Open Watcom C/C++
Compiler and Tools
User’s Guide for QNX

3rd Edition

S Powenrsoft

Notice of Copyright

Copyright O 2002-2008 the Open Watcom Contributors. Portions Copyright O 1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit http://www.openwatcom.org/

ISBN 1-55094-xxx-y

Preface

Open Watcom C is an implementation of | SO/ANSI 9899:1990 Programming Language C. The standard
was developed by the ANSI X3J11 Technical Committee on the C Programming Language. In addition to
the full C language standard, the compiler supports numerous extensions for the Intel 80x86-based personal
computer environment. The compiler is also partially compliant with the ISO/IEC 9899:1999
Programming Language C standard.

Open Watcom C++ is an implementation of the Draft Proposed International Standard for Information
Systems Programming Language C++ (ANSI X3J16, 1ISO WG21). In addition to the full C++ language
standard, the compiler supports numerous extensions for the Intel 80x86-based personal computer
environment.

Open Watcom iswell known for its language processors having developed, over the last decade, compilers
and interpreters for the APL, BASIC, COBOL, FORTRAN and Pascal programming languages. From the
start, Open Watcom has been committed to developing portable software products. These products have
been implemented on a variety of processor architecturesincluding the IBM 370, the Intel 8086 family, the
Motorola 6809 and 68000, the MOS 6502, and the Digital PDP11 and VAX. In most cases, the tools
necessary for porting to these environments had to be created first. Invariably, a code generator had to be
written. Assemblers, linkers and debuggers had to be created when none were available or when existing
ones were inadequate.

Over the years, much research has gone into devel oping the "ultimate" code generator for the Intel 8086
family. We have continually looked for new ways to improve the quality of the emitted code, never being
quite satisfied with the results. Several major revisions, including some entirely new approaches to code
generation, have ensued over the years. Our latest version employs state of the art techniques to produce
very high quality code for the 8086 family. We introduced the C compiler in 1987, satisfied that we had a
C software development system that would be of major benefit to those developing applicationsin C for the
IBM PC and compatibles.

The Open Watcom C/C++ Compiler and Tools User’s Guide for QNX describes how to use Open Watcom
C/C++ on Intel 80x86-based personal computers to build QNX applications. The User’s Guide is covers
the following topics:

* The Open Watcom C/C++ compiler including compiler options, benchmarking, include file
processing, the preprocessor, predefined macros and keywords, based pointers, precompiled headers,
and libraries

* 16-bit memory models, calling conventions, and pragmas

* 32-bit memory models, calling conventions, and pragmas

* In-line assembly language

 The Open Watcom Linker

» The Open Watcom Library Manager

* The Open Watcom Assembler

* The Open Watcom Disassembl er

* The Open Watcom Strip Utility

* Environment Variables
* C Diagnostic Messages
» C++ Diagnostic Messages
» Open Watcom C/C++ Run-Time Messages
Additional copies of this documentation may be ordered from:

QNX Software Systems Ltd.
175 Terence Matthews Crescent
Kanata, Ontario

CANADA K2M 1wW8

Phone: 613-591-0931

Fax: 613-591-3579

Acknowledgements

This book was produced with the Open Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCII text editor to create source files containing
text annotated with tags. These tags label the structural elements of the document, such as chapters,
sections, paragraphs, and lists. The Open Watcom GML software, which runs on avariety of operating
systems, interprets the tags to format the text into a form such as you see here. Writers can produce output
for avariety of printers, including laser printers, using separately specified layout directives for such things
as font selection, column width and height, number of columns, etc. The result istype-set quality copy
containing integrated text and graphics.

The Plum Hall Validation Suite for C/C++ has been invaluable in verifying the conformance of the Open
Watcom C/C++ compilersto the ISO C Language Standard and the Draft Proposed C++ Language
Standard.

Many users have provided valuable feedback on earlier versions of the Open Watcom C/C++ compilers and
related tools. Their comments were greatly appreciated. If you find problems in the documentation or have
some good suggestions, we would like to hear from you.

July, 1997.

Trademarks Used in this Manual

Table of Contents

Open WatCom C/CH+ USEI"SGUIRoouiiiiriiieiiieiiesie ettt bbb sttt e e e s snesbenaas

1 About ThisManua

2 Open Watcom C/CH+ COmMPIlEr OPLIONSc.civieriiiriirieiereeierieieree et

3 The Open Watcom C/CH+ COMPILELS ...oveieeeeeeeeeeees st e e e e saeseeneennens
3.1 Open Watcom C/C++ Command Line FOrMatccccevievevirenererieieeseeeeesese e seesee e
3.2 Environment VariabIESccviiiiiiicer e
3.3 Open Watcom C/C++ Command Line EXaMPIEScocviiiririninene e
3.4 Benchmarking HiNtSc.ooiiiiiiiee e et
3.5 COMPIIEr DIAGNOSICSeeueeiereeieniirieeie ettt st e e ae e sae b e besbesbesbeseeseenean
3.6 Open Watcom C/C++ #include File ProCeSSINGgcccoeoererirenenerinesese s
3.7 Open WatCom C/C+ PIrEPIOCESSONc.civeuerueerieersinesseseesessesesseseseesessesesseessesssessssesssseses
3.8 Open Watcom C/C++ Predefined MaCIOSccoeiiieirieirieireenieresiesese e
3.9 Open Watcom C/C++ Extended KeYWOIdScccveerenrennerreeeseees e

3.10 Based Pointers

3.10.1 Segment Constant Based Pointers and Objectsccocvvvevevivvcierecceceeee
3.10.2 Segment Object Based POINLESSccoevveieirieeeece e eenens
3.10.3V0id BaSed POINLEIScoeiieieieeieeeeeeeieeie sttt s
3.10.4 Self BaSed POINLENSoouiieiieieieeeeereee et
311 The __ deCISPec KEYWOITccoiiiiiieieeeeeee et st
3.12 The Open WatCom Code GENEIALONccueerieuirieirieesieestees e

4 Precompiled Headers

4.1 Using Precompiled HEAOENScoviiiriiereren e
4.2 When to Precompile Header FilEScoviiiiereceeeeeese s
4.3 Creating and Using Precompiled HEAEr'Scc.coveeeieiciire et
4.4 The"-fh[g]" (Precompiled Header) Optioncccceoveieeieeeciene s
4.5 Consistency Rules for Precompiled HEaders ...

5 The Open Watcom C/CH+ LiDraries ...t
5.1 Open Watcom C/C++ Library DIreCtory StrUCIUIEccooueereeienienenieneseseeesesie e
5.2 Open Watcom C/C++ C LIDraries ..o s
5.3 Open Watcom C 16-bit Shared Librarycceoverninninnieesecse e
5.4 Open Watcom C/C++ Class LIibrariescoccveereneinenesessesie e
5.5 Open Watcom C/C++ Math LiDrariescccvevvvieviisn i
5.6 Open Watcom C/C++ 80x87 Math Librariescccvcvvieveneiceeieeseeesese e sese e
5.7 Open Watcom C/C++ Alternate Math Librariesccccoeeviiieieviseseseececeeece e
5.8 The Open Watcom C/C++ Run-time Initialization ROULINEScccocrveriniencneneneienns

16-bit TOPICS ..eeveeevereeririeierieierieins

6 16-bit Memory Models ...
6.1 Introduction

6.2 16-Dit COUEMOUELS ...ooevieeieieetereie et ettt sttt
6.3 16-Dit DAAMOUEIS ..o et
6.4 Summary of 16-bit Memory MOEISccccoveicieecicec e s
6.5 Mixed 16-bit Memory MOCEl ..o
6.6 Linking Applications for the Various 16-bit Memory ModelS ...,

6.7 Memory Layout

©

10
11
13
15
16
18
20
25
32
33

35
36
40

RREEESE

47
47
47
48
48
49
50
51
51

53

55
55
55
55
56
56
57
57

Table of Contents

7 16-bit Assembly Language CONSIAEIELIONScoeierierieiieieeeesere st sie et see e e se e saea
4% 1 0110 o [FTox i o) o [OOSR
7.2 DAa REDIESENTALION ...c.ocviieeeiieeiiieeie ettt ettt b e

T2 L TYPECRAI™ ..ottt b e et b e e b neene
722 TYPE"SNOIT INE" ..ot
T.2.3TYPEIONG INE" ettt ettt be e
7 1Y/ o= T o
T 1Y/ o T= R 1 o
SR 1Y 0T o (o U o] =
R T = g aTo VA = o | PSR
7.4 Calling Conventions for Non-80x87 APPlICALIONScceerirerinine e
7.4.1 Passing Arguments Using Register-Based Calling Conventions cccceeeeee.
7.4.2 Sizes of Predefined TYPES ...oovciiiirieirteeneese ettt
7.4.3 Size of ENUMEIated TYPES ...ooveuiiieiirieirieirieesiesest ettt
7.4.4 Effect of Function Prototypes on ArgumMENtSccceeereereereenieeneeesieesieens
7.4.5 Interfacing to Assembly Language FUNCLIONSccoeoeveenieenecneenecsieceieens
7.4.6 Functions with Variable Number of Argumentscccccevvvierevvvcceseececeeeee
7.4.7 Returning Values from FUNCLIONSccoveieireecececc e
7.5 Calling Conventions for 80x87-based AppliCationsccccceveeceeieeiniese e
7.5.1 Passing Valuesin 80x87-based AppliCationscccoceierieieeinienienenenereeeee
7.5.2 Returning Valuesin 80x87-based Applicationsccoceveieienencieieeceeeee

8 16-DIT Pragimascoueeieiiiiiieieiet ettt b bbbt bt b e
S T80 1 0110 o [UTox £ o o SRS
8.2 Using Pragmas to SPECify OPLIONScovviiriiirieiriirieesieieie e
8.3 Using Pragmas to Specify Default Libraries ...
8.4 The ALIAS PragMa (C ONlY) ..oiioeereeeeeeeeeees sttt s sre e seeean
8.5 The ALLOC _TEXT Pragma (C ONlY) .cocovceeeeeeeeere et ste e e s sre s
8.6 The CODE_SEG PraQIMAacueuerereereririsesiesesesesessesesesesesesesessssesessessssesesessesessssssssesssssssssnas
8.7 The COMMENT PraQIMALcueuiririeieiininisieieiesesee ettt et s snenas
8.8 THE DATA_SEG Pragmaceoiiirieieiiiririeitenerie ettt et
8.9 The DISABLE_MESSAGE Pragma (C ONlY)cccoiiririeenirisieienesesiseeesesesiee e
8.10 The DUMP_OBJECT_MODEL Pragma (C++ Only)cccoeeiiveiicreieeeeeee e
8.11 The ENABLE_MESSAGE Pragma (C OnlY)cccoirverieiierinieenesesieieeseseseesesesesesseesenens
8.12 THE ENUM PragiMal......c.eiueuirieiirieiirieisteisiees ettt sttt
8.13 ThE ERROR PragIMALcceruierieiiieriete et seete sttt sttt st st saebeseeseseeseseenens
8.14 The EXTREF PragiMac.ccveeveeeeeeeeeesesestes e s ste e ste e ae e seesaesae e e esessessessessessessnssnnses
8.15 The FUNCTION PragMalccccieiueiierieriereeeeeeiesestesessestestessesrestes e saesssnsesssssssssssssssssssenses
8.16 The INCLUDE_ALIAS PragMalccvcveiireriereiesinieiee st sesseseseseses
8.17 Setting Priority of Static Data Initialization (C++ Only)ccocceevviieeveieececeeeeee
8.18 The INLINE_DEPTH Pragma (C++ OnNlY) ...ccooveevieereeseese s
8.19 The INLINE_RECURSION Pragma (C++ Only)cocevererccecreeeeere e senenes
8.20 The INTRINSIC Pragimacccoevucueererinieieserie ettt
8.21 ThE MESSAGE PragIMAL ...c.ccueiieuirieiirieierieisteesie sttt ere s sae s bbb b seere e
8.22 ThE ONCE Pragmalc.eiueuerieirieisieesteneete sttt sttt ettt ettt st s ebe s ebeseene s
8.23 ThE PACK PragIMALcueiieeiiieiiiiee ettt st st st st st sttt
8.24 The READ_ONLY _FILE Pragmalccccveerereirenrereinessreeesesee s senens
8.25 The TEMPLATE_DEPTH Pragma (C++ OnlY) ...cccooiiiieenieererienesieneee e
8.26 The WARNING Pragma (CH+ ONlY) .oveeviieirieireiniesee e
8.27 AUXIlTArY PragiMasccceiiieiecieeiesiete et e e eee st re e st ae st st etesteeteste et e ereentesneeseeneenas

8.27.1 Specifying Symbol AtHDULES ..o
B.27.2 AlIBSINBITIES ...ttt sttt e besb b e b b e

Vi

59
59
59
59
60
60
60
60
61
62
63
63

65
65
66
69
69
72
72
73

75
75
76
77
78
79
79
80
81
81
82
82
82
83
83

85
85
86
87
87
88
88
89
90
90
91
91
91
92

Table of Contents

8.27.3 PredefiNed AlIASES ..ottt 94
8.27.3.1 Predefined " __cdecl” AlIESccovrueiiirrinee e 94

8.27.3.2 Predefined " __pascal” AlIEScccoeeeirrnireirreee e 95

8.27.3.3 Predefined " __watCall" AliaScccccevererririnirreee e 95

8.27.4 Alternate Names for SYmbOIScccoueiiiiiree e 96

8.27.5 Describing Calling INfOrMationcccveereineineren e 97
8.27.5.1 Loading Data Segment REQISLErcccoveveeeeerireeere e seeseese e 99

8.27.5.2 Defining Exported Symbolsin Dynamic Link Libraries 99

8.27.5.3 Defining Windows Callback FUNCtionsccccocevvvieveveccneviesennn, 100

8.27.5.4 Forcing aStack Framecccoccvviciise e 100

8.27.6 Describing Argument INfOrmationccocooevereneneneeeeeeeeeeere e 100
8.27.6.1 Passing Argumentsin REQISIENSccooiieiriirireseeene e 101

8.27.6.2 Forcing Arguments into Specific REQISIErSccoveveevcineinee 103

8.27.6.3 Passing Argumentsto In-Line FUNCLiONScccccvvcvinninncnecnne, 104

8.27.6.4 Removing Arguments from the Stackcccoeeviiniinnincienecneee 104

8.27.6.5 Passing Arguments in ReVErse Ordercccveeevenenenneneneneseneeienens 105

8.27.7 Describing Function Return Informationccceveeeveeeveveenesesie e 105
8.27.7.1 Returning Function Values in REQISLErSccccvvveereveresese e seeienes 106

8.27.7.2 RELUINING SEIUCLUIES ..ottt sttt s ns 107

8.27.7.3 Returning Floating-Point Dataccccceeveveeveceese e eee e 108

8.27.8 A Function that Never REIUMSccviiiirieirieinieeneeseesee e 109

8.27.9 Describing How FUNCtionS USE MEMOIY c.coveiieierircreeiesiene e 109
8.27.10 Describing the Registers Modified by a FUNCHiONccoviiiiiniicicce, 113

8.27. 11 ANEXAMPIE ..oviiciiete ettt 114
8.27.12 Auxiliary Pragmas and the 8OX87cccccceveirieinieirese e 115
8.27.12.1 Using the 80x87 t0 Pass ArQUMENLScccveeriererenenreresieseeieseeeenens 115

8.27.12.2 Using the 80x87 to Return Function Valuesccccocevevveceececeeenenne, 118

8.27.12.3 Preserving 80x87 Floating-Point Registers Across Calls 118

17 o 1 A o oL ox ST SRPRR 119
9 32-Dit MEMOIY MOUELS ...ttt st b et 121
LS 80 1 1o o [UTox 4 o o SRS 121
9.2 32-bit COUE MOEISooeeeereiieieiesie ettt st eeae e e e e enee e eneenens 121
LS RCRC .2 o L f B - = 1LY, oo L= £ 121
9.4 Summary of 32-bit MemOory MOEIScccoeeeeeeccecece e s 122
9.5 Flat MEMOIY MOGEL ...ttt s st se e e e e eneas 122
9.6 Mixed 32-bit MemMOry MOCElccoieececece et 122
9.7 Linking Applications for the Various 32-bit Memory Models ..., 123
0.8 MEIMONY LBYOUL ..ottt ettt sttt bbbt ebe et e b e s s aeenneeaeeseeeneas 123
10 32-bit Assembly Language CONSIAEratiONSccereerereererieerieiesieeseeesee st ereseere s snene e 125
0 80 I 1 o [Tox 4 o o PP 125
10.2 Data REPIESENTALIONcuiieeiiieierieeree ettt et st st sttt 125
L0 2.1 TYPE "CRAI™ oottt ettt sttt sttt et 125

0 2270 Y/ o 7= R oo o T o 126

0 220 T Y/ o 7= R o) 1o T | 126

10.2.4 TYPE "IN ettt ettt 126

10.2.5 TYPE "FIOAL" ..ottt 126

10.2.6 TYPE "AOUDIE" ...t e 127

TO.3 MEMOINY LEYOUL ...ttt ettt bbbt sb e e b s aeenne e e sne e e 128

vii

Table of Contents

10.4 Calling Conventions for Non-80x87 APPlICAIONSc.coeieeieeererenerere e 129
10.4.1 Passing Arguments Using Register-Based Calling Conventions cc.cce... 129

10.4.2 Sizes of Predefined TYPES ...oociiiirieirieerieee et 130

10.4.3 Size of ENUMErated TYPES ...oovcireeeerieirieirieristene sttt 131

10.4.4 Effect of Function Prototypes on ArgUMENESccceevererernereneneeeseeesee e 131

10.4.5 Interfacing to Assembly Language FUNCLIONSccccooivrinninnineceeee e 132

10.4.6 Using Stack-Based Calling CONVENLIONSccccoeeeeereseneseseesesieseeneeseeseeseenens 135

10.4.7 Functions with Variable Number of Argumentsccocveveevievevereseseeeeene 138

10.4.8 Returning Values from FUNCLIONScccoevivienieriesieeececesese e 138

10.5 Calling Conventions for 80x87-based AppliCatioNSccooieieiiriierreeeere e 140
10.5.1 Passing Valuesin 80x87-based AppliCationscooeierererieieieeseneeeeee 141

10.5.2 Returning Valuesin 80x87-based AppliCationsccooevirenenenieneieeeeeee 142

11 32-DIt PragiMaSc.eiueerieiriiieieeeiese ettt ettt b et b e bt e bbbt s e st e s b st b e b e e b s b e e ens 143
0 1 T [T 4 o o PSS 143
11.2 Using Pragmas to SPeCify OPLIONScoveerieiriiriiseseseeesie e 144
11.3 Using Pragmas to Specify Default Librariesccoovovvvvenevenesesceeesese e 145
11.4 The ALIAS Pragma (C ONlY) ..oceeceeeeieece ettt e et s sre e 146
11.5The ALLOC_TEXT Pragma (C ONlY) ...ococeiirrieieirrieieiesesesieiee s es 147
11.6 The CODE_SEG PragiMaccererieueuirisirieiieseseesesesessetesestsss e sessssssesesesessesesesessssessnsssssenas 147
11.7 The COMMENT PragMacueeririeieieririeieeseseeiee sttt st sesne e sesnenas 148
11.8 The DATA_SEG Pragmaccoiviieieiesiriete ettt st st s 149
11.9 The DISABLE_MESSAGE Pragma (C ONlY) ...cccovueerireririeererisieene s 149
11.10 The DUMP_OBJECT_MODEL Pragma (C++ Only)ccceveiririrnenerenieenesesesieeserenens 150
11.11 The ENABLE_MESSAGE Pragma (C ONlY)cvueveereeeeeieeeeneeeeeeeseeeeseeesesessessesneens 150
I I g Yol o LY o T 150
11.13 The ERROR PIragMacccovrvirerrirereereresesesreseeses s sesesesessenessessssssssesessessesenes 151
11.14 The EXTREF Pragimacoovceiiirieienerieee s 151
11.15 The FUNCTION Pragmacccveiueueirenieieinesisie s s s snsne s s 152
11.16 The INCLUDE_ALIAS PragMA.cccoveveuiiririeiiesesieieieseses et ssene e s 153
11.17 Setting Priority of Static Data Initialization (C++ Only)ccocoeveieiiiinineeee e 153
11.18 The INLINE_DEPTH Pragma (C++ Only) ..ccvveoiieiieiseeeeesie e 154
11.19 The INLINE_RECURSION Pragma (C++ Only) ...cooeiieiririeerenirieeesesieie s 155
11.20 ThE INTRINSIC Pragimacccvvueueirerieieinesisieee sttt st sesessenas 155
11.21 The MESSAGE PragiMALcceiieiirieiirieiesiee ettt sttt s st s st 156
11.22 ThEe ONCE Pragmalcooeeerieerieesiene ettt sttt sttt st sttt 156
e R I o TC Y O L . = 7= S 157
11.24 The READ_ONLY _FILE PragMalcccovvvreeiererinesieieierisieeesesiere s 158
11.25 The TEMPLATE_DEPTH Pragma (CH+ ONlY) ..oooovevvieieeeeeeeeeeeeee e eeeeeeeeee e enen s 158
11.26 The WARNING Pragma (CH+ OnNlY) .o.ocvvveeirieirieiriecsecsieeseesesee s seens 159
12.27 AUXIlTArY PragIMascocooeeieeeeeeniinese ettt sb bbb b e be b e 159
11.27.1 Specifying Symbol AtrDULESooeoieiiee e 159
11.27.2 AlIaS NGIMES ...eouiiriiieririeieie sttt st st sttt e b e 160
11.27.3 Predefined AlI@SEScociiirereeererieieereres ettt s 162
11.27.3.1 Predefined " __cdecl” AlIESccooeeeinreeeeereieereeeee e 163

11.27.3.2 Predefined " __pascal” AlIES ... 163

11.27.3.3 Predefined " __stdcall” AliES ..o 163

11.27.3.4 Predefined " __sysCall” AliaS ..o 164

11.27.3.5 Predefined " watcall" Alias (register calling convention) 164

11.27.3.6 Predefined " __watcall" Alias (stack calling convention) 165

11.27.4 Alternate NamesS for SYMDOISocoveieeiiiieree e 165
11.27.5 Describing Calling INfOrmMationcoeveeiieiennienereee e 167

viii

Table of Contents

11.27.5.1 Loading Data Segment REQISIENcoereererrieieeieeencreee e 168

11.27.5.2 Defining Exported Symbolsin Dynamic Link Libraries 169

11.27.5.3 Forcing aStack Frame ..o 169

11.27.6 Describing Argument InfOrmationcoccoverrineieneienesee e 170

11.27.6.1 Passing ArgumentSin REQISLENSccccceveireiereieneeseese e 170

11.27.6.2 Forcing Arguments into Specific REGISIEIScovvvervenneneeneeieae 173

11.27.6.3 Passing Argumentsto In-Line FUNCLiONScccccevveceeevineseseseneens 173

11.27.6.4 Removing Arguments from the Stackccccceevvievie v sescceeee, 174

11.27.6.5 Passing Argumentsin Reverse Orderccocvvveveveneneseeneeseeseenenns 174

11.27.7 Describing Function Return Informationccccevveeeeveciese e, 175

11.27.7.1 Returning Function Values in REQISIErSccocvrerenienenenene e 175

11.27.7.2 RELUNING SIFUCLUESciueiuiiiirieriesiesie et 176

11.27.7.3 Returning Floating-Point Data.cccoveereeneineeeesee e 177

11.27.8 A Function that Never RELUIMNScccooeierieieieeeeecse s 178

11.27.9 Describing How FUNCLioNS USE MEMOTYc.oovceiriiinieiieeeese e 179

11.27.10 Describing the Registers Modified by a FUNCLiONccccoveiveiniininies 182

T 0 N 1 0 o = 183

11.27.12 Auxiliary Pragmas and the 80X87cccecevvrenereserenereeseeeseeesesesne e 184

11.27.12.1 Using the 80x87 to Pass ArguMENtsc.ccoceeveveveneneseesesseeneenenns 184

11.27.12.2 Using the 80x87 to Return Function Vauesccccceevvvvecircnenee. 187

11.27.12.3 Preserving 80x87 Floating-Point Registers Across Cals 187

IN-1iNE ASSEMDIY LANGUATEeivieeiteieteieteseet ettt ettt sttt b et b e st s b e e bt se bt seebesb et s b e e ebe e e b et ebe e 189
12 IN-1in€ ASSEMBIY LANGUBGEoveviieiirieiiierieries ettt bbbt 191
12.1 In-line Assembly Language Default ENVIronmMeNtcccceoeeeeeeeieeenieneseseseseeseeseeseens 191

12.2 In-line Assembly Language TULOMT @lccvcceeererecese et 192

12.3 Labelsin IN-1in€ ASSEMDBIY COUEcvcoveieieecececes e e 197

12.4 Variablesin In-line ASSEMbDIY COOEccceevieiiiierieceseccse et 197

125 In-line Assembly Language USING _8SMocuerueieeeeeinereeiesierie et snennes 199

12.6 In-line Assembly Directives and OPCOUEScoireriereeierierirenierere et s 200

OPEN WELCOM TOOIS ...ttt b bbbt bbbt b e bt e bt e bbb et n b e e nnenes 205
The Open WatCOm LINKENcviiieceie ittt ste ettt st se et e e s e e et e e e e eneesenneeneeresrennenreneas 207
13 The Open WELCOM LINKEYcoiiiiiiieeie ettt s sne s 209
13.1 USiNG the SY STEM DITECHVEcueuiiiririeieierenieie et 210

13.2 Linking 16-bit QNX EXecutable FIlEScooiiiiiiieeeeee e 212

13.3 Linking 32-bit QNX Executabl@ Files ... 212

14 Linker DireCtiveS @and OPLIONSc.ccerueirieerieiriene ettt st st sieseese sttt sttt 213
I I Lo N I NS I = o (= R 215

142 The ARTIFICIAL OPLON ...ocviiriiereiesieiecenes e 216

R I L= OF N @ @ o) i o] o RS 217

14.4 The CASEEXACT OPLION ..cvceiririeieiresieteenesisie st 218

TAS5 TREH DITECHIVE ..ottt bbbttt 219

14.6 The CVPACK OPLION ..ocuiiiiieiiiririeieie sttt 220

14.7 ThE DEBUG DIFECLIVEccoiuiueiiiirieieieseristeie sttt bebe e 221

Table of Contents

14.7.1 Line Numbering Information - DEBUG WATCOM LINESccccociininne 223

14.7.2 Local Symbol Information - DEBUG WATCOM LOCALScccoveiienenennae 223

14.7.3 Typing Information - DEBUG WATCOM TYPES ..o 223

14.7.4 All Debugging Information - DEBUG WATCOM ALL ..ccooeceviiviiciniees 224

14.7.5 Global Symbol INfOrMELioNcccerririeireireereere s 224

14.7.6 Global Symbols for the NetWare Debugger - DEBUG NOVELL 224

14.7.7 The ONLY EXPORTS Debugging Optioncccceereereereeereeeeeseseseeseeseeseenens 224

14.7.8 USINg DEBUG DITECLIVESceeeeeceeeene ettt sesaeae e e et sne e 224

14.7.9 Removing Debugging Information from an Executable Filecccccovenenee. 225
14.8 The DISABLE DIFECLIVEocueveiiriieieiciriietee ettt 226
14.9 The DOSSEG OPLIONocuiiiieitiiiirisieie sttt bbb 227
14.10 The ELIMINATE OPLON ...ocueiririeieeresieieenesisie st se s 228
14.11 The ENDLINK DIFECHVE ...cucoiririeieererieieesesis ettt 229
14.12 The FARCALLS OPLION ...vcuiiriieieeresieie ettt st sessenas 230
14.13 THE FILE DITECHVE ...eeeeeeieeeeeeeeete ettt s sne e sneseenne e 231
14.14 The FILLCHAR OPLION ...oiiiieiesieriesieesieseeeeeeseeseseessessesseste e sse e saessesesessensssessesssesens 233
14.15 The FORMAT DIFECLIVEvcviireriereeresieieees s 234
14.16 ThE @ DIFECIVE ..ot 241
14.17 The LANGUAGE DITECHVE ...cviveiiiiiririeeeienesieieeses st 244
14.18 THE LIBFILE DIFECLIVEcvcveiiriieieiee sttt 245
14.19 The LIBPATH DIFECLIVEcueiiiieieieirietesir ettt 246
14.20 ThE LIBRARY DITECHIVEcuioiiirieieeierieieene sttt st 247

14.20.1 Searching for Libraries Specified in Environment Variablescccoce...e. 247

14.20.2 Converting Libraries Created using Phar Lap 386|LIBcccocvveiieinicenns 248
14.21 The LINEARRELOCS OPLION ..c.ccoieieieieieeeeetesesesee et seensesaeseesessesneenessesses 249
14.22 The LONGLIVED OPLION ..ocociiereeeieriesiesiesiesieseeseeeseeseesesesseesessessesssssessesssssessesessennees 250
14.23 The MANGLEDNAMES OPLIONooveiiireeiereiesireeese s 251
72 B R g T Y AN @ o1 o TSP 252
14.25 The MAXERRORS OPLION ...c.cviueiiiiirieieieneresiereesesisieee st 253
14.26 The MODFILE DIFECHVE ...coeiierecieirinieteenesi ettt 254
14.27 The MODTRACE DIFECLIVE ...c.vvuiiiiirieieieresie ettt 255
14.28 ThE NAME DIFECLIVEooiirieiiiirieicie sttt bbbt 256
14.29 The NAMELEN OPLON ...ooveviiiiirieenenirieiceser ettt st st 257
14.30 The NODEFAULTLIBS OPLION ...ciiiveieiiiririeieeseseeieie s eeseesesessesesesassesesessseenas 258
14.31 The NOEXTENSION OPLiON ..ccoecieieeeeeerese sttt se e e e e esessesnessenes 259
14.32 The OPTION DIFECHIVE ...veievieeeiesiesieieierieseeeeseeeesesresseseestesteseessessesaeseessesssnsesseseesessessens 260
14.33 ThE OPTLIB DIlECLIVE ...ocvivereeiireereieireree sttt 261

14.33.1 Searching for Optional Libraries Specified in Environment Variables 261
14.34 The ORDER DITECHIVEcooucueuiriiieieieisirieiee ettt st 263
14.35 The OSNAME OPLION ..ottt st 266
14.36 The OUTPUT DIFECLVEecveeiririeieiieririeieenes ettt st 267
14.37 ThE PATH DITECHVE ..ocuiiiieiiiiirieieie sttt 269
14.38 ThE PRIVILEGE OPLIONcuiiiiieieenerieieeesise ettt s 270
14.39 The QUIET OPLON ...ccveviiiieieieiririeie sttt ettt b e bebe e e 271
14.40 The REDEFSOK OPLION ...c.oiviiieriiieniesiesieeeseeseeeesesseseseessessesteseeseessessessesesnsessessensesens 272
14.41 The REFERENCE DIFECHVEcccveeeeerereeeseseseeseste e e e seeseesaesaesessessessessessessessnssnsses 273
14.42 The SHOWDEAD OPLONocvoeieirereeresrereeesrseese e sesnesesesessenessesnns 274
14.43 The SORT DIFECHIVEcoviiierreiiirereeiererere et er e 275
14.44 The STACK OPLON ..cvciiiieiieiiirerieiet et b e er et 276
14.45 The START OPLION ...ooviviiiisieeeieresiete sttt b e 277
14.46 The STARTLINK DITECHVE ...ccviueuiiiririeienerisieie ettt 278
14.47 The STATICS OPLION ...oiiiiiieiiiririeiee sttt sttt st b e e b b e seeeas 279

Table of Contents

14.48 The SYMFILE OPLON ...ooiiitiiiriiieiiesirieiee ettt st 280

14.49 The SYMTRACE DITECHVEccovuiuiiiiririeieiesesieie ettt beb e 281

14.50 The SY STEM DIFECLVEecviiriieieeeririeiee sttt st st 282
14.50.1 Special SysStemM NAIMESccoiriiireeereeereee bbb s 284

14.51 The UNDEFSOK OPLIiONcccoeiieiinieniesiesienieseseeeeeeeseseessessesee e seessessessessesesseneensesens 285

14.52 The VERBOSE OPLIONooiiviriiiiieeieriee ettt st s s 286

14.53 The VFREMOV AL OPLON ...ovvieiiiirereerereneses e snssssesesennes 287

15 The QNX Executable Fil@ FOIMELccccooiieieieeieiceeecee ettt s neene e 289
15.1 MEMOIY LAYOUL ...veiiiiiitieiieeiiee sttt sieeste e bes et aeebe s sbaesseessaesbeesseesnbeesseeenseesbeesnseensenans 291

16 Open Watcom Linker DiagnOStiC MESSAJEScocererreririerieriesiesiesieseeseesesesessessesesaesteseeseesseseeseens 293
The Open WatCom Library MaNagE!coceveiiiiiirieesieesie ettt et b et et s ebe e 311
17 The Open Watcom Library Managerccceeeeeeereeeeereresteseseeseesiesteseesesseseesessessesssssessessessessessenes 313
A R T 110 [F o (o ST SO T TTSPPRO 313

17.2 The Open Watcom Library Manager Command Lineccccoceveveveiecieciinenie s 313

17.3 Open Watcom Library Manager Module COmMMAaNGScccevererieierieeienienene e 315

17.4 Adding Modulesto aLibrary File ... 315

17.5 Deleting Modules from aLibrary FIle ... 315

17.6 Replacing Modulesin aLibrary File ... 316

17.7 Extracting aModule from aLibrary File ... 316

17.8 Creating IMpPOrt LIDrariEscoiceieeree e e e 317

17.9 Creating Import Library ENFEScciiiriinineereee et 317

17.10 Commands from a File or Environment Variable ..o 318

17.11 Open Watcom Library Manager OPLiONSccccveeereereeieeieeesesesesresieseessesessesesssesennes 318
17.11.1 Suppress Creation of Backup File-"b" Optionccccvevvevievevecesecceene 318

17.11.2 Case Sensitive Symbol Names - "C" OPtioNc.covevirerenerieeeeeeeeeeeeeee 318

17.11.3 Specify Output Directory - "d" OPptioNccccceererineniene e 319

17.11.4 Specify Output Format - "f" OPtiONcooeieiiriiere e 319

17.11.5 Generating IMpPorts - "i" OPtIONc.cviveireireereere e 319

17.11.6 Creating aListing File - "[" OPtion ..o 320

17.11.7 Display C++ Mangled Names - "M" OPLioNcccoeverriennennenee e 320

17.11.8 Always Create aNew Library - "n" Optionccoceovenniennenniennenneneeeee 320

17.11.9 Specifying an Output File Name - "0" Optionccccvvivvvverierenecreeeeeeeenes 321

17.11.10 Specifying aLibrary Record Size - "p" Optioncccccevveeeceveviesesese e 321

17.11.11 Operate QUIELlY - "g" OPtION ..ocevviveieeeceee e 321

17.11.12 Strip Line Number Records - "S" OpLioNccccevereeieeieeieeeeereeesesiesie e 322

17.12.13 Trim Module Name - "t" OPLIONcccverirerererere e 322

17.11.14 Operate Verbosaly - "v" OPLIONcccoeiiiiiiie e 322

17.11.15 Explode Library File - "X" OPtioNccovirrineineeneesieeseses e 322

17.12 Librarian Error MESSAJEScoeviieirieisieneeie sttt sttt st st sttt sttt sn e 323

The Open WatCom ASSEMIBIENcvcieececi et re st e et ae e e e e e e e e e enennenns 327
18 The Open WatCom ASSEMDIEScvcoicecececes et r s s re s re s resre et s 329
L8. L INEFOTUCTION ...ttt n et e 329

18.2 Assembly Directives and OPCOOEScoververeereeieeirereniesese et st se e eenes 331

18.3 UNSUPPOILEA DIFECLIVESocviieeiiieieeeee ettt sttt st ae b sne 335

Xi

Table of Contents

18.4 Open Watcom ASSembler SPECITICoviuiriiiiireie e s 335

18.4.1 NamMiNgG CONVENTIONcouiiuiriirierieeierie st stesie e seesee e e e e e s sae s sbesbesbesaeseeseeses 335

18.4.2 Open Watcom "C" NamMe MaNGIErcccecereirieereirieeseses e 336

18.4.3 CalliNg CONVENTIONcveuiitiiiterieieriete ettt et s snene 336

18.5 Open Watcom Assembler Diagnostic MESSAJESovvveirieerieerieesienesiesese e 336

The Open Watcom DiSaSSEMDIEScccvoiiiiiii et st e e s e sesne e e s resresreean 345
19 The Object File DISasSeMIBIEScoi e s sttt 347
L. L INEFOTUCTION ..ttt ettt p et r e 347

19.2 Changing the Internal Label Character - "i=<char>"ccocooieineinienesienese e 348

19.3 The Assembly FOrmat Option - "8"coeoeiiiriiriee s 348

19.4 The External SymbolS Option - "€" ..o s 348

19.5 The No Instruction Name Pseudonyms Option - "fp" ... 349

19.6 The No Register Name Pseudonyms Option - "I ... 349

19.7 The Alternate Addressing FOrm Option - "fi" ... 349

19.8 The Uppercase Instructions/Registers Option - "fU"cccceceievecreerescese e 350

19.9 The Listing Option - "I[Z<lSt_fIlE>]" .oooveeeeeeeeeer e s 350

19.10 The Public Symbols Option - P ..o e 350

19.11 Retain C++ Mangled NamMES - "M" ..o s 351

19.12 The Source Option - "[=<S0UrCe filE€>]" ..o e 351

L. L3 AN EXAMPIE ..ot bbb 352

20 Optimization Of Far CallS ..o b e 357
The Open WatCom S ULIHITY ..cveieecece e st n e sr et sre s 359
21 The Open Watcom SEHP ULHITY ..ooeiiiieiie et 361
P22 I g 1 0T 18 o o] o OO S PSP O TR P PO 361

21.2 The Open Watcom Strip Utility Command LiNe ..o 361

21.3 StP ULIHITY MESSAES ...eveeeviierireeteriete sttt sttt et eb e st st s b e e b e sn e r e re e 362

F N o] 1< o o= OSSOSO 365
A. Use of ENVironment VariablES ..o 367
ALLFORCE ..ottt R bRt r e na 367
AL2ZINCLUDE ...ttt sttt b et 367
ALBLIB bbb bRt bbbttt nenenas 367
ALAPATH ettt bbb bbbkt E b e bbbt b et 368
ALBTIMPDIR oottt bbbt b b bt e bR b 368
ALBWATCOM ...ttt sttt st sttt skt et b e b e e se b et e nesesanbesenesereenas 368
ALTWWECC ettt ettt ettt et e eae oA e e R e ee e bR et et R e R et e et e et et tene e e 369

A LBWWECECSBEoeeeeeuieririeieesesiete st seseesesese e tese e sesbete e e sessesenesessesenesessesenenesenaesnnenesenses 369

A GWCGMEMORY ..ottt 369

ALLO WD et R R R r e 370
ALLLWD_PATH ettt n s 370
ALL2WWPP bbb bbbkt e R bRt E bbbt 371
ALLBWWPPSEBE ...ttt sttt etttk b ket et b ettt b et 371

Xii

Table of Contents

B. Open Watcom C DiagnOStiC MESSAJESccueruerierierieieirereete st sttt see e se e e e sae s sae b e e 373
B.1 Warning LEVEl 1 MESSA0EScceeueiieriiiinie ettt sttt st st s be st s ne e eneas 374
B.2Warning LEVEl 2 MESSEgEScocerieirieinieesiesesie sttt sttt sttt en 379
B.3Warning LEVEl 3IMESSAgEScoccerieirieirieieie sttt sttt sttt st 380
B.AWarning LEVE 4 IMESSEgESc.coueerieirieeiieeeie sttt sttt st sttt sttt et en s 382
B.S EITOr MESSA0ESoooeeieieieiieeiesree ettt r e n e n e e e ere e e e nne e 382
B.6 INfOrmational MESSAZESc..ccvereeireeerere e st sa e e s s sseeaesresresnenreneas 402
B.7 Pre-compiled Header MESSAJEScccvveererire st ste e st sne e e e 403
B.8 Miscellaneous Messages and PhraSeS ...t 404

C. Open Watcom C++ DiagnOStiC MESSAgESccvervirverierierieieieeeiesiere st st see st st e see s see e s e sse e snens 405
C.1 DiagNOStIC IMESSAgESecueeuereruerterieeiestestestestesteseeseesbebeseaee s ese e e esesaesaesaesbesbesaesbesbeseeseansan 406

D. Open Watcom C/C++ RUN-TIiME MESSAgEScccevirirtirieiirieierieiesieesiees sttt s ebe b seese e 597
D.1 RUN-TIME ErrOr MESSAJESocviieeiirieierieiesie sttt sttt st et s sbe e st sttt 597
D.2 errno Vauesand Their MEANINGScooiirrerrireeneee e sbe s 598

D.2.1 Shared Library ErTOIScccceceeeeerienesesesestesesteseesseeseeseenesses e esessessesnessesseses 600
D.2.2 Non-blocking and Interrupt 1/Oooveveeeeececees e 601
D.2.3 IPC/Network Software -- Argument ErTOrscccoveveveeveeieeieereseneseseseseesvenens 601
D.2.4 1PC/Network Software -- Operational Erforsc.ccoooevereneieienieniesenese e 601
D.2.5 QNX SPECITIC ..viuiiririeiiririeieiere ettt e 602
D.3 Math RUN-TIME ErrOr MESSAgEScoueiiieeriiriere sttt sttt et see s 602

xiii

Xiv

Open Watcom C/C++ User’s Guide

Open Watcom C/C++ User’s Guide

1 About This Manual

Thismanual contains the following chapters:

Chapter 1 —

Chapter 2 —

Chapter 3—

Chapter 4 —

Chapter 5—

Chapter 6 —

Chapter 7 —

Chapter 8 —

Chapter 9 —

"About This Manual".
This chapter provides an overview of the contents of this guide.
"Open Watcom C/C++ Compiler Options' on page 7.

This chapter provides a summary and reference section for all the C and C++ compiler
options.

"The Open Watcom C/C++ Compilers' on page 9.

This chapter describes how to compile an application from the command line. This chapter
also describes compiler environment variables, benchmarking hints, compiler diagnostics,
#include file processing, the preprocessor, predefined macros, extended keywords, and the
code generator.

"Precompiled Headers" on page 43.

This chapter describes the use of precompiled headers to speed up compilation.

"The Open Watcom C/C++ Libraries' on page 47.

This chapter describes the Open Watcom C/C++ library directory structure, C libraries,
classlibraries, math libraries, 80x87 math libraries, alternate math libraries, the "NO87"
environment variable, and the run-time initialization routines.

"16-bit Memory Models" on page 55.

This chapter describes the Open Watcom C/C++ memory models (including code and data
models), the tiny memory model, the mixed memory model, linking applications for the
various memory models, creating atiny memory model application, and memory layout in
an executable.

"16-bit Assembly Language Considerations' on page 59.

This chapter describes issues relating to 16-bit interfacing such as parameter passing
conventions.

"16-bit Pragmas’ on page 75.
This chapter describes the use of pragmas with the 16-bit compilers.

"32-bit Memory Models" on page 121.

About This Manual 3

Open Watcom C/C++ User’s Guide

4

Chapter 10 —

Chapter 11 —

Chapter 12 —

Chapter 13—

Chapter 14 —

Chapter 15—

Chapter 16 —

Chapter 17 —

Chapter 18 —

Chapter 19 —

Chapter 20 —

Chapter 21 —

This chapter describes the Open Watcom C/C++ memory models (including code and data
models), the flat memory model, the mixed memory model, linking applications for the
various memory models, and memory layout in an executable.

"32-bit Assembly Language Considerations' on page 125.

This chapter describes issues relating to 32-bit interfacing such as parameter passing
conventions.

"32-bit Pragmas' on page 143.

This chapter describes the use of pragmas with the 32-bit compilers.

"In-line Assembly Language" on page 191.

This chapter describes in-line assembly language programming using the auxiliary pragma.
"The Open Watcom Linker" on page 209.

This chapter introduces the Open Watcom Linker.

"Linker Directives and Options’ on page 213.

This chapter describes the Open Watcom Linker directives and options that apply to QNX
in alphabetical order.

"The QNX Executable File Format" on page 289.

This chapter describes the QNX executable file format.
"Open Watcom Linker Diagnostic Messages' on page 293.
This chapter explains the Open Watcom Linker error messages.
"The Open Watcom Library Manager" on page 313.

This chapter describe the Open Watcom Library Manager.
"The Open Watcom Assembler”" on page 329.

This chapter describe the Open Watcom Assembler.

"The Object File Disassembler" on page 347.

This chapter describe the Open Watcom Disassembler.
"Optimization of Far Calls" on page 357.

This chapter describes the optimization of far calls.

"The Open Watcom Strip Utility" on page 361.

This chapter describe the Open Watcom Strip Utility.

About This Manual

About This Manual

Appendix A. — "Use of Environment Variables' on page 367.

This appendix describes all the environment variables used by the compilers and related
tools.

Appendix B. — "Open Watcom C Diagnostic Messages' on page 373.

This appendix lists all of the Open Watcom C diagnostic messages with an explanation for
each.

Appendix C. — "Open Watcom C++ Diagnostic Messages' on page 405.

This appendix lists all of the Open Watcom C++ diagnostic messages with an explanation
for each.

Appendix D. — "Open Watcom C/C++ Run-Time Messages' on page 597.

This appendix lists all of the C/C++ run-time diagnostic messages with an explanation for
each.

About This Manual 5

Open Watcom C/C++ User’s Guide

6 About This Manual

2 Open Watcom C/C++ Compiler Options

This chapter describes all the compiler options that are available.

Open Watcom C/C++ Compiler Options 7

Open Watcom C/C++ User’s Guide

8 Open Watcom C/C++ Compiler Options

3 The Open Watcom C/C++ Compilers

This chapter covers the following topics.
» Command line syntax (see "Open Watcom C/C++ Command Line Format")
* Environment variables used by the compilers (see "Environment Variables' on page 10)

» Examples of command line syntax (see "Open Watcom C/C++ Command Line Examples' on page
11)

* Interpreting diagnostic messages (see "Compiler Diagnostics' on page 15)
« #include file handling (see "Open Watcom C/C++ #include File Processing” on page 16)

» Using the preprocessor built into the compilers (see "Open Watcom C/C++ Preprocessor” on page
18)

* System-dependent macros predefined by the compilers (see "Open Watcom C/C++ Predefined
Macros' on page 20)

» Additional keywords supported by the compilers (see "Open Watcom C/C++ Extended Keywords®
on page 25)

* Based pointer support in the compilers (see "Based Pointers" on page 32)

* Notes about the Code Generator (see "The Open Watcom Code Generator" on page 40)

3.1 Open Watcom C/C++ Command Line Format

The formal Open Watcom C/C++ command line syntax is shown below.

compiler_name [optiong] [file_spec] [options] [@extra_opts]

The square brackets [] denote items which are optional.

compiler_nameis one of the Open Watcom C/C++ compiler command names.

wce is the Open Watcom C compiler for 16-bit Intel platforms.
wpp is the Open Watcom C++ compiler for 16-bit Intel platforms.
wcc386 is the Open Watcom C compiler for 32-bit Intel platforms.
wpp386 is the Open Watcom C++ compiler for 32-bit Intel platforms.

Open Watcom C/C++ Command Line Format 9

Open Watcom C/C++ User’s Guide

file_spec is the file name specification of one or more files to be compiled. If file_spec is specified
asthe single character ".", an input file is read from standard input and the output file name
defaults to stdin.obyj.

If no path is specified, the current working directory is assumed. If thefileisnot in the
current directory, an adjacent "C" directory (i.e.,, . . / ¢) issearched if it exists.

If no file extension is specified, the compiler will check for afile with one of the following
extensionsin the order listed:

.cpp (C++ only)
.cC (C++ only)
.c (CIC++)

A QNX filename extension consists of that portion of a filename containing the last "." and
any characters which follow it.

Example:
File Specification Ext ensi on
/ horre/ j ohn. doe/ f oo (none)
/ hone/ j ohn. doe/ f 0o. .
/ hone/ j ohn. doe/ f 0o. bar . bar
/ hone/ j ohn. doe/ f 00. goo. bar . bar

If aperiod"." is specified but not the extension, the file is assumed to have no filename
extension.

If only the compiler name is specified then the compiler will display alist of available

options.

options isalist of valid compiler options, each preceded by adash ("—"). Options may be specified
in any order.

extra_opts is the name of an environment variable or file which contains additional command line

options to be processed. If the specified environment variable does not exist, asearch is
made for afile with the specified name. If no file extension isincluded in the specified
name, the default file extensionis".occ". A search of the current directory is made. If not
successful, an adjacent "OCC" directory (i.e., . . / occ) issearched if it exists.

3.2 Environment Variables

Environment variables can be used to specify commonly used compiler options. There is one environment
variable for each compiler (the name of the environment variable is the same as the compiler name). The
Open Watcom C/C++ environment variable names are;

WCC used with the Open Watcom C compiler for 16-hit Intel platforms

Example:
$ export "WCC=-d1 -ot"

WPP used with the Open Watcom C++ compiler for 16-bit Intel platforms

10 Environment Variables

The Open Watcom C/C++ Compilers

Example:
$ export "WPP=-dl1 -ot"
WCC386 used with the Open Watcom C compiler for 32-bit Intel platforms
Example:
$ export "WCC386=-dl -ot"
WPP386 used with the Open Watcom C++ compiler for 32-bit Intel platforms
Example:

$ export "WPP386=-dl -ot"

The options specified in environment variables are processed before options specified on the command line.
The above examples define the default options to be "d1" (include line number debugging information in
the object file), and "ot" (favour time optimizations over size optimizations).

Once a particular environment variable has been defined, those options listed become the default each time
the associated compiler isused. The compiler command line can be used to override any options specified
in the environment string.

Hint: If you use the same compiler options al the time, you may find it handy to define the
environment variable in your user initialization file.

3.3 Open Watcom C/C++ Command Line Examples

The following are some examples of using Open Watcom C/C++ to compile C/C++ source programs.

Example:
$ compiler_name report -dil -s

The compiler processes r eport . c(pp) producing an abject file which contains source line number
information. Stack overflow checking is omitted from the object code.

Example:
$ compiler_name -nmm -fpc cal c

The compiler compiles cal c. c(pp) for the Intel "medium" memory model and generates callsto
floating-point library emulation routines for all floating-point operations. Memory models are described in
the chapter entitled "16-bit Memory Models' on page 55.

Example:
$ compiler_name kw kdraw -2 -fpi 87 -oaxt

The compiler processes kwi kdr aw. c(pp) producing 16-bit object code for an Intel 286 system
equipped with an Intel 287 numeric data processor (or any upward compatible 386/387, 486D X, or Pentium
system). While the choice of these options narrows the number of microcomputer systems where this code
will execute, the resulting code will be highly optimized for this type of system.

Open Watcom C/C++ Command Line Examples 11

Open Watcom C/C++ User’s Guide

Example:
$ compiler_name -nf -3s calc

The compiler compiles cal c. c(pp) for theIntel 32-bit "flat" memory model. The compiler will
generate 386 instructions based on 386 instruction timings using the stack-based argument passing
convention. The resulting code will be optimized for Intel 386 systems. Memory models are described in
the chapter entitled "32-bit Memory Models' on page 121. Argument passing conventions are described in
the chapter entitled "32-bit Assembly Language Considerations' on page 125.

Example:
$ compiler_name kwi kdraw -4r -fpi 87 -oai mxt

The compiler processes kwi kdr aw. c(pp) producing 32-bit object code for an Intel 386-compatible
system equipped with a 387 numeric data processor. The compiler will generate 386 instructions based on
486 instruction timings using the register-based argument passing convention. The resulting code will be
highly optimized for Intel 486 systems.

Example:
$ compiler_name ../ source/ nodabs -d2

The compiler processes . . / sour ce/ nodabs. c(pp) (afilein adirectory which is adjacent to the
current one). The object fileis placed in the current directory. Included with the object code and datais
information on local symbols and data types. The code generated is straight-forward, unoptimized code
which can be readily debugged with the Open Watcom Debugger.

Example:
$ export "compiler_name=-i =/i ncl udes -nt"
$ compiler_name / cprogs/grep.tst -fi=iononds.c

The compiler processes the program contained in thefile / cpr ogs/ grep. t st. Thefilei onbds. cis
included asiif it formed part of the source input stream. The include search path and memory model
options are defaults each time the compiler isinvoked. The memory model option could be overridden on
the command line. After looking for an "include" file in the current directory, the compiler will search each
directory listed in the "i" path. See the section entitled "Open Watcom C/C++ #include File Processing” on
page 16 for more information.

Example:
$ compiler_name grep -fo=../obj/

The compiler processes the program contained in thefile gr ep. c(pp) whichislocated in the current
directory. The object fileisplaced in the directory . . / obj under the name gr ep. o.

Example:
$ compiler_name - dDBG=1 grep -fo=../obj/. dbo

The compiler processes the program contained in thefile gr ep. c(pp) whichislocated in the current
directory. The macro "DBG" is defined so that conditional debugging statements that have been placed in
the source are compiled. The object fileis placed inthe directory . . / obj and itsfilename extension will
be".dbo" (instead of ".0"). Selection of a different filename extension permits easy identification of object
files that have been compiled with debugging statements.

Example:
$ compiler_name - g=CKS -s /gks/gopks

12 Open Watcom C/C++ Command Line Examples

The Open Watcom C/C++ Compilers

The compiler generates code for gopks. c(pp) and placesit into the"GKS" group. If the"g" option had
not been specified, the code would not have been placed in any group. Assume that this file contains the
definition of the routine gopengks asfollows:

void far gopengks(int workstation, long int h)

{

}

For asmall code model, the routine gopengks must be defined in thisfileas f ar sinceitisplacedin
another group. The"s' option is also specified to prevent arun-time call to the stack overflow check
routine which will be placed in adifferent code segment at link time. The gopengks routine must be
prototyped by C routinesin other groups as

void far gopengks(int workstation, long int h);

sinceit will appear in a different code segment.

3.4 Benchmarking Hints

The Open Watcom C/C++ compiler contains many options for controlling the code to be produced. Itis
impossible to have a certain set of compiler options that will produce the absolute fastest execution times
for all possible applications. With that said, we will list the compiler options that we think will give the
best execution times for most applications. Y ou may have to experiment with different options to see
which combination of options generates the fastest code for your particular application.

The recommended options for generating the fastest 16-bit Intel code are:

Pentium Pro -onatx -oh -oi+ -ei -zp8 -6 -fpi87 -fp6

Pentium -onatx -oh -0i+ -ei -zp8 -5 -fpi87 -fp5
486 -onatx -oh -oi+ -el -zp8 -4 -fpi87 -fp3
386 -onatx -oh -oi+ -el -zp8 -3 -fpi87 -fp3
286 -onatx -oh -oi+ -ei -zp8 -2 -fpi87 -fp2
186 -onatx -oh -oi+ -ei -zp8 -1 -fpi87
8086 -onatx -oh -oi+ -ei -zp8 -0 -fpi87

The recommended options for generating the fastest 32-bit Intel code are:
Pentium Pro -onatx -oh -oi+ -&i -zp8 -6 -fp6
Pentium -onatx -oh -oi+ -ei -zp8 -5 -fp5

436 -onatx -oh -oi+ -ei -zp8 -4 -fp3

Benchmarking Hints 13

Open Watcom C/C++ User’s Guide

386 -onatx -oh -oi+ -ei -zp8 -3 -fp3

The"oi+" option isfor C++ only. Under some circumstances, the "ob" and "ol+" optimizations may also
give better performance with 32-bit Intel code.

Option "on" causes the compiler to replace floating-point divisions with multiplications by the reciprocal.
This generates faster code (multiplication is faster than division), but the result may not be the same
because the reciprocal may not be exactly representable.

Option "o€" causes small user written functions to be expanded in-line rather than generating acall to the
function. Expanding functions in-line can further expose other optimizations that couldn’t otherwise be
detected if acall was generated to the function.

Option "oa" causes the compiler to relax alias checking.

Option "ot" must be specified to cause the code generator to select code sequences which are faster without
any regard to the size of the code. The default isto select code sequences which strike a balance between
size and speed.

Option "ox" is equivalent to "obmiler" and "'s" which causes the compiler/code generator to do branch
prediction ("ob"), generate 387 instructions in-line for math functions such as sin, cos, sgrt (*om"), expand
intrinsic functionsin-line ("oi"), perform loop optimizations ("ol"), expand small user functionsin-line
("oe"), reorder instructions to avoid pipeline stalls ("or"), and to not generate any stack overflow checking
("s"). Option "or" isvery important for generating fast code for the Pentium and Pentium Pro processors.

Option "oh" causes the compiler to attempt repeated optimizations (which can result in longer compiles but
more optimal code).

Option "oi+" causes the C++ compiler to expand intrinsic functionsin-line (just like "oi") but also setsthe
inline_depth to its maximum (255). By default, inline_depth is3. Theinline depth can also be changed by
using the C++i nl i ne_dept h pragma.

Option "el" causes the compiler to alocate at least an "int" for all enumerated types.

Option "zp8" causes all datato be aligned on 8 byte boundaries. The default is"zp2" for the 16-bit
compiler and "zp8" for 32-bit compiler. If, for example, "zpl" packing was specified then this would pack
all datawhich would reduce the amount of data memory required but would require extra clock cyclesto
access data that is not on an appropriate boundary.

Options"0", "1","2","3","4", "5" and "6" emit Intel code sequences optimized for processor-specific
instruction set features and timings. For 16-bit Intel applications, the use of these options may limit the
range of systems on which the application will run but there are execution performance improvements.

Options "fp2"*, "fp3", "fp5" and "fp6" emit Intel floating-point operations targetted at specific features of
the math coprocessor in the Intel series. For 16-bit Intel applications, the use of these options may limit the
range of systems on which the application will run but there are execution performance improvements.

Option "fpi87" causesin-line Intel 80x87 numeric data processor instructions to be generated into the
object code for floating-point operations. Floating-point instruction emulation is not included so asto
obtain the best floating-point performance in 16-bit Intel applications.

For 32-hit Intel applications, the use of the "fp5" option will give good performance on the Intel Pentium
but less than optimal performance on the 386 and 486. The use of the "5" option will give good

14 Benchmarking Hints

The Open Watcom C/C++ Compilers

performance on the Pentium and minimal, if any, impact on the 386 and 486. Thus, the following set of
options gives good overall performance for the 386, 486 and Pentium processors.

-onatx -oh -0i+ -ei -zp8 -5 -fp3

3.5 Compiler Diagnostics

If the compiler prints diagnostic messages to the screen, it will also place a copy of these messagesin afile
in your current directory. The file will have the same file name as the source file and an extension of ".err".
The compiler issues two types of diagnostic messages, namely warnings or errors. A warning message
does not prevent the production of an object file. However, error messages indicate that a problemis
severe enough that it must be corrected before the compiler will produce an object file. The error fileisa
handy reference when you wish to correct the errors in the source file.

Just to illustrate the diagnostic features of Open Watcom C/C++, we will modify the "hello" program in
such away asto introduce some errors.

Example:
#i ncl ude <stdio. h>
int main()
int x;
printf("Hello world\n");
return(y);
}

The equivalent C++ program follows:

Example:
#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>

int main()

L
int Xx;
cout << "Hello world" << endl;
return(y);

}

In this example, we have added the lines:
int x;

and
return(y);

and changed the keyword voi dtoi nt .

We compile the program with the "warning" option.

Compiler Diagnostics 15

Open Watcom C/C++ User’s Guide

Example:
$ compiler_name hel | 0 -w3

For the C program, the following output appears on the screen.

hello.c(7): Error! E1011: Synbol 'y’ has not been decl ared

hel 1 0. c(5): Warning! W202: Synmbol ’'x’ has been defined, but not
referenced

hello.c: 8 lines, included 174, 1 warnings, 1 errors

For the C++ program, the following output appears on the screen.

hell o.cpp(8): Error! E029: (col 13) synbol 'y’ has not been decl ared

hell o.cpp(9): Warning! W14: (col 1) no reference to synbol 'x

hello.cpp(9): Note! N392: (col 1) 'int x' in 'int main(void)
defined in: hello.cpp(6) (col 9)

hello.cpp: 9 lines, included 1628, 1 warning, 1 error

Here we see an example of both types of messages. An error and a warning message have been issued. As
indicated by the error message, we require a declarative statement for the identifier y. Thewarning
message indicates that, while it is not aviolation of the rules of C/C++ to define a variable without ever
using it, we probably did not intend to do so. Upon examining the program, we find that:

1. thevariable x should have been assigned a value, and
2. thevariabley has probably been incorrectly typed and should have been entered as x.

The complete list of Open Watcom C/C++ diagnostic messages is presented in an appendix of this guide.

3.6 Open Watcom C/C++ #include File Processing

When using the #i ncl ude preprocessor directive, a header isidentified by a sequence of characters
placed between the "<" and ">" delimiters (e.g., <file>) and a sourcefile isidentified by a sequence of
characters enclosed by quotation marks (e.g., "file"). Open Watcom C/C++ makes a distinction between
the use of "<>" or quotation marks to surround the name of the file to be included. The search techniques
for header files and source files are dightly different. Consider the following example.

Example:
#include <stdio.h> /[/* a system header file */
#include "stdio.h" /* your own header or source file */

Y ou should use "<" and ">" when referring to standard or system header files and quotation marks when
referring to your own header and source files.

The character sequence placed between the delimitersin an #i ncl ude directive represents the name of
thefileto beincluded. The file name may include node, path, and extension.

It is not necessary to include the node and path specifiers in the file specification when the file resides on a
different node or in a different directory. Open Watcom C/C++ provides a mechanism for looking up
include files which may be located in various directories and disks of the computer system. Open Watcom
C/C++ searches directories for header and source filesin the following order (the search stops once thefile
has been located):

1. If thefile specification enclosed in quotation marks ("file-spec") or angle brackets (<file-spec>)
contains the compl ete node and path specification, that fileisincluded (provided it exists). No

16 Open Watcom C/C++ #include File Processing

The Open Watcom C/C++ Compilers

other searching is performed. The node need not be specified in which case the current node is
assumed.

2. If thefile specification is enclosed in quotation marks, the current directory is searched.

3. Next, if thefile specification is enclosed in quotation marks, the directory of the file containing
the#i ncl ude directiveis searched. If the current fileisalso an #i ncl ude file, the directory
of the parent file is searched next. This search continues recursively through all the nested
#i ncl ude files until the original source file’sdirectory is searched.

4. Next, if thefile specification enclosed in quotation marks (“file-spec") or in angle brackets
(<file-spec>), each directory listed in the "i" path is searched (in the order that they were
specified).

5. Next, each directory listed in the <os> INCL UDE environment variable is searched (in the
order that they were specified). The environment variable name is constructed from the current
build target name. The default build targets are:

DOS when the host operating system is DOS,

0s2 when the host operating system is OS/2,

NT when the host operating system is Windows NT/95, or
QNX when the host operating system is QNX.

LINUX when the host operating system is Linux.

For example, the environment variable OS2 _INCL UDE will be searched if the build target is
"OS2". The build target would be OS/2 if:

1. thehost operating system is OS/2 and the "bt" option was not specified, or
2. the"bt=0S2" option was explicitly specified.

6. Next, each directory listed in the INCL UDE environment variable is searched (in the order that
they were specified).

7. Findly, if thefile specification is enclosed in quotation marks, an adjacent "H" directory (i.e.,
.. I h)issearched if it exists.

In the above example, <st di 0. h>and " st di 0. h" could refer to two different filesif thereisa

st di 0. hinthe current directory and one in the Open Watcom C/C++ include file directory
(/usr/include) andthe current directory isnot listed in an"i" path or the INCL UDE environment
variable.

The compiler will search the directories listed in "i" paths (see description of the"i" option) and the
INCL UDE environment variable in amanner analogous to that which the operating system shell will use
when searching for programs by using the PATH environment variable.

The "export" command is used to define an INCL UDE environment variable that contains a list of
directories. A command of the form

export | NCLUDE=pat h: pat h. ..

Open Watcom C/C++ #include File Processing 17

Open Watcom C/C++ User’s Guide

isissued before running Open Watcom C/C++ the first time.
Weillustrate the use of the #i ncl ude directive in the following example.

Example:
#i ncl ude <stdi o. h>
#i ncl ude <tine. h>
#i ncl ude <dos. h>

#i ncl ude "conmon. c"
int main()

initialize();
update files();
create_report();
finalize();

}

#i nclude "partl.c"
#i nclude "part2.c"

If the above text is stored in the sourcefile r epor t . ¢ in the current directory then we might issue the
following commands to compile the application.

Example:
$ export | NCLUDE=/usr/include://1/ headers
$ compiler_name report -fo=../0bj/ -i=../source

In the above example, the "export" command is used to define the INCL UDE environment variable. It
specifiesthat the / usr /i ncl ude directory (of the current node) and the / header s directory (a
directory on node 1) are to be searched.

The Open Watcom C/C++ "i" option defines athird place to search for include files. The advantage of the
INCLUDE environment variable isthat it need not be specified each time the compiler is run.

3.7 Open Watcom C/C++ Preprocessor

The Open Watcom C/C++ preprocessor forms an integral part of Open Watcom C/C++. When any form of
the "p" option is specified, only the preprocessor isinvoked. No codeis generated and no object fileis
produced. The output of the preprocessor is written to the standard output file, although it can also be
redirected to afile using the "fo" option. Suppose the following C/C++ program is contained in the file
negi d. c.

18 Open Watcom C/C++ Preprocessor

The Open Watcom C/C++ Compilers

Example:
#define _IBWPC 0O
#define I BWS2 1

#if _TARGET == _| BWPS2

char *Sysld = { "IBM PS/ 2" };
#el se

char *Sysld = { "IBM PC" };
#endi f

/* Return pointer to Systemldentification */
char *Get Sysl d()

return(Sysld);
}

We can use the Open Watcom C/C++ preprocessor to generate the C/C++ code that would actually be
compiled by the compiler by issuing the following command.

Example:
$ compiler_name msgid -plc -fo -d_TARGET=_I BMPS2

Thefilenmsgi d. i will be created and will contain the following C/C++ code.

#ine 1 "megid.c"

char *Sysld = { "IBMPS/ 2" };
#ine 9 "megid.c"

/* Return pointer to System ldentification */
char *CGet Sysl d()

return(Sysld);
}

Note that thefile msgi d. i can be used as input to the compiler.

Example:
$ compiler_name nsgi d. i

Since #1 i ne directives are present in the file, the compiler can issue error messages in terms of the
original source file line numbers.

Open Watcom C/C++ Preprocessor 19

Open Watcom C/C++ User’s Guide

3.8 Open Watcom C/C++ Predefined Macros

In addition to the standard 1SO-defined macros supported by the Open Watcom C/C++ compilers, several
additional system-dependent macros are also defined. These are described in this section. See the Open
Watcom C Language Reference manual for a description of the standard macros.

The Open Watcom C/C++ compilers run on various host operating systems including DOS, OS/2,
Windows NT, Windows 95 and QNX. Any of the supported host operating systems can be used to develop
applications for a number of target systems. By default, the target operating system for the application is
the same as the host operating system unless some option or combination of optionsis specified. For
example, DOS applications are built on DOS by default, OS/2 applications are built on OS2 by defaullt,
and so on. But the flexibility isthereto build applications for other operating systems/environments.

The macros described below may be used to identify the target system for which the application is being
compiled. (Note: In several placesin the following text, apair of underscore characters appearsas___
which resembles a single, elongated underscore.)

The Open Watcom C/C++ compilers support both 16-bit and 32-bit application development. The
following macros are defined for 16-bit and 32-bit target systems.

16-bit 32-bit
__X86_ __X86_
_ 186 386
M | 86 M 1 386
M 186 M 1386
_M_I X86 _M_I X86
Notes

1. The__X86__ identifiesthetarget asan Intel environment.
2. The__186__,M 186 and_M I 86 macrosidentify the target as a 16-bit Intel environment.

3. The__386__,M 1386 and_M | 386 macrosidentify the target as a 32-hit Intel
environment.

4. The_M | X86 macroisidentically equal to 100 times the architecture compiler option value (-0,
-1, -2, -3, -4, -5, etc.). If "-5" (Pentium instruction timings) was specified as a compiler option,
then thevalue of _ M | X86 would be 500.

The Open Watcom C/C++ compilers support application development for a variety of operating systems.
The following macros are defined for particular target operating systems.

Tar get Macr os

DOSs __D0os__, _DOs, MsDOS

oS/ 2 _0s2__

QNX __oONX L, UNEX

Net war e __NETWARE__, __ NETWARE 386__

NT __NT__

W ndows __WNDOAN5__, _WNDOAN5, __W NDONS5_386__
Li nux _LIENUX_ ., __UNEX

20 Open Watcom C/C++ Predefined Macros

The Open Watcom C/C++ Compilers

Notes:

The__DOS__, DOS and MSDOS macros are defined when the build target is"DOS" (16-hit
DOS or 32-hit extended DOS).

The __ 0S2__ macro is defined when the build target is"OS2" (16-bit or 32-bit 0S/2).

The _ ONX__and _UNI X__ macros are defined when the build target is "QNX" (16-bit or
32-hit QNX).

The _NETWARE __ and _ NETWARE 386__ macros are defined when the build target is
"NETWARE" (Novell NetWare).

The __ NT__ macro is defined when the build target is"NT" (Windows NT and Windows 95).

The W NDOWAS__ macro is defined when the build target is"WINDOWS" or one of the "zw",
"ZW", "ZWs' options is specified (identifies the target operating system as 16-bit Windows or
32-hit extended Windows but not Windows NT or Windows 95).

The _ W NDOWS macro is defined when the build target is "WINDOWS' or one of the "zw",
"ZW", "ZWSs' options is specified and you are using a 16-bit compiler (identifies the target
operating system as 16-bit Windows).

The W NDOAS5_386__ macro is defined when the build target is"WINDOWS' or the "zw"
option is specified and you are using a 32-bit compiler (identifies the target operating system as
32-bit extended Windows).

The _LINUX_ _and _UNI X_ _ macrosare defined when the build target is"LINUX" (32-bit
Linux).

The following macros are defined for the indicated options.

bm MT

br _DLL

f pi __FPI__

fpi87 __FPI__

] __CHAR _SIGNED__

oi __INLI NE_FUNCTI ONS_ _
Xr _CPPRTTI (C++ only)
XS __CPPUNW ND (C++ only)
XSS _CPPUNW ND (C++ only)
xst __CPPUNW ND (C++ only)
za NO_EXT_KEYS

zZw __WNDONS__

zZW __WNDONS__

AL __WNDONS__

The following memory model macros are defined for the indicated memory model options.

Open Watcom C/C++ Predefined Macros 21

Open Watcom C/C++ User’s Guide

Option Al l 16-bit only 32-bit only

nf __FLAT _ M 386FM _M 386FM
ns __SMALL_ M 186SM _M |86SM M 386SM _M 386SM
nm _MEDI UM M I86MM M | 86MM M 386MM M 386MM
nc __COWACT__ M 186CM _M | 86CM M 386CM _ M 386CM
m __LARGE_ M 186LM _M |86LM M 386LM _M 386LM
mh _HUGE_ M 186HM M | 86HM

The following macros indicate which compiler is compiling the C/C++ source code.

__cplusplus Open Watcom C++ predefinesthemacro __ cpl uspl us to identify the compiler asa
C++ compiler.

__WATCOMC__
Open Watcom C/C++ predefinesthemacro __ WATCOMC __ to identify the compiler as one
of the Open Watcom C/C++ compilers.

The value of the macro depends on the version number of the compiler. The valueis 100
times the version number (version 8.5 yields 850, version 9.0 yields 900, etc.). Note that
for Open Watcom 1.0, the value of this macro is 1200, for Open Watcom 1.1 it is 1210 etc.

__ WATCOM_CPLUSPLUS
Open Watcom C++ predefinesthemacro _~ WATCOM CPLUSPLUS _ toidentify the
compiler as one of the Open Watcom C++ compilers.

The value of the macro depends on the version number of the compiler. Thevalueis 100
times the version number (version 10.0 yields 1000, version 10.5 yields 1050, etc.). Note
that for Open Watcom 1.0, the value of this macro is 1200, for Open Watcom 1.1 it is 1210
etc.

The following macros are defined for compatibility with Microsoft.

__CPPRTTI Open Watcom C++ predefinesthe _ CPPRTTI macro to indicate that C++ Run-Time
Type Information (RTTI) isin force. Thismacro is predefined if the Open Watcom C++
"xr" compile option is specified and is not defined otherwise.

_ CPPUNWIND
Open Watcom C++ predefinesthe __ CPPUNW ND macro to indicate that C++ exceptions
supported. Thismacro is predefined if any of the Open Watcom C++ "xs", "xss" or "xst"
compile options are specified and is not defined otherwise.

_INTEGRAL_MAX_BITS
Open Watcom C/C++ predefinesthe | NTEGRAL_ MAX_BI TS macro to indicate that
maximum number of bits supported in an integral type (see the description of the" _int64"
keyword in the next section). Itsvalueis 64 currently.

_PUSHPOP_SUPPORTED
Open Watcom C/C++ predefines the _ PUSHPOP_ SUPPORTED macro to indicate that
#pragma pack(push) and #pr agma pack(pop) are supported.

_STDCALL_SUPPORTED

Open Watcom C/C++ predefinesthe _ STDCALL__ SUPPORTED macro to indicate that the
standard 32-bit Win32 calling convention is supported.

22 Open Watcom C/C++ Predefined Macros

The Open Watcom C/C++ Compilers

The following table summarizes the predefined macros supported by the compilers and the values that the
respective compilers assign to them. A "yes' under the column means that the compiler supports the macro
with the indicated value. Note that the C and C++ compilers sometime support the same macro but with
different values (including no value which means the symbol is defined without a value).

Open Watcom C/C++ Predefined Macros 23

Open Watcom C/C++ User’s Guide

Predefi ned Macro Supported by Conpiler
and Setting wee wce386 wpp wpp386
_.386__=1 Yes Yes
__3R__= Yes
_based=__based Yes Yes Yes Yes
_cdecl =__cdecl Yes Yes Yes Yes
cdecl =__cdecl Yes Yes Yes Yes
__cplusplus=1 Yes Yes
_CPPRTTI =1 Yes Yes
_ CPPUNW ND=1 Yes Yes
_export=__export Yes Yes Yes Yes
_farl6=__farl6 Yes Yes Yes Yes
_far=__far Yes Yes Yes Yes
far=__far Yes Yes Yes Yes
_fastcall=__fastcall Yes Yes Yes Yes
__FLAT__=1 Yes Yes
_fortran=__fortran Yes Yes Yes Yes
fortran=__fortran Yes Yes Yes Yes
__FPI__=1 Yes Yes Yes Yes
_huge=__huge Yes Yes Yes Yes
huge=__huge Yes Yes Yes Yes
__186__=1 Yes Yes
_inline=__inline Yes Yes Yes Yes
_ | NTEGRAL_MAX_BI TS=64 Yes Yes Yes Yes
_interrupt=__interrupt Yes Yes Yes Yes
interrupt=__interrupt Yes Yes Yes Yes
_l oadds=__1I oadds Yes Yes Yes Yes
_ M _386FM=1 Yes
M 386FM-1 Yes
_ M 1386=1 Yes Yes
M | 386=1 Yes Yes
M. 186=1 Yes Yes
M | 86=1 Yes Yes
M | 86SM=1 Yes Yes
M | 86SMF1 Yes Yes
_M_1 X86=0 Yes Yes
_M_1 X86=500 Yes Yes
_near=__near Yes Yes Yes Yes
near =__near Yes Yes Yes Yes
_NT__=1 (on Wn32 platform Yes Yes Yes Yes
_pascal =__pascal Yes Yes Yes Yes
pascal =__pascal Yes Yes Yes Yes
_saveregs=__saveregs Yes Yes Yes Yes
_segnent =__segnent Yes Yes Yes Yes
_segnanme=__segnane Yes Yes Yes Yes
_self=__self Yes Yes Yes Yes
__SMALL__=1 Yes Yes
SOMDLI NK=__far Yes
SOVDLI NK=_Syscal | Yes Yes
SOWLI NK=__ cdecl Yes
SOMLI NK=_Syscal | Yes Yes
_ STDCALL_ SUPPORTED=1 Yes Yes
__SWo0=1 Yes Yes
__SW3R=1 Yes Yes
__SWh5=1 Yes Yes
__SW FP287=1 Yes
__SW FP2=1 Yes
__SW FP387=1 Yes
__SW FP3=1 Yes
__SWFPI=1 Yes Yes Yes Yes
__SW M=l Yes Yes
__SW vs=1 Yes
__SW zZDP=1 Yes Yes Yes Yes
__SW ZFP=1 Yes Yes Yes Yes
__SW ZzG=1 Yes Yes
__SW zGP=1 Yes Yes
_stdcal |l =__stdcall Yes Yes Yes Yes
_syscall =__syscall Yes Yes Yes Yes
__WATCOM _CPLUSPLUS__=1280 Yes Yes
__WATCOMC__=1280 Yes Yes Yes Yes

24 Open Watcom C/C++ Predefined Macros

The Open Watcom C/C++ Compilers

__X86__

=1 Yes Yes Yes Yes

3.9 Open Watcom C/C++ Extended Keywords

Open Watcom C/C++ supports the use of some special keywords to describe system dependent attributes of
functions and other object names. These attributes are inspired by the Intel processor architecture and the
plethora of function calling conventions in use by compilersfor this architecture. In keeping with the ISO
C and C++ language standards, Open Watcom C/C++ uses the double underscore (i.e., " ") or single
underscore followed by uppercase letter (e.g., "_S") prefix with these keywords. To support compatibility
with other C/C++ compilers, aternate forms of these keywords are a so supported through predefined

macros.

__near

_ far

__huge

__based

__segment

__segname

Open Watcom C/C++ supportsthe ___near keyword to describe functions and other object
names that are in near memory and pointers to near objects.

Open Watcom C/C++ predefines the macros near and _near to be equivalent to the
__near keyword.

Open Watcom C/C++ supportsthe _ f ar keyword to describe functions and other object
names that are in far memory and pointersto far objects.

Open Watcom C/C++ predefinesthe macros f ar, _f ar and SOVDLI NK (16-hit only) to
be equivalent tothe __ f ar keyword.

Open Watcom C/C++ supportsthe __huge keyword to describe functions and other object
names that are in huge memory and pointers to huge objects. The 32-bit compilers treat
these as equivalent to far objects.

Open Watcom C/C++ predefines the macros huge and _huge to be equivalent to the
___huge keyword.

Open Watcom C/C++ supportsthe _ based keyword to describe pointers to objects that
appear in other segments or the objects themselves. See the section entitled "Based
Pointers' on page 32 for an explanation of the ___based keyword.

Open Watcom C/C++ predefines the macro _based to be equivalent tothe __based
keyword.

Open Watcom C/C++ supportsthe ~ segnent keyword which is used when describing
objects of type segment. See the section entitled "Based Pointers" on page 32 for an
explanation of the __segnent keyword.

Open Watcom C/C++ predefines the macro _segmnent to be equivalent to the
__segnent keyword.

Open Watcom C/C++ supportsthe __ segnane keyword which is used when describing
seghame constant based pointers or objects. See the section entitled "Based Pointers' on
page 32 for an explanation of the ___segnane keyword.

Open Watcom C/C++ predefines the macro _ segnane to be equivalent to the
___segnane keyword.

Open Watcom C/C++ Extended Keywords 25

Open Watcom C/C++ User’s Guide

self Open Watcom C/C++ supportsthe __sel f keyword which is used when describing self
based pointers. See the section entitled "Based Pointers" on page 32 for an explanation of
the _sel f keyword.

Open Watcom C/C++ predefinesthemacro _sel f tobeequivalenttothe _ sel f
keyword.

__restrict Open Watcom C/C++ providesthe _ restrict type qualifier as an alternative to the ISO C99
restrict keyword; it is supported even when C99 keywords aren't visible. Thistype
qualifier is used as an optimization hint. Any object accessed through arestrict qualified
pointer may only be accessed through that pointer and the compiler may assume that there
will be no aliasing.

_Packed Open Watcom C/C++ supportsthe _ Packed keyword which is used when describing a
structure. If specified before the struct keyword, the compiler will force the structure to be
packed (no alignment, no gaps) regardless of the setting of the command-line option or the
#pragma controlling the alignment of members.

__cdecl Open Watcom C/C++ supportsthe _ cdecl keyword to describe C functionsthat are
called using a special convention.

Notes:
1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument
ispushed first. The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a
structure is returned, the called routine returns a pointer in register AX/EAX to
the return value which is stored in the data segment (DGROUP).

4. For the 16-bit compiler, registers AX, BX, CX and DX, and segment register ES
are not saved and restored when a call is made.

5. For the 32-bit compiler, registers EAX, ECX and EDX are not saved and
restored when a call is made.

Open Watcom C/C++ predefinesthe macros cdecl , _cdecl, _Cdecl and SOMLI NK
(16-bit only) to be equivalent tothe __ cdecl keyword.

__pascal Open Watcom C/C++ supportsthe __pascal keyword to describe Pascal functions that
are called using a specia convention described by apragmain the "stddef.h" header file.

Open Watcom C/C++ predefines the macros pascal , _pascal and_Pascal tobe
equivalenttothe __pascal keyword.

_ fortran Open Watcom C/C++ supportsthe _ f or t r an keyword to describe functions that are
called from FORTRAN. It converts the name to uppercase letters and suppressesthe " "
which is appended to the function name for certain calling conventions.

Open Watcom C/C++ predefinesthe macros f or t r an and _f or t r an to be equivalent to
the __fortran keyword.

26 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

__interrupt

Open Watcom C/C++ supportsthe __i nt er r upt keyword to describe afunction that is
an interrupt handler.

Example:
#i ncl ude <i 86. h>

void __interrupt int10(union I NTPACK r)
{

}

The code generator will emit instructions to save al registers. The registers are saved on
the stack in a specific order so that they may be referenced using the "INTPACK" union as
shown in the DOS example above. The code generator will emit instructions to establish
addressability to the program’ s data segment since the DS segment register contents are
unpredictable. The function will return using an "IRET" (16-bit) or "IRETD" (32-bit)
(interrupt return) instruction.

Open Watcom C/C++ predefinesthemacros i nt errupt and _i nt errupt tobe
equivaenttothe i nt err upt keyword.

__declspec(modifier)

__export

Open Watcom C/C++ supportsthe _ decl spec keyword for compatibility with
Microsoft C++. The __decl spec keyword is used to modify storage-class attributes of
functions and/or data. There are several modifiers that can be specified with the

__decl spec keyword: t hr ead, naked, dllinport, dllexport, __ pragma(
"string"), __cdecl, __pascal, _fortran, __stdcall, and
__syscal | . Theseattributes are a property only of the declaration of the object or
function to which they are applied. Unlikethe __near and__ f ar keywords, which
actually affect the type of object or function (in this case, 2- and 4-byte addresses), these
storage-class attributes do not redefine the type attributes of the object itself. The
___pragnma modifier is supported by Open Watcom C++ only. Thet hr ead attribute
affects dataand objectsonly. The naked, __pragma, __cdecl, __pascal,
__fortran, __stdcall, and__syscal | attributes affect functionsonly. The

dl I'i nport and dl | export attributes affect functions, data, and objects. For more
information onthe __decl spec keyword, please see the section entitled "The __declspec
Keyword" on page 36.

Open Watcom C/C++ supportsthe __export keyword to describe functions and other
object names that are to be exported from a Microsoft Windows DLL, OS/2 DLL, or
Netware NLM. See aso the description of the "zu" option.

Example:
void __export _Setcolor(int color)

{

}

Open Watcom C/C++ predefinesthe macro _export to beequivalenttothe _export
keyword.

Open Watcom C/C++ Extended Keywords 27

Open Watcom C/C++ User’s Guide

__loadds Open Watcom C/C++ supportsthe _ | oadds keyword to describe functions that require
specific loading of the DS register to establish addressability to the function’s data
segment. This keyword is useful in describing afunction that will be placed in a Microsoft
Windows or OS/2 1.x Dynamic Link Library (DLL). See also the description of the "nd"
and "zu" options.

Example:
void __export __ loadds _Setcolor(int color)

{

}

If the function in an OS/2 1.x Dynamic Link Library requires access to private data, the
data segment register must be loaded with an appropriate value since it will contain the DS
value of the calling application upon entry to the function.

Open Watcom C/C++ predefinesthe macro | oadds to be equivalent tothe | oadds
keyword.

__saveregs Open Watcom C/C++ recognizesthe __saver egs keyword which is an attribute used by
C/C++ compilers to describe afunction that must save and restore all registers.

Open Watcom C/C++ predefinesthe macro _saver egs to be equivalent to the
___saver egs keyword.

__stdcall (32-bit only) The _ st dcal | keyword may be used with function definitions, and
indicates that the 32-bit Win32 calling convention isto be used.

Notes:
1. All symbols are preceded by an underscore character.

2. All Csymbols (extern "C" symbolsin C++) are suffixed by " @nnn" where
"nnn" is the sum of the argument sizes (each size is rounded up to amultiple of 4
bytes so that char and short are size 4). When the argument list contains"...", the
"@nnn" suffix is omitted.

3. Arguments are pushed on the stack from right to left. That is, the last argument
ispushed first. The called routine will remove the arguments from the stack.

4. When astructureisreturned, the caller allocates space on the stack. The address
of the allocated space will be pushed on the stack immediately before the call
instruction. Upon returning from the call, register EAX will contain address of
the space allocated for the return value. Floating-point values are returned in
80x87 register ST(0).

5. Registers EAX, ECX and EDX are not saved and restored when a call is made.

__syscall (32-bit only) The __syscal | keyword may be used with function definitions, and
indicates that the calling convention used is compatible with functions provided by 32-bit
0s/2.

28 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

__farl6

Notes:

1. Symbols names are not modified, that is, they are not adorned with leading or
trailing underscores.

2. Arguments are pushed on the stack from right to left. That is, the last argument
ispushed first. The calling routine will remove the arguments from the stack.

3. When astructureis returned, the caller allocates space on the stack. The address
of the allocated space will be pushed on the stack immediately before the call
instruction. Upon returning from the call, register EAX will contain address of
the space allocated for the return value. Floating-point values are returned in
80x87 register ST(0).

4. RegistersEAX, ECX and EDX are not saved and restored when a call is made.

Open Watcom C/C++ predefinesthemacros _syscal |, _Syst em SOMLI NK (32-bit
only) and SOVDLI NK (32-hit only) to be equivalenttothe __ syscal | keyword.

(32-bit only) Open Watcom C/C++ recognizesthe __ f ar 16 keyword which can be used
to define far 16-bit (farl6) pointers (16-bit selector with 16-bit offset) or far 16-bit function
prototypes. This keyword can be used under 32-bit OS/2 to call 16-bit functions from your
32-bit flat model program. Integer arguments will automatically be converted to 16-bit
integers, and 32-bit pointers will be converted to far16 pointers before calling a special
thunking layer to transfer control to the 16-bit function.

Open Watcom C/C++ predefinesthemacros _f ar 16 and__Far 16 to be equivaent to the
__far 16 keyword. Thiskeyword is compatible with Microsoft C.

In the OS/2 operating system (version 2.0 or higher), the first 512 megabytes of the 4
gigabyte segment referenced by the DS register is divided into 8192 areas of 64K bytes
each. A farl6 pointer consists of a 16-bit selector referring to one of the 64K byte areas,
and a 16-bit offset into that area.
A pointer declared as,

[type] _ farl6 *name;
defines an object that isafarl6 pointer. If such apointer is accessed in the 32-bit
environment, the compiler will generate the necessary code to convert between the far16

pointer and a"flat" 32-bit pointer.

For example, the declaration,

char __far16 *bufptr;
declares the object buf pt r to be afarl6 pointer to char.
A function declared as,

[type] _ farl6 func([arg_list]);

declares a 16-hit function. Any calls to such afunction from the 32-bit environment will
cause the compiler to convert any 32-bit pointer arguments to far16 pointers, and any int

Open Watcom C/C++ Extended Keywords 29

Open Watcom C/C++ User’s Guide

arguments from 32 bitsto 16 bits. (In the 16-bit environment, an object of typeint is only
16 hits.) Any return value from the function will have its return value converted in an
appropriate manner.

For example, the declaration,

char * __far16 Scan(char *buffer, int len, short err);

declaresthe 16-bit function Scan. When thisfunction is called from the 32-bit
environment, the buf f er argument will be converted from a flat 32-bit pointer to afarl6
pointer (which, in the 16-bit environment, would be declaredas char __far *. The
| en argument will be converted from a 32-bit integer to a 16-bit integer. The err
argument will be passed unchanged. Upon returning, the far16 pointer (far pointer in the
16-bit environment) will be converted to a 32-bit pointer which describes the equivalent
location in the 32-bit address space.

_Segl6 (32-bit only) Open Watcom C/C++ recognizesthe _ Seg16 keyword which has a similar
but not identical functionasthe __ f ar 16 keyword described above. Thiskeywordis
compatible with IBM C Set/2 and IBM VisualAge C++.

In the OS/2 operating system (version 2.0 or higher), the first 512 megabytes of the 4
gigabyte segment referenced by the DS register is divided into 8192 areas of 64K bytes
each. A farl6 pointer consists of a 16-bit selector referring to one of the 64K byte areas,
and a 16-bit offset into that area.

Notethat _Segl16 isnot interchangeablewith __ f ar 16.

A pointer declared as,

[type] * _Segl6 name;

defines an object that isafarl6 pointer. Notethat the Seg16 appears on the right side of
the* which isoppositetothe __ f ar 16 keyword described above.

For example,

char * _Segl6 bufptr;
declares the object buf pt r to be afarl6 pointer to char (the same as above).

The _Seg16 keyword may not be used to describe a 16-bit function. A #pragma directive
must be used instead. A function declared as,

[type] * _Segl6 func([parm_list]);
declares a 32-hit function that returns afar16 pointer.

For example, the declaration,

char * _Segl6 Scan(char * buffer, int len, short err);

declares the 32-bit function Scan. No conversion of the argument list will take place.
Thereturn value is afarl6 pointer.

30 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

__pragma

__int64

Open Watcom C++ supportsthe __ pr agnma keyword to support in-lining of member
functions. The __ pr agma keyword must be followed by parentheses containing a string
that names an auxiliary pragma. Here is a simplified example showing usage and syntax.

Example:
#pragma aux fast_mul =\
"imul eax, edx" \
parm cal l er [eax] [edx] \
val ue struct;

struct fixed {
unsi gned v;
1
fixed _ _pragma("fast_nmul") operator *(fixed, fixed);

fixed two = { 2 };
fixed three = { 3 };

fixed foo()
{

}

See the chapters entitled " 16-bit Pragmas" on page 75 and "32-bit Pragmas" on page 143
for more information on pragmeas.

return two * three;

Open Watcom C/C++ supportsthe _ i nt 64 keyword to define 64-bit integer data objects.

Example:
static __int64 biglnt;

Also supported are signed and unsigned 64-bit integer constants.
signed _int64 Usethe"i64" suffix for asigned 64-bit integer constant.

Example:
12345i 64
123451 64

unsigned __ int64 Use the "ui64" suffix for an unsigned 64-hit integer constant.

Example:
12345Ui 64
12345ul 64

The run-time library supports formatting of __i nt 64 items (see the description of the
printf library function).

Open Watcom C/C++ Extended Keywords 31

Open Watcom C/C++ User’s Guide

Example:
#i ncl ude <stdi o. h>
#include <limts. h>

void main()

__int64 bigint;
__int64 bigint2;

bigint2 = 8164 * (LONG_MAX + 1164);
for(bigint = 0;
bi gi nt <= bi gi nt 2;
bigint += bigint2 / 16) {
printf("Hello world %.d\n", bigint);

}
}
Restrictions
switch An__i nt 64 expression cannot be used in a switch statement.
bit fields More than 32 bitsin a 64-bit bitfield is not supported.

3.10 Based Pointers

Near pointers are generally the most efficient type of pointer because they are small, and the compiler can
assume knowledge about what segment of the computer’s memory the pointer (offset) refersto. Far
pointers are the most flexible because they allow the programmer to access any part of the computer’s
memory, without limitation to a particular ssgment. However, far pointers are bigger and slower because
of the additional flexibility.

Based pointers are a compromise between the efficiency of near pointers and the flexibility of far pointers.
With based pointers, the programmer takes responsibility to tell the compiler which segment a near pointer
(offset) belongs to, but may still access segments of the computer’s memory outside of the normal data
segment (DGROUP). Theresult is apointer type which is as small as and amost as efficient as a near
pointer, but with most of the flexibility of afar pointer.

An object declared as a based pointer falls into one of the following categories:

» the based pointer isin the segment described by another object,
» the based pointer, used as a pointer to another object of the same type (asin alinked list), refersto

the same segment,
» the based pointer is an offset to no particular segment, and must be combined explicitly with a

segment value to produce avalid pointer.

To support based pointers, the following keywords are provided:
__based
__segment
__segnane
__self

The following operator is also provided:

32 Based Pointers

The Open Watcom C/C++ Compilers

>
These keywords and operator are described in the following sections.

Two macros, defined in mal | oc. h, arealso provided:

_NULLSEG
_NULLOFF

They are used in amanner similar to NULL, but are used with objectsdeclaredas ___segnent and
__based respectively.

3.10.1 Segment Constant Based Pointers and Objects

A segment constant based pointer or object has its segment value based on a specific, named segment. A
segment constant based object is specified as.

[type] _ based(__ segname("segment")) object _name;
and a segment constant based pointer is specified as:
[type] _ based(__segname("segment")) * object-name;

where segnent isthe name of the segment in which the pointer or object is based. As shown above, the
segment name is always specified asa string. There are three special segment names recognized by the
compiler:

_ CODE"
" _CONST"
" _DATA"

The" _CODE" segment isthe default code segment. The " _ CONST" segment is the segment containing
constant values. The" _DATA" segment is the default data segment. If the segment name is not one of the
three recognized names, then a segment will be created with that name. If a segment constant based object
is being defined, then it will be placed in the named segment. If a segment constant based pointer is being
defined, then it can point at objects in the named segment.

The following examples illustrate segment constant based pointers and objects.
Example:
int _ based(__segnane("_CODE")) ival = 3;
int _ based(__segnane("_CODE")) *iptr;
i val isan object that residesin the default code segment. i pt r isan object that residesin the data

segment (the usual place for data objects), but points at an integer which resides in the default code
segment. i pt r issuitablefor pointing at i val .

Based Pointers 33

Open Watcom C/C++ User’s Guide

Example:
char __ based(__segnane("GOODTHI NGS")) thing;

t hi ng isan object which resides in the segment GOODTHI NGS, which will be created if it does not

already exist. (The creation of segmentsis done by the linker, and is a method of grouping objects and
functions. Nothing isimplicitly created during the execution of the program.)

3.10.2 Segment Object Based Pointers

A segment object based pointer derivesits segment value from another named object. A segment object
based pointer is specified as follows:

[type] __ based(segment) *name;
where segnent isan object defined astype __segment .

An object of type __ segnent may contain a segment value. Such an object is particularly designed for
use with segment object based pointers.

The following example illustrates a segment object based pointer:

Example:
__segment seg,
char __based(seg) *cptr;

The object seg contains only a segment value. Whenever the object cpt r isused to point to a character,
the actual pointer value will be made up of the segment value found in seg and the offset value found in
cpt r. Theobject seg might be assigned values such as the following:

* aconstant value (e.g., the segment containing screen memory),

« the result of the library function _bheapseg,
* the segment portion of another pointer value, by casting it to thetype __ segmnent .

3.10.3 Void Based Pointers

A void based pointer must be explicitly combined with a segment value to produce a reference to a memory
location. A void based pointer does not infer its ssgment value from another object. The : > (base)
operator is used to combine a segment value and a void based pointer.

For example, on a personal computer running DOS with a color monitor, the screen memory begins at
segment 0xB800, offset 0. In avideo text mode, to examine the first character currently displayed on the
screen, the following code could be used:

Example:

34 Based Pointers

The Open Watcom C/C++ Compilers

extern void nain()

{
__segmnent screen
char __ based(void) *scrptr;
screen = 0xB80O0;
scrptr = 0;
printf("Top left character is "% .\n",
*(screen:>scrptr));
}

The general form of the : > operator is:
segment :> offset

where segnent isan expression of type _ segnent, andof f set isan expression of type __ based(
void) *.

3.10.4 Self Based Pointers

A self based pointer infersits segment value from itself. It is particularly useful for structures such as
linked lists, where all of the list elements are in the same segment. A self based pointer pointing to one
element may be used to access the next element, and the compiler will use the same segment as the original
pointer.

The following example illustrates a function which will print the values stored in the last two members of a

linked list:
Example:
struct a {
struct a __based(__self) *next;
i nt nunber ;
1
extern void PrintLastTwo(struct a far *list)
{
__segnent seg;
struct a __ based(seg) *aptr;
seg = FP_SEE list);
aptr = FP_OFF(list);
for(; aptr !'= _NULLOFF;, aptr = aptr->next) {
if(aptr->next == NULLOFF) {
printf("Last itemis %\ n",
aptr->nunber);
} else if(aptr->next->next == _NULLCFF) {
printf("Second last itemis %l\n",
aptr->numnber);
}
}
}

The argument to the function Pr i nt Last Two isafar pointer, pointing to alinked list structure anywhere
in memory. It isassumed that all members of a particular linked list of thistype reside in the same segment
of the computer’s memory. (Another instance of the linked list might reside entirely in a different

Based Pointers 35

Open Watcom C/C++ User’s Guide

segment.) The abject seg is given the segment portion of the far pointer. The object apt r isgiven the
offset portion, and is described as being based in the segment stored in seg.

The expression apt r - >next referstothe next member of the structure stored in memory at the offset
stored in apt r and the segment implied by apt r, whichisthevauestoredin seg. So far, the behavior
isno different than if next had been declared as,

struct a *next;

The expression apt r - >next - >next illustrates the difference of using a self based pointer. The first
part of the expression (apt r - >next) occurs as described above. However, using the result to point to
the next member occurs by using the offset value found in the next member and combining it with the
segment value of the pointer used to get to that member, which is still the segment implied by aptr,
whichisthevalue storedin seg. If next had not beendeclaredusing ___based(__ self), then
the second pointing operation would refer to the offset value found in the next member, but with the
default data segment (DGROUP), which may or may not be the same segment as stored in seg.

3.11 The __declspec Keyword

Open Watcom C/C++ supportsthe _ decl spec keyword for compatibility with Microsoft C++. The
__decl spec keyword is used to modify storage-class attributes of functions and/or data.

__declspec(thread) is used to define thread local storage (TLS). TLS isthe mechanism by which each
thread in a multithreaded process allocates storage for thread-specific data. 1n standard
multithreaded programs, datais shared among all threads of a given process, whereas
thread local storage is the mechanism for allocating per-thread data.

Example:
__decl spec(thread) static int tls _data = O;

The following rules apply to the use of the t hr ead attribute.
» Thet hr ead attribute can be used with data and objects only.

* You can specify the t hr ead attribute only on data items with static storage
duration. Thisincludes global data objects (both st at i ¢ and ext er n), local static
objects, and static data members of classes. Automatic data objects cannot be
declared with the t hr ead attribute. The following exampleillustrates this error:

Example:
#define TLS __decl spec(thread)
voi d funcl()

TLS int tls_data; /'l Wong!
}
int func2(TLS int tls_data) /1 Wong!
{

return tls_data;
}

36 The__declspec Keyword

The Open Watcom C/C++ Compilers

* Thet hr ead attribute must be used for both the declaration and the definition of a
thread local object, whether the declaration and definition occur in the same file or
separate files. The following example illustrates this error:

Example:
#define TLS __decl spec(thread)
extern int tls_data; /1 This generates an error,
because the
TLS int tls_data; /1 declaration and the

definition differ.

* Classes cannot use the t hr ead attribute. However, you can instantiate class
objectswith the t hr ead attribute, aslong as the objects do not need to be
constructed or destructed. For example, the following code generates an error:

Example:
#define TLS __decl spec(thread)
TLS class A /1 Wong! C asses are not objects
/1 Code
1
A AQbj ect ;

Because the declaration of objectsthat usethe t hr ead attribute is permitted, these
two examples are semantically equivalent:

Example:
#define TLS __decl spec(thread)
TLS class B

/1 Code
} BObj ect; /1 Ckay! BObject declared thread
| ocal .

class C
/1 Code

1
TLS C Cnject; [/ Ckay! CObject declared thread
| ocal .

» Standard C permits initialization of an object or variable with an expression
involving areferenceto itself, but only for objects of non-static extent. Although
C++ normally permits such dynamic initialization of an object with an expression
involving areference to itsalf, this type of initialization is not permitted with thread
local objects.

Example:
#define TLS _ decl spec(thread)
TLS int tls_i =tls_i; /1 C and C++ error
int j =j; /[l Ckay in C++; C
error
TLS int tls_k = sizeof(tls_k); [// Ckay in C and
C++

The __declspec Keyword 37

Open Watcom C/C++ User’s Guide

Note that asi zeof expression that includes the object being initialized does not
congtitute areferenceto itself and isallowed in C and C++.

__declspec(naked) indicates to the code generator that no prologue or epilogue sequenceisto be
generated for afunction. Any statements other than "_asm" directives or auxiliary pragmas
are not compiled. _asm Essentially, the compiler will emit a"label" with the specified
function name into the code.

Example:
#i ncl ude <stdio. h>
int __ declspec(naked) foo(int x)
{
_asm {
#if defined(__386_)
i nc eax
#el se
i nc ax
#endi f
ret
}
}

voi d main()

printf("%\ n", foo(1));

The following rules apply to the use of the naked attribute.

» The naked attribute cannot be used in adata declaration. The following declaration
would be flagged in error.

Example:
__decl spec(naked) static int data object = O;

__declspec(dllimport) is used to declare functions, data and objects imported from aDLL.

Example:

#define DLLI nport _ decl spec(dllinport)

DLLImport void dll_func();
DLLI nport int dll_data;

Functions, data and objects are exported from aDLL by use of

__decl spec(dl | export), the _export keyword (for which

__decl spec(dl I export) isthereplacement), or through linker "EXPORT"
directives.

Note: When calling functions imported from other modules, it is not strictly necessary to
usethe _decl spec(dl | i mport) modifier to declare the functions. This modifier
however must always be used when importing data or objects to ensure correct behavior.

__declspec(dllexport) is used to declare functions, data and objects exported fromaDLL. Declaring

functionsasdl | export eliminatesthe need for linker "EXPORT" directives. The
__decl spec(dl | export) attributeisareplacement forthe _export keyword.

38 The __declspec Keyword

The Open Watcom C/C++ Compilers

__declspec(__pragma(" string")) is used to declare functions which adhere to the conventions described
by the pragmaidentified by "string".

Example:
#i ncl ude <stdi o. h>

#pragma aux my_stdcall "_*" \
parmroutine [] \
val ue struct struct caller [] \
nmodi fy [eax ecx edx];

struct list {
struct list *next;
i nt val ue;
fl oat flt_val ue;

b
#defi ne STDCALL _ decl spec(__pragma("my_stdcall"))
STDCALL struct list foo(int x, char *y, double z);

voi d main()

int a =1;
char *b = "Hell o there";
doubl e ¢ = 3.1415926;

struct list t;

t =foo(a, b, ¢c);
printf("%\ n", t.value);

}
struct list foo(int x, char *y, double z)
{
struct list tnp;
printf("%\n", y);
tnp. next = NULL;
tmp. val ue = x;
tmp. flt_value = z;
return(tmp);
}

The __pr agnma modifier is supported by Open Watcom C++ only.

__declspec(__cdecl) is used to declare functions which conform to the Microsoft compiler calling
convention.

__declspec(__pascal) is used to declare functions which conform to the OS/2 1.x and Windows 3.x
calling convention.

__declspec(__fortran) isused to declare functions which conform to the __ fortran calling convention.

The __declspec Keyword 39

Open Watcom C/C++ User’s Guide

Example:
#i ncl ude <stdi o. h>

#defi ne DLLFunc __ decl spec(dllinport __ fortran)
#define DLLData __ decl spec(dllinport)

#i fdef __cplusplus
extern "C' {
#endi f

DLLFunc int dlil_func(int, int, int);
DLLData int dll_data;

#i fdef __ cplusplus
1
#endi f

voi d main()

printf("% %\n", dll_func(1,2,3), dll_data);

__declspec(__stdcall) is used to declare functions which conform to the 32-bit Win32 "standard" calling
convention.

Example:
#i ncl ude <stdi o. h>

#defi ne DLLFunc __decl spec(dllinport __ stdcall)
#defi ne DLLData __decl spec(dllinport)

DLLFunc int dlIl _func(int, int, int);
DLLData int dll _data;

void main()

printf("% %\n", dll_func(1,2,3), dll_data);
}

__declspec(__syscall) is used to declare functions which conform to the 32-bit OS/2 _ syscall caling
convention.

3.12 The Open Watcom Code Generator

The Open Watcom Code Generator performs such optimizations as common subexpression elimination,
global flow analysis, and so on.

In some cases, the code generator can do a better job of optimizing codeif it could utilize more memory.
Thisisindicated when a

Not enough nmenory to optim ze procedure ' xxxx’

message appears on the screen as the source program is compiled. In such an event, you may wish to make
more memory available to the code generator.

40 The Open Watcom Code Generator

The Open Watcom C/C++ Compilers

A special environment variable may be used to obtain memory usage information or set memory usage
limits on the code generator. The WCGMEMORY environment variable may be used to request a report
of the amount of memory used by the compiler’s code generator for its work area.

Example:
$ export "WCGVEMORY=?"

When the memory amount is"?" then the code generator will report how much memory was used to
generate the code.

It may also be used to instruct the compiler’s code generator to allocate a fixed amount of memory for a
work area.

Example:
$ export "WCGVEMORY=128"

When the memory amount is"nnn" then exactly "nnnK" bytes will be used. In the above example, 128K
bytesisrequested. If lessthan "nnnK" is available then the compiler will quit with afatal error message. If
more than "nnNnNK" is available then only "nnnK" will be used.

There are two reasons why this second feature may be quite useful. In general, the more memory available
to the code generator, the more optimal code it will generate. Thus, for two personal computers with
different amounts of memory, the code generator may produce different (although correct) object code. If
you have a software quality assurance requirement that the same results (i.e., code) be produced on two
different machines then you should use this feature. To generate identical code on two personal computers
with different memory configurations, you must ensure that the WCGMEMORY environment variableis
set identically on both machines.

The Open Watcom Code Generator 41

Open Watcom C/C++ User’s Guide

42 The Open Watcom Code Generator

4 Precompiled Headers

4.1 Using Precompiled Headers

Open Watcom C/C++ supports the use of precompiled headers to decrease the time required to compile
several source filesthat include the same header file.

4.2 When to Precompile Header Files

Using precompiled headers reduces compilation time when:
* You always use alarge body of code that changes infrequently.

* Your program comprises multiple modules, al of which use the same first include file and the same
compilation options. In this case, thefirst include file along with &l the files that it includes can be
precompiled into one precompiled header.

Because the compiler only uses the first include file to create a precompiled header, you may want to create
amaster or global header file that includes all the other header files that you wish to have precompiled.
Then all source files should include this master header file asthe first #i ncl ude inthe sourcefile. Even
if you don’t use amaster header file, you can benefit from using precompiled headers for Windows
programs by using #i ncl ude <w ndows. h> asthefirst includefile, or by using #i ncl ude

<af xwi n. h> asthefirst include file for MFC applications.

Thefirst compilation — the one that creates the precompiled header file — takes a bit longer than
subsequent compilations. Subsequent compilations can proceed more quickly by including the precompiled
header.

Y ou can precompile C and C++ programs. In C++ programming, it is common practice to separate class
interface information into header files which can later be included in programs that use the class. By
precompiling these headers, you can reduce the time a program takes to compile.

Note: Although you can use only one precompiled header (. PCH) file per sourcefile, you can use
multiple . PCHfilesin a project.

4.3 Creating and Using Precompiled Headers

Precompiled code is stored in afile called a precompiled header when you use the precompiled header
option (-fh or -fhq) on the command line. The -fh option causes the compiler to either create a
precompiled header or use the precompiled header if it already exists. The-fhq option issimilar but
prevents the compiler from issuing informational or warning messages about precompiled header files. The
default name of the precompiled header fileis one of WCC. PCH, WCC386. PCH, WPP. PCH, or
WPP386. PCH (depending on the compiler used). You can also control the name of the precompiled

Creating and Using Precompiled Headers 43

Open Watcom C/C++ User’s Guide

header that is created or used with the -fh=filename or -fhg=filename (" specify precompiled header
filename") options.

Example:
- f h=pr oj ect x. pch
- f hg=pr oj ect x. pch

4.4 The "-fh[q]" (Precompiled Header) Option

The -fh option instructs the compiler to use a precompiled header file with a default name of WCC. PCH,
WCC386. PCH, WPP. PCH, or WPP386. PCH (depending on the compiler used) if it exists or to create
oneif it doesnot. Thefileis created in the current directory. Y ou can use the -fh=filename option to
change the default name (and placement) of the precompiled header. Add theletter "q" (for "quiet") to the
option name to prevent the compiler from displaying precompiled header activity information.

The following command line uses the -fh option to create a precompiled header.

Example:
wpp -fh nyprog. cpp
wpp386 -fh nyprog. cpp

The following command line creates a precompiled header named nmypr og. pch and placesitin the
/ pr oj pch directory.

Example:
wpp -fh=/projpch/ myprog. pch nyprog. cpp
wpp386 -fh=/projpch/ myprog. pch nyprog. cpp

The precompiled header is created and/or used when the compiler encountersthe first #i ncl ude directive
that occursin the sourcefile. In a subsequent compilation, the compiler performs a consistency check to
seeif it can use an existing precompiled header. If the consistency check fails then the compiler discards
the existing precompiled header and builds a new one.

The -fhq form of the precompiled header option prevents the compiler from issuing warning or
informational messages about precompiled header files. For example, if you change a header file, the

compiler will tell you that it changed and that it must regenerate the precompiled header file. If you specify
-fhq then the compiler just generates the new precompiled header file without displaying a message.

4.5 Consistency Rules for Precompiled Headers

If a precompiled header file exists (either the default file or one specified by -fh=filename), it is compared
to the current compilation for consistency. A new precompiled header file is created and the new file
overwrites the old unless the following requirements are met:

* The current compiler options must match those specified when the precompiled header was created.

* The current working directory must match that specified when the precompiled header was created.

» The name of thefirst #i ncl ude directive must match the one that was specified when the
precompiled header was created.

44 Consistency Rules for Precompiled Headers

Precompiled Headers

* All macros defined prior to thefirst #i ncl ude directive must have the same values as the macros
defined when the precompiled header was created. A sequence of #def i ne directives need not
occur in exactly the same order because there are no semantic order dependenciesfor #def i ne
directives.

* The value and order of include paths specified on the command line with -i options must match
those specified when the precompiled header was created.

* The time stamps of all the header files (all files specified with #i ncl ude directives) used to build
the precompiled header must match those that existed when the precompiled header was created.

Consistency Rules for Precompiled Headers 45

Open Watcom C/C++ User’s Guide

46 Consistency Rules for Precompiled Headers

5 The Open Watcom C/C++ Libraries

The Open Watcom C/C++ library routines are described in the Open Watcom C Library Reference
manual, and the Open Watcom C++ Class Library Reference manual.

5.1 Open Watcom C/C++ Library Directory Structure

The Open Watcom C/C++ libraries are located under the / usr /| i b directory.

lib i ncl ude

5.2 Open Watcom C/C++ C Libraries

Due to the many code generation strategies possible in the 80x86 family of processors, a number of
versions of the libraries are provided. Y ou must use the libraries which coincide with the particular code
generation strategy or model that you have selected. For the type of code generation strategy or model that
you intend to use, refer to the description of the "m?' memory model compiler option. The various code
model s supported by Open Watcom C/C++ are described in the chapters entitled " 16-bit Memory Models*
on page 55 and "32-bit Memory Models' on page 121.

We have selected a simple naming convention for the libraries that are provided with Open Watcom
C/IC++. Letters are affixed to the file name to indicate the particular strategy with which the modulesin the
library have been compiled.

16-bit only

S denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"small" memory model (small code, small data).

M denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"medium" memory model (big code, small data).

C denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"compact” memory model (small code, big data).

L denotes a version of the Open Watcom C/C++ libraries which have been compiled for the
"large" memory model (big code, big data).

H denotes a version of the Open Watcom C/C++ libraries which have been compiled for the

"huge" memory model (big code, huge data).

Open Watcom C/C++ C Libraries 47

Open Watcom C/C++ User’s Guide

32-bit only

3R denotes a version of the Open Watcom C/C++ libraries that will be used by programs
which have been compiled for the "flat/small" memory models using the "3r", "4r" or "5r"
option.

3s denotes a version of the Open Watcom C/C++ libraries that will be used by programs
which have been compiled for the "flat/small" memory models using the "3s", "4s" or "5s"
option.

The Open Watcom C/C++ 16-bit libraries are listed below.

clibs.lib (smal | nodel support)
clibmlib (rmedi um nodel support)
clibc.lib (conmpact nodel support)
clibl.lib (large nodel support)

clibh.lib (huge nodel support)

The Open Watcom C/C++ 32-bit libraries are listed below.

clib3r.lib (flat/small nodels, "3r", "4r" or "5r" option)
clib3s.lib (flat/small nodels, "3s", "4s" or "5s" option)

5.3 Open Watcom C 16-bit Shared Library

A portion of the 16-bit Open Watcom C Library is also stored in a memory-resident library called the
system shared library. On multi-tasking systems, it makes sense that commonly-used library routines such
asread and write be shared among processes. By sharing the same code, the memory requirement for
applicationsisreduced. The functionsin the shared library are memory model independent so they can be
used by any small/large code, small/large/huge data applications.

5.4 Open Watcom C/C++ Class Libraries

The Open Watcom C/C++ Class Library routines are described in the Open Watcom C++ Class Library
Reference manual.

The Open Watcom C++ 16-bit Class Libraries are listed below.

48 Open Watcom C/C++ Class Libraries

The Open Watcom C/C++ Libraries

(iostreamand string class libraries)
plibs.lib (smal | nodel support)
plibmlib (rmedi um nodel support)
plibc.lib (compact nodel support)
plibl.lib (1 arge nodel support)
plibh.lib (huge nodel support)

(conmplex class library for "fpc" option)

cplxs.lib (smal | nodel support)
cplxmlib (medi um nodel support)
cplxc.lib (conmpact nodel support)
cplxl.lib (large nodel support)
cplxh.lib (huge nodel support)
(conmplex class library for "fpi..." options)

cpl x7s.1ib (smal | nodel support)
cpl x7mlib (medi um nodel support)
cpl x7c.lib (compact nodel support)
cplx7l.1ib (large nodel support)
cpl x7h.lib (huge nodel support)

These libraries are independent of the operating system. The"7" designates alibrary compiled with the " 7"
option.

The Open Watcom C++ 32-hit Class Libraries are listed below.

(iostreamand string class libraries)
plib3r.lib (flat nodels, "3r", "4r" or "5r" option)
plib3s.lib (flat nodels, "3s", "4s" or "5s" option)
(complex class library for "fpc" option)

cplx3r.lib (flat nodels, "3r", "4r" or "5r" option)

cpl x3s.lib (flat nodels, "3s", "4s" or "5s" option)
(conmplex class library for "fpi..." options)

cpl x73r.1ib (flat nodels, "3r", "4r" or "5r" option)

cpl x73s.1ib (flat nodels, "3s", "4s" or "5s" option)

These libraries are independent of the operating system. The "3r" and "3s" suffixes refer to the argument
passing convention used. The"7" designates alibrary compiled with the " 7" option.

5.5 Open Watcom C/C++ Math Libraries

In general, aMath library is required when floating-point computations are included in the application. The
Math libraries are operating-system independent. The Math libraries are placed under the / usr/1i b
directory.

The following situations indicate that one of the Math libraries should be included when linking the
application.

1. When one or more of the functions described in the mat h. h header fileis referenced, then a
Math library must be included.

2. If anapplicationislinked and the message

" _fltused_ is an undefined reference"

appears, then aMath library must be included.

Open Watcom C/C++ Math Libraries 49

Open Watcom C/C++ User’s Guide

3.

(16-bit only) If an application is linked and the message

__init_87 emulator is an undefined reference"

appears, then one of the modules in the application was compiled with one of the "fpi", "fpi87",
"fp2", "fp3" or "fp5" options. If the "fpi" option was used, the 80x87 emulator library (
emu87. 1 i b) or the 80x87 fixup library (noenmu87. | i b) should be included when linking
the application.

If the "fpi87" option was used, the 80x87 fixup library noenmu87. | i b should be included when
linking the application.

(32-bit only) If an application is linked and the message

__init_387_enulator is an undefined reference"
appears, then one of the modules in the application was compiled with one of the "fpi", "fpi87",
"fp2", "fp3" or "fp5" options. If the "fpi" option was used, the 80x87 emulator library (
enmu387. | i b) should be included when linking the application.

If the "fpi87" option was used, the empty 80x87 emulator library noenu387. | i b should be
included when linking the application.

Normally, the compiler and linker will automatically take care of this. Simply ensure that the WATCOM
environment variable includes the location of the Open Watcom C/C++ libraries.

5.6 Open Watcom C/C++ 80x87 Math Libraries

One of the following Math libraries must be used if any of the modules of your application were compiled
with one of the Open Watcom C/C++ "fpi", "fpi87", "fp2", "fp3" or "fp5" options and your application
requires floating-point support for the reasons given above.

16-bit libraries:

mat h87s.1ib (small nodel)
mat h87m i b (medi um nodel)
mat h87c.lib (conpact nodel)
mat h871 .1ib (I arge nodel)
mat h87h. i b (huge nodel)
noemu87.1ib

enu87.1ib (QNX dependent)

32-bit libraries:
mat h387r.1lib (flat/small nodels, "3r", "4r" or "5r" option)
mat h387s.lib (flat/small nodels, "3s", "4s" os "5s" option)
emu387.1ib (QNX dependent)

The "fpi" option causes an 80x87 numeric data processor emulator to be linked into your application in
addition to any 80x87 math routines that were referenced. For QNX, there is a common 80x87 emul ator
task that is used so that there is one copy of the emulator in memory at any onetime. This emulator will
decode and emulate 80x87 instructions when an 80x87 is not present in the system.

50 Open Watcom C/C++ 80x87 Math Libraries

The Open Watcom C/C++ Libraries

When the "fpi87" option is used exclusively, the emulator is not included. In this case, the application must
be run on personal computer systems equipped with the numeric data processor.

5.7 Open Watcom C/C++ Alternate Math Libraries

One of the following Math libraries must be used if any of the modules of your application were compiled
with the Open Watcom C/C++ "fpc" option and your application requires floating-point support for the
reasons given above. The following Math libraries include support for floating-point which is done
out-of-line through run-time calls.

16-bit libraries:

maths.lib (small nodel)
mat hm i b (medi um nodel)
mat hc. i b (conpact nodel)
mathl.lib (large nodel)
mat hh. i b (huge nodel)

32-hit libraries:
math3r.lib (flat/snall nodels, "3r", "4r" or "5r" option)
math3s.lib (flat/snall nodels, "3s", "4s" os "5s" option)

Applications which are linked with one of these libraries do not require a numeric data processor for
floating-point operations. If oneis present in the system, it will be used; otherwise floating-point
operations are simulated in software.

5.8 The Open Watcom C/C++ Run-time Initialization Routines

Source files are included in the package for the Open Watcom C/C++ application startup (or initialization)
sequence.

(16-bit only) Thesefiles are located in the directory:

fusr/lib/src/startup (Q\NX initialization)

Thefollowing is asummary list of the startup files for QNX.

cstart_s.asm
cstart_masm
cstart_c.asm
cstart _|.asm
cstart_h.asm
nodel s. i nc
cstart.asm
ndef . inc
cmain. c

(startup for
(startup for
(startup for
(startup for
(startup for
(i ncluded by
(i ncluded by

smal | nmenory nodel)
medi um nenory nodel)
conpact nenory nodel)
| arge nmenory nodel)
huge nenory nodel)
cstart_*.asm
cstart_*.asm

(rmacros included by cstart.asm

(final

part of

initialization sequence)

The assembler file cst ar t . asmcontains the first part of theinitialization code and the remainder is
continued inthefile crmai n. ¢c. Theassembler files, cst art _*. asm define the type of memory model
andincludecstart.asm Itiscnai n. c that calsyour mainlineroutine (mai n) .

The Open Watcom C/C++ Run-time Initialization Routines 51

Open Watcom C/C++ User’s Guide

(32-bit only) Thesefiles are located in the directory:
fusr/lib/src/startup (Q\NX initialization)

Thefollowing is asummary list of the startup files for QNX.
cstrt386.asm (startup for small nenory nodel)
ndef . inc (macros included by cstrt386. asn)

crmain. ¢ (final part of initialization sequence)

The assembler file cst r t 386. asmcontains the first part of the initialization code and the remainder is
continued inthefilecrmai n. ¢. Itiscnmi n. ¢ that calsyour mainline routine (mai n) .

The source code is provided for those who wish to customize the initialization sequence for special
applications.

52 The Open Watcom C/C++ Run-time Initialization Routines

16-bit Topics

16-bit Topics

54

6 16-bit Memory Models

6.1 Introduction

This chapter describes the various 16-bit memory models supported by Open Watcom C/C++. Each
memory model is distinguished by two properties; the code model used to implement function calls and the
data model used to reference data.

6.2 16-bit Code Models

There are two code models;

1. thesmal code model and
2. thebig code model.

A small code model is onein which all callsto functions are made with near calls. Inanear cal, the
destination addressis 16 bits and is relative to the segment value in segment register CS. Hence, in asmall
code model, al code comprising your program, including library functions, must be less than 64K.

A big code model isonein which all callsto functions are made with far calls. In afar call, the destination
addressis 32 bits (a segment value and an offset relative to the segment value). This model allows the size
of the code comprising your program to exceed 64K.

Note: [f your program contains less than 64K of code, you should use a memory model that employs
the small code model. Thiswill result in smaller and faster code since near calls are smaller instructions
and are processed faster by the CPU.

6.3 16-bit Data Models

There are three data models;

1. thesmall datamodel,
2. thebig data model and
3. thehuge data model.

A small data model isone in which al references to data are made with near pointers. Near pointers are 16
bits; all data references are made relative to the segment value in segment register DS. Hence, in a small
data model, all data comprising your program must be less than 64K.

A big datamodel is onein which al references to data are made with far pointers. Far pointers are 32 bits
(asegment value and an offset relative to the segment value). This removes the 64K limitation on data size
imposed by the small datamodel. However, when afar pointer isincremented, only the offset is adjusted.
Open Watcom C/C++ assumes that the offset portion of afar pointer will not be incremented beyond 64K .

16-bit Data Models 55

16-bit Topics

The compiler will assign an object to a new segment if the grouping of datain a segment will cause the
object to cross a segment boundary. Implicit in thisis the requirement that no individual object exceed 64K
bytes. For example, an array containing 40,000 integers does not fit into the big data model. An object
such as this should be described as huge.

A huge data model isonein which all references to data are made with far pointers. Thisissimilar to the
big data model. However, in the huge data model, incrementing a far pointer will adjust the offset and the
segment if necessary. The limit on the size of an object pointed to by afar pointer imposed by the big data
model isremoved in the huge data model.

Notes:

1. If your program contains less than 64K of data, you should use the small datamodel. This will
result in smaller and faster code since references using near pointers produce fewer instructions.

2. Thehuge datamodel should be used only if needed. The code generated in the huge data model

is not very efficient since arun-time routineis called in order to increment far pointers. This
increases the size of the code significantly and increases execution time.

6.4 Summary of 16-bit Memory Models

As previously mentioned, a memory model is a combination of a code model and adatamodel. The
following table describes the memory models supported by Open Watcom C/C++.

Menory Code Dat a Def aul t Def aul t
Model Model Model Code Dat a
Poi nt er Poi nt er
tiny smal | smal | near near
smal | smal | smal | near near
medi um bi g snal | far near
conpact snmal | bi g near far
| arge bi g bi g far far
huge bi g huge far huge

6.5 Mixed 16-bit Memory Model

A mixed memory model application combines elements from the various code and data models. A mixed
memory model application might be characterized as one that uses the near, far, or huge keywords when
describing some of its functions or data objects.

For example, a medium memory model application that uses some far pointers to data can be described as a
mixed memory model. In an application such asthis, most of the dataisin a 64K segment (DGROUP) and
hence can be referenced with near pointers relative to the segment value in segment register DS. This
results in more efficient code being generated and better execution times than one can expect from a big
datamodel. Data objects outside of the DGROUP segment are described with the far keyword.

56 Mixed 16-bit Memory Model

16-bit Memory Models

6.6 Linking Applications for the Various 16-bit Memory

Models

Each memory model requires different run-time and floating-point libraries. Each library assumesa
particular memory model and should be linked only with modules that have been compiled with the same
memory model. The following table lists the libraries that are to be used to link an application that has
been compiled for a particular memory model.

Menory Run-tine
Model Li brary

smal | clibs.lib

medium clibmlib

conpact clibc.lib

| arge clibl.lib

huge clibh.lib

Fl oat i ng- Poi nt
Calls Library

maths.lib
mathmlib
mathc.lib
mathl . lib
mat hh. 1ib

Fl oat i ng- Poi nt
Li brary (80x87)

mat h87s.1ib
+(no)emu87. i b*

mat h87mlib
+(no) emu87. | i b*

mat h87c.li b
+(no) ermu87. | i b*

mat h871 . i b
+(no) emu87. | i b*

mat h87h. i b
+(no) emu87. 1i b*

* Oneof enmu87. 1 i b ornoenu87. 1 i b will be used with the 80x87 math libraries depending on the use
of the"fpi" (include emulation) or "fpi87" (do not include emulation) options.

6.7 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1

2.

5.

6.

all segments not belonging to group "DGROUP" with class "CODE"

all other segments not belonging to group "DGROUP"

all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and isthe first segment in
group "DGROUP" so that storing data at location 0 can be detected.

Memory Layout 57

16-bit Topics

Segments belonging to class "BSS' contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS" and
"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file.

In addition to these special segments, the following conventions are used by Open Watcom C/C++.
1. The"CODE" class contains the executable code for your application. In asmall code model, this
consists of the segment *_TEXT". In abig code model, this consists of the segments
"<module>_TEXT" where <module> is the file name of the source file.

2. The"FAR_DATA" class consists of the following:

(@ data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

© literals whose size exceeds the data threshold in large data memory models (the
datathreshold is 32K unless changed using the "zt" compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.
Y ou can override the default naming convention used by Open Watcom C/C++ to name segments.
1. The Open Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for a big code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

58 Memory Layout

/ 16-bit Assembly Language Considerations

7.1 Introduction

This chapter will deal with the following topics.

1

2.

The data representation of the basic types supported by Open Watcom C/C++.

The memory layout of a Open Watcom C/C++ program.

The method for passing arguments and returning values.

The two methods for passing floating-point arguments and returning floating-point values.
One method is used when one of the Open Watcom C/C++ "fpi" or "fpi87" optionsis specified
for the generation of in-line 80x87 instructions. When the "fpi" option is specified, an 80x87
emulator isincluded from amath library if the application includes floating-point operations.

When the "fpi87" option is used exclusively, the 80x87 emulator will not be included.

The other method is used when the Open Watcom C/C++ "fpc" option is specified. In this case,
the compiler generates calls to floating-point support routines in the alternate math libraries.

An understanding of the Intel 80x86 architecture is assumed.

7.2 Data Representation

This section describes the internal or machine representation of the basic types supported by Open Watcom

C/C++.

7.2.1 Type "char”

An item of type "char" occupies 1 byte of storage. Itsvaueisin the following range.

0 <= n <= 255

Note that "char" is, by default, unsigned. The Open Watcom C/C++ compiler option "j" can be used to
change the default from unsigned to signed. If "char" is signed, an item of type "char" isin the following

range.

-128 <= n <= 127

Y ou can force an item of type "char" to be unsigned or signed regardless of the default by defining them to
be of type "unsigned char" or "signed char" respectively.

Data Representation 59

16-bit Topics

7.2.2 Type "short int"

An item of type "short int" occupies 2 bytes of storage. Itsvaueisin the following range.

-32768 <= n <= 32767

Note that "short int" is signed and hence "short int" and "signed short int" are equivalent. If anitem of type
"short int" isto be unsigned, it must be defined as "unsigned short int". Inthiscase, itsvalueisinthe
following range.

0 <= n <= 65535

7.2.3 Type "long int"

An item of type "long int" occupies 4 bytes of storage. Itsvalueisin the following range.

- 2147483648 <= n <= 2147483647

Note that "long int" is signed and hence "long int" and "signed long int" are equivalent. If anitem of type
"long int" isto be unsigned, it must be defined as "unsigned long int". In this case, itsvalueisin the
following range.

0 <= n <= 4294967295

7.2.4 Type "int"
An item of type "int" occupies 2 bytes of storage. Itsvalueisin the following range.
-32768 <= n <= 32767

Note that "int" is signed and hence "int" and "signed int" are equivalent. If anitem of type "int" isto be
unsigned, it must be defined as "unsigned int". In this caseits value isin the following range.

0 <= n <= 65535
If you are generating code that executes in 16-bit mode, "short int" and "int" are equivalent, "unsigned short

int" and "unsigned int" are equivalent, and "signed short int" and "signed int" are equivalent. This may not
be the case in other environments where "int" and "long int" are 4 bytes.

7.2.5 Type "float"

A datum of type "float" is an approximate representation of areal number. Each datum of type "float"
occupies 4 bytes. If misthe magnitude of x (an item of type "float") then x can be approximated if

2-126 <= m < 2128

or in more approximate terms if

1.175494e-38 <= m <= 3. 402823e38

Data of type "float" are represented internally asfollows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

60 Data Representation

16-bit Assembly Language Considerations

e m e oo o e e ee o eoao oo +
| S| Biased | Si gni ficand |
| | Exponent | |
e mm e oo o e e e ee o eaao s +
31 30- 23 22-0
Notes
S S = Sign bit (O=positive, 1=negative)
Exponent The exponent biasis 127 (i.e., exponent value 1 represents 2-126; exponent value 127

represents 20; exponent value 254 represents 2127; etc.). The exponent field is 8 bits long.

Significand Theleading bit of the significand is always 1, hence it is not stored in the significand field.
Thusthe significand is always "normalized”. The significand field is 23 bits long.

Zero A real zero quantity occurs when the sign bit, exponent, and significand are all zero.

Infinity When the exponent field isall 1 bits and the significand field isall zero bits then the
guantity represents positive or negative infinity, depending on the sign hit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity
isaspecial value called aNAN (Not-A-Number).

When the exponent field is al 0 bits and the significand field is non-zero then the quantity
isaspecia value called a"denormal” or nonnormal number.

7.2.6 Type "double”

A datum of type "double" is an approximate representation of areal number. The precision of a datum of
type "double" is greater than or equal to one of type "float". Each datum of type "double" occupies 8 bytes.
If misthe magnitude of x (an item of type "double") then x can be approximated if

2-1022 <= m < 21024

or in more approximate terms if

2.2250738585072e-308 <= m <= 1.79769313486232e308

Data of type "double" are represented internally as follows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

Fom e ek o m m e e e e e e e e e e e e eaa oo +
| S| Biased | Si gni ficand |
| | Exponent | |

T o m o e e e e e e e e e e e e e maa oo +
63 62-52 51-0

Data Representation 61

16-bit Topics

Notes:

S

Exponent

Significand

Zero

Infinity

Not Numbers

S = Sign bit (O=positive, 1=negative)

The exponent biasis 1023 (i.e., exponent value 1 represents 2-1922: exponent value 1023
represents 20; exponent value 2046 represents 21923; etc.). The exponent field is 11 bits
long.

Theleading bit of the significand is always 1, henceit is not stored in the significand field.
Thus the significand is aways "normalized". The significand field is 52 bits long.

A double precision zero quantity occurs when the sign bit, exponent, and significand are all
zero.

When the exponent field is al 1 bits and the significand field is all zero bits then the
guantity represents positive or negative infinity, depending on the sign bit.

When the exponent field isall 1 bits and the significand field is non-zero then the quantity
isaspecial value called aNAN (Not-A-Number).

When the exponent field isall 0 bits and the significand field is non-zero then the quantity
isaspecia value called a"denormal™ or nonnormal number.

7.3 Memory Layout

Thefollowing d

lescribes the segment ordering of an application linked by the Open Watcom Linker. Note

that this assumes that the "DOSSEG" linker option has been specified.

1. al segments not belonging to group "DGROUP" with class"CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. dl segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"

5. all segments belonging to group "DGROUFP" with class "BSS"

6. all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and is the first segment in
group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS* and
"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable

file.

In addition to th

62 Memory Layout

ese specia segments, the following conventions are used by Open Watcom C/C++.

16-bit Assembly Language Considerations

1. The"CODE" class contains the executable code for your application. In asmall code model, this
consists of the segment *_TEXT". In abig code model, this consists of the segments
"<module>_ TEXT" where <module> is the file name of the source file.

2. The"FAR_DATA" class consists of the following:

(@ data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(© literals whose size exceeds the data threshold in large data memory models (the
datathreshold is 32K unless changed using the "zt" compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.
Y ou can override the default naming convention used by Open Watcom C/C++ to name segments.

1. The Open Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for a big code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

7.4 Calling Conventions for Non-80x87 Applications

The following sections describe the calling convention used when compiling with the "fpc" compiler
option.

7.4.1 Passing Arguments Using Register-Based Calling Conventions

How arguments are passed to a function with register-based calling conventions is determined by the size
(in bytes) of the argument and where in the argument list the argument appears. Depending on the size,
arguments are either passed in registers or on the stack. Arguments such as structures are almost always
passed on the stack since they are generally too largeto fit in registers. Since arguments are processed
from left to right, the first few arguments are likely to be passed in registers (if they can fit) and, if the
argument list contains many arguments, the last few arguments are likely to be passed on the stack.

The registers used to pass arguments to afunction are AX, BX, CX and DX. The following algorithm
describes how arguments are passed to functions.

Initially, we have the following registers available for passing arguments: AX, DX, BX and CX. Note that
registers are selected from thislist in the order they appear. That is, the first register selected is AX and the
last is CX. For each argument Ai, starting with the left most argument, perform the following steps.

1. If thesizeof Ai is1 byte, convert it to 2 bytes and proceed to the next step. If Ai is of type
"unsigned char", it is converted to an "unsigned int". If Ai isof type "signed char", it is
converted to a"signed int". If Ai isa 1-byte structure, the padding is determined by the
compiler.

2. If anargument has already been assigned a position on the stack, Ai will also be assigned a
position on the stack. Otherwise, proceed to the next step.

Calling Conventions for Non-80x87 Applications 63

16-bit Topics

Notes:

If the size of Ai is 2 bytes, select aregister from the list of availableregisters. If aregisteris
available, Ai is assigned that register. The register isthen removed from the list of available
registers. If no registersare available, Ai will be assigned a position on the stack.

If the size of Ai is 4 bytes, select aregister pair from the following list of combinations: [DX
AX] or [CX BX]. Thefirst available register pair is assigned to Ai and removed from the list of
available pairs. The high-order 16 bits of the argument are assigned to the first register in the
pair; the low-order 16 bits are assigned to the second register in the pair. 1f none of the above
register pairsis available, Ai will be assigned a position on the stack.

If thetype of Ai is"double" or "float" (in the absence of afunction prototype), select [AX BX
CX DX] from the list of availableregisters. All four registers are removed from the list of
available registers. The high-order 16 bits of the argument are assigned to the first register and
the low-order 16 bits are assigned to the fourth register. If any of the four registersis not
available, Ai will be assigned a position on the stack.

All other arguments will be assigned a position on the stack.

Arguments that are assigned a position on the stack are padded to a multiple of 2 bytes. That is,
if a 3-byte structure is assigned a position on the stack, 4 bytes will be pushed on the stack.

Arguments that are assigned a position on the stack are pushed onto the stack starting with the
rightmost argument.

7.4.2 Sizes of Predefined Types

The following table lists the predefined types, their size as returned by the "sizeof" function, the size of an
argument of that type and the registers used to pass that argument if it was the only argument in the

argument list.
Basic Type "sizeof" Argument Registers
Sze Used
char 1 2 [AX]
short int 2 2 [AX]
int 2 2 [AX]
long int 4 4 [DX AX]
float 4 8 [AX BX CX DX]
double 8 8 [AX BX CX DX]
near pointer 2 2 [AX]
far pointer 4 4 [DX AX]
huge pointer 4 4 [DX AX]

Note that the size of the argument listed in the table assumes that no function prototypes are specified.
Function prototypes affect the way arguments are passed. Thiswill be discussed in the section entitled
"Effect of Function Prototypes on Arguments”.

64 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

Notes:

1. Provided no function prototypes exist, an argument will be converted to a default type as
described in the following table.

Argument Type Passed As
char unsigned int
signed char signed int
unsigned char unsigned int
float double

7.4.3 Size of Enumerated Types

Theintegral type of an enumerated type is determined by the values of the enumeration constants. In strict
ISO/ANSI C mode, al enumerated constants are of type i nt . In the extensions mode, the compiler will
use the smallest integral type possible (excluding | ong ints) that can represent al values of the enumerated
type. For instance, if the minimum and maximum values of the enumeration constants are in the range
—-128 and 127, the enumerated type will be equivalentto a si gned char (size=1 byte). All references
to enumerated constants in the previous instance will have type si gned char. Anenumerated constant
isaways promoted to an i nt when passed as an argument.

7.4.4 Effect of Function Prototypes on Arguments

Function prototypes define the types of the formal parameters of afunction. Their appearance affects the
way in which arguments are passed. An argument will be converted to the type of the corresponding
formal parameter in the function prototype. Consider the following example.

void prototype(float x, int i);
void main()

float x;
i nt i

x = 3.14;
i = 314;
prototype(x, i);

rtn(x, i);

}

The function prototype for pr ot ot ype specifies that the first argument isto be passed asa "float" and the
second argument is to be passed as an "int". Thisresultsin the first argument being passed in registers DX
and AX and the second argument being passed in register BX.

If no function prototype is given, asisthe case for the function r t n, thefirst argument will be passed as a
"double" and the second argument would be passed asan "int". Thisresultsin the first argument being
passed in registers AX, BX, CX and DX and the second argument being passed on the stack.

Note that even though both pr ot ot ype and r t n were called with identical argument lists, the way in
which the arguments were passed was completely different simply because a function prototype for

pr ot ot ype was specified. Function prototyping is an excellent way to guarantee that arguments will be
passed as expected to your assembly language function.

Calling Conventions for Non-80x87 Applications 65

16-bit Topics

7.4.5 Interfacing to Assembly Language Functions

Consider the following example.

Example:

voi d main()
long int x;
i nt i;
long int y;
X =7,
i = 77;
y = 777,
nyrtn(x, i, vy);

}
nmyr t n isan assembly language function that requires three arguments. The first argument is of type "long
int", the second argument is of type "int" and the third argument is again of type "longint". Using therules
for register-based calling conventions, these arguments will be passed to myr t n in the following way:

1. Thefirst argument will be passed in registers DX and AX leaving BX and CX as available
registers for other arguments.

2. The second argument will be passed in register BX leaving CX as an available register for other
arguments.

3. Thethird argument will not fit in register CX (its size is 4 bytes) and hence will be pushed on the
stack.

Let uslook at the stack upon entry to nyrt n.

Small Code Model
O f set
o a o +
0 | return address | <- SP points here
Fom e oo - +
2 | argument #3 |
I I
o e +
6 I I
Big Code Model
O f set
o a o +
0 | return address | <- SP points here
I I
o a o +
4 | argunent #3 [
I I
Fom e oo - +
8 | I

66 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

Notes:

1. Thereturn addressisthe top element on the stack. In asmall code model, the return addressis 1
word (16 bits); in abig code model, the return address is 2 words (32 bits).

Register SP cannot be used as a base register to address the third argument on the stack. Register BPis
normally used to address arguments on the stack. Upon entry to the function, register BP is set to point to
the stack but before doing so we must save its contents. The following two instructions achieve this.

push BP ; save current value of BP
nov BP, SP ; get access to argunents

After executing these instructions, the stack looks like this.

Small Code Model
O f set
o a o +
0 | saved BP | <- BP and SP point here
Fom e oo - +
2 | return address |
S +
4 | argunent #3 |
I I
o a o +
8 I I
Big Code Model
O f set
o a o +
0 | saved BP | <- BP and SP point here
Fom e oo - +
2 | return address |
I I
S +
6 | argunment #3 |
I I
o a o +
10 I I

As the above diagrams show, the third argument is at offset 4 from register BP in asmall code model and
offset 6 in abig code model.

Upon exit from nyr t n, we must restore the value of BP. The following two instructions achieve this.

nov SP, BP ; restore stack pointer
pop BP ; restore BP

The following is a sample assembly language function which implements myrt n.

Calling Conventions for Non-80x87 Applications 67

16-bit Topics

Small Memory Model (small code, small data)
DGROUP group _DATA, _BSS
_TEXT segnent byte public ' CODE

assumne CS: _TEXT

assune DS: DGROUP

public nyrtn_

myrtn_ proc near
push BP ; save BP
nmov BP, SP ; get access to argunents

body of function

nov SP, BP ; restore SP

pop BP ; restore BP

ret 4 ; return and pop last arg
nyrtn_ endp
_TEXT ends

Large Memory Model (big code, big data)

DGROUP group _DATA, _BSS

MYRTN_TEXT segnent byte public ' CODE
assune CS: MYRTN_TEXT

public nyrtn_

nyrtn_ proc far
push BP ; save BP
nmov BP, SP ; get access to argunents

; body of function

nov SP, BP ; restore SP

pop BP ; restore BP

ret 4 ; return and pop last arg
nyrtn_ endp

MYRTN_TEXT ends
Notes:

1. Global function names must be followed with an underscore. Global variable names must be
preceded with an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and AX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option.

3. Thedirection flag must be clear before returning to the caller.

4. Inasmall code model, any segment containing executable code must belong to the segment
" TEXT" and the class"CODE". Thesegment"_TEXT" must have a"combine" type of
"PUBLIC". On entry, CS contains the segment address of the segment *_TEXT". In abig code
model there is no restriction on the naming of segments which contain executable code.

5. Inasmall data model, segment register DS contains the segment address of the group
"DGROUP'. Thisisnot the casein abig data model.

68 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

6. When writing assembly language functions for the small code model, you must declare them as
"near". If you wish to write assembly language functions for the big code model, you must
declare them as "far".

7. Ingeneral, when naming segments for your code or data, you should follow the conventions
described in the section entitled "Memory Layout" in this chapter.

8. If any of the arguments was pushed onto the stack, the called routine must pop those arguments
off the stack in the "ret" instruction.

7.4.6 Functions with Variable Number of Arguments

A function prototype with a parameter list that ends with ",..." has a variable number of arguments. In this
case, al arguments are passed on the stack. Since no prototyping information exists for arguments
represented by ",...", those arguments are passed as described in the section "Passing Arguments”.

7.4.7 Returning Values from Functions

The way in which function values are returned depends on the size of the return value. The following
exampl es describe how function values are to be returned. They are coded for a small code model.

1. 1-bytevaluesareto bereturned inregister AL.

Example:
_TEXT segnent byte public ' CODE
assune CS: _TEXT
public Retl_

Ret1_ proc near ; char Ret1()
nmov AL,' G
ret

Ret1_ endp

_TEXT ends
end

2. 2-bytevaluesareto bereturned in register AX.

Example:
_TEXT segment byte public ' CODFE
assune CS: TEXT
public Ret2_

Ret 2_ proc near ; short int Ret2()
nov AX, 77
ret

Ret2_ endp

_TEXT ends
end

3. 4-bytevauesareto bereturned in registers DX and AX with the most significant word in
register DX.

Calling Conventions for Non-80x87 Applications 69

16-bit Topics

Example:
_TEXT segnent byte public ' CODE
assune CS: _TEXT
public Ret4_

Ret4_ proc near ; long int Ret4()
mov AX,word ptr CS:Val 4+0
nmov DX, word ptr CS: Val 4+2
ret

Val 4 dd 7777777

Ret 4 _ endp

_TEXT ends
end

4. 8-bytevalues, except structures, are to be returned in registers AX, BX, CX and DX with the
most significant word in register AX.

Example:
. 8087
_TEXT segment byte public ' CODE
assune CS: TEXT
public Ret8_

Ret 8 proc near ; doubl e Ret8()
nmov DX, word ptr CS:Val 8+0
nmov CX,word ptr CS:Val 8+2
mov BX, word ptr CS:Val 8+4
nov AX,word ptr CS:Val 8+6
ret

Val 8: dg 7.7

Ret 8_ endp

_TEXT ends
end

The".8087" pseudo-op must be specified so that all floating-point constants are generated in
8087 format. When using the "fpc" (floating-point calls) option, "float" and "double" are
returned in registers. See section "Returning Valuesin 80x87-based Applications’ when using
the"fpi" or "fpi87" options.

5. Otherwise, the caller allocates space on the stack for the return value and sets register Sl to point

tothisarea. Inabig datamodel, register Sl contains an offset relative to the segment valuein
segment register SS.

70 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

Example:
_TEXT segnent byte public ' CODE
assune CS: _TEXT
public RetX_
; struct int_values {
; i nt valuel, value2, value3, value4, value5;
: 1
Ret X_ proc near ; struct int_values RetX()
nmov word ptr SS:0[SI], 71
nmov word ptr SS:4[Sl], 72
nmov word ptr SS:8[Sl], 73
nmov word ptr SS:12[SI], 74
nmov word ptr SS:16[SI], 75
ret
Ret X_ endp
_TEXT ends
end

When returning values on the stack, remember to use a segment override to the stack segment

(S9).

The following is an example of a Open Watcom C/C++ program calling the above assembly language

subprograms.

#i ncl ude <stdi o. h>

struct int_values {
int val uel;
int val ue2;
int val ue3;
i nt val ue4;
int val ueb;
1
extern char Ret 1(voi d);
extern short int Ret 2(voi d);
extern long int Ret 4(voi d);
extern double Ret 8(voi d) ;
extern struct int_values RetX(void);
void main()
struct int_values x;
printf("Retl = %\n", Retl());
printf("Ret2 = %d\n", Ret2());
printf("Retd = %d\n", Retd());
printf("Ret8 = %\n", Ret8());
x = Ret X();
printf("RetXl1 = %d\n", x.valuel);
printf("RetX2 = %\ n", x.value2);
printf("RetX3 = %\n", x.value3);
printf("RetX4 = %\ n", x.value4d);
printf("RetX5 = %\ n", x.value5);

Calling Conventions for Non-80x87 Applications

71

16-bit Topics

The above function should be compiled for a small code model (use the "ms* or "mc" compiler option).

7.5 Calling Conventions for 80x87-based Applications

When a source file is compiled by Open Watcom C/C++ with one of the "fpi" or "fpi87" options, al
floating-point arguments are passed on the 80x86 stack. The rules for passing arguments are as follows.

1. If theargument is not floating-point, use the procedure described earlier in this chapter.

2. If theargument is floating-point, it is assigned a position on the 80x86 stack.

7.5.1 Passing Values in 80x87-based Applications
Consider the following example.

Example:
extern void nmyrtn(int, float, double,long int);

voi d main()

fl oat X;
doubl e y;
i nt i;
long int j;

X

1.7,
i .

7,
y = 77.77

j 77,

nyrtn(i, X, VY, |);

}

myr t n isan assembly language function that requires four arguments. The first argument is of type "int" (
2 bytes), the second argument is of type "float" (4 bytes), the third argument is of type "double" (8 bytes)
and the fourth argument is of type "long int" (4 bytes). These argumentswill be passedto myrt ninthe
following way:

1. Thefirst argument will be passed in register AX leaving BX, CX and DX as available registers
for other arguments.

2. The second argument will be passed on the 80x86 stack sinceit is a floating-point argument.
3. Thethird argument will also be passed on the 80x86 stack since it is a floating-point argument.

4. Thefourth argument will be passed on the 80x86 stack since a previous argument has been
assigned a position on the 80x86 stack.

Remember, arguments are pushed on the stack from right to left. That is, the rightmost argument is pushed
first.

Any assembly language function must obey the following rule.

1. All arguments passed on the stack must be removed by the called function.

72 Calling Conventions for 80x87-based Applications

16-bit Assembly Language Considerations

The following is a sample assembly language function which implements nmyr t n.

Example:

. 8087

_TEXT segnment byte public ' CODE

assune CS: _TEXT
public nmyrtn_

myrtn_ proc near

; body of function

ret 16 ; return and pop argunents
myrtn_ endp
_TEXT ends

end

Notes:

1

2.

Function names must be followed by an underscore.

All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and EAX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option. Inthisexample, AX does not have to be saved as it was used to pass the first argument.
Floating-point registers can be modified without saving their contents.

The direction flag must be clear before returning to the caller.

This function has been written for a small code model. Any segment containing executable code
must belong to the class "CODE" and the segment *_TEXT". On entry, CS contains the segment
address of the segment "_TEXT". The above restrictions do not apply in a big code memory
model.

When writing assembly language functions for asmall code model, you must declare them as
"near". If you wish to write assembly language functions for a big code model, you must declare
them as"far".

7.5.2 Returning Values in 80x87-based Applications

Floating-point values are returned in ST(0) when using the "fpi" or "fpi87" options. All other values are
returned in the manner described earlier in this chapter.

Calling Conventions for 80x87-based Applications 73

16-bit Topics

74 Calling Conventions for 80x87-based Applications

8 16-bit Pragmas

8.1 Introduction

A pragmais acompiler directive that provides the following capabilities.

* Pragmas allow you to specify certain compiler options.

* Pragmas can be used to direct the Open Watcom C/C++ code generator to emit specialized
sequences of code for calling functions which use argument passing and value return techniques that
differ from the default used by Open Watcom C/C++.

* Pragmas can be used to describe attributes of functions (such as side effects) that are not possible at
the C/C++ language level. The code generator can use thisinformation to generate more efficient
code.

 Any sequence of in-line machine language instructions, including QN X function calls, can be
generated in the object code.

Pragmas are specified in the source file using the pragma directive. The following notation is used to
describe the syntax of pragmas.

keywords A keywor d is shown in amono-spaced courier font.

program-item A program-item is shown in aroman bold-italicsfont. A program-item isasymbol name
or numeric value supplied by the programmer.

punctuation A punctuati on charact er showninamono-spaced courier font must be entered as
is.

A punctuation character shown in aroman bold-italics font is used to describe syntax.
The following syntactical notation is used.

[abc] Theitem abc is optional.

{abc} Theitem abc may be repeated zero or more times.
alb|c One of a, b or ¢ may be specified.

a:=b The item a is defined in terms of b.

(@ Item ais evaluated first.

The following classes of pragmas are supported.

Introduction 75

16-bit Topics

* pragmas that specify options

* pragmas that specify default libraries

* pragmas that describe the way structures are stored in memory

* pragmas that provide auxiliary information used for code generation

8.2 Using Pragmas to Specify Options

Currently, the following options can be specified with pragmas:

unreferenced The "unreferenced" option controls the way Open Watcom C/C++ handles unused symbols.

check_stack

For example,

#pragma on (unreferenced);

will cause Open Watcom C/C++ to issue warning messages for al unused symbols. Thisis
the default. Specifying

#pragma of f (unreferenced);

will cause Open Watcom C/C++ to ignore unused symbols. Notethat if the warning level
is not high enough, warning messages for unused symbols will not be issued even if
"unreferenced” was specified.

The "check_stack" option controls the way stack overflows are to be handled. For
example,

#pragm on (check_stack);

will cause stack overflows to be detected and

#pragma of f (check_stack);

will cause stack overflows to beignored. When "check_stack" is on, Open Watcom C/C++
will generate arun-time call to a stack-checking routine at the start of every routine
compiled. Thisrun-time routine will issue an error if astack overflow occurs when
invoking the routine. The default isto check for stack overflows. Stack overflow checking
is particularly useful when functions are invoked recursively. Note that if the stack
overflows and stack checking has been suppressed, unpredictable results can occur.

If astack overflow does occur during execution and you are sure that your program is not
inerror (i.e. itisnot unnecessarily recursing), you must increase the stack size. Thisis
done by linking your application again and specifying the "STACK" option to the Open
Watcom Linker with alarger stack size.

It isalso possible to specify more than one option in apragma asillustrated by the
following example.

#pragma on (check_stack unreferenced);

76 Using Pragmas to Specify Options

16-bit Pragmas

reuse_duplicate strings (C only) (C Only) The "reuse_duplicate_strings" option controls the way Open
Watcom C handles identical stringsin an expression. For example,

#pragma on (reuse_duplicate_strings);

will cause Open Watcom C to reuse identical stringsin an expression. Thisisthe default.
Specifying

#pragma of f (reuse_duplicate_strings);

will cause Open Watcom C to generate additional copies of the identical string. The
following example shows where this may be of importance to the way the application
behaves.

Example:
#i ncl ude <stdio. h>

#pragma of f (reuse_duplicate_strings)

voi d poke(char *, char *);
void main()

poke("Hello world\n", "Hello world\n");
}

voi d poke(char *x, char *y)

{
X[3] ="'X;
printf(x);
y[4 ="Y;
printf(y);

/*

Def aul t out put:
Hel Xo worl d

Hel XY wor | d

*/

8.3 Using Pragmas to Specify Default Libraries

Default libraries are specified in special object module records. Library names are extracted from these
special records by the Open Watcom Linker. When unresolved references remain after processing all
object modules specified in linker "FILE" directives, these default libraries are searched after all libraries
specified in linker "LIBRARY" directives have been searched.

By default, that isif no library pragmais specified, the Open Watcom C/C++ compiler generates, in the
object file defining the main program, default libraries corresponding to the memory model and
floating-point model used to compilethefile. For example, if you have compiled the source file containing
the main program for the medium memory model and the floating-point calls floating-point model, the
libraries "clibm" and "mathm™ will be placed in the object file.

If you wish to add your own default libraries to thislist, you can do so with alibrary pragma. Consider the
following example.

Using Pragmas to Specify Default Libraries 77

16-bit Topics

#pragma |ibrary (nylib);
The name "mylib" will be added to the list of default libraries specified in the object file.

If the library specification contains characterssuch as’/’,’:’ or’,’ (i.e., any character not allowedinaC
identifier), you must enclose it in double quotes as in the following example.

#pragma library ("/usr/lib/graph.lib");

If you wish to specify more than one library in alibrary pragmayou must separate them with spacesasin
the following example.

#pragma library (mylib "/usr/lib/graph.lib");

8.4 The ALIAS Pragma (C Only)

The"alias" pragma can be used to emit alias records in the object file, causing the linker to substitute
references to a specified symbol with references to another symbol. Either identifiers or names (strings)
may be used. Strings are used verbatim, while names corresponding to identifiers are derived as
appropriate for the kind and calling convention of the symbol. The following describes the form of the
"dias' pragma.

#pragma alias (alias, subst) [;]

where description:

alias is either aname or an identifier of the symbol to be aliased.

subst is either aname or an identifier of the symbol that referencesto al i as will be replaced
with.

Consider the following example.
extern int var;

void fn(void)

#pragma alias (var, "other_var");

Instead of var thelinker will reference symbol named "other_var". Symbol var need not be defined,
athough "other_var" hasto be.

78 The ALIAS Pragma (C Only)

16-bit Pragmas

8.5 The ALLOC_TEXT Pragma (C Only)

The"alloc_text" pragma can be used to specify the name of the text segment into which the generated code
for afunction, or alist of functions, isto be placed. The following describes the form of the "alloc_text"

pragma.

#pragma all oc_text (seg_name, fn {, fn}) [;]

where description:
seg_name is the name of the text segment.
fn is the name of afunction.

Consider the following example.
extern int fnl(int);

extern int fn2(void);
#pragma alloc_text (ny_text, fnl, fn2);

The code for the functions f n1 and f n2 will be placed in the segment my_t ext . Note: function
prototypes for the named functions must exist prior to the "aloc_text" pragma.

8.6 The CODE_SEG Pragma

The "code_seg" pragma can be used to specify the name of the text segment into which the generated code
for functionsisto be placed. The following describes the form of the "code_seg" pragma.

#pragma code_seg (seg nhame [, class hame]) [;]

where description:
seg_name is the name of the text segment optionally enclosed in quotes. Also, seg_name may bea
macro asin:

#defi ne seg_nane "MY_CODE_ SEG'
#pragm code_seg (seg_hame);

class name isthe optional class name of the text segment and may be enclosed in quotes. Please note
that in order to be recognized by the linker as code, a class name hasto end in "CODE".
Also, cl ass__nane may beamacro asin:

#defi ne cl ass_nane " My_CODE"
#pragma code_seg ("MY_CODE_SEG', class_nane);

Consider the following example.

The CODE_SEG Pragma 79

16-bit Topics

#pragma code_seg (my_text);
int incr(int i)

return(i +1);

}
int decr(int i)
{
return(i - 1);
}

The code for the functions i ncr and decr will be placed in the segment ny_t ext .

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragm code_seg ();

8.7 The COMMENT Pragma

The "comment" pragma can be used to place acomment record in an object file or executablefile. The
following describes the form of the "comment" pragma.

#pragma coment (comment_type [, "comment_string"]) [;]

where description:
comment_type specifies the type of comment record. The allowable comment types are:

lib Default libraries are specified in special object module records. Library
names are extracted from these special records by the Open Watcom
Linker. When unresolved references remain after processing all object
modules specified in linker "FILE" directives, these default libraries are
searched after all libraries specified in linker "LIBRARY" directives have
been searched.

The"lib" form of this pragma offers the same features as the "library"
pragma. Seethe section entitled "Using Pragmas to Specify Default
Libraries' on page 77 for more information.

" comment_string" isan optional string literal that provides additional information for some comment
types.

Consider the following example.

#pragma coment (lib, "nylib");

80 The COMMENT Pragma

16-bit Pragmas

8.8 The DATA_SEG Pragma

The"data_seg" pragma can be used to specify the name of the segment into which dataisto be placed. The
following describes the form of the "data_seg" pragma.

#pragma data_seg (seg name [, class hame]) [;]

where description:
seg_name is the name of the data segment and may be enclosed in quotes. Also, seg_nane may be
amacro asin:

#defi ne seg_nanme "MY_DATA SEG'
#pragm data_seg (seg _hane);

class name isthe optional class name of the data segment and may be enclosed in quotes. Also,
cl ass_nane may beamacro asin;

#def i ne cl ass_nane "My_CLASS"
#pragma data_seg ("MY_DATA SEG', class_nane);

Consider the following example.
#pragma data_seg (my_data);

static int i;
static int j;

Thedatafori andj will be placed in the segment ny _dat a.

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragma data_seg ();

8.9 The DISABLE_MESSAGE Pragma (C Only)

The "disable_message" pragma disables the issuance of specified diagnostic messages. The form of the
"disable_message" pragmais as follows.

#pragma di sabl e_nessage (msg_num {, msg_num}) [;]

where description:

msg_num is the number of the diagnostic message. This humber corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages' on page 373. Make sureto strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

The DISABLE_MESSAGE Pragma (C Only) 81

16-bit Topics

See also the description of "The ENABLE_MESSAGE Pragma (C Only)".

8.10 The DUMP_OBJECT_MODEL Pragma (C++ Only)

The "dump_object model" pragma causes the C++ compiler to print information about the object model for
an indicated class or an enumeration name to the diagnostics file. For class names, thisinformation
includes the offsets and sizes of fields within the class and within base classes. For enumeration names,
thisinformation consists of alist of al the enumeration constants with their values.

The general form of the "dump_object_model" pragmais as follows.

#pragm
#pragma

dunp_obj ect _nodel class [;]
dunp_obj ect _nodel enumeration [;]

class::= adefined C++ classfreeof errors
enumer ation ::= a defined C++ enumer ation name

This pragmais designed to be used for information purposes only.

8.11 The ENABLE_MESSAGE Pragma (C Only)

The "enable_message" pragma re-enables the issuance of specified diagnostic messages that have been
previously disabled. The form of the "enable_message" pragmais as follows.

#pragma enabl e_nmessage (msg_num {, msg hum}) [;]
where description:
msg_num is the number of the diagnostic message. This number corresponds to the number issued by

the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages' on page 373. Make sureto strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

See also the description of "The DISABLE_MESSAGE Pragma (C Only)" on page 81.

8.12 The ENUM Pragma

The "enum" pragma affects the underlying storage-definition for subsequent enum declarations. The forms
of the "enum" pragma are as follows.

#pragm
#pragma
#pragma
#pragma

enumint [;]
enum m ni mum [;]
enumoriginal [;]
enum pop [;]

82 The ENUM Pragma

16-bit Pragmas

where description:

int Make int the underlying storage definition (same as the "ei" compiler option).

minimum Minimize the underlying storage definition (same as not specifying the "ei" compiler
option).

original Reset back to the original compiler option setting (i.e., what was or was not specified on the

command line).
pop Restore the previous setting.

Thefirst three forms al push the previous setting before establishing the new setting.

8.13 The ERROR Pragma

The"error" pragma can be used to issue an error message with the specified text. The following describes
the form of the "error" pragma.

#pragma error "errortext" [;]

where description:
"error text" isthetext of the message that you wish to display.

Y ou should use the ISO #error directive rather than this pragma. This pragmais provided for compatibility
with legacy code. The following isan example.

#if defined(__386_)
#el sei f defined(_ 86)
#el sé' '

#pragma error ("neither _ 386__ or _ 86 __ defined");
#endi f

8.14 The EXTREF Pragma

The "extref" pragmais used to generate a reference to an external function or dataitem. The form of the
"extref" pragmais asfollows.

#pragma extref name [;]

The EXTREF Pragma 83

16-bit Topics

where description:

name is the name of an external function or dataitem. It must be declared to be an external
function or data item before the pragmais encountered. In C++, when name isafunction,
it must not be overloaded.

This pragma causes an external reference for the function or data item to be emitted into the object file even
if that function or dataitem is not referenced in the module. The external reference will cause the linker to
include the module containing that name in the linked program or DLL.

Thisis useful for debugging since you can cause debugging routines (callable from within debugger) to be
included into a program or DLL to be debugged.

In C++, you can also force constructors and/or destructors to be called for a data item without necessarily
referencing the data item anywhere in your code.

8.15 The FUNCTION Pragma

Certain functions, such as those listed in the description of the "oi" and "om" options, have intrinsic forms.
These functions are special functions that are recognized by the compiler and processed in a specia way.
For example, the compiler may choose to generate in-line code for the function. Theintrinsic attribute for
these special functionsis set by specifying the "oi" or "om" option or using an "intrinsic" pragma. The
"function" pragma can be used to remove the intrinsic attribute for a specified list of functions.

The following describes the form of the "function" pragma.

#pragma function (fn {, fn}) [;]

where description:
fn isthe name of afunction.

Suppose the following source code was compiled using the "om" option so that when one of the special
math functionsis referenced, the intrinsic form will be used. In our example, we have referenced the
function si n which does have an intrinsic form. By specifying si n ina"function" pragma, the intrinsic
attribute will be removed, causing the function si n to be treated as a regular user-defined function.

#i ncl ude <mat h. h>
#pragma function(sin);

doubl e test(double x)

return(sin(x));

84 The FUNCTION Pragma

16-bit Pragmas

8.16 The INCLUDE_ALIAS Pragma

In certain situations, it can be advantageous to remap the names of include files. Most commonly this
occurs on systems that do not support long file names when building source code that references header
fileswith long names.

The form of the "include_alias" pragmafollows.

#pragma include_alias ("alias name', "rea name") [;]
#pragma i nclude_alias (<alias name>, <real name>) [;]

where description:
alias name isthe namereferenced ininclude directives in source code.
real_name is the trand ated name that the compiler will reference instead.

The following is an example.

#pragma i nclude_alias("LongFil eNane.h", "Ifn.h")
#i ncl ude "LongFi | eNane. h"

In the example, the compiler will attempt to read Ifn.h when LongFileName.h was included.

Note that only simple textual substitution is performed. The aliased name must match exactly, including
double quotes or angle brackets, as well as any directory separators. Also, double quotes and angle
brackets may not be mixed a single pragma.

Thevalue of the predefined __FI LE__ symbol, as well as the filename reported in error messages, will be
the true filename after substitution was performed.

8.17 Setting Priority of Static Data Initialization (C++ Only)

The"initialize" pragma sets the priority for initialization of static datain thefile. This priority only applies
to initialization of static data that requires the execution of code. For example, the initialization of a class
that contains a constructor requires the execution of the constructor. Note that if the sequence in which
initialization of static datain your program takes place has no dependencies, the "initialize" pragma need
not be used.

The general form of the "initialize" pragmaisasfollows.

#pragnma initialize [before | after] priority [;]

priority::= n | library | program

Setting Priority of Static Data Initialization (C++ Only) 85

16-bit Topics

where description:

n isanumber representing the priority and must be in the range 0-255. The larger the
priority, the later the point at which initialization will occur.

Prioritiesin the range 0-20 are reserved for the C++ compiler. Thisisto ensure that proper initialization of
the C++ run-time system takes place before the execution of your program. The "library" keyword
represents a priority of 32 and can be used for class libraries that require initialization before the program is
initialized. The "program" keyword represents a priority of 64 and is the default priority for any compiled
code. Specifying "before" adjusts the priority by subtracting one. Specifying "after" adjusts the priority by
adding one.

A sourcefile containing the following "initialize" pragma specifies that the initialization of static datain the
file will take place before initialization of al other static data in the program since a priority of 63 will be
assigned.

Example:
#pragma initialize before program

If we specify "after" instead of "before”, the initialization of the static datain the file will occur after
initialization of all other static datain the program since a priority of 65 will be assigned.

Note that the following is equivalent to the "before" example

Example:
#pragma initialize 63

and the following is equivalent to the "after" example.

Example:
#pragma initialize 65

The use of the "before", "after", and "program” keywords are more descriptive in the intent of the pragmas.
It is recommended that a priority of 32 (the priority used when the "library" keyword is specified) be used
when developing class libraries. Thiswill ensure that initialization of static data defined by the class
library will take place before initialization of static data defined by the program. The following "initialize"
pragma can be used to achievethis.

Example:
#pragma initialize library

8.18 The INLINE_DEPTH Pragma (C++ Only)

When an in-line function is called, the function call may be replaced by the in-line expansion for that
function. Thisin-line expansion may include callsto other in-line functions which can also be expanded.
The"inline_depth" pragma can be used to set the number of times this expansion of in-line functions will
occur for acall.

The form of the "inline_depth" pragmais as follows.

86 The INLINE_DEPTH Pragma (C++ Only)

16-bit Pragmas

#pragma inline_depth [(1 n D] [;]

where description:

n isthe depth of expansion. If n is0, no expansion will occur. If nis1, only theoriginal call
isexpanded. If nis2, theoriginal call and the in-line functions invoked by the original
function will be expanded. The default value for n is3. The maximum value for n is 255.
Note that no expansion of recursive in-line functions occur unless enabled using the
"inline_recursion” pragma.

8.19 The INLINE_RECURSION Pragma (C++ Only)

The"inline_recursion" pragma controls the recursive expansion of inline functions. The form of the
"inline_recursion” pragmais as follows.

#pragma inline_recursion [(] on | off [)] [;]

Specifying "on" will enable expansion of recursive inline functions. The depth of expansion is specified by
the "inline_depth" pragma. The default depth is 3. Specifying "off" suppresses expansion of recursive
inline functions. Thisisthe default.

8.20 The INTRINSIC Pragma

Certain functions, those listed in the description of the "oi" option, have intrinsic forms. These functions
are special functions that are recognized by the compiler and processed in a special way. For example, the
compiler may choose to generate in-line code for the function. The intrinsic attribute for these special
functionsis set by specifying the "oi" option or using an "intrinsic" pragma.

The following describes the form of the "intrinsic" pragma.

#pragma intrinsic (fn {, fn}) [;]

where description:
fn is the name of afunction.
Suppose the following source code was compiled without using the "oi" option so that no function had the

intrinsic attribute. 1f we wanted the intrinsic form of the si n function to be used, we could specify the
function in an "intrinsic" pragma.

The INTRINSIC Pragma 87

16-bit Topics

#i ncl ude <mat h. h>
#pragma intrinsic(sin);

doubl e test(double x)

{
}

return(sin(x));

8.21 The MESSAGE Pragma

The "message" pragma can be used to issue a message with the specified text to the standard output without
terminating compilation. The following describes the form of the "message” pragma.

#pragma nmessage ("messagetext") [;]

where description:
"message text" isthe text of the message that you wish to display.

Thefollowing is an example.
#if defined(__386__)
#el se

#pragm nessage ("assuming 16-bit conpile");
#endi f

8.22 The ONCE Pragma

The "once" pragma can be used to indicate that the file which contains this pragma should only be opened
and processed "once". The following describes the form of the "once" pragma.

#pragm once [;]

Assume that the file "foo.h" contains the following text.

Example:
#i f ndef _FOO_H_| NCLUDED
#define _FOO H_| NCLUDED
#pragnma once

#endi.f

The first time that the compiler processes "foo.h" and encounters the "once" pragma, it records the file's
name. Subseguently, whenever the compiler encountersa #i ncl ude statement that refersto "foo.h", it

88 The ONCE Pragma

16-bit Pragmas

will not open the include file again. This can help speed up processing of #i ncl ude files and reduce the
time required to compile an application.

8.23 The PACK Pragma

The "pack" pragma can be used to control the way in which structures are stored in memory. There are 4
forms of the "pack” pragma.

The following form of the "pack” pragma can be used to change the alignment of structures and their fields
in memory.

#pragma pack (n) [;]

where description:
n is1, 2, 4, 8 or 16 and specifies the method of alignment.
The alignment of structure membersis described in the following table. If the size of the member is1, 2, 4,

8 or 16, the alignment is given for each of the "zp" options. If the member of the structureis an array or
structure, the alignment is described by the row "x".

zpl zp2 zp4 zp8 zpl6
sizeof (menber) \----------iim
| 0 0 0 0 0
2 | 0 2 2 2 2
4 | 0 2 4 4 4
8 | 0 2 4 8 8
16 | 0 2 4 8 16
X | aligned to | argest nenber

An aignment of 0 means no alignment, 2 means word boundary, 4 means doubleword boundary, etc. If the
largest member of structure "x" is 1 byte then "x" isnot aligned. If the largest member of structure "x" is 2
bytes then "x" is aligned according to row 2. If the largest member of structure "x" is 4 bytesthen "X" is
aligned according to row 4. If the largest member of structure "x" is 8 bytes then "x" is aligned according
torow 8. If the largest member of structure "x" is 16 bytesthen "x" is aligned according to row 16.

If no value is specified in the "pack" pragma, a default value of 2 isused. Note that the default value can be
changed with the "zp" Open Watcom C/C++ compiler command line option.

The following form of the "pack” pragma can be used to save the current alignment amount on an internal
stack.

#pragma pack (push) [;]

The following form of the "pack” pragma can be used to save the current alignment amount on an internal
stack and set the current alignment.

The PACK Pragma 89

16-bit Topics

#pragma pack (push, number) [;]

The following form of the "pack™ pragma can be used to restore the previous alignment amount from an
internal stack.

#pragma pack (pop) [;]

8.24 The READ _ONLY_FILE Pragma

Explicit listing of dependenciesin a makefile can often be tedious in the development and maintenance
phases of aproject. The Open Watcom C/C++ compiler will insert dependency information into the object
file asit processes source files so that a complete snapshot of the files necessary to build the object file are
recorded. The"read_only_file" pragma can be used to prevent the name of the source file that includes it
from being included in the dependency information that is written to the object file.

This pragmais commonly used in system header files since they change infrequently (and, when they do,
there should be no impact on source files that have included them).

The form of the "read_only_file" pragmafollows.

#pragma read_only file [;]

For more information on make dependencies, see the section entitled "Automatic Dependency Detection
(\AAUTODEPEND)" in the Open Watcom C/C++ Tools User’s Guide.

8.25 The TEMPLATE_DEPTH Pragma (C++ Only)

The "template_depth” pragma provides a hard limit for the amount of nested template expansions allowed
so that infinite expansion can be detected.

The form of the "template_depth" pragmais as follows.

#pragma tenplate_depth [(] n D] [;]

where description:

n isthe depth of expansion. If the value of n islessthan 2, if will default to 2. If n isnot
specified, awarning message will be issued and the default value for n will be 100.

The following example of recursive template expansion illustrates why this pragma can be useful.

90 The TEMPLATE_DEPTH Pragma (C++ Only)

16-bit Pragmas

Example:
#pragma tenpl ate_dept h(10);

tenpl ate <class T>

struct S {
S<T*> x;
b

S<char > v;

8.26 The WARNING Pragma (C++ Only)

The"warning" pragma sets the level of warning messages. The form of the "warning" pragmais as
follows.

#pragnma war ni ng msg_num level [;]

where description:

msg_num is the number of the warning message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C++ Diagnostic
Messages' on page 405. If nsg_numis™*", the level of all warning messages is changed
to the specified level. Make sureto strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

level isanumber from 0 to 9 and represents the level of the warning message. When avalue of
zero is specified, the warning becomes an error.

8.27 Auxiliary Pragmas

The following sections describe the capabilities provided by auxiliary pragmas.

8.27.1 Specifying Symbol Attributes

Auxiliary pragmas are used to describe attributes that affect code generation. Initialy, the compiler defines
adefault set of attributes. Each auxiliary pragmarefers to one of the following.

1. asymbol (such as avariable or function)
2. atypedefinition that resolvesto afunction type
3. thedefault set of attributes defined by the compiler

When an auxiliary pragmarefersto a particular symbol, a copy of the current set of default attributesis
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to the specified symbol and can only be changed by another auxiliary pragmathat refers to the same
symbol.

An example of atype definition that resolves to a function typeis the following.

Auxiliary Pragmas 91

16-bit Topics

typedef void (*func_type)();

When an auxiliary pragmarefers to a such atype definition, a copy of the current set of default attributesis
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to each function whose type matches the specified type definition.

When "default” is specified instead of a symbol name, the attributes specified by the auxiliary pragma
change the default set of attributes. The resulting attributes are used by all symbols that have not been
specificaly referenced by a previous auxiliary pragma.

Note that al auxiliary pragmas are processed before code generation begins. Consider the following
example.

code in which synbol x is referenced
#pragnma aux y <attrs_1>;

code in which synbol y is referenced
code in which synbol z is referenced
#pragma aux default <attrs_2>;
#pragma aux x <attrs_3>;

Auxiliary attributes are assigned to x, y and z in the following way.

1. Symbol x isassigned theinitial default attributes merged with the attributes specified by
<attrs_2>and<attrs_3>.

2. Symbol y isassigned theinitial default attributes merged with the attributes specified by
<attrs_1>.

3. Symbol z isassigned theinitial default attributes merged with the attributes specified by
<attrs_2>.

8.27.2 Alias Names

92

When asymbol referred to by an auxiliary pragmaincludes an alias name, the attributes of the alias name
are aso assumed by the specified symbol.

There are two methods of specifying diasinformation. In the first method, the symbol assumes only the
attributes of the alias name; no additional attributes can be specified. The second method is more general
sinceit is possible to specify an alias name as well as additional auxiliary information. In this case, the
symbol assumes the attributes of the alias name as well as the attributes specified by the additional auxiliary
information.

The simple form of the auxiliary pragma used to specify an aliasis asfollows.

#pragma aux (sym, alias) [;]

Auxiliary Pragmas

16-bit Pragmas

where description:
sym isany valid C/C++ identifier.
alias isthe alias name and is any valid C/C++ identifier.

Consider the following example.

#pragma aux push_args parm|[] ;
#pragma aux (rtn, push_args)

Theroutine r t n assumes the attributes of the alias name push_ ar gs which specifies that the arguments
tort n are passed on the stack.

Let uslook at an example in which the symbal is a type definition.
typedef void (func_type)(int);

#pragnma aux push_args parm[];
#pragma aux (func_type, push_args);

extern func_type rtnl;
extern func_type rtn2;

Thefirst auxiliary pragma defines an alias name called push_ ar gs that specifies the mechanism to be
used to pass arguments. The mechanism isto pass al arguments on the stack. The second auxiliary
pragma associ ates the attributes specified in the first pragma with the type definition f unc_t ype. Since
rtnlandrtn2areof typefunc_type, argumentsto either of those functionswill be passed on the
stack.

The general form of an auxiliary pragmathat can be used to specify an aliasis as follows.

#pragma aux (alias) sym aux_attrs [;]

where description:

alias isthe alias name and is any valid C/C++ identifier.

sym isany valid C/C++ identifier.

aux_attrs are attributes that can be specified with the auxiliary pragma.

Consider the following example.

#pragm aux Ms_C "_*" \
parmcaller [] \
val ue struct float struct routine [ax]\
nmodi fy [ax bx cx dx es];

#pragma aux (Ms_C) rtnil;

#pragma aux (Ms_C) rtn2;

#pragma aux (Ms_C) rtn3;

Auxiliary Pragmas 93

16-bit Topics

Theroutinesrt nl, rtn2 andrt n3 assume the same attributes as the alias name M5_ C which defines the
calling convention used by the Microsoft C compiler. Whenever callsaremadeto rtnl, rtn2 and
rtn3, theMicrosoft C calling convention will be used.

Note that if the attributes of M5_ C change, only one pragma needs to be changed. If we had not used an
alias name and specified the attributes in each of the three pragmasfor rtnl, rtn2 andrt n3, wewould
have to change al three pragmas. This approach also reduces the amount of memory required by the
compiler to process the sourcefile.

WARNING! The alias name M5_ Cisjust another symbol. If M5_ C appeared in your source code, it
would assume the attributes specified in the pragmafor M5_C.

8.27.3 Predefined Aliases

A number of symbols are predefined by the compiler with a set of attributes that describe a particular
calling convention. These symbols can be used as aliases. The following isalist of these symbols.

__cdecl __cdecl orcdecl definesthe calling convention used by Microsoft compilers.
_ fastcall __fastcall orfastcall definesthe calling convention used by Microsoft compilers.
_ fortran __fortranorfortran definesthe calling convention used by Open Watcom

FORTRAN compilers.

__pascal __pascal orpascal definesthe calling convention used by OS/2 1.x and Windows 3.x
API functions.

__stdcall __stdcal | orstdcal | definesthe calling convention used by Microsoft compilers.

__watcall __watcal | orwat cal | definesthe calling convention used by Open Watcom
compilers.

The following describes the attributes of the above alias names.

8.27.3.1 Predefined " _cdecl" Alias

#pragma aux __cdecl " _*" \
parmcaller [] \
val ue struct float struct routine [ax] \
nmodi fy [ax bx cx dx es]

Notes:
1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the called routine allocates space for the return value and returns a pointer to the return value in
register AX.

94 Auxiliary Pragmas

16-bit Pragmas

4. RegistersAX, BX, CX and DX, and segment register ES are not saved and restored when a call
ismade.

8.27.3.2 Predefined "__pascal” Alias

#pragma aux __pascal "'\
parmreverse routine [] \
val ue struct float struct caller [] \
nmodi fy [ax bx cx dx es]

Notes:
1. All symbols are mapped to upper case.

2. Arguments are pushed on the stack in reverse order. That is, the first argument is pushed first,
the second argument is pushed next, and so on. The routine being called will remove the
arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the caller allocates space on the stack. The address of the allocated space will be pushed on the
stack immediately before the call instruction. Upon returning from the call, register AX will
contain address of the space allocated for the return value.

4. Registers AX, BX, CX and DX, and segment register ES are not saved and restored when a call
ismade.

8.27.3.3 Predefined " _watcall" Alias

#pragm aux __watcall "*_ " \
parmroutine [ax bx cx dx] \
val ue struct caller

Notes:

1. Symbol names are followed by an underscore character.

2. Arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have
been exhausted). Arguments that are passed on the stack are pushed from right to left. The
calling routine will remove the arguments if any were pushed on the stack.

3. When astructureis returned, the caller allocates space on the stack. The address of the allocated
spaceisput into Sl register. The called routine then places the return value there. Upon
returning from the call, register AX will contain address of the space allocated for the return

value.

4. Floating-point values are returned using 80x86 registers ("fpc" option) or using 80x87
floating-point registers ("fpi" or "fpi87" option).

5. All registers must be preserved by the called routine.

Auxiliary Pragmas 95

16-bit Topics

8.27.4 Alternate Names for Symbols

The following form of the auxiliary pragma can be used to describe the mapping of a symbol from its
source form to its object form.

#pragm aux sym obj_name [;]

where description:
sym isany valid C/C++ identifier.
obj_name isany character string enclosed in double quotes.

When specifying obj _nane, some characters have a special meaning:

where description:
* is unmodified symbol name
n is symbol name converted to uppercase

! is symbol name converted to lowercase

is aplaceholder for "@nnn", where nnn is size of all function parameters on the stack; it is
ignored for functions with variable argument lists, or for symbols that are not functions

\ next character istreated asliteral

Several examples of source to object form symbol name trandlation follow:

In the following example, the name "MyRtn" will be replaced by "MyRtn_" in the object file.
#pragma aux MyRtn "*_";

Thisisthe default for all function names.

In the following example, the name "MyVar" will bereplaced by "_MyVar" in the object file.
#pragma aux Myvar "_*"

Thisisthe default for all variable names.

In the following example, the lower case version "myrtn" will be placed in the object file.
#pragma aux MyRtn "I";

In the following example, the upper case version "MY RTN" will be placed in the object file.
#pragma aux MyRtn "A";

In the following example, the name "MyRtn" will be replaced by *_MyRtn@nnn" in the object file. "nnn"
represents the size of all function parameters.

96 Auxiliary Pragmas

16-bit Pragmas

#pragma aux MyRtn "_*#",

In the following example, the name "MyRtn" will be replaced by " MyRtn#" in the object file.

#pragm aux MyRtn " _*\#";

The default mapping for al symbols can also be changed as illustrated by the following example.

#pragma aux default "_*_";

The above auxiliary pragma specifies that all names will be prefixed and suffixed by an underscore
character (").

8.27.5 Describing Calling Information

The following form of the auxiliary pragma can be used to describe the way a function isto be called.

#pragma aux sym far [;]
or
#pragm aux sym near [;]
or
#pragma aux sym = in_line [;]

in_line::={ const | (seqg id) | (of f set id) | (rel of f id)

| (f | oat fpinst) |"asm" }

where

const

fpinst

offset
rel of f

asm

description:

is afunction name.

isavalid C/C++ integer constant.
isany valid C/C++ identifier.

is a sequence of bytesthat forms avalid 80x87 instruction. The keyword float must
precede f pi nst so that special fixups are applied to the 80x87 instruction.

specifies the segment of the symbol i d.
specifies the offset of the symbol i d.
specifies the relative offset of the symbol i d for near control transfers.

is an assembly language instruction or directive.

In the following example, Open Watcom C/C++ will generate afar call to the function nyrt n.

#pragnma aux nyrtn far;

Auxiliary Pragmas

97

16-bit Topics

Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, afar call will be generated even if you are compiling for amemory model with a
small code model.

In the following example, Open Watcom C/C++ will generate anear call to the function nyrt n.

#pragma aux nyrtn near;

Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, anear call will be generated even if you are compiling for amemory model with a
big code model.

In the following DOS example, Open Watcom C/C++ will generate the sequence of bytes following the "="
character in the auxiliary pragmawhenever acall to node4 isencountered. node4 iscaled anin-line
function.

voi d node4(void);

#pragm aux node4 = \
0Oxb4 0x00 /* nov AH, 0 */ \
0xb0 0x04 /* nov AL, 4 */ \
Oxcd 0x10 /* int 10H */ \

nodify [AH AL];

The sequence in the above DOS exampl e represents the following lines of assembly language instructions.

nov AH, 0 ; select function "set node"
nov AL, 4 ; specify node (node 4)
i nt 10H ; BIOS video call

The above example demonstrates how to generate BIOS function callsin-line without writing an assembly
language function and calling it from your C/C++ program. The C prototype for the function node4 is not
necessary but isincluded so that we can take advantage of the argument type checking provided by Open
Watcom C/C++.

The following DOS example is equivalent to the above example but mnemonics for the assembly language
instructions are used instead of the binary encoding of the assembly language instructions.

voi d node4(void);
#pragm aux node4 =
"mov AH, 0",
"mov AL, 4",
"int 10H"
nmodify [AH AL];

P

If a sequence of in-line assembly language instructions contains 80x87 floating-point instructions, each
floating-point instruction must be preceded by "float". Note that thisis only required if you have specified
the "fpi" compiler option; otherwiseit will be ignored.

The following example generates the 80x87 "square root" instruction.
doubl e nysqrt (doubl e);
#pragma aux mysqrt parm [8087] =\
float 0xd9 Oxfa /* fsqrt */;

A sequence of in-line assembly language instructions may contain symbolic references. In the following
example, anear cal to the function nyal i as is made whenever nyr t n iscalled.

98 Auxiliary Pragmas

16-bit Pragmas

extern void nyalias(void);

voi d nyrtn(void);

#pragma aux myrtn = \
0xe8 rel off myalias /* near call */;

In the following example, afar call to the function nmyal i as is made whenever myr t n iscalled.

extern void nyalias(void);

voi d nyrtn(void);

#pragm aux nmyrtn = \
0Ox9a offset nyalias seg nyalias /* far call */;

8.27.5.1 Loading Data Segment Register

An application may have been compiled so that the segment register DS does not contain the segment
address of the default data segment (group "DGROUP"). Thisisusualy the caseif you are using alarge
data memory model. Suppose you wish to call afunction that assumes that the segment register DS
contains the segment address of the default data segment. It would be very cumbersome if you were forced
to compile your application so that the segment register DS contained the default data segment (asmall data
memory model).

The following form of the auxiliary pragmawill cause the segment register DS to be loaded with the
segment address of the default data segment before calling the specified function.

#pragm aux sym parm | oadds [;]

where description:
sym isafunction name.
Alternatively, the following form of the auxiliary pragmawill cause the segment register DS to be loaded

with the segment address of the default data segment as part of the prologue sequence for the specified
function.

#pragma aux sym |oadds [;]

where description:

sym isafunction name.

8.27.5.2 Defining Exported Symbols in Dynamic Link Libraries

An exported symbol in adynamic link library is asymbol that can be referenced by an application that is
linked with that dynamic link library. Normally, symbolsin dynamic link libraries are exported using the
Open Watcom Linker "EXPORT" directive. An alternative method isto use the following form of the
auxiliary pragma.

Auxiliary Pragmas 99

16-bit Topics

#pragma aux sym export [;]

where description:

sym isafunction name.

8.27.5.3 Defining Windows Callback Functions

When compiling a Microsoft Windows application, you must use the "zZW" option so that specia
prologue/epil ogue sequences are generated. Furthermore, callback functions require larger

prol ogue/epil ogue sequences than those generated when the "zZW" compiler option is specified. The
following form of the auxiliary pragmawill cause a callback prologue/epilogue sequence to be generated
for a callback function when compiled using the "zZW" option.

#pragma aux sym export [;]

where description:
sym isacallback function name.
Alternatively, the "zw" compiler option can be used to generate callback prologue/epilogue sequences.

However, all functions contained in a module compiled using the "zw" option will have a callback
prologue/epil ogue sequence even if the functions are not callback functions.

8.27.5.4 Forcing a Stack Frame

Normally, afunction contains a stack frame if arguments are passed on the stack or an automatic variable is
allocated on the stack. No stack frame will be generated if the above conditions are not satisfied. The
following form of the auxiliary pragmawill force a stack frame to be generated under any circumstance.

#pragma aux sym frame [;]

where description:

sym isafunction name.

8.27.6 Describing Argument Information
Using auxiliary pragmas, you can describe the calling convention that Open Watcom C/C++ isto use for
calling functions. Thisis particularly useful when interfacing to functions that have been compiled by

other compilers or functions written in other programming languages.

The general form of an auxiliary pragmathat describes argument passing is the following.

100 Auxiliary Pragmas

16-bit Pragmas

#pragma aux sym parm {pop_info|reverse |{reg_set}} [;]

pop_info::= caller | routine

where description:

sym isafunction name.

reg_set iscaled aregister set. Theregister sets specify the registersthat are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

8.27.6.1 Passing Arguments in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to pass
arguments to a particular function.

#pragma aux sym parm {reg_set} [;]

where description:

sym isafunction name.

reg_set iscalled aregister set. The register sets specify the registers that are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

Register sets establish a priority for register allocation during argument list processing. Register sets are
processed from left to right. However, within aregister set, registers are chosen in any order. Once all
register sets have been processed, any remaining arguments are pushed on the stack.

Note that regardless of the register sets specified, only certain combinations of registers will be selected for
arguments of a particular type.

Note that arguments of type float and double are aways pushed on the stack when the "fpi* or "fpi87"
option is used.

double Arguments of type double can only be passed in the following register combination:
AX:BX:CX:DX. For example, if the following register set was specified for aroutine
having an argument of type double,

[AX BX SI DI]

the argument would be pushed on the stack since avalid register combination for 8-byte
arguments is not contained in the register set. Note that this method for passing arguments
of type double is supported only when the "fpc" option isused. Note that this argument
passing method does not include the passing of 8-byte structures.

Auxiliary Pragmas 101

16-bit Topics

far pointer A far pointer can only be passed in one of the following register pairs: DX:AX, CX:BX,
CX:AX, CX:Sl, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX, CX:DX, DX:DlI, DI:Sl,
SI:BX, BX:AX, DS.CX, DS.DX, DS:DI, DS:Sl, DS:BX, DS:AX, ES:CX, ES:.DX, ES:DI,
ES:SI, ES:BX or ESAX. For example, if afar pointer is passed to a function with the
following register set,

[ES BP]

the argument would be pushed on the stack since avalid register combination for afar
pointer is not contained in the register set.

longint, float Theonly registersthat will be assigned to 4-byte arguments (e.g., arguments of type long
int,) are: DX:AX, CX:BX, CX:AX, CX:Sl, DX:BX, DI:AX, CX:DlI, DX:Sl, DI:BX,
SI:AX, CX:DX, DX:DI, DI:Sl, SI:BX and BX:AX. For example, if the following register
set was specified for aroutine with one argument of type long int,

[ES DI]

the argument would be pushed on the stack since avalid register combination for 4-byte
arguments is not contained in the register set. Note that this argument passing method
includes 4-byte structures. Note that this argument passing method includes arguments of
type float but only when the "fpc" option is used.

int The only registersthat will be assigned to 2-byte arguments (e.g., arguments of type int)
are: AX, BX, CX, DX, Sl and DI. For example, if the following register set was specified
for aroutine with one argument of typeint,

[BF]

the argument would be pushed on the stack since avalid register combination for 2-byte
arguments is not contained in the register set.

char Arguments whose sizeis 1 byte (e.g., arguments of type char) are promoted to 2 bytes and
are then assigned registers as if they were 2-byte arguments.

others Arguments that do not fall into one of the above categories cannot be passed in registers
and are pushed on the stack. Once an argument has been assigned a position on the stack,
all remaining arguments will be assigned a position on the stack even if all register sets
have not yet been exhausted.

Notes:
1. Thedefault register set is[AX BX CX DX].

2. Specifying registers AH and AL is equivalent to specifying register AX. Specifying registers
DH and DL is equivalent to specifying register DX. Specifying registers CH and CL is
equivalent to specifying register CX. Specifying registers BH and BL is equivalent to specifying
register BX.

3. If you are compiling for amemory model with asmall data model, or the "zdp" compiler option
is specified, any register combination containing register DS becomesillegal. Inasmall data
model, segment register DS must remain unchanged as it pointsto the program’ s data segment.
Note that the "zdf" compiler option can be used to specify that register DS does not contain that

102 Auxiliary Pragmas

16-bit Pragmas

segment address of the program’ s data segment. In this case, register combinations containing
register DS are legal .

Consider the following example.
#pragma aux nmyrtn parm[ax bx cx dx] [bp si];
Suppose myr t n isaroutine with 3 arguments each of typelong int.

1. Thefirst argument will be passed in the register pair DX:AX.

2. The second argument will be passed in the register pair CX:BX.

3. Thethird argument will be pushed on the stack since BP:Sl is not avalid register pair for
arguments of typelong int.

It is possible for registers from the second register set to be used before registers from the first register set
areused. Consider the following example.

#pragma aux nmyrtn parm[ax bx cx dx] [si di];

Suppose myr t n isaroutine with 3 arguments, the first of type int and the second and third of type long
int.

1. Thefirst argument will be passed in the register AX.
2. The second argument will be passed in the register pair CX:BX.
3. Thethird argument will be passed in the register set DI:Sl.

Note that registers are no longer selected from aregister set after registers are selected from subsequent
register sets, even if al registers from the original register set have not been exhausted.

An empty register set is permitted. All subsequent register sets appearing after an empty register set are
ignored; all remaining arguments are pushed on the stack.

Notes:
1. If asingle empty register set is specified, al arguments are passed on the stack.

2. If noregister set is specified, the default register set [AX BX CX DX] is used.

8.27.6.2 Forcing Arguments into Specific Registers

It is possible to force arguments into specific registers. Suppose you have a function, say "mycopy", that
copiesdata. The first argument is the source, the second argument is the destination, and the third
argument isthe length to copy. If we want the first argument to be passed in the register Sl, the second
argument to be passed in register DI and the third argument to be passed in register CX, the following
auxiliary pragma can be used.

voi d nycopy(char near *, char *, int);
#pragma aux mycopy parm[SI] [DI] [CX;

Note that you must be aware of the size of the arguments to ensure that the arguments get passed in the
appropriate registers.

Auxiliary Pragmas 103

16-bit Topics

8.27.6.3 Passing Arguments to In-Line Functions

For functions whose code is generated by Open Watcom C/C++ and whose argument list is described by an
auxiliary pragma, Open Watcom C/C++ has some freedom in choosing how arguments are assigned to
registers. Since the code for in-line functions is specified by the programmer, the description of the
argument list must be very explicit. To achieve this, Open Watcom C/C++ assumes that each register set
corresponds to an argument. Consider the following DOS example of an in-line function called

scrol | acti vepgup.

voi d scrollactivepgup(char, char, char, char, char, char);
#pragma aux scrollactivepgup =\
“mov AH, 6" \

"int 10h" \
parm[ch] [cl] [dh] [dI] [al] [bh] \
nodi fy [ah];

The BIOS video call to scroll the active page up requires the following arguments.

1. Therow and column of the upper left corner of the scroll window is passed in registers CH and
CL respectively.

2. Therow and column of the lower right corner of the scroll window is passed in registers DH and
DL respectively.

3. Thenumber of lines blanked at the bottom of the window is passed in register AL.

4. Theattribute to be used on the blank linesis passed in register BH.
When passing arguments, Open Watcom C/C++ will convert the argument so that it fits in the register(s)
specified in the register set for that argument. For example, in the above example, if the first argument to
scrol | acti vepgup was called with an argument whose type was int, it would first be converted to
char before assigning it to register CH. Similarly, if anin-line function required its argument in register
pair DX:AX and the argument was of type short int, the argument would be converted to long int before
assigning it to register pair DX:AX.
In general, Open Watcom C/C++ assigns the following types to register sets.

1. A register set consisting of asingle 8-hit register (1 byte) is assigned atype of unsigned char.

2. A register set consisting of asingle 16-bit register (2 bytes) is assigned atype of unsigned short
int.

3. A register set consisting of two 16-hit registers (4 bytes) is assigned atype of unsigned long int.

4. A register set consisting of four 16-bit registers (8 bytes) is assigned atype of double.

8.27.6.4 Removing Arguments from the Stack

The following form of the auxiliary pragma specifies who removes from the stack arguments that were
pushed on the stack.

104 Auxiliary Pragmas

16-bit Pragmas

#pragm aux sym parm (caller | routine) [;]

where description:

sym isafunction name.

"caller" specifiesthat the caller will pop the arguments from the stack; "routine" specifies that the called
routine will pop the arguments from the stack. If "caller" or "routing" is omitted, "routine" is assumed

unless the default has been changed in a previous auxiliary pragma, in which case the new default is
assumed.

8.27.6.5 Passing Arguments in Reverse Order

The following form of the auxiliary pragma specifies that arguments are passed in the reverse order.

#pragm aux sym parmreverse [;]

where description:

sym isafunction name.

Normally, arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have been
exhausted). Arguments that are passed on the stack are pushed from right to left.

When arguments are reversed, the rightmost arguments are passed in registers and the leftmost arguments
are passed on the stack (if the registers used for argument passing have been exhausted). Arguments that
are passed on the stack are pushed from left to right.

Reversing argumentsis most useful for functions that require arguments to be passed on the stack in an
order opposite from the default. The following auxiliary pragma demonstrates such a function.

#pragma aux rtn parmreverse [];

8.27.7 Describing Function Return Information
Using auxiliary pragmas, you can describe the way functions areto return values. Thisis particularly
useful when interfacing to functions that have been compiled by other compilers or functions written in

other programming languages.

The general form of an auxiliary pragmathat describes the way a function returnsits value is the following.

#pragma aux sym val ue {no8087 | reg set | struct_info} [;]
struct_info::= struct {float | struct | (routine | caller) | reg set}

Auxiliary Pragmas 105

16-bit Topics

where description:

sym isafunction name.

reg set iscaled aregister set. The register sets specify the registers that are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

8.27.7.1 Returning Function Values in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to return
afunction’svalue.

#pragma aux sym val ue reg set [;]

where description:
sym isafunction name.
reg_set isaregister set.

Note that the method described below for returning values of type float or doubleis supported only when
the "fpc" option is used.

Depending on the type of the return value, only certain registers are allowed in reg_set.

1-byte For 1-byte return values, only the following registers are allowed: AL, AH, DL, DH, BL,
BH, CL or CH. If no register set is specified, register AL will be used.

2-byte For 2-byte return values, only the following registers are allowed: AX, DX, BX, CX, Sl or
DI. If no register set is specified, register AX will be used.

4-byte For 4-byte return values (except far pointers), only the following register pairs are allowed:
DX:AX, CX:BX, CX:AX, CX:Sl, DX:BX, DI:AX, CX:Dl, DX:Sl, DI:BX, SI:AX,
CX:DX, DX:DI, DI:Sl, SI:BX or BX:AX. If noregister set is specified, registers DX:AX
will beused. Thisform of the auxiliary pragmaislegal for functions of type float when
using the "fpc" option only.

far pointer For functions that return far pointers, the following register pairs are allowed: DX:AX,
CX:BX, CX:AX, CX:Sl, DX:BX, DI:AX, CX:DI, DX:Sl, DI:BX, SI:AX, CX:DX, DX:DlI,
DI:Sl, SI:BX, BX:AX, DS:CX, DS.DX, DS:DI, DS:Sl, DS:BX, DS:AX, ES.CX, ES.DX,
ES.DI, ES:SI, ES:.BX or ES.AX. If noregister set is specified, the registers DX:AX will be
used.

8-byte For 8-byte return values (including functions of type double€), only the following register
combination isalowed: AX:BX:CX:DX. If noregister set is specified, the registers
AX:BX:CX:DX will be used. Thisform of the auxiliary pragmaislegal for functions of
type double when using the "fpc" option only.

106 Auxiliary Pragmas

16-bit Pragmas

Notes:
1. Anempty register set isnot allowed.
2. If you are compiling for amemory model which has a small data model, any of the above

register combinations containing register DS becomesillegal. In asmall data model, segment
register DS must remain unchanged as it points to the program’ s data segment.

8.27.7.2 Returning Structures

Typically, structures are not returned in registers. Instead, the caller allocates space on the stack for the
return value and sets register Sl to point to it. The called routine then places the return value at the location
pointed to by register Sl.

The following form of the auxiliary pragma can be used to specify the register that is to be used to point to
the return value.

#pragma aux sym val ue struct (caller|routine) reg set [;]

where description:
sym isafunction name.
reg_set isaregister set.

"caller" specifiesthat the caller will alocate memory for the return value. The address of the memory
allocated for the return value is placed in the register specified in the register set by the caller before the
functioniscalled. If an empty register set is specified, the address of the memory allocated for the return
value will be pushed on the stack immediately before the call and will be returned in register AX by the
called routine. It is assumed that the memory for the return value is allocated from the stack segment (the
stack segment is contained in segment register SS).

"routine” specifies that the called routine will allocate memory for the return value. Upon returning to the
caler, the register specified in the register set will contain the address of the return value. An empty
register set is not allowed.

Only the following registers are allowed in the register set: AX, DX, BX, CX, Sl or DI. Notethat in abig
data model, the address in the return register is assumed to be in the segment specified by the value in the
SS segment register.

If the size of the structure being returned is 1, 2 or 4 bytes, it will be returned in registers. The return
register will be selected from the register set in the following way.

1. A 1-bytestructure will be returned in one of the following registers: AL, AH, DL, DH, BL, BH,
CL or CH. If noregister set is specified, register AL will be used.

2. A 2-byte structure will be returned in one of the following registers: AX, DX, BX, CX, Sl or DI.
If no register set is specified, register AX will be used.

Auxiliary Pragmas 107

16-bit Topics

3. A 4-byte structure will be returned in one of the following register pairs: DX:AX, CX:BX,
CX:AX, CX:Sl, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX, CX:DX, DX:DlI, DI:Sl, SI:BX
or BX:AX. If noregister set is specified, register pair DX:AX will be used.

The following form of the auxiliary pragma can be used to specify that structureswhose sizeis 1, 2 or 4
bytes are not to be returned in registers. Instead, the caller will allocate space on the stack for the structure
return value and point register Sl toit.

#pragma aux sym val ue struct struct [;]

where description:

sym isafunction name.

8.27.7.3 Returning Floating-Point Data

There are afew ways available for specifying how the value for afunction whose type isfloat or doubleis
to be returned.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are not to be returned in registers. Instead, the caller will allocate space on the stack for the
return value and point register Sl toit.

#pragma aux sym value struct float [;]

where description:
sym isafunction name.
In other words, floating-point values are to be returned in the same way structures are returned.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are not to be returned in 80x87 registers when compiling with the "fpi" or "fpi87" option.
Instead, the value will be returned in 80x86 registers. Thisis the default behaviour for the "fpc" option.
Function return values whose type is float will be returned in registers DX:AX. Function return values
whose type is double will be returned in registers AX:BX:CX:DX. Thisisthe default method for the "fpc"
option.

#pragma aux sym val ue no8087 [;]

where description:
sym isafunction name.
The following form of the auxiliary pragma can be used to specify that function return values whose typeis

float or double are to be returned in ST(0) when compiling with the "fpi" or "fpi87" option. Thisform of
the auxiliary pragmais not legal for the "fpc" option.

108 Auxiliary Pragmas

16-bit Pragmas

#pragma aux sym val ue [8087] [;]

where description:

sym isafunction name.

8.27.8 A Function that Never Returns

The following form of the auxiliary pragma can be used to describe a function that does not return to the
caler.

#pragma aux sym aborts [;]

where description:
sym isafunction name.

Consider the following example.

#pragm aux exitrtn aborts;
extern void exitrtn(void);

void rtn()

exitrtn();

exi t rt n isdefined to be afunction that does not return. For example, it may call exi t toreturntothe
system. In this case, Open Watcom C/C++ generates a”jmp" instruction instead of a"call" instruction to
invokeexi trtn.

8.27.9 Describing How Functions Use Memory

The following form of the auxiliary pragma can be used to describe afunction that does not modify any
memory (i.e., global or static variables) that is used directly or indirectly by the caler.

#pragma aux sym nodify nomenory [;]

where description:
sym isafunction name.

Consider the following example.

Auxiliary Pragmas 109

16-bit Topics

#pragma of f (check_stack);
extern void nyrtn(void);
int i ={ 1033 };

extern Rin()
while(i < 10000) {

i += 383;
}
nyrtn();
i += 13143;

1
To compile the above program, "rtn.c", we issue the following command.

$ wece rtn -oai -dil
$ wop rtn -oai -di
$ wece386 rtn -oai -di
$ wpp386 rtn -oai -dl

For illustrative purposes, we omit loop optimizations from the list of code optimizations that we want the
compiler to perform. The "d1" compiler option is specified so that the object file produced by Open
Watcom C/C++ contains source line information.

We can generate afile containing a disassembly of rt n. o by issuing the following command.
$wdis rtn -1 -s -r
The"s" option is specified so that the listing file produced by the Open Watcom Disassembler contains

sourcelinestakenfromrtn. c. Thelistingfilertn. | st appearsasfollows.

Modul e: rtn.c
Group: ' DGROUP* CONST, _DATA

Segnent: ' _TEXT' BYTE 0026 bytes
#pragma of f (check_stack);

extern void MyREn(void);

int i ={ 1033 };
extern Rin()
{
0000 52 Rtn_ push DX
0001 8b 16 00 00 nov DX, _i
while(i < 10000) {
0005 81 fa 10 27 L1 cnp DX, 2710H
0009 7d 06 j ge L2
i += 383;
}
000b 81 c2 7f 01 add DX, 017f H
000f eb f4 jmp L1

110 Auxiliary Pragmas

16-bit Pragmas

MREN() ;
0011 89 16 00 00 L2 nov
0015 e8 00 00 cal |
0018 8b 16 00 00 nov
i += 13143;
00lc 81 c2 57 33 add
0020 89 16 00 00 nov
)
0024 b5a pop
0025 «¢3 ret

No di sassenbly errors

Segnent: ' _DATA" WORD 0002 bytes
0000 09 04 _i

No di sassenbly errors

Let us add the following auxiliary pragmato the sourcefile.

#pragma aux nmyrtn nodi fy nonenory;

Modul e: rtn.c
Group: ' DGROUP' CONST, _DATA

Segnent: ' _TEXT' BYTE 0022 bytes
#pragma of f (check_stack);

extern void M/Rtn(void);
#pragma aux MyRtn nodi fy nonenory;

int i ={ 1033 };
extern Rin()
{

0000 52 Rtn_ push

0001 8b 16 00 00 mov
while(i < 10000) {

0005 81 fa 10 27 L1 cnp

0009 7d 06 ige

i += 383;

}

000b 81 c2 7f 01 add

000f eb f4 jnmp
MREN();

0011 89 16 00 00 L2 mov

0015 e8 00 00 cal |
i += 13143;

0018 81 c2 57 33 add

001c 89 16 00 00 nov

I
002 5a pop
0021 «c3 ret

i, DX
MRt n_
DX, _i

DX, 3357H
(i, DX

DX

If we compile the source file with the above pragma and disassemble the object file using the Open
Watcom Disassembler, we get the following listing file.

DX
DX, _i

DX, 2710H
L2

DX, 017fH
L1

i, DX
MRt n_

DX, 3357H
i, DX

DX

Auxiliary Pragmas 111

16-bit Topics

No di sassenbly errors

Segnment: ' _DATA" WORD 0002 bytes
0000 09 04 i

No di sassenbly errors

Notice that the value of i isinregister DX after completion of the "while" loop. After thecal to myrtn,
thevalueof i isnot loaded from memory into aregister to perform the final addition. The auxiliary
pragmainforms the compiler that myr t n does not modify any memory (i.e., global or static variables) that
isused directly or indirectly by Rt n and hence register DX contains the correct value of i .

The preceding auxiliary pragma deals with routines that modify memory. Let us consider the case where
routines reference memory. The following form of the auxiliary pragma can be used to describe afunction
that does not reference any memory (i.e., global or static variables) that is used directly or indirectly by the
caler.

#pragm aux sym parm nonenory nodi fy nonmenory [;]

where description:
sym isafunction name.
Notes:

1. Youmust specify both "parm nomemory" and "modify nomemory".

Let us replace the auxiliary pragmain the above example with the following auxiliary pragma.

#pragma aux nmyrtn parm nomenory nodi fy nomenory;
If you now compile our source file and disassemble the object file using wdis, the result is the following
listing file.

Modul e: rtn.c
G oup: ' DGROUP' CONST, _DATA

Segnent: ' _TEXT' BYTE 001le bytes
#pragma of f (check_stack);

extern void MyRtn(void);
#pragma aux MyRtn parm nonenory nodi fy nonmenory;

int i ={ 1033 };

112 Auxiliary Pragmas

16-bit Pragmas

extern Rtn()

{
0000 52 Rt n_ push DX
0001 8b 16 00 00 nov DX, _i
while(i < 10000) {
0005 81 fa 10 27 L1 cnp DX, 2710H
0009 7d 06 jge L2
i += 383
}
000b 81 c2 7f 01 add DX, 017fH
000f eb f4 jmp L1
MWREN() ;
0011 e8 00 00 L2 cal | M/Rt n_
i += 13143;
0014 81 c2 57 33 add DX, 3357H
0018 89 16 00 00 nov _i,DX
h
00lc 5a pop DX
001d c3 ret

No di sassenbly errors

Segnent: ' _DATA" WORD 0002 bytes
0000 09 04 _i

No di sassenbly errors

Notice that after completion of the "while" loop we did not have to update i with the valuein register DX
before calling nyrt n. Theauxiliary pragmainforms the compiler that myr t n does not reference any
memory (i.e., global or static variables) that is used directly or indirectly by nyrt n soupdatingi was not
necessary before calling myrt n.

8.27.10 Describing the Registers Modified by a Function

The following form of the auxiliary pragma can be used to describe the registers that a function will use
without saving.

#pragma aux sym nodi fy [exact] reg_set [;]

where description:
sym isafunction name.
reg_set isaregister set.

Specifying aregister set informs Open Watcom C/C++ that the registers belonging to the register set are
modified by the function. That is, the value in aregister before calling the function is different from its
value after execution of the function.

Registers that are used to pass arguments are assumed to be modified and hence do not have to be saved
and restored by the called function. Also, sincethe AX register is frequently used to return avalue, it is

Auxiliary Pragmas 113

16-bit Topics

aways assumed to be modified. If necessary, the caller will contain code to save and restore the contents
of registers used to pass arguments. Note that saving and restoring the contents of these registers may not
be necessary if the called function does not modify them. The following form of the auxiliary pragma can
be used to describe exactly those registers that will be modified by the called function.

#pragma aux sym nodi fy exact reg set [;]

where description:
sym isafunction name.
reg_set isaregister set.

The above form of the auxiliary pragmatells Open Watcom C/C++ not to assume that the registers used to
pass arguments will be modified by the called function. Instead, only the registers specified in the register
set will be modified. Thiswill prevent generation of the code which unnecessarily saves and restores the
contents of the registers used to pass arguments.

Also, any registersthat are specified in the val ue register set are assumed to be unmodified unless
explicitly listed in the exact register set. In the following example, the code generator will not generate
code to save and restore the value of the stack pointer register since we havetold it that "GetSP" does not
modify any register whatsoever.

Example:
unsi gned CGet SP(voi d);
#if defined(__386__)
#pragma aux CGet SP = value [esp] nodify exact [];
#el se
#pragma aux CGet SP = value [sp] nodify exact [];
#endi f

8.27.11 An Example

Asmentioned in an earlier section, the following pragma defines the calling convention for functions
compiled by Microsoft C.

#pragm aux Ms_C "_*" \
parmcaller [] \
val ue struct float struct routine [ax]\

nmodi fy [ax bx cx dx es];

Let us discuss this pragmain detail.

Lo specifiesthat all function and variable names are preceded by the underscore character ()
when trandlated from source form to object form.

parm caller [] specifiesthat all arguments are to be passed on the stack (an empty register set was
specified) and the caller will remove the arguments from the stack.

valuestruct marks the section describing how the called routine returns structure information.

114 Auxiliary Pragmas

16-bit Pragmas

float specifies that floating-point arguments are returned in the same way as
structures are returned.

struct specifiesthat 1, 2 and 4-byte structures are not to be returned in registers.

routine specifies that the called routine allocates storage for the return structure and

returns with aregister pointing at it.
[ax] specifiesthat register AX is used to point to the structure return value.
modify [ax bx cx dx es]
specifiesthat registers AX, BX, CX, DX and ES are not preserved by the called routine.
Note that the default method of returning integer valuesis used; 1-byte characters are returned in register

AL, 2-byteintegers are returned in register AX, and 4-byte integers are returned in the register pair
DX:AX.

8.27.12 Auxiliary Pragmas and the 80x87

This section deals with those aspects of auxiliary pragmas that are specific to the 80x87. The discussion in
this chapter assumes that one of the "fpi" or "fpi87" optionsis used to compile functions. The following
areas are affected by the use of these options.

1. passing floating-point arguments to functions,
2. returning floating-point values from functions and
3. which 80x87 floating-point registers are allowed to be modified by the called routine.

8.27.12.1 Using the 80x87 to Pass Arguments

By default, floating-point arguments are passed on the 80x86 stack. The 80x86 registers are never used to
pass floating-point arguments when a function is compiled with the "fpi" or "fpi87" option. However, they
can be used to pass arguments whose type is not floating-point such as arguments of type "int".

The following form of the auxiliary pragma can be used to describe the registers that are to be used to pass
arguments to functions.

#pragma aux sym parm {reg_set} [;]

where description:
sym isafunction name.
reg set isaregister set. Theregister set can contain 80x86 registers and/or the string "8087".

Auxiliary Pragmas 115

16-bit Topics

Notes:

1. If an empty register set is specified, all arguments, including floating-point arguments, will be
passed on the 80x86 stack.

When the string "8087" appearsin aregister set, it sSimply means that floating-point arguments can be
passed in 80x87 floating-point registersif the source file is compiled with the "fpi* or "fpi87" option.
Before discussing argument passing in detail, some general notes on the use of the 80x87 floating-point
registers are given.

The 80x87 contains 8 floating-point registers which essentially form a stack. The stack pointer iscalled ST
and is anumber between 0 and 7 identifying which 80x87 floating-point register is at the top of the stack.
ST isinitially 0. 80x87 instructions reference these registers by specifying a floating-point register number.
This number is then added to the current value of ST. The sum (taken modulo 8) specifies the 80x87
floating-point register to be used. The notation ST(n), where"n" is between 0 and 7, is used to refer to the
position of an 80x87 floating-point register relativeto ST.

When afloating-point value is loaded onto the 80x87 floating-point register stack, ST is decremented
(modulo 8), and the value isloaded into ST(0). When afloating-point value is stored and popped from the
80x87 floating-point register stack, ST isincremented (modulo 8) and ST (1) becomes ST(0). The
following illustrates the use of the 80x87 floating-point registers as a stack, assuming that the value of ST is
4 (4 values have been loaded onto the 80x87 floating-point register stack).

S +

0 | 4th fromtop | ST(4)
oo +

1 | 5th fromtop | ST(5)
oo +

2 | 6th fromtop | ST(6)
o m e e e e e oo +

3 | 7th fromtop | ST(7)
e +

ST -> 4 | top of stack | ST(0)
S +

5 | 1st fromtop | ST(1)
oo +

6 | 2nd fromtop | ST(2)
oo +

7 | 3rd fromtop | ST(3)
o m e e e e e oo +

Starting with version 9.5, the Open Watcom compilers use all eight of the 80x87 registers asa stack. The
initial state of the 80x87 register stack is empty before a program begins execution.

Note; For compatibility with code compiled with version 9.0 and earlier, you can compile with
the "fpr" option. In this case only four of the eight 80x87 registers are used as a stack.
These four registers were used to pass arguments. The other four registers form what was
called the 80x87 cache. The cache was used for local floating-point variables. The state of
the 80x87 registers before a program began execution was as follows.

1. Thefour 80x87 floating-point registers that form the stack are uninitialized.

2. Thefour 80x87 floating-point registers that form the 80x87 cache areinitialized
with zero.

116 Auxiliary Pragmas

16-bit Pragmas

Hence, initially the 80x87 cache was comprised of ST(0), ST(1), ST(2) and ST(3). ST had
the value 4 as in the above diagram. When afloating-point value was pushed on the stack
(asisthe case when passing floating-point arguments), it became ST(0) and the 80x87
cache was comprised of ST(1), ST(2), ST(3) and ST(4). When the 80x87 stack was full,
ST(0), ST(1), ST(2) and ST(3) formed the stack and ST(4), ST(5), ST(6) and ST(7) formed
the 80x87 cache. Version 9.5 and later no longer use this strategy.

Therulesfor passing arguments are as follows.

1.

2.

If the argument is not floating-point, use the procedure described earlier in this chapter.

If the argument is floating-point, and a previous argument has been assigned a position on the
80x86 stack (instead of the 80x87 stack), the floating-point argument is also assigned a position
on the 80x86 stack. Otherwise proceed to the next step.

If the string "8087" appearsin aregister set in the pragma, and if the 80x87 stack is not full, the
floating-point argument is assigned floating-point register ST(0) (the top element of the 80x87
stack). The previous top element (if there was one) isnow in ST(1). Since arguments are
pushed on the stack from right to left, the leftmost floating-point argument will be in ST(0).
Otherwise the floating-point argument is assigned a position on the 80x86 stack.

Consider the following example.

#pragma aux myrtn parm|[8087];

void main()

}

fl oat X;
doubl e Y;
i nt i;
long int j;

X
i
Y
j

7.7,
7,
77.77;

77,

tn(C x, i, Yy,);

So0anon

3

nmyr t n isan assembly language function that requires four arguments. The first argument of type float (4
bytes), the second argument is of typeint (2 bytes), the third argument is of type double (8 bytes) and the
fourth argument is of type long int (4 bytes). These argumentswill be passed to nyr t n in the following

way.

Since "8087" was specified in the register set, the first argument, being of type float, will be
passed in an 80x87 floating-point register.

The second argument will be passed on the stack since no 80x86 registers were specified in the
register set.

The third argument will also be passed on the stack. Remember the following rule: once an
argument is assigned a position on the stack, all remaining arguments will be assigned a position
on the stack. Note that the above rule holds even though there are some 80x87 floating-point
registers available for passing floating-point arguments.

Auxiliary Pragmas 117

16-bit Topics

4. Thefourth argument will also be passed on the stack.

Let us change the auxiliary pragmain the above example as follows.

#pragma aux nmyrtn parm[ax 8087];
The arguments will now be passed to myr t n in the following way.

1. Since"8087" was specified in the register set, the first argument, being of type float will be
passed in an 80x87 floating-point register.

2. The second argument will be passed in register AX, exhausting the set of available 80x86
registers for argument passing.

3. Thethird argument, being of type double, will aso be passed in an 80x87 floating-point register.

4. Thefourth argument will be passed on the stack since no 80x86 registers remain in the register
Set.

8.27.12.2 Using the 80x87 to Return Function Values

The following form of the auxiliary pragma can be used to describe a function that returns a floating-point
valuein ST(0).

#pragma aux sym val ue reg set [;]

where description:
sym isafunction name.
reg set isaregister set containing the string "8087", i.e. [8087].

8.27.12.3 Preserving 80x87 Floating-Point Registers Across Calls

The code generator assumes that all eight 80x87 floating-point registers are available for use within a
function unless the "fpr" option is used to generate backward compatible code (older Open Watcom
compilers used four registers as acache). The following form of the auxiliary pragma specifies that the
floating-point registers in the 80x87 cache may be modified by the specified function.

#pragma aux sym nodify reg set [;]

where description:
sym isafunction name.
reg_set isaregister set containing the string "8087", i.e. [8087].

Thisinstructs Open Watcom C/C++ to save any local variables that are located in the 80x87 cache before
calling the specified routine.

118 Auxiliary Pragmas

32-bit Topics

32-bit Topics

120

9 32-bit Memory Models

9.1 Introduction

This chapter describes the various 32-bit memory models supported by Open Watcom C/C++. Each

memory model is distinguished by two properties; the code model used to implement function calls and the
data model used to reference data.

9.2 32-bit Code Models

There are two code models;

1. thesmal code model and
2. thebig code model.

A small code model is onein which all callsto functions are made with near calls. Inanear cal, the
destination address is 32 hits and is relative to the segment value in segment register CS. Hence, in asmall
code model, al code comprising your program, including library functions, must be less than 4GB.

A big code model isonein which all callsto functions are made with far calls. In afar call, the destination
addressis 48 bits (a 16-hit segment value and a 32-bit offset relative to the segment value). This model
allows the size of the code comprising your program to exceed 4GB.

Note: If your program contains less than 4GB of code, you should use a memory model that employs
the small code model. Thiswill result in smaller and faster code since near calls are smaller instructions
and are processed faster by the CPU.

9.3 32-bit Data Models

There are two data models;

1. thesmall datamodel and
2. thebig data model.

A small data model isone in which al references to data are made with near pointers. Near pointers are 32
bits; all data references are made relative to the segment value in segment register DS. Hence, in asmall
data model, all data comprising your program must be less than 4GB.

A big datamodel is onein which all referencesto data are made with far pointers. Far pointers are 48 bits
(a 16-bit segment value and a 32-bit offset relative to the segment value). This removes the 4GB limitation
on data size imposed by the small datamodel. However, when afar pointer isincremented, only the offset
isadjusted. Open Watcom C/C++ assumes that the offset portion of afar pointer will not be incremented
beyond 4GB. The compiler will assign an object to a new segment if the grouping of datain a segment will

32-bit Data Models 121

32-bit Topics

cause the object to cross a segment boundary. Implicit in thisis the requirement that no individual object
exceed 4GB.

Note: If your program contains less than 4GB of data, you should use the small data model. Thiswill
result in smaller and faster code since references using near pointers produce fewer instructions.

9.4 Summary of 32-bit Memory Models

As previously mentioned, a memory model is a combination of a code model and adatamodel. The
following table describes the memory models supported by Open Watcom C/C++.

Menory Code Dat a Def aul t Def aul t
Model Model Model Code Dat a
Poi nt er Poi nt er
flat snal | snal | near near
snal | snal | snal | near near
medi um bi g smal | far near
conpact snal | bi g near far
| arge bi g bi g far far

9.5 Flat Memory Model

In the flat memory model, the application’s code and data must total less than 4GB in size. Segment
registers CS, DS, SS and ES point to the same linear address space (this does not imply that the segment
registers contain the same value). That is, agiven offset in one segment refers to the same memory location
asthat offset in another segment. Essentially, aflat model operates as if there were no segments.

9.6 Mixed 32-bit Memory Model

A mixed memory model application combines el ements from the various code and data models. A mixed
memory model application might be characterized as one that uses the near, far, or huge keywords when
describing some of its functions or data objects.

For example, a medium memory model application that uses some far pointers to data can be described as a
mixed memory model. In an application such asthis, most of the dataisin a 4GB segment (DGROUP) and
hence can be referenced with near pointers relative to the segment value in segment register DS. This
results in more efficient code being generated and better execution times than one can expect from a big
datamodel. Data objects outside of the DGROUP segment are described with the far keyword.

122 Mixed 32-bit Memory Model

32-bit Memory Models

9.7 Linking Applications for the Various 32-bit Memory

Models

Each memory model requires different run-time and floating-point libraries. Each library assumesa
particular memory model and should be linked only with modules that have been compiled with the same
memory model. The following table lists the libraries that are to be used to link an application that has
been compiled for a particular memory model. Currently, only libraries for the flat/small memory model

are provided.
Menory Run-ti nme Fl oat i ng- Poi nt Fl oat i ng- Poi nt
Model Li brary Li brary (80x87) Library (f-p calls)
flat/small clib3r.lib mat h387r.1ib math3r.lib
clib3s.lib mat h387s.1ib math3s.1ib
plib3r.lib cpl x73r.1ib cpl x3r.lib
plib3s.lib cpl x73s.1ib cpl x3s.1ib

The letter "r" or "s' which is affixed to the file name indicates the particular strategy with which the
modulesin the library have been compiled.

r

9.8 Memory

denotes a version of the Open Watcom C/C++ 32-hit libraries which have been compiled
for the "flat/small" memory models using the "3r", "4r" or "5r" option.

denotes a version of the Open Watcom C/C++ 32-hit libraries which have been compiled
for the "flat/small” memory models using the "3s", "4s" or "5s" option.

Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1.

6.

7.

all "USE16" segments. These segments are present in applications that execute in both real
mode and protected mode. They are first in the segment ordering so that the "REALBREAK"
option of the"RUNTIME" directive can be used to separate the real-mode part of the application
from the protected-mode part of the application. Currently, the "RUNTIME" directiveisvalid
for Phar Lap executables only.

all segments not belonging to group "DGROUP" with class "CODE"

all other segments not belonging to group "DGROUP'

all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"
all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized

datain seg

ments belonging to group "DGROUP". Segments belonging to class "STACK" are used to

define the size of the stack used for your application. Segments belonging to the classes"BSS" and

Memory Layout 123

32-bit Topics

"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file.

In addition to these special segments, the following conventions are used by Open Watcom C/C++.
1. The"CODE" class contains the executable code for your application. In asmall code model, this
consists of the segment "_TEXT". In ahbig code model, this consists of the segments
"<module>_TEXT" where <module> is the file name of the sourcefile.

2. The"FAR _DATA" class consists of the following:

(a data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(© literals whose size exceeds the data threshold in large data memory models (the
datathreshold is 32K unless changed using the "zt" compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.
Y ou can override the default naming convention used by Open Watcom C/C++ to name segments.
1. TheOpen Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for abig code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

124 Memory Layout

10 32-bit Assembly Language Considerations

10.1 Introduction

This chapter will deal with the following topics.

1

2.

The data representation of the basic types supported by Open Watcom C/C++.

The memory layout of a Open Watcom C/C++ program.

The method for passing arguments and returning values.

The two methods for passing floating-point arguments and returning floating-point values.
One method is used when one of the Open Watcom C/C++ "fpi" or "fpi87" optionsis specified
for the generation of in-line 80x87 instructions. When the "fpi" option is specified, an 80x87
emulator isincluded from amath library if the application includes floating-point operations.

When the "fpi87" option is used exclusively, the 80x87 emulator will not be included.

The other method is used when the Open Watcom C/C++ "fpc" option is specified. In this case,
the compiler generates calls to floating-point support routines in the alternate math libraries.

An understanding of the Intel 80x86 architecture is assumed.

10.2 Data Representation

This section describes the internal or machine representation of the basic types supported by Open Watcom

C/C++.

10.2.1 Type “char”

An item of type "char" occupies 1 byte of storage. Itsvaueisin the following range.

0 <= n <= 255

Note that "char" is, by default, unsigned. The Open Watcom C/C++ compiler option "j" can be used to
change the default from unsigned to signed. If "char" is signed, an item of type "char" isin the following

range.

-128 <= n <= 127

Y ou can force an item of type "char" to be unsigned or signed regardless of the default by defining them to
be of type "unsigned char" or "signed char" respectively.

Data Representation 125

32-bit Topics

10.2.2 Type "short int"

An item of type "short int" occupies 2 bytes of storage. Itsvaueisin the following range.

-32768 <= n <= 32767

Note that "short int" is signed and hence "short int" and "signed short int" are equivalent. If anitem of type
"short int" isto be unsigned, it must be defined as "unsigned short int". Inthiscase, itsvalueisinthe
following range.

0 <= n <= 65535

10.2.3 Type "long int"

An item of type "long int" occupies 4 bytes of storage. Itsvalueisin the following range.

- 2147483648 <= n <= 2147483647

Note that "long int" is signed and hence "long int" and "signed long int" are equivalent. If anitem of type
"long int" isto be unsigned, it must be defined as "unsigned long int". In this case, itsvalueisin the
following range.

0 <= n <= 4294967295

10.2.4 Type "int"
An item of type "int" occupies 4 bytes of storage. Itsvalueisin the following range.
-2147483648 <= n <= 2147483647

Note that "int" is signed and hence "int" and "signed int" are equivalent. If anitem of type "int" isto be
unsigned, it must be defined as "unsigned int". In this caseits value isin the following range.

0 <= n <= 4294967295
If you are generating code that executesin 32-bit mode, "long int" and "int" are equivalent, "unsigned long

int" and "unsigned int" are equivalent, and "signed long int" and "signed int" are equivalent. This may not
be the case in other environments where "int" and "short int" are 2 bytes.

10.2.5 Type "float"

A datum of type "float" is an approximate representation of areal number. Each datum of type "float"
occupies 4 bytes. If misthe magnitude of x (an item of type "float") then x can be approximated if

2-126 <= m < 2128

or in more approximate terms if

1.175494e-38 <= m <= 3. 402823e38

Data of type "float" are represented internally asfollows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

126 Data Representation

32-bit Assembly Language Considerations

e m e oo o e e ee o eoao oo +
| S| Biased | Si gni ficand |
| | Exponent | |
e mm e oo o e e e ee o eaao s +
31 30- 23 22-0
Notes
S S = Sign bit (O=positive, 1=negative)
Exponent The exponent biasis 127 (i.e., exponent value 1 represents 2-126; exponent value 127

represents 20; exponent value 254 represents 2127; etc.). The exponent field is 8 bits long.

Significand Theleading bit of the significand is always 1, hence it is not stored in the significand field.
Thusthe significand is always "normalized”. The significand field is 23 bits long.

Zero A real zero quantity occurs when the sign bit, exponent, and significand are all zero.

Infinity When the exponent field isall 1 bits and the significand field isall zero bits then the
guantity represents positive or negative infinity, depending on the sign hit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity
isaspecial value called aNAN (Not-A-Number).

When the exponent field is al 0 bits and the significand field is non-zero then the quantity
isaspecia value called a"denormal” or nonnormal number.

10.2.6 Type "double”

A datum of type "double" is an approximate representation of areal number. The precision of a datum of
type "double" is greater than or equal to one of type "float". Each datum of type "double" occupies 8 bytes.
If misthe magnitude of x (an item of type "double") then x can be approximated if

2-1022 <= m < 21024

or in more approximate terms if

2.2250738585072e-308 <= m <= 1.79769313486232e308

Data of type "double" are represented internally as follows. Note that bytes are stored in memory with the
least significant byte first and the most significant byte last.

Fom e ek o m m e e e e e e e e e e e e eaa oo +
| S| Biased | Si gni ficand |
| | Exponent | |

T o m o e e e e e e e e e e e e e maa oo +
63 62-52 51-0

Data Representation 127

32-bit Topics

Notes:
S

Exponent

S = Sign bit (O=positive, 1=negative)

The exponent biasis 1023 (i.e., exponent value 1 represents 2-1922: exponent value 1023
represents 20; exponent value 2046 represents 21923; etc.). The exponent field is 11 bits
long.

Significand Theleading hit of the significand is always 1, hence it is not stored in the significand field.

Zero

Infinity

Thus the significand is aways "normalized". The significand field is 52 bits long.

A double precision zero quantity occurs when the sign bit, exponent, and significand are all
zero.

When the exponent field is al 1 bits and the significand field is all zero bits then the
guantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then the quantity

isaspecial value called aNAN (Not-A-Number).

When the exponent field isall 0 bits and the significand field is non-zero then the quantity
isaspecia value called a"denormal™ or nonnormal number.

10.3 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1

6.

7.

all "USE16" segments. These segments are present in applications that execute in both real
mode and protected mode. They are first in the segment ordering so that the "REALBREAK"
option of the "RUNTIME" directive can be used to separate the real-mode part of the application
from the protected-mode part of the application. Currently, the "RUNTIME" directiveisvalid
for Phar Lap executables only.

all segments not belonging to group "DGROUP" with class "CODE"

all other segments not belonging to group "DGROUP"

all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"
all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

Segments belonging to class "BSS' contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS" and
"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable

file.

128 Memory Layout

32-bit Assembly Language Considerations

In addition to these special segments, the following conventions are used by Open Watcom C/C++.

1. The"CODE" class contains the executable code for your application. 1n asmall code model, this
consists of the segment *_TEXT". In abig code model, this consists of the segments
"<module>_TEXT" where <module> is the file name of the sourcefile.

2. The"FAR_DATA" class consists of the following:

(@ data objects whose size exceeds the data threshold in large data memory models
(the data threshold is 32K unless changed using the "zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(© literals whose size exceeds the data threshold in large data memory models (the
data threshold is 32K unless changed using the "zt" compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.
Y ou can override the default naming convention used by Open Watcom C/C++ to name segments.

1. TheOpen Watcom C/C++ "nm" option can be used to change the name of the module. This, in
turn, changes the name of the code segment when compiling for abig code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code segment
regardless of the code model used.

10.4 Calling Conventions for Non-80x87 Applications

The following sections describe the calling convention used when compiling with the "fpc" compiler
option.

10.4.1 Passing Arguments Using Register-Based Calling Conventions

How arguments are passed to a function with register-based calling conventions is determined by the size
(in bytes) of the argument and where in the argument list the argument appears. Depending on the size,
arguments are either passed in registers or on the stack. Arguments such as structures are amost always
passed on the stack since they are generally too largeto fit in registers. Since arguments are processed
from left to right, the first few arguments are likely to be passed in registers (if they can fit) and, if the
argument list contains many arguments, the last few arguments are likely to be passed on the stack.

The registers used to pass arguments to a function are EAX, EBX, ECX and EDX. The following
algorithm describes how arguments are passed to functions.

Initially, we have the following registers available for passing arguments: EAX, EDX, EBX and ECX.
Note that registers are selected from thislist in the order they appear. That is, the first register selected is
EAX and thelast isECX. For each argument Ai, starting with the left most argument, perform the
following steps.

1. If thesizeof Ai is1 byteor 2 bytes, convert it to 4 bytes and proceed to the next step. If Ai isof
type "unsigned char” or "unsigned short int", it is converted to an "unsigned int". If Ai isof type
"signed char" or "signed short int", it is converted to a"signed int". If Ai isa 1-byte or 2-byte
structure, the padding is determined by the compiler.

Calling Conventions for Non-80x87 Applications 129

32-bit Topics

2. If anargument has already been assigned a position on the stack, Ai will also be assigned a
position on the stack. Otherwise, proceed to the next step.

3. Ifthesizeof Ai is4 bytes, select aregister from the list of available registers. If aregister is
available, Ai isassigned that register. The register isthen removed from the list of available
registers. If no registers are available, Ai will be assigned a position on the stack.

4. If thetypeof Ai is"far pointer", select aregister pair from the following list of combinations:
[EDX EAX] or [ECX EBX]. Thefirst available register pair is assigned to Ai and removed from
thelist of available pairs. The segment value will actually be passed in register DX or CX and
the offset in register EAX or EBX. If none of the above register pairsis available, Ai will be
assigned a position on the stack. Note that 8 bytes will be pushed on the stack even though the
size of an item of type "far pointer" is 6 bytes.

5. If thetype of Ai is"double" or "float" (in the absence of afunction prototype), select aregister
pair from the following list of combinations: [EDX EAX] or [ECX EBX]. Thefirst available
register pair is assigned to Ai and removed from the list of available pairs. The high-order 32
bits of the argument are assigned to the first register in the pair; the low-order 32 bits are
assigned to the second register in the pair. If none of the above register pairsis available, Ai will
be assigned a position on the stack.

6. All other arguments will be assigned a position on the stack.
Notes:

1. Argumentsthat are assigned a position on the stack are padded to a multiple of 4 bytes. That is,
if a 3-byte structure is assigned a position on the stack, 4 bytes will be pushed on the stack.

2. Argumentsthat are assigned a position on the stack are pushed onto the stack starting with the
rightmost argument.

10.4.2 Sizes of Predefined Types

The following table lists the predefined types, their size as returned by the "sizeof" function, the size of an
argument of that type and the registers used to pass that argument if it was the only argument in the

argument list.
Basic Type "sizeof" Argument Registers
Sze Used

char 1 4 [EAX]
short int 2 4 [EAX]

int 4 4 [EAX]

long int 4 4 [EAX]

float 4 8 [EDX EAX]
double 8 8 [EDX EAX]
near pointer 4 4 [EAX]

far pointer 6 8 [EDX EAX]

Note that the size of the argument listed in the table assumes that no function prototypes are specified.
Function prototypes affect the way arguments are passed. Thiswill be discussed in the section entitled
"Effect of Function Prototypes on Arguments”.

130 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

Notes:

1. Provided no function prototypes exist, an argument will be converted to a default type as
described in the following table.

Argument Type Passed As
char unsigned int
signed char signed int
unsigned char unsigned int
short unsigned int
signed short signed int
unsigned short unsigned int
float double

10.4.3 Size of Enumerated Types

The integral type of an enumerated type is determined by the values of the enumeration constants. In strict
ISO/ANSI C mode, al enumerated constants are of type i nt . In the extensions mode, the compiler will
use the smallest integral type possible (excluding | ong ints) that can represent all values of the enumerated
type. For instance, if the minimum and maximum values of the enumeration constants are in the range
-128 and 127, the enumerated type will be equivalentto a si gned char (size=1 byte). All references
to enumerated constants in the previous instance will have type si gned char. Anenumerated constant
isaways promoted to an i nt when passed as an argument.

10.4.4 Effect of Function Prototypes on Arguments

Function prototypes define the types of the formal parameters of afunction. Their appearance affects the
way in which arguments are passed. An argument will be converted to the type of the corresponding
formal parameter in the function prototype. Consider the following example.

void prototype(float x, int i);
voi d main()

float x;
i nt i

X = 3. 14;

i = 314;
prototype(x, i);
rtn(x, i);

}

The function prototype for pr ot ot ype specifies that the first argument isto be passed as a "float" and the
second argument is to be passed as an "int". Thisresultsin the first argument being passed in register EAX
and the second argument being passed in register EDX.

If no function prototype is given, asisthe case for the function rt n, thefirst argument will be passed asa

"double" and the second argument would be passed as an "int". Thisresultsin the first argument being
passed in registers EDX and EAX and the second argument being passed in register EBX.

Calling Conventions for Non-80x87 Applications 131

32-bit Topics

Note that even though both pr ot ot ype and r t n were called with identical argument lists, the way in
which the arguments were passed was completely different simply because a function prototype for

pr ot ot ype was specified. Function prototyping is an excellent way to guarantee that arguments will be
passed as expected to your assembly language function.

10.4.5 Interfacing to Assembly Language Functions

Consider the following example.

Example:

voi d main()

{
doubl e X;
i nt [
doubl e y
X =7,
i = 77;
y = 777;
myrtn(x, i, y);

}

nyr t n isan assembly language function that requires three arguments. The first argument is of type
"double", the second argument is of type "int" and the third argument is again of type "double". Usingthe
rules for register-based calling conventions, these arguments will be passed to nyr t n in the following

way:

1. Thefirst argument will be passed in registers EDX and EAX leaving EBX and ECX as available
registers for other arguments.

2. The second argument will be passed in register EBX leaving ECX as an available register for
other arguments.

3. Thethird argument will not fit in register ECX (its sizeis 8 bytes) and hence will be pushed on
the stack.

Let uslook at the stack upon entry to nyrt n.

Small Code Mode

O fset
o e +
0 | return address | <- ESP points here
o aa - +
4 | argument #3 |
I |
o a o +
12 | |

132 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

Big Code Model
O f set
o a o +
0 | return address | <- ESP points here
e !
8 | argument #3 [
I I
Fom e oo - +
16 | |
Notes:

1. Thereturn addressisthe top element on the stack. In asmall code model, the return addressis 1
double word (32 hits); in abig code model, the return address is 2 double words (64 bits).

Register EBP is normally used to address arguments on the stack. Upon entry to the function, register EBP
is set to point to the stack but before doing so we must save its contents. The following two instructions
achievethis.

push EBP ; save current value of EBP
nov EBP, ESP ; get access to argunents

After executing these instructions, the stack looks like this.

Small Code Model
O f set
o a o +
0 | saved EBP | <- EBP and ESP point here
o a o +
4 | return address |
Fom e oo - +
8 | argument #3 |
I I
S +
16 I I
Big Code Model
O f set
e a o +
0 | saved EBP | <- EBP and ESP point here
o a o +
4 | return address |
I I
Fom e oo - +
12 | argument #3 |
I I
o aa - +
20 | |

As the above diagrams show, the third argument is at offset 8 from register EBP in a small code model and
offset 12 in abig code model.

Upon exit from nyr t n, we must restore the value of EBP. The following two instructions achieve this.

Calling Conventions for Non-80x87 Applications 133

32-bit Topics

nov ESP, EBP ; restore stack pointer
pop EBP ; restore EBP

The following is a sample assembly language function which implements myrt n.

Small Memory Model (small code, small data)
DGROUP group _DATA, _BSS
_TEXT segment byte public ' CODE

assume CS: _TEXT

assune DS: DGROUP

public nyrtn_

myrtn_ proc near
push EBP ; save EBP
nmov EBP, ESP ; get access to argunents

; body of function

nmov ESP, EBP ; restore ESP

pop EBP ; restore EBP

ret 8 ; return and pop last arg
nyrtn_ endp
_TEXT ends

Large Memory Model (big code, big data)

DGROUP group _DATA, _BSS

MYRTN_TEXT segnent byte public ' CODE
assune CS: MYRTN_TEXT
public nyrtn_

nmyrtn_ proc far
push EBP ; save EBP
nmov EBP, ESP ; get access to argunents

body of function

nmov ESP, EBP ; restore ESP

pop EBP ; restore EBP

ret 8 ; return and pop last arg
nmyrtn_ endp

MYRTN_TEXT ends
Notes:

1. Global function names must be followed with an underscore. Global variable names must be
preceded with an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and AX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option.

3. Thedirection flag must be clear before returning to the caller.
4. Inasmall code model, any segment containing executable code must belong to the segment
" TEXT" and the class"CODE". The segment"_TEXT" must have a"combine" type of

"PUBLIC". On entry, CS contains the segment address of the segment "_TEXT". In abig code
model there is no restriction on the naming of segments which contain executable code.

134 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

5. Inasmall data model, segment register DS contains the segment address of the group
"DGROUP'. Thisis not the casein a big data model.

6. When writing assembly language functions for the small code model, you must declare them as
"near". If you wish to write assembly language functions for the big code model, you must
declarethem as "far".

7. Ingenera, when naming segments for your code or data, you should follow the conventions
described in the section entitled "Memory Layout" in this chapter.

8. If any of the arguments was pushed onto the stack, the called routine must pop those arguments
off the stack in the "ret" instruction.

10.4.6 Using Stack-Based Calling Conventions

Let us now consider the example in the previous section except this time we will use the stack-based calling
convention. The most significant difference between the stack-based calling convention and the
register-based calling convention is the way the arguments are passed. When using the stack-based calling
conventions, no registers are used to pass arguments. Instead, all arguments are passed on the stack.

Let uslook at the stack upon entry to nyrt n.

Small Code Model
O f set
e a o +
0 | return address | <- ESP points here
o a o +
4 | argunent #1 [
I I
Fom e oo - +
12 | argument #2 |
I I
o aa - +
16 | argument #3 |
e :
24 | |
Big Code Model
O f set
Fom e oo - +
0 | return address | <- ESP points here
A :
8 | argument #1 |
A I
16 | argument #2 |
I |
Fom e oo - +
20 | argument #3 |
I I
o e +
28 | |

Calling Conventions for Non-80x87 Applications 135

32-bit Topics

Notes:

1. Thereturn addressisthe top element on the stack. In asmall code model, the return addressis 1
double word (32 bits); in abig code model, the return address is 2 double words (64 bits).

Register EBP is normally used to address arguments on the stack. Upon entry to the function, register EBP
is set to point to the stack but before doing so we must save its contents. The following two instructions

achievethis.
push EBP ; save current val ue of EBP
nmov EBP, ESP ; get access to argunents

After executing these instructions, the stack looks like this.

Small Code Model
O f set
o a o +
0 | saved EBP | <- EBP and ESP point here
Fom e oo - +
4 | return address |
S +
8 | argunent #1 |
I I
o a o +
16 | argument #2 |
I I
o a o +
20 | argument #3 |
I I
Fom e oo - +
28 | |
Big Code Model
O f set
o aa - +
0 | saved EBP | <- EBP and ESP point here
e a o +
4 | return address |
I |
Fom e oo - +
12 | argument #1 |
I I
o e +
20 | argument #2 |
I I
o a o +
24 | argument #3 |
I I
o a o +
32 | |

Asthe above diagrams show, the argument are all on the stack and are referenced by specifying an offset
from register EBP.

Upon exit from nyr t n, we must restore the value of EBP. The following two instructions achieve this.

136 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

nov ESP, EBP ; restore stack pointer
pop EBP ; restore EBP

The following is a sample assembly language function which implements myrt n.

Small Memory Model (small code, small data)
DGROUP group _DATA, _BSS
_TEXT segment byte public ' CODE

assume CS: _TEXT

assune DS: DGROUP

public nyrtn

myrtn proc near
push EBP ; save EBP
nmov EBP, ESP ; get access to argunents

body of function

nov ESP, EBP ; restore ESP
pop EBP ; restore EBP
ret
return
myrtn endp
_TEXT ends

Large Memory Model (big code, big data)

DGROUP group _DATA, _BSS

MYRTN_TEXT segnment byte public ' CODE
assumne CS:. MYRTN_TEXT
public myrtn

nmyrtn proc far
push EBP ; save EBP
nmov EBP, ESP ; get access to argunents

body of function

nmov ESP, EBP ; restore ESP
pop EBP ; restore EBP
ret
; return

nyrtn endp

MYRTN_TEXT ends
Notes:

1. Global function names must not be followed with an underscore as was the case with the
register-based calling convention. Global variable names must not be preceded with an
underscore as was the case with the register-based calling convention.

2. All used 80x86 registers except registers EAX, ECX and EDX must be saved on entry and
restored on exit. Segment registers DS and ES must also be saved on entry and restored on exit.
Segment register ES does not have to be saved and restored when using a memory model that is
not asmall datamodel. Note that segment registers only have to be saved and restored if you are
compiling your application with the"r" option.

3. Thedirection flag must be clear before returning to the caller.

Calling Conventions for Non-80x87 Applications 137

32-bit Topics

4. Inasmall code model, any segment containing executable code must belong to the segment
" TEXT" and the class"CODE". The segment "_TEXT" must have a"combine" type of
"PUBLIC". On entry, CS contains the segment address of the segment *_TEXT". In abig code
model thereis no restriction on the naming of segments which contain executable code.

5. Inasmall datamodel, segment register DS contains the segment address of the group
"DGROUP'. Thisisnot the casein abig data model.

6. When writing assembly language functions for the small code model, you must declare them as
"near". If you wish to write assembly language functions for the big code model, you must
declare them as "far".

7. Ingeneral, when naming segments for your code or data, you should follow the conventions
described in the section entitled "Memory Layout" in this chapter.

8. Thecaller isresponsible for removing arguments from the stack.

10.4.7 Functions with Variable Number of Arguments

A function prototype with a parameter list that ends with ",..." has a variable number of arguments. In this
case, al arguments are passed on the stack. Since no prototyping information exists for arguments
represented by ,...", those arguments are passed as described in the section "Passing Arguments”.

10.4.8 Returning Values from Functions

The way in which function values are returned depends on the size of the return value. The following
exampl es describe how function values are to be returned. They are coded for a small code model.

1. 1-bytevaluesareto bereturned in register AL.

Example:
_TEXT segnent byte public ' CODE
assunme CS: _TEXT
public Retl_

Ret1_ proc near ; char Ret1()
nov AL,’' G
ret

Ret1 endp

_TEXT ends
end

2. 2-bytevauesareto bereturned in register AX.

Example:
_TEXT segnment byte public ' CODE
assune CS: _TEXT

public Ret2_
Ret 2_ proc near ; short int Ret2()
nmov AX, 77
ret
Ret 2_ endp
_TEXT ends
end

138 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

3.

4.

4-byte values are to be returned in register EAX.

Example:
_TEXT segment byte public ' CODE
assune CS: _TEXT
public Ret4_

Ret 4 proc near ; int Ret4()
nov EAX, 7777777
ret

Ret 4 endp

_TEXT ends
end

8-byte values, except structures, are to be returned in registers EDX and EAX. When using the
"fpc" (floating-point calls) option, "float" and "double" are returned in registers. See section
"Returning Vaues in 80x87-based Applications’ when using the "fpi" or "fpi87" options.

Example:
. 8087
_TEXT segnent byte public ' CODE
assune CS:_TEXT
public Ret8_

Ret 8_ proc near ; doubl e Ret 8()
nmov EDX, dword ptr CS: Val 8+4
nmov EAX, dword ptr CS:Val 8
ret

Val 8: dq 7.7

Ret 8 endp

_TEXT ends
end

The".8087" pseudo-op must be specified so that all floating-point constants are generated in
8087 format.

Otherwise, the caller allocates space on the stack for the return value and setsregister ESI to
point to thisarea. In abig data model, register ESI contains an offset relative to the segment
valuein segment register SS.

Example:
_TEXT segnent byte public ' CODE
assune CS:_TEXT
public RetX_

struct int_values {
int valuel, value2, val ue3, val ue4, val ueb5;

; b

Ret X _ proc near ; struct int_values RetX()
nov dword ptr SS:O[ESI], 71
nov dword ptr SS:4[ESI], 72
nmov dword ptr SS:8[ESI], 73
nov dword ptr SS:12[ESI], 74
nmov dword ptr SS:16[ESI], 75
ret

Ret X_ endp

_TEXT ends
end

Calling Conventions for Non-80x87 Applications 139

32-bit Topics

When returning values on the stack, remember to use a segment override to the stack segment

(S9).

The following is an example of a Open Watcom C/C++ program calling the above assembly language

subprograms.

#i ncl ude <stdi 0. h>

struct i
i nt
i nt
i nt
i nt
i nt

b

extern
extern
extern
extern
extern

voi d nmi

{

nt _val ues {

val uel;

val ue2;

val ue3;

val ue4;

val ueb;

char Ret 1(voi d);
short int Ret 2(voi d) ;
| ong int Ret 4(voi d);
doubl e Ret 8(voi d) ;
struct int_values RetX(void);
n()

struct int_values x;

printf("Ret1l
printf("Ret2
printf("Ret4
printf("Ret8

X =

%\n", Retl());
%\ n", Ret2());
%d\n", Ret4());
%\n", Ret8());

Ret X() ;
printf("RetXl = %\ n", x.valuel);
printf("RetX2 = %\ n", x.value2);
printf("RetX3 = %\ n", x.value3);
printf("RetX4 = %\ n", x.valued);
printf("RetX5 = %\ n", x.value5);

}

The above function should be compiled for a small code model (use the "mf", "ms" or "mc" compiler

option).

Note: Returning values from functions in the stack-based calling convention is the same as returning
values from functions in the register-based calling convention when using the "fpc" option.

10.5 Calling Conventions for 80x87-based Applications

When a source file is compiled by Open Watcom C/C++ with one of the "fpi" or "fpi87" options, al
floating-point arguments are passed on the 80x86 stack. The rules for passing arguments are as follows.

1. If theargument is not floating-point, use the procedure described earlier in this chapter.

2. If theargument is floating-point, it is assigned a position on the 80x86 stack.

140 Calling Conventions for 80x87-based Applications

32-bit Assembly Language Considerations

Note: When compiling using the "fpi" or "fpi87" options, the method used for passing floating-point
arguments in the stack-based calling convention is identical to the method used in the register-based
calling convention. However, when compiling using the "fpi" or "fpi87" options, the method used for
returning floating-point valuesin the stack-based calling convention is different from the method used
in the register-based calling convention. The register-based calling convention returns floating-point
valuesin ST(0), whereas the stack-based calling convention returns floating-point valuesin EDX and
EAX.

10.5.1 Passing Values in 80x87-based Applications
Consider the following example.

Example:
extern void nmyrtn(int, float, double,long int);

void main()

{
fl oat X;
doubl e y;
i nt i
long int j;

X

7.7,
i .

7,
y = 77.77

j 77,

nyrtn(i, X, y, J)

nyr t n isan assembly language function that requires four arguments. The first argument is of type "int" (
4 bytes), the second argument is of type "float” (4 bytes), the third argument is of type "double” (8 bytes)
and the fourth argument is of type "long int" (4 bytes).

When using the stack-based calling conventions, all of the arguments will be passed on the stack. When
using the register-based calling conventions, the above arguments will be passed to myr t n in the following

way:

1. Thefirst argument will be passed in register EAX leaving EBX, ECX and EDX as available
registers for other arguments.

2. The second argument will be passed on the 80x86 stack sinceit is a floating-point argument.
3. Thethird argument will also be passed on the 80x86 stack since it is a floating-point argument.

4. Thefourth argument will be passed on the 80x86 stack since a previous argument has been
assigned a position on the 80x86 stack.

Remember, arguments are pushed on the stack from right to left. That is, the rightmost argument is pushed
first.

Any assembly language function must obey the following rule.

Calling Conventions for 80x87-based Applications 141

32-bit Topics

1.

All arguments passed on the stack must be removed by the called function.

The following is a sample assembly language function which implements nmyrt n.

Example:

. 8087

_TEXT segment byte public ' CODFE

assune CS. TEXT
public myrtn_

myrtn_ proc near

body of function

ret 16 ; return and pop argunents
nyrtn_ endp

_TEXT ends

end
Notes:

1. Function names must be followed by an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those used to pass
arguments and return values, and EAX, which is considered a stratch register. Note that segment
registers only have to saved and restored if you are compiling your application with the "r"
option. In thisexample, EAX does not have to be saved as it was used to pass the first argument.
Floating-point registers can be modified without saving their contents.

3. Thedirection flag must be clear before returning to the caller.

4. Thisfunction has been written for asmall code model. Any segment containing executable code
must belong to the class "CODE" and the segment *_TEXT". On entry, CS contains the segment
address of the segment "_TEXT". The above restrictions do not apply in a big code memory
model.

5. When writing assembly language functions for a small code model, you must declare them as

"near". If you wish to write assembly language functions for a big code model, you must declare
them as"far".

10.5.2 Returning Values in 80x87-based Applications

When using the stack-based calling conventions with "fpi" or "fpi87", floating-point values are returned in
registers. Single precision values are returned in EAX, and double precision values are returned in
EDX:EAX.

When using the register-based calling conventions with "fpi" or "fpi87", floating-point values are returned
in ST(0). All other values are returned in the manner described earlier in this chapter.

142 Calling Conventions for 80x87-based Applications

11 32-bit Pragmas

11.1 Introduction

A pragmais acompiler directive that provides the following capabilities.

* Pragmas allow you to specify certain compiler options.

* Pragmas can be used to direct the Open Watcom C/C++ code generator to emit specialized
sequences of code for calling functions which use argument passing and value return techniques that
differ from the default used by Open Watcom C/C++.

* Pragmas can be used to describe attributes of functions (such as side effects) that are not possible at
the C/C++ language level. The code generator can use thisinformation to generate more efficient
code.

 Any sequence of in-line machine language instructions, including QN X function calls, can be
generated in the object code.

Pragmas are specified in the source file using the pragma directive. The following notation is used to
describe the syntax of pragmas.

keywords A keywor d is shown in amono-spaced courier font.

program-item A program-item is shown in aroman bold-italicsfont. A program-item isasymbol name
or numeric value supplied by the programmer.

punctuation A punctuati on charact er showninamono-spaced courier font must be entered as
is.

A punctuation character shown in aroman bold-italics font is used to describe syntax.
The following syntactical notation is used.

[abc] Theitem abc is optional.

{abc} Theitem abc may be repeated zero or more times.
alb|c One of a, b or ¢ may be specified.

a:=b The item a is defined in terms of b.

(@ Item ais evaluated first.

The following classes of pragmas are supported.

Introduction 143

32-bit Topics

* pragmas that specify options

* pragmas that specify default libraries

* pragmas that describe the way structures are stored in memory

* pragmas that provide auxiliary information used for code generation

11.2 Using Pragmas to Specify Options

Currently, the following options can be specified with pragmas:

unreferenced The "unreferenced" option controls the way Open Watcom C/C++ handles unused symbols.

check_stack

For example,

#pragma on (unreferenced);

will cause Open Watcom C/C++ to issue warning messages for al unused symbols. Thisis
the default. Specifying

#pragma of f (unreferenced);

will cause Open Watcom C/C++ to ignore unused symbols. Notethat if the warning level
is not high enough, warning messages for unused symbols will not be issued even if
"unreferenced” was specified.

The "check_stack" option controls the way stack overflows are to be handled. For
example,

#pragm on (check_stack);

will cause stack overflows to be detected and

#pragma of f (check_stack);

will cause stack overflows to beignored. When "check_stack" is on, Open Watcom C/C++
will generate arun-time call to a stack-checking routine at the start of every routine
compiled. Thisrun-time routine will issue an error if astack overflow occurs when
invoking the routine. The default isto check for stack overflows. Stack overflow checking
is particularly useful when functions are invoked recursively. Note that if the stack
overflows and stack checking has been suppressed, unpredictable results can occur.

If astack overflow does occur during execution and you are sure that your program is not
inerror (i.e. itisnot unnecessarily recursing), you must increase the stack size. Thisis
done by linking your application again and specifying the "STACK" option to the Open
Watcom Linker with alarger stack size.

It isalso possible to specify more than one option in apragma asillustrated by the
following example.

#pragma on (check_stack unreferenced);

144 Using Pragmas to Specify Options

32-bit Pragmas

reuse_duplicate strings (C only) (C Only) The "reuse_duplicate_strings" option controls the way Open
Watcom C handles identical stringsin an expression. For example,

#pragma on (reuse_duplicate_strings);

will cause Open Watcom C to reuse identical stringsin an expression. Thisisthe default.
Specifying

#pragma of f (reuse_duplicate_strings);

will cause Open Watcom C to generate additional copies of the identical string. The
following example shows where this may be of importance to the way the application
behaves.

Example:
#i ncl ude <stdio. h>

#pragma of f (reuse_duplicate_strings)

voi d poke(char *, char *);
void main()

poke("Hello world\n", "Hello world\n");
}

voi d poke(char *x, char *y)
{
x[3] ='X;
printf(x);
yl4] ='Y;
printf(y);

/*

Def aul t out put:
Hel Xo worl d

Hel XY wor | d

*/

11.3 Using Pragmas to Specify Default Libraries

Default libraries are specified in special object module records. Library names are extracted from these
special records by the Open Watcom Linker. When unresolved references remain after processing all
object modules specified in linker "FILE" directives, these default libraries are searched after all libraries
specified in linker "LIBRARY" directives have been searched.

By default, that isif no library pragmais specified, the Open Watcom C/C++ compiler generates, in the
object file defining the main program, default libraries corresponding to the memory model and
floating-point model used to compilethefile. For example, if you have compiled the source file containing
the main program for the flat memory model and the floating-point calls floating-point model, the libraries
"clib3r" and "math3r" will be placed in the object file.

If you wish to add your own default libraries to thislist, you can do so with alibrary pragma. Consider the
following example.

Using Pragmas to Specify Default Libraries 145

32-bit Topics

#pragma |ibrary (nylib);
The name "mylib" will be added to the list of default libraries specified in the object file.

If the library specification contains characterssuch as’/’,’:’ or’,’ (i.e., any character not allowedinaC
identifier), you must enclose it in double quotes as in the following example.

#pragma library ("/usr/lib/graph.lib");

If you wish to specify more than one library in alibrary pragmayou must separate them with spacesasin
the following example.

#pragma library (mylib "/usr/lib/graph.lib");

11.4 The ALIAS Pragma (C Only)

The"alias" pragma can be used to emit alias records in the object file, causing the linker to substitute
references to a specified symbol with references to another symbol. Either identifiers or names (strings)
may be used. Strings are used verbatim, while names corresponding to identifiers are derived as
appropriate for the kind and calling convention of the symbol. The following describes the form of the
"dias' pragma.

#pragma alias (alias, subst) [;]

where description:

alias is either aname or an identifier of the symbol to be aliased.

subst is either aname or an identifier of the symbol that referencesto al i as will be replaced
with.

Consider the following example.
extern int var;

void fn(void)

#pragma alias (var, "other_var");

Instead of var thelinker will reference symbol named "other_var". Symbol var need not be defined,
athough "other_var" hasto be.

146 The ALIAS Pragma (C Only)

32-bit Pragmas

11.5 The ALLOC_TEXT Pragma (C Only)

The"alloc_text" pragma can be used to specify the name of the text segment into which the generated code
for afunction, or alist of functions, isto be placed. The following describes the form of the "alloc_text"

pragma.

#pragma all oc_text (seg_name, fn {, fn}) [;]

where description:
seg_name is the name of the text segment.
fn is the name of afunction.

Consider the following example.
extern int fnl(int);

extern int fn2(void);
#pragma alloc_text (ny_text, fnl, fn2);

The code for the functions f n1 and f n2 will be placed in the segment my_t ext . Note: function
prototypes for the named functions must exist prior to the "aloc_text" pragma.

11.6 The CODE_SEG Pragma

The "code_seg" pragma can be used to specify the name of the text segment into which the generated code
for functionsisto be placed. The following describes the form of the "code_seg" pragma.

#pragma code_seg (seg nhame [, class hame]) [;]

where description:
seg_name is the name of the text segment optionally enclosed in quotes. Also, seg_name may bea
macro asin:

#defi ne seg_nane "MY_CODE_ SEG'
#pragm code_seg (seg_hame);

class name isthe optional class name of the text segment and may be enclosed in quotes. Please note
that in order to be recognized by the linker as code, a class name hasto end in "CODE".
Also, cl ass__nane may beamacro asin:

#defi ne cl ass_nane " My_CODE"
#pragma code_seg ("MY_CODE_SEG', class_nane);

Consider the following example.

The CODE_SEG Pragma 147

32-bit Topics

#pragma code_seg (my_text);
int incr(int i)

return(i +1);

}
int decr(int i)
{
return(i - 1);
}

The code for the functions i ncr and decr will be placed in the segment ny_t ext .

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragm code_seg ();

11.7 The COMMENT Pragma

The "comment" pragma can be used to place acomment record in an object file or executablefile. The
following describes the form of the "comment" pragma.

#pragma coment (comment_type [, "comment_string"]) [;]

where description:
comment_type specifies the type of comment record. The allowable comment types are:

lib Default libraries are specified in special object module records. Library
names are extracted from these special records by the Open Watcom
Linker. When unresolved references remain after processing all object
modules specified in linker "FILE" directives, these default libraries are
searched after all libraries specified in linker "LIBRARY" directives have
been searched.

The"lib" form of this pragma offers the same features as the "library"
pragma. Seethe section entitled "Using Pragmas to Specify Default
Libraries' on page 145 for more information.

" comment_string" isan optional string literal that provides additional information for some comment
types.

Consider the following example.

#pragma coment (lib, "nylib");

148 The COMMENT Pragma

32-bit Pragmas

11.8 The DATA_SEG Pragma

The"data_seg" pragma can be used to specify the name of the segment into which dataisto be placed. The
following describes the form of the "data_seg" pragma.

#pragma data_seg (seg name [, class hame]) [;]

where description:
seg_name is the name of the data segment and may be enclosed in quotes. Also, seg_nane may be
amacro asin:

#defi ne seg_nanme "MY_DATA SEG'
#pragm data_seg (seg _hane);

class name isthe optional class name of the data segment and may be enclosed in quotes. Also,
cl ass_nane may beamacro asin;

#def i ne cl ass_nane "My_CLASS"
#pragma data_seg ("MY_DATA SEG', class_nane);

Consider the following example.
#pragma data_seg (my_data);

static int i;
static int j;

Thedatafori andj will be placed in the segment ny _dat a.

To return to the default segment, do not specify any string between the opening and closing parenthesis.

#pragma data_seg ();

11.9 The DISABLE_MESSAGE Pragma (C Only)

The "disable_message" pragma disables the issuance of specified diagnostic messages. The form of the
"disable_message" pragmais as follows.

#pragma di sabl e_nessage (msg_num {, msg_num}) [;]

where description:

msg_num is the number of the diagnostic message. This humber corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages' on page 373. Make sureto strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

The DISABLE_MESSAGE Pragma (C Only) 149

32-bit Topics

See also the description of "The ENABLE_MESSAGE Pragma (C Only)".

11.10 The DUMP_OBJECT MODEL Pragma (C++ Only)

The "dump_object model" pragma causes the C++ compiler to print information about the object model for
an indicated class or an enumeration name to the diagnostics file. For class names, thisinformation
includes the offsets and sizes of fields within the class and within base classes. For enumeration names,
thisinformation consists of alist of al the enumeration constants with their values.

The general form of the "dump_object_model" pragmais as follows.

#pragm
#pragma

dunp_obj ect _nodel class [;]
dunp_obj ect _nodel enumeration [;]

class::= adefined C++ classfreeof errors
enumer ation ::= a defined C++ enumer ation name

This pragmais designed to be used for information purposes only.

11.11 The ENA

BLE_MESSAGE Pragma (C Only)

The "enable_message" pragma re-enables the issuance of specified diagnostic messages that have been
previously disabled. The form of the "enable_message" pragmais as follows.

#pragma enabl e_nmessage (msg_num {, msg hum}) [;]
where description:
msg_num is the number of the diagnostic message. This number corresponds to the number issued by

the compiler and can be found in the appendix entitled "Open Watcom C Diagnostic
Messages' on page 373. Make sureto strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

See also the description of "The DISABLE_MESSAGE Pragma (C Only)" on page 149.

11.12 The ENUM Pragma

The "enum" pragma affects the underlying storage-definition for subsequent enum declarations. The forms
of the "enum" pragma are as follows.

#pragm
#pragma
#pragma
#pragma

enumint [;]
enum m ni mum [;]
enumoriginal [;]
enum pop [;]

150 The ENUM Pragma

32-bit Pragmas

where description:

int Make int the underlying storage definition (same as the "ei" compiler option).

minimum Minimize the underlying storage definition (same as not specifying the "ei" compiler
option).

original Reset back to the original compiler option setting (i.e., what was or was not specified on the

command line).
pop Restore the previous setting.

Thefirst three forms al push the previous setting before establishing the new setting.

11.13 The ERROR Pragma

The"error" pragma can be used to issue an error message with the specified text. The following describes
the form of the "error" pragma.

#pragma error "errortext" [;]

where description:
"error text" isthetext of the message that you wish to display.

Y ou should use the ISO #error directive rather than this pragma. This pragmais provided for compatibility
with legacy code. The following isan example.

#if defined(__386_)
#el sei f defined(_ 86)
#el sé' '

#pragma error ("neither _ 386__ or _ 86 __ defined");
#endi f

11.14 The EXTREF Pragma

The "extref" pragmais used to generate a reference to an external function or dataitem. The form of the
"extref" pragmais asfollows.

#pragma extref name [;]

The EXTREF Pragma 151

32-bit Topics

where description:

name is the name of an external function or dataitem. It must be declared to be an external
function or data item before the pragmais encountered. In C++, when name isafunction,
it must not be overloaded.

This pragma causes an external reference for the function or data item to be emitted into the object file even
if that function or dataitem is not referenced in the module. The external reference will cause the linker to
include the module containing that name in the linked program or DLL.

Thisis useful for debugging since you can cause debugging routines (callable from within debugger) to be
included into a program or DLL to be debugged.

In C++, you can also force constructors and/or destructors to be called for a data item without necessarily
referencing the data item anywhere in your code.

11.15 The FUNCTION Pragma

Certain functions, such as those listed in the description of the "oi" and "om" options, have intrinsic forms.
These functions are special functions that are recognized by the compiler and processed in a specia way.
For example, the compiler may choose to generate in-line code for the function. Theintrinsic attribute for
these special functionsis set by specifying the "oi" or "om" option or using an "intrinsic" pragma. The
"function" pragma can be used to remove the intrinsic attribute for a specified list of functions.

The following describes the form of the "function" pragma.

#pragma function (fn {, fn}) [;]

where description:
fn isthe name of afunction.

Suppose the following source code was compiled using the "om" option so that when one of the special
math functionsis referenced, the intrinsic form will be used. In our example, we have referenced the
function si n which does have an intrinsic form. By specifying si n ina"function" pragma, the intrinsic
attribute will be removed, causing the function si n to be treated as a regular user-defined function.

#i ncl ude <mat h. h>
#pragma function(sin);

doubl e test(double x)

return(sin(x));

152 The FUNCTION Pragma

32-bit Pragmas

11.16 The INCLUDE_ALIAS Pragma

In certain situations, it can be advantageous to remap the names of include files. Most commonly this
occurs on systems that do not support long file names when building source code that references header
fileswith long names.

The form of the "include_alias" pragmafollows.

#pragma include_alias ("alias name', "rea name") [;]
#pragma i nclude_alias (<alias name>, <real name>) [;]

where description:
alias name isthe namereferenced ininclude directives in source code.
real_name is the trand ated name that the compiler will reference instead.

The following is an example.

#pragma i nclude_alias("LongFil eNane.h", "Ifn.h")
#i ncl ude "LongFi | eNane. h"

In the example, the compiler will attempt to read Ifn.h when LongFileName.h was included.

Note that only simple textual substitution is performed. The aliased name must match exactly, including
double quotes or angle brackets, as well as any directory separators. Also, double quotes and angle
brackets may not be mixed a single pragma.

Thevalue of the predefined __FI LE__ symbol, as well as the filename reported in error messages, will be
the true filename after substitution was performed.

11.17 Setting Priority of Static Data Initialization (C++ Only)

The"initialize" pragma sets the priority for initialization of static datain thefile. This priority only applies
to initialization of static data that requires the execution of code. For example, the initialization of a class
that contains a constructor requires the execution of the constructor. Note that if the sequence in which
initialization of static datain your program takes place has no dependencies, the "initialize" pragma need
not be used.

The general form of the "initialize" pragmaisasfollows.

#pragnma initialize [before | after] priority [;]

priority::= n | library | program

Setting Priority of Static Data Initialization (C++ Only) 153

32-bit Topics

where description:

n isanumber representing the priority and must be in the range 0-255. The larger the
priority, the later the point at which initialization will occur.

Prioritiesin the range 0-20 are reserved for the C++ compiler. Thisisto ensure that proper initialization of
the C++ run-time system takes place before the execution of your program. The "library" keyword
represents a priority of 32 and can be used for class libraries that require initialization before the program is
initialized. The "program" keyword represents a priority of 64 and is the default priority for any compiled
code. Specifying "before" adjusts the priority by subtracting one. Specifying "after" adjusts the priority by
adding one.

A sourcefile containing the following "initialize" pragma specifies that the initialization of static datain the
file will take place before initialization of al other static data in the program since a priority of 63 will be
assigned.

Example:
#pragma initialize before program

If we specify "after" instead of "before”, the initialization of the static datain the file will occur after
initialization of all other static datain the program since a priority of 65 will be assigned.

Note that the following is equivalent to the "before" example

Example:
#pragma initialize 63

and the following is equivalent to the "after" example.

Example:
#pragma initialize 65

The use of the "before", "after", and "program” keywords are more descriptive in the intent of the pragmas.
It is recommended that a priority of 32 (the priority used when the "library" keyword is specified) be used
when developing class libraries. Thiswill ensure that initialization of static data defined by the class
library will take place before initialization of static data defined by the program. The following "initialize"
pragma can be used to achievethis.

Example:
#pragma initialize library

11.18 The INLINE_DEPTH Pragma (C++ Only)

When an in-line function is called, the function call may be replaced by the in-line expansion for that
function. Thisin-line expansion may include callsto other in-line functions which can also be expanded.
The"inline_depth" pragma can be used to set the number of times this expansion of in-line functions will
occur for acall.

The form of the "inline_depth" pragmais as follows.

154 The INLINE_DEPTH Pragma (C++ Only)

32-bit Pragmas

#pragma inline_depth [(1 n D] [;]

where description:

n isthe depth of expansion. If n is0, no expansion will occur. If nis1, only theoriginal call
isexpanded. If nis2, theoriginal call and the in-line functions invoked by the original
function will be expanded. The default value for n is3. The maximum value for n is 255.
Note that no expansion of recursive in-line functions occur unless enabled using the
"inline_recursion” pragma.

11.19 The INLINE_RECURSION Pragma (C++ Only)

The"inline_recursion" pragma controls the recursive expansion of inline functions. The form of the
"inline_recursion” pragmais as follows.

#pragma inline_recursion [(] on | off [)] [;]

Specifying "on" will enable expansion of recursive inline functions. The depth of expansion is specified by
the "inline_depth" pragma. The default depth is 3. Specifying "off" suppresses expansion of recursive
inline functions. Thisisthe default.

11.20 The INTRINSIC Pragma

Certain functions, those listed in the description of the "oi" option, have intrinsic forms. These functions
are special functions that are recognized by the compiler and processed in a special way. For example, the
compiler may choose to generate in-line code for the function. The intrinsic attribute for these special
functionsis set by specifying the "oi" option or using an "intrinsic" pragma.

The following describes the form of the "intrinsic" pragma.

#pragma intrinsic (fn {, fn}) [;]

where description:
fn is the name of afunction.
Suppose the following source code was compiled without using the "oi" option so that no function had the

intrinsic attribute. 1f we wanted the intrinsic form of the si n function to be used, we could specify the
function in an "intrinsic" pragma.

The INTRINSIC Pragma 155

32-bit Topics

#i ncl ude <mat h. h>
#pragma intrinsic(sin);

doubl e test(double x)

{
}

return(sin(x));

11.21 The MESSAGE Pragma

The "message" pragma can be used to issue a message with the specified text to the standard output without
terminating compilation. The following describes the form of the "message” pragma.

#pragma nmessage ("messagetext") [;]

where description:
"message text" isthe text of the message that you wish to display.

Thefollowing is an example.
#if defined(__386__)
#el se

#pragm nessage ("assuming 16-bit conpile");
#endi f

11.22 The ONCE Pragma

The "once" pragma can be used to indicate that the file which contains this pragma should only be opened
and processed "once". The following describes the form of the "once" pragma.

#pragm once [;]

Assume that the file "foo.h" contains the following text.

Example:
#i f ndef _FOO_H_| NCLUDED
#define _FOO H_| NCLUDED
#pragnma once

#endi.f

The first time that the compiler processes "foo.h" and encounters the "once" pragma, it records the file's
name. Subseguently, whenever the compiler encountersa #i ncl ude statement that refersto "foo.h", it

156 The ONCE Pragma

32-bit Pragmas

will not open the include file again. This can help speed up processing of #i ncl ude files and reduce the
time required to compile an application.

11.23 The PACK Pragma

The "pack" pragma can be used to control the way in which structures are stored in memory. There are 4
forms of the "pack” pragma.

The following form of the "pack” pragma can be used to change the alignment of structures and their fields
in memory.

#pragma pack (n) [;]

where description:
n is1, 2, 4, 8 or 16 and specifies the method of alignment.
The alignment of structure membersis described in the following table. If the size of the member is1, 2, 4,

8 or 16, the alignment is given for each of the "zp" options. If the member of the structureis an array or
structure, the alignment is described by the row "x".

zpl zp2 zp4 zp8 zpl6
sizeof (menber) \----------iim
| 0 0 0 0 0
2 | 0 2 2 2 2
4 | 0 2 4 4 4
8 | 0 2 4 8 8
16 | 0 2 4 8 16
X | aligned to | argest nenber

An aignment of 0 means no alignment, 2 means word boundary, 4 means doubleword boundary, etc. If the
largest member of structure "x" is 1 byte then "x" isnot aligned. If the largest member of structure "x" is 2
bytes then "x" is aligned according to row 2. If the largest member of structure "x" is 4 bytesthen "X" is
aligned according to row 4. If the largest member of structure "x" is 8 bytes then "x" is aligned according
torow 8. If the largest member of structure "x" is 16 bytesthen "x" is aligned according to row 16.

If no value is specified in the "pack” pragma, a default value of 8 isused. Note that the default value can be
changed with the "zp" Open Watcom C/C++ compiler command line option.

The following form of the "pack” pragma can be used to save the current alignment amount on an internal
stack.

#pragma pack (push) [;]

The following form of the "pack” pragma can be used to save the current alignment amount on an internal
stack and set the current alignment.

The PACK Pragma 157

32-bit Topics

#pragma pack (push, number) [;]

The following form of the "pack™ pragma can be used to restore the previous alignment amount from an
internal stack.

#pragma pack (pop) [;]

11.24 The READ_ONLY_FILE Pragma

Explicit listing of dependenciesin a makefile can often be tedious in the development and maintenance
phases of aproject. The Open Watcom C/C++ compiler will insert dependency information into the object
file asit processes source files so that a complete snapshot of the files necessary to build the object file are
recorded. The"read_only_file" pragma can be used to prevent the name of the source file that includes it
from being included in the dependency information that is written to the object file.

This pragmais commonly used in system header files since they change infrequently (and, when they do,
there should be no impact on source files that have included them).

The form of the "read_only_file" pragmafollows.

#pragma read_only file [;]

For more information on make dependencies, see the section entitled "Automatic Dependency Detection
(\AAUTODEPEND)" in the Open Watcom C/C++ Tools User’s Guide.

11.25 The TEMPLATE_DEPTH Pragma (C++ Only)

The "template_depth” pragma provides a hard limit for the amount of nested template expansions allowed
so that infinite expansion can be detected.

The form of the "template_depth" pragmais as follows.

#pragma tenplate_depth [(] n D] [;]

where description:

n isthe depth of expansion. If the value of n islessthan 2, if will default to 2. If n isnot
specified, awarning message will be issued and the default value for n will be 100.

The following example of recursive template expansion illustrates why this pragma can be useful.

158 The TEMPLATE_DEPTH Pragma (C++ Only)

32-bit Pragmas

Example:
#pragma tenpl ate_dept h(10);

tenpl ate <class T>

struct S {
S<T*> x;
b

S<char > v;

11.26 The WARNING Pragma (C++ Only)

The"warning" pragma sets the level of warning messages. The form of the "warning" pragmais as
follows.

#pragnma war ni ng msg_num level [;]

where description:

msg_num is the number of the warning message. This number corresponds to the number issued by
the compiler and can be found in the appendix entitled "Open Watcom C++ Diagnostic
Messages' on page 405. If nsg_numis™*", the level of all warning messages is changed
to the specified level. Make sureto strip all leading zeroes from the message number (to
avoid interpretation as an octal constant).

level isanumber from 0 to 9 and represents the level of the warning message. When avalue of
zero is specified, the warning becomes an error.

11.27 Auxiliary Pragmas

The following sections describe the capabilities provided by auxiliary pragmas.

11.27.1 Specifying Symbol Attributes

Auxiliary pragmas are used to describe attributes that affect code generation. Initialy, the compiler defines
adefault set of attributes. Each auxiliary pragmarefers to one of the following.

1. asymbol (such as avariable or function)
2. atypedefinition that resolvesto afunction type
3. thedefault set of attributes defined by the compiler

When an auxiliary pragmarefersto a particular symbol, a copy of the current set of default attributesis
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to the specified symbol and can only be changed by another auxiliary pragmathat refers to the same
symbol.

An example of atype definition that resolves to a function typeis the following.

Auxiliary Pragmas 159

32-bit Topics

typedef void (*func_type)();

When an auxiliary pragmarefers to a such atype definition, a copy of the current set of default attributesis
made and merged with the attributes specified in the auxiliary pragma. The resulting attributes are assigned
to each function whose type matches the specified type definition.

When "default” is specified instead of a symbol name, the attributes specified by the auxiliary pragma
change the default set of attributes. The resulting attributes are used by all symbols that have not been
specificaly referenced by a previous auxiliary pragma.

Note that al auxiliary pragmas are processed before code generation begins. Consider the following
example.

code in which synbol x is referenced
#pragnma aux y <attrs_1>;

code in which synbol y is referenced
code in which synbol z is referenced
#pragma aux default <attrs_2>;
#pragma aux x <attrs_3>;

Auxiliary attributes are assigned to x, y and z in the following way.

1. Symbol x isassigned theinitial default attributes merged with the attributes specified by
<attrs_2>and<attrs_3>.

2. Symbol y isassigned theinitial default attributes merged with the attributes specified by
<attrs_1>.

3. Symbol z isassigned theinitial default attributes merged with the attributes specified by
<attrs_2>.

11.27.2 Alias Names

When asymbol referred to by an auxiliary pragmaincludes an alias name, the attributes of the alias name
are aso assumed by the specified symbol.

There are two methods of specifying diasinformation. In the first method, the symbol assumes only the
attributes of the alias name; no additional attributes can be specified. The second method is more general
sinceit is possible to specify an alias name as well as additional auxiliary information. In this case, the
symbol assumes the attributes of the alias name as well as the attributes specified by the additional auxiliary
information.

The simple form of the auxiliary pragma used to specify an aliasis asfollows.

#pragma aux (sym, [farl16] alias) [;]

160 Auxiliary Pragmas

32-bit Pragmas

where description:
sym isany valid C/C++ identifier.
alias isthe alias name and is any valid C/C++ identifier.

Thef ar 16 attribute should only be used on systems that permit the calling of 16-bit code from 32-hit
code. Currently, the only supported operating system that allows thisis 32-bit 0S/2. If you have any
libraries of functions or APIsthat are only available as 16-hit code and you wish to access these functions
and APIs from 32-bit code, you must specify the f ar 16 attribute. If the f ar 16 attribute is specified, the
compiler will generate special code which allows the 16-bit code to be called from 32-bit code. Note that a
f ar 16 function must be a function whose attributes are those specified by one of the alias names
__cdecl or__pascal . Thesealiasnameswill be described in alater section.

Consider the following example.

#pragma aux push_args parm[]
#pragma aux (rtn, push_args)

Theroutine r t n assumes the attributes of the alias name push_ ar gs which specifies that the arguments
tort n are passed on the stack.

Let uslook at an example in which the symbol is atype definition.
typedef void (func_type)(int);

#pragm aux push_args parm/|];
#pragma aux (func_type, push_args);

extern func_type rtnl;
extern func_type rtn2;

Thefirst auxiliary pragma defines an alias name called push_ar gs that specifies the mechanism to be
used to pass arguments. The mechanismisto pass all arguments on the stack. The second auxiliary
pragma associ ates the attributes specified in the first pragma with the type definition f unc_t ype. Since
rtnlandrtn2areof typefunc_type, argumentsto either of those functions will be passed on the
stack.

The general form of an auxiliary pragmathat can be used to specify an aliasis as follows.

#pragma aux (alias) sym aux attrs [;]

where description:

alias isthe alias name and is any valid C/C++ identifier.

sym isany valid C/C++ identifier.

aux_attrs are attributes that can be specified with the auxiliary pragma.

Consider the following example.

Auxiliary Pragmas 161

32-bit Topics

#pragma aux HGH C "*" \
parm cal ler [] \
val ue no8087 \

nodi fy [eax ecx edx fs gs];
#pragma aux (HHGH C) rtnl;
#pragm aux (HIGH C) rtn2;
#pragma aux (HHGH_ C) rtn3;

Theroutinesrt nl, rtn2 andrt n3 assume the same attributes as the alias name HI GH_C which defines
the calling convention used by the MetaWare High C compiler. Note that register ES must also be
specified in the "modify" register set when using amemory model that is not a small data model.

Whenever callsaremadetort nl, rtn2 andrt n3, the MetaWare High C calling convention will be
used.

Note that if the attributes of Hl GH_C change, only one pragma needs to be changed. If we had not used an
alias name and specified the attributes in each of the three pragmasfor rtnl, rtn2 andrt n3, wewould
have to change all three pragmas. This approach also reduces the amount of memory required by the
compiler to process the sourcefile.

WARNING! Theaiasname H GH_Cisjust another symbol. If H GH_C appeared in your source
code, it would assume the attributes specified in the pragmafor H GH_C.

11.27.3 Predefined Aliases

A number of symbols are predefined by the compiler with a set of attributes that describe a particular
calling convention. These symbols can be used as aliases. Thefollowingisalist of these symbols.

__cdecl __cdecl orcdecl definesthe calling convention used by Microsoft compilers.
__fastcall __fastcall orfastcal |l definesthe calling convention used by Microsoft compilers.
_ fortran __fortranorfortran definesthe calling convention used by Open Watcom

FORTRAN compilers.

__pascal __pascal orpascal definesthe calling convention used by OS/2 1.x and Windows 3.x
API functions.

__Stdcall __stdcal | orstdcal | definesaspecial calling convention used by the Win32 API
functions.

__syscall __syscal | orsyscal | definesthe calling convention used by the 32-bit OS/2 AP
functions.

__system ___systemorsyst emareidentical to __syscal | .

__watcall __watcal | orwat cal | definesthe calling convention used by Open Watcom
compilers.

The following describes the attributes of the above aias names.

162 Auxiliary Pragmas

32-bit Pragmas

11.27.3.1 Predefined " __cdecl" Alias

#pragma aux __cdecl " _*" \
parmcaller [] \
val ue struct float struct routine [eax] \
nmodi fy [eax ecx edx]

Notes:
1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the called routine allocates space for the return value and returns a pointer to the return value in
register EAX.

4. RegistersEAX, ECX and EDX are not saved and restored when a call is made.

11.27.3.2 Predefined "__pascal"” Alias

#pragma aux __pascal """\
parmreverse routine [] \
val ue struct float struct caller [] \
nodi fy [eax ebx ecx edx]

Notes:
1. All symbols are mapped to upper case.

2. Arguments are pushed on the stack in reverse order. That is, the first argument is pushed first,
the second argument is pushed next, and so on. The routine being called will remove the
arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure is returned,
the caller allocates space on the stack. The address of the allocated space will be pushed on the
stack immediately before the call instruction. Upon returning from the call, register EAX will
contain address of the space allocated for the return value.

4. RegistersEAX, EBX, ECX and EDX are not saved and restored when a call is made.

11.27.3.3 Predefined "__stdcall" Alias
#pragma aux __stdcall "_*@nn" \
parmroutine [] \
val ue struct struct caller [] \
nodi fy [eax ecx edx]

Auxiliary Pragmas 163

32-bit Topics

Notes:
1. All symbols are preceded by an underscore character.

2. All Csymbols (extern "C" symbolsin C++) are suffixed by "@nnn" where "nnn" is the sum of
the argument sizes (each size is rounded up to amultiple of 4 bytes so that char and short are size
4). When the argument list contains"...", the "@nnn" suffix is omitted.

3. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The called routine will remove the arguments from the stack.

4. When astructureis returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon returning from
the call, register EAX will contain address of the space allocated for the return value.
Floating-point values are returned in 80x87 register ST(0).

5. Registers EAX, ECX and EDX are not saved and restored when a call is made.

11.27.3.4 Predefined "__syscall" Alias

#pragma aux __syscall "*" \
parmcaller [] \
val ue struct struct caller [] \
nodi fy [eax ecx edx]

Notes:

1. Symbols names are not modified, that is, they are not adorned with leading or trailing
underscores.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. When asdtructureis returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon returning from
the call, register EAX will contain address of the space allocated for the return value.
Floating-point values are returned in 80x87 register ST(0).

4. RegistersEAX, ECX and EDX are not saved and restored when a call is made.

11.27.3.5 Predefined "__watcall" Alias (register calling convention)

#pragma aux __watcall "*_" \
parmroutine [eax ebx ecx edx] \
val ue struct caller

Notes:
1. Symbol names are followed by an underscore character.

2. Arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have

164 Auxiliary Pragmas

32-bit Pragmas

been exhausted). Arguments that are passed on the stack are pushed from right to left. The
calling routine will remove the argumentsif any were pushed on the stack.

3. When asdtructureis returned, the caller allocates space on the stack. The address of the allocated
spaceis put into ESI register. The called routine then places the return value there. Upon
returning from the call, register EAX will contain address of the space allocated for the return
value.

4. Floating-point values are returned using 80x86 registers ("fpc" option) or using 80x87
floating-point registers ("fpi" or "fpi87" option).

5. All registers must be preserved by the called routine.

11.27.3.6 Predefined "__watcall" Alias (stack calling convention)

#pragma aux __watcall "*" \
parmcaller [] \
val ue no8087 struct caller \
nodi fy [eax ecx edx 8087]

Notes:
1. All symbols appear in object form as they do in source form.

2. Arguments are pushed on the stack from right to left. That is, the last argument is pushed first.
The calling routine will remove the arguments from the stack.

3. When asdtructureis returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon returning from
the call, register EAX will contain address of the space allocated for the return value.

4. Floating-point values are returned only using 80x86 registers.

5. Registers EAX, ECX and EDX are not preserved by the called routine.

6. Any local variablesthat are located in the 80x87 cache are not preserved by the called routine.

11.27.4 Alternate Names for Symbols

The following form of the auxiliary pragma can be used to describe the mapping of a symbol fromits
source form to its object form.

#pragm aux sym obj _name [;]

where description:
sym isany valid C/C++ identifier.
obj_name isany character string enclosed in double quotes.

When specifying obj _nane, some characters have a special meaning:

Auxiliary Pragmas 165

32-bit Topics

where description:
* is unmodified symbol name
A is symbol name converted to uppercase

! is symbol name converted to lowercase

isaplaceholder for "@nnn", where nnn is size of al function parameters on the stack; it is
ignored for functions with variable argument lists, or for symbols that are not functions

\ next character istreated as literal
Several examples of source to object form symbol name translation follow:

In the following example, the name "MyRtn" will be replaced by "MyRtn_" in the object file.

#pragma aux MyRtn "*_";

Thisisthe default for all function names.

In the following example, the name "MyVar" will bereplaced by " MyVar" in the object file.
#pragma aux MyVar "_*";

Thisisthe default for all variable names.

In the following example, the lower case version "myrtn” will be placed in the object file.
#pragma aux MyRtn "!";

In the following example, the upper case version "MYRTN" will be placed in the object file.
#pragma aux MyRtn "A~";

In the following example, the name "MyRtn" will be replaced by " MyRtn@nnn" in the object file. "nnn"
represents the size of all function parameters.

#pragma aux MyRtn " *#";

In the following example, the name "MyRtn" will be replaced by "_MyRtn#" in the object file.
#pragm aux MyRtn " _*\#";

The default mapping for al symbols can also be changed asillustrated by the following example.
#pragma aux default "_*_";

The above auxiliary pragma specifies that all names will be prefixed and suffixed by an underscore
character ().

166 Auxiliary Pragmas

32-bit Pragmas

11.27.5 Describing Calling Information

The following form of the auxiliary pragma can be used to describe the way afunction isto be called.

#pragma aux sym far [;]
or
#pragm aux sym near [;]
or
#pragma aux sym = in_line [;]

in_line::={ const | (seg id) | (of f set id) | (rel of f id)

| "asm”)

where description:

sym isafunction name.

const isavaid C/C++ integer constant.

id isany valid C/C++ identifier.

seg specifies the segment of the symbol i d.

offset specifies the offset of the symbol i d.

reloff specifies the relative offset of the symbol i d for near control transfers.
asm is an assembly language instruction or directive.

In the following example, Open Watcom C/C++ will generate afar cal to the function myrt n.

#pragma aux nyrtn far;

Note that this overrides the calling sequence that would normally be generated for a particular memory
model. In other words, afar call will be generated even if you are compiling for a memory model with a
small code model.

In the following example, Open Watcom C/C++ will generate a near call to the function nmyrt n.
#pragma aux nyrtn near;

Note that this overrides the calling sequence that would normally be generated for a particular memory

model. In other words, a near call will be generated even if you are compiling for amemory model with a

big code model.

In the following DOS example, Open Watcom C/C++ will generate the sequence of bytes following the "="

character in the auxiliary pragmawhenever acall to node4 isencountered. node4 iscaled anin-line
function.

Auxiliary Pragmas 167

32-bit Topics

voi d node4(void);

#pragm aux node4 = \
0Oxb4 0x00 /* nov AH, 0 */ \
0xb0 0x04 /* nov AL, 4 */ \
Oxcd 0x10 /* int 10H */ \

modify [AH AL];

The sequence in the above DOS example represents the following lines of assembly language instructions.

nov AH, O ; select function "set node"
nov AL, 4 ; specify node (node 4)
i nt 10H ; BIOS video call

The above example demonstrates how to generate BIOS function calls in-line without writing an assembly
language function and calling it from your C/C++ program. The C prototype for the function node4 is not

necessary but isincluded so that we can take advantage of the argument type checking provided by Open
Watcom C/C++.

The following DOS example is equivalent to the above example but mnemonics for the assembly language
instructions are used instead of the binary encoding of the assembly language instructions.

voi d node4(void);
#pragm aux node4 =
"mov AH, 0",
"mov AL, 4",
"int 10H"
nmodify [AH AL];

— e — —

A sequence of in-line assembly language instructions may contain symbolic references. In the following
example, anear cal to the function nyal i as ismade whenever nmyr t n iscalled.

extern void nyalias(void);

void nyrtn(void);

#pragma aux nyrtn = \
0xe8 reloff nmyalias /* near call */;

In the following example, afar call to the function nyal i as is made whenever nyr t n iscalled.

extern void nyalias(void);

void nyrtn(void);

#pragm aux myrtn = \
0x9a offset nyalias seg nyalias /* far call */;

11.27.5.1 Loading Data Segment Register

An application may have been compiled so that the segment register DS does not contain the segment
address of the default data segment (group "DGROUP"). Thisisusualy the caseif you are using alarge
data memory model. Suppose you wish to call afunction that assumes that the segment register DS
contains the segment address of the default data segment. It would be very cumbersome if you were forced

to compile your application so that the segment register DS contained the default data segment (asmall data
memory model).

The following form of the auxiliary pragmawill cause the segment register DS to be loaded with the
segment address of the default data segment before calling the specified function.

168 Auxiliary Pragmas

32-bit Pragmas

#pragma aux sym parm | oadds [;]

where description:
sym isafunction name.
Alternatively, the following form of the auxiliary pragmawill cause the segment register DS to be loaded

with the segment address of the default data segment as part of the prologue sequence for the specified
function.

#pragma aux sym | oadds [;]

where description:

sym isafunction name.

11.27.5.2 Defining Exported Symbols in Dynamic Link Libraries

An exported symbol in adynamic link library is asymbol that can be referenced by an application that is
linked with that dynamic link library. Normally, symbolsin dynamic link libraries are exported using the
Open Watcom Linker "EXPORT" directive. An alternative method isto use the following form of the
auxiliary pragma.

#pragma aux sym export [;]

where description:

sym isafunction name.

11.27.5.3 Forcing a Stack Frame

Normally, afunction contains a stack frame if arguments are passed on the stack or an automatic variableis
alocated on the stack. No stack frame will be generated if the above conditions are not satisfied. The
following form of the auxiliary pragmawill force a stack frame to be generated under any circumstance.

#pragma aux sym frame [;]

where description:

sym isafunction name.

Auxiliary Pragmas 169

32-bit Topics

11.27.6 Describing Argument Information
Using auxiliary pragmas, you can describe the calling convention that Open Watcom C/C++ isto use for
calling functions. Thisis particularly useful when interfacing to functions that have been compiled by

other compilers or functions written in other programming languages.

The general form of an auxiliary pragmathat describes argument passing is the following.

#pragma aux sym parm {pop_info|reverse |{reg_set}} [;]

pop_info::= caller | routine

where description:

sym isafunction name.

reg_set iscaled aregister set. Theregister sets specify the registersthat are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

11.27.6.1 Passing Arguments in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to pass
arguments to a particular function.

#pragm aux sym parm {reg_set} [;]

where description:

sym isafunction name.

reg_set iscalled aregister set. Theregister sets specify the registersthat are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

Register sets establish a priority for register allocation during argument list processing. Register sets are
processed from left to right. However, within aregister set, registers are chosen in any order. Once all
register sets have been processed, any remaining arguments are pushed on the stack.

Note that regardless of the register sets specified, only certain combinations of registers will be selected for
arguments of a particular type.

Note that arguments of type float and double are always pushed on the stack when the "fpi" or "fpi87"
option is used.

170 Auxiliary Pragmas

32-bit Pragmas

double

far pointer

int

char, short int

others

Notes:

Arguments of type double can only be passed in one of the following register pairs:
EDX:EAX, ECX:EBX, ECX:EAX, ECX:ESI, EDX:EBX, EDI:EAX, ECX:EDI, EDX:ESI,
EDI:EBX, ESI:EAX, ECX:EDX, EDX:EDI, EDI:ESI, ESI:EBX or EBX:EAX. For
example, if the following register set was specified for aroutine having an argument of
type double,

[EBP EBX]

the argument would be pushed on the stack since avalid register combination for 8-byte
arguments is not contained in the register set. Note that this method for passing arguments
of type doubleis supported only when the "fpc" option isused. Note that this argument
passing method does not include the passing of 8-byte structures.

A far pointer can only be passed in one of the following register pairs. DX:EAX, CX:EBX,
CX:EAX, CX:ESl, DX:EBX, DI:EAX, CX:EDI, DX:ESI, DI:EBX, SI:EAX, CX:EDX,
DX:EDI, DI:ESI, SI:EBX, BX:EAX, FS:ECX, FS.EDX, FS:EDI, FS:ESI, FS:EBX,
FS.EAX, GS.EECX, GS:EDX, GS:EDI, GS:ES|, GS.EBX, GS.EAX, DS.ECX, DS:EDX,
DS.EDI, DS:ESI, DS.EBX, DS:EAX, ES.ECX, ES:EDX, ES.EDI, ES.ES|, ES:EBX or
ES:EAX. For example, if afar pointer is passed to a function with the following register
Set,

[ES EBP]

the argument would be pushed on the stack since avalid register combination for afar
pointer is not contained in the register set.

The only registersthat will be assigned to 4-byte arguments (e.g., arguments of type int)
are: EAX, EBX, ECX, EDX, ESI and EDI. For example, if the following register set was
specified for aroutine with one argument of typeint,

[EBP]

the argument would be pushed on the stack since avalid register combination for 4-byte
arguments is not contained in the register set. Note that this argument passing method
includes 4-byte structures. Note that this argument passing method also includes arguments
of type float but only when the "fpc" option is used.

Arguments whose sizeis 1 byte or 2 bytes (e.g., arguments of type char and short int as
well as 2-byte structures) are promoted to 4 bytes and are then assigned registers asiif they
were 4-byte arguments.

Arguments that do not fall into one of the above categories cannot be passed in registers
and are pushed on the stack. Once an argument has been assigned a position on the stack,
all remaining arguments will be assigned a position on the stack even if all register sets
have not yet been exhausted.

1. Thedefault register setis[EAX EBX ECX EDX].

2. Specifying registers AH and AL is equivalent to specifying register AX. Specifying registers
DH and DL is equivalent to specifying register DX. Specifying registers CH and CL is
equivalent to specifying register CX. Specifying registers BH and BL is equivalent to specifying
register BX. Specifying register EAX implies that register AX has been specified. Specifying

Auxiliary Pragmas 171

32-bit Topics

register EBX implies that register BX has been specified. Specifying register ECX implies that
register CX has been specified. Specifying register EDX implies that register DX has been
specified. Specifying register EDI impliesthat register DI has been specified. Specifying
register ESI implies that register Sl has been specified. Specifying register EBP implies that
register BP has been specified. Specifying register ESP implies that register SP has been
specified.

3. If you are compiling for amemory model with asmall data model, or the "zdp" compiler option
is specified, any register combination containing register DS becomesillegal. Inasmall data
model, segment register DS must remain unchanged as it points to the program’ s data segment.
Note that the "zdf" compiler option can be used to specify that register DS does not contain that
segment address of the program’ s data segment. In this case, register combinations containing
register DS are legal.

4. If you are compiling for the flat memory model, any register combination containing DS or ES
becomesillegal. Inaflat memory model, code and data reside in the same segment. Segment
registers DS and ES point to this segment and must remain unchanged.

Consider the following example.
#pragma aux myrtn parm[eax ebx ecx edx] [ebp esi];
Suppose myr t n isaroutine with 3 arguments each of type double.

1. Thefirst argument will be passed in the register pair EDX:EAX.

2. The second argument will be passed in the register pair ECX:EBX.

3. Thethird argument will be pushed on the stack since EBP:ESI is not avalid register pair for

arguments of type double.

Itis possible for registers from the second register set to be used before registers from the first register set
are used. Consider the following example.

#pragma aux myrtn parm[eax ebx ecx edx] [esi edi];
Suppose myr t n isaroutine with 3 arguments, the first of type int and the second and third of type double.
1. Thefirst argument will be passed in the register EAX.
2. Thesecond argument will be passed in the register pair ECX:EBX.
3. Thethird argument will be passed in the register set EDI:ESI.

Note that registers are no longer selected from aregister set after registers are selected from subsequent
register sets, even if al registers from the original register set have not been exhausted.

An empty register set is permitted. All subsequent register sets appearing after an empty register set are
ignored; all remaining arguments are pushed on the stack.

Notes:
1. If asingle empty register set is specified, all arguments are passed on the stack.

2. If no register set is specified, the default register set [EAX EBX ECX EDX] is used.

172 Auxiliary Pragmas

32-bit Pragmas

11.27.6.2 Forcing Arguments into Specific Registers

It is possible to force arguments into specific registers. Suppose you have a function, say "mycopy", that
copiesdata. The first argument is the source, the second argument is the destination, and the third
argument isthe length to copy. If we want the first argument to be passed in the register ESI, the second
argument to be passed in register EDI and the third argument to be passed in register ECX, the following
auxiliary pragma can be used.

voi d nycopy(char near *, char *, int);
#pragma aux mycopy parm[ESI] [ED] [ECX];

Note that you must be aware of the size of the arguments to ensure that the arguments get passed in the
appropriate registers.

11.27.6.3 Passing Arguments to In-Line Functions

For functions whose code is generated by Open Watcom C/C++ and whose argument list is described by an
auxiliary pragma, Open Watcom C/C++ has some freedom in choosing how arguments are assigned to
registers. Since the code for in-line functions is specified by the programmer, the description of the
argument list must be very explicit. To achieve this, Open Watcom C/C++ assumes that each register set
corresponds to an argument. Consider the following DOS example of an in-line function called

scrol | acti vepgup.

voi d scrollactivepgup(char, char, char, char, char, char);
#pragma aux scrollactivepgup =\
"mov AH, 6" \

“int 10h" \
parm[ch] [cl] [dh] [dI] [al] [bh] \
modi fy [ah];

The BIOS video call to scroll the active page up requires the following arguments.

1. Therow and column of the upper left corner of the scroll window is passed in registers CH and
CL respectively.

2. Therow and column of the lower right corner of the scroll window is passed in registers DH and
DL respectively.

3. Thenumber of lines blanked at the bottom of the window is passed in register AL.

4. Theattribute to be used on the blank linesis passed in register BH.
When passing arguments, Open Watcom C/C++ will convert the argument so that it fitsin the register(s)
specified in the register set for that argument. For example, in the above example, if the first argument to
scrol | acti vepgup was called with an argument whose type was int, it would first be converted to
char before assigning it to register CH. Similarly, if an in-line function required its argument in register
EAX and the argument was of type short int, the argument would be converted to long int before
assigning it to register EAX.
In general, Open Watcom C/C++ assigns the following types to register sets.

1. A register set consisting of asingle 8-bit register (1 byte) is assigned atype of unsigned char.

Auxiliary Pragmas 173

32-bit Topics

2. A register set consisting of asingle 16-bit register (2 bytes) is assigned atype of unsigned short
int.

3. A register set consisting of asingle 32-hit register (4 bytes) is assigned a type of unsigned long
int.

4. A register set consisting of two 32-bit registers (8 bytes) is assigned atype of double.

11.27.6.4 Removing Arguments from the Stack

The following form of the auxiliary pragma specifies who removes from the stack arguments that were
pushed on the stack.

#pragma aux sym parm (caller | routine) [;]

where description:

sym isafunction name.

"caller" specifiesthat the caller will pop the arguments from the stack; "routine" specifies that the called
routine will pop the arguments from the stack. If "caller" or "routine" is omitted, "routine" is assumed

unless the default has been changed in a previous auxiliary pragma, in which case the new default is
assumed.

11.27.6.5 Passing Arguments in Reverse Order

The following form of the auxiliary pragma specifies that arguments are passed in the reverse order.

#pragm aux sym parmreverse [;]

where description:
sym isafunction name.

Normally, arguments are processed from left to right. The leftmost arguments are passed in registers and
the rightmost arguments are passed on the stack (if the registers used for argument passing have been
exhausted). Arguments that are passed on the stack are pushed from right to left.

When arguments are reversed, the rightmost arguments are passed in registers and the leftmost arguments

are passed on the stack (if the registers used for argument passing have been exhausted). Arguments that
are passed on the stack are pushed from left to right.

Reversing argumentsis most useful for functions that require arguments to be passed on the stack in an
order opposite from the default. The following auxiliary pragma demonstrates such afunction.

#pragm aux rtn parmreverse [];

174 Auxiliary Pragmas

32-bit Pragmas

11.27.7 Describing Function Return Information
Using auxiliary pragmas, you can describe the way functions areto return values. Thisis particularly
useful when interfacing to functions that have been compiled by other compilers or functions written in

other programming languages.

The general form of an auxiliary pragmathat describes the way a function returnsits value is the following.

#pragma aux sym val ue {no8087 | reg set | struct_info} [;]
struct_info::= struct {float | struct | (routine | caller) | reg_set}

where description:

sym isafunction name.

reg set iscaled aregister set. The register sets specify the registersthat are to be used for
argument passing. A register set isalist of registers separated by spaces and enclosed in
square brackets.

11.27.7.1 Returning Function Values in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be used to return
afunction’svaue.

#pragma aux sym val ue reg set [;]

where description:
sym isafunction name.
reg_set isaregister set.

Note that the method described below for returning values of type float or doubleis supported only when
the "fpc" option is used.

Depending on the type of the return value, only certain registers are allowed in reg_set.

1-byte For 1-byte return values, only the following registersare allowed: AL, AH, DL, DH, BL,
BH, CL or CH. If noregister set is specified, register AL will be used.

2-byte For 2-byte return values, only the following registers are allowed: AX, DX, BX, CX, Sl or
DI. If no register set is specified, register AX will be used.

4-byte For 4-byte return values (including near pointers), only the following register are allowed:
EAX, EDX, EBX, ECX, ESl or EDI. If no register set is specified, register EAX will be
used. Thisform of the auxiliary pragmaislegal for functions of type float when using the
"“fpc" option only.

Auxiliary Pragmas 175

32-bit Topics

far pointer For functions that return far pointers, the following register pairs are allowed: DX:EAX,
CX:EBX, CX:EAX, CX:ESI, DX:EBX, DI:EAX, CX:EDI, DX:ESI, DI:EBX, SI:EAX,
CX:EDX, DX:EDI, DI:ESI, SI:EBX, BX:EAX, FS:ECX, FS:EDX, FS:EDI, FS:ESI,
FSEEBX, FSEEAX, GS.ECX, GS.EEDX, GS:EDI, GS:ESI, GS.EBX, GS.EAX, DS:ECX,
DS.EDX, DS.EDI, DS:ESI, DS.EBX, DS.EAX, ES.ECX, ES.EDX, ES:EDI, ES.ES|,
ES.EBX or ES:EAX. If noregister set is specified, the registers DX:EAX will be used.

8-byte For 8-byte return values (including functions of type double), only the following register
pairsare alowed: EDX:EAX, ECX:EBX, ECX:EAX, ECX:ESI, EDX:EBX, EDI:EAX,
ECX:EDI, EDX:ESI, EDI:EBX, ESI:EAX, ECX:EDX, EDX:EDI, EDI:ES|, ESI:EBX or
EBX:EAX. If noregister set is specified, the registers EDX:EAX will beused. Thisform
of the auxiliary pragmaislegal for functions of type double when using the "fpc" option
only.

Notes:

1. Anempty register setisnot allowed.

2. If you are compiling for amemory model which has a small data model, any of the above
register combinations containing register DS becomesillegal. Inasmall data model, segment
register DS must remain unchanged as it points to the program’ s data segment.

3. If you are compiling for the flat memory model, any register combination containing DS or ES

becomesillegal. Inaflat memory model, code and data reside in the same segment. Segment
registers DS and ES point to this segment and must remain unchanged.

11.27.7.2 Returning Structures

Typically, structures are not returned in registers. Instead, the caller allocates space on the stack for the
return value and sets register ESI to point to it. The called routine then places the return value at the
location pointed to by register ESI.

The following form of the auxiliary pragma can be used to specify the register that is to be used to point to
the return value.

#pragma aux sym val ue struct (caller|routine) reg set [;]

where description:
sym isafunction name.
reg_set isaregister set.

"caller" specifiesthat the caller will alocate memory for the return value. The address of the memory
allocated for the return value is placed in the register specified in the register set by the caller before the
functioniscalled. If an empty register set is specified, the address of the memory allocated for the return
value will be pushed on the stack immediately before the call and will be returned in register EAX by the
called routine.

176 Auxiliary Pragmas

32-bit Pragmas

"routine” specifies that the called routine will alocate memory for the return value. Upon returning to the
caler, the register specified in the register set will contain the address of the return value. An empty
register set is not allowed.

Only the following registers are allowed in the register set: EAX, EDX, EBX, ECX, ESI or EDI. Note that
in abig data model, the address in the return register is assumed to be in the segment specified by the value
in the SS segment register.

If the size of the structure being returned is 1, 2 or 4 bytes, it will be returned in registers. The return
register will be selected from the register set in the following way.

1. A 1-bytestructure will be returned in one of the following registers: AL, AH, DL, DH, BL, BH,
CL or CH. If noregister set is specified, register AL will be used.

2. A 2-byte structure will be returned in one of the following registers: AX, DX, BX, CX, Sl or DI.
If no register set is specified, register AX will be used.

3. A 4-byte structure will be returned in one of the following registers: EAX, EDX, EBX, ECX,
ESI or EDI. If no register set is specified, register EAX will be used.

The following form of the auxiliary pragma can be used to specify that structureswhose sizeis1, 2 or 4
bytes are not to be returned in registers. Instead, the caller will allocate space on the stack for the structure
return value and point register ESl to it.

#pragma aux sym val ue struct struct [;]

where description:

sym isafunction name.

11.27.7.3 Returning Floating-Point Data

There are afew ways available for specifying how the value for afunction whose typeisfloat or doubleis
to be returned.

The following form of the auxiliary pragma can be used to specify that function return values whose typeis
float or double are not to be returned in registers. Instead, the caller will allocate space on the stack for the
return value and point register ESI to it.

#pragma aux sym val ue struct float [;]

where description:
sym isafunction name.
In other words, floating-point values are to be returned in the same way structures are returned.

The following form of the auxiliary pragma can be used to specify that function return values whose type is
float or double are not to be returned in 80x87 registers when compiling with the "fpi" or "fpi87" option.

Auxiliary Pragmas 177

32-bit Topics

Instead, the value will be returned in 80x86 registers. Thisis the default behaviour for the "fpc" option.
Function return values whose type is float will be returned in register EAX. Function return values whose
typeisdouble will be returned in registers EDX:EAX. Thisisthe default method for the "fpc" option.

#pragma aux sym val ue no8087 [;]

where description:
sym isafunction name.
The following form of the auxiliary pragma can be used to specify that function return values whose type is

float or double are to be returned in ST(0) when compiling with the "fpi" or "fpi87" option. Thisform of
the auxiliary pragmais not legal for the "fpc" option.

#pragma aux sym val ue [8087] [;]

where description:

sym isafunction name.

11.27.8 A Function that Never Returns

The following form of the auxiliary pragma can be used to describe a function that does not return to the
caler.

#pragma aux sym aborts [;]

where description:
sym isafunction name.

Consider the following example.

#pragnma aux exitrtn aborts;
extern void exitrtn(void);

void rtn()

exitrtn();

exi trt n isdefined to be afunction that does not return. For example, it may call exi t toreturntothe
system. In this case, Open Watcom C/C++ generates a”jmp" instruction instead of a"call" instruction to
invokeexitrtn.

178 Auxiliary Pragmas

32-bit Pragmas

11.27.9 Describing How Functions Use Memory

The following form of the auxiliary pragma can be used to describe a function that does not modify any
memory (i.e., global or static variables) that is used directly or indirectly by the caler.

#pragma aux sym nodi fy nonenory [;]

where description:

sym isafunction name.

Consider the following example.
#pragma of f (check_stack);
extern void nyrtn(void);
int i ={ 1033 };

extern Rtn()
while(i < 10000) {

i += 383;
}
myrtn();
i += 13143;

1
To compile the above program, "rtn.c”, we issue the following command.

$ wece rtn -oai -dil
$ wpp rtn -oai -di
$ wee386 rtn -oai -di
$ wpp386 rtn -oai -di

For illustrative purposes, we omit loop optimizations from the list of code optimizations that we want the
compiler to perform. The "d1" compiler option is specified so that the object file produced by Open
Watcom C/C++ contains source line information.

We can generate afile containing a disassembly of r t n. o by issuing the following command.
$ wdis rtn -1 -s -r
The"s" option is specified so that the listing file produced by the Open Watcom Disassembler contains

sourcelinestakenfromrt n. c. Thelistingfilert n. | st appearsasfollows.

Modul e: rtn.c
G oup: ' DGROUP' CONST, DATA

Segnent: ' _TEXT' BYTE USE32 00000036 bytes
#pragma of f (check_stack);
extern void nmyrtn(void);

int i ={ 1033 };

Auxiliary Pragmas 179

32-bit Topics

extern Rin() {

0000 52 Rt n_ push EDX
0001 8b 15 00 00 00 00 nov EDX, _i

while(i < 10000) {
0007 81 fa 10 27 00 00 L1 cnp EDX, 00002710H
000d 7d 08 jge L2

i += 383

}
000f 81 c2 7f 01 00 00 add EDX, 0000017f H
0015 eb fO jnp L1

nyrtn();
0017 89 15 00 00 00 00 L2 nov _i, EDX
001d e8 00 00 00 0O cal | nmyrtn_
0022 8b 15 00 00 00 00 nov EDX, _i

i += 13143;
0028 81 c2 57 33 00 00 add EDX, 00003357H
002e 89 15 00 00 00 00 nov _i, EDX
0034 5a pop EDX
0035 «c3 ret

No di sassenbly errors

Segment: ' _DATA' WORD USE32 00000004 byt es
0000 09 04 00 00 i -

No di sassenbly errors

Let us add the following auxiliary pragmato the sourcefile.

#pragma aux nmyrtn nodi fy nonenory;
If we compile the source file with the above pragma and disassemble the object file using the Open
Watcom Disassembler, we get the following listing file.

Modul e: rtn.c
Group: ' DGROUP' CONST, _DATA

Segnment: ' _TEXT' BYTE USE32 00000030 bytes

#pragma of f (check_stack)
#pragma aux nyrtn nodi fy nonenory;

extern void nmyrtn(void)

int i ={ 1033}
extern Rin() {
0000 52 Rtn_ push EDX
0001 8b 15 00 00 00 0O nov EDX, _i
while(i < 10000) {
0007 81 fa 10 27 00 00 L1 cnp EDX, 00002710H
000d 7d 08 j ge L2
i += 383
}
0oof 81 c2 7f 01 00 0O add EDX, 0000017f H
0015 eb fO i mp L1

180 Auxiliary Pragmas

32-bit Pragmas

nyrtn();
0017 89 15 00 00 00 00 L2 nov _i, EDX
001d e8 00 00 00 0O cal | myrtn_
i += 13143;
0022 81 c2 57 33 00 00 add EDX, 00003357H
0028 89 15 00 00 00 00 nmov _i, EDX
002e 5a pop EDX
002f c¢3 ret

No di sassenbly errors

Segment: ' _DATA' WORD USE32 00000004 byt es
0000 09 04 00 00 i

No di sassenbly errors

Notice that thevalue of i isinregister EDX after completion of the "whil€e" loop. After the call to
nyrtn, thevalueof i isnotloaded from memory into aregister to perform the final addition. The
auxiliary pragmainforms the compiler that myr t n does not modify any memory (i.e., global or static
variables) that is used directly or indirectly by Rt n and hence register EDX contains the correct value of
i

The preceding auxiliary pragma deals with routines that modify memory. Let us consider the case where
routines reference memory. The following form of the auxiliary pragma can be used to describe afunction
that does not reference any memory (i.e., global or static variables) that is used directly or indirectly by the
caller.

#pragm aux sym parm nonenory nodi fy nonenory [;]

where description:
sym isafunction name.
Notes:

1. You must specify both "parm nomemory" and "modify nomemory".

Let us replace the auxiliary pragma in the above example with the following auxiliary pragma.

#pragma aux myrtn parm nomenory nodi fy nomenory;
If you now compile our source file and disassemble the object file using wdis, the result is the following
listing file.

Modul e: rtn.c
G oup: ' DGROUP' CONST, _DATA

Segnent: ' _TEXT' BYTE USE32 0000002a bytes

#pragma of f (check_stack);
#pragma aux nyrtn parm nonenory nodify nonenory;

Auxiliary Pragmas 181

32-bit Topics

extern void nyrtn(void)

int i ={ 1033}
extern Rin() {
0000 52 Rt n_ push EDX
0001 8b 15 00 00 00 00 nov EDX, _i

while(i < 10000) {
0007 81 fa 10 27 00 00 L1 cnp EDX, 00002710H
000d 7d 08 jge L2

i += 383

}
000f 81 c2 7f 01 00 00 add EDX, 0000017f H
0015 eb fO jnp L1

nyrtn();
0017 e8 00 00 00 0O L2 cal | nyrtn_

i += 13143;
001c 81 c2 57 33 00 00 add EDX, 00003357H
0022 89 15 00 00 00 00 nov _i, EDX
0028 5a pop EDX
0029 «c3 ret

No di sassenbly errors

Segment: ' _DATA' WORD USE32 00000004 byt es
0000 09 04 00 00 i

No di sassenbly errors

Notice that after completion of the "while" loop we did not have to update i with the value in register EDX
before calling nyrt n. Theauxiliary pragmainforms the compiler that myr t n does not reference any
memory (i.e., global or static variables) that is used directly or indirectly by nyrt n soupdatingi was not
necessary before calling myrt n.

11.27.10 Describing the Registers Modified by a Function

The following form of the auxiliary pragma can be used to describe the registers that a function will use
without saving.

#pragma aux sym nodi fy [exact] reg_set [;]

where description:
sym isafunction name.
reg_set isaregister set.

Specifying aregister set informs Open Watcom C/C++ that the registers belonging to the register set are
modified by the function. That is, the value in aregister before calling the function is different from its
value after execution of the function.

182 Auxiliary Pragmas

32-bit Pragmas

Registers that are used to pass arguments are assumed to be modified and hence do not have to be saved
and restored by the called function. Also, sincethe EAX register is frequently used to return avalue, itis
always assumed to be modified. If necessary, the caller will contain code to save and restore the contents
of registers used to pass arguments. Note that saving and restoring the contents of these registers may not
be necessary if the called function does not modify them. The following form of the auxiliary pragma can
be used to describe exactly those registers that will be modified by the called function.

#pragma aux sym nodi fy exact reg_set [;]

where description:
sym isafunction name.
reg_set isaregister set.

The above form of the auxiliary pragmatells Open Watcom C/C++ not to assume that the registers used to
pass arguments will be modified by the called function. Instead, only the registers specified in the register
set will be modified. Thiswill prevent generation of the code which unnecessarily saves and restores the
contents of the registers used to pass arguments.

Also, any registersthat are specified in the val ue register set are assumed to be unmodified unless
explicitly listed in the exact register set. In the following example, the code generator will not generate
code to save and restore the value of the stack pointer register since we havetold it that "GetSP" does not
modify any register whatsoever.

Example:
unsi gned CGet SP(voi d);
#if defined(__386__)
#pragma aux CGet SP = value [esp] nodify exact [];
#el se
#pragm aux CGet SP = value [sp] nodify exact [];
#endi f

11.27.11 An Example

Asmentioned in an earlier section, the following pragma defines the calling convention for functions
compiled by MetawWare' s High C compiler.

#pragma aux HGH C "*" \
parmcaller [] \
val ue no8087 \

nodi fy [eax ecx edx fs gs];

Note that register ES must also be specified in the "modify" register set when using a memory model with a
non-small datamodel. Let usdiscuss this pragmain detail.

o specifiesthat all function and variable names appear in object form as they do in source
form.

parm caller [] specifiesthat all arguments are to be passed on the stack (an empty register set was
specified) and the caller will remove the arguments from the stack.

Auxiliary Pragmas 183

32-bit Topics

value no8087 specifies that floating-point values are to be returned using 80x86 registers and not 80x87
floating-point registers.

modify [eax ecx edx fsgs] specifies that registers EAX, ECX, EDX, FSand GS are not preserved by the
called routine.

Note that the default method of returning integer values is used; 1-byte characters are returned in register
AL, 2-byte integers are returned in register AX, and 4-byte integers are returned in register EAX.

11.27.12 Auxiliary Pragmas and the 80x87

This section deals with those aspects of auxiliary pragmas that are specific to the 80x87. The discussion in
this chapter assumes that one of the "fpi" or "fpi87" optionsis used to compile functions. The following
areas are affected by the use of these options.

1. passing floating-point arguments to functions,
2. returning floating-point values from functions and
3. which 80x87 floating-point registers are allowed to be modified by the called routine.

11.27.12.1 Using the 80x87 to Pass Arguments

By default, floating-point arguments are passed on the 80x86 stack. The 80x86 registers are never used to
pass floating-point arguments when a function is compiled with the "fpi" or "fpi87" option. However, they
can be used to pass arguments whose type is not floating-point such as arguments of type "int".

The following form of the auxiliary pragma can be used to describe the registers that are to be used to pass
arguments to functions.

#pragm aux sym parm {reg_set} [;]

where description:

sym isafunction name.

reg_set isaregister set. Theregister set can contain 80x86 registers and/or the string "8087".
Notes:

1. If an empty register set is specified, all arguments, including floating-point arguments, will be
passed on the 80x86 stack.

When the string "8087" appearsin aregister set, it simply means that floating-point arguments can be
passed in 80x87 floating-point registersif the source file is compiled with the "fpi" or "fpi87" option.
Before discussing argument passing in detail, some general notes on the use of the 80x87 floating-point
registers are given.

The 80x87 contains 8 floating-point registers which essentially form a stack. The stack pointer iscalled ST
and is a number between 0 and 7 identifying which 80x87 floating-point register is at the top of the stack.
ST isinitially 0. 80x87 instructions reference these registers by specifying a floating-point register number.
This number is then added to the current value of ST. The sum (taken modulo 8) specifies the 80x87

184 Auxiliary Pragmas

32-bit Pragmas

floating-point register to be used. The notation ST(n), where "n" is between 0 and 7, is used to refer to the
position of an 80x87 floating-point register relative to ST.

When afloating-point value is loaded onto the 80x87 floating-point register stack, ST is decremented
(modulo 8), and the value isloaded into ST(0). When afloating-point value is stored and popped from the
80x87 floating-point register stack, ST isincremented (modulo 8) and ST(1) becomes ST(0). The
following illustrates the use of the 80x87 floating-point registers as a stack, assuming that the value of ST is
4 (4 values have been loaded onto the 80x87 floating-point register stack).

. +
| 4th fromtop | ST(4)
e +
| 5th fromtop | ST(5)
e +
| 6th fromtop | ST(6)
S +
| 7th fromtop | ST(7)
e +
| top of stack | ST(0)
. +
| 1st fromtop | ST(1)
o m e e e e e oo +
| 2nd fromtop | ST(2)
e +
| 3rd fromtop | ST(3)
S +

Starting with version 9.5, the Open Watcom compilers use all eight of the 80x87 registers asa stack. The
initial state of the 80x87 register stack is empty before a program begins execution.

Note:

For compatibility with code compiled with version 9.0 and earlier, you can compile with
the"fpr" option. In this case only four of the eight 80x87 registers are used as a stack.
These four registers were used to pass arguments. The other four registers form what was
called the 80x87 cache. The cache was used for local floating-point variables. The state of
the 80x87 registers before a program began execution was as follows.

1. Thefour 80x87 floating-point registers that form the stack are uninitialized.
2. Thefour 80x87 floating-point registers that form the 80x87 cache are initialized
with zero.

Hence, initially the 80x87 cache was comprised of ST(0), ST(1), ST(2) and ST(3). ST had
the value 4 asin the above diagram. When afloating-point value was pushed on the stack
(asisthe case when passing floating-point arguments), it became ST(0) and the 80x87
cache was comprised of ST(1), ST(2), ST(3) and ST(4). When the 80x87 stack was full,
ST(0), ST(1), ST(2) and ST(3) formed the stack and ST(4), ST(5), ST(6) and ST(7) formed
the 80x87 cache. Version 9.5 and later no longer use this strategy.

Therules for passing arguments are as follows.

1. If theargument is not floating-point, use the procedure described earlier in this chapter.

2. If theargument is floating-point, and a previous argument has been assigned a position on the
80x86 stack (instead of the 80x87 stack), the floating-point argument is also assigned a position
on the 80x86 stack. Otherwise proceed to the next step.

Auxiliary Pragmas 185

32-bit Topics

If the string "8087" appearsin aregister set in the pragma, and if the 80x87 stack is not full, the
floating-point argument is assigned floating-point register ST(0) (the top element of the 80x87
stack). The previous top element (if there was one) isnow in ST(1). Since arguments are
pushed on the stack from right to left, the leftmost floating-point argument will bein ST(0).
Otherwise the floating-point argument is assigned a position on the 80x86 stack.

Consider the following example.

#pragnma aux nyrtn parm [8087];

voi d main()

fl oat X;
doubl e y;
i nt i;
long int j;

X
[
y

7.7;
7,
77.77;

j =77,

nyrtn(x, i, vy, |);

nmyr t n isan assembly language function that requires four arguments. The first argument of type float (4
bytes), the second argument is of type int (4 bytes), the third argument is of type double (8 bytes) and the
fourth argument is of type long int (4 bytes). These arguments will be passed to nyr t n in the following

way.

1

4.

Since "8087" was specified in the register set, the first argument, being of type float, will be
passed in an 80x87 floating-point register.

The second argument will be passed on the stack since no 80x86 registers were specified in the
register set.

The third argument will also be passed on the stack. Remember the following rule: once an
argument is assigned a position on the stack, all remaining arguments will be assigned a position
on the stack. Note that the above rule holds even though there are some 80x87 floating-point
registers available for passing floating-point arguments.

The fourth argument will also be passed on the stack.

Let us change the auxiliary pragmain the above example as follows.

#pragma aux nmyrtn parm[eax 8087];

The arguments will now be passed to myr t n in the following way.

1

Since "8087" was specified in the register set, the first argument, being of type float will be
passed in an 80x87 floating-point register.

The second argument will be passed in register EAX, exhausting the set of available 80x86
registers for argument passing.

The third argument, being of type double, will also be passed in an 80x87 floating-point register.

186 Auxiliary Pragmas

32-bit Pragmas

4. Thefourth argument will be passed on the stack since no 80x86 registers remain in the register
Set.

11.27.12.2 Using the 80x87 to Return Function Values

The following form of the auxiliary pragma can be used to describe a function that returns a floating-point
valuein ST(0).

#pragma aux sym val ue reg set [;]

where description:
sym isafunction name.
reg_set isaregister set containing the string "8087", i.e. [8087].

11.27.12.3 Preserving 80x87 Floating-Point Registers Across Calls

The code generator assumes that all eight 80x87 floating-point registers are available for use within a
function unless the "fpr" option is used to generate backward compatible code (older Open Watcom
compilers used four registers as acache). The following form of the auxiliary pragma specifies that the
floating-point registers in the 80x87 cache may be modified by the specified function.

#pragma aux sym nodify reg set [;]

where description:
sym isafunction name.
reg_set isaregister set containing the string "8087", i.e. [8087].

Thisinstructs Open Watcom C/C++ to save any local variables that are located in the 80x87 cache before
calling the specified routine.

Auxiliary Pragmas 187

32-bit Topics

188 Auxiliary Pragmas

In-line Assembly Language

In-line Assembly Language

190

12 In-line Assembly Language

The chapters entitled "16-bit Pragmas" on page 75 and "32-bit Pragmas" on page 143 briefly describe the
use of the auxiliary pragmato create a sequence of assembly language instructions that can be placed
anywhere executable C/C++ statements can appear in your source code. This chapter is devoted to an
in-depth look at in-line assembly language programming.
The reasons for resorting to in-line assembly code are varied:

* Speed - You may be interested in optimizing a heavily-used section of code.

* Size - Y ou may wish to optimize amodule for size by replacing alibrary function call with a direct
system call.

* Architecture - Y ou may want to access certain features of the Intel x86 architecture that cannot be
done so with C/C++ statements.

There are also some reasons for not resorting to in-line assembly code.
« Portability - The code is not portable to different architectures.

* Optimization - Sometimes an optimizing compiler can do a better job of arranging the instruction
stream so that it is optimal for a particular processor (such as the 486 or Pentium).

12.1 In-line Assembly Language Default Environment

In next table is description of the default in-line assembler environment in dependency on C/C++ compilers
CPU switch for x86 target platform.

Conpiler CPU FPU CPU ext ensi on
directive directive directives
-0 8086 . 8087
-1 186 . 8087
-2 286p 287
-3 386p 387
-4 . 486p . 387
-5 . 586p . 387 . K3D+. MWX
-6 . 686p . 387 . K3D+. MWK+, XMW, XMVR+. XMVB

This environment can be simply changed by appropriate directives.
Note:

This changeisvalid only for the block of assembly source code. After thisblock, default setting is
restored.

In-line Assembly Language Default Environment 191

In-line Assembly Language

12.2 In-line Assembly Language Tutorial

Doing in-line assembly is reasonably straight-forward with Open Watcom C/C++ although care must be
exercised. You can generate a sequence of in-line assembly anywhere in your C/C++ code stream. The
first step isto define the sequence of instructions that you wish to place in-line. The auxiliary pragmais
used to do this. Hereisasimple example based on a DOS function call that returns afar pointer to the
Double-Byte Character Set (DBCS) encoding table.

Example:
extern unsi gned short far *dbcs_table(void);
#pragna aux dbcs_table =\
"nmov ax, 6300h" \
"int 21h" \
val ue [ds si] \
modi fy J[ax];

To set up the DOS call, the AH register must contain the hexadecimal value "63" (63h). A DOS function
call isinvoked by interrupt 21h. DOS returns afar pointer in DS:SI to atable of byte pairsin the form
(start of range, end of range). On anon-DBCS system, the first pair will be (0,0). On a Japanese DBCS
system, the first pair will be (81h,9Fh).

With each pragma, we define a corresponding function prototype that explains the behaviour of the
function in terms of C/C++. Essentially, it isafunction that does not take any arguments and that returns a
far pointer to aunsigned short item.

The pragma indicates that the result of this"function” isreturned in DS:SI (value[ds si]). The pragmaalso
indicates that the AX register is modified by the sequence of in-line assembly code (modify [ax]).

Having defined our in-line assembly code, let us see how it isused in actual C code.

Example:
#i ncl ude <stdio. h>

extern unsi gned short far *dbcs_table(void);
#pragma aux dbcs_table =\

"mov ax, 6300h" \

"int 21h" \

val ue [ds si] \

modi fy [ax];

voi d main()

if(*dbcs_table() '=0) {
/*
we are running on a DOS systemthat
supports doubl e-byte characters
*/
printf("DBCS supported\n");

}

Before you attempt to compile and run this example, consider this. The program will not work! At least, it
will not work in most 16-hit memory models. And it doesn't work at all in 32-bit protected mode using a
DOS extender. What iswrong with it?

192 In-line Assembly Language Tutorial

In-line Assembly Language

We can examine the disassembled code for this program in order to see why it does not alwayswork in
16-bit real-mode applications.

if(*dbcs_table() 1= 0) {

0007
000a
000c
000f

}
0011
0014
0015
0018

}

/*
we are running on a DOS systemt hat
supports doubl e-byte characters
*/
b8 00 63 nov
cd 21 int
83 3c 00 cnp
74 Oa je
printf("DBCS supported\n");
be 00 00 nmov
56 push
e8 00 00 cal
83 c4 02 add

ax, 6300H

21H

word ptr [si], 0000H
L1

si,of fset L2
S

printf_

sp, 0002H

After the DOS interrupt call, the DS register has been altered and the code generator does nothing to
recover the previous value. Inthe small memory model, the contents of the DS register never change (and
any code that causes a change to DS must save and restoreits value). It isthe programmer’ s responsibility
to be aware of the restrictions imposed by certain memory models especially with regards to the use of
segmentation registers. So we must make a small change to the pragma.

extern unsigned short far *dbcs_table(void);
#pragma aux dbcs_table =\

"push ds"

"mov ax, 6300h"
"int 21h"

"mov di, ds"
"pop ds"

val ue [di si]
modi fy [ax];

\
\
\
\
\
\

If we compile and run this example with a 16-bit compiler, it will work properly. We can examine the
disassembled code for this revised program.

if(*dbcs_table() '=0) {
/*

0008
0009
000c
000e
0010
0011
0013
0017

}
0019
001c
001d
0020

we are running on a DOS system t hat

supports doubl e-byte characters

*/
le
b8 00 63
cd 21
8c df
1f
8e c7
26 83 3c 00
74 Oa

printf("DBCS supported\n");

be 00 00
56

e8 00 00
83 c4 02

push
nov
int
nov
pop
nov
cnp
je

nmv
push
cal
add

ds

ax, 6300H

21H

di, ds

ds

es,d

word ptr es:[si], 0000H
L1

si,of fset L2
S

printf_

sp, 0002H

If you examine this code, you can see that the DS register is saved and restored by the in-line assembly
code. The code generator, having been informed that the far pointer isreturned in (DI:Sl), loads up the ES
register from DI in order to reference the far data correctly.

In-line Assembly Language Tutorial 193

In-line Assembly Language

That takes care of the 16-bit real-mode case. What about 32-bit protected mode? When using a DOS
extender, you must examine the accompanying documentation to see if the system call that you wish to
make is supported by the DOS extender. One of the reasons that this particular DOS call is not so clear-cut
isthat it returns a 16-bit real-mode segment:offset pointer. A real-mode pointer must be converted by the
DOS extender into a protected-mode pointer in order to make it useful. Asit turns out, neither the
Tenberry Software DOS/AG(W) nor Phar Lap DOS extenders support this particular DOS call (although
others may). The issues with each DOS extender are complex enough that the relative merits of using
in-line assembly code are not worth it. We present an excerpt from the final solution to this problem.

Example:
#i fndef __386__

extern unsigned short far *dbcs_table(void);

#pragma aux dbcs_table =\
"push ds"
"mov ax, 6300h"
"int 21h"
"mov di, ds"
"pop ds"
val ue [di si]
nmodi fy [ax];

\
\
\
\
\
\

#el se

unsi gned short far * dbcs_table(void)
{

uni on REGPACK regs;

static short dbcs_dunmmy = 0;

nmenset (& egs, 0, sizeof(regs));
if(_lsPharLap()) {
PHARLAP_bl ock pbl ock;

menset (&bl ock, 0, sizeof(pblock));

pbl ock. real _eax = 0x6300;

pbl ock. i nt _num = 0x21;

regs. x. eax = 0x2511,;

regs. x. edx = FP_OFF(&pbl ock);
regs.w.ds = FP_SEG &pbl ock);
intr(0x21, ®s);

/* get DBCS vector table */
/* DOS call */

/* issue real -node interrupt */
/* DS: EDX -> parameter block */

return(firstmeg(pblock.real _ds, regs.w.si));

} else if(_I1sDOs4E)) {
DPM _bl ock dbl ock;

nenset (&bl ock, 0, sizeof(dblock));

dbl ock. eax = 0x6300;

regs. w. ax 0x300;

regs. h. bl 0x21;

regs. h. bh 0;

regs. w. cx 0;

regs. x.edi = FP_OFF(&dbl ock);
regs.x.es = FP_SEQ &dbl ock);
intr(O0x31, ®s);

/* get DBCS vector table */
/* DPM Sinmulate RRMintr */
/* DOS call */

/* flags */

/* # bytes fromstack */

return(firstmeg(dblock.ds, dblock.esi));

} else {
return(&lbcs_dummy);
}

}

#endi f

The 16-bit version will use in-line assembly code but the 32-bit version will use a C function that has been
crafted to work with both Tenberry Software DOS/4G(W) and Phar Lap DOS extenders. The fi r st neg

function used in the example is shown below.

194 In-line Assembly Language Tutorial

In-line Assembly Language

#defi ne REAL_SEGVENT 0x34
void far *firstmeg(unsigned segnent, unsigned offset)
void far *megl;

if(_1sDos4Qd)) {

megl = MK_FP(FP_SEQ &negl), (segnent << 4) + offset);
} else {

megl = MK_FP(REAL_SEGMVENT, (segnent << 4) + offset);
}

return(negl);

}

We have taken a brief look at two features of the auxiliary pragma, the "modify" and "value" attributes.

The "modify" attribute describes those registers that are modified by the execution of the sequence of
in-line code. Y ou usually have two choices here; you can savelrestore registers that are affected by the
code sequence in which case they need not appear in the modify list or you can let the code generator
handle the fact that the registers are modified by the code sequence. When you invoke a system function
(suchasaDOS or BIOS call), you should be careful about any side effects that the call has on registers. If
aregister ismodified by a call and you have not listed it in the modify list or saved/restored it, this can have
adisastrous affect on the rest of the code in the function where you are including the in-line code.

The"value" attribute describes the register or registersin which avalueis returned (we use the term
"returned", not in the sense that a function returns a value, but in the sense that aresult is available after
execution of the code sequence).

This leads the discussion into the third feature of the auxiliary pragma, the feature that allows usto place
the results of C expressions into specific registers as part of the "setup” for the sequence of in-line code. To
illustrate this, let us look at another example.

Example:
extern voi d Bl OSSet Cur Pos(unsi gned short __ rowcol,
unsi gned char __page);

#pragma aux Bl OSSet Cur Pos =
"push bp"
"nmov ah, 2"
"int 10h"
" pop bp"
parm [dx] [bh]
nmodi fy [ah];

— e — —

The "parm" attribute specifies the list of registersinto which values are to be placed as part of the prologue
to the in-line code sequence. In the above example, the "set cursor position" function requires three pieces
of information. It requires that the cursor row value be placed in the DH register, that the cursor column
value be placed in the DL register, and that the screen page number be placed in the BH register. Inthis
example, we have decided to combine the row and column information into a single "argument"” to the
function. Note that the function prototype for Bl OSSet Cur Pos isimportant. It describes the types and
number of arguments to be set up for thein-line code. It also describes the type of the return value (in this
case thereis none).

Once again, having defined our in-line assembly code, |et us see how it is used in actual C code.

In-line Assembly Language Tutorial 195

In-line Assembly Language

Example:
#i ncl ude <stdio. h>

extern voi d Bl OSSet Cur Pos(unsi gned short

unsi gned char _

#pragma aux Bl OSSet Cur Pos =
"push bp"
"mov ah, 2"
"int 10h"
“pop bp"
parm [dx] [bh]
nmodi fy [ah];

— e — —

void main()

Bl OSSet Cur Pos((5 << 8) | 20, 0);
printf("Hello world\n");

__rowcol ,
_bage);

To see how the code generator set up the register values for the in-line code, let us take alook at the

disassembled code.

Bl OSSet Cur Pos((5 << 8) | 20, 0);

0008 ba 14 05 nov dx, 0514H
000b 30 ff xor bh, bh
000d 55 push bp

000e b4 02 nov ah, 02H
0010 «cd 10 int 10H

0012 5d pop bp

As we expected, the result of the expression for the row and column is placed in the DX register and the
page number is placed in the BH register. The remaining instructions are our in-line code sequence.

Although our examples have been simple, you should be able to generalize them to your situation.

To review, the "parm", "value" and "modify" attributes are used to:

1. convey information to the code generator about the way data values are to be placed in registers

in preparation for the code burst (parm),

2. convey information to the code generator about the result, if any, from the code burst (value),

and

3. convey information to the code generator about any side effects to the registers after the code
burst has executed (modify). It isimportant to let the code generator know all of the side effects
on registers when the in-line code is executed; otherwise it assumes that al registers, other than
those used for parameters, are preserved. In our examples, we chose to push/pop some of the

registers that are modified by the code burst.

196 In-line Assembly Language Tutorial

In-line Assembly Language

12.3 Labels in In-line Assembly Code

Labels can be used in in-line assembly code. Here isan example.

Example:
extern void _disable_video(unsigned);
#pragma aux _disable video = \
"again: in al,dx"

"test al,8"
"jz again"
"mov dx, 03cOh"
"mov al, 11h"
"out dx, al"
"nmov al, 0"
"out dx,al"
par m [dx]
nmodi fy [al dx];

P L L Y

12.4 Variables in In-line Assembly Code

To finish our discussion, we provide examples that illustrate the use of variablesin the in-line assembly
code. Thefollowing example illustrates the use of static variable referencesin the auxiliary pragma.

Example:
#i ncl ude <stdi o. h>

static short _rowcol ;
static unsigned char _page;

extern void Bl OSSet Cur Pos(void);
#pragm aux Bl OSSet Cur Pos = \
"mov dx, _rowcol" \
"nmov bh, _page” \
"push bp" \
"mov ah, 2" \
"int 10h" \
"pop bp" \

modi fy [ah bx dx];

voi d main()

_rowcol = (5 << 8) | 20;

_page = 0;

Bl OSSet Cur Pos() ;

printf("Hello world\n");
}

The only rule to follow hereisthat the auxiliary pragma must be defined after the variables are defined.
Thein-line assembler is passed information regarding the sizes of variables so they must be defined first.

If welook at afragment of the disassembled code, we can see the result.

Variables in In-line Assembly Code 197

In-line Assembly Language

_rowcol = (5 << 8) | 20

0008 c¢7 06 00 00 14 05 nov word ptr __rowcol, 0514H
_page = 0;

000e c¢6 06 00 00 00 nmv byte ptr __page, 00H
Bl OSSet Cur Pos() ;

0013 8b 16 00 00 nmov dx, __rowco

0017 8a 3e 00 00 nov bh, __page

001lb 55 push bp

001c b4 02 nov ah, 02H

00le cd 10 int 10H

0020 5d pop bp

The following example illustrates the use of automatic variable references in the auxiliary pragma. Again,
the auxiliary pragma must be defined after the variables are defined so the pragmais placed in-line with the
function.

Example:
#i ncl ude <stdio. h>

voi d main()

short _rowcol ;
unsi gned char _page;

extern void Bl OSSet Cur Pos(void);
pragma aux Bl OSSet CurPos =\

"mov dx, _rowcol "
mov bh, _page"
"push bp"

"nmov ah, 2"

"int 10h"

“pop bp”

nmodi fy [ah bx dx];

e e e e —

_rowcol = (5 << 8) | 20;
_page = O;

Bl OSSet Cur Pos() ;

printf("Hello world\n");

}

If we look at afragment of the disassembled code, we can see the resullt.

_rowcol = (5 << 8) | 20

000e <c7 46 fc 14 05 nmv word ptr -4H bp], 0514H
_page = 0;

0013 <c6 46 fe 00 nmov byte ptr -2H bp], O0H
Bl OSSet Cur Pos() ;

0017 8b 96 fc ff nov dx, - 4H bp]

001b 8a be fe ff nov bh, - 2H bp]

001f 55 push bp

0020 b4 02 nov ah, 02H

0022 «cd 10 int 10H

0024 5d pop bp

Y ou should try to avoid references to automatic variables asillustrated by this last example. Referencing
automatic variables in this manner causes them to be marked as volatile and the optimizer will not be able
to do agood job of optimizing referencesto these variables.

198 Variables in In-line Assembly Code

In-line Assembly Language

12.5 In-line Assembly Language using _asm

Thereis an aternative to Open Watcom’ s auxiliary pragma method for creating in-line assembly code.
You can use one of the _asm or __asm keywords to imbed assembly code into the generated code. The
following is arevised example of the cursor positioning example introduced above.

Example:
#i ncl ude <stdi o. h>

void main()

unsi gned short _rowcol;
unsi gned char _page;

_rowcol = (5 << 8) | 20;
_page = O;
_asm {
nmov dx, rowcol
nmov bh, page
push bp
nov ah, 2
i nt 10h
pop bp
s

printf("Hello world\n");
}

The assembly language sequence can reference program variablesto retrieve or store results. Therearea
few incompatibilities between Microsoft and Open Watcom implementation of this directive.

__ LOCAL_SIZE isnot supported by Open Watcom C/C++. Thisisillustrated in the following example.

Example:
void main()
int i;
int j;
_asm {
push bp
nmov bp, sp
sub sp, __LOCAL_SI ZE
H
}
structure references are not supported by Open Watcom C/C++. Thisisillustrated in the following
example.

In-line Assembly Language using _asm 199

In-line Assembly Language

Example:

#i ncl ude <stdi o. h>

struct

r owcol

{

unsi gned char col
unsi gned char row

b

voi d main()

str

__poS. r ow

uct rowcol _pos;
unsi gned char _page;

__pos. co
_page = 0;
_asm {

b

nov
nov
nov
push
nov
i nt
pop

5;
20;

dl, _pos. col
dh, _pos.row
bh, page

bp

ah, 2

10h

bp

printf("Hello world\n");

12.6 In-line Assembly Directives and Opcodes

It is not the intention of this chapter to describe assembly-language programming in any detail. Y ou should
consult a book that deals with thistopic. However, we present alist of the directives, opcodes and register
names that are recognized by the assembler built into the compiler’ s auxiliary pragma processor.

. 186

. 287

. 486

. 686
aaa
adc
addsd
ah
andnps
ax

bp

bt

bx
cal | f
c

cl
cnovae
cnove
cnovl e
cnovnbe
cnovnge
crmovnp

. 286
. 386
. 486p
. 686p
aad

add

addss

. 286¢C . 286p
. 386p . 387

. 586 . 586p
. 8086 . 8087
aam aas
addpd addps
addsubpd addsubps
and andnpd
andps arp

bl bound
bsr bswap
btr bts

c cal
cdq ch

cld clflush
cnc cnova
cnmovbe cnovc
cnovge cnovl
cnovnae crmovnb
cnovne cnovng
cnovnl e cnovno
crmovnz cnovo

200 In-line Assembly Directives and Opcodes

In-line Assembly Language

cnovp
cnovz
cnpeqgsd
cnpl esd
cnpl t sd
cnpnegsd
cnpnl esd
cnpnl tsd
cnpor dsd
cnps
cnpsw
cnpunor dss
com ss
cr3

cvt dq2ps
cvt pi 2pd
cVvt ps2pi
cvtsi 2ss
cvtt pd2pi
cvttss2s
daa

dec

di v

di vss
drO

dr6

dup

eax

ed

es

f abs
fbld

f cnovb

f cnovnbe
fcom

f compp
fdiv
femms
ficom
fild
fist
fisubr
fldcw
fldl2e
fldpi

f ncl ex

f nop

f nsave

f nst env
f pat an
frndi nt
fs
fscal e
fsqgrt
fstenvd
fsub
ftst
fuconp

f xam

cnovpe
cnp
cnpeqss
cnpl ess
cnpl tss
cnpneqgss
cnpnl ess
cnpnl tss
cnpor dss
cnpsb
cnpunor dpd
cnpxchg
cpuid

cr4

cvt pd2dq
cvt pi 2ps
cvt sd2si
cvt ss2sd
cvtt ps2dqg

f cnovne
fcom
fcos
fdivp

f eni
ficonp
fimul
fistp
flat

fl denv
fldl2t
fldz

f ndi si

f nrstor
f nsaved
f nst envd
fprem
frstor
fsave
fset pm
f st
fstenvw
f subp
fucom

f uconpp
fxch

cnovpo
cnpeqpd
cnpl epd
cnpl t pd
cnpnegpd
cnpnl epd
cnpnl t pd
cnpor dpd
cnppd
cnpsd
cnmpunor dps
cnpxchg8b
cr0

cs

cvt pd2pi
cvt ps2dq
cvtsd2ss
cvtss2s
cvtt ps2pi
cwde

db

dh

di vps

dp

dr2

ds

dwor d
ebx

enms

esp
faddp
fchs
fcnove
fcrmovnu
fcom p
fdecstp
fdivr
ffree
fidiv
fincstp
fisttp
fld

fl denvd
fldlg2

f mul

f neni
fnrstord
f nsavew
fnst envw
f prenl
frstord
f saved
fsin
fstcw
fstp

f subr
fucom
fwai t
fxrstor

cnovs
cnpeqps
cnpl eps
cnpl t ps
cnpnegps
cnpnl eps
cnpnl t ps
cnpor dps
cnpps
cnpss
cnpunor dsd
com sd
cr2

cvt dg2pd
cvt pd2ps
cvt ps2pd
cvt si 2sd
cvtt pd2dqg
cvttsd2s
cX

dd

d

di vsd

dq

dr3

dt

dx

ecx

ent er

f 2xmlL
far

fcl ex

f cnovnb
f cnovu
fcomp
fdis
fdivrp
fi add
fidivr
finit
fisub
fldl

fl denvw
fldln2
ful p
fninit
fnrstorw
fnstcw

f nst sw

f pt an
frstorw
f savew

f si ncos
fstenv
fstsw
fsubrp
fucon p
fword

f xsave

In-line Assembly Directives and Opcodes

201

In-line Assembly Language

fxtract
haddpd
hsubps
inc

i nsw

i nvl pg
iretf

j be

j ecxz
jle

j nae

j ne
jnle
jnz

] po

I ahf

I ds

| fence
lidt

| ods

| oop

| oopew
| oopnz
| oopz

I ss
maxpd
nf ence
m nss
mB

i/
novapd
novdqg2q
novhpd
novl ps
nmovnt
novq
novsd
novVsSw
novzx
mul sd
neg

of f set
out

out sw
packuswb
paddsb
paddw
pavgb
pcnpeqd
pcnpgt w
pfacc
pf cnpgt
pf nacc
pfrcpit2
pf subr
prmaddwd
pm nub
prmul hw
popa

fyl 2x
haddps
idiv

i ns

o Q O"gLQ

_"('DQJ(/JO:SSD
m_ﬂ

novaps
novdga
novhps
novneskpd
novnt pd
novqg2dq
novshdup
NOVSX
mul

mul ss

. no87

or

outs
owor d
paddb
paddsw
pand
pavgusb
pcnpeqw
pextrw
pf add

pf max

pf pnacc
pfrsqgitl
pi 2f d
pmaxsw
provirskb
prul | w
popad

fyl 2xpl
hi t

i mul

i nsb
into
iretd

j ae

j cxz
jge

j npf

j nbe

j nge
inp

Ip

jz

| ddqu

| eave

| gdt

| msw

| odsd

| oope

| oopned
| oopnzw
| oopzw
masknmovdqu
maxsd

m nps
il

nb
noni t or
novd
novdqu
nmovl hps
novnekps
novnt ps
novs
novsl dup
nmovupd
mul pd
mhai t
nop

or pd
out sb
packssdw
paddd
paddusb
pandn
pavgw
pcnpgt b
pf 2i d
pf cnpeq
pfm n
pfrcp
pfrsqgrt
pi 2f w
prmaxub
prrul hr w
prul udg

popf

202 In-line Assembly Directives and Opcodes

gs
hsubpd
in

i nsd

i nvd

i retdf
ib

je

jl

j na

j nc

j nl

j ns

| pe

. k3d

[dnmxcsr
I es

I gs

| ock

| odsw

| ooped

| oopnew
| oopw

| sl
masknovq
maxss

m nsd
nmR2

nm6

nov
novddup
novhl ps
novl| pd
novnt dq
novnt g
novsb
novss
novups
mul ps
near

not

or ps

out sd
packsswb
paddq
paddusw
pause
pcnpegb
pcnpgt d
pf 2i w
pf cnpge
pf mul
pfrcpitl
pf sub

pi nsrw
pm nsw
prmul huw
pop
popf d

In-line Assembly Language

por
prefetchtl
pshufd
pslld
psrad
psrlq
psubq
psubusw
punpckhbw
punpckl bw
push
pushf
pxor
rcpss
rdtsc
repnz
retd

rol
rsqrtss
sbb
scasw
setb
setg

set na
setnc
set nl
setns
set pe
sfence
short
shuf ps
SNMBW
sqrtsd
stc

st nxcsr
st osw
subps
sysenter
tr3

tr7
unpckhps
verw

W BT

xl atb

. Xxm
Xmi

xor

prefetch
prefetcht?2
pshuf hw
psl | dg
psraw
psrlw
psubsb
psubw
punpckhdq
punpckl dq
pusha
pushfd
gword
rcr

rep

r ept

retf

ror

sahf
scas

seg

set be
set ge
set nae
set ne
setnle
set nz
set po
sgdt

shr

S

sp
sqrtss
std

st os

str
subsd
sysexit
tr4

ucom sd
unpckl pd
wai t
xadd

. Xmm
xm
xmb

xor pd

prefetchnta
pr ef et chw
pshuf | w
psllq
psrld
psubb
psubsw
pswapd
punpckhqdq
punpckl qdq
pushad
pushw
rcl

rdnsr
repe
repz
retfd
rsm

sal
scasb
seta
setc
set |
setnb
set ng
set no
seto
sets

shl

shrd

si dt
sqrt pd
SS
stdcal |
st osh
sub
subss

t byte
tr5

ucom ss
unpckl ps
wbi nvd
xchg
xnmmD

. X8
xmb

XOr ps

prefetchtO
psadbw
pshuf w
psl | w
psrldg
psubd
psubusb
ptr
punpckhwd
punpckl wd
pushd
pwor d
rcpps
rdpnc
repne
ret
retn
rsqrtps
sar
scasd
set ae
sete
setle
set nbe
set nge
set np
setp
setz
shi d
shuf pd
sl dt
sqrtps
st

st

st osd
subpd
syscal |
t est
tr6
unpckhpd
verr
wor d

x| at
xmmi
xmmB
xmi/

A separate assembler is aso included with this product and is described in the Open Watcom C/C++ Tools

User’s Guide

In-line Assembly Directives and Opcodes 203

In-line Assembly Language

204 In-line Assembly Directives and Opcodes

Open Watcom Tools

Open Watcom Tools

206

The Open Watcom Linker

The Open Watcom Linker

208

13 The Open Watcom Linker

The Open Watcom Linker isalinkage editor (linker) that takes object and library files asinput and
produces executable files as output. The following object module and library formats are supported by the
Open Watcom Linker.

* The standard Intel Object Module Format (OMF).

* Microsoft’s extensions to the standard Intel OMF.

* Phar Lap's Easy OMF-386 object module format for linking 386 applications.

» The COFF object module format.

* The ELF object module format.

* The OMF library format.

» The AR (Microsoft compatible) object library format.

The Open Watcom Linker is capable of producing a number of executable file formats. The following lists
these executable file formats.

* DOS executable files
* ELF executablefiles

» executable files that run under CauseWay DOS extender, Tenberry Software’s DOS/4G and
DOS/4GW DOS extenders, and compatible products

* executable files that run under FlashTek’s DOS extender

* executable files that run under Phar Lap’s 386|DOS-Extender

* NetWare Loadable Modules (NLMs) that run under Novell’ s NetWare operating system
» OS/2 executable filesincluding Dynamic Link Libraries

* QNX executablefiles

* 16-bit Windows (Win16) executable files including Dynamic Link Libraries

* 32-bit Windows (Win32) executable files including Dynamic Link Libraries

* raw binary images

* Intel Hex files (Hex80, Hex86 and extended linear)

The Open Watcom Linker 209

The Open Watcom Linker

In addition to being able to generate the above executable file formats, the Open Watcom Linker also runs
under avariety of operating systems. Currently, the Open Watcom Linker runs under the following
operating systems.

* DOS

» 0S/2

* QONX

» Windows NT/2000/XP

» Windows 95/98/Me

This guide describes only the QNX executable file format.

The Open Watcom Linker command line format is as follows.

wlink {directive}

where directive is a series of Open Watcom Linker directives specified on the command line or in one or
more files. If the directives are contained within afile, the"@" character is used to reference that file. If
no file extension is specified, afile extension of "Ink" is assumed.

Example:
W ink nane testprog @irst @econd option nap

In the above example, directives are specified on the command line (e.g., "name testprog" and "option
map") andinfiles(e.g., first.| nk and second. | nk).

13.1 Using the SYSTEM Directive

For each executable file format that can be created using the Open Watcom Linker, a specific SY STEM
directive may be used. The SYSTEM directive selects a subset of the available directives necessary to
create each specific executable file format.

System Description

causaway 32-bit x86 CauseWay executable

com 16-bit x86 DOS".COM" executable

dos 16-bit x86 DOS executable

dos4g 32-hit x86 DOS4GW executable

dos4gnz non-zero based 32-bit x86 DOS/4GW executable
netware 32-bit x86 NetWare Loadable Module

210 Using the SYSTEM Directive

The Open Watcom Linker

novell
0s2
os2_dIl
0s2_pm
0Ss2v2
os2v2_dll
0s2vZ2_pm
pharlap
tnt

gnx
gnx386
x32r
X32rv
x32s
x32sv
windows
windows _dll
win95
win95 dll
nt
nt_win
win32
nt_dll

win386

synonym for "netware"

16-bit x86 OS2 executable

16-bit x86 OS/2 Dynamic Link Library

16-bit x86 OS/2 Presentation Manager executable

32-bit x86 OS/2 executable

32-bit x86 OS/2 Dynamic Link Library

32-bit x86 OS/2 Presentation Manager executable

32-bit x86 Phar Lap executable

32-bit x86 Phar Lap TNT dos style executable

16-bit x86 QNX executable

32-bit x86 QNX executable

32-bit x86 FlashTek executable using register-based calling conventions
32-bit x86 virtual-memory FlashTek executable using register-based calling conventions
32-hit x86 FlashTek executable using stack-based calling conventions
32-hit x86 virtual-memory FlashTek executable using stack-based calling conventions
16-bit x86 Windows 3.x executable

16-bit x86 Windows 3.x Dynamic Link Library

32-bit x86 Windows 9x executable

32-bit x86 Windows 9x Dynamic Link Library

32-bit x86 Windows NT character-mode executable

32-bit x86 Windows NT windowed executable

synonym for "nt_win"

32-bit x86 Windows NT Dynamic Link Library

32-bit x86 Open Watcom extended Windows 3.x executable or Dynamic Link Library

The various systems that we have listed above are defined in special linker directive fileswhich are plain
ASCII text filesthat you can edit. Thesefilesarecaled W i nk. | nk and W syst em | nk.

Thefilewl i nk. | nk isaspecia linker directivefile that is automatically processed by the Open Watcom
Linker before processing any other directives. On aDOS, OS2, or Windows-hosted system, this file must
be located in one of the paths specified in the PATH environment variable. On a QNX-hosted system, this

Using the SYSTEM Directive 211

The Open Watcom Linker

file should be located in the / et ¢ directory. A default version of thisfileislocated in the

\ wat coml bi nwdirectory on DOS-hosted systems, the \ wat com bi np directory on OS/2-hosted
systems, the / et ¢ directory on QNX-hosted systems, and the \ wat com bi nnt directory on Windows
95 or Windows NT-hosted systems. Notethat thefile w i nk. | nk includesthefilew syst em | nk
which islocated in the \ wat com bi nwdirectory on DOS, 0S/2, or Windows-hosted systems and the

/ et c directory on QNX-hosted systems.

Thefilesw i nk. | nk and Wl syst em | nk reference the WATCOM environment variable which must
be set to the directory in which you installed your software.

The default name of the linker directive file (W i nk. | nk) can be overridden by the WLINK _LNK
environment variable. If the specified file can’t be opened, the default file name will be used. For
example, if the WLINK _L NK environment variable is defined as follows

export WLI NK_LNK=ny. | nk

then the Open Watcom Linker will attempt to usea rnry. | nk directive file, and if that file cannot be
opened, the linker will revert to using the default wi i nk. | nk file.

13.2 Linking 16-bit QNX Executable Files

To create thistype of file, use the following structure.

system gnx

option nap

name app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The QNX Executable File Format" on page 289.

13.3 Linking 32-bit QNX Executable Files

To create thistype of file, use the following structure.

system gnx386
option map

name app_nane
file obj 1, obj 2,
library 1ibl, lib2,

For more information, see the chapter entitled "The QNX Executable File Format" on page 289.

212 Linking 32-bit QNX Executable Files

14 Linker Directives and Options

The Open Watcom Linker supports alarge set of directives and options. The following sections present
these directives and options in al phabetical order.

Directives tell the Open Watcom Linker how to create your program. For example, using directives you
can tell the Open Watcom Linker which object files are to be included in the program, which library filesto
search to resolve undefined references, and the name of the executablefile.

Thefilewl i nk. | nk isaspecia linker directivefile that is automatically processed by the Open Watcom
Linker before processing any other directives. On aDOS, OS2, or Windows-hosted system, this file must
be located in one of the paths specified in the PATH environment variable. On a QNX-hosted system, this
file should belocated inthe / et ¢ directory. A default version of thisfileislocated in the

\ wat coml bi nwdirectory on DOS-hosted systems, the \ wat com bi np directory on OS/2-hosted
systems, the / et ¢ directory on QNX-hosted systems, and the \ wat com bi nnt directory on Windows
95 or Windows NT-hosted systems. Notethat thefile w i nk. | nk includesthefilew syst em | nk
which islocated in the \ wat com bi nwdirectory on DOS, 0S/2, or Windows-hosted systems and the

/ et c directory on QNX-hosted systems.

Thefilesw i nk. | nk and Wl syst em | nk reference the WATCOM environment variable which must
be set to the directory in which you installed your software.

The default name of the linker directive file (W i nk. | nk) can be overridden by the WLINK_LNK
environment variable. If the specified file can’t be opened, the default file name will be used. For
example, if the WLINK _L NK environment variable is defined as follows

export WLI NK_LNK=ny. | nk

then the Open Watcom Linker will attempt to usea ry. | nk directivefile, and if that file cannot be
opened, the linker will revert to using the default wi i nk. | nk file.

Itisalso possible to use environment variables when specifying a directive. For example, if the LIBDIR
environment variableis defined as follows,

export |ibdir=/test
then the linker directive
library $libdir/nylib
is equivalent to the following linker directive.
library /test/nylib
Note that a space must precede areference to an environment variable.

Many directives can take alist of one or more arguments separated by commas. Instead of a
comma-delimited list, you can specify a space-separated list provided thelist is enclosed in braces (e.g., {

Linker Directives and Options 213

The Open Watcom Linker

space delimited list }). For example, the "FILE" directive can take alist of object file names as an
argument.

file first,second,third,fourth

The alternate way of specifying thisisasfollows.

file {first second third fourth}

Where this comesin handy isin makefiles, where alist of dependentsis usually a space-delimited list.

OBJS = first second third fourth

wink file {$(objs)}

The following notation is used to describe the syntax of linker directives and options.

ABC All itemsin upper case are required.

[abc] Theitem abc is optional.

{abc} Theitem abc may be repeated zero or more times.
{abc}+ Theitem abc may be repeated one or more times.
alb|c One of a, b or ¢ may be specified.

a::=b Theitem ais defined in terms of b.

Certain characters have special meaning to the linker. When a specia character must appear in a name, you
can imbed the string that makes up the name inside apostrophes (e.g., 'name@8’). This prevents the linker
from interpreting the special character in its usual manner. Thisisalso truefor file or path names that
contain spaces (e.g., "\program files\softwaré\mylib’). Normally, the linker would interpret a space or
blank in afile name as a separator. The special characters are listed below:

|

| Equal s |
| Left Parenthesis |
| Right Parenthesis |
| Comma |
| Period |
| Left Brace |
| Right Brace |
| At Sign |
| Hash Mark |
| Percentage Synbol |

214 Linker Directives and Options

ALIAS

14.1 The ALIAS Directive

The"ALIAS' directive is used to specify an equivalent name for asymbol name. The format of the
"ALIAS" directive (short form "A") isasfollows.

ALIAS alias_ name=symbol_name{, alias_hame=symbol _name}

where description:
alias name isthealiasname.
symbol_name isthe symbol name to which the alias name is mapped.
Consider the following example.
al i as si ne=nysi ne

When the linker triesto resolve the reference to si ne, it will immediately substitute the name nmysi ne for
si ne and begin searching for the symbol nysi ne.

The ALIAS Directive 215

ARTIFICIAL

14.2 The ARTIFICIAL Option

The"ARTIFICIAL" option should only be used if you are developing a Open Watcom C++ application. A
Open Watcom C++ application contains many compiler-generated symbols. By default, the linker does not
include these symbolsin the map file. The"ARTIFICIAL" option can be used if you wish to include these
compiler-generated symbolsin the map file.

The format of the "ARTIFICIAL" option (short form "ART") is asfollows.

OPTION ARTIFICIAL

216 The ARTIFICIAL Option

CACHE

14.3 The CACHE Option

The"CACHE" and "NOCACHE" options can be used to control caching of object and library filesin
memory by the linker. When neither the "CACHE" nor "NOCACHE" option is specified, the linker will
only cache small libraries. Object filesand large libraries are not cached. The"CACHE" and
"NOCACHE" options can be used to alter this default behaviour. The "CACHE" option enables the
caching of object files and large library files while the "NOCACHE" option disables all caching.

The format of the "CACHE" option (short form "CAC") isasfollows.

OPTION CACHE

The format of the "NOCACHE" option (short form "NOCAC") is asfollows.

OPTION NOCACHE

When linking large applications with many object files, caching object files will cause extensive use of
memory by the linker. On virtual memory systems such as 0S/2, Windows NT or Windows 95, this can
cause extensive page file activity when real memory resources have been exhausted. This can degrade the
performance of other tasks on your system. For this reason, the OS2 and Windows-hosted versions of the
linker do not perform abject file caching by default. This does not imply that object file caching is not
beneficial. If your system haslots of real memory or the linker is running as the only task on the machine,
object file caching can certainly improve the performance of the linker.

On single-tasking environments such as DOS, the benefits of improved linker performance outweighs the
memory demands associated with object file caching. For this reason, object file caching is performed by
default on these systems. If the memory requirements of the linker exceed the amount of memory on your
system, the "NOCACHE" option can be specified.

The QNX operating system is a multi-tasking real-time operating system. However, it isnot avirtua

memory system. Caching object files can consume large amounts of memory. This may prevent other
tasks on the system from running, a problem that may be solved by using the "NOCACHE" option.

The CACHE Option 217

CASEEXACT

14.4 The CASEEXACT Option

The"CASEEXACT" option tells the Open Watcom Linker to respect case when resolving referencesto
global symbols. That is, "ScanName" and "SCANNAME" represent two different symbols. Thisisthe
default because the most commonly used languages (C, C++, FORTRAN) are case sensitive. The format of
the "CASEEXACT" option (short form "C") is asfollows.

OPTION CASEEXACT

It is possible to override the default by using the "NOCASEEXACT" option. The "NOCASEEXACT"
option turns off case-sensitive linking. The format of the "NOCASEEXACT" option (short form
"NOCASE") isasfollows.

OPTION NOCASEEXACT

Y ou can specify the "NOCASEEXACT" option in the default directive files W i nk. | nk or
W syst em | nk if required.

Thefilewl i nk. | nk isaspecia linker directivefile that is automatically processed by the Open Watcom
Linker before processing any other directives. On aDOS, OS2, or Windows-hosted system, this file must
be located in one of the paths specified in the PATH environment variable. On a QNX-hosted system, this
file should belocated inthe / et ¢ directory. A default version of thisfileislocated in the

\ wat coml bi nwdirectory on DOS-hosted systems, the \ wat com bi np directory on OS/2-hosted
systems, the / et ¢ directory on QNX-hosted systems, and the \ wat com bi nnt directory on Windows
95 or Windows NT-hosted systems. Notethat thefile wl i nk. | nk includesthefile w syst em | nk
which islocated in the \ wat com bi nwdirectory on DOS, 0S/2, or Windows-hosted systems and the

/ et c directory on QNX-hosted systems.

Thefilesw i nk. | nk and Wl syst em | nk reference the WATCOM environment variable which must
be set to the directory in which you installed your software.

The default name of the linker directive file (W i nk. | nk) can be overridden by the WLINK _L NK
environment variable. If the specified file can’t be opened, the default file name will be used. For
example, if the WLINK _L NK environment variable is defined as follows

export W.I NK_LNK=ny. | nk

then the Open Watcom Linker will attempt to usea nry. | nk directivefile, and if that file cannot be
opened, the linker will revert to using the default wi i nk. | nk file.

218 The CASEEXACT Option

COMMENT

14.5 The # Directive

The"#" directive is used to mark the start of acomment. All text from the "#" character to the end of the

lineis considered acomment. The format of the "#" directiveis as follows.

comment
where description:
comment isany sequence of characters.

The following directive file illustrates the use of comments.
file main, trigtest

Use my own version of "sin" instead of the
library version.

file nysin
library /math/trig

The # Directive 219

CVPACK

14.6 The CVPACK Option

This option is only meaningful when generating Microsoft CodeView debugging information. This option
causes the linker to automatically run the Open Watcom CodeView 4 Symbolic Debugging Information
Compactor, CVPACK, on the executable that it has created. Thisis necessary to get the CodeView
debugging information into a state where the Microsoft CodeView debugger will accept it.

The format of the "CVPACK" option (short form "CVP") isasfollows.

OPTION CVPACK

For more information on generating CodeView debugging information into the executable, see the section
entitled "The DEBUG Directive" on page 221

220 The CVPACK Option

DEBUG

14.7 The DEBUG Directive

The"DEBUG"

directiveis used to tell the Open Watcom Linker to generate debugging information in the

executable file. Thisextrainformation in the executable fileis used by the Open Watcom Debugger. The
format of the "DEBUG" directive (short form "D") is as follows.

DEBUG dbtype [dblis] |
DEBUG [dblis]

dbtype ::= DWARF | WATCOM | CODEVIEW | NOVELL
:=[db_option{,db_option}]
db_option ::=LINES| TYPES| LOCALS| ALL

dblist :

DEBUG NOVELL only
db_option ::= ONLYEXPORTS | REFERENCED

The Open Watcom Linker supports four types of debugging information, "DWARF" (the default),

"WATCOM","

DWARF

WATCOM

CODEVIEW

NOVELL

'‘CODEVIEW", or "NOVELL".

(short form "D") specifies that al object files contain DWARF format debugging
information and that the executable file will contain DWARF debugging information.

This debugging format is assumed by default when none is specified.

(short form "W") specifies that all object files contain Watcom format debugging
information and that the executable file will contain Watcom debugging information. This
format permits the selection of specific classes of debugging information (dblist) which are
described below.

(short form "C") specifiesthat all object files contain CodeView (CV4) format debugging
information and that the executable file will contain CodeView debugging information.

It will be necessary to run the Microsoft Debugging Information Compactor, CVPACK, on
the executable that it has created. For information on requesting the linker to automatically
run CVPACK, seethe section entitled "The CVPACK Option" on page 220 Alternatively,
you can run CVPACK from the command line.

(short form "N") specifies aform of global symbol information that can only be processed
by the NetWare debugger.

Note: Except in rare cases, the most appropriate use of the "DEBUG" directive is specifying "DEBUG
ALL" (short form "D A") prior to any "FILE" or "LIBRARY" directives. Thiswill cause the Open
Watcom Linker to emit all available debugging information in the default format.

For the Watcom debugging information format, we can be selective about the types of debugging
information that we include with the executable file. We can categorize the types of debugging information

asfollows:

The DEBUG Directive 221

DEBUG

« global symbol information

* line numbering information

* local symbol information

* typing information

* NetWare global symbol information

The following options can be used with the "DEBUG WATCOM" directive to control which of the above
classes of debugging information isincluded in the executable file.

LINES (short form "LI") specifies line numbering and global symbol information.

LOCALS (short form "L Q") specifieslocal and global symbol information.

TYPES (short form "T") specifies typing and global symbol information.
ALL (short form "A") specifies all of the above debugging information.
ONLYEXPORTS

(short form "ONL") restricts the generation of global symbol information to exported
symbols. This option may only be used with Netware executable formats.

The following options can be used with the "DEBUG NOVELL" directive to control which of the above
classes of debugging information isincluded in the executable file.

ONLYEXPORTS
(short form "ONL") restricts the generation of global symbol information to exported
symbols.

REFERENCED
(short form "REF") restricts the generation of symbol information to referenced symbols
only.

Note: The position of the "DEBUG" directiveisimportant. The level of debugging information
specified in a"DEBUG" directive only appliesto object files and libraries that appear in subsequent
"FILE" or "LIBRARY" directives. For example, if "DEBUG WATCOM ALL" wasthe only "DEBUG"
directive specified and was also the last linker directive, no debugging information would appear in the
executablefile.

Only global symbol information is actually produced by the Open Watcom Linker; the other three classes
of debugging information are extracted from object modules and copied to the executable file. Therefore,
at compile time, you must instruct the compiler to generate local symbol, line numbering and typing
information in the object file so that the information can be transferred to the executable file. If you have
asked the Open Watcom Linker to produce a particular class of debugging information and it appears that
none is present, one of the following conditions may exist.

1. Thedebugging information is not present in the object files.
2. The"DEBUG" directive has been misplaced.

222 The DEBUG Directive

DEBUG

The following sections describe the classes of debugging information.

14.7.1 Line Numbering Information - DEBUG WATCOM LINES

The"DEBUG WATCOM LINES" option controls the processing of line numbering information. Line
numbering information is the line number and address of the generated code for each line of source codein
aparticular module. This allows Open Watcom Debugger to perform source-level debugging. When the
Open Watcom Linker encounters a"DEBUG WATCOM" directive with a"LINES" or "ALL" option, line
number information for each subsequent object module will be placed in the executable file. Thisincludes
all object modules extracted from object files specified in subsequent "FILE" directives and object modules
extracted from libraries specified in subsequent "LIBRARY" or "FILE" directives.

Note: All modules for which line numbering information is requested must have been compiled with
the"d1" or "d2" option.

A subsequent "DEBUG WATCOM" directive without a"LINES" or "ALL" option terminates the
processing of line numbering information.

14.7.2 Local Symbol Information - DEBUG WATCOM LOCALS

The"DEBUG WATCOM LOCALS" option controls the processing of local symbol information. Local
symbol information is the name and address of all symbolslocal to a particular module. This allows Open
Watcom Debugger to locate these symbols so that you can reference local data and routines by name.
When the Open Watcom Linker encounters a"DEBUG WATCOM™" directive with a"LOCALS" or "ALL"
option, local symbol information for each subsequent object module will be placed in the executable file.
Thisincludes all object modules extracted from object files specified in subsequent "FILE" directives and
object modules extracted from libraries specified in subsequent "LIBRARY" or "FILE" directives.

Note: All modules for which local symbol information is requested must have been compiled with the
"d2" option.

A subsequent "DEBUG WATCOM" directive without a"LOCALS" or "ALL" option terminates the
processing of local symbol information.

14.7.3 Typing Information - DEBUG WATCOM TYPES

The "DEBUG WATCOM TY PES" option controls the processing of typing information. Typing
information includes a description of al types, structures and arrays that are defined in amodule. This
allows Open Watcom Debugger to display variables according to their type. When the Open Watcom
Linker encountersa"DEBUG WATCOM" directivewitha"TYPES" or "ALL" option, typing information
for each subsequent object module will be placed in the executable file. Thisincludes all object modules
extracted from object files specified in subsequent "FILE" directives and object modules extracted from
libraries specified in subsequent "LIBRARY" or "FILE" directives.

The DEBUG Directive 223

DEBUG

Note: All modules for which typing information is requested must have been compiled with the "d2"
option.

A subsequent "DEBUG WATCOM" directive without a"TYPES" or "ALL" option terminates the
processing of typing information.

14.7.4 All Debugging Information - DEBUG WATCOM ALL

The"DEBUG WATCOM ALL" option specifiesthat "LINES", "LOCALS', and "TYPES" options are
requested. The"LINES' option controls the processing of line numbering information. The"LOCALS"
option controls the processing of local symbol information. The"TYPES" option controls the processing
of typing information. Each of these optionsis described in a previous section. A subsequent "DEBUG
WATCOM " directive without an "ALL" option discontinues those options which are not specified in the
list of debug options.

14.7.5 Global Symbol Information

Globa symbol information consists of al the global symbolsin your program and their address. This
allows Open Watcom Debugger to locate these symbols so that you can reference global data and routines
by name. When the Open Watcom Linker encounters a"DEBUG" directive, global symbol information for
all the global symbols appearing in your program is placed in the executablefile.

14.7.6 Global Symbols for the NetWare Debugger - DEBUG NOVELL

The NetWare operating system has a built-in debugger that can be used to debug programs. When
"DEBUG NOVELL" is specified, the Open Watcom Linker will generate global symbol information that
can be used by the NetWare debugger. Note that any line numbering, local symbol, and typing information
generated in the executable file will not be recognized by the NetWare debugger. Also, wstrip cannot be
used to remove this form of global symbol information from the executable file.

14.7.7 The ONLYEXPORTS Debugging Option

The "ONLYEXPORTS" option (short form "ONL") restricts the generation of global symbol information
to exported symbols (symbols appearing in an "EXPORT" directive). If "DEBUG WATCOM
ONLYEXPORTS" is specified, Open Watcom Debugger global symbol information is generated only for
exported symbols. If "DEBUG NOVELL ONLYEXPORTS" is specified, NetWare global symbol
information is generated only for exported symbols.

14.7.8 Using DEBUG Directives

Consider the following directive file.

debug wat com al |

file nmodul el

debug watcom | i nes
file nodul e2, nodul e3
debug wat com

library nylib

224 The DEBUG Directive

DEBUG

It specifies that the following debugging information is to be generated in the executablefile.
1. globa symbol information for your program

2. line numbering, typing and local symbol information for the following object files:

nodul el. o

3. line numbering information for the following object files:

nodul e2. o
nodul e3. o

Notethat if the"DEBUG WATCOM" directive before the "LIBRARY" directiveis not specified, line
numbering information for all object modules extracted from the library "mylib.lib" would be generated in
the executabl e file provided the object modules extracted from the library have line numbering information
present.

Note: A "DEBUG WATCOM" directive with no option suppresses the processing of line numbering,
local symbol and typing information for all subsequent object modules.

Debugging information can use a significant amount of disk space. As shown in the above example, you
can select only the class of debugging information you want and for those modules you wish to debug. In
this way, the amount of debugging information in the executable file is minimized and hence the amount of
disk space used by the executable file is kept to a minimum.

Asyou can see from the above example, the position of the "'DEBUG WATCOM" directive isimportant
when describing the debugging information that isto appear in the executablefile.

Note: If you want all classes of debugging information for al filesto appear in the executable file you
must specify "DEBUG WATCOM ALL" beforeany "FILE" and "LIBRARY" directives.

14.7.9 Removing Debugging Information from an Executable File
A utility called wstrip has been provided which takes as input an executable file and removes the debugging
information placed in the executable file by the Open Watcom Linker. Note that global symbol information
generated using "DEBUG NOVELL" cannot be removed by wstrip.

For more information on this utility, see the chapter entitled "The Open Watcom Strip Utility" in the Open
Watcom C/C++ Tools User’s Guide or Open Watcom FORTRAN 77 Tools User’s Guide.

The DEBUG Directive 225

DISABLE

14.8 The DISABLE Directive

The"DISABLE" directiveis used to disable the display of linker messages.

The Open Watcom Linker issues three classes of messages; fatal errors, errors and warnings. Each message
has a 4-digit number associated with it. Fatal messages start with the digit 3, error messages start with the
digit 2, and warning messages start with the digit 1. It is possible for a message to be issued as awarning

or an error.

If afatal error occurs, the linker will terminate immediately and no executable file will be generated.

If an error occurs, the linker will continue to execute so that all possible errors are issued. However, no
executable file will be generated since these errors do not permit a proper executable file to be generated.

If awarning occurs, the linker will continue to execute. A warning message is usually informational and
does not prevent the creation of a proper executable file. However, all warnings should eventually be
corrected.

Note that the behaviour of the linker does not change when a message is disabled. For example, if a
message that normally terminates the linker is disabled, the linker will still terminate but the message
describing the reason for the termination will not be displayed. For this reason, you should only disable
messages that are warnings.

The linker will ignore the severity of the message number. For example, some messages can be displayed
aserrors or warnings. It isnot possible to disable the message when it isissued as awarning and display
the message when it isissued as an error. In general, do not specify the severity of the message when
specifying a message number.

The format of the "DISABLE" directive (short form "DISA") is asfollows.

DISABLE msg_num{, msg_num}

where description:

msg_num is amessage number. See the chapter entitled "Open Watcom Linker Diagnostic
Messages' on page 293 for alist of messages and their corresponding numbers.

Thefollowing "DISABLE" directive will disable message 28 (an undefined symbol has been referenced).

di sabl e 28

226 The DISABLE Directive

DOSSEG

14.9 The DOSSEG Option

The "DOSSEG" option tells the Open Watcom Linker to order ssgmentsin a special way. The format of
the "DOSSEG" option (short form "D") is as follows.

OPTION DOSSEG

When the "DOSSEG" option is specified, segments will be ordered in the following way.

1. all segments not belonging to group "DGROUP" with class"CODE"

2. all other segments not belonging to group "DGROUP"

3. al segments belonging to group "DGROUP" with class "BEGDATA"

4. al segments belonging to group "DGROUP" not with class"BEGDATA", "BSS' or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class"STACK"
A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and is the first segment in
group "DGROUP" so that storing data at location O can be detected.
Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS" and
"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable
file.
When using Open Watcom run-time libraries, it is not necessary to specify the "DOSSEG" option. One of
the object filesin the Open Watcom run-time libraries contains a special record that specifies the

"DOSSEG" option.

If no "DOSSEG" option is specified, segments are ordered in the order they are encountered by the Open
Watcom Linker.

When the "DOSSEG" option is specified, the Open Watcom Linker defines two special variables. _edat a

defines the start of the "BSS" class of segmentsand _end defines the end of the "BSS" class of segments.
Y our program must not redefine these symbols.

The DOSSEG Option 227

ELIMINATE

14.10 The ELIMINATE Option

The"ELIMINATE" option can be used to enable dead code elimination. Dead code elimination isa
process the linker uses to remove unreferenced segments from the application. The linker will only remove
segments that contain code; unreferenced data segments will not be removed.

The format of the "ELIMINATE" option (short form "EL") isas follows.

OPTION ELIMINATE

Linking C/C++ Applications
Typically, amodule of C/C++ code contains a number of functions. When thismoduleis
compiled, all functionswill be placed in the same code segment. The chances of each
function in the module being unreferenced are remote and the usefulness of the
"ELIMINATE" option is greatly reduced.

In order to maximize the effect of the "ELIMINATE" option, the "zm" compiler option is
available to tell the Open Watcom C/C++ compiler to place each function in its own code
segment. Thisalowsthe linker to remove unreferenced functions from modul es that
contain many functions.

Note, that if afunction isreferenced by data, asin ajump table, the linker will not be able
to eliminate the code for the function even if the datathat referencesit is unreferenced.

Linking FORTRAN 77 Applications
The Open Watcom FORTRAN 77 compiler always places each function and subroutine in
its own code segment, even if they are contained in the same module. Therefore when
linking with the "ELIMINATE" option the linker will be able to eliminate code on a
function/subroutine basis.

228 The ELIMINATE Option

ENDLINK

14.11 The ENDLINK Directive

The "ENDLINK" directiveis used to indicate the end of a new set of linker commands that are to be
processed after the current set of commands has been processed. The format of the "ENDLINK" directive
(short form "ENDL") is asfollows.

ENDLINK

The"STARTLINK" directive, described in "The STARTLINK Directive" on page 278, is used to indicate
the start of the set of commands.

The ENDLINK Directive 229

FARCALLS

14.12 The FARCALLS Option

The"FARCALLS' option tells the Open Watcom Linker to optimize Far Calls. Thisisthe default setting
for Open Watcom Linker The format of the "FARCALLS" option (short form "FAR") is asfollows.

OPTION FARCALLS

The "NOFARCALLS" option turns off Far Calls optimization. The format of the "NOFARCALLS' option
(short form "NOFAR") isas follows.

OPTION NOFARCALLS

Y ou can specify the "NOFARCALLS" option in the default directive files Wl i nk. | nk or
w syst em | nk if required.

Thefilewl i nk. | nk isaspecia linker directivefile that is automatically processed by the Open Watcom
Linker before processing any other directives. On aDOS, OS2, or Windows-hosted system, this file must
be located in one of the paths specified in the PATH environment variable. On a QNX-hosted system, this
file should belocated inthe / et c directory. A default version of thisfileislocated in the

\ wat com bi nwdirectory on DOS-hosted systems, the \ wat com bi np directory on OS/2-hosted
systems, the / et ¢ directory on QNX-hosted systems, and the \ wat com bi nnt directory on Windows
95 or Windows NT-hosted systems. Note that the file wl i nk. | nk includesthefile W syst em | nk
which islocated in the \ wat com bi nwdirectory on DOS, 0S/2, or Windows-hosted systems and the

/ et c directory on QNX-hosted systems.

Thefilesw i nk. | nk and W syst em | nk reference the WATCOM environment variable which must
be set to the directory in which you installed your software.

The default name of the linker directive file (W i nk. | nk) can be overridden by the WLINK _LNK
environment variable. If the specified file can’t be opened, the default file name will be used. For
example, if the WLINK _L NK environment variable is defined as follows

export WLI NK_LNK=ny. | nk

then the Open Watcom Linker will attempt to usea nry. | nk directive file, and if that file cannot be
opened, the linker will revert to using the default Wl i nk. | nk file.

230 The FARCALLS Option

FILE

14.13 The FILE Directive

The"FILE" directive is used to specify the object files and library modules that the Open Watcom Linker is
to process. The format of the"FILE" directive (short form "F") is asfollows.

FILE obj_spec{,obj_spec}

obj_spec ::= obj_file[(obj_module)]
| library file[(obj_module)]

where description:

obj_file isafile specification for the name of an object file. If no file extension is specified, afile
extension of "0" is assumed.

library file isafile specification for the name of alibrary file. Note that the file extension of the
library file (usually "lib") must be specified; otherwise an object file will be assumed.
When alibrary file is specified, al object filesin the library are included (whether required
or not).

obj_module isthe name of an object module defined in an object or library file.

Consider the following example.

Example:
W ink systemny_os f /math/sin, nycos

The Open Watcom Linker is instructed to process the following object files:

/math/sin.o
nycos. o

The object file "mycos.0" islocated in the current directory since no path was specified.
More than one "FILE" directive may be used. The following exampleis equivalent to the preceding one.

Example:
W ink systemny_os f /math/sin f nycos

Thus, other directives may be placed between lists of object files.

The"FILE" directive can also specify object modules from alibrary file or object file. Consider the
following example.

The FILE Directive 231

FILE

Example:
wWink systemny_os f /math/math.lib(sin)

The Open Watcom Linker isinstructed to process the object module "sin" contained in the library file
"math.lib" in the directory "/math".

In the following example, the Open Watcom Linker will process the object module "sin" contained in the
object file "math.o" in the directory "/math".

Example:
W ink systemny_os f /nmath/math(sin)

In the following example, the Open Watcom Linker will include all object modules contained in the library
file"math.lib" in the directory "/math".

Example:
W ink systemny_os f /math/math.lib

232 The FILE Directive

FILLCHAR

14.14 The FILLCHAR Option

The"FILLCHAR" option (short form "FILL") specifies the byte value used to fill gapsin the output image.

OPTION FILLCHAR=N

where description:
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. If mis specified, thevalueis
multiplied by 1024* 1024.

n specifies the value to be used in blank areas of the output image. The value must be in the range of 0 to
255, inclusive.

This option is most useful for raw binary output that will be programmed into an (E)EPROM where avaue
of 255 (0xff) is preferred. The default value of nis zero.

The FILLCHAR Option 233

FORMAT

14.15 The FORMAT Directive

The"FORMAT" directive is used to specify the format of the executable file that the Open Watcom Linker
isto generate. The format of the "FORMAT" directive (short form "FORM") is as follows.

FORMAT form

form ::= DOS [COM]
| WINDOWS [win_dIl] [MEMORY] [FONT]
| WINDOWS VXD [DYNAMIC]
| WINDOWS NT [TNT] [dIl_attrs]
| OS2 [0s2_type] [dIl_attrs | 0s2_attrs]
| PHARLAP [EXTENDED | REX | SEGMENTED]
| NOVELL [NLM |LAN | DSK | NAM | 'number’] 'description’
| ONX [FLAT]
| ELF [DLL]

win_dll ::= DLL [INITGLOBAL | INITINSTANCE]

dll_attrs::= DLL [INITGLOBAL | INITINSTANCE]
[TERMINSTANCE | TERMGLOBAL]

0s2_type::= FLAT | LE | LX

0s2_attrs::= PM | PMCOMPATIBLE | FULLSCREEN
| PHYSDEVICE | VIRTDEVICE

where description:
DOS (short form "D") tells the Open Watcom Linker to generate a DOS "EXE" file.

The name of the executable file will have extension "exe". If "COM" is specified, aDOS
"COM" filewill be generated in which case the name of the executable file will have
extension "com". Note that these default extensions can be overridden by using the
"NAME" directive to name the executablefile.

Not all programs can be generated in the "COM" format. The following rules must be
followed.

1. Theprogram must consist of only one physical segment. Thisimpliesthat the
size of the program (code and data) must be less than 64k.

2. The program must not contain any segment relocation. A warning message will
be issued by the Open Watcom Linker each time a segment relocation is
encountered.

A DOS"COM" file cannot contain debugging information. 1f you wish to debug a DOS

"COM" file, you must use the"SYMFILE" option to instruct the Open Watcom Linker to
place the debugging information in a separate file.

234 The FORMAT Directive

FORMAT

WINDOWS

tells the Open Watcom Linker to generate a Win16 (16-bit Windows) executablefile.

The name of the executable file will have extension "exe". If "DLL" (short form "DL") is
specified, aDynamic Link Library will be generated; the name of the executable file will
also have extension "exe". Note that these default extensions can be overridden by using
the"NAME" directive to name the executable file.

Specifying "INITGLOBAL" (short form "INITG") will cause Windowsto call an
initialization routine the first time the Dynamic Link Library isloaded. The
"INITGLOBAL" option should be used with "OPTION ONEAUTODATA" (the default for
Dynamic Link Libraries). If the"INITGLOBAL" option isused with "OPTION
MANYAUTODATA", theinitialization code will be called once for the first data segment
allocated but not for subsequent allocations (this is generally not desirable behaviour and
will likely cause a program fault).

Specifying "INITINSTANCE" (short form "INITI") will cause Windowsto call an
initialization routine each time the Dynamic Link Library is used by aprocess. The
"INITINSTANCE" option should be used with "OPTION MANYAUTODATA" (the
default for executable programs).

In either case, the initialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is assumed.

Specifying "MEMORY" (short form "MEM") indicates that the application will runin
standard or enhanced mode. 1f Windows 3.0 is running in standard and enhanced mode,
and "MEMORY" is not specified, awarning message will be issued. The"MEMORY"
specification was used in the transition from Windows 2.0 to Windows 3.0. The
"MEMORY" specification isignored in Windows 3.1 or later.

Specifying "FONT" (short form "FQ") indicates that the proportional -spaced system font
can be used. Otherwise, the old-style mono-spaced system font will be used. The"FONT"
specification was used in the transition from Windows 2.0 to Windows 3.0. The"FONT"
specification isignored in Windows 3.1 or later.

WINDOWS VXD tells the Open Watcom Linker to generate a Windows VXD file (Virtual Device Driver).

The name of the file will have extension "386". Note that this default extension can be
overridden by using the "NAME" directive to name the driver file.

Specifying "DYNAMIC" (short form "DYN") , dynamicaly loadable driver will be
generated (only for Windows 3.11 or 9x). By default the Open Watcom Linker generate
staticaly loadable driver (for Windows 3.x or 9x).

WINDOWS NT tells the Open Watcom Linker to generate a Win32 executablefile ("PE" format).

If "TNT" is specified, an executable for the Phar Lap TNT DOS extender is created. A
"PL" format (rather than "PE") executable is created so that the Phar Lap TNT DOS
extender will always run the application (including under Windows NT).

If "DLL" (short form "DL") is specified, aDynamic Link Library will be generated in
which case the name of the executable file will have extension "dII". Note that these
default extensions can be overridden by using the "NAME" directive to name the
executablefile.

The FORMAT Directive 235

FORMAT

Specifying "INITGLOBAL" (short form "INITG") will cause the initialization routine to be
called the first time the Dynamic Link Library isloaded.

Specifying "INITINSTANCE" (short form "INITI") will cause theinitialization routine to
be called each time the Dynamic Link Library is referenced by a process.

In either case, theinitiaization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is assumed.

It is also possible to specify whether the initialization routineisto be called at DLL
termination or not. Specifying "TERMGLOBAL" (short form "TERMG") will cause the
initialization routine to be called when the last instance of the Dynamic Link Library is
terminated. Specifying "TERMINSTANCE" (short form "TERMI") will cause the
initialization routine to be called each time an instance of the Dynamic Link Library is
terminated. Note that the initialization routine is passed an argument indicating whether it
isbeing called during DLL initialization or DLL termination. If "INITINSTANCE" is used
and no termination option is specified, "TERMINSTANCE" is assumed. If
"INITGLOBAL" is used and no termination option is specified, "TERMGLOBAL" is
assumed.

0s2 tells the Open Watcom Linker to generate an OS/2 executable file format.

The name of the executable file will have extension "exe". If "LE" is specified, an early
form of the OS/2 32-bit linear executable will be generated. This executable file format is
required by the CauseWay DOS extender, Tenberry Software’'s DOS/4G and DOSAGW
DOS extenders, and similar products.

In order to improve load time and minimize the size of the executable file, the OS/2 32-bit
linear executable file format was changed. If "LX" or "FLAT" (short form "FL") is
specified, the new form of the OS/2 32-hit linear executable will be generated. This
executable file format is required by the FlashTek DOS extender and 32-bit OS/2
executables.

If "FLAT", "LX" or "LE" is not specified, an OS/2 16-bit executable will be generated.

If "DLL" (short form "DL") is specified, aDynamic Link Library will be generated in
which case the name of the executable file will have extension "dII". Note that these
default extensions can be overridden by using the "NAME" directive to name the
executablefile.

Specifying "INITGLOBAL" (short form "INITG") will cause the initialization routine to be
called the first time the Dynamic Link Library isloaded. The"INITGLOBAL" option
should be used with "OPTION ONEAUTODATA" (the default for Dynamic Link
Libraries). If the"INITGLOBAL" option is used with "OPTION MANYAUTODATA",
the initialization code will be called once for the first data segment allocated but not for
subsequent alocations (thisis generally not desirable behaviour and will likely cause a
program fault).

Specifying "INITINSTANCE" (short form "INITI") will cause the initialization routine to
be called each time the Dynamic Link Library isreferenced by aprocess. The
"INITINSTANCE" option should be used with "OPTION MANYAUTODATA" (the
default for executable programs).

236 The FORMAT Directive

FORMAT

PHARLAP

In either case, the initialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is assumed.

For OS/2 32-bit linear executable files, it is also possible to specify whether the
initialization routine isto be called at DLL termination or not. Specifying
"TERMGLOBAL" (short form "TERMG") will cause the initiaization routine to be called
when the last instance of the Dynamic Link Library isterminated. Specifying
"TERMINSTANCE" (short form "TERMI") will cause theinitialization routine to be called
each time an instance of the Dynamic Link Library isterminated. Note that the
initialization routine is passed an argument indicating whether it is being called during DLL
initialization or DLL termination. If "INITINSTANCE" isused and no termination option
isspecified, "TERMINSTANCE" isassumed. If "INITGLOBAL" isused and no
termination option is specified, "TERMGLOBAL" is assumed.

If "PM" is specified, a Presentation Manager application will be created. The application
uses the API provided by the Presentation Manager and must be executed in the
Presentation Manager environment.

If "PMCOMPATIBLE" (short form "PMC") is specified, an application compatible with
Presentation Manager will be created. The application can run inside the Presentation
Manager or it can run in a separate screen group. An application can be of thistypeif it
uses the proper subset of OS/2 video, keyboard, and mouse functions supported in the
Presentation Manager applications. Thisis the default.

If "FULLSCREEN" (short form "FULL") is specified, an OS/2 full screen application will
be created. The application will run in a separate screen group from the Presentation
Manager.

If "PHYSDEVICE" (short form "PHY S") is specified, the executable fileis marked as a
physical device driver.

If "VIRTDEVICE" (short form "VIRT") is specified, the executable file is marked as a
virtual device driver.

(short form "PHAR") tells the Open Watcom Linker to generate an executable file that will
run under Phar Lap’'s 386|DOS-Extender.

There are 4 forms of executable files: simple, extended, relocatable and segmented. |If
"EXTENDED" (short form "EXT") is specified, an extended form of the executablefile
with file extension "exp" will be generated. If "REX" is specified, arelocatable executable
filewith file extension "rex" will be generated. If "SEGMENTED" (short form "SEG") is
specified, a segmented executable file with file extension "exp" will be generated. If
neither "EXTENDED", "REX" or "SEGMENTED" is specified, a simple executable file
with file extension "exp" will be generated. Note that the default file extensions can be
overridden by using the "NAME" directive to name the executablefile.

The simple form isfor flat model 386 applications. It isthe only format that can be loaded
by earlier versions of 386|DOS-Extender (earlier than 1.2).

The extended form is used for flat model applications that have been linked in away which

requires a method of specifying more information for 386|DOS-Extender than possible with
the simple form.

The FORMAT Directive 237

FORMAT

NOVELL

Therelocatable form is similar to the simple form. Unique to the relocatable formis an
offset relocation table. This allows the loader to load the program at any location it
chooses.

The segmented form is used for embedded system applications like Intel RMX. These
executables cannot be loaded by 386|DOS-Extender.

A simple form of the executable fileis generated in al but the following cases.
1. "EXTENDED" is specified in the "FORMAT" directive.

2. The"RUNTIME" directiveis specified. Options specified by the"RUNTIME"
directive can only be specified in the extended form of the executablefile.

3. The"OFFSET" option is specified. The value specified in the "OFFSET" option
can only be specified in the extended form of the executablefile.

4. "REX" isspecifiedinthe "FORMAT" directive. Inthis case, the relocatable
form will be generated. Y ou must not specify the "RUNTIME" directive or the
"OFFSET" option when generating the relocatable form.

5. "SEGMENTED" is specified in the "FORMAT" directive. In this case, the
segmented form will be generated.

(short form "NOV") tells the Open Watcom Linker to generate a NetWare executable file,
more commonly called a NetWare Loadable Module (NLM).

NLMs are further classified according to their function. The executable file will have afile
extension that depends on the class of the NLM being generated. The following describes
the classification of NLMs.

LAN instructs the Open Watcom Linker to generate aLAN driver. A LAN
driver isadevice driver for Local Area Network hardware. A file
extension of "lan" is used for the name of the executablefile.

DSK instructs the Open Watcom Linker to generate adisk driver. A file
extension of "dsk" is used for the name of the executablefile.

NAM instructs the Open Watcom Linker to generate a file system name-space
support module. A file extension of "nam" is used for the name of the
executablefile.

MSL instructs the Open Watcom Linker to generate a Mirrored Server Link
module. The default file extension is"md"

CDM instructs the Open Watcom Linker to generate a Custom Device module.
The default file extension is"cdm”

HAM instructs the Open Watcom Linker to generate a Host Adapter module. The
default file extension is "ham"

NLM instructs the Open Watcom Linker to generate a utility or server
application. Thisisthe default. A file extension of "nlm" isused for the
name of the executablefile.

238 The FORMAT Directive

FORMAT

"number’ instructs the Open Watcom Linker to generate a specific type of NLM
using 'number’. Thisisa 32 bit value that corresponds to Novell allocated
NLM types.

These are the current defined values:

0 Specifies astandard NLM (default extension .NLM)

1 Specifies adisk driver module (default extension .DSK)

2 Specifies a namespace driver module (default extension
NAM)

3 SpecifiesaLAN driver module (default extension .LAN)

4 Specifiesa utility NLM (default extension .NLM)

5 SpecifiesaMirrored Server Link module (default .MSL)

6 Specifies an Operating System module (default .NLM)

7 Specifies a Page High OS module (default .NLM)

8 Specifies aHost Adapter module (default . HAM)

9 Specifies a Custom Device module (default .CDM)

10 Reserved for Novell usage

11 Reserved for Novell usage

12 Specifies a Ghost module (default .NLM)

13 Specifies an SMP driver module (default .NLM)

14 Specifies a NIOS module (default .NLM)

15 Specifies a ClOS CAD type module (default .NLM)

16 Specifies a ClOS CL S type module (default .NLM)

21 Reserved for Novell NICI usage

22 Reserved for Novell NICI usage

23 Reserved for Novell NICI usage

24 Reserved for Novell NICI usage

25 Reserved for Novell NICI usage

26 Reserved for Novell NICI usage

The FORMAT Directive 239

FORMAT

QNX

ELF

27 Reserved for Novell NICI usage
28 Reserved for Novell NICI usage
description isatextual description of the program being linked.
tells the Open Watcom Linker to generate a QN X executablefile.
If "FLAT" (short form "FL") is specified, a 32-hit flat executable file is generated.
Under QNX, no file extension is added to the executabl e file name.
Under other operating systems, the name of the executable file will have the extension
"gnx". Note that this default extension can be overridden by using the "NAME" directive

to name the executablefile.

For more information on QNX executable file formats, see the chapter entitled "The QNX
Executable File Format" on page 289.

tells the Open Watcom Linker to generate an ELF format executable file.

ELF format DLLs can also be created.

If no "FORMAT" directiveis specified, the executable file format will be selected for each of the following
host systems in the way described.

DOS

0s/2

QNX

Windows NT

Windows 95

If 16-bit object files are encountered, a 16-bit DOS executable will be created. 1f 32-bit
object files are encountered, a 32-bit DOS/AG executable will be created.

If 16-bit object files are encountered, a 16-bit OS/2 executable will be created. If 32-bit
object files are encountered, a 32-bit OS/2 executable will be created.

If 16-bit object files are encountered, a 16-bit QNX executable will be created. If 32-bit
object files are encountered, a 32-bit QNX executable will be created.

If 16-bit object files are encountered, a 16-bit Windows executable will be created. If
32-hit object files are encountered, a 32-bit Win32 executable will be created.

If 16-bit object files are encountered, a 16-bit Windows executable will be created. If
32-hit object files are encountered, a 32-bit Win32 executable will be created.

240 The FORMAT Directive

INCLUDE

14.16 The @ Directive

The"@" directive instructs the Open Watcom Linker to process directives from an alternate source. The
format of the"@" directiveis as follows.

@directive var
or
@directive file

where description:

directive var isthe name of an environment variable. The directives specified by the value of
di rective_var will be processed.

directive file isafile specification for the name of alinker directivefile. A file extension of "Ink" is
assumed if no file extension is specified.

The environment variable approach to specifying linker directives allows you to specify commonly used
directives without having to specify them each time you invoke the Open Watcom Linker. If the
environment variable "wlink" is set asin the following example,

export W ink=debug watcom all option map, verbose library math
wink @fink

then each time the Open Watcom Linker isinvoked, full debugging information will be generated, a
verbose map file will be created, and the library file "math.lib" will be searched for undefined references.

A linker directivefile is useful, for example, when the linker input consists of alarge number of object files
and you do not want to type their names on the command line each time you link your program. Note that a
linker directive file can also include other linker directive files.

Let thefile "memos.Ink" be a directive file containing the following lines.

system nmy_os
name menos
file nenos
file actions

file read
file msg
file pronmpt
file nmemygr

library /term o/ screen
library /term o/ keyboard

Winl6 only: We must also use the "EXPORT" directive to define the window function. Thisis done
using the following directive.

export w ndow_function

Consider the following example.

The @ Directive 241

INCLUDE

Example:
W i nk @renps

The Open Watcom Linker isinstructed to process the contents of the directive file "memos.Ink". The
executable image file will be called "memos.exe”. The following object fileswill be loaded from the
current directory.

Menos. o
actions.o
read. o
nNsg. o0
pronpt. o
memmgr. o

If any unresolved symbol references remain after all object files have been processed, the library files
"screen.lib” and "keyboard.lib" in the directory "/termio” will be searched (in the order listed).

Notes:

1. Intheabove example, we did not provide the file extension when the directive file was specified.
The Open Watcom Linker assumes afile extension of "Ink" if noneis present.

2. Itisnot necessary to list each object file and library with a separate directive. The following
linker directivefileisequivalent.

system my_os

name menos

file menos, acti ons, read, nsg, pronpt, nermyr
library /term o/ screen,/term o/ keyboard

However, if you want to selectively specify what debugging information should be included, the
first style of directive file will be easier to use. Thisisillustrated in the following sample
directivefile.

system my_os

name menos

debug watcom |i nes
file menos

debug wat com al |
file actions

debug watcom | i nes

file read
file msg
file pronmpt
file nmemygr

debug wat com
library /term o/ screen
library /term o/ keyboard

3. Information for aparticular directive can span directivefiles. Thisisillustrated in the following
sample directivefile.

system nmy_os

file menos, actions, read, nsg, pronpt, nemmyr
file @lhbgfiles

library /term o/ screen

library /term o/ keyboard

242 The @ Directive

INCLUDE

The directivefile "dbgfiles.Ink” contains, for example, those object files that are used for
debugging purposes.

The @ Directive 243

LANGUAGE

14.17 The LANGUAGE Directive

The"LANGUAGE" directive is used to specify the language in which strings in the Open Watcom Linker
directives are specified. The format of the "LANGUAGE" directive (short form "LANG") isas follows.

LANGUAGE lang

lang ::= JAPANESE | CHINESE | KOREAN

JAPANESE (short form "JA") specifiesthat strings are to be handled asif they contained characters
from the Japanese Double-Byte Character Set (DBCS).

CHINESE (short form "CH") specifies that strings are to be handled as if they contained characters
from the Chinese Double-Byte Character Set (DBCS).

KOREAN (short form "KO") specifies that strings are to be handled as if they contained characters
from the Korean Double-Byte Character Set (DBCS).

244 The LANGUAGE Directive

LIBFILE

14.18 The LIBFILE Directive

The"LIBFILE" directiveis used to specify the object files that the Open Watcom Linker isto process. The
format of the "LIBFILE" directive (short form "LIBF") is asfollows.

LIBFILE obj_spec{,obj_spec}

obj_spec ::=obj_file|library file

where description:

obj_file isafile specification for the name of an object file. If no file extension is specified, afile
extension of "0" is assumed.

library file isafile specification for the name of alibrary file. Note that the file extension of the
library file (usually "lib") must be specified; otherwise an object file will be assumed.
When alibrary file is specified, al object filesin the library are included (whether required
or not).

The difference between the "LIBFILE" directive and the "FILE" directiveis as follows.

1. When searching for an object or library file specified in a"LIBFILE" directive, the current
working directory will be searched first, followed by the paths specified in the "LIBPATH"
directive, and finally the paths specified in the "LIB" environment variable. Note that if the
object or library file name contains a path, only the specified path will be searched.

2. Object or library file names specified in a"LIBFILE" directive will not be used to create the
name of the executable file when no "NAME" directive is specified.

Essentially, object filesthat appear in "LIBFILE" directives are viewed as components of alibrary that
have not been explicitly placed in alibrary file.

Consider the following linker directivefile.
libpath /1ibs
libfile nystart

path /objs
file filel, file2

The Open Watcom Linker isinstructed to process the following object files:
/1ibs/nystart.o
/objs/filel.o
/objs/file2.0

Note that the executable file will have file name "filel" and not "mystart".

The LIBFILE Directive 245

LIBPATH

14.19 The LIBPATH Directive

The"LIBPATH" directiveis used to specify the directories that are to be searched for library files
appearing in subsequent "LIBRARY" directives and object files appearing in subsequent "LIBFILE"
directives. Theformat of the"LIBPATH" directive (short form "LIBP") is asfollows.

LIBPATH [path_name{: path_name}]

where description:
path name isapath name.

Consider adirective file containing the following linker directives.

file test
libpath /math
library trig
libfile newsin

First, the Open Watcom Linker will process the object file "test.0" from the current working directory. The
object file "newsin.o" will then be processed, searching the current working directory first. If "newsin.o" is
not in the current working directory, the "/math" directory will be searched. If any unresolved references
remain after processing the object files, the library file "trig.lib" will be searched. If thefile "trig.lib" does
not exist in the current working directory, the "/math" directory will be searched.

Itisalso possible to specify alist of pathsina"LIBPATH" directive. Consider the following example.

i bpath /newrat h:/math
library trig

When processing undefined references, the Open Watcom Linker will attempt to process the library file
"trig.lib" in the current working directory. If "trig.lib" does not exist in the current working directory, the
"/newmath" directory will be searched. If "trig.lib" does not exist in the "/newmath” directory, the "/math"
directory will be searched.

If the name of alibrary file appearing in a"LIBRARY" directive or the name of an object file appearing in
a"LIBFILE" directive contains a path specification, only the specified path will be searched.

Note that

i bpat h pathl
i bpat h pat h2

is equivalent to the following.

| i bpat h pat h2: pathl

246 The LIBPATH Directive

LIBRARY

14.20 The LIBRARY Directive

The"LIBRARY" directiveis used to specify the library files to be searched when unresolved symbols
remain after processing all specified input object files. The format of the "LIBRARY" directive (short form
"L") isasfollows.

LIBRARY library file{ library file}

where description:

library file isafile specification for the name of alibrary file. If nofile extension is specified, afile
extension of "lib" is assumed.

Consider the following example.

Example:
W ink systemny_os file trig lib /math/trig, /cnplx/trig

The Open Watcom Linker is instructed to process the following object file:
trig.o

If any unresolved symbol references remain after all object files have been processed, the following library
fileswill be searched:

/math/trig.lib
fcmpl x/trig.lib

More than one "LIBRARY" directive may be used. The following exampleis equivalent to the preceding
one.

Example:
wWink systemny os f trig lib /math/trig lib /cnplx/trig

Thus other directives may be placed between lists of library files.

14.20.1 Searching for Libraries Specified in Environment Variables

The"LIB" environment variable can be used to specify alist of paths that will be searched for library files.
The"LIB" environment variable can be set using the "export" command as follows:

export |ib=/graphics/lib:/utility
Consider the following "LIBRARY™" directive and the above definition of the "LIB" environment variable.
library /nylibs/util, graph

If undefined symbols remain after processing all object files specified in all "FILE" directives, the Open
Watcom Linker will resolve these references by searching the following librariesin the specified order.

1. thelibrary file"/mylibg/util lib"

The LIBRARY Directive 247

LIBRARY

N

thelibrary file "graph.lib" in the current directory
3. thelibrary file "/graphicg/lib/graph.lib"
4. thelibrary file"/utility/graph.lib"

Notes:

1. If alibrary file specified in a"LIBRARY" directive contains an absolute path specification, the
Open Watcom Linker will not search any of the paths specified in the "LIB" environment string
for the library file. Under QNX, an absolute path specification is one that beginsthe "/"
character. Under all other operating systems, an absolute path specification is one that begins
with adrive specification or the "\" character.

2. Oncealibrary file has been found, no further elements of the "LIB" environment variable are
searched for other libraries of the same name. That is, if the library file "/graphics/lib/graph.lib"
exists, the library file "/utility/graph.lib” will not be searched even though unresolved references
may remain.

14.20.2 Converting Libraries Created using Phar Lap 386ILIB

Phar Lap’slibrarian, 386|L1B, creates libraries whose dictionary is a different format from the one used by
other librarians. For this reason, linking an application using the Open Watcom Linker with libraries
created using 386|L1B will not work. Library files created using 386|L1B must be converted to the form
recognized by the Open Watcom Linker. Thisis achieved by issuing the following wlib command.

Wwib newib +pharlib.lib

Thelibrary file "pharlib.lib* isalibrary created using 386|LIB. Thelibrary file "newlib.lib" will be created
so that the Open Watcom Linker can now processit.

248 The LIBRARY Directive

LINEARRELOCS (QNX)

14.21 The LINEARRELOCS Option

The"LINEARRELOCS" option instructs the linker to generate offset fixups in addition to the normal
segment fixups. The offset fixups allow the system to move pieces of code and data that were loaded at a
particular offset within a segment to another offset within the same segment.

The format of the "LINEARRELOCS" option (short form "L1") is asfollows.

OPTION LINEARRELOCS

The LINEARRELOCS Option 249

LONGLIVED (QNX)

14.22 The LONGLIVED Option

The"LONGLIVED" option specifies that the application being linked will reside in memory, or be active,
for along period of time (e.g., background tasks). The memory manager, knowing an application is
"LONGLIVED", alocates memory for the application so as to reduce fragmentation.

The format of the "LONGLIVED" option (short form "LO") is asfollows.

OPTION LONGLIVED

250 The LONGLIVED Option

MANGLEDNAMES

14.23 The MANGLEDNAMES Option

The"MANGLEDNAMES' option should only be used if you are developing a Open Watcom C++
application. Dueto the nature of C++, the Open Watcom C++ compiler generates mangled names for
symbols. A mangled name for a symbol includes the following.

1. symbol name
2. scoping information
3. typing information

Thisinformation is stored in a cryptic form with the symbol. When the linker encounters a mangled name
in an object file, it formats the above information and produces this name in the map file.

If you would like the linker to produce the mangled name as it appeared in the object file, specify the
"MANGLEDNAMES" option.

The format of the "MANGLEDNAMES" option (short form "MANG") isasfollows.

OPTION MANGLEDNAMES

The MANGLEDNAMES Option 251

MAP

14.24 The MAP Option

The"MAP" option controls the generation of amap file. The format of the "MAP" option (short form "M")
isasfollows.

OPTION MAP[=map_file]

where description:

map_file isafile specification for the name of the map file. If no file extension is specified, afile
extension of "map" is assumed.

By default, no map file is generated. Specifying this option causes the Open Watcom Linker to generate a
map file. The map fileis simply a memory map of your program. That is, it specifies the relative location
of al global symbolsin your program. The map file also contains the size of your program.

If no file name is specified, the map file will have a default file extension of "map" and the same file name
asthe executable file. Note that the map file will be created in the current directory even if the executable
file name specified in the "NAME" directive contains a path specification.

Alternatively, afile name can be specified. The following directive instructs the linker to generate a map
fileand call it "myprog.map" regardless of the name of the executablefile.

opti on nap=myprog

Y ou can aso specify a path and/or file extension when using the "MAP=" form of the "MAP" option.

252 The MAP Option

MAXERRORS

14.25 The MAXERRORS Option

The "MAXERRORS" option can be used to set alimit on the number of error messages generated by the
linker. Note that this does not include warning messages. When this limit is reached, the linker will issue a
fatal error and terminate.

The format of the "MAXERRORS' option (short form "MAXE") isas follows.

OPTION MAXERRORS=n

where description:

n is the maximum number of error messages issued by the linker.

The MAXERRORS Option 253

MODFILE

14.26 The MODFILE Directive

The"MODFILE" directive instructs the linker that only the specified object files have changed. The format
of the "MODFILE" directive (short form "MODF") is as follows.

MODFILE obj_file{,0bj_file}

where description:

obj_file isafile specification for the name of an object file. If nofile extension is specified, afile
extension of "0" is assumed.

Thisdirectiveis used only in concert with incremental linking. This directive tellsthe linker that only the

specified object files have changed. When this option is specified, the linker will not check the dates on
any of the object files or libraries when incrementally linking.

254 The MODFILE Directive

MODTRACE

14.27 The MODTRACE Directive

The"MODTRACE" directive instructs the Open Watcom Linker to print alist of all modules that reference
the symbols defined in the specified modules. The format of the "MODTRACE" directive (short form
"MODT") isasfollows.

MODTRACE module_name{,module_name}

where description:
module_name isthe name of an object module defined in an object or library file.
Theinformation is displayed in the map file. Consider the following example.

Example:
W ink systemny_os op map file test lib math nodt trig

If the module "trig" defines the symbols"sin" and "cos', the Open Watcom Linker will list, in the map file,
all modules that reference the symbols"sin" and "cos’.

The MODTRACE Directive 255

NAME

14.28 The NAME Directive

The"NAME" directive is used to provide a name for the executable file generated by the Open Watcom
Linker. Theformat of the "NAME" directive (short form "N") is as follows.

NAME exe file
where description:
exe file isafile specification for the name of the executable file. Under UNIX, or if the

"NOEXTENSION" option was specified, no file extension is appended. In all other cases,
afile extension suitable for the current executable file format is appended if no file
extension is specified.

Consider the following example.

Example:
W ink systemny_os nane nyprog file test, test2, test3

Thelinker isinstructed to generate an executable file called "myprog.exe" if you are running a DOS, 0S/2
or Windows-hosted version of the linker. If you are running a UNIX-hosted version of the linker, or the
"NOEXTENSION" option was specified, an executable file called "myprog" will be generated.

Notes:

1. Nofile extension was given when the executabl e file name was specified. The linker assumes a
file extension that depends on the format of the executable file being generated. If you are
running a UNIX-hosted version of the linker, or the "NOEXTENSION" option was specified, no
file extension will be assumed. The section entitled "The FORMAT Directive'" on page 234
describes the "FORMAT" directive and how the file extension is chosen for each executable file
format.

2. If no"NAME" directiveis present, the executable file will have the file name of the first object
file processed by the linker. If the first object file processed is called "test.0" and no "NAME"
directive is specified, an executablefile called "test.exe" will be generated if you are running a
DOS or OS/2-hosted version of the linker. If you are running a UNIX-hosted version of the
linker, or the "NOEXTENSION" option was used, an executablefile called "test" will be
generated.

256 The NAME Directive

NAMELEN

14.29 The NAMELEN Option

The "NAMELEN" option tells the Open Watcom Linker that all symbols must be uniquely identified in the
number of characters specified or less. If any symbol fails to satisfy this condition, a warning message will
beissued. The warning message will state that a symbol has been defined more than once.

The format of the "NAMELEN" option (short form "NAMEL") is asfollows.

OPTION NAMELEN=n

where description:
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| ni
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. 1f mis specified, the valueis
multiplied by 1024* 1024.
Some computer systems, for example, require that all global symbols be uniquely identified in 8 characters.

By specifying an appropriate value for the "NAMELEN" option, you can ease the task of porting your
application to other computer systems.

The NAMELEN Option 257

NODEFAULTLIBS

14.30 The NODEFAULTLIBS Option

Special object module records that specify default libraries are placed in object files generated by Open
Watcom compilers. These libraries reflect the memory and floating-point model that a source file was
compiled for and are automatically searched by the Open Watcom Linker when unresolved symbols are
detected. These libraries can exist in the current directory, in one of the paths specified in "LIBPATH"
directives, or in one of the paths specified in the L 1B environment variable.

Note that al library files that appear in a"LIBRARY" directive are searched before default libraries. The
"NODEFAULTLIBS' option instructs the Open Watcom Linker to ignore default libraries. That is, only
libraries appearing in a"LIBRARY" directive are searched.

The format of the "NODEFAULTLIBS" option (short form "NOD") is as follows.

OPTION NODEFAULTLIBS

258 The NODEFAULTLIBS Option

NOEXTENSION

14.31 The NOEXTENSION Option

The "NOEXTENSION" option suppresses automatic addition of an extension to the name of the executable
file generated by Open Watcom Linker. This affects both names specified explicitly through the "NAME"
directive as well as default names chosen in the absence of a"NAME" directive.

The format of the "NOEXTENSION" option (short form "NOEXT") is as follows.

OPTION NOEXTENSION

The NOEXTENSION Option 259

OPTION

14.32 The OPTION Directive

The"OPTION" directiveis used to specify options to the Open Watcom Linker. The format of the
"OPTION" directive (short form "OP") is asfollows.

OPTION option{,option}

where description:

option isany of the linker options available for the executable format that is being generated.

260 The OPTION Directive

OPTLIB

14.33 The OPTLIB Directive

The"OPTLIB" directive is used to specify the library files to be searched when unresolved symbols remain
after processing all specified input object files. The format of the "OPTLIB" directive (no short form) isas
follows.

OPTLIB library file{ library_file}

where description:

library file isafile specification for the name of alibrary file. If nofile extension is specified, afile
extension of "lib" is assumed.

Thisdirectiveissimilar to the "LIBRARY" directive except that the linker will not issue awarning
message if the library file cannot be found.

Consider the following example.

Example:
Wink systemny os file trig optlib /math/trig, /cnplx/trig

The Open Watcom Linker is instructed to process the following object file:
trig.o

If any unresolved symbol references remain after all object files have been processed, the following library
fileswill be searched:

/math/trig.lib
lcmpl x/trig.lib

More than one "OPTLIB" directive may be used. The following exampleis equivalent to the preceding
one.

Example:
W ink systemny_os f trig optlib /math/trig optlib /cnmplx/trig

Thus other directives may be placed between lists of library files.

14.33.1 Searching for Optional Libraries Specified in Environment Variables

The"LIB" environment variable can be used to specify alist of paths that will be searched for library files.
The"LIB" environment variable can be set using the "export" command as follows:

export lib=/graphics/lib:/utility
Consider the following "OPTLIB" directive and the above definition of the "LIB" environment variable.

optlib /mylibs/util, graph

The OPTLIB Directive 261

OPTLIB

If undefined symbols remain after processing all object files specified in all "FILE" directives, the Open
Watcom Linker will resolve these references by searching the following libraries in the specified order.

1. thelibrary file"/mylibg/util .lib"
2. thelibrary file "graph.lib" in the current directory
3. thelibrary file"/graphicg/lib/graph.lib”
4. thelibrary file "/utility/graph.lib"
Notes:

1. If alibrary file specified in a"OPTLIB" directive contains an absolute path specification, the
Open Watcom Linker will not search any of the paths specified in the "LIB" environment string
for the library file. On UNIX platforms, an absolute path specification is one that begins the /"
character. On al other hosts, an absolute path specification is one that begins with adrive
specification or the "\" character.

2. Oncealibrary file has been found, no further elements of the "LIB" environment variable are
searched for other libraries of the same name. That is, if the library file "/graphics/lib/graph.lib"
exists, the library file "/utility/graph.lib" will not be searched even though unresolved references
may remain.

262 The OPTLIB Directive

ORDER

14.34 The ORDER Directive

The "ORDER" directive is used to specify the order in which classes are placed into the output image, and
the order in which segments are linked within aclass. The directive can optionally also specify the starting
address of aclass or segment, control whether the segment appears in the output image, and facilitate
copying of datafrom one segment to another. The "ORDER" Directive is primarily intended for embedded
(ROMable) targets that do not run under an operating system, or for other special purpose applications.

The format of the "ORDER" directive (short form "ORD") is as follows.

ORDER {CLNAME class name [class_options]|}+

class options::= [SEGADDR=n][OFFSET=n][copy_option][NOEMI T]{seglist}
copy_option ::=[COPY source_class name]
seglist := {SEGMENT seg_name [SEGADDR=N][OFFSET=n][NOEMI T]}+

where

class name

SEGADDR=N

OFFSET=n

description:
represents avalue. The complete form of n isthe following.
[Ox] d{d} k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. If mis specified, thevalueis
multiplied by 1024* 1024.

isthe name of a class defined in one or more object files. If the classisnot defined in an
object file, the class _name and all associated options areignored. Note that the "ORDER"
directive does not create classes or segments. Classes specified with "CLNAME"
keywords will be placed in the output image in the order listed. Any classesthat are not
listed will be placed after the listed ones.

(short form "SEGA") specifies the segment portion of the starting address of the class or
segment in the output image. It is combined with "OFFSET" to represent a unique linear
address. "SEGADDR" isonly valid for segmented formats. Itsuse in other contextsis
undefined. The "HSHIFT" value affects how the segment value is converted to alinear
address.

(short form "OFF") specifies the offset portion of the starting address of the class or
segment in the output image. It is combined with "SEGADDR" to represent a unique linear
address. Offset islimited to arange of 0 to 65535 in segmented architectures, but can be a
larger value for non-segmented architectures, up to the limits of the architecture.

When "SEGADDR" and/or "OFFSET" are specified, the location counter used to generate
the executable is advanced to that address. Any gaps are filled with the "FILLCHAR"
value, except for HEX output format, in which case they are simply skipped. If the location
counter is already beyond the specified location, an error message is generated. This would
likely be the result of having specified classes or segmentsin incorrect order, or not
providing enough room for preceding ones. Without the "SEGADDR" and "OFFSET"
options, classes and segment are placed in the executable consecutively, possibly with a
small gap in between if required by the alignment specified for the class.

The ORDER Directive 263

ORDER

COPY (short form "CQ") indicates that the data from the segment named source _class hameisto
be used in this segment.

NOEMIT (short form "NOE") indicates that the data in this segment should not be placed in the
executable.

SEGMENT indicates the order of segments within a class, and possibly other options associated with
that segment. Segments listed are placed in the executable in the order listed. They must
be part of the class just named. Any segmentsin that class not listed will follow the last
listed segment. The segment options are a subset of the class options and conform to the
same specifications.

In ROM-based applicationsit is often necessary to:
* Fix the program location
* Separate code and data to different fixed parts of memory
* Place a copy of initialized datain ROM (usually right after the code)

* Prevent the original of the initialized data from being written to the loadfile, sinceit residesin RAM
and cannot be saved there.

The "ORDER" directive caters for these requirements. Classes can be placed in the executable in a specific
order, with absolute addresses specified for one or more classes, and segments within a class can be forced
into a specified order with absolute addresses specified for one or more of them. Initialized data can be
omitted at its target address, and a copy included at a different address.

Following is a sample "ORDER" directive for an embedded target (AM186ER). The bottom 32K of
memory is RAM for data. A DGROUP starting address of 0x80:0 isrequired. The upper portion of
memory isFLASH ROM. Code starts at address 0xD000:0. The initialized datafrom DGROUP is placed
immediately after the code.

order cl name BEGDATA NOEM T segaddr =0x80 segnment _NULL segnent
_AFTERNULL

cl nane DATA NCEM T segnent _ DATA

cl nane BSS

cl nane STACK

cl nane START segaddr =0xD0O00

cl nane CODE segnent BEGTEXT segment _ TEXT

cl name ROVDATA COPY BEGDATA

cl nane ROVDATAE

DGROUP consists of classes"BEGDATA", "DATA", "BSS', "BSS2" and "STACK". Note that these are
marked "NOEMIT" (except for the BSS classes and STACK which are not initialized, and therefore have
no datain them anyway) to prevent data from being placed in the loadfile at 0x80:0. Thefirst class of
DGROUP is given the fixed starting segment address of 0x80 (offset is assumed to be 0). The segments

" NULL"," AFTERNULL" and" DATA" will be allocated consecutively in that order, and because they
are part of DGROUP, will al share the same segment portio of the address, with offsets adjusted
accordingly.

The code section consists of classes"START" and "CODE". These are placed beginning at 0xD000:0.

"START" contains only one segment, which will befirst. It will have a CS value of 0xD000. Code has
two segments, "BEGTEXT" and"_TEXT" which will be placed after "START", in that order, and packed

264 The ORDER Directive

ORDER

into asingle CS value of their own (perhaps 0xD0OO1 in this example), unless they exceed 64K in size,
which should not be the case if the program was compiled using the small memory model.

The classes"ROMDATA" and "ROMDATAE" were created in assembly with one segment each and no
symbols or datain them. The class names can be used to identify the beginning and end of initialized data
so it can be copied to RAM by the startup code.

The"COPY" option actually works at the group level, because that is the way it is generally needed. The
entiredataisin DGROUP. "ROMDATA" will be placed in agroup of its own called "AUTO". (Note:
each group mentioned in the map file under the name "AUTQO" is a separate group. They are not combined
or otherwise related in any way, other than they weren't explicitly created by the programmer, compiler or
assembler, but rather automatically created by the linker in the course of itswork.) Therefore thereisa
unique group associated with this class. The "COPY" option finds the group associated with "BEGDATA"
and copies all the object data from thereto "ROMDATA". Specifically, it places a copy of this datain the
executable at the location assigned to "ROMDATA", and adjusts the length of "ROMDATA" to account for
this. All symbol references to this data are to its execution address (0x80:0), not where it ended up in the
executable (for instance 0xD597:0). The starting address of "ROMDATAE" is aso adjusted to account for
the data assigned to "ROMDATA". That way, the program can use the symbol "ROMDATAE" to identify
the end of the copy of DGROUP. It isalso necessary in case more than one "COPY" class exists
consecutively, or additional code or data need to follow it.

It should also be noted that the "DOSSEG" option (whether explicitly given to the linker, or passed in an

object file) performs different class and segment ordering. 1f the "ORDER" directiveis used, it overrides
the "DOSSEG" option, causing it to be ignored.

The ORDER Directive 265

OSNAME

14.35 The OSNAME Option

The"OSNAME" option can be used to set the name of the target operating system of the executable file
generated by the linker. The format of the "OSNAME" option (short form "OSN") is as follows.

OPTION OSNAME='"string’

where description:
string isany sequence of characters.

Theinformation specified by the "OSNAME" option will be displayed in the creating a ? executable
message. Thisisthelast line of output produced by the linker, provided the "QUIET" option is not
specified. Consider the following example.

opti on osnane=" Super CS
Thelast line of output produced by the linker will be as follows.

creating a SuperOS executabl e

Some executable formats have a stub executable file that is run under 16-bit DOS. The message displayed
by the default stub executable file will be modified when the "OSNAME" optionis used. The default stub
executable displays the following message:

0Y2: this is an OS/ 2 executabl e
Win1l6: this is a Wndows execut abl e
Win32: this is a Wndows NT execut abl e

If the "OSNAME" option used in the previous example was specified, the default stub executable would
generate the following message.

this is a SuperOS executabl e

266 The OSNAME Option

OUTPUT

14.36 The OUTPUT Directive

The"OUTPUT" directive overrides the normal operating system specific executable format and creates
either araw binary image or an Intel Hex file. The format of the "OUTPUT" directive (short form "OUT")
isasfollows.

OUTPUT RAW|HEX [OF FSET=n][HSHIFT=n][STARTREC]

where description:

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. 1f mis specified, the valueis
multiplied by 1024* 1024.

RAW specifies the output file to be araw binary and will contain an absolute image of the
executable’ s code and data. Default file extension is "bin".

HEX specifies the output file to contain a representation of the absolute image of the code and
data using the Intel standard hex file format. Default file extensionis"hex".

OFFSET=n (short form "OFF") specifies that the linear address n should be subtracted from all
addresses being output to the executable image.

HSHIFT defines the relationship between segment values for type 02 records and linear addresses.
The value n is the number of digits to right shift a 32-bit value containing a segment
addressin its upper 16 bitsin order to convert it to part of alinear address. In more
conventional terms, (16 - n) is the amount to shift a segment value left in order to convert
it to part of alinear address.

STARTREC (short form "ST") specifies that a Starting Address record will be included in Intel Hex
output. Thisoptionisignored if output typeis not Intel hex.

For raw binary files, the position in the file is the linear address after the offset is subtracted from it. Any
gaps filled with the value specified through "OPTION FILLCHAR" (default is 0).

For hex files, the linear address (after subtracting the offset) is used to determine the output record
generated. Records contain 16 bytes, unless a gap occurs prior to that in which case the record is shorter,
and a new record starts after the gap. There are three types of Intel Hex records. The oldest and most
widely used is HEX80, which can only deal with 16-bit addresses. For many ROM-based applications, this
is enough, especially once an offset has been subtracted. For maximum versatility, all addresses less than
65536 are generated in this form.

The HEX86 standard creates a segmentation that mirrors the CPU segmentation. Type 02 records define
the segment, and all subsequent addresses are based on that segment value. For addresses above 64K, This
formisused. A program that understands HEX86 should assume the segment valueis zero until an 02
record is encountered. This preserves backward compatibility with HEX80, and allows the automatic
selection algorithm used in Open Watcom Linker to work properly.

The OUTPUT Directive 267

ouTPUT

Type 02 records are assumed to have segment values that, when shifted left four bits, form alinear address.
However, thisis not suitable for 24-bit segmented addressing schemes. Therefore, Open Watcom Linker
uses the value specified through "OPTION HSHIFT" to determine the relationship between segments and
offsets. This approach can work with any 16:16 segmented architecture regardless of the segment
alignment. The default shift value is 12, representing the conventional 8086 architecture. Thisis not to be
confused with the optional "OUTPUT HSHIFT" value discussed below.

Of course, PROM programmers or third-party tools probably were not designed to work with
unconventional shift values, hence for cases where code for a 24-bit (or other non-standard) target needs to
be programmed into a PROM or processed by athird-party tool, the "OUTPUT HSHIFT" option can be
used to override the "OPTION HSHIFT" value. Thiswould usualy be of the form "OUTPUT
HSHIFT=12" to restore the industry standard setting. The default for "OUTPUT HSHIFT" isto follow
"OPTION HSHIFT". When neither is specified, the default "OPTION HSHIFT" value of 12 applies,
providing industry standard compliance.

If the address exceeds the range of type 02 records (1 MB for HSHIFT=12 and 16 MB for HSHIFT=8),
type 04 extended linear records are generated, again ensuring seamless compatibility and migration to large
file sizes.

If "STARTREC" is specified for "OUTPUT HEX", the penultimate record in the file (just before the end
record) will be astart address record. The value of the start address will be determined by the module start
record in an object file, typically the result of an "END start" assembler directive. If the start addressisless
than 65536 (always for 16-bit applications, and where applicable for 32-bit applications), atype 03 record
with segment and offset values will be emitted. If the start addressis equal to or greater than 65536, then a
type 05 linear starting address record will be generated. Note that neither of these cases depends directly
onthe "HSHIFT" or "OUTPUT HSIFT" settings. If HSHIFT=8, then the segment and offset values for the
start symbol will be based on that number and used accordingly, but unlike other addressinformationin a
hex file, thisis not derived from alinear address and hence not converted based on the HSHIFT value.

268 The OUTPUT Directive

PATH

14.37 The PATH Directive

The"PATH" directiveis used to specify the directories that are to be searched for object files appearing in
subsequent "FILE" directives. When the "PATH" directive is specified, the current directory will no longer
be searched unlessit appearsin the "PATH" directive. The format of the "PATH" directive (short form
"P") isasfollows.

PATH path_name{: path_name}

where description:
path_name isapath name.

Consider a directive file containing the following linker directives.

path /math

file sin

path /stats

file nmean, variance

It instructs the Open Watcom Linker to process the following object files:

/math/sin.o
/stats/ nmean. o
/stats/variance. o

It isalso possible to specify alist of pathsina"PATH" directive. Consider the following example.

path /math:/stats
file sin

First, the linker will attempt to load the file "/math/sin.o". If unsuccessful, the linker will attempt to load
thefile "/stats/sin.o".

It is possible to override the path specified in a"PATH" directive by preceding the object file namein a
"FILE" directive with an absolute path specification. On UNIX platforms, an absolute path specification is
one that beginsthe"/" character. On al other hosts, an absolute path specification is one that begins with a
drive specification or the "\" character.

path /math

file sin

path /stats

file mean, /nydir/variance

The above directive file instructs the linker to process the following object files:
/math/sin.o

/ st at s/ mean. o
/ mydi r/variance. o

The PATH Directive 269

PRIVILEGE (QNX)

14.38 The PRIVILEGE Option

The"PRIVILEGE" option specifiesthe privilege level (0, 1, 2 or 3) at which the application will run. The
format of the "PRIVILEGE" option (short form "PRIV") is as follows.

OPTION PRIVILEGE=n

where description:
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. If mis specified, thevalueis
multiplied by 1024* 1024.

The default privilege level isO.

270 The PRIVILEGE Option

QUIET

14.39 The QUIET Option

The"QUIET" option tells the Open Watcom Linker to suppress all informational messages. Only warning,
error and fatal messages will beissued. By default, the Open Watcom Linker issues informational
messages. The format of the "QUIET" option (short form "Q") is asfollows.

OPTION QUIET

The QUIET Option 271

REDEFSOK

14.40 The REDEFSOK Option

The "REDEFSOK" option tells the Open Watcom Linker to ignore redefined symbols and to generate an
executable file anyway. By default, warning messages are displayed and an executable file is generated if
redefined symbols are present.

The format of the "REDEFSOK" option (short form "RED") is as follows.

OPTION REDEFSOK

The "NOREDEFSOK" option tells the Open Watcom Linker to treat redefined symbols as an error and to
not generate an executable file. By default, warning messages are displayed and an executablefileis
generated if redefined symbols are present.

The format of the "NOREDEFSOK" option (short form "NORED") is as follows.

OPTION NOREDEFSOK

272 The REDEFSOK Option

REFERENCE

14.41 The REFERENCE Directive

The "REFERENCE" directiveis used to explicitly reference a symbol that is not referenced by any object
file processed by the linker. If any symbol appearing in a"REFERENCE" directive is not resolved by the
linker, an error message will be issued for that symbol specifying that the symbol is undefined.

The "REFERENCE" directive can be used to force object files from libraries to be linked with the
application. Also note that a symbol appearing in a"REFERENCE" directive will not be eliminated by
dead code elimination. For more information on dead code elimination, see the section entitled "The
ELIMINATE Option" on page 228.

The format of the "REFERENCE" directive (short form "REF") is as follows.

REFERENCE symbol_name{, symbol_name}

where description:
symbol_name isthe symbol for which areference is made.

Consider the following example.

ref erence dom no

The symbol dom no will be searched for. The object module that defines this symbol will be linked with
the application. Note that the linker will also attempt to resolve symbols referenced by this module.

The REFERENCE Directive 273

SHOWDEAD

14.42 The SHOWDEAD Option

The"SHOWDEAD" option instructs the linker to list, in the map file, the symbols associated with dead
code and unused C++ virtual functions that it has eliminated from the link. The format of the
"SHOWDEAD" option (short form "SHO") is as follows.

OPTION SHOWDEAD

The"SHOWDEAD" option works best in concert with the"ELIMINATE" and "VFREMOVAL" options.

274 The SHOWDEAD Option

SORT

14.43 The SORT Directive

The "SORT" directive is used to sort the symbolsin the "Memory Map" section of the map file. By defaullt,
symbols are listed on a per module basis in the order the modules were encountered by thelinker. That is, a
module header is displayed followed by the symbols defined by the module.

The format of the "SORT" directive (short form "SQO") is as follows.

SORT [GLOBAL] [ALPHABETICAL]

If the "SORT" directive is specified without any options, asin the following example, the module headers
will be displayed each followed by the list of symbolsit defines sorted by address.

sort

If only the "GLOBAL" sort option (short form "GL") is specified, asin the following example, the module
headers will not be displayed and all symbolswill be sorted by address.

sort gl obal

If only the"ALPHABETICAL" sort option (short form "ALP") is specified, asin the following example,
the module headers will be displayed each followed by the list of symbolsit defines sorted alphabetically.

sort al phabeti cal

If both the"GLOBAL" and "ALPHABETICAL" sort options are specified, as in the following example, the
module headers will not be displayed and all symbolswill be sorted alphabetically.

sort gl obal al phabeti cal
If you are linking a Open Watcom C++ application, mangled names are sorted by using the base name. The

base name is the name of the symbol asit appeared in the sourcefile. See the section entitled "The
MANGLEDNAMES Option" on page 251 for more information on mangled names.

The SORT Directive 275

STACK

14.44 The STACK Option

The"STACK" option can be used to increase the size of the stack. The format of the "STACK" option
(short form "ST") isasfollows.

OPTION STACK=n

where description:

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a hexadecimal
number. If kis specified, the value is multiplied by 1024. If mis specified, thevalueis
multiplied by 1024* 1024.

The default stack size varies for both 16-bit and protected-mode 32-bit applications depending on the
executable format. Y ou can determine the default stack size by looking at the map file that can be
generated when an applicationislinked ("OPTION MAP"). During execution of your program, you may
get an error message indicating your stack has overflowed. If you encounter such an error, you must link
your application again, this time specifying alarger stack size using the "STACK" option.

Example:
option stack=8192

276 The STACK Option

START

14.45 The START Option

The format of the "START" optionisasfollows.

OPTION START=symbol_name

where description:
symbol_name specifies the name of the procedure where execution begins.

For the Netware executable format, the default name of the start procedureis”_Prelude’.

The START Option 277

STARTLINK

14.46 The STARTLINK Directive

The"STARTLINK" directive is used to indicate the start of a new set of linker commands that are to be
processed after the current set of commands has been processed. The format of the "STARTLINK"
directive (short form "STARTL") isasfollows.

STARTLINK

The"ENDLINK" directive is used to indicate the end of the set of commands identified by the
"STARTLINK" directive.

278 The STARTLINK Directive

STATICS

14.47 The STATICS Option

The"STATICS" option should only be used if you are developing a Open Watcom C or C++ application.
The Open Watcom C and C++ compilers produce definitions for static symbolsin the object file. By

default, these static symbols do not appear in the map file. 1f you want static symbolsto be displayed in the
map file, usethe "STATICS' option.

The format of the "STATICS' option (short form "STAT") isasfollows.

OPTION STATICS

The STATICS Option 279

SYMFILE

14.48 The SYMFILE Option

The"SYMFILE" option provides amethod for specifying an aternate file for debugging information. The
format of the"SYMFILE" option (short form "SYMF") is asfollows.

OPTION SYMFILE[=symbol_filg]

where description:

symbol_file isafile specification for the name of the symbol file. If no file extension is specified, afile
extension of "sym" is assumed.

By default, no symbol file is generated; debugging information is appended at the end of the executable
file. Specifying this option causes the Open Watcom Linker to generate a symbol file. The symboal file
contains the debugging information generated by the linker when the "DEBUG" directiveisused. The
symbol file can then be used by Open Watcom Debugger. 1f no debugging information is requested, no
symbol fileis created, regardless of the presence of the "SYMFILE" option.

If no file name is specified, the symboal file will have a default file extension of "sym" and the same path
and file name as the executable file. Note that the symbol file will be placed in the same directory asthe
executablefile.

Alternatively, afile name can be specified. The following directive instructs the linker to generate a
symbol file and call it "myprog.sym" regardless of the name of the executablefile.

option synf=nyprog

Y ou can aso specify a path and/or file extension when using the "SYMFILE=" form of the "SYMFILE"
option.

Notes:

1. Thisoption should be used to debug aDOS "COM" executable file. A DOS"COM" executable
file must not contain any additional information other than the executable information itself
since DOS uses the size of the file to determine what to load.

2. Thisoption should be used when creating a Microsoft Windows executable file. Typically,
before an executable file can be executed as a Microsoft Windows application, aresource
compiler takes the Windows executable file and a resource file as input and combines them. If
the executable file contains debugging information, the resource compiler will strip the
debugging information from the executable file. Therefore, debugging information must not be
part of the executable file created by the linker.

280 The SYMFILE Option

SYMTRACE

14.49 The SYMTRACE Directive

The"SYMTRACE" directive instructs the Open Watcom Linker to print alist of all modules that reference
the specified symbols. The format of the "SYMTRACE" directive (short form "SYMT") is asfollows.

SYMTRACE symbol_name{,symbol_name}

where description:
symbol_name isthe name of asymboal.
Theinformation is displayed in the map file. Consider the following example.

Example:
W ink systemny_os op map file test lib math synt sin, cos

The Open Watcom Linker will list, in the map file, all modules that reference the symbols "sin" and "cos'.

The SYMTRACE Directive 281

SYSTEM

14.50 The SYSTEM Directive

There are three forms of the "SY STEM" directive.

Thefirst form of the"SY STEM" directive (short form "SYS") is called a system definition directive. It
allows you to associate a set of linker directives with a specified name called the system name. This set of
linker directivesis called a system definition block. The format of a system definition directiveisas
follows.

SYSTEM BEGIN system _name {directive} END

where description:

system_name isaunique system name.

directive isalinker directive.

A system definition directive cannot be specified within another system definition directive.

The second form of the "SY STEM" directiveis called a system deletion directive. It allows you to remove

the association of a set of linker directives with a system name. The format of a system deletion directiveis
asfollows.

SYSTEM DELETE system _name

where description:
system _name is adefined system name.

The third form of the"SY STEM" directiveis as follows.

SYSTEM system_name

where description:
system _name is adefined system name.

When thisform of the"SY STEM" directive is encountered, all directives specified in the system definition
block identified by syst em_name will be processed.

Let us consider an example that demonstrates the use of the"SY STEM" directive. The following linker
directives define a system called statistics.

282 The SYSTEM Directive

SYSTEM

system begin statistics
format dos

l'ibpath /1ibs

library stats, graphics
option stack=8k

end

They specify that a statistics application isto be created by using the libraries "stats.lib" and "graphics.lib".
Theselibrary files are located in the directory "/libs'. The application requires a stack size of 8k and the
specified format of executable will be generated.

Suppose the linker directives in the above example are contained in the file "stats.Ink". |f we wish to create
a statistics application, we can issue the following command.

wWink @tats systemstatistics file nyappl

As demonstrated by the above example, the "SY STEM" directive can be used to localize the common
attributes that describe a class of applications.

The system deletion directive can be used to redefine a previously defined system. Consider the following
example.

system begi n at _dos
i bpath 9NATCOMA | i b286
| i bpat h 9MATCOMA | i b286\ dos
format dos ~
end
system begi n n98_dos
sys at_dos "
i bpath 9MATCOWA | i b286\ dos\ n98
end
system begi n dos
sys at_dos "
end

If you wish to redefine the definition of the "dos" system, you can specify the following set of directives.

system del ete dos
system begi n dos
sys n98 dos *
end

This effectively redefines a'dos"' system to be equivalent to a"n98_dos" system (NEC PC-9800 DOS),
rather than the previously defined "at_dos' system (AT-compatible DOS).

For additional examples on the use of the "SY STEM" directive, examine the contents of the wl i nk. | nk
andw syst em I nk files.

Thefilewl i nk. | nk isaspecia linker directivefile that is automatically processed by the Open Watcom
Linker before processing any other directives. On aDOS, 0S/2, or Windows-hosted system, this file must
be located in one of the paths specified in the PATH environment variable. On a QNX-hosted system, this
file should be located inthe / et c directory. A default version of thisfileislocated in the

\ wat com bi nwdirectory on DOS-hosted systems, the \ wat com bi np directory on OS/2-hosted
systems, the / et ¢ directory on QNX-hosted systems, and the \ wat com bi nnt directory on Windows
95 or Windows NT-hosted systems. Note that the file wl i nk. | nk includesthefile W syst em | nk

The SYSTEM Directive 283

SYSTEM

which islocated in the \ wat com bi nwdirectory on DOS, 0OS/2, or Windows-hosted systems and the
/ et c directory on QNX-hosted systems.

Thefilesw i nk. | nk and Wl syst em | nk reference the WATCOM environment variable which must
be set to the directory in which you installed your software.

The default name of the linker directivefile (W i nk. I nk) can be overridden by the WLINK_L NK

environment variable. If the specified file can’t be opened, the default file name will be used. For
example, if the WLINK _LNK environment variable is defined as follows

export WLI NK_LNK=mny. | nk

then the Open Watcom Linker will attempt to usea ny. | nk directive file, and if that file cannot be
opened, the linker will revert to using the default W i nk. | nk file.

14.50.1 Special System Names

There are two special system names. When the linker has processed all object files and the executable file
format has not been determined, and a system definition block has not been processed, the directives
specified in the "286" or "386" system definition block will be processed. The"386" system definition
block will be processed if a 32-bit object file has been processed. Furthermore, only arestricted set of
linker directivesisallowed in a"286" and "386" system definition block. They are asfollows.

* FORMAT

* LIBFILE

* LIBPATH

* LIBRARY

* NAME

* OPTION

* RUNTIME (for Phar Lap executable files only)

* SEGMENT (for OS/2 and QNX executable files only)

284 The SYSTEM Directive

UNDEFSOK

14.51 The UNDEFSOK Option

The "UNDEFSOK" option tells the Open Watcom Linker to generate an executable file even if undefined
symbols are present. By default, no executable file will be generated if undefined symbols are present.

The format of the "UNDEFSOK" option (short form "U") is as follows.

OPTION UNDEFSOK

The "NOUNDEFSOK" option tells the Open Watcom Linker to not generate an executable file if undefined
symbols are present. Thisisthe default behaviour.

The format of the "NOUNDEFSOK" option (short form "NOU") is as follows.

OPTION NOUNDEFSOK

The UNDEFSOK Option 285

VERBOSE

14.52 The VERBOSE Option

The"VERBOSE" option controls the amount of information produced by the Open Watcom Linker in the
map file. The format of the "VERBOSE" option (short form "V") is asfollows.

OPTION VERBOSE

If the"VERBOSE" option is specified, the linker will list, for each object file, all segmentsit defines and
their sizes. By default, thisinformation is not produced in the map file.

286 The VERBOSE Option

VFREMOVAL

14.53 The VFREMOVAL Option

The"VFREMOVAL" option instructs the linker to remove unused C++ virtual functions. The format of
the"VFREMOVAL" option (short form "VFR") is as follows.

OPTION VFREMOVAL

If the"VFREMOVAL" option is specified, the linker will attempt to eliminate unused virtual functions. In
order for the linker to do this, the Open Watcom C++ "zv" compiler option must be used for all object files
in the executable. The"VFREMOVAL" option works best in concert with the"ELIMINATE" option.

The VFREMOVAL Option 287

The Open Watcom Linker

288 The VFREMOVAL Option

15 The QNX Executable File Format

This chapter deals specifically with aspects of QNX executable files. The QNX executable file format will
only run under the QNX operating system.

Input to the Open Watcom Linker is specified on the command line and can be redirected to one or more
files or environment strings. The Open Watcom Linker command line format is as follows.

wlink {directive}

where directive is any of the following:

ALIAS symbol_name=symbol_name{,symbol_name=symbol _name}
DEBUG dbtype [dblist] | DEBUG [dhblist]
DISABLE msg_num{,msg_num}
ENDLINK

FILE obj_spec{,obj _spec}

FORMAT QNX [FLAT]

LANGUAGE

LIBFILE obj_file{,obj_file}

LIBPATH path_name{: path_name}
LIBRARY library_file{ library file}
MODFILE obj_file{,obj_file}
MODTRACE obj_spec{,obj_spec}

NAME exe file

NEWSEGMENT

OPTION option{,option}

ARTIFICIAL
[NOJCACHE
[NO]JCASEEXACT
CVPACK

DOSSEG
ELIMINATE
[NOJFARCALLS
HEAPSIZE=n
INCREMENTAL
LINEARRELOCS
LONGLIVED
MANGLEDNAMES
MAP[=map _fil€]
MAXERRORS=n
NAMELEN=n
NODEFAULTLIBS
NOEXTENSION

The QNX Executable File Format 289

The Open Watcom Linker

NORELOCS
OFFSET=n
OSNAME="string’
PACKCODE=n
PACKDATA=nN
PRIVILEGE=n
QUIET
REDEFSOK
RESOURCE[=resource file| string’]
SHOWDEAD
STACK=n
START=symbol_name
STATICS
SYMFILE[=symbol_fil€]
[NOJUNDEFSOK
VERBOSE
VFREMOVAL
OPTLIB library_file{ library file}
PATH path_name{: path_name}
REFERENCE symbol _name{,symbol_name}
SEGMENT seg_desc{,seg_desc}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system _name
comment
@directive file

You can view all the directives specific to QNX executable files by simply typing the following:

wink ? gnx

Notes:

1. Ifthefile/ et c/w i nk. hl p exists, the contents of that file will be displayed when the

following command is issued.

wink ?

2. If dl of the directive information does not fit on the command line, type the following.

w i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines of directive
information as required. Press"Ctrl/D" to terminate the input of directive information.

290 The QNX Executable File Format

The QNX Executable File Format

15.1 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom Linker. Note
that this assumes that the "DOSSEG" linker option has been specified.

1

2.

5.

6.

all segments not belonging to group "DGROUP" with class "CODE"

all other segments not belonging to group "DGROUP'

all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS" or "STACK"
all segments belonging to group "DGROUFP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open Watcom run-time
libraries. Thissegment isinitialized with the hexadecimal byte pattern "01" and is the first segment in
group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes uninitialized
datain segments belonging to group "DGROUP". Segments belonging to class"STACK" are used to
define the size of the stack used for your application. Segments belonging to the classes"BSS* and
"STACK" arelast in the segment ordering so that uninitialized data need not take space in the executable

file.

Memory Layout 291

The Open Watcom Linker

292 Memory Layout

16 Open Watcom Linker Diagnostic Messages

The Open Watcom Linker issues three classes of messages; fatal errors, errors and warnings. Each message
has a 4-digit number associated with it. Fatal messages start with the digit 3, error messages start with the
digit 2, and warning messages start with the digit 1. It is possible for a message to be issued as awarning

or an error.

If afatal error occurs, the linker will terminate immediately and no executable file will be generated.

If an error occurs, the linker will continue to execute so that all possible errors are issued. However, no
executable file will be generated since these errors do not permit a proper executable file to be generated.

If awarning occurs, the linker will continue to execute. A warning message is usually informational and
does not prevent the creation of a proper executable file. However, all warnings should eventually be
corrected.

The messages listed contain referencesto %, %5, Ya, %, %, %, and % . They represent strings
that are substituted by the Open Watcom Linker to make the error message more precise.

1. % representsastring. This may be a segment or group name, or the name of alinker directive
or option.

2. YS represents the name of asymbol.

3. % represents an address. The format of the address depends on the format of the executable file
being generated.

4. Y% represents a hexadecimal number.
5. %l representsintegersin the range -32768 and 32767.
6. 9% representsintegersin the range -2147483648 and 2147483647.

7. 9% represents an executable file format such as DOS, WINDOWS, PHARLAP, NOVELL, OS2,
QNX or ELF.

Thefollowingisalist of all warning and error messages produced by the Open Watcom Linker followed
by a description of the message. A message may contain more than one reference to "%s". In such acase,
the description will reference them as "%sn" where n is the occurrence of "%s" in the message.
MSG 2002 ** internal ** - %s

If this message occurs, you have found a bug in the linker and should report it.
MSG 2008 cannot open %sl : %s2

An error occurred while trying to open the file "%s1". The reason for the error is given by

"%s2". Generaly this error message isissued when the linker cannot open afile (e.g., an
object file or an executable file).

Open Watcom Linker Diagnostic Messages 293

The Open Watcom Linker

MSG 3009 dynamic memory exhausted

The linker uses all available memory when linking an application. When all available
memory is used, aspill filewill be used. Therefore, unless you are low on disk space, the
linker will always be able to generate the executable file. Dynamic memory isthe memory
the linker usesto build itsinternal data structures and symbol table. A spill fileis not used
for dynamic memory. If the linker issues this message, it cannot link your application. The
following are suggestions that may help you in this situation.

1. Concatenate all your object files into one and specify only the resulting object
file asinput to the linker. For example, you can issue the following command.

%cat *.obj > all.tnp
% mv all.tnp all. obj

This technique only works for OMF-type object files. This significantly reduces
the size of thefile list the linker must maintain.

2. Object files may contain arecord which specifies the module name. This
information is used by Open Watcom Debugger to locate modules during a
debugging session and usually contains the full path of the source file. Thiscan
consume a significant amount of memory when many such object files are being
linked. If your sourceis being compiled by the Open Watcom C or C++
compiler, you can use the "nm" option to set the module name to just the file
name. This reduces the amount of memory required by the linker. If your are
using Open Watcom Debugger to debug your application, you may have to use
the "set source” command so that the source corresponding to a module can be
located.

3. Typically, when you are compiling a program for alarge code model, each
module defines a different "text" segment. If you are compiling your application
using the Open Watcom C or C++ compiler, you can reduce the number of "text"
segments that the linker has to process by specifying the "nt" option. The "nt"
option allows you to specify the name of the "text" segment so that a group of
object files define the same "text" segment.

MSG 2010,3010 /O error processing %sl : %s2
An error has occurred while processing the file "%s1". The cause of the error is given by
"%s2". Thiserror isusually detected while reading from object and library files or writing
to the spill file or executable file. For example, this error would be issued if a"disk full"
condition existed.
MSG 2011 invalid object file attribute
The linker encountered an object file that was not of the format required of an object file.
MSG 2012 invalid library file attribute
The linker encountered a library file that was not of the format required of alibrary file.

MSG 3013 break key detected

The linking process was interrupted by the user from the keyboard.

294 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1014

MSG 2015

MSG 2016

MSG 2017

MSG 2018

MSG 1019

MSG 2020

stack segment not found

The linker identifies the stack segment by a segment defined as having the "STACK"
attribute. This message isissued if no such segment is encountered. This usually happens
if the linker cannot find the run-time libraries required to link your application.

bad relocation type specified

Thismessageisissued if aarelocation isfound in an object file which the linker does not
support.

%a: absolutetarget invalid for self-relativerelocation

This message isissued, for example, if anear call or jump is made to an external symbol
which is defined using the "EQU" assembler directive. "%a" identifies the location of the
near call or jump instruction.

bad location specified for self-relativerelocation at %a

Thismessageisissued if abad fixup is encountered. "%a" defines the location of the
fixup.

relocation offset at %ais out of range

This message is issued when the offset part of arelocation exceeds 64K in a 16-bit
executable or an Alphaexecutable. "%a" defines the location of the fixup. The error is
most commonly caused by errorsin coding assembly language routines. Consider a
modul e that references an external symbol that is defined in a segment different from the
one in which the reference occurred. The module, however, specifies that the segment in
which the symbol is defined is the same segment as the segment that references the symbol.
This error is most commonly caused when the "EXTRN" assembler directive is placed after
the "SEGMENT" assembler directive for the segment referencing the symbol. If the
segment that references the symbol is allocated far enough away from the segment that
defines the symbol, the linker will issue this message.

segment relocation at %a

This message isissued when a 16-bit segment relocation is encountered and "FORMAT
DOS COM", "FORMAT PHARLAP' or "FORMAT NOVELL" has been specified. None
of the above executable file formats allow segment relocation. "%a" identifies the location
of the segment relocation.

size of group % s exceeds 64k by %l bytes

The group "%s" has exceeded the maximum size (64K) allowed for agroup in a 16-bit
executable by "%lI" bytes. Usualy, the group is"DGROUP" (the default data segment) and
your application has placed too much datain this group. One of the following may solve
this problem.

1. If you are using the Open Watcom C or C++ compiler, you can place some of
your datain afar segment by using the "far" keyword when defining data. You
can also decrease the value of the data threshold by using the "zt" compiler
option. Any datum whose size exceeds the value of the data threshold will be
placed in afar segment.

Open Watcom Linker Diagnostic Messages 295

The Open Watcom Linker

2. If you are using the Open Watcom FORTRAN 77 compiler, you can decrease
the value of the data threshold by using the "dt" compiler option. Any datum
whose size exceeds the value of the data threshold will be placed in afar
segment.

MSG 2021 size of segment % s exceeds 64k by %! bytes

The segment "%s" has exceeded the maximum size (64K) for a segment in a 16-bit
executable. Thisusually occursif you are linking a 16-bit application that has been
compiled for asmall code model and the size of the application has grown in such away
that the size of the code segment ("_TEXT") has exceeded 64K. Y ou can overlay your
application or compileit for alarge code model if you cannot reduce the amount of codein
your application.

MSG 2022 cannot have a starting address with an imported symbol

When generating an OS/2 executable file, a symbol imported from aDLL cannot be a start
address. When generating a NetWare executable file, a symbol imported from an NLM
cannot be a start address.

MSG 1023 no starting addressfound, using % a

The starting address defines the location where execution is to begin and must be defined
by aspecial "module end" record in one of the object files linked into your application.
This message isissued if no such record is encountered in which case a default starting
address, namely "%a", will be used. This usually happensif the linker cannot find the
run-time libraries required to link your application.

MSG 2024 missing over lay loader

This message is issued when an overlayed 16-hit DOS executable is being linked and the
overlay manager has not been encountered. This usually happensif the linker cannot find
the run-time libraries required to link your application.

MSG 2025 short vector %d isout of range

This message isissued when the linker is creating an overlayed 16-bit DOS executable and
"OPTION SMALL" isspecified. Since an overlay vector contains a near call to the overlay
loader followed by a near jump to the routine corresponding to the overlay vector, al code
including the overlay manager and all overlay vectors must be less than 64K. This message
isissued if the offset of an overlay vector from the overlay loader or the corresponding
routine exceeds 64K.

MSG 2026 redefinition of reserved symbol %s

The linker defines certain reserved symbols. These symbolsare"_edata’, "_end",

" OVLTAB_"," OVLSTARTVEC "," OVLENDVEC "," LOVLLDR ",

" NOVLLDR_"," SOVLLDR_"," LOVLINIT_"," NOVLINIT_"and

" SOVLINIT_". Thesymbols"_OVLTAB_"," OVLSTARTVEC ",

" OVLENDVEC_"," LOVLLDR_"," NOVLLDR_"," SOVLLDR_ ",

" LOVLINIT_"," NOVLINIT_"and"__SOVLINIT__" aredefined only if you are

using overlaysin 16-bit DOS executables. The symbols"”_edata’ and "_end" are defined
only if the "DOSSEG" option is specified. Y our application must not attempt to define
these symbols. "%s" identifies the reserved symbol.

296 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1027

redefinition of % Signored

The symbol "%S" has been defined by more that one module; the first definition is used.
Thisisonly awarning message. Note that if asymbol is defined more than once and its
addressis the same in both cases, no warning will beissued. This prevents the warning
message from being issued when linking FORTRAN 77 modules that contain common
blocks.

MSG 1028,2028 % Sis an undefined reference

MSG 2029

MSG 2030

MSG 2031

MSG 1032

The symbol "%S" has been referenced but not defined. Check that the spelling of the
symbol is consistent. If you wish the linker to ignore undefined references, use the
"UNDEFSOK" option.

premature end of file encountered

This error isissued while processing object files and object modules from librariesand is
caused if the end of the file or module is reached before the "module end” record is
encountered. The probable causeis a truncated object file.

multiple starting addr esses found

The starting address defines the location where execution is to begin and is defined by a
"module end" record in a particular object file. Thismessageisissued if more than one
object file contains a"module end" record that defines a starting address.

segment %sisin group %sand group %s

The segment "%s1" has been defined to be in group "%s2" in one module and in group
"%s3" in another module. A segment can only belong to one group.

record (type 0x% x) not processed
An object record type not supported by the linker has been encountered. This messageis

issued when linking object modules created by other compilers or assemblersthat create
object files with records that the linker does not support.

MSG 2033,3033 directiveerror near '%s

MSG 2034

MSG 1038

A syntax error occurred while the linker was processing directives. "%s' specifies where
the error occurred.

% a cannot have an offset with an imported symbol

An imported symbol is one that was specified in an "IMPORT" directive. Imported
symbols are defined in Windows or OS/2 16-bit DLLs and in Netware NLMs. References
to imported symbols must always have an offset value of 0. If "DosWrite" is an imported
symbol, then referencing "DosWrite+2" isillegal. "%a" definesthe location of theillegal
reference.

DEBUG directive appear s after abject files

Open Watcom Linker Diagnostic Messages 297

The Open Watcom Linker

MSG 2039

MSG 2040

MSG 2041

MSG 2042

MSG 1043

Thismessageisissued if thefirst "DEBUG" directive appears after a"FILE" directive. A
common error isto specify a"DEBUG" directive after the "FILE" directivesin which case
no debugging information for those object filesis generated in the executable file.

ALIGNMENT valuetoo small

The value specified in the "ALIGNMENT" option refers to the alignment of segmentsin
the executablefile. For 16-bit Windows or 16-bit OS/2, segments in the executable file are
pointed to by a segment table. An entry in the segment table contains a 16-bit value which
isamultiple of the alignment value. Together they form the offset of the segment from the
start of the segment table. The smaller the alignment, the bigger the value required in the
segment table to point to the segment. If this value exceeds 64K, then alarger alignment
value is required to decrease the size that goes in the segment table.

ordinal in IMPORT directive not valid

The specified ordinal in the "IMPORT" directiveisincorrect (e.g., -1). An ordina number
must be in the range 0 to 65535.

ordinal in EXPORT directive not valid

The specified ordinal in the "EXPORT" directiveisincorrect (e.g., -1). An ordina number
must be in the range 0 to 65535.

too many |OPL wordsin EXPORT directive

The maximum number of |OPL words for a 16-bit executable is 63.

duplicate exported ordinal

This message isissued for ordinal numbers specified in an "EXPORT" directive for
symbols belonging to DLLs. This messageisissued if an ordinal number is assigned to

two different symbols. A warning isissued and the linker assigns a non-used ordinal
number to the symbol that caused the warning.

MSG 1044,2044 exported symbol % s not found

MSG 1045

MSG 1046

MSG 1047

This message isissued when generating aDLL or NetWare NLM. An attempt has been
made to define an entry point into aDLL or NLM that does not exist.

segment attribute defined more than once

A segment appearing in a"SEGMENT" directive has been given conflicting or duplicate
attributes.

segment name %s not found
The segment name specified in a"SEGMENT" directive has not been defined.
classname %snot found

The class name specified in a"SEGMENT" directive has not been defined.

298 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1048 inconsistent attributesfor automatic data segment
This message isissued for Windows or OS/2 16-bit executable files. Two conflicting
attributes were specified for the automatic data segment. For example, "LOADONCALL"
and "PRELOAD" are conflicting attributes. Only the first attribute is used.

MSG 2049 invalid STUB file

The stub fileis not avalid executable file. The stub fileis only used for OS/2 executable
files and Windows (both Win16 and Win32) executable files.

MSG 1050 invalid DLL specified in OLDLIBRARY option
The DLL specified inan "OLDLIBRARY" option is not avalid dynamic link library.
MSG 2051 STUB file name same as executable file name

When generating an OS/2 or Windows (Winl16, Win32) executable file, the stub file name
must not be same as the executable file name.

MSG 2052 relocation at % a not in the same segment

Thismessage is only issued for Windows (Win16), OS/2, Phar Lap, and QNX executables.
A relative fixup must relocate to the same segment. "%a" defines the location of the fixup.

MSG 2053 %a: cannot reach a DLL with arelativerelocation

A reference to a symbol in an OS/2 or Windows 16-bit DLL must not be relative. "%a"
defines the location of the reference.

MSG 1054 debugging information incompatible: using line numbersonly
An attempt has been made to link an object file with out-of-date debugging information.
MSG 2055 %a: framemust bethe same asthetarget in protected mode
Each relocation consists of three components; the location being relocated, the target (or
address being referenced), and the frame (the segment to which the target is adjusted). In
protected mode, the segment of the target must be the same as the frame. "%a" defines the
location of the fixup. This message does not apply to 32-bit OS2 and Windows (Win32).
MSG 2056 cannot find library member % s(% <)

Library member "%s2" in library file "%s1" could not be found. This message isissued if
the library file could not be found or the library file did not contain the specified member.

MSG 3057 executable format has been established
This message isissued if there is more than one "FORMAT" directive.
MSG 1058 % s option not valid for %s executable
The option "%s1" can only be specified if an executable file whose format is "%s2" is

being generated.

Open Watcom Linker Diagnostic Messages 299

The Open Watcom Linker

MSG 1059,2059 value for % stoo large

MSG 1060

MSG 1061

MSG 1062

MSG 2063

MSG 2064

MSG 2065

MSG 2066

MSG 2067

MSG 2068

The value specified for option "%s" exceeds its limit.

valuefor % sincorrect

The value specified for option "%s" is not in the allowable range.
multiple values specified for REALBREAK

The "REALBREAK" option for Phar Lap executables can only be specified once.
export and import records not valid for %f

Thismessageisissued if areferenceto aDLL is encountered and the executable file format
is not one that supports DLLs. The file format is represented by "%f".

invalid relocation for flat memory model at %a

A segment relocation in the flat memory model was encountered. "%a" defines the
location of the fixup.

cannot combine 32-bit segments (% s1) with 16-bit segments (% s2)

A 32-bit segment "%s1" and a 16-bit segment "%s2" have been encountered. Mixing
object files created by a 286 compiler and object files created by a 386 compiler is the most
probable cause of this error.

REALBREAK symboal %snot found

The symbol specified in the "REALBREAK" option for Phar Lap executables has not been
defined.

invalid relative relocation type for an import at %a

Thismessage isissued only if a NetWare executable file is being generated. An imported
symbol is one that was specified in an "IMPORT" directive or an import library. Any
reference to an imported symbol must not refer to the segment of the imported symbol.
"%a" defines the location of the reference.

%a: cannot relocate between code and datain Novell formats

Thismessageisissued only if a NetWare executable file is being generated. Segment
relocation is not permitted. "%a" defines the location of the fixup.

absolute segment fixup not valid in protected mode

A reference to an absolute location is hot allowed in protected mode. A protected-mode
application isone that is being generated for OS2, CauseWay DOS extender, Tenberry
Software’ s DOS/4G or DOS/AGW DOS extender, FlashTek’s DOS extender, Phar Lap’s
386|DOS-Extender, Novell’s NetWare operating systems, Windows NT, or Windows 95.
An absolute location is most commonly defined by the "EQU" assembler directive.

300 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1069

MSG 2070

MSG 2071

MSG 1072

MSG 2073

MSG 2074

MSG 2075

MSG 1076

MSG 1080

MSG 2082

unload CHECK procedure not found

Thismessage isissued only if a NetWare executable file is being generated. The symbol
specified in the "CHECK" option has not been defined.

START procedure not found

Thismessage isissued only if a NetWare executable file is being generated. The symbol
specified in the "START" option has not been defined. The default "START" symbol is
" Prelude".

EXIT procedure not found

Thismessageisissued only if a NetWare executable file is being generated. The symbol
specified in the "EXIT" option has not been defined. The default "STOP" symbol is
"_Stop".

SECTION directive not allowed in root

When describing 16-bit overlays, "SECTION" directives must appear between a"BEGIN"
directive and its corresponding "END" directive.

bad Novell file format specified

Aninvalid NetWare executable file format was specified. Valid formatsare NLM, DSK,
NAM, LAN, MSL, HAM, CDM or a numerical module type.

circular aliasfound for %s

An attempt was made to circularly define the symbol name specified inan ALIAS
directive. For example:

ALI AS fool=foo02, foo2=fool
expecting an END directive
A "BEGIN" directive is missing its corresponding "END" directive.
% s option multiply specified
The option "%s" can only be specified once.
file%sisa%d-bit object file

A 32-bit attribute was encountered while generating a 16-bit executable file format, or a
16-bit attribute was encountered while generating a 32-bit executable file format.

invalid record type 0x% x
An object record type not recognized by the linker has been encountered. This messageis

issued when linking object modules created by other compilers or assemblersthat create
object files with records that the linker does not recognize.

Open Watcom Linker Diagnostic Messages 301

The Open Watcom Linker

MSG 2083

MSG 2084

MSG 2086

MSG 1087

MSG 3088

MSG 2089

MSG 1090

MSG 2091

MSG 2092

MSG 2093

cannot reference address % a from frame %x

When generating a 16-bit executable, the offset of areferenced symbol was greater than
64K from the location referencing it.

target offset exceeds 64K at %a

When generating a 16-bit executable, the computed offset for a symbol exceeds 64K. "%a"
defines the location of the fixup.

invalid starting addressfor .COM file

The value of the segment of the starting address for a 16-bit DOS "COM" file, as specified
in the map file, must be 0.

stack segment ignored in .COM file

A stack segment must not be defined when generating a 16-bit DOS"COM™" file. Only a
single physical segment isalowed inaDOS"COM" file. The stack is allocated from the
high end of the physical segment. That is, the initial value of SPis hexadecimal FFFE.
virtual memory exhausted

This message is similar to the "dynamic memory exhausted" message. The DOS-hosted
version of the linker has run out of memory trying to keep track of virtual memory blocks.
Virtual memory blocks are allocated from expanded memory, extended memory and the
spill file.

program too largefor a.COM file

Thetotal size of a16-bit DOS"COM" program must not exceed 64K. That is, the total
amount of code and data must be less than 64K since only a single physical segment is
allowed inaDOS"COM" file. You must decrease the size of your program or generate a
DOS"EXE" file.

redefinition of % sby %signored

The symbol "%s1" has been redefined by module "%s2". This message isissued when the
size specified in the "NAMELEN" option has caused two symbols to map to the same
symbol. For example, if the symbols routinel and routine2 are encountered and "OPTION
NAMELEN=7" is specified, then this message will be issued since the first seven
characters of the two symbols are identical.

group %sisin morethan one overlay

A group that spans more than one section in a 16-bit DOS executable has been detected.
NEWSEGMENT directive appear s befor e object files

The 16-bit "NEWSEGMENT" directive must appear after a"FILE" directive.

cannot open %s

302 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 2094

MSG 3097

MSG 1098

MSG 2099

MSG 1101

MSG 1102

MSG 1103

MSG 1105

MSG 1107

MSG 1108

This message isissued when the linker is unable to open afile and is unable to determine
the cause.

i/oerror processing %s

This message isissued when the linker has encountered an i/o error while processing the
file and is unable to determine the cause. This message may be issued when reading from
object and library files, or writing to the executable and spill file.

too many library modules

Thismessage is similar to the "dynamic memory exhausted" message. This message if
issued when the "DISTRIBUTE" option for 16-bit DOS executables is specified. The
linker has run out of memory trying to keep track of the relationship between object
modules extracted from libraries and the overlays they should be placed in.

Offset option must be a multiple of % dK

The value specified with the "OFFSET" option must be a multiple of 4K (4096) for Phar
Lap and QNX executables and a multiple of 64K (65536) for OS2 and Windows 32-bit
executables.

symbol nametoo long: %s

The maximum size (approximately 2048) of a symbol has been exceeded. Reduce the size
of the symbol to avoid this error.

invalid incremental infor mation file

Theincremental information file is corrupt or from an older version of the compiler. The
old information file and the executable will be deleted and new ones will be generated.

object file % snot found for tracing

A "SYMTRACE" or "MODTRACE" directive contained an object file (namely %s) that
could not be found.

library module % s(%s) not found for tracing

A "SYMTRACE" or "MODTRACE" directive contained an object module (namely module
%sl in library %s2) that could not be found.

cannot reserve %l bytes of extra overlay space

The value specified with the "AREA" option for 16-bit DOS executables resultsin an
executable file that requires more than 1 megabyte of memory to execute.

undefined system name: %s

The name %s was referenced in a"SY STEM" directive but never defined by a system
block definition.

system % s defined mor e than once

Open Watcom Linker Diagnostic Messages 303

The Open Watcom Linker

MSG 1109

MSG 1110

MSG 1111

MSG 3114

MSG 1115

MSG 1116

MSG 1117

MSG 1118

MSG 2119

MSG 2120

The name %s has appeared in a system definition block more than once.
OFFSET option islessthan the stack size

For the QNX operating system, the stack is placed at the front of the executable image and
thustheinitial load address must leave enough room for the stack.

library membersnot allowed in libfile

Only object filesare allowed ina"LIBFILE" directive. This message will beissued if a
module from alibrary fileis specified in a"LIBFILE" directive.

error in default system block

The default system block definition (system name "286" for 16-bit applications) and
(system name "386" for 32-bit applications) contains adirective error. The system name
"286" or "386" is automatically referenced by the linker when the format of the executable
cannot be determined (i.e. no "FORMAT" directive has been specified).

environment name specified incorrectly

This message is specified if the environment variable is not properly enclosed between two
percent (%) characters.

environment name %snot found
The environment variable %s has not been defined in the environment space.
overlay area must be at least %! bytes

This message isissued if the size of the largest overlay exceeds the size of the overlay area
specified by the "AREA" option for 16-bit DOS executables.

segment number too high for a movable entry point

The segment number of a moveable segment must not exceed 255 for 16-bit executables.
Reduce the number of segments or use the "PACKCODE" option.

heap sizetoo large

Thismessageisissued if the size of the heap, stack and the default data segment (group
DGROUP) exceeds 64K for 16-hit executables.

wlib import statement incorrect

The "EXPORT" directive alows you to specify alibrary command file. This command file
is scanned for any librarian commands that create import library entries. Aninvalid
command was detected. See the section entitled "The EXPORT Directive" for the correct
format of these commands.

application too largeto run under DOS

Thismessage isissued if the size of the 16-bit DOS application exceeds 1M.

304 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1121

MSG 3122

MSG 3123

MSG 1124

MSG 1125

MSG 1126

MSG 2127

MSG 3128

MSG 3129

MSG 1130

MSG 3131

%S hasalready been exported

The linker has detected an attempt to export a symbol more than once. For example, a
name appearing in more than one "EXPORT" directive will cause this message to be
issued. Also, if you have declared a symbol as an export in your source and have also
specified the same symbol in an "EXPORT" directive, this message will beissued. This
message is only awarning.

no FILE directivesfound

Thismessageisissued if no "FILE" directive has been specified. In other words, you have
specified no object filesto link.

overlaysarenot supported in thisversion of thelinker

This version of the linker does not support the creation of overlaid 16-bit executables.
lazy reference for % S has different default resolutions

A lazy external reference is one which has two resolutions: a preferred one and a default
one which isused if the preferred one is not found. In this case, the linker has found two
lazy references that have the same preferred resolution but different default resolutions.
multiple aliases found for %S

The linker has found a name which has been aliased to two different symbols.

% s has been modified: doing full relink

The linker has determined that the time stamps on the executable file and symbolic
information file (.sym) are different. Anincremental link will not be done.

cannot export symbol % S

An attempt was made to export a symbol defined with an absolute address or to export an
imported symbol. It isnot possible to export these symbols with the "EXPORT" directive.

directive error near beginning of input

The linker detected an error at the start of the command line.

addressinformation too large

The linker has encountered a segment that appears in more than 11000 object files. An
empty segment does not affect thislimit. This can only occur with Watcom debugging
information. If this message appears, switch to DWARF debugging information.
%sisan invalid shared nim file

The NLM specified ina"SHAREDNLM" option is not valid.

cannot open spill file: file already exists

Open Watcom Linker Diagnostic Messages 305

The Open Watcom Linker

MSG 2132

MSG 1133

MSG 1134

MSG 3135

MSG 1136

MSG 3137

MSG 3138

MSG 3139

MSG 1140

MSG 1141

All 26 of the DOS-hosted linker’ s possible spill file names arein use. Spill files can
accumulate when linking on a multi-tasking system and the directory in which the spill file
iscreated isidentical for each invocation of the linker.

curly brace delimited list incorrect

A list delimited by curly bracesis not correct. The most likely cause is amissing right
brace.

no realbreak specified for 16-bit code

While generating a Phar Lap executable file, both 16-bit and 32-bit code was linked
together and no "REALBREAK" option has been specified. A warning message isissued
since this may be a potential problem.

%sisan invalid messagefile

Thefile specified in a"MESSAGE" option for NetWare executable filesisinvalid.

need exactly 1 overlay area with dynamic overlay manager

Only asingle overlay areais supported by the 16-bit dynamic overlay manager.

segment relocation to aread/write data segment found at % a(%S)

The "RWRELOCCHECK" option for 16-bit Windows (Win16) executables has been
specified and the linker has detected a segment relocation to a read/write data segment.
Where the name of the offending symbol is not available, "identifier unavailable" is used.

too many errorsencountered

This message is issued when the number of error messages issued by the linker exceeds the
number specified by the "MAXERRORS" option.

invalid filename'%s

The linker performs a simple filename validation whenever afilename is specified to the
linker. For example, adirectory specification is not avalid filename.

cannot have both 16-bit and 32-bit object files

It isimpossible to mix 16-bit code and 32-bit code in the same executable when generating
aQNX executablefile.

invalid message number
An invalid message number has been specified in a"DISABLE" directive.
virtual function tablerecord for % s mismatched

The linker performs a consistency check to ensure that the C++ compiler has not generated
incorrect virtual function information. 1f the message isissued, please report this problem.

306 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

MSG 1143

MSG 1145

MSG 2146

MSG 3147

MSG 1148

MSG 1149

MSG 1150

MSG 2151

MSG 2152

MSG 2154

MSG 2155

not enough memory to sort map file symbols

There was not enough memory for the linker to sort the symbols in the "Memory Map"
portion of the map file. Thiswill only occur when the"SORT GLOBAL" option has been
specified.

% Sisboth purevirtual and non-pure virtual

A function has been declared both as "pure" and "non-pure” virtual.

%sisan invalid object file

Something was encountered in the object file that cannot be processed by the linker.

Ambiguous format specified

Not enough of the FORMAT directive attributes were specified to enable the linker to
determine the executable file format. For example,

FORMAT OS2
will generate this message.
Invalid segment type specified
The segment type must be one of CODE or DATA.
Only one debugging format can be specified

The debugging format must be one of Watcom, CodeView, DWARF (default), or Novell.
Y ou cannot specify multiple debugging formats.

file % shas code for a different processor

An object file has been encountered which contains code compiled for a different processor
(e.g., an Intel application and an Alpha object file).

big endian code not supported

Big endian code is not supported by the linker.

no dictionary found

No symbol search dictionary was found in alibrary that the linker attempted to process.
cannot execute %sl: %s2

An attempt by the linker to spawn another application failed. The application is specified
by "%s1" and the reason for the failure is specified by "%s2".

relocation at % ato an improperly aligned tar get

Some relocations in Alpha executables require that the object be aligned on a4 byte
boundary.

Open Watcom Linker Diagnostic Messages 307

The Open Watcom Linker

MSG 2156

MSG 3157

MSG 1158

MSG 3159

MSG 3160

MSG 1162

MSG 1163

MSG 3164

MSG 1165

MSG 2166

MSG 1167

OPTION INCREMENTAL must be one of thefirst directives specified

The option must be specified before any option or directive which modifies the linker’s
symbol table (e.g., IMPORT, EXPORT, REFERENCE, ALIAS).

no code or data present

Thelinker requires that there be at least 1 byte of either code or data in the executable.
problem adding resour ce infor mation

Theresourcefileisinvalid or corrupt.

incremental linking only supports DWARF debugging information

When OPTION INCREMENTAL is used, you cannot specify non-DWARF debugging
information for the executable. Y ou must specify DEBUG DWARF when requesting
debugging information.

incremental linking does not support dead code elimination

When OPTION INCREMENTAL isused, you cannot specify OPTION ELIMINATE.

relocations on iterated data not supported

An object file was encountered that contained an iterated data record that requires
relocation. Thisis most commonly caused by a module coded in assembly language.

module has not been compiled with the" zv" option

When OPTION VFREMOVAL isused, al object files must be compiled with the "zv"
option. The linker has detected an object file that has not been compiled with this option.

incremental linking does not support virtual function removal

When OPTION INCREMENTAL is used, you cannot also specify OPTION
VFREMOVAL.

resour ce file % stoo big

The resource file specified in OPTION RESOURCE was too big to fit inside the QN X
executable. The maximum size is approximately 32000 bytes.

both %s1 and % s2 marked as starting symbols

If the linker seesthat there is more than one starting address specified in the program and
they have symbol names associated with them, it will emit this error message. If thereis
more than one starting address specified and at |east one of them is unnamed, it will issue
message 2030.

The NLM internal name (%) has been truncated asit exceeds the maximum size.

This message isissued when generating a NetWare NLM. The output file name as
specified by the NAME directive has specified along file name (exceeds 8.3). The linker

308 Open Watcom Linker Diagnostic Messages

Open Watcom Linker Diagnostic Messages

will truncate the generated file name by using the first eight characters of the specified file
name and the first three characters of the file extension (if supplied), separated by a period.

Open Watcom Linker Diagnostic Messages 309

The Open Watcom Linker

310 Open Watcom Linker Diagnostic Messages

The Open Watcom Library Manager

The Open Watcom Library Manager

312

17 The Open Watcom Library Manager

17.1 Introduction

The Open Watcom Library Manager can be used to create and update object library files. It takes asinput
an object file or alibrary file and creates or updates alibrary file. For OS/2, Win16 and Win32
applications, it can also create import libraries from Dynamic Link Libraries.
An object library is essentialy acollection of object files. These object files generally contain utility
routines that can be used as input to the Open Watcom Linker to create an application. The following are
some of the advantages of using library files.
1. Only those modules that are referenced will be included in the executable file. This eliminates
the need to know which object files should be included and which ones should be left out when
linking an application.

2. Librariesare agood way of organizing object files. When linking an application, you need only
list onelibrary fileinstead of several object files.

The Open Watcom Library Manager currently runs under the following operating systems.
*DOS
» 0S/2
« QONX

* Windows

17.2 The Open Watcom Library Manager Command Line

The following describes the Open Watcom Library Manager command line.

wlib [options_1] lib_file [cmd_list]

The square brackets "[]" denote items which are optional.

lib file isthefile specification for the library file to be processed. If no file extension is specified,
afile extension of "lib" is assumed.

options 1 isalist of valid options. Options may be specified in any order. Options are preceded by a
"—" character.

The Open Watcom Library Manager Command Line 313

The Open Watcom Library Manager

cmd_list isalist of commands to the Open Watcom Library Manager specifying what operations are
to be performed. Each command in cmd_list is separated by a space.

Thefollowing is asummary of valid options. Items enclosed in square brackets "[]" are optional. Items
separated by an or-bar "|" and enclosed in parentheses "()" indicate that one of the items must be specified.
Items enclosed in angle brackets "<>" are to be replaced with a user-supplied name or value (the "<>" are
not included in what you specify).

? display the usage message
b suppress creation of backup file
c perform case sensitive comparison
d=<output_directory>
directory in which extracted object modules will be placed
fa output AR format library
fm output MLIB format library
fo output OMF format library
h display the usage message
ia generate AXP import records
ii generate X 86 import records
ip generate PPC import records
ie generate ELF import records
ic generate COFF import records
io generate OMF import records
i(rjn)(njo) imports for the resident/non-resident names table are to be imported by name/ordinal.
[[=<list_file>] createalistingfile
m display C++ mangled names
n always create anew library

o=<output_file>
set output file name for library
p=<record_size>
set library page size (supported for "OMF" library format only)

q suppress identification banner

S strip line number records from object files (supported for "OMF" library format only)

t remove path information from module name specified in THEADR records (supported for
"OMF" library format only)

% do not suppress identification banner

X extract all object modules from library

2d strip file dependency info from object files (supported for "OMF" library format only)

The following sections describe the operations that can be performed on alibrary file. Note that before
making a change to alibrary file, the Open Watcom Library Manager makes a backup copy of the original
library file unless the "o" option is used to specify an output library file whose name is different than the
original library file, or the"b" option is used to suppress the creation of the backup file. The backup copy
has the same file name as the original library file but has afile extension of "bak". Hence, lib_file should
not have afile extension of "bak".

314 The Open Watcom Library Manager Command Line

The Open Watcom Library Manager

17.3 Open Watcom Library Manager Module Commands

The following is a summary of basic Open Watcom Library Manager module mani pulation commands:

+ add moduleto alibrary

- remove module from alibrary

*or: extract module from alibrary (: isused with a UNIX-hosted version of the Open Watcom
Library Manager, otherwise * is used)

++ add import library entry

17.4 Adding Modules to a Library File

An object file can be added to alibrary file by specifying a+obj_file command where obj_fileisthefile
specification for an object file. A file extension of "0" isassumed if noneis specified. If thelibrary file
does not exist, awarning message will beissued and the library file will be created.

Example:
wib nylib +nyobj

In the above example, the abject file "myobj" is added to the library file "mylib.lib".

When amoduleis added to alibrary, the Open Watcom Library Manager will issue awarning if a symbol
redefinition occurs. Thiswill occur if asymbol in the module being added is aready defined in another
module that already existsin the library file. Note that the module will be added to the library in any case.

It is also possible to combine two library filestogether. The following example adds all modulesin the
library "newlib.lib" to the library "mylib.lib".

Example:
Wib nylib +newib.lib

Note that you must specify the"lib" file extension. Otherwise, the Open Watcom Library Manager will
assume you are adding an object file.

17.5 Deleting Modules from a Library File

A module can be deleted from alibrary file by specifying a-mod_name command where mod_nameisthe
file name of the object file when it was added to the library with the directory and file extension removed.

Example:
wWib nmylib -nyobj

In the above example, the Open Watcom Library Manager isinstructed to delete the module "myobj" from
thelibrary file "mylib.lib".

It isalso possible to specify alibrary fileinstead of a module name.

Deleting Modules from a Library File 315

The Open Watcom Library Manager

Example:
Wib nmylib -oldlib.lib

In the above example, all modulesin the library file "oldlib.lib" are removed from the library file

"mylib.lib". Note that you must specify the "lib" file extension. Otherwise, the Open Watcom Library
Manager will assume you are removing an object module.

17.6 Replacing Modules in a Library File

A module can be replaced by specifying a-+mod_name or +-mod_name command. The module
mod_nameis deleted from the library. The object file "mod_name" is then added to the library.

Example:
wWib nylib -+nyobj

In the above example, the module "myobj" is replaced by the object file "myaobj".
It is also possible to merge two library files.

Example:
Wib nylib -+updlib.lib

In the above example, all modulesin the library file "updlib.lib" replace the corresponding modules in the
library file"mylib.lib". Any modulein the library "updlib.lib" not in library "mylib.lib" is added to the
library "mylib.lib". Note that you must specify the "lib" file extension. Otherwise, the Open Watcom
Library Manager will assume you are replacing an object module.

17.7 Extracting a Module from a Library File

A module can be extracted from alibrary file by specifying a:mod_name [=file_name] command. The
module mod_name is not deleted but is copied to adisk file. If mod_name is preceded by a path
specification, the output file will be placed in the directory identified by the path specification. If
mod_nameisfollowed by afile extension, the output file will contain the specified file extension.

Example:
wWib nylib :nyobj

In the above example, the module "myobj" is copied to adisk file. Thedisk file will be an object file with
file name "myobj". A file extension of "0" will be used.

Example:
wWib nylib :myobj. out

In the above example, the module "myobj" will be extracted from the library file "mylib.lib" and placed in
the file "myabj.out"

The following form of the extract command can be used if the module name is not the same as the output
file name.

316 Extracting a Module from a Library File

The Open Watcom Library Manager

Example:
wWib nylib :myobj=newnyobj . out

Y ou can extract a module from afile and have that module deleted from the library file by specifying a
:-mod_name command. The following example performs the same operations as in the previous example
but, in addition, the module is deleted from the library file.

Example:
Wib nylib :-nyobj.out

Note that the same result is achieved if the delete operator precedes the extract operator.

17.8 Creating Import Libraries

The Open Watcom Library Manager can aso be used to create import libraries from Dynamic Link
Libraries. Import libraries are used when linking OS/2, Win16 or Win32 applications.

Example:
wib inmplib +dynanic.dll

In the above example, the following actions are performed. For each external symbol in the specified
Dynamic Link Library, a special object module is created that identifies the external symbol and the actual
name of the Dynamic Link Library it isdefined in. This object module is then added to the specified
library. Theresulting library is called an import library.

Note that you must specify the "dIl" file extension. Otherwise, the Open Watcom Library Manager will
assume you are adding an object file.

17.9 Creating Import Library Entries

An import library entry can be created and added to alibrary by specifying a command of the following
form.

++symdl | _nane[.[al tsym . export_name][.ordi nal]

where description:

sym isthe name of asymbol in a Dynamic Link Library.

dil_name is the name of the Dynamic Link Library that defines sym

altsym isthe name of asymbol in aDynamic Link Library. When omitted, the default symbol
nameissym

export_name isthe name that an application that islinking to the Dynamic Link Library usesto reference
sym When omitted, the default export nameis sym

ordinal isthe ordinal value that can be used to identify syminstead of using the name
export _nane.

Creating Import Library Entries 317

The Open Watcom Library Manager

Example:
wWib mth ++ sin.trig.sin. 1

In the above example, an import library entry will be created for symbol si n and added to the library
"math.lib". The symbol si n isdefined inthe Dynamic Link Library called "trig.dll" as __si n. Whenan
application is linked with the library "math.lib", the resulting executabl e file will contain an import by
ordinal value 1. If the ordinal value was omitted, the resulting executable file would contain an import by
namesi n.

17.10 Commands from a File or Environment Variable

The Open Watcom Library Manager can be instructed to process all commandsin adisk file or
environment variable by specifying the @name command where name is a file specification for the
command file or the name of an environment variable. A file extension of "Ibc" isassumed for filesif none
is specified. The commands must be one of those previously described.

Example:
wib nylib @vycnd

In the above example, all commands in the environment variable "mycmd"” or file "mycmd.lbc" are
processed by the Open Watcom Library Manager.

17.11 Open Watcom Library Manager Options

The following sections describe the list of options allowed when invoking the Open Watcom Library
Manager.
17.11.1 Suppress Creation of Backup File - "b" Option

The"b" option tells the Open Watcom Library Manager to not create a backup library file. Inthe following
example, the object fileidentified by "new" will be added to the library file "mylib.lib".

Example:
wWwib -b nylib +new

If thelibrary file "mylib.lib" already exits, no backup library file ("mylib.bak™) will be created.

17.11.2 Case Sensitive Symbol Names - “c" Option

The"c" option tells the Open Watcom Library Manager to use a case sensitive compare when comparing a
symbol to be added to the library to a symbol already in the library file. Thiswill cause the names"myrtn"
and "MYRTN" to be treated as different symbols. By default, comparisons are case insensitive. That isthe
symbol "myrtn” is the same as the symbol "MYRTN".

318 Open Watcom Library Manager Options

The Open Watcom Library Manager

17.11.3 Specify Output Directory - "d" Option

The"d" option tells the Open Watcom Library Manager the directory in which all extracted modules are to
be placed. The default isto place all extracted modules in the current directory.

In the following example, the module "mymod" is extracted from the library "mylib.lib". The module will
be placed in the file "/o/mymod.o".

Example:
Wib -d=/o mynod
17.11.4 Specify Output Format - "f" Option
The"f" option tells the Open Watcom Library Manager the format of the output library. The default output

format is determined by the type of object filesthat are added to the library when it is created. The possible
output format options are:

fa output AR format library
fm output MLIB format library
fo output OMF format library

17.11.5 Generating Imports - "i" Option
The"i" option can be used to describe type of import library to create.
ia generate AXP import records

ii generate X 86 import records

ip generate PPC import records
ie generate EL F import records
ic generate COFF import records
io generate OMF import records

When creating import libraries from Dynamic Link Libraries, import entries for the names in the resident
and non-resident names tables are created. The"i" option can be used to describe the method used to

import these names.

iro Specifying "iro" causesimports for namesin the resident names table to be imported by
ordinal.

irn Specifying "irn" causes imports for names in the resident names table to be imported by

name. Thisisthe default.

ino Specifying "ino" causes imports for names in the non-resident names table to be imported
by ordinal. Thisisthe default.

Open Watcom Library Manager Options 319

The Open Watcom Library Manager

inn Specifying "inn" causes imports for names in the non-resident names table to be imported
by name.

Example:
Wib -iro -inn inplib +dynanic.dll

Note that you must specify the "dIl" file extension for the Dynamic Link Library. Otherwise an object file
will be assumed.

17.11.6 Creating a Listing File - "I" Option

The"I" (lower case L") option instructs the Open Watcom Library Manager to produce alist of the names
of all symbolsthat can be found in the library fileto alisting file. The file name of the listing file isthe
same as the file name of the library file. Thefile extension of thelisting fileis"Ist".

Example:
wWib -1 nylib

In the above example, the Open Watcom Library Manager is instructed to list the contents of the library file
"mylib.lib" and produce the output to alisting file called "mylib.|st".

An dternate form of thisoptionis - | =l i st _fil e. Withthisform, you can specify the name of the
listing file. When specifying alisting file name, afile extension of "Ist" is assumed if none is specified.

Example:
Wib -I=nylib.out nylib

In the above example, the Open Watcom Library Manager is instructed to list the contents of the library file
"mylib.lib" and produce the output to alisting file called "mylib.out".

You can get alisting of the contents of alibrary file to the terminal by specifying only the library name on
the command line as demonstrated by the following example.

Example:
wib nmylib
17.11.7 Display C++ Mangled Names - "m" Option
The"m" option instructs the Open Watcom Library Manager to display C++ mangled names rather than

displaying their demangled form. The default isto interpret mangled C++ names and display themin a
somewhat moreintelligible form.

17.11.8 Always Create a New Library - "n" Option

The"n" option tells the Open Watcom Library Manager to always create anew library file. If the library
file already exists, a backup copy is made (unless the "b" option was specified). The original contents of
thelibrary are discarded and anew library is created. If the"n" option was not specified, the existing
library would be updated.

320 Open Watcom Library Manager Options

The Open Watcom Library Manager

Example:
Wib -n nylib +nmyobj

In the above example, alibrary file called "mylib.lib" is created. 1t will contain a single object module,
namely "myobj", regardless of the contents of "mylib.lib" prior to issuing the above command. If
"mylib.lib" already exists, it will be renamed to "mylib.bak".

17.11.9 Specifying an Output File Name - "o" Option

The"o" option can be used to specify the output library file name if you want the original library to remain
unchanged and a new library created.

Example:
wWib -o=newlib libl +lib2.1ib

In the above example, the modules from "lib1.lib" and "lib2.lib" are added to the library "newlib.lib". Note
that since the original library remains unchanged, no backup copy is created. Also, if the "I" option is used
to specify alisting file, the listing file will assume the file name of the output library.

17.11.10 Specifying a Library Record Size - "p" Option

The "p" option specifies the record size in bytes for each record in the library file. The record size must be
apower of 2 and in the range 16 to 32768. If the record sizeislessthan 16, it will be rounded up to 16. If
therecord sizeis greater than 16 and not a power of 2, it will be rounded up to the nearest power of 2. The
default record sizeis 256 bytes.

Each entry in the dictionary of alibrary file contains an offset from the start of the file which pointsto a
module. The offset is 16 bitsand isamultiple of the record size. Since the default record sizeis 256, the
maximum size of alibrary file for arecord size of 256 is 256* 64K . If the size of the library file increases
beyond this size, you must increase the record size.

Example:
wWib -p=512 Iibl +lib2.1ib

In the above example, the Open Watcom Library Manager is instructed to create/update the library file
"lib1.lib" by adding the modules from the library file "lib2.1ib". The record size of the resulting library file
is512 bytes.

17.11.11 Operate Quietly - "q" Option

The"q" option suppressing the banner and copyright notice that is normally displayed when the Open
Watcom Library Manager is invoked.

Open Watcom Library Manager Options 321

The Open Watcom Library Manager

Example:
wWwib -g -1 nylib
17.11.12 Strip Line Number Records - "s" Option
The"s" option tells the Open Watcom Library Manager to remove line number records from object files
that are being added to alibrary. Line number records are generated in the object fileif the "d1" optionis

specified when compiling the source code.

Example:
Wib -s nylib +nyobj

17.11.13 Trim Module Name - "t" Option

The"t" option tells the Open Watcom Library Manager to remove path information from the module name
specified in THEADR records in object files that are being added to alibrary. The module nameis created
from the file name by the compiler and placed in the THEADR record of the object file. The module name
will contain path information if the file name given to the compiler contains path information.

Example:
wib -t nylib +nmyobj
17.11.14 Operate Verbosely - "v" Option

The"v" option enables the display of the banner and copyright notice when the Open Watcom Library
Manager isinvoked.

Example:
Wib -v -l nylib

17.11.15 Explode Library File - "x" Option

The"x" option tells the Open Watcom Library Manager to extract all modules from the library. Note that
the modules are not deleted from the library. Object modules will be placed in the current directory unless
the "d" option is used to specify an alternate directory.

In the following example all modules will be extracted from the library "mylib.lib" and placed in the
current directory.

Example:
wib -x nylib

In the following example, al modules will be extracted from the library "mylib.lib". The module will be
placed in the file"/o" directory.

322 Open Watcom Library Manager Options

The Open Watcom Library Manager

Example:
Wib -x -d=/o nylib

17.12 Librarian Error Messages

The following messages may be issued by the Open Watcom Library Manager.

Error! Could not open object file'%s'.
Object file’%s could not be found. This message is usually issued when an attempt is
made to add a non-existent object file to the library.

Error! Could not open library file’ %s'.
The specified library file could not be found. Thisis usually issued for input library files.
For example, if you are combining two library files, the library file you are adding is an
input library file and the library file you are adding to or creating is an output library file.

Error! Invalid object modulein file’%s' not added.
The specified file contains an invalid object module.

Error! Dictionary too large. Recommend split library into two libraries.
The size of the dictionary in alibrary file cannot exceed 64K. Y ou must split the library
fileinto two separate library files.

Error! Redefinition of module’%s' in file’'%s .
This message is usually issued when an attempt is made to add amodule to alibrary that
already contains a module by that name.

Warning! Redefinition of symbol "%s' in file’%s ignored.
This message isissued if asymbol defined by amodule already in thelibrary isaso
defined by a module being added to the library.

Error! Library too large. Recommend split library into two libraries or try alarger page_bound than
%oxH. Therecord size of the library file does not allow the library file to increase beyond its
current size. The record size of the library file must be increased using the "p" option.

Error! Expected '%s' in'%s but found'%s'.
An error occurred while scanning command input.

Warning! Could not find module’%s' for deletion.
Thismessageisissued if an attempt is made to del ete a module that does not exist in the
library.

Error! Could not find module’%s' for extraction.
This message isissued if an attempt is made to extract a module that does not exist in the
library.

Error! Could not rename old library for backup.
The Open Watcom Library Manager creates a backup copy before making any changes
(unlessthe "b" option is specified). This messageisissued if an error occurred while trying
to rename the original library file to the backup file name.

Librarian Error Messages 323

The Open Watcom Library Manager

Warning! Could not open library '%s' : will be created.
The specified library does not exist. 1t is usually issued when you are adding to a
non-existent library. The Open Watcom Library Manager will create the library.

Warning! Output library name specification ignored.
This message isissued if the library file specified by the "0" option could not be opened.

Warning! Could not open library '%s and no operations specified: will not be created.
Thismessageisissued if the library file specified on the command line does not exist and
no operations were specified. For example, asking for alisting file of a non-existent library
will cause this message to be issued.

Warning! Could not open listing file’ %s'.
The listing file could not be opened. For example, this message will be issued when a"disk
full" condition is present.

Error! Could not open output library.
The output library could not be opened.

Error! Unable to write to output library.
An error occurred while writing to the output library.

Error! Unableto write to extraction file ' %s'.
This message is issued when extracting an object module from alibrary file and an error
occurs while writing to the output file.

Error! Out of Memory.
There was not enough memory to processthe library file.

Error! Could not open file'%s'.
Thismessageisissued if the output file for amodule that is being extracted from alibrary
could not be opened.

Error! Library'%s isinvalid. Contentsignored.
Thelibrary file does not contain the correct header information.

Error! Library’'%s hasan invalid page size. Contentsignored.
Thelibrary file has an invalid record size. Therecord sizeis contained in the library header
and must be a power of 2.

Error! Invalid object record found in file ' %s'.
The specified file contains an invalid object record.

Error! No library specified on command line.
This messageisissued if alibrary file nameis not specified on the command line.

Error! Expecting library name.
Thismessage isissued if the location of the library file name on the command lineis
incorrect.

Warning! Invalid file name’%s'.

Thismessageisissued if aninvalid file name is specified. For example, afile name longer
that 127 charactersis not allowed.

324 Librarian Error Messages

The Open Watcom Library Manager

Error! Could not open command file’ %s'.
The specified command file could not be opened.

Error! Could not read from file’%s . Contentsignored as command input.
An error occurred while reading a command file.

Librarian Error Messages 325

The Open Watcom Library Manager

326 Librarian Error Messages

The Open Watcom Assembler

The Open Watcom Assembler

328

18 The Open Watcom Assembler

18.1 Introduction

This chapter describes the Open Watcom Assembler. It takes asinput an assembler source file (afile with
extension ".a") and produces, as output, an object file.

The Open Watcom Assembler command line syntax is the following.

wasm [options] asm_file [options] [@env_var]

The square brackets [] denote items which are optional.

wasm is the name of the Open Watcom Assembler.

asm file is the filename specification of the assembler sourcefileto be assembled. A default
filename extension of ".a" is assumed when no extension is specified. A filename
extension consists of that portion of afilename containing thelast "." and any characters
which follow it.

Example:
File Specification Ext ensi on
/ horre/ j ohn. doe/ f oo (none)
/ hone/ j ohn. doe/ f 0o. .
/ hone/ j ohn. doe/ f 0o. bar . bar
/ hone/ j ohn. doe/ f 00. goo. bar . bar
options isalist of valid Open Watcom Assembler options, each preceded by adash (*;.ct .sf7 -;.esf

"). Options may be specified in any order.

The options supported by the Open Watcom Assembler are;

{0,1,2,3,4,5,6}{pHr,s}

0
1

2{p}
3{p}

4{p}
5{p}
&{p}

same as ".8086"

sameas ".186"

same as".286" or ".286p"

sameas".386" or ".386p" (adlso defines"_ 386" and changes the default
USE attribute of segmentsfrom "USE16" to "USE32")

sameas".486" or ".486p" (also defines”_ 386" and changes the default
USE attribute of segments from "USE16" to "USE32")

same as ".586" or ".586p" (also defines”_ 386" and changes the default
USE attribute of segments from "USE16" to "USE32")

same as".686" or ".686p" (also defines™_386__ " and changes the default

USE attribute of segments from "USE16" to "USE32")

Introduction 329

The Open Watcom Assembler

p protect mode
addr defines"__REGISTER__"
add s defines" STACK__ "
Example:
-2 -3p - 4pr -5p
bt=<os> defines”__<os> " and checksthe "<os> INCLUDE" environment variable for include
files
c do not output OMF COMENT records that allow WDISASM to figure out when data bytes

have been placed in a code segment

d<name>[=text] define text macro

di line number debugging support

e stop reading assembler source file at END directive. Normally, anything following the
END directive will cause an error.

e<number> set error limit number

fe=<file_name> set error file name

fo=<file_name> set object file name

fi=<file_name> force <file_name> to be included

fpc same as ".no87"

fpi inline 80x87 instructions with emulation

fpi87 inline 80x87 instructions

fpo same as".8087"

fp2 same as".287" or ".287p"

fp3 same as".387" or ".387p"

fp5 same as".587" or ".587p"

fp6 sameas".687" or ".687p"

i=<directory> add directory to list of include directories
jors force signed types to be used for signed values

m{t,s;m,c,|,h,f} memory model: (Tiny, Small, Medium, Compact, Large, Huge, Flat)

-mt Same as".model tiny"

-ms Same as".model small"
-mm Same as ".model medium”
-mc Same as ".model compact”
-ml Same as".model large”
-mh Same as ".model huge"
-mf Same as ".model flat"

Each of the model directives also defines” __<model>_ " (e.g., ".model small" defines
" SMALL__"). They also affect whether something like "foo proc” is considered a "far"
or "near" procedure.

nd=<name> set data segment name

nm=<name> set module name

nt=<name> set name of text segment

o] alow C form of octal constants

zcm set C name mangler to MASM compatible mode

2d remove file dependency information

zqor q operate quietly

z remove " @size" from STDCALL function names

zZ0 don’'t mangle STDCALL symbols (WASM backward compatible)
? orh print this message

w<number> set warning level number

330 Introduction

The Open Watcom Assembler

we

18.2 Assembly Directives and Opcodes

treat all warnings as errors

set warning level to maximum setting

It is not the intention of this chapter to describe assembly-language programming in any detail. Y ou should
consult a book that deals with this topic. However, we present an alphabetically ordered list of the
directives, opcodes and register names that are recognized by the assembler.

. 186

. 287

. 486

. 686

aaa

abs
addps
addsubpd
alias
andnpd
ar pl

bh

. break
bt

bx

cal | f
cdq

cld

cnc
cnovbe
cnovge
cnovnae
cnovne
crmovnl e
crmovnz
cnovpo
cnpeqpd
cnpl epd
cnpl t pd
cnpnegpd
cnpnl epd
cnpnl t pd
cnpor dpd
cnppd
cnpsd
cnpunor dps
cnpxchg8b
conmm

. const
cr2

cs

cvt pd2pi
cvt ps2dq
cvt sd2ss
cvtss2s
cvtt ps2pi
cwde

. 286

. 386

. 486p

. 686p
aad

adc

addr
addsubps
align
andnps
assume
bl

bsf

bt c

byt e
casemap
ch

cl flush
cnova
crovc
cnovl
crmovnb
cnovng
cnovno
cnovo
cnovs
cnpeqgps
cnpl eps
cnpl t ps
cnpneqgps
cnpnl eps
cnpnl t ps
cnpor dps
cnpps
cnpss
cnpunor dsd
. code
coment
.conti nue
cr3

cvt dq2pd
cvt pd2ps
cvt ps2pd
cvtsi 2sd
cvt t pd2dq
cvttsd2s
CX

. 286¢C

. 386p

. 586

. 8086
aam

add
addsd

ah

. al pha
andpd

ax

bound
bsr

btr

c

catstr

c

cl
cnovae
cnove
cmovl e
cnovnbe
cnovnge
crovnp
cnovp
cnovz
cnpeqgsd
cnpl esd
cnpl t sd
cnpnegsd
cnpnl esd
cnpnl tsd
cnpordsd
cnps
CpsSw
cnpunor dss
comi sd
common
cpuid
cr4

cvt dq2ps
cvt pi 2pd
cvt ps2pi
cvtsi 2ss
cvtt pd2pi
cvttss2s
daa

. 286p

. 387

. 586p

. 8087
aas
addpd
addss

a

and
andps
basi c

bp

bswap
bt s

cal |

cbw

clc

clts
cnmovb
cnovg
crmovna
cnmovnc
crmovnl
crmovns
cnovpe
cnp
cnpeqgss
cnpl ess
cnpl tss
cnpneqgss
cnpnl ess
cnpnl tss
cnpor dss
cnpsb
cnpunor dpd
cnpxchg
comi ss
conpact
cr0
.cref
cvt pd2dq
cvt pi 2ps
cvt sd2s
cvt ss2sd
cvtt ps2dq
cwd

das

Assembly Directives and Opcodes

331

The Open Watcom Assembler

. dat a
dec

di v

di vss
dp

dr2

ds
dwor d
ebx

edx
enms
endm
ent er
.err
.errdifi
.errnb
es

.exit
ext er ndef
f add
.fardat a?
fchs

f cnove
f cnovnu
fcomp
fdecstp
fdivr
ffree
fidiv
fincstp
fisttp
fld

fl denvd
fldlg2
f mu

f neni
fnrstord
f nsavew
f nst envw
fortran
fptan
frstorw
f savew
f si ncos
fstenv
fstsw
fsubrp
fuconm p
fword

f xsave
ge

gt

hi ghwor d
huge
if1l

i fdif

i fidni

i mul

includelib

. dat a?
df

di vpd

d

dq

dr3

dt

dx

echo

. el se
end
endp

€q
.errb
.erre

. errndef
esi
exitm
extrn

f addp
farstack
fcl ex

f cnovnb
f cnovu
fcomp
fdis
fdivrp
fi add
fidivr
finit
fisub
fldl

fl denvw
fldln2
frul p
fninit
fnrstorw
fnstcw
f nst sw
f pat an
frndi nt
fs
fscal e
fsqgrt
fstenvd
fsub
ftst
fuconp
f xam
fxtract
gl obal
haddpd
hl t
idiv
if2
ifdifi

i fnb

in

ins

332 Assembly Directives and Opcodes

db

dh

di vps

. dosseg
drO

dr6

dup

eax

ecx

el se
.endif
ends
equ
.errdef
.erridn
.errnz
esp
export
f 2xml
far
fbld

f cnovb
f cnobvnbe
fcom

f compp
fdiv
femms
ficom
fild
fist
fisubr
fldcw
fldl2e
fldpi

f ncl ex
fnop

f nsave
f nst env
for
fprem
frstor
f save
fsetpm
f st
fstenvw
f subp
fucom

f uconpp
fxch
fyl 2x
group
haddps
hsubpd
i f

ifb

ife

i f ndef

i nc

i nsb

dd

d

di vsd
dosseg
drl

dr7

dw

ebp

ed

el sei f
endi f

. endw
equ2
.errdif
.erridni
error
even
extern
f abs
.fardata
fbstp

f cnovbe
f cnovne
fcom
fcos
fdivp

f eni
ficonp
fimul
fistp
flat

fl denv
fldl2t
fldz

f ndi si

f nrstor
f nsaved
f nst envd
forc

f prenl
frstord
f saved
fsin
fstcw
fstp

f subr
fucom
fwai t

f xrstor
fyl 2xpl
gs

hi gh
hsubps
i f

i fdef

i fidn

i gnore
i ncl ude
i nsd

The Open Watcom Assembler

i nsw

i nvl pg
i retdf
ja

(¢]

U)O::S:S_g@
oK T

j
j
j
j
j
j
j

| ahf

I dnmxcsr
| eave
.1 fcond
I gs
distif
| msw

| odsb

| oopd

| oopne
| oopnzd
| oopzd
[rof fset
[tr
maskmovq
Maxss

m npd
m0

mm

. MK
nov
novddup
novhl ps
novl| pd
novnt dg
novnt g
novshb
novss
novups
nul ps
name
neg

nop
opattr
or pd
out

out sw
packuswb
paddsb
paddw
par a
pavgushb
pcrpeqw
pextrw
pf add
pf max
pf pnacc

i nt

i nvoke
iretf

j ae

j cxz

I ge

.listmacro
| ocal

| odsd

| oope

| oopned
| oopnzw
| oopzw
I sl
nmacr o
maxpd
medi um
m nps
il

nmb

nod
novapd
novdqg2q
novhpd
novl ps
novnt
novq
novsd
novVsSw
novzx
mul sd
ne

. no87
not
option
or ps
outs
oword
paddb
paddsw
page
pascal
pavgw
pcnpgt b
pf 2id
pf cnpeq
pfm n
pfrcp

into
iret

irp

ib

je

jl

j na

j nc

j nl

j ns

J pe

. k3d

| ar ge
le

| engt hof
[fs
st
.listmacroall
| ock

| odsw

| ooped

| oopnew
| oopw

| ow

I ss

mask
maxps
nenory
m nsd
nm2

nmB

. nodel
novaps
novdga
novhps
nmovneskpd
novnt pd
novg2dqg
nmovshdup
nOVSX
mul

mul ss
near

. nocr ef
not hi ng
or
os_dos
out sb
packssdw
paddd
paddushb
pand
pause
pcnpegb
pcnpgtd
pf 2i w
pf cnpge
pf mul
pfrcpitl

i nvd
iretd

i rpc

j be

j ecxz
jle

j nae

j ne

jnle

jnz

J po

| abel

| ddqu

| ea

| es

| gdt
distall
[l dt

| ods

| oop

| oopew

| oopnz

| oopz

| owwor d
It
maskrmovdqu
maxsd

nf ence

m nss
mB

i’
noni t or
novd
novdqu
novl hps
novnskps
novnt ps
novs
nmovsl dup
novupd
nmul pd
mhvai t
near st ack
.noli st
of f set
org
0S_o0s2
out sd
packsswb
paddq
paddusw
pandn
pavgb
pcnpeqd
pcnpgt w
pfacc

pf cnpgt
pf nacc
pfrcpit2

Assembly Directives and Opcodes

333

The Open Watcom Assembler

pfrsqitl
pi 2fd
pMaxsw
provirskb
prul | w
popad
por
prefetchtl
proc
pshuf hw
psl | dq
psraw
psrlw
psubsb
psubw
punpckhbw
punpckl bw
pur ge
pushcont ext
pushw

. radi x
rcr
readonl y
. repeat
r ept
retf

ror

sahf

sbb
scasd
segment
setb
setg

set na
setnc
set nl
setns
set pe

. sfcond
shi d
shuf pd
si ze
SITBW
sqrtsd

. stack
stdcal |
st osb
struc
subps
subttl
sysexit
.tfcond
tr3

tr7

uni on
unpckl ps
uses
wai t

wi dt h

pfrsqrt
pi 2f w
prmaxub
prul hrw
prul udqg
popcont ext
prefetch
prefetcht?2
proto
pshuf | w
psllq
psrld
psubb
psubsw
pswapd
punpckhdq
punpckl dq
push
pushd
pwor d
rcl

rdmsr
record

r epeat
repz
retfd
rsm

sal
shyte
scasw

. seq

set be
set ge
set nae
set ne
setnle
set nz
set po
sfence
short
shuf ps
si zeof
sp
sqrtss
.startup
st

st osd
struct
subsd
swor d

t byte
this

trd

t ypedef
unpckhpd
.until
vararg
wat com ¢
wor d

334 Assembly Directives and Opcodes

pf sub

pi nsrw
pm nsw
prmul huw
pop
popf
prefetchnta
pr ef et chw
psadbw
pshuf w
psl | w
psrl dq
psubd
psubusb
ptr
punpckhqdqg
punpckl qdqg
pusha
pushf
pxor
rcpps
rdpnc
rep
repne
ret
retn
rsqrtps
.sall
scas
sdwor d
seta
setc
set |

set nb
set ng
set no
seto
sets
sgdt

shr

S

sl dt
sqrt pd
SS

stc

st nxcsr
st osw
sub
subss
syscal |
t est
tiny
tr5
ucomi sd
unpckhps
usel6
verr

wbi nvd
W B

pf subr
prmaddwd
pm nub
prrul hw
popa
popf d
prefetchtO
private
pshufd
psl|d
psr ad
psrlq
psubq
psubusw
public
punpckhwd
punpckl wd
pushad
pushfd
gword
rcpss
rdtsc
repe
repnz
retd

rol
rsqrtss
sar
scasb
seg

set ae
sete
setle
set nbe
set nge
set np
setp
setz

shl

shrd

si dt
smal |
sqrtps
st

std

st os

str
subpd
subtitle
sysenter
t ext equ
title
tr6
ucom ss
unpckl pd
use32
verw
.while
xadd

The Open Watcom Assembler

xchg . xcref x| at xl atb
.xli st . Xmm Xm0 X mil
. Xm xnmP . XxmrB xmrB
Xmm Xmrb Xnmb X v
xor xor pd Xor ps

18.3 Unsupported Directives

Other assemblers support directives that this assembler does not. The following isalist of directives that
areignored by the Open Watcom Assembler (use of these directives results in awarning message).

. al pha .cref .1 fcond st
distall distif .listmacro .I'istmacroall
. nocr ef .nol i st page .sal l
. seq . sfcond subtitle subttl
.tfcond title . xcr ef Xl i st

Thefollowingisalist of directivesthat are flagged by the Open Watcom Assembler (use of these directives

resultsin an error message).

addr . break casenap catstr
.continue echo .el se endmacr o
.endif . endw .exit hi gh

hi ghwor d i f i nvoke | ow

| owwor d [rof fset mask opattr
option popcont ext proto purge
pushcont ext .radi x record . repeat
.startup this t ypedef uni on
.until .while wi dt h

18.4 Open Watcom Assembler Specific

There are afew specific featuresin Open Watcom Assembler

18.4.1 Naming convention

Pr ocedur e Vari abl e

Conventi on Nane Nanme
C L LR
C (MASM o o see note 1
WATCOM_C T T
SYSCALL T T
STDCALL or@n’ T
STDCALL T _* see note 2
STDCALL T * see note 3
BASI C AN A
FORTRAN AT A
PASCAL A T

Open Watcom Assembler Specific 335

The Open Watcom Assembler

Notes:
1. WASM uses MASM compatible names when -zcm command line option is used.

2. InSTDCALL procedures name’'nn’ isoverall parametrs sizein bytes. '@nn’ is suppressed
when -zz command line option isused (WATCOM 10.0 compatibility).

3. STDCALL symbols mangling is suppressed by -zzo command line option (WASM backward
compatible).

18.4.2 Open Watcom "C" name mangler

Command | i ne Pr ocedur e O hers
option Nane Nanmes
011'2 1*_1 ’ * !
3,4,5,6 withr T TR
3,4,5,6 with s Txe Txr

18.4.3 Calling convention

Par anet er s Par anet er s C eanup caller
Conventi on Var ar g passed by or der stack
C yes st ack right to left no
WATCOM_C yes regi sters right to left no
SYSCALL yes st ack right to left no
STDCALL yes st ack right to left yes see note 1
BASI C no st ack left to right yes
FORTRAN no st ack left to right yes
PASCAL no st ack left to right yes

Notes:

1. For STDCALL procedures WASM automaticaly cleanup caller stack, except case when vararg
parameter is used.

18.5 Open Watcom Assembler Diagnostic Messages

1 Size doesn’t match with previous definition

2 Invalid instruction with current CPU setting
3 LOCK prefix isnot allowed on thisinstruction
4 REP prefix is not allowed on thisinstruction
5 Invalid memory pointer

6 Cannot use 386 addressing mode with current CPU setting

336 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

7 Too many base registers

8 Invalid index register

9 Scale factor must be 1, 2,4 or 8

10 invalid addressing mode with current CPU setting
11 ESP cannot be used as index

12 Too many base/index registers

13 Memory offset cannot reference to more than one label
14 Offset must be relocatable

15 Memory offset expected

16 Invalid indirect memory operand

17 Cannot mix 16 and 32-bit registers

18 CPU type already set

19 Unknown directive

20 Expecting comma

21 Expecting number

22 Invalid label definition

23 Invalid use of SHORT, NEAR, FAR operator

24 No memory

25 Cannot use 386 segment register with current CPU setting
26 POP CSisnot allowed

27 Cannot use 386 register with current CPU setting
28 Only MOV can use special register

29 Cannot use TR3, TR4, TR5 in current CPU setting
30 Cannot use SHORT with CALL

31 Only SHORT displacement is allowed

32 Syntax error

33 Prefix must be followed by an instruction

Open Watcom Assembler Diagnostic Messages 337

The Open Watcom Assembler

34 No size given before’ PTR’ operator

35 Invalid IMUL format

36 Invalid SHLD/SHRD format

37 Too many commas

38 Syntax error: Unexpected colon

39 Operands must be the same size

40 Invalid instruction operands

41 Immediate constant too large

42 Can not use short or near modifierswith thisinstruction
43 Jump out of range

44 Displacement cannot be larger than 32k
45 I nitializer valuetoo large

46 Symbol already defined

47 Immediate data too large

48 |mmediate data out of range

49 Can not transfer control to stack symbol
50 Offset cannot be smaller than WORD size
51 Can not take offset of stack symbol

52 Can not take segment of stack symbol
53 Segment too large

54 Offset cannot be larger than 32k

55 Operand 2 too big

56 Operand 1 too small

57 Too many arithmetic operators

58 Too many open sguare brackets

59 Too many close square brackets

60 Too many open brackets

338 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

61 Too many close brackets

62 Invalid number digit

63 Assembler Codeistoo long

64 Brackets are not balanced

65 Operator is expected

66 Operand is expected

67 Too many tokensin aline

68 Bracket is expected

69 Illegal use of register

70 Illegal use of label

71 Invalid operand in addition

72 Invalid operand in subtraction

73 One operand must be constant

74 Constant operand is expected

75 A constant operand is expected in addition

76 A constant operand is expected in subtraction
77 A constant operand is expected in multiplication
78 A constant operand is expected in division

79 A constant operand is expected after a positive sign
80 A constant operand is expected after a negative sign
81 Label isnot defined

82 Morethan one override

83 Label is expected

84 Only segment or group label is allowed

85 Only register or label is expected in override

86 Unexpected end of file

87 Label istoo long

Open Watcom Assembler Diagnostic Messages 339

The Open Watcom Assembler

88 Thisfeature has not been implemented yet
89 Internal Error #1

90 Can not take offset of group

91 Can not take offset of segment

92 Invalid character found

93 Invalid operand size for instruction

94 Thisinstruction is not supported

95 size not specified -- BYTE PTR is assumed
96 size not specified -- WORD PTR is assumed
97 size not specified -- DWORD PTR is assumed
500 Segment parameter is defined already

501 Model parameter is defined already

502 Syntax error in segment definition

503 AT’ isnot supported in segment definition
504 Segment definition is changed

505 Lnameistoo long

506 Block nesting error

507 Ends a segment which is not opened

508 Segment option is undefined

509 Model option is undefined

510 No segment is currently opened

511 Lnameisused already

512 Segment is not defined

513 Publicis not defined

514 Colon is expected

515 A token is expected after colon

516 Invalid qualified type

340 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

517 Qualified type is expected

518 External definition different from previous one
519 Memory model is not found in .MODEL
520 Cannot open includefile

521 Nameis used already

522 Library nameis missing

523 Segment name ismissing

524 Group name is missing

525 Data emitted with no segment

526 Seglocation is expected

527 Invalid register

528 Cannot address with assumed register
529 Invalid start address

530 Label isalready defined

531 Token istoo long

532 Thelineistoo long after expansion

533 A label is expected after colon

534 Must be associated with code

535 Procedure must have a name

536 Procedureis alreadly defined

537 Language type must be specified

538 End of procedureisnot found

539 Local variable must immediately follow PROC or MACRO statement
540 Extra character found

541 Cannot nest procedures

542 No procedureis currently defined

543 Procedure name does not match

Open Watcom Assembler Diagnostic Messages 341

The Open Watcom Assembler

544 Vararg requires C calling convention

545 Model declared already

546 Model is not declared

547 Backquote expected

548 COMMENT delimiter expected

549 End directive required at end of file

550 Nesting level too deep

551 Symbol not defined

552 Insert Stupid warning #1 here

553 Insert Stupid warning #2 here

554 Spaces not allowed in command line options
555 Error:

556 Source File

557 No filename specified.

558 Out of Memory

559 Cannot Open File -

560 Cannot Close File -

561 Cannot Get Start of Source File -

562 Cannot Set to Start of Source File -

563 Command Line Contains More Than 1 File To Assemble
564 include path %s.

565 Unknown option %s. Use /? for list of options.
566 read more command line from %os.

567 Internal error in %s(%u)

568 OBJECT WRITE ERROR !!

569 NO LOR PHARLAP !!

570 Parameter Required

342 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

571 Expecting closing square bracket

572 Expecting file name

573 Floating point instruction not allowed with /fpc
574 Too many errors

575 Build target not recognised

576 Public constants should be numeric

577 Expecting symbol

578 Do not mix simplified and full segment definitions
579 Parms passed in multiple registers must be accessed separately, use %s
580 Ten byte variables not supported in register calling convention
581 Parameter type not recognised

582 forced error:

583 forced error: Value not equal to O : %d

584 forced error: Value equal to 0: %d

585 forced error: symbol defined: %s

586 forced error: symbol not defined: %s

587 forced error: string blank : <%s>

588 forced error: string not blank : <%s>

589 forced error: strings not equal : <%s> : <%s>

590 forced error: strings equal : <%s> : <%s>

591 included by file %s(%od)

592 macro called from file %s(%d)

593 Symbol %s not defined

594 Extending jump

595 Ignoring inapplicable directive

596 Unknown symbol class’%s

597 Symbol classfor '%s' already established

Open Watcom Assembler Diagnostic Messages 343

The Open Watcom Assembler

598 number must be a power of 2
599 alignment request greater than segment alignment
600’ %s is already defined

601 %u unclosed conditional directive(s) detected

344 Open Watcom Assembler Diagnostic Messages

The Open Watcom Disassembler

The Open Watcom Disassembler

346

19 The Object File Disassembler

19.1 Introduction

This chapter describes the Open Watcom Disassembler. [t takes asinput an object file (afile with
extension ".0") and produces, as output, the Intel assembly language equivalent. The Open Watcom
compilers do not produce an assembly language listing directly from a source program. Instead, the Open
Watcom Disassembler can be used to generate an assembly language listing from the object file generated
by the compiler.

The Open Watcom Disassembler command line syntax is the following.

wdis [options] filespec [options]

The square brackets [] denote items which are optional.
wdis is the name of the Open Watcom Disassembler.
filespec is the filename specification of the object file to be disassembled. A default filename

extension of ".0" is assumed when no extension is specified. A filename extension consists
of that portion of afilename containing the last "." and any characters which follow it.

Example:
File Specification Ext ensi on
/ hone/ j ohn. doe/ f oo (none)
/ hone/ j ohn. doe/ f 0o. .
/ hone/ j ohn. doe/ f 0o. bar . bar
/ hone/ j ohn. doe/ f 00. goo. bar . bar
options isalist of valid Open Watcom Disassembler options, each preceded by adash (;.ct .sf7

-;.esf). Options may be specified in any order.

The options supported by the Open Watcom Disassembler are:

a write assembly instructions only to the listing file

e include list of external names

fp do not use instruction name pseudonyms

fr do not use register name pseudonyms [Alpha only]

fi use aternate indexing format [80(x)86 only]

fu instructions/registers in upper case

i=<char> redefine the initial character of internal labels (default: L)
[[=<list_file>] createalistingfile

m leave C++ names mangled

p include list of public names

Introduction 347

The Open Watcom Disassembler

g=<source file>]
using object file source line information, imbed original source linesinto the output file

The following sections describe the list of options.

19.2 Changing the Internal Label Character - "i=<char>"

The"i" option permits you to specify the first character to be used for internal labels. Internal labels take
theform "Ln" where"n" is one or more digits. The default character "L" can be changed using the "i"
option. The replacement character must be aletter (a-z, A-Z). A lowercase |etter is converted to
uppercase.

Example:
$ wdis cal endar -i=x

19.3 The Assembly Format Option - "a"

The "a" option controls the format of the output produced to the listing file. When specified, the Open
Watcom Disassembler will produce alisting file that can be used asinput to an assembler.

Example:
$ wdi s cal endar -a -I=cal endar.asm

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file

cal endar . o and produce the output to the file cal endar . asmso that it can be assembled by an
assembler.

19.4 The External Symbols Option - "e"

The"€" option controls the amount of information produced in the listing file. When specified, alist of all
externally defined symbolsis produced in the listing file.

Example:
$ wdis cal endar -e

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file

cal endar . o and produce the output, with alist of all external symbols, on the screen. A sample list of
external symbolsis shown below.

348 The External Symbols Option - "e"

The Object File Disassembler

Li st of external synbols

Synmbo

__iob 0000032f 00000210 000001f4 00000158 00000139
__CK 00000381 00000343 000002eb 00000237 000000ch 00000006
Box_ 000000f 2
Cal endar _ 000000a7 00000079 00000049
Cl ear Screen_ 00000016
fflush_ 00000334 00000215 000001f9 0000015d 0000013e
int386_ 000003af 00000372

Li ne_ 000002db 000002b5 00000293 00000274 0000025a
localtinme_ 00000028
nenset _ 00000308

PosCur sor _ 0000031e 000001el 00000148 00000123 000000b6
printf_ 00000327 00000208 000001lec 00000150 00000131
strlen_ 00000108
time_ 0000001d

Each externally defined symbol isfollowed by alist of location counter values indicating where the symbol
isreferenced.

The"e" option isignored when the "a" option is specified.

19.5 The No Instruction Name Pseudonyms Option - "fp"

By default, AXP instruction name pseudonyms are emitted in place of actual instruction names. The Open
Watcom AXP Assembler accepts instruction name pseudonyms. The "fp" option instructs the Open
Watcom Disassembler to emit the actual instruction names instead.

19.6 The No Register Name Pseudonyms Option - "fr"

By default, AXP register names are emitted in pseudonym form. The Open Watcom AXP Assembler
accepts register pseudonyms. The "fr" option instructs the Open Watcom Disassembler to display register
names in their non-pseudonym form.

19.7 The Alternate Addressing Form Option - "fi"

The"fi" option causes an alternate syntactical form of the based or indexed addressing mode of the 80x86
to be used in an instruction. For example, the following form is used by default for Intel instructions.

nov ax, - 2[bp]
If the "fi" option is specified, the following form is used.

nov ax, [bp- 2]

The Alternate Addressing Form Option - "fi" 349

The Open Watcom Disassembler

19.8 The Uppercase Instructions/Registers Option - "fu"

The "fu" option instructs the Open Watcom Disassembl er to display instruction and register namesin
uppercase characters. The default isto display them in lowercase characters.

" " " ” " " "
19.9 The Listing Option - "I[=<list_file>]
By default, the Open Watcom Disassembler produces its output to the terminal. The"l" (lowercaseL)
option instructs the Open Watcom Disassembler to produce the output to alisting file. The default file
name of the listing file is the same as the file name of the object file. The default file extension of the
listing fileis. | st.

Example:
$ wdi s cal endar -|

In the above example, the Open Watcom Disassembler isinstructed to disassemble the contents of thefile
cal endar . o and produce the output to alisting file called cal endar . | st .

An dternate form of this optionis"l=<list_file>". With thisform, you can specify the name of the listing
file. When specifying alisting file, afile extension of . | st isassumed if noneis specified.

Example:
$ wdis cal endar -l=calendar.lis

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file
cal endar . o and produce the output to alisting file called cal endar . | i s.

19.10 The Public Symbols Option - “p"

The"p" option controls the amount of information produced in the listing file. When specified, alist of all
public symbolsis produced in the listing file.

Example:
$ wdis calendar -p

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file
cal endar . o and produce the output, with alist of al exported symbols, to the screen. A samplelist of
public symbolsis shown below.

Thefollowingisalist of public symbolsin 80x86 code.

350 The Public Symbols Option - "p"

The Object File Disassembler

Li st of public synbols

SYMBOL SECTI ON OFFSET
mai n_ _TEXT 000002C0
void near Box(int, int, int, int)

_TEXT 00000093
void near Calendar(int, int, int, int, int, char near *)

_TEXT 0000014A
voi d near C earScreen() _TEXT 00000000
void near Line(int, int, int, char, char, char)

_TEXT 00000036
void near PosCursor(int, int)

TEXT 0000001A
Thefollowing isalist of public symbolsin Alpha AXP code.

Li st of public synbols
SYMBOL SECTI ON OFFSET
mai n .text 000004F0
voi d near Box(int, int, int, int)

.text 00000148
void near Calendar(int, int, int, int, int, char near *)

.text 00000260
voi d near C earScreen() .text 00000000
void near Line(int, int, int, char, char, char)

.text 00000060
voi d near PosCursor(int, int)

.text 00000028

The"p" option isignored when the "a" option is specified.

19.11 Retain C++ Mangled Names - "m"

The"m" option instructs the Open Watcom Disassembler to retain C++ mangled names rather than
displaying their demangled form. The default isto interpret mangled C++ names and display them in a
somewhat more intelligible form.

19.12 The Source Option - "s[=<source _file>]"

The"s" option causes the source lines corresponding to the assembly language instructions to be produced
inthelisting file. The object file must contain line numbering information. That is, the "d1" or "d2" option
must have been specified when the source file was compiled. If no line numbering information is present in
the object file, the"s" option isignored.

The following defines the order in which the source file name is determined when the "'s" option is
specified.

1. If present, the source file name specified on the command line.
2. The name from the modul e header record.
3. Theobject file name.

In the following example, we have compiled the source file mysr c. ¢ with "d1" debugging information.
We then disassembleit as follows:

The Source Option - "s[=<source_file>]" 351

The Open Watcom Disassembler

Example:
$ wdis nysrc -s -1

In the above example, the Open Watcom Disassembler is instructed to disassemble the contents of the file
nmysr c. o and produce the output to the listing file mysr c. | st. The source lines are extracted from the
filemysrc. c.

An dternate form of this option is"s=<source file>". With thisform, you can specify the name of the
source file.

Example:
$ wdis nysrc -s=nyprog.c -|I

The above example produces the same result as in the previous example except the source lines are
extracted from the file mypr og. c.

19.13 An Example

Consider the following program contained in thefile hel | o. c.

#i ncl ude <stdi o. h>
void main()

printf("Hello world\n");

Compileit with the"d1" option. An object file called hel | 0. o will be produced. The"d1" option causes
line numbering information to be generated in the object file. We can use the Open Watcom Disassembler
to disassemble the contents of the object file by issuing the following command.

$ wdis hello -1 -e -p -s -fu

The output will be written to alisting filecalled hel | 0. | st (the"I" option was specified"). 1t will
contain alist of external symbols (the "€e" option was specified), alist of public symbols (the "p" option was
specified) and the source lines corresponding to the assembly language instructions (the "s" option was
specified). The sourceinput fileiscaled hel | 0. c. Theregister names will be displayed in upper case
(the"fu" option was specified). The output, shown below, is the result of using the Open Watcom C++
compiler.

The following is adisassembly of 80x86 code.

352 An Example

The Object File Disassembler

Modul e: HELLO. C
GROUP: ' DGROUP' CONST, CONST2, _DATA, _BSS

Segnent: _TEXT DWORD USE32 0000001A bytes
#i ncl ude <stdio. h>

voi d mai n()

0000 mai n_:
0000 68 08 00 00 00 PUSH 0x00000008
0005 E8 00 00 00 00 CALL __CHK

printf("Hello world\n");

000A 68 00 00 00 00 PUSH of fset L$1

000F E8 00 00 00 00 CALL printf_

0014 83 C4 04 ADD ESP, 0x00000004
}

0017 31 @ XOR EAX, EAX

0019 c3 RET

Routi ne Size: 26 bytes, Rout i ne Base: _TEXT + 0000

No di sassenbly errors

Li st of external references

SYMBOL

__OK 0006

printf_ 0010

Segrent : CONST DWORD USE32 0000000D byt es

0000 L$1:

0000 48 65 6C 6C 6F 20 77 6F 72 6C 64 OA 00 Hel 1 o worl d.

BSS Size: 0 bytes

Li st of public synbols

main_ _TEXT 00000000

Thefollowing is a disassembly of Alpha AXP code.

An Example 353

The Open Watcom Disassembler

.new_section .text, "crx4"
#i ncl ude <stdio. h>

voi d main()

0000 mai n:
0000 23DEFFFO LDA SP, - 0x10(SP)
0004 B75E0000 STQ RA, (SP)
{

printf("Hello world\n");
0008 261F0000 LDAH A0, h"L$0(R31)
000C 22100000 LDA A0, | "L$0O(AD)
0010 43F00010 SEXTL A0, A0
0014 D3400000 BSR RA, j~printf
}
0018 201F0000 MoV 0x00000000, VO
001C A75E0000 LDQ RA, (SP)
0020 23DE0010 LDA SP, 0x10(SP)
0024 6BFA8001 RET (RA)
Routine Size: 40 bytes, Routi ne Base: .text + 0000

No di sassenbly errors

Li st of external references

SYMBOL
printf 0014

.new_section .const, "drw4"
0000 L$0:

0000 48 65 6C 6C 6F 20 77 6F 72 6C 64 OA 00 00 00 00 Hello world.....
.new_section .const2, "drw4"
.new_section .data, "drw"

.new_section .bss, "urw"
0000 . bss:

BSS Size: 0 bytes

.new_section .pdata, "dr2"

0000 /1 Procedure descriptor for main
mai n /1 Begi nAddr ess
mai n+0x28 /1 EndAddress
00000000 /1 ExceptionHandl er
00000000 /1 Handl er Dat a
mai n+0x8 /1 Prol ogEnd
.new_section .drectve, "iRrO"

0000 2D 64 65 66 61 75 6C 74 6C 69 62 3A 63 6C 69 62 -defaultlib:clib
0010 20 2D 64 65 66 61 75 6C 74 6C 69 62 3A 70 6C 69 -defaultlib:pl
0020 62 20 2D 64 65 66 61 75 6C 74 6C 69 62 3A 6D 61 b -defaultlib:m
0030 74 68 20 00 th

Li st of public synbols

mai n . text 00000000

354 An Example

WO OoOpr~O

The Object File Disassembler

Let us create aform of the listing file that can be used as input to an assembler.

$ wdis hello -I=hello.asm-r -a

The output will be produced inthefile hel | 0. asm The output, shown below, isthe result of using the
Open Watcom C++ compiler.

The following is adisassembly of 80x86 code.

. 387
. 386p
PUBLIC main_
EXTRN __CHK: BYTE
EXTRN printf_:BYTE
EXTRN ___wepp_3_data_init_fs_root_:BYTE
EXTRN _cstart_: BYTE
DGROUP GROUP CONST, CONST2, _ DATA, _BSS
_TEXT SEGVENT DWORD PUBLI C USE32 ' CODE'
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP
mai n_:
PUSH 0x00000008
CALL near ptr __CHK
PUSH of fset L$1
CALL near ptr printf_
ADD ESP, 0x00000004
XOR EAX, EAX
RET
_TEXT ENDS
CONST SEGVENT DWORD PUBLI C USE32 ' DATA
L$1:
DB 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x77, Ox6f
DB 0x72, 0x6c, 0x64, O0xOa, 0x00
CONST ENDS
CONST2 SEGVENT DWORD PUBLI C USE32 ' DATA
CONST2 ENDS
_DATA SEGVENT DWORD PUBLI C USE32 ' DATA
_DATA ENDS
_BSS SEGVENT DWORD PUBLI C USE32 ' BSS'
_BSS ENDS
END

Thefollowing is a disassembly of Alpha AXP code.

. gl obl mai n
.extrn printf
.extrn _cstart _
.new_section .text, "crx4"
mai n:
LDA $SP, - 0x10($SP)
STQ $RA, ($SP)
LDAH $A0, h~* L$0" ($ZERO
LDA $A0, | M L$0O' ($A0)
SEXTL $A0, $A0
BSR $RA, jAprintf
MoV 0x00000000, $VO
LDQ $RA, ($SP)
LDA $SP, 0x10($SP)
RET $ZERO, ($RA), 0x00000001

An Example 355

The Open Watcom Disassembler

.new_section .const, "drw4"

‘L$0:

.asciiz

. byte

"Hell o world\n"
0x00, 0x00

.new_section .pdata, "dr2"

/1 0000

.long mai n

.l ong mai n+0x28
.long 00000000
.long 00000000
.long mai n+0x8

.new_section .drectve

"i RrO"

Procedure descriptor for nain

/1
/1
/1
/1
/1

Begi nAddr ess
EndAddr ess
Except i onHandl er
Handl er Dat a

Pr ol ogEnd

WO OoOpr~O

.asciiz "-defaultlib:clib -defaultlib:plib -defaultlib:math "

356 An Example

20 Optimization of Far Calls

Optimization of far calls can result in smaller executable files and improved performance. 1t is most useful
when the automatic grouping of logical segments into physical segments takes place. Note that, by default,
automatic grouping is performed by the Open Watcom Linker.

The Open Watcom C, C++ and FORTRAN 77 compilers automatically enable the far call optimization.
The Open Watcom Linker will optimize far callsto procedures that reside in the same physical segment as
the caller. For example, alarge code model program will probably contain many far calls to proceduresin
the same physical segment. Since the segment address of the caler is the same as the segment address of
the called procedure, only anear call isnecessary. A near call does not require arelocation entry in the
relocation table of the executable file whereas afar call does. Thus, the far call optimization will result in
smaller executable files that will load faster. Furthermore, anear call will generally execute faster than a
far call, particularly on 286 and 386-based machines where, for applications running in protected mode,
segment switching is fairly expensive.

The following describes the far call optimization. The call far label instruction is converted to one of the
following sequences of code.

push cSs seg Ss

cal | near | abel push cS

nop cal | near | abel
Notes:

1. Thenop or seg ssinstruction is present since acall far label instruction isfive bytes. The push
csinstruction is one byte and the call near label instruction isthree bytes. The seg ssinstruction
isused because it is faster than the nop instruction.

2. Thecalled procedure will still use aretf instruction but since the code segment and the near
address are pushed on the stack, the far return will execute correctly.

3. Theposition of the padding instruction is chosen so that the return addressisword aligned. A
word aligned return address improves performance.

4. When two consecutive call far label instructions are optimized and the first call far label
instruction isword aigned, the following sequence replaces both call far label instructions.

push cs
cal |l near | abel 1
seg SS
push cS
seg cs
cal | near | abel 2

5. If your program contains only near calls, this optimization will have no effect.
A far jump optimization is also performed by the Open Watcom Linker. This has the same benefits asthe

far call optimization. A jmp far label instruction to alocation in the same segment will be replaced by the
following sequence of code.

Optimization of Far Calls 357

The Open Watcom Disassembler

jmp near | abel
nov ax, ax

Note that for 32-hit segments, this instruction becomes nov eax, eax.

358 Optimization of Far Calls

The Open Watcom Strip Utility

The Open Watcom Strip Utility

360

21 The Open Watcom Strip Utility

21.1 Introduction

The Open Watcom Strip Utility may be used to manipulate information that is appended to the end of an
executable file. Theinformation can be either one of two things:

1. Symbolic debugging information
2. Resourceinformation

This information can be added or removed from the executable file. Symbolic debugging information is
placed at the end of an executable file by the Open Watcom Linker or the Open Watcom Strip Utility.
Resource information is placed at the end of an executable by a resource compiler or the Open Watcom
Strip Utility.

Once a program has been debugged, the Open Watcom Strip Utility allows you to remove the debugging

information from the executable file so that you do not have to remove the debugging directives from the
linker directive file and link your program again. Removal of the debugging information reduces the size
of the executable image.

All executable files generated by the Open Watcom Linker can be specified as input to the Open Watcom
Strip Utility.

21.2 The Open Watcom Strip Utility Command Line

The Open Watcom Strip Utility command line syntax is:

wstrip [options] input_file [output_file] [info_filg]

where:
1 The square brackets denote items which are optional .
options
-n (noerrors) Do not issue any diagnostic message.
-q (quiet) Do not print any informational messages.
-r (resources) Process resource information rather than debugging
information.
-a (add) Add information rather than remove information.

The Open Watcom Strip Utility Command Line 361

The Open Watcom Strip Utility

input_file isafile specification for the name of an executablefile. If no file extension is specified,
the Open Watcom Strip Utility will assume one of the following extensions: "exe", "dIl",
"exp", "rex", "nlm", "dsk", "lan", "nam", "md", "cdm", "ham", "gnx" or no file extension.
Note that the order specified in the list of file extensionsis the order in which the Open
Watcom Strip Utility will select file extensions.

output_file isan optional file specification for the output file. If no file extension is specified, the file
extension specified in the input file name will be used for the output file name. If "." is
specified, the input file name will be used.

info_file isan optional file specification for the file in which the debugging or resource information
isto be stored (when removing information) or read (when adding information). If no file
extension is specified, afile extension of "sym" is assumed for debugging information and
"res’ for resource information. To specify the name of the information file but not the

name of an output file, a"." may be specified in place of output_file.
Description:

1. If the"r" (resource) option is not specified then the default action is to add/remove symbolic
debugging information.

2. If the"a" (add) optionis not specified then the default action isto remove information.

3. If output_fileis not specified, the debugging or resource information is added to or removed
from input_file.

4. If output_fileis specified, input_fileis copied to output_file and the debugging or resource
information is added to or removed from output_file. input_file remains unchanged.

5. If info_fileis specified then the debugging or resource information that is added to or removed
from the executable file is read from or written to this file. The debugging or resource
information may be appended to the executable by specifying the "a" (add) option. Also, the
debugging information may be appended to the executable by concatenating the debugging
information file to the end of the executable file (the files must be treated as binary files).

6. During processing, the Open Watcom Strip Utility will create atemporary file, ensuring that a
file by the chosen name does not aready exist.

21.3 Strip Utility Messages

The following messages may be issued by the Open Watcom Strip Utility.

Usage: wstrip [options] input_file [output_file] [info_file]
options: (-option is also accepted)
/n don’t print warning messages
/q don’t print informational messages
/v process resource information rather than debugging information
/a addinformation rather than delete information
input_file: executablefile
output_file: optional output executable or ’.’
info_file: optional output debugging or resource information file
or input debugging or resource informational file

362 Strip Utility Messages

The Open Watcom Strip Utility

The command line was entered with no arguments.

Too low on memory
There is not enough free memory to alocate file buffers.

Unableto find ' %s
The specified file could not be located.

Cannot create temporary file
All the temporary file names arein use.

Unableto open ' %s' toread
Theinput executable file cannot be opened for reading.

"%s' isnot avalid executablefile
Theinput file has invalid executable file header information.

"%s' does not contain debugging information
There is nothing to strip from the specified executablefile.

Seek error on’%s
An error occurred during a seek operation on the specified file.

Unableto create output file’%s
The output file could not be created. Check that the output disk is not write-protected or
that the specified output fileis not marked "read-only".

Unable to create symbol file’ %s
The symboal file could not be created.

Error reading ' %s
An error occurred while reading the input executable file.

Error writing to ' %s
An error occurred while writing the output executable file or the symbol file. Check the
amount of free space on the output disk. If theinput and output files reside on the same
disk, there might not be enough room for a second copy of the executable file during
processing.

Cannot erasefile’ %s
Theinput executable file is probably marked "read-only" and therefore could not be erased
(theinput file is erased whenever the output file has the same name).

Cannot rename file’%s
The output executable file could not be renamed. Ordinarily, this should never occur.

Strip Utility Messages 363

The Open Watcom Strip Utility

364 Strip Utility Messages

Appendices

Appendices

366

Use of Environment Variables
'

A. Use of Environment Variables

In the Open Watcom C/C++ software devel opment package, a number of environment variables are used.
This appendix summarizes their use with a particular component of the package.

A.1 FORCE

The FORCE environment variable identifies afile that isto be included as part of the source input stream.
Thisvariable is used by Open Watcom C/C++.

export "FORCE=fil espec”
The specified fileisincluded asif a
#i nclude "fil espec”
directive were placed at the start of the sourcefile.

Example:
$ export "FORCE=/usr/incl ude/ common. cnv"
$ wee report

The FORCE environment variable can be overridden by use of the Open Watcom C/C++ "fi" option.

A.2 INCLUDE

The INCL UDE environment variable describes the location of the C and C++ header files (files with the
".h" filename extension). Thisvariable is used by Open Watcom C/C++.

export "1 NCLUDE=pat h: path..."

The INCL UDE environment string is like the PATH string in that you can specify one or more directories
separated by colons (":").

A3LIB

The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM" directiveis
recommended over the use of this environment variable.

The LIB environment variable is used to select the libraries that will be used when the application is linked.

Thisvariable is used by the Open Watcom Linker (wlink). The L1B environment string is like the PATH
string in that you can specify one or more directories separated by colons (":").

LIB 367

Appendices

A.4 PATH

The PATH environment variable is used by the QNX shell to locate programs.

export "PATH=pat h: path..."

The PATH environment variable should include the directory of the Open Watcom C/C++ binary program
files when using Open Watcom C/C++ and its related tools.

The default installation directory for Open Watcom C/C++ QNX binariesis called "/bin".

Example:
$ export "PATH=/bin"

The PATH environment variable is also used by the following programs in the described manner.

1. cctolocate the 16-bit Open Watcom C/C++ and 32-hit Open Watcom C/C++ compilers and the
Open Watcom Linker.
2. "WD" to locate programs.

A.5 TMPDIR

The TMPDIR environment variable describes the location (path) for temporary files created by the 16-bit
Open Watcom C/C++ and 32-bit Open Watcom C/C++ compilers and the Open Watcom Linker.

export " TMPDI R=pat h"

Normally, 16-bit Open Watcom C/C++ and 32-bit Open Watcom C/C++ will create temporary spill filesin
the current directory. However, by defining the TMPDIR environment variable to be a certain path, you
can tell Open Watcom C/C++ where to place its temporary files. The sameistrue of the Open Watcom
Linker temporary file.

Consider the following definition of the TM PDIR environment variable.

Example:
$ export "TMPDI R=//2/hd/t mp"

The Open Watcom C/C++ compiler and Open Watcom Linker will create its temporary filesin
[12/ hd/tnp.

A.6 WATCOM

In order for the Open Watcom Linker to locate the 16-bit Open Watcom C/C++ and 32-bit Open Watcom
CIC++ library files, the WATCOM environment variable should be defined. When using cc, it is not
necessary to define this environment variable since it uses another technique for identifying the location of
the library files to the Open Watcom Linker. However, you should do so when you begin to use the Open
Watcom Linker directly without the aid of this utility program. The WATCOM environment variable is
used to locate the libraries that will be used when the application islinked. The default directory for 16-bit
Open Watcom C/C++ and 32-bit Open Watcom C/C++ filesis"/usr".

368 WATCOM

Use of Environment Variables

Example:
$ export "WATCOME// 0/ hd/ usr"

A.7WcC

The WCC environment variable can be used to specify commonly-used options for the 16-bit C compiler.
export "WCC=-optionl -option2 ..."

These options are processed before options specified on the command line. The following example defines

the default options to be "d1" (include line number debug information in the object file) and "ox" (compile

for maximum number of code optimizations).

Example:
$ export "WCC=-d1 -ox"

Once the WCC environment variable has been defined, those options listed become the default each time
the wce command is used.

A.8 WCC386

The WCC386 environment variable can be used to specify commonly-used options for the 32-bit C
compiler.

export "WCC386=-optionl -option2 ..."
These options are processed before options specified on the command line. The following example defines
the default options to be "d1" (include line number debug information in the object file) and "ox" (compile

for maximum number of code optimizations).

Example:
$ export "WCC386=-dl -ox"

Once the WCC386 environment variable has been defined, those options listed become the default each
time the wce386 command is used.

A.9 WCGMEMORY

The WCGMEMORY environment variable may be used to request a report of the amount of memory used
by the compiler’s code generator for its work area.

Example:
$ export "WCGVEMORY=?"

When the memory amount is"?* then the code generator will report how much memory was used to
generate the code.

It may also be used to instruct the compiler’ s code generator to allocate a fixed amount of memory for a
work area.

WCGMEMORY 369

Appendices

Example:
$ export "WCGVEMORY=128"

When the memory amount is"nnn" then exactly "nnnK" bytes will be used. In the above example, 128K
bytesisrequested. If lessthan "nnnK" is available then the compiler will quit with afatal error message. If
more than "nnNnNK" is available then only "nnnK" will be used.

There are two reasons why this second feature may be quite useful. In general, the more memory available
to the code generator, the more optimal code it will generate. Thus, for two personal computers with
different amounts of memory, the code generator may produce different (although correct) object code. If
you have a software quality assurance requirement that the same resullts (i.e., code) be produced on two
different machines then you should use this feature. To generate identical code on two personal computers

with different memory configurations, you must ensure that the WCGMEM ORY environment variableis
set identically on both machines.

A.10 WD

The WD environment variable can be used to specify commonly-used Open Watcom Debugger options.
export "WD=-optionl -option2 ..."

These options are processed before options specified on the command line. The following example defines

the default options to be "noinvoke" (do not execute the pr of i | e. dbg file) and "reg=10" (retain up to 10

register sets while tracing).

Example:
$ export "WD=-noi nvoke -reg=10"

Once the WD environment variable has been defined, those options listed become the default each time the
WD command is used.

A.11 WD_PATH

The WD_PATH environment variable is used by wd to locate Open Watcom Debugger support files.
These filesfal into five categories.

1. Open Watcom Debugger command files (files with the ".dbg" suffix).
2. Open Watcom Debugger trap files (files with the ".trp" suffix).

3. Open Watcom Debugger parser files (fileswith the ".prs" suffix).

4. Open Watcom Debugger help files (fileswith the ".hlp" suffix).

5. Open Watcom Debugger symbolic debugging information files (files with the ".sym™ suffix).

export "WD PATH=path:path..."

By default, Open Watcom Debugger looksinthe / usr/ wat com wd directory for command filesso it is
not necessary to include this directory in the WD_PATH environment variable string.

370 WD_PATH

Use of Environment Variables

A.12 WPP

The WPP environment variable can be used to specify commonly-used options for the 16-bit C++
compiler.

export "WPP=-optionl -option2 ..."

These options are processed before options specified on the command line. The following example defines
the default options to be "d1" (include line number debug information in the object file) and "ox" (compile
for maximum number of code optimizations).

Example:
$ export "WPP=-d1 -ox"

Once the WPP environment variable has been defined, those options listed become the default each time
the wpp command is used.

A.13 WPP386

The WPP386 environment variable can be used to specify commonly-used options for the 32-bit C++
compiler.

export "WPP386=-optionl -option2 ..."
These options are processed before options specified on the command line. The following example defines
the default optionsto be "d1" (include line number debug information in the object file) and "ox" (compile

for maximum number of code optimizations).

Example:
$ export "WPP386=-dl -ox"

Once the WPP386 environment variable has been defined, those options listed become the default each
time the wpp386 command is used.

WPP386 371

Appendices

372 WPP386

Open Watcom C Diagnostic Messages

B. Open Watcom C Diagnostic Messages

Thefollowingisalist of all warning and error messages produced by the Open Watcom C compilers.
Diagnostic messages are issued during compilation and execution.

The messages listed in the following sections contain referencesto %, % and %u. They represent
strings that are substituted by the Open Watcom C compilers to make the error message more exact. %
and % represent a string of digits;, % astring, usually a symbolic name.

Consider the following program, named er r . ¢, which contains errors.

Example:
#i ncl ude <stdi o. h>

void main()

int i;

float i;

i = 383;

x = 13143.0;

printf("Integer value is %\n", i);
printf("Floating-point value is %\n", x);

}

If we compile the above program, the following messages will appear on the screen.

err.c(6): Error! E1034: Synmbol 'i’' already defined
err.c(9): Error! E1011: Synbol ’'x’ has not been decl ared
err.c: 12 lines, included 191, 0 warnings, 2 errors

The diagnostic messages consist of the following information:

the name of the file being compiled,

the line number of the line containing the error (in parentheses),
amessage humber, and

text explaining the nature of the error.

PwWbdE

In the above example, the first error occurred on line 6 of thefile err. ¢c. Error number 1034 (with the
appropriate substitutions) was diagnosed. The second error occurred on line 9 of thefile err. c. Error
number 1011 (with the appropriate substitutions) was diagnosed.

The following sections contain a complete list of the messages. Run-time messages (messages displayed
during execution) do not have message numbers associated with them.

Open Watcom C Diagnostic Messages 373

Appendices

B.1 Warning Level 1 Messages

W100

W101

W102

W103

W104

W105

W106

W107

Parameter %d contains inconsistent levels of indirection

The function is expecting something like char ** anditisbeing passeda char * for
instance.

Non-portable pointer conversion
This message is issued whenever you convert a non-zero constant to a pointer.
Type mismatch (warning)

This message isissued for afunction return value or an assignment where both types are
pointers, but they are pointers to different kinds of objects.

Parameter count does not agree with previous definition (warning)

Y ou have either not enough parameters or too many parametersin acall to afunction. If
the function is supposed to have a variable number of parameters, then you can ignore this
warnhing, or you can change the function declaration and prototypesto use the”,..." to
indicate that the function indeed takes a variable number of parameters.

Inconsistent levels of indirection

This occursin an assignment or return statement when one of the operands has more levels
of indirection than the other operand. For example, a char ** isbeing assigned to a
char *.

Solution: Correct the levels of indirection or usea voi d *.

Assignment found in boolean expression

An assignment of a constant has been detected in aboolean expression. For example: "if(
var =0)". Itismost likely that you want to use "==" for testing for equality.

Constant out of range - truncated

This message isissued if a constant cannot be represented in 32 bits or if a constant is
outside the range of valid values that can be assigned to avariable.

Missing return value for function ' %s
A function has been declared with afunction return type, but no return statement was

found in the function. Either add areturn statement or change the function return typeto
void.

374 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

W108

W109

W110

W11l

W112

W113

w114

W115

W116

Duplicate typedef already defined

A duplicate typedef isnot allowed in ISO C. Thiswarning isissued when compiling with
extensions enabled. Y ou should delete the duplicate typedef definition.

not used
unused message
"fortran’ pragma not defined

Y ou have used the fortran keyword in your program, but have not defined a #pragma for
fortran.

Meaningless use of an expression

The line contains an expression that does nothing useful. In the example"i = (1,5);", the
expression "1," is meaningless.

Pointer truncated

A far pointer is being passed to a function that is expecting a near pointer, or afar pointer is
being assigned to a near pointer.

Pointer type mismatch

Y ou have two pointers that either point to different objects, or the pointers are of different
size, or they have different modifiers.

Missing semicolon

Y ou are missing the semicolon ;" on the field definition just before the right curly brace

e
&array may not produce intended result

The type of the expression "&array" is different from the type of the expression "array".
Suppose we have the declaration char buf f er [80] Then the expression (&buf f er
+ 3) will beevaluated as (buf fer + 3 * sizeof (buffer)) whichis (buffer
+ 3 * 80) andnot (buffer + 3 * 1) whichiswhat most people expect to happen.
The address of operator "&" is not required for getting the address of an array.

Attempt to return address of auto variable

Thiswarning usually indicates a serious programming error. When afunction exits, the
storage allocated on the stack for auto variablesisreleased. This storage will be
overwritten by further function calls and/or hardware interrupt service routines. Therefore,
the data pointed to by the return value may be destroyed before your program has a chance
to reference it or make a copy of it.

Warning Level 1 Messages 375

Appendices

w117

W118

W119

W120

wiz1

W122

W123

"## tokens did not generate a single token (rest discarded)

When two tokens are pasted together using ##, they must form a string that can be parsed
asasingle token.

Label '%s' has been defined but not referenced

Y ou have defined alabel that is not referenced in agoto statement. It is possible that you
are missing the case keyword when using an enumerated type name as a casein aswitch
statement. If not, then the label can be deleted.

Address of static function '%s' has been taken

Thiswarning may indicate a potential problem when the program is overlayed.

Ivalue cast is not standard C

A cast operation does not yield an Ivaluein ISO C. However, to provide compatibility with
code written prior to the availability of SO compliant C compilers, if an expression was an
Ivalue prior to the cast operation, and the cast operation does not cause any conversions, the
compiler treats the result as an lvalue and issues this warning.

Text following pre-processor directivesis not standard C

Arbitrary text is not allowed following a pre-processor directive. Only comments are
allowed following a pre-processor directive.

Literal string too long for array - truncated

The supplied literal string contains more characters than the specified dimension of the
array. Either shorten thelitera string, or increase the dimension of the array to hold all of
the characters from the literal string.

'II' style comment continues on next line

The compiler has detected a line continuation during the processing of a C++ style
comment ("//"). The warning can be removed by switching to a C style comment ("/**/").
If you require the comment to be terminated at the end of the line, make sure that the
backslash character is not the last character in the line.

Example:
#define XX 23 // coment start \
conment \
end
int x = XX // comment start ...\

comment end

376 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

w124

W125

W126

w127

W128

W129

W130

W131

Comparison result always %d

The line contains a comparison that is always true (1) or false (0). For example comparing
an unsigned expression to see if itis>= 0 or < Oisredundant. Check to seeif the
expression should be signed instead of unsigned.

Nested include depth of %d exceeded

The number of nested include files has reached a preset limit, check for recursive include
statements.

Constant must be zero for pointer compare
A pointer is being compared using == or !=to a non-zero constant.
trigraph found in string

Trigraph expansion occursinside a string literal. Thiswarning can be disabled viathe
command line or #pragma warning directive.

Example:
/1 string expands to "(?]??2???"!
char *e = "(??7?)7?2??-2?2??";
/1 possi bl e work-arounds
char *f = "(" "?2?2?" ")" "2??" "M U277V,
char *g = "(\2A2A2)\2A2A2-\ A2\ 2",
%d padding byte(s) added

The compiler has added slack bytes to align a member to the correct offset.
#endif matches #if in different source file’%s

Thiswarning may indicate a #endif nesting problem since the traditional usage of #if
directives is confined to the same sourcefile. Thiswarning may often come before an error
and it is hoped will provide information to solve a preprocessing directive problem.

Possible loss of precision

This warning indicates that you may be converting a argument of one size to ancther,
different size. For instance, you may be losing precision by passing along argument to a
function that takes a short. Thiswarning isinitially disabled. It must be explicitly enabled
with #pragma enable_message(130) or option "-wce=130". It can be disabled later by
using #pragma disable_message(130).

No prototype found for function ' %s
A reference for afunction appears in your program, but you do not have a prototype for

that function defined. Implicit prototype will be used, but this will cause problemsif the
assumed prototype does not match actual function definition.

Warning Level 1 Messages 377

Appendices

W132

W133

W134

W135

No storage class or type specified

When declaring a data object, either storage class or data type must be given. If no typeis
specified, int isassumed. If no storage classis specified, the default depends on scope (see
the C Language Reference for details). For instance

Example:
auto i;

isavalid declaration, asis

Example:
short i;

However,

Example:
i

isnot a correctly formed declaration.
Symbol name truncated for ’ %s’

Symbol islonger than the object file format allows and has been truncated to fit. Maximum
length is 255 characters for OMF and 1024 characters for COFF or ELF object files.

Shift amount negative

Theright operand of aleft or right shift operator is a negative value. The result of the shift
operation is undefined.

Example:
int a=1 << -2;

The value of 'a in the above example is undefined.

Shift amount too large

Theright operand of aleft or right shift operator is avalue greater than or equal to the
width in bits of the type of the promoted left operand. The result of the shift operationis
undefined.

Example:
int a=1>> 123;

The value of ’a in the above example is undefined.

378 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

W136

W137

W138

W139

Comparison equivalent to ’unsigned == 0’

Comparing an unsigned expression to see whether it is<= 0 is equivalent to testing for ==
0. Check to seeif the expression should be signed instead of unsigned.

Extern function '%s' redeclared as static

The specified function was either explicitly or implicitly declared as extern and later
redeclared as static. Thisisnot allowed in SO C and may produce unexpected results with
SO compliant compilers.

Example:
int bar(void);

void foo(void)

bar () ;
}

static int bar(void)

return(0);

}

No newline at end of file

ISO C requires that a non-empty source file must include a newline character at the end of
thelast line. If no newline was found, it will be automatically inserted.

Divisor for modulo or division operationis zero

Theright operand of adivision or modulo operation is zero. The result of this operationis
undefined and you should rewrite the offending code to avoid divisions by zero.

Example:
int foo(void)

{
}

return(7/ 0);

B.2 Warning Level 2 Messages

W200

"%s' has been referenced but never assigned a value

Y ou have used the variable in an expression without previously assigning a value to that
variable.

Warning Level 2 Messages 379

Appendices

W201

W202

W203

Unreachable code

The statement will never be executed, because there is no path through the program that
causes control to reach this statement.

Symbol *%s' has been defined, but not referenced

There are no references to the declared variable. The declaration for the variable can be
deleted.

In some cases, there may be avalid reason for retaining the variable. Y ou can prevent the
message from being issued through use of #pragma off(unreferenced).

Preprocessing symbol '%s' has not been declared
The symbol has been used in a preprocessor expression. The compiler assumes the symbol

has avalue of 0 and continues. A #def i ne may berequired for the symbol, or you may
have forgotten to include the file which contains a #def i ne for the symbol.

B.3 Warning Level 3 Messages

W300

W301

W302

W303

Nested comment found in comment started on line %u

While scanning a comment for its end, the compiler detected / * for the start of another
comment. Nested comments are not allowed in ISO C. You may be missing the */ for the
previous comment.

not used

unused message

Expression is only useful for its side effects

Y ou have an expression that would have generated the warning "Meaningless use of an
expression”, except that it also contains a side-effect, such as ++, —, or afunction call.

Parameter ' %s' has been defined, but not referenced

There are no references to the declared parameter. The declaration for the parameter can be
deleted. Sinceit isaparameter to afunction, all callsto the function must also have the
value for that parameter deleted.

In some cases, there may be avalid reason for retaining the parameter. Y ou can prevent the
message from being issued through use of #pragma off(unreferenced).

Thiswarning isinitially disabled. It must be specifically enabled with #pragma
enable_message(303) or option "-wce=303". It can be disabled later by using #pragma
disable_message(303).

380 Warning Level 3 Messages

Open Watcom C Diagnostic Messages

W304

W305

W306

W307

W308

W309

Return type’int’ assumed for function ’%s
If afunction is declared without specifying return type, such as

Example:
foo(void);

then its return type will be assumed to be int
Type'int' assumed in declaration of ' %s
If an object is declared without specifying its type, such as

Example:
regi ster count;

then its type will be assumed to be int
Assembler warning: ' %s

A problem has been detected by the in-line assembler. The message indicates the problem
detected.

Obsol ete non-prototype declarator

Function parameter declarations containing only empty parentheses, that is, non-prototype
declarations, are an obsolescent language feature. Their use is dangerous and discouraged.

Example:
int func();

Unprototyped function ' %s' called

A call to an unprototyped function was made, preventing the compiler from checking the
number of function arguments and their types. Use of unprototyped functionsis
obsolescent, dangerous and discouraged.

Example:
int func();

void bar(void)

func(4, "s"); /* possible argunent m snmatch */

}

Unprototyped function indirectly called
Anindirect call to an unprototyped function was made, preventing the compiler from

checking the number of function arguments and their types. Use of unprototyped functions
is obsolescent, dangerous and discouraged.

Warning Level 3 Messages 381

Appendices

Example:
int (*func)();

void bar(void)

{
}

func(4, "s"); /* possible argunent m smatch */

B.4 Warning Level 4 Messages

W400 Array subscript is of type plain char

Array subscript expression is of plain char type. Such expression may be interpreted as
either signed or unsigned, depending on compiler settings. A different type should be
chosen instead of char. A cast may be used in cases when the value of the expression is
known to never fall outside the 0-127 range.

Example:
int foo(int arr[], char c)

return(arrf[c]);

}
B.5 Error Messages
E1000 BREAK must appear in while, do, for or switch statement

A break statement has been found in anillegal place in the program. Y ou may be missing
an opening brace { for awhile, do, for or switch statement.

E1001 CASE must appear in switch statement
A case label has been found that is not inside a switch statement.
E1002 CONTINUE must appear in while, do or for statement

The continue statement must be inside awhile, do or for statement. Y ou may have too
many } between the while, do or for statement and the continue statement.

E1003 DEFAULT must appear in switch statement

A default label has been found that is not inside a switch statement. Y ou may have too
many } between the start of the switch and the default label.

382 Error Messages

Open Watcom C Diagnostic Messages

E1004

E1005

E1006

E1007

E1008

E1009

E1010

E1011

E1012

E1013

Misplaced '}’ or missing earlier '{’
Anextra} hasbeen found which cannot be matched up with an earlier {.
Misplaced #lif directive

The#el i f directive must beinside an #i f preprocessing group and before the #el se
directiveif present.

Misplaced #else directive

The #el se directive must beinside an #i f preprocessing group and follow all #el i f
directivesif present.

Misplaced #endif directive

A preprocessing directive has been found without amatching #i f directive. You either
have an extraor you are missing an #i f directive earlier in thefile.

Only 1 DEFAULT per switch allowed
Y ou cannot have more than one default |abel in a switch statement.
Expecting ' %s' but found ' %s’

A syntax error has been detected. The tokens displayed in the message should help you to
determine the problem.

Type mismatch

For pointer subtraction, both pointers must point to the same type. For other operators,
both expressions must be assignment compatible.

Symbol "%s’ has not been declared

The compiler has found a symbol which has not been previously declared. The symbol
may be spelled differently than the declaration, or you may need to #i ncl ude aheader
file that contains the declaration.

Expression is not a function

The compiler has found an expression that looks like a function call, but it is not defined as
afunction.

Constant variable cannot be modified

An expression or statement has been found which modifies a variable which has been
declared with the const keyword.

Error Messages 383

Appendices

E1014

E1015

E1016

E1017

E1018

E1019

E1020

E1021

E1022

E1023

E1024

Left operand must be an’lvalue’

The operand on the left side of an "=" sign must be a variable or memory location which
can have avalue assigned to it.

"%s isalready defined asa variable
Y ou are trying to declare a function with the same name as a previoudly declared variable.
Expecting identifier

The token following "->" and "." operators must be the name of an identifier which appears
in the struct or union identified by the operand preceding the "->" and "." operators.

Label '%s' already defined
All labels within a function must be unique.
Label '%s' not defined in function

A goto statement has referenced alabel that is not defined in the function. Add the
necessary label or check the spelling of the label(s) in the function.

Tag'%s already defined

All struct, union and enum tag names must be unique.
Dimension cannot be 0 or negative

The dimension of an array must be positive and non-zero.
Dimensions of multi-dimension array must be specified

All dimensions of a multiple dimension array must be specified. The only exception isthe
first dimension which can declared as"[]".

Missing or misspelled data type near ’ %s

The compiler has found an identifier that is not a predefined type or the name of a
"typedef". Check the identifier for a spelling mistake.

Storage class of parameter must be register or unspecified
The only storage class alowed for a parameter declaration isregister.
Declared symbol "%s'’ is not in parameter list

Make sure that all the identifiersin the parameter list match those provided in the
declarations between the start of the function and the opening brace "{".

384 Error Messages

Open Watcom C Diagnostic Messages

E1025

E1026

E1027

E1028

E1029

E1030

E1031

E1032

E1033

E1034

E1035

Parameter '%s already declared

A declaration for the specified parameter has already been processed.
Invalid declarator

A syntax error has occurred while parsing a declaration.

Invalid storage class for function

If astorage classis given for afunction, it must be static or extern.
Variable’%s' cannot be void

Y ou cannot declare avoid variable.

Expression must be 'pointer to ...’

An attempt has been made to de-reference (*) avariable or expression which is not
declared to be a pointer.

Cannot take the address of an rvalue
Y ou can only take the address of a variable or memory location.
Name '%s' not found in struct/union %s

The specified identifier is not one of the fields declared in the struct or union. Check that
the field nameis spelled correctly, or that you are pointing to the correct struct or union.

Expression for . must be a’structure’ or "union’

The compiler has encountered the pattern "expression” "." "field_name" where the
expression is not a struct or union type.

Expression for '->" must be’ pointer to struct or union’

The compiler has encountered the pattern "expression” "->" "field_name" where the
expression is not a pointer to struct or union type.

Symbol '%s’ already defined
The specified symbol has already been defined.
static function’%s’ has not been defined

A prototype has been found for a static function, but a definition for the static function has
not been found in the file.

Error Messages 385

Appendices

E1036

E1037

E1038

E1039

E1040

E1041

E1042

E1043

E1044

E1045

E1046

E1047

Right operand of '%s is a pointer

Theright operand of "+=" and "—=" cannot be a pointer. The right operand of

be a pointer unless the |eft operand is also a pointer.
Type cast must be a scalar type

Y ou cannot type cast an expression to be a struct, union, array or function.
Expecting label for goto statement

The goto statement requires the name of alabel.
Duplicate case value’%s' found

Every case value in aswitch statement must be unique.
Field width too large

The maximum field width allowed is 16 bits.

Field width of 0 with symbol not allowed

A bit field must be at least one bit in size.

Field width must be positive

Y ou cannot have a negative field width.

Invalid type specified for hit field

cannot

The types allowed for bit fields are signed or unsigned varieties of char, short and int.

Variable’%s hasincomplete type

A full definition of astruct or union has not been given.
Subscript on non-array

One of the operands of "[]" must be an array.

Incompl ete comment started on line %u

The compiler did not find */ to mark the end of a comment.
Argument for # must be a macro parm

The argument for the stringize operator "#' must be a macro parameter.

386 Error Messages

Open Watcom C Diagnostic Messages

E1048

E1049

E1050

E1051

E1052

E1053

E1054

E1055

E1056

E1057

Unknown preprocessing directive ' #%s

An unrecognized preprocessing directive has been encountered. Check for correct spelling.
Invalid #include directive

A syntax error has been encountered in a #i ncl ude directive.

Not enough parameters given for macro ' %s

Y ou have not supplied enough parameters to the specified macro.

Not expecting a return value for function’ %s

The specified function is declared as a void function. Delete the return statement, or
change the type of the function.

Expression has void type

Y ou tried to use the value of avoid expression inside another expression.

Cannot take the address of a bit field

The smallest addressable unit is abyte. You cannot take the address of a bit field.
Expression must be constant

The compiler expects a constant expression. This message can occur during static
initialization if you are trying to initialize a non-pointer type with an address expression.

Unable to open’ %s

Thefile specified in an #i ncl ude directive could not be located. Make sure that the file
nameis spelled correctly, or that the appropriate path for the fileisincluded in the list of
paths specified in the | NCLUDE environment variable or the"-I" option on the command
line.

Too many parameters given for macro ' %s

Y ou have supplied too many parameters for the specified macro.

Modifiers disagree with previous definition of ' %s

Y ou have more than one definition or prototype for the variable or function which have
different type modifiers.

Error Messages 387

Appendices

E1058

E1059

E1060

E1061

E1062

E1063

E1064

E1065

E1066

E1067

Cannot use typedef '%s' asa variable

The name of atypedef has been found when an operand or operator is expected. If you are
trying to use atype cast, make sure there are parentheses around the type, otherwise check
for a spelling mistake.

Invalid storage class for non-local variable

A variable with module scope cannot be defined with the storage class of auto or register.

Invalid type

Aninvalid combination of the following keywords has been specified in atype declaration:
const, volatile, signed, unsigned, char, int, short, long, float and double.

Expecting data or function declaration, but found ’ %s

The compiler is expecting the start of a data or function declaration. If you are only part
way through afunction, then you have too many closing braces"}".

Inconsistent return type for function’ %s

Two prototypes for the same function disagree.

Missing operand

An operand is required in the expression being parsed.

Out of memory

The compiler has run out of memory to store information about the file being compiled.
Try reducing the number of data declarations and or the size of the file being compiled. Do

not #i ncl ude header filesthat are not required.

For the 16-bit C compiler, the "-d2" option causes the compiler to use more memory. Try
compiling with the "-d1" option instead.

Invalid character constant

This message isissued for an improperly formed character constant.

Cannot perform operation with pointer to void

Y ou cannot use a "pointer to void" with the operators +, —, ++, ——, += and —=.
Cannot take address of variable with storage class 'register’

If you want to take the address of alocal variable, change the storage class from register to
auto.

388 Error Messages

Open Watcom C Diagnostic Messages

E1068

E1069

E1070

E1071

E1072

Variable’%s already initialized

The specified variable has already been statically initialized.
String literal not terminated before end of line

A string literal is enclosed by double quote " characters.

The compiler did not find a closing double quote " or line continuation character \ before
the end of aline or before the end of the source file.

Data for aggregate type must be enclosed in curly braces

When an array, struct or union is statically initialized, the data must be enclosed in curly
braces{}.

Type of parameter %d does not agree with previous definition

The type of the specified parameter is incompatible with the prototype for that function.
The following example illustrates a problem that can arise when the sequence of
declarationsisin the wrong order.

Example:

/* Uncommenting the following line will
elimnate the error */

/* struct foo; */

void fnl(struct foo *);

struct foo {
i nt a, b;

1

void fnl(struct foo *bar)

fn2(bar);
}

The problem can be corrected by reordering the sequence in which items are declared (by
moving the description of the structure f 0o ahead of itsfirst reference or by adding the
indicated statement). Thiswill assure that the first instance of structure f 0o is defined at
the proper outer scope.

Sorage class disagrees with previous definition of ' %s

The previous definition of the specified variable has a storage class of static. The current
definition must have a storage class of static or extern.

Alternatively, avariable was previously declared as extern and later defined as static.

Error Messages 389

Appendices

E1073

E1074

E1075

E1076

E1077

E1078

E1079

E1080

E1081

E1082

E1083

Invalid option’ %s

The specified option is not recognized by the compiler.
Invalid optimization option ' %s’

The specified option is an unrecognized optimization option.
Invalid memory model ’ %s’

Memory model option must be one of "ms’, "mm", "mc", "ml", "mh" or "mf" which selects
the Small, Medium, Compact, Large, Huge or Flat memory model.

Missing semicolon at end of declaration
You are missing asemicolon ;" on the declaration just before the left curly brace "{".
Missing '}’

The compiler detected end of file before finding aright curly brace "} " to end the current
function.

Invalid type for switch expression

The type of a switch expression must be integral.
Expression must be integral

Anintegral expressionisrequired.

Expression must be arithmetic

Both operands of the "*", "/" and "%" operators must be arithmetic. The operand of the
unary minus must also be arithmetic.

Expression must be scalar type
A scalar expression is required.
Satement required after label

The C language definition requires a statement following alabel. You can use anull
statement which consists of just a semicolon (*;").

Satement required after ' do’

A statement is required between the do and while keywords.

390 Error Messages

Open Watcom C Diagnostic Messages

E1084

E1085

E1086

E1087

E1088

E1089

E1090

E1091

E1092

E1093

Satement required after ’case’

The C language definition requires a statement following a case label. Y ou can use anull
statement which consists of just a semicolon (*;").

Satement required after ’ default’

The C language definition requires a statement following a default label. You can use a
null statement which consists of just asemicolon (*;").

Expression too complicated, split it up and try again

The expression contains too many levels of nested parentheses. Divide the expression up
into two or more sub-expressions.

Missing matching #endif directive

You aremissing ato terminatea #i f, #i f def or #i f ndef preprocessing directive.
Invalid macro definition, missing)

Theright parenthesis")" isrequired for afunction-like macro definition.

Missing) for expansion of '%s macro

The compiler encountered end-of-file while collecting up the argument for afunction-like
macro. A right parenthesis")" isrequired to mark the end of the argument(s) for a
function-like macro.

Invalid conversion

A struct or union cannot be converted to anything. A float or double cannot be converted
to apointer and a pointer cannot be converted to afloat or double.

%s

Thisis auser message generated with the #er r or preprocessing directive.
Cannot define an array of functions

Y ou can have an array of pointers to functions, but not an array of functions.
Function cannot return an array

A function cannot return an array. Y ou can return a pointer to an array.

Error Messages 391

Appendices

E1094

E1095

E1096

E1097

E1098

E1099

E1100

E1101

E1102

Function cannot return a function

Y ou cannot return afunction. Y ou can return a pointer to afunction.

Cannot take address of local variable in static initialization

Y ou cannot take the address of an auto variable at compile time.

Inconsistent use of return statements

The compiler has found areturn statement which returns avalue and areturn statement
that does not return a value both in the same function. The return statement which does
not return a value needs to have a value specified to be consistent with the other return
statement in the function.

Missing ? or misplaced :

The compiler has detected a syntax error related to the "?" and ":" operators. Y ou may
need parenthesis around the expressions involved so that it can be parsed correctly.

Maximum struct or union sizeis 64K

The size of astruct or union islimited to 64K so that the compiler can represent the offset
of amember in a 16-bit register.

Satement must be inside function. Probable cause: missing {

The compiler has detected a statement such as for, while, switch, etc., which must be inside
afunction. You either have too many closing braces"}" or you are missing an opening
brace"{" earlier in the function.

Definition of macro’%s' not identical to previous definition

If amacro is defined more than once, the definitions must beidentical. If you want to
redefine a macro to have a different definition, you must #undef it before you can define
it with a new definition.

Cannot #undef ’ %s

Thespecialmacros_ LINE , FILE , DATE , TIME _,
__STDC__, _ _FUNCTION__and_ func__, andtheidentifier "defined", cannot be
deleted by the #undef directive.

Cannot #define the name’ defined’

Y ou cannot define amacro caled def i ned.

392 Error Messages

Open Watcom C Diagnostic Messages

E1103

E1104

E1105

E1106

E1107

E1108

E1109

E1110

E1111

E1112

E1113

must not be at start or end of replacement tokens

There must be atoken on each side of the "##" (token pasting) operator.

Type cast not allowed in #if or #elif expression

A type cast is not allowed in a preprocessor expression.

'sizeof’ not allowed in #if or #elif expression

The sizeof operator is not allowed in a preprocessor expression.

Cannot compare a struct or union

A struct or union cannot be compared with "==" or "!=". Y ou must compare each member
of astruct or union to determine equality or inequality. If the struct or union is packed
(has no holesinit for alignment purposes) then you can compare two structs using
mencnp.

Enumerator list cannot be empty

Y ou must have at least one identifier in an enum list.

Invalid floating-point constant

The exponent part of the floating-point constant is not formed correctly.

Cannot take sizeof a bit field

The smallest object that you can ask for the size of isachar.

Cannot initialize variable with storage class of extern

A storage class of extern is used to associate the variable with its actual definition
somewhere else in the program.

Invalid storage class for parameter

The only storage class alowed for a parameter is register.
Initializer list cannot be empty

Aninitializer list must have at least one item specified.
Expression has incompl ete type

An attempt has been made to access a struct or union whose definition is not known, or an
array whose dimensions are not known.

Error Messages 393

Appendices

E1114

E1115

E1116

E1117

E1118

E1119

E1120

E1121

E1122

394 Error Messages

Struct or union cannot contain itself

Y ou cannot have a struct or union contain itself. Y ou can have a pointer in the struct
which points to an instance of itself. Check for amissing "*" in the declaration.

Incomplete enum declaration

The enumeration tag has not been previously defined.

Anid list not allowed except for function definition

A function prototype must contain type information.

Must use 'va_start’ macro inside function with variable parameters

Theva_start macroisused to setup access to the parametersin afunction that takes a
variable number of parameters. A function is defined with a variable number of parameters

by declaring the last parameter in the function as™...".
EATAL O%s

A fatal error has been detected during code generation time. The type of error is displayed
in the message.

Internal compiler error %d

A bug has been encountered in the C compiler. Please report the specified internal
compiler error number and any other helpful details about the program being compiled to
compiler developers so that we can fix the problem.

Parameter number %d - invalid register in #pragma

The designated registers cannot hold the value for the parameter.

Procedure’%s' hasinvalid return register in #pragma

The size of the return register does not match the size of the result returned by the function.
Illegal register modified by '%s' #pragma

For the 16-bit C compiler: The BP, CS, DS, and SS registers cannot be modified in small
datamodels. The BP, CS, and SS registers cannot be modified in large data models.

For the 32-bit C compiler: The EBP, CS, DS, ES, and SS registers cannot be modified in
flat memory models. The EBP, CS, DS, and SS registers cannot be modified in small data
models. The EBP, CS, and SS registers cannot be modified in large data models.

Open Watcom C Diagnostic Messages

E1123

E1124

E1125

E1126

E1127

E1128

E1129

E1130

E1131

E1132

E1133

File must contain at least one external definition

Every file must contain at least one global object, (either adata variable or afunction).

This messageisonly issued in strict ANSI mode (-za).

Out of macro space

The compiler ran out of memory for storing macro definitions.
Keyboard interrupt detected

The compile has been aborted with Ctrl/C or Ctrl/Break.
Array, struct or union cannot be placed in a register

Only scalar objects can be specified with the register class.

Typerequired in parameter list

If the first parameter in a function definition or prototype is defined with atype, then all of

the parameters must have a type specified.
Enum constant is out of range %s
All of the constants must fit into appropriate value range.

Type does not agree with previous definition of ' %s

Y ou have more than one definition of avariable or function that do not agree.

Duplicate name’%s not allowed in struct or union

All thefield namesin a struct or union must be unique.
Duplicate macro parameter ’%s

The parameters specified in a macro definition must be unique.

Unable to open work file: error code = %d

The compiler tries to open a new work file by the name”__wrkN__.tmp" where N isthe
digit 0t0 9. This message will beissued if all of those files already exist.

Write error on work file: error code = %d

An error was encountered trying to write information to the work file. The disk could be

full.

Error Messages 395

Appendices

E1134

E1135

E1136

E1137

E1138

E1139

E1140

E1141

E1142

E1143

Read error on work file: error code = %d

An error was encountered trying to read information from the work file.
Seek error onwork file: error code = %d

An error was encountered trying to seek to a position in the work file.
not used

unused message

Out of enum space

The compiler has run out of space allocated to store information on &l of the enum
constants defined in your program.

Filename required on command line

The name of afile to be compiled must be specified on the command line.

Command line contains more than one file to compile

Y ou have more than one file name specified on the command line to be compiled. The
compiler can only compile onefile at atime. You can use the cc utility to compile multiple
fileswith a single command.

_leave must appear ina _try statement

The _leave keyword must beinsidea_try statement. The _|leave keyword causes the
program to jump to the start of the _finally block.

Expecting end of line but found ’ %s’

A syntax error has been detected. The token displayed in the message should help you
determine the problem.

Too many bytes specified in #pragma

Thereisan internal limit on the number of bytesfor in-line code that can be specified with
apragma. Try splitting the function into two or more smaller functions.

Cannot resolve linkage conventions for routine’ %s' #pragma

The compiler cannot generate correct code for the specified routine because of register
conflicts. Change the registers used by the parameters of the pragma.

396 Error Messages

Open Watcom C Diagnostic Messages

E1144

E1145

E1146

E1147

E1148

E1149

E1150

E1151

E1152

Symbol '%s’ in pragma must be global

Thein-line code for a pragma can only reference a global variable or function. Y ou can
only reference a parameter or local variable by passing it as a parameter to the in-line code

pragma.
Internal compiler limit exceeded, break module into smaller pieces

The compiler can handle 65535 quadruples, 65535 |leaves, and 65535 symbol table entries
and literal strings. If you exceed one of these limits, the program must be broken into
smaller pieces until it is capable of being processed by the compiler.

Invalid initializer for integer data type

Integer data types (int and long) can be initialized with numeric expressions or address
expressions that are the same size as the integer data type being initialized.

Too many errors. compilation aborted

The compiler stops compiling when the number of errors generated exceeds the error limit.
The error limit can be set with the "-€" option. The default error limit is 20.

Expecting identifier but found ’ %s

A syntax error has been detected. The token displayed in the message should help you
determine the problem.

Expecting constant but found ’ %s’

The #line directive must be followed by a constant indicating the desired line number.
Expecting \"filename\" but found ’ %s’

The second argument of the #line directive must be a filename enclosed in quotes.
Parameter count does not agree with previous definition

Y ou have either not enough parameters or too many parametersin acall to afunction. If
the function is supposed to have a variable number of parameters, then you are missing the
", ..." inthe function prototype.

Segment name required

A segment name must be supplied in the form of aliteral string to the __segname()
directive.

Error Messages 397

Appendices

E1153

E1154

E1155

E1156

E1157

E1158

E1159

E1160

El161

E1162

Invalid __based declaration

The compiler could not recognize one of the allowable forms of __based declarations. See
the C Language Reference document for description of all the allowable forms of __based
declarations.

Variablefor __based declaration must be of type segment or pointer

A based pointer declaration must be based on asimple variable of type _ segment or
pointer.

Duplicate external symbol %s

Duplicate external symbolswill exist when the specified symbol nameis truncated to 8
characters.

Assembler error: '%s

An error has been detected by the in-line assembler. The message indicates the error
detected.

Variable must be’ huge

A variable or an array that requires more than 64K of storage in the 16-bit compiler must be
declared as huge.

Too many parm sets
Too many parameter register sets have been specified in the pragma.
I/O error reading ' %s': %s

An 1/O error has been detected by the compiler while reading the sourcefile. The system
dependent reason is also displayed in the message.

Attempt to access far memory with all segment registersdisabled in’%s

The compiler does not have any segment registers available to access the desired far
memory location.

No identifier provided for *-D’ option
The command line option "-D" must be followed by the name of the macro to be defined.
Invalid register pegged to a segment in’ %s

Theregister specified in a#pragma data_seg, or a__segname expression must be avalid
segment register.

398 Error Messages

Open Watcom C Diagnostic Messages

E1163

El164

E1165

E1166

E1167

E1168

E1169

E1170

El1171

E1172

Invalid octal constant

An octal constant cannot contain the digits 8 or 9.

Invalid hexadecimal constant

The token sequence "0x" must be followed by a hexadecimal character (0-9, af, or A-F).
Unexpected ’)’. Probable cause: missing'(’

A closing parenthesis was found in an expression without a corresponding opening
parenthesis.

Symbol '%s' is unreachable from #pragma

Thein-line assembler found ajump instruction to alabel that istoo far away.
Division or remainder by zero in a constant expression

The compiler found a constant expression containing adivision or remainder by zero.
Cannot end string literal with backslash

The argument to amacro that uses the stringize operator *# on that argument must not end
in a backslash character.

Example:
#define str(x) #x
str(@\)

Invalid __declspec declaration

Theonly valid __declspec declarations are"__ declspec(thread)”, " declspec(dllexport)”,
and"__declspec(dllimport)".

Too many storage class specifiers
Y ou can only specify one storage class specifier in adeclaration.
Expecting ' %s' but found end of file

A syntax error has been detected. The compiler is still expecting more input when it
reached the end of the source program.

Expecting struct/union tag but found * %s

The compiler expected to find an identifier following the struct or union keyword.

Error Messages 399

Appendices

E1173

E1174

E1175

E1176

E1177

E1178

E1179

E1180

E1181

E1182

E1183

Operand of __builtin_isfloat() must be a type

The __builtin_isfloat() function is used by the va_arg macro to determineif atypeisa
floating-point type.

Invalid constant
The token sequence does not represent a valid numeric constant.
Too many initializers

There are more initializers than objectsto initialize. For exampleint X[2] ={ 0,1,2}; The
variable " X" requires two initializers not three.

Parameter %d, pointer type mismatch

Y ou have two pointers that either point to different objects, or the pointers are of different
size, or they have different modifiers.

Modifier repeated in declaration

Y ou have repeated the use of a modifier like "const" (an error) or "far" (awarning) in a
declaration.

Type qualifier mismatch

Y ou have two pointers that have different "const” or "volatile" qualifiers.
Parameter %d, type qualifier mismatch

Y ou have two pointers that have different const or "volatile" qualifiers.
Sgn specifier mismatch

Y ou have two pointers that point to types that have different sign specifiers.
Parameter %d, sign specifier mismatch

Y ou have two pointers that point to types that have different sign specifiers.
Missing \\ for string literal

Youneed a’\' to continue a string literal across aline.

Expecting ' %s' after '%s' but found *%s’

A syntax error has been detected. The tokens displayed in the message should help you to
determine the problem.

400 Error Messages

Open Watcom C Diagnostic Messages

E1184

E1185

E1186

E1187

E1188

E1189

Expecting '%s' after '%s' but found end of file

A syntax error has been detected. The compiler is still expecting more input when it
reached the end of the source program.

Invalid register name’%s' in #pragma
The register name isinvalid/unknown.
Sorage class of 'for’ statement declaration not register or auto

The only storage class alowed for the optional declaration part of afor statement is auto or
register.

No type specified in declaration
A declaration specifier must include a type specifier.

Example:
auto i;

Symbol '%s’ declared in’for’ statement must be object

Any identifier declared in the optional declaration part of afor statement must denote an
object. Functions, structures, or enumerations may not be declared in this context.

Example:
for(int i =0, j(void); i <5; ++i) {
}

Unexpected declaration

Within afunction body, in C99 mode a declaration is only allowed in a compound
statement and in the opening clause of afor loop. Declarations are not allowed after if,
while, or switch statement, etc.

Example:
void foo(int a)

if(a>0)
int j = 3;

}

In C89 mode, declarations within afunction body are only allowed at the beginning of a
compound statement.

Error Messages 401

Appendices

Example:
void foo(int a)
{
++a;
int j = 3;
}

B.6 Informational Messages

12000

12001

12002

12003

Not enough memory to fully optimize procedure’ %s

The compiler did not have enough memory to fully optimize the specified procedure. The
code generated will still be correct and execute properly. This messageis purely
informational.

Not enough memory to maintain full peephole

Certain optimizations benefit from being able to store the entire module in memory during
optimization. All functions will be individually optimized but the optimizer will not be
able to share code between functions if this message appears. The code generated will still
be correct and execute properly. This messageis purely informational. It isonly printed if
the warning level is greater than or equal to 4.

The main reason for this message is for those people who are concerned about reproducing
the exact same object code when the same source file is compiled on a different machine.
Y ou may not be able to reproduce the exact same object code from one compile to the next
unless the available memory is exactly the same.

"%s' defined in: %s(%u)

This informational message indicates where the symbol in question was defined. The
message is displayed following an error or warning diagnostic for the symbol in question.

Example:
static int a = 9;
int b = 89;

Thevariable’a’ isnot referenced in the preceding example and so will cause awarning to
be generated. Following the warning, the informational message indicates the line at which
'a was declared.

source conversion typeis’%s

This informational message indicates the type of the source operand, for the preceding
conversion diagnostic.

402 Informational Messages

Open Watcom C Diagnostic Messages

12004 target conversion type is’ %s

This informational message indicates the target type of the conversion, for the preceding
conversion diagnostic.

12005 Including file’ %s

This informational message indicates that the specified file was opened as aresult of
#i ncl ude directive processing.

B.7 Pre-compiled Header Messages
H3000 Error reading PCH file
The pre-compiled header file does not follow the correct format.
H3001 PCH file header is out of date

The pre-compiled header file is out of date with the compiler. The current version of the
compiler is expecting a different format.

H3002 Compile options differ with PCH file

The command line options are not the same as used when making the pre-compiled header
file. This can effect the values of the pre-compiled information.

H3003 Current working directory differs with PCH file
The pre-compiled header file was compiled in a different directory.
H3004 Includefile’%s has been modified since PCH file was made
Theinclude files have been modified since the pre-compiled header file was made.
H3005 PCH file was made from a different include file
The pre-compiled header file was made using a different include file.
H3006 Include path differswith PCH file
Theinclude paths have changed.
H3007 Preprocessor macro definition differs with PCH file

The definition of a preprocessor macro has changed.

Pre-compiled Header Messages 403

Appendices

H3008 PCH cannot have data or code definitions.

Theinclude files used to build the pre-compiled header contain function or data definitions.
Thisisnot currently supported.

B.8 Miscellaneous Messages and Phrases
M4000 Codesize
String used in message construction.
M4001 Error!
String used in message construction.
M4002 Warning!
String used in message construction.
M4003 Note!
String used in message construction.
M4004 (Pressreturn to continue)

String used in message construction.

404 Miscellaneous Messages and Phrases

Open Watcom C++ Diagnostic Messages

C. Open Watcom C++ Diagnostic Messages

Thefollowingisalist of all warning and error messages produced by the Open Watcom C++ compilers.
Diagnostic messages are issued during compilation and execution.

The messages listed in the following sections contain referencesto %N, %8, %I, %, % and %w. They
represent strings that are substituted by the Open Watcom C++ compilers to make the error message more
exact. %@ and % represent astring of digits; 9N, %8, %I and % astring, usually a symbolic name.

Consider the following program, named er r . cpp, which contains errors.

Example:
#i ncl ude <stdi o. h>

void main()

int i;

float i;

i = 383;

x = 13143.0;

printf("Integer value is %\n", i);
printf("Floating-point value is %\n", x);

}

If we compile the above program, the following messages will appear on the screen.

File: err.cpp
(6,12): Error! EO042: synbol 'i’ already defined
i’ declared at: (5,9)
(9,5): Error! E029: synmbol ’'x' has not been decl ared
err.cpp: 12 lines, included 174, no warnings, 2 errors

The diagnostic messages consist of the following information:

the name of the file being compiled,

the line number and column of the line containing the error (in parentheses),
amessage number, and

text explaining the nature of the error.

PwWdE

In the above example, the first error occurred on line 6 of thefile err. cpp. Error number 042 (with the
appropriate substitutions) was diagnosed. The second error occurred on line 9 of thefile err. cpp. Error
number 029 (with the appropriate substitutions) was diagnosed.

The following sections contain a complete list of the messages. Run-time messages (messages displayed
during execution) do not have message numbers associated with them.

Open Watcom C++ Diagnostic Messages 405

Appendices

A number of messages contain areference to the ARM. Thisisthe"Annotated C++ Reference Manual™
written by Margaret A. Ellis and Bjarne Stroustrup and published by Addison-Wesley (ISBN
0-201-51459-1).

C.1 Diagnostic Messages

000 internal compiler error

If this message appears, please report the problem directly to the Open Watcom
development team. See http://www.openwatcom.org/.

001 assignment of constant found in boolean expression

An assignment of a constant has been detected in aboolean expression. For example: "if(
var =0)". Itismost likely that you want to use "==" for testing for equality.

002 constant out of range; truncated

Thismessageisissued if a constant cannot be represented in 32 bits or if a constant is
outside the range of valid values that can be assigned to avariable.

Example:
int a = 12345678901234567890;

003 missing return value

A function has been declared with a non-void return type, but no return statement was
found in the function. Either add areturn statement or change the function return typeto

void.
Example:
int foo(int a)
{
int b =a+ a;
}

The message will be issued at the end of the function.
004 base class’%T' does not have a virtual destructor
A virtual destructor has been declared in a class with base classes. However, one of those

base classes does not have avirtual destructor. A delete of a pointer cast to such abase
classwill not function properly in al circumstances.

Example:
struct Base {
~Base() ;
1

struct Derived : Base {
virtual ~Derived();
b

406 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

005

006

007

008

It is considered good programming practice to declare virtual destructorsin all classes used
as base classes of classes having virtual destructors.

pointer or reference truncated

The expression contains atransfer of a pointer value to another pointer value of smaller
size. Thiscanbecausedby near or __ far qualifiers(i.e., assigning afar pointer to a
near pointer). Function pointers can also have a different size than data pointersin certain
memory models. This message indicates that some information is being lost so check the
code carefully.

Example:
extern int _ far *foo();
int far *p_far = foo();
int __near *p_near = p_far; // truncated

syntax error; probable cause: missing’;’

The compiler has found a compl ete expression (or declaration) during parsing but could not
continue. The compiler has detected that it could have continued if a semicolon was
present so there may be a semicolon missing.

Example:
enum S {
} /!l mssing ';’

class X {

1
'&array’ may not produce intended result

The type of the expression’&array’ is different from the type of the expression ' array’.
Suppose we have the declaration char buf fer[80]. Thenthe expression (&uf f er
+ 3) will beevaluated as (buf fer + 3 * sizeof (buffer)) whichis (buffer
+ 3 * 80) andnot (buffer + 3 * 1) whichiswhat one may have expected. The
address-of operator '&’ is not required for getting the address of an array.

returning address of function argument or of auto or register variable

Thiswarning usually indicates a serious programming error. When afunction exits, the
storage allocated on the stack for auto variablesisreleased. This storage will be
overwritten by further function calls and/or hardware interrupt service routines. Therefore,
the data pointed to by the return value may be destroyed before your program has a chance
to reference it or make a copy of it.

Example:
int *foo()
int k = 123;
return &Kk; // k is autonatic variable
}

Diagnostic Messages 407

Appendices

009 option requires a file name

The specified option is not recognized by the compiler since there was no file name after it
(i.e, "-fo=my.obj").

010 asmdirective ignored

The asm directive (e.g., asm("mov r0,1");) is anon-portable construct. The Open
Watcom C++ compiler treats all asm directives like comments.

011 all members are private

This message warns the programmer that there will be no way to use the contents of the
class because all accesses will be flagged as erroneous (i.e., accessing a private member).

Example:

class Private {
int a;
Private();
~Private();
Private(const Private&);

1

012 template argument cannot be type’ %T

A template argument can be either agenerictype (e.g., tenpl ate < class T >),a
pointer, or anintegral type. These types are required for expressions that can be checked at
compile time.

013 unreachable code

Theindicated statement will never be executed because there is no path through the
program that causes control to reach that statement.

Example:
void foo(int *p)
{
*p = 4’
return;
*p = 6,
}

The statement following the return statement cannot be reached.

014 no reference to symbol ' %S
There are no references to the declared variable. The declaration for the variable can be
deleted. If the variable isa parameter to afunction, all callsto the function must also have
the value for that parameter deleted.
In some cases, there may be avalid reason for retaining the variable. Y ou can prevent the

message from being issued through use of #pragma off(unreferenced), or adding a
statement that assigns the variable to itself.

408 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

015

016

017

018

019

020

nested comment found in comment started on line %u

While scanning a comment for its end, the compiler detected / * for the start of another
comment. Nested comments are not allowed in ISO/ANSI C. You may be missing the */
for the previous comment.

template argument list cannot be empty

An empty template argument list would result in atemplate that could only define asingle
class or function.

label '%s' has not been referenced by a goto

Theindicated label has not been referenced and, as such, isuseless. Thiswarning can be
safely ignored.

Example:
int foo(int a, int b)

un_ref ed:
return a + b;
}
no reference to anonymous union member ' %S
The declaration for the anonymous member can be safely deleted without any effect.
"break’ may only appear in a for, do, while, or switch statement

A break statement has been found in anillegal place in the program. Y ou may be missing
an opening brace { for awhile, do, for or switch statement.

Example:
int foo(int a, int b)

break; [// illegal
return atb;

}

"case’ may only appear in a switch statement

A case |abel has been found that is not inside a switch statement.

Example:
int foo(int a, int b)
{
case 4. /1 illegal
return a+b;
}

Diagnostic Messages 409

Appendices

021 "continue’ may only appear in afor, do, or while statement

The continue statement must be inside awhile, do or for statement. Y ou may have too
many } between the while, do or for statement and the continue statement.

Example:
int foo(int a, int b)
{
conti nue; /1 illegal
return atb;
}
022 "default’ may only appear in a switch statement

A default label has been found that is not inside a switch statement. Y ou may have too
many } between the start of the switch and the default |abel.

Example:
int foo(int a, int b)

default: // illegal
return atb;
}
023 misplaced '}’ or missing earlier '{’

Anextra} hasbeen found which cannot be matched up with an earlier {.

024 misplaced #elif directive
The #€lif directive must be inside an #if preprocessing group and before the #else directive
if present.
Example:
int a;
#el se
int c;
#elif IN_IF
int b;
#endi f
The #else, #elif, and #endif statements are all illegal because there is no #if that
corresponds to them.
025 misplaced #else directive

The #else directive must be inside an #if preprocessing group and follow all #elif directives
if present.

410 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
int a;
#el se
int c;
#elif IN_IF
int b;
#endi f

The #else, #elif, and #endif statements are al illegal because there is no #if that
corresponds to them.

026 misplaced #endif directive

A #endif preprocessing directive has been found without a matching #if directive. You
either have an extra #endif or you are missing an #if directive earlier in the file.

Example:
int a;
t#el se
int c;
#elif IN_IF
int b;
#endi f

The #else, #elif, and #endif statements are all illegal because there is no #if that
corresponds to them.

027 only one’default’ per switch statement is allowed
Y ou cannot have more than one default label in aswitch statement.

Example:
int translate(int a)
{
switch(a) {
case 1:
a = 8;
br eak;
defaul t:
a=29;
br eak;
default: // illegal
a = 10;
br eak;

}

return a;

Diagnostic Messages 411

Appendices

028

029

030

031

032

expecting ' %s' but found ’ %s

A syntax error has been detected. The tokens displayed in the message should help you to
determine the problem.

symbol %N’ has not been declared
The compiler has found a symbol which has not been previously declared. The symbol
may be spelled differently than the declaration, or you may need to #include a header file

that contains the declaration.

Example:
int a="Db; [// b has not been decl ared

left expression must be a function or a function pointer

The compiler has found an expression that looks like a function call, but it is not defined as
afunction.

Example:
int a;
int b =a(12);

operand must be an Ivalue

The operand on the left side of an "=" sign must be a variable or memory location which
can have avaue assigned to it.

Example:
void foo(int a)
{
(a+1) =17
int b=++(a+6);
}

Both statements within the function are erroneous, since Ivalues are expected where the
additions are shown.

label '%s' already defined
All labels within a function must be unique.

Example:
void bar(int *p)

| abel :
*p = 0'
| abel :
return;
}

The second label isillegal.

412 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

033

034

035

036

037

038

label '%s' is not defined in function

A goto statement has referenced a label that is not defined in the function. Add the
necessary label or check the spelling of the label(s) in the function.

Example:
void bar(int *p)
{
| abl :
*p = 0’
goto | abel;
}

Thelabel referenced in the goto is not defined.
dimension cannot be zero
The dimension of an array must be non-zero.

Example:
int array[O0]; /1 not allowed

dimension cannot be negative
The dimension of an array must be positive.

Example:
int array[-1]; [// not allowed

dimensions of multi-dimension array must be specified

All dimensions of amultiple dimension array must be specified. The only exception isthe
first dimension which can declared as"[]".

Example:
int array[][]; /1 not all owed

invalid storage class for function
If astorage classis given for afunction, it must be static or extern.

Example:
auto void foo()

{
}

expression must have pointer type

An attempt has been made to de-reference a variable or expression which is not declared to
be apointer.

Diagnostic Messages 413

Appendices

Example:
int a;
int b = *a;
039 cannot take address of an rvalue

Y ou can only take the address of a variable or memory location.

Example:
char c;
char *pl = & & c; /1 not all owed
char *p2 = & (c+1); // not allowed
040 expression for '.” must be a class, struct or union
The compiler has encountered the pattern "expression” "." "field_name" where the

expression is not a class, struct or union type.

Example:
struct S

{

b
int & un();
int a =fun().a;

int a;

041 expression for ->" must be pointer to class, struct or union

The compiler has encountered the pattern "expression” "->" "field_name" where the
expression is not a pointer to class, struct or union type.

Example:
struct S
{

int a;

int *fun();
int a = fun()->a;

042 symbol ' %S already defined

The specified symbol has already been defined.

Example:
char a = 2;
char a = 2; // not allowed
043 static function ’%S has not been defined

A prototype has been found for a static function, but a definition for the static function has
not been found in the file.

414 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

044

045

046

047

Example:
static int fun(void);
int k = fun();

/1 fun not defined by end of program
expecting label for goto statement
The goto statement requires the name of alabel.
Example:

int fun(void)

{
}

got o;

duplicate case value ' %s' found
Every case value in aswitch statement must be unique.

Example:
int fun(int a)
{
switch(a) {
case 1:
return 7;
case 2.
return 9;
case 1: // duplicate not allowed
return 7;

return 79;

}

bit-field width istoo large

The maximum field width allowed is 16 bitsin the 16-bit compiler and 32 bits in the 32-hit
compiler.

Example:
struct S

{
s

width of a named bit-field must not be zero

unsigned bitfield :48; // too w de

A bit field must be at |east one bit in size.

Diagnostic Messages 415

Appendices

048

049

050

051

052

053

Example:
struct S {
int bitfield :10;
int :0; /1 okay, aligns to int
int h:0; // error, field is naned
1

bit-field width must be positive
Y ou cannot have a negative field width.

Example:
struct S

{
}s

unsigned bitfield :-10; // cannot be negative

bit-field base type must be an integral type

The types alowed for bit fields are signed or unsigned varieties of char, short and int.

Example:
struct S
float bitfield : 10; /1l must be integral
1

subscript on non-array

One of the operands of '[]' must be an array or a pointer.

Example:
int array[10];
int il =array[0]; [/ ok
int i2 = 0[array]; [/ same as above
int i3 =0[1]; /1 illegal

incompl ete comment

The compiler did not find */ to mark the end of a comment.

argument for # must be a macro parm

The argument for the stringize operator '# must be amacro parameter.
unknown preprocessing directive ' #%s

An unrecognized preprocessing directive has been encountered. Check for correct spelling.

416 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

054

055

056

057

058

Example:
#i _goofed /1 not valid

invalid #include directive
A syntax error has been encountered in a#include directive.

Example:
#i ncl ude /1 no header file
#i ncl ude stdio. h

Both examples areiillegal.
not enough parameters given for macro ’ %s

Y ou have not supplied enough parameters to the specified macro.

Example:
#define mac(a, b) a+b
int i = mac(123); /1l needs 2 paraneters

not expecting a return value

The specified function is declared as avoid function. Delete thereturn value, or change
the type of the function.

Example:
voi d fun()
return 14; // not expecting return val ue
}

cannot take address of a bit-field
The smallest addressable unit is abyte. You cannot take the address of a bit field.

Example:
struct S
{ int bits :6;
int bitfield :10;

¥
S var;
void* p = &ar.bitfield; /1 illegal

expression must be a constant

The compiler expects a constant expression. This message can occur during static
initialization if you are trying to initialize a non-pointer type with an address expression.

Diagnostic Messages 417

Appendices

059

060

061

062

unable to open’ %s

Thefile specified in an #include directive could not be located. Make sure that the file
nameis spelled correctly, or that the appropriate path for the fileisincluded in the list of
paths specified in the INCLUDE or INCLUDE environment variables or in the "i=" option
on the command line.

too many parameters given for macro ' %s

Y ou have supplied too many parameters for the specified macro. The extra parameters are
ignored.

Example:
#defi ne nmac(a, b) a+b
int i = mc(1,2,3); // needs 2 paraneters

cannot use__based or __far16 pointersin this context

Theuseof _ based and _ far16 pointersis prohibited in throw expressions and catch
statements.

Example:
extern int __ based(__segnane("nyseg")) *pi;

voi d bad()
{
try {
throw pi;
} catch(int __farl6 *pl6) {
*pl6é = 87;
}
}

Both the throw expression and catch statements cause this error to be diagnosed.
only one typeis allowed in declaration specifiers

Only onetypeisallowed for the first part of adeclaration. A common cause of this
message is that there may be amissing semi-colon (';") after a class definition.

Example:
class C

{
public:
()

/'l needs "

int foo() { return 7; }

418 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

063

064

065

066

067

068

out of memory

The compiler has run out of memory to store information about the file being compiled.
Try reducing the number of data declarations and or the size of the file being compiled. Do
not #include header files that are not required.

invalid character constant
This message isissued for an improperly formed character constant.

Example:
char ¢ = '12345;
char d = """;

taking address of variable with storage class 'register’

Y ou can take the address of aregister variablein C++ (but not in ISO/ANSI C). If thereis
a chance that the source will be compiled using a C compiler, change the storage class from
register to auto.

Example:

extern int foo(char*);
i nt bar()

3

regi ster char ¢ = '¢’;
return foo(&c);

}

"delete’ expression size is not allowed

The C++ language has evolved to the point where the delete expression sizeis no longer
required for a correct deletion of an array.

Example:
void fn(unsigned n, char *p) {
delete [n] p;
}

ending " missing for string literal
The compiler did not find a second double quote to end the string literal.

Example:
char *a = "no_endi ng_quot €;

invalid option

The specified option is not recognized by the compiler.

Diagnostic Messages 419

Appendices

069 invalid optimization option
The specified option is an unrecognized optimization option.
070 invalid memory model

Memory model option must be one of "ms"*, "mm", "mc", "ml", "mh" or "mf" which selects
the Small, Medium, Compact, Large, Huge or Flat memory model.

071 expression must beintegral
Anintegral expressionisrequired.

Example:
int foo(int a, float b, int *p)
{
switch(a) {
case 1.3: /1l nust be integral
return p[b]; /1 index not integer
case 2:
b <<= 2; /1 can only shift integers
defaul t:
return b;

}
}

072 expression must be arithmetic

Arithmetic operations, such as"/" and "*", require arithmetic operands unless the operation
has been overloaded or unless the operands can be converted to arithmetic operands.

Example:
class C

{
public:
int c;
s
C cv;
int i =cv / 2

073 statement required after label

The C language definition requires a statement following alabel. You can use anull
statement which consists of just a semicolon (*;").

Example:
extern int bar(int);
void foo(int a)

if(a) goto ending;

bar(a);
endi ng:

/'l needs statenent follow ng
}

420 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

074

075

076

077

078

statement required after 'do’
A statement is required between the do and while keywords.
statement required after ' case’

The C language definition requires a statement following a case label. Y ou can use anull
statement which consists of just a semicolon (*;").

Example:
int foo(int a)
{
switch(a) {
defaul t:
return 7;
case 1: // needs statenent follow ng
return 18;
}

statement required after ’ default’

The C language definition requires a statement following a default label. You can usea
null statement which consists of just asemicolon (";").

Example:
int foo(int a)
{
switch(a) {
case 7:
return 7;
defaul t:
/'l needs statenment follow ng

}

return 18;

}
missing matching #endif directive
You are missing a#endif to terminate a #if, #ifdef or #ifndef preprocessing directive.
Example:
#if 1
int a;
/1 needs #endif
invalid macro definition, missing ')’

Theright parenthesis")" isrequired for a function-like macro definition.

Diagnostic Messages 421

Appendices

Example:
#define bad _mac(a, b

079 missing ')’ for expansion of '%s macro
The compiler encountered end-of-file while collecting up the argument for afunction-like
macro. A right parenthesis")" isrequired to mark the end of the argument(s) for a
function-like macro.
Example:
#defi ne mac(a, b) a+b
int d=mc(1, 2
080 %s

Thisis auser message generated with the #error preprocessing directive.

Example:
#error my very own error nessage

081 cannot define an array of functions
Y ou can have an array of pointers to functions, but not an array of functions.

Example:
typedef int TD(fl oat);
TD array[12];

082 function cannot return an array
A function cannot return an array. Y ou can return a pointer to an array.
Example:
typedef int ARR[10];
ARR fun(float);
083 function cannot return a function

Y ou cannot return afunction. Y ou can return a pointer to afunction.

Example:
typedef int TD();
TD fun(float);

084 function templates can only have type arguments
A function template argument can only be agenerictype (e.g., tenpl ate < class T >

). Thisisarestriction in the C++ language that allows compilers to automatically
instantiate functions purely from the argument types of calls.

422 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

085 maximum class size has been exceeded

The 16-bit compiler limits the size of a struct or union to 64K so that the compiler can
represent the offset of amember in a 16-bit register. This error also occursif the size of a
structure overflows the size of an unsigned integer.

Example:
struct S

{
char arrl] Oxfffe

]
char arr2[Oxfffe];
char arr3[Oxfffe];

char arrd4[Oxfffffffe];

1
086 definition of macro’%s' not identical to previous definition
If amacro is defined more than once, the definitions must beidentical. If you want to

redefine a macro to have a different definition, you must #undef it before you can define it
with anew definition.

Example:
#defi ne CON 123
#defi ne CON 124 /1 not same as previous
087 initialization of '%S must bein file scope

A file scope variable must beinitialized in file scope.

Example:
void fn()
externint v = 1;
}
088 default argument for '%S declared outside of class definition

Problems can occur with member functions that do not declare all of their default
arguments during the class definition. For instance, a copy constructor is declared if aclass
does not define a copy constructor. If adefault argument is added later on to a constructor
that makes it a copy constructor, an ambiguity results.

Example:
struct S {
S(Sconst & int);
/[l S(S const &); <-- declared by compiler
1

/1 ambiguity with compiler

/1l generated copy constructor
/1 S(S const &);

S::S(Sconst & int =0)

Diagnostic Messages 423

Appendices

089

090

091

092

093

094

must not be at start or end of replacement tokens
There must be atoken on each side of the "##" (token pasting) operator.

Example:
#define badmac(a, b) ## a ## b

invalid floating-point constant
The exponent part of the floating-point constant is not formed correctly.

Example:
float f = 123. 9E+Q

'sizeof’ is not allowed for a bit-field

The smallest object that you can ask for the size of isachar.

Example:
struct S
{ int a;
int b :10;
LK

int kK =sizeof(v.b);
option requires a path

The specified option is not recognized by the compiler since there was no path after it (i.e.,
"-i=d:\include;d:\path").

must use 'va_start’ macro inside function with variable arguments

Theva_start macroisused to setup access to the parametersin afunction that takes a
variable number of parameters. A function is defined with a variable number of parameters
by declaring the last parameter in the function as™...".

Example:
#i ncl ude <stdarg. h>
int foo(int a, int b)

{
va_list args;
va_start(args, a);
va_end(args);
return b;

}

*** EATAL*** 963

A fatal error has been detected during code generation time. The type of error is displayed
in the message.

424 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

095

096

097

098

099

100

101

102

internal compiler error %d

A bug has been encountered in the compiler. Please report the specified internal compiler
error number and any other helpful details about the program being compiled to the Open
Watcom development team so that we can fix the problem. See
http://www.openwatcom.org/.

argument number %d - invalid register in #pragma

The designated registers cannot hold the value for the parameter.

procedure’%s' hasinvalid return register in #pragma

The size of the return register does not match the size of the result returned by the function.
illegal register modified by '%s #pragma

For the 16-bit Open Watcom C/C++ compiler: The BP, CS, DS, and SS registers cannot
be modified in small datamodels. The BP, CS, and SS registers cannot be modified in
large data models.

For the 32-bit Open Watcom C/C++ compiler: The EBP, CS, DS, ES, and SSregisters
cannot be modified in flat memory models. The EBP, CS, DS, and SS registers cannot be
modified in small datamodels. The EBP, CS, and SS registers cannot be modified in large
data models.

file must contain at least one external definition

Every file must contain at least one global object, (either adata variable or afunction).

Note: This message has been disabled starting with Open Watcom v1.4. The 1SO 1998
C++ standard allows empty translation units.

out of macro space

The compiler ran out of memory for storing macro definitions.
keyboard interrupt detected

The compilation has been aborted with Ctrl/C or Ctrl/Break.
duplicate macro parameter ' %s

The parameters specified in a macro definition must be unique.

Example:
#define badmac(a, b, a) a ## b

Diagnostic Messages 425

Appendices

103

104

105

106

107

108

109

110

unable to open work file: error code = %d

The compiler tries to open a new work file by thename"__wrkN__.tmp" where N isthe
digit 0to 9. This message will beissued if all of those files already exist.

write error on work file: error code = %d

An error was encountered trying to write information to the work file. The disk could be
full.

read error on work file: error code = %d

An error was encountered trying to read information from the work file.

token too long; truncated

The token must be less than 510 bytesin length.

filename required on command line

The name of afile to be compiled must be specified on the command line.

command line contains more than one file to compile

Y ou have more than one file name specified on the command line to be compiled. The
compiler can only compile onefile at atime. You can use the cc utility to compile multiple
fileswith a single command.

virtual member functions are not allowed in a union

A union can only be used to overlay the storage of data. The storage of virtual function
information (in a safe manner) cannot be doneif storage is overlaid.

Example:
struct S1{ int f(int); };
struct S2{ int f(int); };

union un { S1 s1;
S2 s2;
virtual int vf(int);

};

union cannot be used as a base class

Thisrestriction prevents C++ programmers from viewing a union as an encapsulation unit.
If it is necessary, one can encapsulate the union into a class and achieve the same effect.

426 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

111

112

113

114

Example:
union U{ int a; int b; };
class S: public U{ int s; };

union cannot have a base class

Thisrestriction prevents C++ programmers from viewing a union as an encapsulation unit.
If it is necessary, one can encapsulate the union into a class and inherit the base classes
normally.

Example:
class S { public: int s; };
union U: public S{ int a; int b; };

cannot inherit an undefined base class ' %T

The storage requirements for a class type must be known when inheritance isinvolved
because the layout of the final class depends on knowing the complete contents of all base
classes.

Example:
cl ass Undefi ned,;
class C: public Undefined {
int c;
1

repeated direct base classwill cause ambiguities

Almost all accesses will be ambiguous. Thisrestriction is useful in catching programming
errors. The repeated base class can be encapsulated in another class if the repetitionis
required.

Example:
cl ass Dup

int d;

I
class C: public Dup, public Dup
{

}s

int c;
templates may only be declared in hamespace scope

Currently, templates can only be declared in namespace scope. This simple restriction was
chosen in favour of more freedom with possibly subtle restrictions.

Diagnostic Messages 427

Appendices

115

116

117

118

119

120

linkages may only be declared in file scope

A common source of errorsfor C and C++ result from the use of prototypes inside of
functions. Thisrestriction attempts to prevent such errors.

unknown linkage’ %s
Only the linkages "C" and "C++" are supported by Open Watcom C++,

Example:
extern "APL" void Apl Func(int*);

too many storage class specifiers
Thismessage is aresult of duplicating a previous storage class or having a different storage
class. You can only have one of the following storage classes, extern, static, auto, register,

or typedef.

Example:
extern typedef int (*fn)(void);

nameless declaration is not allowed
A type was used in a declaration but no name was given.

Example:
static int;

illegal combination of type specifiers

An incorrect scalar type was found. Either a scalar keyword was repeated or the
combinationisillegal.

Example:
short short x;
short |ong v;

illegal combination of type qualifiers

A repetition of atype qualifier has been detected. Some compilers may ignore repetitions
but strictly speaking it isincorrect code.

Example:
const const x;
struct S {
int virtual virtual fn();
1

428 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

121

122

123

124

125

126

127

syntax error

The C++ compiler was unable to interpret the text starting at the location of the message.
The C++ language is sufficiently complicated that it is difficult for acompiler to correct the
error itself.

parser stack corrupted

The C++ parser has detected an internal problem that usually indicates a compiler problem.
Please report this directly to the Open Watcom development team. See
http://www.openwatcom.org/.

template declarations cannot be nested within each other

Currently, templates can only be declared in namespace scope. Furthermore, atemplate
declaration must be finished before another template can be declared.

expression istoo complicated

The expression contains too many levels of nested parentheses. Divide the expression up
into two or more sub-expressions.

invalid redefinition of the typedef name’ %S

Redefinition of typedef namesis only allowed if you are redefining a typedef nameto
itself. Any other redefinitionisillegal. You should delete the duplicate typedef definition.

Example:

typedef int TD;

typedef float TD; /1 illegal
class’%T’ has already been defined

This message usually results from the definition of two classes in the same scope. Thisis
illegal regardless of whether the class definitions are identical.

Example:
class C {

ciass C{

1
'sizeof’ is not allowed for an undefined type

If atype has not been defined, the compiler cannot know how largeit is.

Diagnostic Messages 429

Appendices

128

129

130

Example:
class C
int x = sizeof(C);

initializer for variable’ %S cannot be bypassed

The variable may not be initialized when code is executing at the position indicated in the

message. The C++ language places these restrictions to prevent the use of uninitialized
variables.

Example:
int foo(int a)
{
switch(a) {
case 1:
int b =2;
return b;
default: // b bypassed
return b + 5;
}
}

division by zero in a constant expression

Division by zero is not allowed in a constant expression. The value of the expression
cannot be used with this error.

Example:
int foo(int a)
{
switch(a) {
case 4/ 0. [/ illegal
return a;

}

return a + 2;

}

arithmetic overflow in a constant expression

The multiplication of two integral values cannot be represented. The value of the
expression cannot be used with this error.

Example:
int foo(int a)
{
switch(a) {
case Ox7FFF * Ox7FFF * Ox7FFF. [/ overfl ow
return a;

}

return a + 2;

430 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

131

132

133

134

135

136

137

138

not enough memory to fully optimize procedure’ %s

Theindicated procedure cannot be fully optimized with the amount of memory available.
The code generated will till be correct and execute properly. This messageis purely
informational (i.e., buy more memory).

not enough memory to maintain full peephole

Certain optimizations benefit from being able to store the entire module in memory during
optimization. All functionswill be individually optimized but the optimizer will not be
able to share code between functions if this message appears. The code generated will still
be correct and execute properly. This message is purely informational (i.e., buy more
memory).

too many errors. compilation aborted

The Open Watcom C++ compiler sets alimit to the number of error messages it will issue.
Once the number of messages reaches the limit the above message isissued. Thislimit can
be changed viathe "/€" command line option.

too many parm sets

An extra parameter passing description has been found in the aux pragmatext. Only one
parameter passing description is allowed.

"friend’, "virtual’ or 'inline’ modifiers may only be used on functions

This message indicates that you are trying to declare a strange entity like an inline variable.
These qualifiers can only be used on function declarations and definitions.

mor e than one calling convention has been specified

A function cannot have more than one #pragma modifier applied to it. Combine the
pragmas into one pragmaand apply it once.

pure member function constant must be 'O’

The constant must be changed to 'O’ in order for the Open Watcom C++ compiler to accept
the pure virtual member function declaration.

Example:
struct S {
virtual int wong(void) = 91;
1

based modifier has been repeated

A repeated based modifier has been detected. There are no semantics for combining base
modifiers so thisis not allowed.

Diagnostic Messages 431

Appendices

Example:
char *ptr;
char __based(void) __ based(ptr) *a;

139 enumeration variable is not assigned a constant from its enumeration

In C++ (as opposed to C), enums represent values of distinct types. Thus, the compiler will
not automatically convert an integer value to an enum type if you are compiling your
source in strict ISO/ANSI C++ mode. If you have extensions enabled, this message is
treated as awarning.

Example:
enum Days { sun, nod, tues, wed, thur, fri, sat };
enum Days day = 2;

140 bit-field declaration cannot have a storage class specifier

Bit-fields (along with most members) cannot have storage class specifiersin their
declaration. Remove the storage class specifier to correct the code.

Example:
class C
L
public:
extern unsigned bitf :10;
1
141 bit-field declaration must have a base type specified
A bit-field cannot make use of a default integer type. Specify the type int to correct the
code.
Example:
class C
.
publi c:
bitf :10;
1
142 illegal qualification of a bit-field declaration
A bit-field can only be declared const or volatile. Qualifications like friend are not
allowed.
Example:
struct S {
friend int bitl :10;
inline int bit2 :10;
virtual int bit3 :10;
1

All three declarations of bit-fields areillegal.

432 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

143

144

145

146

147

duplicate base qualifier
The compiler has found a repetition of base qualifiers like protected or virtual.

Example:
struct Base { int b; };
struct Derived : public public Base { int d; };

only one access specifier is allowed

The compiler has found more than one access specifier for abase class. Since the compiler
cannot choose one over the other, remove the unwanted access specifier to correct the code.

Example:
struct Base { int b; };
struct Derived : public protected Base { int d; };

unexpected type qualifier found

Type specifiers cannot have const or volatile qualifiers. This shows up in new expressions
because one cannot allocate a const object.

unexpected storage class specifier found

Type specifiers cannot have auto or static storage class specifiers. This shows up in new
expressions because one cannot all ocate a static object.

accessto %S is not allowed because it is ambiguous

There are two ways that this error can show up in C++ code. The first way a member can
be ambiguous is that the same name can be used in two different classes. If these classes
are combined with multiple inheritance, accesses of the name will be ambiguous.

Example:
struct S1 { int s; };
struct S2 { int s; };
struct Der : public S1, public S2

void foo() { s =2; }; [/ s is anbiguous
3

The second way a member can be ambiguous involves multiple inheritance. If aclassis
inherited non-virtually by two different classes which then get combined with multiple
inheritance, an access of the member is faced with deciding which copy of the member is
intended. Usethe’::’" operator to clarify what member is being accessed or access the
member with a different class pointer or reference.

Diagnostic Messages 433

Appendices

148

149

150

Example:
struct Top { int t; };
struct Md : public Top { int m };
struct Bot : public Top, public Md

void foo() { t =2; }; [/ t is anbiguous
b

access to private member ' %S is not allowed

Theindicated member is being accessed by an expression that does not have permission to
access private members of the class.

Example:
struct Top { int t; };
class Bot : private Top

int foo() { returnt; }; [// t is private

Bbt b;
int k = b.foo(); [/l foo is private

access to protected member ' %S is not allowed

Theindicated member is being accessed by an expression that does not have permission to
access protected members of the class. The compiler also requires that protected members
be accessed through a derived class to ensure that an unrelated base class cannot be quietly
modified. Thisisafairly recent change to the C++ language that may cause Open Watcom
C++ to not accept older C++ code. See Section 11.5 in the ARM for a discussion of
protected access.

Example:
struct Top { int t; };
struct Md : public Top { int n };
class Bot : protected Md

pr ot ect ed:
/1l t cannot be accessed
int foo() { returnt; };

1
Bot b;
int k =b.foo(); // foo is protected

operation does not allow both operands to be pointers

There may be amissing indirection in the code exhibiting this error. An example of this
error is adding two pointers.

434 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

151

152

153

154

Example:
void fn()
{
char *p, *q;
p += q;

operand is neither a pointer nor an arithmetic type

An example of this error isincrementing a class that does not have any overloaded
operators.

Example:
struct S { } x;
void fn()

{
}

+4X;

left operand is neither a pointer nor an arithmetic type

An example of thiserror istrying to add 1 to a class that does not have any overloaded
operators.

Example:
struct S { } x;
void fn()

X = X + 1;

}

right operand is neither a pointer nor an arithmetic type

An example of thiserror istrying to add 1 to a class that does not have any overloaded
operators.

Example:
struct S { } x;
voi d fn()

{
}

X =1 + X;

cannot subtract a pointer from an arithmetic operand

The subtract operands are probably in the wrong order.

Diagnostic Messages 435

Appendices

Example:
int fn(char *p)

return(10 - p);
}

155 left expression must be arithmetic
Certain operations like multiplication require both operands to be of arithmetic types.

Example:
struct S { } x;
void fn()

X = x * 1;

}

156 right expression must be arithmetic
Certain operations like multiplication require both operands to be of arithmetic types.

Example:
struct S { } x;
void fn()

X =1%* X;

}

157 left expression must be integral

Certain operators like the bit manipulation operators require both operands to be of integral
types.

Example:
struct S{ } x;
voi d fn()

{
}

X = x N 1;

158 right expression must be integral

Certain operators like the bit manipulation operators require both operands to be of integral
types.
Example:

struct S{ } x;

voi d fn()

X = 1" X;

436 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

159

160

161

162

cannot assign a pointer value to an arithmetic item

The pointer value must be cast to the desired type before the assignment takes place.

Example:
void fn(char *p)
-
int a;
a=p;
}

attempt to destroy a far object when data model is near

Destructors cannot be applied to objects which are stored in far memory when the default
memory model for datais near.

Example:
struct Qbj
{ char *p;
~Qoj () ;

Qoj far obj;

The last line causes this error to be displayed when the memory model is small (switch
-ms), since the memory model for datais near.

attempt to call member function for far object when the data model is near

Member functions cannot be called for objects which are stored in far memory when the
default memory model for datais near.

Example:
struct o]
{ char *p;
int foo();
1

Cbj far obj;
int integer = obj.foo();

Thelast line causes this error to be displayed when the memory model is small (switch
-ms), since the memory model for datais near.

template type argument cannot have a default argument
This message was produced by earlier versions of the Open Watcom C++ compiler.

Support for default template arguments was added in version 1.3 and this message was
removed at that time.

Diagnostic Messages 437

Appendices

163

164

165

166

attempt to delete a far object when the data model is near

delete cannot be used to deallocate objects which are stored in far memory when the default
memory model for datais near.

Example:
struct Qbj
{ char *p;
b
void foo(Cbj far *p)
{
del ete p;
}

The second last line causes this error to be displayed when the memory model is small
(switch -ms), since the memory model for datais near.

first operand is not a class, struct or union

The offsetof operation can only be performed on atype that can have members. It is
meaningless for any other type.

Example:
#i ncl ude <stddef. h>

int fn(void)
{

}

return offsetof(double, sign);

syntax error: class template cannot be processed

The class template contains unbalanced braces. The class definition cannot be processed in
thisform.

cannot convert right pointer to type of left operand

The C++ language will not allow the implicit conversion of unrelated class pointers. An
explicit cast is required.

Example:
cl ass Ci;
cl ass C2;

void fun(Cl* pcl, C2* pc2)
{

}

pc2 = pcl;

438 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

167 left operand must be an Ivalue

The left operand must be an expression that is valid on the |eft side of an assignment.
Examples of incorrect lvalues include constants and the results of most operators.

Example:
int i, j;
voi d fn()
{
(i -1)=1i;
1=,
}

168 static data members are not allowed in an union

A union should only be used to organize memory in C++. Enclose the unionin aclassif
you need a static data member associated with the union.

Example:

uni on U

{ o
static int a;
int b;
int c;

b

169 invalid storage class for a member

A class member cannot be declared with auto, register, or extern storage class.

Example:
class C
{
auto int a; /] cannot specify auto
b
170 declaration is too complicated

The declaration contains too many declarators (i.e., pointer, array, and function types).
Break up the declaration into a series of typedefs ending in afinal declaration.

Example:

i *kkhkkkhkhkkhkkkhkkkkkx .
i nt p;

Example:
/1 transformthis to ...
typedef int ****PpPDl;
typedef PD1 ****PD2;
Pm ****p;

Diagnostic Messages 439

Appendices

171

172

173

174

175

176

177

exception declaration istoo complicated

The exception declaration contains too many declarators (i.e., pointer, array, and function
types). Break up the declaration into a series of typedefs ending in afinal declaration.

floating-point constant too large to represent

The Open Watcom C++ compiler cannot represent the floating-point constant because the
magnitude of the positive exponent istoo large.

Example:
float f = 1.2e78965;

floating-point constant too small to represent

The Open Watcom C++ compiler cannot represent the floating-point constant because the
magnitude of the negative exponent istoo large.

Example:
float f = 1.2e-78965;

classtemplate ' %S cannot be overloaded

A class template name must be unique across the entire C++ program. Furthermore, a class
template cannot coexist with another class template of the same name.

range of enum constants cannot be represented
If oneintegral type cannot be chosen to represent all values of an enumeration, the values

cannot be used reliably in the generated code. Shrink the range of enumerator values used
in the enum declaration.

Example:
enum E
{ el = OxFFFFFFFF
, e2 = -1
b

%S cannot be in the same scope as a class template

A class template name must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the class template.

invalid storage classin file scope

A declaration in file scope cannot have a storage class of auto or register.

440 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

178

179

180

181

182

183

Example:
auto int a;

const object must be initialized
Constant objects cannot be modified so they must be initialized before use.

Example:
const int a;

declaration cannot be in the same scope as class template ' %S

A class template name must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the class template.

template arguments must be named

A member function of atemplate class cannot be defined outside the class declaration
unless all template arguments have been named.

classtemplate’ %S is already defined

A class template cannot have its definition repeated regardless of whether it isidentical to
the previous definition.

invalid storage class for an argument
An argument declaration cannot have a storage class of extern, static, or typedef.

Example:
int foo(externint a)

{
}

return a;

unions cannot have members with constructors

A union should only be used to organize memory in C++. Allowing union membersto
have constructors would mean that the same piece of memory could be constructed twice.

Example:
class C
{
)
uni on U
{
int a;
Cc; /1 has constructor
}s

Diagnostic Messages 441

Appendices

184 statement is too complicated

The statement contains too many nested constructs. Break up the statement into multiple
statements.

185 "%s' is not the name of a class or namespace
Theright hand operand of a’::" operator turned out not to reference a class type or
namespace. Because the nameisfollowed by another *::’, it must name a class or
namespace.

186 attempt to modify a constant value

Modification of a constant value is not allowed. If you must force this to work, take the
address and cast away the constant nature of the type.

Example:
static int const con = 12;
voi d foo()
con = 13; !/l error
(int)&con = 13; /1 ok
187 "offsetof’ is not allowed for a bit-field

A bit-field cannot have asimple offset so it cannot be referenced in an offsetof expression.

Example:

#i ncl ude <stddef. h>

struct S

{
unsi gned bl :10;
unsi gned b2 :15;
unsi gned b3 :11;

1

int kK = offsetof(S, b2);
188 base classisinherited with private access
Thiswarning indicates that the base class was originally declared as a class as opposed to a
struct. Furthermore, no access was specified so the base class defaults to private
inheritance. Add the private or public access specifier to prevent this message depending
on the intended access.

189 overloaded function cannot be selected for arguments used in call

Either conversions were not possible for an argument to the function or a function with the
right number of arguments was not available.

442 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

190

191

192

193

Example:
class Ci;
class C2;
int foo(Cl1*);
int foo(C2*);
int k = foo(5);

base operator operands must be" _ segment ;> pointer "

The base operator (:>) requires the |eft operand to be of type segment and the right
operand to be a pointer.

Example:
char _based(void) *pcb;
char __far *pcf = pcb; /1 needs :> operator

Examples of typical uses are asfollows:

Example:
const __segment mySegAbs = 0x4000;
char __based(void) *c_bv = 24;
nySegAbs : > c_bv;

char __far *c_fp_1
char __far *c_fp_2 __seghane("_DATA") :> c_bv;

expression must be a pointer or a zero constant

In aconditional expression, if one side of the’:’” isa pointer then the other side must also be
apointer or azero constant.

Example:
extern int a;
int *p=(a>7) ? & : 12;

left expression pointer type cannot be incremented or decremented
The expression requires that the scaling size of the pointer be known. Pointers to functions,
arrays of unknown size, or void cannot be incremented because there is no size defined for
functions, arrays of unknown size, or void.
Example:
void *p;
void *q = p + 2;
right expression pointer type cannot be incremented or decremented
The expression requires that the scaling size of the pointer be known. Pointersto functions,

arrays of unknown size, or void cannot be incremented because there is no size defined for
functions, arrays of unknown size, or void.

Diagnostic Messages 443

Appendices

194

195

196

197

Example:
void *p;
void *q = 2 + p;
expression pointer type cannot be incremented or decremented
The expression requires that the scaling size of the pointer be known. Pointers to functions,
arrays of unknown size, or void cannot be incremented because there is no size defined for
functions, arrays of unknown size, or void.
Example:
void *p;
void *q = ++p;
'sizeof’ isnot allowed for a function
A function has no size defined for it by the C++ language specification.

Example:
typedef int FT(int);

unsi gned y = sizeof (FT);
'sizeof’ is not allowed for type void
The type void has no size defined for it by the C++ language specification.
Example:

void *p;

unsi gned size = sizeof(*p);

type cannot be defined in this context

A type cannot be defined in certain contexts. For example, a new type cannot be defined in
an argument list, a new expression, a conversion function identifier, or a catch handler.

Example:

extern int goop();

int foo()

{
try {
return goop();
} catch(struct S{ int s; }) {
return 2;
}

}

444 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

198

199

200

201

202

expression cannot be used as a class template parameter

The compiler has to be able to compare expressions during compilation so this limits the
complexity of expressions that can be used for template parameters. The only types of
expressions that can be used for template parameters are constant integral expressions and
addresses. Any symbols must have external linkage or must be static class members.

prematur e end-of-file encountered during compilation

The compiler expects more source code at this point. This can be due to missing
parentheses (")) or missing closing braces ('}").

duplicate case value'%s' after conversion to type of switch expression

A duplicate case value has been found. Keep in mind that all case values must be
converted to the type of the switch expression. Constants that may be different initially
may convert to the same value.

Example:
enumE { el, e2 };
void foo(short a)

switch(a) {

case 1:

case 0x10001: /] converts to 1 as short
br eak;

}
}

declaration statement follows an if statement

There areimplicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the codeislegal it may not
be what the programmer intended.

Example:
void foo(int a)
{
if(a)
int b =14
}

declaration statement follows an el se statement
There areimplicit scopes created for most control structures. Because of this, ho code can

access any of the names declared in the declaration. Although the codeislegal it may not
be what the programmer intended.

Diagnostic Messages 445

Appendices

203

204

205

206

Example:
void foo(int a)
{
if(a)
int ¢ = 15;
el se
int b = 14;
}

declaration statement follows a switch statement

There areimplicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the codeislegal it may not
be what the programmer intended.

Example:
void foo(int a)
{
switch(a)
int b = 14;
}

"this’ pointer is not defined

The this value can only be used from within non-static member functions.

Example:
void *fn()
return this;
}

declaration statement cannot follow a while statement

There areimplicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the codeislegal it may not
be what the programmer intended.

Example:
void foo(int a)

while(a)
int b = 14;
}

declaration statement cannot follow a do statement

There areimplicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the codeislegal it may not
be what the programmer intended.

446 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

207

208

209

Example:
void foo(int a)
{
do
int b = 14;
while(a);
}

declaration statement cannot follow a for statement

There areimplicit scopes created for most control structures. Because of this, no code can
access any of the names declared in the declaration. Although the codeislegal it may not
be what the programmer intended. A for loop with an initial declaration is allowed to be
used within another for loop, so this codeislegal C++:

Example:
void fn(int **a)

for(int i 0; I < 10; ++i)
for(i_nt J 0;] < 10; ++)
a[i]J[j] =1 +j;

The following example, however, illustrates a potentially erroneous situation.

Example:
void foo(int a)
{
for(; a<10;)
int b = 14;
}

pointer to virtual base class converted to pointer to derived class

Since the relative position of avirtual base can change through repeated derivations, this
conversion isvery dangerous. All C++ tranglators must report an error for this type of
conversion.

Example:
struct VBase { int v; };
struct Der : virtual public VBase { int d; };
extern VBase *pv;
Der *pd = (Der *)pv;

cannot use far pointer in this context

Only near pointers can be thrown when the data memory model is near.

Diagnostic Messages 447

Appendices

Example:
extern int __ far *p;
void foo()

t hrow p;

}

When the small memory model (-ms switch) is selected, the throw expression is diagnosed
as erroneous. Similarly, only near pointers can be specified in catch statements when the
data memory model is near.

210 returning reference to function argument or to auto or register variable

The storage for the automatic variable will be destroyed immediately upon function return.
Returning areference effectively allows the caller to modify storage which does not exist.

Example:
class C

{

char *p;

C& foo()
{

C auto_var;
return auto_var; /1 not all owed

}

211 #pragma attributes for '%S may be inconsistent

A pragma attribute was changed to a value which matches neither the current default not
the previous value for that attribute. A warning isissued since this usually indicates an
attribute is being set twice (or more) in an inconsistent way. The warning can also occur
when the default attribute is changed between two pragmas for the same object.

212 function arguments cannot be of type void

Having more than one void argument is not allowed. The special case of one void
argument indicates that the function accepts no parameters.

Example:
void fnl(void) [l K

{

void fn2(void, void, void) /1 Error!
{
}

448 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

213

214

215

216

217

class template requires more parameters for instantiation

The class template instantiation has too few parameters supplied so the class cannot be
instantiated properly.

class template requires fewer parameters for instantiation

The class template instantiation has too many parameters supplied so the class cannot be
instantiated properly.

no declared ' operator new’ has arguments that match

An operator new could not be found to match the new expression. Supply the correct
arguments for special operator new functions that are defined with the placement syntax.

Example:
#i ncl ude <stddef. h>

struct S {
void *operator new size_t, char);
b
void fn()
{

S*p=new('a) S
}

wide character string concatenated with a simple character string

There are no semantics defined for combining a wide character string with asimple
character string. To correct the problem, make the simple character string a wide character
string by prefixing it with aL.

Example:
char *p = "1234" L"5678";

"offsetof’ isnot allowed for a static member

A static member does not have an offset like simple data members. If thisisrequired, use
the address of the static member.

Example:
#i ncl ude <stddef. h>
class C
{
public:
static int stat;
int menb;
b
int size_1 = offsetof(C, stat); /1 not allowed
int size 2 = offsetof (C, nenb); /1 ok

Diagnostic Messages 449

Appendices

218 cannot define an array of void

Since the void type has no size and there are no values of void type, one cannot declare an
array of void.

Example:
voi d array[24];

219 cannot define an array of references

References are not objects, they are smply away of creating an efficient alias to another
name. Creating an array of referencesis currently not allowed in the C++ language.

Example:
i nt& array[24];

220 cannot define a reference to void

One cannot create a reference to a void because there can be no void variables to supply for
initializing the reference.

Example:
voi d& ref;

221 cannot define a reference to another reference
References are not objects, they are smply away of creating an efficient alias to another
name. Creating areference to another referenceis currently not allowed in the C++

language.

Example:
int & & ref;

222 cannot define a pointer to a reference

References are not objects, they are smply away of creating an efficient alias to another
name. Creating a pointer to areferenceis currently not allowed in the C++ language.

Example:
char & *ptr;

223 cannot initialize array with ’ operator new’
The initialization of arrays created with operator new can only be done with default

constructors. The capability of using another constructor with argumentsis currently not
allowed in the C++ language.

450 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

224

225

226

227

Example:
struct S

S(int);
S *p = new S[10] (12):
"%N'’ is a variable of type void

A variable cannot be of type void. The void type can only be used in restricted
circumstances because it has no size. For instance, a function returning void means that it
does not return any value. A pointer to void is used as a generic pointer but it cannot be
dereferenced.

cannot define a member pointer to a reference

References are not objects, they are smply away of creating an efficient alias to another
name. Creating a member pointer to areferenceis currently not allowed in the C++
language.

Example:
struct S

S();
int &ref;

b
int& S::* p;
function '%S is not distinct

The function being declared is not distinct enough from the other functions of the same
name. This meansthat all function overloads involving the function’s argument types will
be ambiguous.

Example:
struct S {
int s;
1

extern int foo(S*);
extern int foo(S* const); // not distinct enough

overloaded function is ambiguous for arguments used in call
The compiler could not find an unambiguous choice for the function being called.

Example:
extern int foo(char);
extern int foo(short);
int kK =foo(4);

Diagnostic Messages 451

Appendices

228

229

230

231

232

declared ’ operator new’ is ambiguous for arguments used

The compiler could not find an unambiguous choice for operator new.

Example:
#i ncl ude <stdlib. h>
struct Der
int s[2];
voi d* operator new size t, char);
voi d* operator new size t, short);
1

Der *p = new(10) Der;
function ' %S has already been defined

The function being defined has already been defined elsewhere. Even if the two function
bodies are identical, there must be only one definition for a particular function.

Example:
int foo(int s) { returns; }
int foo(int s) { returns; } [/ illegal

expression on left isan array
The array expression is being used in a context where only pointers are allowed.

Example:
void fn(void *p)

int a[10];

o
4 non
°

user-defined conversion has a return type

A user-defined conversion cannot be declared with areturn type. The "return type" of the
user-defined conversion isimplicit in the name of the user-defined conversion.

Example:
struct S {
int operator int(); // cannot have return type
1

user-defined conversion must be a function

The operator name describing a user-defined conversion can only be used to designate
functions.

452 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

233

234

235

236

237

Example:
/1 operator char can only be a function
int operator char = 9;

user-defined conversion has an argument list

A user-defined conversion cannot have an argument list. Since user-defined conversions
can only be non-static member functions, they have an implicit this argument.

Example:
struct S {
operator int(S&); // cannot have arguments
1

destructor cannot have a return type

A destructor cannot have areturn type (even void). The destructor is a special member
function that is not required to be identical in form to all other member functions. This
allows different implementations to have different uses for any return values.

Example:
struct S {
voi d* ~S();
1

destructor must be a function

Thetilde ("~') style of name is reserved for declaring destructor functions. Variable names
cannot make use of the destructor style of names.

Example:
struct S {
int ~S; // illegal
b

destructor has an argument list

A destructor cannot have an argument list. Since destructors can only be non-static
member functions, they have an implicit this argument.

Example:
struct S {
~S(S&);
1

%N’ must be a function

The operator style of nameis reserved for declaring operator functions. Variable names
cannot make use of the operator style of names.

Diagnostic Messages 453

Appendices

238

239

240

Example:
struct S {
int operator+; [/ illegal
1

%N’ is not a function

The compiler has detected what looks like afunction body. The message is aresult of not
finding afunction being declared. This can happen in many ways, such as dropping the’:’
before defining base classes, or dropping the’=’ before initializing a structure via a braced
initializer.

Example:
struct DB{ int i; };

nested type class’ %s' has not been declared

A nested class has not been found but is required by the use of repeated '::" operators. The
construct "A::B::C" requiresthat ' A’ be aclasstype, and 'B’ be a nested class within the
scopeof 'A’.

Example:
struct B {
static int b;
}s
struct A : public B {
s
int A:B::b = 2; // B not nested in A

The preceding exampleisillegal; the following is legal

Example:
struct A {
struct B {
static int b;
b
}s
int A:B::b = 2; // B nested in A

enum’%s' has not been declared

An elaborated reference to an enum could not be satisfied. All enclosing scopes have been
searched for an enum name. Visible variable declarations do not affect the search.

Example:
struct D {
int i;
enum E { el, e2, e3 };
1
enum E enum var; /1 E not visible

454 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

241

242

243

244

245

class or namespace’%s' has not been declared

The construct "A::B::C" requiresthat ' A’ be a class type or anamespace, and'B’ bea
nested class or namespace within the scope of 'A’. Thereferenceto’A’ could not be
satisfied. All enclosing scopes have been searched for a class or namespace name. Visible
variable declarations do not affect the search.

Example:
struct A{ int a; };

int b;
int ¢c = B::A:Db;

only one initializer argument allowed

Thecomma (’,’) in afunction like cast is treated like an argument list comma (’,’). If a
comma expression is desired, use parentheses to enclose the comma expression.

Example:
void fn()
o
int a;
a=int(1, 2); /1 Error!
a=int((1, 2)); Il K
}

default arguments are not part of a function’stype
This message indicates that a declaration has been found that requires default argumentsto
be part of afunction’stype. Either declaring afunction typedef or a pointer to afunction
with default arguments are exampl es of incorrect declarations.
Example:

typedef int TD(int, int a = 14);

int (*p)(int, int a=14) = 0;
missing default arguments

Gaps in asuccession of default arguments are not allowed in the C++ language.

Example:
void fn(int =1, int, int = 3);

overloaded operator cannot have default arguments
Preventing overloaded operators from having default arguments enforces the property that

binary operators will only be called from a use of abinary operator. Allowing default
arguments would allow abinary operator + to function as a unary operator +.

Diagnostic Messages 455

Appendices

246

247

248

249

Example:
class C

L
public:

C operator +(int a = 10);
1

left expression is not a pointer to a constant object

One cannot assign a pointer to a constant type to a pointer to a non-constant type. This
would allow a constant object to be modified via the non-constant pointer. Use acast if
thisis absolutely necessary.

Example:
char* fun(const char* p)

{
char* q;
q=0p;
return q;

}

cannot redefine default argument for ' %S

Default arguments can only be defined once in a program regardless of whether the value
of the default argument isidentical.

Example:
static int foo(int a = 10);
static int foo(int a = 10)
{
return a+a;
}

using default arguments would be overload ambiguous with ’ %S

The declaration declares enough default arguments that the function is indistinguishable
from another function of the same name.

Example:
void fn(int);
void fn(int, int =1);

Calling the function 'fn’ with one argument is ambiguous because it could match either the
first 'fn’ without any default arguments or the second 'fn’ with a default argument applied.

using default arguments would be overload ambiguous with ' %S using default arguments

The declaration declares enough default arguments that the function is indistinguishable
from another function of the same name with default arguments.

456 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

250

251

252

253

Example:
void fn(int, int =1);
void fn(int, char = 'a);

Calling the function ’fn’ with one argument is ambiguous because it could match either the
first'fn’ with adefault argument or the second 'fn’ with a default argument applied.

missing default argument for * %S
In C++, oneisalowed to add default arguments to the right hand arguments of a function

declaration in successive declarations. The message indicates that the declaration is only
valid if there was a default argument previously declared for the next argument.

Example:
void fnl(int , int);
void fnl(int , int =3);
void fnl(int = 2, int); /1 K
void fn2(int , int);
void fn2(int = 2, int) /1 Error!

enum references must have an identifier

There is no way to reference an anonymous enum. If all enums are named, the cause of
this message is most likely a missing identifier.

Example:
enum { X Y, Z}; /! anonynbus enum
void fn()
{

enum *p;

}

class declaration has not been seen for *~%s'
A destructor has been used in a context where its classis not visible.

Example:
class C,

void fun(C p)

p->~3();

"::" qualifier cannot be used in this context
Qualified identifiersin a class context are allowed for declaring friend member functions.

The Open Watcom C++ compiler also allows code that is qualified with its own class so
that declarations can be moved in and out of class definitions easily.

Diagnostic Messages 457

Appendices

254

255

256

Example:

struct N {
void bar();

i

struct S {
void S::foo() { /] XK
void N.:bar() { // error
}

b

"%S has not been declared as a member

In a definition of a class member, the indicated declaration must already have been declared
when the class was defined.

Example:
class C
{
public:
int c;
int goop();
int C:x = 1;

C. :not_decled() { }
default argument expression cannot use function argument ’ %S

Default arguments must be evaluated at each call. Since the order of evaluation for
arguments is undefined, a compiler must diagnose all default arguments that depend on
other arguments.

Example:
void goop(int d)
{

struct S {
/!l cannot access "d"
int foo(int ¢, int b =4d)

return b + c;
b
}s
}

default argument expression cannot use local variable’ %S

Default arguments must be evaluated at each call. Since alocal variableis not always
availablein all contexts (e.g., file scope initializers), a compiler must diagnose all default
arguments that depend on local variables.

458 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

257

258

259

Example:
voi d goop(void)
{
int a;
struct S {

/!l cannot access "a"
int foo(int ¢, int b =a)
{
return b + c;
b
}

access declarations may only be’public’ or ’protected’

Access declarations are used to increase access. A private access declaration is useless
because there is no access level for which private is an increase in access.

Example:
cl ass Base
L |
int pri;
pr ot ect ed:
int pro;
publi c:
i nt pub;
b
class Derived : public Base
{
private: Base::pri;
b

cannot declare both a function and variable of the same name (" %N’)

Functions can be overloaded in C++ but they cannot be overloaded in the presence of a
variable of the same name. Likewise, one cannot declare avariable in the same scope as a
set of overloaded functions of the same name.

Example:
int foo();
int foo;
struct S {
int bad();
int bad;
1

classin access declaration ('%T’) must be a direct base class

Access declarations can only be applied to direct (immediate) base classes.

Diagnostic Messages 459

Appendices

260

261

Example:
struct B {
int f;
b

struct C: B {
int g;
i

struct D: private C {
B::f;
b
In the above example, "C" isadirect base class of "D" and "B" is adirect base class of "C",
but "B" is not a direct base class of "D".

overloaded functions (" %N’) do not have the same access

If an access declaration is referencing a set of overloaded functions, then they all must have
the same access. Thisisdueto the lack of atype in an access declaration.

Example:
class C
{
static int foo(int); [l private
public:
static int foo(float); /1 public
1

class B: private C

{
public: C :foo;
b

cannot grant accessto ' %N’

A derived class cannot change the access of a base class member with an access
declaration. The access declaration can only be used to restore access changed by
inheritance.

Example:
cl ass Base
{
public:
i nt pub;
pr ot ect ed:
int pro;

class Der : private Base

{
public: Base:: pub; /1 ok
public: Base::pro; /1 changes access

b

460 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

262

263

264

cannot reduce accessto ' %N’

A derived class cannot change the access of a base class member with an access
declaration. The access declaration can only be used to restore access changed by
inheritance.

Example:
cl ass Base

{
public:
i nt pub;
pr ot ect ed:
int pro;
b

class Der : public Base

{

protected: Base:: pub; /1l changes access
protected: Base::pro; /1 ok

b
nested class’ %N’ has not been defined

The current state of the C++ language supports nested types. Unfortunately, this means
that some working C code will not work unchanged.

Example:
struct S {
struct T;
T *link;
1

In the above example, the class"T" will be reported as not being defined by the end of the
classdeclaration. The code can be corrected in the following manner.

Example:
struct S {
struct T;
T *1ink;
struct T {
b
1

user-defined conversion must be a non-static member function
A user-defined conversion is a special member function that allows the class to be

converted implicitly (or explicitly) to an arbitrary type. In order to do this, it must have
access to an instance of the class so it is restricted to being a non-static member function.

Diagnostic Messages 461

Appendices

265

266

267

268

Example:
struct S

{
b

static operator int();

destructor must be a non-static member function

A destructor is a special member function that will perform cleanup on a class before the
storage for the class will bereleased. In order to do this, it must have access to an instance
of the class so it is restricted to being a non-static member function.

Example:
struct S

{
}s

static ~S();

%N’ must be a non-static member function

The operator function in the message is restricted to being a non-static member function.
This usually means that the operator function is treated in a special manner by the compiler.

Example:
class C

L
publi c:

static operator =(C& int);
1

"%N’ must have one argument

The operator function in the message is only allowed to have one argument. An operator
like operator ~ is one such example because it represents a unary operator.

Example:
class C

public: int c;

1

C& operator~(const C& int);
"%N’ must have two arguments

The operator function in the message must have two arguments. An operator like operator
+= is one such example because it represents a binary operator.

462 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

269

270

271

Example:
class C

public: int c;
1
C& operator += (const C&);

"%N’ must have either one argument or two arguments

The operator function in the message must have either one argument or two arguments. An
operator like operator + is one such example because it represents either aunary or a
binary operator.

Example:
class C

public: int c;
1

C& operator+(const C& int, float);
%N’ must have at least one argument
The operator new and operator new [] member functions must have at |east one argument
for the size of the allocation. After that, any arguments are up to the programmer. The

extra arguments can be supplied in a new expression via the placement syntax.

Example:
#i ncl ude <stddef. h>

struct S {
void * operator new(size_t, char);
b
void fn()
{
S*p=new('a) S
}

"%N’ must have a return type of void

The C++ language requires that operator delete and operator delete [] have areturn type of
void.

Example:
class C
publi c:
int c;
C* operator delete(void*);
C* operator delete [](void*);
1

Diagnostic Messages 463

Appendices

272

273

274

275

"%N’ must have a return type of pointer to void

The C++ language requires that both operator new and operator new [] have areturn type
ofvoid *.

Example:
#i ncl ude <stddef. h>
class C
{
publi c:
int c;
C* operator new(size t size);
C* operator new [](size_t size);
1

the first argument of '%N’ must be of type size t

The C++ language requires that the first argument for operator new and operator new [] be
of thetype "size t". Thedefinition for "size t" can be included by using the standard
header file <stddef.h>.

Example:
void *operator new int size);
voi d *operator new double size, char c);
void *operator new []J(int size);
void *operator new [](double size, char c);

the first argument of *%N’ must be of type pointer to void

The C++ language requires that the first argument for operator delete and operator delete
[[beavoid *.

Example:
class C
voi d operator delete(C);
voi d operator delete [](C);

the second argument of '%N' must be of type size t

The C++ language requires that the second argument for operator delete and operator
delete [] be of type "size t". The two argument form of operator delete and operator delete
[] isoptional and it can only be present inside of a class declaration. The definition for
"size t" can beincluded by using the standard header file <stddef.h>.

Example:
struct S {
voi d operator delete(void *, char);
voi d operator delete [](void *, char);
b

464 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

276 the second argument of ’operator ++’ or 'operator --" must be int

The C++ language requires that the second argument for operator ++ beint. The two
argument form of operator ++ is used to overload the postfix operator "++". The postfix
operator "--" can be overloaded similarly.

Example:
class C{
public:
 ong cv;
1

C& operator ++(C& unsigned);
277 return type of ' %S must allow the’->" operator to be applied
Thisrestriction is aresult of the transformation that the compiler performs when the

operator -> isoverloaded. The transformation involves transforming the expression to
invoke the operator with "->" applied to the result of operator ->.

Example:

struct S {
int a;
S *operator ->();

b

void fn(S &q)

{
g->a = 1, // becones (q.operator ->())->a = 1,

}

278 "%N’" must take at least one argument of a class’enum or a reference to a class’enum

Overloaded operators can only be defined for classes and enumerations. At least one
argument, must be a class or an enum type in order for the C++ compiler to distinguish the
operator from the built-in operators.

Example:
class C{
public:
| ong cv;
1

C& operator ++(unsigned, int);
279 too many initializers
The compiler has detected extrainitializers.

Example:
int a[3] ={ 1, 2, 3, 41};

Diagnostic Messages 465

Appendices

280

281

282

283

284

285

too many initializers for character string

A string literal used in an initialization of a character array is viewed as providing the
terminating null character. If the number of array elementsisn’t enough to accept the
terminating character, this message is output.

Example:
char ac[3] = "abc";

expecting '%s' but found expression

This message is output when some bracing or punctuation is expected but an expression
was encountered.

Example:
int b[3] = 3;

anonymous struct/union member %N’ cannot be declared in this class
An anonymous member cannot be declared with the same name as its containing class.

Example:
struct S {
uni on {
int S /1 Error!
char b;

b
s

unexpected '%s’ during initialization

This message is output when some unexpected bracing or punctuation is encountered
during initialization.

Example:
int e={{1};

nested type ' %N’ cannot be declared in this class
A nested type cannot be declared with the same name as its containing class.

Example:
struct S {
typedef int S; // Error!

enumerator ‘%N’ cannot be declared in this class

An enumerator cannot be declared with the same name as its containing class.

466 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

286

287

288

289

Example:
struct S {
enum E {
S, [/l Error!
T
b
b

static member '%N’ cannot be declared in this class
A static member cannot be declared with the same name as its containing class.

Example:
struct S {
static int S; /1l Error!
b

constructor cannot have a return type

A constructor cannot have areturn type (even void). The constructor is a special member
function that is not required to be identical in form to all other member functions. This
allows different implementations to have different uses for any return values.

Example:
class C{
publi c:
C& C(int);
1

constructor cannot be a static member

A constructor is a special member function that takes raw storage and changesit into an
instance of aclass. In order to do this, it must have access to storage for the instance of the
class so it isrestricted to being a non-static member function.

Example:
class C{
public:
static C(int);
1

invalid copy constructor argument list (causes infinite recursion)
A copy constructor’s first argument must be areference argument. Furthermore, any
default arguments must also be reference arguments. Without the reference, a copy

constructor would require a copy constructor to execute in order to prepare its arguments.
Unfortunately, thiswould be calling itself sinceit is the copy constructor.

Diagnostic Messages 467

Appendices

290

291

292

293

Example:
struct S {
S(S const &); /1l copy constructor
1

constructor cannot be declared const or volatile

A constructor must be able to operate on all instances of classes regardless of whether they
are const or volatile.

Example:
class C{
publi c:
C(int) const;
C(float) volatile;
1

constructor cannot be virtual

Virtual functions cannot be called for an object before it is constructed. For thisreason, a
virtual constructor is not allowed in the C++ language. Techniques for simulating a virtual
constructor are known, one such technique is described in the ARM p.263.

Example:
class C{
public:
virtual C(int);
1

types do not match in simple type destructor

A simple type destructor is available for "destructing" simple types. The destructor has no
effect. Both of the types must be identical, for the destructor to have meaning.

Example:
void foo(int *p)
{
p->int::~doubl e();
}

overloaded operator is ambiguous for operands used

The Open Watcom C++ compiler performs exhaustive analysis using formalized
techniquesin order to decide what implicit conversions should be applied for overloading
operators. Because of this, Open Watcom C++ detects ambiguities that may escape other
C++ compilers. The most common ambiguity that Open Watcom C++ detects involves
classes having constructors with single arguments and a user-defined conversion.

468 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

294

295

296

297

Example:
struct S {
S(int);
operator int();
int a;
1
int fn(int b, int i, Ss)
{
/1 [: s.operator int()
/1 OR S(i) S
return b ? i : s;
}

In the above example, "i" and "s" must be brought to a common type. Unfortunately, there
are two common types so the compiler cannot decide which one it should choose, hence an
ambiguity.

feature not implemented

The compiler does not support the indicated feature.

invalid friend declaration

This message indicates that the compiler found extra declaration specifiers like auto, float,
or const in the friend declaration.

Example:
class C

friend float;

1
friend declarations may only be declared in a class

This message indicates that afriend declaration was found outside a class scope (i.e., a
class definition). Friends are only meaningful for class types.

Example:
extern void foo();
friend void foo();

class friend declaration needs’class’ or 'struct’ keyword
The C++ language has evolved to require that all friend class declarations be of the form

"class S' or "struct S'. The Open Watcom C++ compiler accepts the older syntax with a
warning but rejects the syntax in pure ISO/ANSI C++ mode.

Diagnostic Messages 469

Appendices

298

299

300

301

Example:
struct S;
struct T {
friend S /!l should be "friend class S;"
b

class friend declarations cannot contain a class definition

A class friend declaration cannot define anew class. Thisisarestriction required in the
C++ language.

Example:
struct S {
friend struct X {
int f;
b
1

"%T" has already been declared as a friend

The class in the message has already been declared asafriend. Remove the extrafriend
declaration.

Example:
class S;
class T {
friend class S
int tv;
friend class S

1
function’ %S has already been declared as a friend

The function in the message has aready been declared as afriend. Remove the extrafriend
declaration.

Example:
extern void foo();
class T {
friend void foo();
int tv;
friend void foo();

b
"friend’, "virtual’ or 'inline’ modifiers are not part of a function’s type
This message indicates that the modifiers may be incorrectly placed in the declaration. If

the declaration is intended, it cannot be accepted because the modifiers can only be applied
to functions that have code associated with them.

470 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

302

303

304

305

Example:
typedef friend (*PF)(void);

cannot assign right expression to element on left

This message indicates that the assignment cannot be performed. It usually arisesin
assignments of a class type to an arithmetic type.

Example:
struct S
{ int sv;
b
S s;
int foo()
int k;
k = s;
return k;

}

constructor is ambiguous for operands used
The operands provided for the constructor did not select a unique constructor.
Example:
struct S {
S(int);
S(char);
1
S x = §(1.0);

class’%s' has not been defined

The name beforea’::’ scope resolution operator must be defined unless a member pointer
is being declared.

Example:
struct S

int S:* p; /] K
int S::a = 1; /1l Error!

all bit-fields in a union must be named

Thisisarestriction in the C++ language. The same effect can be achieved with a named
bitfield.

Diagnostic Messages 471

Appendices

306

307

308

309

Example:
uni on u
{ unsi gned bitl :10;
unsi gned : 6;
1

cannot convert expression to type of cast

The cast istrying to convert an expression to a completely unrelated type. There isno way
the compiler can provide any meaning for the intended cast.

Example:
struct T {

b
void fn()

Ty =(T) 0

conversion ambiguity: [expression] to [cast type]

The cast caused a constructor overload to occur. The operands provided for the constructor
did not select a unique constructor.

Example:
struct S {
S(int);
S(char);
1

void fn()
{

Sx =(S 1.0;

an anonymous class without a declarator is useless

There is no way to reference the type in this kind of declaration. A name must be provided
for either the class or avariable using the class asits type.

Example:
struct ({
int a;
int b;
1

global anonymous union must be declared static

Thisisarestriction in the C++ language. Since there is no unique name for the anonymous
union, it isdifficult for C++ trandlators to provide a correct implementation of external
linkage anonymous unions.

472 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

310

311

312

313

Example:
static union {
int a;
int b;
1

anonymous struct/union cannot have storage class in this context

Anonymous unions (or structs) declared in class scopes cannot be static. Any other storage
classis also disallowed.

Example:
struct S {
static union {
int iv;
unsi gned us;
b
1

union contains a protected member
A union cannot have a protected member because a union cannot be a base class.

Example:
static union {
int iv;
pr ot ect ed:
unsi gned sv;

}ou;
anonymous struct/union contains a private member ' %S

An anonymous union (or struct) cannot have member functions or friends so it cannot have
private members since no code could access them.

Example:
static union {
int iv;
private:
unsi gned sv;
b

anonymous struct/union contains a function member * %S

An anonymous union (or struct) cannot have any function members. Thisisarestriction in
the C++ language.

Example:
static union {
int iv;
void foo(); [l error
unsi gned sv;

b

Diagnostic Messages 473

Appendices

314

315

316

317

anonymous struct/union contains a typedef member ' %S

An anonymous union (or struct) cannot have any nested types. Thisisarestriction in the
C++ language.

Example:
static union {
int iv;
unsi gned sv;
typedef float F;
F fv;
1

anonymous struct/union contains an enumeration member * %S

An anonymous union (or struct) cannot have any enumeration members. Thisisa
restriction in the C++ language.

Example:
static union {
int iv;
enum choi ce { good, bad, indifferent };
choi ce c;
unsi gned sv;

b
anonymous struct/union member *%s’ is not distinct in enclosing scope

Since an anonymous union (or struct) provides its member names to the enclosing scope,
the names must not collide with other names in the enclosing scope.

Example:
int iv;
unsi gned sv;
static union {
int iv;
unsi gned sv;

s
unions cannot have members with destructors

A union should only be used to organize memory in C++. Allowing union membersto
have destructors would mean that the same piece of memory could be destructed twice.

Example:
struct S {
int svl, sv2, sv3;
1

struct T {
. ~T();

static union
{

S su;

T tu;
}s

474 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

318

319

320

unions cannot have members with user-defined assignment operators

A union should only be used to organize memory in C++. Allowing union membersto
have assignment operators would mean that the same piece of memory could be assigned
twice.

Example:
struct S {
int svl, sv2, sv3;
1

struct T {
int tv;
oper at or
oper at or

}s
static union

{
S su;
T tu;

by
anonymous struct/union cannot have any friends

An anonymous union (or struct) cannot have any friends. Thisisarestrictionin the C++
language.

Example:
struct S {
int svl, sv2, sv3;
s

static union {
S sul;

S suz2;
friend class S

b

specific versions of template classes can only be defined in file scope

Currently, specific versions of class templates can only be declared at file scope. This
simple restriction was chosen in favour of more freedom with possibly subtle restrictions.

Example:

Diagnostic Messages 475

Appendices

tenplate <class G class S {

G x;

1

struct Q {
struct S<int> {
int Xx;
};

1

void foo()
struct S<doubl e> {
doubl e x;
s

}

321 anonymous union in a function may only be static or auto

The current C++ language definition only allows auto anonymous unions. The Open
Watcom C++ compiler allows static anonymous unions. Any other storage classis not
allowed.

322 static data members are not allowed in a local class

Static data members are not allowed in alocal class because there is no way to define the
static member in file scope.

Example:

int foo()
struct local {
static int s;
}
[ocal 1v;
lv.s = 3;
return |v.s;

}

323 conversion ambiguity: [return value] to [return type of function]

The cast caused a constructor overload to occur. The operands provided for the constructor
did not select a unique constructor.

Example:
struct S {
S(int);
S(char);
1

S fn()
{

}

return 1.0;

476 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

324

325

326

327

328

329

conversion of return value is impossible

Thereturnistrying to convert an expression to a completely unrelated type. Thereisno
way the compiler can provide any meaning for the intended return type.

Example:
struct T {

b
T fn()

return O;

}

function cannot return a pointer based on __self
A function cannot return a pointer that is based on __self.

Example:
void __based(__self) *fn(unsigned);

defining ' %S is not possible because its type has unknown size

In order to define avariable, the size must be known so that the correct amount of storage
can be reserved.

Example:
class S;
S sv;

typedef cannot be initialized
Initializing a typedef is meaningless in the C++ language.

Example:
typedef int INT = 15;

storage class of '%S conflicts with previous declaration

The symbol declaration conflicts with a previous declaration with regard to storage class.
A symbol cannot be both static and extern.

modifiers of %S conflict with previous declaration

The symbol declaration conflicts with a previous declaration with regard to modifiers.
Correct the program by using the same modifiers for both declarations.

Diagnostic Messages 477

Appendices

330 function cannot be initialized

A function cannot be initialized with an initializer syntax intended for variables. A
function body is the only way to provide a definition for a function.

331 access permission of nested class’%T’ conflicts with previous declaration
Example:
struct S {
struct N; /1 public
private:
struct N{ // private
}
b
332 *** FATAL *** internal error in front end

If this message appears, please report the problem directly to the Open Watcom
development team. See http://www.openwatcom.org/.

333 cannot convert argument to type specified in function prototype
It isimpossible to convert the indicated argument in the function.

Example:
extern int foo(int&);

extern int m
extern int n;

int k =foo(m+ n);

In the example, the value of "m+n" cannot be converted to areference (it could be
converted to a constant reference), as shown in the following example.

Example:
extern int foo(const int&);

extern int m
extern int n;

int k =foo(m+ n);
334 conversion ambiguity: [argument] to [argument type in prototype]

An argument in the function call could not be converted since there is more than one
constructor or user-defined conversion which could be used to convert the argument.

478 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

335

336

337

Example:
struct S;

struct T

T(S&);

struct S

{
}s
S s;

extern int foo(T);
int kK =foo(s); /1 ambi guous

operator T();

In the example, the argument "'s" could be converted by both the constructor in class"T"
and by the user-conversionin class"S".

cannot be based on based pointer ' %S
A based pointer cannot be based on another based pointer.
Example:

__segnent s;

void __based(s) *p;

void __based(p) *q;
declaration specifiers are required to declare ' %N’
The compiler has detected that the name does not represent a function. Only function
declarations can leave out declaration specifiers. This error also shows up when atypedef
name declaration is missing.
Example:

X,

typedef int;
static function declared in block scope
The C++ language does not allow static functions to be declared in block scope. This error
can be triggered when the intent is to define a static variable. Due to the complexities of
parsing C++, statements that appear to be variable definitions may actually parse as
function prototypes. A work-around for this problem is contained in the example.

Example:

Diagnostic Messages 479

Appendices

338

339

340

341

342

struct C {

i

struct S {
S(C);

voi d foo()

{
static S a(C()); [// function prototype!
(

static S b((C()));// variable definition
}

cannot definea __based reference

A C++ reference cannot be based on anything. Based modifiers can only be used with
pointers.

Example:
__segnment s;
void fn(int __based(s) & x);
conversion ambiguity: conversion to common pointer type
A conversion to acommon base class of two different pointers has been attempted. The
pointer conversion could not be performed because the destination type pointsto an
ambiguous base class of one of the source types.
cannot construct object from argument(s)
Thereis not an appropriate constructor for the set of arguments provided.

number of arguments for function’ %S isincorrect

The number of arguments in the function call does not match the number declared for the
indicated non-overloaded function.

Example:
extern int foo(int, int);
int k =foo(1, 2, 3);

In the example, the function was declared to have two arguments. Three arguments were
used in the call.

private base class accessed to convert cast expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

480 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

345

Example:
struct Priv
(I
int p;
b

struct Der : private Priv

int d;
b

extern Der *pd;
Priv *pp = (Priv*)pd;

private base class accessed to convert return expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

Example:
struct Priv
L
int p;
siruct Der : private Priv
o
int d;
1
Priv *foo(Der *p)
{
return p;
}

cannot subtract pointersto different objects
Pointer subtraction can be performed only for objects of the same type.

Example:
#i ncl ude <stddef. h>
ptrdiff_t diff(float *fp, int *ip)
{

}

In the example, a diagnostic results from the attempt to subtract a pointer to an int object
from a pointer to afloat object.

return fp - ip;

private base class accessed to convert to common pointer type

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

Diagnostic Messages 481

Appendices

Example:
struct Priv

{
b

struct Der : private Priv

int p;

int d;
b

int foo(Der *pd, Priv *pp)
{

}

346 protected base class accessed to convert cast expression

return pd == pp;

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:
struct Prot
L
int p;
}s

struct Der : protected Prot

int d;
b

extern Der *pd;
Prot *pp = (Prot*)pd;

347 protected base class accessed to convert return expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:

struct Prot

o
int p;

s

struct Der : protected Prot
int d;

b

Prot *foo(Der *p)

{
return p;

}

482 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

348

349

350

351

352

cannot define a member pointer with a memory model modifier

A member pointer describes how to access afield from aclass. Because of thisa member
pointer must be independent of any memory model considerations.

Example:
struct S;

int near S::*np;
protected base class accessed to convert to common pointer type

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:
struct Prot
L
Int p;
b
struct Der : protected Prot
{
int d;
1
int foo(Der *pd, Prot *pp)
{
return pd == pp;
}

non-type parameter supplied for a type argument

A non-type parameter (e.g., an address or a constant expression) has been supplied for a
template type argument. A type should be used instead.

type parameter supplied for a non-type argument

A type parameter (e.g., int) has been supplied for atemplate non-type argument. An
address or a constant expression should be used instead.

cannot access enclosing function’s auto variable’ %S

A local class member function cannot access its enclosing function’ s automatic variables.

Example:
voi d goop(void)
o
int a;
struct S

int foo(int ¢, int b)

return b + ¢ + a;

b

Diagnostic Messages 483

Appendices

353

354

355

356

357

cannot initialize pointer to non-constant with a pointer to constant

A pointer to a non-constant type cannot be initialized with a pointer to a constant type
because this would allow constant data to be modified via the non-constant pointer to it.

Example:
extern const int *pic;
extern int *pi = pic;

pointer expression isalways>= 0

Theindicated pointer expression will always be true because the pointer value is aways
treated as an unsigned quantity, which will be greater or equal to zero.

Example:
extern char *p;
unsigned k = (0 <= p); /1 always 1

pointer expression is never < 0

Theindicated pointer expression will always be fal se because the pointer valueis always
treated as an unsigned quantity, which will be greater or equal zero.

Example:
extern char *p;
unsigned k = (0 >=p); /1 always 0O

type cannot be used in this context

This message isissued when atype nameis being used in a context where a non-type name
should be used.

Example:
struct S {
typedef int T,

void fn(S *p)
{

}

p->T = 1;

virtual function may only be declared in a class

Virtual functions can only be declared inside of aclass. Thiserror may be aresult of
forgetting the "C::" qualification of avirtual function's name.

484 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
virtual void foo();
struct S
int f;
virtual void bar();
b
virtual void bar()
{
f =09;
}
358 "%T’ referenced as a union

A classtype defined as a class or struct has been referenced asaunion (i.e., union S).

Example:
struct S
{
int sl1, s2;
b

uni on S var;
359 union’'%T referenced as a class

A classtype defined as a union has been referenced as a struct or aclass (i.e., class S).

Example:
union S
int sl, s2;
b

struct S var;
360 typedef '%N' defined without an explicit type

The typedef declaration was found to not have an explicit type in the declaration. If intis
the desired type, use an explicit int keyword to specify the type.

Example:
typedef T,;

361 member function was not defined in its class

Member functions of local classes must be defined in their classif they will be defined at
all. Thisisaresult of the C++ language not allowing nested function definitions.

Example:
voi d fn()
struct S {
int bar();
}

Diagnostic Messages 485

Appendices

362 local class can only have its containing function as a friend

A local class can only be referenced from within its containing function. It isimpossible to
define an external function that can reference the type of the local class.

Example:

extern void ext();

voi d foo()

{
class S
{
int s;
public:
friend void ext();
int q;
b

}

363 local class cannot have’ %S as a friend

The only classes that alocal class can have as afriend are classes within its own containing

scope.
Example:
struct ext
{
goop() ;
voi d foo()
{
class S
{
int s;
public:
friend class ext;
int q;
b
}
364 adjacent >=, <=, >, < operators

This message is warning about the possibility that the code may not do what was intended.
An expression like"a> b > c¢" evaluates one relational operator to a1 or a0 and then
compares it against the other variable.

Example:
extern int a;
extern int b;
extern int c;
int k=a>b > c;

486 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

365 cannot access enclosing function’s argument ’ %S
A local class member function cannot access its enclosing function’ s arguments.

Example:
voi d goop(int d)
{

struct S

int foo(int c, int b)
return b + ¢ + d;
b

b
}

366 support for switch '%s' is not implemented

Actions for the indicated switch have not been implemented. The switch is supported for
compatibility with the Open Watcom C compiler.

367 conditional expression in if statement is always true

The compiler has detected that the expression will always be true. If thisis not the
expected behaviour, the code may contain a comparison of an unsigned value against zero
(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially true expressions.

Example:
#define TEST 143
int foo(int a, int b)

if(TEST) return a;

return b;
}
368 conditional expression in if statement is always false

The compiler has detected that the expression will always be false. If thisis not the
expected behaviour, the code may contain a comparison of an unsigned value against zero
(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially false expressions.

Example:
#define TEST 14-14
int foo(int a, int b)

if(TEST) return a;
return b;

Diagnostic Messages 487

Appendices

369

370

371

372

373

selection expression in switch statement is a constant value

The expression in the switch statement is a constant. This means that only one case label
will be executed. If thisis not the expected behaviour, check the switch expression.

Example:
#define TEST O
int foo(int a, int b)

{
switch (TEST) {
case O:
return a;
def aul t :
return b;
}
}

constructor isrequired for a class with a const member
If aclass has a constant member, a constructor is required in order to initialize it.

Example:
struct S

{

const int s;
int i;
b

constructor isrequired for a class with a reference member

If aclass has areference member, a constructor is required in order to initialize it.

Example:
struct S
L
int& r;
int i;
b

inline member friend function’ %S is not allowed

A friend that is amember function of another class cannot be defined. Inline friend rules
are currently in flux so it is best to avoid inline friends.

invalid modifier for auto variable
An automatic variable cannot have a memory model adjustment because they are always

located on the stack (or in aregister). There are also other types of modifiers that are not
allowed for auto variables such as thread-specific data modifiers.

488 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
int fn(int far x)

int far y = x + 1;
return vy;

}

374 object (or object pointer) required to access non-static data member

A reference to amember in aclass has occurred. The member is non-static so in order to
accessit, an object of the classis required.

Example:
struct S {
int m
static void fn()
m=1, [// Error!
}
1

375 user-defined conversion has not been declared

The named user-defined conversion has not been declared in the class of any of its base

classes.
Example:
struct S {
operator int();
int a;
}s
double fn(S *p)
{
return p->operator double();
}
376 virtual function must be a non-static member function

A member function cannot be both a static function and avirtual function. A static
member function does not have a this argument whereas a virtual function must have athis
argument so that the virtual function table can be accessed in order to call it.

Example:
struct S
{
static virtual int foo(); /'l error
virtual int bar(); /1 ok
static int stat(); /1 ok
1

Diagnostic Messages 489

Appendices

377 protected base class accessed to convert argument expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

Example:
class C

{

pr ot ect ed:
Clint);
publi c:
int c;
1

int cfun(C);
int i =cfun(14);
Thelast lineis erroneous since the constructor is protected.

378 private base class accessed to convert argument expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

Example:
class C

C int);
public:

int c;
}s

int cfun(C);
int i =cfun(14);
Thelast lineis erroneous since the constructor is private.
379 delete expression will invoke a non-virtual destructor

In C++, it is possible to assign a base class pointer the value of aderived class pointer so
that code that makes use of base class virtual functions can be used. A problem that occurs
isthat a delete has to know the correct size of the type in some instances (i.e., when atwo
argument version of operator delete is defined for aclass). This problem is solved by
requiring that a destructor be defined as virtual if polymorphic deletes must work. The
delete expression will virtually call the correct destructor, which knows the correct size of
the complete object. This message informs you that the class you are deleting has virtual
functions but it has anon-virtual destructor. This means that the delete will not work
correctly in all circumstances.

490 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#i ncl ude <stddef. h>

struct B {
int b;
voi d operator delete(void *, size_ t);
virtual void fn();
~B():

1
struct D: B {
int d;
voi d operator delete(void *, size t);
virtual void fn();
~D();
1

void dfn(B *p)
{

}

380 "offsetof’ is not allowed for a function

del ete p; /1 could be a pointer to D!

A member function does not have an offset like simple data members. If thisis required,
use a member pointer.

Example:
#i ncl ude <stddef. h>

struct S

int fun();
i

int s = offsetof(S, fun);
381 "offsetof’ is not allowed for an enumeration

An enumeration does not have an offset like simple data members.

Example:
#i ncl ude <stddef. h>

struct S

enum SE { S1, S2, S3, $4 };
SE var;
1

int s = offsetof(S, SE);

Diagnostic Messages 491

Appendices

382

383

384

385

could not initialize for code generation

The source code has been parsed and fully analysed when this error is emitted. The
compiler attempted to start generating object code but due to some problem (e.g., out of
memory, no file handles) could not initialize itself. Try changing the compilation
environment to eliminate this error.

'offsetof’ is not allowed for an undefined type

The class type used in offsetof must be completely defined, otherwise data member offsets
will not be known.

Example:
#i ncl ude <stddef. h>

struct S {

int a;

int b;

int ¢c[offsetof(S, b)];
1

attempt to override virtual function’ %S with a different return type

A function cannot be overloaded with identical argument types and a different return type.
Thisis dueto the fact that the C++ language does not consider the function’s return type
when overloading. The exception to this rulein the C++ language involves restricted
changes in the return type of virtual functions. The derived virtual function’s return type
can be derived from the return type of the base virtual function.

Example:
struct B {
virtual B *fn();
b

struct D: B {
virtual D *fn();
3

attempt to overload function ' %S with a different return type

A function cannot be overloaded with identical argument types and a different return type.
Thisisdueto the fact that the C++ language does not consider the function’ s return type
when overloading.

Example:
int foo(char);
unsi gned foo(char);

492 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

386

387

388

389

attempt to use pointer to undefined class

An attempt was made to indirect or increment a pointer to an undefined class. Since the
classis undefined, the size is not known so the compiler cannot compile the expression

properly.

Example:
class C
extern C* pcl,;
C* pc2 = ++pcl; /1 C not defined

int foo(Cp)
{

}

return p->x; /1 C not defined

expression is useful only for its side effects

Theindicated expression is not meaningful. The expression, however, does contain one or
more side effects.

Example:
extern int* i;
voi d func()

(i +4);

In the example, the expression is areference to an integer which is meaninglessin itself.
The incrementation of the pointer in the expression is a side effect.

integral constant will be truncated during assignment or initialization

This message indicates that the compiler knows that a constant value will not be preserved
after the assignment. If thisis acceptable, cast the constant value to the appropriate typein
the assignment.

Example:
unsi gned char ¢ = 567,

integral value may be truncated during assignment or initialization
This message indicates that the compiler knows that all values will not be preserved after
the assignment. If thisis acceptable, cast the value to the appropriate type in the

assignment.

Example:
extern unsi gned s;
unsi gned char ¢ = s;

Diagnostic Messages 493

Appendices

390

391

392

393

cannot generate default constructor to initialize’ %T’ since constructors were declared

A default constructor will not be generated by the compiler if there are already constructors
declared. Try using default arguments to change one of the constructors to a default
constructor or define a default constructor explicitly.

Example:
class C{
C(const C&);
public :
int c;
1

Ccv;
assignment found in boolean expression

Thisisaconstruct that can lead to errorsif it was intended to be an equality (using "==")
test.

Example:
int foo(int a, int b)
{
if(a=Db) {
return b;
}
return a; /1 always return 1 ?
}

definition: ' %F’

This informational message indicates where the symbol in question was defined. The
message is displayed following an error or warning diagnostic for the symbol in question.

Example:
static int a = 9;
int b = 89;

Thevariable’a’ isnot referenced in the preceding example and so will cause awarning to
be generated. Following the warning, the informational message indicates the line at which
'a was declared.

included from %s(%ou)
Thisinformational message indicates the line number of the file including the file in which

an error or warning was diagnosed. A number of such messages will allow you to trace
back through the #include directives which are currently being processed.

494 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

394

395

396

397

398

399

reference object must be initialized

A reference cannot be set except through initialization. Also references cannot be 0 so they
must always be initialized.

Example:
int & ref;

option requires an identifier

The specified option is not recognized by the compiler since there was no identifier after it
(i.e., "-nt=module").

"main’ cannot be overloaded

There can only be one entry point for a C++ program. The "main" function cannot be
overloaded.

Example:
int main();
int main(int);

"new’ expression cannot allocate a void

Since the void type has no size and there are no values of void type, one cannot allocate an
instance of void.

Example:
void *p = new void;

"new’ expression cannot allocate a function

A function type cannot be allocated since there is no meaningful size that can be used. The
new expression can allocate a pointer to afunction.

Example:
typedef int tdfun(int);
tdfun *tdv = new tdfun;

"new’ expression allocates a const or volatile object

The pool of raw memory cannot be guaranteed to support const or volatile semantics.
Usually const and volatile are used for statically allocated objects.

Example:
typedef const int con_int;
con_int* p = new con_int;

Diagnostic Messages 495

Appendices

400 cannot convert right expression for initialization

Theinitiaization istrying to convert an argument expression to a completely unrelated
type. Thereisno way the compiler can provide any meaning for the intended conversion.

Example:
struct T {
i
T x = 0;
401 conversion ambiguity: [initialization expression] to [type of object]

Theinitiaization caused a constructor overload to occur. The operands provided for the
constructor did not select a unique constructor.

Example:
struct S {
S(int);
S(char);

402 classtemplate ' %S has already been declared as a friend

The class template in the message has already been declared asafriend. Remove the extra
friend declaration.

Example:
tenpl ate <class T>
class S

class X {
friend class S
int f;
friend class S
s

403 private base class accessed to convert initialization expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

404 protected base class accessed to convert initialization expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

496 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

405 cannot return a pointer or reference to a constant object

A pointer or reference to a constant object cannot be returned.

Example:
int *foo(const int *p)
{
return p;
}
406 cannot pass a pointer or reference to a constant object

A pointer or reference to a constant object could not be passed as an argument.

Example:
int *bar(int *);
int *foo(const int *p)

{
return bar(p);
}
407 class templates must be named

Thereis no syntax in the C++ language to reference an unnamed class template.

Example:
tenpl ate <class T>
class {

s
408 function templates can only name functions

Variables cannot be overloaded in C++ so it is not possible to have many different
instances of avariable with different types.

Example:
tenmpl ate <class T>
T x[1];

409 template argument ' %S is not used in the function argument list

This restriction ensures that function templates can be bound to types during overload
resolution. Functions currently can only be overloaded based on argument types.

Example:
tenpl ate <class T>
int foo(int *);
tenpl ate <class T>
T bar(int *);

Diagnostic Messages 497

Appendices

410

411

412

413

414

415

destructor cannot be declared const or volatile

A destructor must be able to operate on al instances of classes regardless of whether they
are const or volatile.

static member function cannot be declared const or volatile

A static member function does not have an implicit this argument so the const and volatile
function qualifiers cannot be used.

only member functions can be declared const or volatile

A non-member function does not have an implicit this argument so the const and volatile
function qualifiers cannot be used.

"const’ or 'volatile’ modifiers are not part of a function’s type

The const and volatile qualifiers for afunction cannot be used in typedefs or pointers to
functions. Thetrailing qualifiers are used to change the type of the implicit this argument
so that member functions that do not modify the object can be declared accurately.

Example:
/1l const is illegal
t ypedef void (*baddcl)() const;

struct S {
void fun() const;
int a;

1

/1 "this" has type "S const *"
void S::fun() const

this->a = 1; /1l Error!

}

type cannot be defined in an argument

A new type cannot be defined in an argument because the type will only be visible within
the function. This amountsto defining afunction that can never be called because C++
uses name equivalence for type checking.

Example:
extern foo(struct S{ int s; });

type cannot be defined in return type

Thisisarestriction in the current C++ language. A function prototype should only use
previously declared typesin order to guarantee that it can be called from other functions.
Therestriction is required for templates because the compiler would have to wait until the
end of aclass definition before it could decide whether a class template or function
template is being defined.

498 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

416

417

418

Example:
tenpl ate <class T>

class C{
T val ue;
PEnC T x) |
Cy;
y.x = 0;
return vy;
};

A common problem that results in this error isto forget to terminate a class or enum
definition with a semicolon.

Example:
struct S {
int x,y;
S(int, int);
} // mssing sem col on

S::S(int x, inty) : x(x), y(y) {
}

data members cannot be initialized inside a class definition

This message appears when an initialization is attempted inside of a class definition. Inthe
case of static data members, initialization must be done outside the class definition.
Ordinary data members can beinitialized in a constructor.

Example:
struct S {
static const int size = 1;
b

only virtual functions may be declared pure

The C++ language requires that all pure functions be declared virtual. A pure function
establishes an interface that must consist of virtual functions because the functions are
required to be defined in the derived class.

Example:
struct S {
void foo() = 0O;
1

destructor is not declared in its proper class

The destructor name is not declared in its own class or qualified by itsown class. Thisis
required in the C++ language.

Diagnostic Messages 499

Appendices

419

420

421

422

423

424

425

426

cannot call non-const function for a constant object

A function that does not promise to not modify an object cannot be called for a constant
object. A function can declare its intention to not modify an object by using the const
qualifier.

Example:
struct S {
void fn();

void cfn(const S *p)

p->fn(); /1 Error!

memory initializer list may only appear in a constructor definition

A memory initializer list should be declared along with the body of the constructor
function.

cannot initialize member ' %N’ twice

A member cannot be initialized twice in amember initialization list.
cannot initialize base class’ %T’ twice

A base class cannot be constructed twice in amember initialization list.
"%T isnot adirect base class

A base classinitializer in amember initialization list must either be a direct base class or a
virtual base class.

%N’ cannot be initialized because it is not a member
The name used in the member initialization list does not name a member in the class.
%N’ cannot beinitialized because it is a member function

The name used in the member initialization list does not name a non-static data member in
the class.

%N’ cannot be initialized because it is a static member

The name used in the member initialization list does not name a non-static data member in
the class.

500 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

427

428

429

430

431

432

433

434

435

"%N’ has not been declared as a member

This message indicates that the member does not exist in the qualified class. This usually
occurs in the context of access declarations.

const/reference member ' %S must have an initializer

The const or reference member does not have an initializer so the constructor is not
completely defined. The member initialization list isthe only way to initialize these types
of members.

abstract class’%T’ cannot be used as an argument type

An abstract class can only exist as abase class of another class. The C++ language does
not allow an abstract class to be used as an argument type.

abstract class'%T’ cannot be used as a function return type

An abstract class can only exist as abase class of another class. The C++ language does
not allow an abstract class to be used as areturn type.

defining ' %S is not possible because’ %T’ is an abstract class

An abstract class can only exist as abase class of another class. The C++ language does
not allow an abstract class to be used as either amember or avariable.

cannot convert to an abstract class’ %T’

An abstract class can only exist as abase class of another class. The C++ language does
not allow an abstract class to be used as the destination type in a conversion.

mangled name for ' %S has been truncated

The name used in the object file that encodes the name and full type of the symbol is often
called amangled name. The warning indicates that the mangled name had to be truncated
dueto limitationsin the object file format.

cannot convert to a type of unknown size

A completely unknown type cannot be used in a conversion because its size is not known.
The behaviour of the conversion would be undefined also.

cannot convert a type of unknown size

A completely unknown type cannot be used in a conversion because its size is not known.
The behaviour of the conversion would be undefined also.

Diagnostic Messages 501

Appendices

436

437

438

439

440

441

442

cannot construct an abstract class

An instance of an abstract class cannot be created because an abstract class can only be
used as a base class.

cannot construct an undefined class
An instance of an undefined class cannot be created because the size is not known.
string literal concatenated during array initialization

This message indicates that a missing comma (’,") could have made a quiet change in the
program. Otherwise, ignore this message.

maximum size of segment '%s’ has been exceeded for * %S

The indicated symbol has grown in size to a point where it has caused the segment it is
defined inside of to be exhausted.

maximum data item size has been exceeded for ' %S

A non-huge dataitem is larger than 64k bytesin size. This message only occurs during
16-bit compilation of C++ code.

function attribute has been repeated

A function attribute (like the __export attribute) has been repeated. Remove the extra
attribute to correct the declaration.

modifier has been repeated

A modifier (like the far modifier) has been repeated. Remove the extra modifier to correct
the declaration.

illegal combination of memory model modifiers

Memory model modifiers must be used individually because they cannot be combined
meaningfully.

argument name ' %N’ has already been used

Theindicated argument name has already been used in the same argument list. Thisis not
allowed in the C++ language.

function definition for ' %S must be declared with an explicit argument list

A function cannot be defined with atypedef. The argument list must be explicit.

502 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

446

447

449

450

451

452

453

user-defined conversion cannot convert to its own class or base class

A user-defined conversion cannot be declared as a conversion either to its own class or to a
base class of itself.

Example:
struct B {
i
struct D: private B {
operator B();
b

user-defined conversion cannot convert to void
A user-defined conversion cannot be declared as a conversion to void.

Example:
struct S {
operator void();
1

expecting identifier
An identifier was expected during processing.
symbol '%S does not have a segment associated with it

A pointer cannot be based on amember because it has no segment associated with it. A
member describes alayout of storage that can occur in any segment.

symbol %S must have integral or pointer type

If asymbol is based on another symbol, it must be integral or a pointer type. An integral
type indicates the segment value that will be used. A pointer type means that al accesses
will be added to the pointer value to construct a full pointer.

symbol '%S cannot be accessed in all contexts

The symbol that the pointer is based onisin another class so it cannot be accessed in all
contexts that the based pointer can be accessed.

cannot convert class expression to be copied
A convert class expression could not be copied.
conversion ambiguity: multiple copy constructors

More than one constructor could be used to copy a class object.

Diagnostic Messages 503

Appendices

454

455

456

457

function template ' %S already has a definition

The function template has already been defined with afunction body. A function template
cannot be defined twice even if the function body isidentical.

Example:
tenpl ate <class T>
void f(T *p)
{

templ ate <class T>
void f(T *p)
{
}

function templates cannot have default arguments

A function template must not have default arguments because there are certain types of
default arguments that do not force the function argument to be a specific type.

Example:
tenpl ate <class T>
void f2(T *p =0)
{
}

"main’ cannot be a function template

Thisisarestriction in the C++ language because "main" cannot be overloaded. A function
template provides the possibility of having more than one "main" function.

"%S was previously declared as a typedef

The C++ language only allows function and variable names to coexist with names of
classes or enumerations. Thisis due to the fact that the class and enumeration names can
till be referenced in their elaborated form after the non-type name has been declared.

Example:
typedef int T;
int T(int) /1 error!

}

enumE{ A B, C};
void E()
{

}

class C{ };
void ()
{

class C x; /!l use "class C

enum E x = A /] use "enum E"

504 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

458

459

460

461

462

%S was previously declared as a variable/function

The C++ language only allows function and variable names to coexist with names of
classes or enumerations. Thisis due to the fact that the class and enumeration names can
till be referenced in their elaborated form after the non-type name has been declared.

Example:
int T(int)
} |
typedef int T,; /1 error!
void E()

}
enumE{ A B, C},;

enum E x = A // use "enum E"
void ()

{

}

class C{ };

class C x; /!l use "class C

private base class accessed to convert assignment expression

A conversion involving the inheritance hierarchy required access to a private base class.
The access check did not succeed so the conversion is not allowed.

protected base class accessed to convert assignment expression

A conversion involving the inheritance hierarchy required access to a protected base class.
The access check did not succeed so the conversion is not allowed.

maximum size of DGROUP has been exceeded for * %S in segment ' %s

Theindicated symbol’s size has caused the DGROUP contribution of this module to exceed
64k. Changing memory models or declaring some data as far data are two ways of fixing
this problem.

type of return value is not the enumeration type of function

The return value does not have the proper enumeration type. Keep in mind that integral
values are not automatically converted to enum types like the C language.

Diagnostic Messages 505

Appendices

463

464

465

466

467

468

469

linkage must be first in a declaration; probable cause: missing’;’

This message usually indicates amissing semicolon (*;’). The linkage specification must
be thefirst part of a declaration if it is used.

‘main’ cannot be a static function

Thisisarestriction in the C++ language because "main" must have external linkage.
"main’ cannot be an inline function

Thisisarestriction in the C++ language because "main” must have external linkage.
"main’ cannot be referenced

Thisisarestriction in the C++ language to prevent implementations from having to work
around multiple invocations of "main". This can occur if an implementation has to
generate special codein "main" to construct all of the statically allocated classes.

cannot call a non-volatile function for a volatile object

A function that does not promise to not modify an object using volatile semantics cannot be
called for avolatile object. A function can declare its intention to modify an object only

through volatile semantics by using the volatile qualifier.

Example:
struct S {
void fn();
i

void cfn(volatile S *p)

p->fn(); /1 Error!

cannot convert pointer to constant or volatile objects to pointer to void
Y ou cannot convert a pointer to constant or volatile objectsto 'void*’.

Example:
extern const int* pci;
extern void *vp;
int kK =(pci ==vp);
cannot convert pointer to constant or non-volatile objects to pointer to volatile void

Y ou cannot convert a pointer to constant or non-volatile objectsto 'volatile void*'.

506 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

470

471

472

473

474

Example:
extern const int* pci;
extern volatile void *vp;
int k = (pci ==vp);
address of function istoo large to be converted to pointer to void

The address of afunction can be converted to 'void*’ only when the size of a’void*’
object is large enough to contain the function pointer.

Example:
void __far foo();
void __near *v = &foo;

address of data object istoo large to be converted to pointer to void

The address of an object can be converted to 'void*’ only when the size of a’void*’ object
islarge enough to contain the pointer.

Example:
int __far *ip;
void __near *v = ip;

expression with side effect in sizeof discarded

Theindicated expression will be discarded; consequently, any side effects in that
expression will not be executed.

Example:
int a = 14;
int b = sizeof(at++);

In the example, the variable a will still have avalue 14 after b has been initialized.
function argument(s) do not match those in prototype

The C++ language requires great precision in specifying arguments for afunction. For
instance, a pointer to char isconsidered different than a pointer to unsi gned char
regardless of whether char isan unsigned quantity. This message occurs when a
non-overloaded function isinvoked and one or more of the arguments cannot be converted.
It also occurs when the number of arguments differs from the number specified in the
prototype.

conversion ambiguity: [expression] to [class object]

The conversion of the expression to a class object is ambiguous.

Diagnostic Messages 507

Appendices

475

476

477

478

479

480

481

482

cannot assign right expression to class object

The expression on the right cannot be assigned to the indicated class object.

argument count is %d since thereis an implicit 'this” argument

Thisinformational message indicates the number of arguments for the function mentioned
in the error message. The function is a member function with athis argument so it may
have one more argument than expected.

argument count is %d since thereis no implicit 'this” argument

This informational message indicates the number of arguments for the function mentioned
in the error message. The function is amember function without a this argument so it may
have one |ess argument than expected.

argument count is %d for a non-member function

This informational message indicates the number of arguments for the function mentioned
in the error message. The function is not a member function but it could be declared as a
friend function.

conversion ambiguity: multiple copy constructorsto copy array ' %S

More than one constructor to copy the indicated array exists.

variable/function has the same name as the class/enum’ %S

In C++, aclass or enum name can coexist with avariable or function of the same namein a
scope. Thiswarning isindicating that the current declaration is making use of this feature
but the typedef name was declared in another file. This usually means that there are two
unrelated uses of the same name.

class/enum has the same name as the function/variable ' %S

In C++, aclass or enum name can coexist with avariable or function of the same namein a
scope. Thiswarning isindicating that the current declaration is making use of this feature
but the function/variable name was declared in another file. Thisusually means that there
are two unrelated uses of the same name. Furthermore, al references to the class or enum
must be elaborated (i.e., use’class C' instead of 'C’) in order for subsequent referencesto
compile properly.

cannot create a default constructor

A default constructor could not be created, because other constructors were declared for the
classin question.

508 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

483

484

485

486

Example:
struct X {
X(X&) ;

siruct Y {
X a[10];

Y yvar;
In the example, the variable "yvar" causes a default constructor for the class"Y" to be
generated. The default constructor for "Y" attempts to call the default constructor for " X"
inorder to initializethe array "a" in class"Y". The default constructor for "X" cannot be
defined because another constructor has been declared.
attempting to access default constructor for %T

This informational message indicates that a default constructor was referenced but could
not be generated.

cannot align symbol ' %S to segment boundary

Theindicated symbol requires more than one segment of storage and the symbol’s
components cannot be aligned to the segment boundary.

friend declaration does not specify a class or function

A class or function must be declared as a friend.

Example:
struct T {
/] should be class or function declaration
friend int;
}s

cannot take address of overloaded function

This message indicates that an overloaded function’s name was used in a context where a
final type could not be found. Because afinal type was not specified, the compiler cannot
select one function to use in the expression. Initialize a properly-typed temporary with the
appropriate function and use the temporary in the expression.

Example:
int foo(char);
int foo(unsigned);
extern int (*p)(char);
int kKk=(p == & o0); /[l fails

Thefirst f 00 can be passed as follows:

Diagnostic Messages 509

Appendices

Example:
int foo(char);
int foo(unsigned);
extern int (*p)(char);

/1 introduce tenporary

static int (*temp)(char) = &foo;
/1 ok
int k=(p==tem);
487 cannot use address of overloaded function as a variable argument

This message indicates that an overloaded function’s name was used as a argument for a
"..." stylefunction. Because afinal function typeis not present, the compiler cannot select
one function to use in the expression. Initialize a properly-typed temporary with the

appropriate function and use the temporary in the call.

Example:
int foo(char);
int foo(unsigned);
int ellip fun(int, ...);
int k =ellip_fun(14, &f oo);

Thefirst f 00 can be passed as follows:

Example:
int foo(char);
int foo(unsigned);
int ellip fun(int, ...);
static int = &f oo;
t enporary

(*temp) (char)

int k =ellip_fun(14, temp);

488 "%N’' cannot be overloaded

/] fails

/1 introduce

/1 ok

Theindicated function cannot be overloaded. Functions that fall into this category include

operator delete.

489 symbol '%S has already been initialized

Theindicated symbol has already been initialized. It cannot be initialized twice even if the

initialization value isidentical.

490 delete expression is a pointer to a function

A pointer to afunction cannot be alocated so it cannot be deleted.

510 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

491

492

493

494

495

delete of a pointer to const data

Since deleting a pointer may involve modification of data, it is not always safe to delete a
pointer to const data.

Example:
struct S { };
void fn(S const *p, S const *q) {
del ete p;
delete [] q;

}

delete expression is not a pointer to data

A delete expression can only delete pointers. For example, trying to delete an int is not
allowed in the C++ language.

Example:
void fn(int a)

del ete a; !/l Error!

}

template argument is not a constant expression

The compiler has found an incorrect expression provided as the value for a constant value
template argument. The only expressions allowed for scalar template arguments are
integral constant expressions.

template argument is not an external linkage symbol

The compiler has found an incorrect expression provided as the value for a pointer value
template argument. The only expressions allowed for pointer template arguments are
addresses of symbols. Any symbols must have external linkage or must be static class
members.

conversion of const reference to volatile reference

The constant value can be modified by assigning into the volatile reference. Thiswould
allow constant data to be modified quietly.

Example:
void fn(const int &ci)
{
int volatile & =rci; [/ Error!
}

Diagnostic Messages 511

Appendices

496

497

498

499

500

conversion of volatile reference to const reference

The volatile value can be read incorrectly by accessing the const reference. Thiswould
allow volatile data to be accessed without correct volatile semantics.

Example:
void fn(volatile int &vi)
{
int const & = rvi; // Error!
}

conversion of const or volatile reference to plain reference

The constant value can be modified by assigning into the plain reference. Thiswould allow
constant data to be modified quietly. In the case of volatile data, any access to the plain
reference will not respect the volatility of the data and thus would be incorrectly accessing
the data.

Example:
void fn(const int &ci, volatile int &vi)

(I
int &1 =
=

i; [/l Error!
int &2 i

Cy
vi; [/ Error!
}

syntax error before’ %s'; probable cause: incorrectly spelled type name

Theidentifier in the error message has not been declared as atype name in any scope at this
point in the code. This may be the cause of the syntax error.

object (or object pointer) required to access non-static member function

A reference to amember function in aclass has occurred. The member is non-static soin
order to accessit, an object of the classis required.

Example:
struct S {
int m();
static void fn()
{
m); /1 Error!
1

object (or object pointer) cannot be used to access function

Theindicated object (or object pointer) cannot be used to access function.

512 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

501

502

503

504

505

object (or object pointer) cannot be used to access data
Theindicated object (or object pointer) cannot be used to access data.
cannot access member function in enclosing class

A member function in enclosing class cannot be accessed.

cannot access data member in enclosing class

A datamember in enclosing class cannot be accessed.

syntax error before type name ' %s

Theidentifier in the error message has been declared as a type name at this point in the
code. Thismay be the cause of the syntax error.

implementation restriction: cannot generate thunk from’ %S

Thisimplementation restriction is due to the use of a shared code generator between Open
Watcom compilers. The virtual this adjustment thunks are generated as functions linked
into the virtual function table. The functions rely on knowing the correct number of
arguments to pass on to the overriding virtual function but in the case of elipsis(...)
functions, the number of arguments cannot be known when the thunk function is being
generated by the compiler. The target symbol islisted in adiagnostic message. The work
around for this problem is to recode the source so that the virtual functions make use of the
va list type found in the stdarg header file.

Example:

Diagnostic Messages 513

Appendices

#i ncl ude <i ostream h>
#i ncl ude <stdarg. h>

struct B {
vi rtual
b

struct D :
vi rt ual

void fun(char *,

B {
void fun(char *,

void B :fun(char *f, ...)
{

va_list args;

va_start(args, f);
while(*f) {

cout << va_arg(args,
++f ;

va_end(args);

}
void D::fun(char *f, ...)
{

va_list args;

va_start(args, f);
while(*f) {

cout << va_arg(args,
++f ;

va_end(args);

}

char) << endl;

int) << endl;

The previous example can be changed to the following code with corresponding changes to

the contents of the virtual functions.

Example:
#i ncl ude <i ostream h>
#i ncl ude <stdarg. h>

struct B {
void fun(char *f, ...)

va_list args;
va_start(args,

_fun(f, args);
va_end(args);

f);

virtual void _fun(char *,

514 Diagnostic Messages

va_list);

Open Watcom C++ Diagnostic Messages

~b
struct D: B {
/1 this can be renoved since using B::fun

/1 will result in the sane behavi our
/1 since fun is a virtual function
void fun(char *f, ...)

va_list args;

va_start(args, f);
_fun(f, args);
va_end(args);

}

virtual void _fun(char *, va_list);

b
~b
void B:: _fun(char *f, va_list args)
{
while(*f) {
cout << va_arg(args, char) << endl;
++f ;
}
}
~b
void D::_fun(char *f, va_list args)
{
while(*f) {
cout << va_arg(args, int) << endl;
++f ;
}
}
~b

/1 no changes are required for users of the class
B x;
Dy;

void dump(B *p)
{

p->fun("1234", 'a', 'b’, ‘¢, 'd);
p->fun("12", 'a’, 'b);

}

~b

voi d main()
dunp(&);
dunp(&);

Diagnostic Messages 515

Appendices

506

507

508

509

510

511

512

513

conversion of __based(void) pointer to virtual base class

An __based(void) pointer to a class object cannot be converted to a pointer to virtual base
class, since this conversion applies only to specific objects.

Example:
struct Base {};
struct Derived : virtual Base {};
Derived __based(void) *p_derived,
Base __based(void) *p_base = p_derived; // error

The conversion would be allowed if the base class were not virtual.
class for target operand is not derived from class for source operand

A member pointer conversion can only be performed safely when converting a base class
member pointer to a derived class member pointer.

conversion ambiguity: [pointer to class member] to [assignment object]
The base classin the original member pointer is not a unique base class of the derived class.
conversion of pointer to class member involves a private base class

The member pointer conversion required access to a private base class. The access check
did not succeed so the conversion is not alowed.

conversion of pointer to class member involves a protected base class

The member pointer conversion required access to a protected base class. The access check
did not succeed so the conversion is not allowed.

itemis neither a non-static member function nor data member

A member pointer can only be created for non-static member functions and non-static data
members. Static members can have their address taken just like their file scope
counterparts.

function address cannot be converted to pointer to class member

Theindicated function address cannot be converted to pointer to class member.

conversion ambiguity: [address of function] to [pointer to class member]

Theindicated conversion is ambiguous.

516 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

514

515

516

517

518

519

520

521

522

addressed function isin a private base class

The addressed function isin a private base class.
addressed function isin a protected base class
The addressed function isin a protected base class.
class for object is not defined

The left hand operand for the"." or ".*" operator must be of a classtype that is completely
defined.

Example:
class C,

int fun(C& x)
{

}

return x.y; /1 class C not defined

left expression is not a class object

The left hand operand for the ".*" operator must be of a class type since member pointers
can only be used with classes.

right expression is not a pointer to class member
Theright hand operand for the ".*" operator must be a member pointer type.
cannot convert pointer to class of member pointer

The class of the left hand operand cannot be converted to the class of the member pointer
becauseit is not a derived class.

conversion ambiguity: [pointer] to[class of pointer to class member]

The class of the pointer to member is an ambiguous base class of the left hand operand.
conversion of pointer to class of member pointer involves a private base class

The class of the pointer to member is a private base class of the left hand operand.
conversion of pointer to class of member pointer involves a protected base class

The class of the pointer to member is a protected base class of the left hand operand.

Diagnostic Messages 517

Appendices

523

524

525

526

527

528

529

530

531

532

cannot convert object to class of member pointer

The class of the left hand operand cannot be converted to the class of the member pointer
becauseit is not aderived class.

conversion ambiguity: [object] to [class object of pointer to class member]

The class of the pointer to member is an ambiguous base class of the left hand operand.
conversion of object to class of member pointer involves a private base class

The class of the pointer to member is a private base class of the left hand operand.
conversion of object to class of member pointer involves a protected base class

The class of the pointer to member is a protected base class of the left hand operand.
conversion of pointer to class member from a derived to a base class

A member pointer can only be converted from a base class to aderived class. Thisisthe
opposite of the conversion rule for pointers.

formis’#pragmainline_recursion en’ where’en’ is’on’ or ’off’

This pragma indicates whether inline expansion will occur for an inline function which is
called (possibly indirectly) a subsequent time during an inline expansion. Either 'on’ or
"off’ must be specified.

expression for number of array elements must be integral

The expression for the number of elementsin anew expression must be integral because it
is used to calculate the size of the allocation (which isan integral quantity). The compiler
will not automatically convert to an integer because of rounding and truncation issues with
floating-point values.

function accessed with ’.** or "->*" can only be called

Theresult of the".*" and "->*" operators can only be called because it is often specific to
the instance used for the left hand operand.

left operand must be a pointer, pointer to class member, or arithmetic
The left operand must be a pointer, pointer to class member, or arithmetic.
right operand must be a pointer, pointer to class member, or arithmetic

The right operand must be a pointer, pointer to class member, or arithmetic.

518 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

533

534

535

536

537

538

neither pointer to class member can be converted to the other

The two member pointers being compared are from two unrelated classes. They cannot be
compared since their members can never be related.

left operand is not a valid pointer to class member

The specified operator requires a pointer to member as the left operand.

Example:
struct S;
void fn(int S::* np, int *p)
{
if(p==np)
p[0] = 1;

right operand is not a valid pointer to class member

The specified operator requires a pointer to member as the right operand.

Example:
struct S;
void fn(int S::* np, int *p)
{
if(np ==p)
p[0] = 1;

cannot use’.*’ nor '->*’ with pointer to class member with zero value

The compiler has detected a NULL pointer use with amember pointer dereference.
operand is not a valid pointer to class member

The operand cannot be converted to avalid pointer to class member.

Example:
struct S;
int S:* fn()

int a;
return a;

}

destructor can be invoked only with’." or *->’

Thisisarestriction in the C++ language. An explicit invocation of a destructor is not
recommended for objects that have their destructor called automatically.

Diagnostic Messages 519

Appendices

539

540

541

542

546

class of destructor must be class of object being destructed

Destructors can only be called for the exact static type of the object being destroyed.
destructor is not properly qualified

An explicit destructor invocation can only be qualified with its own class.

pointers to class members reference different object types

Conversion of member pointers can only occur if the object types are identical. Thisis
necessary to ensure type safety.

operand must be pointer to class or struct

The left hand operand of a’->*" operator must be a pointer to aclass. Thisisarestriction
in the C++ language.

expression must have void type

If one operand of the’:’ operator has void type, then the other operand must also have void
type.

expression types do not match for *:’ operator

The compiler could not bring both operands to a common type. Thisis necessary because
the result of the conditional operator must be a unique type.

cannot create an undefined type with ' operator new'

A new expression cannot allocate an undefined type because it must know how large an
allocation isrequired and it must also know whether there are any constructors to execute.

delete of a pointer to an undefined type

A delete expression cannot safely deallocate an undefined type because it must know
whether there are any destructors to execute. In spite of this, the ISO/ANSI C++ Working
Paper requires that an implementation support this usage.

Example:
struct U,

void foo(U*p, U*qg) {
del ete p;
delete [] q;

520 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

547

549

550

551

552

553

554

555

cannot access’ %S through a private base class
Theindicated symbol cannot be accessed because it requires access to a private base class.
cannot access’ %S through a protected base class

Theindicated symbol cannot be accessed because it requires access to a protected base
class.

'sizeof’ operand contains compiler generated information

The type used in the ’sizeof’ operand contains compiler generated information. Clearing a
struct with a call to memset() would invalidate all of this information.

cannot convert ’:’ operands to a common reference type

The two reference types cannot be converted to a common reference type. This can happen
when the types are not related through base class inheritance.

conversion ambiguity: [referenceto object] to [type of opposite’:’ operand]

One of the reference types is an ambiguous base class of the other. This prevents the
compiler from converting the operand to a unique common type.

conversion of referenceto ':’ object involves a private base class

The conversion of the reference operands requires a conversion through a private base
class.

conversion of referenceto ':’ object involves a protected base class

The conversion of the reference operands requires a conversion through a protected base
class.

expression must have type arithmetic, pointer, or pointer to class member

This message means that the type cannot be converted to any of these types, also. All of
the mentioned types can be compared against zero ('0") to produce atrue or false value.

expression for 'while' isalways false
The compiler has detected that the expression will always befalse. If thisisnot the
expected behaviour, the code may contain a comparison of an unsigned value against zero

(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially false expressions.

Diagnostic Messages 521

Appendices

556

557

558

559

560

561

562

563

testing expression for *for’ is always false

The compiler has detected that the expression will always befalse. If thisisnot the
expected behaviour, the code may contain a comparison of an unsigned value against zero
(e.g., unsigned integers are always greater than or equal to zero). Comparisons against zero
for addresses can also result in trivially false expressions.

message humber '%d’ isinvalid

The message number used in the #pragma does not match the message number for any
warning message. This message can also indicate that a number or "*’ (meaning all
warnings) was not found when it was expected.

warning level must be an integer inrange0to 9

The new warning level that can be used for the warning can bein therange0to 9. The
level 0 means that the warning will be treated as an error (compilation will not succeed).
Levels 1 up to 9 are used to classify warnings. The -w option sets an upper limit on the
level for warnings. By setting the level above the command line limit, you effectively
ignore all cases where the warning shows up.

function’ %S cannot be defined because it is generated by the compiler

The indicated function cannot be defined because it is generated by the compiler. The
compiler will automatically generate default constructors, copy constructors, assignment
operators, and destructors according to the rules of the C++ language. This message
indicates that you did not declare the function in the class definition.

neither environment variable nor file found for ' @' name

Theindirection operator for the command line will first check for an environment variable
of the name and use the contents for the command line. If an environment variableis not
found, a check for afile with the same name will occur.

more than 5 indirections during command line processing

The Open Watcom C++ compiler only alows a fixed number nested indirections using files
or environment variables, to prevent runaway chains of indirections.

cannot take address of non-static member function

The only way to create a value that described the non-static member functionisto use a
member pointer.

cannot generate default ' %S because class contains either a constant or a reference
member

An assignment operator cannot be generated because the class contains members that
cannot be assigned into.

522 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

564

565

566

567

568

569

570

571

572

cannot convert pointer to non-constant or volatile objects to pointer to const void
A pointer to hon-constant or volatile objects cannot be converted to ' const void*’.

cannot convert pointer to non-constant or non-volatile objects to pointer to const volatile
void

A pointer to non-constant or non-volatile objects cannot be converted to ' const volatile
void*’.

cannot initialize pointer to non-volatile with a pointer to volatile

A pointer to anon-volatile type cannot be initialized with a pointer to avolatile type
because this would allow voléatile data to be modified without volatile semantics viathe
non-volatile pointer to it.

cannot pass a pointer or reference to a volatile object

A pointer or reference to avolatile object cannot be passed in this context.

cannot return a pointer or reference to a volatile object

A pointer or reference to a volatile object cannot be returned.

left expression is not a pointer to a volatile object

One cannot assign a pointer to avolatile type to a pointer to anon-volatile type. This
would allow avolatile object to be modified viathe non-volatile pointer. Use acast if this
is absolutely necessary.

virtual function override for %S is ambiguous

This message indicates that there are at |east two overrides for the function in the base
class. The compiler cannot arbitrarily choose one so it is up to the programmer to make
sure there is an unambiguous choice. Two of the overriding functions are listed as
informational messages.

initialization priority must be number 0-255, ’library’, or ’ progran’

An incorrect module initialization priority has been provided. Check the User’s Guide for
the correct format of the priority directive.

previous case label defined %L

This informational message indicates where a preceding case label is defined.

Diagnostic Messages 523

Appendices

573

574

575

576

577

578

579

previous default label defined %L

This informational message indicates where a preceding default label is defined.

label defined %L

Thisinformational message indicates where alabel is defined.

label referenced %L

Thisinformational message indicates where alabel is referenced.

object thrown hastype: %T

This informational message indicates the type of the object being thrown.

object thrown has an ambiguous base class %T

Itisillegal to throw an object with a base class to which a conversion would be ambiguous.

Example:
struct amnbi guous{ };
struct basel : public anbiguous { };
struct base2 : public anbiguous { };
struct derived : public basel, publi

c base2 { };

foo(derived &object)
{

}

The throw will cause an error to be displayed because an object of type "derived" cannot be
converted to an object of type "ambiguous’.

t hrow obj ect ;

formis’#pragmainline_depth level’ where’'level’ is 0 to 255

This pragma sets the number of times inline expansion will occur for an inline function
which contains callsto inline functions. The level must be a number from zero to 255.
When the level is zero, no inline expansion occurs.

pointer or reference truncated by cast

The cast expression causes a conversion of apointer value to another pointer value of
smaller size. Thiscanbecausedby _near or __far qualifiers(i.e., casting afar pointer to
anear pointer). Function pointers can also have a different size than data pointersin
certain memory models. Because this message indicates that some information is being
lost, check the code carefully.

524 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

580

581

582

583

584

585

586

587

cannot find a constructor for given initializer argument list

Theinitializer list provided for the new expression does not uniquely identify asingle
constructor.

variable’ %N’ can only be based on a string in this context

All of the based modifiers can only be applied to pointer types. The only based modifier
that can be applied to non-pointer typesisthe’ based(_segname("WATCOM"))' style.

memory model modifiers are not allowed for class members

Class members describe the arrangement and interpretation of memory and, as such,
assume the memory model of the address used to access the member.

redefinition of the typedef name’ %S ignored

The compiler has detected that a slightly different type has been assigned to a typedef
name. Thetypeisfunctionally equivalent but typedef redefinitions should be precisely
identical.

constructor for variable’ %S cannot be bypassed

The variable may not be constructed when code is executing at the position the message
indicated. The C++ language places these restrictions to prevent the use of unconstructed
variables.

syntax error; missing start of function body after constructor initializer

Member initializers can only be used in a constructor’s definition.

Example:
struct S {
int a;
S(int x =1) : a(x)
{
}
1

conversion ambiguity: [expression] to [type of default argument]
A conversion to an ambiguous base class was detected in the default argument expression.
conversion of expression for default argument isimpossible

A conversion to aunrelated class was detected in the default argument expression.

Diagnostic Messages 525

Appendices

588

589

590

591

592

593

594

595

syntax error before template name’ %s

Theidentifier in the error message has been declared as a template name at this point in the
code. Thismay be the cause of the syntax error.

private base class accessed to convert default argument

A conversion to a private base class was detected in the default argument expression.
protected base class accessed to convert default argument

A conversion to a protected base class was detected in the default argument expression.
operand must be an Ivalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a cast cannot
be assigned into because a brand new value is always created. Assighing anew valueto a
temporary is a meaningless operation.

left operand must be an Ivalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a cast cannot
be assigned into because a brand new value is always created. Assighing anew valueto a
temporary is a meaningless operation.

right operand must be an Ivalue (cast produces rvalue)

The compiler is expecting avalue which can be assigned into. The result of acast cannot
be assigned into because a brand new value is always created. Assigning anew valueto a
temporary is a meaningless operation.

construct resolved as a declaration/type

The C++ language contains language ambiguities that force compilersto rely on extra
information in order to understand certain language constructs. The extrainformation
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. Seethe ARM p.93 for more details. Thiswarning isintended to inform the
programmer that an ambiguous construct has been resolved in a certain direction. In this
case, the construct has been determined to be part of atype. Thefinal resolution varies
between compilers so it is wise to change the source code so that the construct is not
ambiguous. Thisisespecialy important in cases where the resolution is more than three
tokens away from the start of the ambiguity.

construct resolved as an expression

The C++ language contains language ambiguities that force compilersto rely on extra
information in order to understand certain language constructs. The extrainformation
required to disambiguate the language can be deduced by looking ahead in the sourcefile.
Once a single interpretation has been found, the compiler can continue analysing source
code. Seethe ARM p.93 for more details. Thiswarning isintended to inform the
programmer that an ambiguous construct has been resolved in a certain direction. In this
case, the construct has been determined to be part of an expression (afunction-like cast).
Thefinal resolution varies between compilers so it is wise to change the source code so that

526 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

596

597

598

599

the construct is not ambiguous. Thisis especially important in cases where the resolution is
more than three tokens away from the start of the ambiguity.

construct cannot be resolved

The C++ language contains language ambiguities that force compilersto rely on extra
information in order to understand certain language constructs. The extrainformation
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. Seethe ARM p.93 for more details. Thiswarning isintended to inform the
programmer that an ambiguous construct could not be resolved by the compiler. Please
report this to the Open Watcom devel opement team so that the problem can be analysed.
See http://www.openwatcom.org/.

encountered another ambiguous construct during disambiguation

The C++ language contains language ambiguities that force compilersto rely on extra
information in order to understand certain language constructs. The extrainformation
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. Seethe ARM p.93 for more details. Thiswarning isintended to inform the
programmer that another ambiguous construct was found inside an ambiguous construct.
The compiler will correctly disambiguate the construct. The programmer is advised to
change code that exhibits this warning because thisis definitely uncharted territory in the
C++ language.

ellipsis (...) argument contains compiler generated information
A classwith virtual functions or virtual bases is being passed to a function that will not

know the type of the argument. Since thisinformation can be encoded in a variety of ways,
the code may not be portable to another environment.

Example:
struct S
{ virtual int foo();
b

static S sv;
extern int bar(S, ...);
static int test = bar(sv, 14, 64);

The call to "bar" causes awarning, since the structure S contains information associated
with the virtual function for that class.

cannot convert argument for ellipsis(...) argument

This argument cannot be used as an ellipsis (...) argument to a function.

Diagnostic Messages 527

Appendices

600

601

602

603

604

605

606

607

conversion ambiguity: [argument] to[ellipsis(...) argument]

A conversion ambiguity was detected while converting an argument to an ellipsis (...)
argument.

converted function type has different #pragma from original function type

Since a #pragma can affect calling conventions, one must be very careful performing casts
involving different calling conventions.

class value used as return value or argument in converted function type

The compiler has detected a cast between "C" and "C++" linkage function types. The
calling conventions are different because of the different language rules for copying
structures.

class value used as return value or argument in original function type

The compiler has detected a cast between "C" and "C++" linkage function types. The
calling conventions are different because of the different language rules for copying
structures.

must ook ahead to deter mine whether construct is a declaration/type or an expression

The C++ language contains language ambiguities that force compilersto rely on extra
information in order to understand certain language constructs. The extrainformation
required to disambiguate the language can be deduced by looking ahead in the source file.
Once a single interpretation has been found, the compiler can continue analysing source
code. Seethe ARM p.93 for more details. Thiswarning isintended to inform the
programmer that an ambiguous construct has been used. The final resolution varies
between compilers so it is wise to change the source code so that the construct is not
ambiguous.

assembler: ' %s

An error has been detected by the #pragma inline assembler.

default argument expression cannot reference 'this

The order of evaluation for function arguments is unspecified in the C++ language
document. Thus, adefault argument must be able to be evaluated before the 'this
argument (or any other argument) is evaluated.

#pragma aux must reference a"C" linkage function ' %S

The method of assigning pragma information via the #pragma syntax is provided for
compatibility with Open Watcom C. Because C only allows one function per name, this

was adequate for the C language. Since C++ allows functionsto be overloaded, a new
method of referencing pragmas has been introduced.

528 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

608

609

610

611

Example:
#pragma aux this_in_SI parmcaller [si] [ax];

struct S {
void __pragma("this_in_SI") foo(int);
void __pragma("this_in_SI") foo(char);

b
assignment is ambiguous for operands used

An ambiguity was detected while attempting to convert the right operand to the type of the
left operand.

Example:
struct S1 {
int a;

1

struct S2 @ S1 {
int b;
b

struct S3 : S2, S1 {
int c;
b

S1* fn(S3 *p)
{
}

In the example, class S1 occurs ambiguously for an object or pointer to an object of type
S3. A pointer to an S3 object cannot be converted to apointer to an S1 object.

return p;

pragma name’ %s’ is not defined

Pragmas are defined with the #pragma aux syntax. See the User’s Guide for the details of
defining a pragmaname. If the pragma has been defined then check the spelling between
the definition and the reference of the pragma name.

"%S could not be generated by the compiler

An error occurred while the compiler tried to generate the specified function. The error
prevented the compiler from generating the function properly so the compilation cannot
continue.

"catch’ does not immediately follow a’try’ or ’catch’

The catch handler syntax must be used in conjunction with atry block.

Diagnostic Messages 529

Appendices

612

613

614

615

616

Example:
void f()
{
try {
/1 code that may throw an exception
} catch(int x) {
/1 handle "int’ exceptions
} catch(...) {
/1 handl e all other exceptions
}
}
preceding catch specified ...’

Since an dlipsis"..." catch handler will handle any type of exception, no further catch
handlers can exist afterwards because they will never execute. Reorder the catch handlers
so that the"..." catch handler isthe last handler.

argument to extern " C" function contains compiler generated information
A classwith virtual functions or virtual bases is being passed to a function that will not

know the type of the argument. Since thisinformation can be encoded in a variety of ways,
the code may not be portable to another environment.

Example:
struct S
{ virtual int foo();
b

static S sv;
extern "C" int bar(S);

static int test = bar(sv);

The call to "bar" causes awarning, since the structure S contains information associated
with the virtual function for that class.

previous try block defined %L

This informational message indicates where a preceding try block is defined.

previous catch block defined %L

This informational message indicates where a preceding catch block is defined.

catch handler can never be invoked

Because the handlers for atry block are tried in order of appearance, the type specified in a
preceding catch can ensure that the current handler will never beinvoked. This occurs
when a base class (or reference) precedes a derived class (or reference); when a pointer to a

base class (or reference to the pointer) precedes a pointer to a derived class (or reference to
the pointer); or, when "void*" or "void*&" precedes a pointer or areference to the pointer.

530 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

617

618

Example:
struct BASE {};
struct DERIVED : public BASE {};

foo()

{

try {
/1 code for try

} catch(BASE b) { 11 [1]
/1 code
} catch(DERIVED) { /1 warning: [1]
/1 code
} catch(BASE* pb) { 1 [2]
/1 code
} catch(DERIVED* pd) {// warning: [2]
/1 code
} catch(void* pv) { 1 [3]
/1 code
} catch(int* pi) { /1 warning: [3]
/1 code
} catch(BASE& br) { /1 warning: [1]
/1 code
} catch(float*& pfr) {// warning: [3]
/1 code
}
}

Each erroneous catch specification indicates the preceding catch block which caused the
error.

cannot overload extern "C" functions (the other functionis’%S)

The C++ language only allows you to overload functions that are strictly C++ functions.
The compiler will automatically generate the correct code to distinguish each particular
function based on its argument types. The extern "C" linkage mechanism only allows you
to define one "C" function of a particular name because the C language does not support
function overloading.

function will be overload ambiguous with ' %S using default arguments

The declaration declares a function that is indistinguishable from another function of the
same name with default arguments.

Example:
void fn(int, int =1);
void fn(int);

Calling the function ' fn’ with one argument is ambiguous because it could match either the
first 'fn’ with adefault argument applied or the second ' fn’ without any default arguments.

Diagnostic Messages 531

Appendices

619 linkage specification is different than previous declaration’ %S

The linkage specification affects the binding of names throughout a program. It is
important to maintain consistency because subtle problems could arise when the incorrect
functioniscaled. Usually this error prevents an unresolved symbol error during linking
because the name of a declaration is affected by its linkage specification.

Example:
extern "C'" void fn(void);
void fn(void)
{
}

620 not enough segment registers available to generate ' %s

Through a combination of options, the number of available segment registersistoo small.
This can occur when too many segment registers are pegged. This can be fixed by
changing the command line options to only peg the segment registers that must absolutely

be pegged.

621 pure virtual destructors must have a definition

Thisisan anomaly for pure virtual functions. A destructor is the only special function that
isinherited and allowed to be virtual. A derived class must be able to call the base class
destructor so a pure virtual destructor must be defined in a C++ program.

622 jump into try block
Jumps cannot enter try blocks.

Example:
foo(int a)

if(a) goto tr_Iab;

try {
tr_|ab:
throw 1234;
} catch(int) {
if(a) goto tr_Iab;

if(a) goto tr_lab;

All the preceding goto’s areillegal. The error is detected at the label for forward jumps and
at the goto’ s for backward jumps.

532 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

623

624

625

626

627

jump into catch handler
Jumps cannot enter catch handlers.

Example:
foo(int a)

if(a)goto ca_l ab;
try {
if(a)goto ca_l ab;

} catch(int) {
ca_l ab:

}

if(a)goto ca_l ab;
}

All the preceding goto’'s areillegal. The error is detected at the label for forward jumps and
at the goto’ s for backward jumps.

catch block does not immediately follow try block

At least one catch handler must immediately follow the"}" of atry block.

Example:
extern void goop();
void foo()
{
try {
goop() ;
} // a catch bl ock should foll ow
}

In the example, there were no catch blocks after the try block.

exceptions must be enabled to use feature (use ' xs' option)

Exceptions are enabled by specifying the 'xs option when the compiler isinvoked. The
error message indicates that a feature such astry, catch, throw, or function exception
specification has been used without enabling exceptions.

/O error reading ' %s': %s'

When attempting to read data from a source or header file, the indicated system error
occurred. Likely thereisahardware problem, or the file system has become corrupt.

text following pre-processor directive
A #else or #endif directive was found which had tokens following it rather than an end of

line. Some UNIX style preprocessors alowed this, but it is not legal under standard C or
C++. Make the tokens into a comment.

Diagnostic Messages 533

Appendices

628

629

630

631

632

expression is not meaningful

This message indicates that the indicated expression is not meaningful. An expressionis
meaningful when afunction isinvoked, when an assignment or initialization is performed,
or when the expression is casted to void.

Example:
void foo(int i, int j)
{
i+, [/ not neaningful
}

expression has no side effect

The indicated expression does not cause aside effect. A side effect is caused by invoking a
function, by an assignment or an initialization, or by reading a volatile variable.

Example:
int k;
void foo(int i, int j)
{
i +j, [/ no side effect (note comm)
k = 3;
}

source conversion typeis’ %T’

This informational message indicates the type of the source operand, for the preceding
conversion diagnostic.

target conversion typeis’%T’

This informational message indicates the target type of the conversion, for the preceding
conversion diagnostic.

redeclaration of %S has different attributes

A function cannot be made virtual or pure virtual in a subsequent declaration. All
properties of afunction should be described in the first declaration of afunction. Thisis
especialy important for member functions because the properties of a class are affected by
its member functions.

Example:
struct S {
void fun();
3
virtual void S::fun()
{
}

534 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

633

634

635

636

637

638

template class instantiation for ' %T was %L

This informational message indicates that the error or warning was detected during the
instantiation of a class template. The final type of the template classis shown aswell asthe
location in the source where the instantiation was initiated.

template function instantiation for ' %S was %L

This informational message indicates that the error or warning was detected during the
instantiation of afunction template. The final type of the template function is shown as
well as the location in the source where the instantiation was initiated.

template class member instantiation was %L

This informational message indicates that the error or warning was detected during the
instantiation of amember of a classtemplate. The location in the source where the
instantiation was initiated is shown.

function template binding for * %S was %L

Thisinformational message indicates that the error or warning was detected during the
binding process of afunction template. The binding process occurs at the point where
arguments are analysed in order to infer what types should be used in a function template
instantiation. The function template in question is shown along with the location in the
source code that initiated the binding process.

function template binding of ' %S was %L

This informational message indicates that the error or warning was detected during the
binding process of a function template. The binding process occurs at the point where a
function prototype is analysed in order to seeif the prototype matches any function
template of the same name. The function template in question is shown along with the
location in the source code that initiated the binding process.

"%s’ defined %L

Thisinformational message indicates where the classin question was defined. The
message is displayed following an error or warning diagnostic for the classin question.

Example:
class S
int foo(S*p)
{

}

return p->x;

The variable p is apointer to an undefined class and so will cause an error to be generated.
Following the error, the informational message indicates the line at which the class S was
declared.

Diagnostic Messages 535

Appendices

639

640

641

642

formis’#pragma template _depth level’ where’level’ is a non-zero number

This pragma sets the number of times templates will be instantiated for nested
instantiations. The depth check prevents infinite compile times for incorrect programs.

possible non-terminating template instantiation (use "#pragma template_depth %d" to
increase depth)

This message indicates that alarge number of expansions were required to complete a
template class or template function instantiation. This may indicate that thereis an
erroneous use of atemplate. If the program will complete given more depth, try using the
suggested #pragma.in the error message to increase the depth. The number provided is
double the previous value.

cannot inherit a partially defined base class ' %T’

This message indicates that the base class was in the midst of being defined when it was
inherited. The storage requirements for a class type must be known when inheritance is
involved because the layout of the final class depends on knowing the complete contents of
all base classes.

Example:
struct Partial {
struct Nested : Partial {
int n;
b
1

ambiguous function: %F defined %L

Thisinformational message shows the functions that were detected to be ambiguous.

Example:
int anb(char); /1 will be ambi guous
i nt anb(unsigned char); /1 will be ambi guous

int anb(char, char);
int k = anmb(14);

The constant value 14 has an int type and so the attempt to invoke the function anb is
ambiguous. The first two functions are ambiguous (and will be displayed); the third is not
considered (nor displayed) sinceit is declared to have a different number of arguments.

cannot convert argument %d defined %L
Thisinformational message indicates the first argument which could not be converted to

the corresponding type for the declared function. It is displayed when there is exactly one
function declared with the indicated name.

536 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

644

646

647

"this’ cannot be converted

This informational message indicates the this pointer for the function which could not be
converted to the type of the this pointer for the declared function. It is displayed when
there is exactly one function declared with the indicated name.

rejected function: %F defined %L

This informational message shows the overloaded functions which were rejected from
consideration during function-overload resolution. These functions are displayed when
there is more than one function with the indicated name.

"%T’ operator can be used

Following a diagnosis of operator ambiguity, this information message indicates that the
operator can be applied with operands of the type indicated in the message.

Example:
struct S {
S(int);
operator int();
S operator+(int);
1
S s(15);
int k =s + 123; /1 "+" is anbi guous

In the example, the "+" operation is ambiguous because it can implemented as by the
addition of two integers (with S: : oper at or i nt applied to the second operand) or by a
cal to S: : oper at or +. Thisinformational message indicates that the first is possible.

cannot #undef ' %s’

Thepredefined macros __cplusplus, _ DATE , _ FILE , _ LINE _,
__STDC__, _ _TIME__, _ FUNCTION_ _ and func__ cannot be undefined using
the #undef directive.
Example:

#undef __cpl uspl us

#undef _ DATE _

#undef _ FILE _
#undef _ LINE_ _

#undef _ STDC

#undef __TIME__

#undef __ FUNCTI ON__
#undef _ func_ _

All of the preceding directives are not permitted.

Diagnostic Messages 537

Appendices

648 cannot #define ' %s’

Thepredefined macros __cplusplus, _ DATE _, _ FILE , _ LINE _,
__STDC__, and__TI ME__ cannot be defined using the #define directive.

Example:
#define __cplusplus
#define __ DATE _

#define __ FILE _

#define __ LINE _
#define ___STDC _

#define _ TIME _

ounhbhwnbE

All of the preceding directives are not permitted.
649 template function ' %F’ defined %L

This informational message indicates where the function template in question was defined.
The message is displayed following an error or warning diagnostic for the function
template in question.

Example:
tenpl ate <class T>
void foo(T, T *)
{
}

voi d bar ()
foo(1l); /1 could not instantiate
The function template for f 00 cannot be instantiated for a single argument causing an error
to be generated. Following the error, the informational message indicates the line at which
f 00 was declared.

650 ambiguous function template: %F defined %L

This informational message shows the function templates that were detected to be
ambiguous for the arguments at the call point.

651 cannot instantiate %S
This message indicates that the function template could not be instantiated for the

arguments supplied. It is displayed when there is exactly one function template declared
with the indicated name.

538 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

652

653

654

655

656

rejected function template: %F defined %L

This informational message shows the overloaded function template which was rejected
from consideration during function-overload resolution. These functions are displayed
when there is more than one function or function template with the indicated name.

operand cannot be a function

Theindicated operation cannot be applied to afunction.

Example:
int Fun();
int j = ++Fun; // illegal

In the example, the attempt to increment afunctionisillegal.
left operand cannot be a function
Theindicated operation cannot be applied to the left operand which is afunction.

Example:
extern int Fun();
voi d foo()

Fun = 0; /1 illegal
}

In the example, the attempt to assign zero to afunction isillegal.
right operand cannot be a function

Theindicated operation cannot be applied to the right operand which is afunction.

Example:
extern int Fun();
void foo()
voi d* p = 3[Fun]; [l illegal
}

In the example, the attempt to subscript afunctionisillegal.

define this function inside its class definition (may improve code quality)

The Open Watcom C++ compiler has found a constructor or destructor with an empty
function body. An empty function body can usually provide optimization opportunities so

the compiler isindicating that by defining the function inside its class definition, the
compiler may be able to perform some important optimizations.

Diagnostic Messages 539

Appendices

Example:
struct S {
~S();

S ~s() {
}

657 define this function inside its class definition (could have improved code quality)

The Open Watcom C++ compiler has found a constructor or destructor with an empty
function body. An empty function body can usually provide optimization opportunities so
the compiler isindicating that by defining the function inside its class definition, the
compiler may be able to perform some important optimizations. This particular warning
indicates that the compiler has already found an opportunity in previous code but it found
out too late that the constructor or destructor had an empty function body.

Example:
struct S {
~S();

1
struct T : S{
~T() {}

S ~S() {
}

658 cannot convert address of overloaded function ’ %S

Thisinformation message indicates that an address of an overloaded function cannot be
converted to the indicated type.

Example:
i nt ovload(char);
int ovload(float);
int routine(int (*)(int);
int K =routine(ovload);

Thefirst argument for the function r out i ne cannot be converted, resulting in the
informational message.

659 expression cannot have void type

Theindicated expression cannot have a void type.

Example:
main(int argc, char* argv)
{
if((void)argc) {
return 5;
} else {
return 9;
}
}

540 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Conditional expressions, such asthe oneillustrated in the if statement cannot have a void
type.

660 cannot reference a hit field
The smallest addressable unit isabyte. You cannot reference a bit field.

Example:
struct S
{ int bits :6;
int bitfield :10;

1

S var;

int& ref = var.bitfield; /1 illegal
661 cannot assign to object having an undefined class

An assignment cannot be be made to an object whose class has not been defined.

Example:
class X /1 decl ared, but not defined
extern X& foo(); /1 returns reference (ok)

extern X obj;
voi d goop()
{

obj = foo(); [l error

}

662 cannot create member pointer to constructor

A member pointer value cannot reference a constructor.

Example:
class C{
)
int foo()
return 0 == &C: : C,
}
663 cannot create member pointer to destructor

A member pointer value cannot reference a destructor.

Example:
class C{

. ~X();
int foo()

return 0 == &C. : ~C,

Diagnostic Messages 541

Appendices

664 attempt to initialize a non-constant reference with a temporary object
A temporary value cannot be converted to a non-constant reference type.

Example:
struct C {
A C&);
Cint);

& cC
c2

1,

oo 7
e
N

Theinitiaizations of ¢c1 and c2 are erroneous, since temporaries are being bound to
non-const references. Inthe caseof c1, animplicit constructor call isrequired to convert
the integer to the correct object type. Thisresultsin atemporary object being created to
initialize the reference. Subseguent code can modify this temporary’s state. The
initialization of c2, iserroneous for asimilar reason. In this case, the temporary is being
bound to the non-const reference argument of the copy constructor.

665 temporary object used to initialize a non-constant reference

Ordinarily, atemporary value cannot be bound to a non-constant reference. Thereis
enough legacy code present that the Open Watcom C++ compiler issues awarning in cases
that should be errors. This may changein the future so it is advisable to correct the code as
soon as possible.

666 assuming unary 'operator &' not overloaded for type’%T’

An explicit address operator can be applied to areference to an undefined class. The Open
Watcom C++ compiler will assume that the addressis required but it does not know
whether this was the programmer’ s intention because the class definition has not been seen.

Example:
struct S;

S* fn(S&) {
/1 assuming no operator '& defined
return &y;

}

667 'va_start’ macro will not work without an argument before ...’

The warning indicates that it isimpossible to access the arguments passed to the function
without declaring an argument beforethe "..." argument. The"..." style of argument list
(without any other arguments) is only useful as a prototype or if the function is designed to
ignore al of its arguments.

542 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

668

669

Example:
void fn(...)
{
}

'va_start’ macro will not work with a reference argument before ...’

The warning indicates that taking the address of the argument before the "..." argument,
which’va_start’ doesin order to access the variable list of arguments, will not give the
expected result. The arguments will have to be rearranged so that an acceptable argument
is declared before the"..." argument or adummy int argument can be inserted after the
reference argument with the corresponding adjustments made to the callers of the function.

Example:
#i ncl ude <stdarg. h>

void fn(int &, ...)
{

va_list args;

/] address of 'r’ is address of

/1 object 'r’ references so

/1 "va_start’ will not work properly
va_start(args, r);

va_end(args);

}

'va_start’ macro will not work with a class argument before’...’

Thiswarning is specific to C++ compilers that quietly convert class argumentsto class
reference arguments. The warning indicates that taking the address of the argument before
the"..." argument, which ’va_start’ doesin order to access the variable list of arguments,
will not give the expected result. The arguments will have to be rearranged so that an
acceptable argument is declared before the "..." argument or a dummy int argument can be
inserted after the class argument with the corresponding adjustments made to the callers of
the function.

Example:
#i ncl ude <stdarg. h>

struct S {
. S();

void fn(Sc, ...)
{

va_list args;

/1 Open Watcom C++ passes a pointer to
/1 the tenporary created for passing
[l ¢’ rather than pushing "¢’ on the
/1l stack so 'va_start’ will not work
[l properly

va_start(args, c);

va_end(args);

3

Diagnostic Messages 543

Appendices

670 function modifier conflicts with previous declaration’ %S

The symbol declaration conflicts with a previous declaration with regard to function
modifiers. Either the previous declaration did not have a function modifier or it had a
different one.

Example:
#pragnma aux never_returns aborts;

void fn(int, int);
void __pragma("never_returns") fn(int, int);

671 function modifier cannot be used on a variable

The symbol declaration has afunction modifier being applied to a variable or non-function.
The cause of this may be a declaration with a missing function argument list.

Example:
int (* __ pascal ok)();
int (* __pascal not_ok);

672 "%T’ contains the following pure virtual functions

This informational message indicates that the class contains pure virtual function
declarations. The classis definitely abstract as aresult and cannot be used to declare
variables. The pure virtual functions declared in the class are displayed immediately
following this message.

Example:
struct A {
void virtual fn(int) = 0;
A X;
673 "%T" has no implementation for the following pure virtual functions

Thisinformational message indicates that the classis derived from an abstract class but the
class did not override enough virtual function declarations. The pure virtual functions
declared in the class are displayed immediately following this message.

Example:
struct A {
void virtual fn(int) = 0;
s

struct D: A {
b

D x;

544 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

674

675

676

677

678

pure virtual function’%F’ defined %L

This informational message indicates that the pure virtual function has not been overridden.
This means that the classis abstract.

Example:
struct A {
void virtual fn(int) = 0;
b

struct D: A {
1

D x;
restriction: standard calling convention required for ’ %S
Theindicated function may be called by the C++ run-time system using the standard
calling convention. The calling convention specified for the function isincompatible with
the standard convention. This message may result when __pascal isspecified for a
default constructor, a copy constructor, or a destructor. It may also result when par m
rever se isspecified in a#pragma for the function.

number of argumentsin function call isincorrect

The number of argumentsin the function call does not match the number declared for the
function type.

Example:
extern int (*pfn)(int, int);
int kK =pfn(1, 2, 3);

In the example, the function pointer was declared to have two arguments. Three arguments
were used in the call.

function has type ' %T

This informational message indicates the type of the function being called.

invalid octal constant

The constant started with a’0’ digit which makesit look like an octal constant but the
constant contained the digits’8 and’9’. The problem could be an incorrect octal constant

or amissing’.’ for afloating constant.

Example:
int i = 0123456789; // invalid octal constant
doubl e d = 0123456789; // missing '.'?

Diagnostic Messages 545

Appendices

679 class template definition started %L

This informational message indicates where the class template definition started so that any
problems with missing braces can be fixed quickly and easily.

Example:
tenpl ate <class T>
struct S {
void f1() {
/1 error mssing '}’

b

tenpl ate <class T>
struct X {
void f2() {
}
s

680 constructor initializer started %L

This informational message indicates where the constructor initializer started so that any
problems with missing parenthesis can be fixed quickly and easily.

Example:
struct S {
S(int x) : a(x), b(x // mssing parenthesis
{
}
1
681 zero size array must be the last data member

The language extension that allows a zero size array to be declared in a class definition
requires that the array be the last data member in the class.

Example:
struct S {
char a[];
int b;
1

682 cannot inherit a class that contains a zero size array

The language extension that allows a zero size array to be declared in a class definition
disallows the use of the class asa base class. This prevents the programmer from
corrupting storage in derived classes through the use of the zero size array.

Example:
struct B {
int b;
char a[];

siruct D: B{
int d,
b

546 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

683 zerosizearray ' %S cannot be used in a class with base classes

The language extension that allows a zero size array to be declared in a class definition
requires that the class not have any base classes. Thisisrequired because the C++ compiler
must be free to organize base classes in any manner for optimization purposes.

Example:
struct B {
int b;
i

struct D: B {
int d,
char a[];

684 cannot catch abstract class object

C++ does not allow abstract classes to be instantiated and so an abstract class object cannot
be specified in acatch clause. It ispermissible to catch areference to an abstract class.

Example:
cl ass Abstract {
public:
virtual int foo() = O;
1

class Derived : Abstract {
public:
int foo();

int xyz;

void func(void) {

try {
throw Derived();

} catch(Abstract abstract) { /'l object
xXyz = 1,
}

}

The catch clause in the preceding example would be diagnosed as improper, since an
abstract classis specified. The example could be coded as follows.

Example:

Diagnostic Messages 547

Appendices

cl ass Abstract {
publi c:

virtual int foo() = 0;
1

class Derived : Abstract {
publi c:
int foo();

int xyz;

void func(void) {
try {
throw Derived();
} catch(Abstract & abstract) { // reference

xyz = 1,
}
}
685 non-static member function’ %S cannot be specified

Theindicated non-static member function cannot be used in this context. For example,
such afunction cannot be used as the second or third operand of the conditional operator.

Example:
struct S {
int foo();
int bar();
int fun();
1

int S::fun(int i) {
return (i ? foo : bar)();
}

Neither f 0o nor bar can be specified as shown in the example. The example can be
properly coded as follows:

Example:
struct S {
int foo();
int bar();
int fun();
1

int S;:fun(int i) {
return i ? foo() : bar();
}

548 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

686

687

688

689

690

attempt to convert pointer or reference from a base to a derived class

A pointer or reference to a base class cannot be converted to a pointer or reference,
respectively, of aderived class, unlessthereisan explicit cast. The r et ur n statementsin
the following example will be diagnosed.

Example:
struct Base {};
struct Derived : Base {};
Base b;

Derived* ReturnPtr() { return &b; }
Derived& ReturnRef() { return b; }

The following program would be acceptable:

Example:
struct Base {};
struct Derived : Base {};
Base b;

Derived* ReturnPtr() { return (Derived*)&b; }
Derived& ReturnRef() { return (Derived&)b; }

expression for 'while' isalwaystrue

The compiler has detected that the expression will always be true. Consequently, the loop
will execute infinitely unlessthere is a break statement within the loop or athrow
statement is executed while executing within the loop. If such an infinite loop is required,
it can becoded asf or (;) without causing warnings.

testing expression for 'for’ isalwaystrue

The compiler has detected that the expression will always be true. Consequently, the loop
will execute infinitely unless there is abreak statement within the loop or athrow
statement is executed while executing within the loop. If such an infinite loop is required,
it can becoded asf or (;) without causing warnings.

conditional expression is always true (hon-zero)

The indicated expression is a non-zero constant and so will always be true.

conditional expression is always false (zero)

Theindicated expression is a zero constant and so will always be false.

Diagnostic Messages 549

Appendices

691 expecting a member of *%T’ to be defined in this context

A class template member definition must define a member of the associated class template.
The complexity of the C++ declaration syntax can make this error hard to identify visually.

Example:
tenpl ate <class T>
struct S {
typedef int X
static X fn(int);
static X qg;

tenpl ate <class T>
S<T>::X fn(int) {// should be 'S<T>:.:fn’

return fn(2);

}

tenmpl ate <class T>
S<T>::X qq = 1; // should be 'S<T>::q

S<i nt> x;
692 cannot throw an abstract class

An abstract class cannot be thrown since copies of that object may have to be made (which
isimpossible);
Example:
struct abstract _class {
abstract _class(int);
virtual int foo() = 0;
b
voi d goop()
{

throw abstract _class(17);

}

Thethrow expressionisillegal since it specifies an abstract class.
693 cannot create pre-compiled header file’%s

The compiler has detected a problem while trying to open the pre-compiled header file for
write access.

694 error occurred while writing pre-compiled header file

The compiler has detected a problem while trying to write some data to the pre-compiled
header file.

550 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

695

696

697

698

699

700

701

702

error occurred while reading pre-compiled header file

The compiler has detected a problem while trying to read some data from the pre-compiled
header file.

pre-compiled header file being recreated

The existing pre-compiled header file may either be corrupted or is aversion that the
compiler cannot use due to updates to the compiler. A new version of the pre-compiled
header file will be created.

pre-compiled header file being recreated (different compile options)

The compiler has detected that the command line options have changed enough so the
contents of the pre-compiled header file cannot be used. A new version of the
pre-compiled header file will be created.

pre-compiled header file being recreated (different #include file)

The compiler has detected that the first #include file name is different so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

pre-compiled header file being recreated (different current directory)

The compiler has detected that the working directory is different so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

pre-compiled header file being recreated (different INCLUDE path)

The compiler has detected that the INCLUDE path is different so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

pre-compiled header file being recreated (' %s has been modified)

The compiler has detected that an include file has changed so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled header file
will be created.

pre-compiled header file being recreated (macro ' %s' is different)

The compiler has detected that a macro definition is different so the contents of the
pre-compiled header file cannot be used. The macro was referenced during processing of

the header file that created the pre-compiled header file so the contents of the pre-compiled
header may be affected. A new version of the pre-compiled header file will be created.

Diagnostic Messages 551

Appendices

703

704

705

706

707

708

pre-compiled header file being recreated (macro '%s' is not defined)

The compiler has detected that a macro has not been defined so the contents of the
pre-compiled header file cannot be used. The macro was referenced during processing of
the header file that created the pre-compiled header file so the contents of the pre-compiled
header may be affected. A new version of the pre-compiled header file will be created.
command line specifies smart windows callbacks and DS not equal to SS

Anillegal combination of switches has been detected. The windows smart callbacks option
cannot be combined with either of the build DLL or DS not equal to SS options.

class’ %N’ cannot be used with #pragma dump_object_model

Theindicated name has not yet been declared or has been declared but not yet been defined
asaclass. Conseguently, the object model cannot be dumped.

repeated modifier is’ %s

This informational message indicates what modifier was repeated in the declaration.

Example:
typedef int __far FARINT;
FARINT _ far *p; /1 repeated __far nodifier

semicolon (*;") may be missing after class/enum definition

This informational message indicates that amissing semicolon (*;’) may be the cause of the
error.

Example:
struct S {
int x,y;
S(C int, int);
} // mssing sem col on

S::S(int x, inty) : x(x), y(y) {
}

cannot return a type of unknown size
A value of an unknown type cannot be returned.

Example:
class S;
S foo();

i nt goo()

foo();
}

In the example, foo cannot be invoked because the class which it returns has not been
defined.

552 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

709

710

711

712

cannot initialize array member ' %S
An array class member cannot be specified as a constructor initializer.

Example:
class S {
publi c:
int arr[3];
S();

}s
S::S() :oarr(1, 2, 3) {}

In the example, ar r cannot be specified as a constructor initiaizer. Instead, the array may
beinitialized within the body of the constructor.

Example:

class S {

publi c:
int arr[3];
S();

i

S S()
arr[0] = 1,
arr[1] = 2;
arr[2] = 3

}

file'%s will #include itself forever

The compiler has detected that the file in the message has been #include from within itself
without protecting against infinite inclusion. This can happen if #ifndef and #define header
file protection has not been used properly.

Example:
#include __ FILE _

"mutable’ may only be used for non-static class members
A declaration in file scope or block scope cannot have a storage class of mutable.

Example:
mut able int a;

"mutable’ member cannot also be const
A mutable member can be modified even if its class object is const. Due to the semantics

of mutable, the programmer must decide whether a member will be const or mutable
because it cannot be both at the same time.

Diagnostic Messages 553

Appendices

Example:
struct S {
nmutable const int * p; // K
nmutable int * const q; // error
1
713 left operand cannot be of type bool

The left hand side of an assignment operator cannot be of type bool except for ssimple
assignment. Thisisarestriction required in the C++ language.

Example:
bool q;

void fn()

q += 1
}

714 operand cannot be of type bool

The operand of both postfix and prefix "--" operators cannot be of type bool. Thisisa
restriction required in the C++ language.

Example:
bool q;
void fn()
--q; /'l error
g--; /1 error
}
715 member '%N' has not been declared in’ %T’

The compiler has found a member which has not been previously declared. The symbol
may be spelled differently than the declaration, or the declaration may simply not be
present.

Example:
struct X { int m };

void fn(X *p)

{
p->x = 1,
}
716 integral value may be truncated

This message indicates that the compiler knows that all values will not be preserved after
the assignment or initialization. If thisis acceptable, cast the value to the appropriate type
in the assignment or initialization.

554 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

717

718

719

720

721

722

Example:
char inc(char c)
{
return c + 1,
}

left operand typeis’ %T’

This informational message indicates the type of the left hand side of the expression.
right operand typeis’%T’

This informational message indicates the type of the right hand side of the expression.
operand typeis’%T’

This informational message indicates the type of the operand.

expression typeis’ %T’

This informational message indicates the type of the expression.

virtual function’%S cannot have its return type changed

Thisrestriction is due to the relatively new feature in the C++ language that allows return
values to be changed when a virtual function has been overridden. It isnot possible to
support both features because in order to support changing the return value of a function,
the compiler must construct a "wrapper” function that will call the virtual function first and
then change the return value and return. It isnot possible to do thiswith "..." style

functions because the number of parametersis not known.

Example:
struct B {

struct D : virtual B {

}s

struct X {
virtual B *fn(int, ...);
i

struct Y : X {
virtual D *fn(int, ...);
1
__declspec(’%N') is not supported

Theidentifier used inthe _declspec declaration modifier is not supported by Open
Watcom C++.

Diagnostic Messages 555

Appendices

723

724

725

726

727

attempt to construct a far object when data model is near

Constructors cannot be applied to objects which are stored in far memory when the default
memory model for datais near.

Example:
struct Qbj
{ char *p;
oj () ;

Qoj far obj;

The last line causes this error to be displayed when the memory model is small (switch
-ms), since the memory model for datais near.

-20 is an obsolete switch (has no effect)

The -zo option was required in an earlier version of the compiler but is no longer used.
ey

Thisis auser message generated with the #pragma message preprocessing directive.

Example:
#pragnma nessage("my very own warning");

no reference to formal parameter ' %S

There are no references to the declared formal parameter. The simplest way to remove this
warning in C++ isto remove the name from the argument declaration.

Example:
int fnl(int a, int b, int ¢c)

/1 b not referenced
return a + c;

int fn2(int a, int /* b */, int c)
{

}

return a + c;

cannot dereference a pointer to void

A pointer to void is used as a generic pointer but it cannot be dereferenced.

556 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

728

729

730

Example:
void fn(void *p)
{
return *p;
}

class modifiersfor *%T’ conflict with class modifiers for ' %T’

A conflict between class modifiers for classes related through inheritance has been
detected. A conflict will occur if two base classes have class modifiers that are different.
The conflict can be resolved by ensuring that all classes related through inheritance have
the same class modifiers. The default resolution is to have no class modifier for the derived
base.

Example:
struct __ cdecl Bl {
void fn(int);

I

struct __stdcall B2 {
void fn(int);

1

struct D: Bl, B2 {

b

invalid hexadecimal constant

The constant started with a’0x’ prefix which makesit look like a hexadecimal constant but
the constant was not followed by any hexadecimal digits.

Example:
unsigned i = 0x; /1 invalid hex constant

return type of 'operator ->" will not allow’->" to be applied

Thisrestriction is aresult of the transformation that the compiler performs when the
operator -> isoverloaded. The transformation involves transforming the expression to
invoke the operator with "->" applied to the result of operator ->. Thiswarning indicates
that the operator -> can never be used as an overloaded operator. The only way the
operator can be used isto explicitly cal it by name.

Example:
struct S {
int a;
void *operator ->();
1
void *fn(S &q)
{
return g.operator ->();
}

Diagnostic Messages 557

Appendices

731

732

733

734

735

class should have a name since it needs a constructor or a destructor

The class definition does not have a class name but it includes members that have
constructors or destructors. Since the class has C++ semantics, it should be have anamein
case the constructor or destructor needs to be referenced.

Example:
struct P {
int x,y;
P();
1

typedef struct {
P c;
int v;

} T

class should have a name since it inherits a class

The class definition does not have a class name but it inheritsaclass. Since the class has
C++ semantics, it should be have aname in case the constructor or destructor needs to be
referenced.

Example:
struct P {
int x,y;

P();

typedef struct : P {
int v;
P T

cannot open pre-compiled header file’ %s

The compiler has detected a problem while trying to open the pre-compiled header file for
read/write access.

invalid second argument to va_start

The second argument to the va_start macro should be the name of the argument just before
the"..." in the argument list.

'II' style comment continues on next line

The compiler has detected a line continuation during the processing of a C++ style
comment ("//"). The warning can be removed by switching to a C style comment ("/**/").
If you require the comment to be terminated at the end of the line, make sure that the
backslash character is not the last character in the line.

558 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

736

737

738

739

740

741

Example:
#define XX 23 // coment start \
conment \
end
int x = XX [// comment start ...\

comment end
cannot open file’%s' for write access

The compiler has detected a problem while trying to open the indicated file for write
access.

implicit conversion of pointersto integral types of same size

The compiler allows, when extensions are enabled, implicit conversions between pointers
to integral types when the size of the integral types are the same. Thus, conversions from
unsigned char to either char or signed char would be allowed. Thisisan extension as the
ISO/ANSI Draft Working Paper permitsimplicit conversions only when the types pointed
at areidentical.

According to the ISO/ANSI Draft Working Paper, astring literal is an array of char.
Consequently, it isillegal to initialize or assign the pointer resulting from that literal to a
pointer of either unsigned char or signed char, since these pointers point at objects of a
different type. When extensions are enabled, this condition is diagnosed as a warning;
otherwise, it isan error.

option requires a number

The specified option is not recognized by the compiler since there was no number after it
(i.e., "-w=1"). Numbers must be non-negative decimal numbers.

option -fc specified more than once
The -fc option can be specified at most once on a command line.
option -fc specified in batch file of commands

The -fc option cannot be specified on aline in the batch file of command lines specified by
the -fc option on the command line used to invoke the compiler.

file specified by -fc is empty or cannot be read

Thefile specified using the -fc option is either empty or an input/output error was
diagnosed for thefile.

Diagnostic Messages 559

Appendices

742

743

744

745

746

747

748

cannot open file specified by -fc option

The compiler was unable to open the indicated file. Most likely, the file does not exist. An
input/output error is also possible.

input/output error reading the file specified by -fc option

The compiler was unable to open the indicated file. Most likely, the file does not exist. An
input/output error is also possible.

%N’ does not have a return type specified (int assumed)
In C++, operator functions should have an explicit return type specified. In future revisions

of the ISO/ANSI C++ standard, the use of default int type specifiers may be prohibited so
removing any dependencies on default int early will prevent problemsin the future.

Example:
struct S {
operator = (S const &);
operator += (S const &);
1

cannot initialize reference to non-constant with a constant object

A reference to a non-constant object cannot be initialized with a reference to a constant
type because this would allow constant data to be modified via the non-constant pointer to
it.

Example:
extern const int *pic;
extern int & ref = pic;

processing %s

This informational message indicates where an error or warning was detected while
processing the switches specified on the command line, in environment variables, in
command files (using the’ @' notation), or in the batch command file (specified using the
-fc option).

class’%T’ has not been defined

This informational message indicates a class which was not defined. Thisis noted
following an error or warning message because it often helps to a user to determine the
cause of that diagnostic.

cannot catch undefined class object

C++ does not allow abstract classes to be copied and so an undefined class object cannot be
specified in a catch clause. It is permissible to catch areference to an undefined class.

560 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

749

750

751

752

class’%T’ cannot be used since its definition has errors

The analysis of the expression could not continue due to previous errors diagnosed in the
class definition.

function prototype in block scope missing ' extern’

Thiswarning can be triggered when the intent is to define a variable with a constructor.
Due to the complexities of parsing C++, statements that appear to be variable definitions
may actually parse as afunction prototype. A work-around for this problem is contained in
the example. If aprototypeis desired, add the extern storage class to remove this warning.

Example:
struct C {
b
struct S {
S(C);
voi d foo()
{
Sa(¢)); /! function prototype!
b((C()));// variable definition
int bar(int);// warning
extern int sam(int); // no warning
}

function prototypeis’ %T’

Thisinformational message indicates what the type of the function prototypeisfor the
message in question.

class’%T’ containsa zero size array

Thiswarning is triggered when a class with a zero sized array isused in an array or asa
class member. Thisisaquestionable practice since a zero sized array at the end of aclass
often indicates a class that is dynamically sized when it is constructed.

Example:
struct C {
C *next;
char nane[];

1

struct X {
Ca;

b

C a[10];

Diagnostic Messages 561

Appendices

753 invalid 'new’ modifier

The Open Watcom C++ compiler does not support new expression modifiers but allows
them to match the ambient memory model for compatibility. Invalid memory model
modifiers are al so rejected by the compiler.

Example:
int *fn(unsigned x)
{
return new __interrupt int[x];
}
754 ' declspec(thread)’ data’%S must be link-time initialized

This error message indicates that the dataitem in question either requires a constructor,
destructor, or run-timeinitialization. This cannot be supported for thread-specific data at
thistime.

Example:
#i ncl ude <stdlib. h>

struct C {
) ;

i
struct D {
~D();

1

C __decl spec(thread) c;

D __decl spec(thread) d;

int __declspec(thread) e = rand();

755 code may not work properly if this module is split across a code segment

The"zm" option alows the compiler to generate functions into separate segments that have
different names so that more than 64k of code can be generated in one object file.
Unfortunately, if an explicit near function is coded in alarge code model, the possibility
exists that the linker can place the near function in a separate code segment than afunction
that callsit. Thiswould cause alinker error followed by an execution error if the
executable is executed. The"zmf" option can be used if you require explicit near functions
in your code.

Example:

562 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

756

757

758

759

760

761

/1 These functions may not end up in the
/1 sanme code segnent if the -zmoption

/1 is used. If this is the case, the near
/1 call will not work since near functions
/1 nmust be in the same code segnent to

/1 execute properly.

static int near near_fn(int x)

{
return x + 1,
}
int far_fn(int y)
{
return near_fn(y * 2);
}

#pragma extref: symbol '%N’ not declared

This error message indicates that the symbol referenced by #pragma extref has not been
declared in the context where the pragma was encountered.

#pragma extref: overloaded function’ %S cannot be used

An external reference can be emitted only for external functions which are not overloaded.
#pragma extref: '%N’ isnot a function or data

This error message indicates that the symbol referenced by #pragma extref cannot have an
external reference emitted for it because the referenced symbol is neither afunction nor a
dataitem. An external reference can be emitted only for external functions which are not
overloaded and for external dataitems.

#pragma extref: '%S is not external

This error message indicates that the symbol referenced by #pragma extref cannot have an
externa reference emitted for it because the symbol is not external. An external reference
can be emitted only for external functions which are not overloaded and for external data
items.

pre-compiled header file being recreated (debugging info may change)

The compiler has detected that the module being compiled was used to create debugging
information for use by other modules. In order to maintain correctness, the pre-compiled
header file must be recreated along with the object file.

octal escape sequence out of range; truncated

This message indicates that the octal escape sequence produces an integer that cannot fit
into the required character type.

Diagnostic Messages 563

Appendices

762

763

764

765

766

767

768

769

770

771

772

Example:
char *p = "\406";

binary operator *%s' missing right operand

There is no expression to the right of the indicated binary operator.

binary operator '%s missing left operand

Thereis no expression to the |eft of the indicated binary operator.

expression contains extra operand(s)

The expression contains operand(s) without an operator

expression contains consecutive operand(s)

More than one operand found in arow.

unmatched right parenthesis’)’

The expression contains aright parenthesis)" without a matching left parenthesis.
unmatched left parenthesis’ ('

The expression contains a left parenthesis (" without a matching right parenthesis.
no expression between parentheses ()’

There isamatching set of parenthesis"()" which do not contain an expression.
expecting ’:’ operator in conditional expression

A conditional expression exists without the’:’ operator.

expecting’?’ operator in conditional expression

A conditional expression exists without the’? operator.

expecting first operand in conditional expression

A conditional expression exists without the first operand.

expecting second operand in conditional expression

A conditional expression exists without the second operand.

564 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

773

774

775

776

77

778

779

expecting third operand in conditional expression

A conditional expression exists without the third operand.
expecting operand after unary operator ' %s

A unary operator without being followed by an operand.
%S’ unexpected in constant expression

"%s' not alowed in constant expression

assembler: '%s

A warning has been issued by the #pragma inline assembler.
expecting 'id’ after "::" but found ' %s

The'::" operator has an invalid token following it.

Example:
#define fn(x) ((x)+1)

struct S {
int inc(int y) {
return ::fn(y);

}
b

only constructors can be declared explicit
Currently, only constructors can be declared with the explicit keyword.
Example:
int explicit fn(int x) {
return x + 1,
}

const_cast type must be pointer, member pointer, or reference

The type specified in aconst_cast operator must be a pointer, a pointer to a member of a
class, or areference.

Example:
extern int const *p;
long I p = const_cast<long>(p);

Diagnostic Messages 565

Appendices

780

781

782

783

784

const_cast expression must be pointer to same kind of object

Ignoring const and volatile qualification, the expression must be a pointer to the same type
of object asthat specified in the const_cast operator.

Example:
extern int const * ip;
long* I p = const_cast<long*>(ip);

const_cast expression must be lvalue of the same kind of object

Ignoring const and volatile qualification, the expression must be an Ivalue or reference to
the same type of object as that specified in the const_cast operator.

Example:
extern int const i;
long& Ir = const_cast<long&(i);

expression must be pointer to member from same class in const_cast

The expression must be a pointer to member from the same class as that specified in the
const_cast operator.

Example:
struct B {
int ib;
b

struct D : public B {

b

extern int const B::* inb;

int D:* ind const_cast<int D::*>(inb);

expression must be member pointer to same type as specified in const_cast

Ignoring const and volatile qualification, the expression must be a pointer to member of the
sametype as that specified in the const_cast operator.

Example:
struct B {
int ib;
[ong | b;
i

int D:* inmd const_cast<int D.:*>(&::1b);
reinterpret_cast expression must be pointer or integral object

When a pointer typeis specified in the reinterpret_cast operator, the expression must be a
pointer or an integer.

566 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

785

786

787

Example:
extern float fval;
long* I p = const_cast<long*>(fval);

The expression hasfloat type and soisillegal.
reinterpret_cast expression cannot be casted to reference type

When areference type is specified in the reinterpret_cast operator, the expression must be
an Ivalue (or have reference type). Additionally, constness cannot be casted away.

Example:
extern long f;
extern const |long f2;
long& Irl = const_cast<long&(f + 2);
ong& Ir2 = const_cast<long&(f2);

Both initializations areillegal. Thefirst cast expressionisnot an lvalue. The second cast
expression attempts to cast away constness.

reinterpret_cast expression cannot be casted to pointer to member

When a pointer to member type is specified in the reinterpret_cast operator, the expression
must be a pointer to member. Additionally, constness cannot be casted away.

Example:
extern long f;
struct S {
const long f2;
S();
1

long S::* npl = const_cast<long S:: *>(f);
long S::* np2 = const_cast<long S:: *>(&S::f2);

Both initidizations areillegal. Thefirst cast expression does not involve a member pointer.
The second cast expression attempts to cast away constness.

only integral arithmetic types can be used with reinterpret_cast
Pointers can only be casted to sufficiently large integral types.
Example:

voi d* p;

float f = reinterpret_cast<float>(p);

The cast isillegal because float type is specified.

Diagnostic Messages 567

Appendices

788

789

790

791

only integral arithmetic types can be used with reinterpret_cast
Only integral arithmetic types can be casted to pointer types.

Example:
float flt;
void* p = reinterpret_cast<void*>(flt);

The castisillegal because f | t hasfloat type which isnot integral.
cannot cast away constness

A cast or implicit conversion isillegal because a conversion to the target type would
remove constness from a pointer, reference, or pointer to member.

Example:
struct S {
int s;
1

extern S const * ps;
extern int const S::* nps;
S* psl ps;

S& rsl *ps;

int S::* mpl = nps;

Thethreeinitidizations areillegal since they are attempts to remove constness.
size of integral type in cast less than size of pointer

An object of the indicated integral type istoo small to contain the value of the indicated
pointer.

Example:
int x;
char p = reinterpret_cast<char>(&);
char g = (char)(&);

Both casts are illegal since achar issmaller than a pointer.
type cannot be used in reinterpret_cast

The type specified with reinterpret_cast must be an integral type, a pointer type, a pointer to
amember of aclass, or areference type.

Example:
voi d* p;
float f = reinterpret_cast<float>(p);
void* g = (reinterpret_cast<void>(p), p);

The casts specify illegal types.

568 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

792 only pointers can be casted to integral types with reinterpret_cast
The expression must be a pointer type.
Example:
voi d* p;
float f = reinterpret_cast<float>(p);
void* q = (reinterpret_cast<void>(p), p);
The casts specify illegal types.
793 only integers and pointers can be casted to pointer types with reinterpret_cast
The expression must be a pointer or integral type.
Example:
voi d* x;
void* p = reinterpret_cast<void*>(16);
void* q = (reinterpret_cast<void*>(x), p);
The casts specify illegal types.

794 static_cast cannot convert the expression

Theindicated expression cannot be converted to the type specified with the static_cast
operator. Perhapsreinterpret_cast or dynamic_cast should be used instead;

795 static_cast cannot be used with the type specified
A static cast cannot be used with afunction type or array type.
Example:
typedef int fun(int);
extern int poo(long);
int i = (static_cast<fun)(poo))(22);
Perhaps reinterpret_cast or dynamic_cast should be used instead;
796 static_cast cannot be used with the reference type specified
The expression could not be converted to the specified type using static_cast.
Example:
[ong I ng;
int& ref = static_cast<int&(Ing);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

Diagnostic Messages 569

Appendices

797

798

799

800

801

static_cast cannot be used with the pointer type specified
The expression could not be converted to the specified type using static_cast.
Example:
[ong I ng;
int* ref = static_cast<int*>(Ing);
Perhaps reinterpret_cast or dynamic_cast should be used instead;
static_cast cannot be used with the member pointer type specified

The expression could not be converted to the specified type using static_cast.

Example:
struct S {
| ong | ng;
1

int S::* nmp = static_cast<int S::*>(&S::1ng);
Perhaps reinterpret_cast or dynamic_cast should be used instead;
static_cast type is ambiguous

More than one constructor and/or used-defined conversion function can be used to convert
the expression to the indicated type.

cannot cast from ambiguous base class

When more than one base class of a given type exists, with respect to a derived class, itis
impossible to cast from the base class to the derived class.

Example:
struct Base { int bl; };
struct DerA public Base { int da; };
struct DerB public Base { int db; };
struct Derived public DerA, public DerB { int d; }
Derived* foo(Base* p)

{
}

return static_cast<Derived*>(p);

The cast fails since Base isan ambiguous base class for Der i ved.
cannot cast to ambiguous base class

When more than one base class of a given type exists, with respect to aderived class, itis
impossible to cast from the derived class to the base class.

570 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct Base { int bl; };
struct DerA public Base { int da; };
struct DerB public Base { int db; };
struct Derived public DerA, public DerB { int d; }
Base* foo(Derived* p)

return (Base*)p;

}

The cast fails since Base isan ambiguous base class for Der i ved.
802 can only static_cast integers to enumeration type
When an enumeration type is specified with static_cast, the expression must be an integer.

Example:
enumsex { male, female };
sex father = static_cast<sex>(1.0);

The cast isillegal because the expression is not an integer.

803 dynamic_cast cannot be used with the type specified
A dynamic cast can only specify areference to a class or apointer to aclass or void. When
aclassisreferenced, it must have virtual functions defined within that class or a base class
of that class.

804 dynamic_cast cannot convert the expression
Theindicated expression cannot be converted to the type specified with the dynamic_cast
operator. Only apointer or reference to a class object can be converted. When aclass
object isreferenced, it must have virtual functions defined within that class or a base class
of that class.

805 dynamic_cast requires class’%T’ to have virtual functions

Theindicated class must have virtual functions defined within that class or a base class of
that class.

806 base class for type in dynamic_cast is ambiguous (will fail)

Thetypein the dynamic_cast is a pointer or reference to an ambiguous base class.

Example:
struct A { virtual void f(){}; };
struct D1 : A{ };
struct D2 : A{ };
struct D: D1, D2 { };

A *foo(D*p) {
[l will always return NULL
return(dynamic_cast< A* >(p));

Diagnostic Messages 571

Appendices

807 base class for type in dynamic_cast is private (may fail)
Thetypein the dynamic_cast is a pointer or reference to a private base class.

Example:
struct V { virtual void f(){}; };
struct A : private virtual V { };
struct D : public virtual V, A{ };

V *foo(A*p) {
/1 returns NULL if '"p’ points to an "A
/1 returns non-NULL if 'p’ points toa'D
return(dynamic_cast< V* >(p));

}
808 base class for typein dynamic_cast is protected (may fail)
Thetypein the dynamic_cast is a pointer or reference to a protected base class.
Example:
struct V { virtual void f(){};

1
struct A : protected virtual V { }
struct D: public virtual VvV, A{ }

V *foo(A*p) {
/1 returns NULL if 'p’ points to an 'A
/1 returns non-NULL if "p’ points to a’'D
return(dynamic_cast< V* >(p));

}

809 type cannot be used with an explicit cast

Theindicated type cannot be specified as the type of an explicit cast. For example, itis
illegal to cast to an array or function type.

810 cannot cast to an array type
It is not permitted to cast to an array type.
Example:
typedef int array_type[5];
int array[5];
int* p = (array_type)array;

811 cannot cast to a function type

It is not permitted to cast to afunction type.

572 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

812

813

814

815

Example:
typedef int fun_type(void);
void* p = (fun_type)O;

implementation restriction: cannot generate RTTI info for *%T’ (%d classes)
Theinformation for one class must fit into one segment. |If the segment size isrestricted to
64k, the compiler may not be able to emit the correct information properly if it requires
more than 64k of memory to represent the class hierarchy.

mor e than one default constructor for *%T

The compiler found more than one default constructor signature in the class definition.
There must be only one constructor declared that accepts no arguments.

Example:
struct C {
) ;
Cl int =0);
1
C cv;

user-defined conversion is ambiguous

The compiler found more than one user-defined conversion which could be performed.
The indicated functions that could be used are shown.

Example:
struct T {
T(S const&);
1
struct S {
operator T const& ();
1

extern S sv;
T const & tref = sv;

Either the constructor or the conversion function could be used; consequently, the
conversion is ambiguous.

range of possible values for type ' %T’ is %u to %u

This informational message indicates the range of values possible for the indicated
unsigned type.

Example:
unsi gned char uc;
if(uc >=0);

Being unsigned, the char is always >= 0, so awarning will beissued. Following the
warning, this informational message indicates the possible range of values for the unsigned
type involved.

Diagnostic Messages 573

Appendices

816

817

818

819

range of possible values for type ' %T’ is %d to %d

This informational message indicates the range of values possible for the indicated signed
type.

Example:
si gned char c;
if(c <= 127);

Because the value of signed char is aways <= 127, awarning will beissued. Following the
warning, this informational message indicates the possible range of values for the signed
type involved.

constant expression in comparison has value %d

This informational message indicates the value of the constant expression involved in a
comparison which caused awarning to be issued.

Example:
unsi gned char uc;
if(uc >=0);

Being unsigned, the char is always >= 0, so awarning will beissued. Following the
warning, thisinformational message indicates the constant value (0 in this case) involved in
the comparison.

constant expression in comparison has value %u

This informational message indicates the value of the constant expression involved in a
comparison which caused awarning to be issued.

Example:
si gned char c;
if(c <= 127);

Because the value of char is always <= 127, awarning will beissued. Following the
warning, thisinformational message indicates the constant value (127 in this case) involved
in the comparison.

conversion of const reference to non-const reference

A reference to a constant object is being converted to a reference to a non-constant object.
This can only be accomplished by using an explicit or const _cast cast.

Example:
extern int const & const_ref;
int & non_const_ref = const_ref;

574 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

820

821

822

823

824

conversion of volatile reference to non-volatile reference

A reference to avolatile object is being converted to areference to a non-volatile object.
This can only be accomplished by using an explicit or const _cast cast.

Example:
extern int volatile & volatile_ref;
int & non_volatile_ref = volatile_ref;

conversion of const volatile reference to plain reference
A reference to a constant and volatile object is being converted to areference to a
non-volatile and non-constant object. This can only be accomplished by using an explicit

or const _cast cast.

Example:
extern int const volatile & const_volatile_ref;
int & non_const_volatile ref = const_volatile_ref;

current declaration has type ' %T’

Thisinformational message indicates the type of the current declaration that caused the
message to be issued.

Example:
extern int _ _near foo(int);
extern int _ far foo(int);

only a non-volatile const reference can be bound to temporary

The expression being bound to a reference will need to be converted to atemporary of the
type referenced. This means that the reference will be bound to that temporary and so the
reference must be a non-volatile const reference.

Example:
extern int * pi;
void * & rl = pi; [l error
void * const & r2 = pi; /1 ok
void * volatile & r3 = pi; [/ error
void * const volatile &r4 = pi;// error

conversion of pointer to member across a virtual base

In November 1995, the Draft Working Paper was amended to disallow pointer to member
conversions when the source classis avirtual base of the target class. Thissituationis
treated as awarning (unless -zais specified to require strict conformance), as atemporary
measure. In the future, an error will be diagnosed for this situation.

Diagnostic Messages 575

Appendices

825

826

827

828

Example:
struct B {
int b;
b
struct D: virtual B {
int d;
1
int B.:* np_b = &B::b;
int Di:* np_d = np_b; /1 conversion across a

virtual base
declaration cannot be in the same scope as namespace ' %S

A namespace hame must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the namespace.

Example:
nanespace X {
int q;

"%S cannot be in the same scope as a namespace

A namespace name must be unique across the entire C++ program. Any other use of a
name cannot be in the same scope as the namespace.

Example:
int x;
nanespace X {
int q;
1

File: %s

This informative message is written when the -ew switch is specified on a command line.
It indicates the name of the file in which an error or warning was detected. The message
precedes a group of one or more messages written for the file in question. Within each
group, references within the file have the format (I i ne[, col umm]).

%s
This informative message is written when the -ew switch is specified on a command line.

It indicates the location of an error when the error was detected either before or after the
source file was read during the compilation process.

576 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

829

830

831

832

833

834

835

%s. %s

This informative message is written when the -ew switch is specified on a command line.
It indicates the location of an error when the error was detected while processing the
switches specified in acommand file or by the contents of an environment variable. The
switch that was being processed is displayed following the name of the file or the
environment variable.

%s. %S

This informative message is written when the -ew switch is specified on a command line.

It indicates the location of an error when the error was detected while generating a function,
such as a constructor, destructor, or assignment operator or while generating the machine
instructions for a function which has been analysed. The name of the function is given
following text indicating the context from which the message originated.

possible overrideis’ %S

Theindicated function is ambiguous since that name was defined in more than one base
class and one or more of these functionsisvirtual. Consequently, it cannot be decided
which isthe virtual function to be used in a class derived from these base classes.

function being overriddenis’ %S

Thisinformational message indicates a function which cannot be overridden by a virtual
function which has ellipsis parameters.

name does not reference a namespace
A namespace alias definition must reference a namespace definition.

Example:
typedef int T,
nanespace a = T,

namespace alias cannot be changed
A namespace alias definition cannot change which namespace it is referencing.

Example:
namespace nsl { int x; }
nanmespace ns2 { int x; }
namespace a nsi;
namespace a ns2;

cannot throw undefined class object

C++ does not allow undefined classes to be copied and so an undefined class object cannot
be specified in athrow expression.

Diagnostic Messages 577

Appendices

836

837

838

839

840

841

symbol has different type than previous symbol in same declaration

This warning indicates that two symbols in the same declaration have different types. This
may be intended but it is often due to a misunderstanding of the C++ declaration syntax.

Example:
/1 change to:
/1 char *p;
/1 char q;
/1l or:
/1 char *p, *q;
char* p, q;

companion definition is’ %S

Thisinformational message indicates the other symbol that shares a common base typein
the same declaration.

syntax error; default argument cannot be processed

The default argument contains unbalanced braces or parenthesis. The default argument
cannot be processed in this form.

default argument started %L

This informational message indicates where the default argument started so that any
problems with missing braces or parenthesis can be fixed quickly and easily.

Example:
struct S {
int f(int t= (4+(3-7), // missing parenthesis
)
i

"%N’ cannot be declared in a namespace

A namespace cannot contain declarations or definitions of operator new or operator delete
since they will never be called implicitly in anew or delete expression.

Example:
nanespace N {
voi d *operator new unsigned);
voi d operator delete(void *);

b

namespace cannot be defined in a non-namespace scope

A namespace can only be defined in either the global namespace scope (file scope) or a
namespace SCope.

578 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

842

Example:
struct S {
nanespace N {
int x;
s
}

namespace'::’ qualifier cannot be used in this context

Qualified identifiersin a class context are allowed for declaring friend functions. A
namespace qualified name can only be declared in a namespace scope that encloses the
qualified name’ s namespace.

Example:
nanespace M {
nanespace N {
void f();
void g();
nanespace O {
void N :f() {

/1l error
}
}
void N :g() {
/] K
}

}

cannot cast away volatility

A cast or implicit conversion isillegal because a conversion to the target type would
remove volatility from a pointer, reference, or pointer to member.

Example:
struct S {
int s;
1

extern S volatile * ps;
extern int volatile S::* nps;

S* psl = ps;
S& rsl = *ps;
int S::* mpl = nps;

Thethreeinitializations areillegal since they are attempts to remove volatility.
cannot cast away constness and volatility

A cast or implicit conversion isillegal because a conversion to the target type would
remove constness and volatility from a pointer, reference, or pointer to member.

Diagnostic Messages 579

Appendices

846

847

Example:
struct S {
int s;
b

extern S const volatile * ps;
extern int const volatile S:.:* nps;

S* psl = ps;
S& rsl = *ps;
int S::* mpl = nps;

Thethreeinitiaizations areillegal since they are attempts to remove constness and
volatility.

cannot cast away unaligned

A cast or implicit conversion isillegal because a conversion to the target type would add
alignment to a pointer, reference, or pointer to member.

Example:
struct S {
int s;
1

extern S _unaligned * ps;
extern int _unaligned S::* nps;

S* psl = ps;
S& rsl = *ps;
int S::* mpl = nps;

Thethreeinitiaizations areillegal since they are attemptsto add alignment.
subscript expression must be integral

Both of the operands of the indicated index expression are pointers. There may bea
missing indirection or function call.

Example:
int f();
int *p;
int g()
return p[f];
}

extension: non-standard user-defined conversion

An extended conversion was allowed. The latest draft of the C++ working paper does not
allow auser-defined conversion to be used in this context. Asan extension, the WATCOM
compiler supports the conversion since substantial legacy code would not compile without
the extension.

580 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

849

850

851

852

useless using directive ignored

Thiswarning indicates that for most purposes, the using namespace directive can be
removed.

Example:
nanespace A {
usi ng namespace A; // useless
i

base class virtual function has not been overridden

Thiswarning indicates that a virtual function name has been overridden but in an
incomplete manner, namely, avirtual function signature has been omitted in the overriding
class.

Example:
struct B {
virtual void f() const;
b

struct D: B {
virtual void f();
b

virtual functionis’%S
This message indicates which virtual function has not been overridden.
macro '%s' defined %L

This informational message indicates where the macro in question was defined. The
message is displayed following an error or warning diagnostic for the macro in question.

Example:
#defi ne nmac(a, b,c) at+b+c

int i = mac(6,7,8,9,10);

The expansion of macro nac is erroneous because it contains too many arguments. The
informational message will indicate where the macro was defined.

expanding macro ' %s' defined %L
These informational messages indicate the macros that are currently being expanded, along

with the location at which they were defined. The message(s) are displayed following a
diagnostic which isissued during macro expansion.

Diagnostic Messages 581

Appendices

853 conversion to common class type is impossible

The conversion to acommon classisimpossible. One or more of the left and right
operands are class types. The informational messages indicate these types.

Example:
class A{ A(); };
class B { B(); };
extern A a;
extern B b;
int i =(a=">b);

The last statement is erroneous since a conversion to acommon class type isimpossible.
854 conversion to common class type is ambiguous

The conversion to acommon classis ambiguous. One or more of the left and right
operands are class types. The informational messages indicate these types.

Example:
class A{ A(); };
class B: public A{ B(); };
class C: public A{ C(); };
class D: public B, public C{ I); };
extern A a;
extern D d;
int i =(a=4d),;

The last statement is erroneous since a conversion to a common class type is ambiguous.
855 conversion to common class type requires private access

The conversion to a common class violates the access permission which was private. One
or more of the left and right operands are class types. The informational messages indicate
these types.

Example:
class A { A(); };
class B: private A { B(); };
extern A a;
extern B b;
int i =(a=5b);

The last statement is erroneous since a conversion to a common class type violates the
(private) access permission.

856 conversion to common class type requires protected access
The conversion to a common class violates the access permission which was protected.

One or more of the left and right operands are class types. The informational messages
indicate these types.

582 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

857

858

859

Example:
class A{ A(); };
class B: protected A{ B(); };
extern A a;
extern B b;
int i =(a=="Db);

Thelast statement is erroneous since a conversion to a common class type violates the
(protected) access permission.

namespace lookup is ambiguous

A lookup for a name resulted in two or more non-function names being found. Thisis not
allowed according to the C++ working paper.

Example:
nanespace M {
int i;
}
nanespace N {
int i;
usi ng nanespace M
}
void f() {
usi ng namespace N,
i =7, [l error
}

ambiguous hamespace symbol is’ %S

This informational message shows a symbol that conflicted with another symbol during a
lookup.

attempt to static_cast from a private base class

An attempt was made to static_cast a pointer or reference to a private base classto a
derived class.

Example:
struct PrivateBase {
b
struct Derived : private PrivateBase {
b

extern Privat eBase* pb;
extern PrivateBase& rb;
Derived* pd = static_cast<Derived*>(pb);
Derived& rd = static_cast<Derived&(rb);

The last two statements are erroneous since they would involve astatic_cast from a private
base class.

Diagnostic Messages 583

Appendices

860 attempt to static_cast from a protected base class

An attempt was made to static_cast a pointer or reference to a protected base classto a
derived class.

Example:
struct ProtectedBase {

b

struct Derived : protected ProtectedBase {

}s

extern ProtectedBase* pb;
extern ProtectedBase& rb;
Derived* pd = static_cast<Derived*>(pb);
Derived& rd = static_cast<Derived&(rb);

The last two statements are erroneous since they would involve astatic_cast from a
protected base class.

861 gualified symbol cannot be defined in this scope

This message indicates that the scope of the symboal is not nested in the current scope. This
isarestriction in the C++ language.

Example:

nanespace A {
struct S {
void ok();
voi d bad();
}
void ok();
voi d bad();

1

void A :S::ok() {
}
void A :ok() {
nanmespace B {
void A :S: :bad() {
/Il error!

}
void A :bad() {

/1 error!
}
1
862 using declaration references non-member

This message indicates that the entity referenced by the using declaration is not a class
member even though the using declaration isin class scope.

584 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
nanespace B {
int x;
i
struct D {
usi ng B::x;
b

863 using declaration references class member

This message indicates that the entity referenced by the using declaration is a class member
even though the using declaration is not in class scope.

Example:
struct B {
int m

b
using B::m

864 invalid suffix for a constant

Aninvalid suffix was coded for a constant.

Example:

__int64 a[] = {
0i7, I/ error
0i 8,
0i 15, // error
0i 16,
0i31, // error
0i 32,
0i 63, // error
0i 64,

1

865 classin using declaration (' %T’) must be a base class

A using declaration declared in a class scope can only reference entities in a base class.

Example:
struct B {
int f;
s

struct C {
int g;
b

struct D: private C {
B::f;
b

Diagnostic Messages 585

Appendices

866

867

868

869

870

871

name in using declaration is already in scope

A using declaration can only reference entities in other scopes. It cannot reference entities
within its own scope.

Example:
nanespace B {
int f;
using B::f;
b

conflict with a previous using-decl ' %S

A using declaration can only reference entities in other scopes. It cannot reference entities
within its own scope.

Example:
nanespace B {
int f;
using B::f;
1

conflict with current using-decl ' %S

A using declaration can only reference entities in other scopes. It cannot reference entities
within its own scope.

Example:
nanespace B {
int f;
using B::f;
b
use of %N’ requires build target to be multi-threaded
The compiler has detected a use of a run-time function that will create a new thread but the
current build target indicates only single-threaded C++ source code is expected.
Depending on the user’ s environment, enabling multi-threaded applications can involve
using the "-bm" option or selecting multi-threaded applications through a dialogue.
implementation restriction: cannot use 64-bit value in switch statement
The use of 64-hit values in switch statements has not been implemented.

implementation restriction: cannot use 64-bit value in case statement

The use of 64-bit values in case statements has not been implemented.

586 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

872

873

874

875

876

877

implementation restriction: cannot use__int64 as bit-field base type
Theuse of __int64 for the base type of a bit-field has not been implemented.
based function object cannot be placed in non-code segment "%s".

Use _segname with the default code segment " CODE", or a code segment with the
appropriate suffix (indicated by informational message).

Example:
int __ based(__segnane("foo")) f() {return 1;}

Example:
int __ based(__segnane("_CODE")) f() {return 1;}

Use a segment name ending in "%s", or the default code segment *_CODE".
This informational message explains how to use ___segname to hame a code segment.
RTTI must be enabled to use feature (use’xr’ option)

RTTI must be enabled by specifying the'xr’ option when the compiler isinvoked. The
error message indicates that a feature such as dynamic_cast, or typeid has been used
without enabling RTTI.

"typeid’ class type must be defined

The compile-time type of the expression or type must be completely defined if it isaclass
type.

Example:
struct S;
void foo(S *p) {
typeid(*p);
typeid(S);

cast involves unrelated member pointers

Thiswarning is issued to indicate that a dangerous cast of a member pointer has been used.
This occurs when there is an explicit cast between sufficiently unrelated types of member
pointers that the cast must be implemented using areinterpret_cast. These casts were
illegal, but became legal when the new-style casts were added to the draft working paper.

Example:
struct Cl {
int foo();

struct D1 {
int poo();

typedef int (CL::* Clnp)();

Clnp frmp = (Clnp) &D1: : poo;

Diagnostic Messages 587

Appendices

878

879

880

881

882

The cast on the last line of the example would be diagnosed.
unexpected type modifier found

A __ declspec modifier was found that could not be applied to an object or could not be
used in this context.

Example:
__decl spec(thread) struct S {

}1
invalid bit-field name ' %N’

A bit-field can only have asimple identifier asitsname. A qualified nameis also not
allowed for a bit-field.

Example:
struct S {
int operator + : 1;
1

%u padding byte(s) added

This warning indicates that some extra bytes have been added to a classin order to align
member data to its natural alignment.

Example:
#pragma pack(push, 8)
struct S {
char c;
doubl e d;
b
#pragma pack(pop);

cannot be called with a’%T *’

This message indicates that the virtual function cannot be called with a pointer or reference
to the current class.

cast involves an undefined member pointer

Thiswarning is issued to indicate that a dangerous cast of a member pointer has been used.
This occurs when there is an explicit cast between sufficiently unrelated types of member
pointers that the cast must be implemented using areinterpret_cast. In this case, the host
class of at least one member pointer was not afully defined class and, as such, it is
unknown whether the host classes are related through derivation. These casts were illegal,
but became legal when the new-style casts were added to the draft working paper.

588 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

883

884

Example:
struct Cl {
int foo();

struct D1,

typedef int (CL::* Clnp)();
typedef int (Dl::* Dinp)();

Clnp fn(Dlmp x) {
return (Clnp) x;
}

/1 D1 may derive fromCl
The cast on the last line of the example would be diagnosed.
cast changes both member pointer object and class type

Thiswarning is issued to indicate that a dangerous cast of a member pointer has been used.
This occurs when there is an explicit cast between sufficiently unrelated types of member
pointers that the cast must be implemented using areinterpret_cast. In this case, the host
classes of the member pointers are related through derivation and the object typeisalso
being changed. The cast can be broken up into two casts, one that changes the host class
without changing the object type, and another that changes the object type without
changing the host class.

Example:
struct Cl1 {
int fnl();

siruct D1 : C1 {
int fn2();

typedef int (CL::* Clnp)();
typedef void (Dl::* Dinp)();

Clnp fn(Dlmp x) {
return (Clnp) x;
}

The cast on the last line of the example would be diagnosed.

virtual function’ %S has a different calling convention

This error indicates that the calling conventions specified in the virtual function prototypes
are different. This meansthat virtua function calswill not function properly since the

caller and callee may not agree on how parameters should be passed. Correct the problem
by deciding on one calling convention and change the erroneous declaration.

Diagnostic Messages 589

Appendices

885

886

887

888

Example:
struct B {
virtual void __ cdecl foo(int, int);
b

struct D: B {
void foo(int, int);
b

#endif matches #if in different sourcefile

Thiswarning may indicate a#endif nesting problem since the traditional usage of #if
directivesis confined to the same sourcefile. Thiswarning may often come before an error
and it is hoped will provide information to solve a preprocessing directive problem.

preprocessing directive found %L

This informational message indicates the location of a preprocessing directive associated
with the error or warning message.

unary '-’ of unsigned operand produces unsigned result

When aunary minus ('-') operator is applied to an unsigned operand, the result has an
unsigned type rather than asigned type. Thiswarning often occurs because of the
misconception that '~ is part of a numeric token rather than as a unary operator. The
work-around for the warning is to cast the unary minus operand to the appropriate signed

type.

Example:
extern void u(int);
extern void u(unsigned);
void fn(unsigned x) {
u(-x);
u(-2147483648);
}

trigraph expansion produced ' %c’
Trigraph expansion occurs at avery low-level so it can affect string literals that contain

question marks. Thiswarning can be disabled via the command line or #pragma warning
directive.

Example:
/1 string expands to "(?]?~???2?"!
char *e = "(?7?7?)?27?2?-2?2?2??";
/1 possi bl e work-arounds
Char *f - n (n n ???II n) n n ???II n - n n ????II ;
char *g = "(\2A2A2)\2A 2\ 2-\ 2\ 2\ 2\ 2",

590 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

889

890

891

892

893

hexadecimal escape sequence out of range; truncated

This message indicates that the hexadecimal escape sequence produces an integer that
cannot fit into the required character type.

Example:
char *p = "\x0aCache Ti m ngs\x0a";

undefined macro '%s' evaluatesto 0

The SO C/C++ standard requires that undefined macros evaluate to zero during
preprocessor expression evaluation. This default behaviour can often mask incorrectly
spelled macro references. The warning is useful when used in critical environments where
all macros will be defined.

Example:
#i f _PRODUCTION // shoul d be _PRODUCTI ON
#endi f

char constant has value %u (more than 8 bits)

The SO C/C++ standard requires that multi-char character constants be accepted with an
implementation defined value. This default behaviour can often mask incorrectly specified
character constants.

Example:
int x ='\0x1a'; // warning
int y ="\xla;

promotion of unadorned char typeto int

This message is enabled by the hidden -jw option. The warning may be used to locate all
places where an unadorned char type (i.e., atype that is specified as char and neither
signed char nor unsigned char). This may cause portability problems since compilers
have freedom to specify whether the unadorned char type isto be signed or unsigned. The
promotion to int will have different values, depending on the choice being made.

switch statement has no case labels

The switch statement referenced in the warning did not have any case labels. Without case
labels, a switch statement will always jump to the default case code.

Example:
void fn(int x)
{
switch(x) {
defaul t:
+4X;
}
}

Diagnostic Messages 591

Appendices

894

895

896

897

898

unexpected character (%u) in sourcefile

The compiler has encountered a character in the source file that is not in the allowable set
of input characters. The decimal representation of the character byte is output for
diagnostic purposes.

Example:
/1 invalid char "\ 0O’

ignoring whitespace after line splice

The compiler isignoring some whitespace characters that occur after the line splice. This
warning is useful when the source code must be compiled with other compilers that do not
allow this extension.

Example:
#defi ne XXXX int \
X,

XXXX
empty member declaration

The compiler iswarning about an extra semicolon found in a class definition. The extra
semicolon isvalid C++ but some C++ compilers do not accept this as valid syntax.

Example:
struct S{ ; };

"%S makes use of a non-portable feature (zero-sized array)

The compiler is warning about the use of a non-portable feature in a declaration or
definition. Thiswarning is available for environments where diagnosing the use of
non-portable features is useful in improving the portability of the code.

Example:
struct D {
int d,
char a[];

in-classinitialization is only allowed for const static integral members

Example:
struct A {
static int i = 0;
b

592 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

899

900

901

902

cannot convert expression to target type

Theimplicit cast istrying to convert an expression to a completely unrelated type. Thereis
no way the compiler can provide any meaning for the intended cast.

Example:
struct T {

1
void fn()

bool b = T;
}

unknown template specialization of ' %S

Example:
t enpl at e<cl ass T>
struct A{ };

t enpl at e<cl ass T>
void A<T *>::f() {
}

wrong number of template arguments for * %S

Example:
t enpl at e<cl ass T>
struct A{ };

tenpl ate<class T, class U>
struct A<T, U { };

}

cannot explicitly specialize member of ' %S

Example:
t enpl at e<cl ass T>
struct A{ };

t enpl at e<>
struct A<int> {
void f();

t enpl at e<>
void A<int>::f() {
}

Diagnostic Messages 593

Appendices

903

904

905

906

907

908

909

specialization arguments for '%S match primary template
Example:

t enpl at e<cl ass T>

struct A{ };

t enpl at e<cl ass T>
struct A<T> { };

partial template specialization for '%S ambiguous

Example:
tenmpl ate<class T, class U>
struct A{ };

tenpl ate<class T, class U>
struct A<T *, U> { };

tenpl ate<class T, class U>
struct A<T, U*>{ };

A<int *, int *> a;
static assertion failed ' %s'

Example:
static_assert(false, "false");

Exported templates are not supported by Open Watcom C++

Example:
export tenplate< class T >
struct A {

b
redeclaration of member function’%S not allowed

Example:

candidate defined %L
Invalid register name’%s' in #pragma

The register name isinvalid/unknown.

594 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

910 Archaic syntax: class/struct missing in explicit template instantiation
Archaic syntax has been used. The standard requires a class or struct keyword to be used.
Example:
tenplate< class T >
class MyTemplate { };
tenmpl ate MyTenpl ate< int >;

Example:
tenpl ate class MyTenpl ate< int >;

Diagnostic Messages 595

Appendices

596 Diagnostic Messages

Open Watcom C/C++ Run-Time Messages

D. Open Watcom C/C++ Run-Time Messages

Thefollowingisalist of error messages produced by the Open Watcom C/C++ run-time library. These
messages can only appear during the execution of an application built with one of the C run-time libraries.

D.1 Run-Time Error Messages
Assertion failed: %s, file %s, line %d

This message is displayed whenever an assertion that you have made in your program is not
true.

Stack Overflow!

Your program is trying to use more stack space than isavailable. If you believe that your
program is correct, you can increase the size of the stack by using the "option stack=nnnn"
when you link the program. The stack size can also be specified with the "N" option if you
areusing cc.

Floating-point support not loaded

Y ou have called one of the printf functions with aformat of "%e", "%f", or "%g", but have
not passed a floating-point value. The compiler generates areference to the variable

" fltused " whenever you pass afloating-point value to afunction. During the linking
phase, the extra floating-point formatting routines will also be brought into your application
when"_fltused " isreferenced. Otherwise, you only get the non floating-point formatting
routines.

*** NULL assignment detected

Thismessageis displayed if any of the first 32 bytes of your program'’s data segment has
been modified. The check is performed just before your program exits to the operating
system. All this message means is that sometime during the execution of your program,
this memory was modified.

To find the problem, you must link your application with debugging information and use
Open Watcom Debugger to monitor its execution. First, run the application with Open
Watcom Debugger until it completes. Examine the first 16 bytes of the data segment
("examine __ nullarea") and press the space bar to see the next 16 bytes. Any values that
are not equal to’ 01" have been modified. Reload the application, set watch points on the
modified locations, and start execution. Open Watcom Debugger will stop when the
specified location(s) change in value.

Run-Time Error Messages 597

Appendices

D.2 errno Values and Their Meanings

The following errors can be generated by the C run-time library. These error codes correspond to the error

types defined in er r no. h.

EOK (0)
EPERM (1)

ENOENT (2)

ESRCH (3)

EINTR (4)

EIO (5)

ENXIO (6)

E2BIG (7)

ENOEXEC (8)

EBADF (9)

ECHILD (10)
EAGAIN (11)

ENOMEM (12)

EACCES (13)

EFAULT (14)

No error

Operation not permitted

No such file or directory

The specified file or directory cannot be found.

No such process

Interrupted function call

/O error

No such device or address

Arg list too big

The argument list passed to the spawn. . ., exec... or
syst emfunctions exceeds the limit imposed by QNX, or the
environment information exceeds 64K .

Exec format error

The executable file has an invalid format.

Bad file descriptor

Thefile descriptor is not avalid file descriptor value or it does not
correspond to an open file.

No child processes
Resource unavailable; try again
Not enough memory

There was not enough memory available to perform the specified
request.

Permission denied

Y ou do not have the required (or correct) permissions to access a
file

Bad address

598 errno Values and Their Meanings

Open Watcom C/C++ Run-Time Messages

ENOTBLK (15)
EBUSY (16)

EEXIST (17)

EXDEV (18)

ENODEV (19)
ENOTDIR (20)
EISDIR (21)

EINVAL (22)

ENFILE (23)

EMFILE (24)

ENOTTY (25)
ETXTBSY (26)
EFBIG (27)

ENOSPC (28)

ESPIPE (29)
EROFS (30)
EMLINK (31)
EPIPE (32)

EDOM (33)

Block device required
Resource busy
File exists

An attempt was made to create afile withthe O_EXCL (exclusive)
flag when the file already exists.

Improper link

An attempt was made to rename afile to adifferent device.
No such device

Not a directory

Isadirectory

Invalid argument

Aninvalid value was specified for one of the argumentsto a
function.

Too many filesin the system
All the FILE structures are in use, so no more files can be opened.
Too many open files

There are no more file descriptors available, so no more files can be
opened.

Inappropriate I/O control operation
Text file busy

Filetoo large

No space left on device

No more space is left for writing on the device, which usually means
that the disk isfull.

Invalid seek
Read-only file system
Too many links
Broken pipe

Math arg out of domain of func

errno Values and Their Meanings 599

Appendices

ERANGE (34)

ENOMSG (35)
EIDRM (36)
ECHRNG (37)
EL2NSYNC (38)
EL3HLT (39)
EL3RST (40)
ELNRNG (41)
EUNATCH (42)
ENOCSI (43)
EL2HLT (44)

EDEADLK (45)

ENOLCK (46)

ELOOP (62)

ENAMETOOLONG (78)

D.2.1 Shared Library Errors

ELIBACC (83)
ELIBBAD (84)
ELIBSCN (85)
ELIBMAX (86)
ELIBEXEC (87)

ENOSYS (89)

ENOTEMPTY (93)

An argument to a math function is not in the domain of the function.

Result too large

Theresult of amath function could not be represented (too small, or

too large).

No message of desired type

Identifier removed

Channel number out of range

Level 2 not synchronized

Level 3 halted

Level 3 reset

Link number out of range

Protocol driver not attached

No CS structure available

Level 2 halted

Resour ce deadlock avoided

A resource deadlock would occur with regards to locked files.
No locks available

Too many levels of symbolic links or prefixes

Filename too long

Can't access shared library

Accessing a corrupted shared library
Jib section in a.out corrupted
Attempting to link in too many libraries
Attempting to exec a shared library
Function not implemented

Directory not empty

600 errno Values and Their Meanings

Open Watcom C/C++ Run-Time Messages

EOPNOTSUPP (103)

ESTALE (122)

Operation not supported

Potentially recoverablei/o error

D.2.2 Non-blocking and Interrupt I/O

EWOULDBLOCK (11)
EINPROGRESS (236)

EALREADY (16)

Operation would block
Operation now in progress

Operation already in progress

D.2.3 IPC/Network Software -- Argument Errors

ENOTSOCK (238)
EDESTADDRREQ (239)
EMSGSI ZE (240)
EPROTOTYPE (241)
ENOPROTOOPT (242)
EPROTONOSUPPORT (243)
ESOCKTNOSUPPORT (244)
EPFNOSUPPORT (246)
EAFNOSUPPORT (247)
EADDRINUSE (248)

EADDRNOTAVAIL (249)

Socket operation on non-socket

Destination address required

Message too long

Protocol wrong type for socket

Protocol not available

Protocol not supported

Socket type not supported

Protocol family not supported

Address family not supported by protocol family
Address already in use

Can't assign requested address

D.2.4 IPC/Network Software -- Operational Errors

ENETDOWN (250)
ENETUNREACH (251)
ENETRESET (252)
ECONNABORTED (253)
ECONNRESET (254)

ENOBUFS (255)

Network is down

Network is unreachable

Network dropped connection on reset
Software caused connection abort
Connection reset by peer

No buffer space available

errno Values and Their Meanings

601

Appendices

EISCONN (256)
ENOTCONN (257)
ESHUTDOWN (258)
ETOOMANYREFS (259)
ETIMEDOUT (260)
ECONNREFUSED (261)
EHOSTDOWN (264)

EHOSTUNREACH (265)

D.2.5 QNX Specific

ENOREMOTE (1000)
ENONDP (1001)
EBADFSYS (1002)

ENO32BI T (1003)

Socket is already connected
Socket is not connected

Can't send after socket shutdown
Too many references. can't splice
Connection timed out

Connection refused

Host is down

No route to host

Must be done on local machine
Need an NDP (8087...) torun
Corrupted file system detected

32-bit integer fields were used

ENOVPE (1004) No proc entry available for virtual process

ENONETQ (1005) Process manager-to-net enqueuing failed

ENONETMAN (1006) Could not find net manager for node number

EVIDBUF2SML (1007)
EVIDBUF2BIG (1008)
EMORE (1009)
ECTRLTERM (1010)

ENOLIC (1011)

Told to allocate a vid buf too small
Told to allocate a vid buf too big
More to do; send message again
Remap to controlling terminal

No license

D.3 Math Run-Time Error Messages

The following errors can be generated by the math functionsin the C run-time library. These error codes
correspond to the exception types defined in mat h. h and returned by the mat her r function when a math
€rror occurs.

602 Math Run-Time Error Messages

Open Watcom C/C++ Run-Time Messages

DOMAIN

OVERFLOW

PLOSS

SING

TLOSS

UNDERFLOW

Domain error

An argument to the function is outside the domain of the function.
Overflow range error

The function result istoo large.

Partial loss of significance

A partial loss of significance occurred.

Argument singularity

An argument to the function has a bad value (e.g., 10g(0.0)).

Total loss of significance

A total loss of significance occurred. An argument to a function
was too large to produce a meaningful result.

Underflow range error

Theresult istoo small to be represented.

Math Run-Time Error Messages 603

Index

directive 219

#define 538, 553

#elif 410-411

#else 410-411, 533

#endif 377, 410-411, 421, 533, 590
#error 83, 151, 422

#if 377,410-411, 421, 590

#ifdef 421

#ifndef 421, 553

#include 16, 412, 417-419, 494, 551, 553
#pragma 26, 30, 545, 556

#pragma extref 563
#pragmawarning 377, 590

#undef 423, 537

-70 556

i

.186 200

.286 200

.286¢ 200
.286p 200

.287 200

.386 200
.386p 200
.387 200

486 200
.486p 200
.586 200
.586p 200
.686 200
.686p 200
.8086 200
.8087 200
.apha 200, 335
.break 200, 335
.code 200
.const 200

.continue 200, 335
.cref 200, 335
.data 200

.data? 200
.dosseg 200
.else 335

.endif 335
.endw 200, 335
.err 200

.errb 200
.errdef 200
errdif 200
.errdifi 200
.erre 200
.erridn 200
.erridni 200
.errnb 200
.errndef 200
.errnz 200

.exit 200, 335
fardata 200
fardata? 200

if 335

fcond 200, 335
Jist 200, 335
Jistall 200, 335
listif 200, 335
Jistmacro 200, 335

Jlistmacroall 200, 335

.model 200
.nocref 200, 335
.nolist 200, 335
radix 200, 335
.repeat 200, 335
.sal 200, 335
.seq 200, 335
.sfcond 200, 335
.Stack 200
Startup 200, 335
tfcond 200, 335
.until 200, 335
.while 200, 335
xcref 200, 335
xlist 200, 335

f/include directory 17

Nlib 49

605

Index

16-bit QNX executables 212

32-bit QNX executables 212
386 20

<0s>_INCLUDE environment variable 17

aborts (pragma) 109, 178
addr 335
addressing arguments 67, 133, 136
ALIASdirective 215
alias name (pragma) 92, 160
alias names
cdecl 94, 162
__cdecl 94, 162
fastcall 94, 162
_ fastcall 94, 162
fortran 94, 162
_ fortran 94, 162
pascal 94, 162
__pascal 94, 162
stdcall 94, 162
__stdcall 94, 162
syscall 162
__syscal 162
system 162
__system 162
watcall 94, 162
__watcall 94, 162
alias pragma 78, 146
alloc_text pragma 79, 147
apostrophes 214

606

applications
creating for QNX 289
AR-format 209
argument list (pragma) 100, 170
arguments
removing from the stack 105, 174
arguments on the stack 103, 172
ARTIFICIAL option 216
_asm 38, 199
__asm 199
assembler 329
assembly language
automatic variables 198
directives 200
in-line 191
labels 197
opcodes 200
variables 197
auto 388, 392, 401, 419, 428, 433, 439-440, 4609,
476
AUTODEPEND 90, 158
auxiliary pragma 91, 159

base operator 34
based pointers 32
segment constant 33
segment object 34
self 35
void 34
_based 25
__based 25, 32-33, 418
benchmarking 13
_bheapseg 34
big code model 55, 121
big datamodel 55, 121
bin directory 368
BIOScal 104,173
blanksin file names 214
bool 554
break 382, 409, 549

Cdirectory 10
Clibraries

Index

compact 47,50 CodeView 220
flat 50-51, 123 COFF 209
huge 47, 50 command line format 9
large 47,50 wasm 329
medium 47, 50 wdis 347
small 47,50-51, 123 wlib 313
C/C++ libraries wlink 210, 289
flat 48 wstrip 361
small 48 command line options
CACHE option 217 compiler 10
callback functions 100 environment variable 10
calling convention optionsfile 10
MetaWare High C 161, 183 command name
Microsoft C 93, 114 compiler 9
calling conventions 59, 125 comment (#) directive 219
calling functions comment pragma 80, 148
far 97, 167 compact memory model 56, 122
near 97, 167 compact model
caling information (pragma) 97, 167 libraries 47, 50
case 376, 382, 391, 409, 421, 445, 523 Compactor 220
CASEEXACT option 218 compiler
casemap 335 features 9
catch 418, 448, 530, 533, 547, 560 compiling
catstr 335 command line format 9
cc 368 const 383, 388, 432-433, 468-469, 495, 498,
cdecl 26, 94, 162 500-501, 553, 566
cdecl alias name 94, 162 const_cast 565-566
__cdecl diasname 94, 162 continue 382, 410
_Cdecl 26 conventions
__cdecl 26-27, 94, 161-162 80x87 72-73, 141-142
char 29-30, 386, 388, 416, 559, 568, 591 non-80x87 63, 129
sizeof 64, 130 __cplusplus 22
char type 59, 125 cplx3r.lib 49
__CHAR SIGNED__ 21 cplx3slib 49
check_stack option 76, 144 cpIx73r.lib 49
class 414, 426-427, 442, 455, 485, 529, 536, 595 cplx73slib 49
CODE 58, 63, 124, 129 cplx7c.lib 48
FAR_DATA 58, 63, 124, 129 cpIx7h.lib 48
classinformation 82, 150 cplx7l.lib 48
clib3r.lib 48 cplx7m.lib 48
clib3s.lib 48 cplx7slib 48
clibc.lib 48 cplxc.lib 48
clibh.lib 48 cplxh.lib 48
clibl.lib 48 cplxl.lib 48
clibm.lib 48 cplxm.lib 48
clibs.lib 48 cpixs.lib 48
cmain.c 51-52 __CPPRTTI 22
CODE class 58, 63, 124, 129 _ CPPUNWIND 22
code generation 40 cstart.asm 51
memory requirements 41, 369 cstart_ *.asm 51
code models cstart_c.asm 51
big 55, 121 cstart_h.asm 51
small 55, 121 cstart_l.asm 51
code_seg pragma 79, 147 cstart_ m.asm 51

607

Index

cstart_s.asm 51
cstrt386.asm 52
Cv4 220

CVPACK 220-221
CVPACK option 220

data models
big 55, 121
huge 56
small 55, 121
data representation 59, 125
datatypes 59, 125
data seg pragma 81, 149
DBCS
Chinese 244
Japanese 244
Korean 244
dead code elimination 228, 273-274
DEBUG directive 221
debug information
removal 361
DEBUG options
ALL 222
CODEVIEW 221
DWARF 221
LINES 222
LOCALS 222
NOVELL 221
ONLYEXPORTS 222, 224
REFERENCED 222
TYPES 222
Watcom 221
debugging information
al 224
for NetWare debugger 224
global symbol 221, 224
line numbering 221, 223
local symbol 221, 223
NetWare global symbol 221
strip from "EXE" file 225
typing 221, 223

Debugging Information Compactor 220-221

__declspec(dilexport) 38
__declspec(dllimport) 38
__declspec 27, 36, 555, 588

default filename extension 10
default libraries
using pragmas 77, 145

delete 406, 419, 438, 490, 511, 520, 578

diagnostics
errno 598
error 16
matherr 602
Open Watcom C/C++ 15
run-time 598, 602
warning 16
wstrip 362
directives 213
219
ALIAS 215
assembly language 200
comment 219
DEBUG 221
DISABLE 226
ENDLINK 229
FILE 231
FORMAT 234
include 241
LANGUAGE 244
LIBFILE 245
LIBPATH 246
LIBRARY 247
MODFILE 254
MODTRACE 255
NAME 256
OPTION 260
OPTLIB 261
ORDER 263
OUTPUT 267
PATH 269
REFERENCE 273
SORT 275
STARTLINK 278
SYMTRACE 281
SYSTEM 282
directories
C 10
OCC 10
DISABLE directive 226
disable_message pragma 81, 149
disassembler 347
disassembly example 352
DLL 28
exporting functions 27
dllexport 27, 38

dllimport 27
default 382-383, 391, 410-411, 421, 524 do 382 390. 409-410. 421
default directive file 211, 213, 218, 230, 283 DOS/AGW example 194
wlink.Ink 218, 230 DOS 20-21

608

Index

__DOSs 2021 WD_PATH 370
DOSSEG option 227 WLINK_LNK 212-213, 218, 230, 284
double 388, 391 WPP 10, 371
sizeof 64,130 WPP386 11, 371
doubletype 61, 127 errno 598
DPMI example 194 E2BIG 598
DS segment register 27-28 EACCES 598
dump_object_model pragma 82, 150 EADDRINUSE 601
Dynamic Link Library 28 EADDRNOTAVAIL 601
exporting functions 27 EAFNOSUPPORT 601
imports 317, 319 EAGAIN 598
dynamic_cast 571-572, 587 EALREADY 601
EBADF 598
EBADFSYS 602
EBUSY 599
E ECHILD 598
ECHRNG 600

ECONNABORTED 601
ECONNREFUSED 602

echo 335 ECONNRESET 601
_edatalinker symbol 227 ECTRLTERM 602
ELF 209 _ EDEADLK 600
ELIMINATE option 228 EDESTADDRREQ 601
emu387.lib 50 EDOM 599
emu87.lib 50 EEXIST 599
enable_message pragma 82, 150 EFAULT 598
_end linker symbol 227 EFBIG 599
ENDLINK directive 229 EHOSTDOWN 602
endmacro 335 EHOSTUNREACH 602
enum 384, 393, 396, 440, 454, 457 EIDRM 600
enum pragma 82, 150 EINPROGRESS 601
enumerated types EINTR 598
sizeof 65,131 EINVAL 599
enumeration EIO 598
information 82, 150 EISCONN 601
values 82, 150 EISDIR 599
environment variable EL2HLT 600
command line options 10 EL2NSYNC 600
environment variables 10 EL3HLT 600
<os> INCLUDE 17 EL3RST 600
FORCE 367 ELIBACC 600
INCLUDE 17-18, 367, 418 ELIBBAD 600
LIB 247, 258, 261, 367 ELIBEXEC 600
LIBDIR 213 ELIBMAX 600
0S2_INCLUDE 17 ELIBSCN 600
PATH 17, 211, 213, 218, 230, 283, 367-368 ELNRNG 600
TMPDIR 368 ELOOP 600
use 367 EMFILE 599
WATCOM 50, 212-213, 218, 230, 284, EMLINK 599
367-368 EMORE 602
WCC 10, 369 EMSGSIZE 601
WCC386 11, 369 ENAMETOOLONG 600
WCGMEMORY 41, 369-370 ENETDOWN 601
WD 370 ENETRESET 601

609

Index

ENETUNREACH 601
ENFILE 599
ENO32BIT 602
ENOBUFS 601
ENOCSI 600
ENODEV 599
ENOENT 598
ENOEXEC 598
ENOLCK 600
ENOLIC 602
ENOMEM 598
ENOMSG 600
ENONDP 602
ENONETMAN 602
ENONETQ 602
ENOPROTOOPT 601
ENOREMOTE 602
ENOSPC 599
ENOSYS 600
ENOTBLK 598
ENOTCONN 602
ENOTDIR 599
ENOTEMPTY 600
ENOTSOCK 601
ENOTTY 599
ENOVPE 602

ENXIO 598

EOK 598
EOPNOTSUPP 600
EPERM 598
EPFNOSUPPORT 601
EPIPE 599
EPROTONOSUPPORT 601
EPROTOTYPE 601
ERANGE 600
EROFS 599
ESHUTDOWN 602
ESOCKTNOSUPPORT 601
ESPIPE 599

ESRCH 598

ESTALE 601
ETIMEDOUT 602
ETOOMANYREFS 602
ETXTBSY 599
EUNATCH 600
EVIDBUF2BIG 602
EVIDBUF2SML 602
EWOULDBLOCK 601
EXDEV 599

error codes

errno.h 598
math.h 602

error file

.er 15

610

error messages 373
error pragma 83, 151
errors 226, 293
executablefiles
reducing size 361
executable formats 209
explicit 565
export 10, 367
INCLUDE environment variable 17-18
export (pragma) 99-100, 169
_export 27
__export 27, 38, 502
exporting symbolsin dynamic link libraries 99,
169
extension
default 10
extern 36, 379, 385, 389, 393, 413, 428, 439, 441,
477, 561
external references 83, 151
extref pragma 83, 151

far 13, 25, 56, 122, 407, 502, 505, 524
far (pragma) 97, 167
far call 55,121
far call optimizations 357
far jump optimization 357
far pointer

sizeof 64, 130
farl6 161
_Farl6 29
__farl6 29-30, 418
_far 25
_far 25,27,407, 524
FAR_DATA class 58, 63, 124, 129
FARCALLSoption 230
fastcall 94, 162
fastcall alias name 94, 162
__fastcall diasname 94, 162
_ fastcall 94, 162
fastest 16-bit code 13
fastest 32-hit code 13
fatal errors 226, 293
FILE directive 231
filename extension 10
FILLCHAR option 233
_finally 396
flat memory model 122
flat model

Index

libraries 48, 50-51, 123

float 97, 388, 391, 469, 481, 567-568

sizeof 64, 130
float type 60, 126
floating-point
fltused 49
__init_387_emulator 50
__init_87_emulator 50
fltused 49
for 382, 392, 401, 409-410, 447

FORCE environment variable 367

FORMAT directive 234
fortran 26, 94, 162, 375
fortran alias name 94, 162
__fortran alias name 94, 162
_fortran 26
_ fortran 26-27, 39, 94, 162
_FR__ 21
frame (pragma) 100, 169
friend 432, 457, 469, 508, 579
function pragma 84, 152
function prototypes

effect on arguments 65, 131
functions

returning values 69, 138

genera directives/options 213
goto 376, 384, 386, 413, 415

header file
including 16
searching 16
high 335
High C calling convention 183
highword 335
host operating system 210
huge 25, 56, 122, 398
huge data model 56
huge memory model 56
huge model
libraries 47, 50
_huge 25
__huge 25

|

_186__ 20
if 401, 541
import library 317, 319
in-line 80x87 floating-point instructions 98
in-line assembly
in pragmas 97, 167
in-line assembly language 191
automatic variables 198
directives 200
labels 197
opcodes 200
variables 197
in-line assembly language instructions
using mnemonics 98, 168
in-line functions 98, 167
in-line functions (pragma) 104, 173
include
directive 16
header file 16
sourcefile 16
include directive 241
INCLUDE environment variable 17-18, 367, 418
includefile
searching 16
include_alias pragma 85, 153
__init_387_emulator 50
__init_87 _emulator 50
initialize pragma 85, 153
inline 431
inline_depth pragma 86, 154
__INLINE_FUNCTIONS _ 21
inline_recursion pragma 87, 155
int 15, 29-30, 378, 381, 386, 388, 416, 432, 465,
481, 483, 485, 511, 536, 543, 591
sizeof 64, 130
int type 60, 126
__int64 31-32, 587
_INTEGRAL_MAX BITS 22
Intel OMF 209
interrupt 27
interrupt routine 27
_interrupt 27
__interrupt 27
intrinsic pragma 87, 155
invoke 335
invoking Open Watcom C/C++ 9
invoking Open Watcom Linker 210, 289

611

Index

class 48
location 47
K math 49
library
import 319
keywords LIBRARY directive 247
based 25 library file
~ cdecl 26 addingto a 315
~ dedl spec 27, 36 deleting from a 315
_export 27 extracting froma 316
" farle 29 replacing amodulein a 316
_far 25 library manager 313
_ fortran 26 library path 368
__huge 25 LINEARRELOCS option 249
_int64 22,31 linker symbols
__interrupt 27 _edata 227
__loadds 28 . __end 227_
near 25 linking notation 214
_Packed 26 __LINUX__ 20-21
__pascal 26 loadds (pragma) 99, 168
__pragma 31 _loadds 28
__restrict 26 _Io_adds 28 _ .
saveregs 28 loading DS before calling afunction 99, 168
_Se916 30 loading DS in prologue sequence of afunction
__Segment 25 99, 169
seghame 25 __LOCAL_SIZE 199
_ sdf 26 long 388
__Stdcall 28 long double
_syscall 28 sizeof 64, 130
o long float
sizeof 64, 130
longint
L sizeof 64, 130
long int type 60, 126
LONGLIVED option 250
low 335
L 449 lowword 335
LANGUAGE directive 244 Iroffset 335
LANGUAGE options
CHINESE 244
JAPANESE 244
KOREAN 244 M
large memory model 56, 122
large model
libraries 47, 50
LBC command file 318 M_1386 20
leave 396 M _1386 20
LIB environment variable 247, 258, 261, 367 M_I86 20
LIBDIR environment variable 213 _M_186 20
LIBFILE directive 245 _M_1X86 20
LIBPATH directive 246 macros
libraries 47 _386_ 20
80x87 math 50 __CHAR_SIGNED__ 21
aternate math 51 _COMPACT__ 22

612

Index

__cplusplus 22

_ CPPRTTI 22

_ CPPUNWIND 22
_DOSs 20

_DOSs 20
FLAT 22

_FP__ 21

_HUGE__ 21

_186__ 20
__INLINE_FUNCTIONS _ 21
_INTEGRAL_MAX_BITS 22
_LARGE__ 21
_LINUX__ 20
M_386CM 21
_M_386CM 21
M_386FM 21
_M_386FM 21
M_386LM 21
_M_386LM 21
M_386MM 21
_M_386MM 21
M_386SM 21
_M_386SM 21

M_1386 20

_M_1386 20

M_186 20

_M_186 20

M_I86CM 21
_M_I86CM 21
M_I86HM 21
_M_I86HM 21
M_I86LM 21
_M_I86LM 21
M_186MM 21
_M_186MM 21
M_186SM 21
_M_186SM 21
_M_1X86 20
__MEDIUM__ 21
MSDOS 20

__ NETWARE_386__ 20
__ NETWARE__ 20
NO_EXT_KEYS 21
_NT__ 20

_0s2__ 20
_PUSHPOP_SUPPORTED 22
_QONX__ 20
_SMALL__ 21
_STDCALL_SUPPORTED 22
_UNIX__ 20

w

__ WATCOM_CPLUSPLUS__ 22

__WATCOMC__ 22
_WINDOWS 20
— WINDOWS 386__ 20

__WINDOWS__ 20

__X86__ 20
mangled namesin C++ 251, 275
MANGLEDNAMES option 251
map file 252
MAP option 252
mask 335
math coprocessor 50-51
math387r.lib 50
math387s.lib 50
math3r.lib 51
math3s.lib 51
math87c.lib 50
math87h.lib 50
math871.lib 50
math87m.lib 50
math87s.lib 50
mathc.lib 51
matherr 602

DOMAIN 603

OVERFLOW 603

PLOSS 603

SING 603

TLOSS 603

UNDERFLOW 603
mathh.lib 51
mathl.lib 51
mathm.lib 51
maths.lib 51
MAXERRORS option 253
mdef.inc 51-52
medium memory model 56, 122
medium model

libraries 47, 50
memory

first megabyte 194
memory layout 57, 62, 123, 128, 227, 291
memory model 11
memory models

16-bit 55

32-bit 121

compact 56, 122

flat 122

huge 56

large 56, 122

libraries 57, 123

medium 56, 122

mixed 56, 122

small 56, 122

tiny 56
message 556

1014 295

1019 295

1023 296

613

Index

1027 297 1163 308
1028,2028 297 1165 308
1032 297 1167 308
1038 297 2002 293
1043 298 2008 293
1044,2044 298 2010,3010 294
1045 298 2011 294
1046 298 2012 294
1047 298 2015 295
1048 299 2016 295
1050 299 2017 295
1054 299 2018 295
1058 299 2020 295
1059,2059 300 2021 296
1060 300 2022 296
1061 300 2024 296
1062 300 2025 296
1069 301 2026 296
1072 301 2029 297
1076 301 2030 297
1080 301 2031 297
1087 302 2033,3033 297
1090 302 2034 297
1098 303 2039 298
1101 303 2040 298
1102 303 2041 298
1103 303 2042 298
1105 303 2049 299
1107 303 2051 299
1108 303 2052 299
1109 304 2053 299
1110 304 2055 299
1111 304 2056 299
1115 304 2063 300
1116 304 2064 300
1117 304 2065 300
1118 304 2066 300
1121 305 2067 300
1124 305 2068 300
1125 305 2070 301
1126 305 2071 301
1130 305 2073 301
1133 306 2074 301
1134 306 2075 301
1136 306 2082 301
1140 306 2083 302
1141 306 2084 302
1143 307 2086 302
1145 307 2089 302
1148 307 2091 302
1149 307 2092 302
1150 307 2093 302
1158 308 2094 303
1162 308 2099 303

614

Index

2119 304

2120 304

2127 305

2132 306

2146 307

2151 307

2152 307

2154 307

2155 307

2156 308

2166 308

3009 294

3013 294

3057 299

3088 302

3097 303

3114 304

3122 305

3123 305

3128 305

3129 305

3131 305

3135 306

3137 306

3138 306

3139 306

3147 307

3157 308

3159 308

3160 308

3164 308
message pragma 88, 156
messages

errno 598

matherr 602

run-time 598, 602
MetaWare

High C calling convention 161, 183
Microsoft

C calling convention 93, 114
Microsoft OMF 209
mixed memory model 56, 122
models.inc 51
MODFILE directive 254
modify exact (pragma) 113-114, 182-183
modify nomemory (pragma) 109, 112, 179, 181
modify reg_set (pragma) 118, 187
MODTRACE directive 255
MSDOS 20-21
mutable 553

naked 27, 38
NAME directive 256
NAMELEN option 257
namespace 455, 577-579
near 25, 56, 122, 407, 524
near (pragma) 97, 167
near call 55, 121
near pointer

sizeof 64, 130
_nhear 25
__hear 25, 27,407,524
NetWare debugger 224
__ NETWARE_386__ 20-21
__ NETWARE__ 20-21
new 433, 444, 449, 463, 495, 518, 520, 525, 578
no8087 (pragma) 105, 175
NO_EXT_KEYS 21
NODEFAULTLIBS option 258
noemu387.lib 50
noemu87.lib 50
NOEXTENSION option 259
NOREDEFSOK option 272
notation 214
NOUNDEFSOK option 285
_NT__ 2021
NULL 33
_NULLOFF 33
_NULLSEG 33
numeric data processor 50-51

object model 82, 150
OCC directory 10
occ file extension 10
offsetof 438, 442, 492
OMF 209
OMF library 209
once pragma 88, 156
opattr 335
opcodes
assembly language 200
Open Watcom C/C++ options
zm 228
operator 453

615

Index

> 34
operator + 455, 463
operator ++ 465
operator += 462
operator -> 465, 557
operator delete 463-464, 490, 510, 578
operator delete[] 463-464
operator new 449-450, 452, 463-464, 578
operator new [] 463-464
operator ~ 462
optimization 88, 156
option 335
OPTION directive 260
options 7
ARTIFICIAL 216
bt 17
CACHE 217
CASEEXACT 218
check _stack 76, 144
CVPACK 220
DOSSEG 227
ELIMINATE 228
FARCALLS 230
FILLCHAR 233
fp2 50
fp3 50
fp5 50
fpc 51, 140
fpi 50
fpi87 50-51
i 17-18
LINEARRELOCS 249
LONGLIVED 250
MANGLEDNAMES 251
MAP 252
MAXERRORS 253
NAMELEN 257
NODEFAULTLIBS 258
NOEXTENSION 259
NOREDEFSOK 272
NOUNDEFSOK 285
OSNAME 266
PRIVILEGE 270
QUIET 271
r 68, 73, 134, 137, 142
REDEFSOK 272
reuse_duplicate_strings 77, 145
SHOWDEAD 274
STACK 276
START 277
STATICS 279
SYMFILE 280
UNDEFSOK 285
unreferenced 76, 144

616

using pragmas 76, 144

VERBOSE 286

VFREMOVAL 287
optionsfile

command line options 10
OPTLIB directive 261
ORDER directive 263
_ 082 2021
0S2_INCLUDE environment variable 17
OSNAME option 266
OUTPUT directive 267
overview of contents 3

pack pragma 89, 157
_Packed 26
page 335
parm (pragma) 101, 170
parm caller (pragma) 104, 174
parm nomemory (pragma) 112, 181
parmreg_set (pragma) 115, 184
parm reverse (pragma) 105, 174
parm routine (pragma) 104, 174
pascal 26, 94, 162
pascal alias name 94, 162
__pascal diasname 94, 162
_Pasca 26
__pascal 26-27, 94, 161-162
passing arguments 63, 129

1 byte 63, 129

2 bytes 63-64, 129

4 bytes 130

8 bytes 64, 130

far pointers 64, 130

in 80x87 registers 116, 184

in 80x87-based applications 72, 140

inregisters 63, 129

of type double 64, 130
PATH directive 269

PATH environment variable 17, 211, 213, 218,

230, 283, 367-368
PE format executable 235
Phar Lap example 194
Phar Lap OMF-386 209
Phar Lap TNT 235
PL format executable 235
plib3r.lib 49
plib3slib 49
plibc.lib 48

Index

plibh.lib 48
plibl.lib 48
plibm.lib 48
plibslib 48
popcontext 335
pragma 75, 143, 518, 524, 536
pragmaoptions 76, 144
__pragma("string") 27
__pragma 27, 31, 39
pragmas
=const 97, 167
aborts 109, 178
alias 78, 146
aliasname 93, 161
aloc _text 79, 147
aternate name 96, 165
auxiliary 91, 159
caling information 97, 167
code seg 79, 147
comment 80, 148
data seg 81, 149
describing argument lists 100, 170
describing return value 105, 175
disable_message 81, 149
dump_object_model 82, 150
enable_message 82, 150
enum 82, 150
error 83, 151
export 99-100, 169
extref 83, 151
far 97, 167
frame 100, 169
function 84, 152
in-line assembly 97, 167
in-line functions 104, 173
include alias 85, 153
initialize 85, 153
inline_depth 86, 154
inline_recursion 87, 155
intrinsic 87, 155
loadds 99, 168
message 88, 156
modify exact 113-114, 182-183
modify nomemory 109, 112, 179, 181
modify reg_set 118, 187
near 97, 167
no8087 105, 175
notation used to describe 75, 143
once 88, 156
pack 89, 157
parm 101, 170
parm caller 104, 174
parm nomemory 112, 181
parmreg_set 115, 184

parm reverse 105, 174
parm routine 104, 174
read only file 90, 158
specifying default libraries 77, 145
struct caller 105, 107, 175-176
struct float 105, 108, 175, 177
struct routine 105, 107, 175-176
template_depth 90, 158
value 105-108, 175-177
value [8087] 108, 178
value no8087 108, 178
valuereg_set 118, 187
warning 91, 159
precompiled headers 43
compiler options 44
rules 44
uses 43
using 43
predefined types
sizeof 64, 130
predictable code size 41, 369
preprocessor 18
printf 31
private 442, 459, 473
PRIVILEGE option 270
protected 433-434, 473
proto 335
public 442
punctuation characters 214
purge 335
pushcontext 335
_PUSHPOP_SUPPORTED 22

QNX applications
creating 289

_QNX__ 20-22

QUIET option 271

read only_file pragma 90, 158
real-mode memory 194
record 335

REDEFSOK option 272
REFERENCE directive 273

617

Index

register 384, 388, 393, 395, 401, 419, 428,
439-440
reinterpret_cast 566-567
removing debug information 361
restrict 26
__restrict 26
return 374, 387, 392, 406, 408, 417
return value (pragma) 105, 175
returning values from functions 69, 138
reuse duplicate stringsoption 77, 145
run-time
error messages 373, 405, 597-598
messages 597
run-timeinitialization 51

_saveregs 28
__saveregs 28
_Segl6 30
segment
_TEXT 58, 63, 124, 129
segment ordering 57, 62, 123, 128, 227, 291
segment references 25-26
_segment 25
__segment 25, 32-35
seghame references 25
_segname 25
__segname 25, 32, 398, 587
self references 26
_self 26
__sdf 26,32, 477
shared library 48
short 386, 388, 416
short int
sizeof 64, 130
short int type 60, 126
SHOWDEAD option 274
side effects of functions 109, 179
signed 386, 388, 416
signed char 559, 591
sizeof 64, 130
signed int
sizeof 64, 130
signed long int
sizeof 64, 130
signed short int
sizeof 64, 130
size of
char 64, 130

618

double 64, 130
enumerated types 65, 131
far pointer 64, 130
float 64, 130
int 64, 130
long double 64, 130
long float 64, 130
longint 64, 130
near pointer 64, 130
predefined types 64, 130
short int 64, 130
signed char 64, 130
signed int 64, 130
signed long int 64, 130
signed short int 64, 130
unsigned char 64, 130
unsigned int 64, 130
unsigned long int 64, 130
unsigned short int 64, 130
sizeof 38, 393
small code model 55, 121
small datamodel 55, 121
small memory model 56, 122
small model
libraries 47-48, 50-51, 123
software quality assurance 41, 370
SOMDLINK 25, 29
SOMLINK 26, 29
SORT directive 275
source file
including 16
searching 16
space character 214
special characters 214
stack frame 100, 169
stack frame (pragma) 100, 169
STACK option 276
stack-based calling convention 135
80x87 considerations 141

returning values from functions 140

stacking arguments 103, 172
START option 277
STARTLINK directive 278

static 36, 379, 385, 389, 413-414, 428, 433, 441,

449, 473, 476-477, 479, 489
static_cast 569, 571, 583-584
STATICS option 279
stdcall 94, 162
stdcall alias name 94, 162
__stdcall alias name 94, 162
__stdcall 27-28, 94, 162
_STDCALL_SUPPORTED 22
strip utility 361

Index

struct 26, 384-386, 391-395, 399, 414, 423, 442,
485, 595
struct caller (pragma) 105, 107, 175-176
struct float (pragma) 105, 108, 175, 177
struct routine (pragma) 105, 107, 175-176
subtitle 335
subttl 335
support files
dbg 370
hip 370
prs 370
sym 370
trp 370
switch 376, 382-383, 386, 392, 401, 409-411,
415, 488
symbol attributes 91, 159
symbol file 280
symbolic references in in-line code sequences 98,
168
SYMFILE option 280
SYMTRACE directive 281
syscall 162
syscall alias name 162
__syscall dlias name 162
_syscall 29
__syscall 27-29, 40, 162
system 162
system alias name 162
__system aliasname 162
SYSTEM directive 210, 282
system name 282
_System 29
__system 162

template_depth pragma 90, 158
_TEXT segment 58, 63, 124, 129

this 335, 446, 453, 489, 498, 508, 513, 537
thread 27, 36-37

throw 418, 448, 524, 533, 549-550, 577
tiny memory model 56

title 335

TMPDIR environment variable 368
TNT DOS extender 235

try 530, 532-533

_try 396

typedef 335, 428-429, 441, 455, 477
typeid 587

types

char 59, 125
double 61, 127
float 60, 126
int 60, 126
longint 60, 126
short int 60, 126

UNDEFSOK option 285
union 335, 384-386, 391-395, 399, 414, 423,
426-427, 485
__UNIX__ 20-21
unreferenced option 76, 144
unsigned 386, 388, 416, 423
unsigned char 559, 591
sizeof 64, 130
unsigned int
sizeof 64, 130
unsigned long int
sizeof 64, 130
unsigned short int
size of 64, 130
USE16 segments 123, 128
user initialization file 11
using 584-586
using environment variablesin directives 213
using namespace 581

va_arg 400

value (pragma) 105-108, 175-177

value [8087] (pragma) 108, 178

value no8087 (pragma) 108, 178

value reg_set (pragma) 118, 187

variable argument lists 69, 138

VERBOSE option 286

VFREMOVAL option 287

virtual 433, 489-490, 534

virtual functions 274, 287

void 15, 374, 385, 387, 406, 417, 443-444, 448,
450-451, 453, 463, 467, 495, 503, 520,
540-541, 556, 571

volatile 388, 432-433, 468, 495, 498, 506, 534,
566

VxD format executable 235

619

Index

w

warning messages 373
warning pragma 91, 159
warnings 226, 293
wasm
command line format 329
watcall 94, 162
watcall aliasname 94, 162
__watcall alias name 94, 162
__watcall 94, 162
WATCOM environment variable 50, 212-213,
218, 230, 284, 367-368
__ WATCOM_CPLUSPLUS 22
__ WATCOMC__ 22
wcc 369
WCC environment variable 10, 369
WCC options
nm 58, 63, 124, 129
nt 58, 63, 124, 129
wcc386 369
WCC386 environment variable 11, 369
WCC386 options
nm 58, 63, 124, 129
nt 58, 63, 124, 129
WCGMEMORY environment variable 41,
369-370
WD environment variable 370
WD_PATH environment variable 370
wdis
command line format 347
wdis example 352
wdis options 348
a 348
e 348
fi 349
fp 349
fr 349
fu 350
i 348
| (lowercaseL) 350
m 351
p 350
s 351
while 382, 390, 392, 401, 409-410, 421
width 335
window function 241
_WINDOWS 20-21
__ WINDOWS 386 20-21
__WINDOWS _ 20-21
wlib

620

command file 318
command line format 313
operations 314
wlib options 318
b 318
c 318
d 319
f 319
i 319
| (lower caseL) 320
m 320
n 320
o 321
p 321
q 321
s 322
t 322
v 322
X 322
wlink
command lineformat 210, 289
wlink command line
invoking wlink 210, 289
wlink notation 214
wlink.Ink
default directive file 211, 213, 218, 230, 283
WLINK_LNK environment variable 212-213,
218, 230, 284
wlsystem.Ink
directivefile 212-213, 218, 230, 283
wpp 371
WPP environment variable 10, 371
WPP options
nm 58, 63, 124, 129
nt 58, 63, 124, 129
wpp386 371
WPP386 environment variable 11, 371
WPP386 options
nm 58, 63, 124, 129
nt 58, 63, 124, 129
wstrip 224-225, 361
command line format 361
diagnostics 362
wstrip command 225

_ X86__ 20

Index

zm compiler option (Open Watcom C/C++) 228

621

