public ’CODE’

assume CS:_TEXT
public RetX_

;
; struct int_values {
; int value1, value2, value3, value4, value5;
; };
;
RetX_ proc near ; struct int_values RetX()

mov dword ptr SS:0[ESI],71
mov dword ptr SS:4[ESI],72
mov dword ptr SS:8[ESI],73
mov dword ptr SS:12[ESI],74
mov dword ptr SS:16[ESI],75
ret

RetX_ endp
_TEXT ends

end

Calling Conventions for Non-80x87 Applications 139

32-bit Topics

When returning values on the stack, remember to use a segment override to the stack segment
(SS).

The following is an example of a Open Watcom C/C++ program calling the above assembly language
subprograms.

#include <stdio.h>

struct int_values {
int value1;
int value2;
int value3;
int value4;
int value5;

};

extern char Ret1(void);
extern short int Ret2(void);
extern long int Ret4(void);
extern double Ret8(void);
extern struct int_values RetX(void);

void main()
{

struct int_values x;

printf("Ret1 = %c\n", Ret1());
printf("Ret2 = %d\n", Ret2());
printf("Ret4 = %ld\n", Ret4());
printf("Ret8 = %f\n", Ret8());
x = RetX();
printf("RetX1 = %d\n", x.value1);
printf("RetX2 = %d\n", x.value2);
printf("RetX3 = %d\n", x.value3);
printf("RetX4 = %d\n", x.value4);
printf("RetX5 = %d\n", x.value5);

}

The above function should be compiled for a small code model (use the "mf", "ms" or "mc" compiler
option).

Note: Returning values from functions in the stack-based calling convention is the same as returning
values from functions in the register-based calling convention when using the "fpc" option.

10.5 Calling Conventions for 80x87-based Applications
When a source file is compiled by Open Watcom C/C++ with one of the "fpi" or "fpi87" options, all
floating-point arguments are passed on the 80x86 stack. The rules for passing arguments are as follows.

1. If the argument is not floating-point, use the procedure described earlier in this chapter.

2. If the argument is floating-point, it is assigned a position on the 80x86 stack.

140 Calling Conventions for 80x87-based Applications

32-bit Assembly Language Considerations

Note: When compiling using the "fpi" or "fpi87" options, the method used for passing floating-point
arguments in the stack-based calling convention is identical to the method used in the register-based
calling convention. However, when compiling using the "fpi" or "fpi87" options, the method used for
returning floating-point values in the stack-based calling convention is different from the method used
in the register-based calling convention. The register-based calling convention returns floating-point
values in ST(0), whereas the stack-based calling convention returns floating-point values in EDX and
EAX.

10.5.1 Passing Values in 80x87-based Applications
Consider the following example.

Example:
extern void myrtn(int,float,double,long int);

void main()
{

float x;
double y;
int i;
long int j;

x = 7.7;
i = 7;
y = 77.77
j = 77;
myrtn(i, x, y, j);

}

myrtn is an assembly language function that requires four arguments. The first argument is of type "int" (
4 bytes), the second argument is of type "float" (4 bytes), the third argument is of type "double" (8 bytes)
and the fourth argument is of type "long int" (4 bytes).

When using the stack-based calling conventions, all of the arguments will be passed on the stack. When
using the register-based calling conventions, the above arguments will be passed to myrtn in the following
way:

1. The first argument will be passed in register EAX leaving EBX, ECX and EDX as available
registers for other arguments.

2. The second argument will be passed on the 80x86 stack since it is a floating-point argument.

3. The third argument will also be passed on the 80x86 stack since it is a floating-point argument.

4. The fourth argument will be passed on the 80x86 stack since a previous argument has been
assigned a position on the 80x86 stack.

Remember, arguments are pushed on the stack from right to left. That is, the rightmost argument is pushed
first.

Any assembly language function must obey the following rule.

Calling Conventions for 80x87-based Applications 141

32-bit Topics

1. All arguments passed on the stack must be removed by the called function.

The following is a sample assembly language function which implements myrtn.

Example:
.8087

_TEXT segment byte public ’CODE’
assume CS:_TEXT
public myrtn_

myrtn_ proc near
;
; body of function
;

ret 16 ; return and pop arguments
myrtn_ endp
_TEXT ends

end

Notes:

1. Function names must be followed by an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and EAX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option. In this example, EAX does not have to be saved as it was used to pass the first argument.
Floating-point registers can be modified without saving their contents.

3. The direction flag must be clear before returning to the caller.

4. This function has been written for a small code model. Any segment containing executable code
must belong to the class "CODE" and the segment "_TEXT". On entry, CS contains the segment
address of the segment "_TEXT". The above restrictions do not apply in a big code memory
model.

5. When writing assembly language functions for a small code model, you must declare them as
"near". If you wish to write assembly language functions for a big code model, you must declare
them as "far".

10.5.2 Returning Values in 80x87-based Applications
When using the stack-based calling conventions with "fpi" or "fpi87", floating-point values are returned in
registers. Single precision values are returned in EAX, and double precision values are returned in
EDX:EAX.

When using the register-based calling conventions with "fpi" or "fpi87", floating-point values are returned
in ST(0). All other values are returned in the manner described earlier in this chapter.

142 Calling Conventions for 80x87-based Applications

11 32-bit Pragmas

11.1 Introduction
A pragma is a compiler directive that provides the following capabilities.

• Pragmas allow you to specify certain compiler options.

• Pragmas can be used to direct the Open Watcom C/C++ code generator to emit specialized
sequences of code for calling functions which use argument passing and value return techniques that
differ from the default used by Open Watcom C/C++.

• Pragmas can be used to describe attributes of functions (such as side effects) that are not possible at
the C/C++ language level. The code generator can use this information to generate more efficient
code.

• Any sequence of in-line machine language instructions, including QNX function calls, can be
generated in the object code.

Pragmas are specified in the source file using the pragma directive. The following notation is used to
describe the syntax of pragmas.

keywords A keyword is shown in a mono-spaced courier font.

program-item A program-item is shown in a roman bold-italics font. A program-item is a symbol name
or numeric value supplied by the programmer.

punctuation A punctuation character shown in a mono-spaced courier font must be entered as
is.

A punctuation character shown in a roman bold-italics font is used to describe syntax.
The following syntactical notation is used.

[abc] The item abc is optional.

{abc} The item abc may be repeated zero or more times.

a|b|c One of a, b or c may be specified.

a ::= b The item a is defined in terms of b.

(a) Item a is evaluated first.

The following classes of pragmas are supported.

Introduction 143

32-bit Topics

• pragmas that specify options

• pragmas that specify default libraries

• pragmas that describe the way structures are stored in memory

• pragmas that provide auxiliary information used for code generation

11.2 Using Pragmas to Specify Options
Currently, the following options can be specified with pragmas:

unreferenced The "unreferenced" option controls the way Open Watcom C/C++ handles unused symbols.
For example,

#pragma on (unreferenced);

will cause Open Watcom C/C++ to issue warning messages for all unused symbols. This is
the default. Specifying

#pragma off (unreferenced);

will cause Open Watcom C/C++ to ignore unused symbols. Note that if the warning level
is not high enough, warning messages for unused symbols will not be issued even if
"unreferenced" was specified.

check_stack The "check_stack" option controls the way stack overflows are to be handled. For
example,

#pragma on (check_stack);

will cause stack overflows to be detected and

#pragma off (check_stack);

will cause stack overflows to be ignored. When "check_stack" is on, Open Watcom C/C++
will generate a run-time call to a stack-checking routine at the start of every routine
compiled. This run-time routine will issue an error if a stack overflow occurs when
invoking the routine. The default is to check for stack overflows. Stack overflow checking
is particularly useful when functions are invoked recursively. Note that if the stack
overflows and stack checking has been suppressed, unpredictable results can occur.

If a stack overflow does occur during execution and you are sure that your program is not
in error (i.e. it is not unnecessarily recursing), you must increase the stack size. This is
done by linking your application again and specifying the "STACK" option to the Open
Watcom Linker with a larger stack size.

It is also possible to specify more than one option in a pragma as illustrated by the
following example.

#pragma on (check_stack unreferenced);

144 Using Pragmas to Specify Options

32-bit Pragmas

reuse_duplicate_strings (C only) (C Only) The "reuse_duplicate_strings" option controls the way Open
Watcom C handles identical strings in an expression. For example,

#pragma on (reuse_duplicate_strings);

will cause Open Watcom C to reuse identical strings in an expression. This is the default.
Specifying

#pragma off (reuse_duplicate_strings);

will cause Open Watcom C to generate additional copies of the identical string. The
following example shows where this may be of importance to the way the application
behaves.

Example:
#include <stdio.h>

#pragma off (reuse_duplicate_strings)

void poke(char *, char *);

void main()
{

poke("Hello world\n", "Hello world\n");
}

void poke(char *x, char *y)
{

x[3] = ’X’;
printf(x);
y[4] = ’Y’;
printf(y);

}
/*
Default output:
HelXo world
HelXY world
*/

11.3 Using Pragmas to Specify Default Libraries
Default libraries are specified in special object module records. Library names are extracted from these
special records by the Open Watcom Linker. When unresolved references remain after processing all
object modules specified in linker "FILE" directives, these default libraries are searched after all libraries
specified in linker "LIBRARY" directives have been searched.

By default, that is if no library pragma is specified, the Open Watcom C/C++ compiler generates, in the
object file defining the main program, default libraries corresponding to the memory model and
floating-point model used to compile the file. For example, if you have compiled the source file containing
the main program for the flat memory model and the floating-point calls floating-point model, the libraries
"clib3r" and "math3r" will be placed in the object file.

If you wish to add your own default libraries to this list, you can do so with a library pragma. Consider the
following example.

Using Pragmas to Specify Default Libraries 145

32-bit Topics

#pragma library (mylib);

The name "mylib" will be added to the list of default libraries specified in the object file.

If the library specification contains characters such as ’/’, ’:’ or ’,’ (i.e., any character not allowed in a C
identifier), you must enclose it in double quotes as in the following example.

#pragma library ("/usr/lib/graph.lib");

If you wish to specify more than one library in a library pragma you must separate them with spaces as in
the following example.

#pragma library (mylib "/usr/lib/graph.lib");

11.4 The ALIAS Pragma (C Only)
The "alias" pragma can be used to emit alias records in the object file, causing the linker to substitute
references to a specified symbol with references to another symbol. Either identifiers or names (strings)
may be used. Strings are used verbatim, while names corresponding to identifiers are derived as
appropriate for the kind and calling convention of the symbol. The following describes the form of the
"alias" pragma.

#pragma alias (alias, subst) [;]

where description:

alias is either a name or an identifier of the symbol to be aliased.

subst is either a name or an identifier of the symbol that references to alias will be replaced
with.

Consider the following example.

extern int var;

void fn(void)
{

var = 3;
}

#pragma alias (var, "other_var");

Instead of var the linker will reference symbol named "other_var". Symbol var need not be defined,
although "other_var" has to be.

146 The ALIAS Pragma (C Only)

32-bit Pragmas

11.5 The ALLOC_TEXT Pragma (C Only)
The "alloc_text" pragma can be used to specify the name of the text segment into which the generated code
for a function, or a list of functions, is to be placed. The following describes the form of the "alloc_text"
pragma.

#pragma alloc_text (seg_name, fn {, fn}) [;]

where description:

seg_name is the name of the text segment.

fn is the name of a function.

Consider the following example.

extern int fn1(int);
extern int fn2(void);
#pragma alloc_text (my_text, fn1, fn2);

The code for the functions fn1 and fn2 will be placed in the segment my_text. Note: function
prototypes for the named functions must exist prior to the "alloc_text" pragma.

11.6 The CODE_SEG Pragma
The "code_seg" pragma can be used to specify the name of the text segment into which the generated code
for functions is to be placed. The following describes the form of the "code_seg" pragma.

#pragma code_seg (seg_name [, class_name]) [;]

where description:

seg_name is the name of the text segment optionally enclosed in quotes. Also, seg_name may be a
macro as in:

#define seg_name "MY_CODE_SEG"
#pragma code_seg (seg_name);

class_name is the optional class name of the text segment and may be enclosed in quotes. Please note
that in order to be recognized by the linker as code, a class name has to end in "CODE".
Also, class_name may be a macro as in:

#define class_name "MY_CODE"
#pragma code_seg ("MY_CODE_SEG", class_name);

Consider the following example.

The CODE_SEG Pragma 147

32-bit Topics

#pragma code_seg (my_text);

int incr(int i)
{

return(i + 1);
}

int decr(int i)
{

return(i - 1);
}

The code for the functions incr and decr will be placed in the segment my_text.

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragma code_seg ();

11.7 The COMMENT Pragma
The "comment" pragma can be used to place a comment record in an object file or executable file. The
following describes the form of the "comment" pragma.

#pragma comment (comment_type [, "comment_string"]) [;]

where description:

comment_type specifies the type of comment record. The allowable comment types are:

lib Default libraries are specified in special object module records. Library
names are extracted from these special records by the Open Watcom
Linker. When unresolved references remain after processing all object
modules specified in linker "FILE" directives, these default libraries are
searched after all libraries specified in linker "LIBRARY" directives have
been searched.

The "lib" form of this pragma offers the same features as the "library"
pragma. See the section entitled "Using Pragmas to Specify Default
Libraries" on page 145 for more information.

"comment_string" is an optional string literal that provides additional information for some comment
types.

Consider the following example.

#pragma comment (lib, "mylib");

148 The COMMENT Pragma

32-bit Pragmas

11.8 The DATA_SEG Pragma
The "data_seg" pragma can be used to specify the name of the segment into which data is to be placed. The
following describes the form of the "data_seg" pragma.

#pragma data_seg (seg_name [, class_name]) [;]

where description:

seg_name is the name of the data segment and may be enclosed in quotes. Also, seg_name may be
a macro as in:

#define seg_name "MY_DATA_SEG"
#pragma data_seg (seg_name);

class_name is the optional class name of the data segment and may be enclosed in quotes. Also,
class_name may be a macro as in:

#define class_name "MY_CLASS"
#pragma data_seg ("MY_DATA_SEG", class_name);

Consider the following example.

#pragma data_seg (my_data);

static int i;
static int j;

The data for i and j will be placed in the segment my_data.

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragma data_seg ();

11.9 The DISABLE_MESSAGE Pragma (C Only)
The "disable_message" pragma disables the issuance of specified diagnostic messages. The form of the
"disable_message" pragma is as follows.

#pragma disable_message (msg_num {, msg_num}) [;]

where description:

msg_num is the number of the diagnostic message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages" on page 373. Make sure to strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

The DISABLE_MESSAGE Pragma (C Only) 149

32-bit Topics

See also the description of "The ENABLE_MESSAGE Pragma (C Only)".

11.10 The DUMP_OBJECT_MODEL Pragma (C++ Only)
The "dump_object_model" pragma causes the C++ compiler to print information about the object model for
an indicated class or an enumeration name to the diagnostics file. For class names, this information
includes the offsets and sizes of fields within the class and within base classes. For enumeration names,
this information consists of a list of all the enumeration constants with their values.

The general form of the "dump_object_model" pragma is as follows.

#pragma dump_object_model class [;]
#pragma dump_object_model enumeration [;]
class ::= a defined C++ class free of errors
enumeration ::= a defined C++ enumeration name

This pragma is designed to be used for information purposes only.

11.11 The ENABLE_MESSAGE Pragma (C Only)
The "enable_message" pragma re-enables the issuance of specified diagnostic messages that have been
previously disabled. The form of the "enable_message" pragma is as follows.

#pragma enable_message (msg_num {, msg_num}) [;]

where description:

msg_num is the number of the diagnostic message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages" on page 373. Make sure to strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

See also the description of "The DISABLE_MESSAGE Pragma (C Only)" on page 149.

11.12 The ENUM Pragma
The "enum" pragma affects the underlying storage-definition for subsequent enum declarations. The forms
of the "enum" pragma are as follows.

#pragma enum int [;]
#pragma enum minimum [;]
#pragma enum original [;]
#pragma enum pop [;]

150 The ENUM Pragma

32-bit Pragmas

where description:

int Make int the underlying storage definition (same as the "ei" compiler option).

minimum Minimize the underlying storage definition (same as not specifying the "ei" compiler
option).

original Reset back to the original compiler option setting (i.e., what was or was not specified on the
command line).

pop Restore the previous setting.

The first three forms all push the previous setting before establishing the new setting.

11.13 The ERROR Pragma
The "error" pragma can be used to issue an error message with the specified text. The following describes
the form of the "error" pragma.

#pragma error "error text" [;]

where description:

"error text" is the text of the message that you wish to display.

You should use the ISO #error directive rather than this pragma. This pragma is provided for compatibility
with legacy code. The following is an example.

#if defined(__386__)

...
#elseif defined(__86__)

...
#else
#pragma error ("neither __386__ or __86__ defined");
#endif

11.14 The EXTREF Pragma
The "extref" pragma is used to generate a reference to an external function or data item. The form of the
"extref" pragma is as follows.

#pragma extref name [;]

The EXTREF Pragma 151

32-bit Topics

where description:

name is the name of an external function or data item. It must be declared to be an external
function or data item before the pragma is encountered. In C++, when name is a function,
it must not be overloaded.

This pragma causes an external reference for the function or data item to be emitted into the object file even
if that function or data item is not referenced in the module. The external reference will cause the linker to
include the module containing that name in the linked program or DLL.

This is useful for debugging since you can cause debugging routines (callable from within debugger) to be
included into a program or DLL to be debugged.

In C++, you can also force constructors and/or destructors to be called for a data item without necessarily
referencing the data item anywhere in your code.

11.15 The FUNCTION Pragma
Certain functions, such as those listed in the description of the "oi" and "om" options, have intrinsic forms.
These functions are special functions that are recognized by the compiler and processed in a special way.
For example, the compiler may choose to generate in-line code for the function. The intrinsic attribute for
these special functions is set by specifying the "oi" or "om" option or using an "intrinsic" pragma. The
"function" pragma can be used to remove the intrinsic attribute for a specified list of functions.

The following describes the form of the "function" pragma.

#pragma function (fn {, fn}) [;]

where description:

fn is the name of a function.

Suppose the following source code was compiled using the "om" option so that when one of the special
math functions is referenced, the intrinsic form will be used. In our example, we have referenced the
function sin which does have an intrinsic form. By specifying sin in a "function" pragma, the intrinsic
attribute will be removed, causing the function sin to be treated as a regular user-defined function.

#include <math.h>
#pragma function(sin);

double test(double x)
{

return(sin(x));
}

152 The FUNCTION Pragma

32-bit Pragmas

11.16 The INCLUDE_ALIAS Pragma
In certain situations, it can be advantageous to remap the names of include files. Most commonly this
occurs on systems that do not support long file names when building source code that references header
files with long names.

The form of the "include_alias" pragma follows.

#pragma include_alias ("alias_name", "real_name") [;]
#pragma include_alias (<alias_name>, <real_name>) [;]

where description:

alias_name is the name referenced in include directives in source code.

real_name is the translated name that the compiler will reference instead.

The following is an example.

#pragma include_alias("LongFileName.h", "lfn.h")
#include "LongFileName.h"

In the example, the compiler will attempt to read lfn.h when LongFileName.h was included.

Note that only simple textual substitution is performed. The aliased name must match exactly, including
double quotes or angle brackets, as well as any directory separators. Also, double quotes and angle
brackets may not be mixed a single pragma.

The value of the predefined __FILE__ symbol, as well as the filename reported in error messages, will be
the true filename after substitution was performed.

11.17 Setting Priority of Static Data Initialization (C++ Only)
The "initialize" pragma sets the priority for initialization of static data in the file. This priority only applies
to initialization of static data that requires the execution of code. For example, the initialization of a class
that contains a constructor requires the execution of the constructor. Note that if the sequence in which
initialization of static data in your program takes place has no dependencies, the "initialize" pragma need
not be used.

The general form of the "initialize" pragma is as follows.

#pragma initialize [before | after] priority [;]

priority ::= n | library | program

Setting Priority of Static Data Initialization (C++ Only) 153

32-bit Topics

where description:

n is a number representing the priority and must be in the range 0-255. The larger the
priority, the later the point at which initialization will occur.

Priorities in the range 0-20 are reserved for the C++ compiler. This is to ensure that proper initialization of
the C++ run-time system takes place before the execution of your program. The "library" keyword
represents a priority of 32 and can be used for class libraries that require initialization before the program is
initialized. The "program" keyword represents a priority of 64 and is the default priority for any compiled
code. Specifying "before" adjusts the priority by subtracting one. Specifying "after" adjusts the priority by
adding one.

A source file containing the following "initialize" pragma specifies that the initialization of static data in the
file will take place before initialization of all other static data in the program since a priority of 63 will be
assigned.

Example:
#pragma initialize before program

If we specify "after" instead of "before", the initialization of the static data in the file will occur after
initialization of all other static data in the program since a priority of 65 will be assigned.

Note that the following is equivalent to the "before" example

Example:
#pragma initialize 63

and the following is equivalent to the "after" example.

Example:
#pragma initialize 65

The use of the "before", "after", and "program" keywords are more descriptive in the intent of the pragmas.

It is recommended that a priority of 32 (the priority used when the "library" keyword is specified) be used
when developing class libraries. This will ensure that initialization of static data defined by the class
library will take place before initialization of static data defined by the program. The following "initialize"
pragma can be used to achieve this.

Example:
#pragma initialize library

11.18 The INLINE_DEPTH Pragma (C++ Only)
When an in-line function is called, the function call may be replaced by the in-line expansion for that
function. This in-line expansion may include calls to other in-line functions which can also be expanded.
The "inline_depth" pragma can be used to set the number of times this expansion of in-line functions will
occur for a call.

The form of the "inline_depth" pragma is as follows.

154 The INLINE_DEPTH Pragma (C++ Only)

32-bit Pragmas

#pragma inline_depth [(] n [)] [;]

where description:

n is the depth of expansion. If n is 0, no expansion will occur. If n is 1, only the original call
is expanded. If n is 2, the original call and the in-line functions invoked by the original
function will be expanded. The default value for n is 3. The maximum value for n is 255.
Note that no expansion of recursive in-line functions occur unless enabled using the
"inline_recursion" pragma.

11.19 The INLINE_RECURSION Pragma (C++ Only)
The "inline_recursion" pragma controls the recursive expansion of inline functions. The form of the
"inline_recursion" pragma is as follows.

#pragma inline_recursion [(] on | off [)] [;]

Specifying "on" will enable expansion of recursive inline functions. The depth of expansion is specified by
the "inline_depth" pragma. The default depth is 3. Specifying "off" suppresses expansion of recursive
inline functions. This is the default.

11.20 The INTRINSIC Pragma
Certain functions, those listed in the description of the "oi" option, have intrinsic forms. These functions
are special functions that are recognized by the compiler and processed in a special way. For example, the
compiler may choose to generate in-line code for the function. The intrinsic attribute for these special
functions is set by specifying the "oi" option or using an "intrinsic" pragma.

The following describes the form of the "intrinsic" pragma.

#pragma intrinsic (fn {, fn}) [;]

where description:

fn is the name of a function.

Suppose the following source code was compiled without using the "oi" option so that no function had the
intrinsic attribute. If we wanted the intrinsic form of the sin function to be used, we could specify the
function in an "intrinsic" pragma.

The INTRINSIC Pragma 155

32-bit Topics

#include <math.h>
#pragma intrinsic(sin);

double test(double x)
{

return(sin(x));
}

11.21 The MESSAGE Pragma
The "message" pragma can be used to issue a message with the specified text to the standard output without
terminating compilation. The following describes the form of the "message" pragma.

#pragma message ("message text") [;]

where description:

"message text" is the text of the message that you wish to display.

The following is an example.

#if defined(__386__)

...
#else
#pragma message ("assuming 16-bit compile");
#endif

11.22 The ONCE Pragma
The "once" pragma can be used to indicate that the file which contains this pragma should only be opened
and processed "once". The following describes the form of the "once" pragma.

#pragma once [;]

Assume that the file "foo.h" contains the following text.

Example:
#ifndef _FOO_H_INCLUDED
#define _FOO_H_INCLUDED
#pragma once

.

.

.
#endif

The first time that the compiler processes "foo.h" and encounters the "once" pragma, it records the file’s
name. Subsequently, whenever the compiler encounters a #include statement that refers to "foo.h", it

156 The ONCE Pragma

32-bit Pragmas

will not open the include file again. This can help speed up processing of #include files and reduce the
time required to compile an application.

11.23 The PACK Pragma
The "pack" pragma can be used to control the way in which structures are stored in memory. There are 4
forms of the "pack" pragma.

The following form of the "pack" pragma can be used to change the alignment of structures and their fields
in memory.

#pragma pack (n) [;]

where description:

n is 1, 2, 4, 8 or 16 and specifies the method of alignment.

The alignment of structure members is described in the following table. If the size of the member is 1, 2, 4,
8 or 16, the alignment is given for each of the "zp" options. If the member of the structure is an array or
structure, the alignment is described by the row "x".

zp1 zp2 zp4 zp8 zp16

sizeof(member) \---------------------------------------
1 | 0 0 0 0 0
2 | 0 2 2 2 2
4 | 0 2 4 4 4
8 | 0 2 4 8 8
16 | 0 2 4 8 16
x | aligned to largest member

An alignment of 0 means no alignment, 2 means word boundary, 4 means doubleword boundary, etc. If the
largest member of structure "x" is 1 byte then "x" is not aligned. If the largest member of structure "x" is 2
bytes then "x" is aligned according to row 2. If the largest member of structure "x" is 4 bytes then "x" is
aligned according to row 4. If the largest member of structure "x" is 8 bytes then "x" is aligned according
to row 8. If the largest member of structure "x" is 16 bytes then "x" is aligned according to row 16.

If no value is specified in the "pack" pragma, a default value of 8 is used. Note that the default value can be
changed with the "zp" Open Watcom C/C++ compiler command line option.

The following form of the "pack" pragma can be used to save the current alignment amount on an internal
stack.

#pragma pack (push) [;]

The following form of the "pack" pragma can be used to save the current alignment amount on an internal
stack and set the current alignment.

The PACK Pragma 157

32-bit Topics

#pragma pack (push, number) [;]

The following form of the "pack" pragma can be used to restore the previous alignment amount from an
internal stack.

#pragma pack (pop) [;]

11.24 The READ_ONLY_FILE Pragma
Explicit listing of dependencies in a makefile can often be tedious in the development and maintenance
phases of a project. The Open Watcom C/C++ compiler will insert dependency information into the object
file as it processes source files so that a complete snapshot of the files necessary to build the object file are
recorded. The "read_only_file" pragma can be used to prevent the name of the source file that includes it
from being included in the dependency information that is written to the object file.

This pragma is commonly used in system header files since they change infrequently (and, when they do,
there should be no impact on source files that have included them).

The form of the "read_only_file" pragma follows.

#pragma read_only_file [;]

For more information on make dependencies, see the section entitled "Automatic Dependency Detection
(.AUTODEPEND)" in the Open Watcom C/C++ Tools User’s Guide.

11.25 The TEMPLATE_DEPTH Pragma (C++ Only)
The "template_depth" pragma provides a hard limit for the amount of nested template expansions allowed
so that infinite expansion can be detected.

The form of the "template_depth" pragma is as follows.

#pragma template_depth [(] n [)] [;]

where description:

n is the depth of expansion. If the value of n is less than 2, if will default to 2. If n is not
specified, a warning message will be issued and the default value for n will be 100.

The following example of recursive template expansion illustrates why this pragma can be useful.

158 The TEMPLATE_DEPTH Pragma (C++ Only)

32-bit Pragmas

Example:
#pragma template_depth(10);

template <class T>
struct S {

S<T*> x;
};

S<char> v;

11.26 The WARNING Pragma (C++ Only)
The "warning" pragma sets the level of warning messages. The form of the "warning" pragma is as
follows.

#pragma warning msg_num level [;]

where description:

msg_num is the number of the warning message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C++ Diagnostic
Messages" on page 405. If msg_num is "*", the level of all warning messages is changed
to the specified level. Make sure to strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

level is a number from 0 to 9 and represents the level of the warning message. When a value of
zero is specified, the warning becomes an error.

11.27 Auxiliary Pragmas
The following sections describe the capabilities provided by auxiliary pragmas.

11.27.1 Specifying Symbol Attributes
Auxiliary pragmas are used to describe attributes that affect code generation. Initially, the compiler defines
a default set of attributes. Each auxiliary pragma refers to one of the following.

1. a symbol (such as a variable or function)
2. a type definition that resolves to a function type
3. the default set of attributes defined by the compiler

When an auxiliary pragma refers to a particular symbol, a copy of the current set of default attributes is
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to the specified symbol and can only be changed by another auxiliary pragma that refers to the same
symbol.

An example of a type definition that resolves to a function type is the following.

Auxiliary Pragmas 159

32-bit Topics

typedef void (*func_type)();

When an auxiliary pragma refers to a such a type definition, a copy of the current set of default attributes is
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to each function whose type matches the specified type definition.

When "default" is specified instead of a symbol name, the attributes specified by the auxiliary pragma
change the default set of attributes. The resulting attributes are used by all symbols that have not been
specifically referenced by a previous auxiliary pragma.

Note that all auxiliary pragmas are processed before code generation begins. Consider the following
example.

code in which symbol x is referenced
#pragma aux y <attrs_1>;
code in which symbol y is referenced
code in which symbol z is referenced
#pragma aux default <attrs_2>;
#pragma aux x <attrs_3>;

Auxiliary attributes are assigned to x, y and z in the following way.

1. Symbol x is assigned the initial default attributes merged with the attributes specified by
<attrs_2> and <attrs_3>.

2. Symbol y is assigned the initial default attributes merged with the attributes specified by
<attrs_1>.

3. Symbol z is assigned the initial default attributes merged with the attributes specified by
<attrs_2>.

11.27.2 Alias Names
When a symbol referred to by an auxiliary pragma includes an alias name, the attributes of the alias name
are also assumed by the specified symbol.

There are two methods of specifying alias information. In the first method, the symbol assumes only the
attributes of the alias name; no additional attributes can be specified. The second method is more general
since it is possible to specify an alias name as well as additional auxiliary information. In this case, the
symbol assumes the attributes of the alias name as well as the attributes specified by the additional auxiliary
information.

The simple form of the auxiliary pragma used to specify an alias is as follows.

#pragma aux (sym, [far16] alias) [;]

160 Auxiliary Pragmas

32-bit Pragmas

where description:

sym is any valid C/C++ identifier.

alias is the alias name and is any valid C/C++ identifier.

The far16 attribute should only be used on systems that permit the calling of 16-bit code from 32-bit
code. Currently, the only supported operating system that allows this is 32-bit OS/2. If you have any
libraries of functions or APIs that are only available as 16-bit code and you wish to access these functions
and APIs from 32-bit code, you must specify the far16 attribute. If the far16 attribute is specified, the
compiler will generate special code which allows the 16-bit code to be called from 32-bit code. Note that a
far16 function must be a function whose attributes are those specified by one of the alias names
__cdecl or__pascal. These alias names will be described in a later section.

Consider the following example.

#pragma aux push_args parm [] ;
#pragma aux (rtn, push_args) ;

The routine rtn assumes the attributes of the alias name push_args which specifies that the arguments
to rtn are passed on the stack.

Let us look at an example in which the symbol is a type definition.

typedef void (func_type)(int);

#pragma aux push_args parm [];
#pragma aux (func_type, push_args);

extern func_type rtn1;
extern func_type rtn2;

The first auxiliary pragma defines an alias name called push_args that specifies the mechanism to be
used to pass arguments. The mechanism is to pass all arguments on the stack. The second auxiliary
pragma associates the attributes specified in the first pragma with the type definition func_type. Since
rtn1 and rtn2 are of type func_type, arguments to either of those functions will be passed on the
stack.

The general form of an auxiliary pragma that can be used to specify an alias is as follows.

#pragma aux (alias) sym aux_attrs [;]

where description:

alias is the alias name and is any valid C/C++ identifier.

sym is any valid C/C++ identifier.

aux_attrs are attributes that can be specified with the auxiliary pragma.

Consider the following example.

Auxiliary Pragmas 161

32-bit Topics

#pragma aux HIGH_C "*" \

parm caller [] \
value no8087 \
modify [eax ecx edx fs gs];

#pragma aux (HIGH_C) rtn1;
#pragma aux (HIGH_C) rtn2;
#pragma aux (HIGH_C) rtn3;

The routines rtn1, rtn2 and rtn3 assume the same attributes as the alias name HIGH_C which defines
the calling convention used by the MetaWare High C compiler. Note that register ES must also be
specified in the "modify" register set when using a memory model that is not a small data model.
Whenever calls are made to rtn1, rtn2 and rtn3, the MetaWare High C calling convention will be
used.

Note that if the attributes of HIGH_C change, only one pragma needs to be changed. If we had not used an
alias name and specified the attributes in each of the three pragmas for rtn1, rtn2 and rtn3, we would
have to change all three pragmas. This approach also reduces the amount of memory required by the
compiler to process the source file.

WARNING! The alias name HIGH_C is just another symbol. If HIGH_C appeared in your source
code, it would assume the attributes specified in the pragma for HIGH_C.

11.27.3 Predefined Aliases
A number of symbols are predefined by the compiler with a set of attributes that describe a particular
calling convention. These symbols can be used as aliases. The following is a list of these symbols.

__cdecl __cdecl orcdecl defines the calling convention used by Microsoft compilers.

__fastcall __fastcall orfastcall defines the calling convention used by Microsoft compilers.

__fortran __fortran orfortran defines the calling convention used by Open Watcom
FORTRAN compilers.

__pascal __pascal orpascal defines the calling convention used by OS/2 1.x and Windows 3.x
API functions.

__stdcall __stdcall orstdcall defines a special calling convention used by the Win32 API
functions.

__syscall __syscall orsyscall defines the calling convention used by the 32-bit OS/2 API
functions.

__system __system orsystem are identical to __syscall.

__watcall __watcall orwatcall defines the calling convention used by Open Watcom
compilers.

The following describes the attributes of the above alias names.

162 Auxiliary Pragmas

32-bit Pragmas

11.27.3.1 Predefined "__cdecl" Alias

#pragma aux __cdecl "_*" \

parm caller [] \
value struct float struct routine [eax] \
modify [eax ecx edx]

Notes:

1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the called routine allocates space for the return value and returns a pointer to the return value in
register EAX.

4. Registers EAX, ECX and EDX are not saved and restored when a call is made.

11.27.3.2 Predefined "__pascal" Alias

#pragma aux __pascal "^" \

parm reverse routine [] \
value struct float struct caller [] \
modify [eax ebx ecx edx]

Notes:

1. All symbols are mapped to upper case.

2. Arguments are pushed on the stack in reverse order. That is, the first argument is pushed first,
the second argument is pushed next, and so on. The routine being called will remove the
arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the caller allocates space on the stack. The address of the allocated space will be pushed on the
stack immediately before the call instruction. Upon returning from the call, register EAX will
contain address of the space allocated for the return value.

4. Registers EAX, EBX, ECX and EDX are not saved and restored when a call is made.

11.27.3.3 Predefined "__stdcall" Alias

#pragma aux __stdcall "_*@nnn" \

parm routine [] \
value struct struct caller [] \
modify [eax ecx edx]

Auxiliary Pragmas 163

32-bit Topics

Notes:

1. All symbols are preceded by an underscore character.

2. All C symbols (extern "C" symbols in C++) are suffixed by "@nnn" where "nnn" is the sum of
the argument sizes (each size is rounded up to a multiple of 4 bytes so that char and short are size
4). When the argument list contains "...", the "@nnn" suffix is omitted.

3. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The called routine will remove the arguments from the stack.

4. When a structure is returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon returning from
the call, register EAX will contain address of the space allocated for the return value.
Floating-point values are returned in 80x87 register ST(0).

5. Registers EAX, ECX and EDX are not saved and restored when a call is made.

11.27.3.4 Predefined "__syscall" Alias

#pragma aux __syscall "*" \

parm caller [] \
value struct struct caller [] \
modify [eax ecx edx]

Notes:

1. Symbols names are not modified, that is, they are not adorned with leading or trailing
underscores.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. When a structure is returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon returning from
the call, register EAX will contain address of the space allocated for the return value.
Floating-point values are returned in 80x87 register ST(0).

4. Registers EAX, ECX and EDX are not saved and restored when a call is made.

11.27.3.5 Predefined "__watcall" Alias (register calling convention)

#pragma aux __watcall "*_" \

parm routine [eax ebx ecx edx] \
value struct caller

Notes:

1. Symbol names are followed by an underscore character.

2. Arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have

164 Auxiliary Pragmas

32-bit Pragmas

been exhausted). Arguments that are passed on the stack are pushed from right to left. The
calling routine will remove the arguments if any were pushed on the stack.

3. When a structure is returned, the caller allocates space on the stack. The address of the allocated
space is put into ESI register. The called routine then places the return value there. Upon
returning from the call, register EAX will contain address of the space allocated for the return
value.

4. Floating-point values are returned using 80x86 registers ("fpc" option) or using 80x87
floating-point registers ("fpi" or "fpi87" option).

5. All registers must be preserved by the called routine.

11.27.3.6 Predefined "__watcall" Alias (stack calling convention)

#pragma aux __watcall "*" \

parm caller [] \
value no8087 struct caller \
modify [eax ecx edx 8087]

Notes:

1. All symbols appear in object form as they do in source form.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. When a structure is returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon returning from
the call, register EAX will contain address of the space allocated for the return value.

4. Floating-point values are returned only using 80x86 registers.

5. Registers EAX, ECX and EDX are not preserved by the called routine.

6. Any local variables that are located in the 80x87 cache are not preserved by the called routine.

11.27.4 Alternate Names for Symbols
The following form of the auxiliary pragma can be used to describe the mapping of a symbol from its
source form to its object form.

#pragma aux sym obj_name [;]

where description:

sym is any valid C/C++ identifier.

obj_name is any character string enclosed in double quotes.

When specifying obj_name, some characters have a special meaning:

Auxiliary Pragmas 165

32-bit Topics

where description:

* is unmodified symbol name

^ is symbol name converted to uppercase

! is symbol name converted to lowercase

is a placeholder for "@nnn", where nnn is size of all function parameters on the stack; it is
ignored for functions with variable argument lists, or for symbols that are not functions

\ next character is treated as literal

Several examples of source to object form symbol name translation follow:

In the following example, the name "MyRtn" will be replaced by "MyRtn_" in the object file.

#pragma aux MyRtn "*_";

This is the default for all function names.

In the following example, the name "MyVar" will be replaced by "_MyVar" in the object file.

#pragma aux MyVar "_*";

This is the default for all variable names.

In the following example, the lower case version "myrtn" will be placed in the object file.

#pragma aux MyRtn "!";

In the following example, the upper case version "MYRTN" will be placed in the object file.

#pragma aux MyRtn "^";

In the following example, the name "MyRtn" will be replaced by "_MyRtn@nnn" in the object file. "nnn"
represents the size of all function parameters.

#pragma aux MyRtn "_*#";

In the following example, the name "MyRtn" will be replaced by "_MyRtn#" in the object file.

#pragma aux MyRtn "_*\#";

The default mapping for all symbols can also be changed as illustrated by the following example.

#pragma aux default "_*_";

The above auxiliary pragma specifies that all names will be prefixed and suffixed by an underscore
character (’_’).

166 Auxiliary Pragmas

32-bit Pragmas

11.27.5 Describing Calling Information
The following form of the auxiliary pragma can be used to describe the way a function is to be called.

#pragma aux sym far [;]
or

#pragma aux sym near [;]
or

#pragma aux sym = in_line [;]

in_line ::= { const | (seg id) | (offset id) | (reloff id)
| "asm" }

where description:

sym is a function name.

const is a valid C/C++ integer constant.

id is any valid C/C++ identifier.

seg specifies the segment of the symbol id.

offset specifies the offset of the symbol id.

reloff specifies the relative offset of the symbol id for near control transfers.

asm is an assembly language instruction or directive.

In the following example, Open Watcom C/C++ will generate a far call to the function myrtn.

#pragma aux myrtn far;

Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, a far call will be generated even if you are compiling for a memory model with a
small code model.

In the following example, Open Watcom C/C++ will generate a near call to the function myrtn.

#pragma aux myrtn near;

Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, a near call will be generated even if you are compiling for a memory model with a
big code model.

In the following DOS example, Open Watcom C/C++ will generate the sequence of bytes following the "="
character in the auxiliary pragma whenever a call to mode4 is encountered. mode4 is called an in-line
function.

Auxiliary Pragmas 167

32-bit Topics

void mode4(void);
#pragma aux mode4 = \

0xb4 0x00 /* mov AH,0 */ \
0xb0 0x04 /* mov AL,4 */ \
0xcd 0x10 /* int 10H */ \
modify [AH AL];

The sequence in the above DOS example represents the following lines of assembly language instructions.

mov AH,0 ; select function "set mode"
mov AL,4 ; specify mode (mode 4)
int 10H ; BIOS video call

The above example demonstrates how to generate BIOS function calls in-line without writing an assembly
language function and calling it from your C/C++ program. The C prototype for the function mode4 is not
necessary but is included so that we can take advantage of the argument type checking provided by Open
Watcom C/C++.

The following DOS example is equivalent to the above example but mnemonics for the assembly language
instructions are used instead of the binary encoding of the assembly language instructions.

void mode4(void);
#pragma aux mode4 = \

"mov AH,0", \
"mov AL,4", \
"int 10H" \
modify [AH AL];

A sequence of in-line assembly language instructions may contain symbolic references. In the following
example, a near call to the function myalias is made whenever myrtn is called.

extern void myalias(void);
void myrtn(void);
#pragma aux myrtn = \

0xe8 reloff myalias /* near call */;

In the following example, a far call to the function myalias is made whenever myrtn is called.

extern void myalias(void);
void myrtn(void);
#pragma aux myrtn = \

0x9a offset myalias seg myalias /* far call */;

11.27.5.1 Loading Data Segment Register

An application may have been compiled so that the segment register DS does not contain the segment
address of the default data segment (group "DGROUP"). This is usually the case if you are using a large
data memory model. Suppose you wish to call a function that assumes that the segment register DS
contains the segment address of the default data segment. It would be very cumbersome if you were forced
to compile your application so that the segment register DS contained the default data segment (a small data
memory model).

The following form of the auxiliary pragma will cause the segment register DS to be loaded with the
segment address of the default data segment before calling the specified function.

168 Auxiliary Pragmas

32-bit Pragmas

#pragma aux sym parm loadds [;]

where description:

sym is a function name.

Alternatively, the following form of the auxiliary pragma will cause the segment register DS to be loaded
with the segment address of the default data segment as part of the prologue sequence for the specified
function.

#pragma aux sym loadds [;]

where description:

sym is a function name.

11.27.5.2 Defining Exported Symbols in Dynamic Link Libraries

An exported symbol in a dynamic link library is a symbol that can be referenced by an application that is
linked with that dynamic link library. Normally, symbols in dynamic link libraries are exported using the
Open Watcom Linker "EXPORT" directive. An alternative method is to use the following form of the
auxiliary pragma.

#pragma aux sym export [;]

where description:

sym is a function name.

11.27.5.3 Forcing a Stack Frame

Normally, a function contains a stack frame if arguments are passed on the stack or an automatic variable is
allocated on the stack. No stack frame will be generated if the above conditions are not satisfied. The
following form of the auxiliary pragma will force a stack frame to be generated under any circumstance.

#pragma aux sym frame [;]

where description:

sym is a function name.

Auxiliary Pragmas 169

32-bit Topics

11.27.6 Describing Argument Information
Using auxiliary pragmas, you can describe the calling convention that Open Watcom C/C++ is to use for
calling functions. This is particularly useful when interfacing to functions that have been compiled by
other compilers or functions written in other programming languages.

The general form of an auxiliary pragma that describes argument passing is the following.

#pragma aux sym parm { pop_info | reverse | {reg_set} } [;]

pop_info ::= caller | routine

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used for
argument passing. A register set is a list of registers separated by spaces and enclosed in
square brackets.

11.27.6.1 Passing Arguments in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to pass
arguments to a particular function.

#pragma aux sym parm {reg_set} [;]

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used for
argument passing. A register set is a list of registers separated by spaces and enclosed in
square brackets.

Register sets establish a priority for register allocation during argument list processing. Register sets are
processed from left to right. However, within a register set, registers are chosen in any order. Once all
register sets have been processed, any remaining arguments are pushed on the stack.

Note that regardless of the register sets specified, only certain combinations of registers will be selected for
arguments of a particular type.

Note that arguments of type float and double are always pushed on the stack when the "fpi" or "fpi87"
option is used.

170 Auxiliary Pragmas

32-bit Pragmas

double Arguments of type double can only be passed in one of the following register pairs:
EDX:EAX, ECX:EBX, ECX:EAX, ECX:ESI, EDX:EBX, EDI:EAX, ECX:EDI, EDX:ESI,
EDI:EBX, ESI:EAX, ECX:EDX, EDX:EDI, EDI:ESI, ESI:EBX or EBX:EAX. For
example, if the following register set was specified for a routine having an argument of
type double,

[EBP EBX]

the argument would be pushed on the stack since a valid register combination for 8-byte
arguments is not contained in the register set. Note that this method for passing arguments
of type double is supported only when the "fpc" option is used. Note that this argument
passing method does not include the passing of 8-byte structures.

far pointer A far pointer can only be passed in one of the following register pairs: DX:EAX, CX:EBX,
CX:EAX, CX:ESI, DX:EBX, DI:EAX, CX:EDI, DX:ESI, DI:EBX, SI:EAX, CX:EDX,
DX:EDI, DI:ESI, SI:EBX, BX:EAX, FS:ECX, FS:EDX, FS:EDI, FS:ESI, FS:EBX,
FS:EAX, GS:ECX, GS:EDX, GS:EDI, GS:ESI, GS:EBX, GS:EAX, DS:ECX, DS:EDX,
DS:EDI, DS:ESI, DS:EBX, DS:EAX, ES:ECX, ES:EDX, ES:EDI, ES:ESI, ES:EBX or
ES:EAX. For example, if a far pointer is passed to a function with the following register
set,

[ES EBP]

the argument would be pushed on the stack since a valid register combination for a far
pointer is not contained in the register set.

int The only registers that will be assigned to 4-byte arguments (e.g., arguments of type int)
are: EAX, EBX, ECX, EDX, ESI and EDI. For example, if the following register set was
specified for a routine with one argument of type int,

[EBP]

the argument would be pushed on the stack since a valid register combination for 4-byte
arguments is not contained in the register set. Note that this argument passing method
includes 4-byte structures. Note that this argument passing method also includes arguments
of type float but only when the "fpc" option is used.

char, short int Arguments whose size is 1 byte or 2 bytes (e.g., arguments of type char and short int as
well as 2-byte structures) are promoted to 4 bytes and are then assigned registers as if they
were 4-byte arguments.

others Arguments that do not fall into one of the above categories cannot be passed in registers
and are pushed on the stack. Once an argument has been assigned a position on the stack,
all remaining arguments will be assigned a position on the stack even if all register sets
have not yet been exhausted.

Notes:

1. The default register set is [EAX EBX ECX EDX].

2. Specifying registers AH and AL is equivalent to specifying register AX. Specifying registers
DH and DL is equivalent to specifying register DX. Specifying registers CH and CL is
equivalent to specifying register CX. Specifying registers BH and BL is equivalent to specifying
register BX. Specifying register EAX implies that register AX has been specified. Specifying

Auxiliary Pragmas 171

32-bit Topics

register EBX implies that register BX has been specified. Specifying register ECX implies that
register CX has been specified. Specifying register EDX implies that register DX has been
specified. Specifying register EDI implies that register DI has been specified. Specifying
register ESI implies that register SI has been specified. Specifying register EBP implies that
register BP has been specified. Specifying register ESP implies that register SP has been
specified.

3. If you are compiling for a memory model with a small data model, or the "zdp" compiler option
is specified, any register combination containing register DS becomes illegal. In a small data
model, segment register DS must remain unchanged as it points to the program’s data segment.
Note that the "zdf" compiler option can be used to specify that register DS does not contain that
segment address of the program’s data segment. In this case, register combinations containing
register DS are legal.

4. If you are compiling for the flat memory model, any register combination containing DS or ES
becomes illegal. In a flat memory model, code and data reside in the same segment. Segment
registers DS and ES point to this segment and must remain unchanged.

Consider the following example.

#pragma aux myrtn parm [eax ebx ecx edx] [ebp esi];

Suppose myrtn is a routine with 3 arguments each of type double.

1. The first argument will be passed in the register pair EDX:EAX.
2. The second argument will be passed in the register pair ECX:EBX.
3. The third argument will be pushed on the stack since EBP:ESI is not a valid register pair for

arguments of type double.

It is possible for registers from the second register set to be used before registers from the first register set
are used. Consider the following example.

#pragma aux myrtn parm [eax ebx ecx edx] [esi edi];

Suppose myrtn is a routine with 3 arguments, the first of type int and the second and third of type double.

1. The first argument will be passed in the register EAX.
2. The second argument will be passed in the register pair ECX:EBX.
3. The third argument will be passed in the register set EDI:ESI.

Note that registers are no longer selected from a register set after registers are selected from subsequent
register sets, even if all registers from the original register set have not been exhausted.

An empty register set is permitted. All subsequent register sets appearing after an empty register set are
ignored; all remaining arguments are pushed on the stack.

Notes:

1. If a single empty register set is specified, all arguments are passed on the stack.

2. If no register set is specified, the default register set [EAX EBX ECX EDX] is used.

172 Auxiliary Pragmas

32-bit Pragmas

11.27.6.2 Forcing Arguments into Specific Registers

It is possible to force arguments into specific registers. Suppose you have a function, say "mycopy", that
copies data. The first argument is the source, the second argument is the destination, and the third
argument is the length to copy. If we want the first argument to be passed in the register ESI, the second
argument to be passed in register EDI and the third argument to be passed in register ECX, the following
auxiliary pragma can be used.

void mycopy(char near *, char *, int);
#pragma aux mycopy parm [ESI] [EDI] [ECX];

Note that you must be aware of the size of the arguments to ensure that the arguments get passed in the
appropriate registers.

11.27.6.3 Passing Arguments to In-Line Functions

For functions whose code is generated by Open Watcom C/C++ and whose argument list is described by an
auxiliary pragma, Open Watcom C/C++ has some freedom in choosing how arguments are assigned to
registers. Since the code for in-line functions is specified by the programmer, the description of the
argument list must be very explicit. To achieve this, Open Watcom C/C++ assumes that each register set
corresponds to an argument. Consider the following DOS example of an in-line function called
scrollactivepgup.

void scrollactivepgup(char,char,char,char,char,char);
#pragma aux scrollactivepgup = \

"mov AH,6" \
"int 10h" \
parm [ch] [cl] [dh] [dl] [al] [bh] \
modify [ah];

The BIOS video call to scroll the active page up requires the following arguments.

1. The row and column of the upper left corner of the scroll window is passed in registers CH and
CL respectively.

2. The row and column of the lower right corner of the scroll window is passed in registers DH and
DL respectively.

3. The number of lines blanked at the bottom of the window is passed in register AL.

4. The attribute to be used on the blank lines is passed in register BH.

When passing arguments, Open Watcom C/C++ will convert the argument so that it fits in the register(s)
specified in the register set for that argument. For example, in the above example, if the first argument to
scrollactivepgup was called with an argument whose type was int, it would first be converted to
char before assigning it to register CH. Similarly, if an in-line function required its argument in register
EAX and the argument was of type short int, the argument would be converted to long int before
assigning it to register EAX.

In general, Open Watcom C/C++ assigns the following types to register sets.

1. A register set consisting of a single 8-bit register (1 byte) is assigned a type of unsigned char.

Auxiliary Pragmas 173

32-bit Topics

2. A register set consisting of a single 16-bit register (2 bytes) is assigned a type of unsigned short
int.

3. A register set consisting of a single 32-bit register (4 bytes) is assigned a type of unsigned long
int.

4. A register set consisting of two 32-bit registers (8 bytes) is assigned a type of double.

11.27.6.4 Removing Arguments from the Stack

The following form of the auxiliary pragma specifies who removes from the stack arguments that were
pushed on the stack.

#pragma aux sym parm (caller | routine) [;]

where description:

sym is a function name.

"caller" specifies that the caller will pop the arguments from the stack; "routine" specifies that the called
routine will pop the arguments from the stack. If "caller" or "routine" is omitted, "routine" is assumed
unless the default has been changed in a previous auxiliary pragma, in which case the new default is
assumed.

11.27.6.5 Passing Arguments in Reverse Order

The following form of the auxiliary pragma specifies that arguments are passed in the reverse order.

#pragma aux sym parm reverse [;]

where description:

sym is a function name.

Normally, arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have been
exhausted). Arguments that are passed on the stack are pushed from right to left.

When arguments are reversed, the rightmost arguments are passed in registers and the leftmost arguments
are passed on the stack (if the registers used for argument passing have been exhausted). Arguments that
are passed on the stack are pushed from left to right.

Reversing arguments is most useful for functions that require arguments to be passed on the stack in an
order opposite from the default. The following auxiliary pragma demonstrates such a function.

#pragma aux rtn parm reverse [];

174 Auxiliary Pragmas

32-bit Pragmas

11.27.7 Describing Function Return Information
Using auxiliary pragmas, you can describe the way functions are to return values. This is particularly
useful when interfacing to functions that have been compiled by other compilers or functions written in
other programming languages.

The general form of an auxiliary pragma that describes the way a function returns its value is the following.

#pragma aux sym value {no8087 | reg_set | struct_info} [;]
struct_info ::= struct {float | struct | (routine | caller) | reg_set}

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used for
argument passing. A register set is a list of registers separated by spaces and enclosed in
square brackets.

11.27.7.1 Returning Function Values in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to return
a function’s value.

#pragma aux sym value reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

Note that the method described below for returning values of type float or double is supported only when
the "fpc" option is used.

Depending on the type of the return value, only certain registers are allowed in reg_set.

1-byte For 1-byte return values, only the following registers are allowed: AL, AH, DL, DH, BL,
BH, CL or CH. If no register set is specified, register AL will be used.

2-byte For 2-byte return values, only the following registers are allowed: AX, DX, BX, CX, SI or
DI. If no register set is specified, register AX will be used.

4-byte For 4-byte return values (including near pointers), only the following register are allowed:
EAX, EDX, EBX, ECX, ESI or EDI. If no register set is specified, register EAX will be
used. This form of the auxiliary pragma is legal for functions of type float when using the
"fpc" option only.

Auxiliary Pragmas 175

32-bit Topics

far pointer For functions that return far pointers, the following register pairs are allowed: DX:EAX,
CX:EBX, CX:EAX, CX:ESI, DX:EBX, DI:EAX, CX:EDI, DX:ESI, DI:EBX, SI:EAX,
CX:EDX, DX:EDI, DI:ESI, SI:EBX, BX:EAX, FS:ECX, FS:EDX, FS:EDI, FS:ESI,
FS:EBX, FS:EAX, GS:ECX, GS:EDX, GS:EDI, GS:ESI, GS:EBX, GS:EAX, DS:ECX,
DS:EDX, DS:EDI, DS:ESI, DS:EBX, DS:EAX, ES:ECX, ES:EDX, ES:EDI, ES:ESI,
ES:EBX or ES:EAX. If no register set is specified, the registers DX:EAX will be used.

8-byte For 8-byte return values (including functions of type double), only the following register
pairs are allowed: EDX:EAX, ECX:EBX, ECX:EAX, ECX:ESI, EDX:EBX, EDI:EAX,
ECX:EDI, EDX:ESI, EDI:EBX, ESI:EAX, ECX:EDX, EDX:EDI, EDI:ESI, ESI:EBX or
EBX:EAX. If no register set is specified, the registers EDX:EAX will be used. This form
of the auxiliary pragma is legal for functions of type double when using the "fpc" option
only.

Notes:

1. An empty register set is not allowed.

2. If you are compiling for a memory model which has a small data model, any of the above
register combinations containing register DS becomes illegal. In a small data model, segment
register DS must remain unchanged as it points to the program’s data segment.

3. If you are compiling for the flat memory model, any register combination containing DS or ES
becomes illegal. In a flat memory model, code and data reside in the same segment. Segment
registers DS and ES point to this segment and must remain unchanged.

11.27.7.2 Returning Structures

Typically, structures are not returned in registers. Instead, the caller allocates space on the stack for the
return value and sets register ESI to point to it. The called routine then places the return value at the
location pointed to by register ESI.

The following form of the auxiliary pragma can be used to specify the register that is to be used to point to
the return value.

#pragma aux sym value struct (caller|routine) reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

"caller" specifies that the caller will allocate memory for the return value. The address of the memory
allocated for the return value is placed in the register specified in the register set by the caller before the
function is called. If an empty register set is specified, the address of the memory allocated for the return
value will be pushed on the stack immediately before the call and will be returned in register EAX by the
called routine.

176 Auxiliary Pragmas

32-bit Pragmas

"routine" specifies that the called routine will allocate memory for the return value. Upon returning to the
caller, the register specified in the register set will contain the address of the return value. An empty
register set is not allowed.

Only the following registers are allowed in the register set: EAX, EDX, EBX, ECX, ESI or EDI. Note that
in a big data model, the address in the return register is assumed to be in the segment specified by the value
in the SS segment register.

If the size of the structure being returned is 1, 2 or 4 bytes, it will be returned in registers. The return
register will be selected from the register set in the following way.

1. A 1-byte structure will be returned in one of the following registers: AL, AH, DL, DH, BL, BH,
CL or CH. If no register set is specified, register AL will be used.

2. A 2-byte structure will be returned in one of the following registers: AX, DX, BX, CX, SI or DI.
If no register set is specified, register AX will be used.

3. A 4-byte structure will be returned in one of the following registers: EAX, EDX, EBX, ECX,
ESI or EDI. If no register set is specified, register EAX will be used.

The following form of the auxiliary pragma can be used to specify that structures whose size is 1, 2 or 4
bytes are not to be returned in registers. Instead, the caller will allocate space on the stack for the structure
return value and point register ESI to it.

#pragma aux sym value struct struct [;]

where description:

sym is a function name.

11.27.7.3 Returning Floating-Point Data

There are a few ways available for specifying how the value for a function whose type is float or double is
to be returned.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are not to be returned in registers. Instead, the caller will allocate space on the stack for the
return value and point register ESI to it.

#pragma aux sym value struct float [;]

where description:

sym is a function name.

In other words, floating-point values are to be returned in the same way structures are returned.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are not to be returned in 80x87 registers when compiling with the "fpi" or "fpi87" option.

Auxiliary Pragmas 177

32-bit Topics

Instead, the value will be returned in 80x86 registers. This is the default behaviour for the "fpc" option.
Function return values whose type is float will be returned in register EAX. Function return values whose
type is double will be returned in registers EDX:EAX. This is the default method for the "fpc" option.

#pragma aux sym value no8087 [;]

where description:

sym is a function name.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are to be returned in ST(0) when compiling with the "fpi" or "fpi87" option. This form of
the auxiliary pragma is not legal for the "fpc" option.

#pragma aux sym value [8087] [;]

where description:

sym is a function name.

11.27.8 A Function that Never Returns
The following form of the auxiliary pragma can be used to describe a function that does not return to the
caller.

#pragma aux sym aborts [;]

where description:

sym is a function name.

Consider the following example.

#pragma aux exitrtn aborts;
extern void exitrtn(void);

void rtn()
{

exitrtn();
}

exitrtn is defined to be a function that does not return. For example, it may call exit to return to the
system. In this case, Open Watcom C/C++ generates a "jmp" instruction instead of a "call" instruction to
invoke exitrtn.

178 Auxiliary Pragmas

32-bit Pragmas

11.27.9 Describing How Functions Use Memory
The following form of the auxiliary pragma can be used to describe a function that does not modify any
memory (i.e., global or static variables) that is used directly or indirectly by the caller.

#pragma aux sym modify nomemory [;]

where description:

sym is a function name.

Consider the following example.

#pragma off (check_stack);

extern void myrtn(void);

int i = { 1033 };

extern Rtn() {
while(i < 10000) {

i += 383;
}
myrtn();
i += 13143;

};

To compile the above program, "rtn.c", we issue the following command.

$ wcc rtn -oai -d1
$ wpp rtn -oai -d1
$ wcc386 rtn -oai -d1
$ wpp386 rtn -oai -d1

For illustrative purposes, we omit loop optimizations from the list of code optimizations that we want the
compiler to perform. The "d1" compiler option is specified so that the object file produced by Open
Watcom C/C++ contains source line information.

We can generate a file containing a disassembly of rtn.o by issuing the following command.

$ wdis rtn -l -s -r

The "s" option is specified so that the listing file produced by the Open Watcom Disassembler contains
source lines taken from rtn.c. The listing file rtn.lst appears as follows.

Module: rtn.c
Group: ’DGROUP’ CONST,_DATA

Segment: ’_TEXT’ BYTE USE32 00000036 bytes

#pragma off (check_stack);

extern void myrtn(void);

int i = { 1033 };

Auxiliary Pragmas 179

32-bit Topics

extern Rtn() {
0000 52 Rtn_ push EDX
0001 8b 15 00 00 00 00 mov EDX,_i

while(i < 10000) {
0007 81 fa 10 27 00 00 L1 cmp EDX,00002710H
000d 7d 08 jge L2

i += 383;
}

000f 81 c2 7f 01 00 00 add EDX,0000017fH
0015 eb f0 jmp L1

myrtn();
0017 89 15 00 00 00 00 L2 mov _i,EDX
001d e8 00 00 00 00 call myrtn_
0022 8b 15 00 00 00 00 mov EDX,_i

i += 13143;
0028 81 c2 57 33 00 00 add EDX,00003357H
002e 89 15 00 00 00 00 mov _i,EDX

}
0034 5a pop EDX
0035 c3 ret

No disassembly errors

--

Segment: ’_DATA’ WORD USE32 00000004 bytes
0000 09 04 00 00 _i -

No disassembly errors

--

Let us add the following auxiliary pragma to the source file.

#pragma aux myrtn modify nomemory;

If we compile the source file with the above pragma and disassemble the object file using the Open
Watcom Disassembler, we get the following listing file.

Module: rtn.c
Group: ’DGROUP’ CONST,_DATA

Segment: ’_TEXT’ BYTE USE32 00000030 bytes

#pragma off (check_stack);
#pragma aux myrtn modify nomemory;

extern void myrtn(void);

int i = { 1033 };

extern Rtn() {
0000 52 Rtn_ push EDX
0001 8b 15 00 00 00 00 mov EDX,_i

while(i < 10000) {
0007 81 fa 10 27 00 00 L1 cmp EDX,00002710H
000d 7d 08 jge L2

i += 383;
}

000f 81 c2 7f 01 00 00 add EDX,0000017fH
0015 eb f0 jmp L1

180 Auxiliary Pragmas

32-bit Pragmas

myrtn();
0017 89 15 00 00 00 00 L2 mov _i,EDX
001d e8 00 00 00 00 call myrtn_

i += 13143;
0022 81 c2 57 33 00 00 add EDX,00003357H
0028 89 15 00 00 00 00 mov _i,EDX

}
002e 5a pop EDX
002f c3 ret

No disassembly errors

--

Segment: ’_DATA’ WORD USE32 00000004 bytes
0000 09 04 00 00 _i -

No disassembly errors

--

Notice that the value of i is in register EDX after completion of the "while" loop. After the call to
myrtn, the value of i is not loaded from memory into a register to perform the final addition. The
auxiliary pragma informs the compiler that myrtn does not modify any memory (i.e., global or static
variables) that is used directly or indirectly by Rtn and hence register EDX contains the correct value of
i.

The preceding auxiliary pragma deals with routines that modify memory. Let us consider the case where
routines reference memory. The following form of the auxiliary pragma can be used to describe a function
that does not reference any memory (i.e., global or static variables) that is used directly or indirectly by the
caller.

#pragma aux sym parm nomemory modify nomemory [;]

where description:

sym is a function name.

Notes:

1. You must specify both "parm nomemory" and "modify nomemory".

Let us replace the auxiliary pragma in the above example with the following auxiliary pragma.

#pragma aux myrtn parm nomemory modify nomemory;

If you now compile our source file and disassemble the object file using wdis, the result is the following
listing file.

Module: rtn.c
Group: ’DGROUP’ CONST,_DATA

Segment: ’_TEXT’ BYTE USE32 0000002a bytes

#pragma off (check_stack);
#pragma aux myrtn parm nomemory modify nomemory;

Auxiliary Pragmas 181

32-bit Topics

extern void myrtn(void);

int i = { 1033 };

extern Rtn() {
0000 52 Rtn_ push EDX
0001 8b 15 00 00 00 00 mov EDX,_i

while(i < 10000) {
0007 81 fa 10 27 00 00 L1 cmp EDX,00002710H
000d 7d 08 jge L2

i += 383;
}

000f 81 c2 7f 01 00 00 add EDX,0000017fH
0015 eb f0 jmp L1

myrtn();
0017 e8 00 00 00 00 L2 call myrtn_

i += 13143;
001c 81 c2 57 33 00 00 add EDX,00003357H
0022 89 15 00 00 00 00 mov _i,EDX

}
0028 5a pop EDX
0029 c3 ret

No disassembly errors

--

Segment: ’_DATA’ WORD USE32 00000004 bytes
0000 09 04 00 00 _i -

No disassembly errors

--

Notice that after completion of the "while" loop we did not have to update i with the value in register EDX
before calling myrtn. The auxiliary pragma informs the compiler that myrtn does not reference any
memory (i.e., global or static variables) that is used directly or indirectly by myrtn so updating i was not
necessary before calling myrtn.

11.27.10 Describing the Registers Modified by a Function
The following form of the auxiliary pragma can be used to describe the registers that a function will use
without saving.

#pragma aux sym modify [exact] reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

Specifying a register set informs Open Watcom C/C++ that the registers belonging to the register set are
modified by the function. That is, the value in a register before calling the function is different from its
value after execution of the function.

182 Auxiliary Pragmas

32-bit Pragmas

Registers that are used to pass arguments are assumed to be modified and hence do not have to be saved
and restored by the called function. Also, since the EAX register is frequently used to return a value, it is
always assumed to be modified. If necessary, the caller will contain code to save and restore the contents
of registers used to pass arguments. Note that saving and restoring the contents of these registers may not
be necessary if the called function does not modify them. The following form of the auxiliary pragma can
be used to describe exactly those registers that will be modified by the called function.

#pragma aux sym modify exact reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

The above form of the auxiliary pragma tells Open Watcom C/C++ not to assume that the registers used to
pass arguments will be modified by the called function. Instead, only the registers specified in the register
set will be modified. This will prevent generation of the code which unnecessarily saves and restores the
contents of the registers used to pass arguments.

Also, any registers that are specified in the value register set are assumed to be unmodified unless
explicitly listed in the exact register set. In the following example, the code generator will not generate
code to save and restore the value of the stack pointer register since we have told it that "GetSP" does not
modify any register whatsoever.

Example:
unsigned GetSP(void);
#if defined(__386__)
#pragma aux GetSP = value [esp] modify exact [];
#else
#pragma aux GetSP = value [sp] modify exact [];
#endif

11.27.11 An Example
As mentioned in an earlier section, the following pragma defines the calling convention for functions
compiled by MetaWare’s High C compiler.

#pragma aux HIGH_C "*" \

parm caller [] \
value no8087 \
modify [eax ecx edx fs gs];

Note that register ES must also be specified in the "modify" register set when using a memory model with a
non-small data model. Let us discuss this pragma in detail.

"*" specifies that all function and variable names appear in object form as they do in source
form.

parm caller [] specifies that all arguments are to be passed on the stack (an empty register set was
specified) and the caller will remove the arguments from the stack.

Auxiliary Pragmas 183

32-bit Topics

value no8087 specifies that floating-point values are to be returned using 80x86 registers and not 80x87
floating-point registers.

modify [eax ecx edx fs gs] specifies that registers EAX, ECX, EDX, FS and GS are not preserved by the
called routine.

Note that the default method of returning integer values is used; 1-byte characters are returned in register
AL, 2-byte integers are returned in register AX, and 4-byte integers are returned in register EAX.

11.27.12 Auxiliary Pragmas and the 80x87
This section deals with those aspects of auxiliary pragmas that are specific to the 80x87. The discussion in
this chapter assumes that one of the "fpi" or "fpi87" options is used to compile functions. The following
areas are affected by the use of these options.

1. passing floating-point arguments to functions,
2. returning floating-point values from functions and
3. which 80x87 floating-point registers are allowed to be modified by the called routine.

11.27.12.1 Using the 80x87 to Pass Arguments

By default, floating-point arguments are passed on the 80x86 stack. The 80x86 registers are never used to
pass floating-point arguments when a function is compiled with the "fpi" or "fpi87" option. However, they
can be used to pass arguments whose type is not floating-point such as arguments of type "int".

The following form of the auxiliary pragma can be used to describe the registers that are to be used to pass
arguments to functions.

#pragma aux sym parm {reg_set} [;]

where description:

sym is a function name.

reg_set is a register set. The register set can contain 80x86 registers and/or the string "8087".

Notes:

1. If an empty register set is specified, all arguments, including floating-point arguments, will be
passed on the 80x86 stack.

When the string "8087" appears in a register set, it simply means that floating-point arguments can be
passed in 80x87 floating-point registers if the source file is compiled with the "fpi" or "fpi87" option.
Before discussing argument passing in detail, some general notes on the use of the 80x87 floating-point
registers are given.

The 80x87 contains 8 floating-point registers which essentially form a stack. The stack pointer is called ST
and is a number between 0 and 7 identifying which 80x87 floating-point register is at the top of the stack.
ST is initially 0. 80x87 instructions reference these registers by specifying a floating-point register number.
This number is then added to the current value of ST. The sum (taken modulo 8) specifies the 80x87

184 Auxiliary Pragmas

32-bit Pragmas

floating-point register to be used. The notation ST(n), where "n" is between 0 and 7, is used to refer to the
position of an 80x87 floating-point register relative to ST.

When a floating-point value is loaded onto the 80x87 floating-point register stack, ST is decremented
(modulo 8), and the value is loaded into ST(0). When a floating-point value is stored and popped from the
80x87 floating-point register stack, ST is incremented (modulo 8) and ST(1) becomes ST(0). The
following illustrates the use of the 80x87 floating-point registers as a stack, assuming that the value of ST is
4 (4 values have been loaded onto the 80x87 floating-point register stack).

+----------------+

0 | 4th from top | ST(4)
+----------------+

1 | 5th from top | ST(5)
+----------------+

2 | 6th from top | ST(6)
+----------------+

3 | 7th from top | ST(7)
+----------------+

ST -> 4 | top of stack | ST(0)
+----------------+

5 | 1st from top | ST(1)
+----------------+

6 | 2nd from top | ST(2)
+----------------+

7 | 3rd from top | ST(3)
+----------------+

Starting with version 9.5, the Open Watcom compilers use all eight of the 80x87 registers as a stack. The
initial state of the 80x87 register stack is empty before a program begins execution.

Note: For compatibility with code compiled with version 9.0 and earlier, you can compile with
the "fpr" option. In this case only four of the eight 80x87 registers are used as a stack.
These four registers were used to pass arguments. The other four registers form what was
called the 80x87 cache. The cache was used for local floating-point variables. The state of
the 80x87 registers before a program began execution was as follows.

1. The four 80x87 floating-point registers that form the stack are uninitialized.
2. The four 80x87 floating-point registers that form the 80x87 cache are initialized

with zero.

Hence, initially the 80x87 cache was comprised of ST(0), ST(1), ST(2) and ST(3). ST had
the value 4 as in the above diagram. When a floating-point value was pushed on the stack
(as is the case when passing floating-point arguments), it became ST(0) and the 80x87
cache was comprised of ST(1), ST(2), ST(3) and ST(4). When the 80x87 stack was full,
ST(0), ST(1), ST(2) and ST(3) formed the stack and ST(4), ST(5), ST(6) and ST(7) formed
the 80x87 cache. Version 9.5 and later no longer use this strategy.

The rules for passing arguments are as follows.

1. If the argument is not floating-point, use the procedure described earlier in this chapter.

2. If the argument is floating-point, and a previous argument has been assigned a position on the
80x86 stack (instead of the 80x87 stack), the floating-point argument is also assigned a position
on the 80x86 stack. Otherwise proceed to the next step.

Auxiliary Pragmas 185

32-bit Topics

3. If the string "8087" appears in a register set in the pragma, and if the 80x87 stack is not full, the
floating-point argument is assigned floating-point register ST(0) (the top element of the 80x87
stack). The previous top element (if there was one) is now in ST(1). Since arguments are
pushed on the stack from right to left, the leftmost floating-point argument will be in ST(0).
Otherwise the floating-point argument is assigned a position on the 80x86 stack.

Consider the following example.

#pragma aux myrtn parm [8087];

void main()
{

float x;
double y;
int i;
long int j;

x = 7.7;
i = 7;
y = 77.77;
j = 77;
myrtn(x, i, y, j);

}

myrtn is an assembly language function that requires four arguments. The first argument of type float (4
bytes), the second argument is of type int (4 bytes), the third argument is of type double (8 bytes) and the
fourth argument is of type long int (4 bytes). These arguments will be passed to myrtn in the following
way.

1. Since "8087" was specified in the register set, the first argument, being of type float, will be
passed in an 80x87 floating-point register.

2. The second argument will be passed on the stack since no 80x86 registers were specified in the
register set.

3. The third argument will also be passed on the stack. Remember the following rule: once an
argument is assigned a position on the stack, all remaining arguments will be assigned a position
on the stack. Note that the above rule holds even though there are some 80x87 floating-point
registers available for passing floating-point arguments.

4. The fourth argument will also be passed on the stack.

Let us change the auxiliary pragma in the above example as follows.

#pragma aux myrtn parm [eax 8087];

The arguments will now be passed to myrtn in the following way.

1. Since "8087" was specified in the register set, the first argument, being of type float will be
passed in an 80x87 floating-point register.

2. The second argument will be passed in register EAX, exhausting the set of available 80x86
registers for argument passing.

3. The third argument, being of type double, will also be passed in an 80x87 floating-point register.

186 Auxiliary Pragmas

32-bit Pragmas

4. The fourth argument will be passed on the stack since no 80x86 registers remain in the register
set.

11.27.12.2 Using the 80x87 to Return Function Values

The following form of the auxiliary pragma can be used to describe a function that returns a floating-point
value in ST(0).

#pragma aux sym value reg_set [;]

where description:

sym is a function name.

reg_set is a register set containing the string "8087", i.e. [8087].

11.27.12.3 Preserving 80x87 Floating-Point Registers Across Calls

The code generator assumes that all eight 80x87 floating-point registers are available for use within a
function unless the "fpr" option is used to generate backward compatible code (older Open Watcom
compilers used four registers as a cache). The following form of the auxiliary pragma specifies that the
floating-point registers in the 80x87 cache may be modified by the specified function.

#pragma aux sym modify reg_set [;]

where description:

sym is a function name.

reg_set is a register set containing the string "8087", i.e. [8087].

This instructs Open Watcom C/C++ to save any local variables that are located in the 80x87 cache before
calling the specified routine.

Auxiliary Pragmas 187

32-bit Topics

188 Auxiliary Pragmas

In-line Assembly Language

In-line Assembly Language

190

12 In-line Assembly Language

The chapters entitled "16-bit Pragmas" on page 75 and "32-bit Pragmas" on page 143 briefly describe the
use of the auxiliary pragma to create a sequence of assembly language instructions that can be placed
anywhere executable C/C++ statements can appear in your source code. This chapter is devoted to an
in-depth look at in-line assembly language programming.

The reasons for resorting to in-line assembly code are varied:

• Speed - You may be interested in optimizing a heavily-used section of code.

• Size - You may wish to optimize a module for size by replacing a library function call with a direct
system call.

• Architecture - You may want to access certain features of the Intel x86 architecture that cannot be
done so with C/C++ statements.

There are also some reasons for not resorting to in-line assembly code.

• Portability - The code is not portable to different architectures.

• Optimization - Sometimes an optimizing compiler can do a better job of arranging the instruction
stream so that it is optimal for a particular processor (such as the 486 or Pentium).

12.1 In-line Assembly Language Default Environment
In next table is description of the default in-line assembler environment in dependency on C/C++ compilers
CPU switch for x86 target platform.

Compiler CPU FPU CPU extension

directive directive directives
-------- --------- --------- --------------------------
-0 .8086 .8087
-1 .186 .8087
-2 .286p .287
-3 .386p .387
-4 .486p .387
-5 .586p .387 .K3D+.MMX
-6 .686p .387 .K3D+.MMX+.XMM+.XMM2+.XMM3

This environment can be simply changed by appropriate directives.

Note:

This change is valid only for the block of assembly source code. After this block, default setting is
restored.

In-line Assembly Language Default Environment 191

In-line Assembly Language

12.2 In-line Assembly Language Tutorial
Doing in-line assembly is reasonably straight-forward with Open Watcom C/C++ although care must be
exercised. You can generate a sequence of in-line assembly anywhere in your C/C++ code stream. The
first step is to define the sequence of instructions that you wish to place in-line. The auxiliary pragma is
used to do this. Here is a simple example based on a DOS function call that returns a far pointer to the
Double-Byte Character Set (DBCS) encoding table.

Example:
extern unsigned short far *dbcs_table(void);
#pragma aux dbcs_table = \

"mov ax,6300h" \
"int 21h" \
value [ds si] \
modify [ax];

To set up the DOS call, the AH register must contain the hexadecimal value "63" (63h). A DOS function
call is invoked by interrupt 21h. DOS returns a far pointer in DS:SI to a table of byte pairs in the form
(start of range, end of range). On a non-DBCS system, the first pair will be (0,0). On a Japanese DBCS
system, the first pair will be (81h,9Fh).

With each pragma, we define a corresponding function prototype that explains the behaviour of the
function in terms of C/C++. Essentially, it is a function that does not take any arguments and that returns a
far pointer to a unsigned short item.

The pragma indicates that the result of this "function" is returned in DS:SI (value [ds si]). The pragma also
indicates that the AX register is modified by the sequence of in-line assembly code (modify [ax]).

Having defined our in-line assembly code, let us see how it is used in actual C code.

Example:
#include <stdio.h>

extern unsigned short far *dbcs_table(void);
#pragma aux dbcs_table = \

"mov ax,6300h" \
"int 21h" \
value [ds si] \
modify [ax];

void main()
{

if(*dbcs_table() != 0) {
/*

we are running on a DOS system that
supports double-byte characters

*/
printf("DBCS supported\n");

}
}

Before you attempt to compile and run this example, consider this: The program will not work! At least, it
will not work in most 16-bit memory models. And it doesn’t work at all in 32-bit protected mode using a
DOS extender. What is wrong with it?

192 In-line Assembly Language Tutorial

In-line Assembly Language

We can examine the disassembled code for this program in order to see why it does not always work in
16-bit real-mode applications.

if(*dbcs_table() != 0) {

/*
we are running on a DOS system that
supports double-byte characters

*/
0007 b8 00 63 mov ax,6300H
000a cd 21 int 21H
000c 83 3c 00 cmp word ptr [si],0000H
000f 74 0a je L1

printf("DBCS supported\n");
}

0011 be 00 00 mov si,offset L2
0014 56 push si
0015 e8 00 00 call printf_
0018 83 c4 02 add sp,0002H

}

After the DOS interrupt call, the DS register has been altered and the code generator does nothing to
recover the previous value. In the small memory model, the contents of the DS register never change (and
any code that causes a change to DS must save and restore its value). It is the programmer’s responsibility
to be aware of the restrictions imposed by certain memory models especially with regards to the use of
segmentation registers. So we must make a small change to the pragma.

extern unsigned short far *dbcs_table(void);
#pragma aux dbcs_table = \

"push ds" \
"mov ax,6300h" \
"int 21h" \
"mov di,ds" \
"pop ds" \
value [di si] \
modify [ax];

If we compile and run this example with a 16-bit compiler, it will work properly. We can examine the
disassembled code for this revised program.

if(*dbcs_table() != 0) {

/*
we are running on a DOS system that
supports double-byte characters

*/
0008 1e push ds
0009 b8 00 63 mov ax,6300H
000c cd 21 int 21H
000e 8c df mov di,ds
0010 1f pop ds
0011 8e c7 mov es,di
0013 26 83 3c 00 cmp word ptr es:[si],0000H
0017 74 0a je L1

printf("DBCS supported\n");
}

0019 be 00 00 mov si,offset L2
001c 56 push si
001d e8 00 00 call printf_
0020 83 c4 02 add sp,0002H

If you examine this code, you can see that the DS register is saved and restored by the in-line assembly
code. The code generator, having been informed that the far pointer is returned in (DI:SI), loads up the ES
register from DI in order to reference the far data correctly.

In-line Assembly Language Tutorial 193

In-line Assembly Language

That takes care of the 16-bit real-mode case. What about 32-bit protected mode? When using a DOS
extender, you must examine the accompanying documentation to see if the system call that you wish to
make is supported by the DOS extender. One of the reasons that this particular DOS call is not so clear-cut
is that it returns a 16-bit real-mode segment:offset pointer. A real-mode pointer must be converted by the
DOS extender into a protected-mode pointer in order to make it useful. As it turns out, neither the
Tenberry Software DOS/4G(W) nor Phar Lap DOS extenders support this particular DOS call (although
others may). The issues with each DOS extender are complex enough that the relative merits of using
in-line assembly code are not worth it. We present an excerpt from the final solution to this problem.

Example:
#ifndef __386__

extern unsigned short far *dbcs_table(void);
#pragma aux dbcs_table = \

"push ds" \
"mov ax,6300h" \
"int 21h" \
"mov di,ds" \
"pop ds" \
value [di si] \
modify [ax];

#else

unsigned short far * dbcs_table(void)
{

union REGPACK regs;
static short dbcs_dummy = 0;

memset(®s, 0, sizeof(regs));
if(_IsPharLap()) {

PHARLAP_block pblock;

memset(&pblock, 0, sizeof(pblock));
pblock.real_eax = 0x6300; /* get DBCS vector table */
pblock.int_num = 0x21; /* DOS call */
regs.x.eax = 0x2511; /* issue real-mode interrupt */
regs.x.edx = FP_OFF(&pblock); /* DS:EDX -> parameter block */
regs.w.ds = FP_SEG(&pblock);
intr(0x21, ®s);
return(firstmeg(pblock.real_ds, regs.w.si));

} else if(_IsDOS4G()) {
DPMI_block dblock;

memset(&dblock, 0, sizeof(dblock));
dblock.eax = 0x6300; /* get DBCS vector table */
regs.w.ax = 0x300; /* DPMI Simulate R-M intr */
regs.h.bl = 0x21; /* DOS call */
regs.h.bh = 0; /* flags */
regs.w.cx = 0; /* # bytes from stack */
regs.x.edi = FP_OFF(&dblock);
regs.x.es = FP_SEG(&dblock);
intr(0x31, ®s);
return(firstmeg(dblock.ds, dblock.esi));

} else {
return(&dbcs_dummy);

}
}

#endif

The 16-bit version will use in-line assembly code but the 32-bit version will use a C function that has been
crafted to work with both Tenberry Software DOS/4G(W) and Phar Lap DOS extenders. The firstmeg
function used in the example is shown below.

194 In-line Assembly Language Tutorial

In-line Assembly Language

#define REAL_SEGMENT 0x34

void far *firstmeg(unsigned segment, unsigned offset)
{

void far *meg1;

if(_IsDOS4G()) {
meg1 = MK_FP(FP_SEG(&meg1), (segment << 4) + offset);

} else {
meg1 = MK_FP(REAL_SEGMENT, (segment << 4) + offset);

}
return(meg1);

}

We have taken a brief look at two features of the auxiliary pragma, the "modify" and "value" attributes.

The "modify" attribute describes those registers that are modified by the execution of the sequence of
in-line code. You usually have two choices here; you can save/restore registers that are affected by the
code sequence in which case they need not appear in the modify list or you can let the code generator
handle the fact that the registers are modified by the code sequence. When you invoke a system function
(such as a DOS or BIOS call), you should be careful about any side effects that the call has on registers. If
a register is modified by a call and you have not listed it in the modify list or saved/restored it, this can have
a disastrous affect on the rest of the code in the function where you are including the in-line code.

The "value" attribute describes the register or registers in which a value is returned (we use the term
"returned", not in the sense that a function returns a value, but in the sense that a result is available after
execution of the code sequence).

This leads the discussion into the third feature of the auxiliary pragma, the feature that allows us to place
the results of C expressions into specific registers as part of the "setup" for the sequence of in-line code. To
illustrate this, let us look at another example.

Example:
extern void BIOSSetCurPos(unsigned short __rowcol,

unsigned char __page);
#pragma aux BIOSSetCurPos = \

"push bp" \
"mov ah,2" \
"int 10h" \
"pop bp" \
parm [dx] [bh] \
modify [ah];

The "parm" attribute specifies the list of registers into which values are to be placed as part of the prologue
to the in-line code sequence. In the above example, the "set cursor position" function requires three pieces
of information. It requires that the cursor row value be placed in the DH register, that the cursor column
value be placed in the DL register, and that the screen page number be placed in the BH register. In this
example, we have decided to combine the row and column information into a single "argument" to the
function. Note that the function prototype for BIOSSetCurPos is important. It describes the types and
number of arguments to be set up for the in-line code. It also describes the type of the return value (in this
case there is none).

Once again, having defined our in-line assembly code, let us see how it is used in actual C code.

In-line Assembly Language Tutorial 195

In-line Assembly Language

Example:
#include <stdio.h>

extern void BIOSSetCurPos(unsigned short __rowcol,
unsigned char __page);

#pragma aux BIOSSetCurPos = \
"push bp" \
"mov ah,2" \
"int 10h" \
"pop bp" \
parm [dx] [bh] \
modify [ah];

void main()
{

BIOSSetCurPos((5 << 8) | 20, 0);
printf("Hello world\n");

}

To see how the code generator set up the register values for the in-line code, let us take a look at the
disassembled code.

BIOSSetCurPos((5 << 8) | 20, 0);

0008 ba 14 05 mov dx,0514H
000b 30 ff xor bh,bh
000d 55 push bp
000e b4 02 mov ah,02H
0010 cd 10 int 10H
0012 5d pop bp

As we expected, the result of the expression for the row and column is placed in the DX register and the
page number is placed in the BH register. The remaining instructions are our in-line code sequence.

Although our examples have been simple, you should be able to generalize them to your situation.

To review, the "parm", "value" and "modify" attributes are used to:

1. convey information to the code generator about the way data values are to be placed in registers
in preparation for the code burst (parm),

2. convey information to the code generator about the result, if any, from the code burst (value),
and

3. convey information to the code generator about any side effects to the registers after the code
burst has executed (modify). It is important to let the code generator know all of the side effects
on registers when the in-line code is executed; otherwise it assumes that all registers, other than
those used for parameters, are preserved. In our examples, we chose to push/pop some of the
registers that are modified by the code burst.

196 In-line Assembly Language Tutorial

In-line Assembly Language

12.3 Labels in In-line Assembly Code
Labels can be used in in-line assembly code. Here is an example.

Example:
extern void _disable_video(unsigned);
#pragma aux _disable_video = \
"again: in al,dx" \

"test al,8" \
"jz again" \
"mov dx,03c0h" \
"mov al,11h" \
"out dx,al" \
"mov al,0" \
"out dx,al" \
parm [dx] \
modify [al dx];

12.4 Variables in In-line Assembly Code
To finish our discussion, we provide examples that illustrate the use of variables in the in-line assembly
code. The following example illustrates the use of static variable references in the auxiliary pragma.

Example:
#include <stdio.h>

static short _rowcol;
static unsigned char _page;

extern void BIOSSetCurPos(void);
#pragma aux BIOSSetCurPos = \

"mov dx,_rowcol" \
"mov bh,_page" \
"push bp" \
"mov ah,2" \
"int 10h" \
"pop bp" \
modify [ah bx dx];

void main()
{

_rowcol = (5 << 8) | 20;
_page = 0;
BIOSSetCurPos();
printf("Hello world\n");

}

The only rule to follow here is that the auxiliary pragma must be defined after the variables are defined.
The in-line assembler is passed information regarding the sizes of variables so they must be defined first.

If we look at a fragment of the disassembled code, we can see the result.

Variables in In-line Assembly Code 197

In-line Assembly Language

_rowcol = (5 << 8) | 20;

0008 c7 06 00 00 14 05 mov word ptr __rowcol,0514H

_page = 0;
000e c6 06 00 00 00 mov byte ptr __page,00H

BIOSSetCurPos();
0013 8b 16 00 00 mov dx,__rowcol
0017 8a 3e 00 00 mov bh,__page
001b 55 push bp
001c b4 02 mov ah,02H
001e cd 10 int 10H
0020 5d pop bp

The following example illustrates the use of automatic variable references in the auxiliary pragma. Again,
the auxiliary pragma must be defined after the variables are defined so the pragma is placed in-line with the
function.

Example:
#include <stdio.h>

void main()
{

short _rowcol;
unsigned char _page;

extern void BIOSSetCurPos(void);
pragma aux BIOSSetCurPos = \

"mov dx,_rowcol" \
"mov bh,_page" \
"push bp" \
"mov ah,2" \
"int 10h" \
"pop bp" \
modify [ah bx dx];

_rowcol = (5 << 8) | 20;
_page = 0;
BIOSSetCurPos();
printf("Hello world\n");

}

If we look at a fragment of the disassembled code, we can see the result.

_rowcol = (5 << 8) | 20;
000e c7 46 fc 14 05 mov word ptr -4H[bp],0514H

_page = 0;
0013 c6 46 fe 00 mov byte ptr -2H[bp],00H

BIOSSetCurPos();
0017 8b 96 fc ff mov dx,-4H[bp]
001b 8a be fe ff mov bh,-2H[bp]
001f 55 push bp
0020 b4 02 mov ah,02H
0022 cd 10 int 10H
0024 5d pop bp

You should try to avoid references to automatic variables as illustrated by this last example. Referencing
automatic variables in this manner causes them to be marked as volatile and the optimizer will not be able
to do a good job of optimizing references to these variables.

198 Variables in In-line Assembly Code

In-line Assembly Language

12.5 In-line Assembly Language using _asm
There is an alternative to Open Watcom’s auxiliary pragma method for creating in-line assembly code.
You can use one of the _asm or __asm keywords to imbed assembly code into the generated code. The
following is a revised example of the cursor positioning example introduced above.

Example:
#include <stdio.h>

void main()
{

unsigned short _rowcol;
unsigned char _page;

_rowcol = (5 << 8) | 20;
_page = 0;
_asm {

mov dx,_rowcol
mov bh,_page
push bp
mov ah,2
int 10h
pop bp

};
printf("Hello world\n");

}

The assembly language sequence can reference program variables to retrieve or store results. There are a
few incompatibilities between Microsoft and Open Watcom implementation of this directive.

__LOCAL_SIZE is not supported by Open Watcom C/C++. This is illustrated in the following example.

Example:
void main()
{

int i;
int j;

_asm {
push bp
mov bp,sp
sub sp,__LOCAL_SIZE

};
}

structure references are not supported by Open Watcom C/C++. This is illustrated in the following
example.

In-line Assembly Language using _asm 199

In-line Assembly Language

Example:
#include <stdio.h>

struct rowcol {
unsigned char col;
unsigned char row;

};

void main()
{

struct rowcol _pos;
unsigned char _page;

_pos.row = 5;
_pos.col = 20;
_page = 0;
_asm {

mov dl,_pos.col
mov dh,_pos.row
mov bh,_page
push bp
mov ah,2
int 10h
pop bp

};
printf("Hello world\n");

}

12.6 In-line Assembly Directives and Opcodes
It is not the intention of this chapter to describe assembly-language programming in any detail. You should
consult a book that deals with this topic. However, we present a list of the directives, opcodes and register
names that are recognized by the assembler built into the compiler’s auxiliary pragma processor.

.186 .286 .286c .286p

.287 .386 .386p .387

.486 .486p .586 .586p

.686 .686p .8086 .8087
aaa aad aam aas
adc add addpd addps
addsd addss addsubpd addsubps
ah al and andnpd
andnps andpd andps arpl
ax bh bl bound
bp bsf bsr bswap
bt btc btr bts
bx byte c call
callf cbw cdq ch
cl clc cld clflush
cli clts cmc cmova
cmovae cmovb cmovbe cmovc
cmove cmovg cmovge cmovl
cmovle cmovna cmovnae cmovnb
cmovnbe cmovnc cmovne cmovng
cmovnge cmovnl cmovnle cmovno
cmovnp cmovns cmovnz cmovo

200 In-line Assembly Directives and Opcodes

In-line Assembly Language

cmovp cmovpe cmovpo cmovs
cmovz cmp cmpeqpd cmpeqps
cmpeqsd cmpeqss cmplepd cmpleps
cmplesd cmpless cmpltpd cmpltps
cmpltsd cmpltss cmpneqpd cmpneqps
cmpneqsd cmpneqss cmpnlepd cmpnleps
cmpnlesd cmpnless cmpnltpd cmpnltps
cmpnltsd cmpnltss cmpordpd cmpordps
cmpordsd cmpordss cmppd cmpps
cmps cmpsb cmpsd cmpss
cmpsw cmpunordpd cmpunordps cmpunordsd
cmpunordss cmpxchg cmpxchg8b comisd
comiss cpuid cr0 cr2
cr3 cr4 cs cvtdq2pd
cvtdq2ps cvtpd2dq cvtpd2pi cvtpd2ps
cvtpi2pd cvtpi2ps cvtps2dq cvtps2pd
cvtps2pi cvtsd2si cvtsd2ss cvtsi2sd
cvtsi2ss cvtss2sd cvtss2si cvttpd2dq
cvttpd2pi cvttps2dq cvttps2pi cvttsd2si
cvttss2si cwd cwde cx
daa das db dd
dec df dh di
div divpd divps divsd
divss dl dp dq
dr0 dr1 dr2 dr3
dr6 dr7 ds dt
dup dw dword dx
eax ebp ebx ecx
edi edx emms enter
es esi esp f2xm1
fabs fadd faddp far
fbld fbstp fchs fclex
fcmovb fcmovbe fcmove fcmovnb
fcmovnbe fcmovne fcmovnu fcmovu
fcom fcomi fcomip fcomp
fcompp fcos fdecstp fdisi
fdiv fdivp fdivr fdivrp
femms feni ffree fiadd
ficom ficomp fidiv fidivr
fild fimul fincstp finit
fist fistp fisttp fisub
fisubr flat fld fld1
fldcw fldenv fldenvd fldenvw
fldl2e fldl2t fldlg2 fldln2
fldpi fldz fmul fmulp
fnclex fndisi fneni fninit
fnop fnrstor fnrstord fnrstorw
fnsave fnsaved fnsavew fnstcw
fnstenv fnstenvd fnstenvw fnstsw
fpatan fprem fprem1 fptan
frndint frstor frstord frstorw
fs fsave fsaved fsavew
fscale fsetpm fsin fsincos
fsqrt fst fstcw fstenv
fstenvd fstenvw fstp fstsw
fsub fsubp fsubr fsubrp
ftst fucom fucomi fucomip
fucomp fucompp fwait fword
fxam fxch fxrstor fxsave

In-line Assembly Directives and Opcodes 201

In-line Assembly Language

fxtract fyl2x fyl2xp1 gs
haddpd haddps hlt hsubpd
hsubps idiv imul in
inc ins insb insd
insw int into invd
invlpg iret iretd iretdf
iretf ja jae jb
jbe jc jcxz je
jecxz jg jge jl
jle jmp jmpf jna
jnae jnb jnbe jnc
jne jng jnge jnl
jnle jno jnp jns
jnz jo jp jpe
jpo js jz .k3d
lahf lar lddqu ldmxcsr
lds lea leave les
lfence lfs lgdt lgs
lidt lldt lmsw lock
lods lodsb lodsd lodsw
loop loopd loope looped
loopew loopne loopned loopnew
loopnz loopnzd loopnzw loopw
loopz loopzd loopzw lsl
lss ltr maskmovdqu maskmovq
maxpd maxps maxsd maxss
mfence minpd minps minsd
minss mm0 mm1 mm2
mm3 mm4 mm5 mm6
mm7 .mmx monitor mov
movapd movaps movd movddup
movdq2q movdqa movdqu movhlps
movhpd movhps movlhps movlpd
movlps movmskpd movmskps movntdq
movnti movntpd movntps movntq
movq movq2dq movs movsb
movsd movshdup movsldup movss
movsw movsx movupd movups
movzx mul mulpd mulps
mulsd mulss mwait near
neg .no87 nop not
offset or orpd orps
out outs outsb outsd
outsw oword packssdw packsswb
packuswb paddb paddd paddq
paddsb paddsw paddusb paddusw
paddw pand pandn pause
pavgb pavgusb pavgw pcmpeqb
pcmpeqd pcmpeqw pcmpgtb pcmpgtd
pcmpgtw pextrw pf2id pf2iw
pfacc pfadd pfcmpeq pfcmpge
pfcmpgt pfmax pfmin pfmul
pfnacc pfpnacc pfrcp pfrcpit1
pfrcpit2 pfrsqit1 pfrsqrt pfsub
pfsubr pi2fd pi2fw pinsrw
pmaddwd pmaxsw pmaxub pminsw
pminub pmovmskb pmulhrw pmulhuw
pmulhw pmullw pmuludq pop
popa popad popf popfd

202 In-line Assembly Directives and Opcodes

In-line Assembly Language

por prefetch prefetchnta prefetcht0
prefetcht1 prefetcht2 prefetchw psadbw
pshufd pshufhw pshuflw pshufw
pslld pslldq psllq psllw
psrad psraw psrld psrldq
psrlq psrlw psubb psubd
psubq psubsb psubsw psubusb
psubusw psubw pswapd ptr
punpckhbw punpckhdq punpckhqdq punpckhwd
punpcklbw punpckldq punpcklqdq punpcklwd
push pusha pushad pushd
pushf pushfd pushw pword
pxor qword rcl rcpps
rcpss rcr rdmsr rdpmc
rdtsc rep repe repne
repnz rept repz ret
retd retf retfd retn
rol ror rsm rsqrtps
rsqrtss sahf sal sar
sbb scas scasb scasd
scasw seg seta setae
setb setbe setc sete
setg setge setl setle
setna setnae setnb setnbe
setnc setne setng setnge
setnl setnle setno setnp
setns setnz seto setp
setpe setpo sets setz
sfence sgdt shl shld
short shr shrd shufpd
shufps si sidt sldt
smsw sp sqrtpd sqrtps
sqrtsd sqrtss ss st
stc std stdcall sti
stmxcsr stos stosb stosd
stosw str sub subpd
subps subsd subss syscall
sysenter sysexit tbyte test
tr3 tr4 tr5 tr6
tr7 ucomisd ucomiss unpckhpd
unpckhps unpcklpd unpcklps verr
verw wait wbinvd word
wrmsr xadd xchg xlat
xlatb .xmm xmm0 xmm1
.xmm2 xmm2 .xmm3 xmm3
xmm4 xmm5 xmm6 xmm7
xor xorpd xorps

A separate assembler is also included with this product and is described in the Open Watcom C/C++ Tools
User’s Guide

In-line Assembly Directives and Opcodes 203

In-line Assembly Language

204 In-line Assembly Directives and Opcodes

Open Watcom Tools

Open Watcom Tools

206

The Open Watcom Linker

The Open Watcom Linker

208

13 The Open Watcom Linker

The Open Watcom Linker is a linkage editor (linker) that takes object and library files as input and
produces executable files as output. The following object module and library formats are supported by the
Open Watcom Linker.

• The standard Intel Object Module Format (OMF).

• Microsoft’s extensions to the standard Intel OMF.

• Phar Lap’s Easy OMF-386 object module format for linking 386 applications.

• The COFF object module format.

• The ELF object module format.

• The OMF library format.

• The AR (Microsoft compatible) object library format.

The Open Watcom Linker is capable of producing a number of executable file formats. The following lists
these executable file formats.

• DOS executable files

• ELF executable files

• executable files that run under CauseWay DOS extender, Tenberry Software’s DOS/4G and
DOS/4GW DOS extenders, and compatible products

• executable files that run under FlashTek’s DOS extender

• executable files that run under Phar Lap’s 386|DOS-Extender

• NetWare Loadable Modules (NLMs) that run under Novell’s NetWare operating system

• OS/2 executable files including Dynamic Link Libraries

• QNX executable files

• 16-bit Windows (Win16) executable files including Dynamic Link Libraries

• 32-bit Windows (Win32) executable files including Dynamic Link Libraries

• raw binary images

• Intel Hex files (Hex80, Hex86 and extended linear)

The Open Watcom Linker 209

The Open Watcom Linker

In addition to being able to generate the above executable file formats, the Open Watcom Linker also runs
under a variety of operating systems. Currently, the Open Watcom Linker runs under the following
operating systems.

• DOS

• OS/2

• QNX

• Windows NT/2000/XP

• Windows 95/98/Me

This guide describes only the QNX executable file format.

The Open Watcom Linker command line format is as follows.

wlink {directive}

where directive is a series of Open Watcom Linker directives specified on the command line or in one or
more files. If the directives are contained within a file, the "@" character is used to reference that file. If
no file extension is specified, a file extension of "lnk" is assumed.

Example:
wlink name testprog @first @second option map

In the above example, directives are specified on the command line (e.g., "name testprog" and "option
map") and in files (e.g., first.lnk and second.lnk).

13.1 Using the SYSTEM Directive
For each executable file format that can be created using the Open Watcom Linker, a specific SYSTEM
directive may be used. The SYSTEM directive selects a subset of the available directives necessary to
create each specific executable file format.

System Description

causeway 32-bit x86 CauseWay executable

com 16-bit x86 DOS ".COM" executable

dos 16-bit x86 DOS executable

dos4g 32-bit x86 DOS/4GW executable

dos4gnz non-zero based 32-bit x86 DOS/4GW executable

netware 32-bit x86 NetWare Loadable Module

210 Using the SYSTEM Directive

The Open Watcom Linker

novell synonym for "netware"

os2 16-bit x86 OS/2 executable

os2_dll 16-bit x86 OS/2 Dynamic Link Library

os2_pm 16-bit x86 OS/2 Presentation Manager executable

os2v2 32-bit x86 OS/2 executable

os2v2_dll 32-bit x86 OS/2 Dynamic Link Library

os2v2_pm 32-bit x86 OS/2 Presentation Manager executable

pharlap 32-bit x86 Phar Lap executable

tnt 32-bit x86 Phar Lap TNT dos style executable

qnx 16-bit x86 QNX executable

qnx386 32-bit x86 QNX executable

x32r 32-bit x86 FlashTek executable using register-based calling conventions

x32rv 32-bit x86 virtual-memory FlashTek executable using register-based calling conventions

x32s 32-bit x86 FlashTek executable using stack-based calling conventions

x32sv 32-bit x86 virtual-memory FlashTek executable using stack-based calling conventions

windows 16-bit x86 Windows 3.x executable

windows_dll 16-bit x86 Windows 3.x Dynamic Link Library

win95 32-bit x86 Windows 9x executable

win95 dll 32-bit x86 Windows 9x Dynamic Link Library

nt 32-bit x86 Windows NT character-mode executable

nt_win 32-bit x86 Windows NT windowed executable

win32 synonym for "nt_win"

nt_dll 32-bit x86 Windows NT Dynamic Link Library

win386 32-bit x86 Open Watcom extended Windows 3.x executable or Dynamic Link Library

The various systems that we have listed above are defined in special linker directive files which are plain
ASCII text files that you can edit. These files are called wlink.lnk and wlsystem.lnk.

The file wlink.lnk is a special linker directive file that is automatically processed by the Open Watcom
Linker before processing any other directives. On a DOS, OS/2, or Windows-hosted system, this file must
be located in one of the paths specified in the PATH environment variable. On a QNX-hosted system, this

Using the SYSTEM Directive 211

The Open Watcom Linker

file should be located in the /etc directory. A default version of this file is located in the
\watcom\binw directory on DOS-hosted systems, the \watcom\binp directory on OS/2-hosted
systems, the /etc directory on QNX-hosted systems, and the \watcom\binnt directory on Windows
95 or Windows NT-hosted systems. Note that the file wlink.lnk includes the file wlsystem.lnk
which is located in the \watcom\binw directory on DOS, OS/2, or Windows-hosted systems and the
/etc directory on QNX-hosted systems.

The files wlink.lnk and wlsystem.lnk reference the WATCOM environment variable which must
be set to the directory in which you installed your software.

The default name of the linker directive file (wlink.lnk) can be overridden by the WLINK_LNK
environment variable. If the specified file can’t be opened, the default file name will be used. For
example, if the WLINK_LNK environment variable is defined as follows

export WLINK_LNK=my.lnk

then the Open Watcom Linker will attempt to use a my.lnk directive file, and if that file cannot be
opened, the linker will revert to using the default wlink.lnk file.

13.2 Linking 16-bit QNX Executable Files
To create this type of file, use the following structure.

system qnx
option map
name app_name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The QNX Executable File Format" on page 289.

13.3 Linking 32-bit QNX Executable Files
To create this type of file, use the following structure.

system qnx386
option map
name app_name
file obj1, obj2, ...
library lib1, lib2, ...

For more information, see the chapter entitled "The QNX Executable File Format" on page 289.

212 Linking 32-bit QNX Executable Files

14 Linker Directives and Options

The Open Watcom Linker supports a large set of directives and options. The following sections present
these directives and options in alphabetical order.

Directives tell the Open Watcom Linker how to create your program. For example, using directives you
can tell the Open Watcom Linker which object files are to be included in the program, which library files to
search to resolve undefined references, and the name of the executable file.

The file wlink.lnk is a special linker directive file that is automatically processed by the Open Watcom
Linker before processing any other directives. On a DOS, OS/2, or Windows-hosted system, this file must
be located in one of the paths specified in the PATH environment variable. On a QNX-hosted system, this
file should be located in the /etc directory. A default version of this file is located in the
\watcom\binw directory on DOS-hosted systems, the \watcom\binp directory on OS/2-hosted
systems, the /etc directory on QNX-hosted systems, and the \watcom\binnt directory on Windows
95 or Windows NT-hosted systems. Note that the file wlink.lnk includes the file wlsystem.lnk
which is located in the \watcom\binw directory on DOS, OS/2, or Windows-hosted systems and the
/etc directory on QNX-hosted systems.

The files wlink.lnk and wlsystem.lnk reference the WATCOM environment variable which must
be set to the directory in which you installed your software.

The default name of the linker directive file (wlink.lnk) can be overridden by the WLINK_LNK
environment variable. If the specified file can’t be opened, the default file name will be used. For
example, if the WLINK_LNK environment variable is defined as follows

export WLINK_LNK=my.lnk

then the Open Watcom Linker will attempt to use a my.lnk directive file, and if that file cannot be
opened, the linker will revert to using the default wlink.lnk file.

It is also possible to use environment variables when specifying a directive. For example, if the LIBDIR
environment variable is defined as follows,

export libdir=/test

then the linker directive

library $libdir/mylib

is equivalent to the following linker directive.

library /test/mylib

Note that a space must precede a reference to an environment variable.

Many directives can take a list of one or more arguments separated by commas. Instead of a
comma-delimited list, you can specify a space-separated list provided the list is enclosed in braces (e.g., {

Linker Directives and Options 213

The Open Watcom Linker

space delimited list }). For example, the "FILE" directive can take a list of object file names as an
argument.

file first,second,third,fourth

The alternate way of specifying this is as follows.

file {first second third fourth}

Where this comes in handy is in make files, where a list of dependents is usually a space-delimited list.

OBJS = first second third fourth

.

.

.
wlink file {$(objs)}

The following notation is used to describe the syntax of linker directives and options.

ABC All items in upper case are required.

[abc] The item abc is optional.

{abc} The item abc may be repeated zero or more times.

{abc}+ The item abc may be repeated one or more times.

a|b|c One of a, b or c may be specified.

a ::= b The item a is defined in terms of b.

Certain characters have special meaning to the linker. When a special character must appear in a name, you
can imbed the string that makes up the name inside apostrophes (e.g., ’name@8’). This prevents the linker
from interpreting the special character in its usual manner. This is also true for file or path names that
contain spaces (e.g., ’\program files\software\mylib’). Normally, the linker would interpret a space or
blank in a file name as a separator. The special characters are listed below:

+-----------+-----------------------+
| Character | Name of Character |
+-----------+-----------------------+
	Blank
=	Equals
(Left Parenthesis
)	Right Parenthesis
,	Comma
.	Period
{	Left Brace
}	Right Brace
@	At Sign
#	Hash Mark
%	Percentage Symbol
+-----------+-----------------------+

214 Linker Directives and Options

ALIAS

14.1 The ALIAS Directive
The "ALIAS" directive is used to specify an equivalent name for a symbol name. The format of the
"ALIAS" directive (short form "A") is as follows.

ALIAS alias_name=symbol_name{, alias_name=symbol_name}

where description:

alias_name is the alias name.

symbol_name is the symbol name to which the alias name is mapped.

Consider the following example.

alias sine=mysine

When the linker tries to resolve the reference to sine, it will immediately substitute the name mysine for
sine and begin searching for the symbol mysine.

The ALIAS Directive 215

ARTIFICIAL

14.2 The ARTIFICIAL Option
The "ARTIFICIAL" option should only be used if you are developing a Open Watcom C++ application. A
Open Watcom C++ application contains many compiler-generated symbols. By default, the linker does not
include these symbols in the map file. The "ARTIFICIAL" option can be used if you wish to include these
compiler-generated symbols in the map file.

The format of the "ARTIFICIAL" option (short form "ART") is as follows.

OPTION ARTIFICIAL

216 The ARTIFICIAL Option

CACHE

14.3 The CACHE Option
The "CACHE" and "NOCACHE" options can be used to control caching of object and library files in
memory by the linker. When neither the "CACHE" nor "NOCACHE" option is specified, the linker will
only cache small libraries. Object files and large libraries are not cached. The "CACHE" and
"NOCACHE" options can be used to alter this default behaviour. The "CACHE" option enables the
caching of object files and large library files while the "NOCACHE" option disables all caching.

The format of the "CACHE" option (short form "CAC") is as follows.

OPTION CACHE

The format of the "NOCACHE" option (short form "NOCAC") is as follows.

OPTION NOCACHE

When linking large applications with many object files, caching object files will cause extensive use of
memory by the linker. On virtual memory systems such as OS/2, Windows NT or Windows 95, this can
cause extensive page file activity when real memory resources have been exhausted. This can degrade the
performance of other tasks on your system. For this reason, the OS/2 and Windows-hosted versions of the
linker do not perform object file caching by default. This does not imply that object file caching is not
beneficial. If your system has lots of real memory or the linker is running as the only task on the machine,
object file caching can certainly improve the performance of the linker.

On single-tasking environments such as DOS, the benefits of improved linker performance outweighs the
memory demands associated with object file caching. For this reason, object file caching is performed by
default on these systems. If the memory requirements of the linker exceed the amount of memory on your
system, the "NOCACHE" option can be specified.

The QNX operating system is a multi-tasking real-time operating system. However, it is not a virtual
memory system. Caching object files can consume large amounts of memory. This may prevent other
tasks on the system from running, a problem that may be solved by using the "NOCACHE" option.

The CACHE Option 217

CASEEXACT

14.4 The CASEEXACT Option
The "CASEEXACT" option tells the Open Watcom Linker to respect case when resolving references to
global symbols. That is, "ScanName" and "SCANNAME" represent two different symbols. This is the
default because the most commonly used languages (C, C++, FORTRAN) are case sensitive. The format of
the "CASEEXACT" option (short form "C") is as follows.

OPTION CASEEXACT

It is possible to override the default by using the "NOCASEEXACT" option. The "NOCASEEXACT"
option turns off case-sensitive linking. The format of the "NOCASEEXACT" option (short form
"NOCASE") is as follows.

OPTION NOCASEEXACT

You can specify the "NOCASEEXACT" option in the default directive files wlink.lnk or
wlsystem.lnk if required.

The file wlink.lnk is a special linker directive file that is automatically processed by the Open Watcom
Linker before processing any other directives. On a DOS, OS/2, or Windows-hosted system, this file must
be located in one of the paths specified in the PATH environment variable. On a QNX-hosted system, this
file should be located in the /etc directory. A default version of this file is located in the
\watcom\binw directory on DOS-hosted systems, the \watcom\binp directory on OS/2-hosted
systems, the /etc directory on QNX-hosted systems, and the \watcom\binnt directory on Windows
95 or Windows NT-hosted systems. Note that the file wlink.lnk includes the file wlsystem.lnk
which is located in the \watcom\binw directory on DOS, OS/2, or Windows-hosted systems and the
/etc directory on QNX-hosted systems.

The files wlink.lnk and wlsystem.lnk reference the WATCOM environment variable which must
be set to the directory in which you installed your software.

The default name of the linker directive file (wlink.lnk) can be overridden by the WLINK_LNK
environment variable. If the specified file can’t be opened, the default file name will be used. For
example, if the WLINK_LNK environment variable is defined as follows

export WLINK_LNK=my.lnk

then the Open Watcom Linker will attempt to use a my.lnk directive file, and if that file cannot be
opened, the linker will revert to using the default wlink.lnk file.

218 The CASEEXACT Option

COMMENT

14.5 The # Directive
The "#" directive is used to mark the start of a comment. All text from the "#" character to the end of the
line is considered a comment. The format of the "#" directive is as follows.

comment

where description:

comment is any sequence of characters.

The following directive file illustrates the use of comments.

file main, trigtest

Use my own version of "sin" instead of the
library version.

file mysin
library /math/trig

The # Directive 219

CVPACK

14.6 The CVPACK Option
This option is only meaningful when generating Microsoft CodeView debugging information. This option
causes the linker to automatically run the Open Watcom CodeView 4 Symbolic Debugging Information
Compactor, CVPACK, on the executable that it has created. This is necessary to get the CodeView
debugging information into a state where the Microsoft CodeView debugger will accept it.

The format of the "CVPACK" option (short form "CVP") is as follows.

OPTION CVPACK

For more information on generating CodeView debugging information into the executable, see the section
entitled "The DEBUG Directive" on page 221

220 The CVPACK Option

DEBUG

14.7 The DEBUG Directive
The "DEBUG" directive is used to tell the Open Watcom Linker to generate debugging information in the
executable file. This extra information in the executable file is used by the Open Watcom Debugger. The
format of the "DEBUG" directive (short form "D") is as follows.

DEBUG dbtype [dblist] |
DEBUG [dblist]

dbtype ::= DWARF | WATCOM | CODEVIEW | NOVELL
dblist ::= [db_option{,db_option}]
db_option ::= LINES | TYPES | LOCALS | ALL

DEBUG NOVELL only

db_option ::= ONLYEXPORTS | REFERENCED

The Open Watcom Linker supports four types of debugging information, "DWARF" (the default),
"WATCOM", "CODEVIEW", or "NOVELL".

DWARF (short form "D") specifies that all object files contain DWARF format debugging
information and that the executable file will contain DWARF debugging information.

This debugging format is assumed by default when none is specified.

WATCOM (short form "W") specifies that all object files contain Watcom format debugging
information and that the executable file will contain Watcom debugging information. This
format permits the selection of specific classes of debugging information (dblist) which are
described below.

CODEVIEW (short form "C") specifies that all object files contain CodeView (CV4) format debugging
information and that the executable file will contain CodeView debugging information.

It will be necessary to run the Microsoft Debugging Information Compactor, CVPACK, on
the executable that it has created. For information on requesting the linker to automatically
run CVPACK, see the section entitled "The CVPACK Option" on page 220 Alternatively,
you can run CVPACK from the command line.

NOVELL (short form "N") specifies a form of global symbol information that can only be processed
by the NetWare debugger.

Note: Except in rare cases, the most appropriate use of the "DEBUG" directive is specifying "DEBUG
ALL" (short form "D A") prior to any "FILE" or "LIBRARY" directives. This will cause the Open
Watcom Linker to emit all available debugging information in the default format.

For the Watcom debugging information format, we can be selective about the types of debugging
information that we include with the executable file. We can categorize the types of debugging information
as follows:

The DEBUG Directive 221

DEBUG

• global symbol information

• line numbering information

• local symbol information

• typing information

• NetWare global symbol information

The following options can be used with the "DEBUG WATCOM" directive to control which of the above
classes of debugging information is included in the executable file.

LINES (short form "LI") specifies line numbering and global symbol information.

LOCALS (short form "LO") specifies local and global symbol information.

TYPES (short form "T") specifies typing and global symbol information.

ALL (short form "A") specifies all of the above debugging information.

ONLYEXPORTS
(short form "ONL") restricts the generation of global symbol information to exported
symbols. This option may only be used with Netware executable formats.

The following options can be used with the "DEBUG NOVELL" directive to control which of the above
classes of debugging information is included in the executable file.

ONLYEXPORTS
(short form "ONL") restricts the generation of global symbol information to exported
symbols.

REFERENCED
(short form "REF") restricts the generation of symbol information to referenced symbols
only.

Note: The position of the "DEBUG" directive is important. The level of debugging information
specified in a "DEBUG" directive only applies to object files and libraries that appear in subsequent
"FILE" or "LIBRARY" directives. For example, if "DEBUG WATCOM ALL" was the only "DEBUG"
directive specified and was also the last linker directive, no debugging information would appear in the
executable file.

Only global symbol information is actually produced by the Open Watcom Linker; the other three classes
of debugging information are extracted from object modules and copied to the executable file. Therefore,
at compile time, you must instruct the compiler to generate local symbol, line numbering and typing
information in the object file so that the information can be transferred to the executable file. If you have
asked the Open Watcom Linker to produce a particular class of debugging information and it appears that
none is present, one of the following conditions may exist.

1. The debugging information is not present in the object files.
2. The "DEBUG" directive has been misplaced.

222 The DEBUG Directive

DEBUG

The following sections describe the classes of debugging information.

14.7.1 Line Numbering Information - DEBUG WATCOM LINES
The "DEBUG WATCOM LINES" option controls the processing of line numbering information. Line
numbering information is the line number and address of the generated code for each line of source code in
a particular module. This allows Open Watcom Debugger to perform source-level debugging. When the
Open Watcom Linker encounters a "DEBUG WATCOM" directive with a "LINES" or "ALL" option, line
number information for each subsequent object module will be placed in the executable file. This includes
all object modules extracted from object files specified in subsequent "FILE" directives and object modules
extracted from libraries specified in subsequent "LIBRARY" or "FILE" directives.

Note: All modules for which line numbering information is requested must have been compiled with
the "d1" or "d2" option.

A subsequent "DEBUG WATCOM" directive without a "LINES" or "ALL" option terminates the
processing of line numbering information.

14.7.2 Local Symbol Information - DEBUG WATCOM LOCALS
The "DEBUG WATCOM LOCALS" option controls the processing of local symbol information. Local
symbol information is the name and address of all symbols local to a particular module. This allows Open
Watcom Debugger to locate these symbols so that you can reference local data and routines by name.
When the Open Watcom Linker encounters a "DEBUG WATCOM" directive with a "LOCALS" or "ALL"
option, local symbol information for each subsequent object module will be placed in the executable file.
This includes all object modules extracted from object files specified in subsequent "FILE" directives and
object modules extracted from libraries specified in subsequent "LIBRARY" or "FILE" directives.

Note: All modules for which local symbol information is requested must have been compiled with the
"d2" option.

A subsequent "DEBUG WATCOM" directive without a "LOCALS" or "ALL" option terminates the
processing of local symbol information.

14.7.3 Typing Information - DEBUG WATCOM TYPES
The "DEBUG WATCOM TYPES" option controls the processing of typing information. Typing
information includes a description of all types, structures and arrays that are defined in a module. This
allows Open Watcom Debugger to display variables according to their type. When the Open Watcom
Linker encounters a "DEBUG WATCOM" directive with a "TYPES" or "ALL" option, typing information
for each subsequent object module will be placed in the executable file. This includes all object modules
extracted from object files specified in subsequent "FILE" directives and object modules extracted from
libraries specified in subsequent "LIBRARY" or "FILE" directives.

The DEBUG Directive 223

DEBUG

Note: All modules for which typing information is requested must have been compiled with the "d2"
option.

A subsequent "DEBUG WATCOM" directive without a "TYPES" or "ALL" option terminates the
processing of typing information.

14.7.4 All Debugging Information - DEBUG WATCOM ALL
The "DEBUG WATCOM ALL" option specifies that "LINES", "LOCALS", and "TYPES" options are
requested. The "LINES" option controls the processing of line numbering information. The "LOCALS"
option controls the processing of local symbol information. The "TYPES" option controls the processing
of typing information. Each of these options is described in a previous section. A subsequent "DEBUG
WATCOM " directive without an "ALL" option discontinues those options which are not specified in the
list of debug options.

14.7.5 Global Symbol Information
Global symbol information consists of all the global symbols in your program and their address. This
allows Open Watcom Debugger to locate these symbols so that you can reference global data and routines
by name. When the Open Watcom Linker encounters a "DEBUG" directive, global symbol information for
all the global symbols appearing in your program is placed in the executable file.

14.7.6 Global Symbols for the NetWare Debugger - DEBUG NOVELL
The NetWare operating system has a built-in debugger that can be used to debug programs. When
"DEBUG NOVELL" is specified, the Open Watcom Linker will generate global symbol information that
can be used by the NetWare debugger. Note that any line numbering, local symbol, and typing information
generated in the executable file will not be recognized by the NetWare debugger. Also, wstrip cannot be
used to remove this form of global symbol information from the executable file.

14.7.7 The ONLYEXPORTS Debugging Option
The "ONLYEXPORTS" option (short form "ONL") restricts the generation of global symbol information
to exported symbols (symbols appearing in an "EXPORT" directive). If "DEBUG WATCOM
ONLYEXPORTS" is specified, Open Watcom Debugger global symbol information is generated only for
exported symbols. If "DEBUG NOVELL ONLYEXPORTS" is specified, NetWare global symbol
information is generated only for exported symbols.

14.7.8 Using DEBUG Directives
Consider the following directive file.

debug watcom all
file module1
debug watcom lines
file module2, module3
debug watcom
library mylib

224 The DEBUG Directive

DEBUG

It specifies that the following debugging information is to be generated in the executable file.

1. global symbol information for your program

2. line numbering, typing and local symbol information for the following object files:

module1.o

3. line numbering information for the following object files:

module2.o
module3.o

Note that if the "DEBUG WATCOM" directive before the "LIBRARY" directive is not specified, line
numbering information for all object modules extracted from the library "mylib.lib" would be generated in
the executable file provided the object modules extracted from the library have line numbering information
present.

Note: A "DEBUG WATCOM" directive with no option suppresses the processing of line numbering,
local symbol and typing information for all subsequent object modules.

Debugging information can use a significant amount of disk space. As shown in the above example, you
can select only the class of debugging information you want and for those modules you wish to debug. In
this way, the amount of debugging information in the executable file is minimized and hence the amount of
disk space used by the executable file is kept to a minimum.

As you can see from the above example, the position of the "DEBUG WATCOM" directive is important
when describing the debugging information that is to appear in the executable file.

Note: If you want all classes of debugging information for all files to appear in the executable file you
must specify "DEBUG WATCOM ALL" before any "FILE" and "LIBRARY" directives.

14.7.9 Removing Debugging Information from an Executable File
A utility called wstrip has been provided which takes as input an executable file and removes the debugging
information placed in the executable file by the Open Watcom Linker. Note that global symbol information
generated using "DEBUG NOVELL" cannot be removed by wstrip.

For more information on this utility, see the chapter entitled "The Open Watcom Strip Utility" in the Open
Watcom C/C++ Tools User’s Guide or Open Watcom FORTRAN 77 Tools User’s Guide.

The DEBUG Directive 225

DISABLE

14.8 The DISABLE Directive
The "DISABLE" directive is used to disable the display of linker messages.

The Open Watcom Linker issues three classes of messages; fatal errors, errors and warnings. Each message
has a 4-digit number associated with it. Fatal messages start with the digit 3, error messages start with the
digit 2, and warning messages start with the digit 1. It is possible for a message to be issued as a warning
or an error.

If a fatal error occurs, the linker will terminate immediately and no executable file will be generated.

If an error occurs, the linker will continue to execute so that all possible errors are issued. However, no
executable file will be generated since these errors do not permit a proper executable file to be generated.

If a warning occurs, the linker will continue to execute. A warning message is usually informational and
does not prevent the creation of a proper executable file. However, all warnings should eventually be
corrected.

Note that the behaviour of the linker does not change when a message is disabled. For example, if a
message that normally terminates the linker is disabled, the linker will still terminate but the message
describing the reason for the termination will not be displayed. For this reason, you should only disable
messages that are warnings.

The linker will ignore the severity of the message number. For example, some messages can be displayed
as errors or warnings. It is not possible to disable the message when it is issued as a warning and display
the message when it is issued as an error. In general, do not specify the severity of the message when
specifying a message number.

The format of the "DISABLE" directive (short form "DISA") is as follows.

DISABLE msg_num{, msg_num}

where description:

msg_num is a message number. See the chapter entitled "Open Watcom Linker Diagnostic
Messages" on page 293 for a list of messages and their corresponding numbers.

The following "DISABLE" directive will disable message 28 (an undefined symbol has been referenced).

disable 28

226 The DISABLE Directive

DOSSEG

14.9 The DOSSEG Option
The "DOSSEG" option tells the Open Watcom Linker to order segments in a special way. The format of
the "DOSSEG" option (short form "D") is as follows.

OPTION DOSSEG

When the "DOSSEG" option is specified, segments will be ordered in the following way.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS" or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. This segment is initialized with the hexadecimal byte pattern "01" and is the first segment in
group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
data in segments belonging to group "DGROUP". Segments belonging to class "STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes "BSS" and
"STACK" are last in the segment ordering so that uninitialized data need not take space in the executable
file.

When using Open Watcom run-time libraries, it is not necessary to specify the "DOSSEG" option. One of
the object files in the Open Watcom run-time libraries contains a special record that specifies the
"DOSSEG" option.

If no "DOSSEG" option is specified, segments are ordered in the order they are encountered by the Open
Watcom Linker.

When the "DOSSEG" option is specified, the Open Watcom Linker defines two special variables. _edata
defines the start of the "BSS" class of segments and _end defines the end of the "BSS" class of segments.
Your program must not redefine these symbols.

The DOSSEG Option 227

ELIMINATE

14.10 The ELIMINATE Option
The "ELIMINATE" option can be used to enable dead code elimination. Dead code elimination is a
process the linker uses to remove unreferenced segments from the application. The linker will only remove
segments that contain code; unreferenced data segments will not be removed.

The format of the "ELIMINATE" option (short form "EL") is as follows.

OPTION ELIMINATE

Linking C/C++ Applications
Typically, a module of C/C++ code contains a number of functions. When this module is
compiled, all functions will be placed in the same code segment. The chances of each
function in the module being unreferenced are remote and the usefulness of the
"ELIMINATE" option is greatly reduced.

In order to maximize the effect of the "ELIMINATE" option, the "zm" compiler option is
available to tell the Open Watcom C/C++ compiler to place each function in its own code
segment. This allows the linker to remove unreferenced functions from modules that
contain many functions.

Note, that if a function is referenced by data, as in a jump table, the linker will not be able
to eliminate the code for the function even if the data that references it is unreferenced.

Linking FORTRAN 77 Applications
The Open Watcom FORTRAN 77 compiler always places each function and subroutine in
its own code segment, even if they are contained in the same module. Therefore when
linking with the "ELIMINATE" option the linker will be able to eliminate code on a
function/subroutine basis.

228 The ELIMINATE Option

ENDLINK

14.11 The ENDLINK Directive
The "ENDLINK" directive is used to indicate the end of a new set of linker commands that are to be
processed after the current set of commands has been processed. The format of the "ENDLINK" directive
(short form "ENDL") is as follows.

ENDLINK

The "STARTLINK" directive, described in "The STARTLINK Directive" on page 278, is used to indicate
the start of the set of commands.

The ENDLINK Directive 229

FARCALLS

14.12 The FARCALLS Option
The "FARCALLS" option tells the Open Watcom Linker to optimize Far Calls. This is the default setting
for Open Watcom Linker The format of the "FARCALLS" option (short form "FAR") is as follows.

OPTION FARCALLS

The "NOFARCALLS" option turns off Far Calls optimization. The format of the "NOFARCALLS" option
(short form "NOFAR") is as follows.

OPTION NOFARCALLS

You can specify the "NOFARCALLS" option in the default directive files wlink.lnk or
wlsystem.lnk if required.

The file wlink.lnk is a special linker directive file that is automatically processed by the Open Watcom
Linker before processing any other directives. On a DOS, OS/2, or Windows-hosted system, this file must
be located in one of the paths specified in the PATH environment variable. On a QNX-hosted system, this
file should be located in the /etc directory. A default version of this file is located in the
\watcom\binw directory on DOS-hosted systems, the \watcom\binp directory on OS/2-hosted
systems, the /etc directory on QNX-hosted systems, and the \watcom\binnt directory on Windows
95 or Windows NT-hosted systems. Note that the file wlink.lnk includes the file wlsystem.lnk
which is located in the \watcom\binw directory on DOS, OS/2, or Windows-hosted systems and the
/etc directory on QNX-hosted systems.

The files wlink.lnk and wlsystem.lnk reference the WATCOM environment variable which must
be set to the directory in which you installed your software.

The default name of the linker directive file (wlink.lnk) can be overridden by the WLINK_LNK
environment variable. If the specified file can’t be opened, the default file name will be used. For
example, if the WLINK_LNK environment variable is defined as follows

export WLINK_LNK=my.lnk

then the Open Watcom Linker will attempt to use a my.lnk directive file, and if that file cannot be
opened, the linker will revert to using the default wlink.lnk file.

230 The FARCALLS Option

FILE

14.13 The FILE Directive
The "FILE" directive is used to specify the object files and library modules that the Open Watcom Linker is
to process. The format of the "FILE" directive (short form "F") is as follows.

FILE obj_spec{,obj_spec}

obj_spec ::= obj_file[(obj_module)]
| library_file[(obj_module)]

where description:

obj_file is a file specification for the name of an object file. If no file extension is specified, a file
extension of "o" is assumed.

library_file is a file specification for the name of a library file. Note that the file extension of the
library file (usually "lib") must be specified; otherwise an object file will be assumed.
When a library file is specified, all object files in the library are included (whether required
or not).

obj_module is the name of an object module defined in an object or library file.

Consider the following example.

Example:
wlink system my_os f /math/sin, mycos

The Open Watcom Linker is instructed to process the following object files:

/math/sin.o
mycos.o

The object file "mycos.o" is located in the current directory since no path was specified.

More than one "FILE" directive may be used. The following example is equivalent to the preceding one.

Example:
wlink system my_os f /math/sin f mycos

Thus, other directives may be placed between lists of object files.

The "FILE" directive can also specify object modules from a library file or object file. Consider the
following example.

The FILE Directive 231

FILE

Example:
wlink system my_os f /math/math.lib(sin)

The Open Watcom Linker is instructed to process the object module "sin" contained in the library file
"math.lib" in the directory "/math".

In the following example, the Open Watcom Linker will process the object module "sin" contained in the
object file "math.o" in the directory "/math".

Example:
wlink system my_os f /math/math(sin)

In the following example, the Open Watcom Linker will include all object modules contained in the library
file "math.lib" in the directory "/math".

Example:
wlink system my_os f /math/math.lib

232 The FILE Directive

FILLCHAR

14.14 The FILLCHAR Option
The "FILLCHAR" option (short form "FILL") specifies the byte value used to fill gaps in the output image.

OPTION FILLCHAR=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a hexadecimal
number. If k is specified, the value is multiplied by 1024. If m is specified, the value is
multiplied by 1024*1024.

n specifies the value to be used in blank areas of the output image. The value must be in the range of 0 to
255, inclusive.

This option is most useful for raw binary output that will be programmed into an (E)EPROM where a value
of 255 (0xff) is preferred. The default value of n is zero.

The FILLCHAR Option 233

FORMAT

14.15 The FORMAT Directive
The "FORMAT" directive is used to specify the format of the executable file that the Open Watcom Linker
is to generate. The format of the "FORMAT" directive (short form "FORM") is as follows.

FORMAT form

form ::= DOS [COM]
| WINDOWS [win_dll] [MEMORY] [FONT]
| WINDOWS VXD [DYNAMIC]
| WINDOWS NT [TNT] [dll_attrs]
| OS2 [os2_type] [dll_attrs | os2_attrs]
| PHARLAP [EXTENDED | REX | SEGMENTED]
| NOVELL [NLM | LAN | DSK | NAM | ’number’] ’description’
| QNX [FLAT]
| ELF [DLL]

win_dll ::= DLL [INITGLOBAL | INITINSTANCE]

dll_attrs ::= DLL [INITGLOBAL | INITINSTANCE]
[TERMINSTANCE | TERMGLOBAL]

os2_type ::= FLAT | LE | LX

os2_attrs ::= PM | PMCOMPATIBLE | FULLSCREEN
| PHYSDEVICE | VIRTDEVICE

where description:

DOS (short form "D") tells the Open Watcom Linker to generate a DOS "EXE" file.

The name of the executable file will have extension "exe". If "COM" is specified, a DOS
"COM" file will be generated in which case the name of the executable file will have
extension "com". Note that these default extensions can be overridden by using the
"NAME" directive to name the executable file.

Not all programs can be generated in the "COM" format. The following rules must be
followed.

1. The program must consist of only one physical segment. This implies that the
size of the program (code and data) must be less than 64k.

2. The program must not contain any segment relocation. A warning message will
be issued by the Open Watcom Linker each time a segment relocation is
encountered.

A DOS "COM" file cannot contain debugging information. If you wish to debug a DOS
"COM" file, you must use the "SYMFILE" option to instruct the Open Watcom Linker to
place the debugging information in a separate file.

234 The FORMAT Directive

FORMAT

WINDOWS tells the Open Watcom Linker to generate a Win16 (16-bit Windows) executable file.

The name of the executable file will have extension "exe". If "DLL" (short form "DL") is
specified, a Dynamic Link Library will be generated; the name of the executable file will
also have extension "exe". Note that these default extensions can be overridden by using
the "NAME" directive to name the executable file.

Specifying "INITGLOBAL" (short form "INITG") will cause Windows to call an
initialization routine the first time the Dynamic Link Library is loaded. The
"INITGLOBAL" option should be used with "OPTION ONEAUTODATA" (the default for
Dynamic Link Libraries). If the "INITGLOBAL" option is used with "OPTION
MANYAUTODATA", the initialization code will be called once for the first data segment
allocated but not for subsequent allocations (this is generally not desirable behaviour and
will likely cause a program fault).

Specifying "INITINSTANCE" (short form "INITI") will cause Windows to call an
initialization routine each time the Dynamic Link Library is used by a process. The
"INITINSTANCE" option should be used with "OPTION MANYAUTODATA" (the
default for executable programs).

In either case, the initialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is assumed.

Specifying "MEMORY" (short form "MEM") indicates that the application will run in
standard or enhanced mode. If Windows 3.0 is running in standard and enhanced mode,
and "MEMORY" is not specified, a warning message will be issued. The "MEMORY"
specification was used in the transition from Windows 2.0 to Windows 3.0. The
"MEMORY" specification is ignored in Windows 3.1 or later.

Specifying "FONT" (short form "FO") indicates that the proportional-spaced system font
can be used. Otherwise, the old-style mono-spaced system font will be used. The "FONT"
specification was used in the transition from Windows 2.0 to Windows 3.0. The "FONT"
specification is ignored in Windows 3.1 or later.

WINDOWS VXD tells the Open Watcom Linker to generate a Windows VxD file (Virtual Device Driver).

The name of the file will have extension "386". Note that this default extension can be
overridden by using the "NAME" directive to name the driver file.

Specifying "DYNAMIC" (short form "DYN") , dynamicaly loadable driver will be
generated (only for Windows 3.11 or 9x). By default the Open Watcom Linker generate
staticaly loadable driver (for Windows 3.x or 9x).

WINDOWS NT tells the Open Watcom Linker to generate a Win32 executable file ("PE" format).

If "TNT" is specified, an executable for the Phar Lap TNT DOS extender is created. A
"PL" format (rather than "PE") executable is created so that the Phar Lap TNT DOS
extender will always run the application (including under Windows NT).

If "DLL" (short form "DL") is specified, a Dynamic Link Library will be generated in
which case the name of the executable file will have extension "dll". Note that these
default extensions can be overridden by using the "NAME" directive to name the
executable file.

The FORMAT Directive 235

FORMAT

Specifying "INITGLOBAL" (short form "INITG") will cause the initialization routine to be
called the first time the Dynamic Link Library is loaded.

Specifying "INITINSTANCE" (short form "INITI") will cause the initialization routine to
be called each time the Dynamic Link Library is referenced by a process.

In either case, the initialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is assumed.

It is also possible to specify whether the initialization routine is to be called at DLL
termination or not. Specifying "TERMGLOBAL" (short form "TERMG") will cause the
initialization routine to be called when the last instance of the Dynamic Link Library is
terminated. Specifying "TERMINSTANCE" (short form "TERMI") will cause the
initialization routine to be called each time an instance of the Dynamic Link Library is
terminated. Note that the initialization routine is passed an argument indicating whether it
is being called during DLL initialization or DLL termination. If "INITINSTANCE" is used
and no termination option is specified, "TERMINSTANCE" is assumed. If
"INITGLOBAL" is used and no termination option is specified, "TERMGLOBAL" is
assumed.

OS2 tells the Open Watcom Linker to generate an OS/2 executable file format.

The name of the executable file will have extension "exe". If "LE" is specified, an early
form of the OS/2 32-bit linear executable will be generated. This executable file format is
required by the CauseWay DOS extender, Tenberry Software’s DOS/4G and DOS/4GW
DOS extenders, and similar products.

In order to improve load time and minimize the size of the executable file, the OS/2 32-bit
linear executable file format was changed. If "LX" or "FLAT" (short form "FL") is
specified, the new form of the OS/2 32-bit linear executable will be generated. This
executable file format is required by the FlashTek DOS extender and 32-bit OS/2
executables.

If "FLAT", "LX" or "LE" is not specified, an OS/2 16-bit executable will be generated.

If "DLL" (short form "DL") is specified, a Dynamic Link Library will be generated in
which case the name of the executable file will have extension "dll". Note that these
default extensions can be overridden by using the "NAME" directive to name the
executable file.

Specifying "INITGLOBAL" (short form "INITG") will cause the initialization routine to be
called the first time the Dynamic Link Library is loaded. The "INITGLOBAL" option
should be used with "OPTION ONEAUTODATA" (the default for Dynamic Link
Libraries). If the "INITGLOBAL" option is used with "OPTION MANYAUTODATA",
the initialization code will be called once for the first data segment allocated but not for
subsequent allocations (this is generally not desirable behaviour and will likely cause a
program fault).

Specifying "INITINSTANCE" (short form "INITI") will cause the initialization routine to
be called each time the Dynamic Link Library is referenced by a process. The
"INITINSTANCE" option should be used with "OPTION MANYAUTODATA" (the
default for executable programs).

236 The FORMAT Directive

FORMAT

In either case, the initialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is assumed.

For OS/2 32-bit linear executable files, it is also possible to specify whether the
initialization routine is to be called at DLL termination or not. Specifying
"TERMGLOBAL" (short form "TERMG") will cause the initialization routine to be called
when the last instance of the Dynamic Link Library is terminated. Specifying
"TERMINSTANCE" (short form "TERMI") will cause the initialization routine to be called
each time an instance of the Dynamic Link Library is terminated. Note that the
initialization routine is passed an argument indicating whether it is being called during DLL
initialization or DLL termination. If "INITINSTANCE" is used and no termination option
is specified, "TERMINSTANCE" is assumed. If "INITGLOBAL" is used and no
termination option is specified, "TERMGLOBAL" is assumed.

If "PM" is specified, a Presentation Manager application will be created. The application
uses the API provided by the Presentation Manager and must be executed in the
Presentation Manager environment.

lf "PMCOMPATIBLE" (short form "PMC") is specified, an application compatible with
Presentation Manager will be created. The application can run inside the Presentation
Manager or it can run in a separate screen group. An application can be of this type if it
uses the proper subset of OS/2 video, keyboard, and mouse functions supported in the
Presentation Manager applications. This is the default.

If "FULLSCREEN" (short form "FULL") is specified, an OS/2 full screen application will
be created. The application will run in a separate screen group from the Presentation
Manager.

If "PHYSDEVICE" (short form "PHYS") is specified, the executable file is marked as a
physical device driver.

If "VIRTDEVICE" (short form "VIRT") is specified, the executable file is marked as a
virtual device driver.

PHARLAP (short form "PHAR") tells the Open Watcom Linker to generate an executable file that will
run under Phar Lap’s 386|DOS-Extender.

There are 4 forms of executable files: simple, extended, relocatable and segmented. If
"EXTENDED" (short form "EXT") is specified, an extended form of the executable file
with file extension "exp" will be generated. If "REX" is specified, a relocatable executable
file with file extension "rex" will be generated. If "SEGMENTED" (short form "SEG") is
specified, a segmented executable file with file extension "exp" will be generated. If
neither "EXTENDED", "REX" or "SEGMENTED" is specified, a simple executable file
with file extension "exp" will be generated. Note that the default file extensions can be
overridden by using the "NAME" directive to name the executable file.

The simple form is for flat model 386 applications. It is the only format that can be loaded
by earlier versions of 386|DOS-Extender (earlier than 1.2).

The extended form is used for flat model applications that have been linked in a way which
requires a method of specifying more information for 386|DOS-Extender than possible with
the simple form.

The FORMAT Directive 237

FORMAT

The relocatable form is similar to the simple form. Unique to the relocatable form is an
offset relocation table. This allows the loader to load the program at any location it
chooses.

The segmented form is used for embedded system applications like Intel RMX. These
executables cannot be loaded by 386|DOS-Extender.

A simple form of the executable file is generated in all but the following cases.

1. "EXTENDED" is specified in the "FORMAT" directive.

2. The "RUNTIME" directive is specified. Options specified by the "RUNTIME"
directive can only be specified in the extended form of the executable file.

3. The "OFFSET" option is specified. The value specified in the "OFFSET" option
can only be specified in the extended form of the executable file.

4. "REX" is specified in the "FORMAT" directive. In this case, the relocatable
form will be generated. You must not specify the "RUNTIME" directive or the
"OFFSET" option when generating the relocatable form.

5. "SEGMENTED" is specified in the "FORMAT" directive. In this case, the
segmented form will be generated.

NOVELL (short form "NOV") tells the Open Watcom Linker to generate a NetWare executable file,
more commonly called a NetWare Loadable Module (NLM).

NLMs are further classified according to their function. The executable file will have a file
extension that depends on the class of the NLM being generated. The following describes
the classification of NLMs.

LAN instructs the Open Watcom Linker to generate a LAN driver. A LAN
driver is a device driver for Local Area Network hardware. A file
extension of "lan" is used for the name of the executable file.

DSK instructs the Open Watcom Linker to generate a disk driver. A file
extension of "dsk" is used for the name of the executable file.

NAM instructs the Open Watcom Linker to generate a file system name-space
support module. A file extension of "nam" is used for the name of the
executable file.

MSL instructs the Open Watcom Linker to generate a Mirrored Server Link
module. The default file extension is "msl"

CDM instructs the Open Watcom Linker to generate a Custom Device module.
The default file extension is "cdm"

HAM instructs the Open Watcom Linker to generate a Host Adapter module. The
default file extension is "ham"

NLM instructs the Open Watcom Linker to generate a utility or server
application. This is the default. A file extension of "nlm" is used for the
name of the executable file.

238 The FORMAT Directive

FORMAT

’number’ instructs the Open Watcom Linker to generate a specific type of NLM
using ’number’. This is a 32 bit value that corresponds to Novell allocated
NLM types.

These are the current defined values:

0 Specifies a standard NLM (default extension .NLM)

1 Specifies a disk driver module (default extension .DSK)

2 Specifies a namespace driver module (default extension
.NAM)

3 Specifies a LAN driver module (default extension .LAN)

4 Specifies a utility NLM (default extension .NLM)

5 Specifies a Mirrored Server Link module (default .MSL)

6 Specifies an Operating System module (default .NLM)

7 Specifies a Page High OS module (default .NLM)

8 Specifies a Host Adapter module (default .HAM)

9 Specifies a Custom Device module (default .CDM)

10 Reserved for Novell usage

11 Reserved for Novell usage

12 Specifies a Ghost module (default .NLM)

13 Specifies an SMP driver module (default .NLM)

14 Specifies a NIOS module (default .NLM)

15 Specifies a CIOS CAD type module (default .NLM)

16 Specifies a CIOS CLS type module (default .NLM)

21 Reserved for Novell NICI usage

22 Reserved for Novell NICI usage

23 Reserved for Novell NICI usage

24 Reserved for Novell NICI usage

25 Reserved for Novell NICI usage

26 Reserved for Novell NICI usage

The FORMAT Directive 239

FORMAT

27 Reserved for Novell NICI usage

28 Reserved for Novell NICI usage

description is a textual description of the program being linked.

QNX tells the Open Watcom Linker to generate a QNX executable file.

If "FLAT" (short form "FL") is specified, a 32-bit flat executable file is generated.

Under QNX, no file extension is added to the executable file name.

Under other operating systems, the name of the executable file will have the extension
"qnx". Note that this default extension can be overridden by using the "NAME" directive
to name the executable file.

For more information on QNX executable file formats, see the chapter entitled "The QNX
Executable File Format" on page 289.

ELF tells the Open Watcom Linker to generate an ELF format executable file.

ELF format DLLs can also be created.

If no "FORMAT" directive is specified, the executable file format will be selected for each of the following
host systems in the way described.

DOS If 16-bit object files are encountered, a 16-bit DOS executable will be created. If 32-bit
object files are encountered, a 32-bit DOS/4G executable will be created.

OS/2 If 16-bit object files are encountered, a 16-bit OS/2 executable will be created. If 32-bit
object files are encountered, a 32-bit OS/2 executable will be created.

QNX If 16-bit object files are encountered, a 16-bit QNX executable will be created. If 32-bit
object files are encountered, a 32-bit QNX executable will be created.

Windows NT If 16-bit object files are encountered, a 16-bit Windows executable will be created. If
32-bit object files are encountered, a 32-bit Win32 executable will be created.

Windows 95 If 16-bit object files are encountered, a 16-bit Windows executable will be created. If
32-bit object files are encountered, a 32-bit Win32 executable will be created.

240 The FORMAT Directive

INCLUDE

14.16 The @ Directive
The "@" directive instructs the Open Watcom Linker to process directives from an alternate source. The
format of the "@" directive is as follows.

@directive_var
or

@directive_file

where description:

directive_var is the name of an environment variable. The directives specified by the value of
directive_var will be processed.

directive_file is a file specification for the name of a linker directive file. A file extension of "lnk" is
assumed if no file extension is specified.

The environment variable approach to specifying linker directives allows you to specify commonly used
directives without having to specify them each time you invoke the Open Watcom Linker. If the
environment variable "wlink" is set as in the following example,

export wlink=debug watcom all option map, verbose library math
wlink @wlink

then each time the Open Watcom Linker is invoked, full debugging information will be generated, a
verbose map file will be created, and the library file "math.lib" will be searched for undefined references.

A linker directive file is useful, for example, when the linker input consists of a large number of object files
and you do not want to type their names on the command line each time you link your program. Note that a
linker directive file can also include other linker directive files.

Let the file "memos.lnk" be a directive file containing the following lines.

system my_os
name memos
file memos
file actions
file read
file msg
file prompt
file memmgr
library /termio/screen
library /termio/keyboard

Win16 only: We must also use the "EXPORT" directive to define the window function. This is done
using the following directive.

export window_function

Consider the following example.

The @ Directive 241

INCLUDE

Example:
wlink @memos

The Open Watcom Linker is instructed to process the contents of the directive file "memos.lnk". The
executable image file will be called "memos.exe". The following object files will be loaded from the
current directory.

memos.o
actions.o
read.o
msg.o
prompt.o
memmgr.o

If any unresolved symbol references remain after all object files have been processed, the library files
"screen.lib" and "keyboard.lib" in the directory "/termio" will be searched (in the order listed).

Notes:

1. In the above example, we did not provide the file extension when the directive file was specified.
The Open Watcom Linker assumes a file extension of "lnk" if none is present.

2. It is not necessary to list each object file and library with a separate directive. The following
linker directive file is equivalent.

system my_os
name memos
file memos,actions,read,msg,prompt,memmgr
library /termio/screen,/termio/keyboard

However, if you want to selectively specify what debugging information should be included, the
first style of directive file will be easier to use. This is illustrated in the following sample
directive file.

system my_os
name memos
debug watcom lines
file memos
debug watcom all
file actions
debug watcom lines
file read
file msg
file prompt
file memmgr
debug watcom
library /termio/screen
library /termio/keyboard

3. Information for a particular directive can span directive files. This is illustrated in the following
sample directive file.

system my_os
file memos, actions, read, msg, prompt, memmgr
file @dbgfiles
library /termio/screen
library /termio/keyboard

242 The @ Directive

INCLUDE

The directive file "dbgfiles.lnk" contains, for example, those object files that are used for
debugging purposes.

The @ Directive 243

LANGUAGE

14.17 The LANGUAGE Directive
The "LANGUAGE" directive is used to specify the language in which strings in the Open Watcom Linker
directives are specified. The format of the "LANGUAGE" directive (short form "LANG") is as follows.

LANGUAGE lang

lang ::= JAPANESE | CHINESE | KOREAN

JAPANESE (short form "JA") specifies that strings are to be handled as if they contained characters
from the Japanese Double-Byte Character Set (DBCS).

CHINESE (short form "CH") specifies that strings are to be handled as if they contained characters
from the Chinese Double-Byte Character Set (DBCS).

KOREAN (short form "KO") specifies that strings are to be handled as if they contained characters
from the Korean Double-Byte Character Set (DBCS).

244 The LANGUAGE Directive

LIBFILE

14.18 The LIBFILE Directive
The "LIBFILE" directive is used to specify the object files that the Open Watcom Linker is to process. The
format of the "LIBFILE" directive (short form "LIBF") is as follows.

LIBFILE obj_spec{,obj_spec}

obj_spec ::= obj_file | library_file

where description:

obj_file is a file specification for the name of an object file. If no file extension is specified, a file
extension of "o" is assumed.

library_file is a file specification for the name of a library file. Note that the file extension of the
library file (usually "lib") must be specified; otherwise an object file will be assumed.
When a library file is specified, all object files in the library are included (whether required
or not).

The difference between the "LIBFILE" directive and the "FILE" directive is as follows.

1. When searching for an object or library file specified in a "LIBFILE" directive, the current
working directory will be searched first, followed by the paths specified in the "LIBPATH"
directive, and finally the paths specified in the "LIB" environment variable. Note that if the
object or library file name contains a path, only the specified path will be searched.

2. Object or library file names specified in a "LIBFILE" directive will not be used to create the
name of the executable file when no "NAME" directive is specified.

Essentially, object files that appear in "LIBFILE" directives are viewed as components of a library that
have not been explicitly placed in a library file.

Consider the following linker directive file.

libpath /libs
libfile mystart
path /objs
file file1, file2

The Open Watcom Linker is instructed to process the following object files:

/libs/mystart.o
/objs/file1.o
/objs/file2.o

Note that the executable file will have file name "file1" and not "mystart".

The LIBFILE Directive 245

LIBPATH

14.19 The LIBPATH Directive
The "LIBPATH" directive is used to specify the directories that are to be searched for library files
appearing in subsequent "LIBRARY" directives and object files appearing in subsequent "LIBFILE"
directives. The format of the "LIBPATH" directive (short form "LIBP") is as follows.

LIBPATH [path_name{:path_name}]

where description:

path_name is a path name.

Consider a directive file containing the following linker directives.

file test
libpath /math
library trig
libfile newsin

First, the Open Watcom Linker will process the object file "test.o" from the current working directory. The
object file "newsin.o" will then be processed, searching the current working directory first. If "newsin.o" is
not in the current working directory, the "/math" directory will be searched. If any unresolved references
remain after processing the object files, the library file "trig.lib" will be searched. If the file "trig.lib" does
not exist in the current working directory, the "/math" directory will be searched.

It is also possible to specify a list of paths in a "LIBPATH" directive. Consider the following example.

libpath /newmath:/math
library trig

When processing undefined references, the Open Watcom Linker will attempt to process the library file
"trig.lib" in the current working directory. If "trig.lib" does not exist in the current working directory, the
"/newmath" directory will be searched. If "trig.lib" does not exist in the "/newmath" directory, the "/math"
directory will be searched.

If the name of a library file appearing in a "LIBRARY" directive or the name of an object file appearing in
a "LIBFILE" directive contains a path specification, only the specified path will be searched.

Note that

libpath path1
libpath path2

is equivalent to the following.

libpath path2:path1

246 The LIBPATH Directive

LIBRARY

14.20 The LIBRARY Directive
The "LIBRARY" directive is used to specify the library files to be searched when unresolved symbols
remain after processing all specified input object files. The format of the "LIBRARY" directive (short form
"L") is as follows.

LIBRARY library_file{,library_file}

where description:

library_file is a file specification for the name of a library file. If no file extension is specified, a file
extension of "lib" is assumed.

Consider the following example.

Example:
wlink system my_os file trig lib /math/trig, /cmplx/trig

The Open Watcom Linker is instructed to process the following object file:

trig.o

If any unresolved symbol references remain after all object files have been processed, the following library
files will be searched:

/math/trig.lib
/cmplx/trig.lib

More than one "LIBRARY" directive may be used. The following example is equivalent to the preceding
one.

Example:
wlink system my_os f trig lib /math/trig lib /cmplx/trig

Thus other directives may be placed between lists of library files.

14.20.1 Searching for Libraries Specified in Environment Variables
The "LIB" environment variable can be used to specify a list of paths that will be searched for library files.
The "LIB" environment variable can be set using the "export" command as follows:

export lib=/graphics/lib:/utility

Consider the following "LIBRARY" directive and the above definition of the "LIB" environment variable.

library /mylibs/util, graph

If undefined symbols remain after processing all object files specified in all "FILE" directives, the Open
Watcom Linker will resolve these references by searching the following libraries in the specified order.

1. the library file "/mylibs/util.lib"

The LIBRARY Directive 247

LIBRARY

2. the library file "graph.lib" in the current directory
3. the library file "/graphics/lib/graph.lib"
4. the library file "/utility/graph.lib"

Notes:

1. If a library file specified in a "LIBRARY" directive contains an absolute path specification, the
Open Watcom Linker will not search any of the paths specified in the "LIB" environment string
for the library file. Under QNX, an absolute path specification is one that begins the "/"
character. Under all other operating systems, an absolute path specification is one that begins
with a drive specification or the "\" character.

2. Once a library file has been found, no further elements of the "LIB" environment variable are
searched for other libraries of the same name. That is, if the library file "/graphics/lib/graph.lib"
exists, the library file "/utility/graph.lib" will not be searched even though unresolved references
may remain.

14.20.2 Converting Libraries Created using Phar Lap 386|LIB
Phar Lap’s librarian, 386|LIB, creates libraries whose dictionary is a different format from the one used by
other librarians. For this reason, linking an application using the Open Watcom Linker with libraries
created using 386|LIB will not work. Library files created using 386|LIB must be converted to the form
recognized by the Open Watcom Linker. This is achieved by issuing the following wlib command.

wlib newlib +pharlib.lib

The library file "pharlib.lib" is a library created using 386|LIB. The library file "newlib.lib" will be created
so that the Open Watcom Linker can now process it.

248 The LIBRARY Directive

LINEARRELOCS (QNX)

14.21 The LINEARRELOCS Option
The "LINEARRELOCS" option instructs the linker to generate offset fixups in addition to the normal
segment fixups. The offset fixups allow the system to move pieces of code and data that were loaded at a
particular offset within a segment to another offset within the same segment.

The format of the "LINEARRELOCS" option (short form "LI") is as follows.

OPTION LINEARRELOCS

The LINEARRELOCS Option 249

LONGLIVED (QNX)

14.22 The LONGLIVED Option
The "LONGLIVED" option specifies that the application being linked will reside in memory, or be active,
for a long period of time (e.g., background tasks). The memory manager, knowing an application is
"LONGLIVED", allocates memory for the application so as to reduce fragmentation.

The format of the "LONGLIVED" option (short form "LO") is as follows.

OPTION LONGLIVED

250 The LONGLIVED Option

MANGLEDNAMES

14.23 The MANGLEDNAMES Option
The "MANGLEDNAMES" option should only be used if you are developing a Open Watcom C++
application. Due to the nature of C++, the Open Watcom C++ compiler generates mangled names for
symbols. A mangled name for a symbol includes the following.

1. symbol name
2. scoping information
3. typing information

This information is stored in a cryptic form with the symbol. When the linker encounters a mangled name
in an object file, it formats the above information and produces this name in the map file.

If you would like the linker to produce the mangled name as it appeared in the object file, specify the
"MANGLEDNAMES" option.

The format of the "MANGLEDNAMES" option (short form "MANG") is as follows.

OPTION MANGLEDNAMES

The MANGLEDNAMES Option 251

MAP

14.24 The MAP Option
The "MAP" option controls the generation of a map file. The format of the "MAP" option (short form "M")
is as follows.

OPTION MAP[=map_file]

where description:

map_file is a file specification for the name of the map file. If no file extension is specified, a file
extension of "map" is assumed.

By default, no map file is generated. Specifying this option causes the Open Watcom Linker to generate a
map file. The map file is simply a memory map of your program. That is, it specifies the relative location
of all global symbols in your program. The map file also contains the size of your program.

If no file name is specified, the map file will have a default file extension of "map" and the same file name
as the executable file. Note that the map file will be created in the current directory even if the executable
file name specified in the "NAME" directive contains a path specification.

Alternatively, a file name can be specified. The following directive instructs the linker to generate a map
file and call it "myprog.map" regardless of the name of the executable file.

option map=myprog

You can also specify a path and/or file extension when using the "MAP=" form of the "MAP" option.

252 The MAP Option

MAXERRORS

14.25 The MAXERRORS Option
The "MAXERRORS" option can be used to set a limit on the number of error messages generated by the
linker. Note that this does not include warning messages. When this limit is reached, the linker will issue a
fatal error and terminate.

The format of the "MAXERRORS" option (short form "MAXE") is as follows.

OPTION MAXERRORS=n

where description:

n is the maximum number of error messages issued by the linker.

The MAXERRORS Option 253

MODFILE

14.26 The MODFILE Directive
The "MODFILE" directive instructs the linker that only the specified object files have changed. The format
of the "MODFILE" directive (short form "MODF") is as follows.

MODFILE obj_file{,obj_file}

where description:

obj_file is a file specification for the name of an object file. If no file extension is specified, a file
extension of "o" is assumed.

This directive is used only in concert with incremental linking. This directive tells the linker that only the
specified object files have changed. When this option is specified, the linker will not check the dates on
any of the object files or libraries when incrementally linking.

254 The MODFILE Directive

MODTRACE

14.27 The MODTRACE Directive
The "MODTRACE" directive instructs the Open Watcom Linker to print a list of all modules that reference
the symbols defined in the specified modules. The format of the "MODTRACE" directive (short form
"MODT") is as follows.

MODTRACE module_name{,module_name}

where description:

module_name is the name of an object module defined in an object or library file.

The information is displayed in the map file. Consider the following example.

Example:
wlink system my_os op map file test lib math modt trig

If the module "trig" defines the symbols "sin" and "cos", the Open Watcom Linker will list, in the map file,
all modules that reference the symbols "sin" and "cos".

The MODTRACE Directive 255

NAME

14.28 The NAME Directive
The "NAME" directive is used to provide a name for the executable file generated by the Open Watcom
Linker. The format of the "NAME" directive (short form "N") is as follows.

NAME exe_file

where description:

exe_file is a file specification for the name of the executable file. Under UNIX, or if the
"NOEXTENSION" option was specified, no file extension is appended. In all other cases,
a file extension suitable for the current executable file format is appended if no file
extension is specified.

Consider the following example.

Example:
wlink system my_os name myprog file test, test2, test3

The linker is instructed to generate an executable file called "myprog.exe" if you are running a DOS, OS/2
or Windows-hosted version of the linker. If you are running a UNIX-hosted version of the linker, or the
"NOEXTENSION" option was specified, an executable file called "myprog" will be generated.

Notes:

1. No file extension was given when the executable file name was specified. The linker assumes a
file extension that depends on the format of the executable file being generated. If you are
running a UNIX-hosted version of the linker, or the "NOEXTENSION" option was specified, no
file extension will be assumed. The section entitled "The FORMAT Directive" on page 234
describes the "FORMAT" directive and how the file extension is chosen for each executable file
format.

2. If no "NAME" directive is present, the executable file will have the file name of the first object
file processed by the linker. If the first object file processed is called "test.o" and no "NAME"
directive is specified, an executable file called "test.exe" will be generated if you are running a
DOS or OS/2-hosted version of the linker. If you are running a UNIX-hosted version of the
linker, or the "NOEXTENSION" option was used, an executable file called "test" will be
generated.

256 The NAME Directive

NAMELEN

14.29 The NAMELEN Option
The "NAMELEN" option tells the Open Watcom Linker that all symbols must be uniquely identified in the
number of characters specified or less. If any symbol fails to satisfy this condition, a warning message will
be issued. The warning message will state that a symbol has been defined more than once.

The format of the "NAMELEN" option (short form "NAMEL") is as follows.

OPTION NAMELEN=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a hexadecimal
number. If k is specified, the value is multiplied by 1024. If m is specified, the value is
multiplied by 1024*1024.

Some computer systems, for example, require that all global symbols be uniquely identified in 8 characters.
By specifying an appropriate value for the "NAMELEN" option, you can ease the task of porting your
application to other computer systems.

The NAMELEN Option 257

NODEFAULTLIBS

14.30 The NODEFAULTLIBS Option
Special object module records that specify default libraries are placed in object files generated by Open
Watcom compilers. These libraries reflect the memory and floating-point model that a source file was
compiled for and are automatically searched by the Open Watcom Linker when unresolved symbols are
detected. These libraries can exist in the current directory, in one of the paths specified in "LIBPATH"
directives, or in one of the paths specified in the LIB environment variable.

Note that all library files that appear in a "LIBRARY" directive are searched before default libraries. The
"NODEFAULTLIBS" option instructs the Open Watcom Linker to ignore default libraries. That is, only
libraries appearing in a "LIBRARY" directive are searched.

The format of the "NODEFAULTLIBS" option (short form "NOD") is as follows.

OPTION NODEFAULTLIBS

258 The NODEFAULTLIBS Option

NOEXTENSION

14.31 The NOEXTENSION Option
The "NOEXTENSION" option suppresses automatic addition of an extension to the name of the executable
file generated by Open Watcom Linker. This affects both names specified explicitly through the "NAME"
directive as well as default names chosen in the absence of a "NAME" directive.

The format of the "NOEXTENSION" option (short form "NOEXT") is as follows.

OPTION NOEXTENSION

The NOEXTENSION Option 259

OPTION

14.32 The OPTION Directive
The "OPTION" directive is used to specify options to the Open Watcom Linker. The format of the
"OPTION" directive (short form "OP") is as follows.

OPTION option{,option}

where description:

option is any of the linker options available for the executable format that is being generated.

260 The OPTION Directive

OPTLIB

14.33 The OPTLIB Directive
The "OPTLIB" directive is used to specify the library files to be searched when unresolved symbols remain
after processing all specified input object files. The format of the "OPTLIB" directive (no short form) is as
follows.

OPTLIB library_file{,library_file}

where description:

library_file is a file specification for the name of a library file. If no file extension is specified, a file
extension of "lib" is assumed.

This directive is similar to the "LIBRARY" directive except that the linker will not issue a warning
message if the library file cannot be found.

Consider the following example.

Example:
wlink system my_os file trig optlib /math/trig, /cmplx/trig

The Open Watcom Linker is instructed to process the following object file:

trig.o

If any unresolved symbol references remain after all object files have been processed, the following library
files will be searched:

/math/trig.lib
/cmplx/trig.lib

More than one "OPTLIB" directive may be used. The following example is equivalent to the preceding
one.

Example:
wlink system my_os f trig optlib /math/trig optlib /cmplx/trig

Thus other directives may be placed between lists of library files.

14.33.1 Searching for Optional Libraries Specified in Environment Variables
The "LIB" environment variable can be used to specify a list of paths that will be searched for library files.
The "LIB" environment variable can be set using the "export" command as follows:

export lib=/graphics/lib:/utility

Consider the following "OPTLIB" directive and the above definition of the "LIB" environment variable.

optlib /mylibs/util, graph

The OPTLIB Directive 261

OPTLIB

If undefined symbols remain after processing all object files specified in all "FILE" directives, the Open
Watcom Linker will resolve these references by searching the following libraries in the specified order.

1. the library file "/mylibs/util.lib"
2. the library file "graph.lib" in the current directory
3. the library file "/graphics/lib/graph.lib"
4. the library file "/utility/graph.lib"

Notes:

1. If a library file specified in a "OPTLIB" directive contains an absolute path specification, the
Open Watcom Linker will not search any of the paths specified in the "LIB" environment string
for the library file. On UNIX platforms, an absolute path specification is one that begins the "/"
character. On all other hosts, an absolute path specification is one that begins with a drive
specification or the "\" character.

2. Once a library file has been found, no further elements of the "LIB" environment variable are
searched for other libraries of the same name. That is, if the library file "/graphics/lib/graph.lib"
exists, the library file "/utility/graph.lib" will not be searched even though unresolved references
may remain.

262 The OPTLIB Directive

ORDER

14.34 The ORDER Directive
The "ORDER" directive is used to specify the order in which classes are placed into the output image, and
the order in which segments are linked within a class. The directive can optionally also specify the starting
address of a class or segment, control whether the segment appears in the output image, and facilitate
copying of data from one segment to another. The "ORDER" Directive is primarily intended for embedded
(ROMable) targets that do not run under an operating system, or for other special purpose applications.
The format of the "ORDER" directive (short form "ORD") is as follows.

ORDER {CLNAME class_name [class_options]}+

class_options ::= [SEGADDR=n][OFFSET=n][copy_option][NOEMIT]{seglist}
copy_option ::= [COPY source_class_name]
seglist := {SEGMENT seg_name [SEGADDR=n][OFFSET=n][NOEMIT]}+

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a hexadecimal
number. If k is specified, the value is multiplied by 1024. If m is specified, the value is
multiplied by 1024*1024.

class_name is the name of a class defined in one or more object files. If the class is not defined in an
object file, the class_name and all associated options are ignored. Note that the "ORDER"
directive does not create classes or segments. Classes specified with "CLNAME"
keywords will be placed in the output image in the order listed. Any classes that are not
listed will be placed after the listed ones.

SEGADDR=n (short form "SEGA") specifies the segment portion of the starting address of the class or
segment in the output image. It is combined with "OFFSET" to represent a unique linear
address. "SEGADDR" is only valid for segmented formats. Its use in other contexts is
undefined. The "HSHIFT" value affects how the segment value is converted to a linear
address.

OFFSET=n (short form "OFF") specifies the offset portion of the starting address of the class or
segment in the output image. It is combined with "SEGADDR" to represent a unique linear
address. Offset is limited to a range of 0 to 65535 in segmented architectures, but can be a
larger value for non-segmented architectures, up to the limits of the architecture.

When "SEGADDR" and/or "OFFSET" are specified, the location counter used to generate
the executable is advanced to that address. Any gaps are filled with the "FILLCHAR"
value, except for HEX output format, in which case they are simply skipped. If the location
counter is already beyond the specified location, an error message is generated. This would
likely be the result of having specified classes or segments in incorrect order, or not
providing enough room for preceding ones. Without the "SEGADDR" and "OFFSET"
options, classes and segment are placed in the executable consecutively, possibly with a
small gap in between if required by the alignment specified for the class.

The ORDER Directive 263

ORDER

COPY (short form "CO") indicates that the data from the segment named source_class_name is to
be used in this segment.

NOEMIT (short form "NOE") indicates that the data in this segment should not be placed in the
executable.

SEGMENT indicates the order of segments within a class, and possibly other options associated with
that segment. Segments listed are placed in the executable in the order listed. They must
be part of the class just named. Any segments in that class not listed will follow the last
listed segment. The segment options are a subset of the class options and conform to the
same specifications.

In ROM-based applications it is often necessary to:

• Fix the program location

• Separate code and data to different fixed parts of memory

• Place a copy of initialized data in ROM (usually right after the code)

• Prevent the original of the initialized data from being written to the loadfile, since it resides in RAM
and cannot be saved there.

The "ORDER" directive caters for these requirements. Classes can be placed in the executable in a specific
order, with absolute addresses specified for one or more classes, and segments within a class can be forced
into a specified order with absolute addresses specified for one or more of them. Initialized data can be
omitted at its target address, and a copy included at a different address.

Following is a sample "ORDER" directive for an embedded target (AM186ER). The bottom 32K of
memory is RAM for data. A DGROUP starting address of 0x80:0 is required. The upper portion of
memory is FLASH ROM. Code starts at address 0xD000:0. The initialized data from DGROUP is placed
immediately after the code.

order clname BEGDATA NOEMIT segaddr=0x80 segment _NULL segment
_AFTERNULL

clname DATA NOEMIT segment _DATA
clname BSS
clname STACK
clname START segaddr=0xD000
clname CODE segment BEGTEXT segment _TEXT
clname ROMDATA COPY BEGDATA
clname ROMDATAE

DGROUP consists of classes "BEGDATA", "DATA", "BSS", "BSS2" and "STACK". Note that these are
marked "NOEMIT" (except for the BSS classes and STACK which are not initialized, and therefore have
no data in them anyway) to prevent data from being placed in the loadfile at 0x80:0. The first class of
DGROUP is given the fixed starting segment address of 0x80 (offset is assumed to be 0). The segments
"_NULL", "_AFTERNULL" and "_DATA" will be allocated consecutively in that order, and because they
are part of DGROUP, will all share the same segment portio of the address, with offsets adjusted
accordingly.

The code section consists of classes "START" and "CODE". These are placed beginning at 0xD000:0.
"START" contains only one segment, which will be first. It will have a CS value of 0xD000. Code has
two segments, "BEGTEXT" and "_TEXT" which will be placed after "START", in that order, and packed

264 The ORDER Directive

ORDER

into a single CS value of their own (perhaps 0xD001 in this example), unless they exceed 64K in size,
which should not be the case if the program was compiled using the small memory model.

The classes "ROMDATA" and "ROMDATAE" were created in assembly with one segment each and no
symbols or data in them. The class names can be used to identify the beginning and end of initialized data
so it can be copied to RAM by the startup code.

The "COPY" option actually works at the group level, because that is the way it is generally needed. The
entire data is in DGROUP. "ROMDATA" will be placed in a group of its own called "AUTO". (Note:
each group mentioned in the map file under the name "AUTO" is a separate group. They are not combined
or otherwise related in any way, other than they weren’t explicitly created by the programmer, compiler or
assembler, but rather automatically created by the linker in the course of its work.) Therefore there is a
unique group associated with this class. The "COPY" option finds the group associated with "BEGDATA"
and copies all the object data from there to "ROMDATA". Specifically, it places a copy of this data in the
executable at the location assigned to "ROMDATA", and adjusts the length of "ROMDATA" to account for
this. All symbol references to this data are to its execution address (0x80:0), not where it ended up in the
executable (for instance 0xD597:0). The starting address of "ROMDATAE" is also adjusted to account for
the data assigned to "ROMDATA". That way, the program can use the symbol "ROMDATAE" to identify
the end of the copy of DGROUP. It is also necessary in case more than one "COPY" class exists
consecutively, or additional code or data need to follow it.

It should also be noted that the "DOSSEG" option (whether explicitly given to the linker, or passed in an
object file) performs different class and segment ordering. If the "ORDER" directive is used, it overrides
the "DOSSEG" option, causing it to be ignored.

The ORDER Directive 265

OSNAME

14.35 The OSNAME Option
The "OSNAME" option can be used to set the name of the target operating system of the executable file
generated by the linker. The format of the "OSNAME" option (short form "OSN") is as follows.

OPTION OSNAME=’string’

where description:

string is any sequence of characters.

The information specified by the "OSNAME" option will be displayed in the creating a ? executable
message. This is the last line of output produced by the linker, provided the "QUIET" option is not
specified. Consider the following example.

option osname=’SuperOS’

The last line of output produced by the linker will be as follows.

creating a SuperOS executable

Some executable formats have a stub executable file that is run under 16-bit DOS. The message displayed
by the default stub executable file will be modified when the "OSNAME" option is used. The default stub
executable displays the following message:

OS/2: this is an OS/2 executable

Win16: this is a Windows executable

Win32: this is a Windows NT executable

If the "OSNAME" option used in the previous example was specified, the default stub executable would
generate the following message.

this is a SuperOS executable

266 The OSNAME Option

OUTPUT

14.36 The OUTPUT Directive
The "OUTPUT" directive overrides the normal operating system specific executable format and creates
either a raw binary image or an Intel Hex file. The format of the "OUTPUT" directive (short form "OUT")
is as follows.

OUTPUT RAW|HEX [OFFSET=n][HSHIFT=n][STARTREC]

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a hexadecimal
number. If k is specified, the value is multiplied by 1024. If m is specified, the value is
multiplied by 1024*1024.

RAW specifies the output file to be a raw binary and will contain an absolute image of the
executable’s code and data. Default file extension is "bin".

HEX specifies the output file to contain a representation of the absolute image of the code and
data using the Intel standard hex file format. Default file extension is "hex".

OFFSET=n (short form "OFF") specifies that the linear address n should be subtracted from all
addresses being output to the executable image.

HSHIFT defines the relationship between segment values for type 02 records and linear addresses.
The value n is the number of digits to right shift a 32-bit value containing a segment
address in its upper 16 bits in order to convert it to part of a linear address. In more
conventional terms, (16 - n) is the amount to shift a segment value left in order to convert
it to part of a linear address.

STARTREC (short form "ST") specifies that a Starting Address record will be included in Intel Hex
output. This option is ignored if output type is not Intel hex.

For raw binary files, the position in the file is the linear address after the offset is subtracted from it. Any
gaps filled with the value specified through "OPTION FILLCHAR" (default is 0).

For hex files, the linear address (after subtracting the offset) is used to determine the output record
generated. Records contain 16 bytes, unless a gap occurs prior to that in which case the record is shorter,
and a new record starts after the gap. There are three types of Intel Hex records. The oldest and most
widely used is HEX80, which can only deal with 16-bit addresses. For many ROM-based applications, this
is enough, especially once an offset has been subtracted. For maximum versatility, all addresses less than
65536 are generated in this form.

The HEX86 standard creates a segmentation that mirrors the CPU segmentation. Type 02 records define
the segment, and all subsequent addresses are based on that segment value. For addresses above 64K, This
form is used. A program that understands HEX86 should assume the segment value is zero until an 02
record is encountered. This preserves backward compatibility with HEX80, and allows the automatic
selection algorithm used in Open Watcom Linker to work properly.

The OUTPUT Directive 267

OUTPUT

Type 02 records are assumed to have segment values that, when shifted left four bits, form a linear address.
However, this is not suitable for 24-bit segmented addressing schemes. Therefore, Open Watcom Linker
uses the value specified through "OPTION HSHIFT" to determine the relationship between segments and
offsets. This approach can work with any 16:16 segmented architecture regardless of the segment
alignment. The default shift value is 12, representing the conventional 8086 architecture. This is not to be
confused with the optional "OUTPUT HSHIFT" value discussed below.

Of course, PROM programmers or third-party tools probably were not designed to work with
unconventional shift values, hence for cases where code for a 24-bit (or other non-standard) target needs to
be programmed into a PROM or processed by a third-party tool, the "OUTPUT HSHIFT" option can be
used to override the "OPTION HSHIFT" value. This would usually be of the form "OUTPUT
HSHIFT=12" to restore the industry standard setting. The default for "OUTPUT HSHIFT" is to follow
"OPTION HSHIFT". When neither is specified, the default "OPTION HSHIFT" value of 12 applies,
providing industry standard compliance.

If the address exceeds the range of type 02 records (1 MB for HSHIFT=12 and 16 MB for HSHIFT=8),
type 04 extended linear records are generated, again ensuring seamless compatibility and migration to large
file sizes.

If "STARTREC" is specified for "OUTPUT HEX", the penultimate record in the file (just before the end
record) will be a start address record. The value of the start address will be determined by the module start
record in an object file, typically the result of an "END start" assembler directive. If the start address is less
than 65536 (always for 16-bit applications, and where applicable for 32-bit applications), a type 03 record
with segment and offset values will be emitted. If the start address is equal to or greater than 65536, then a
type 05 linear starting address record will be generated. Note that neither of these cases depends directly
on the "HSHIFT" or "OUTPUT HSIFT" settings. If HSHIFT=8, then the segment and offset values for the
start symbol will be based on that number and used accordingly, but unlike other address information in a
hex file, this is not derived from a linear address and hence not converted based on the HSHIFT value.

268 The OUTPUT Directive

PATH

14.37 The PATH Directive
The "PATH" directive is used to specify the directories that are to be searched for object files appearing in
subsequent "FILE" directives. When the "PATH" directive is specified, the current directory will no longer
be searched unless it appears in the "PATH" directive. The format of the "PATH" directive (short form
"P") is as follows.

PATH path_name{:path_name}

where description:

path_name is a path name.

Consider a directive file containing the following linker directives.

path /math
file sin
path /stats
file mean, variance

It instructs the Open Watcom Linker to process the following object files:

/math/sin.o
/stats/mean.o
/stats/variance.o

It is also possible to specify a list of paths in a "PATH" directive. Consider the following example.

path /math:/stats
file sin

First, the linker will attempt to load the file "/math/sin.o". If unsuccessful, the linker will attempt to load
the file "/stats/sin.o".

It is possible to override the path specified in a "PATH" directive by preceding the object file name in a
"FILE" directive with an absolute path specification. On UNIX platforms, an absolute path specification is
one that begins the "/" character. On all other hosts, an absolute path specification is one that begins with a
drive specification or the "\" character.

path /math
file sin
path /stats
file mean, /mydir/variance

The above directive file instructs the linker to process the following object files:

/math/sin.o
/stats/mean.o
/mydir/variance.o

The PATH Directive 269

PRIVILEGE (QNX)

14.38 The PRIVILEGE Option
The "PRIVILEGE" option specifies the privilege level (0, 1, 2 or 3) at which the application will run. The
format of the "PRIVILEGE" option (short form "PRIV") is as follows.

OPTION PRIVILEGE=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a hexadecimal
number. If k is specified, the value is multiplied by 1024. If m is specified, the value is
multiplied by 1024*1024.

The default privilege level is 0.

270 The PRIVILEGE Option

QUIET

14.39 The QUIET Option
The "QUIET" option tells the Open Watcom Linker to suppress all informational messages. Only warning,
error and fatal messages will be issued. By default, the Open Watcom Linker issues informational
messages. The format of the "QUIET" option (short form "Q") is as follows.

OPTION QUIET

The QUIET Option 271

REDEFSOK

14.40 The REDEFSOK Option
The "REDEFSOK" option tells the Open Watcom Linker to ignore redefined symbols and to generate an
executable file anyway. By default, warning messages are displayed and an executable file is generated if
redefined symbols are present.

The format of the "REDEFSOK" option (short form "RED") is as follows.

OPTION REDEFSOK

The "NOREDEFSOK" option tells the Open Watcom Linker to treat redefined symbols as an error and to
not generate an executable file. By default, warning messages are displayed and an executable file is
generated if redefined symbols are present.

The format of the "NOREDEFSOK" option (short form "NORED") is as follows.

OPTION NOREDEFSOK

272 The REDEFSOK Option

REFERENCE

14.41 The REFERENCE Directive
The "REFERENCE" directive is used to explicitly reference a symbol that is not referenced by any object
file processed by the linker. If any symbol appearing in a "REFERENCE" directive is not resolved by the
linker, an error message will be issued for that symbol specifying that the symbol is undefined.

The "REFERENCE" directive can be used to force object files from libraries to be linked with the
application. Also note that a symbol appearing in a "REFERENCE" directive will not be eliminated by
dead code elimination. For more information on dead code elimination, see the section entitled "The
ELIMINATE Option" on page 228.

The format of the "REFERENCE" directive (short form "REF") is as follows.

REFERENCE symbol_name{, symbol_name}

where description:

symbol_name is the symbol for which a reference is made.

Consider the following example.

reference domino

The symbol domino will be searched for. The object module that defines this symbol will be linked with
the application. Note that the linker will also attempt to resolve symbols referenced by this module.

The REFERENCE Directive 273

SHOWDEAD

14.42 The SHOWDEAD Option
The "SHOWDEAD" option instructs the linker to list, in the map file, the symbols associated with dead
code and unused C++ virtual functions that it has eliminated from the link. The format of the
"SHOWDEAD" option (short form "SHO") is as follows.

OPTION SHOWDEAD

The "SHOWDEAD" option works best in concert with the "ELIMINATE" and "VFREMOVAL" options.

274 The SHOWDEAD Option

SORT

14.43 The SORT Directive
The "SORT" directive is used to sort the symbols in the "Memory Map" section of the map file. By default,
symbols are listed on a per module basis in the order the modules were encountered by the linker. That is, a
module header is displayed followed by the symbols defined by the module.

The format of the "SORT" directive (short form "SO") is as follows.

SORT [GLOBAL] [ALPHABETICAL]

If the "SORT" directive is specified without any options, as in the following example, the module headers
will be displayed each followed by the list of symbols it defines sorted by address.

sort

If only the "GLOBAL" sort option (short form "GL") is specified, as in the following example, the module
headers will not be displayed and all symbols will be sorted by address.

sort global

If only the "ALPHABETICAL" sort option (short form "ALP") is specified, as in the following example,
the module headers will be displayed each followed by the list of symbols it defines sorted alphabetically.

sort alphabetical

If both the "GLOBAL" and "ALPHABETICAL" sort options are specified, as in the following example, the
module headers will not be displayed and all symbols will be sorted alphabetically.

sort global alphabetical

If you are linking a Open Watcom C++ application, mangled names are sorted by using the base name. The
base name is the name of the symbol as it appeared in the source file. See the section entitled "The
MANGLEDNAMES Option" on page 251 for more information on mangled names.

The SORT Directive 275

STACK

14.44 The STACK Option
The "STACK" option can be used to increase the size of the stack. The format of the "STACK" option
(short form "ST") is as follows.

OPTION STACK=n

where description:

n represents a value. The complete form of n is the following.

[0x]d{d}[k|m]

d represents a decimal digit. If 0x is specified, the string of digits represents a hexadecimal
number. If k is specified, the value is multiplied by 1024. If m is specified, the value is
multiplied by 1024*1024.

The default stack size varies for both 16-bit and protected-mode 32-bit applications depending on the
executable format. You can determine the default stack size by looking at the map file that can be
generated when an application is linked ("OPTION MAP"). During execution of your program, you may
get an error message indicating your stack has overflowed. If you encounter such an error, you must link
your application again, this time specifying a larger stack size using the "STACK" option.

Example:
option stack=8192

276 The STACK Option

START

14.45 The START Option
The format of the "START" option is as follows.

OPTION START=symbol_name

where description:

symbol_name specifies the name of the procedure where execution begins.

For the Netware executable format, the default name of the start procedure is "_Prelude".

The START Option 277

STARTLINK

14.46 The STARTLINK Directive
The "STARTLINK" directive is used to indicate the start of a new set of linker commands that are to be
processed after the current set of commands has been processed. The format of the "STARTLINK"
directive (short form "STARTL") is as follows.

STARTLINK

The "ENDLINK" directive is used to indicate the end of the set of commands identified by the
"STARTLINK" directive.

278 The STARTLINK Directive

STATICS

14.47 The STATICS Option
The "STATICS" option should only be used if you are developing a Open Watcom C or C++ application.
The Open Watcom C and C++ compilers produce definitions for static symbols in the object file. By
default, these static symbols do not appear in the map file. If you want static symbols to be displayed in the
map file, use the "STATICS" option.

The format of the "STATICS" option (short form "STAT") is as follows.

OPTION STATICS

The STATICS Option 279

SYMFILE

14.48 The SYMFILE Option
The "SYMFILE" option provides a method for specifying an alternate file for debugging information. The
format of the "SYMFILE" option (short form "SYMF") is as follows.

OPTION SYMFILE[=symbol_file]

where description:

symbol_file is a file specification for the name of the symbol file. If no file extension is specified, a file
extension of "sym" is assumed.

By default, no symbol file is generated; debugging information is appended at the end of the executable
file. Specifying this option causes the Open Watcom Linker to generate a symbol file. The symbol file
contains the debugging information generated by the linker when the "DEBUG" directive is used. The
symbol file can then be used by Open Watcom Debugger. If no debugging information is requested, no
symbol file is created, regardless of the presence of the "SYMFILE" option.

If no file name is specified, the symbol file will have a default file extension of "sym" and the same path
and file name as the executable file. Note that the symbol file will be placed in the same directory as the
executable file.

Alternatively, a file name can be specified. The following directive instructs the linker to generate a
symbol file and call it "myprog.sym" regardless of the name of the executable file.

option symf=myprog

You can also specify a path and/or file extension when using the "SYMFILE=" form of the "SYMFILE"
option.

Notes:

1. This option should be used to debug a DOS "COM" executable file. A DOS "COM" executable
file must not contain any additional information other than the executable information itself
since DOS uses the size of the file to determine what to load.

2. This option should be used when creating a Microsoft Windows executable file. Typically,
before an executable file can be executed as a Microsoft Windows application, a resource
compiler takes the Windows executable file and a resource file as input and combines them. If
the executable file contains debugging information, the resource compiler will strip the
debugging information from the executable file. Therefore, debugging information must not be
part of the executable file created by the linker.

280 The SYMFILE Option

SYMTRACE

14.49 The SYMTRACE Directive
The "SYMTRACE" directive instructs the Open Watcom Linker to print a list of all modules that reference
the specified symbols. The format of the "SYMTRACE" directive (short form "SYMT") is as follows.

SYMTRACE symbol_name{,symbol_name}

where description:

symbol_name is the name of a symbol.

The information is displayed in the map file. Consider the following example.

Example:
wlink system my_os op map file test lib math symt sin, cos

The Open Watcom Linker will list, in the map file, all modules that reference the symbols "sin" and "cos".

The SYMTRACE Directive 281

SYSTEM

14.50 The SYSTEM Directive
There are three forms of the "SYSTEM" directive.

The first form of the "SYSTEM" directive (short form "SYS") is called a system definition directive. It
allows you to associate a set of linker directives with a specified name called the system name. This set of
linker directives is called a system definition block. The format of a system definition directive is as
follows.

SYSTEM BEGIN system_name {directive} END

where description:

system_name is a unique system name.

directive is a linker directive.

A system definition directive cannot be specified within another system definition directive.

The second form of the "SYSTEM" directive is called a system deletion directive. It allows you to remove
the association of a set of linker directives with a system name. The format of a system deletion directive is
as follows.

SYSTEM DELETE system_name

where description:

system_name is a defined system name.

The third form of the "SYSTEM" directive is as follows.

SYSTEM system_name

where description:

system_name is a defined system name.

When this form of the "SYSTEM" directive is encountered, all directives specified in the system definition
block identified by system_name will be processed.

Let us consider an example that demonstrates the use of the "SYSTEM" directive. The following linker
directives define a system called statistics.

282 The SYSTEM Directive

SYSTEM

system begin statistics
format dos
libpath /libs
library stats, graphics
option stack=8k
end

They specify that a statistics application is to be created by using the libraries "stats.lib" and "graphics.lib".
These library files are located in the directory "/libs". The application requires a stack size of 8k and the
specified format of executable will be generated.

Suppose the linker directives in the above example are contained in the file "stats.lnk". If we wish to create
a statistics application, we can issue the following command.

wlink @stats system statistics file myappl

As demonstrated by the above example, the "SYSTEM" directive can be used to localize the common
attributes that describe a class of applications.

The system deletion directive can be used to redefine a previously defined system. Consider the following
example.

system begin at_dos

libpath %WATCOM%\lib286
libpath %WATCOM%\lib286\dos
format dos ^

end
system begin n98_dos

sys at_dos ^
libpath %WATCOM%\lib286\dos\n98

end
system begin dos
sys at_dos ^
end

If you wish to redefine the definition of the "dos" system, you can specify the following set of directives.

system delete dos
system begin dos
sys n98_dos ^
end

This effectively redefines a "dos" system to be equivalent to a "n98_dos" system (NEC PC-9800 DOS),
rather than the previously defined "at_dos" system (AT-compatible DOS).

For additional examples on the use of the "SYSTEM" directive, examine the contents of the wlink.lnk
and wlsystem.lnk files.

The file wlink.lnk is a special linker directive file that is automatically processed by the Open Watcom
Linker before processing any other directives. On a DOS, OS/2, or Windows-hosted system, this file must
be located in one of the paths specified in the PATH environment variable. On a QNX-hosted system, this
file should be located in the /etc directory. A default version of this file is located in the
\watcom\binw directory on DOS-hosted systems, the \watcom\binp directory on OS/2-hosted
systems, the /etc directory on QNX-hosted systems, and the \watcom\binnt directory on Windows
95 or Windows NT-hosted systems. Note that the file wlink.lnk includes the file wlsystem.lnk

The SYSTEM Directive 283

SYSTEM

which is located in the \watcom\binw directory on DOS, OS/2, or Windows-hosted systems and the
/etc directory on QNX-hosted systems.

The files wlink.lnk and wlsystem.lnk reference the WATCOM environment variable which must
be set to the directory in which you installed your software.

The default name of the linker directive file (wlink.lnk) can be overridden by the WLINK_LNK
environment variable. If the specified file can’t be opened, the default file name will be used. For
example, if the WLINK_LNK environment variable is defined as follows

export WLINK_LNK=my.lnk

then the Open Watcom Linker will attempt to use a my.lnk directive file, and if that file cannot be
opened, the linker will revert to using the default wlink.lnk file.

14.50.1 Special System Names
There are two special system names. When the linker has processed all object files and the executable file
format has not been determined, and a system definition block has not been processed, the directives
specified in the "286" or "386" system definition block will be processed. The "386" system definition
block will be processed if a 32-bit object file has been processed. Furthermore, only a restricted set of
linker directives is allowed in a "286" and "386" system definition block. They are as follows.

• FORMAT

• LIBFILE

• LIBPATH

• LIBRARY

• NAME

• OPTION

• RUNTIME (for Phar Lap executable files only)

• SEGMENT (for OS/2 and QNX executable files only)

284 The SYSTEM Directive

UNDEFSOK

14.51 The UNDEFSOK Option
The "UNDEFSOK" option tells the Open Watcom Linker to generate an executable file even if undefined
symbols are present. By default, no executable file will be generated if undefined symbols are present.

The format of the "UNDEFSOK" option (short form "U") is as follows.

OPTION UNDEFSOK

The "NOUNDEFSOK" option tells the Open Watcom Linker to not generate an executable file if undefined
symbols are present. This is the default behaviour.

The format of the "NOUNDEFSOK" option (short form "NOU") is as follows.

OPTION NOUNDEFSOK

The UNDEFSOK Option 285

VERBOSE

14.52 The VERBOSE Option
The "VERBOSE" option controls the amount of information produced by the Open Watcom Linker in the
map file. The format of the "VERBOSE" option (short form "V") is as follows.

OPTION VERBOSE

If the "VERBOSE" option is specified, the linker will list, for each object file, all segments it defines and
their sizes. By default, this information is not produced in the map file.

286 The VERBOSE Option

VFREMOVAL

14.53 The VFREMOVAL Option
The "VFREMOVAL" option instructs the linker to remove unused C++ virtual functions. The format of
the "VFREMOVAL" option (short form "VFR") is as follows.

OPTION VFREMOVAL

If the "VFREMOVAL" option is specified, the linker will attempt to eliminate unused virtual functions. In
order for the linker to do this, the Open Watcom C++ "zv" compiler option must be used for all object files
in the executable. The "VFREMOVAL" option works best in concert with the "ELIMINATE" option.

The VFREMOVAL Option 287

The Open Watcom Linker

288 The VFREMOVAL Option

15 The QNX Executable File Format

This chapter deals specifically with aspects of QNX executable files. The QNX executable file format will
only run under the QNX operating system.

Input to the Open Watcom Linker is specified on the command line and can be redirected to one or more
files or environment strings. The Open Watcom Linker command line format is as follows.

wlink {directive}

where directive is any of the following:

ALIAS symbol_name=symbol_name{,symbol_name=symbol_name}
DEBUG dbtype [dblist] | DEBUG [dblist]
DISABLE msg_num{,msg_num}
ENDLINK
FILE obj_spec{,obj_spec}
FORMAT QNX [FLAT]
LANGUAGE
LIBFILE obj_file{,obj_file}
LIBPATH path_name{:path_name}
LIBRARY library_file{,library_file}
MODFILE obj_file{,obj_file}
MODTRACE obj_spec{,obj_spec}
NAME exe_file
NEWSEGMENT
OPTION option{,option}

ARTIFICIAL
[NO]CACHE
[NO]CASEEXACT
CVPACK
DOSSEG
ELIMINATE
[NO]FARCALLS
HEAPSIZE=n
INCREMENTAL
LINEARRELOCS
LONGLIVED
MANGLEDNAMES
MAP[=map_file]
MAXERRORS=n
NAMELEN=n
NODEFAULTLIBS
NOEXTENSION

The QNX Executable File Format 289

The Open Watcom Linker

NORELOCS
OFFSET=n
OSNAME=’string’
PACKCODE=n
PACKDATA=n
PRIVILEGE=n
QUIET
REDEFSOK
RESOURCE[=resource_file | ’string’]
SHOWDEAD
STACK=n
START=symbol_name
STATICS
SYMFILE[=symbol_file]
[NO]UNDEFSOK
VERBOSE
VFREMOVAL

OPTLIB library_file{,library_file}
PATH path_name{:path_name}
REFERENCE symbol_name{,symbol_name}
SEGMENT seg_desc{,seg_desc}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system_name
comment
@ directive_file

You can view all the directives specific to QNX executable files by simply typing the following:

wlink ? qnx

Notes:

1. If the file /etc/wlink.hlp exists, the contents of that file will be displayed when the
following command is issued.

wlink ?

2. If all of the directive information does not fit on the command line, type the following.

wlink

The prompt "WLINK>" will appear on the next line. You can enter as many lines of directive
information as required. Press "Ctrl/D" to terminate the input of directive information.

290 The QNX Executable File Format

The QNX Executable File Format

15.1 Memory Layout
The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS" or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. This segment is initialized with the hexadecimal byte pattern "01" and is the first segment in
group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
data in segments belonging to group "DGROUP". Segments belonging to class "STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes "BSS" and
"STACK" are last in the segment ordering so that uninitialized data need not take space in the executable
file.

Memory Layout 291

The Open Watcom Linker

292 Memory Layout

16 Open Watcom Linker Diagnostic Messages

The Open Watcom Linker issues three classes of messages; fatal errors, errors and warnings. Each message
has a 4-digit number associated with it. Fatal messages start with the digit 3, error messages start with the
digit 2, and warning messages start with the digit 1. It is possible for a message to be issued as a warning
or an error.

If a fatal error occurs, the linker will terminate immediately and no executable file will be generated.

If an error occurs, the linker will continue to execute so that all possible errors are issued. However, no
executable file will be generated since these errors do not permit a proper executable file to be generated.

If a warning occurs, the linker will continue to execute. A warning message is usually informational and
does not prevent the creation of a proper executable file. However, all warnings should eventually be
corrected.

The messages listed contain references to %s, %S, %a, %x, %d, %l, and %f. They represent strings
that are substituted by the Open Watcom Linker to make the error message more precise.

1. %s represents a string. This may be a segment or group name, or the name of a linker directive
or option.

2. %S represents the name of a symbol.

3. %a represents an address. The format of the address depends on the format of the executable file
being generated.

4. %x represents a hexadecimal number.

5. %d represents integers in the range -32768 and 32767.

6. %l represents integers in the range -2147483648 and 2147483647.

7. %f represents an executable file format such as DOS, WINDOWS, PHARLAP, NOVELL, OS2,
QNX or ELF.

The following is a list of all warning and error messages produced by the Open Watcom Linker followed
by a description of the message. A message may contain more than one reference to "%s". In such a case,
the description will reference them as "%sn" where n is the occurrence of "%s" in the message.

MSG 2002 ** internal ** - %s

If this message occurs, you have found a bug in the linker and should report it.

MSG 2008 cannot open %s1 : %s2

An error occurred while trying to open the file "%s1". The reason for the error is given by
"%s2". Generally this error message is issued when the linker cannot open a file (e.g., an
object file or an executable file).

Open Watcom Linker Diagnostic Messages 293

The Open Watcom Linker

MSG 3009 dynamic memory exhausted

The linker uses all available memory when linking an application. When all available
memory is used, a spill file will be used. Therefore, unless you are low on disk space, the
linker will always be able to generate the executable file. Dynamic memory is the memory
the linker uses to build its internal data structures and symbol table. A spill file is not used
for dynamic memory. If the linker issues this message, it cannot link your application. The
following are suggestions that may help you in this situation.

1. Concatenate all your object files into one and specify only the resulting object
file as input to the linker. For example, you can issue the following command.

% cat *.obj > all.tmp
% mv all.tmp all.obj

This technique only works for OMF-type object files. This significantly reduces
the size of the file list the linker must maintain.

2. Object files may contain a record which specifies the module name. This
information is used by Open Watcom Debugger to locate modules during a
debugging session and usually contains the full path of the source file. This can
consume a significant amount of memory when many such object files are being
linked. If your source is being compiled by the Open Watcom C or C++
compiler, you can use the "nm" option to set the module name to just the file
name. This reduces the amount of memory required by the linker. If your are
using Open Watcom Debugger to debug your application, you may have to use
the "set source" command so that the source corresponding to a module can be
located.

3. Typically, when you are compiling a program for a large code model, each
module defines a different "text" segment. If you are compiling your application
using the Open Watcom C or C++ compiler, you can reduce the number of "text"
segments that the linker has to process by specifying the "nt" option. The "nt"
option allows you to specify the name of the "text" segment so that a group of
object files define the same "text" segment.

MSG 2010,3010 I/O error processing %s1 : %s2

An error has occurred while processing the file "%s1". The cause of the error is given by
"%s2". This error is usually detected while reading from object and library files or writing
to the spill file or executable file. For example, this error would be issued if a "disk full"
condition existed.

MSG 2011 invalid object file attribute

The linker encountered an object file that was not of the format required of an object file.

MSG 2012 invalid library file attribute

The linker encountered a library file that was not of the format required of a library file.

MSG 3013 break key detected

The linking process was interrupted by the user from the keyboard.

294 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1014 stack segment not found

The linker identifies the stack segment by a segment defined as having the "STACK"
attribute. This message is issued if no such segment is encountered. This usually happens
if the linker cannot find the run-time libraries required to link your application.

MSG 2015 bad relocation type specified

This message is issued if a a relocation is found in an object file which the linker does not
support.

MSG 2016 %a: absolute target invalid for self-relative relocation

This message is issued, for example, if a near call or jump is made to an external symbol
which is defined using the "EQU" assembler directive. "%a" identifies the location of the
near call or jump instruction.

MSG 2017 bad location specified for self-relative relocation at %a

This message is issued if a bad fixup is encountered. "%a" defines the location of the
fixup.

MSG 2018 relocation offset at %a is out of range

This message is issued when the offset part of a relocation exceeds 64K in a 16-bit
executable or an Alpha executable. "%a" defines the location of the fixup. The error is
most commonly caused by errors in coding assembly language routines. Consider a
module that references an external symbol that is defined in a segment different from the
one in which the reference occurred. The module, however, specifies that the segment in
which the symbol is defined is the same segment as the segment that references the symbol.
This error is most commonly caused when the "EXTRN" assembler directive is placed after
the "SEGMENT" assembler directive for the segment referencing the symbol. If the
segment that references the symbol is allocated far enough away from the segment that
defines the symbol, the linker will issue this message.

MSG 1019 segment relocation at %a

This message is issued when a 16-bit segment relocation is encountered and "FORMAT
DOS COM", "FORMAT PHARLAP" or "FORMAT NOVELL" has been specified. None
of the above executable file formats allow segment relocation. "%a" identifies the location
of the segment relocation.

MSG 2020 size of group %s exceeds 64k by %l bytes

The group "%s" has exceeded the maximum size (64K) allowed for a group in a 16-bit
executable by "%l" bytes. Usually, the group is "DGROUP" (the default data segment) and
your application has placed too much data in this group. One of the following may solve
this problem.

1. If you are using the Open Watcom C or C++ compiler, you can place some of
your data in a far segment by using the "far" keyword when defining data. You
can also decrease the value of the data threshold by using the "zt" compiler
option. Any datum whose size exceeds the value of the data threshold will be
placed in a far segment.

Open Watcom Linker Diagnostic Messages 295

The Open Watcom Linker

2. If you are using the Open Watcom FORTRAN 77 compiler, you can decrease
the value of the data threshold by using the "dt" compiler option. Any datum
whose size exceeds the value of the data threshold will be placed in a far
segment.

MSG 2021 size of segment %s exceeds 64k by %l bytes

The segment "%s" has exceeded the maximum size (64K) for a segment in a 16-bit
executable. This usually occurs if you are linking a 16-bit application that has been
compiled for a small code model and the size of the application has grown in such a way
that the size of the code segment ("_TEXT") has exceeded 64K. You can overlay your
application or compile it for a large code model if you cannot reduce the amount of code in
your application.

MSG 2022 cannot have a starting address with an imported symbol

When generating an OS/2 executable file, a symbol imported from a DLL cannot be a start
address. When generating a NetWare executable file, a symbol imported from an NLM
cannot be a start address.

MSG 1023 no starting address found, using %a

The starting address defines the location where execution is to begin and must be defined
by a special "module end" record in one of the object files linked into your application.
This message is issued if no such record is encountered in which case a default starting
address, namely "%a", will be used. This usually happens if the linker cannot find the
run-time libraries required to link your application.

MSG 2024 missing overlay loader

This message is issued when an overlayed 16-bit DOS executable is being linked and the
overlay manager has not been encountered. This usually happens if the linker cannot find
the run-time libraries required to link your application.

MSG 2025 short vector %d is out of range

This message is issued when the linker is creating an overlayed 16-bit DOS executable and
"OPTION SMALL" is specified. Since an overlay vector contains a near call to the overlay
loader followed by a near jump to the routine corresponding to the overlay vector, all code
including the overlay manager and all overlay vectors must be less than 64K. This message
is issued if the offset of an overlay vector from the overlay loader or the corresponding
routine exceeds 64K.

MSG 2026 redefinition of reserved symbol %s

The linker defines certain reserved symbols. These symbols are "_edata", "_end",
"__OVLTAB__", "__OVLSTARTVEC__", "__OVLENDVEC__", "__LOVLLDR__",
"__NOVLLDR__", "__SOVLLDR__", "__LOVLINIT__", "__NOVLINIT__" and
"__SOVLINIT__". The symbols "__OVLTAB__", "__OVLSTARTVEC__",
"__OVLENDVEC__", "__LOVLLDR__", "__NOVLLDR__", "__SOVLLDR__",
"__LOVLINIT__", "__NOVLINIT__" and "__SOVLINIT__" are defined only if you are
using overlays in 16-bit DOS executables. The symbols "_edata" and "_end" are defined
only if the "DOSSEG" option is specified. Your application must not attempt to define
these symbols. "%s" identifies the reserved symbol.

296 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1027 redefinition of %S ignored

The symbol "%S" has been defined by more that one module; the first definition is used.
This is only a warning message. Note that if a symbol is defined more than once and its
address is the same in both cases, no warning will be issued. This prevents the warning
message from being issued when linking FORTRAN 77 modules that contain common
blocks.

MSG 1028,2028 %S is an undefined reference

The symbol "%S" has been referenced but not defined. Check that the spelling of the
symbol is consistent. If you wish the linker to ignore undefined references, use the
"UNDEFSOK" option.

MSG 2029 premature end of file encountered

This error is issued while processing object files and object modules from libraries and is
caused if the end of the file or module is reached before the "module end" record is
encountered. The probable cause is a truncated object file.

MSG 2030 multiple starting addresses found

The starting address defines the location where execution is to begin and is defined by a
"module end" record in a particular object file. This message is issued if more than one
object file contains a "module end" record that defines a starting address.

MSG 2031 segment %s is in group %s and group %s

The segment "%s1" has been defined to be in group "%s2" in one module and in group
"%s3" in another module. A segment can only belong to one group.

MSG 1032 record (type 0x%x) not processed

An object record type not supported by the linker has been encountered. This message is
issued when linking object modules created by other compilers or assemblers that create
object files with records that the linker does not support.

MSG 2033,3033 directive error near ’%s’

A syntax error occurred while the linker was processing directives. "%s" specifies where
the error occurred.

MSG 2034 %a cannot have an offset with an imported symbol

An imported symbol is one that was specified in an "IMPORT" directive. Imported
symbols are defined in Windows or OS/2 16-bit DLLs and in Netware NLMs. References
to imported symbols must always have an offset value of 0. If "DosWrite" is an imported
symbol, then referencing "DosWrite+2" is illegal. "%a" defines the location of the illegal
reference.

MSG 1038 DEBUG directive appears after object files

Open Watcom Linker Diagnostic Messages 297

The Open Watcom Linker

This message is issued if the first "DEBUG" directive appears after a "FILE" directive. A
common error is to specify a "DEBUG" directive after the "FILE" directives in which case
no debugging information for those object files is generated in the executable file.

MSG 2039 ALIGNMENT value too small

The value specified in the "ALIGNMENT" option refers to the alignment of segments in
the executable file. For 16-bit Windows or 16-bit OS/2, segments in the executable file are
pointed to by a segment table. An entry in the segment table contains a 16-bit value which
is a multiple of the alignment value. Together they form the offset of the segment from the
start of the segment table. The smaller the alignment, the bigger the value required in the
segment table to point to the segment. If this value exceeds 64K, then a larger alignment
value is required to decrease the size that goes in the segment table.

MSG 2040 ordinal in IMPORT directive not valid

The specified ordinal in the "IMPORT" directive is incorrect (e.g., -1). An ordinal number
must be in the range 0 to 65535.

MSG 2041 ordinal in EXPORT directive not valid

The specified ordinal in the "EXPORT" directive is incorrect (e.g., -1). An ordinal number
must be in the range 0 to 65535.

MSG 2042 too many IOPL words in EXPORT directive

The maximum number of IOPL words for a 16-bit executable is 63.

MSG 1043 duplicate exported ordinal

This message is issued for ordinal numbers specified in an "EXPORT" directive for
symbols belonging to DLLs. This message is issued if an ordinal number is assigned to
two different symbols. A warning is issued and the linker assigns a non-used ordinal
number to the symbol that caused the warning.

MSG 1044,2044 exported symbol %s not found

This message is issued when generating a DLL or NetWare NLM. An attempt has been
made to define an entry point into a DLL or NLM that does not exist.

MSG 1045 segment attribute defined more than once

A segment appearing in a "SEGMENT" directive has been given conflicting or duplicate
attributes.

MSG 1046 segment name %s not found

The segment name specified in a "SEGMENT" directive has not been defined.

MSG 1047 class name %s not found

The class name specified in a "SEGMENT" directive has not been defined.

298 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1048 inconsistent attributes for automatic data segment

This message is issued for Windows or OS/2 16-bit executable files. Two conflicting
attributes were specified for the automatic data segment. For example, "LOADONCALL"
and "PRELOAD" are conflicting attributes. Only the first attribute is used.

MSG 2049 invalid STUB file

The stub file is not a valid executable file. The stub file is only used for OS/2 executable
files and Windows (both Win16 and Win32) executable files.

MSG 1050 invalid DLL specified in OLDLIBRARY option

The DLL specified in an "OLDLIBRARY" option is not a valid dynamic link library.

MSG 2051 STUB file name same as executable file name

When generating an OS/2 or Windows (Win16, Win32) executable file, the stub file name
must not be same as the executable file name.

MSG 2052 relocation at %a not in the same segment

This message is only issued for Windows (Win16), OS/2, Phar Lap, and QNX executables.
A relative fixup must relocate to the same segment. "%a" defines the location of the fixup.

MSG 2053 %a: cannot reach a DLL with a relative relocation

A reference to a symbol in an OS/2 or Windows 16-bit DLL must not be relative. "%a"
defines the location of the reference.

MSG 1054 debugging information incompatible: using line numbers only

An attempt has been made to link an object file with out-of-date debugging information.

MSG 2055 %a: frame must be the same as the target in protected mode

Each relocation consists of three components; the location being relocated, the target (or
address being referenced), and the frame (the segment to which the target is adjusted). In
protected mode, the segment of the target must be the same as the frame. "%a" defines the
location of the fixup. This message does not apply to 32-bit OS/2 and Windows (Win32).

MSG 2056 cannot find library member %s(%s)

Library member "%s2" in library file "%s1" could not be found. This message is issued if
the library file could not be found or the library file did not contain the specified member.

MSG 3057 executable format has been established

This message is issued if there is more than one "FORMAT" directive.

MSG 1058 %s option not valid for %s executable

The option "%s1" can only be specified if an executable file whose format is "%s2" is
being generated.

Open Watcom Linker Diagnostic Messages 299

The Open Watcom Linker

MSG 1059,2059 value for %s too large

The value specified for option "%s" exceeds its limit.

MSG 1060 value for %s incorrect

The value specified for option "%s" is not in the allowable range.

MSG 1061 multiple values specified for REALBREAK

The "REALBREAK" option for Phar Lap executables can only be specified once.

MSG 1062 export and import records not valid for %f

This message is issued if a reference to a DLL is encountered and the executable file format
is not one that supports DLLs. The file format is represented by "%f".

MSG 2063 invalid relocation for flat memory model at %a

A segment relocation in the flat memory model was encountered. "%a" defines the
location of the fixup.

MSG 2064 cannot combine 32-bit segments (%s1) with 16-bit segments (%s2)

A 32-bit segment "%s1" and a 16-bit segment "%s2" have been encountered. Mixing
object files created by a 286 compiler and object files created by a 386 compiler is the most
probable cause of this error.

MSG 2065 REALBREAK symbol %s not found

The symbol specified in the "REALBREAK" option for Phar Lap executables has not been
defined.

MSG 2066 invalid relative relocation type for an import at %a

This message is issued only if a NetWare executable file is being generated. An imported
symbol is one that was specified in an "IMPORT" directive or an import library. Any
reference to an imported symbol must not refer to the segment of the imported symbol.
"%a" defines the location of the reference.

MSG 2067 %a: cannot relocate between code and data in Novell formats

This message is issued only if a NetWare executable file is being generated. Segment
relocation is not permitted. "%a" defines the location of the fixup.

MSG 2068 absolute segment fixup not valid in protected mode

A reference to an absolute location is not allowed in protected mode. A protected-mode
application is one that is being generated for OS/2, CauseWay DOS extender, Tenberry
Software’s DOS/4G or DOS/4GW DOS extender, FlashTek’s DOS extender, Phar Lap’s
386|DOS-Extender, Novell’s NetWare operating systems, Windows NT, or Windows 95.
An absolute location is most commonly defined by the "EQU" assembler directive.

300 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1069 unload CHECK procedure not found

This message is issued only if a NetWare executable file is being generated. The symbol
specified in the "CHECK" option has not been defined.

MSG 2070 START procedure not found

This message is issued only if a NetWare executable file is being generated. The symbol
specified in the "START" option has not been defined. The default "START" symbol is
"_Prelude".

MSG 2071 EXIT procedure not found

This message is issued only if a NetWare executable file is being generated. The symbol
specified in the "EXIT" option has not been defined. The default "STOP" symbol is
"_Stop".

MSG 1072 SECTION directive not allowed in root

When describing 16-bit overlays, "SECTION" directives must appear between a "BEGIN"
directive and its corresponding "END" directive.

MSG 2073 bad Novell file format specified

An invalid NetWare executable file format was specified. Valid formats are NLM, DSK,
NAM, LAN, MSL, HAM, CDM or a numerical module type.

MSG 2074 circular alias found for %s

An attempt was made to circularly define the symbol name specified in an ALIAS
directive. For example:

ALIAS foo1=foo2, foo2=foo1

MSG 2075 expecting an END directive

A "BEGIN" directive is missing its corresponding "END" directive.

MSG 1076 %s option multiply specified

The option "%s" can only be specified once.

MSG 1080 file %s is a %d-bit object file

A 32-bit attribute was encountered while generating a 16-bit executable file format, or a
16-bit attribute was encountered while generating a 32-bit executable file format.

MSG 2082 invalid record type 0x%x

An object record type not recognized by the linker has been encountered. This message is
issued when linking object modules created by other compilers or assemblers that create
object files with records that the linker does not recognize.

Open Watcom Linker Diagnostic Messages 301

The Open Watcom Linker

MSG 2083 cannot reference address %a from frame %x

When generating a 16-bit executable, the offset of a referenced symbol was greater than
64K from the location referencing it.

MSG 2084 target offset exceeds 64K at %a

When generating a 16-bit executable, the computed offset for a symbol exceeds 64K. "%a"
defines the location of the fixup.

MSG 2086 invalid starting address for .COM file

The value of the segment of the starting address for a 16-bit DOS "COM" file, as specified
in the map file, must be 0.

MSG 1087 stack segment ignored in .COM file

A stack segment must not be defined when generating a 16-bit DOS "COM" file. Only a
single physical segment is allowed in a DOS "COM" file. The stack is allocated from the
high end of the physical segment. That is, the initial value of SP is hexadecimal FFFE.

MSG 3088 virtual memory exhausted

This message is similar to the "dynamic memory exhausted" message. The DOS-hosted
version of the linker has run out of memory trying to keep track of virtual memory blocks.
Virtual memory blocks are allocated from expanded memory, extended memory and the
spill file.

MSG 2089 program too large for a .COM file

The total size of a 16-bit DOS "COM" program must not exceed 64K. That is, the total
amount of code and data must be less than 64K since only a single physical segment is
allowed in a DOS "COM" file. You must decrease the size of your program or generate a
DOS "EXE" file.

MSG 1090 redefinition of %s by %s ignored

The symbol "%s1" has been redefined by module "%s2". This message is issued when the
size specified in the "NAMELEN" option has caused two symbols to map to the same
symbol. For example, if the symbols routine1 and routine2 are encountered and "OPTION
NAMELEN=7" is specified, then this message will be issued since the first seven
characters of the two symbols are identical.

MSG 2091 group %s is in more than one overlay

A group that spans more than one section in a 16-bit DOS executable has been detected.

MSG 2092 NEWSEGMENT directive appears before object files

The 16-bit "NEWSEGMENT" directive must appear after a "FILE" directive.

MSG 2093 cannot open %s

302 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

This message is issued when the linker is unable to open a file and is unable to determine
the cause.

MSG 2094 i/o error processing %s

This message is issued when the linker has encountered an i/o error while processing the
file and is unable to determine the cause. This message may be issued when reading from
object and library files, or writing to the executable and spill file.

MSG 3097 too many library modules

This message is similar to the "dynamic memory exhausted" message. This message if
issued when the "DISTRIBUTE" option for 16-bit DOS executables is specified. The
linker has run out of memory trying to keep track of the relationship between object
modules extracted from libraries and the overlays they should be placed in.

MSG 1098 Offset option must be a multiple of %dK

The value specified with the "OFFSET" option must be a multiple of 4K (4096) for Phar
Lap and QNX executables and a multiple of 64K (65536) for OS/2 and Windows 32-bit
executables.

MSG 2099 symbol name too long: %s

The maximum size (approximately 2048) of a symbol has been exceeded. Reduce the size
of the symbol to avoid this error.

MSG 1101 invalid incremental information file

The incremental information file is corrupt or from an older version of the compiler. The
old information file and the executable will be deleted and new ones will be generated.

MSG 1102 object file %s not found for tracing

A "SYMTRACE" or "MODTRACE" directive contained an object file (namely %s) that
could not be found.

MSG 1103 library module %s(%s) not found for tracing

A "SYMTRACE" or "MODTRACE" directive contained an object module (namely module
%s1 in library %s2) that could not be found.

MSG 1105 cannot reserve %l bytes of extra overlay space

The value specified with the "AREA" option for 16-bit DOS executables results in an
executable file that requires more than 1 megabyte of memory to execute.

MSG 1107 undefined system name: %s

The name %s was referenced in a "SYSTEM" directive but never defined by a system
block definition.

MSG 1108 system %s defined more than once

Open Watcom Linker Diagnostic Messages 303

The Open Watcom Linker

The name %s has appeared in a system definition block more than once.

MSG 1109 OFFSET option is less than the stack size

For the QNX operating system, the stack is placed at the front of the executable image and
thus the initial load address must leave enough room for the stack.

MSG 1110 library members not allowed in libfile

Only object files are allowed in a "LIBFILE" directive. This message will be issued if a
module from a library file is specified in a "LIBFILE" directive.

MSG 1111 error in default system block

The default system block definition (system name "286" for 16-bit applications) and
(system name "386" for 32-bit applications) contains a directive error. The system name
"286" or "386" is automatically referenced by the linker when the format of the executable
cannot be determined (i.e. no "FORMAT" directive has been specified).

MSG 3114 environment name specified incorrectly

This message is specified if the environment variable is not properly enclosed between two
percent (%) characters.

MSG 1115 environment name %s not found

The environment variable %s has not been defined in the environment space.

MSG 1116 overlay area must be at least %l bytes

This message is issued if the size of the largest overlay exceeds the size of the overlay area
specified by the "AREA" option for 16-bit DOS executables.

MSG 1117 segment number too high for a movable entry point

The segment number of a moveable segment must not exceed 255 for 16-bit executables.
Reduce the number of segments or use the "PACKCODE" option.

MSG 1118 heap size too large

This message is issued if the size of the heap, stack and the default data segment (group
DGROUP) exceeds 64K for 16-bit executables.

MSG 2119 wlib import statement incorrect

The "EXPORT" directive allows you to specify a library command file. This command file
is scanned for any librarian commands that create import library entries. An invalid
command was detected. See the section entitled "The EXPORT Directive" for the correct
format of these commands.

MSG 2120 application too large to run under DOS

This message is issued if the size of the 16-bit DOS application exceeds 1M.

304 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1121 ’%s’ has already been exported

The linker has detected an attempt to export a symbol more than once. For example, a
name appearing in more than one "EXPORT" directive will cause this message to be
issued. Also, if you have declared a symbol as an export in your source and have also
specified the same symbol in an "EXPORT" directive, this message will be issued. This
message is only a warning.

MSG 3122 no FILE directives found

This message is issued if no "FILE" directive has been specified. In other words, you have
specified no object files to link.

MSG 3123 overlays are not supported in this version of the linker

This version of the linker does not support the creation of overlaid 16-bit executables.

MSG 1124 lazy reference for %S has different default resolutions

A lazy external reference is one which has two resolutions: a preferred one and a default
one which is used if the preferred one is not found. In this case, the linker has found two
lazy references that have the same preferred resolution but different default resolutions.

MSG 1125 multiple aliases found for %S

The linker has found a name which has been aliased to two different symbols.

MSG 1126 %s has been modified: doing full relink

The linker has determined that the time stamps on the executable file and symbolic
information file (.sym) are different. An incremental link will not be done.

MSG 2127 cannot export symbol %S

An attempt was made to export a symbol defined with an absolute address or to export an
imported symbol. It is not possible to export these symbols with the "EXPORT" directive.

MSG 3128 directive error near beginning of input

The linker detected an error at the start of the command line.

MSG 3129 address information too large

The linker has encountered a segment that appears in more than 11000 object files. An
empty segment does not affect this limit. This can only occur with Watcom debugging
information. If this message appears, switch to DWARF debugging information.

MSG 1130 %s is an invalid shared nlm file

The NLM specified in a "SHAREDNLM" option is not valid.

MSG 3131 cannot open spill file: file already exists

Open Watcom Linker Diagnostic Messages 305

The Open Watcom Linker

All 26 of the DOS-hosted linker’s possible spill file names are in use. Spill files can
accumulate when linking on a multi-tasking system and the directory in which the spill file
is created is identical for each invocation of the linker.

MSG 2132 curly brace delimited list incorrect

A list delimited by curly braces is not correct. The most likely cause is a missing right
brace.

MSG 1133 no realbreak specified for 16-bit code

While generating a Phar Lap executable file, both 16-bit and 32-bit code was linked
together and no "REALBREAK" option has been specified. A warning message is issued
since this may be a potential problem.

MSG 1134 %s is an invalid message file

The file specified in a "MESSAGE" option for NetWare executable files is invalid.

MSG 3135 need exactly 1 overlay area with dynamic overlay manager

Only a single overlay area is supported by the 16-bit dynamic overlay manager.

MSG 1136 segment relocation to a read/write data segment found at %a(%S)

The "RWRELOCCHECK" option for 16-bit Windows (Win16) executables has been
specified and the linker has detected a segment relocation to a read/write data segment.
Where the name of the offending symbol is not available, "identifier unavailable" is used.

MSG 3137 too many errors encountered

This message is issued when the number of error messages issued by the linker exceeds the
number specified by the "MAXERRORS" option.

MSG 3138 invalid filename ’%s’

The linker performs a simple filename validation whenever a filename is specified to the
linker. For example, a directory specification is not a valid filename.

MSG 3139 cannot have both 16-bit and 32-bit object files

It is impossible to mix 16-bit code and 32-bit code in the same executable when generating
a QNX executable file.

MSG 1140 invalid message number

An invalid message number has been specified in a "DISABLE" directive.

MSG 1141 virtual function table record for %s mismatched

The linker performs a consistency check to ensure that the C++ compiler has not generated
incorrect virtual function information. If the message is issued, please report this problem.

306 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1143 not enough memory to sort map file symbols

There was not enough memory for the linker to sort the symbols in the "Memory Map"
portion of the map file. This will only occur when the "SORT GLOBAL" option has been
specified.

MSG 1145 %S is both pure virtual and non-pure virtual

A function has been declared both as "pure" and "non-pure" virtual.

MSG 2146 %s is an invalid object file

Something was encountered in the object file that cannot be processed by the linker.

MSG 3147 Ambiguous format specified

Not enough of the FORMAT directive attributes were specified to enable the linker to
determine the executable file format. For example,

FORMAT OS2

will generate this message.

MSG 1148 Invalid segment type specified

The segment type must be one of CODE or DATA.

MSG 1149 Only one debugging format can be specified

The debugging format must be one of Watcom, CodeView, DWARF (default), or Novell.
You cannot specify multiple debugging formats.

MSG 1150 file %s has code for a different processor

An object file has been encountered which contains code compiled for a different processor
(e.g., an Intel application and an Alpha object file).

MSG 2151 big endian code not supported

Big endian code is not supported by the linker.

MSG 2152 no dictionary found

No symbol search dictionary was found in a library that the linker attempted to process.

MSG 2154 cannot execute %s1 : %s2

An attempt by the linker to spawn another application failed. The application is specified
by "%s1" and the reason for the failure is specified by "%s2".

MSG 2155 relocation at %a to an improperly aligned target

Some relocations in Alpha executables require that the object be aligned on a 4 byte
boundary.

Open Watcom Linker Diagnostic Messages 307

The Open Watcom Linker

MSG 2156 OPTION INCREMENTAL must be one of the first directives specified

The option must be specified before any option or directive which modifies the linker’s
symbol table (e.g., IMPORT, EXPORT, REFERENCE, ALIAS).

MSG 3157 no code or data present

The linker requires that there be at least 1 byte of either code or data in the executable.

MSG 1158 problem adding resource information

The resource file is invalid or corrupt.

MSG 3159 incremental linking only supports DWARF debugging information

When OPTION INCREMENTAL is used, you cannot specify non-DWARF debugging
information for the executable. You must specify DEBUG DWARF when requesting
debugging information.

MSG 3160 incremental linking does not support dead code elimination

When OPTION INCREMENTAL is used, you cannot specify OPTION ELIMINATE.

MSG 1162 relocations on iterated data not supported

An object file was encountered that contained an iterated data record that requires
relocation. This is most commonly caused by a module coded in assembly language.

MSG 1163 module has not been compiled with the "zv" option

When OPTION VFREMOVAL is used, all object files must be compiled with the "zv"
option. The linker has detected an object file that has not been compiled with this option.

MSG 3164 incremental linking does not support virtual function removal

When OPTION INCREMENTAL is used, you cannot also specify OPTION
VFREMOVAL.

MSG 1165 resource file %s too big

The resource file specified in OPTION RESOURCE was too big to fit inside the QNX
executable. The maximum size is approximately 32000 bytes.

MSG 2166 both %s1 and %s2 marked as starting symbols

If the linker sees that there is more than one starting address specified in the program and
they have symbol names associated with them, it will emit this error message. If there is
more than one starting address specified and at least one of them is unnamed, it will issue
message 2030.

MSG 1167 The NLM internal name (%s) has been truncated as it exceeds the maximum size.

This message is issued when generating a NetWare NLM. The output file name as
specified by the NAME directive has specified a long file name (exceeds 8.3). The linker

308 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

will truncate the generated file name by using the first eight characters of the specified file
name and the first three characters of the file extension (if supplied), separated by a period.

Open Watcom Linker Diagnostic Messages 309

The Open Watcom Linker

310 Open Watcom Linker Diagnostic Messages

The Open Watcom Library Manager

The Open Watcom Library Manager

312

17 The Open Watcom Library Manager

17.1 Introduction
The Open Watcom Library Manager can be used to create and update object library files. It takes as input
an object file or a library file and creates or updates a library file. For OS/2, Win16 and Win32
applications, it can also create import libraries from Dynamic Link Libraries.

An object library is essentially a collection of object files. These object files generally contain utility
routines that can be used as input to the Open Watcom Linker to create an application. The following are
some of the advantages of using library files.

1. Only those modules that are referenced will be included in the executable file. This eliminates
the need to know which object files should be included and which ones should be left out when
linking an application.

2. Libraries are a good way of organizing object files. When linking an application, you need only
list one library file instead of several object files.

The Open Watcom Library Manager currently runs under the following operating systems.

• DOS

• OS/2

• QNX

• Windows

17.2 The Open Watcom Library Manager Command Line
The following describes the Open Watcom Library Manager command line.

wlib [options_1] lib_file [cmd_list]

The square brackets "[]" denote items which are optional.

lib_file is the file specification for the library file to be processed. If no file extension is specified,
a file extension of "lib" is assumed.

options_1 is a list of valid options. Options may be specified in any order. Options are preceded by a
"—" character.

The Open Watcom Library Manager Command Line 313

The Open Watcom Library Manager

cmd_list is a list of commands to the Open Watcom Library Manager specifying what operations are
to be performed. Each command in cmd_list is separated by a space.

The following is a summary of valid options. Items enclosed in square brackets "[]" are optional. Items
separated by an or-bar "|" and enclosed in parentheses "()" indicate that one of the items must be specified.
Items enclosed in angle brackets "<>" are to be replaced with a user-supplied name or value (the "<>" are
not included in what you specify).

? display the usage message
b suppress creation of backup file
c perform case sensitive comparison
d=<output_directory>

directory in which extracted object modules will be placed
fa output AR format library
fm output MLIB format library
fo output OMF format library
h display the usage message
ia generate AXP import records
ii generate X86 import records
ip generate PPC import records
ie generate ELF import records
ic generate COFF import records
io generate OMF import records
i(r|n)(n|o) imports for the resident/non-resident names table are to be imported by name/ordinal.
l[=<list_file>] create a listing file
m display C++ mangled names
n always create a new library
o=<output_file>

set output file name for library
p=<record_size>

set library page size (supported for "OMF" library format only)
q suppress identification banner
s strip line number records from object files (supported for "OMF" library format only)
t remove path information from module name specified in THEADR records (supported for

"OMF" library format only)
v do not suppress identification banner
x extract all object modules from library
zld strip file dependency info from object files (supported for "OMF" library format only)

The following sections describe the operations that can be performed on a library file. Note that before
making a change to a library file, the Open Watcom Library Manager makes a backup copy of the original
library file unless the "o" option is used to specify an output library file whose name is different than the
original library file, or the "b" option is used to suppress the creation of the backup file. The backup copy
has the same file name as the original library file but has a file extension of "bak". Hence, lib_file should
not have a file extension of "bak".

314 The Open Watcom Library Manager Command Line

The Open Watcom Library Manager

17.3 Open Watcom Library Manager Module Commands
The following is a summary of basic Open Watcom Library Manager module manipulation commands:

+ add module to a library
- remove module from a library
* or : extract module from a library (: is used with a UNIX-hosted version of the Open Watcom

Library Manager, otherwise * is used)
++ add import library entry

17.4 Adding Modules to a Library File
An object file can be added to a library file by specifying a +obj_file command where obj_file is the file
specification for an object file. A file extension of "o" is assumed if none is specified. If the library file
does not exist, a warning message will be issued and the library file will be created.

Example:
wlib mylib +myobj

In the above example, the object file "myobj" is added to the library file "mylib.lib".

When a module is added to a library, the Open Watcom Library Manager will issue a warning if a symbol
redefinition occurs. This will occur if a symbol in the module being added is already defined in another
module that already exists in the library file. Note that the module will be added to the library in any case.

It is also possible to combine two library files together. The following example adds all modules in the
library "newlib.lib" to the library "mylib.lib".

Example:
wlib mylib +newlib.lib

Note that you must specify the "lib" file extension. Otherwise, the Open Watcom Library Manager will
assume you are adding an object file.

17.5 Deleting Modules from a Library File
A module can be deleted from a library file by specifying a -mod_name command where mod_name is the
file name of the object file when it was added to the library with the directory and file extension removed.

Example:
wlib mylib -myobj

In the above example, the Open Watcom Library Manager is instructed to delete the module "myobj" from
the library file "mylib.lib".

It is also possible to specify a library file instead of a module name.

Deleting Modules from a Library File 315

The Open Watcom Library Manager

Example:
wlib mylib -oldlib.lib

In the above example, all modules in the library file "oldlib.lib" are removed from the library file
"mylib.lib". Note that you must specify the "lib" file extension. Otherwise, the Open Watcom Library
Manager will assume you are removing an object module.

17.6 Replacing Modules in a Library File
A module can be replaced by specifying a -+mod_name or +-mod_name command. The module
mod_name is deleted from the library. The object file "mod_name" is then added to the library.

Example:
wlib mylib -+myobj

In the above example, the module "myobj" is replaced by the object file "myobj".

It is also possible to merge two library files.

Example:
wlib mylib -+updlib.lib

In the above example, all modules in the library file "updlib.lib" replace the corresponding modules in the
library file "mylib.lib". Any module in the library "updlib.lib" not in library "mylib.lib" is added to the
library "mylib.lib". Note that you must specify the "lib" file extension. Otherwise, the Open Watcom
Library Manager will assume you are replacing an object module.

17.7 Extracting a Module from a Library File
A module can be extracted from a library file by specifying a :mod_name [=file_name] command. The
module mod_name is not deleted but is copied to a disk file. If mod_name is preceded by a path
specification, the output file will be placed in the directory identified by the path specification. If
mod_name is followed by a file extension, the output file will contain the specified file extension.

Example:
wlib mylib :myobj

In the above example, the module "myobj" is copied to a disk file. The disk file will be an object file with
file name "myobj". A file extension of "o" will be used.

Example:
wlib mylib :myobj.out

In the above example, the module "myobj" will be extracted from the library file "mylib.lib" and placed in
the file "myobj.out"

The following form of the extract command can be used if the module name is not the same as the output
file name.

316 Extracting a Module from a Library File

The Open Watcom Library Manager

Example:
wlib mylib :myobj=newmyobj.out

You can extract a module from a file and have that module deleted from the library file by specifying a
:-mod_name command. The following example performs the same operations as in the previous example
but, in addition, the module is deleted from the library file.

Example:
wlib mylib :-myobj.out

Note that the same result is achieved if the delete operator precedes the extract operator.

17.8 Creating Import Libraries
The Open Watcom Library Manager can also be used to create import libraries from Dynamic Link
Libraries. Import libraries are used when linking OS/2, Win16 or Win32 applications.

Example:
wlib implib +dynamic.dll

In the above example, the following actions are performed. For each external symbol in the specified
Dynamic Link Library, a special object module is created that identifies the external symbol and the actual
name of the Dynamic Link Library it is defined in. This object module is then added to the specified
library. The resulting library is called an import library.

Note that you must specify the "dll" file extension. Otherwise, the Open Watcom Library Manager will
assume you are adding an object file.

17.9 Creating Import Library Entries
An import library entry can be created and added to a library by specifying a command of the following
form.

++sym.dll_name[.[altsym].export_name][.ordinal]

where description:

sym is the name of a symbol in a Dynamic Link Library.

dll_name is the name of the Dynamic Link Library that defines sym.

altsym is the name of a symbol in a Dynamic Link Library. When omitted, the default symbol
name is sym.

export_name is the name that an application that is linking to the Dynamic Link Library uses to reference
sym. When omitted, the default export name is sym.

ordinal is the ordinal value that can be used to identify sym instead of using the name
export_name.

Creating Import Library Entries 317

The Open Watcom Library Manager

Example:
wlib math ++__sin.trig.sin.1

In the above example, an import library entry will be created for symbol sin and added to the library
"math.lib". The symbol sin is defined in the Dynamic Link Library called "trig.dll" as __sin. When an
application is linked with the library "math.lib", the resulting executable file will contain an import by
ordinal value 1. If the ordinal value was omitted, the resulting executable file would contain an import by
name sin.

17.10 Commands from a File or Environment Variable
The Open Watcom Library Manager can be instructed to process all commands in a disk file or
environment variable by specifying the @name command where name is a file specification for the
command file or the name of an environment variable. A file extension of "lbc" is assumed for files if none
is specified. The commands must be one of those previously described.

Example:
wlib mylib @mycmd

In the above example, all commands in the environment variable "mycmd" or file "mycmd.lbc" are
processed by the Open Watcom Library Manager.

17.11 Open Watcom Library Manager Options
The following sections describe the list of options allowed when invoking the Open Watcom Library
Manager.

17.11.1 Suppress Creation of Backup File - "b" Option
The "b" option tells the Open Watcom Library Manager to not create a backup library file. In the following
example, the object file identified by "new" will be added to the library file "mylib.lib".

Example:
wlib -b mylib +new

If the library file "mylib.lib" already exits, no backup library file ("mylib.bak") will be created.

17.11.2 Case Sensitive Symbol Names - "c" Option
The "c" option tells the Open Watcom Library Manager to use a case sensitive compare when comparing a
symbol to be added to the library to a symbol already in the library file. This will cause the names "myrtn"
and "MYRTN" to be treated as different symbols. By default, comparisons are case insensitive. That is the
symbol "myrtn" is the same as the symbol "MYRTN".

318 Open Watcom Library Manager Options

The Open Watcom Library Manager

17.11.3 Specify Output Directory - "d" Option
The "d" option tells the Open Watcom Library Manager the directory in which all extracted modules are to
be placed. The default is to place all extracted modules in the current directory.

In the following example, the module "mymod" is extracted from the library "mylib.lib". The module will
be placed in the file "/o/mymod.o".

Example:
wlib -d=/o mymod

17.11.4 Specify Output Format - "f" Option
The "f" option tells the Open Watcom Library Manager the format of the output library. The default output
format is determined by the type of object files that are added to the library when it is created. The possible
output format options are:

fa output AR format library

fm output MLIB format library

fo output OMF format library

17.11.5 Generating Imports - "i" Option
The "i" option can be used to describe type of import library to create.

ia generate AXP import records

ii generate X86 import records

ip generate PPC import records

ie generate ELF import records

ic generate COFF import records

io generate OMF import records

When creating import libraries from Dynamic Link Libraries, import entries for the names in the resident
and non-resident names tables are created. The "i" option can be used to describe the method used to
import these names.

iro Specifying "iro" causes imports for names in the resident names table to be imported by
ordinal.

irn Specifying "irn" causes imports for names in the resident names table to be imported by
name. This is the default.

ino Specifying "ino" causes imports for names in the non-resident names table to be imported
by ordinal. This is the default.

Open Watcom Library Manager Options 319

The Open Watcom Library Manager

inn Specifying "inn" causes imports for names in the non-resident names table to be imported
by name.

Example:
wlib -iro -inn implib +dynamic.dll

Note that you must specify the "dll" file extension for the Dynamic Link Library. Otherwise an object file
will be assumed.

17.11.6 Creating a Listing File - "l" Option
The "l" (lower case "L") option instructs the Open Watcom Library Manager to produce a list of the names
of all symbols that can be found in the library file to a listing file. The file name of the listing file is the
same as the file name of the library file. The file extension of the listing file is "lst".

Example:
wlib -l mylib

In the above example, the Open Watcom Library Manager is instructed to list the contents of the library file
"mylib.lib" and produce the output to a listing file called "mylib.lst".

An alternate form of this option is -l=list_file. With this form, you can specify the name of the
listing file. When specifying a listing file name, a file extension of "lst" is assumed if none is specified.

Example:
wlib -l=mylib.out mylib

In the above example, the Open Watcom Library Manager is instructed to list the contents of the library file
"mylib.lib" and produce the output to a listing file called "mylib.out".

You can get a listing of the contents of a library file to the terminal by specifying only the library name on
the command line as demonstrated by the following example.

Example:
wlib mylib

17.11.7 Display C++ Mangled Names - "m" Option
The "m" option instructs the Open Watcom Library Manager to display C++ mangled names rather than
displaying their demangled form. The default is to interpret mangled C++ names and display them in a
somewhat more intelligible form.

17.11.8 Always Create a New Library - "n" Option
The "n" option tells the Open Watcom Library Manager to always create a new library file. If the library
file already exists, a backup copy is made (unless the "b" option was specified). The original contents of
the library are discarded and a new library is created. If the "n" option was not specified, the existing
library would be updated.

320 Open Watcom Library Manager Options

The Open Watcom Library Manager

Example:
wlib -n mylib +myobj

In the above example, a library file called "mylib.lib" is created. It will contain a single object module,
namely "myobj", regardless of the contents of "mylib.lib" prior to issuing the above command. If
"mylib.lib" already exists, it will be renamed to "mylib.bak".

17.11.9 Specifying an Output File Name - "o" Option
The "o" option can be used to specify the output library file name if you want the original library to remain
unchanged and a new library created.

Example:
wlib -o=newlib lib1 +lib2.lib

In the above example, the modules from "lib1.lib" and "lib2.lib" are added to the library "newlib.lib". Note
that since the original library remains unchanged, no backup copy is created. Also, if the "l" option is used
to specify a listing file, the listing file will assume the file name of the output library.

17.11.10 Specifying a Library Record Size - "p" Option
The "p" option specifies the record size in bytes for each record in the library file. The record size must be
a power of 2 and in the range 16 to 32768. If the record size is less than 16, it will be rounded up to 16. If
the record size is greater than 16 and not a power of 2, it will be rounded up to the nearest power of 2. The
default record size is 256 bytes.

Each entry in the dictionary of a library file contains an offset from the start of the file which points to a
module. The offset is 16 bits and is a multiple of the record size. Since the default record size is 256, the
maximum size of a library file for a record size of 256 is 256*64K. If the size of the library file increases
beyond this size, you must increase the record size.

Example:
wlib -p=512 lib1 +lib2.lib

In the above example, the Open Watcom Library Manager is instructed to create/update the library file
"lib1.lib" by adding the modules from the library file "lib2.lib". The record size of the resulting library file
is 512 bytes.

17.11.11 Operate Quietly - "q" Option
The "q" option suppressing the banner and copyright notice that is normally displayed when the Open
Watcom Library Manager is invoked.

Open Watcom Library Manager Options 321

The Open Watcom Library Manager

Example:
wlib -q -l mylib

17.11.12 Strip Line Number Records - "s" Option
The "s" option tells the Open Watcom Library Manager to remove line number records from object files
that are being added to a library. Line number records are generated in the object file if the "d1" option is
specified when compiling the source code.

Example:
wlib -s mylib +myobj

17.11.13 Trim Module Name - "t" Option
The "t" option tells the Open Watcom Library Manager to remove path information from the module name
specified in THEADR records in object files that are being added to a library. The module name is created
from the file name by the compiler and placed in the THEADR record of the object file. The module name
will contain path information if the file name given to the compiler contains path information.

Example:
wlib -t mylib +myobj

17.11.14 Operate Verbosely - "v" Option
The "v" option enables the display of the banner and copyright notice when the Open Watcom Library
Manager is invoked.

Example:
wlib -v -l mylib

17.11.15 Explode Library File - "x" Option
The "x" option tells the Open Watcom Library Manager to extract all modules from the library. Note that
the modules are not deleted from the library. Object modules will be placed in the current directory unless
the "d" option is used to specify an alternate directory.

In the following example all modules will be extracted from the library "mylib.lib" and placed in the
current directory.

Example:
wlib -x mylib

In the following example, all modules will be extracted from the library "mylib.lib". The module will be
placed in the file "/o" directory.

322 Open Watcom Library Manager Options

The Open Watcom Library Manager

Example:
wlib -x -d=/o mylib

17.12 Librarian Error Messages
The following messages may be issued by the Open Watcom Library Manager.

Error! Could not open object file ’%s’.
Object file ’%s’ could not be found. This message is usually issued when an attempt is
made to add a non-existent object file to the library.

Error! Could not open library file ’%s’.
The specified library file could not be found. This is usually issued for input library files.
For example, if you are combining two library files, the library file you are adding is an
input library file and the library file you are adding to or creating is an output library file.

Error! Invalid object module in file ’%s’ not added.
The specified file contains an invalid object module.

Error! Dictionary too large. Recommend split library into two libraries.
The size of the dictionary in a library file cannot exceed 64K. You must split the library
file into two separate library files.

Error! Redefinition of module ’%s’ in file ’%s’.
This message is usually issued when an attempt is made to add a module to a library that
already contains a module by that name.

Warning! Redefinition of symbol ’%s’ in file ’%s’ ignored.
This message is issued if a symbol defined by a module already in the library is also
defined by a module being added to the library.

Error! Library too large. Recommend split library into two libraries or try a larger page_bound than
%xH. The record size of the library file does not allow the library file to increase beyond its

current size. The record size of the library file must be increased using the "p" option.

Error! Expected ’%s’ in ’%s’ but found ’%s’.
An error occurred while scanning command input.

Warning! Could not find module ’%s’ for deletion.
This message is issued if an attempt is made to delete a module that does not exist in the
library.

Error! Could not find module ’%s’ for extraction.
This message is issued if an attempt is made to extract a module that does not exist in the
library.

Error! Could not rename old library for backup.
The Open Watcom Library Manager creates a backup copy before making any changes
(unless the "b" option is specified). This message is issued if an error occurred while trying
to rename the original library file to the backup file name.

Librarian Error Messages 323

The Open Watcom Library Manager

Warning! Could not open library ’%s’ : will be created.
The specified library does not exist. It is usually issued when you are adding to a
non-existent library. The Open Watcom Library Manager will create the library.

Warning! Output library name specification ignored.
This message is issued if the library file specified by the "o" option could not be opened.

Warning! Could not open library ’%s’ and no operations specified: will not be created.
This message is issued if the library file specified on the command line does not exist and
no operations were specified. For example, asking for a listing file of a non-existent library
will cause this message to be issued.

Warning! Could not open listing file ’%s’.
The listing file could not be opened. For example, this message will be issued when a "disk
full" condition is present.

Error! Could not open output library.
The output library could not be opened.

Error! Unable to write to output library.
An error occurred while writing to the output library.

Error! Unable to write to extraction file ’%s’.
This message is issued when extracting an object module from a library file and an error
occurs while writing to the output file.

Error! Out of Memory.
There was not enough memory to process the library file.

Error! Could not open file ’%s’.
This message is issued if the output file for a module that is being extracted from a library
could not be opened.

Error! Library ’%s’ is invalid. Contents ignored.
The library file does not contain the correct header information.

Error! Library ’%s’ has an invalid page size. Contents ignored.
The library file has an invalid record size. The record size is contained in the library header
and must be a power of 2.

Error! Invalid object record found in file ’%s’.
The specified file contains an invalid object record.

Error! No library specified on command line.
This message is issued if a library file name is not specified on the command line.

Error! Expecting library name.
This message is issued if the location of the library file name on the command line is
incorrect.

Warning! Invalid file name ’%s’.
This message is issued if an invalid file name is specified. For example, a file name longer
that 127 characters is not allowed.

324 Librarian Error Messages

The Open Watcom Library Manager

Error! Could not open command file ’%s’.
The specified command file could not be opened.

Error! Could not read from file ’%s’. Contents ignored as command input.
An error occurred while reading a command file.

Librarian Error Messages 325

The Open Watcom Library Manager

326 Librarian Error Messages

The Open Watcom Assembler

The Open Watcom Assembler

328

18 The Open Watcom Assembler

18.1 Introduction
This chapter describes the Open Watcom Assembler. It takes as input an assembler source file (a file with
extension ".a") and produces, as output, an object file.

The Open Watcom Assembler command line syntax is the following.

wasm [options] asm_file [options] [@env_var]

The square brackets [] denote items which are optional.

wasm is the name of the Open Watcom Assembler.

asm_file is the filename specification of the assembler source file to be assembled. A default
filename extension of ".a" is assumed when no extension is specified. A filename
extension consists of that portion of a filename containing the last "." and any characters
which follow it.

Example:
File Specification Extension
/home/john.doe/foo (none)
/home/john.doe/foo. .
/home/john.doe/foo.bar .bar
/home/john.doe/foo.goo.bar .bar

options is a list of valid Open Watcom Assembler options, each preceded by a dash (";.ct .sf7 -;.esf
"). Options may be specified in any order.

The options supported by the Open Watcom Assembler are:

{0,1,2,3,4,5,6}{p}{r,s}

0 same as ".8086"
1 same as ".186"
2{p} same as ".286" or ".286p"
3{p} same as ".386" or ".386p" (also defines "__386__" and changes the default

USE attribute of segments from "USE16" to "USE32")
4{p} same as ".486" or ".486p" (also defines "__386__" and changes the default

USE attribute of segments from "USE16" to "USE32")
5{p} same as ".586" or ".586p" (also defines "__386__" and changes the default

USE attribute of segments from "USE16" to "USE32")
6{p} same as ".686" or ".686p" (also defines "__386__" and changes the default

USE attribute of segments from "USE16" to "USE32")

Introduction 329

The Open Watcom Assembler

p protect mode
add r defines "__REGISTER__"
add s defines "__STACK__"

Example:
-2 -3p -4pr -5p

bt=<os> defines "__<os>__" and checks the "<os>_INCLUDE" environment variable for include
files

c do not output OMF COMENT records that allow WDISASM to figure out when data bytes
have been placed in a code segment

d<name>[=text] define text macro
d1 line number debugging support
e stop reading assembler source file at END directive. Normally, anything following the

END directive will cause an error.
e<number> set error limit number
fe=<file_name> set error file name
fo=<file_name> set object file name
fi=<file_name> force <file_name> to be included
fpc same as ".no87"
fpi inline 80x87 instructions with emulation
fpi87 inline 80x87 instructions
fp0 same as ".8087"
fp2 same as ".287" or ".287p"
fp3 same as ".387" or ".387p"
fp5 same as ".587" or ".587p"
fp6 same as ".687" or ".687p"
i=<directory> add directory to list of include directories
j or s force signed types to be used for signed values
m{t,s,m,c,l,h,f} memory model: (Tiny, Small, Medium, Compact, Large, Huge, Flat)

-mt Same as ".model tiny"
-ms Same as ".model small"
-mm Same as ".model medium"
-mc Same as ".model compact"
-ml Same as ".model large"
-mh Same as ".model huge"
-mf Same as ".model flat"

Each of the model directives also defines "__<model>__" (e.g., ".model small" defines
"__SMALL__"). They also affect whether something like "foo proc" is considered a "far"
or "near" procedure.

nd=<name> set data segment name
nm=<name> set module name
nt=<name> set name of text segment
o allow C form of octal constants
zcm set C name mangler to MASM compatible mode
zld remove file dependency information
zq or q operate quietly
zz remove "@size" from STDCALL function names
zzo don’t mangle STDCALL symbols (WASM backward compatible)
? or h print this message
w<number> set warning level number

330 Introduction

The Open Watcom Assembler

we treat all warnings as errors
wx set warning level to maximum setting

18.2 Assembly Directives and Opcodes
It is not the intention of this chapter to describe assembly-language programming in any detail. You should
consult a book that deals with this topic. However, we present an alphabetically ordered list of the
directives, opcodes and register names that are recognized by the assembler.

.186 .286 .286c .286p

.287 .386 .386p .387

.486 .486p .586 .586p

.686 .686p .8086 .8087
aaa aad aam aas
abs adc add addpd
addps addr addsd addss
addsubpd addsubps ah al
alias align .alpha and
andnpd andnps andpd andps
arpl assume ax basic
bh bl bound bp
.break bsf bsr bswap
bt btc btr bts
bx byte c call
callf casemap catstr cbw
cdq ch cl clc
cld clflush cli clts
cmc cmova cmovae cmovb
cmovbe cmovc cmove cmovg
cmovge cmovl cmovle cmovna
cmovnae cmovnb cmovnbe cmovnc
cmovne cmovng cmovnge cmovnl
cmovnle cmovno cmovnp cmovns
cmovnz cmovo cmovp cmovpe
cmovpo cmovs cmovz cmp
cmpeqpd cmpeqps cmpeqsd cmpeqss
cmplepd cmpleps cmplesd cmpless
cmpltpd cmpltps cmpltsd cmpltss
cmpneqpd cmpneqps cmpneqsd cmpneqss
cmpnlepd cmpnleps cmpnlesd cmpnless
cmpnltpd cmpnltps cmpnltsd cmpnltss
cmpordpd cmpordps cmpordsd cmpordss
cmppd cmpps cmps cmpsb
cmpsd cmpss cmpsw cmpunordpd
cmpunordps cmpunordsd cmpunordss cmpxchg
cmpxchg8b .code comisd comiss
comm comment common compact
.const .continue cpuid cr0
cr2 cr3 cr4 .cref
cs cvtdq2pd cvtdq2ps cvtpd2dq
cvtpd2pi cvtpd2ps cvtpi2pd cvtpi2ps
cvtps2dq cvtps2pd cvtps2pi cvtsd2si
cvtsd2ss cvtsi2sd cvtsi2ss cvtss2sd
cvtss2si cvttpd2dq cvttpd2pi cvttps2dq
cvttps2pi cvttsd2si cvttss2si cwd
cwde cx daa das

Assembly Directives and Opcodes 331

The Open Watcom Assembler

.data .data? db dd
dec df dh di
div divpd divps divsd
divss dl .dosseg dosseg
dp dq dr0 dr1
dr2 dr3 dr6 dr7
ds dt dup dw
dword dx eax ebp
ebx echo ecx edi
edx .else else elseif
emms end .endif endif
endm endp ends .endw
enter eq equ equ2
.err .errb .errdef .errdif
.errdifi .erre .erridn .erridni
.errnb .errndef .errnz error
es esi esp even
.exit exitm export extern
externdef extrn f2xm1 fabs
fadd faddp far .fardata
.fardata? farstack fbld fbstp
fchs fclex fcmovb fcmovbe
fcmove fcmovnb fcmovnbe fcmovne
fcmovnu fcmovu fcom fcomi
fcomip fcomp fcompp fcos
fdecstp fdisi fdiv fdivp
fdivr fdivrp femms feni
ffree fiadd ficom ficomp
fidiv fidivr fild fimul
fincstp finit fist fistp
fisttp fisub fisubr flat
fld fld1 fldcw fldenv
fldenvd fldenvw fldl2e fldl2t
fldlg2 fldln2 fldpi fldz
fmul fmulp fnclex fndisi
fneni fninit fnop fnrstor
fnrstord fnrstorw fnsave fnsaved
fnsavew fnstcw fnstenv fnstenvd
fnstenvw fnstsw for forc
fortran fpatan fprem fprem1
fptan frndint frstor frstord
frstorw fs fsave fsaved
fsavew fscale fsetpm fsin
fsincos fsqrt fst fstcw
fstenv fstenvd fstenvw fstp
fstsw fsub fsubp fsubr
fsubrp ftst fucom fucomi
fucomip fucomp fucompp fwait
fword fxam fxch fxrstor
fxsave fxtract fyl2x fyl2xp1
ge global group gs
gt haddpd haddps high
highword hlt hsubpd hsubps
huge idiv .if if
if1 if2 ifb ifdef
ifdif ifdifi ife ifidn
ifidni ifnb ifndef ignore
imul in inc include
includelib ins insb insd

332 Assembly Directives and Opcodes

The Open Watcom Assembler

insw int into invd
invlpg invoke iret iretd
iretdf iretf irp irpc
ja jae jb jbe
jc jcxz je jecxz
jg jge jl jle
jmp jmpf jna jnae
jnb jnbe jnc jne
jng jnge jnl jnle
jno jnp jns jnz
jo jp jpe jpo
js jz .k3d label
lahf lar large lddqu
ldmxcsr lds le lea
leave length lengthof les
.lfcond lfence lfs lgdt
lgs lidt .list .listall
.listif .listmacro .listmacroall lldt
lmsw local lock lods
lodsb lodsd lodsw loop
loopd loope looped loopew
loopne loopned loopnew loopnz
loopnzd loopnzw loopw loopz
loopzd loopzw low lowword
lroffset lsl lss lt
ltr macro mask maskmovdqu
maskmovq maxpd maxps maxsd
maxss medium memory mfence
minpd minps minsd minss
mm0 mm1 mm2 mm3
mm4 mm5 mm6 mm7
.mmx mod .model monitor
mov movapd movaps movd
movddup movdq2q movdqa movdqu
movhlps movhpd movhps movlhps
movlpd movlps movmskpd movmskps
movntdq movnti movntpd movntps
movntq movq movq2dq movs
movsb movsd movshdup movsldup
movss movsw movsx movupd
movups movzx mul mulpd
mulps mulsd mulss mwait
name ne near nearstack
neg .no87 .nocref .nolist
nop not nothing offset
opattr option or org
orpd orps os_dos os_os2
out outs outsb outsd
outsw oword packssdw packsswb
packuswb paddb paddd paddq
paddsb paddsw paddusb paddusw
paddw page pand pandn
para pascal pause pavgb
pavgusb pavgw pcmpeqb pcmpeqd
pcmpeqw pcmpgtb pcmpgtd pcmpgtw
pextrw pf2id pf2iw pfacc
pfadd pfcmpeq pfcmpge pfcmpgt
pfmax pfmin pfmul pfnacc
pfpnacc pfrcp pfrcpit1 pfrcpit2

Assembly Directives and Opcodes 333

The Open Watcom Assembler

pfrsqit1 pfrsqrt pfsub pfsubr
pi2fd pi2fw pinsrw pmaddwd
pmaxsw pmaxub pminsw pminub
pmovmskb pmulhrw pmulhuw pmulhw
pmullw pmuludq pop popa
popad popcontext popf popfd
por prefetch prefetchnta prefetcht0
prefetcht1 prefetcht2 prefetchw private
proc proto psadbw pshufd
pshufhw pshuflw pshufw pslld
pslldq psllq psllw psrad
psraw psrld psrldq psrlq
psrlw psubb psubd psubq
psubsb psubsw psubusb psubusw
psubw pswapd ptr public
punpckhbw punpckhdq punpckhqdq punpckhwd
punpcklbw punpckldq punpcklqdq punpcklwd
purge push pusha pushad
pushcontext pushd pushf pushfd
pushw pword pxor qword
.radix rcl rcpps rcpss
rcr rdmsr rdpmc rdtsc
readonly record rep repe
.repeat repeat repne repnz
rept repz ret retd
retf retfd retn rol
ror rsm rsqrtps rsqrtss
sahf sal .sall sar
sbb sbyte scas scasb
scasd scasw sdword seg
segment .seq seta setae
setb setbe setc sete
setg setge setl setle
setna setnae setnb setnbe
setnc setne setng setnge
setnl setnle setno setnp
setns setnz seto setp
setpe setpo sets setz
.sfcond sfence sgdt shl
shld short shr shrd
shufpd shufps si sidt
size sizeof sldt small
smsw sp sqrtpd sqrtps
sqrtsd sqrtss ss st
.stack .startup stc std
stdcall sti stmxcsr stos
stosb stosd stosw str
struc struct sub subpd
subps subsd subss subtitle
subttl sword syscall sysenter
sysexit tbyte test textequ
.tfcond this tiny title
tr3 tr4 tr5 tr6
tr7 typedef ucomisd ucomiss
union unpckhpd unpckhps unpcklpd
unpcklps .until use16 use32
uses vararg verr verw
wait watcom_c wbinvd .while
width word wrmsr xadd

334 Assembly Directives and Opcodes

The Open Watcom Assembler

xchg .xcref xlat xlatb
.xlist .xmm xmm0 xmm1
.xmm2 xmm2 .xmm3 xmm3
xmm4 xmm5 xmm6 xmm7
xor xorpd xorps

18.3 Unsupported Directives
Other assemblers support directives that this assembler does not. The following is a list of directives that
are ignored by the Open Watcom Assembler (use of these directives results in a warning message).

.alpha .cref .lfcond .list
.listall .listif .listmacro .listmacroall
.nocref .nolist page .sall
.seq .sfcond subtitle subttl
.tfcond title .xcref .xlist

The following is a list of directives that are flagged by the Open Watcom Assembler (use of these directives
results in an error message).

addr .break casemap catstr
.continue echo .else endmacro
.endif .endw .exit high
highword .if invoke low
lowword lroffset mask opattr
option popcontext proto purge
pushcontext .radix record .repeat
.startup this typedef union
.until .while width

18.4 Open Watcom Assembler Specific
There are a few specific features in Open Watcom Assembler

18.4.1 Naming convention

Procedure Variable
Convention Name Name
--------------- ---------- ---------
C ’*’ ’*’
C (MASM) ’_*’ ’_*’ see note 1
WATCOM_C ’*_’ ’_*’
SYSCALL ’*’ ’*’
STDCALL ’_*@nn’ ’_*’
STDCALL ’_*’ ’_*’ see note 2
STDCALL ’*’ ’*’ see note 3
BASIC ’^’ ’^’
FORTRAN ’^’ ’^’
PASCAL ’^’ ’^’

Open Watcom Assembler Specific 335

The Open Watcom Assembler

Notes:

1. WASM uses MASM compatible names when -zcm command line option is used.

2. In STDCALL procedures name ’nn’ is overall parametrs size in bytes. ’@nn’ is suppressed
when -zz command line option is used (WATCOM 10.0 compatibility).

3. STDCALL symbols mangling is suppressed by -zzo command line option (WASM backward
compatible).

18.4.2 Open Watcom "C" name mangler

Command line Procedure Others

option Name Names
--------------- ---------- ---------
0,1,2 ’*_’ ’_*’
3,4,5,6 with r ’*_’ ’_*’
3,4,5,6 with s ’*’ ’*’

18.4.3 Calling convention

Parameters Parameters Cleanup caller
Convention Vararg passed by order stack
----------- ------ ------------ ------------- --------------
C yes stack right to left no
WATCOM_C yes registers right to left no
SYSCALL yes stack right to left no
STDCALL yes stack right to left yes see note 1
BASIC no stack left to right yes
FORTRAN no stack left to right yes
PASCAL no stack left to right yes

Notes:

1. For STDCALL procedures WASM automaticaly cleanup caller stack, except case when vararg
parameter is used.

18.5 Open Watcom Assembler Diagnostic Messages
1 Size doesn’t match with previous definition

2 Invalid instruction with current CPU setting

3 LOCK prefix is not allowed on this instruction

4 REP prefix is not allowed on this instruction

5 Invalid memory pointer

6 Cannot use 386 addressing mode with current CPU setting

336 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

7 Too many base registers

8 Invalid index register

9 Scale factor must be 1, 2, 4 or 8

10 invalid addressing mode with current CPU setting

11 ESP cannot be used as index

12 Too many base/index registers

13 Memory offset cannot reference to more than one label

14 Offset must be relocatable

15 Memory offset expected

16 Invalid indirect memory operand

17 Cannot mix 16 and 32-bit registers

18 CPU type already set

19 Unknown directive

20 Expecting comma

21 Expecting number

22 Invalid label definition

23 Invalid use of SHORT, NEAR, FAR operator

24 No memory

25 Cannot use 386 segment register with current CPU setting

26 POP CS is not allowed

27 Cannot use 386 register with current CPU setting

28 Only MOV can use special register

29 Cannot use TR3, TR4, TR5 in current CPU setting

30 Cannot use SHORT with CALL

31 Only SHORT displacement is allowed

32 Syntax error

33 Prefix must be followed by an instruction

Open Watcom Assembler Diagnostic Messages 337

The Open Watcom Assembler

34 No size given before ’PTR’ operator

35 Invalid IMUL format

36 Invalid SHLD/SHRD format

37 Too many commas

38 Syntax error: Unexpected colon

39 Operands must be the same size

40 Invalid instruction operands

41 Immediate constant too large

42 Can not use short or near modifiers with this instruction

43 Jump out of range

44 Displacement cannot be larger than 32k

45 Initializer value too large

46 Symbol already defined

47 Immediate data too large

48 Immediate data out of range

49 Can not transfer control to stack symbol

50 Offset cannot be smaller than WORD size

51 Can not take offset of stack symbol

52 Can not take segment of stack symbol

53 Segment too large

54 Offset cannot be larger than 32k

55 Operand 2 too big

56 Operand 1 too small

57 Too many arithmetic operators

58 Too many open square brackets

59 Too many close square brackets

60 Too many open brackets

338 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

61 Too many close brackets

62 Invalid number digit

63 Assembler Code is too long

64 Brackets are not balanced

65 Operator is expected

66 Operand is expected

67 Too many tokens in a line

68 Bracket is expected

69 Illegal use of register

70 Illegal use of label

71 Invalid operand in addition

72 Invalid operand in subtraction

73 One operand must be constant

74 Constant operand is expected

75 A constant operand is expected in addition

76 A constant operand is expected in subtraction

77 A constant operand is expected in multiplication

78 A constant operand is expected in division

79 A constant operand is expected after a positive sign

80 A constant operand is expected after a negative sign

81 Label is not defined

82 More than one override

83 Label is expected

84 Only segment or group label is allowed

85 Only register or label is expected in override

86 Unexpected end of file

87 Label is too long

Open Watcom Assembler Diagnostic Messages 339

The Open Watcom Assembler

88 This feature has not been implemented yet

89 Internal Error #1

90 Can not take offset of group

91 Can not take offset of segment

92 Invalid character found

93 Invalid operand size for instruction

94 This instruction is not supported

95 size not specified -- BYTE PTR is assumed

96 size not specified -- WORD PTR is assumed

97 size not specified -- DWORD PTR is assumed

500 Segment parameter is defined already

501 Model parameter is defined already

502 Syntax error in segment definition

503 ’AT’ is not supported in segment definition

504 Segment definition is changed

505 Lname is too long

506 Block nesting error

507 Ends a segment which is not opened

508 Segment option is undefined

509 Model option is undefined

510 No segment is currently opened

511 Lname is used already

512 Segment is not defined

513 Public is not defined

514 Colon is expected

515 A token is expected after colon

516 Invalid qualified type

340 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

517 Qualified type is expected

518 External definition different from previous one

519 Memory model is not found in .MODEL

520 Cannot open include file

521 Name is used already

522 Library name is missing

523 Segment name is missing

524 Group name is missing

525 Data emitted with no segment

526 Seglocation is expected

527 Invalid register

528 Cannot address with assumed register

529 Invalid start address

530 Label is already defined

531 Token is too long

532 The line is too long after expansion

533 A label is expected after colon

534 Must be associated with code

535 Procedure must have a name

536 Procedure is alreadly defined

537 Language type must be specified

538 End of procedure is not found

539 Local variable must immediately follow PROC or MACRO statement

540 Extra character found

541 Cannot nest procedures

542 No procedure is currently defined

543 Procedure name does not match

Open Watcom Assembler Diagnostic Messages 341

The Open Watcom Assembler

544 Vararg requires C calling convention

545 Model declared already

546 Model is not declared

547 Backquote expected

548 COMMENT delimiter expected

549 End directive required at end of file

550 Nesting level too deep

551 Symbol not defined

552 Insert Stupid warning #1 here

553 Insert Stupid warning #2 here

554 Spaces not allowed in command line options

555 Error:

556 Source File

557 No filename specified.

558 Out of Memory

559 Cannot Open File -

560 Cannot Close File -

561 Cannot Get Start of Source File -

562 Cannot Set to Start of Source File -

563 Command Line Contains More Than 1 File To Assemble

564 include path %s.

565 Unknown option %s. Use /? for list of options.

566 read more command line from %s.

567 Internal error in %s(%u)

568 OBJECT WRITE ERROR !!

569 NO LOR PHARLAP !!

570 Parameter Required

342 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

571 Expecting closing square bracket

572 Expecting file name

573 Floating point instruction not allowed with /fpc

574 Too many errors

575 Build target not recognised

576 Public constants should be numeric

577 Expecting symbol

578 Do not mix simplified and full segment definitions

579 Parms passed in multiple registers must be accessed separately, use %s

580 Ten byte variables not supported in register calling convention

581 Parameter type not recognised

582 forced error:

583 forced error: Value not equal to 0 : %d

584 forced error: Value equal to 0: %d

585 forced error: symbol defined: %s

586 forced error: symbol not defined: %s

587 forced error: string blank : <%s>

588 forced error: string not blank : <%s>

589 forced error: strings not equal : <%s> : <%s>

590 forced error: strings equal : <%s> : <%s>

591 included by file %s(%d)

592 macro called from file %s(%d)

593 Symbol %s not defined

594 Extending jump

595 Ignoring inapplicable directive

596 Unknown symbol class ’%s’

597 Symbol class for ’%s’ already established

Open Watcom Assembler Diagnostic Messages 343

The Open Watcom Assembler

598 number must be a power of 2

599 alignment request greater than segment alignment

600 ’%s’ is already defined

601 %u unclosed conditional directive(s) detected

344 Open Watcom Assembler Diagnostic Messages

The Open Watcom Disassembler

The Open Watcom Disassembler

346

19 The Object File Disassembler

19.1 Introduction
This chapter describes the Open Watcom Disassembler. It takes as input an object file (a file with
extension ".o") and produces, as output, the Intel assembly language equivalent. The Open Watcom
compilers do not produce an assembly language listing directly from a source program. Instead, the Open
Watcom Disassembler can be used to generate an assembly language listing from the object file generated
by the compiler.

The Open Watcom Disassembler command line syntax is the following.

wdis [options] filespec [options]

The square brackets [] denote items which are optional.

wdis is the name of the Open Watcom Disassembler.

filespec is the filename specification of the object file to be disassembled. A default filename
extension of ".o" is assumed when no extension is specified. A filename extension consists
of that portion of a filename containing the last "." and any characters which follow it.

Example:
File Specification Extension
/home/john.doe/foo (none)
/home/john.doe/foo. .
/home/john.doe/foo.bar .bar
/home/john.doe/foo.goo.bar .bar

options is a list of valid Open Watcom Disassembler options, each preceded by a dash (";.ct .sf7
-;.esf "). Options may be specified in any order.

The options supported by the Open Watcom Disassembler are:

a write assembly instructions only to the listing file
e include list of external names
fp do not use instruction name pseudonyms
fr do not use register name pseudonyms [Alpha only]
fi use alternate indexing format [80(x)86 only]
fu instructions/registers in upper case
i=<char> redefine the initial character of internal labels (default: L)
l[=<list_file>] create a listing file
m leave C++ names mangled
p include list of public names

Introduction 347

The Open Watcom Disassembler

s[=<source_file>]
using object file source line information, imbed original source lines into the output file

The following sections describe the list of options.

19.2 Changing the Internal Label Character - "i=<char>"
The "i" option permits you to specify the first character to be used for internal labels. Internal labels take
the form "Ln" where "n" is one or more digits. The default character "L" can be changed using the "i"
option. The replacement character must be a letter (a-z, A-Z). A lowercase letter is converted to
uppercase.

Example:
$ wdis calendar -i=x

19.3 The Assembly Format Option - "a"
The "a" option controls the format of the output produced to the listing file. When specified, the Open
Watcom Disassembler will produce a listing file that can be used as input to an assembler.

Example:
$ wdis calendar -a -l=calendar.asm

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file
calendar.o and produce the output to the file calendar.asm so that it can be assembled by an
assembler.

19.4 The External Symbols Option - "e"
The "e" option controls the amount of information produced in the listing file. When specified, a list of all
externally defined symbols is produced in the listing file.

Example:
$ wdis calendar -e

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file
calendar.o and produce the output, with a list of all external symbols, on the screen. A sample list of
external symbols is shown below.

348 The External Symbols Option - "e"

The Object File Disassembler

List of external symbols

Symbol

___iob 0000032f 00000210 000001f4 00000158 00000139
__CHK 00000381 00000343 000002eb 00000237 000000cb 00000006
Box_ 000000f2
Calendar_ 000000a7 00000079 00000049
ClearScreen_ 00000016
fflush_ 00000334 00000215 000001f9 0000015d 0000013e
int386_ 000003af 00000372
Line_ 000002db 000002b5 00000293 00000274 0000025a
localtime_ 00000028
memset_ 00000308
PosCursor_ 0000031e 000001e1 00000148 00000123 000000b6
printf_ 00000327 00000208 000001ec 00000150 00000131
strlen_ 00000108
time_ 0000001d
--

Each externally defined symbol is followed by a list of location counter values indicating where the symbol
is referenced.

The "e" option is ignored when the "a" option is specified.

19.5 The No Instruction Name Pseudonyms Option - "fp"
By default, AXP instruction name pseudonyms are emitted in place of actual instruction names. The Open
Watcom AXP Assembler accepts instruction name pseudonyms. The "fp" option instructs the Open
Watcom Disassembler to emit the actual instruction names instead.

19.6 The No Register Name Pseudonyms Option - "fr"
By default, AXP register names are emitted in pseudonym form. The Open Watcom AXP Assembler
accepts register pseudonyms. The "fr" option instructs the Open Watcom Disassembler to display register
names in their non-pseudonym form.

19.7 The Alternate Addressing Form Option - "fi"
The "fi" option causes an alternate syntactical form of the based or indexed addressing mode of the 80x86
to be used in an instruction. For example, the following form is used by default for Intel instructions.

mov ax,-2[bp]

If the "fi" option is specified, the following form is used.

mov ax,[bp-2]

The Alternate Addressing Form Option - "fi" 349

The Open Watcom Disassembler

19.8 The Uppercase Instructions/Registers Option - "fu"
The "fu" option instructs the Open Watcom Disassembler to display instruction and register names in
uppercase characters. The default is to display them in lowercase characters.

19.9 The Listing Option - "l[=<list_file>]"
By default, the Open Watcom Disassembler produces its output to the terminal. The "l" (lowercase L)
option instructs the Open Watcom Disassembler to produce the output to a listing file. The default file
name of the listing file is the same as the file name of the object file. The default file extension of the
listing file is .lst.

Example:
$ wdis calendar -l

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file
calendar.o and produce the output to a listing file called calendar.lst.

An alternate form of this option is "l=<list_file>". With this form, you can specify the name of the listing
file. When specifying a listing file, a file extension of .lst is assumed if none is specified.

Example:
$ wdis calendar -l=calendar.lis

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file
calendar.o and produce the output to a listing file called calendar.lis.

19.10 The Public Symbols Option - "p"
The "p" option controls the amount of information produced in the listing file. When specified, a list of all
public symbols is produced in the listing file.

Example:
$ wdis calendar -p

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file
calendar.o and produce the output, with a list of all exported symbols, to the screen. A sample list of
public symbols is shown below.

The following is a list of public symbols in 80x86 code.

350 The Public Symbols Option - "p"

The Object File Disassembler

List of public symbols

SYMBOL SECTION OFFSET
--
main_ _TEXT 000002C0
void near Box(int, int, int, int)

_TEXT 00000093
void near Calendar(int, int, int, int, int, char near *)

_TEXT 0000014A
void near ClearScreen() _TEXT 00000000
void near Line(int, int, int, char, char, char)

_TEXT 00000036
void near PosCursor(int, int)

_TEXT 0000001A

The following is a list of public symbols in Alpha AXP code.

List of public symbols

SYMBOL SECTION OFFSET
--
main .text 000004F0
void near Box(int, int, int, int)

.text 00000148
void near Calendar(int, int, int, int, int, char near *)

.text 00000260
void near ClearScreen() .text 00000000
void near Line(int, int, int, char, char, char)

.text 00000060
void near PosCursor(int, int)

.text 00000028

The "p" option is ignored when the "a" option is specified.

19.11 Retain C++ Mangled Names - "m"
The "m" option instructs the Open Watcom Disassembler to retain C++ mangled names rather than
displaying their demangled form. The default is to interpret mangled C++ names and display them in a
somewhat more intelligible form.

19.12 The Source Option - "s[=<source_file>]"
The "s" option causes the source lines corresponding to the assembly language instructions to be produced
in the listing file. The object file must contain line numbering information. That is, the "d1" or "d2" option
must have been specified when the source file was compiled. If no line numbering information is present in
the object file, the "s" option is ignored.

The following defines the order in which the source file name is determined when the "s" option is
specified.

1. If present, the source file name specified on the command line.
2. The name from the module header record.
3. The object file name.

In the following example, we have compiled the source file mysrc.c with "d1" debugging information.
We then disassemble it as follows:

The Source Option - "s[=<source_file>]" 351

The Open Watcom Disassembler

Example:
$ wdis mysrc -s -l

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file
mysrc.o and produce the output to the listing file mysrc.lst. The source lines are extracted from the
file mysrc.c.

An alternate form of this option is "s=<source_file>". With this form, you can specify the name of the
source file.

Example:
$ wdis mysrc -s=myprog.c -l

The above example produces the same result as in the previous example except the source lines are
extracted from the file myprog.c.

19.13 An Example
Consider the following program contained in the file hello.c.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

Compile it with the "d1" option. An object file called hello.o will be produced. The "d1" option causes
line numbering information to be generated in the object file. We can use the Open Watcom Disassembler
to disassemble the contents of the object file by issuing the following command.

$ wdis hello -l -e -p -s -fu

The output will be written to a listing file called hello.lst (the "l" option was specified"). It will
contain a list of external symbols (the "e" option was specified), a list of public symbols (the "p" option was
specified) and the source lines corresponding to the assembly language instructions (the "s" option was
specified). The source input file is called hello.c. The register names will be displayed in upper case
(the "fu" option was specified). The output, shown below, is the result of using the Open Watcom C++
compiler.

The following is a disassembly of 80x86 code.

352 An Example

The Object File Disassembler

Module: HELLO.C
GROUP: ’DGROUP’ CONST,CONST2,_DATA,_BSS

Segment: _TEXT DWORD USE32 0000001A bytes

#include <stdio.h>

void main()
0000 main_:
0000 68 08 00 00 00 PUSH 0x00000008
0005 E8 00 00 00 00 CALL __CHK

{
printf("Hello world\n");

000A 68 00 00 00 00 PUSH offset L$1
000F E8 00 00 00 00 CALL printf_
0014 83 C4 04 ADD ESP,0x00000004

}
0017 31 C0 XOR EAX,EAX
0019 C3 RET

Routine Size: 26 bytes, Routine Base: _TEXT + 0000

No disassembly errors

List of external references

SYMBOL

__CHK 0006
printf_ 0010

Segment: CONST DWORD USE32 0000000D bytes
0000 L$1:
0000 48 65 6C 6C 6F 20 77 6F 72 6C 64 0A 00 Hello world..

BSS Size: 0 bytes

List of public symbols

SYMBOL SECTION OFFSET
--
main_ _TEXT 00000000

The following is a disassembly of Alpha AXP code.

An Example 353

The Open Watcom Disassembler

.new_section .text, "crx4"

#include <stdio.h>

void main()
0000 main:
0000 23DEFFF0 LDA SP,-0x10(SP)
0004 B75E0000 STQ RA,(SP)

{
printf("Hello world\n");

0008 261F0000 LDAH A0,h^L$0(R31)
000C 22100000 LDA A0,l^L$0(A0)
0010 43F00010 SEXTL A0,A0
0014 D3400000 BSR RA,j^printf

}
0018 201F0000 MOV 0x00000000,V0
001C A75E0000 LDQ RA,(SP)
0020 23DE0010 LDA SP,0x10(SP)
0024 6BFA8001 RET (RA)

Routine Size: 40 bytes, Routine Base: .text + 0000

No disassembly errors

List of external references

SYMBOL

printf 0014

.new_section .const, "drw4"
0000 L$0:
0000 48 65 6C 6C 6F 20 77 6F 72 6C 64 0A 00 00 00 00 Hello world.....

.new_section .const2, "drw4"

.new_section .data, "drw4"

.new_section .bss, "urw4"
0000 .bss:

BSS Size: 0 bytes

.new_section .pdata, "dr2"

0000 // Procedure descriptor for main
main // BeginAddress : 0
main+0x28 // EndAddress : 40
00000000 // ExceptionHandler : 0
00000000 // HandlerData : 0
main+0x8 // PrologEnd : 8

.new_section .drectve, "iRr0"
0000 2D 64 65 66 61 75 6C 74 6C 69 62 3A 63 6C 69 62 -defaultlib:clib
0010 20 2D 64 65 66 61 75 6C 74 6C 69 62 3A 70 6C 69 -defaultlib:pli
0020 62 20 2D 64 65 66 61 75 6C 74 6C 69 62 3A 6D 61 b -defaultlib:ma
0030 74 68 20 00 th .

List of public symbols

SYMBOL SECTION OFFSET
--
main .text 00000000

354 An Example

The Object File Disassembler

Let us create a form of the listing file that can be used as input to an assembler.

$ wdis hello -l=hello.asm -r -a

The output will be produced in the file hello.asm. The output, shown below, is the result of using the
Open Watcom C++ compiler.

The following is a disassembly of 80x86 code.

.387
.386p

PUBLIC main_
EXTRN __CHK:BYTE
EXTRN printf_:BYTE
EXTRN ___wcpp_3_data_init_fs_root_:BYTE
EXTRN _cstart_:BYTE

DGROUP GROUP CONST,CONST2,_DATA,_BSS
_TEXT SEGMENT DWORD PUBLIC USE32 ’CODE’

ASSUME CS:_TEXT, DS:DGROUP, SS:DGROUP
main_:

PUSH 0x00000008
CALL near ptr __CHK
PUSH offset L$1
CALL near ptr printf_
ADD ESP,0x00000004
XOR EAX,EAX
RET

_TEXT ENDS
CONST SEGMENT DWORD PUBLIC USE32 ’DATA’
L$1:

DB 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x77, 0x6f
DB 0x72, 0x6c, 0x64, 0x0a, 0x00

CONST ENDS
CONST2 SEGMENT DWORD PUBLIC USE32 ’DATA’
CONST2 ENDS
_DATA SEGMENT DWORD PUBLIC USE32 ’DATA’
_DATA ENDS
_BSS SEGMENT DWORD PUBLIC USE32 ’BSS’
_BSS ENDS

END

The following is a disassembly of Alpha AXP code.

.globl main
.extrn printf
.extrn _cstart_
.new_section .text, "crx4"
main:

LDA $SP,-0x10($SP)
STQ $RA,($SP)
LDAH $A0,h^‘L$0‘($ZERO)
LDA $A0,l^‘L$0‘($A0)
SEXTL $A0,$A0
BSR $RA,j^printf
MOV 0x00000000,$V0
LDQ $RA,($SP)
LDA $SP,0x10($SP)
RET $ZERO,($RA),0x00000001

An Example 355

The Open Watcom Disassembler

.new_section .const, "drw4"
‘L$0‘:

.asciiz "Hello world\n"

.byte 0x00, 0x00, 0x00

.new_section .pdata, "dr2"

// 0000 Procedure descriptor for main
.long main // BeginAddress : 0
.long main+0x28 // EndAddress : 40
.long 00000000 // ExceptionHandler : 0
.long 00000000 // HandlerData : 0
.long main+0x8 // PrologEnd : 8

.new_section .drectve, "iRr0"
.asciiz "-defaultlib:clib -defaultlib:plib -defaultlib:math "

356 An Example

20 Optimization of Far Calls

Optimization of far calls can result in smaller executable files and improved performance. It is most useful
when the automatic grouping of logical segments into physical segments takes place. Note that, by default,
automatic grouping is performed by the Open Watcom Linker.

The Open Watcom C, C++ and FORTRAN 77 compilers automatically enable the far call optimization.
The Open Watcom Linker will optimize far calls to procedures that reside in the same physical segment as
the caller. For example, a large code model program will probably contain many far calls to procedures in
the same physical segment. Since the segment address of the caller is the same as the segment address of
the called procedure, only a near call is necessary. A near call does not require a relocation entry in the
relocation table of the executable file whereas a far call does. Thus, the far call optimization will result in
smaller executable files that will load faster. Furthermore, a near call will generally execute faster than a
far call, particularly on 286 and 386-based machines where, for applications running in protected mode,
segment switching is fairly expensive.

The following describes the far call optimization. The call far label instruction is converted to one of the
following sequences of code.

push cs seg ss
call near label push cs
nop call near label

Notes:

1. The nop or seg ss instruction is present since a call far label instruction is five bytes. The push
cs instruction is one byte and the call near label instruction is three bytes. The seg ss instruction
is used because it is faster than the nop instruction.

2. The called procedure will still use a retf instruction but since the code segment and the near
address are pushed on the stack, the far return will execute correctly.

3. The position of the padding instruction is chosen so that the return address is word aligned. A
word aligned return address improves performance.

4. When two consecutive call far label instructions are optimized and the first call far label
instruction is word aligned, the following sequence replaces both call far label instructions.

push cs
call near label1
seg ss
push cs
seg cs
call near label2

5. If your program contains only near calls, this optimization will have no effect.

A far jump optimization is also performed by the Open Watcom Linker. This has the same benefits as the
far call optimization. A jmp far label instruction to a location in the same segment will be replaced by the
following sequence of code.

Optimization of Far Calls 357

The Open Watcom Disassembler

jmp near label
mov ax,ax

Note that for 32-bit segments, this instruction becomes mov eax,eax.

358 Optimization of Far Calls

The Open Watcom Strip Utility

The Open Watcom Strip Utility

360

21 The Open Watcom Strip Utility

21.1 Introduction
The Open Watcom Strip Utility may be used to manipulate information that is appended to the end of an
executable file. The information can be either one of two things:

1. Symbolic debugging information
2. Resource information

This information can be added or removed from the executable file. Symbolic debugging information is
placed at the end of an executable file by the Open Watcom Linker or the Open Watcom Strip Utility.
Resource information is placed at the end of an executable by a resource compiler or the Open Watcom
Strip Utility.

Once a program has been debugged, the Open Watcom Strip Utility allows you to remove the debugging
information from the executable file so that you do not have to remove the debugging directives from the
linker directive file and link your program again. Removal of the debugging information reduces the size
of the executable image.

All executable files generated by the Open Watcom Linker can be specified as input to the Open Watcom
Strip Utility.

21.2 The Open Watcom Strip Utility Command Line
The Open Watcom Strip Utility command line syntax is:

wstrip [options] input_file [output_file] [info_file]

where:

[] The square brackets denote items which are optional.

options

-n (noerrors) Do not issue any diagnostic message.

-q (quiet) Do not print any informational messages.

-r (resources) Process resource information rather than debugging
information.

-a (add) Add information rather than remove information.

The Open Watcom Strip Utility Command Line 361

The Open Watcom Strip Utility

input_file is a file specification for the name of an executable file. If no file extension is specified,
the Open Watcom Strip Utility will assume one of the following extensions: "exe", "dll",
"exp", "rex", "nlm", "dsk", "lan", "nam", "msl", "cdm", "ham", "qnx" or no file extension.
Note that the order specified in the list of file extensions is the order in which the Open
Watcom Strip Utility will select file extensions.

output_file is an optional file specification for the output file. If no file extension is specified, the file
extension specified in the input file name will be used for the output file name. If "." is
specified, the input file name will be used.

info_file is an optional file specification for the file in which the debugging or resource information
is to be stored (when removing information) or read (when adding information). If no file
extension is specified, a file extension of "sym" is assumed for debugging information and
"res" for resource information. To specify the name of the information file but not the
name of an output file, a "." may be specified in place of output_file.

Description:

1. If the "r" (resource) option is not specified then the default action is to add/remove symbolic
debugging information.

2. If the "a" (add) option is not specified then the default action is to remove information.

3. If output_file is not specified, the debugging or resource information is added to or removed
from input_file.

4. If output_file is specified, input_file is copied to output_file and the debugging or resource
information is added to or removed from output_file. input_file remains unchanged.

5. If info_file is specified then the debugging or resource information that is added to or removed
from the executable file is read from or written to this file. The debugging or resource
information may be appended to the executable by specifying the "a" (add) option. Also, the
debugging information may be appended to the executable by concatenating the debugging
information file to the end of the executable file (the files must be treated as binary files).

6. During processing, the Open Watcom Strip Utility will create a temporary file, ensuring that a
file by the chosen name does not already exist.

21.3 Strip Utility Messages
The following messages may be issued by the Open Watcom Strip Utility.

Usage: wstrip [options] input_file [output_file] [info_file]
options: (-option is also accepted)
 /n don’t print warning messages
 /q don’t print informational messages
 /r process resource information rather than debugging information
 /a add information rather than delete information
input_file: executable file
output_file: optional output executable or ’.’
info_file: optional output debugging or resource information file
 or input debugging or resource informational file

362 Strip Utility Messages

The Open Watcom Strip Utility

The command line was entered with no arguments.

Too low on memory
There is not enough free memory to allocate file buffers.

Unable to find ’%s’
The specified file could not be located.

Cannot create temporary file
All the temporary file names are in use.

Unable to open ’%s’ to read
The input executable file cannot be opened for reading.

’%s’ is not a valid executable file
The input file has invalid executable file header information.

’%s’ does not contain debugging information
There is nothing to strip from the specified executable file.

Seek error on ’%s’
An error occurred during a seek operation on the specified file.

Unable to create output file ’%s’
The output file could not be created. Check that the output disk is not write-protected or
that the specified output file is not marked "read-only".

Unable to create symbol file ’%s’
The symbol file could not be created.

Error reading ’%s’
An error occurred while reading the input executable file.

Error writing to ’%s’
An error occurred while writing the output executable file or the symbol file. Check the
amount of free space on the output disk. If the input and output files reside on the same
disk, there might not be enough room for a second copy of the executable file during
processing.

Cannot erase file ’%s’
The input executable file is probably marked "read-only" and therefore could not be erased
(the input file is erased whenever the output file has the same name).

Cannot rename file ’%s’
The output executable file could not be renamed. Ordinarily, this should never occur.

Strip Utility Messages 363

The Open Watcom Strip Utility

364 Strip Utility Messages

Appendices

Appendices

366

Use of Environment Variables

A. Use of Environment Variables

In the Open Watcom C/C++ software development package, a number of environment variables are used.
This appendix summarizes their use with a particular component of the package.

A.1 FORCE
The FORCE environment variable identifies a file that is to be included as part of the source input stream.
This variable is used by Open Watcom C/C++.

export "FORCE=filespec"

The specified file is included as if a

#include "filespec"

directive were placed at the start of the source file.

Example:
$ export "FORCE=/usr/include/common.cnv"
$ wcc report

The FORCE environment variable can be overridden by use of the Open Watcom C/C++ "fi" option.

A.2 INCLUDE
The INCLUDE environment variable describes the location of the C and C++ header files (files with the
".h" filename extension). This variable is used by Open Watcom C/C++.

export "INCLUDE=path:path..."

The INCLUDE environment string is like the PATH string in that you can specify one or more directories
separated by colons (":").

A.3 LIB
The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM" directive is
recommended over the use of this environment variable.

The LIB environment variable is used to select the libraries that will be used when the application is linked.
This variable is used by the Open Watcom Linker (wlink). The LIB environment string is like the PATH
string in that you can specify one or more directories separated by colons (":").

LIB 367

Appendices

A.4 PATH
The PATH environment variable is used by the QNX shell to locate programs.

export "PATH=path:path..."

The PATH environment variable should include the directory of the Open Watcom C/C++ binary program
files when using Open Watcom C/C++ and its related tools.

The default installation directory for Open Watcom C/C++ QNX binaries is called "/bin".

Example:
$ export "PATH=/bin"

The PATH environment variable is also used by the following programs in the described manner.

1. cc to locate the 16-bit Open Watcom C/C++ and 32-bit Open Watcom C/C++ compilers and the
Open Watcom Linker.

2. "WD" to locate programs.

A.5 TMPDIR
The TMPDIR environment variable describes the location (path) for temporary files created by the 16-bit
Open Watcom C/C++ and 32-bit Open Watcom C/C++ compilers and the Open Watcom Linker.

export "TMPDIR=path"

Normally, 16-bit Open Watcom C/C++ and 32-bit Open Watcom C/C++ will create temporary spill files in
the current directory. However, by defining the TMPDIR environment variable to be a certain path, you
can tell Open Watcom C/C++ where to place its temporary files. The same is true of the Open Watcom
Linker temporary file.

Consider the following definition of the TMPDIR environment variable.

Example:
$ export "TMPDIR=//2/hd/tmp"

The Open Watcom C/C++ compiler and Open Watcom Linker will create its temporary files in
//2/hd/tmp.

A.6 WATCOM
In order for the Open Watcom Linker to locate the 16-bit Open Watcom C/C++ and 32-bit Open Watcom
C/C++ library files, the WATCOM environment variable should be defined. When using cc, it is not
necessary to define this environment variable since it uses another technique for identifying the location of
the library files to the Open Watcom Linker. However, you should do so when you begin to use the Open
Watcom Linker directly without the aid of this utility program. The WATCOM environment variable is
used to locate the libraries that will be used when the application is linked. The default directory for 16-bit
Open Watcom C/C++ and 32-bit Open Watcom C/C++ files is "/usr".

368 WATCOM

Use of Environment Variables

Example:
$ export "WATCOM=//0/hd/usr"

A.7 WCC
The WCC environment variable can be used to specify commonly-used options for the 16-bit C compiler.

export "WCC=-option1 -option2 ..."

These options are processed before options specified on the command line. The following example defines
the default options to be "d1" (include line number debug information in the object file) and "ox" (compile
for maximum number of code optimizations).

Example:
$ export "WCC=-d1 -ox"

Once the WCC environment variable has been defined, those options listed become the default each time
the wcc command is used.

A.8 WCC386
The WCC386 environment variable can be used to specify commonly-used options for the 32-bit C
compiler.

export "WCC386=-option1 -option2 ..."

These options are processed before options specified on the command line. The following example defines
the default options to be "d1" (include line number debug information in the object file) and "ox" (compile
for maximum number of code optimizations).

Example:
$ export "WCC386=-d1 -ox"

Once the WCC386 environment variable has been defined, those options listed become the default each
time the wcc386 command is used.

A.9 WCGMEMORY
The WCGMEMORY environment variable may be used to request a report of the amount of memory used
by the compiler’s code generator for its work area.

Example:
$ export "WCGMEMORY=?"

When the memory amount is "?" then the code generator will report how much memory was used to
generate the code.

It may also be used to instruct the compiler’s code generator to allocate a fixed amount of memory for a
work area.

WCGMEMORY 369

Appendices

Example:
$ export "WCGMEMORY=128"

When the memory amount is "nnn" then exactly "nnnK" bytes will be used. In the above example, 128K
bytes is requested. If less than "nnnK" is available then the compiler will quit with a fatal error message. If
more than "nnnK" is available then only "nnnK" will be used.

There are two reasons why this second feature may be quite useful. In general, the more memory available
to the code generator, the more optimal code it will generate. Thus, for two personal computers with
different amounts of memory, the code generator may produce different (although correct) object code. If
you have a software quality assurance requirement that the same results (i.e., code) be produced on two
different machines then you should use this feature. To generate identical code on two personal computers
with different memory configurations, you must ensure that the WCGMEMORY environment variable is
set identically on both machines.

A.10 WD
The WD environment variable can be used to specify commonly-used Open Watcom Debugger options.

export "WD=-option1 -option2 ..."

These options are processed before options specified on the command line. The following example defines
the default options to be "noinvoke" (do not execute the profile.dbg file) and "reg=10" (retain up to 10
register sets while tracing).

Example:
$ export "WD=-noinvoke -reg=10"

Once the WD environment variable has been defined, those options listed become the default each time the
WD command is used.

A.11 WD_PATH
The WD_PATH environment variable is used by wd to locate Open Watcom Debugger support files.
These files fall into five categories.

1. Open Watcom Debugger command files (files with the ".dbg" suffix).

2. Open Watcom Debugger trap files (files with the ".trp" suffix).

3. Open Watcom Debugger parser files (files with the ".prs" suffix).

4. Open Watcom Debugger help files (files with the ".hlp" suffix).

5. Open Watcom Debugger symbolic debugging information files (files with the ".sym" suffix).

export "WD_PATH=path:path..."

By default, Open Watcom Debugger looks in the /usr/watcom/wd directory for command files so it is
not necessary to include this directory in the WD_PATH environment variable string.

370 WD_PATH

Use of Environment Variables

A.12 WPP
The WPP environment variable can be used to specify commonly-used options for the 16-bit C++
compiler.

export "WPP=-option1 -option2 ..."

These options are processed before options specified on the command line. The following example defines
the default options to be "d1" (include line number debug information in the object file) and "ox" (compile
for maximum number of code optimizations).

Example:
$ export "WPP=-d1 -ox"

Once the WPP environment variable has been defined, those options listed become the default each time
the wpp command is used.

A.13 WPP386
The WPP386 environment variable can be used to specify commonly-used options for the 32-bit C++
compiler.

export "WPP386=-option1 -option2 ..."

These options are processed before options specified on the command line. The following example defines
the default options to be "d1" (include line number debug information in the object file) and "ox" (compile
for maximum number of code optimizations).

Example:
$ export "WPP386=-d1 -ox"

Once the WPP386 environment variable has been defined, those options listed become the default each
time the wpp386 command is used.

WPP386 371

Appendices

372 WPP386

Open Watcom C Diagnostic Messages

B. Open Watcom C Diagnostic Messages

The following is a list of all warning and error messages produced by the Open Watcom C compilers.
Diagnostic messages are issued during compilation and execution.

The messages listed in the following sections contain references to %s, %d and %u. They represent
strings that are substituted by the Open Watcom C compilers to make the error message more exact. %d
and %u represent a string of digits; %s a string, usually a symbolic name.

Consider the following program, named err.c, which contains errors.

Example:
#include <stdio.h>

void main()
{

int i;
float i;

i = 383;
x = 13143.0;
printf("Integer value is %d\n", i);
printf("Floating-point value is %f\n", x);

}

If we compile the above program, the following messages will appear on the screen.

err.c(6): Error! E1034: Symbol ’i’ already defined
err.c(9): Error! E1011: Symbol ’x’ has not been declared
err.c: 12 lines, included 191, 0 warnings, 2 errors

The diagnostic messages consist of the following information:

1. the name of the file being compiled,
2. the line number of the line containing the error (in parentheses),
3. a message number, and
4. text explaining the nature of the error.

In the above example, the first error occurred on line 6 of the file err.c. Error number 1034 (with the
appropriate substitutions) was diagnosed. The second error occurred on line 9 of the file err.c. Error
number 1011 (with the appropriate substitutions) was diagnosed.

The following sections contain a complete list of the messages. Run-time messages (messages displayed
during execution) do not have message numbers associated with them.

Open Watcom C Diagnostic Messages 373

Appendices

B.1 Warning Level 1 Messages
W100 Parameter %d contains inconsistent levels of indirection

The function is expecting something like char ** and it is being passed a char * for
instance.

W101 Non-portable pointer conversion

This message is issued whenever you convert a non-zero constant to a pointer.

W102 Type mismatch (warning)

This message is issued for a function return value or an assignment where both types are
pointers, but they are pointers to different kinds of objects.

W103 Parameter count does not agree with previous definition (warning)

You have either not enough parameters or too many parameters in a call to a function. If
the function is supposed to have a variable number of parameters, then you can ignore this
warning, or you can change the function declaration and prototypes to use the ",..." to
indicate that the function indeed takes a variable number of parameters.

W104 Inconsistent levels of indirection

This occurs in an assignment or return statement when one of the operands has more levels
of indirection than the other operand. For example, a char ** is being assigned to a
char *.

Solution: Correct the levels of indirection or use a void *.

W105 Assignment found in boolean expression

An assignment of a constant has been detected in a boolean expression. For example: "if(
var = 0)". It is most likely that you want to use "==" for testing for equality.

W106 Constant out of range - truncated

This message is issued if a constant cannot be represented in 32 bits or if a constant is
outside the range of valid values that can be assigned to a variable.

W107 Missing return value for function ’%s’

A function has been declared with a function return type, but no return statement was
found in the function. Either add a return statement or change the function return type to
void.

374 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

W108 Duplicate typedef already defined

A duplicate typedef is not allowed in ISO C. This warning is issued when compiling with
extensions enabled. You should delete the duplicate typedef definition.

W109 not used

unused message

W110 ’fortran’ pragma not defined

You have used the fortran keyword in your program, but have not defined a #pragma for
fortran.

W111 Meaningless use of an expression

The line contains an expression that does nothing useful. In the example "i = (1,5);", the
expression "1," is meaningless.

W112 Pointer truncated

A far pointer is being passed to a function that is expecting a near pointer, or a far pointer is
being assigned to a near pointer.

W113 Pointer type mismatch

You have two pointers that either point to different objects, or the pointers are of different
size, or they have different modifiers.

W114 Missing semicolon

You are missing the semicolon ";" on the field definition just before the right curly brace
"}".

W115 &array may not produce intended result

The type of the expression "&array" is different from the type of the expression "array".
Suppose we have the declaration char buffer[80] Then the expression (&buffer
+ 3) will be evaluated as (buffer + 3 * sizeof(buffer)) which is (buffer
+ 3 * 80) and not (buffer + 3 * 1) which is what most people expect to happen.
The address of operator "&" is not required for getting the address of an array.

W116 Attempt to return address of auto variable

This warning usually indicates a serious programming error. When a function exits, the
storage allocated on the stack for auto variables is released. This storage will be
overwritten by further function calls and/or hardware interrupt service routines. Therefore,
the data pointed to by the return value may be destroyed before your program has a chance
to reference it or make a copy of it.

Warning Level 1 Messages 375

Appendices

W117 ’##’ tokens did not generate a single token (rest discarded)

When two tokens are pasted together using ##, they must form a string that can be parsed
as a single token.

W118 Label ’%s’ has been defined but not referenced

You have defined a label that is not referenced in a goto statement. It is possible that you
are missing the case keyword when using an enumerated type name as a case in a switch
statement. If not, then the label can be deleted.

W119 Address of static function ’%s’ has been taken

This warning may indicate a potential problem when the program is overlayed.

W120 lvalue cast is not standard C

A cast operation does not yield an lvalue in ISO C. However, to provide compatibility with
code written prior to the availability of ISO compliant C compilers, if an expression was an
lvalue prior to the cast operation, and the cast operation does not cause any conversions, the
compiler treats the result as an lvalue and issues this warning.

W121 Text following pre-processor directives is not standard C

Arbitrary text is not allowed following a pre-processor directive. Only comments are
allowed following a pre-processor directive.

W122 Literal string too long for array - truncated

The supplied literal string contains more characters than the specified dimension of the
array. Either shorten the literal string, or increase the dimension of the array to hold all of
the characters from the literal string.

W123 ’//’ style comment continues on next line

The compiler has detected a line continuation during the processing of a C++ style
comment ("//"). The warning can be removed by switching to a C style comment ("/**/").
If you require the comment to be terminated at the end of the line, make sure that the
backslash character is not the last character in the line.

Example:
#define XX 23 // comment start \
comment \
end

int x = XX; // comment start ...\
comment end

376 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

W124 Comparison result always %d

The line contains a comparison that is always true (1) or false (0). For example comparing
an unsigned expression to see if it is >= 0 or < 0 is redundant. Check to see if the
expression should be signed instead of unsigned.

W125 Nested include depth of %d exceeded

The number of nested include files has reached a preset limit, check for recursive include
statements.

W126 Constant must be zero for pointer compare

A pointer is being compared using == or != to a non-zero constant.

W127 trigraph found in string

Trigraph expansion occurs inside a string literal. This warning can be disabled via the
command line or #pragma warning directive.

Example:
// string expands to "(?]?????"!
char *e = "(???)???-????";
// possible work-arounds
char *f = "(" "???" ")" "???" "-" "????";
char *g = "(\?\?\?)\?\?\?-\?\?\?\?";

W128 %d padding byte(s) added

The compiler has added slack bytes to align a member to the correct offset.

W129 #endif matches #if in different source file ’%s’

This warning may indicate a #endif nesting problem since the traditional usage of #if
directives is confined to the same source file. This warning may often come before an error
and it is hoped will provide information to solve a preprocessing directive problem.

W130 Possible loss of precision

This warning indicates that you may be converting a argument of one size to another,
different size. For instance, you may be losing precision by passing a long argument to a
function that takes a short. This warning is initially disabled. It must be explicitly enabled
with #pragma enable_message(130) or option "-wce=130". It can be disabled later by
using #pragma disable_message(130).

W131 No prototype found for function ’%s’

A reference for a function appears in your program, but you do not have a prototype for
that function defined. Implicit prototype will be used, but this will cause problems if the
assumed prototype does not match actual function definition.

Warning Level 1 Messages 377

Appendices

W132 No storage class or type specified

When declaring a data object, either storage class or data type must be given. If no type is
specified, int is assumed. If no storage class is specified, the default depends on scope (see
the C Language Reference for details). For instance

Example:
auto i;

is a valid declaration, as is

Example:
short i;

However,

Example:
i;

is not a correctly formed declaration.

W133 Symbol name truncated for ’%s’

Symbol is longer than the object file format allows and has been truncated to fit. Maximum
length is 255 characters for OMF and 1024 characters for COFF or ELF object files.

W134 Shift amount negative

The right operand of a left or right shift operator is a negative value. The result of the shift
operation is undefined.

Example:
int a = 1 << -2;

The value of ’a’ in the above example is undefined.

W135 Shift amount too large

The right operand of a left or right shift operator is a value greater than or equal to the
width in bits of the type of the promoted left operand. The result of the shift operation is
undefined.

Example:
int a = 1 >> 123;

The value of ’a’ in the above example is undefined.

378 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

W136 Comparison equivalent to ’unsigned == 0’

Comparing an unsigned expression to see whether it is <= 0 is equivalent to testing for ==
0. Check to see if the expression should be signed instead of unsigned.

W137 Extern function ’%s’ redeclared as static

The specified function was either explicitly or implicitly declared as extern and later
redeclared as static. This is not allowed in ISO C and may produce unexpected results with
ISO compliant compilers.

Example:
int bar(void);

void foo(void)
{

bar();
}

static int bar(void)
{

return(0);
}

W138 No newline at end of file

ISO C requires that a non-empty source file must include a newline character at the end of
the last line. If no newline was found, it will be automatically inserted.

W139 Divisor for modulo or division operation is zero

The right operand of a division or modulo operation is zero. The result of this operation is
undefined and you should rewrite the offending code to avoid divisions by zero.

Example:
int foo(void)
{

return(7 / 0);
}

B.2 Warning Level 2 Messages
W200 ’%s’ has been referenced but never assigned a value

You have used the variable in an expression without previously assigning a value to that
variable.

Warning Level 2 Messages 379

Appendices

W201 Unreachable code

The statement will never be executed, because there is no path through the program that
causes control to reach this statement.

W202 Symbol ’%s’ has been defined, but not referenced

There are no references to the declared variable. The declaration for the variable can be
deleted.

In some cases, there may be a valid reason for retaining the variable. You can prevent the
message from being issued through use of #pragma off(unreferenced).

W203 Preprocessing symbol ’%s’ has not been declared

The symbol has been used in a preprocessor expression. The compiler assumes the symbol
has a value of 0 and continues. A #define may be required for the symbol, or you may
have forgotten to include the file which contains a #define for the symbol.

B.3 Warning Level 3 Messages
W300 Nested comment found in comment started on line %u

While scanning a comment for its end, the compiler detected /* for the start of another
comment. Nested comments are not allowed in ISO C. You may be missing the */ for the
previous comment.

W301 not used

unused message

W302 Expression is only useful for its side effects

You have an expression that would have generated the warning "Meaningless use of an
expression", except that it also contains a side-effect, such as ++, −−, or a function call.

W303 Parameter ’%s’ has been defined, but not referenced

There are no references to the declared parameter. The declaration for the parameter can be
deleted. Since it is a parameter to a function, all calls to the function must also have the
value for that parameter deleted.

In some cases, there may be a valid reason for retaining the parameter. You can prevent the
message from being issued through use of #pragma off(unreferenced).

This warning is initially disabled. It must be specifically enabled with #pragma
enable_message(303) or option "-wce=303". It can be disabled later by using #pragma
disable_message(303).

380 Warning Level 3 Messages

Open Watcom C Diagnostic Messages

W304 Return type ’int’ assumed for function ’%s’

If a function is declared without specifying return type, such as

Example:
foo(void);

then its return type will be assumed to be int

W305 Type ’int’ assumed in declaration of ’%s’

If an object is declared without specifying its type, such as

Example:
register count;

then its type will be assumed to be int

W306 Assembler warning: ’%s’

A problem has been detected by the in-line assembler. The message indicates the problem
detected.

W307 Obsolete non-prototype declarator

Function parameter declarations containing only empty parentheses, that is, non-prototype
declarations, are an obsolescent language feature. Their use is dangerous and discouraged.

Example:
int func();

W308 Unprototyped function ’%s’ called

A call to an unprototyped function was made, preventing the compiler from checking the
number of function arguments and their types. Use of unprototyped functions is
obsolescent, dangerous and discouraged.

Example:
int func();

void bar(void)
{

func(4, "s"); /* possible argument mismatch */
}

W309 Unprototyped function indirectly called

An indirect call to an unprototyped function was made, preventing the compiler from
checking the number of function arguments and their types. Use of unprototyped functions
is obsolescent, dangerous and discouraged.

Warning Level 3 Messages 381

Appendices

Example:
int (*func)();

void bar(void)
{

func(4, "s"); /* possible argument mismatch */
}

B.4 Warning Level 4 Messages
W400 Array subscript is of type plain char

Array subscript expression is of plain char type. Such expression may be interpreted as
either signed or unsigned, depending on compiler settings. A different type should be
chosen instead of char. A cast may be used in cases when the value of the expression is
known to never fall outside the 0-127 range.

Example:
int foo(int arr[], char c)
{

return(arr[c]);
}

B.5 Error Messages
E1000 BREAK must appear in while, do, for or switch statement

A break statement has been found in an illegal place in the program. You may be missing
an opening brace { for a while, do, for or switch statement.

E1001 CASE must appear in switch statement

A case label has been found that is not inside a switch statement.

E1002 CONTINUE must appear in while, do or for statement

The continue statement must be inside a while, do or for statement. You may have too
many } between the while, do or for statement and the continue statement.

E1003 DEFAULT must appear in switch statement

A default label has been found that is not inside a switch statement. You may have too
many } between the start of the switch and the default label.

382 Error Messages

Open Watcom C Diagnostic Messages

E1004 Misplaced ’}’ or missing earlier ’{’

An extra } has been found which cannot be matched up with an earlier {.

E1005 Misplaced #elif directive

The #elif directive must be inside an #if preprocessing group and before the #else
directive if present.

E1006 Misplaced #else directive

The #else directive must be inside an #if preprocessing group and follow all #elif
directives if present.

E1007 Misplaced #endif directive

A preprocessing directive has been found without a matching #if directive. You either
have an extra or you are missing an #if directive earlier in the file.

E1008 Only 1 DEFAULT per switch allowed

You cannot have more than one default label in a switch statement.

E1009 Expecting ’%s’ but found ’%s’

A syntax error has been detected. The tokens displayed in the message should help you to
determine the problem.

E1010 Type mismatch

For pointer subtraction, both pointers must point to the same type. For other operators,
both expressions must be assignment compatible.

E1011 Symbol ’%s’ has not been declared

The compiler has found a symbol which has not been previously declared. The symbol
may be spelled differently than the declaration, or you may need to #include a header
file that contains the declaration.

E1012 Expression is not a function

The compiler has found an expression that looks like a function call, but it is not defined as
a function.

E1013 Constant variable cannot be modified

An expression or statement has been found which modifies a variable which has been
declared with the const keyword.

Error Messages 383

Appendices

E1014 Left operand must be an ’lvalue’

The operand on the left side of an "=" sign must be a variable or memory location which
can have a value assigned to it.

E1015 ’%s’ is already defined as a variable

You are trying to declare a function with the same name as a previously declared variable.

E1016 Expecting identifier

The token following "->" and "." operators must be the name of an identifier which appears
in the struct or union identified by the operand preceding the "->" and "." operators.

E1017 Label ’%s’ already defined

All labels within a function must be unique.

E1018 Label ’%s’ not defined in function

A goto statement has referenced a label that is not defined in the function. Add the
necessary label or check the spelling of the label(s) in the function.

E1019 Tag ’%s’ already defined

All struct, union and enum tag names must be unique.

E1020 Dimension cannot be 0 or negative

The dimension of an array must be positive and non-zero.

E1021 Dimensions of multi-dimension array must be specified

All dimensions of a multiple dimension array must be specified. The only exception is the
first dimension which can declared as "[]".

E1022 Missing or misspelled data type near ’%s’

The compiler has found an identifier that is not a predefined type or the name of a
"typedef". Check the identifier for a spelling mistake.

E1023 Storage class of parameter must be register or unspecified

The only storage class allowed for a parameter declaration is register.

E1024 Declared symbol ’%s’ is not in parameter list

Make sure that all the identifiers in the parameter list match those provided in the
declarations between the start of the function and the opening brace "{".

384 Error Messages

Open Watcom C Diagnostic Messages

E1025 Parameter ’%s’ already declared

A declaration for the specified parameter has already been processed.

E1026 Invalid declarator

A syntax error has occurred while parsing a declaration.

E1027 Invalid storage class for function

If a storage class is given for a function, it must be static or extern.

E1028 Variable ’%s’ cannot be void

You cannot declare a void variable.

E1029 Expression must be ’pointer to ...’

An attempt has been made to de-reference (*) a variable or expression which is not
declared to be a pointer.

E1030 Cannot take the address of an rvalue

You can only take the address of a variable or memory location.

E1031 Name ’%s’ not found in struct/union %s

The specified identifier is not one of the fields declared in the struct or union. Check that
the field name is spelled correctly, or that you are pointing to the correct struct or union.

E1032 Expression for ’.’ must be a ’structure’ or ’union’

The compiler has encountered the pattern "expression" "." "field_name" where the
expression is not a struct or union type.

E1033 Expression for ’->’ must be ’pointer to struct or union’

The compiler has encountered the pattern "expression" "->" "field_name" where the
expression is not a pointer to struct or union type.

E1034 Symbol ’%s’ already defined

The specified symbol has already been defined.

E1035 static function ’%s’ has not been defined

A prototype has been found for a static function, but a definition for the static function has
not been found in the file.

Error Messages 385

Appendices

E1036 Right operand of ’%s’ is a pointer

The right operand of "+=" and "−=" cannot be a pointer. The right operand of "−" cannot
be a pointer unless the left operand is also a pointer.

E1037 Type cast must be a scalar type

You cannot type cast an expression to be a struct, union, array or function.

E1038 Expecting label for goto statement

The goto statement requires the name of a label.

E1039 Duplicate case value ’%s’ found

Every case value in a switch statement must be unique.

E1040 Field width too large

The maximum field width allowed is 16 bits.

E1041 Field width of 0 with symbol not allowed

A bit field must be at least one bit in size.

E1042 Field width must be positive

You cannot have a negative field width.

E1043 Invalid type specified for bit field

The types allowed for bit fields are signed or unsigned varieties of char, short and int.

E1044 Variable ’%s’ has incomplete type

A full definition of a struct or union has not been given.

E1045 Subscript on non-array

One of the operands of "[]" must be an array.

E1046 Incomplete comment started on line %u

The compiler did not find */ to mark the end of a comment.

E1047 Argument for # must be a macro parm

The argument for the stringize operator "#" must be a macro parameter.

386 Error Messages

Open Watcom C Diagnostic Messages

E1048 Unknown preprocessing directive ’#%s’

An unrecognized preprocessing directive has been encountered. Check for correct spelling.

E1049 Invalid #include directive

A syntax error has been encountered in a #include directive.

E1050 Not enough parameters given for macro ’%s’

You have not supplied enough parameters to the specified macro.

E1051 Not expecting a return value for function ’%s’

The specified function is declared as a void function. Delete the return statement, or
change the type of the function.

E1052 Expression has void type

You tried to use the value of a void expression inside another expression.

E1053 Cannot take the address of a bit field

The smallest addressable unit is a byte. You cannot take the address of a bit field.

E1054 Expression must be constant

The compiler expects a constant expression. This message can occur during static
initialization if you are trying to initialize a non-pointer type with an address expression.

E1055 Unable to open ’%s’

The file specified in an #include directive could not be located. Make sure that the file
name is spelled correctly, or that the appropriate path for the file is included in the list of
paths specified in the INCLUDE environment variable or the "-I" option on the command
line.

E1056 Too many parameters given for macro ’%s’

You have supplied too many parameters for the specified macro.

E1057 Modifiers disagree with previous definition of ’%s’

You have more than one definition or prototype for the variable or function which have
different type modifiers.

Error Messages 387

Appendices

E1058 Cannot use typedef ’%s’ as a variable

The name of a typedef has been found when an operand or operator is expected. If you are
trying to use a type cast, make sure there are parentheses around the type, otherwise check
for a spelling mistake.

E1059 Invalid storage class for non-local variable

A variable with module scope cannot be defined with the storage class of auto or register.

E1060 Invalid type

An invalid combination of the following keywords has been specified in a type declaration:
const, volatile, signed, unsigned, char, int, short, long, float and double.

E1061 Expecting data or function declaration, but found ’%s’

The compiler is expecting the start of a data or function declaration. If you are only part
way through a function, then you have too many closing braces "}".

E1062 Inconsistent return type for function ’%s’

Two prototypes for the same function disagree.

E1063 Missing operand

An operand is required in the expression being parsed.

E1064 Out of memory

The compiler has run out of memory to store information about the file being compiled.
Try reducing the number of data declarations and or the size of the file being compiled. Do
not #include header files that are not required.

For the 16-bit C compiler, the "-d2" option causes the compiler to use more memory. Try
compiling with the "-d1" option instead.

E1065 Invalid character constant

This message is issued for an improperly formed character constant.

E1066 Cannot perform operation with pointer to void

You cannot use a "pointer to void" with the operators +, −, ++, −−, += and −=.

E1067 Cannot take address of variable with storage class ’register’

If you want to take the address of a local variable, change the storage class from register to
auto.

388 Error Messages

Open Watcom C Diagnostic Messages

E1068 Variable ’%s’ already initialized

The specified variable has already been statically initialized.

E1069 String literal not terminated before end of line

A string literal is enclosed by double quote " characters.

The compiler did not find a closing double quote " or line continuation character \ before
the end of a line or before the end of the source file.

E1070 Data for aggregate type must be enclosed in curly braces

When an array, struct or union is statically initialized, the data must be enclosed in curly
braces {}.

E1071 Type of parameter %d does not agree with previous definition

The type of the specified parameter is incompatible with the prototype for that function.
The following example illustrates a problem that can arise when the sequence of
declarations is in the wrong order.

Example:
/* Uncommenting the following line will

eliminate the error */
/* struct foo; */

void fn1(struct foo *);

struct foo {
int a,b;

};

void fn1(struct foo *bar)
{

fn2(bar);
}

The problem can be corrected by reordering the sequence in which items are declared (by
moving the description of the structure foo ahead of its first reference or by adding the
indicated statement). This will assure that the first instance of structure foo is defined at
the proper outer scope.

E1072 Storage class disagrees with previous definition of ’%s’

The previous definition of the specified variable has a storage class of static. The current
definition must have a storage class of static or extern.

Alternatively, a variable was previously declared as extern and later defined as static.

Error Messages 389

Appendices

E1073 Invalid option ’%s’

The specified option is not recognized by the compiler.

E1074 Invalid optimization option ’%s’

The specified option is an unrecognized optimization option.

E1075 Invalid memory model ’%s’

Memory model option must be one of "ms", "mm", "mc", "ml", "mh" or "mf" which selects
the Small, Medium, Compact, Large, Huge or Flat memory model.

E1076 Missing semicolon at end of declaration

You are missing a semicolon ";" on the declaration just before the left curly brace "{".

E1077 Missing ’}’

The compiler detected end of file before finding a right curly brace "}" to end the current
function.

E1078 Invalid type for switch expression

The type of a switch expression must be integral.

E1079 Expression must be integral

An integral expression is required.

E1080 Expression must be arithmetic

Both operands of the "*", "/" and "%" operators must be arithmetic. The operand of the
unary minus must also be arithmetic.

E1081 Expression must be scalar type

A scalar expression is required.

E1082 Statement required after label

The C language definition requires a statement following a label. You can use a null
statement which consists of just a semicolon (";").

E1083 Statement required after ’do’

A statement is required between the do and while keywords.

390 Error Messages

Open Watcom C Diagnostic Messages

E1084 Statement required after ’case’

The C language definition requires a statement following a case label. You can use a null
statement which consists of just a semicolon (";").

E1085 Statement required after ’default’

The C language definition requires a statement following a default label. You can use a
null statement which consists of just a semicolon (";").

E1086 Expression too complicated, split it up and try again

The expression contains too many levels of nested parentheses. Divide the expression up
into two or more sub-expressions.

E1087 Missing matching #endif directive

You are missing a to terminate a #if, #ifdef or #ifndef preprocessing directive.

E1088 Invalid macro definition, missing)

The right parenthesis ")" is required for a function-like macro definition.

E1089 Missing) for expansion of ’%s’ macro

The compiler encountered end-of-file while collecting up the argument for a function-like
macro. A right parenthesis ")" is required to mark the end of the argument(s) for a
function-like macro.

E1090 Invalid conversion

A struct or union cannot be converted to anything. A float or double cannot be converted
to a pointer and a pointer cannot be converted to a float or double.

E1091 %s

This is a user message generated with the #error preprocessing directive.

E1092 Cannot define an array of functions

You can have an array of pointers to functions, but not an array of functions.

E1093 Function cannot return an array

A function cannot return an array. You can return a pointer to an array.

Error Messages 391

Appendices

E1094 Function cannot return a function

You cannot return a function. You can return a pointer to a function.

E1095 Cannot take address of local variable in static initialization

You cannot take the address of an auto variable at compile time.

E1096 Inconsistent use of return statements

The compiler has found a return statement which returns a value and a return statement
that does not return a value both in the same function. The return statement which does
not return a value needs to have a value specified to be consistent with the other return
statement in the function.

E1097 Missing ? or misplaced :

The compiler has detected a syntax error related to the "?" and ":" operators. You may
need parenthesis around the expressions involved so that it can be parsed correctly.

E1098 Maximum struct or union size is 64K

The size of a struct or union is limited to 64K so that the compiler can represent the offset
of a member in a 16-bit register.

E1099 Statement must be inside function. Probable cause: missing {

The compiler has detected a statement such as for, while, switch, etc., which must be inside
a function. You either have too many closing braces "}" or you are missing an opening
brace "{" earlier in the function.

E1100 Definition of macro ’%s’ not identical to previous definition

If a macro is defined more than once, the definitions must be identical. If you want to
redefine a macro to have a different definition, you must #undef it before you can define
it with a new definition.

E1101 Cannot #undef ’%s’

The special macros __LINE__, __FILE__, __DATE__, __TIME__,
__STDC__, __FUNCTION__ and__func__, and the identifier "defined", cannot be
deleted by the #undef directive.

E1102 Cannot #define the name ’defined’

You cannot define a macro called defined.

392 Error Messages

Open Watcom C Diagnostic Messages

E1103 ## must not be at start or end of replacement tokens

There must be a token on each side of the "##" (token pasting) operator.

E1104 Type cast not allowed in #if or #elif expression

A type cast is not allowed in a preprocessor expression.

E1105 ’sizeof’ not allowed in #if or #elif expression

The sizeof operator is not allowed in a preprocessor expression.

E1106 Cannot compare a struct or union

A struct or union cannot be compared with "==" or "!=". You must compare each member
of a struct or union to determine equality or inequality. If the struct or union is packed
(has no holes in it for alignment purposes) then you can compare two structs using
memcmp.

E1107 Enumerator list cannot be empty

You must have at least one identifier in an enum list.

E1108 Invalid floating-point constant

The exponent part of the floating-point constant is not formed correctly.

E1109 Cannot take sizeof a bit field

The smallest object that you can ask for the size of is a char.

E1110 Cannot initialize variable with storage class of extern

A storage class of extern is used to associate the variable with its actual definition
somewhere else in the program.

E1111 Invalid storage class for parameter

The only storage class allowed for a parameter is register.

E1112 Initializer list cannot be empty

An initializer list must have at least one item specified.

E1113 Expression has incomplete type

An attempt has been made to access a struct or union whose definition is not known, or an
array whose dimensions are not known.

Error Messages 393

Appendices

E1114 Struct or union cannot contain itself

You cannot have a struct or union contain itself. You can have a pointer in the struct
which points to an instance of itself. Check for a missing "*" in the declaration.

E1115 Incomplete enum declaration

The enumeration tag has not been previously defined.

E1116 An id list not allowed except for function definition

A function prototype must contain type information.

E1117 Must use ’va_start’ macro inside function with variable parameters

The va_start macro is used to setup access to the parameters in a function that takes a
variable number of parameters. A function is defined with a variable number of parameters
by declaring the last parameter in the function as "...".

E1118 ***FATAL*** %s

A fatal error has been detected during code generation time. The type of error is displayed
in the message.

E1119 Internal compiler error %d

A bug has been encountered in the C compiler. Please report the specified internal
compiler error number and any other helpful details about the program being compiled to
compiler developers so that we can fix the problem.

E1120 Parameter number %d - invalid register in #pragma

The designated registers cannot hold the value for the parameter.

E1121 Procedure ’%s’ has invalid return register in #pragma

The size of the return register does not match the size of the result returned by the function.

E1122 Illegal register modified by ’%s’ #pragma

For the 16-bit C compiler: The BP, CS, DS, and SS registers cannot be modified in small
data models. The BP, CS, and SS registers cannot be modified in large data models.

For the 32-bit C compiler: The EBP, CS, DS, ES, and SS registers cannot be modified in
flat memory models. The EBP, CS, DS, and SS registers cannot be modified in small data
models. The EBP, CS, and SS registers cannot be modified in large data models.

394 Error Messages

Open Watcom C Diagnostic Messages

E1123 File must contain at least one external definition

Every file must contain at least one global object, (either a data variable or a function).
This message is only issued in strict ANSI mode (-za).

E1124 Out of macro space

The compiler ran out of memory for storing macro definitions.

E1125 Keyboard interrupt detected

The compile has been aborted with Ctrl/C or Ctrl/Break.

E1126 Array, struct or union cannot be placed in a register

Only scalar objects can be specified with the register class.

E1127 Type required in parameter list

If the first parameter in a function definition or prototype is defined with a type, then all of
the parameters must have a type specified.

E1128 Enum constant is out of range %s

All of the constants must fit into appropriate value range.

E1129 Type does not agree with previous definition of ’%s’

You have more than one definition of a variable or function that do not agree.

E1130 Duplicate name ’%s’ not allowed in struct or union

All the field names in a struct or union must be unique.

E1131 Duplicate macro parameter ’%s’

The parameters specified in a macro definition must be unique.

E1132 Unable to open work file: error code = %d

The compiler tries to open a new work file by the name "__wrkN__.tmp" where N is the
digit 0 to 9. This message will be issued if all of those files already exist.

E1133 Write error on work file: error code = %d

An error was encountered trying to write information to the work file. The disk could be
full.

Error Messages 395

Appendices

E1134 Read error on work file: error code = %d

An error was encountered trying to read information from the work file.

E1135 Seek error on work file: error code = %d

An error was encountered trying to seek to a position in the work file.

E1136 not used

unused message

E1137 Out of enum space

The compiler has run out of space allocated to store information on all of the enum
constants defined in your program.

E1138 Filename required on command line

The name of a file to be compiled must be specified on the command line.

E1139 Command line contains more than one file to compile

You have more than one file name specified on the command line to be compiled. The
compiler can only compile one file at a time. You can use the cc utility to compile multiple
files with a single command.

E1140 _leave must appear in a _try statement

The _leave keyword must be inside a _try statement. The _leave keyword causes the
program to jump to the start of the _finally block.

E1141 Expecting end of line but found ’%s’

A syntax error has been detected. The token displayed in the message should help you
determine the problem.

E1142 Too many bytes specified in #pragma

There is an internal limit on the number of bytes for in-line code that can be specified with
a pragma. Try splitting the function into two or more smaller functions.

E1143 Cannot resolve linkage conventions for routine ’%s’ #pragma

The compiler cannot generate correct code for the specified routine because of register
conflicts. Change the registers used by the parameters of the pragma.

396 Error Messages

Open Watcom C Diagnostic Messages

E1144 Symbol ’%s’ in pragma must be global

The in-line code for a pragma can only reference a global variable or function. You can
only reference a parameter or local variable by passing it as a parameter to the in-line code
pragma.

E1145 Internal compiler limit exceeded, break module into smaller pieces

The compiler can handle 65535 quadruples, 65535 leaves, and 65535 symbol table entries
and literal strings. If you exceed one of these limits, the program must be broken into
smaller pieces until it is capable of being processed by the compiler.

E1146 Invalid initializer for integer data type

Integer data types (int and long) can be initialized with numeric expressions or address
expressions that are the same size as the integer data type being initialized.

E1147 Too many errors: compilation aborted

The compiler stops compiling when the number of errors generated exceeds the error limit.
The error limit can be set with the "-e" option. The default error limit is 20.

E1148 Expecting identifier but found ’%s’

A syntax error has been detected. The token displayed in the message should help you
determine the problem.

E1149 Expecting constant but found ’%s’

The #line directive must be followed by a constant indicating the desired line number.

E1150 Expecting \"filename\" but found ’%s’

The second argument of the #line directive must be a filename enclosed in quotes.

E1151 Parameter count does not agree with previous definition

You have either not enough parameters or too many parameters in a call to a function. If
the function is supposed to have a variable number of parameters, then you are missing the
", ..." in the function prototype.

E1152 Segment name required

A segment name must be supplied in the form of a literal string to the __segname()
directive.

Error Messages 397

Appendices

E1153 Invalid __based declaration

The compiler could not recognize one of the allowable forms of __based declarations. See
the C Language Reference document for description of all the allowable forms of __based
declarations.

E1154 Variable for __based declaration must be of type __segment or pointer

A based pointer declaration must be based on a simple variable of type __segment or
pointer.

E1155 Duplicate external symbol %s

Duplicate external symbols will exist when the specified symbol name is truncated to 8
characters.

E1156 Assembler error: ’%s’

An error has been detected by the in-line assembler. The message indicates the error
detected.

E1157 Variable must be ’huge’

A variable or an array that requires more than 64K of storage in the 16-bit compiler must be
declared as huge.

E1158 Too many parm sets

Too many parameter register sets have been specified in the pragma.

E1159 I/O error reading ’%s’: %s

An I/O error has been detected by the compiler while reading the source file. The system
dependent reason is also displayed in the message.

E1160 Attempt to access far memory with all segment registers disabled in ’%s’

The compiler does not have any segment registers available to access the desired far
memory location.

E1161 No identifier provided for ’-D’ option

The command line option "-D" must be followed by the name of the macro to be defined.

E1162 Invalid register pegged to a segment in ’%s’

The register specified in a #pragma data_seg, or a __segname expression must be a valid
segment register.

398 Error Messages

Open Watcom C Diagnostic Messages

E1163 Invalid octal constant

An octal constant cannot contain the digits 8 or 9.

E1164 Invalid hexadecimal constant

The token sequence "0x" must be followed by a hexadecimal character (0-9, a-f, or A-F).

E1165 Unexpected ’)’. Probable cause: missing ’(’

A closing parenthesis was found in an expression without a corresponding opening
parenthesis.

E1166 Symbol ’%s’ is unreachable from #pragma

The in-line assembler found a jump instruction to a label that is too far away.

E1167 Division or remainder by zero in a constant expression

The compiler found a constant expression containing a division or remainder by zero.

E1168 Cannot end string literal with backslash

The argument to a macro that uses the stringize operator ’#’ on that argument must not end
in a backslash character.

Example:
#define str(x) #x
str(@#\)

E1169 Invalid __declspec declaration

The only valid __declspec declarations are "__declspec(thread)", "__declspec(dllexport)",
and "__declspec(dllimport)".

E1170 Too many storage class specifiers

You can only specify one storage class specifier in a declaration.

E1171 Expecting ’%s’ but found end of file

A syntax error has been detected. The compiler is still expecting more input when it
reached the end of the source program.

E1172 Expecting struct/union tag but found ’%s’

The compiler expected to find an identifier following the struct or union keyword.

Error Messages 399

Appendices

E1173 Operand of __builtin_isfloat() must be a type

The __builtin_isfloat() function is used by the va_arg macro to determine if a type is a
floating-point type.

E1174 Invalid constant

The token sequence does not represent a valid numeric constant.

E1175 Too many initializers

There are more initializers than objects to initialize. For example int X[2] = { 0, 1, 2 }; The
variable "X" requires two initializers not three.

E1176 Parameter %d, pointer type mismatch

You have two pointers that either point to different objects, or the pointers are of different
size, or they have different modifiers.

E1177 Modifier repeated in declaration

You have repeated the use of a modifier like "const" (an error) or "far" (a warning) in a
declaration.

E1178 Type qualifier mismatch

You have two pointers that have different "const" or "volatile" qualifiers.

E1179 Parameter %d, type qualifier mismatch

You have two pointers that have different const or "volatile" qualifiers.

E1180 Sign specifier mismatch

You have two pointers that point to types that have different sign specifiers.

E1181 Parameter %d, sign specifier mismatch

You have two pointers that point to types that have different sign specifiers.

E1182 Missing \\ for string literal

You need a ’\’ to continue a string literal across a line.

E1183 Expecting ’%s’ after ’%s’ but found ’%s’

A syntax error has been detected. The tokens displayed in the message should help you to
determine the problem.

400 Error Messages

Open Watcom C Diagnostic Messages

E1184 Expecting ’%s’ after ’%s’ but found end of file

A syntax error has been detected. The compiler is still expecting more input when it
reached the end of the source program.

E1185 Invalid register name ’%s’ in #pragma

The register name is invalid/unknown.

E1186 Storage class of ’for’ statement declaration not register or auto

The only storage class allowed for the optional declaration part of a for statement is auto or
register.

E1187 No type specified in declaration

A declaration specifier must include a type specifier.

Example:
auto i;

E1188 Symbol ’%s’ declared in ’for’ statement must be object

Any identifier declared in the optional declaration part of a for statement must denote an
object. Functions, structures, or enumerations may not be declared in this context.

Example:
for(int i = 0, j(void); i < 5; ++i) {

...
}

E1189 Unexpected declaration

Within a function body, in C99 mode a declaration is only allowed in a compound
statement and in the opening clause of a for loop. Declarations are not allowed after if,
while, or switch statement, etc.

Example:
void foo(int a)
{

if(a > 0)
int j = 3;

}

In C89 mode, declarations within a function body are only allowed at the beginning of a
compound statement.

Error Messages 401

Appendices

Example:
void foo(int a)
{

++a;
int j = 3;

}

B.6 Informational Messages
I2000 Not enough memory to fully optimize procedure ’%s’

The compiler did not have enough memory to fully optimize the specified procedure. The
code generated will still be correct and execute properly. This message is purely
informational.

I2001 Not enough memory to maintain full peephole

Certain optimizations benefit from being able to store the entire module in memory during
optimization. All functions will be individually optimized but the optimizer will not be
able to share code between functions if this message appears. The code generated will still
be correct and execute properly. This message is purely informational. It is only printed if
the warning level is greater than or equal to 4.

The main reason for this message is for those people who are concerned about reproducing
the exact same object code when the same source file is compiled on a different machine.
You may not be able to reproduce the exact same object code from one compile to the next
unless the available memory is exactly the same.

I2002 ’%s’ defined in: %s(%u)

This informational message indicates where the symbol in question was defined. The
message is displayed following an error or warning diagnostic for the symbol in question.

Example:
static int a = 9;
int b = 89;

The variable ’a’ is not referenced in the preceding example and so will cause a warning to
be generated. Following the warning, the informational message indicates the line at which
’a’ was declared.

I2003 source conversion type is ’%s’

This informational message indicates the type of the source operand, for the preceding
conversion diagnostic.

402 Informational Messages

Open Watcom C Diagnostic Messages

I2004 target conversion type is ’%s’

This informational message indicates the target type of the conversion, for the preceding
conversion diagnostic.

I2005 Including file ’%s’

This informational message indicates that the specified file was opened as a result of
#include directive processing.

B.7 Pre-compiled Header Messages
H3000 Error reading PCH file

The pre-compiled header file does not follow the correct format.

H3001 PCH file header is out of date

The pre-compiled header file is out of date with the compiler. The current version of the
compiler is expecting a different format.

H3002 Compile options differ with PCH file

The command line options are not the same as used when making the pre-compiled header
file. This can effect the values of the pre-compiled information.

H3003 Current working directory differs with PCH file

The pre-compiled header file was compiled in a different directory.

H3004 Include file ’%s’ has been modified since PCH file was made

The include files have been modified since the pre-compiled header file was made.

H3005 PCH file was made from a different include file

The pre-compiled header file was made using a different include file.

H3006 Include path differs with PCH file

The include paths have changed.

H3007 Preprocessor macro definition differs with PCH file

The definition of a preprocessor macro has changed.

Pre-compiled Header Messages 403

Appendices

H3008 PCH cannot have data or code definitions.

The include files used to build the pre-compiled header contain function or data definitions.
This is not currently supported.

B.8 Miscellaneous Messages and Phrases
M4000 Code size

String used in message construction.

M4001 Error!

String used in message construction.

M4002 Warning!

String used in message construction.

M4003 Note!

String used in message construction.

M4004 (Press return to continue)

String used in message construction.

404 Miscellaneous Messages and Phrases

Open Watcom C++ Diagnostic Messages

C. Open Watcom C++ Diagnostic Messages

The following is a list of all warning and error messages produced by the Open Watcom C++ compilers.
Diagnostic messages are issued during compilation and execution.

The messages listed in the following sections contain references to %N, %S, %T, %s, %d and %u. They
represent strings that are substituted by the Open Watcom C++ compilers to make the error message more
exact. %d and %u represent a string of digits; %N, %S, %T and %s a string, usually a symbolic name.

Consider the following program, named err.cpp, which contains errors.

Example:
#include <stdio.h>

void main()
{

int i;
float i;

i = 383;
x = 13143.0;
printf("Integer value is %d\n", i);
printf("Floating-point value is %f\n", x);

}

If we compile the above program, the following messages will appear on the screen.

File: err.cpp
(6,12): Error! E042: symbol ’i’ already defined

’i’ declared at: (5,9)
(9,5): Error! E029: symbol ’x’ has not been declared
err.cpp: 12 lines, included 174, no warnings, 2 errors

The diagnostic messages consist of the following information:

1. the name of the file being compiled,
2. the line number and column of the line containing the error (in parentheses),
3. a message number, and
4. text explaining the nature of the error.

In the above example, the first error occurred on line 6 of the file err.cpp. Error number 042 (with the
appropriate substitutions) was diagnosed. The second error occurred on line 9 of the file err.cpp. Error
number 029 (with the appropriate substitutions) was diagnosed.

The following sections contain a complete list of the messages. Run-time messages (messages displayed
during execution) do not have message numbers associated with them.

Open Watcom C++ Diagnostic Messages 405

Appendices

A number of messages contain a reference to the ARM. This is the "Annotated C++ Reference Manual"
written by Margaret A. Ellis and Bjarne Stroustrup and published by Addison-Wesley (ISBN
0-201-51459-1).

C.1 Diagnostic Messages
000 internal compiler error

If this message appears, please report the problem directly to the Open Watcom
development team. See http://www.openwatcom.org/.

001 assignment of constant found in boolean expression

An assignment of a constant has been detected in a boolean expression. For example: "if(
var = 0)". It is most likely that you want to use "==" for testing for equality.

002 constant out of range; truncated

This message is issued if a constant cannot be represented in 32 bits or if a constant is
outside the range of valid values that can be assigned to a variable.

Example:
int a = 12345678901234567890;

003 missing return value

A function has been declared with a non-void return type, but no return statement was
found in the function. Either add a return statement or change the function return type to
void.

Example:
int foo(int a)
{

int b = a + a;
}

The message will be issued at the end of the function.

004 base class ’%T’ does not have a virtual destructor

A virtual destructor has been declared in a class with base classes. However, one of those
base classes does not have a virtual destructor. A delete of a pointer cast to such a base
class will not function properly in all circumstances.

Example:
struct Base {

~Base();
};
struct Derived : Base {

virtual ~Derived();
};

406 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

It is considered good programming practice to declare virtual destructors in all classes used
as base classes of classes having virtual destructors.

005 pointer or reference truncated

The expression contains a transfer of a pointer value to another pointer value of smaller
size. This can be caused by __near or __far qualifiers (i.e., assigning a far pointer to a
near pointer). Function pointers can also have a different size than data pointers in certain
memory models. This message indicates that some information is being lost so check the
code carefully.

Example:
extern int __far *foo();
int __far *p_far = foo();
int __near *p_near = p_far; // truncated

006 syntax error; probable cause: missing ’;’

The compiler has found a complete expression (or declaration) during parsing but could not
continue. The compiler has detected that it could have continued if a semicolon was
present so there may be a semicolon missing.

Example:
enum S {
} // missing ’;’

class X {
};

007 ’&array’ may not produce intended result

The type of the expression ’&array’ is different from the type of the expression ’array’.
Suppose we have the declaration char buffer[80]. Then the expression (&buffer
+ 3) will be evaluated as (buffer + 3 * sizeof(buffer)) which is (buffer
+ 3 * 80) and not (buffer + 3 * 1) which is what one may have expected. The
address-of operator ’&’ is not required for getting the address of an array.

008 returning address of function argument or of auto or register variable

This warning usually indicates a serious programming error. When a function exits, the
storage allocated on the stack for auto variables is released. This storage will be
overwritten by further function calls and/or hardware interrupt service routines. Therefore,
the data pointed to by the return value may be destroyed before your program has a chance
to reference it or make a copy of it.

Example:
int *foo()
{

int k = 123;
return &k; // k is automatic variable

}

Diagnostic Messages 407

Appendices

009 option requires a file name

The specified option is not recognized by the compiler since there was no file name after it
(i.e., "-fo=my.obj").

010 asm directive ignored

The asm directive (e.g., asm("mov r0,1");) is a non-portable construct. The Open
Watcom C++ compiler treats all asm directives like comments.

011 all members are private

This message warns the programmer that there will be no way to use the contents of the
class because all accesses will be flagged as erroneous (i.e., accessing a private member).

Example:
class Private {

int a;
Private();
~Private();
Private(const Private&);

};

012 template argument cannot be type ’%T’

A template argument can be either a generic type (e.g., template < class T >), a
pointer, or an integral type. These types are required for expressions that can be checked at
compile time.

013 unreachable code

The indicated statement will never be executed because there is no path through the
program that causes control to reach that statement.

Example:
void foo(int *p)
{

*p = 4;
return;
*p = 6;

}

The statement following the return statement cannot be reached.

014 no reference to symbol ’%S’

There are no references to the declared variable. The declaration for the variable can be
deleted. If the variable is a parameter to a function, all calls to the function must also have
the value for that parameter deleted.

In some cases, there may be a valid reason for retaining the variable. You can prevent the
message from being issued through use of #pragma off(unreferenced), or adding a
statement that assigns the variable to itself.

408 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

015 nested comment found in comment started on line %u

While scanning a comment for its end, the compiler detected /* for the start of another
comment. Nested comments are not allowed in ISO/ANSI C. You may be missing the */
for the previous comment.

016 template argument list cannot be empty

An empty template argument list would result in a template that could only define a single
class or function.

017 label ’%s’ has not been referenced by a goto

The indicated label has not been referenced and, as such, is useless. This warning can be
safely ignored.

Example:
int foo(int a, int b)
{
un_refed:

return a + b;
}

018 no reference to anonymous union member ’%S’

The declaration for the anonymous member can be safely deleted without any effect.

019 ’break’ may only appear in a for, do, while, or switch statement

A break statement has been found in an illegal place in the program. You may be missing
an opening brace { for a while, do, for or switch statement.

Example:
int foo(int a, int b)
{

break; // illegal
return a+b;

}

020 ’case’ may only appear in a switch statement

A case label has been found that is not inside a switch statement.

Example:
int foo(int a, int b)
{

case 4: // illegal
return a+b;

}

Diagnostic Messages 409

Appendices

021 ’continue’ may only appear in a for, do, or while statement

The continue statement must be inside a while, do or for statement. You may have too
many } between the while, do or for statement and the continue statement.

Example:
int foo(int a, int b)
{

continue; // illegal
return a+b;

}

022 ’default’ may only appear in a switch statement

A default label has been found that is not inside a switch statement. You may have too
many } between the start of the switch and the default label.

Example:
int foo(int a, int b)
{

default: // illegal
return a+b;

}

023 misplaced ’}’ or missing earlier ’{’

An extra } has been found which cannot be matched up with an earlier {.

024 misplaced #elif directive

The #elif directive must be inside an #if preprocessing group and before the #else directive
if present.

Example:
int a;
#else
int c;
#elif IN_IF
int b;
#endif

The #else, #elif, and #endif statements are all illegal because there is no #if that
corresponds to them.

025 misplaced #else directive

The #else directive must be inside an #if preprocessing group and follow all #elif directives
if present.

410 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
int a;
#else
int c;
#elif IN_IF
int b;
#endif

The #else, #elif, and #endif statements are all illegal because there is no #if that
corresponds to them.

026 misplaced #endif directive

A #endif preprocessing directive has been found without a matching #if directive. You
either have an extra #endif or you are missing an #if directive earlier in the file.

Example:
int a;
#else
int c;
#elif IN_IF
int b;
#endif

The #else, #elif, and #endif statements are all illegal because there is no #if that
corresponds to them.

027 only one ’default’ per switch statement is allowed

You cannot have more than one default label in a switch statement.

Example:
int translate(int a)
{

switch(a) {
case 1:

a = 8;
break;

default:
a = 9;
break;

default: // illegal
a = 10;
break;
}
return a;

}

Diagnostic Messages 411

Appendices

028 expecting ’%s’ but found ’%s’

A syntax error has been detected. The tokens displayed in the message should help you to
determine the problem.

029 symbol ’%N’ has not been declared

The compiler has found a symbol which has not been previously declared. The symbol
may be spelled differently than the declaration, or you may need to #include a header file
that contains the declaration.

Example:
int a = b; // b has not been declared

030 left expression must be a function or a function pointer

The compiler has found an expression that looks like a function call, but it is not defined as
a function.

Example:
int a;
int b = a(12);

031 operand must be an lvalue

The operand on the left side of an "=" sign must be a variable or memory location which
can have a value assigned to it.

Example:
void foo(int a)
{

(a + 1) = 7;
int b = ++ (a + 6);

}

Both statements within the function are erroneous, since lvalues are expected where the
additions are shown.

032 label ’%s’ already defined

All labels within a function must be unique.

Example:
void bar(int *p)
{
label:

*p = 0;
label:

return;
}

The second label is illegal.

412 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

033 label ’%s’ is not defined in function

A goto statement has referenced a label that is not defined in the function. Add the
necessary label or check the spelling of the label(s) in the function.

Example:
void bar(int *p)
{
labl:

*p = 0;
goto label;

}

The label referenced in the goto is not defined.

034 dimension cannot be zero

The dimension of an array must be non-zero.

Example:
int array[0]; // not allowed

035 dimension cannot be negative

The dimension of an array must be positive.

Example:
int array[-1]; // not allowed

036 dimensions of multi-dimension array must be specified

All dimensions of a multiple dimension array must be specified. The only exception is the
first dimension which can declared as "[]".

Example:
int array[][]; // not allowed

037 invalid storage class for function

If a storage class is given for a function, it must be static or extern.

Example:
auto void foo()
{
}

038 expression must have pointer type

An attempt has been made to de-reference a variable or expression which is not declared to
be a pointer.

Diagnostic Messages 413

Appendices

Example:
int a;
int b = *a;

039 cannot take address of an rvalue

You can only take the address of a variable or memory location.

Example:
char c;
char *p1 = & & c; // not allowed
char *p2 = & (c+1); // not allowed

040 expression for ’.’ must be a class, struct or union

The compiler has encountered the pattern "expression" "." "field_name" where the
expression is not a class, struct or union type.

Example:
struct S
{

int a;
};
int &fun();
int a = fun().a;

041 expression for ’->’ must be pointer to class, struct or union

The compiler has encountered the pattern "expression" "->" "field_name" where the
expression is not a pointer to class, struct or union type.

Example:
struct S
{

int a;
};
int *fun();
int a = fun()->a;

042 symbol ’%S’ already defined

The specified symbol has already been defined.

Example:
char a = 2;
char a = 2; // not allowed

043 static function ’%S’ has not been defined

A prototype has been found for a static function, but a definition for the static function has
not been found in the file.

414 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
static int fun(void);
int k = fun();
// fun not defined by end of program

044 expecting label for goto statement

The goto statement requires the name of a label.

Example:
int fun(void)
{

goto;
}

045 duplicate case value ’%s’ found

Every case value in a switch statement must be unique.

Example:
int fun(int a)
{

switch(a) {
case 1:

return 7;
case 2:

return 9;
case 1: // duplicate not allowed

return 7;
}
return 79;

}

046 bit-field width is too large

The maximum field width allowed is 16 bits in the 16-bit compiler and 32 bits in the 32-bit
compiler.

Example:
struct S
{

unsigned bitfield :48; // too wide
};

047 width of a named bit-field must not be zero

A bit field must be at least one bit in size.

Diagnostic Messages 415

Appendices

Example:
struct S {

int bitfield :10;
int :0; // okay, aligns to int
int h :0; // error, field is named

};

048 bit-field width must be positive

You cannot have a negative field width.

Example:
struct S
{

unsigned bitfield :-10; // cannot be negative
};

049 bit-field base type must be an integral type

The types allowed for bit fields are signed or unsigned varieties of char, short and int.

Example:
struct S
{

float bitfield : 10; // must be integral
};

050 subscript on non-array

One of the operands of ’[]’ must be an array or a pointer.

Example:
int array[10];
int i1 = array[0]; // ok
int i2 = 0[array]; // same as above
int i3 = 0[1]; // illegal

051 incomplete comment

The compiler did not find */ to mark the end of a comment.

052 argument for # must be a macro parm

The argument for the stringize operator ’#’ must be a macro parameter.

053 unknown preprocessing directive ’#%s’

An unrecognized preprocessing directive has been encountered. Check for correct spelling.

416 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#i_goofed // not valid

054 invalid #include directive

A syntax error has been encountered in a #include directive.

Example:
#include // no header file
#include stdio.h

Both examples are illegal.

055 not enough parameters given for macro ’%s’

You have not supplied enough parameters to the specified macro.

Example:
#define mac(a,b) a+b
int i = mac(123); // needs 2 parameters

056 not expecting a return value

The specified function is declared as a void function. Delete the return value, or change
the type of the function.

Example:
void fun()
{

return 14; // not expecting return value
}

057 cannot take address of a bit-field

The smallest addressable unit is a byte. You cannot take the address of a bit field.

Example:
struct S
{ int bits :6;

int bitfield :10;
};
S var;
void* p = &var.bitfield; // illegal

058 expression must be a constant

The compiler expects a constant expression. This message can occur during static
initialization if you are trying to initialize a non-pointer type with an address expression.

Diagnostic Messages 417

Appendices

059 unable to open ’%s’

The file specified in an #include directive could not be located. Make sure that the file
name is spelled correctly, or that the appropriate path for the file is included in the list of
paths specified in the INCLUDE or INCLUDE environment variables or in the "i=" option
on the command line.

060 too many parameters given for macro ’%s’

You have supplied too many parameters for the specified macro. The extra parameters are
ignored.

Example:
#define mac(a,b) a+b
int i = mac(1,2,3); // needs 2 parameters

061 cannot use __based or __far16 pointers in this context

The use of __based and __far16 pointers is prohibited in throw expressions and catch
statements.

Example:
extern int __based(__segname("myseg")) *pi;

void bad()
{

try {
throw pi;
} catch(int __far16 *p16) {
*p16 = 87;
}

}

Both the throw expression and catch statements cause this error to be diagnosed.

062 only one type is allowed in declaration specifiers

Only one type is allowed for the first part of a declaration. A common cause of this
message is that there may be a missing semi-colon (’;’) after a class definition.

Example:
class C
{
public:

C();
} // needs ";"

int foo() { return 7; }

418 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

063 out of memory

The compiler has run out of memory to store information about the file being compiled.
Try reducing the number of data declarations and or the size of the file being compiled. Do
not #include header files that are not required.

064 invalid character constant

This message is issued for an improperly formed character constant.

Example:
char c = ’12345’;
char d = ’’’;

065 taking address of variable with storage class ’register’

You can take the address of a register variable in C++ (but not in ISO/ANSI C). If there is
a chance that the source will be compiled using a C compiler, change the storage class from
register to auto.

Example:
extern int foo(char*);
int bar()
{

register char c = ’c’;
return foo(&c);

}

066 ’delete’ expression size is not allowed

The C++ language has evolved to the point where the delete expression size is no longer
required for a correct deletion of an array.

Example:
void fn(unsigned n, char *p) {

delete [n] p;
}

067 ending " missing for string literal

The compiler did not find a second double quote to end the string literal.

Example:
char *a = "no_ending_quote;

068 invalid option

The specified option is not recognized by the compiler.

Diagnostic Messages 419

Appendices

069 invalid optimization option

The specified option is an unrecognized optimization option.

070 invalid memory model

Memory model option must be one of "ms", "mm", "mc", "ml", "mh" or "mf" which selects
the Small, Medium, Compact, Large, Huge or Flat memory model.

071 expression must be integral

An integral expression is required.

Example:
int foo(int a, float b, int *p)
{

switch(a) {
case 1.3: // must be integral

return p[b]; // index not integer
case 2:

b <<= 2; // can only shift integers
default:

return b;
}

}

072 expression must be arithmetic

Arithmetic operations, such as "/" and "*", require arithmetic operands unless the operation
has been overloaded or unless the operands can be converted to arithmetic operands.

Example:
class C
{
public:

int c;
};
C cv;
int i = cv / 2;

073 statement required after label

The C language definition requires a statement following a label. You can use a null
statement which consists of just a semicolon (";").

Example:
extern int bar(int);
void foo(int a)
{

if(a) goto ending;
bar(a);

ending:
// needs statement following

}

420 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

074 statement required after ’do’

A statement is required between the do and while keywords.

075 statement required after ’case’

The C language definition requires a statement following a case label. You can use a null
statement which consists of just a semicolon (";").

Example:
int foo(int a)
{

switch(a) {
default:

return 7;
case 1: // needs statement following

}
return 18;

}

076 statement required after ’default’

The C language definition requires a statement following a default label. You can use a
null statement which consists of just a semicolon (";").

Example:
int foo(int a)
{

switch(a) {
case 7:

return 7;
default:

// needs statement following
}
return 18;

}

077 missing matching #endif directive

You are missing a #endif to terminate a #if, #ifdef or #ifndef preprocessing directive.

Example:
#if 1
int a;
// needs #endif

078 invalid macro definition, missing ’)’

The right parenthesis ")" is required for a function-like macro definition.

Diagnostic Messages 421

Appendices

Example:
#define bad_mac(a, b

079 missing ’)’ for expansion of ’%s’ macro

The compiler encountered end-of-file while collecting up the argument for a function-like
macro. A right parenthesis ")" is required to mark the end of the argument(s) for a
function-like macro.

Example:
#define mac(a, b) a+b
int d = mac(1, 2

080 %s

This is a user message generated with the #error preprocessing directive.

Example:
#error my very own error message

081 cannot define an array of functions

You can have an array of pointers to functions, but not an array of functions.

Example:
typedef int TD(float);
TD array[12];

082 function cannot return an array

A function cannot return an array. You can return a pointer to an array.

Example:
typedef int ARR[10];
ARR fun(float);

083 function cannot return a function

You cannot return a function. You can return a pointer to a function.

Example:
typedef int TD();
TD fun(float);

084 function templates can only have type arguments

A function template argument can only be a generic type (e.g., template < class T >
). This is a restriction in the C++ language that allows compilers to automatically
instantiate functions purely from the argument types of calls.

422 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

085 maximum class size has been exceeded

The 16-bit compiler limits the size of a struct or union to 64K so that the compiler can
represent the offset of a member in a 16-bit register. This error also occurs if the size of a
structure overflows the size of an unsigned integer.

Example:
struct S
{

char arr1[0xfffe];
char arr2[0xfffe];
char arr3[0xfffe];
char arr4[0xfffffffe];

};

086 definition of macro ’%s’ not identical to previous definition

If a macro is defined more than once, the definitions must be identical. If you want to
redefine a macro to have a different definition, you must #undef it before you can define it
with a new definition.

Example:
#define CON 123
#define CON 124 // not same as previous

087 initialization of ’%S’ must be in file scope

A file scope variable must be initialized in file scope.

Example:
void fn()
{

extern int v = 1;
}

088 default argument for ’%S’ declared outside of class definition

Problems can occur with member functions that do not declare all of their default
arguments during the class definition. For instance, a copy constructor is declared if a class
does not define a copy constructor. If a default argument is added later on to a constructor
that makes it a copy constructor, an ambiguity results.

Example:
struct S {

S(S const &, int);
// S(S const &); <-- declared by compiler

};
// ambiguity with compiler
// generated copy constructor
// S(S const &);
S::S(S const &, int = 0)
{
}

Diagnostic Messages 423

Appendices

089 ## must not be at start or end of replacement tokens

There must be a token on each side of the "##" (token pasting) operator.

Example:
#define badmac(a, b) ## a ## b

090 invalid floating-point constant

The exponent part of the floating-point constant is not formed correctly.

Example:
float f = 123.9E+Q;

091 ’sizeof’ is not allowed for a bit-field

The smallest object that you can ask for the size of is a char.

Example:
struct S
{ int a;

int b :10;
} v;
int k = sizeof(v.b);

092 option requires a path

The specified option is not recognized by the compiler since there was no path after it (i.e.,
"-i=d:\include;d:\path").

093 must use ’va_start’ macro inside function with variable arguments

The va_start macro is used to setup access to the parameters in a function that takes a
variable number of parameters. A function is defined with a variable number of parameters
by declaring the last parameter in the function as "...".

Example:
#include <stdarg.h>
int foo(int a, int b)
{

va_list args;
va_start(args, a);
va_end(args);
return b;

}

094 ***FATAL*** %s

A fatal error has been detected during code generation time. The type of error is displayed
in the message.

424 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

095 internal compiler error %d

A bug has been encountered in the compiler. Please report the specified internal compiler
error number and any other helpful details about the program being compiled to the Open
Watcom development team so that we can fix the problem. See
http://www.openwatcom.org/.

096 argument number %d - invalid register in #pragma

The designated registers cannot hold the value for the parameter.

097 procedure ’%s’ has invalid return register in #pragma

The size of the return register does not match the size of the result returned by the function.

098 illegal register modified by ’%s’ #pragma

For the 16-bit Open Watcom C/C++ compiler: The BP, CS, DS, and SS registers cannot
be modified in small data models. The BP, CS, and SS registers cannot be modified in
large data models.

For the 32-bit Open Watcom C/C++ compiler: The EBP, CS, DS, ES, and SS registers
cannot be modified in flat memory models. The EBP, CS, DS, and SS registers cannot be
modified in small data models. The EBP, CS, and SS registers cannot be modified in large
data models.

099 file must contain at least one external definition

Every file must contain at least one global object, (either a data variable or a function).

Note: This message has been disabled starting with Open Watcom v1.4. The ISO 1998
C++ standard allows empty translation units.

100 out of macro space

The compiler ran out of memory for storing macro definitions.

101 keyboard interrupt detected

The compilation has been aborted with Ctrl/C or Ctrl/Break.

102 duplicate macro parameter ’%s’

The parameters specified in a macro definition must be unique.

Example:
#define badmac(a, b, a) a ## b

Diagnostic Messages 425

Appendices

103 unable to open work file: error code = %d

The compiler tries to open a new work file by the name "__wrkN__.tmp" where N is the
digit 0 to 9. This message will be issued if all of those files already exist.

104 write error on work file: error code = %d

An error was encountered trying to write information to the work file. The disk could be
full.

105 read error on work file: error code = %d

An error was encountered trying to read information from the work file.

106 token too long; truncated

The token must be less than 510 bytes in length.

107 filename required on command line

The name of a file to be compiled must be specified on the command line.

108 command line contains more than one file to compile

You have more than one file name specified on the command line to be compiled. The
compiler can only compile one file at a time. You can use the cc utility to compile multiple
files with a single command.

109 virtual member functions are not allowed in a union

A union can only be used to overlay the storage of data. The storage of virtual function
information (in a safe manner) cannot be done if storage is overlaid.

Example:
struct S1{ int f(int); };
struct S2{ int f(int); };
union un { S1 s1;

S2 s2;
virtual int vf(int);

};

110 union cannot be used as a base class

This restriction prevents C++ programmers from viewing a union as an encapsulation unit.
If it is necessary, one can encapsulate the union into a class and achieve the same effect.

426 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
union U { int a; int b; };
class S : public U { int s; };

111 union cannot have a base class

This restriction prevents C++ programmers from viewing a union as an encapsulation unit.
If it is necessary, one can encapsulate the union into a class and inherit the base classes
normally.

Example:
class S { public: int s; };
union U : public S { int a; int b; };

112 cannot inherit an undefined base class ’%T’

The storage requirements for a class type must be known when inheritance is involved
because the layout of the final class depends on knowing the complete contents of all base
classes.

Example:
class Undefined;
class C : public Undefined {

int c;
};

113 repeated direct base class will cause ambiguities

Almost all accesses will be ambiguous. This restriction is useful in catching programming
errors. The repeated base class can be encapsulated in another class if the repetition is
required.

Example:
class Dup
{

int d;
};
class C : public Dup, public Dup
{

int c;
};

114 templates may only be declared in namespace scope

Currently, templates can only be declared in namespace scope. This simple restriction was
chosen in favour of more freedom with possibly subtle restrictions.

Diagnostic Messages 427

Appendices

115 linkages may only be declared in file scope

A common source of errors for C and C++ result from the use of prototypes inside of
functions. This restriction attempts to prevent such errors.

116 unknown linkage ’%s’

Only the linkages "C" and "C++" are supported by Open Watcom C++.

Example:
extern "APL" void AplFunc(int*);

117 too many storage class specifiers

This message is a result of duplicating a previous storage class or having a different storage
class. You can only have one of the following storage classes, extern, static, auto, register,
or typedef.

Example:
extern typedef int (*fn)(void);

118 nameless declaration is not allowed

A type was used in a declaration but no name was given.

Example:
static int;

119 illegal combination of type specifiers

An incorrect scalar type was found. Either a scalar keyword was repeated or the
combination is illegal.

Example:
short short x;
short long y;

120 illegal combination of type qualifiers

A repetition of a type qualifier has been detected. Some compilers may ignore repetitions
but strictly speaking it is incorrect code.

Example:
const const x;
struct S {

int virtual virtual fn();
};

428 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

121 syntax error

The C++ compiler was unable to interpret the text starting at the location of the message.
The C++ language is sufficiently complicated that it is difficult for a compiler to correct the
error itself.

122 parser stack corrupted

The C++ parser has detected an internal problem that usually indicates a compiler problem.
Please report this directly to the Open Watcom development team. See
http://www.openwatcom.org/.

123 template declarations cannot be nested within each other

Currently, templates can only be declared in namespace scope. Furthermore, a template
declaration must be finished before another template can be declared.

124 expression is too complicated

The expression contains too many levels of nested parentheses. Divide the expression up
into two or more sub-expressions.

125 invalid redefinition of the typedef name ’%S’

Redefinition of typedef names is only allowed if you are redefining a typedef name to
itself. Any other redefinition is illegal. You should delete the duplicate typedef definition.

Example:
typedef int TD;
typedef float TD; // illegal

126 class ’%T’ has already been defined

This message usually results from the definition of two classes in the same scope. This is
illegal regardless of whether the class definitions are identical.

Example:
class C {
};
class C {
};

127 ’sizeof’ is not allowed for an undefined type

If a type has not been defined, the compiler cannot know how large it is.

Diagnostic Messages 429

Appendices

Example:
class C;
int x = sizeof(C);

128 initializer for variable ’%S’ cannot be bypassed

The variable may not be initialized when code is executing at the position indicated in the
message. The C++ language places these restrictions to prevent the use of uninitialized
variables.

Example:
int foo(int a)
{

switch(a) {
case 1:

int b = 2;
return b;

default: // b bypassed
return b + 5;
}

}

129 division by zero in a constant expression

Division by zero is not allowed in a constant expression. The value of the expression
cannot be used with this error.

Example:
int foo(int a)
{

switch(a) {
case 4 / 0: // illegal

return a;
}
return a + 2;

}

130 arithmetic overflow in a constant expression

The multiplication of two integral values cannot be represented. The value of the
expression cannot be used with this error.

Example:
int foo(int a)
{

switch(a) {
case 0x7FFF * 0x7FFF * 0x7FFF: // overflow

return a;
}
return a + 2;

}

430 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

131 not enough memory to fully optimize procedure ’%s’

The indicated procedure cannot be fully optimized with the amount of memory available.
The code generated will still be correct and execute properly. This message is purely
informational (i.e., buy more memory).

132 not enough memory to maintain full peephole

Certain optimizations benefit from being able to store the entire module in memory during
optimization. All functions will be individually optimized but the optimizer will not be
able to share code between functions if this message appears. The code generated will still
be correct and execute properly. This message is purely informational (i.e., buy more
memory).

133 too many errors: compilation aborted

The Open Watcom C++ compiler sets a limit to the number of error messages it will issue.
Once the number of messages reaches the limit the above message is issued. This limit can
be changed via the "/e" command line option.

134 too many parm sets

An extra parameter passing description has been found in the aux pragma text. Only one
parameter passing description is allowed.

135 ’friend’, ’virtual’ or ’inline’ modifiers may only be used on functions

This message indicates that you are trying to declare a strange entity like an inline variable.
These qualifiers can only be used on function declarations and definitions.

136 more than one calling convention has been specified

A function cannot have more than one #pragma modifier applied to it. Combine the
pragmas into one pragma and apply it once.

137 pure member function constant must be ’0’

The constant must be changed to ’0’ in order for the Open Watcom C++ compiler to accept
the pure virtual member function declaration.

Example:
struct S {

virtual int wrong(void) = 91;
};

138 based modifier has been repeated

A repeated based modifier has been detected. There are no semantics for combining base
modifiers so this is not allowed.

Diagnostic Messages 431

Appendices

Example:
char *ptr;
char __based(void) __based(ptr) *a;

139 enumeration variable is not assigned a constant from its enumeration

In C++ (as opposed to C), enums represent values of distinct types. Thus, the compiler will
not automatically convert an integer value to an enum type if you are compiling your
source in strict ISO/ANSI C++ mode. If you have extensions enabled, this message is
treated as a warning.

Example:
enum Days { sun, mod, tues, wed, thur, fri, sat };
enum Days day = 2;

140 bit-field declaration cannot have a storage class specifier

Bit-fields (along with most members) cannot have storage class specifiers in their
declaration. Remove the storage class specifier to correct the code.

Example:
class C
{
public:

extern unsigned bitf :10;
};

141 bit-field declaration must have a base type specified

A bit-field cannot make use of a default integer type. Specify the type int to correct the
code.

Example:
class C
{
public:

bitf :10;
};

142 illegal qualification of a bit-field declaration

A bit-field can only be declared const or volatile. Qualifications like friend are not
allowed.

Example:
struct S {

friend int bit1 :10;
inline int bit2 :10;
virtual int bit3 :10;

};

All three declarations of bit-fields are illegal.

432 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

143 duplicate base qualifier

The compiler has found a repetition of base qualifiers like protected or virtual.

Example:
struct Base { int b; };
struct Derived : public public Base { int d; };

144 only one access specifier is allowed

The compiler has found more than one access specifier for a base class. Since the compiler
cannot choose one over the other, remove the unwanted access specifier to correct the code.

Example:
struct Base { int b; };
struct Derived : public protected Base { int d; };

145 unexpected type qualifier found

Type specifiers cannot have const or volatile qualifiers. This shows up in new expressions
because one cannot allocate a const object.

146 unexpected storage class specifier found

Type specifiers cannot have auto or static storage class specifiers. This shows up in new
expressions because one cannot allocate a static object.

147 access to ’%S’ is not allowed because it is ambiguous

There are two ways that this error can show up in C++ code. The first way a member can
be ambiguous is that the same name can be used in two different classes. If these classes
are combined with multiple inheritance, accesses of the name will be ambiguous.

Example:
struct S1 { int s; };
struct S2 { int s; };
struct Der : public S1, public S2
{

void foo() { s = 2; }; // s is ambiguous
};

The second way a member can be ambiguous involves multiple inheritance. If a class is
inherited non-virtually by two different classes which then get combined with multiple
inheritance, an access of the member is faced with deciding which copy of the member is
intended. Use the ’::’ operator to clarify what member is being accessed or access the
member with a different class pointer or reference.

Diagnostic Messages 433

Appendices

Example:
struct Top { int t; };
struct Mid : public Top { int m; };
struct Bot : public Top, public Mid
{

void foo() { t = 2; }; // t is ambiguous
};

148 access to private member ’%S’ is not allowed

The indicated member is being accessed by an expression that does not have permission to
access private members of the class.

Example:
struct Top { int t; };
class Bot : private Top
{

int foo() { return t; }; // t is private
};
Bot b;
int k = b.foo(); // foo is private

149 access to protected member ’%S’ is not allowed

The indicated member is being accessed by an expression that does not have permission to
access protected members of the class. The compiler also requires that protected members
be accessed through a derived class to ensure that an unrelated base class cannot be quietly
modified. This is a fairly recent change to the C++ language that may cause Open Watcom
C++ to not accept older C++ code. See Section 11.5 in the ARM for a discussion of
protected access.

Example:
struct Top { int t; };
struct Mid : public Top { int m; };
class Bot : protected Mid
{
protected:

// t cannot be accessed
int foo() { return t; };

};
Bot b;
int k = b.foo(); // foo is protected

150 operation does not allow both operands to be pointers

There may be a missing indirection in the code exhibiting this error. An example of this
error is adding two pointers.

434 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void fn()
{

char *p, *q;

p += q;
}

151 operand is neither a pointer nor an arithmetic type

An example of this error is incrementing a class that does not have any overloaded
operators.

Example:
struct S { } x;
void fn()
{

++x;
}

152 left operand is neither a pointer nor an arithmetic type

An example of this error is trying to add 1 to a class that does not have any overloaded
operators.

Example:
struct S { } x;
void fn()
{

x = x + 1;
}

153 right operand is neither a pointer nor an arithmetic type

An example of this error is trying to add 1 to a class that does not have any overloaded
operators.

Example:
struct S { } x;
void fn()
{

x = 1 + x;
}

154 cannot subtract a pointer from an arithmetic operand

The subtract operands are probably in the wrong order.

Diagnostic Messages 435

Appendices

Example:
int fn(char *p)
{

return(10 - p);
}

155 left expression must be arithmetic

Certain operations like multiplication require both operands to be of arithmetic types.

Example:
struct S { } x;
void fn()
{

x = x * 1;
}

156 right expression must be arithmetic

Certain operations like multiplication require both operands to be of arithmetic types.

Example:
struct S { } x;
void fn()
{

x = 1 * x;
}

157 left expression must be integral

Certain operators like the bit manipulation operators require both operands to be of integral
types.

Example:
struct S { } x;
void fn()
{

x = x ^ 1;
}

158 right expression must be integral

Certain operators like the bit manipulation operators require both operands to be of integral
types.

Example:
struct S { } x;
void fn()
{

x = 1 ^ x;
}

436 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

159 cannot assign a pointer value to an arithmetic item

The pointer value must be cast to the desired type before the assignment takes place.

Example:
void fn(char *p)
{

int a;

a = p;
}

160 attempt to destroy a far object when data model is near

Destructors cannot be applied to objects which are stored in far memory when the default
memory model for data is near.

Example:
struct Obj
{ char *p;

~Obj();
};

Obj far obj;

The last line causes this error to be displayed when the memory model is small (switch
-ms), since the memory model for data is near.

161 attempt to call member function for far object when the data model is near

Member functions cannot be called for objects which are stored in far memory when the
default memory model for data is near.

Example:
struct Obj
{ char *p;

int foo();
};

Obj far obj;
int integer = obj.foo();

The last line causes this error to be displayed when the memory model is small (switch
-ms), since the memory model for data is near.

162 template type argument cannot have a default argument

This message was produced by earlier versions of the Open Watcom C++ compiler.
Support for default template arguments was added in version 1.3 and this message was
removed at that time.

Diagnostic Messages 437

Appendices

163 attempt to delete a far object when the data model is near

delete cannot be used to deallocate objects which are stored in far memory when the default
memory model for data is near.

Example:
struct Obj
{ char *p;
};

void foo(Obj far *p)
{

delete p;
}

The second last line causes this error to be displayed when the memory model is small
(switch -ms), since the memory model for data is near.

164 first operand is not a class, struct or union

The offsetof operation can only be performed on a type that can have members. It is
meaningless for any other type.

Example:
#include <stddef.h>

int fn(void)
{

return offsetof(double, sign);
}

165 syntax error: class template cannot be processed

The class template contains unbalanced braces. The class definition cannot be processed in
this form.

166 cannot convert right pointer to type of left operand

The C++ language will not allow the implicit conversion of unrelated class pointers. An
explicit cast is required.

Example:
class C1;
class C2;

void fun(C1* pc1, C2* pc2)
{

pc2 = pc1;
}

438 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

167 left operand must be an lvalue

The left operand must be an expression that is valid on the left side of an assignment.
Examples of incorrect lvalues include constants and the results of most operators.

Example:
int i, j;
void fn()
{

(i - 1) = j;
1 = j;

}

168 static data members are not allowed in an union

A union should only be used to organize memory in C++. Enclose the union in a class if
you need a static data member associated with the union.

Example:
union U
{

static int a;
int b;
int c;

};

169 invalid storage class for a member

A class member cannot be declared with auto, register, or extern storage class.

Example:
class C
{

auto int a; // cannot specify auto
};

170 declaration is too complicated

The declaration contains too many declarators (i.e., pointer, array, and function types).
Break up the declaration into a series of typedefs ending in a final declaration.

Example:
int ************p;

Example:
// transform this to ...
typedef int ****PD1;
typedef PD1 ****PD2;
PD2 ****p;

Diagnostic Messages 439

Appendices

171 exception declaration is too complicated

The exception declaration contains too many declarators (i.e., pointer, array, and function
types). Break up the declaration into a series of typedefs ending in a final declaration.

172 floating-point constant too large to represent

The Open Watcom C++ compiler cannot represent the floating-point constant because the
magnitude of the positive exponent is too large.

Example:
float f = 1.2e78965;

173 floating-point constant too small to represent

The Open Watcom C++ compiler cannot represent the floating-point constant because the
magnitude of the negative exponent is too large.

Example:
float f = 1.2e-78965;

174 class template ’%S’ cannot be overloaded

A class template name must be unique across the entire C++ program. Furthermore, a class
template cannot coexist with another class template of the same name.

175 range of enum constants cannot be represented

If one integral type cannot be chosen to represent all values of an enumeration, the values
cannot be used reliably in the generated code. Shrink the range of enumerator values used
in the enum declaration.

Example:
enum E
{ e1 = 0xFFFFFFFF
, e2 = -1
};

176 ’%S’ cannot be in the same scope as a class template

A class template name must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the class template.

177 invalid storage class in file scope

A declaration in file scope cannot have a storage class of auto or register.

440 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
auto int a;

178 const object must be initialized

Constant objects cannot be modified so they must be initialized before use.

Example:
const int a;

179 declaration cannot be in the same scope as class template ’%S’

A class template name must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the class template.

180 template arguments must be named

A member function of a template class cannot be defined outside the class declaration
unless all template arguments have been named.

181 class template ’%S’ is already defined

A class template cannot have its definition repeated regardless of whether it is identical to
the previous definition.

182 invalid storage class for an argument

An argument declaration cannot have a storage class of extern, static, or typedef.

Example:
int foo(extern int a)
{

return a;
}

183 unions cannot have members with constructors

A union should only be used to organize memory in C++. Allowing union members to
have constructors would mean that the same piece of memory could be constructed twice.

Example:
class C
{

C();
};
union U
{

int a;
C c; // has constructor

};

Diagnostic Messages 441

Appendices

184 statement is too complicated

The statement contains too many nested constructs. Break up the statement into multiple
statements.

185 ’%s’ is not the name of a class or namespace

The right hand operand of a ’::’ operator turned out not to reference a class type or
namespace. Because the name is followed by another ’::’, it must name a class or
namespace.

186 attempt to modify a constant value

Modification of a constant value is not allowed. If you must force this to work, take the
address and cast away the constant nature of the type.

Example:
static int const con = 12;
void foo()
{

con = 13; // error
(int)&con = 13; // ok

}

187 ’offsetof’ is not allowed for a bit-field

A bit-field cannot have a simple offset so it cannot be referenced in an offsetof expression.

Example:
#include <stddef.h>
struct S
{

unsigned b1 :10;
unsigned b2 :15;
unsigned b3 :11;

};
int k = offsetof(S, b2);

188 base class is inherited with private access

This warning indicates that the base class was originally declared as a class as opposed to a
struct. Furthermore, no access was specified so the base class defaults to private
inheritance. Add the private or public access specifier to prevent this message depending
on the intended access.

189 overloaded function cannot be selected for arguments used in call

Either conversions were not possible for an argument to the function or a function with the
right number of arguments was not available.

442 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
class C1;
class C2;
int foo(C1*);
int foo(C2*);
int k = foo(5);

190 base operator operands must be " __segment :> pointer "

The base operator (:>) requires the left operand to be of type __segment and the right
operand to be a pointer.

Example:
char _based(void) *pcb;
char __far *pcf = pcb; // needs :> operator

Examples of typical uses are as follows:

Example:
const __segment mySegAbs = 0x4000;
char __based(void) *c_bv = 24;
char __far *c_fp_1 = mySegAbs :> c_bv;
char __far *c_fp_2 = __segname("_DATA") :> c_bv;

191 expression must be a pointer or a zero constant

In a conditional expression, if one side of the ’:’ is a pointer then the other side must also be
a pointer or a zero constant.

Example:
extern int a;
int *p = (a > 7) ? &a : 12;

192 left expression pointer type cannot be incremented or decremented

The expression requires that the scaling size of the pointer be known. Pointers to functions,
arrays of unknown size, or void cannot be incremented because there is no size defined for
functions, arrays of unknown size, or void.

Example:
void *p;
void *q = p + 2;

193 right expression pointer type cannot be incremented or decremented

The expression requires that the scaling size of the pointer be known. Pointers to functions,
arrays of unknown size, or void cannot be incremented because there is no size defined for
functions, arrays of unknown size, or void.

Diagnostic Messages 443

Appendices

Example:
void *p;
void *q = 2 + p;

194 expression pointer type cannot be incremented or decremented

The expression requires that the scaling size of the pointer be known. Pointers to functions,
arrays of unknown size, or void cannot be incremented because there is no size defined for
functions, arrays of unknown size, or void.

Example:
void *p;
void *q = ++p;

195 ’sizeof’ is not allowed for a function

A function has no size defined for it by the C++ language specification.

Example:
typedef int FT(int);

unsigned y = sizeof(FT);

196 ’sizeof’ is not allowed for type void

The type void has no size defined for it by the C++ language specification.

Example:
void *p;
unsigned size = sizeof(*p);

197 type cannot be defined in this context

A type cannot be defined in certain contexts. For example, a new type cannot be defined in
an argument list, a new expression, a conversion function identifier, or a catch handler.

Example:
extern int goop();
int foo()
{

try {
return goop();
} catch(struct S { int s; }) {
return 2;
}

}

444 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

198 expression cannot be used as a class template parameter

The compiler has to be able to compare expressions during compilation so this limits the
complexity of expressions that can be used for template parameters. The only types of
expressions that can be used for template parameters are constant integral expressions and
addresses. Any symbols must have external linkage or must be static class members.

199 premature end-of-file encountered during compilation

The compiler expects more source code at this point. This can be due to missing
parentheses (’)’) or missing closing braces (’}’).

200 duplicate case value ’%s’ after conversion to type of switch expression

A duplicate case value has been found. Keep in mind that all case values must be
converted to the type of the switch expression. Constants that may be different initially
may convert to the same value.

Example:
enum E { e1, e2 };
void foo(short a)
{

switch(a) {
case 1:
case 0x10001: // converts to 1 as short

break;
}

}

201 declaration statement follows an if statement

There are implicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the code is legal it may not
be what the programmer intended.

Example:
void foo(int a)
{

if(a)
int b = 14;

}

202 declaration statement follows an else statement

There are implicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the code is legal it may not
be what the programmer intended.

Diagnostic Messages 445

Appendices

Example:
void foo(int a)
{

if(a)
int c = 15;
else
int b = 14;

}

203 declaration statement follows a switch statement

There are implicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the code is legal it may not
be what the programmer intended.

Example:
void foo(int a)
{

switch(a)
int b = 14;

}

204 ’this’ pointer is not defined

The this value can only be used from within non-static member functions.

Example:
void *fn()
{

return this;
}

205 declaration statement cannot follow a while statement

There are implicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the code is legal it may not
be what the programmer intended.

Example:
void foo(int a)
{

while(a)
int b = 14;

}

206 declaration statement cannot follow a do statement

There are implicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the code is legal it may not
be what the programmer intended.

446 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void foo(int a)
{

do
int b = 14;
while(a);

}

207 declaration statement cannot follow a for statement

There are implicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the code is legal it may not
be what the programmer intended. A for loop with an initial declaration is allowed to be
used within another for loop, so this code is legal C++:

Example:
void fn(int **a)
{

for(int i = 0; i < 10; ++i)
for(int j = 0; j < 10; ++j)

a[i][j] = i + j;
}

The following example, however, illustrates a potentially erroneous situation.

Example:
void foo(int a)
{

for(; a<10;)
int b = 14;

}

208 pointer to virtual base class converted to pointer to derived class

Since the relative position of a virtual base can change through repeated derivations, this
conversion is very dangerous. All C++ translators must report an error for this type of
conversion.

Example:
struct VBase { int v; };
struct Der : virtual public VBase { int d; };
extern VBase *pv;
Der *pd = (Der *)pv;

209 cannot use far pointer in this context

Only near pointers can be thrown when the data memory model is near.

Diagnostic Messages 447

Appendices

Example:
extern int __far *p;
void foo()
{

throw p;
}

When the small memory model (-ms switch) is selected, the throw expression is diagnosed
as erroneous. Similarly, only near pointers can be specified in catch statements when the
data memory model is near.

210 returning reference to function argument or to auto or register variable

The storage for the automatic variable will be destroyed immediately upon function return.
Returning a reference effectively allows the caller to modify storage which does not exist.

Example:
class C
{

char *p;
public:

C();
~C();

};

C& foo()
{

C auto_var;
return auto_var; // not allowed

}

211 #pragma attributes for ’%S’ may be inconsistent

A pragma attribute was changed to a value which matches neither the current default not
the previous value for that attribute. A warning is issued since this usually indicates an
attribute is being set twice (or more) in an inconsistent way. The warning can also occur
when the default attribute is changed between two pragmas for the same object.

212 function arguments cannot be of type void

Having more than one void argument is not allowed. The special case of one void
argument indicates that the function accepts no parameters.

Example:
void fn1(void) // OK
{
}
void fn2(void, void, void) // Error!
{
}

448 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

213 class template requires more parameters for instantiation

The class template instantiation has too few parameters supplied so the class cannot be
instantiated properly.

214 class template requires fewer parameters for instantiation

The class template instantiation has too many parameters supplied so the class cannot be
instantiated properly.

215 no declared ’operator new’ has arguments that match

An operator new could not be found to match the new expression. Supply the correct
arguments for special operator new functions that are defined with the placement syntax.

Example:
#include <stddef.h>

struct S {
void *operator new(size_t, char);

};

void fn()
{

S *p = new (’a’) S;
}

216 wide character string concatenated with a simple character string

There are no semantics defined for combining a wide character string with a simple
character string. To correct the problem, make the simple character string a wide character
string by prefixing it with a L.

Example:
char *p = "1234" L"5678";

217 ’offsetof’ is not allowed for a static member

A static member does not have an offset like simple data members. If this is required, use
the address of the static member.

Example:
#include <stddef.h>
class C
{
public:

static int stat;
int memb;

};

int size_1 = offsetof(C, stat); // not allowed
int size_2 = offsetof(C, memb); // ok

Diagnostic Messages 449

Appendices

218 cannot define an array of void

Since the void type has no size and there are no values of void type, one cannot declare an
array of void.

Example:
void array[24];

219 cannot define an array of references

References are not objects, they are simply a way of creating an efficient alias to another
name. Creating an array of references is currently not allowed in the C++ language.

Example:
int& array[24];

220 cannot define a reference to void

One cannot create a reference to a void because there can be no void variables to supply for
initializing the reference.

Example:
void& ref;

221 cannot define a reference to another reference

References are not objects, they are simply a way of creating an efficient alias to another
name. Creating a reference to another reference is currently not allowed in the C++
language.

Example:
int & & ref;

222 cannot define a pointer to a reference

References are not objects, they are simply a way of creating an efficient alias to another
name. Creating a pointer to a reference is currently not allowed in the C++ language.

Example:
char& *ptr;

223 cannot initialize array with ’operator new’

The initialization of arrays created with operator new can only be done with default
constructors. The capability of using another constructor with arguments is currently not
allowed in the C++ language.

450 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S
{

S(int);
};
S *p = new S[10] (12);

224 ’%N’ is a variable of type void

A variable cannot be of type void. The void type can only be used in restricted
circumstances because it has no size. For instance, a function returning void means that it
does not return any value. A pointer to void is used as a generic pointer but it cannot be
dereferenced.

225 cannot define a member pointer to a reference

References are not objects, they are simply a way of creating an efficient alias to another
name. Creating a member pointer to a reference is currently not allowed in the C++
language.

Example:
struct S
{

S();
int &ref;

};

int& S::* p;

226 function ’%S’ is not distinct

The function being declared is not distinct enough from the other functions of the same
name. This means that all function overloads involving the function’s argument types will
be ambiguous.

Example:
struct S {

int s;
};
extern int foo(S*);
extern int foo(S* const); // not distinct enough

227 overloaded function is ambiguous for arguments used in call

The compiler could not find an unambiguous choice for the function being called.

Example:
extern int foo(char);
extern int foo(short);
int k = foo(4);

Diagnostic Messages 451

Appendices

228 declared ’operator new’ is ambiguous for arguments used

The compiler could not find an unambiguous choice for operator new.

Example:
#include <stdlib.h>
struct Der
{

int s[2];
void* operator new(size_t, char);
void* operator new(size_t, short);

};
Der *p = new(10) Der;

229 function ’%S’ has already been defined

The function being defined has already been defined elsewhere. Even if the two function
bodies are identical, there must be only one definition for a particular function.

Example:
int foo(int s) { return s; }
int foo(int s) { return s; } // illegal

230 expression on left is an array

The array expression is being used in a context where only pointers are allowed.

Example:
void fn(void *p)
{

int a[10];

a = 0;
a = p;
a++;

}

231 user-defined conversion has a return type

A user-defined conversion cannot be declared with a return type. The "return type" of the
user-defined conversion is implicit in the name of the user-defined conversion.

Example:
struct S {

int operator int(); // cannot have return type
};

232 user-defined conversion must be a function

The operator name describing a user-defined conversion can only be used to designate
functions.

452 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
// operator char can only be a function
int operator char = 9;

233 user-defined conversion has an argument list

A user-defined conversion cannot have an argument list. Since user-defined conversions
can only be non-static member functions, they have an implicit this argument.

Example:
struct S {

operator int(S&); // cannot have arguments
};

234 destructor cannot have a return type

A destructor cannot have a return type (even void). The destructor is a special member
function that is not required to be identical in form to all other member functions. This
allows different implementations to have different uses for any return values.

Example:
struct S {

void* ~S();
};

235 destructor must be a function

The tilde (’~’) style of name is reserved for declaring destructor functions. Variable names
cannot make use of the destructor style of names.

Example:
struct S {

int ~S; // illegal
};

236 destructor has an argument list

A destructor cannot have an argument list. Since destructors can only be non-static
member functions, they have an implicit this argument.

Example:
struct S {

~S(S&);
};

237 ’%N’ must be a function

The operator style of name is reserved for declaring operator functions. Variable names
cannot make use of the operator style of names.

Diagnostic Messages 453

Appendices

Example:
struct S {

int operator+; // illegal
};

238 ’%N’ is not a function

The compiler has detected what looks like a function body. The message is a result of not
finding a function being declared. This can happen in many ways, such as dropping the ’:’
before defining base classes, or dropping the ’=’ before initializing a structure via a braced
initializer.

Example:
struct D B { int i; };

239 nested type class ’%s’ has not been declared

A nested class has not been found but is required by the use of repeated ’::’ operators. The
construct "A::B::C" requires that ’A’ be a class type, and ’B’ be a nested class within the
scope of ’A’.

Example:
struct B {

static int b;
};
struct A : public B {
};
int A::B::b = 2; // B not nested in A

The preceding example is illegal; the following is legal

Example:
struct A {

struct B {
static int b;
};

};
int A::B::b = 2; // B nested in A

240 enum ’%s’ has not been declared

An elaborated reference to an enum could not be satisfied. All enclosing scopes have been
searched for an enum name. Visible variable declarations do not affect the search.

Example:
struct D {

int i;
enum E { e1, e2, e3 };

};
enum E enum_var; // E not visible

454 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

241 class or namespace ’%s’ has not been declared

The construct "A::B::C" requires that ’A’ be a class type or a namespace, and ’B’ be a
nested class or namespace within the scope of ’A’. The reference to ’A’ could not be
satisfied. All enclosing scopes have been searched for a class or namespace name. Visible
variable declarations do not affect the search.

Example:
struct A{ int a; };

int b;
int c = B::A::b;

242 only one initializer argument allowed

The comma (’,’) in a function like cast is treated like an argument list comma (’,’). If a
comma expression is desired, use parentheses to enclose the comma expression.

Example:
void fn()
{

int a;

a = int(1, 2); // Error!
a = int((1, 2)); // OK

}

243 default arguments are not part of a function’s type

This message indicates that a declaration has been found that requires default arguments to
be part of a function’s type. Either declaring a function typedef or a pointer to a function
with default arguments are examples of incorrect declarations.

Example:
typedef int TD(int, int a = 14);
int (*p)(int, int a = 14) = 0;

244 missing default arguments

Gaps in a succession of default arguments are not allowed in the C++ language.

Example:
void fn(int = 1, int, int = 3);

245 overloaded operator cannot have default arguments

Preventing overloaded operators from having default arguments enforces the property that
binary operators will only be called from a use of a binary operator. Allowing default
arguments would allow a binary operator + to function as a unary operator +.

Diagnostic Messages 455

Appendices

Example:
class C
{
public:

C operator +(int a = 10);
};

246 left expression is not a pointer to a constant object

One cannot assign a pointer to a constant type to a pointer to a non-constant type. This
would allow a constant object to be modified via the non-constant pointer. Use a cast if
this is absolutely necessary.

Example:
char* fun(const char* p)
{

char* q;
q = p;
return q;

}

247 cannot redefine default argument for ’%S’

Default arguments can only be defined once in a program regardless of whether the value
of the default argument is identical.

Example:
static int foo(int a = 10);
static int foo(int a = 10)
{

return a+a;
}

248 using default arguments would be overload ambiguous with ’%S’

The declaration declares enough default arguments that the function is indistinguishable
from another function of the same name.

Example:
void fn(int);
void fn(int, int = 1);

Calling the function ’fn’ with one argument is ambiguous because it could match either the
first ’fn’ without any default arguments or the second ’fn’ with a default argument applied.

249 using default arguments would be overload ambiguous with ’%S’ using default arguments

The declaration declares enough default arguments that the function is indistinguishable
from another function of the same name with default arguments.

456 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void fn(int, int = 1);
void fn(int, char = ’a’);

Calling the function ’fn’ with one argument is ambiguous because it could match either the
first ’fn’ with a default argument or the second ’fn’ with a default argument applied.

250 missing default argument for ’%S’

In C++, one is allowed to add default arguments to the right hand arguments of a function
declaration in successive declarations. The message indicates that the declaration is only
valid if there was a default argument previously declared for the next argument.

Example:
void fn1(int , int);
void fn1(int , int = 3);
void fn1(int = 2, int); // OK

void fn2(int , int);
void fn2(int = 2, int); // Error!

251 enum references must have an identifier

There is no way to reference an anonymous enum. If all enums are named, the cause of
this message is most likely a missing identifier.

Example:
enum { X, Y, Z }; // anonymous enum
void fn()
{

enum *p;
}

252 class declaration has not been seen for ’~%s’

A destructor has been used in a context where its class is not visible.

Example:
class C;

void fun(C* p)
{

p->~S();
}

253 ’::’ qualifier cannot be used in this context

Qualified identifiers in a class context are allowed for declaring friend member functions.
The Open Watcom C++ compiler also allows code that is qualified with its own class so
that declarations can be moved in and out of class definitions easily.

Diagnostic Messages 457

Appendices

Example:
struct N {

void bar();
};
struct S {

void S::foo() { // OK
}
void N::bar() { // error
}

};

254 ’%S’ has not been declared as a member

In a definition of a class member, the indicated declaration must already have been declared
when the class was defined.

Example:
class C
{
public:

int c;
int goop();

};
int C::x = 1;
C::not_decled() { }

255 default argument expression cannot use function argument ’%S’

Default arguments must be evaluated at each call. Since the order of evaluation for
arguments is undefined, a compiler must diagnose all default arguments that depend on
other arguments.

Example:
void goop(int d)
{

struct S {
// cannot access "d"
int foo(int c, int b = d)

{
return b + c;
};

};
}

256 default argument expression cannot use local variable ’%S’

Default arguments must be evaluated at each call. Since a local variable is not always
available in all contexts (e.g., file scope initializers), a compiler must diagnose all default
arguments that depend on local variables.

458 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void goop(void)
{

int a;
struct S {
// cannot access "a"
int foo(int c, int b = a)

{
return b + c;
};

};
}

257 access declarations may only be ’public’ or ’protected’

Access declarations are used to increase access. A private access declaration is useless
because there is no access level for which private is an increase in access.

Example:
class Base
{

int pri;
protected:

int pro;
public:

int pub;
};
class Derived : public Base
{

private: Base::pri;
};

258 cannot declare both a function and variable of the same name (’%N’)

Functions can be overloaded in C++ but they cannot be overloaded in the presence of a
variable of the same name. Likewise, one cannot declare a variable in the same scope as a
set of overloaded functions of the same name.

Example:
int foo();
int foo;
struct S {

int bad();
int bad;

};

259 class in access declaration (’%T’) must be a direct base class

Access declarations can only be applied to direct (immediate) base classes.

Diagnostic Messages 459

Appendices

Example:
struct B {

int f;
};
struct C : B {

int g;
};
struct D : private C {

B::f;
};

In the above example, "C" is a direct base class of "D" and "B" is a direct base class of "C",
but "B" is not a direct base class of "D".

260 overloaded functions (’%N’) do not have the same access

If an access declaration is referencing a set of overloaded functions, then they all must have
the same access. This is due to the lack of a type in an access declaration.

Example:
class C
{

static int foo(int); // private
public:

static int foo(float); // public
};

class B : private C
{
public: C::foo;
};

261 cannot grant access to ’%N’

A derived class cannot change the access of a base class member with an access
declaration. The access declaration can only be used to restore access changed by
inheritance.

Example:
class Base
{
public:

int pub;
protected:

int pro;
};
class Der : private Base
{

public: Base::pub; // ok
public: Base::pro; // changes access

};

460 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

262 cannot reduce access to ’%N’

A derived class cannot change the access of a base class member with an access
declaration. The access declaration can only be used to restore access changed by
inheritance.

Example:
class Base
{
public:

int pub;
protected:

int pro;
};
class Der : public Base
{

protected: Base::pub; // changes access
protected: Base::pro; // ok

};

263 nested class ’%N’ has not been defined

The current state of the C++ language supports nested types. Unfortunately, this means
that some working C code will not work unchanged.

Example:
struct S {

struct T;
T *link;

};

In the above example, the class "T" will be reported as not being defined by the end of the
class declaration. The code can be corrected in the following manner.

Example:
struct S {

struct T;
T *link;
struct T {
};

};

264 user-defined conversion must be a non-static member function

A user-defined conversion is a special member function that allows the class to be
converted implicitly (or explicitly) to an arbitrary type. In order to do this, it must have
access to an instance of the class so it is restricted to being a non-static member function.

Diagnostic Messages 461

Appendices

Example:
struct S
{

static operator int();
};

265 destructor must be a non-static member function

A destructor is a special member function that will perform cleanup on a class before the
storage for the class will be released. In order to do this, it must have access to an instance
of the class so it is restricted to being a non-static member function.

Example:
struct S
{

static ~S();
};

266 ’%N’ must be a non-static member function

The operator function in the message is restricted to being a non-static member function.
This usually means that the operator function is treated in a special manner by the compiler.

Example:
class C
{
public:

static operator =(C&, int);
};

267 ’%N’ must have one argument

The operator function in the message is only allowed to have one argument. An operator
like operator ~ is one such example because it represents a unary operator.

Example:
class C
{
public: int c;
};
C& operator~(const C&, int);

268 ’%N’ must have two arguments

The operator function in the message must have two arguments. An operator like operator
+= is one such example because it represents a binary operator.

462 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
class C
{
public: int c;
};
C& operator += (const C&);

269 ’%N’ must have either one argument or two arguments

The operator function in the message must have either one argument or two arguments. An
operator like operator + is one such example because it represents either a unary or a
binary operator.

Example:
class C
{
public: int c;
};
C& operator+(const C&, int, float);

270 ’%N’ must have at least one argument

The operator new and operator new [] member functions must have at least one argument
for the size of the allocation. After that, any arguments are up to the programmer. The
extra arguments can be supplied in a new expression via the placement syntax.

Example:
#include <stddef.h>

struct S {
void * operator new(size_t, char);

};

void fn()
{

S *p = new (’a’) S;
}

271 ’%N’ must have a return type of void

The C++ language requires that operator delete and operator delete [] have a return type of
void.

Example:
class C
{
public:

int c;
C* operator delete(void*);
C* operator delete [](void*);

};

Diagnostic Messages 463

Appendices

272 ’%N’ must have a return type of pointer to void

The C++ language requires that both operator new and operator new [] have a return type
of void *.

Example:
#include <stddef.h>
class C
{
public:

int c;
C* operator new(size_t size);
C* operator new [](size_t size);

};

273 the first argument of ’%N’ must be of type size_t

The C++ language requires that the first argument for operator new and operator new [] be
of the type "size_t". The definition for "size_t" can be included by using the standard
header file <stddef.h>.

Example:
void *operator new(int size);
void *operator new(double size, char c);
void *operator new [](int size);
void *operator new [](double size, char c);

274 the first argument of ’%N’ must be of type pointer to void

The C++ language requires that the first argument for operator delete and operator delete
[] be a void *.

Example:
class C;
void operator delete(C*);
void operator delete [](C*);

275 the second argument of ’%N’ must be of type size_t

The C++ language requires that the second argument for operator delete and operator
delete [] be of type "size_t". The two argument form of operator delete and operator delete
[] is optional and it can only be present inside of a class declaration. The definition for
"size_t" can be included by using the standard header file <stddef.h>.

Example:
struct S {

void operator delete(void *, char);
void operator delete [](void *, char);

};

464 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

276 the second argument of ’operator ++’ or ’operator --’ must be int

The C++ language requires that the second argument for operator ++ be int. The two
argument form of operator ++ is used to overload the postfix operator "++". The postfix
operator "--" can be overloaded similarly.

Example:
class C {
public:

long cv;
};
C& operator ++(C&, unsigned);

277 return type of ’%S’ must allow the ’->’ operator to be applied

This restriction is a result of the transformation that the compiler performs when the
operator -> is overloaded. The transformation involves transforming the expression to
invoke the operator with "->" applied to the result of operator ->.

Example:
struct S {

int a;
S *operator ->();

};

void fn(S &q)
{

q->a = 1; // becomes (q.operator ->())->a = 1;
}

278 ’%N’ must take at least one argument of a class/enum or a reference to a class/enum

Overloaded operators can only be defined for classes and enumerations. At least one
argument, must be a class or an enum type in order for the C++ compiler to distinguish the
operator from the built-in operators.

Example:
class C {
public:

long cv;
};
C& operator ++(unsigned, int);

279 too many initializers

The compiler has detected extra initializers.

Example:
int a[3] = { 1, 2, 3, 4 };

Diagnostic Messages 465

Appendices

280 too many initializers for character string

A string literal used in an initialization of a character array is viewed as providing the
terminating null character. If the number of array elements isn’t enough to accept the
terminating character, this message is output.

Example:
char ac[3] = "abc";

281 expecting ’%s’ but found expression

This message is output when some bracing or punctuation is expected but an expression
was encountered.

Example:
int b[3] = 3;

282 anonymous struct/union member ’%N’ cannot be declared in this class

An anonymous member cannot be declared with the same name as its containing class.

Example:
struct S {

union {
int S; // Error!
char b;
};

};

283 unexpected ’%s’ during initialization

This message is output when some unexpected bracing or punctuation is encountered
during initialization.

Example:
int e = { { 1 };

284 nested type ’%N’ cannot be declared in this class

A nested type cannot be declared with the same name as its containing class.

Example:
struct S {

typedef int S; // Error!
};

285 enumerator ’%N’ cannot be declared in this class

An enumerator cannot be declared with the same name as its containing class.

466 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S {

enum E {
S, // Error!
T
};

};

286 static member ’%N’ cannot be declared in this class

A static member cannot be declared with the same name as its containing class.

Example:
struct S {

static int S; // Error!
};

287 constructor cannot have a return type

A constructor cannot have a return type (even void). The constructor is a special member
function that is not required to be identical in form to all other member functions. This
allows different implementations to have different uses for any return values.

Example:
class C {
public:

C& C(int);
};

288 constructor cannot be a static member

A constructor is a special member function that takes raw storage and changes it into an
instance of a class. In order to do this, it must have access to storage for the instance of the
class so it is restricted to being a non-static member function.

Example:
class C {
public:

static C(int);
};

289 invalid copy constructor argument list (causes infinite recursion)

A copy constructor’s first argument must be a reference argument. Furthermore, any
default arguments must also be reference arguments. Without the reference, a copy
constructor would require a copy constructor to execute in order to prepare its arguments.
Unfortunately, this would be calling itself since it is the copy constructor.

Diagnostic Messages 467

Appendices

Example:
struct S {

S(S const &); // copy constructor
};

290 constructor cannot be declared const or volatile

A constructor must be able to operate on all instances of classes regardless of whether they
are const or volatile.

Example:
class C {
public:

C(int) const;
C(float) volatile;

};

291 constructor cannot be virtual

Virtual functions cannot be called for an object before it is constructed. For this reason, a
virtual constructor is not allowed in the C++ language. Techniques for simulating a virtual
constructor are known, one such technique is described in the ARM p.263.

Example:
class C {
public:

virtual C(int);
};

292 types do not match in simple type destructor

A simple type destructor is available for "destructing" simple types. The destructor has no
effect. Both of the types must be identical, for the destructor to have meaning.

Example:
void foo(int *p)
{

p->int::~double();
}

293 overloaded operator is ambiguous for operands used

The Open Watcom C++ compiler performs exhaustive analysis using formalized
techniques in order to decide what implicit conversions should be applied for overloading
operators. Because of this, Open Watcom C++ detects ambiguities that may escape other
C++ compilers. The most common ambiguity that Open Watcom C++ detects involves
classes having constructors with single arguments and a user-defined conversion.

468 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S {

S(int);
operator int();
int a;

};

int fn(int b, int i, S s)
{

// i : s.operator int()
// OR S(i) : s
return b ? i : s;

}

In the above example, "i" and "s" must be brought to a common type. Unfortunately, there
are two common types so the compiler cannot decide which one it should choose, hence an
ambiguity.

294 feature not implemented

The compiler does not support the indicated feature.

295 invalid friend declaration

This message indicates that the compiler found extra declaration specifiers like auto, float,
or const in the friend declaration.

Example:
class C
{

friend float;
};

296 friend declarations may only be declared in a class

This message indicates that a friend declaration was found outside a class scope (i.e., a
class definition). Friends are only meaningful for class types.

Example:
extern void foo();
friend void foo();

297 class friend declaration needs ’class’ or ’struct’ keyword

The C++ language has evolved to require that all friend class declarations be of the form
"class S" or "struct S". The Open Watcom C++ compiler accepts the older syntax with a
warning but rejects the syntax in pure ISO/ANSI C++ mode.

Diagnostic Messages 469

Appendices

Example:
struct S;
struct T {

friend S; // should be "friend class S;"
};

298 class friend declarations cannot contain a class definition

A class friend declaration cannot define a new class. This is a restriction required in the
C++ language.

Example:
struct S {

friend struct X {
int f;
};

};

299 ’%T’ has already been declared as a friend

The class in the message has already been declared as a friend. Remove the extra friend
declaration.

Example:
class S;
class T {

friend class S;
int tv;
friend class S;

};

300 function ’%S’ has already been declared as a friend

The function in the message has already been declared as a friend. Remove the extra friend
declaration.

Example:
extern void foo();
class T {

friend void foo();
int tv;
friend void foo();

};

301 ’friend’, ’virtual’ or ’inline’ modifiers are not part of a function’s type

This message indicates that the modifiers may be incorrectly placed in the declaration. If
the declaration is intended, it cannot be accepted because the modifiers can only be applied
to functions that have code associated with them.

470 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
typedef friend (*PF)(void);

302 cannot assign right expression to element on left

This message indicates that the assignment cannot be performed. It usually arises in
assignments of a class type to an arithmetic type.

Example:
struct S
{ int sv;
};
S s;
int foo()
{

int k;
k = s;
return k;

}

303 constructor is ambiguous for operands used

The operands provided for the constructor did not select a unique constructor.

Example:
struct S {

S(int);
S(char);

};

S x = S(1.0);

304 class ’%s’ has not been defined

The name before a ’::’ scope resolution operator must be defined unless a member pointer
is being declared.

Example:
struct S;

int S::* p; // OK
int S::a = 1; // Error!

305 all bit-fields in a union must be named

This is a restriction in the C++ language. The same effect can be achieved with a named
bitfield.

Diagnostic Messages 471

Appendices

Example:
union u
{ unsigned bit1 :10;

unsigned :6;
};

306 cannot convert expression to type of cast

The cast is trying to convert an expression to a completely unrelated type. There is no way
the compiler can provide any meaning for the intended cast.

Example:
struct T {
};

void fn()
{

T y = (T) 0;
}

307 conversion ambiguity: [expression] to [cast type]

The cast caused a constructor overload to occur. The operands provided for the constructor
did not select a unique constructor.

Example:
struct S {

S(int);
S(char);

};

void fn()
{

S x = (S) 1.0;
}

308 an anonymous class without a declarator is useless

There is no way to reference the type in this kind of declaration. A name must be provided
for either the class or a variable using the class as its type.

Example:
struct {

int a;
int b;

};

309 global anonymous union must be declared static

This is a restriction in the C++ language. Since there is no unique name for the anonymous
union, it is difficult for C++ translators to provide a correct implementation of external
linkage anonymous unions.

472 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
static union {

int a;
int b;

};

310 anonymous struct/union cannot have storage class in this context

Anonymous unions (or structs) declared in class scopes cannot be static. Any other storage
class is also disallowed.

Example:
struct S {

static union {
int iv;
unsigned us;
};

};

311 union contains a protected member

A union cannot have a protected member because a union cannot be a base class.

Example:
static union {

int iv;
protected:

unsigned sv;
} u;

312 anonymous struct/union contains a private member ’%S’

An anonymous union (or struct) cannot have member functions or friends so it cannot have
private members since no code could access them.

Example:
static union {

int iv;
private:

unsigned sv;
};

313 anonymous struct/union contains a function member ’%S’

An anonymous union (or struct) cannot have any function members. This is a restriction in
the C++ language.

Example:
static union {

int iv;
void foo(); // error
unsigned sv;

};

Diagnostic Messages 473

Appendices

314 anonymous struct/union contains a typedef member ’%S’

An anonymous union (or struct) cannot have any nested types. This is a restriction in the
C++ language.

Example:
static union {

int iv;
unsigned sv;
typedef float F;
F fv;

};

315 anonymous struct/union contains an enumeration member ’%S’

An anonymous union (or struct) cannot have any enumeration members. This is a
restriction in the C++ language.

Example:
static union {

int iv;
enum choice { good, bad, indifferent };
choice c;
unsigned sv;

};

316 anonymous struct/union member ’%s’ is not distinct in enclosing scope

Since an anonymous union (or struct) provides its member names to the enclosing scope,
the names must not collide with other names in the enclosing scope.

Example:
int iv;
unsigned sv;
static union {

int iv;
unsigned sv;

};

317 unions cannot have members with destructors

A union should only be used to organize memory in C++. Allowing union members to
have destructors would mean that the same piece of memory could be destructed twice.

Example:
struct S {

int sv1, sv2, sv3;
};
struct T {

~T();
};
static union
{

S su;
T tu;

};

474 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

318 unions cannot have members with user-defined assignment operators

A union should only be used to organize memory in C++. Allowing union members to
have assignment operators would mean that the same piece of memory could be assigned
twice.

Example:
struct S {

int sv1, sv2, sv3;
};
struct T {

int tv;
operator = (int);
operator = (float);

};
static union
{

S su;
T tu;

} u;

319 anonymous struct/union cannot have any friends

An anonymous union (or struct) cannot have any friends. This is a restriction in the C++
language.

Example:
struct S {

int sv1, sv2, sv3;
};
static union {

S su1;
S su2;
friend class S;

};

320 specific versions of template classes can only be defined in file scope

Currently, specific versions of class templates can only be declared at file scope. This
simple restriction was chosen in favour of more freedom with possibly subtle restrictions.

Example:

Diagnostic Messages 475

Appendices

template <class G> class S {
G x;

};

struct Q {
struct S<int> {
int x;
};

};

void foo()
{

struct S<double> {
double x;
};

}

321 anonymous union in a function may only be static or auto

The current C++ language definition only allows auto anonymous unions. The Open
Watcom C++ compiler allows static anonymous unions. Any other storage class is not
allowed.

322 static data members are not allowed in a local class

Static data members are not allowed in a local class because there is no way to define the
static member in file scope.

Example:
int foo()
{

struct local {
static int s;
};

local lv;

lv.s = 3;
return lv.s;

}

323 conversion ambiguity: [return value] to [return type of function]

The cast caused a constructor overload to occur. The operands provided for the constructor
did not select a unique constructor.

Example:
struct S {

S(int);
S(char);

};

S fn()
{

return 1.0;
}

476 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

324 conversion of return value is impossible

The return is trying to convert an expression to a completely unrelated type. There is no
way the compiler can provide any meaning for the intended return type.

Example:
struct T {
};

T fn()
{

return 0;
}

325 function cannot return a pointer based on __self

A function cannot return a pointer that is based on __self.

Example:
void __based(__self) *fn(unsigned);

326 defining ’%S’ is not possible because its type has unknown size

In order to define a variable, the size must be known so that the correct amount of storage
can be reserved.

Example:
class S;
S sv;

327 typedef cannot be initialized

Initializing a typedef is meaningless in the C++ language.

Example:
typedef int INT = 15;

328 storage class of ’%S’ conflicts with previous declaration

The symbol declaration conflicts with a previous declaration with regard to storage class.
A symbol cannot be both static and extern.

329 modifiers of ’%S’ conflict with previous declaration

The symbol declaration conflicts with a previous declaration with regard to modifiers.
Correct the program by using the same modifiers for both declarations.

Diagnostic Messages 477

Appendices

330 function cannot be initialized

A function cannot be initialized with an initializer syntax intended for variables. A
function body is the only way to provide a definition for a function.

331 access permission of nested class ’%T’ conflicts with previous declaration

Example:
struct S {

struct N; // public
private:

struct N { // private
};

};

332 *** FATAL *** internal error in front end

If this message appears, please report the problem directly to the Open Watcom
development team. See http://www.openwatcom.org/.

333 cannot convert argument to type specified in function prototype

It is impossible to convert the indicated argument in the function.

Example:
extern int foo(int&);

extern int m;
extern int n;

int k = foo(m + n);

In the example, the value of "m+n" cannot be converted to a reference (it could be
converted to a constant reference), as shown in the following example.

Example:
extern int foo(const int&);

extern int m;
extern int n;

int k = foo(m + n);

334 conversion ambiguity: [argument] to [argument type in prototype]

An argument in the function call could not be converted since there is more than one
constructor or user-defined conversion which could be used to convert the argument.

478 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S;

struct T
{

T(S&);
};

struct S
{

operator T();
};

S s;
extern int foo(T);
int k = foo(s); // ambiguous

In the example, the argument "s" could be converted by both the constructor in class "T"
and by the user-conversion in class "S".

335 cannot be based on based pointer ’%S’

A based pointer cannot be based on another based pointer.

Example:
__segment s;
void __based(s) *p;
void __based(p) *q;

336 declaration specifiers are required to declare ’%N’

The compiler has detected that the name does not represent a function. Only function
declarations can leave out declaration specifiers. This error also shows up when a typedef
name declaration is missing.

Example:
x;
typedef int;

337 static function declared in block scope

The C++ language does not allow static functions to be declared in block scope. This error
can be triggered when the intent is to define a static variable. Due to the complexities of
parsing C++, statements that appear to be variable definitions may actually parse as
function prototypes. A work-around for this problem is contained in the example.

Example:

Diagnostic Messages 479

Appendices

struct C {
};
struct S {

S(C);
};
void foo()
{

static S a(C()); // function prototype!
static S b((C()));// variable definition

}

338 cannot define a __based reference

A C++ reference cannot be based on anything. Based modifiers can only be used with
pointers.

Example:
__segment s;
void fn(int __based(s) & x);

339 conversion ambiguity: conversion to common pointer type

A conversion to a common base class of two different pointers has been attempted. The
pointer conversion could not be performed because the destination type points to an
ambiguous base class of one of the source types.

340 cannot construct object from argument(s)

There is not an appropriate constructor for the set of arguments provided.

341 number of arguments for function ’%S’ is incorrect

The number of arguments in the function call does not match the number declared for the
indicated non-overloaded function.

Example:
extern int foo(int, int);
int k = foo(1, 2, 3);

In the example, the function was declared to have two arguments. Three arguments were
used in the call.

342 private base class accessed to convert cast expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

480 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct Priv
{

int p;
};
struct Der : private Priv
{

int d;
};

extern Der *pd;
Priv *pp = (Priv*)pd;

343 private base class accessed to convert return expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

Example:
struct Priv
{

int p;
};
struct Der : private Priv
{

int d;
};

Priv *foo(Der *p)
{

return p;
}

344 cannot subtract pointers to different objects

Pointer subtraction can be performed only for objects of the same type.

Example:
#include <stddef.h>
ptrdiff_t diff(float *fp, int *ip)
{

return fp - ip;
}

In the example, a diagnostic results from the attempt to subtract a pointer to an int object
from a pointer to a float object.

345 private base class accessed to convert to common pointer type

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

Diagnostic Messages 481

Appendices

Example:
struct Priv
{

int p;
};
struct Der : private Priv
{

int d;
};

int foo(Der *pd, Priv *pp)
{

return pd == pp;
}

346 protected base class accessed to convert cast expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:
struct Prot
{

int p;
};
struct Der : protected Prot
{

int d;
};

extern Der *pd;
Prot *pp = (Prot*)pd;

347 protected base class accessed to convert return expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:
struct Prot
{

int p;
};
struct Der : protected Prot
{

int d;
};

Prot *foo(Der *p)
{

return p;
}

482 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

348 cannot define a member pointer with a memory model modifier

A member pointer describes how to access a field from a class. Because of this a member
pointer must be independent of any memory model considerations.

Example:
struct S;

int near S::*mp;

349 protected base class accessed to convert to common pointer type

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:
struct Prot
{

int p;
};
struct Der : protected Prot
{

int d;
};

int foo(Der *pd, Prot *pp)
{

return pd == pp;
}

350 non-type parameter supplied for a type argument

A non-type parameter (e.g., an address or a constant expression) has been supplied for a
template type argument. A type should be used instead.

351 type parameter supplied for a non-type argument

A type parameter (e.g., int) has been supplied for a template non-type argument. An
address or a constant expression should be used instead.

352 cannot access enclosing function’s auto variable ’%S’

A local class member function cannot access its enclosing function’s automatic variables.

Example:
void goop(void)
{

int a;
struct S
{
int foo(int c, int b)

{
return b + c + a;
};

};
}

Diagnostic Messages 483

Appendices

353 cannot initialize pointer to non-constant with a pointer to constant

A pointer to a non-constant type cannot be initialized with a pointer to a constant type
because this would allow constant data to be modified via the non-constant pointer to it.

Example:
extern const int *pic;
extern int *pi = pic;

354 pointer expression is always >= 0

The indicated pointer expression will always be true because the pointer value is always
treated as an unsigned quantity, which will be greater or equal to zero.

Example:
extern char *p;
unsigned k = (0 <= p); // always 1

355 pointer expression is never < 0

The indicated pointer expression will always be false because the pointer value is always
treated as an unsigned quantity, which will be greater or equal zero.

Example:
extern char *p;
unsigned k = (0 >= p); // always 0

356 type cannot be used in this context

This message is issued when a type name is being used in a context where a non-type name
should be used.

Example:
struct S {

typedef int T;
};

void fn(S *p)
{

p->T = 1;
}

357 virtual function may only be declared in a class

Virtual functions can only be declared inside of a class. This error may be a result of
forgetting the "C::" qualification of a virtual function’s name.

484 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
virtual void foo();
struct S
{

int f;
virtual void bar();

};
virtual void bar()
{

f = 9;
}

358 ’%T’ referenced as a union

A class type defined as a class or struct has been referenced as a union (i.e., union S).

Example:
struct S
{

int s1, s2;
};
union S var;

359 union ’%T’ referenced as a class

A class type defined as a union has been referenced as a struct or a class (i.e., class S).

Example:
union S
{

int s1, s2;
};
struct S var;

360 typedef ’%N’ defined without an explicit type

The typedef declaration was found to not have an explicit type in the declaration. If int is
the desired type, use an explicit int keyword to specify the type.

Example:
typedef T;

361 member function was not defined in its class

Member functions of local classes must be defined in their class if they will be defined at
all. This is a result of the C++ language not allowing nested function definitions.

Example:
void fn()
{

struct S {
int bar();
};

}

Diagnostic Messages 485

Appendices

362 local class can only have its containing function as a friend

A local class can only be referenced from within its containing function. It is impossible to
define an external function that can reference the type of the local class.

Example:
extern void ext();
void foo()
{

class S
{
int s;
public:
friend void ext();
int q;
};

}

363 local class cannot have ’%S’ as a friend

The only classes that a local class can have as a friend are classes within its own containing
scope.

Example:
struct ext
{

goop();
};
void foo()
{

class S
{
int s;
public:
friend class ext;
int q;
};

}

364 adjacent >=, <=, >, < operators

This message is warning about the possibility that the code may not do what was intended.
An expression like "a > b > c" evaluates one relational operator to a 1 or a 0 and then
compares it against the other variable.

Example:
extern int a;
extern int b;
extern int c;
int k = a > b > c;

486 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

365 cannot access enclosing function’s argument ’%S’

A local class member function cannot access its enclosing function’s arguments.

Example:
void goop(int d)
{

struct S
{
int foo(int c, int b)

{
return b + c + d;
};

};
}

366 support for switch ’%s’ is not implemented

Actions for the indicated switch have not been implemented. The switch is supported for
compatibility with the Open Watcom C compiler.

367 conditional expression in if statement is always true

The compiler has detected that the expression will always be true. If this is not the
expected behaviour, the code may contain a comparison of an unsigned value against zero
(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially true expressions.

Example:
#define TEST 143
int foo(int a, int b)
{

if(TEST) return a;
return b;

}

368 conditional expression in if statement is always false

The compiler has detected that the expression will always be false. If this is not the
expected behaviour, the code may contain a comparison of an unsigned value against zero
(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially false expressions.

Example:
#define TEST 14-14
int foo(int a, int b)
{

if(TEST) return a;
return b;

}

Diagnostic Messages 487

Appendices

369 selection expression in switch statement is a constant value

The expression in the switch statement is a constant. This means that only one case label
will be executed. If this is not the expected behaviour, check the switch expression.

Example:
#define TEST 0
int foo(int a, int b)
{

switch (TEST) {
case 0:

return a;
default:

return b;
}

}

370 constructor is required for a class with a const member

If a class has a constant member, a constructor is required in order to initialize it.

Example:
struct S
{

const int s;
int i;

};

371 constructor is required for a class with a reference member

If a class has a reference member, a constructor is required in order to initialize it.

Example:
struct S
{

int& r;
int i;

};

372 inline member friend function ’%S’ is not allowed

A friend that is a member function of another class cannot be defined. Inline friend rules
are currently in flux so it is best to avoid inline friends.

373 invalid modifier for auto variable

An automatic variable cannot have a memory model adjustment because they are always
located on the stack (or in a register). There are also other types of modifiers that are not
allowed for auto variables such as thread-specific data modifiers.

488 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
int fn(int far x)
{

int far y = x + 1;
return y;

}

374 object (or object pointer) required to access non-static data member

A reference to a member in a class has occurred. The member is non-static so in order to
access it, an object of the class is required.

Example:
struct S {

int m;
static void fn()
{
m = 1; // Error!
}

};

375 user-defined conversion has not been declared

The named user-defined conversion has not been declared in the class of any of its base
classes.

Example:
struct S {

operator int();
int a;

};

double fn(S *p)
{

return p->operator double();
}

376 virtual function must be a non-static member function

A member function cannot be both a static function and a virtual function. A static
member function does not have a this argument whereas a virtual function must have a this
argument so that the virtual function table can be accessed in order to call it.

Example:
struct S
{

static virtual int foo(); // error
virtual int bar(); // ok
static int stat(); // ok

};

Diagnostic Messages 489

Appendices

377 protected base class accessed to convert argument expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:
class C
{
protected:

C(int);
public:

int c;
};

int cfun(C);

int i = cfun(14);

The last line is erroneous since the constructor is protected.

378 private base class accessed to convert argument expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

Example:
class C
{

C(int);
public:

int c;
};

int cfun(C);

int i = cfun(14);

The last line is erroneous since the constructor is private.

379 delete expression will invoke a non-virtual destructor

In C++, it is possible to assign a base class pointer the value of a derived class pointer so
that code that makes use of base class virtual functions can be used. A problem that occurs
is that a delete has to know the correct size of the type in some instances (i.e., when a two
argument version of operator delete is defined for a class). This problem is solved by
requiring that a destructor be defined as virtual if polymorphic deletes must work. The
delete expression will virtually call the correct destructor, which knows the correct size of
the complete object. This message informs you that the class you are deleting has virtual
functions but it has a non-virtual destructor. This means that the delete will not work
correctly in all circumstances.

490 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#include <stddef.h>

struct B {
int b;
void operator delete(void *, size_t);
virtual void fn();
~B();

};
struct D : B {

int d;
void operator delete(void *, size_t);
virtual void fn();
~D();

};

void dfn(B *p)
{

delete p; // could be a pointer to D!
}

380 ’offsetof’ is not allowed for a function

A member function does not have an offset like simple data members. If this is required,
use a member pointer.

Example:
#include <stddef.h>

struct S
{

int fun();
};

int s = offsetof(S, fun);

381 ’offsetof’ is not allowed for an enumeration

An enumeration does not have an offset like simple data members.

Example:
#include <stddef.h>

struct S
{

enum SE { S1, S2, S3, S4 };
SE var;

};

int s = offsetof(S, SE);

Diagnostic Messages 491

Appendices

382 could not initialize for code generation

The source code has been parsed and fully analysed when this error is emitted. The
compiler attempted to start generating object code but due to some problem (e.g., out of
memory, no file handles) could not initialize itself. Try changing the compilation
environment to eliminate this error.

383 ’offsetof’ is not allowed for an undefined type

The class type used in offsetof must be completely defined, otherwise data member offsets
will not be known.

Example:
#include <stddef.h>

struct S {
int a;
int b;
int c[offsetof(S, b)];

};

384 attempt to override virtual function ’%S’ with a different return type

A function cannot be overloaded with identical argument types and a different return type.
This is due to the fact that the C++ language does not consider the function’s return type
when overloading. The exception to this rule in the C++ language involves restricted
changes in the return type of virtual functions. The derived virtual function’s return type
can be derived from the return type of the base virtual function.

Example:
struct B {

virtual B *fn();
};
struct D : B {

virtual D *fn();
};

385 attempt to overload function ’%S’ with a different return type

A function cannot be overloaded with identical argument types and a different return type.
This is due to the fact that the C++ language does not consider the function’s return type
when overloading.

Example:
int foo(char);
unsigned foo(char);

492 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

386 attempt to use pointer to undefined class

An attempt was made to indirect or increment a pointer to an undefined class. Since the
class is undefined, the size is not known so the compiler cannot compile the expression
properly.

Example:
class C;
extern C* pc1;
C* pc2 = ++pc1; // C not defined

int foo(C*p)
{

return p->x; // C not defined
}

387 expression is useful only for its side effects

The indicated expression is not meaningful. The expression, however, does contain one or
more side effects.

Example:
extern int* i;
void func()
{

*(i++);
}

In the example, the expression is a reference to an integer which is meaningless in itself.
The incrementation of the pointer in the expression is a side effect.

388 integral constant will be truncated during assignment or initialization

This message indicates that the compiler knows that a constant value will not be preserved
after the assignment. If this is acceptable, cast the constant value to the appropriate type in
the assignment.

Example:
unsigned char c = 567;

389 integral value may be truncated during assignment or initialization

This message indicates that the compiler knows that all values will not be preserved after
the assignment. If this is acceptable, cast the value to the appropriate type in the
assignment.

Example:
extern unsigned s;
unsigned char c = s;

Diagnostic Messages 493

Appendices

390 cannot generate default constructor to initialize ’%T’ since constructors were declared

A default constructor will not be generated by the compiler if there are already constructors
declared. Try using default arguments to change one of the constructors to a default
constructor or define a default constructor explicitly.

Example:
class C {

C(const C&);
public :

int c;
};
C cv;

391 assignment found in boolean expression

This is a construct that can lead to errors if it was intended to be an equality (using "==")
test.

Example:
int foo(int a, int b)
{

if(a = b) {
return b;
}
return a; // always return 1 ?

}

392 definition: ’%F’

This informational message indicates where the symbol in question was defined. The
message is displayed following an error or warning diagnostic for the symbol in question.

Example:
static int a = 9;
int b = 89;

The variable ’a’ is not referenced in the preceding example and so will cause a warning to
be generated. Following the warning, the informational message indicates the line at which
’a’ was declared.

393 included from %s(%u)

This informational message indicates the line number of the file including the file in which
an error or warning was diagnosed. A number of such messages will allow you to trace
back through the #include directives which are currently being processed.

494 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

394 reference object must be initialized

A reference cannot be set except through initialization. Also references cannot be 0 so they
must always be initialized.

Example:
int & ref;

395 option requires an identifier

The specified option is not recognized by the compiler since there was no identifier after it
(i.e., "-nt=module").

396 ’main’ cannot be overloaded

There can only be one entry point for a C++ program. The "main" function cannot be
overloaded.

Example:
int main();
int main(int);

397 ’new’ expression cannot allocate a void

Since the void type has no size and there are no values of void type, one cannot allocate an
instance of void.

Example:
void *p = new void;

398 ’new’ expression cannot allocate a function

A function type cannot be allocated since there is no meaningful size that can be used. The
new expression can allocate a pointer to a function.

Example:
typedef int tdfun(int);
tdfun *tdv = new tdfun;

399 ’new’ expression allocates a const or volatile object

The pool of raw memory cannot be guaranteed to support const or volatile semantics.
Usually const and volatile are used for statically allocated objects.

Example:
typedef const int con_int;
con_int* p = new con_int;

Diagnostic Messages 495

Appendices

400 cannot convert right expression for initialization

The initialization is trying to convert an argument expression to a completely unrelated
type. There is no way the compiler can provide any meaning for the intended conversion.

Example:
struct T {
};

T x = 0;

401 conversion ambiguity: [initialization expression] to [type of object]

The initialization caused a constructor overload to occur. The operands provided for the
constructor did not select a unique constructor.

Example:
struct S {

S(int);
S(char);

};

S x = 1.0;

402 class template ’%S’ has already been declared as a friend

The class template in the message has already been declared as a friend. Remove the extra
friend declaration.

Example:
template <class T>

class S;

class X {
friend class S;
int f;
friend class S;

};

403 private base class accessed to convert initialization expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

404 protected base class accessed to convert initialization expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

496 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

405 cannot return a pointer or reference to a constant object

A pointer or reference to a constant object cannot be returned.

Example:
int *foo(const int *p)
{

return p;
}

406 cannot pass a pointer or reference to a constant object

A pointer or reference to a constant object could not be passed as an argument.

Example:
int *bar(int *);
int *foo(const int *p)
{

return bar(p);
}

407 class templates must be named

There is no syntax in the C++ language to reference an unnamed class template.

Example:
template <class T>

class {
};

408 function templates can only name functions

Variables cannot be overloaded in C++ so it is not possible to have many different
instances of a variable with different types.

Example:
template <class T>

T x[1];

409 template argument ’%S’ is not used in the function argument list

This restriction ensures that function templates can be bound to types during overload
resolution. Functions currently can only be overloaded based on argument types.

Example:
template <class T>

int foo(int *);
template <class T>

T bar(int *);

Diagnostic Messages 497

Appendices

410 destructor cannot be declared const or volatile

A destructor must be able to operate on all instances of classes regardless of whether they
are const or volatile.

411 static member function cannot be declared const or volatile

A static member function does not have an implicit this argument so the const and volatile
function qualifiers cannot be used.

412 only member functions can be declared const or volatile

A non-member function does not have an implicit this argument so the const and volatile
function qualifiers cannot be used.

413 ’const’ or ’volatile’ modifiers are not part of a function’s type

The const and volatile qualifiers for a function cannot be used in typedefs or pointers to
functions. The trailing qualifiers are used to change the type of the implicit this argument
so that member functions that do not modify the object can be declared accurately.

Example:
// const is illegal
typedef void (*baddcl)() const;

struct S {
void fun() const;
int a;

};

// "this" has type "S const *"
void S::fun() const
{

this->a = 1; // Error!
}

414 type cannot be defined in an argument

A new type cannot be defined in an argument because the type will only be visible within
the function. This amounts to defining a function that can never be called because C++
uses name equivalence for type checking.

Example:
extern foo(struct S { int s; });

415 type cannot be defined in return type

This is a restriction in the current C++ language. A function prototype should only use
previously declared types in order to guarantee that it can be called from other functions.
The restriction is required for templates because the compiler would have to wait until the
end of a class definition before it could decide whether a class template or function
template is being defined.

498 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
template <class T>

class C {
T value;
} fn(T x) {
C y;

y.x = 0;
return y;
};

A common problem that results in this error is to forget to terminate a class or enum
definition with a semicolon.

Example:
struct S {

int x,y;
S(int, int);

} // missing semicolon ’;’

S::S(int x, int y) : x(x), y(y) {
}

416 data members cannot be initialized inside a class definition

This message appears when an initialization is attempted inside of a class definition. In the
case of static data members, initialization must be done outside the class definition.
Ordinary data members can be initialized in a constructor.

Example:
struct S {

static const int size = 1;
};

417 only virtual functions may be declared pure

The C++ language requires that all pure functions be declared virtual. A pure function
establishes an interface that must consist of virtual functions because the functions are
required to be defined in the derived class.

Example:
struct S {

void foo() = 0;
};

418 destructor is not declared in its proper class

The destructor name is not declared in its own class or qualified by its own class. This is
required in the C++ language.

Diagnostic Messages 499

Appendices

419 cannot call non-const function for a constant object

A function that does not promise to not modify an object cannot be called for a constant
object. A function can declare its intention to not modify an object by using the const
qualifier.

Example:
struct S {

void fn();
};

void cfn(const S *p)
{

p->fn(); // Error!
}

420 memory initializer list may only appear in a constructor definition

A memory initializer list should be declared along with the body of the constructor
function.

421 cannot initialize member ’%N’ twice

A member cannot be initialized twice in a member initialization list.

422 cannot initialize base class ’%T’ twice

A base class cannot be constructed twice in a member initialization list.

423 ’%T’ is not a direct base class

A base class initializer in a member initialization list must either be a direct base class or a
virtual base class.

424 ’%N’ cannot be initialized because it is not a member

The name used in the member initialization list does not name a member in the class.

425 ’%N’ cannot be initialized because it is a member function

The name used in the member initialization list does not name a non-static data member in
the class.

426 ’%N’ cannot be initialized because it is a static member

The name used in the member initialization list does not name a non-static data member in
the class.

500 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

427 ’%N’ has not been declared as a member

This message indicates that the member does not exist in the qualified class. This usually
occurs in the context of access declarations.

428 const/reference member ’%S’ must have an initializer

The const or reference member does not have an initializer so the constructor is not
completely defined. The member initialization list is the only way to initialize these types
of members.

429 abstract class ’%T’ cannot be used as an argument type

An abstract class can only exist as a base class of another class. The C++ language does
not allow an abstract class to be used as an argument type.

430 abstract class ’%T’ cannot be used as a function return type

An abstract class can only exist as a base class of another class. The C++ language does
not allow an abstract class to be used as a return type.

431 defining ’%S’ is not possible because ’%T’ is an abstract class

An abstract class can only exist as a base class of another class. The C++ language does
not allow an abstract class to be used as either a member or a variable.

432 cannot convert to an abstract class ’%T’

An abstract class can only exist as a base class of another class. The C++ language does
not allow an abstract class to be used as the destination type in a conversion.

433 mangled name for ’%S’ has been truncated

The name used in the object file that encodes the name and full type of the symbol is often
called a mangled name. The warning indicates that the mangled name had to be truncated
due to limitations in the object file format.

434 cannot convert to a type of unknown size

A completely unknown type cannot be used in a conversion because its size is not known.
The behaviour of the conversion would be undefined also.

435 cannot convert a type of unknown size

A completely unknown type cannot be used in a conversion because its size is not known.
The behaviour of the conversion would be undefined also.

Diagnostic Messages 501

Appendices

436 cannot construct an abstract class

An instance of an abstract class cannot be created because an abstract class can only be
used as a base class.

437 cannot construct an undefined class

An instance of an undefined class cannot be created because the size is not known.

438 string literal concatenated during array initialization

This message indicates that a missing comma (’,’) could have made a quiet change in the
program. Otherwise, ignore this message.

439 maximum size of segment ’%s’ has been exceeded for ’%S’

The indicated symbol has grown in size to a point where it has caused the segment it is
defined inside of to be exhausted.

440 maximum data item size has been exceeded for ’%S’

A non-huge data item is larger than 64k bytes in size. This message only occurs during
16-bit compilation of C++ code.

441 function attribute has been repeated

A function attribute (like the __export attribute) has been repeated. Remove the extra
attribute to correct the declaration.

442 modifier has been repeated

A modifier (like the far modifier) has been repeated. Remove the extra modifier to correct
the declaration.

443 illegal combination of memory model modifiers

Memory model modifiers must be used individually because they cannot be combined
meaningfully.

444 argument name ’%N’ has already been used

The indicated argument name has already been used in the same argument list. This is not
allowed in the C++ language.

445 function definition for ’%S’ must be declared with an explicit argument list

A function cannot be defined with a typedef. The argument list must be explicit.

502 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

446 user-defined conversion cannot convert to its own class or base class

A user-defined conversion cannot be declared as a conversion either to its own class or to a
base class of itself.

Example:
struct B {
};
struct D : private B {

operator B();
};

447 user-defined conversion cannot convert to void

A user-defined conversion cannot be declared as a conversion to void.

Example:
struct S {

operator void();
};

448 expecting identifier

An identifier was expected during processing.

449 symbol ’%S’ does not have a segment associated with it

A pointer cannot be based on a member because it has no segment associated with it. A
member describes a layout of storage that can occur in any segment.

450 symbol ’%S’ must have integral or pointer type

If a symbol is based on another symbol, it must be integral or a pointer type. An integral
type indicates the segment value that will be used. A pointer type means that all accesses
will be added to the pointer value to construct a full pointer.

451 symbol ’%S’ cannot be accessed in all contexts

The symbol that the pointer is based on is in another class so it cannot be accessed in all
contexts that the based pointer can be accessed.

452 cannot convert class expression to be copied

A convert class expression could not be copied.

453 conversion ambiguity: multiple copy constructors

More than one constructor could be used to copy a class object.

Diagnostic Messages 503

Appendices

454 function template ’%S’ already has a definition

The function template has already been defined with a function body. A function template
cannot be defined twice even if the function body is identical.

Example:
template <class T>

void f(T *p)
{
}

template <class T>
void f(T *p)
{
}

455 function templates cannot have default arguments

A function template must not have default arguments because there are certain types of
default arguments that do not force the function argument to be a specific type.

Example:
template <class T>

void f2(T *p = 0)
{
}

456 ’main’ cannot be a function template

This is a restriction in the C++ language because "main" cannot be overloaded. A function
template provides the possibility of having more than one "main" function.

457 ’%S’ was previously declared as a typedef

The C++ language only allows function and variable names to coexist with names of
classes or enumerations. This is due to the fact that the class and enumeration names can
still be referenced in their elaborated form after the non-type name has been declared.

Example:
typedef int T;
int T(int) // error!
{
}

enum E { A, B, C };
void E()
{

enum E x = A; // use "enum E"
}

class C { };
void C()
{

class C x; // use "class C"
}

504 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

458 ’%S’ was previously declared as a variable/function

The C++ language only allows function and variable names to coexist with names of
classes or enumerations. This is due to the fact that the class and enumeration names can
still be referenced in their elaborated form after the non-type name has been declared.

Example:
int T(int)
{
}
typedef int T; // error!

void E()
{
}
enum E { A, B, C };

enum E x = A; // use "enum E"

void C()
{
}
class C { };

class C x; // use "class C"

459 private base class accessed to convert assignment expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

460 protected base class accessed to convert assignment expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

461 maximum size of DGROUP has been exceeded for ’%S’ in segment ’%s’

The indicated symbol’s size has caused the DGROUP contribution of this module to exceed
64k. Changing memory models or declaring some data as far data are two ways of fixing
this problem.

462 type of return value is not the enumeration type of function

The return value does not have the proper enumeration type. Keep in mind that integral
values are not automatically converted to enum types like the C language.

Diagnostic Messages 505

Appendices

463 linkage must be first in a declaration; probable cause: missing ’;’

This message usually indicates a missing semicolon (’;’). The linkage specification must
be the first part of a declaration if it is used.

464 ’main’ cannot be a static function

This is a restriction in the C++ language because "main" must have external linkage.

465 ’main’ cannot be an inline function

This is a restriction in the C++ language because "main" must have external linkage.

466 ’main’ cannot be referenced

This is a restriction in the C++ language to prevent implementations from having to work
around multiple invocations of "main". This can occur if an implementation has to
generate special code in "main" to construct all of the statically allocated classes.

467 cannot call a non-volatile function for a volatile object

A function that does not promise to not modify an object using volatile semantics cannot be
called for a volatile object. A function can declare its intention to modify an object only
through volatile semantics by using the volatile qualifier.

Example:
struct S {

void fn();
};

void cfn(volatile S *p)
{

p->fn(); // Error!
}

468 cannot convert pointer to constant or volatile objects to pointer to void

You cannot convert a pointer to constant or volatile objects to ’void*’.

Example:
extern const int* pci;
extern void *vp;

int k = (pci == vp);

469 cannot convert pointer to constant or non-volatile objects to pointer to volatile void

You cannot convert a pointer to constant or non-volatile objects to ’volatile void*’.

506 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
extern const int* pci;
extern volatile void *vp;

int k = (pci == vp);

470 address of function is too large to be converted to pointer to void

The address of a function can be converted to ’void*’ only when the size of a ’void*’
object is large enough to contain the function pointer.

Example:
void __far foo();
void __near *v = &foo;

471 address of data object is too large to be converted to pointer to void

The address of an object can be converted to ’void*’ only when the size of a ’void*’ object
is large enough to contain the pointer.

Example:
int __far *ip;
void __near *v = ip;

472 expression with side effect in sizeof discarded

The indicated expression will be discarded; consequently, any side effects in that
expression will not be executed.

Example:
int a = 14;
int b = sizeof(a++);

In the example, the variable a will still have a value 14 after b has been initialized.

473 function argument(s) do not match those in prototype

The C++ language requires great precision in specifying arguments for a function. For
instance, a pointer to char is considered different than a pointer to unsigned char
regardless of whether char is an unsigned quantity. This message occurs when a
non-overloaded function is invoked and one or more of the arguments cannot be converted.
It also occurs when the number of arguments differs from the number specified in the
prototype.

474 conversion ambiguity: [expression] to [class object]

The conversion of the expression to a class object is ambiguous.

Diagnostic Messages 507

Appendices

475 cannot assign right expression to class object

The expression on the right cannot be assigned to the indicated class object.

476 argument count is %d since there is an implicit ’this’ argument

This informational message indicates the number of arguments for the function mentioned
in the error message. The function is a member function with a this argument so it may
have one more argument than expected.

477 argument count is %d since there is no implicit ’this’ argument

This informational message indicates the number of arguments for the function mentioned
in the error message. The function is a member function without a this argument so it may
have one less argument than expected.

478 argument count is %d for a non-member function

This informational message indicates the number of arguments for the function mentioned
in the error message. The function is not a member function but it could be declared as a
friend function.

479 conversion ambiguity: multiple copy constructors to copy array ’%S’

More than one constructor to copy the indicated array exists.

480 variable/function has the same name as the class/enum ’%S’

In C++, a class or enum name can coexist with a variable or function of the same name in a
scope. This warning is indicating that the current declaration is making use of this feature
but the typedef name was declared in another file. This usually means that there are two
unrelated uses of the same name.

481 class/enum has the same name as the function/variable ’%S’

In C++, a class or enum name can coexist with a variable or function of the same name in a
scope. This warning is indicating that the current declaration is making use of this feature
but the function/variable name was declared in another file. This usually means that there
are two unrelated uses of the same name. Furthermore, all references to the class or enum
must be elaborated (i.e., use ’class C’ instead of ’C’) in order for subsequent references to
compile properly.

482 cannot create a default constructor

A default constructor could not be created, because other constructors were declared for the
class in question.

508 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct X {

X(X&);
};
struct Y {

X a[10];
};
Y yvar;

In the example, the variable "yvar" causes a default constructor for the class "Y" to be
generated. The default constructor for "Y" attempts to call the default constructor for "X"
in order to initialize the array "a" in class "Y". The default constructor for "X" cannot be
defined because another constructor has been declared.

483 attempting to access default constructor for %T

This informational message indicates that a default constructor was referenced but could
not be generated.

484 cannot align symbol ’%S’ to segment boundary

The indicated symbol requires more than one segment of storage and the symbol’s
components cannot be aligned to the segment boundary.

485 friend declaration does not specify a class or function

A class or function must be declared as a friend.

Example:
struct T {

// should be class or function declaration
friend int;

};

486 cannot take address of overloaded function

This message indicates that an overloaded function’s name was used in a context where a
final type could not be found. Because a final type was not specified, the compiler cannot
select one function to use in the expression. Initialize a properly-typed temporary with the
appropriate function and use the temporary in the expression.

Example:
int foo(char);
int foo(unsigned);
extern int (*p)(char);
int k = (p == &foo); // fails

The first foo can be passed as follows:

Diagnostic Messages 509

Appendices

Example:
int foo(char);
int foo(unsigned);
extern int (*p)(char);

// introduce temporary
static int (*temp)(char) = &foo;

// ok
int k = (p == temp);

487 cannot use address of overloaded function as a variable argument

This message indicates that an overloaded function’s name was used as a argument for a
"..." style function. Because a final function type is not present, the compiler cannot select
one function to use in the expression. Initialize a properly-typed temporary with the
appropriate function and use the temporary in the call.

Example:
int foo(char);
int foo(unsigned);
int ellip_fun(int, ...);
int k = ellip_fun(14, &foo); // fails

The first foo can be passed as follows:

Example:
int foo(char);
int foo(unsigned);
int ellip_fun(int, ...);

static int (*temp)(char) = &foo; // introduce
temporary

int k = ellip_fun(14, temp); // ok

488 ’%N’ cannot be overloaded

The indicated function cannot be overloaded. Functions that fall into this category include
operator delete.

489 symbol ’%S’ has already been initialized

The indicated symbol has already been initialized. It cannot be initialized twice even if the
initialization value is identical.

490 delete expression is a pointer to a function

A pointer to a function cannot be allocated so it cannot be deleted.

510 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

491 delete of a pointer to const data

Since deleting a pointer may involve modification of data, it is not always safe to delete a
pointer to const data.

Example:
struct S { };
void fn(S const *p, S const *q) {

delete p;
delete [] q;

}

492 delete expression is not a pointer to data

A delete expression can only delete pointers. For example, trying to delete an int is not
allowed in the C++ language.

Example:
void fn(int a)
{

delete a; // Error!
}

493 template argument is not a constant expression

The compiler has found an incorrect expression provided as the value for a constant value
template argument. The only expressions allowed for scalar template arguments are
integral constant expressions.

494 template argument is not an external linkage symbol

The compiler has found an incorrect expression provided as the value for a pointer value
template argument. The only expressions allowed for pointer template arguments are
addresses of symbols. Any symbols must have external linkage or must be static class
members.

495 conversion of const reference to volatile reference

The constant value can be modified by assigning into the volatile reference. This would
allow constant data to be modified quietly.

Example:
void fn(const int &rci)
{

int volatile &r = rci; // Error!
}

Diagnostic Messages 511

Appendices

496 conversion of volatile reference to const reference

The volatile value can be read incorrectly by accessing the const reference. This would
allow volatile data to be accessed without correct volatile semantics.

Example:
void fn(volatile int &rvi)
{

int const &r = rvi; // Error!
}

497 conversion of const or volatile reference to plain reference

The constant value can be modified by assigning into the plain reference. This would allow
constant data to be modified quietly. In the case of volatile data, any access to the plain
reference will not respect the volatility of the data and thus would be incorrectly accessing
the data.

Example:
void fn(const int &rci, volatile int &rvi)
{

int &r1 = rci; // Error!
int &r2 = rvi; // Error!

}

498 syntax error before ’%s’; probable cause: incorrectly spelled type name

The identifier in the error message has not been declared as a type name in any scope at this
point in the code. This may be the cause of the syntax error.

499 object (or object pointer) required to access non-static member function

A reference to a member function in a class has occurred. The member is non-static so in
order to access it, an object of the class is required.

Example:
struct S {

int m();
static void fn()
{
m(); // Error!
}

};

500 object (or object pointer) cannot be used to access function

The indicated object (or object pointer) cannot be used to access function.

512 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

501 object (or object pointer) cannot be used to access data

The indicated object (or object pointer) cannot be used to access data.

502 cannot access member function in enclosing class

A member function in enclosing class cannot be accessed.

503 cannot access data member in enclosing class

A data member in enclosing class cannot be accessed.

504 syntax error before type name ’%s’

The identifier in the error message has been declared as a type name at this point in the
code. This may be the cause of the syntax error.

505 implementation restriction: cannot generate thunk from ’%S’

This implementation restriction is due to the use of a shared code generator between Open
Watcom compilers. The virtual this adjustment thunks are generated as functions linked
into the virtual function table. The functions rely on knowing the correct number of
arguments to pass on to the overriding virtual function but in the case of ellipsis (...)
functions, the number of arguments cannot be known when the thunk function is being
generated by the compiler. The target symbol is listed in a diagnostic message. The work
around for this problem is to recode the source so that the virtual functions make use of the
va_list type found in the stdarg header file.

Example:

Diagnostic Messages 513

Appendices

#include <iostream.h>
#include <stdarg.h>

struct B {
virtual void fun(char *, ...);

};
struct D : B {

virtual void fun(char *, ...);
};
void B::fun(char *f, ...)
{

va_list args;

va_start(args, f);
while(*f) {
cout << va_arg(args, char) << endl;
++f;
}
va_end(args);

}
void D::fun(char *f, ...)
{

va_list args;

va_start(args, f);
while(*f) {
cout << va_arg(args, int) << endl;
++f;
}
va_end(args);

}

The previous example can be changed to the following code with corresponding changes to
the contents of the virtual functions.

Example:
#include <iostream.h>
#include <stdarg.h>

struct B {
void fun(char *f, ...)
{
va_list args;

va_start(args, f);
_fun(f, args);
va_end(args);
}
virtual void _fun(char *, va_list);

};

514 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

~b
struct D : B {

// this can be removed since using B::fun
// will result in the same behaviour
// since _fun is a virtual function
void fun(char *f, ...)
{
va_list args;

va_start(args, f);
_fun(f, args);
va_end(args);
}
virtual void _fun(char *, va_list);

};
~b
void B::_fun(char *f, va_list args)
{

while(*f) {
cout << va_arg(args, char) << endl;
++f;
}

}
~b
void D::_fun(char *f, va_list args)
{

while(*f) {
cout << va_arg(args, int) << endl;
++f;
}

}

~b
// no changes are required for users of the class
B x;
D y;

void dump(B *p)
{

p->fun("1234", ’a’, ’b’, ’c’, ’d’);
p->fun("12", ’a’, ’b’);

}

~b
void main()
{

dump(&x);
dump(&y);

}

Diagnostic Messages 515

Appendices

506 conversion of __based(void) pointer to virtual base class

An __based(void) pointer to a class object cannot be converted to a pointer to virtual base
class, since this conversion applies only to specific objects.

Example:
struct Base {};
struct Derived : virtual Base {};
Derived __based(void) *p_derived;
Base __based(void) *p_base = p_derived; // error

The conversion would be allowed if the base class were not virtual.

507 class for target operand is not derived from class for source operand

A member pointer conversion can only be performed safely when converting a base class
member pointer to a derived class member pointer.

508 conversion ambiguity: [pointer to class member] to [assignment object]

The base class in the original member pointer is not a unique base class of the derived class.

509 conversion of pointer to class member involves a private base class

The member pointer conversion required access to a private base class. The access check
did not succeed so the conversion is not allowed.

510 conversion of pointer to class member involves a protected base class

The member pointer conversion required access to a protected base class. The access check
did not succeed so the conversion is not allowed.

511 item is neither a non-static member function nor data member

A member pointer can only be created for non-static member functions and non-static data
members. Static members can have their address taken just like their file scope
counterparts.

512 function address cannot be converted to pointer to class member

The indicated function address cannot be converted to pointer to class member.

513 conversion ambiguity: [address of function] to [pointer to class member]

The indicated conversion is ambiguous.

516 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

514 addressed function is in a private base class

The addressed function is in a private base class.

515 addressed function is in a protected base class

The addressed function is in a protected base class.

516 class for object is not defined

The left hand operand for the "." or ".*" operator must be of a class type that is completely
defined.

Example:
class C;

int fun(C& x)
{

return x.y; // class C not defined
}

517 left expression is not a class object

The left hand operand for the ".*" operator must be of a class type since member pointers
can only be used with classes.

518 right expression is not a pointer to class member

The right hand operand for the ".*" operator must be a member pointer type.

519 cannot convert pointer to class of member pointer

The class of the left hand operand cannot be converted to the class of the member pointer
because it is not a derived class.

520 conversion ambiguity: [pointer] to [class of pointer to class member]

The class of the pointer to member is an ambiguous base class of the left hand operand.

521 conversion of pointer to class of member pointer involves a private base class

The class of the pointer to member is a private base class of the left hand operand.

522 conversion of pointer to class of member pointer involves a protected base class

The class of the pointer to member is a protected base class of the left hand operand.

Diagnostic Messages 517

Appendices

523 cannot convert object to class of member pointer

The class of the left hand operand cannot be converted to the class of the member pointer
because it is not a derived class.

524 conversion ambiguity: [object] to [class object of pointer to class member]

The class of the pointer to member is an ambiguous base class of the left hand operand.

525 conversion of object to class of member pointer involves a private base class

The class of the pointer to member is a private base class of the left hand operand.

526 conversion of object to class of member pointer involves a protected base class

The class of the pointer to member is a protected base class of the left hand operand.

527 conversion of pointer to class member from a derived to a base class

A member pointer can only be converted from a base class to a derived class. This is the
opposite of the conversion rule for pointers.

528 form is ’#pragma inline_recursion en’ where ’en’ is ’on’ or ’off’

This pragma indicates whether inline expansion will occur for an inline function which is
called (possibly indirectly) a subsequent time during an inline expansion. Either ’on’ or
’off’ must be specified.

529 expression for number of array elements must be integral

The expression for the number of elements in a new expression must be integral because it
is used to calculate the size of the allocation (which is an integral quantity). The compiler
will not automatically convert to an integer because of rounding and truncation issues with
floating-point values.

530 function accessed with ’.*’ or ’->*’ can only be called

The result of the ".*" and "->*" operators can only be called because it is often specific to
the instance used for the left hand operand.

531 left operand must be a pointer, pointer to class member, or arithmetic

The left operand must be a pointer, pointer to class member, or arithmetic.

532 right operand must be a pointer, pointer to class member, or arithmetic

The right operand must be a pointer, pointer to class member, or arithmetic.

518 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

533 neither pointer to class member can be converted to the other

The two member pointers being compared are from two unrelated classes. They cannot be
compared since their members can never be related.

534 left operand is not a valid pointer to class member

The specified operator requires a pointer to member as the left operand.

Example:
struct S;
void fn(int S::* mp, int *p)
{

if(p == mp)
p[0] = 1;

}

535 right operand is not a valid pointer to class member

The specified operator requires a pointer to member as the right operand.

Example:
struct S;
void fn(int S::* mp, int *p)
{

if(mp == p)
p[0] = 1;

}

536 cannot use ’.*’ nor ’->*’ with pointer to class member with zero value

The compiler has detected a NULL pointer use with a member pointer dereference.

537 operand is not a valid pointer to class member

The operand cannot be converted to a valid pointer to class member.

Example:
struct S;
int S::* fn()
{

int a;
return a;

}

538 destructor can be invoked only with ’.’ or ’->’

This is a restriction in the C++ language. An explicit invocation of a destructor is not
recommended for objects that have their destructor called automatically.

Diagnostic Messages 519

Appendices

539 class of destructor must be class of object being destructed

Destructors can only be called for the exact static type of the object being destroyed.

540 destructor is not properly qualified

An explicit destructor invocation can only be qualified with its own class.

541 pointers to class members reference different object types

Conversion of member pointers can only occur if the object types are identical. This is
necessary to ensure type safety.

542 operand must be pointer to class or struct

The left hand operand of a ’->*’ operator must be a pointer to a class. This is a restriction
in the C++ language.

543 expression must have void type

If one operand of the ’:’ operator has void type, then the other operand must also have void
type.

544 expression types do not match for ’:’ operator

The compiler could not bring both operands to a common type. This is necessary because
the result of the conditional operator must be a unique type.

545 cannot create an undefined type with ’operator new’

A new expression cannot allocate an undefined type because it must know how large an
allocation is required and it must also know whether there are any constructors to execute.

546 delete of a pointer to an undefined type

A delete expression cannot safely deallocate an undefined type because it must know
whether there are any destructors to execute. In spite of this, the ISO/ANSI C++ Working
Paper requires that an implementation support this usage.

Example:
struct U;

void foo(U *p, U *q) {
delete p;
delete [] q;

}

520 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

547 cannot access ’%S’ through a private base class

The indicated symbol cannot be accessed because it requires access to a private base class.

548 cannot access ’%S’ through a protected base class

The indicated symbol cannot be accessed because it requires access to a protected base
class.

549 ’sizeof’ operand contains compiler generated information

The type used in the ’sizeof’ operand contains compiler generated information. Clearing a
struct with a call to memset() would invalidate all of this information.

550 cannot convert ’:’ operands to a common reference type

The two reference types cannot be converted to a common reference type. This can happen
when the types are not related through base class inheritance.

551 conversion ambiguity: [reference to object] to [type of opposite ’:’ operand]

One of the reference types is an ambiguous base class of the other. This prevents the
compiler from converting the operand to a unique common type.

552 conversion of reference to ’:’ object involves a private base class

The conversion of the reference operands requires a conversion through a private base
class.

553 conversion of reference to ’:’ object involves a protected base class

The conversion of the reference operands requires a conversion through a protected base
class.

554 expression must have type arithmetic, pointer, or pointer to class member

This message means that the type cannot be converted to any of these types, also. All of
the mentioned types can be compared against zero (’0’) to produce a true or false value.

555 expression for ’while’ is always false

The compiler has detected that the expression will always be false. If this is not the
expected behaviour, the code may contain a comparison of an unsigned value against zero
(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially false expressions.

Diagnostic Messages 521

Appendices

556 testing expression for ’for’ is always false

The compiler has detected that the expression will always be false. If this is not the
expected behaviour, the code may contain a comparison of an unsigned value against zero
(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially false expressions.

557 message number ’%d’ is invalid

The message number used in the #pragma does not match the message number for any
warning message. This message can also indicate that a number or ’*’ (meaning all
warnings) was not found when it was expected.

558 warning level must be an integer in range 0 to 9

The new warning level that can be used for the warning can be in the range 0 to 9. The
level 0 means that the warning will be treated as an error (compilation will not succeed).
Levels 1 up to 9 are used to classify warnings. The -w option sets an upper limit on the
level for warnings. By setting the level above the command line limit, you effectively
ignore all cases where the warning shows up.

559 function ’%S’ cannot be defined because it is generated by the compiler

The indicated function cannot be defined because it is generated by the compiler. The
compiler will automatically generate default constructors, copy constructors, assignment
operators, and destructors according to the rules of the C++ language. This message
indicates that you did not declare the function in the class definition.

560 neither environment variable nor file found for ’@’ name

The indirection operator for the command line will first check for an environment variable
of the name and use the contents for the command line. If an environment variable is not
found, a check for a file with the same name will occur.

561 more than 5 indirections during command line processing

The Open Watcom C++ compiler only allows a fixed number nested indirections using files
or environment variables, to prevent runaway chains of indirections.

562 cannot take address of non-static member function

The only way to create a value that described the non-static member function is to use a
member pointer.

563 cannot generate default ’%S’ because class contains either a constant or a reference
member

An assignment operator cannot be generated because the class contains members that
cannot be assigned into.

522 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

564 cannot convert pointer to non-constant or volatile objects to pointer to const void

A pointer to non-constant or volatile objects cannot be converted to ’const void*’.

565 cannot convert pointer to non-constant or non-volatile objects to pointer to const volatile
void

A pointer to non-constant or non-volatile objects cannot be converted to ’const volatile
void*’.

566 cannot initialize pointer to non-volatile with a pointer to volatile

A pointer to a non-volatile type cannot be initialized with a pointer to a volatile type
because this would allow volatile data to be modified without volatile semantics via the
non-volatile pointer to it.

567 cannot pass a pointer or reference to a volatile object

A pointer or reference to a volatile object cannot be passed in this context.

568 cannot return a pointer or reference to a volatile object

A pointer or reference to a volatile object cannot be returned.

569 left expression is not a pointer to a volatile object

One cannot assign a pointer to a volatile type to a pointer to a non-volatile type. This
would allow a volatile object to be modified via the non-volatile pointer. Use a cast if this
is absolutely necessary.

570 virtual function override for ’%S’ is ambiguous

This message indicates that there are at least two overrides for the function in the base
class. The compiler cannot arbitrarily choose one so it is up to the programmer to make
sure there is an unambiguous choice. Two of the overriding functions are listed as
informational messages.

571 initialization priority must be number 0-255, ’library’, or ’program’

An incorrect module initialization priority has been provided. Check the User’s Guide for
the correct format of the priority directive.

572 previous case label defined %L

This informational message indicates where a preceding case label is defined.

Diagnostic Messages 523

Appendices

573 previous default label defined %L

This informational message indicates where a preceding default label is defined.

574 label defined %L

This informational message indicates where a label is defined.

575 label referenced %L

This informational message indicates where a label is referenced.

576 object thrown has type: %T

This informational message indicates the type of the object being thrown.

577 object thrown has an ambiguous base class %T

It is illegal to throw an object with a base class to which a conversion would be ambiguous.

Example:
struct ambiguous{ };
struct base1 : public ambiguous { };
struct base2 : public ambiguous { };
struct derived : public base1, public base2 { };

foo(derived &object)
{

throw object;
}

The throw will cause an error to be displayed because an object of type "derived" cannot be
converted to an object of type "ambiguous".

578 form is ’#pragma inline_depth level’ where ’level’ is 0 to 255

This pragma sets the number of times inline expansion will occur for an inline function
which contains calls to inline functions. The level must be a number from zero to 255.
When the level is zero, no inline expansion occurs.

579 pointer or reference truncated by cast

The cast expression causes a conversion of a pointer value to another pointer value of
smaller size. This can be caused by __near or __far qualifiers (i.e., casting a far pointer to
a near pointer). Function pointers can also have a different size than data pointers in
certain memory models. Because this message indicates that some information is being
lost, check the code carefully.

524 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

580 cannot find a constructor for given initializer argument list

The initializer list provided for the new expression does not uniquely identify a single
constructor.

581 variable ’%N’ can only be based on a string in this context

All of the based modifiers can only be applied to pointer types. The only based modifier
that can be applied to non-pointer types is the ’__based(__segname("WATCOM"))’ style.

582 memory model modifiers are not allowed for class members

Class members describe the arrangement and interpretation of memory and, as such,
assume the memory model of the address used to access the member.

583 redefinition of the typedef name ’%S’ ignored

The compiler has detected that a slightly different type has been assigned to a typedef
name. The type is functionally equivalent but typedef redefinitions should be precisely
identical.

584 constructor for variable ’%S’ cannot be bypassed

The variable may not be constructed when code is executing at the position the message
indicated. The C++ language places these restrictions to prevent the use of unconstructed
variables.

585 syntax error; missing start of function body after constructor initializer

Member initializers can only be used in a constructor’s definition.

Example:
struct S {

int a;
S(int x = 1) : a(x)
{
}

};

586 conversion ambiguity: [expression] to [type of default argument]

A conversion to an ambiguous base class was detected in the default argument expression.

587 conversion of expression for default argument is impossible

A conversion to a unrelated class was detected in the default argument expression.

Diagnostic Messages 525

Appendices

588 syntax error before template name ’%s’

The identifier in the error message has been declared as a template name at this point in the
code. This may be the cause of the syntax error.

589 private base class accessed to convert default argument

A conversion to a private base class was detected in the default argument expression.

590 protected base class accessed to convert default argument

A conversion to a protected base class was detected in the default argument expression.

591 operand must be an lvalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a cast cannot
be assigned into because a brand new value is always created. Assigning a new value to a
temporary is a meaningless operation.

592 left operand must be an lvalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a cast cannot
be assigned into because a brand new value is always created. Assigning a new value to a
temporary is a meaningless operation.

593 right operand must be an lvalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a cast cannot
be assigned into because a brand new value is always created. Assigning a new value to a
temporary is a meaningless operation.

594 construct resolved as a declaration/type

The C++ language contains language ambiguities that force compilers to rely on extra
information in order to understand certain language constructs. The extra information
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. See the ARM p.93 for more details. This warning is intended to inform the
programmer that an ambiguous construct has been resolved in a certain direction. In this
case, the construct has been determined to be part of a type. The final resolution varies
between compilers so it is wise to change the source code so that the construct is not
ambiguous. This is especially important in cases where the resolution is more than three
tokens away from the start of the ambiguity.

595 construct resolved as an expression

The C++ language contains language ambiguities that force compilers to rely on extra
information in order to understand certain language constructs. The extra information
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. See the ARM p.93 for more details. This warning is intended to inform the
programmer that an ambiguous construct has been resolved in a certain direction. In this
case, the construct has been determined to be part of an expression (a function-like cast).
The final resolution varies between compilers so it is wise to change the source code so that

526 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

the construct is not ambiguous. This is especially important in cases where the resolution is
more than three tokens away from the start of the ambiguity.

596 construct cannot be resolved

The C++ language contains language ambiguities that force compilers to rely on extra
information in order to understand certain language constructs. The extra information
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. See the ARM p.93 for more details. This warning is intended to inform the
programmer that an ambiguous construct could not be resolved by the compiler. Please
report this to the Open Watcom developement team so that the problem can be analysed.
See http://www.openwatcom.org/.

597 encountered another ambiguous construct during disambiguation

The C++ language contains language ambiguities that force compilers to rely on extra
information in order to understand certain language constructs. The extra information
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. See the ARM p.93 for more details. This warning is intended to inform the
programmer that another ambiguous construct was found inside an ambiguous construct.
The compiler will correctly disambiguate the construct. The programmer is advised to
change code that exhibits this warning because this is definitely uncharted territory in the
C++ language.

598 ellipsis (...) argument contains compiler generated information

A class with virtual functions or virtual bases is being passed to a function that will not
know the type of the argument. Since this information can be encoded in a variety of ways,
the code may not be portable to another environment.

Example:
struct S
{ virtual int foo();
};

static S sv;

extern int bar(S, ...);

static int test = bar(sv, 14, 64);

The call to "bar" causes a warning, since the structure S contains information associated
with the virtual function for that class.

599 cannot convert argument for ellipsis (...) argument

This argument cannot be used as an ellipsis (...) argument to a function.

Diagnostic Messages 527

Appendices

600 conversion ambiguity: [argument] to [ellipsis (...) argument]

A conversion ambiguity was detected while converting an argument to an ellipsis (...)
argument.

601 converted function type has different #pragma from original function type

Since a #pragma can affect calling conventions, one must be very careful performing casts
involving different calling conventions.

602 class value used as return value or argument in converted function type

The compiler has detected a cast between "C" and "C++" linkage function types. The
calling conventions are different because of the different language rules for copying
structures.

603 class value used as return value or argument in original function type

The compiler has detected a cast between "C" and "C++" linkage function types. The
calling conventions are different because of the different language rules for copying
structures.

604 must look ahead to determine whether construct is a declaration/type or an expression

The C++ language contains language ambiguities that force compilers to rely on extra
information in order to understand certain language constructs. The extra information
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. See the ARM p.93 for more details. This warning is intended to inform the
programmer that an ambiguous construct has been used. The final resolution varies
between compilers so it is wise to change the source code so that the construct is not
ambiguous.

605 assembler: ’%s’

An error has been detected by the #pragma inline assembler.

606 default argument expression cannot reference ’this’

The order of evaluation for function arguments is unspecified in the C++ language
document. Thus, a default argument must be able to be evaluated before the ’this’
argument (or any other argument) is evaluated.

607 #pragma aux must reference a "C" linkage function ’%S’

The method of assigning pragma information via the #pragma syntax is provided for
compatibility with Open Watcom C. Because C only allows one function per name, this
was adequate for the C language. Since C++ allows functions to be overloaded, a new
method of referencing pragmas has been introduced.

528 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#pragma aux this_in_SI parm caller [si] [ax];

struct S {
void __pragma("this_in_SI") foo(int);
void __pragma("this_in_SI") foo(char);

};

608 assignment is ambiguous for operands used

An ambiguity was detected while attempting to convert the right operand to the type of the
left operand.

Example:
struct S1 {

int a;
};

struct S2 : S1 {
int b;

};

struct S3 : S2, S1 {
int c;

};

S1* fn(S3 *p)
{

return p;
}

In the example, class S1 occurs ambiguously for an object or pointer to an object of type
S3. A pointer to an S3 object cannot be converted to a pointer to an S1 object.

609 pragma name ’%s’ is not defined

Pragmas are defined with the #pragma aux syntax. See the User’s Guide for the details of
defining a pragma name. If the pragma has been defined then check the spelling between
the definition and the reference of the pragma name.

610 ’%S’ could not be generated by the compiler

An error occurred while the compiler tried to generate the specified function. The error
prevented the compiler from generating the function properly so the compilation cannot
continue.

611 ’catch’ does not immediately follow a ’try’ or ’catch’

The catch handler syntax must be used in conjunction with a try block.

Diagnostic Messages 529

Appendices

Example:
void f()
{

try {
// code that may throw an exception
} catch(int x) {
// handle ’int’ exceptions
} catch(...) {
// handle all other exceptions
}

}

612 preceding catch specified ’...’

Since an ellipsis "..." catch handler will handle any type of exception, no further catch
handlers can exist afterwards because they will never execute. Reorder the catch handlers
so that the "..." catch handler is the last handler.

613 argument to extern "C" function contains compiler generated information

A class with virtual functions or virtual bases is being passed to a function that will not
know the type of the argument. Since this information can be encoded in a variety of ways,
the code may not be portable to another environment.

Example:
struct S
{ virtual int foo();
};

static S sv;

extern "C" int bar(S);

static int test = bar(sv);

The call to "bar" causes a warning, since the structure S contains information associated
with the virtual function for that class.

614 previous try block defined %L

This informational message indicates where a preceding try block is defined.

615 previous catch block defined %L

This informational message indicates where a preceding catch block is defined.

616 catch handler can never be invoked

Because the handlers for a try block are tried in order of appearance, the type specified in a
preceding catch can ensure that the current handler will never be invoked. This occurs
when a base class (or reference) precedes a derived class (or reference); when a pointer to a
base class (or reference to the pointer) precedes a pointer to a derived class (or reference to
the pointer); or, when "void*" or "void*&" precedes a pointer or a reference to the pointer.

530 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct BASE {};
struct DERIVED : public BASE {};

foo()
{

try {
// code for try
} catch(BASE b) { // [1]
// code
} catch(DERIVED) { // warning: [1]
// code
} catch(BASE* pb) { // [2]
// code
} catch(DERIVED* pd) {// warning: [2]
// code
} catch(void* pv) { // [3]
// code
} catch(int* pi) { // warning: [3]
// code
} catch(BASE& br) { // warning: [1]
// code
} catch(float*& pfr) {// warning: [3]
// code
}

}

Each erroneous catch specification indicates the preceding catch block which caused the
error.

617 cannot overload extern "C" functions (the other function is ’%S’)

The C++ language only allows you to overload functions that are strictly C++ functions.
The compiler will automatically generate the correct code to distinguish each particular
function based on its argument types. The extern "C" linkage mechanism only allows you
to define one "C" function of a particular name because the C language does not support
function overloading.

618 function will be overload ambiguous with ’%S’ using default arguments

The declaration declares a function that is indistinguishable from another function of the
same name with default arguments.

Example:
void fn(int, int = 1);
void fn(int);

Calling the function ’fn’ with one argument is ambiguous because it could match either the
first ’fn’ with a default argument applied or the second ’fn’ without any default arguments.

Diagnostic Messages 531

Appendices

619 linkage specification is different than previous declaration ’%S’

The linkage specification affects the binding of names throughout a program. It is
important to maintain consistency because subtle problems could arise when the incorrect
function is called. Usually this error prevents an unresolved symbol error during linking
because the name of a declaration is affected by its linkage specification.

Example:
extern "C" void fn(void);
void fn(void)
{
}

620 not enough segment registers available to generate ’%s’

Through a combination of options, the number of available segment registers is too small.
This can occur when too many segment registers are pegged. This can be fixed by
changing the command line options to only peg the segment registers that must absolutely
be pegged.

621 pure virtual destructors must have a definition

This is an anomaly for pure virtual functions. A destructor is the only special function that
is inherited and allowed to be virtual. A derived class must be able to call the base class
destructor so a pure virtual destructor must be defined in a C++ program.

622 jump into try block

Jumps cannot enter try blocks.

Example:
foo(int a)
{

if(a) goto tr_lab;

try {
tr_lab:

throw 1234;
} catch(int) {
if(a) goto tr_lab;
}

if(a) goto tr_lab;
}

All the preceding goto’s are illegal. The error is detected at the label for forward jumps and
at the goto’s for backward jumps.

532 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

623 jump into catch handler

Jumps cannot enter catch handlers.

Example:
foo(int a)
{

if(a)goto ca_lab;

try {
if(a)goto ca_lab;
} catch(int) {

ca_lab:
}

if(a)goto ca_lab;
}

All the preceding goto’s are illegal. The error is detected at the label for forward jumps and
at the goto’s for backward jumps.

624 catch block does not immediately follow try block

At least one catch handler must immediately follow the "}" of a try block.

Example:
extern void goop();
void foo()
{

try {
goop();
} // a catch block should follow!

}

In the example, there were no catch blocks after the try block.

625 exceptions must be enabled to use feature (use ’xs’ option)

Exceptions are enabled by specifying the ’xs’ option when the compiler is invoked. The
error message indicates that a feature such as try, catch, throw, or function exception
specification has been used without enabling exceptions.

626 I/O error reading ’%s’: %s"

When attempting to read data from a source or header file, the indicated system error
occurred. Likely there is a hardware problem, or the file system has become corrupt.

627 text following pre-processor directive

A #else or #endif directive was found which had tokens following it rather than an end of
line. Some UNIX style preprocessors allowed this, but it is not legal under standard C or
C++. Make the tokens into a comment.

Diagnostic Messages 533

Appendices

628 expression is not meaningful

This message indicates that the indicated expression is not meaningful. An expression is
meaningful when a function is invoked, when an assignment or initialization is performed,
or when the expression is casted to void.

Example:
void foo(int i, int j)
{

i + j; // not meaningful
}

629 expression has no side effect

The indicated expression does not cause a side effect. A side effect is caused by invoking a
function, by an assignment or an initialization, or by reading a volatile variable.

Example:
int k;
void foo(int i, int j)
{

i + j, // no side effect (note comma)
k = 3;

}

630 source conversion type is ’%T’

This informational message indicates the type of the source operand, for the preceding
conversion diagnostic.

631 target conversion type is ’%T’

This informational message indicates the target type of the conversion, for the preceding
conversion diagnostic.

632 redeclaration of ’%S’ has different attributes

A function cannot be made virtual or pure virtual in a subsequent declaration. All
properties of a function should be described in the first declaration of a function. This is
especially important for member functions because the properties of a class are affected by
its member functions.

Example:
struct S {

void fun();
};

virtual void S::fun()
{
}

534 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

633 template class instantiation for ’%T’ was %L

This informational message indicates that the error or warning was detected during the
instantiation of a class template. The final type of the template class is shown as well as the
location in the source where the instantiation was initiated.

634 template function instantiation for ’%S’ was %L

This informational message indicates that the error or warning was detected during the
instantiation of a function template. The final type of the template function is shown as
well as the location in the source where the instantiation was initiated.

635 template class member instantiation was %L

This informational message indicates that the error or warning was detected during the
instantiation of a member of a class template. The location in the source where the
instantiation was initiated is shown.

636 function template binding for ’%S’ was %L

This informational message indicates that the error or warning was detected during the
binding process of a function template. The binding process occurs at the point where
arguments are analysed in order to infer what types should be used in a function template
instantiation. The function template in question is shown along with the location in the
source code that initiated the binding process.

637 function template binding of ’%S’ was %L

This informational message indicates that the error or warning was detected during the
binding process of a function template. The binding process occurs at the point where a
function prototype is analysed in order to see if the prototype matches any function
template of the same name. The function template in question is shown along with the
location in the source code that initiated the binding process.

638 ’%s’ defined %L

This informational message indicates where the class in question was defined. The
message is displayed following an error or warning diagnostic for the class in question.

Example:
class S;
int foo(S*p)
{

return p->x;
}

The variable p is a pointer to an undefined class and so will cause an error to be generated.
Following the error, the informational message indicates the line at which the class S was
declared.

Diagnostic Messages 535

Appendices

639 form is ’#pragma template_depth level’ where ’level’ is a non-zero number

This pragma sets the number of times templates will be instantiated for nested
instantiations. The depth check prevents infinite compile times for incorrect programs.

640 possible non-terminating template instantiation (use "#pragma template_depth %d" to
increase depth)

This message indicates that a large number of expansions were required to complete a
template class or template function instantiation. This may indicate that there is an
erroneous use of a template. If the program will complete given more depth, try using the
suggested #pragma in the error message to increase the depth. The number provided is
double the previous value.

641 cannot inherit a partially defined base class ’%T’

This message indicates that the base class was in the midst of being defined when it was
inherited. The storage requirements for a class type must be known when inheritance is
involved because the layout of the final class depends on knowing the complete contents of
all base classes.

Example:
struct Partial {

struct Nested : Partial {
int n;
};

};

642 ambiguous function: %F defined %L

This informational message shows the functions that were detected to be ambiguous.

Example:
int amb(char); // will be ambiguous
int amb(unsigned char); // will be ambiguous
int amb(char, char);
int k = amb(14);

The constant value 14 has an int type and so the attempt to invoke the function amb is
ambiguous. The first two functions are ambiguous (and will be displayed); the third is not
considered (nor displayed) since it is declared to have a different number of arguments.

643 cannot convert argument %d defined %L

This informational message indicates the first argument which could not be converted to
the corresponding type for the declared function. It is displayed when there is exactly one
function declared with the indicated name.

536 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

644 ’this’ cannot be converted

This informational message indicates the this pointer for the function which could not be
converted to the type of the this pointer for the declared function. It is displayed when
there is exactly one function declared with the indicated name.

645 rejected function: %F defined %L

This informational message shows the overloaded functions which were rejected from
consideration during function-overload resolution. These functions are displayed when
there is more than one function with the indicated name.

646 ’%T’ operator can be used

Following a diagnosis of operator ambiguity, this information message indicates that the
operator can be applied with operands of the type indicated in the message.

Example:
struct S {

S(int);
operator int();
S operator+(int);

};
S s(15);
int k = s + 123; // "+" is ambiguous

In the example, the "+" operation is ambiguous because it can implemented as by the
addition of two integers (with S::operator int applied to the second operand) or by a
call to S::operator+. This informational message indicates that the first is possible.

647 cannot #undef ’%s’

The predefined macros __cplusplus, __DATE__, __FILE__, __LINE__,
__STDC__, __TIME__, __FUNCTION__ and__func__ cannot be undefined using
the #undef directive.

Example:
#undef __cplusplus
#undef __DATE__
#undef __FILE__
#undef __LINE__
#undef __STDC__
#undef __TIME__
#undef __FUNCTION__
#undef __func__

All of the preceding directives are not permitted.

Diagnostic Messages 537

Appendices

648 cannot #define ’%s’

The predefined macros __cplusplus, __DATE__, __FILE__, __LINE__,
__STDC__, and__TIME__ cannot be defined using the #define directive.

Example:
#define __cplusplus 1
#define __DATE__ 2
#define __FILE__ 3
#define __LINE__ 4
#define __STDC__ 5
#define __TIME__ 6

All of the preceding directives are not permitted.

649 template function ’%F’ defined %L

This informational message indicates where the function template in question was defined.
The message is displayed following an error or warning diagnostic for the function
template in question.

Example:
template <class T>

void foo(T, T *)
{
}

void bar()
{

foo(1); // could not instantiate
}

The function template for foo cannot be instantiated for a single argument causing an error
to be generated. Following the error, the informational message indicates the line at which
foo was declared.

650 ambiguous function template: %F defined %L

This informational message shows the function templates that were detected to be
ambiguous for the arguments at the call point.

651 cannot instantiate %S

This message indicates that the function template could not be instantiated for the
arguments supplied. It is displayed when there is exactly one function template declared
with the indicated name.

538 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

652 rejected function template: %F defined %L

This informational message shows the overloaded function template which was rejected
from consideration during function-overload resolution. These functions are displayed
when there is more than one function or function template with the indicated name.

653 operand cannot be a function

The indicated operation cannot be applied to a function.

Example:
int Fun();
int j = ++Fun; // illegal

In the example, the attempt to increment a function is illegal.

654 left operand cannot be a function

The indicated operation cannot be applied to the left operand which is a function.

Example:
extern int Fun();
void foo()
{

Fun = 0; // illegal
}

In the example, the attempt to assign zero to a function is illegal.

655 right operand cannot be a function

The indicated operation cannot be applied to the right operand which is a function.

Example:
extern int Fun();
void foo()
{

void* p = 3[Fun]; // illegal
}

In the example, the attempt to subscript a function is illegal.

656 define this function inside its class definition (may improve code quality)

The Open Watcom C++ compiler has found a constructor or destructor with an empty
function body. An empty function body can usually provide optimization opportunities so
the compiler is indicating that by defining the function inside its class definition, the
compiler may be able to perform some important optimizations.

Diagnostic Messages 539

Appendices

Example:
struct S {

~S();
};

S::~S() {
}

657 define this function inside its class definition (could have improved code quality)

The Open Watcom C++ compiler has found a constructor or destructor with an empty
function body. An empty function body can usually provide optimization opportunities so
the compiler is indicating that by defining the function inside its class definition, the
compiler may be able to perform some important optimizations. This particular warning
indicates that the compiler has already found an opportunity in previous code but it found
out too late that the constructor or destructor had an empty function body.

Example:
struct S {

~S();
};
struct T : S {

~T() {}
};

S::~S() {
}

658 cannot convert address of overloaded function ’%S’

This information message indicates that an address of an overloaded function cannot be
converted to the indicated type.

Example:
int ovload(char);
int ovload(float);
int routine(int (*)(int);
int k = routine(ovload);

The first argument for the function routine cannot be converted, resulting in the
informational message.

659 expression cannot have void type

The indicated expression cannot have a void type.

Example:
main(int argc, char* argv)
{

if((void)argc) {
return 5;
} else {
return 9;
}

}

540 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Conditional expressions, such as the one illustrated in the if statement cannot have a void
type.

660 cannot reference a bit field

The smallest addressable unit is a byte. You cannot reference a bit field.

Example:
struct S
{ int bits :6;

int bitfield :10;
};
S var;
int& ref = var.bitfield; // illegal

661 cannot assign to object having an undefined class

An assignment cannot be be made to an object whose class has not been defined.

Example:
class X; // declared, but not defined
extern X& foo(); // returns reference (ok)
extern X obj;
void goop()
{

obj = foo(); // error
}

662 cannot create member pointer to constructor

A member pointer value cannot reference a constructor.

Example:
class C {

C();
};
int foo()
{

return 0 == &C::C;
}

663 cannot create member pointer to destructor

A member pointer value cannot reference a destructor.

Example:
class C {

~C();
};
int foo()
{

return 0 == &C::~C;
}

Diagnostic Messages 541

Appendices

664 attempt to initialize a non-constant reference with a temporary object

A temporary value cannot be converted to a non-constant reference type.

Example:
struct C {

C(C&);
C(int);

};

C & c1 = 1;
C c2 = 2;

The initializations of c1 and c2 are erroneous, since temporaries are being bound to
non-const references. In the case of c1, an implicit constructor call is required to convert
the integer to the correct object type. This results in a temporary object being created to
initialize the reference. Subsequent code can modify this temporary’s state. The
initialization of c2, is erroneous for a similar reason. In this case, the temporary is being
bound to the non-const reference argument of the copy constructor.

665 temporary object used to initialize a non-constant reference

Ordinarily, a temporary value cannot be bound to a non-constant reference. There is
enough legacy code present that the Open Watcom C++ compiler issues a warning in cases
that should be errors. This may change in the future so it is advisable to correct the code as
soon as possible.

666 assuming unary ’operator &’ not overloaded for type ’%T’

An explicit address operator can be applied to a reference to an undefined class. The Open
Watcom C++ compiler will assume that the address is required but it does not know
whether this was the programmer’s intention because the class definition has not been seen.

Example:
struct S;

S * fn(S &y) {
// assuming no operator ’&’ defined
return &y;

}

667 ’va_start’ macro will not work without an argument before ’...’

The warning indicates that it is impossible to access the arguments passed to the function
without declaring an argument before the "..." argument. The "..." style of argument list
(without any other arguments) is only useful as a prototype or if the function is designed to
ignore all of its arguments.

542 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void fn(...)
{
}

668 ’va_start’ macro will not work with a reference argument before ’...’

The warning indicates that taking the address of the argument before the "..." argument,
which ’va_start’ does in order to access the variable list of arguments, will not give the
expected result. The arguments will have to be rearranged so that an acceptable argument
is declared before the "..." argument or a dummy int argument can be inserted after the
reference argument with the corresponding adjustments made to the callers of the function.

Example:
#include <stdarg.h>

void fn(int &r, ...)
{

va_list args;

// address of ’r’ is address of
// object ’r’ references so
// ’va_start’ will not work properly
va_start(args, r);
va_end(args);

}

669 ’va_start’ macro will not work with a class argument before ’...’

This warning is specific to C++ compilers that quietly convert class arguments to class
reference arguments. The warning indicates that taking the address of the argument before
the "..." argument, which ’va_start’ does in order to access the variable list of arguments,
will not give the expected result. The arguments will have to be rearranged so that an
acceptable argument is declared before the "..." argument or a dummy int argument can be
inserted after the class argument with the corresponding adjustments made to the callers of
the function.

Example:
#include <stdarg.h>

struct S {
S();

};

void fn(S c, ...)
{

va_list args;

// Open Watcom C++ passes a pointer to
// the temporary created for passing
// ’c’ rather than pushing ’c’ on the
// stack so ’va_start’ will not work
// properly
va_start(args, c);
va_end(args);

}

Diagnostic Messages 543

Appendices

670 function modifier conflicts with previous declaration ’%S’

The symbol declaration conflicts with a previous declaration with regard to function
modifiers. Either the previous declaration did not have a function modifier or it had a
different one.

Example:
#pragma aux never_returns aborts;

void fn(int, int);
void __pragma("never_returns") fn(int, int);

671 function modifier cannot be used on a variable

The symbol declaration has a function modifier being applied to a variable or non-function.
The cause of this may be a declaration with a missing function argument list.

Example:
int (* __pascal ok)();
int (* __pascal not_ok);

672 ’%T’ contains the following pure virtual functions

This informational message indicates that the class contains pure virtual function
declarations. The class is definitely abstract as a result and cannot be used to declare
variables. The pure virtual functions declared in the class are displayed immediately
following this message.

Example:
struct A {

void virtual fn(int) = 0;
};

A x;

673 ’%T’ has no implementation for the following pure virtual functions

This informational message indicates that the class is derived from an abstract class but the
class did not override enough virtual function declarations. The pure virtual functions
declared in the class are displayed immediately following this message.

Example:
struct A {

void virtual fn(int) = 0;
};
struct D : A {
};

D x;

544 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

674 pure virtual function ’%F’ defined %L

This informational message indicates that the pure virtual function has not been overridden.
This means that the class is abstract.

Example:
struct A {

void virtual fn(int) = 0;
};
struct D : A {
};

D x;

675 restriction: standard calling convention required for ’%S’

The indicated function may be called by the C++ run-time system using the standard
calling convention. The calling convention specified for the function is incompatible with
the standard convention. This message may result when __pascal is specified for a
default constructor, a copy constructor, or a destructor. It may also result when parm
reverse is specified in a #pragma for the function.

676 number of arguments in function call is incorrect

The number of arguments in the function call does not match the number declared for the
function type.

Example:
extern int (*pfn)(int, int);
int k = pfn(1, 2, 3);

In the example, the function pointer was declared to have two arguments. Three arguments
were used in the call.

677 function has type ’%T’

This informational message indicates the type of the function being called.

678 invalid octal constant

The constant started with a ’0’ digit which makes it look like an octal constant but the
constant contained the digits ’8’ and ’9’. The problem could be an incorrect octal constant
or a missing ’.’ for a floating constant.

Example:
int i = 0123456789; // invalid octal constant
double d = 0123456789; // missing ’.’?

Diagnostic Messages 545

Appendices

679 class template definition started %L

This informational message indicates where the class template definition started so that any
problems with missing braces can be fixed quickly and easily.

Example:
template <class T>

struct S {
void f1() {
// error missing ’}’
};

template <class T>
struct X {
void f2() {
}
};

680 constructor initializer started %L

This informational message indicates where the constructor initializer started so that any
problems with missing parenthesis can be fixed quickly and easily.

Example:
struct S {

S(int x) : a(x), b(x // missing parenthesis
{
}

};

681 zero size array must be the last data member

The language extension that allows a zero size array to be declared in a class definition
requires that the array be the last data member in the class.

Example:
struct S {

char a[];
int b;

};

682 cannot inherit a class that contains a zero size array

The language extension that allows a zero size array to be declared in a class definition
disallows the use of the class as a base class. This prevents the programmer from
corrupting storage in derived classes through the use of the zero size array.

Example:
struct B {

int b;
char a[];

};
struct D : B {

int d;
};

546 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

683 zero size array ’%S’ cannot be used in a class with base classes

The language extension that allows a zero size array to be declared in a class definition
requires that the class not have any base classes. This is required because the C++ compiler
must be free to organize base classes in any manner for optimization purposes.

Example:
struct B {

int b;
};
struct D : B {

int d;
char a[];

};

684 cannot catch abstract class object

C++ does not allow abstract classes to be instantiated and so an abstract class object cannot
be specified in a catch clause. It is permissible to catch a reference to an abstract class.

Example:
class Abstract {
public:

virtual int foo() = 0;
};

class Derived : Abstract {
public:

int foo();
};

int xyz;

void func(void) {
try {
throw Derived();
} catch(Abstract abstract) { // object
xyz = 1;
}

}

The catch clause in the preceding example would be diagnosed as improper, since an
abstract class is specified. The example could be coded as follows.

Example:

Diagnostic Messages 547

Appendices

class Abstract {
public:

virtual int foo() = 0;
};

class Derived : Abstract {
public:

int foo();
};

int xyz;

void func(void) {
try {
throw Derived();
} catch(Abstract & abstract) { // reference
xyz = 1;
}

}

685 non-static member function ’%S’ cannot be specified

The indicated non-static member function cannot be used in this context. For example,
such a function cannot be used as the second or third operand of the conditional operator.

Example:
struct S {

int foo();
int bar();
int fun();

};

int S::fun(int i) {
return (i ? foo : bar)();

}

Neither foo nor bar can be specified as shown in the example. The example can be
properly coded as follows:

Example:
struct S {

int foo();
int bar();
int fun();

};

int S::fun(int i) {
return i ? foo() : bar();

}

548 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

686 attempt to convert pointer or reference from a base to a derived class

A pointer or reference to a base class cannot be converted to a pointer or reference,
respectively, of a derived class, unless there is an explicit cast. The return statements in
the following example will be diagnosed.

Example:
struct Base {};
struct Derived : Base {};

Base b;

Derived* ReturnPtr() { return &b; }
Derived& ReturnRef() { return b; }

The following program would be acceptable:

Example:
struct Base {};
struct Derived : Base {};

Base b;

Derived* ReturnPtr() { return (Derived*)&b; }
Derived& ReturnRef() { return (Derived&)b; }

687 expression for ’while’ is always true

The compiler has detected that the expression will always be true. Consequently, the loop
will execute infinitely unless there is a break statement within the loop or a throw
statement is executed while executing within the loop. If such an infinite loop is required,
it can be coded as for(;) without causing warnings.

688 testing expression for ’for’ is always true

The compiler has detected that the expression will always be true. Consequently, the loop
will execute infinitely unless there is a break statement within the loop or a throw
statement is executed while executing within the loop. If such an infinite loop is required,
it can be coded as for(;) without causing warnings.

689 conditional expression is always true (non-zero)

The indicated expression is a non-zero constant and so will always be true.

690 conditional expression is always false (zero)

The indicated expression is a zero constant and so will always be false.

Diagnostic Messages 549

Appendices

691 expecting a member of ’%T’ to be defined in this context

A class template member definition must define a member of the associated class template.
The complexity of the C++ declaration syntax can make this error hard to identify visually.

Example:
template <class T>

struct S {
typedef int X;
static X fn(int);
static X qq;
};

template <class T>
S<T>::X fn(int) {// should be ’S<T>::fn’

return fn(2);
}

template <class T>
S<T>::X qq = 1; // should be ’S<T>::q’

S<int> x;

692 cannot throw an abstract class

An abstract class cannot be thrown since copies of that object may have to be made (which
is impossible);

Example:
struct abstract_class {

abstract_class(int);
virtual int foo() = 0;

};

void goop()
{

throw abstract_class(17);
}

The throw expression is illegal since it specifies an abstract class.

693 cannot create pre-compiled header file ’%s’

The compiler has detected a problem while trying to open the pre-compiled header file for
write access.

694 error occurred while writing pre-compiled header file

The compiler has detected a problem while trying to write some data to the pre-compiled
header file.

550 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

695 error occurred while reading pre-compiled header file

The compiler has detected a problem while trying to read some data from the pre-compiled
header file.

696 pre-compiled header file being recreated

The existing pre-compiled header file may either be corrupted or is a version that the
compiler cannot use due to updates to the compiler. A new version of the pre-compiled
header file will be created.

697 pre-compiled header file being recreated (different compile options)

The compiler has detected that the command line options have changed enough so the
contents of the pre-compiled header file cannot be used. A new version of the
pre-compiled header file will be created.

698 pre-compiled header file being recreated (different #include file)

The compiler has detected that the first #include file name is different so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

699 pre-compiled header file being recreated (different current directory)

The compiler has detected that the working directory is different so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

700 pre-compiled header file being recreated (different INCLUDE path)

The compiler has detected that the INCLUDE path is different so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

701 pre-compiled header file being recreated (’%s’ has been modified)

The compiler has detected that an include file has changed so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

702 pre-compiled header file being recreated (macro ’%s’ is different)

The compiler has detected that a macro definition is different so the contents of the
pre-compiled header file cannot be used. The macro was referenced during processing of
the header file that created the pre-compiled header file so the contents of the pre-compiled
header may be affected. A new version of the pre-compiled header file will be created.

Diagnostic Messages 551

Appendices

703 pre-compiled header file being recreated (macro ’%s’ is not defined)

The compiler has detected that a macro has not been defined so the contents of the
pre-compiled header file cannot be used. The macro was referenced during processing of
the header file that created the pre-compiled header file so the contents of the pre-compiled
header may be affected. A new version of the pre-compiled header file will be created.

704 command line specifies smart windows callbacks and DS not equal to SS

An illegal combination of switches has been detected. The windows smart callbacks option
cannot be combined with either of the build DLL or DS not equal to SS options.

705 class ’%N’ cannot be used with #pragma dump_object_model

The indicated name has not yet been declared or has been declared but not yet been defined
as a class. Consequently, the object model cannot be dumped.

706 repeated modifier is ’%s’

This informational message indicates what modifier was repeated in the declaration.

Example:
typedef int __far FARINT;
FARINT __far *p; // repeated __far modifier

707 semicolon (’;’) may be missing after class/enum definition

This informational message indicates that a missing semicolon (’;’) may be the cause of the
error.

Example:
struct S {

int x,y;
S(int, int);

} // missing semicolon ’;’

S::S(int x, int y) : x(x), y(y) {
}

708 cannot return a type of unknown size

A value of an unknown type cannot be returned.

Example:
class S;
S foo();

int goo()
{

foo();
}

In the example, foo cannot be invoked because the class which it returns has not been
defined.

552 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

709 cannot initialize array member ’%S’

An array class member cannot be specified as a constructor initializer.

Example:
class S {
public:

int arr[3];
S();

};
S::S() : arr(1, 2, 3) {}

In the example, arr cannot be specified as a constructor initializer. Instead, the array may
be initialized within the body of the constructor.

Example:
class S {
public:

int arr[3];
S();

};
S::S()
{

arr[0] = 1;
arr[1] = 2;
arr[2] = 3;

}

710 file ’%s’ will #include itself forever

The compiler has detected that the file in the message has been #include from within itself
without protecting against infinite inclusion. This can happen if #ifndef and #define header
file protection has not been used properly.

Example:
#include __FILE__

711 ’mutable’ may only be used for non-static class members

A declaration in file scope or block scope cannot have a storage class of mutable.

Example:
mutable int a;

712 ’mutable’ member cannot also be const

A mutable member can be modified even if its class object is const. Due to the semantics
of mutable, the programmer must decide whether a member will be const or mutable
because it cannot be both at the same time.

Diagnostic Messages 553

Appendices

Example:
struct S {

mutable const int * p; // OK
mutable int * const q; // error

};

713 left operand cannot be of type bool

The left hand side of an assignment operator cannot be of type bool except for simple
assignment. This is a restriction required in the C++ language.

Example:
bool q;

void fn()
{

q += 1;
}

714 operand cannot be of type bool

The operand of both postfix and prefix "--" operators cannot be of type bool. This is a
restriction required in the C++ language.

Example:
bool q;

void fn()
{

--q; // error
q--; // error

}

715 member ’%N’ has not been declared in ’%T’

The compiler has found a member which has not been previously declared. The symbol
may be spelled differently than the declaration, or the declaration may simply not be
present.

Example:
struct X { int m; };

void fn(X *p)
{

p->x = 1;
}

716 integral value may be truncated

This message indicates that the compiler knows that all values will not be preserved after
the assignment or initialization. If this is acceptable, cast the value to the appropriate type
in the assignment or initialization.

554 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
char inc(char c)
{

return c + 1;
}

717 left operand type is ’%T’

This informational message indicates the type of the left hand side of the expression.

718 right operand type is ’%T’

This informational message indicates the type of the right hand side of the expression.

719 operand type is ’%T’

This informational message indicates the type of the operand.

720 expression type is ’%T’

This informational message indicates the type of the expression.

721 virtual function ’%S’ cannot have its return type changed

This restriction is due to the relatively new feature in the C++ language that allows return
values to be changed when a virtual function has been overridden. It is not possible to
support both features because in order to support changing the return value of a function,
the compiler must construct a "wrapper" function that will call the virtual function first and
then change the return value and return. It is not possible to do this with "..." style
functions because the number of parameters is not known.

Example:
struct B {
};
struct D : virtual B {
};

struct X {
virtual B *fn(int, ...);

};
struct Y : X {

virtual D *fn(int, ...);
};

722 __declspec(’%N’) is not supported

The identifier used in the __declspec declaration modifier is not supported by Open
Watcom C++.

Diagnostic Messages 555

Appendices

723 attempt to construct a far object when data model is near

Constructors cannot be applied to objects which are stored in far memory when the default
memory model for data is near.

Example:
struct Obj
{ char *p;

Obj();
};

Obj far obj;

The last line causes this error to be displayed when the memory model is small (switch
-ms), since the memory model for data is near.

724 -zo is an obsolete switch (has no effect)

The -zo option was required in an earlier version of the compiler but is no longer used.

725 "%s"

This is a user message generated with the #pragma message preprocessing directive.

Example:
#pragma message("my very own warning");

726 no reference to formal parameter ’%S’

There are no references to the declared formal parameter. The simplest way to remove this
warning in C++ is to remove the name from the argument declaration.

Example:
int fn1(int a, int b, int c)
{

// ’b’ not referenced
return a + c;

}
int fn2(int a, int /* b */, int c)
{

return a + c;
}

727 cannot dereference a pointer to void

A pointer to void is used as a generic pointer but it cannot be dereferenced.

556 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void fn(void *p)
{

return *p;
}

728 class modifiers for ’%T’ conflict with class modifiers for ’%T’

A conflict between class modifiers for classes related through inheritance has been
detected. A conflict will occur if two base classes have class modifiers that are different.
The conflict can be resolved by ensuring that all classes related through inheritance have
the same class modifiers. The default resolution is to have no class modifier for the derived
base.

Example:
struct __cdecl B1 {

void fn(int);
};
struct __stdcall B2 {

void fn(int);
};
struct D : B1, B2 {
};

729 invalid hexadecimal constant

The constant started with a ’0x’ prefix which makes it look like a hexadecimal constant but
the constant was not followed by any hexadecimal digits.

Example:
unsigned i = 0x; // invalid hex constant

730 return type of ’operator ->’ will not allow ’->’ to be applied

This restriction is a result of the transformation that the compiler performs when the
operator -> is overloaded. The transformation involves transforming the expression to
invoke the operator with "->" applied to the result of operator ->. This warning indicates
that the operator -> can never be used as an overloaded operator. The only way the
operator can be used is to explicitly call it by name.

Example:
struct S {

int a;
void *operator ->();

};

void *fn(S &q)
{

return q.operator ->();
}

Diagnostic Messages 557

Appendices

731 class should have a name since it needs a constructor or a destructor

The class definition does not have a class name but it includes members that have
constructors or destructors. Since the class has C++ semantics, it should be have a name in
case the constructor or destructor needs to be referenced.

Example:
struct P {

int x,y;
P();

};

typedef struct {
P c;
int v;

} T;

732 class should have a name since it inherits a class

The class definition does not have a class name but it inherits a class. Since the class has
C++ semantics, it should be have a name in case the constructor or destructor needs to be
referenced.

Example:
struct P {

int x,y;
P();

};

typedef struct : P {
int v;

} T;

733 cannot open pre-compiled header file ’%s’

The compiler has detected a problem while trying to open the pre-compiled header file for
read/write access.

734 invalid second argument to va_start

The second argument to the va_start macro should be the name of the argument just before
the "..." in the argument list.

735 ’//’ style comment continues on next line

The compiler has detected a line continuation during the processing of a C++ style
comment ("//"). The warning can be removed by switching to a C style comment ("/**/").
If you require the comment to be terminated at the end of the line, make sure that the
backslash character is not the last character in the line.

558 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#define XX 23 // comment start \
comment \
end

int x = XX; // comment start ...\
comment end

736 cannot open file ’%s’ for write access

The compiler has detected a problem while trying to open the indicated file for write
access.

737 implicit conversion of pointers to integral types of same size

The compiler allows, when extensions are enabled, implicit conversions between pointers
to integral types when the size of the integral types are the same. Thus, conversions from
unsigned char to either char or signed char would be allowed. This is an extension as the
ISO/ANSI Draft Working Paper permits implicit conversions only when the types pointed
at are identical.

According to the ISO/ANSI Draft Working Paper, a string literal is an array of char.
Consequently, it is illegal to initialize or assign the pointer resulting from that literal to a
pointer of either unsigned char or signed char, since these pointers point at objects of a
different type. When extensions are enabled, this condition is diagnosed as a warning;
otherwise, it is an error.

738 option requires a number

The specified option is not recognized by the compiler since there was no number after it
(i.e., "-w=1"). Numbers must be non-negative decimal numbers.

739 option -fc specified more than once

The -fc option can be specified at most once on a command line.

740 option -fc specified in batch file of commands

The -fc option cannot be specified on a line in the batch file of command lines specified by
the -fc option on the command line used to invoke the compiler.

741 file specified by -fc is empty or cannot be read

The file specified using the -fc option is either empty or an input/output error was
diagnosed for the file.

Diagnostic Messages 559

Appendices

742 cannot open file specified by -fc option

The compiler was unable to open the indicated file. Most likely, the file does not exist. An
input/output error is also possible.

743 input/output error reading the file specified by -fc option

The compiler was unable to open the indicated file. Most likely, the file does not exist. An
input/output error is also possible.

744 ’%N’ does not have a return type specified (int assumed)

In C++, operator functions should have an explicit return type specified. In future revisions
of the ISO/ANSI C++ standard, the use of default int type specifiers may be prohibited so
removing any dependencies on default int early will prevent problems in the future.

Example:
struct S {

operator = (S const &);
operator += (S const &);

};

745 cannot initialize reference to non-constant with a constant object

A reference to a non-constant object cannot be initialized with a reference to a constant
type because this would allow constant data to be modified via the non-constant pointer to
it.

Example:
extern const int *pic;
extern int & ref = pic;

746 processing %s

This informational message indicates where an error or warning was detected while
processing the switches specified on the command line, in environment variables, in
command files (using the ’@’ notation), or in the batch command file (specified using the
-fc option).

747 class ’%T’ has not been defined

This informational message indicates a class which was not defined. This is noted
following an error or warning message because it often helps to a user to determine the
cause of that diagnostic.

748 cannot catch undefined class object

C++ does not allow abstract classes to be copied and so an undefined class object cannot be
specified in a catch clause. It is permissible to catch a reference to an undefined class.

560 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

749 class ’%T’ cannot be used since its definition has errors

The analysis of the expression could not continue due to previous errors diagnosed in the
class definition.

750 function prototype in block scope missing ’extern’

This warning can be triggered when the intent is to define a variable with a constructor.
Due to the complexities of parsing C++, statements that appear to be variable definitions
may actually parse as a function prototype. A work-around for this problem is contained in
the example. If a prototype is desired, add the extern storage class to remove this warning.

Example:
struct C {
};
struct S {

S(C);
};
void foo()
{

S a(C()); // function prototype!
S b((C()));// variable definition

int bar(int);// warning
extern int sam(int); // no warning

}

751 function prototype is ’%T’

This informational message indicates what the type of the function prototype is for the
message in question.

752 class ’%T’ contains a zero size array

This warning is triggered when a class with a zero sized array is used in an array or as a
class member. This is a questionable practice since a zero sized array at the end of a class
often indicates a class that is dynamically sized when it is constructed.

Example:
struct C {

C *next;
char name[];

};

struct X {
C q;

};

C a[10];

Diagnostic Messages 561

Appendices

753 invalid ’new’ modifier

The Open Watcom C++ compiler does not support new expression modifiers but allows
them to match the ambient memory model for compatibility. Invalid memory model
modifiers are also rejected by the compiler.

Example:
int *fn(unsigned x)
{

return new __interrupt int[x];
}

754 ’__declspec(thread)’ data ’%S’ must be link-time initialized

This error message indicates that the data item in question either requires a constructor,
destructor, or run-time initialization. This cannot be supported for thread-specific data at
this time.

Example:
#include <stdlib.h>

struct C {
C();

};
struct D {

~D();
};

C __declspec(thread) c;
D __declspec(thread) d;
int __declspec(thread) e = rand();

755 code may not work properly if this module is split across a code segment

The "zm" option allows the compiler to generate functions into separate segments that have
different names so that more than 64k of code can be generated in one object file.
Unfortunately, if an explicit near function is coded in a large code model, the possibility
exists that the linker can place the near function in a separate code segment than a function
that calls it. This would cause a linker error followed by an execution error if the
executable is executed. The "zmf" option can be used if you require explicit near functions
in your code.

Example:

562 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

// These functions may not end up in the
// same code segment if the -zm option
// is used. If this is the case, the near
// call will not work since near functions
// must be in the same code segment to
// execute properly.
static int near near_fn(int x)
{

return x + 1;
}

int far_fn(int y)
{

return near_fn(y * 2);
}

756 #pragma extref: symbol ’%N’ not declared

This error message indicates that the symbol referenced by #pragma extref has not been
declared in the context where the pragma was encountered.

757 #pragma extref: overloaded function ’%S’ cannot be used

An external reference can be emitted only for external functions which are not overloaded.

758 #pragma extref: ’%N’ is not a function or data

This error message indicates that the symbol referenced by #pragma extref cannot have an
external reference emitted for it because the referenced symbol is neither a function nor a
data item. An external reference can be emitted only for external functions which are not
overloaded and for external data items.

759 #pragma extref: ’%S’ is not external

This error message indicates that the symbol referenced by #pragma extref cannot have an
external reference emitted for it because the symbol is not external. An external reference
can be emitted only for external functions which are not overloaded and for external data
items.

760 pre-compiled header file being recreated (debugging info may change)

The compiler has detected that the module being compiled was used to create debugging
information for use by other modules. In order to maintain correctness, the pre-compiled
header file must be recreated along with the object file.

761 octal escape sequence out of range; truncated

This message indicates that the octal escape sequence produces an integer that cannot fit
into the required character type.

Diagnostic Messages 563

Appendices

Example:
char *p = "\406";

762 binary operator ’%s’ missing right operand

There is no expression to the right of the indicated binary operator.

763 binary operator ’%s’ missing left operand

There is no expression to the left of the indicated binary operator.

764 expression contains extra operand(s)

The expression contains operand(s) without an operator

765 expression contains consecutive operand(s)

More than one operand found in a row.

766 unmatched right parenthesis ’)’

The expression contains a right parenthesis ")" without a matching left parenthesis.

767 unmatched left parenthesis ’(’

The expression contains a left parenthesis "(" without a matching right parenthesis.

768 no expression between parentheses ’()’

There is a matching set of parenthesis "()" which do not contain an expression.

769 expecting ’:’ operator in conditional expression

A conditional expression exists without the ’:’ operator.

770 expecting ’?’ operator in conditional expression

A conditional expression exists without the ’?’ operator.

771 expecting first operand in conditional expression

A conditional expression exists without the first operand.

772 expecting second operand in conditional expression

A conditional expression exists without the second operand.

564 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

773 expecting third operand in conditional expression

A conditional expression exists without the third operand.

774 expecting operand after unary operator ’%s’

A unary operator without being followed by an operand.

775 ’%s’ unexpected in constant expression

’%s’ not allowed in constant expression

776 assembler: ’%s’

A warning has been issued by the #pragma inline assembler.

777 expecting ’id’ after ’::’ but found ’%s’

The ’::’ operator has an invalid token following it.

Example:
#define fn(x) ((x)+1)

struct S {
int inc(int y) {
return ::fn(y);
}

};

778 only constructors can be declared explicit

Currently, only constructors can be declared with the explicit keyword.

Example:
int explicit fn(int x) {

return x + 1;
}

779 const_cast type must be pointer, member pointer, or reference

The type specified in a const_cast operator must be a pointer, a pointer to a member of a
class, or a reference.

Example:
extern int const *p;
long lp = const_cast<long>(p);

Diagnostic Messages 565

Appendices

780 const_cast expression must be pointer to same kind of object

Ignoring const and volatile qualification, the expression must be a pointer to the same type
of object as that specified in the const_cast operator.

Example:
extern int const * ip;
long* lp = const_cast<long*>(ip);

781 const_cast expression must be lvalue of the same kind of object

Ignoring const and volatile qualification, the expression must be an lvalue or reference to
the same type of object as that specified in the const_cast operator.

Example:
extern int const i;
long& lr = const_cast<long&>(i);

782 expression must be pointer to member from same class in const_cast

The expression must be a pointer to member from the same class as that specified in the
const_cast operator.

Example:
struct B {

int ib;
};
struct D : public B {
};
extern int const B::* imb;
int D::* imd const_cast<int D::*>(imb);

783 expression must be member pointer to same type as specified in const_cast

Ignoring const and volatile qualification, the expression must be a pointer to member of the
same type as that specified in the const_cast operator.

Example:
struct B {

int ib;
long lb;

};
int D::* imd const_cast<int D::*>(&B::lb);

784 reinterpret_cast expression must be pointer or integral object

When a pointer type is specified in the reinterpret_cast operator, the expression must be a
pointer or an integer.

566 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
extern float fval;
long* lp = const_cast<long*>(fval);

The expression has float type and so is illegal.

785 reinterpret_cast expression cannot be casted to reference type

When a reference type is specified in the reinterpret_cast operator, the expression must be
an lvalue (or have reference type). Additionally, constness cannot be casted away.

Example:
extern long f;
extern const long f2;
long& lr1 = const_cast<long&>(f + 2);
long& lr2 = const_cast<long&>(f2);

Both initializations are illegal. The first cast expression is not an lvalue. The second cast
expression attempts to cast away constness.

786 reinterpret_cast expression cannot be casted to pointer to member

When a pointer to member type is specified in the reinterpret_cast operator, the expression
must be a pointer to member. Additionally, constness cannot be casted away.

Example:
extern long f;
struct S {

const long f2;
S();

};
long S::* mp1 = const_cast<long S:: *>(f);
long S::* mp2 = const_cast<long S:: *>(&S::f2);

Both initializations are illegal. The first cast expression does not involve a member pointer.
The second cast expression attempts to cast away constness.

787 only integral arithmetic types can be used with reinterpret_cast

Pointers can only be casted to sufficiently large integral types.

Example:
void* p;
float f = reinterpret_cast<float>(p);

The cast is illegal because float type is specified.

Diagnostic Messages 567

Appendices

788 only integral arithmetic types can be used with reinterpret_cast

Only integral arithmetic types can be casted to pointer types.

Example:
float flt;
void* p = reinterpret_cast<void*>(flt);

The cast is illegal because flt has float type which is not integral.

789 cannot cast away constness

A cast or implicit conversion is illegal because a conversion to the target type would
remove constness from a pointer, reference, or pointer to member.

Example:
struct S {

int s;
};
extern S const * ps;
extern int const S::* mps;
S* ps1 = ps;
S& rs1 = *ps;
int S::* mp1 = mps;

The three initializations are illegal since they are attempts to remove constness.

790 size of integral type in cast less than size of pointer

An object of the indicated integral type is too small to contain the value of the indicated
pointer.

Example:
int x;
char p = reinterpret_cast<char>(&x);
char q = (char)(&x);

Both casts are illegal since a char is smaller than a pointer.

791 type cannot be used in reinterpret_cast

The type specified with reinterpret_cast must be an integral type, a pointer type, a pointer to
a member of a class, or a reference type.

Example:
void* p;
float f = reinterpret_cast<float>(p);
void* q = (reinterpret_cast<void>(p), p);

The casts specify illegal types.

568 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

792 only pointers can be casted to integral types with reinterpret_cast

The expression must be a pointer type.

Example:
void* p;
float f = reinterpret_cast<float>(p);
void* q = (reinterpret_cast<void>(p), p);

The casts specify illegal types.

793 only integers and pointers can be casted to pointer types with reinterpret_cast

The expression must be a pointer or integral type.

Example:
void* x;
void* p = reinterpret_cast<void*>(16);
void* q = (reinterpret_cast<void*>(x), p);

The casts specify illegal types.

794 static_cast cannot convert the expression

The indicated expression cannot be converted to the type specified with the static_cast
operator. Perhaps reinterpret_cast or dynamic_cast should be used instead;

795 static_cast cannot be used with the type specified

A static cast cannot be used with a function type or array type.

Example:
typedef int fun(int);
extern int poo(long);
int i = (static_cast<fun)(poo))(22);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

796 static_cast cannot be used with the reference type specified

The expression could not be converted to the specified type using static_cast.

Example:
long lng;
int& ref = static_cast<int&>(lng);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

Diagnostic Messages 569

Appendices

797 static_cast cannot be used with the pointer type specified

The expression could not be converted to the specified type using static_cast.

Example:
long lng;
int* ref = static_cast<int*>(lng);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

798 static_cast cannot be used with the member pointer type specified

The expression could not be converted to the specified type using static_cast.

Example:
struct S {

long lng;
};
int S::* mp = static_cast<int S::*>(&S::lng);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

799 static_cast type is ambiguous

More than one constructor and/or used-defined conversion function can be used to convert
the expression to the indicated type.

800 cannot cast from ambiguous base class

When more than one base class of a given type exists, with respect to a derived class, it is
impossible to cast from the base class to the derived class.

Example:
struct Base { int b1; };
struct DerA public Base { int da; };
struct DerB public Base { int db; };
struct Derived public DerA, public DerB { int d; }
Derived* foo(Base* p)
{

return static_cast<Derived*>(p);
}

The cast fails since Base is an ambiguous base class for Derived.

801 cannot cast to ambiguous base class

When more than one base class of a given type exists, with respect to a derived class, it is
impossible to cast from the derived class to the base class.

570 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct Base { int b1; };
struct DerA public Base { int da; };
struct DerB public Base { int db; };
struct Derived public DerA, public DerB { int d; }
Base* foo(Derived* p)
{

return (Base*)p;
}

The cast fails since Base is an ambiguous base class for Derived.

802 can only static_cast integers to enumeration type

When an enumeration type is specified with static_cast, the expression must be an integer.

Example:
enum sex { male, female };
sex father = static_cast<sex>(1.0);

The cast is illegal because the expression is not an integer.

803 dynamic_cast cannot be used with the type specified

A dynamic cast can only specify a reference to a class or a pointer to a class or void. When
a class is referenced, it must have virtual functions defined within that class or a base class
of that class.

804 dynamic_cast cannot convert the expression

The indicated expression cannot be converted to the type specified with the dynamic_cast
operator. Only a pointer or reference to a class object can be converted. When a class
object is referenced, it must have virtual functions defined within that class or a base class
of that class.

805 dynamic_cast requires class ’%T’ to have virtual functions

The indicated class must have virtual functions defined within that class or a base class of
that class.

806 base class for type in dynamic_cast is ambiguous (will fail)

The type in the dynamic_cast is a pointer or reference to an ambiguous base class.

Example:
struct A { virtual void f(){}; };
struct D1 : A { };
struct D2 : A { };
struct D : D1, D2 { };

A *foo(D *p) {
// will always return NULL
return(dynamic_cast< A* >(p));

}

Diagnostic Messages 571

Appendices

807 base class for type in dynamic_cast is private (may fail)

The type in the dynamic_cast is a pointer or reference to a private base class.

Example:
struct V { virtual void f(){}; };
struct A : private virtual V { };
struct D : public virtual V, A { };

V *foo(A *p) {
// returns NULL if ’p’ points to an ’A’
// returns non-NULL if ’p’ points to a ’D’
return(dynamic_cast< V* >(p));

}

808 base class for type in dynamic_cast is protected (may fail)

The type in the dynamic_cast is a pointer or reference to a protected base class.

Example:
struct V { virtual void f(){}; };
struct A : protected virtual V { };
struct D : public virtual V, A { };

V *foo(A *p) {
// returns NULL if ’p’ points to an ’A’
// returns non-NULL if ’p’ points to a ’D’
return(dynamic_cast< V* >(p));

}

809 type cannot be used with an explicit cast

The indicated type cannot be specified as the type of an explicit cast. For example, it is
illegal to cast to an array or function type.

810 cannot cast to an array type

It is not permitted to cast to an array type.

Example:
typedef int array_type[5];
int array[5];
int* p = (array_type)array;

811 cannot cast to a function type

It is not permitted to cast to a function type.

572 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
typedef int fun_type(void);
void* p = (fun_type)0;

812 implementation restriction: cannot generate RTTI info for ’%T’ (%d classes)

The information for one class must fit into one segment. If the segment size is restricted to
64k, the compiler may not be able to emit the correct information properly if it requires
more than 64k of memory to represent the class hierarchy.

813 more than one default constructor for ’%T’

The compiler found more than one default constructor signature in the class definition.
There must be only one constructor declared that accepts no arguments.

Example:
struct C {

C();
C(int = 0);

};
C cv;

814 user-defined conversion is ambiguous

The compiler found more than one user-defined conversion which could be performed.
The indicated functions that could be used are shown.

Example:
struct T {

T(S const&);
};
struct S {

operator T const& ();
};
extern S sv;
T const & tref = sv;

Either the constructor or the conversion function could be used; consequently, the
conversion is ambiguous.

815 range of possible values for type ’%T’ is %u to %u

This informational message indicates the range of values possible for the indicated
unsigned type.

Example:
unsigned char uc;
if(uc >= 0);

Being unsigned, the char is always >= 0, so a warning will be issued. Following the
warning, this informational message indicates the possible range of values for the unsigned
type involved.

Diagnostic Messages 573

Appendices

816 range of possible values for type ’%T’ is %d to %d

This informational message indicates the range of values possible for the indicated signed
type.

Example:
signed char c;
if(c <= 127);

Because the value of signed char is always <= 127, a warning will be issued. Following the
warning, this informational message indicates the possible range of values for the signed
type involved.

817 constant expression in comparison has value %d

This informational message indicates the value of the constant expression involved in a
comparison which caused a warning to be issued.

Example:
unsigned char uc;
if(uc >= 0);

Being unsigned, the char is always >= 0, so a warning will be issued. Following the
warning, this informational message indicates the constant value (0 in this case) involved in
the comparison.

818 constant expression in comparison has value %u

This informational message indicates the value of the constant expression involved in a
comparison which caused a warning to be issued.

Example:
signed char c;
if(c <= 127);

Because the value of char is always <= 127, a warning will be issued. Following the
warning, this informational message indicates the constant value (127 in this case) involved
in the comparison.

819 conversion of const reference to non-const reference

A reference to a constant object is being converted to a reference to a non-constant object.
This can only be accomplished by using an explicit or const_cast cast.

Example:
extern int const & const_ref;
int & non_const_ref = const_ref;

574 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

820 conversion of volatile reference to non-volatile reference

A reference to a volatile object is being converted to a reference to a non-volatile object.
This can only be accomplished by using an explicit or const_cast cast.

Example:
extern int volatile & volatile_ref;
int & non_volatile_ref = volatile_ref;

821 conversion of const volatile reference to plain reference

A reference to a constant and volatile object is being converted to a reference to a
non-volatile and non-constant object. This can only be accomplished by using an explicit
or const_cast cast.

Example:
extern int const volatile & const_volatile_ref;
int & non_const_volatile_ref = const_volatile_ref;

822 current declaration has type ’%T’

This informational message indicates the type of the current declaration that caused the
message to be issued.

Example:
extern int __near foo(int);
extern int __far foo(int);

823 only a non-volatile const reference can be bound to temporary

The expression being bound to a reference will need to be converted to a temporary of the
type referenced. This means that the reference will be bound to that temporary and so the
reference must be a non-volatile const reference.

Example:
extern int * pi;
void * & r1 = pi; // error
void * const & r2 = pi; // ok
void * volatile & r3 = pi; // error
void * const volatile & r4 = pi;// error

824 conversion of pointer to member across a virtual base

In November 1995, the Draft Working Paper was amended to disallow pointer to member
conversions when the source class is a virtual base of the target class. This situation is
treated as a warning (unless -za is specified to require strict conformance), as a temporary
measure. In the future, an error will be diagnosed for this situation.

Diagnostic Messages 575

Appendices

Example:
struct B {

int b;
};

struct D : virtual B {
int d;

};
int B::* mp_b = &B::b;
int D::* mp_d = mp_b; // conversion across a
virtual base

825 declaration cannot be in the same scope as namespace ’%S’

A namespace name must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the namespace.

Example:
namespace x {

int q;
};
int x;

826 ’%S’ cannot be in the same scope as a namespace

A namespace name must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the namespace.

Example:
int x;
namespace x {

int q;
};

827 File: %s

This informative message is written when the -ew switch is specified on a command line.
It indicates the name of the file in which an error or warning was detected. The message
precedes a group of one or more messages written for the file in question. Within each
group, references within the file have the format (line[,column]).

828 %s

This informative message is written when the -ew switch is specified on a command line.
It indicates the location of an error when the error was detected either before or after the
source file was read during the compilation process.

576 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

829 %s: %s

This informative message is written when the -ew switch is specified on a command line.
It indicates the location of an error when the error was detected while processing the
switches specified in a command file or by the contents of an environment variable. The
switch that was being processed is displayed following the name of the file or the
environment variable.

830 %s: %S

This informative message is written when the -ew switch is specified on a command line.
It indicates the location of an error when the error was detected while generating a function,
such as a constructor, destructor, or assignment operator or while generating the machine
instructions for a function which has been analysed. The name of the function is given
following text indicating the context from which the message originated.

831 possible override is ’%S’

The indicated function is ambiguous since that name was defined in more than one base
class and one or more of these functions is virtual. Consequently, it cannot be decided
which is the virtual function to be used in a class derived from these base classes.

832 function being overridden is ’%S’

This informational message indicates a function which cannot be overridden by a virtual
function which has ellipsis parameters.

833 name does not reference a namespace

A namespace alias definition must reference a namespace definition.

Example:
typedef int T;
namespace a = T;

834 namespace alias cannot be changed

A namespace alias definition cannot change which namespace it is referencing.

Example:
namespace ns1 { int x; }
namespace ns2 { int x; }
namespace a = ns1;
namespace a = ns2;

835 cannot throw undefined class object

C++ does not allow undefined classes to be copied and so an undefined class object cannot
be specified in a throw expression.

Diagnostic Messages 577

Appendices

836 symbol has different type than previous symbol in same declaration

This warning indicates that two symbols in the same declaration have different types. This
may be intended but it is often due to a misunderstanding of the C++ declaration syntax.

Example:
// change to:
// char *p;
// char q;
// or:
// char *p, *q;
char* p, q;

837 companion definition is ’%S’

This informational message indicates the other symbol that shares a common base type in
the same declaration.

838 syntax error; default argument cannot be processed

The default argument contains unbalanced braces or parenthesis. The default argument
cannot be processed in this form.

839 default argument started %L

This informational message indicates where the default argument started so that any
problems with missing braces or parenthesis can be fixed quickly and easily.

Example:
struct S {

int f(int t= (4+(3-7), // missing parenthesis
);

};

840 ’%N’ cannot be declared in a namespace

A namespace cannot contain declarations or definitions of operator new or operator delete
since they will never be called implicitly in a new or delete expression.

Example:
namespace N {

void *operator new(unsigned);
void operator delete(void *);

};

841 namespace cannot be defined in a non-namespace scope

A namespace can only be defined in either the global namespace scope (file scope) or a
namespace scope.

578 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S {

namespace N {
int x;
};

}

842 namespace ’::’ qualifier cannot be used in this context

Qualified identifiers in a class context are allowed for declaring friend functions. A
namespace qualified name can only be declared in a namespace scope that encloses the
qualified name’s namespace.

Example:
namespace M {

namespace N {
void f();
void g();
namespace O {

void N::f() {
// error

}
}
}
void N::g() {

// OK
}

}

843 cannot cast away volatility

A cast or implicit conversion is illegal because a conversion to the target type would
remove volatility from a pointer, reference, or pointer to member.

Example:
struct S {

int s;
};
extern S volatile * ps;
extern int volatile S::* mps;
S* ps1 = ps;
S& rs1 = *ps;
int S::* mp1 = mps;

The three initializations are illegal since they are attempts to remove volatility.

844 cannot cast away constness and volatility

A cast or implicit conversion is illegal because a conversion to the target type would
remove constness and volatility from a pointer, reference, or pointer to member.

Diagnostic Messages 579

Appendices

Example:
struct S {

int s;
};
extern S const volatile * ps;
extern int const volatile S::* mps;
S* ps1 = ps;
S& rs1 = *ps;
int S::* mp1 = mps;

The three initializations are illegal since they are attempts to remove constness and
volatility.

845 cannot cast away unaligned

A cast or implicit conversion is illegal because a conversion to the target type would add
alignment to a pointer, reference, or pointer to member.

Example:
struct S {

int s;
};
extern S _unaligned * ps;
extern int _unaligned S::* mps;
S* ps1 = ps;
S& rs1 = *ps;
int S::* mp1 = mps;

The three initializations are illegal since they are attempts to add alignment.

846 subscript expression must be integral

Both of the operands of the indicated index expression are pointers. There may be a
missing indirection or function call.

Example:
int f();
int *p;
int g() {

return p[f];
}

847 extension: non-standard user-defined conversion

An extended conversion was allowed. The latest draft of the C++ working paper does not
allow a user-defined conversion to be used in this context. As an extension, the WATCOM
compiler supports the conversion since substantial legacy code would not compile without
the extension.

580 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

848 useless using directive ignored

This warning indicates that for most purposes, the using namespace directive can be
removed.

Example:
namespace A {

using namespace A; // useless
};

849 base class virtual function has not been overridden

This warning indicates that a virtual function name has been overridden but in an
incomplete manner, namely, a virtual function signature has been omitted in the overriding
class.

Example:
struct B {

virtual void f() const;
};
struct D : B {

virtual void f();
};

850 virtual function is ’%S’

This message indicates which virtual function has not been overridden.

851 macro ’%s’ defined %L

This informational message indicates where the macro in question was defined. The
message is displayed following an error or warning diagnostic for the macro in question.

Example:
#define mac(a,b,c) a+b+c

int i = mac(6,7,8,9,10);

The expansion of macro mac is erroneous because it contains too many arguments. The
informational message will indicate where the macro was defined.

852 expanding macro ’%s’ defined %L

These informational messages indicate the macros that are currently being expanded, along
with the location at which they were defined. The message(s) are displayed following a
diagnostic which is issued during macro expansion.

Diagnostic Messages 581

Appendices

853 conversion to common class type is impossible

The conversion to a common class is impossible. One or more of the left and right
operands are class types. The informational messages indicate these types.

Example:
class A { A(); };
class B { B(); };
extern A a;
extern B b;
int i = (a == b);

The last statement is erroneous since a conversion to a common class type is impossible.

854 conversion to common class type is ambiguous

The conversion to a common class is ambiguous. One or more of the left and right
operands are class types. The informational messages indicate these types.

Example:
class A { A(); };
class B : public A { B(); };
class C : public A { C(); };
class D : public B, public C { D(); };
extern A a;
extern D d;
int i = (a == d);

The last statement is erroneous since a conversion to a common class type is ambiguous.

855 conversion to common class type requires private access

The conversion to a common class violates the access permission which was private. One
or more of the left and right operands are class types. The informational messages indicate
these types.

Example:
class A { A(); };
class B : private A { B(); };
extern A a;
extern B b;
int i = (a == b);

The last statement is erroneous since a conversion to a common class type violates the
(private) access permission.

856 conversion to common class type requires protected access

The conversion to a common class violates the access permission which was protected.
One or more of the left and right operands are class types. The informational messages
indicate these types.

582 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
class A { A(); };
class B : protected A { B(); };
extern A a;
extern B b;
int i = (a == b);

The last statement is erroneous since a conversion to a common class type violates the
(protected) access permission.

857 namespace lookup is ambiguous

A lookup for a name resulted in two or more non-function names being found. This is not
allowed according to the C++ working paper.

Example:
namespace M {

int i;
}
namespace N {

int i;
using namespace M;

}
void f() {

using namespace N;
i = 7; // error

}

858 ambiguous namespace symbol is ’%S’

This informational message shows a symbol that conflicted with another symbol during a
lookup.

859 attempt to static_cast from a private base class

An attempt was made to static_cast a pointer or reference to a private base class to a
derived class.

Example:
struct PrivateBase {
};

struct Derived : private PrivateBase {
};

extern PrivateBase* pb;
extern PrivateBase& rb;
Derived* pd = static_cast<Derived*>(pb);
Derived& rd = static_cast<Derived&>(rb);

The last two statements are erroneous since they would involve a static_cast from a private
base class.

Diagnostic Messages 583

Appendices

860 attempt to static_cast from a protected base class

An attempt was made to static_cast a pointer or reference to a protected base class to a
derived class.

Example:
struct ProtectedBase {
};

struct Derived : protected ProtectedBase {
};

extern ProtectedBase* pb;
extern ProtectedBase& rb;
Derived* pd = static_cast<Derived*>(pb);
Derived& rd = static_cast<Derived&>(rb);

The last two statements are erroneous since they would involve a static_cast from a
protected base class.

861 qualified symbol cannot be defined in this scope

This message indicates that the scope of the symbol is not nested in the current scope. This
is a restriction in the C++ language.

Example:
namespace A {

struct S {
void ok();
void bad();
};
void ok();
void bad();

};
void A::S::ok() {
}
void A::ok() {
}
namespace B {

void A::S::bad() {
// error!
}
void A::bad() {
// error!
}

};

862 using declaration references non-member

This message indicates that the entity referenced by the using declaration is not a class
member even though the using declaration is in class scope.

584 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
namespace B {

int x;
};
struct D {

using B::x;
};

863 using declaration references class member

This message indicates that the entity referenced by the using declaration is a class member
even though the using declaration is not in class scope.

Example:
struct B {

int m;
};
using B::m;

864 invalid suffix for a constant

An invalid suffix was coded for a constant.

Example:
__int64 a[] = {

0i7, // error
0i8,
0i15, // error
0i16,
0i31, // error
0i32,
0i63, // error
0i64,

};

865 class in using declaration (’%T’) must be a base class

A using declaration declared in a class scope can only reference entities in a base class.

Example:
struct B {

int f;
};
struct C {

int g;
};
struct D : private C {

B::f;
};

Diagnostic Messages 585

Appendices

866 name in using declaration is already in scope

A using declaration can only reference entities in other scopes. It cannot reference entities
within its own scope.

Example:
namespace B {

int f;
using B::f;

};

867 conflict with a previous using-decl ’%S’

A using declaration can only reference entities in other scopes. It cannot reference entities
within its own scope.

Example:
namespace B {

int f;
using B::f;

};

868 conflict with current using-decl ’%S’

A using declaration can only reference entities in other scopes. It cannot reference entities
within its own scope.

Example:
namespace B {

int f;
using B::f;

};

869 use of ’%N’ requires build target to be multi-threaded

The compiler has detected a use of a run-time function that will create a new thread but the
current build target indicates only single-threaded C++ source code is expected.
Depending on the user’s environment, enabling multi-threaded applications can involve
using the "-bm" option or selecting multi-threaded applications through a dialogue.

870 implementation restriction: cannot use 64-bit value in switch statement

The use of 64-bit values in switch statements has not been implemented.

871 implementation restriction: cannot use 64-bit value in case statement

The use of 64-bit values in case statements has not been implemented.

586 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

872 implementation restriction: cannot use __int64 as bit-field base type

The use of __int64 for the base type of a bit-field has not been implemented.

873 based function object cannot be placed in non-code segment "%s".

Use __segname with the default code segment "_CODE", or a code segment with the
appropriate suffix (indicated by informational message).

Example:
int __based(__segname("foo")) f() {return 1;}

Example:
int __based(__segname("_CODE")) f() {return 1;}

874 Use a segment name ending in "%s", or the default code segment "_CODE".

This informational message explains how to use __segname to name a code segment.

875 RTTI must be enabled to use feature (use ’xr’ option)

RTTI must be enabled by specifying the ’xr’ option when the compiler is invoked. The
error message indicates that a feature such as dynamic_cast, or typeid has been used
without enabling RTTI.

876 ’typeid’ class type must be defined

The compile-time type of the expression or type must be completely defined if it is a class
type.

Example:
struct S;
void foo(S *p) {

typeid(*p);
typeid(S);

}

877 cast involves unrelated member pointers

This warning is issued to indicate that a dangerous cast of a member pointer has been used.
This occurs when there is an explicit cast between sufficiently unrelated types of member
pointers that the cast must be implemented using a reinterpret_cast. These casts were
illegal, but became legal when the new-style casts were added to the draft working paper.

Example:
struct C1 {

int foo();
};
struct D1 {

int poo();
};

typedef int (C1::* C1mp)();

C1mp fmp = (C1mp)&D1::poo;

Diagnostic Messages 587

Appendices

The cast on the last line of the example would be diagnosed.

878 unexpected type modifier found

A __declspec modifier was found that could not be applied to an object or could not be
used in this context.

Example:
__declspec(thread) struct S {
};

879 invalid bit-field name ’%N’

A bit-field can only have a simple identifier as its name. A qualified name is also not
allowed for a bit-field.

Example:
struct S {

int operator + : 1;
};

880 %u padding byte(s) added

This warning indicates that some extra bytes have been added to a class in order to align
member data to its natural alignment.

Example:
#pragma pack(push,8)
struct S {

char c;
double d;

};
#pragma pack(pop);

881 cannot be called with a ’%T *’

This message indicates that the virtual function cannot be called with a pointer or reference
to the current class.

882 cast involves an undefined member pointer

This warning is issued to indicate that a dangerous cast of a member pointer has been used.
This occurs when there is an explicit cast between sufficiently unrelated types of member
pointers that the cast must be implemented using a reinterpret_cast. In this case, the host
class of at least one member pointer was not a fully defined class and, as such, it is
unknown whether the host classes are related through derivation. These casts were illegal,
but became legal when the new-style casts were added to the draft working paper.

588 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct C1 {

int foo();
};
struct D1;

typedef int (C1::* C1mp)();
typedef int (D1::* D1mp)();

C1mp fn(D1mp x) {
return (C1mp) x;

}
// D1 may derive from C1

The cast on the last line of the example would be diagnosed.

883 cast changes both member pointer object and class type

This warning is issued to indicate that a dangerous cast of a member pointer has been used.
This occurs when there is an explicit cast between sufficiently unrelated types of member
pointers that the cast must be implemented using a reinterpret_cast. In this case, the host
classes of the member pointers are related through derivation and the object type is also
being changed. The cast can be broken up into two casts, one that changes the host class
without changing the object type, and another that changes the object type without
changing the host class.

Example:
struct C1 {

int fn1();
};
struct D1 : C1 {

int fn2();
};

typedef int (C1::* C1mp)();
typedef void (D1::* D1mp)();

C1mp fn(D1mp x) {
return (C1mp) x;

}

The cast on the last line of the example would be diagnosed.

884 virtual function ’%S’ has a different calling convention

This error indicates that the calling conventions specified in the virtual function prototypes
are different. This means that virtual function calls will not function properly since the
caller and callee may not agree on how parameters should be passed. Correct the problem
by deciding on one calling convention and change the erroneous declaration.

Diagnostic Messages 589

Appendices

Example:
struct B {

virtual void __cdecl foo(int, int);
};
struct D : B {

void foo(int, int);
};

885 #endif matches #if in different source file

This warning may indicate a #endif nesting problem since the traditional usage of #if
directives is confined to the same source file. This warning may often come before an error
and it is hoped will provide information to solve a preprocessing directive problem.

886 preprocessing directive found %L

This informational message indicates the location of a preprocessing directive associated
with the error or warning message.

887 unary ’-’ of unsigned operand produces unsigned result

When a unary minus (’-’) operator is applied to an unsigned operand, the result has an
unsigned type rather than a signed type. This warning often occurs because of the
misconception that ’-’ is part of a numeric token rather than as a unary operator. The
work-around for the warning is to cast the unary minus operand to the appropriate signed
type.

Example:
extern void u(int);
extern void u(unsigned);
void fn(unsigned x) {

u(-x);
u(-2147483648);

}

888 trigraph expansion produced ’%c’

Trigraph expansion occurs at a very low-level so it can affect string literals that contain
question marks. This warning can be disabled via the command line or #pragma warning
directive.

Example:
// string expands to "(?]?~????"!
char *e = "(???)???-????";
// possible work-arounds
char *f = "(" "???" ")" "???" "-" "????";
char *g = "(\?\?\?)\?\?\?-\?\?\?\?";

590 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

889 hexadecimal escape sequence out of range; truncated

This message indicates that the hexadecimal escape sequence produces an integer that
cannot fit into the required character type.

Example:
char *p = "\x0aCache Timings\x0a";

890 undefined macro ’%s’ evaluates to 0

The ISO C/C++ standard requires that undefined macros evaluate to zero during
preprocessor expression evaluation. This default behaviour can often mask incorrectly
spelled macro references. The warning is useful when used in critical environments where
all macros will be defined.

Example:
#if _PRODUCTI0N // should be _PRODUCTION
#endif

891 char constant has value %u (more than 8 bits)

The ISO C/C++ standard requires that multi-char character constants be accepted with an
implementation defined value. This default behaviour can often mask incorrectly specified
character constants.

Example:
int x = ’\0x1a’; // warning
int y = ’\x1a’;

892 promotion of unadorned char type to int

This message is enabled by the hidden -jw option. The warning may be used to locate all
places where an unadorned char type (i.e., a type that is specified as char and neither
signed char nor unsigned char). This may cause portability problems since compilers
have freedom to specify whether the unadorned char type is to be signed or unsigned. The
promotion to int will have different values, depending on the choice being made.

893 switch statement has no case labels

The switch statement referenced in the warning did not have any case labels. Without case
labels, a switch statement will always jump to the default case code.

Example:
void fn(int x)
{

switch(x) {
default:
++x;
}

}

Diagnostic Messages 591

Appendices

894 unexpected character (%u) in source file

The compiler has encountered a character in the source file that is not in the allowable set
of input characters. The decimal representation of the character byte is output for
diagnostic purposes.

Example:
// invalid char ’\0’

895 ignoring whitespace after line splice

The compiler is ignoring some whitespace characters that occur after the line splice. This
warning is useful when the source code must be compiled with other compilers that do not
allow this extension.

Example:
#define XXXX int \
x;

XXXX

896 empty member declaration

The compiler is warning about an extra semicolon found in a class definition. The extra
semicolon is valid C++ but some C++ compilers do not accept this as valid syntax.

Example:
struct S { ; };

897 ’%S’ makes use of a non-portable feature (zero-sized array)

The compiler is warning about the use of a non-portable feature in a declaration or
definition. This warning is available for environments where diagnosing the use of
non-portable features is useful in improving the portability of the code.

Example:
struct D {

int d;
char a[];

};

898 in-class initialization is only allowed for const static integral members

Example:
struct A {

static int i = 0;
};

592 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

899 cannot convert expression to target type

The implicit cast is trying to convert an expression to a completely unrelated type. There is
no way the compiler can provide any meaning for the intended cast.

Example:
struct T {
};

void fn()
{

bool b = T;
}

900 unknown template specialization of ’%S’

Example:
template<class T>
struct A { };

template<class T>
void A<T *>::f() {
}

901 wrong number of template arguments for ’%S’

Example:
template<class T>
struct A { };

template<class T, class U>
struct A<T, U> { };
}

902 cannot explicitly specialize member of ’%S’

Example:
template<class T>
struct A { };

template<>
struct A<int> {

void f();
};

template<>
void A<int>::f() {
}

Diagnostic Messages 593

Appendices

903 specialization arguments for ’%S’ match primary template

Example:
template<class T>
struct A { };

template<class T>
struct A<T> { };

904 partial template specialization for ’%S’ ambiguous

Example:
template<class T, class U>
struct A { };

template<class T, class U>
struct A<T *, U> { };

template<class T, class U>
struct A<T, U *> { };

A<int *, int *> a;

905 static assertion failed ’%s’

Example:
static_assert(false, "false");

906 Exported templates are not supported by Open Watcom C++

Example:
export template< class T >
struct A {
};

907 redeclaration of member function ’%S’ not allowed

Example:
struct A {

void f();
void f();

};

908 candidate defined %L

909 Invalid register name ’%s’ in #pragma

The register name is invalid/unknown.

594 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

910 Archaic syntax: class/struct missing in explicit template instantiation

Archaic syntax has been used. The standard requires a class or struct keyword to be used.

Example:
template< class T >
class MyTemplate { };

template MyTemplate< int >;

Example:
template class MyTemplate< int >;

Diagnostic Messages 595

Appendices

596 Diagnostic Messages

Open Watcom C/C++ Run-Time Messages

D. Open Watcom C/C++ Run-Time Messages

The following is a list of error messages produced by the Open Watcom C/C++ run-time library. These
messages can only appear during the execution of an application built with one of the C run-time libraries.

D.1 Run-Time Error Messages
Assertion failed: %s, file %s, line %d

This message is displayed whenever an assertion that you have made in your program is not
true.

Stack Overflow!

Your program is trying to use more stack space than is available. If you believe that your
program is correct, you can increase the size of the stack by using the "option stack=nnnn"
when you link the program. The stack size can also be specified with the "N" option if you
are using cc.

Floating-point support not loaded

You have called one of the printf functions with a format of "%e", "%f", or "%g", but have
not passed a floating-point value. The compiler generates a reference to the variable
"_fltused_" whenever you pass a floating-point value to a function. During the linking
phase, the extra floating-point formatting routines will also be brought into your application
when "_fltused_" is referenced. Otherwise, you only get the non floating-point formatting
routines.

*** NULL assignment detected

This message is displayed if any of the first 32 bytes of your program’s data segment has
been modified. The check is performed just before your program exits to the operating
system. All this message means is that sometime during the execution of your program,
this memory was modified.

To find the problem, you must link your application with debugging information and use
Open Watcom Debugger to monitor its execution. First, run the application with Open
Watcom Debugger until it completes. Examine the first 16 bytes of the data segment
("examine __nullarea") and press the space bar to see the next 16 bytes. Any values that
are not equal to ’01’ have been modified. Reload the application, set watch points on the
modified locations, and start execution. Open Watcom Debugger will stop when the
specified location(s) change in value.

Run-Time Error Messages 597

Appendices

D.2 errno Values and Their Meanings
The following errors can be generated by the C run-time library. These error codes correspond to the error
types defined in errno.h.

EOK (0) No error

EPERM (1) Operation not permitted

ENOENT (2) No such file or directory

The specified file or directory cannot be found.

ESRCH (3) No such process

EINTR (4) Interrupted function call

EIO (5) I/O error

ENXIO (6) No such device or address

E2BIG (7) Arg list too big

The argument list passed to the spawn..., exec... or
system functions exceeds the limit imposed by QNX, or the
environment information exceeds 64K.

ENOEXEC (8) Exec format error

The executable file has an invalid format.

EBADF (9) Bad file descriptor

The file descriptor is not a valid file descriptor value or it does not
correspond to an open file.

ECHILD (10) No child processes

EAGAIN (11) Resource unavailable; try again

ENOMEM (12) Not enough memory

There was not enough memory available to perform the specified
request.

EACCES (13) Permission denied

You do not have the required (or correct) permissions to access a
file.

EFAULT (14) Bad address

598 errno Values and Their Meanings

Open Watcom C/C++ Run-Time Messages

ENOTBLK (15) Block device required

EBUSY (16) Resource busy

EEXIST (17) File exists

An attempt was made to create a file with the O_EXCL (exclusive)
flag when the file already exists.

EXDEV (18) Improper link

An attempt was made to rename a file to a different device.

ENODEV (19) No such device

ENOTDIR (20) Not a directory

EISDIR (21) Is a directory

EINVAL (22) Invalid argument

An invalid value was specified for one of the arguments to a
function.

ENFILE (23) Too many files in the system

All the FILE structures are in use, so no more files can be opened.

EMFILE (24) Too many open files

There are no more file descriptors available, so no more files can be
opened.

ENOTTY (25) Inappropriate I/O control operation

ETXTBSY (26) Text file busy

EFBIG (27) File too large

ENOSPC (28) No space left on device

No more space is left for writing on the device, which usually means
that the disk is full.

ESPIPE (29) Invalid seek

EROFS (30) Read-only file system

EMLINK (31) Too many links

EPIPE (32) Broken pipe

EDOM (33) Math arg out of domain of func

errno Values and Their Meanings 599

Appendices

An argument to a math function is not in the domain of the function.

ERANGE (34) Result too large

The result of a math function could not be represented (too small, or
too large).

ENOMSG (35) No message of desired type

EIDRM (36) Identifier removed

ECHRNG (37) Channel number out of range

EL2NSYNC (38) Level 2 not synchronized

EL3HLT (39) Level 3 halted

EL3RST (40) Level 3 reset

ELNRNG (41) Link number out of range

EUNATCH (42) Protocol driver not attached

ENOCSI (43) No CSI structure available

EL2HLT (44) Level 2 halted

EDEADLK (45) Resource deadlock avoided

A resource deadlock would occur with regards to locked files.

ENOLCK (46) No locks available

ELOOP (62) Too many levels of symbolic links or prefixes

ENAMETOOLONG (78) Filename too long

D.2.1 Shared Library Errors
ELIBACC (83) Can’t access shared library

ELIBBAD (84) Accessing a corrupted shared library

ELIBSCN (85) .lib section in a.out corrupted

ELIBMAX (86) Attempting to link in too many libraries

ELIBEXEC (87) Attempting to exec a shared library

ENOSYS (89) Function not implemented

ENOTEMPTY (93) Directory not empty

600 errno Values and Their Meanings

Open Watcom C/C++ Run-Time Messages

EOPNOTSUPP (103) Operation not supported

ESTALE (122) Potentially recoverable i/o error

D.2.2 Non-blocking and Interrupt I/O
EWOULDBLOCK (11) Operation would block

EINPROGRESS (236) Operation now in progress

EALREADY (16) Operation already in progress

D.2.3 IPC/Network Software -- Argument Errors
ENOTSOCK (238) Socket operation on non-socket

EDESTADDRREQ (239) Destination address required

EMSGSIZE (240) Message too long

EPROTOTYPE (241) Protocol wrong type for socket

ENOPROTOOPT (242) Protocol not available

EPROTONOSUPPORT (243) Protocol not supported

ESOCKTNOSUPPORT (244) Socket type not supported

EPFNOSUPPORT (246) Protocol family not supported

EAFNOSUPPORT (247) Address family not supported by protocol family

EADDRINUSE (248) Address already in use

EADDRNOTAVAIL (249) Can’t assign requested address

D.2.4 IPC/Network Software -- Operational Errors
ENETDOWN (250) Network is down

ENETUNREACH (251) Network is unreachable

ENETRESET (252) Network dropped connection on reset

ECONNABORTED (253) Software caused connection abort

ECONNRESET (254) Connection reset by peer

ENOBUFS (255) No buffer space available

errno Values and Their Meanings 601

Appendices

EISCONN (256) Socket is already connected

ENOTCONN (257) Socket is not connected

ESHUTDOWN (258) Can’t send after socket shutdown

ETOOMANYREFS (259) Too many references: can’t splice

ETIMEDOUT (260) Connection timed out

ECONNREFUSED (261) Connection refused

EHOSTDOWN (264) Host is down

EHOSTUNREACH (265) No route to host

D.2.5 QNX Specific
ENOREMOTE (1000) Must be done on local machine

ENONDP (1001) Need an NDP (8087...) to run

EBADFSYS (1002) Corrupted file system detected

ENO32BIT (1003) 32-bit integer fields were used

ENOVPE (1004) No proc entry available for virtual process

ENONETQ (1005) Process manager-to-net enqueuing failed

ENONETMAN (1006) Could not find net manager for node number

EVIDBUF2SML (1007) Told to allocate a vid buf too small

EVIDBUF2BIG (1008) Told to allocate a vid buf too big

EMORE (1009) More to do; send message again

ECTRLTERM (1010) Remap to controlling terminal

ENOLIC (1011) No license

D.3 Math Run-Time Error Messages
The following errors can be generated by the math functions in the C run-time library. These error codes
correspond to the exception types defined in math.h and returned by the matherr function when a math
error occurs.

602 Math Run-Time Error Messages

Open Watcom C/C++ Run-Time Messages

DOMAIN Domain error

An argument to the function is outside the domain of the function.

OVERFLOW Overflow range error

The function result is too large.

PLOSS Partial loss of significance

A partial loss of significance occurred.

SING Argument singularity

An argument to the function has a bad value (e.g., log(0.0)).

TLOSS Total loss of significance

A total loss of significance occurred. An argument to a function
was too large to produce a meaningful result.

UNDERFLOW Underflow range error

The result is too small to be represented.

Math Run-Time Error Messages 603

Index

.continue 200, 335

.cref 200, 335# .data 200

.data? 200

.dosseg 200

.else 335# directive 219

.endif 335#define 538, 553

.endw 200, 335#elif 410-411

.err 200#else 410-411, 533

.errb 200#endif 377, 410-411, 421, 533, 590

.errdef 200#error 83, 151, 422

.errdif 200#if 377, 410-411, 421, 590

.errdifi 200#ifdef 421

.erre 200#ifndef 421, 553

.erridn 200#include 16, 412, 417-419, 494, 551, 553

.erridni 200#pragma 26, 30, 545, 556

.errnb 200#pragma extref 563

.errndef 200#pragma warning 377, 590

.errnz 200#undef 423, 537

.exit 200, 335

.fardata 200

.fardata? 200

.if 335-

.lfcond 200, 335

.list 200, 335

.listall 200, 335

.listif 200, 335-zo 556

.listmacro 200, 335

.listmacroall 200, 335

.model 200

.nocref 200, 335.

.nolist 200, 335

.radix 200, 335

.repeat 200, 335
.186 200 .sall 200, 335
.286 200 .seq 200, 335
.286c 200 .sfcond 200, 335
.286p 200 .stack 200
.287 200 .startup 200, 335
.386 200 .tfcond 200, 335
.386p 200 .until 200, 335
.387 200 .while 200, 335
.486 200 .xcref 200, 335
.486p 200 .xlist 200, 335
.586 200
.586p 200
.686 200
.686p 200 /
.8086 200
.8087 200
.alpha 200, 335

/include directory 17.break 200, 335
/lib 49.code 200

.const 200

605

Index

applications
creating for QNX 2891 AR-format 209

argument list (pragma) 100, 170
arguments

removing from the stack 105, 17416-bit QNX executables 212
arguments on the stack 103, 172
ARTIFICIAL option 216
_asm 38, 199
__asm 1993
assembler 329
assembly language

automatic variables 198
directives 20032-bit QNX executables 212
in-line 191__386__ 20
labels 197
opcodes 200
variables 197

auto 388, 392, 401, 419, 428, 433, 439-440, 469,<
476

AUTODEPEND 90, 158
auxiliary pragma 91, 159

<os>_INCLUDE environment variable 17

BA

base operator 34
aborts (pragma) 109, 178 based pointers 32
addr 335 segment constant 33
addressing arguments 67, 133, 136 segment object 34
ALIAS directive 215 self 35
alias name (pragma) 92, 160 void 34
alias names _based 25

cdecl 94, 162 __based 25, 32-33, 418
__cdecl 94, 162 benchmarking 13
fastcall 94, 162 _bheapseg 34
__fastcall 94, 162 big code model 55, 121
fortran 94, 162 big data model 55, 121
__fortran 94, 162 bin directory 368
pascal 94, 162 BIOS call 104, 173
__pascal 94, 162 blanks in file names 214
stdcall 94, 162 bool 554
__stdcall 94, 162 break 382, 409, 549
syscall 162
__syscall 162
system 162
__system 162 C
watcall 94, 162
__watcall 94, 162

alias pragma 78, 146
C directory 10alloc_text pragma 79, 147
C librariesapostrophes 214

606

Index

compact 47, 50 CodeView 220
flat 50-51, 123 COFF 209
huge 47, 50 command line format 9
large 47, 50 wasm 329
medium 47, 50 wdis 347
small 47, 50-51, 123 wlib 313

C/C++ libraries wlink 210, 289
flat 48 wstrip 361
small 48 command line options

CACHE option 217 compiler 10
callback functions 100 environment variable 10
calling convention options file 10

MetaWare High C 161, 183 command name
Microsoft C 93, 114 compiler 9

calling conventions 59, 125 comment (#) directive 219
calling functions comment pragma 80, 148

far 97, 167 compact memory model 56, 122
near 97, 167 compact model

calling information (pragma) 97, 167 libraries 47, 50
case 376, 382, 391, 409, 421, 445, 523 Compactor 220
CASEEXACT option 218 compiler
casemap 335 features 9
catch 418, 448, 530, 533, 547, 560 compiling
catstr 335 command line format 9
cc 368 const 383, 388, 432-433, 468-469, 495, 498,
cdecl 26, 94, 162 500-501, 553, 566
cdecl alias name 94, 162 const_cast 565-566
__cdecl alias name 94, 162 continue 382, 410
_Cdecl 26 conventions
__cdecl 26-27, 94, 161-162 80x87 72-73, 141-142
char 29-30, 386, 388, 416, 559, 568, 591 non-80x87 63, 129

size of 64, 130 __cplusplus 22
char type 59, 125 cplx3r.lib 49
__CHAR_SIGNED__ 21 cplx3s.lib 49
check_stack option 76, 144 cplx73r.lib 49
class 414, 426-427, 442, 455, 485, 529, 536, 595 cplx73s.lib 49

CODE 58, 63, 124, 129 cplx7c.lib 48
FAR_DATA 58, 63, 124, 129 cplx7h.lib 48

class information 82, 150 cplx7l.lib 48
clib3r.lib 48 cplx7m.lib 48
clib3s.lib 48 cplx7s.lib 48
clibc.lib 48 cplxc.lib 48
clibh.lib 48 cplxh.lib 48
clibl.lib 48 cplxl.lib 48
clibm.lib 48 cplxm.lib 48
clibs.lib 48 cplxs.lib 48
cmain.c 51-52 __CPPRTTI 22
CODE class 58, 63, 124, 129 __CPPUNWIND 22
code generation 40 cstart.asm 51

memory requirements 41, 369 cstart_*.asm 51
code models cstart_c.asm 51

big 55, 121 cstart_h.asm 51
small 55, 121 cstart_l.asm 51

code_seg pragma 79, 147 cstart_m.asm 51

607

Index

cstart_s.asm 51 default filename extension 10
cstrt386.asm 52 default libraries
CV4 220 using pragmas 77, 145
CVPACK 220-221 delete 406, 419, 438, 490, 511, 520, 578
CVPACK option 220 diagnostics

errno 598
error 16
matherr 602
Open Watcom C/C++ 15D
run-time 598, 602
warning 16
wstrip 362

data models directives 213
big 55, 121 # 219
huge 56 ALIAS 215
small 55, 121 assembly language 200

data representation 59, 125 comment 219
data types 59, 125 DEBUG 221
data_seg pragma 81, 149 DISABLE 226
DBCS ENDLINK 229

Chinese 244 FILE 231
Japanese 244 FORMAT 234
Korean 244 include 241

dead code elimination 228, 273-274 LANGUAGE 244
DEBUG directive 221 LIBFILE 245
debug information LIBPATH 246

removal 361 LIBRARY 247
DEBUG options MODFILE 254

ALL 222 MODTRACE 255
CODEVIEW 221 NAME 256
DWARF 221 OPTION 260
LINES 222 OPTLIB 261
LOCALS 222 ORDER 263
NOVELL 221 OUTPUT 267
ONLYEXPORTS 222, 224 PATH 269
REFERENCED 222 REFERENCE 273
TYPES 222 SORT 275
Watcom 221 STARTLINK 278

debugging information SYMTRACE 281
all 224 SYSTEM 282
for NetWare debugger 224 directories
global symbol 221, 224 C 10
line numbering 221, 223 OCC 10
local symbol 221, 223 DISABLE directive 226
NetWare global symbol 221 disable_message pragma 81, 149
strip from "EXE" file 225 disassembler 347
typing 221, 223 disassembly example 352

Debugging Information Compactor 220-221 DLL 28
__declspec(dllexport) 38 exporting functions 27
__declspec(dllimport) 38 dllexport 27, 38
__declspec 27, 36, 555, 588 dllimport 27
default 382-383, 391, 410-411, 421, 524 do 382, 390, 409-410, 421
default directive file 211, 213, 218, 230, 283 DOS/4GW example 194

wlink.lnk 218, 230 _DOS 20-21

608

Index

__DOS__ 20-21 WD_PATH 370
DOSSEG option 227 WLINK_LNK 212-213, 218, 230, 284
double 388, 391 WPP 10, 371

size of 64, 130 WPP386 11, 371
double type 61, 127 errno 598
DPMI example 194 E2BIG 598
DS segment register 27-28 EACCES 598
dump_object_model pragma 82, 150 EADDRINUSE 601
Dynamic Link Library 28 EADDRNOTAVAIL 601

exporting functions 27 EAFNOSUPPORT 601
imports 317, 319 EAGAIN 598

dynamic_cast 571-572, 587 EALREADY 601
EBADF 598
EBADFSYS 602
EBUSY 599
ECHILD 598E
ECHRNG 600
ECONNABORTED 601
ECONNREFUSED 602

echo 335 ECONNRESET 601
_edata linker symbol 227 ECTRLTERM 602
ELF 209 EDEADLK 600
ELIMINATE option 228 EDESTADDRREQ 601
emu387.lib 50 EDOM 599
emu87.lib 50 EEXIST 599
enable_message pragma 82, 150 EFAULT 598
_end linker symbol 227 EFBIG 599
ENDLINK directive 229 EHOSTDOWN 602
endmacro 335 EHOSTUNREACH 602
enum 384, 393, 396, 440, 454, 457 EIDRM 600
enum pragma 82, 150 EINPROGRESS 601
enumerated types EINTR 598

size of 65, 131 EINVAL 599
enumeration EIO 598

information 82, 150 EISCONN 601
values 82, 150 EISDIR 599

environment variable EL2HLT 600
command line options 10 EL2NSYNC 600

environment variables 10 EL3HLT 600
<os>_INCLUDE 17 EL3RST 600
FORCE 367 ELIBACC 600
INCLUDE 17-18, 367, 418 ELIBBAD 600
LIB 247, 258, 261, 367 ELIBEXEC 600
LIBDIR 213 ELIBMAX 600
OS2_INCLUDE 17 ELIBSCN 600
PATH 17, 211, 213, 218, 230, 283, 367-368 ELNRNG 600
TMPDIR 368 ELOOP 600
use 367 EMFILE 599
WATCOM 50, 212-213, 218, 230, 284, EMLINK 599

367-368 EMORE 602
WCC 10, 369 EMSGSIZE 601
WCC386 11, 369 ENAMETOOLONG 600
WCGMEMORY 41, 369-370 ENETDOWN 601
WD 370 ENETRESET 601

609

Index

ENETUNREACH 601 error messages 373
ENFILE 599 error pragma 83, 151
ENO32BIT 602 errors 226, 293
ENOBUFS 601 executable files
ENOCSI 600 reducing size 361
ENODEV 599 executable formats 209
ENOENT 598 explicit 565
ENOEXEC 598 export 10, 367
ENOLCK 600 INCLUDE environment variable 17-18
ENOLIC 602 export (pragma) 99-100, 169
ENOMEM 598 _export 27
ENOMSG 600 __export 27, 38, 502
ENONDP 602 exporting symbols in dynamic link libraries 99,
ENONETMAN 602 169
ENONETQ 602 extension
ENOPROTOOPT 601 default 10
ENOREMOTE 602 extern 36, 379, 385, 389, 393, 413, 428, 439, 441,
ENOSPC 599 477, 561
ENOSYS 600 external references 83, 151
ENOTBLK 598 extref pragma 83, 151
ENOTCONN 602
ENOTDIR 599
ENOTEMPTY 600
ENOTSOCK 601 F
ENOTTY 599
ENOVPE 602
ENXIO 598

far 13, 25, 56, 122, 407, 502, 505, 524EOK 598
far (pragma) 97, 167EOPNOTSUPP 600
far call 55, 121EPERM 598
far call optimizations 357EPFNOSUPPORT 601
far jump optimization 357EPIPE 599
far pointerEPROTONOSUPPORT 601

size of 64, 130EPROTOTYPE 601
far16 161ERANGE 600
_Far16 29EROFS 599
__far16 29-30, 418ESHUTDOWN 602
_far 25ESOCKTNOSUPPORT 601
__far 25, 27, 407, 524ESPIPE 599
FAR_DATA class 58, 63, 124, 129ESRCH 598
FARCALLS option 230ESTALE 601
fastcall 94, 162ETIMEDOUT 602
fastcall alias name 94, 162ETOOMANYREFS 602
__fastcall alias name 94, 162ETXTBSY 599
__fastcall 94, 162EUNATCH 600
fastest 16-bit code 13EVIDBUF2BIG 602
fastest 32-bit code 13EVIDBUF2SML 602
fatal errors 226, 293EWOULDBLOCK 601
FILE directive 231EXDEV 599
filename extension 10error codes
FILLCHAR option 233errno.h 598
_finally 396math.h 602
flat memory model 122error file
flat model.err 15

610

Index

libraries 48, 50-51, 123
float 97, 388, 391, 469, 481, 567-568 Isize of 64, 130
float type 60, 126
floating-point

fltused 49 __I86__ 20
__init_387_emulator 50 if 401, 541
__init_87_emulator 50 import library 317, 319

fltused 49 in-line 80x87 floating-point instructions 98
for 382, 392, 401, 409-410, 447 in-line assembly
FORCE environment variable 367 in pragmas 97, 167
FORMAT directive 234 in-line assembly language 191
fortran 26, 94, 162, 375 automatic variables 198
fortran alias name 94, 162 directives 200
__fortran alias name 94, 162 labels 197
_fortran 26 opcodes 200
__fortran 26-27, 39, 94, 162 variables 197
__FPI__ 21 in-line assembly language instructions
frame (pragma) 100, 169 using mnemonics 98, 168
friend 432, 457, 469, 508, 579 in-line functions 98, 167
function pragma 84, 152 in-line functions (pragma) 104, 173
function prototypes include

effect on arguments 65, 131 directive 16
functions header file 16

returning values 69, 138 source file 16
include directive 241
INCLUDE environment variable 17-18, 367, 418
include fileG searching 16
include_alias pragma 85, 153
__init_387_emulator 50
__init_87_emulator 50general directives/options 213
initialize pragma 85, 153goto 376, 384, 386, 413, 415
inline 431
inline_depth pragma 86, 154
__INLINE_FUNCTIONS__ 21
inline_recursion pragma 87, 155H
int 15, 29-30, 378, 381, 386, 388, 416, 432, 465,

481, 483, 485, 511, 536, 543, 591
size of 64, 130

int type 60, 126header file
__int64 31-32, 587including 16
_INTEGRAL_MAX_BITS 22searching 16
Intel OMF 209high 335
interrupt 27High C calling convention 183
interrupt routine 27highword 335
_interrupt 27host operating system 210
__interrupt 27huge 25, 56, 122, 398
intrinsic pragma 87, 155huge data model 56
invoke 335huge memory model 56
invoking Open Watcom C/C++ 9huge model
invoking Open Watcom Linker 210, 289libraries 47, 50

_huge 25
__huge 25

611

Index

class 48
location 47K math 49

library
import 319

LIBRARY directive 247keywords
library file__based 25

adding to a 315__cdecl 26
deleting from a 315__declspec 27, 36
extracting from a 316__export 27
replacing a module in a 316__far16 29

library manager 313__far 25
library path 368__fortran 26
LINEARRELOCS option 249__huge 25
linker symbols__int64 22, 31

_edata 227__interrupt 27
_end 227__loadds 28

linking notation 214__near 25
__LINUX__ 20-21_Packed 26
loadds (pragma) 99, 168__pascal 26
_loadds 28__pragma 31
__loadds 28__restrict 26
loading DS before calling a function 99, 168__saveregs 28
loading DS in prologue sequence of a function_Seg16 30

99, 169__segment 25
__LOCAL_SIZE 199__segname 25
long 388__self 26
long double__stdcall 28

size of 64, 130__syscall 28
long float

size of 64, 130
long int

size of 64, 130L
long int type 60, 126
LONGLIVED option 250
low 335
lowword 335L 449
lroffset 335LANGUAGE directive 244

LANGUAGE options
CHINESE 244
JAPANESE 244

MKOREAN 244
large memory model 56, 122
large model

libraries 47, 50
M_I386 20LBC command file 318
_M_I386 20_leave 396
M_I86 20LIB environment variable 247, 258, 261, 367
_M_I86 20LIBDIR environment variable 213
_M_IX86 20LIBFILE directive 245
macrosLIBPATH directive 246

__386__ 20libraries 47
__CHAR_SIGNED__ 2180x87 math 50
__COMPACT__ 21alternate math 51

612

Index

__cplusplus 22 __WINDOWS__ 20
__CPPRTTI 22 __X86__ 20
__CPPUNWIND 22 mangled names in C++ 251, 275
_DOS 20 MANGLEDNAMES option 251
__DOS__ 20 map file 252
__FLAT__ 21 MAP option 252
__FPI__ 21 mask 335
__HUGE__ 21 math coprocessor 50-51
__I86__ 20 math387r.lib 50
__INLINE_FUNCTIONS__ 21 math387s.lib 50
_INTEGRAL_MAX_BITS 22 math3r.lib 51
__LARGE__ 21 math3s.lib 51
__LINUX__ 20 math87c.lib 50
M_386CM 21 math87h.lib 50
_M_386CM 21 math87l.lib 50
M_386FM 21 math87m.lib 50
_M_386FM 21 math87s.lib 50
M_386LM 21 mathc.lib 51
_M_386LM 21 matherr 602
M_386MM 21 DOMAIN 603
_M_386MM 21 OVERFLOW 603
M_386SM 21 PLOSS 603
_M_386SM 21 SING 603
M_I386 20 TLOSS 603
_M_I386 20 UNDERFLOW 603
M_I86 20 mathh.lib 51
_M_I86 20 mathl.lib 51
M_I86CM 21 mathm.lib 51
_M_I86CM 21 maths.lib 51
M_I86HM 21 MAXERRORS option 253
_M_I86HM 21 mdef.inc 51-52
M_I86LM 21 medium memory model 56, 122
_M_I86LM 21 medium model
M_I86MM 21 libraries 47, 50
_M_I86MM 21 memory
M_I86SM 21 first megabyte 194
_M_I86SM 21 memory layout 57, 62, 123, 128, 227, 291
_M_IX86 20 memory model 11
__MEDIUM__ 21 memory models
MSDOS 20 16-bit 55
__NETWARE_386__ 20 32-bit 121
__NETWARE__ 20 compact 56, 122
NO_EXT_KEYS 21 flat 122
__NT__ 20 huge 56
__OS2__ 20 large 56, 122
_PUSHPOP_SUPPORTED 22 libraries 57, 123
__QNX__ 20 medium 56, 122
__SMALL__ 21 mixed 56, 122
_STDCALL_SUPPORTED 22 small 56, 122
__UNIX__ 20 tiny 56
__WATCOM_CPLUSPLUS__ 22 message 556
__WATCOMC__ 22 1014 295
_WINDOWS 20 1019 295
__WINDOWS_386__ 20 1023 296

613

Index

1027 297 1163 308
1028,2028 297 1165 308
1032 297 1167 308
1038 297 2002 293
1043 298 2008 293
1044,2044 298 2010,3010 294
1045 298 2011 294
1046 298 2012 294
1047 298 2015 295
1048 299 2016 295
1050 299 2017 295
1054 299 2018 295
1058 299 2020 295
1059,2059 300 2021 296
1060 300 2022 296
1061 300 2024 296
1062 300 2025 296
1069 301 2026 296
1072 301 2029 297
1076 301 2030 297
1080 301 2031 297
1087 302 2033,3033 297
1090 302 2034 297
1098 303 2039 298
1101 303 2040 298
1102 303 2041 298
1103 303 2042 298
1105 303 2049 299
1107 303 2051 299
1108 303 2052 299
1109 304 2053 299
1110 304 2055 299
1111 304 2056 299
1115 304 2063 300
1116 304 2064 300
1117 304 2065 300
1118 304 2066 300
1121 305 2067 300
1124 305 2068 300
1125 305 2070 301
1126 305 2071 301
1130 305 2073 301
1133 306 2074 301
1134 306 2075 301
1136 306 2082 301
1140 306 2083 302
1141 306 2084 302
1143 307 2086 302
1145 307 2089 302
1148 307 2091 302
1149 307 2092 302
1150 307 2093 302
1158 308 2094 303
1162 308 2099 303

614

Index

2119 304
2120 304 N2127 305
2132 306
2146 307
2151 307 naked 27, 38
2152 307 NAME directive 256
2154 307 NAMELEN option 257
2155 307 namespace 455, 577-579
2156 308 near 25, 56, 122, 407, 524
2166 308 near (pragma) 97, 167
3009 294 near call 55, 121
3013 294 near pointer
3057 299 size of 64, 130
3088 302 _near 25
3097 303 __near 25, 27, 407, 524
3114 304 NetWare debugger 224
3122 305 __NETWARE_386__ 20-21
3123 305 __NETWARE__ 20-21
3128 305 new 433, 444, 449, 463, 495, 518, 520, 525, 578
3129 305 no8087 (pragma) 105, 175
3131 305 NO_EXT_KEYS 21
3135 306 NODEFAULTLIBS option 258
3137 306 noemu387.lib 50
3138 306 noemu87.lib 50
3139 306 NOEXTENSION option 259
3147 307 NOREDEFSOK option 272
3157 308 notation 214
3159 308 NOUNDEFSOK option 285
3160 308 __NT__ 20-21
3164 308 NULL 33

message pragma 88, 156 _NULLOFF 33
messages _NULLSEG 33

errno 598 numeric data processor 50-51
matherr 602
run-time 598, 602

MetaWare
High C calling convention 161, 183 O

Microsoft
C calling convention 93, 114

Microsoft OMF 209
mixed memory model 56, 122 object model 82, 150
models.inc 51 OCC directory 10
MODFILE directive 254 occ file extension 10
modify exact (pragma) 113-114, 182-183 offsetof 438, 442, 492
modify nomemory (pragma) 109, 112, 179, 181 OMF 209
modify reg_set (pragma) 118, 187 OMF library 209
MODTRACE directive 255 once pragma 88, 156
MSDOS 20-21 opattr 335
mutable 553 opcodes

assembly language 200
Open Watcom C/C++ options

zm 228
operator 453

615

Index

:> 34 using pragmas 76, 144
operator + 455, 463 VERBOSE 286
operator ++ 465 VFREMOVAL 287
operator += 462 options file
operator -> 465, 557 command line options 10
operator delete 463-464, 490, 510, 578 OPTLIB directive 261
operator delete [] 463-464 ORDER directive 263
operator new 449-450, 452, 463-464, 578 __OS2__ 20-21
operator new [] 463-464 OS2_INCLUDE environment variable 17
operator ~ 462 OSNAME option 266
optimization 88, 156 OUTPUT directive 267
option 335 overview of contents 3
OPTION directive 260
options 7

ARTIFICIAL 216
bt 17 P
CACHE 217
CASEEXACT 218
check_stack 76, 144

pack pragma 89, 157CVPACK 220
_Packed 26DOSSEG 227
page 335ELIMINATE 228
parm (pragma) 101, 170FARCALLS 230
parm caller (pragma) 104, 174FILLCHAR 233
parm nomemory (pragma) 112, 181fp2 50
parm reg_set (pragma) 115, 184fp3 50
parm reverse (pragma) 105, 174fp5 50
parm routine (pragma) 104, 174fpc 51, 140
pascal 26, 94, 162fpi 50
pascal alias name 94, 162fpi87 50-51
__pascal alias name 94, 162i 17-18
_Pascal 26LINEARRELOCS 249
__pascal 26-27, 94, 161-162LONGLIVED 250
passing arguments 63, 129MANGLEDNAMES 251

1 byte 63, 129MAP 252
2 bytes 63-64, 129MAXERRORS 253
4 bytes 130NAMELEN 257
8 bytes 64, 130NODEFAULTLIBS 258
far pointers 64, 130NOEXTENSION 259
in 80x87 registers 116, 184NOREDEFSOK 272
in 80x87-based applications 72, 140NOUNDEFSOK 285
in registers 63, 129OSNAME 266
of type double 64, 130PRIVILEGE 270

PATH directive 269QUIET 271
PATH environment variable 17, 211, 213, 218,r 68, 73, 134, 137, 142

230, 283, 367-368REDEFSOK 272
PE format executable 235reuse_duplicate_strings 77, 145
Phar Lap example 194SHOWDEAD 274
Phar Lap OMF-386 209STACK 276
Phar Lap TNT 235START 277
PL format executable 235STATICS 279
plib3r.lib 49SYMFILE 280
plib3s.lib 49UNDEFSOK 285
plibc.lib 48unreferenced 76, 144

616

Index

plibh.lib 48 parm reverse 105, 174
plibl.lib 48 parm routine 104, 174
plibm.lib 48 read_only_file 90, 158
plibs.lib 48 specifying default libraries 77, 145
popcontext 335 struct caller 105, 107, 175-176
pragma 75, 143, 518, 524, 536 struct float 105, 108, 175, 177
pragma options 76, 144 struct routine 105, 107, 175-176
__pragma("string") 27 template_depth 90, 158
__pragma 27, 31, 39 value 105-108, 175-177
pragmas value [8087] 108, 178

= const 97, 167 value no8087 108, 178
aborts 109, 178 value reg_set 118, 187
alias 78, 146 warning 91, 159
alias name 93, 161 precompiled headers 43
alloc_text 79, 147 compiler options 44
alternate name 96, 165 rules 44
auxiliary 91, 159 uses 43
calling information 97, 167 using 43
code_seg 79, 147 predefined types
comment 80, 148 size of 64, 130
data_seg 81, 149 predictable code size 41, 369
describing argument lists 100, 170 preprocessor 18
describing return value 105, 175 printf 31
disable_message 81, 149 private 442, 459, 473
dump_object_model 82, 150 PRIVILEGE option 270
enable_message 82, 150 protected 433-434, 473
enum 82, 150 proto 335
error 83, 151 public 442
export 99-100, 169 punctuation characters 214
extref 83, 151 purge 335
far 97, 167 pushcontext 335
frame 100, 169 _PUSHPOP_SUPPORTED 22
function 84, 152
in-line assembly 97, 167
in-line functions 104, 173
include_alias 85, 153 Q
initialize 85, 153
inline_depth 86, 154
inline_recursion 87, 155

QNX applicationsintrinsic 87, 155
creating 289loadds 99, 168

__QNX__ 20-21message 88, 156
QUIET option 271modify exact 113-114, 182-183

modify nomemory 109, 112, 179, 181
modify reg_set 118, 187
near 97, 167 Rno8087 105, 175
notation used to describe 75, 143
once 88, 156
pack 89, 157 read_only_file pragma 90, 158
parm 101, 170 real-mode memory 194
parm caller 104, 174 record 335
parm nomemory 112, 181 REDEFSOK option 272
parm reg_set 115, 184 REFERENCE directive 273

617

Index

register 384, 388, 393, 395, 401, 419, 428, double 64, 130
439-440 enumerated types 65, 131

reinterpret_cast 566-567 far pointer 64, 130
removing debug information 361 float 64, 130
restrict 26 int 64, 130
__restrict 26 long double 64, 130
return 374, 387, 392, 406, 408, 417 long float 64, 130
return value (pragma) 105, 175 long int 64, 130
returning values from functions 69, 138 near pointer 64, 130
reuse_duplicate_strings option 77, 145 predefined types 64, 130
run-time short int 64, 130

error messages 373, 405, 597-598 signed char 64, 130
messages 597 signed int 64, 130

run-time initialization 51 signed long int 64, 130
signed short int 64, 130
unsigned char 64, 130
unsigned int 64, 130
unsigned long int 64, 130S
unsigned short int 64, 130

sizeof 38, 393
small code model 55, 121

_saveregs 28 small data model 55, 121
__saveregs 28 small memory model 56, 122
_Seg16 30 small model
segment libraries 47-48, 50-51, 123

_TEXT 58, 63, 124, 129 software quality assurance 41, 370
segment ordering 57, 62, 123, 128, 227, 291 SOMDLINK 25, 29
segment references 25-26 SOMLINK 26, 29
_segment 25 SORT directive 275
__segment 25, 32-35 source file
segname references 25 including 16
_segname 25 searching 16
__segname 25, 32, 398, 587 space character 214
self references 26 special characters 214
_self 26 stack frame 100, 169
__self 26, 32, 477 stack frame (pragma) 100, 169
shared library 48 STACK option 276
short 386, 388, 416 stack-based calling convention 135
short int 80x87 considerations 141

size of 64, 130 returning values from functions 140
short int type 60, 126 stacking arguments 103, 172
SHOWDEAD option 274 START option 277
side effects of functions 109, 179 STARTLINK directive 278
signed 386, 388, 416 static 36, 379, 385, 389, 413-414, 428, 433, 441,
signed char 559, 591 449, 473, 476-477, 479, 489

size of 64, 130 static_cast 569, 571, 583-584
signed int STATICS option 279

size of 64, 130 stdcall 94, 162
signed long int stdcall alias name 94, 162

size of 64, 130 __stdcall alias name 94, 162
signed short int __stdcall 27-28, 94, 162

size of 64, 130 _STDCALL_SUPPORTED 22
size of strip utility 361

char 64, 130

618

Index

struct 26, 384-386, 391-395, 399, 414, 423, 442, char 59, 125
485, 595 double 61, 127

struct caller (pragma) 105, 107, 175-176 float 60, 126
struct float (pragma) 105, 108, 175, 177 int 60, 126
struct routine (pragma) 105, 107, 175-176 long int 60, 126
subtitle 335 short int 60, 126
subttl 335
support files

dbg 370
hlp 370 U
prs 370
sym 370
trp 370

UNDEFSOK option 285switch 376, 382-383, 386, 392, 401, 409-411,
union 335, 384-386, 391-395, 399, 414, 423,415, 488

426-427, 485symbol attributes 91, 159
__UNIX__ 20-21symbol file 280
unreferenced option 76, 144symbolic references in in-line code sequences 98,
unsigned 386, 388, 416, 423168
unsigned char 559, 591SYMFILE option 280

size of 64, 130SYMTRACE directive 281
unsigned intsyscall 162

size of 64, 130syscall alias name 162
unsigned long int__syscall alias name 162

size of 64, 130_syscall 29
unsigned short int__syscall 27-29, 40, 162

size of 64, 130system 162
USE16 segments 123, 128system alias name 162
user initialization file 11__system alias name 162
using 584-586SYSTEM directive 210, 282
using environment variables in directives 213system name 282
using namespace 581_System 29

__system 162

V
T

va_arg 400
value (pragma) 105-108, 175-177template_depth pragma 90, 158
value [8087] (pragma) 108, 178_TEXT segment 58, 63, 124, 129
value no8087 (pragma) 108, 178this 335, 446, 453, 489, 498, 508, 513, 537
value reg_set (pragma) 118, 187thread 27, 36-37
variable argument lists 69, 138throw 418, 448, 524, 533, 549-550, 577
VERBOSE option 286tiny memory model 56
VFREMOVAL option 287title 335
virtual 433, 489-490, 534TMPDIR environment variable 368
virtual functions 274, 287TNT DOS extender 235
void 15, 374, 385, 387, 406, 417, 443-444, 448,try 530, 532-533

450-451, 453, 463, 467, 495, 503, 520,_try 396
540-541, 556, 571typedef 335, 428-429, 441, 455, 477

volatile 388, 432-433, 468, 495, 498, 506, 534,typeid 587
566types

VxD format executable 235

619

Index

command file 318
command line format 313W operations 314

wlib options 318
b 318
c 318warning messages 373
d 319warning pragma 91, 159
f 319warnings 226, 293
i 319wasm
l (lower case L) 320command line format 329
m 320watcall 94, 162
n 320watcall alias name 94, 162
o 321__watcall alias name 94, 162
p 321__watcall 94, 162
q 321WATCOM environment variable 50, 212-213,
s 322218, 230, 284, 367-368
t 322__WATCOM_CPLUSPLUS__ 22
v 322__WATCOMC__ 22
x 322wcc 369

wlinkWCC environment variable 10, 369
command line format 210, 289WCC options

wlink command linenm 58, 63, 124, 129
invoking wlink 210, 289nt 58, 63, 124, 129

wlink notation 214wcc386 369
wlink.lnkWCC386 environment variable 11, 369

default directive file 211, 213, 218, 230, 283WCC386 options
WLINK_LNK environment variable 212-213,nm 58, 63, 124, 129

218, 230, 284nt 58, 63, 124, 129
wlsystem.lnkWCGMEMORY environment variable 41,

directive file 212-213, 218, 230, 283369-370
wpp 371WD environment variable 370
WPP environment variable 10, 371WD_PATH environment variable 370
WPP optionswdis

nm 58, 63, 124, 129command line format 347
nt 58, 63, 124, 129wdis example 352

wpp386 371wdis options 348
WPP386 environment variable 11, 371a 348
WPP386 optionse 348

nm 58, 63, 124, 129fi 349
nt 58, 63, 124, 129fp 349

wstrip 224-225, 361fr 349
command line format 361fu 350
diagnostics 362i 348

wstrip command 225l (lowercase L) 350
m 351
p 350
s 351 Xwhile 382, 390, 392, 401, 409-410, 421

width 335
window function 241
_WINDOWS 20-21 __X86__ 20
__WINDOWS_386__ 20-21
__WINDOWS__ 20-21
wlib

620

Index

Z

zm compiler option (Open Watcom C/C++) 228

621

