
Open Watcom C/C++

User’s Guide

First Edition

Notice of Copyright

Copyright  2002-2006 the Open Watcom Contributors. Portions Copyright  1984-2002
Sybase, Inc. and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of anyone.

For more information please visit http://www.openwatcom.org/

Printed in U.S.A.

ii

Preface
Open Watcom C is an implementation of ISO/ANSI 9899:1990 Programming Language C.
The standard was developed by the ANSI X3J11 Technical Committee on the C Programming
Language. In addition to the full C language standard, the compiler supports numerous
extensions for the Intel 80x86-based personal computer environment. The compiler is also
partially compliant with the ISO/IEC 9899:1999 Programming Language C standard.

Open Watcom C++ is an implementation of the Draft Proposed International Standard for
Information Systems Programming Language C++ (ANSI X3J16, ISO WG21). In addition to
the full C++ language standard, the compiler supports numerous extensions for the Intel
80x86-based personal computer environment.

Open Watcom is well known for its language processors having developed, over the last
decade, compilers and interpreters for the APL, BASIC, COBOL, FORTRAN and Pascal
programming languages. From the start, Open Watcom has been committed to developing
portable software products. These products have been implemented on a variety of processor
architectures including the IBM 370, the Intel 8086 family, the Motorola 6809 and 68000, the
MOS 6502, and the Digital PDP11 and VAX. In most cases, the tools necessary for porting to
these environments had to be created first. Invariably, a code generator had to be written.
Assemblers, linkers and debuggers had to be created when none were available or when
existing ones were inadequate.

Over the years, much research has gone into developing the "ultimate" code generator for the
Intel 8086 family. We have continually looked for new ways to improve the quality of the
emitted code, never being quite satisfied with the results. Several major revisions, including
some entirely new approaches to code generation, have ensued over the years. Our latest
version employs state of the art techniques to produce very high quality code for the 8086
family. We introduced the C compiler in 1987, satisfied that we had a C software
development system that would be of major benefit to those developing applications in C for
the IBM PC and compatibles.

The Open Watcom C/C++ User’s Guide describes how to use Open Watcom C/C++ on Intel
80x86-based personal computers with DOS, Windows, Windows NT, or OS/2.

iii

Acknowledgements

This book was produced with the Open Watcom GML electronic publishing system, a
software tool developed by WATCOM. In this system, writers use an ASCII text editor to
create source files containing text annotated with tags. These tags label the structural
elements of the document, such as chapters, sections, paragraphs, and lists. The Open
Watcom GML software, which runs on a variety of operating systems, interprets the tags to
format the text into a form such as you see here. Writers can produce output for a variety of
printers, including laser printers, using separately specified layout directives for such things as
font selection, column width and height, number of columns, etc. The result is type-set
quality copy containing integrated text and graphics.

The Plum Hall Validation Suite for C/C++ has been invaluable in verifying the conformance
of the Open Watcom C/C++ compilers to the ISO C Language Standard and the Draft
Proposed C++ Language Standard.

Many users have provided valuable feedback on earlier versions of the Open Watcom C/C++
compilers and related tools. Their comments were greatly appreciated. If you find problems
in the documentation or have some good suggestions, we would like to hear from you.

July, 1997.

Trademarks Used in this Manual

DOS/4G and DOS/16M are trademarks of Tenberry Software, Inc.

High C is a trademark of MetaWare, Inc.

IBM Developer’s Toolkit, Presentation Manager, and OS/2 are trademarks of International
Business Machines Corp. IBM is a registered trademark of International Business Machines
Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. Windows
NT is a trademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

Phar Lap, 286|DOS-Extender and 386|DOS-Extender are trademarks of Phar Lap Software,
Inc.

QNX is a registered trademark of QNX Software Systems Ltd.

iv

UNIX is a registered trademark of The Open Group.

WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

v

vi

Table of Contents

Open Watcom C/C++ User’s Guide .. 1

1 About This Manual ... 3

2 Open Watcom C/C++ Compiler Options .. 7
2.1 Compiler Options - Summarized Alphabetically ... 7
2.2 Compiler Options - Summarized By Category ... 13

2.2.1 Target Specific ... 13
2.2.2 Debugging/Profiling ... 14
2.2.3 Preprocessor ... 15
2.2.4 Diagnostics ... 15
2.2.5 Source/Output Control ... 16
2.2.6 Code Generation ... 17
2.2.7 80x86 Floating Point .. 18
2.2.8 Segments/Modules ... 18
2.2.9 80x86 Run-time Conventions ... 18
2.2.10 Optimizations ... 19
2.2.11 C++ Exception Handling .. 20
2.2.12 Double-Byte/Unicode Characters .. 20
2.2.13 Compatibility with Microsoft Visual C++ 21
2.2.14 Compatibility with Older Versions of the 80x86 Compilers 21

2.3 Compiler Options - Full Description .. 21
2.3.1 Target Specific ... 21
2.3.2 Debugging/Profiling ... 30
2.3.3 Preprocessor ... 34
2.3.4 Diagnostics ... 37
2.3.5 Source/Output Control ... 42
2.3.6 Code Generation ... 50
2.3.7 80x86 Floating Point .. 56
2.3.8 Segments/Modules ... 62
2.3.9 80x86 Run-time Conventions ... 68
2.3.10 Optimizations ... 73
2.3.11 C++ Exception Handling .. 79
2.3.12 Double-Byte/Unicode Characters .. 80
2.3.13 Compatibility with Microsoft Visual C++ 81
2.3.14 Compatibility with Older Versions of the 80x86 Compilers 82

3 The Open Watcom C/C++ Compilers ... 83
3.1 Open Watcom C/C++ Command Line Format ... 83
3.2 Open Watcom C/C++ DLL-based Compilers .. 85
3.3 Environment Variables ... 85
3.4 Open Watcom C/C++ Command Line Examples .. 86

vii

Table of Contents

3.5 Benchmarking Hints ... 89
3.6 Compiler Diagnostics ... 91
3.7 Open Watcom C/C++ #include File Processing ... 93
3.8 Open Watcom C/C++ Preprocessor ... 96
3.9 Open Watcom C/C++ Predefined Macros .. 97
3.10 Open Watcom C/C++ Extended Keywords .. 103
3.11 Based Pointers .. 113

3.11.1 Segment Constant Based Pointers and Objects 114
3.11.2 Segment Object Based Pointers ... 115
3.11.3 Void Based Pointers ... 115
3.11.4 Self Based Pointers .. 116

3.12 The __declspec Keyword ... 118
3.13 The Open Watcom Code Generator ... 124

4 Precompiled Headers .. 127
4.1 Using Precompiled Headers ... 127
4.2 When to Precompile Header Files .. 127
4.3 Creating and Using Precompiled Headers .. 128
4.4 The "/fh[q]" (Precompiled Header) Option .. 128
4.5 Consistency Rules for Precompiled Headers .. 129

5 The Open Watcom C/C++ Libraries ... 131
5.1 Open Watcom C/C++ Library Directory Structure 131
5.2 Open Watcom C/C++ C Libraries .. 132
5.3 Open Watcom C/C++ Class Libraries .. 134
5.4 Open Watcom C/C++ Math Libraries .. 136
5.5 Open Watcom C/C++ 80x87 Math Libraries ... 137
5.6 Open Watcom C/C++ Alternate Math Libraries .. 138
5.7 The NO87 Environment Variable ... 139
5.8 The Open Watcom C/C++ Run-time Initialization Routines 139

16-bit Topics .. 143

6 16-bit Memory Models ... 145
6.1 Introduction .. 145
6.2 16-bit Code Models .. 145
6.3 16-bit Data Models ... 146
6.4 Summary of 16-bit Memory Models .. 147
6.5 Tiny Memory Model ... 147
6.6 Mixed 16-bit Memory Model ... 147
6.7 Linking Applications for the Various 16-bit Memory Models 148

viii

Table of Contents

6.8 Creating a Tiny Memory Model Application ... 148
6.9 Memory Layout .. 149

7 16-bit Assembly Language Considerations .. 151
7.1 Introduction .. 151
7.2 Data Representation .. 151

7.2.1 Type "char" .. 152
7.2.2 Type "short int" .. 152
7.2.3 Type "long int" ... 152
7.2.4 Type "int" ... 153
7.2.5 Type "float" .. 153
7.2.6 Type "double" .. 154

7.3 Memory Layout .. 155
7.4 Calling Conventions for Non-80x87 Applications 157

7.4.1 Passing Arguments Using Register-Based Calling Conventions ... 157
7.4.2 Sizes of Predefined Types .. 158
7.4.3 Size of Enumerated Types .. 159
7.4.4 Effect of Function Prototypes on Arguments 159
7.4.5 Interfacing to Assembly Language Functions 160
7.4.6 Functions with Variable Number of Arguments 164
7.4.7 Returning Values from Functions .. 164

7.5 Calling Conventions for 80x87-based Applications 168
7.5.1 Passing Values in 80x87-based Applications 168
7.5.2 Returning Values in 80x87-based Applications 170

8 16-bit Pragmas .. 171
8.1 Introduction .. 171
8.2 Using Pragmas to Specify Options ... 172
8.3 Using Pragmas to Specify Default Libraries .. 174
8.4 The ALLOC_TEXT Pragma (C Only) ... 175
8.5 The CODE_SEG Pragma ... 176
8.6 The COMMENT Pragma ... 177
8.7 The DATA_SEG Pragma ... 177
8.8 The DISABLE_MESSAGE Pragma (C Only) ... 178
8.9 The DUMP_OBJECT_MODEL Pragma (C++ Only) 179
8.10 The ENABLE_MESSAGE Pragma (C Only) .. 179
8.11 The ENUM Pragma .. 180
8.12 The ERROR Pragma ... 181
8.13 The EXTREF Pragma ... 181
8.14 The FUNCTION Pragma .. 182
8.15 Setting Priority of Static Data Initialization (C++ Only) 183
8.16 The INLINE_DEPTH Pragma (C++ Only) .. 184

ix

Table of Contents

8.17 The INLINE_RECURSION Pragma (C++ Only) 185
8.18 The INTRINSIC Pragma .. 185
8.19 The MESSAGE Pragma ... 186
8.20 The ONCE Pragma ... 186
8.21 The PACK Pragma ... 187
8.22 The READ_ONLY_FILE Pragma ... 188
8.23 The TEMPLATE_DEPTH Pragma (C++ Only) .. 189
8.24 The WARNING Pragma (C++ Only) ... 190
8.25 Auxiliary Pragmas .. 190

8.25.1 Specifying Symbol Attributes .. 190
8.25.2 Alias Names ... 191
8.25.3 Predefined Aliases .. 193

8.25.3.1 Predefined "__cdecl" Alias .. 194
8.25.3.2 Predefined "__pascal" Alias .. 195
8.25.3.3 Predefined "__watcall" Alias ... 195

8.25.4 Alternate Names for Symbols .. 196
8.25.5 Describing Calling Information ... 197

8.25.5.1 Loading Data Segment Register 200
8.25.5.2 Defining Exported Symbols in Dynamic Link

Libraries ... 201
8.25.5.3 Defining Windows Callback Functions 201
8.25.5.4 Forcing a Stack Frame ... 202

8.25.6 Describing Argument Information ... 202
8.25.6.1 Passing Arguments in Registers 203
8.25.6.2 Forcing Arguments into Specific Registers 206
8.25.6.3 Passing Arguments to In-Line Functions 206
8.25.6.4 Removing Arguments from the Stack 207
8.25.6.5 Passing Arguments in Reverse Order 208

8.25.7 Describing Function Return Information 209
8.25.7.1 Returning Function Values in Registers 209
8.25.7.2 Returning Structures .. 210
8.25.7.3 Returning Floating-Point Data 212

8.25.8 A Function that Never Returns .. 213
8.25.9 Describing How Functions Use Memory 214
8.25.10 Describing the Registers Modified by a Function 218
8.25.11 An Example .. 220
8.25.12 Auxiliary Pragmas and the 80x87 .. 221

8.25.12.1 Using the 80x87 to Pass Arguments 221
8.25.12.2 Using the 80x87 to Return Function Values 225
8.25.12.3 Preserving 80x87 Floating-Point Registers Across

Calls ... 225

x

Table of Contents

32-bit Topics .. 227

9 32-bit Memory Models ... 229
9.1 Introduction .. 229
9.2 32-bit Code Models .. 229
9.3 32-bit Data Models ... 230
9.4 Summary of 32-bit Memory Models .. 230
9.5 Flat Memory Model .. 231
9.6 Mixed 32-bit Memory Model ... 231
9.7 Linking Applications for the Various 32-bit Memory Models 232
9.8 Memory Layout .. 232

10 32-bit Assembly Language Considerations .. 235
10.1 Introduction .. 235
10.2 Data Representation .. 235

10.2.1 Type "char" .. 236
10.2.2 Type "short int" .. 236
10.2.3 Type "long int" ... 236
10.2.4 Type "int" ... 237
10.2.5 Type "float" .. 237
10.2.6 Type "double" .. 238

10.3 Memory Layout .. 239
10.4 Calling Conventions for Non-80x87 Applications 241

10.4.1 Passing Arguments Using Register-Based Calling
Conventions .. 241

10.4.2 Sizes of Predefined Types .. 242
10.4.3 Size of Enumerated Types .. 243
10.4.4 Effect of Function Prototypes on Arguments 243
10.4.5 Interfacing to Assembly Language Functions 244
10.4.6 Using Stack-Based Calling Conventions 248
10.4.7 Functions with Variable Number of Arguments 252
10.4.8 Returning Values from Functions .. 252

10.5 Calling Conventions for 80x87-based Applications 256
10.5.1 Passing Values in 80x87-based Applications 256
10.5.2 Returning Values in 80x87-based Applications 258

11 32-bit Pragmas .. 259
11.1 Introduction .. 259
11.2 Using Pragmas to Specify Options ... 260
11.3 Using Pragmas to Specify Default Libraries .. 262
11.4 The ALLOC_TEXT Pragma (C Only) ... 263
11.5 The CODE_SEG Pragma ... 264

xi

Table of Contents

11.6 The COMMENT Pragma ... 265
11.7 The DATA_SEG Pragma ... 265
11.8 The DISABLE_MESSAGE Pragma (C Only) ... 266
11.9 The DUMP_OBJECT_MODEL Pragma (C++ Only) 267
11.10 The ENABLE_MESSAGE Pragma (C Only) .. 267
11.11 The ENUM Pragma .. 268
11.12 The ERROR Pragma ... 269
11.13 The EXTREF Pragma ... 269
11.14 The FUNCTION Pragma .. 270
11.15 Setting Priority of Static Data Initialization (C++ Only) 271
11.16 The INLINE_DEPTH Pragma (C++ Only) .. 272
11.17 The INLINE_RECURSION Pragma (C++ Only) 273
11.18 The INTRINSIC Pragma .. 273
11.19 The MESSAGE Pragma ... 274
11.20 The ONCE Pragma ... 274
11.21 The PACK Pragma ... 275
11.22 The READ_ONLY_FILE Pragma ... 276
11.23 The TEMPLATE_DEPTH Pragma (C++ Only) 277
11.24 The WARNING Pragma (C++ Only) ... 278
11.25 Auxiliary Pragmas .. 278

11.25.1 Specifying Symbol Attributes .. 278
11.25.2 Alias Names ... 279
11.25.3 Predefined Aliases .. 282

11.25.3.1 Predefined "__cdecl" Alias .. 282
11.25.3.2 Predefined "__pascal" Alias .. 283
11.25.3.3 Predefined "__stdcall" Alias .. 283
11.25.3.4 Predefined "__syscall" Alias 284
11.25.3.5 Predefined "__watcall" Alias (register calling

convention) .. 285
11.25.3.6 Predefined "__watcall" Alias (stack calling

convention) .. 285
11.25.4 Alternate Names for Symbols .. 286
11.25.5 Describing Calling Information ... 287

11.25.5.1 Loading Data Segment Register 290
11.25.5.2 Defining Exported Symbols in Dynamic Link

Libraries ... 290
11.25.5.3 Forcing a Stack Frame ... 291

11.25.6 Describing Argument Information ... 291
11.25.6.1 Passing Arguments in Registers 292
11.25.6.2 Forcing Arguments into Specific Registers 295
11.25.6.3 Passing Arguments to In-Line Functions 295
11.25.6.4 Removing Arguments from the Stack 297

xii

Table of Contents

11.25.6.5 Passing Arguments in Reverse Order 297
11.25.7 Describing Function Return Information 298

11.25.7.1 Returning Function Values in Registers 298
11.25.7.2 Returning Structures .. 300
11.25.7.3 Returning Floating-Point Data 301

11.25.8 A Function that Never Returns .. 302
11.25.9 Describing How Functions Use Memory 303
11.25.10 Describing the Registers Modified by a Function 308
11.25.11 An Example .. 309
11.25.12 Auxiliary Pragmas and the 80x87 .. 310

11.25.12.1 Using the 80x87 to Pass Arguments 310
11.25.12.2 Using the 80x87 to Return Function Values 314
11.25.12.3 Preserving 80x87 Floating-Point Registers Across

Calls ... 315

In-line Assembly Language ... 317

12 In-line Assembly Language .. 319
12.1 In-line Assembly Language Default Environment 319
12.2 In-line Assembly Language Tutorial .. 320
12.3 Labels in In-line Assembly Code ... 327
12.4 Variables in In-line Assembly Code ... 327
12.5 In-line Assembly Language using _asm ... 330
12.6 In-line Assembly Directives and Opcodes ... 332

Structured Exception Handling in C .. 341

13 Structured Exception Handling ... 343
13.1 Termination Handlers ... 343
13.2 Exception Filters and Exception Handlers ... 352
13.3 Resuming Execution After an Exception ... 353
13.4 Mixing and Matching _try/_finally and _try/_except 354
13.5 Refining Exception Handling ... 357
13.6 Throwing Your Own Exceptions .. 361

Embedded Systems .. 363

14 Creating ROM-based Applications ... 365
14.1 Introduction .. 365

xiii

Table of Contents

14.2 ROMable Functions .. 365
14.3 System-Dependent Functions ... 367
14.4 Modifying the Startup Code ... 368
14.5 Choosing the Correct Floating-Point Option .. 369

Appendices .. 371

A. Use of Environment Variables .. 373
A.1 FORCE .. 373
A.2 INCLUDE .. 373
A.3 LIB ... 374
A.4 LIBDOS ... 374
A.5 LIBWIN ... 375
A.6 LIBOS2 .. 375
A.7 LIBPHAR .. 376
A.8 NO87 .. 376
A.9 PATH ... 377
A.10 TMP ... 378
A.11 WATCOM ... 378
A.12 WCC .. 378
A.13 WCC386 .. 379
A.14 WCL .. 379
A.15 WCL386 .. 380
A.16 WCGMEMORY .. 380
A.17 WD ... 381
A.18 WDW ... 382
A.19 WLANG .. 382
A.20 WPP ... 383
A.21 WPP386 ... 383

B. Open Watcom C Diagnostic Messages ... 385
B.1 Warning Level 1 Messages .. 386
B.2 Warning Level 2 Messages .. 393
B.3 Warning Level 3 Messages .. 394
B.4 Error Messages ... 396
B.5 Informational Messages ... 422
B.6 Pre-compiled Header Messages ... 423
B.7 Miscellaneous Messages and Phrases .. 424

C. Open Watcom C++ Diagnostic Messages ... 427
C.1 Diagnostic Messages .. 428

xiv

Table of Contents

D. Open Watcom C/C++ Run-Time Messages .. 673
D.1 Run-Time Error Messages ... 673
D.2 errno Values and Their Meanings .. 674
D.3 Math Run-Time Error Messages .. 676

xv

xvi

Open Watcom C/C++ User’s Guide

Open Watcom C/C++ User’s Guide

2

1 About This Manual

This manual contains the following chapters:

Chapter 1 — "About This Manual".

This chapter provides an overview of the contents of this guide.

Chapter 2 — "Open Watcom C/C++ Compiler Options" on page 7.

This chapter provides a summary and reference section for all the C and C++
compiler options.

Chapter 3 — "The Open Watcom C/C++ Compilers" on page 83.

This chapter describes how to compile an application from the command line.
This chapter also describes compiler environment variables, benchmarking hints,
compiler diagnostics, #include file processing, the preprocessor, predefined
macros, extended keywords, and the code generator.

Chapter 4 — "Precompiled Headers" on page 127.

This chapter describes the use of precompiled headers to speed up compilation.

Chapter 5 — "The Open Watcom C/C++ Libraries" on page 131.

This chapter describes the Open Watcom C/C++ library directory structure, C
libraries, class libraries, math libraries, 80x87 math libraries, alternate math
libraries, the "NO87" environment variable, and the run-time initialization
routines.

Chapter 6 — "16-bit Memory Models" on page 145.

This chapter describes the Open Watcom C/C++ memory models (including
code and data models), the tiny memory model, the mixed memory model,
linking applications for the various memory models, creating a tiny memory
model application, and memory layout in an executable.

About This Manual 3

Open Watcom C/C++ User’s Guide

Chapter 7 — "16-bit Assembly Language Considerations" on page 151.

This chapter describes issues relating to 16-bit interfacing such as parameter
passing conventions.

Chapter 8 — "16-bit Pragmas" on page 171.

This chapter describes the use of pragmas with the 16-bit compilers.

Chapter 9 — "32-bit Memory Models" on page 229.

This chapter describes the Open Watcom C/C++ memory models (including
code and data models), the flat memory model, the mixed memory model,
linking applications for the various memory models, and memory layout in an
executable.

Chapter 10 — "32-bit Assembly Language Considerations" on page 235.

This chapter describes issues relating to 32-bit interfacing such as parameter
passing conventions.

Chapter 11 — "32-bit Pragmas" on page 259.

This chapter describes the use of pragmas with the 32-bit compilers.

Chapter 12 — "In-line Assembly Language" on page 319.

This chapter describes in-line assembly language programming using the
auxiliary pragma.

Chapter 13 — "Creating ROM-based Applications" on page 365.

This chapter discusses some embedded systems issues as they pertain to the C
library.

Appendix A. — "Use of Environment Variables" on page 373.

This appendix describes all the environment variables used by the compilers and
related tools.

Appendix B. — "Open Watcom C Diagnostic Messages" on page 385.

This appendix lists all of the Open Watcom C diagnostic messages with an
explanation for each.

4 About This Manual

About This Manual

Appendix C. — "Open Watcom C++ Diagnostic Messages" on page 427.

This appendix lists all of the Open Watcom C++ diagnostic messages with an
explanation for each.

Appendix D. — "Open Watcom C/C++ Run-Time Messages" on page 673.

This appendix lists all of the C/C++ run-time diagnostic messages with an
explanation for each.

About This Manual 5

Open Watcom C/C++ User’s Guide

6 About This Manual

2 Open Watcom C/C++ Compiler Options

Source files can be compiled using either the IDE or command-line compilers. This chapter
describes all the compiler options that are available.

For information about compiling applications from the IDE, see the Open Watcom Graphical
Tools User’s Guide.

For information about compiling applications from the command line, see the chapter entitled
"The Open Watcom C/C++ Compilers" on page 83.

The Open Watcom C/C++ compiler command names (compiler_name) are:

WCC the Open Watcom C compiler for 16-bit Intel platforms.
WPP the Open Watcom C++ compiler for 16-bit Intel platforms.
WCC386 the Open Watcom C compiler for 32-bit Intel platforms.
WPP386 the Open Watcom C++ compiler for 32-bit Intel platforms.

2.1 Compiler Options - Summarized Alphabetically

In this section, we present a terse summary of compiler options. This summary is displayed
on the screen by simply entering the compiler command name with no arguments.

Option: Description:

0 (16-bit only) 8088 and 8086 instructions (default for 16-bit) (see "0" on
page 68)

1 (16-bit only) 188 and 186 instructions (see "1" on page 68)
2 (16-bit only) 286 instructions (see "2" on page 68)
3 (16-bit only) 386 instructions (see "3" on page 68)
4 (16-bit only) 486 instructions (see "4" on page 68)
5 (16-bit only) Pentium instructions (see "5" on page 68)
6 (16-bit only) Pentium Pro instructions (see "6" on page 69)
3r (32-bit only) generate 386 instructions based on 386 instruction timings and

use register-based argument passing conventions (see "3{r|s}" on page 69)

Compiler Options - Summarized Alphabetically 7

Open Watcom C/C++ User’s Guide

3s (32-bit only) generate 386 instructions based on 386 instruction timings and
use stack-based argument passing conventions (see "3{r|s}" on page 69)

4r (32-bit only) generate 386 instructions based on 486 instruction timings and
use register-based argument passing conventions (see "4{r|s}" on page 70)

4s (32-bit only) generate 386 instructions based on 486 instruction timings and
use stack-based argument passing conventions (see "4{r|s}" on page 70)

5r (32-bit only) generate 386 instructions based on Intel Pentium instruction
timings and use register-based argument passing conventions (default for
32-bit) (see "5{r|s}" on page 70)

5s (32-bit only) generate 386 instructions based on Intel Pentium instruction
timings and use stack-based argument passing conventions (see "5{r|s}" on
page 70)

6r (32-bit only) generate 386 instructions based on Intel Pentium Pro
instruction timings and use register-based argument passing conventions
(see "6{r|s}" on page 70)

6s (32-bit only) generate 386 instructions based on Intel Pentium Pro
instruction timings and use stack-based argument passing conventions (see
"6{r|s}" on page 70)

ad[=<file_name>] generate makefile style auto depend file (see "ad[=<file_name>]" on page
42)

adbs force slashes generated in makefile style auto depend to backward (see
"adbs" on page 42)

add[=<file_name>] specify source dependancy name generated in make-style autodep file
(see "add[=<file_name>]" on page 43)

adhp[=<file_name>] specify path to use for headers which result with no path, and are
filename only. (see "adhp[=<path_name>]" on page 43)

adfs force slashes generated in makefile style auto depend to forward (see "adfs"
on page 44)

adt[=<target_name>] specify target name generated in makefile style auto depend (see
"adt[=<target_name>]" on page 44)

bc build target is a console application (see "bc" on page 21)
bd build target is a Dynamic Link Library (DLL) (see "bd" on page 22)
bg build target is a GUI application (see "bg" on page 22)
bm build target is a multi-thread environment (see "bm" on page 22)
br build target uses DLL version of C/C++ run-time libraries (see "br" on page

22)
bt[=<os>] build target for operating system <os> (see "bt[=<os>]" on page 23)
bw build target uses default windowing support (see "bw" on page 24)
d0 (C++ only) no debugging information (see "d0" on page 30)
d1 line number debugging information (see "d1" on page 31)
d1+ (C only) line number debugging information plus typing information for

global symbols and local structs and arrays (see "d1+" on page 31)

8 Compiler Options - Summarized Alphabetically

Open Watcom C/C++ Compiler Options

d2 full symbolic debugging information (see "d2" on page 31)
d2i (C++ only) d2 and debug inlines; emit inlines as external out-of-line

functions (see "d2i" on page 31)
d2s (C++ only) d2 and debug inlines; emit inlines as static out-of-line functions

(see "d2s" on page 32)
d2t (C++ only) full symbolic debugging information, without type names (see

"d2t" on page 32)
d3 full symbolic debugging with unreferenced type names (see "d3" on page

32) ,*
d3i (C++ only) d3 plus debug inlines; emit inlines as external out-of-line

functions (see "d3i" on page 32)
d3s (C++ only) d3 plus debug inlines; emit inlines as static out-of-line functions

(see "d3s" on page 32)
d<name>[=text] preprocessor #define name [text] (see "d<name>[=text]" on page 34)
d+ allow extended -d macro definitions (see "d+" on page 35)
db generate browsing information (see "db" on page 45)
e<number> set error limit number (default is 20) (see "e<number>" on page 37)
ecc set default calling convention to __cdecl (see "ecc" on page 50)
ecd set default calling convention to __stdcall (see "ecd" on page 51)
ecf set default calling convention to __fastcall (see "ecf" on page 51)
ecp set default calling convention to __pascal (see "ecp" on page 51)
ecr set default calling convention to __fortran (see "ecr" on page 51)
ecs set default calling convention to _Syscall (see "ecs" on page 51)
ecw set default calling convention to __watcall (default) (see "ecw" on page 51)
ee call epilogue hook routine (see "ee" on page 32)
ef use full path names in error messages (see "ef" on page 37)
ei force enum base type to use at least an int (see "ei" on page 51)
em force enum base type to use minimum (see "em" on page 51)
en emit routine name before prologue (see "en" on page 32)
ep[<number>] call prologue hook routine with number of stack bytes available (see

"ep[<number>]" on page 33)
eq do not display error messages (they are still written to a file) (see "eq" on

page 37)
er (C++ only) do not recover from undefined symbol errors (see "er" on page

37)
et Pentium profiling (see "et" on page 33)
ew (C++ only) generate less verbose messages (see "ew" on page 38)
ez (32-bit only) generate Phar Lap Easy OMF-386 object file (see "ez" on page

45)
fc=<file_name> (C++ only) specify file of command lines to be batch processed (see

"fc=<file_name>" on page 45)
fh[q][=<file_name>] use precompiled headers (see "fh[q][=<file_name>]" on page 45)

Compiler Options - Summarized Alphabetically 9

Open Watcom C/C++ User’s Guide

fhd store debug info for pre-compiled header once (DWARF only) (see "fhd" on
page 46)

fhr (C++ only) force compiler to read pre-compiled header (see "fhr" on page
46)

fhw (C++ only) force compiler to write pre-compiled header (see "fhw" on page
46)

fhwe (C++ only) don’t include pre-compiled header warnings when "we" is used
(see "fhwe" on page 46)

fi=<file_name> force file_name to be included (see "fi=<file_name>" on page 46)
fo=<file_name> set object or preprocessor output file specification (see "fo[=<file_name>]

(preprocessor)" on page 35) (see "fo[=<file_name>]" on page 46)
fpc generate calls to floating-point library (see "fpc" on page 59)
fpi (16-bit only) generate in-line 80x87 instructions with emulation (default)

(32-bit only) generate in-line 387 instructions with emulation (default) (see
"fpi" on page 59)

fpi87 (16-bit only) generate in-line 80x87 instructions

(32-bit only) generate in-line 387 instructions (see "fpi87" on page 60)
fp2 generate in-line 80x87 instructions (see "fp2" on page 60)
fp3 generate in-line 387 instructions (see "fp3" on page 61)
fp5 generate in-line 80x87 instructions optimized for Pentium processor (see

"fp5" on page 61)
fp6 generate in-line 80x87 instructions optimized for Pentium Pro processor

(see "fp6" on page 61)
fpd enable generation of Pentium FDIV bug check code (see "fpd" on page 61)
fpr generate 8087 code compatible with older versions of compiler (see "fpr" on

page 82)
fr=<file_name> set error file specification (see "fr[=<file_name>]" on page 47)
ft (C++ only) try truncated (8.3) header file specification (see "ft" on page 47)
fti (C only) track include file opens (see "fti" on page 47)
fx (C++ only) do not try truncated (8.3) header file specification (see "fx" on

page 47)
fzh (C++ only) do not automatically append extensions for include files (see

"fzh" on page 48)
fzs (C++ only) do not automatically append extensions for source files (see

"fzs" on page 48)
g=<codegroup> set code group name (see "g=<codegroup>" on page 62)
h{w,d,c} set debug output format (Open Watcom, Dwarf, Codeview) (see "h{w,d,c}"

on page 34)
i=<directory> add directory to list of include directories (see "i=<directory>" on page 48)
j change char default from unsigned to signed (see "j" on page 51)

10 Compiler Options - Summarized Alphabetically

Open Watcom C/C++ Compiler Options

k (C++ only) continue processing files (ignore errors) (see "k" on page 48)
m{f,s,m,c,l,h} memory model — mf=flat (see "mf" on page 71), ms=small (see "ms" on

page 71), mm=medium (see "mm" on page 71), mc=compact (see "mc" on
page 71), ml=large (see "ml" on page 71), mh=huge (see "mh" on page 72)
(default is "ms" for 16-bit and Netware, "mf" for 32-bit)

nc=<name> set name of the code class (see "nc=<name>" on page 63)
nd=<name> set name of the "data" segment (see "nd=<name>" on page 63)
nm=<name> set module name different from filename (see "nm=<name>" on page 64)
nt=<name> set name of the "text" segment (see "nt=<name>" on page 65)
o{a,b,c,d,e,f,f+,h,i,i+,k,l,l+,m,n,o,p,r,s,t,u,x,z} control optimization (see "oa" on page 74) (see

"of" on page 24)
pil preprocessor ignores #line directives (see "pil" on page 36)
p{e,l,c,w=<num>} preprocess file only, sending output to standard output; "c" include

comments; "e" encrypt identifiers (C++ only); "l" include #line directives;
w=<num> wrap output lines at <num> columns (zero means no wrap) (see
"p{e,l,c,w=<num>}" on page 36)

q operate quietly (see "q" on page 38)
r save/restore segment registers (see "r" on page 82)
ri return chars and shorts as ints (see "ri" on page 51)
s remove stack overflow checks (see "s" on page 34)
sg generate calls to grow the stack (see "sg" on page 26)
st touch stack through SS first (see "st" on page 27)
t=<num> (C++ only) set tab stop multiplier (see "t=<num>" on page 38)
u<name> preprocessor #undef name (see "u<name>" on page 37)
v output function declarations to .def file (with typedef names) (see "v" on

page 48)
vc... (C++ only) VC++ compatibility options (see "vc..." on page 81)
w<number> set warning level number (default is w1) (see "w<number>" on page 38)
wcd=<num> warning control: disable warning message <num> (see "wcd=<number>"

on page 38)
wce=<num> warning control: enable warning message <num> (see "wce=<number>" on

page 38)
we treat all warnings as errors (see "we" on page 38)
wo (C only) (16-bit only) warn about problems with overlaid code (see "wo" on

page 38)
wx set warning level to maximum setting (see "wx" on page 39)
xd (C++ only) disable exception handling (default) (see "xd" on page 79)
xdt (C++ only) disable exception handling (same as "xd") (see "xdt" on page

79)
xds (C++ only) disable exception handling (table-driven destructors) (see "xds"

on page 79)
xr (C++ only) enable RTTI (see "xr" on page 52)

Compiler Options - Summarized Alphabetically 11

Open Watcom C/C++ User’s Guide

xs (C++ only) enable exception handling (see "xs" on page 80)
xst (C++ only) enable exception handling (direct calls for destruction) (see "xst"

on page 80)
xss (C++ only) enable exception handling (table-driven destructors) (see "xss"

on page 80)
z{a,e} disable/enable language extensions (default is ze) (see "za" on page 39) (see

"ze" on page 39)
zat (C++ only) disable alternative tokens (see "zat" on page 48)
zc place literal strings in code segment (see "zc" on page 52)
zd{f,p} allow DS register to "float" or "peg" it to DGROUP (default is zdp) (see

"zd{f,p}" on page 72)
zdl (32-bit only) load DS register directly from DGROUP (see "zdl" on page

72)
zev (C only, Unix extension) enable arithmetic on void derived types (see "zev"

on page 72)
zf (C++ only) let scope of for loop initialization extend beyond loop (see "zf"

on page 49)
zf{f,p} allow FS register to be used (default for all but flat memory model) or not

be used (default for flat memory model) (see "zf{f,p}" on page 72)
zg output function declarations to .def (without typedef names) (see "zg" on

page 49)
zg{f,p} allow GS register to be used or not used (see "zg{f,p}" on page 73)
zk0 double-byte char support for Kanji (see "zk{0,1,2,l}" on page 80)
zk0u translate Kanji double-byte characters to UNICODE (see "zk0u" on page

81)
zk1 double-byte char support for Chinese/Taiwanese (see "zk{0,1,2,l}" on page

80)
zk2 double-byte char support for Korean (see "zk{0,1,2,l}" on page 80)
zkl double-byte char support if current code page has lead bytes (see

"zk{0,1,2,l}" on page 80)
zku=<codepage> load UNICODE translate table for specified code page (see

"zku=<codepage>" on page 81)
zl suppress generation of library file names and references in object file (see

"zl" on page 50)
zld suppress generation of file dependency information in object file (see "zld"

on page 50)
zlf add default library information to object files (see "zlf" on page 50)
zls remove automatically inserted symbols (such as runtime library references)

(see "zls" on page 50)
zm place each function in separate segment (near functions not allowed) (see

"zm" on page 65)
zmf place each function in separate segment (near functions allowed) (see "zmf"

on page 67)

12 Compiler Options - Summarized Alphabetically

Open Watcom C/C++ Compiler Options

zp[{1,2,4,8,16}] set minimal structure packing (member alignment) (see "zp[{1,2,4,8,16}]"
on page 52)

zpw output warning when padding is added in a struct/class (see "zpw" on page
55)

zq operate quietly (see "zq" on page 41)
zri inline floating point rounding code (see "zri" on page 73)
zro omit floating point rounding code (see "zro" on page 73)
zs syntax check only (see "zs" on page 42)
zt<number> set data threshold (default is zt32767) (see "zt<number>" on page 55)
zu do not assume that SS contains segment of DGROUP (see "zu" on page 73)
zv (C++ only) enable virtual function removal optimization (see "zv" on page

56)
zw Microsoft Windows prologue/epilogue code sequences (see "zw" on page

27)
zW (16-bit only) Microsoft Windows optimized prologue/epilogue code

sequences (see "zW (optimized)" on page 28)
zWs (16-bit only) Microsoft Windows smart callback sequences (see "zWs" on

page 29)
zz remove "@size" from __stdcall function names (10.0 compatible) (see "zz"

on page 82)

2.2 Compiler Options - Summarized By Category

In the following sections, we present a terse summary of compiler options organized into
categories.

2.2.1 Target Specific

Option: Description:

bc build target is a console application (see "bc" on page 21)
bd build target is a Dynamic Link Library (DLL) (see "bd" on page 22)
bg build target is a GUI application (see "bg" on page 22)
bm build target is a multi-threaded environment (see "bm" on page 22)
br build target uses DLL version of C/C++ run-time library (see "br" on page

22)
bt[=<os>] build target for operating system <os> (see "bt[=<os>]" on page 23)
bw build target uses default windowing support (see "bw" on page 24)
of generate traceable stack frames as needed (see "of" on page 24)

Compiler Options - Summarized By Category 13

Open Watcom C/C++ User’s Guide

of+ always generate traceable stack frames (see "of+" on page 25)
sg generate calls to grow the stack (see "sg" on page 26)
st touch stack through SS first (see "st" on page 27)
zw generate code for Microsoft Windows (see "zw" on page 27)
zW (16-bit only) Microsoft Windows optimized prologue/epilogue code

sequences (see "zW (optimized)" on page 28)
zWs (16-bit only) Microsoft Windows smart callback sequences (see "zWs" on

page 29)

2.2.2 Debugging/Profiling

Option: Description:

d0 (C++ only) no debugging information (see "d0" on page 30)
d1 line number debugging information (see "d1" on page 31)
d1+ (C only) line number debugging information plus typing information for

global symbols and local structs and arrays (see "d1+" on page 31)
d2 full symbolic debugging information (see "d2" on page 31)
d2i (C++ only) d2 and debug inlines; emit inlines as external out-of-line

functions (see "d2i" on page 31)
d2s (C++ only) d2 and debug inlines; emit inlines as static out-of-line functions

(see "d2s" on page 32)
d2t (C++ only) d2 but without type names (see "d2t" on page 32)
d3 full symbolic debugging with unreferenced type names (see "d3" on page

32)
d3i (C++ only) d3 plus debug inlines; emit inlines as external out-of-line

functions (see "d3i" on page 32)
d3s (C++ only) d3 plus debug inlines; emit inlines as static out-of-line functions

(see "d3s" on page 32)
ee call epilogue hook routine (see "ee" on page 32)
en emit routine names in the code segment (see "en" on page 32)
ep[<number>] call prologue hook routine with number stack bytes available (see

"ep[<number>]" on page 33)
et Pentium profiling (see "et" on page 33)
h{w,d,c} set debug output format (Open Watcom, DWARF, Codeview) (see

"h{w,d,c}" on page 34)
s remove stack overflow checks (see "s" on page 34)

14 Compiler Options - Summarized By Category

Open Watcom C/C++ Compiler Options

2.2.3 Preprocessor

Option: Description:

d<name>[=text] precompilation #define name [text] (see "d<name>[=text]" on page 34)
d+ allow extended "d" macro definitions on command line (see "d+" on page

35)
fo[=<file_name>] set preprocessor output file name (see "fo[=<file_name>] (preprocessor)"

on page 35)
pil preprocessor ignores #line directives (see "pil" on page 36)
p{e,l,c,w=<num>} preprocess file

c preserve comments
e encrypt identifiers (C++ only)
l insert #line directives
w=<num> wrap output lines at <num> columns. Zero means no wrap.

(see "p{e,l,c,w=<num>}" on page 36)
u<name> undefine macro name (see "u<name>" on page 37)

2.2.4 Diagnostics

Option: Description:

e<number> set error limit number (see "e<number>" on page 37)
ef use full path names in error messages (see "ef" on page 37)
eq do not display error messages (they are still written to a file) (see "eq" on

page 37)
er (C++ only) do not recover from undefined symbol errors (see "er" on page

37)
ew (C++ only) alternate error message formatting (see "ew" on page 38)
q operate quietly (see "q" on page 38)
t=<num> set tab stop multiplier (see "t=<num>" on page 38)
w<number> set warning level number (see "w<number>" on page 38)
wcd=<num> warning control: disable warning message <num> (see "wcd=<number>"

on page 38)
wce=<num> warning control: enable warning message <num> (see "wce=<number>" on

page 38)
we treat all warnings as errors (see "we" on page 38)
wx set warning level to maximum setting (see "wx" on page 39)

Compiler Options - Summarized By Category 15

Open Watcom C/C++ User’s Guide

z{a,e} disable/enable language extensions (see "za" on page 39) (see "ze" on page
39)

zq operate quietly (see "zq" on page 41)
zs syntax check only (see "zs" on page 42)

2.2.5 Source/Output Control

Option: Description:

ad[=<file_name>] generate makefile style auto depend file (see "ad[=<file_name>]" on page
42)

adbs force slashes generated in makefile style auto depend to backward (see
"adbs" on page 42)

add[=<file_name>] set source depend name for makefile style auto depend file (see
"add[=<file_name>]" on page 43)

adhp[=<path prefix>] set default path for header dependancies which result in name only.
(see "adhp[=<path_name>]" on page 43)

adfs force slashes generated in makefile style auto depend to forward (see "adfs"
on page 44)

adt[=<target_name>] specify target name generated in makefile style auto depend (see
"adt[=<target_name>]" on page 44)

db generate browsing information (see "db" on page 45)
ez generate PharLap EZ-OMF object files (see "ez" on page 45)
fc=<file_name> (C++ only) specify file of command lines to be batch processed (see

"fc=<file_name>" on page 45)
fh[q][=<file_name>] use precompiled headers (see "fh[q][=<file_name>]" on page 45)
fhd store debug info for pre-compiled header once (DWARF only) (see "fhd" on

page 46)
fhr (C++ only) force compiler to read pre-compiled header (will never write)

(see "fhr" on page 46)
fhw (C++ only) force compiler to write pre-compiled header (will never read)

(see "fhw" on page 46)
fhwe (C++ only) don’t include pre-compiled header warnings when "we" is used

(see "fhwe" on page 46)
fi=<file_name> force file_name to be included (see "fi=<file_name>" on page 46)
fo[=<file_name>] set object or preprocessor output file name (see "fo[=<file_name>]" on

page 46)
fr[=<file_name>] set error file name (see "fr[=<file_name>]" on page 47)
ft (C++ only) try truncated (8.3) header file specification (see "ft" on page 47)
fti (C only) track include file opens (see "fti" on page 47)
fx (C++ only) do not try truncated (8.3) header file specification (see "fx" on

page 47)

16 Compiler Options - Summarized By Category

Open Watcom C/C++ Compiler Options

fzh (C++ only) do not automatically append extensions for include files (see
"fzh" on page 48)

fzs (C++ only) do not automatically append extensions for source files (see
"fzs" on page 48)

i=<directory> another include directory (see "i=<directory>" on page 48)
k continue processing files (ignore errors) (see "k" on page 48)
v output function declarations to .def (see "v" on page 48)
zat (C++ only) disable alternative tokens (see "zat" on page 48)
zf (C++ only) let scope of for loop initialization extend beyond loop (see "zf"

on page 49)
zg generate function prototypes using base types (see "zg" on page 49)
zl remove default library information (see "zl" on page 50)
zld remove file dependency information (see "zld" on page 50)
zlf add default library information to object files (see "zlf" on page 50)
zls remove automatically generated symbols references (see "zls" on page 50)

2.2.6 Code Generation

Option: Description:

ecc set default calling convention to __cdecl (see "ecc" on page 50)
ecd set default calling convention to __stdcall (see "ecd" on page 51)
ecf set default calling convention to __fastcall (see "ecf" on page 51)
ecp set default calling convention to __pascal (see "ecp" on page 51)
ecr set default calling convention to __fortran (see "ecr" on page 51)
ecs set default calling convention to _Syscall (see "ecs" on page 51)
ecw set default calling convention to __watcall (default) (see "ecw" on page 51)
ei force enum base type to use at least an int (see "ei" on page 51)
em force enum base type to use minimum (see "em" on page 51)
j change char default from unsigned to signed (see "j" on page 51)
ri return chars and shorts as ints (see "ri" on page 51)
xr (C++ only) enable RTTI (see "xr" on page 52)
zc place literal strings in the code segment (see "zc" on page 52)
zp{1,2,4,8,16} pack structure members (see "zp[{1,2,4,8,16}]" on page 52)
zpw output warning when padding is added in a struct/class (see "zpw" on page

55)
zt<number> set data threshold (see "zt<number>" on page 55)
zv (C++ only) enable virtual function removal optimization (see "zv" on page

56)

Compiler Options - Summarized By Category 17

Open Watcom C/C++ User’s Guide

2.2.7 80x86 Floating Point

Option: Description:

fpc calls to floating-point library (see "fpc" on page 59)
fpi in-line 80x87 instructions with emulation (see "fpi" on page 59)
fpi87 in-line 80x87 instructions (see "fpi87" on page 60)
fp2 generate floating-point for 80x87 (see "fp2" on page 60)
fp3 generate floating-point for 387 (see "fp3" on page 61)
fp5 optimize floating-point for Pentium (see "fp5" on page 61)
fp6 optimize floating-point for Pentium Pro (see "fp6" on page 61)
fpd enable generation of Pentium FDIV bug check code (see "fpd" on page 61)

2.2.8 Segments/Modules

Option: Description:

g=<codegroup> set code group name (see "g=<codegroup>" on page 62)
nc=<name> set code class name (see "nc=<name>" on page 63)
nd=<name> set data segment name (see "nd=<name>" on page 63)
nm=<name> set module name (see "nm=<name>" on page 64)
nt=<name> set name of text segment (see "nt=<name>" on page 65)
zm place each function in separate segment (near functions not allowed) (see

"zm" on page 65)
zmf (C++ only) place each function in separate segment (near functions allowed)

(see "zmf" on page 67)

2.2.9 80x86 Run-time Conventions

Option: Description:

0 (16-bit only) 8088 and 8086 instructions (see "0" on page 68)
1 (16-bit only) 188 and 186 instructions (see "1" on page 68)
2 (16-bit only) 286 instructions (see "2" on page 68)
3 (16-bit only) 386 instructions (see "3" on page 68)
4 (16-bit only) 486 instructions (see "4" on page 68)
5 (16-bit only) Pentium instructions (see "5" on page 68)
6 (16-bit only) Pentium Pro instructions (see "6" on page 69)
3r (32-bit only) 386 register calling conventions (see "3{r|s}" on page 69)

18 Compiler Options - Summarized By Category

Open Watcom C/C++ Compiler Options

3s (32-bit only) 386 stack calling conventions (see "3{r|s}" on page 69)
4r (32-bit only) 486 register calling conventions (see "4{r|s}" on page 70)
4s (32-bit only) 486 stack calling conventions (see "4{r|s}" on page 70)
5r (32-bit only) Pentium register calling conventions (see "5{r|s}" on page 70)
5s (32-bit only) Pentium stack calling conventions (see "5{r|s}" on page 70)
6r (32-bit only) Pentium Pro register calling conventions (see "6{r|s}" on page

70)
6s (32-bit only) Pentium Pro stack calling conventions (see "6{r|s}" on page

70)
m{f,s,m,c,l,h} memory model (Flat,Small,Medium,Compact,Large,Huge) (see "mf" on

page 71)
zdf DS floats i.e. not fixed to DGROUP (see "zd{f,p}" on page 72)
zdp DS is pegged to DGROUP (see "zd{f,p}" on page 72)
zdl Load DS directly from DGROUP (see "zdl" on page 72)
zff FS floats i.e. not fixed to a segment (see "zf{f,p}" on page 72)
zfp FS is pegged to a segment (see "zf{f,p}" on page 72)
zgf GS floats i.e. not fixed to a segment (see "zg{f,p}" on page 73)
zgp GS is pegged to a segment (see "zg{f,p}" on page 73)
zri Inline floating point rounding code (see "zri" on page 73)
zro Omit floating point rounding code (see "zro" on page 73)
zu SS != DGROUP (see "zu" on page 73)

2.2.10 Optimizations

Option: Description:

oa relax aliasing constraints (see "oa" on page 74)
ob enable branch prediction (see "ob" on page 74)
oc disable <call followed by return> to <jump> optimization (see "oc" on page

74)
od disable all optimizations (see "od" on page 75)
oe[=<num>] expand user functions in-line. <num> controls max size (see "oe=<num>"

on page 75)
oh enable repeated optimizations (longer compiles) (see "oh" on page 75)
oi expand intrinsic functions in-line (see "oi" on page 75)
oi+ (C++ only) expand intrinsic functions in-line and set inline_depth to

maximum (see "oi+" on page 76)
ok enable control flow prologues and epilogues (see "ok" on page 76)
ol enable loop optimizations (see "ol" on page 76)
ol+ enable loop optimizations with loop unrolling (see "ol+" on page 76)
om generate in-line 80x87 code for math functions (see "om" on page 76)

Compiler Options - Summarized By Category 19

Open Watcom C/C++ User’s Guide

on allow numerically unstable optimizations (see "on" on page 77)
oo continue compilation if low on memory (see "oo" on page 77)
op generate consistent floating-point results (see "op" on page 77)
or reorder instructions for best pipeline usage (see "or" on page 77)
os favor code size over execution time in optimizations (see "os" on page 77)
ot favor execution time over code size in optimizations (see "ot" on page 77)
ou all functions must have unique addresses (see "ou" on page 78)
ox equivalent to -obmiler -s (see "ox" on page 78)
oz NULL points to valid memory in the target environment (see "oz" on page

78)

2.2.11 C++ Exception Handling

Option: Description:

xd disable exception handling (default) (see "xd" on page 79)
xdt disable exception handling (same as "xd") (see "xdt" on page 79)
xds disable exception handling (table-driven destructors) (see "xds" on page 79)
xs enable exception handling (see "xs" on page 80)
xst enable exception handling (direct calls for destruction) (see "xst" on page

80)
xss enable exception handling (table-driven destructors) (see "xss" on page 80)

2.2.12 Double-Byte/Unicode Characters

Option: Description:

zk{0,1,2,l} double-byte char support: 0=Kanji,1=Chinese/Taiwanese,2=Korean,l=local
(see "zk{0,1,2,l}" on page 80)

zk0u translate double-byte Kanji to UNICODE (see "zk0u" on page 81)
zku=<codepage> load UNICODE translate table for specified code page (see

"zku=<codepage>" on page 81)

2.2.13 Compatibility with Microsoft Visual C++

Option: Description:

vc... VC++ compatibility options (see "vc..." on page 81)
vcap allow alloca() or _alloca() in a parameter list

20 Compiler Options - Summarized By Category

Open Watcom C/C++ Compiler Options

2.2.14 Compatibility with Older Versions of the 80x86 Compilers

Option: Description:

r save/restore segment registers across calls (see "r" on page 82)
fpr generate backward compatible 80x87 code (see "fpr" on page 82)
zz generate backward compatible __stdcall conventions by removing the

"@size" from __stdcall function names (10.0 compatible) (see "zz" on page
82)

2.3 Compiler Options - Full Description

In the following sections, we present complete descriptions of compiler options organized into
categories.

2.3.1 Target Specific

This group of options deals with characteristics of the target application; for example, simple
executables versus Dynamic Link Libraries, character-mode versus graphical user interface,
single-threaded versus multi-threaded, and so on.

bc
(OS/2, Win16/32 only) This option causes the compiler to emit into the object file references
to the appropriate startup code for a character-mode console application. The presence of
LibMain/DLLMain or WinMain/wWinMain in the source code does not influence the
selection of startup code. Only main and wmain are significant.

If none of "bc", "bd", "bg" or "bw" are specified then the order of priority in determining
which combination of startup code and libraries to use are as follows.

1. The presence of one of LibMain or DLLMain implies that the DLL startup code
and libraries should be used.

2. The presence of WinMain or wWinMain implies that the GUI startup code and
libraries should be used.

3. The presence of main or wmain implies that the default startup code and libraries
should be used.

Compiler Options - Full Description 21

Open Watcom C/C++ User’s Guide

If both a wide and non-wide version of an entry point are specified, the "wide" entry point
will be used. Thus wWinMain is called when both WinMain and wWinMain are present.
Similarly, wmain is called when both main and wmain are present (and
WinMain/wWinMain are not present). By default, if both wmain and WinMain are
included in the source code, then the startup code will attempt to call wWinMain (since both
"wide" and "windowed" entry points were included).

bd
(OS/2, Win16/32 only) This option causes the compiler to emit into the object file references
to the run-time DLL startup code (reference to the

DLLstart symbol) and, if required,
special versions of the run-time libraries that support DLLs. The presence of main/wmain
or WinMain/wWinMain in the source code does not influence the selection of startup code.
Only LibMain and DLLMain are significant (see "bc" on page 21). If you are building a
DLL with statically linked C runtime (the default), it is recommended that you compile at
least one of its object files with the "bd" switch to ensure that the DLL’s C runtime is properly
initialized. The macroSWBD will be predefined if "bd" is selected.

bg
(OS/2, Win16/32 only) This option causes the compiler to emit into the object file references
to the appropriate startup code for a windowed (GUI) application. The presence of
LibMain/DLLMain or main/wmain in the source code does not influence the selection of
startup code. Only WinMain and wWinMain are significant (see "bc" on page 21).

bm
(Netware, OS/2, Win32 only) This option causes the compiler to emit into the object file
references to the appropriate multi-threaded library name(s). The macrosMT andSWBM
will be predefined if "bm" is selected.

br
(OS/2, Win32 only) This option causes the compiler to emit into the object file references to
the run-time DLL library name(s). The run-time DLL libraries are special subsets of the Open
Watcom C/C++ run-time libraries that are available as DLLs. When you use this option with
an OS/2 application, you must also specify the "CASEEXACT" option to the Open Watcom
Linker. The macros
DLL

 andSWBR will be predefined if "br" is selected.

bt[=<os>]
This option causes the compiler to define the "build" target. This option is used for
cross-development work. It prevents the compiler from defining the default build target
(which is based on the host system the compiler is running on). The default build targets are:

22 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

DOS when the host operating system is DOS,

OS2 when the host operating system is OS/2,

NT when the host operating system is Windows NT (including Windows 95),

QNX when the host operating system is QNX. or

LINUX when the host operating system is Linux.

It also prevents the compiler from defining the default target macro. Instead the compiler
defines a macro consisting of the string "<os>" converted to uppercase and prefixed and
suffixed with two underscores. The default target macros are described in the section entitled
"Open Watcom C/C++ Predefined Macros" on page 97.

For example, specifying the option:

bt=foo

would cause the compiler to define the macro
 FOO

and prevent it from defining MSDOS,
DOS and
DOS if the compiler was being run

under DOS,
OS2 if using the OS/2 hosted compiler,NT if using the Windows NT

or Windows 95 hosted compiler,QNXUNIX if using the QNX hosted version. orLINUXUNIX if using the Linux hosted version. Any string consisting of letters,
digits, and the underscore character may be used for the target name.

The compiler will also construct an environment variable called <os>_INCLUDE and see if it
has been defined. If the environment variable is defined then each directory listed in it is
searched (in the order that they were specified). For example, the environment variable
WINDOWS_INCLUDE will be searched if bt=WINDOWS option was specified.

Example:setwindowsinclude=\watcom\h\win
Include file processing is described in the section entitled "Open Watcom C/C++ #include
File Processing" on page 93.

Several target names are recognized by the compiler and perform additional operations.

Compiler Options - Full Description 23

Open Watcom C/C++ User’s Guide

Target name Additional operation

DOS Defines the macros
DOS and MSDOS.

WINDOWS Same as specifying one of the "zw" options. Defines the macrosWINDOWS (16-bit only) and
WINDOWS386 (32-bit only).

NETWARE (32-bit only) Causes the compiler to use stack-based calling conventions.
Also defines the macroNETWARE386.

QNX Defines the macro
UNIX.

LINUX Defines the macro
UNIX.

Specifying "bt" with no target name following restores the default target name.

bw
(Win16 only) This option causes the compiler to import a special symbol so that the default
windowing library code is linked into your application. The presence of
LibMain/DLLMain in the source code does not influence the selection of startup code.
Only main, wmain, WinMain and wWinMain are significant (see "bc" on page 21). The
macroSWBW will be predefined if "bw" is selected.

of
This option selects the generation of traceable stack frames for those functions that contain
calls or require stack frame setup.

(16-bit only) To use Open Watcom’s "Dynamic Overlay Manager" (DOS only), you must
compile all modules using one of the "of" or "of+" options ("of" is sufficient).

For near functions, the following function prologue sequence is generated.

(16-bit only)

push BP
mov BP,SP

(32-bit only)
push EBP
mov EBP,ESP

For far functions, the following function prologue sequence is generated.

24 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

(16-bit only)

inc BP
push BP
mov BP,SP

(32-bit only)
inc EBP
push EBP
mov EBP,ESP

The BP/EBP value on the stack will be even or odd depending on the code model.

For 16-bit DOS systems, the Dynamic Overlay Manager uses this information to determine if
the return address on the stack is a short address (16-bit offset) or long address (32-bit
segment:offset).

Do not use this option for 16-bit Windows applications. It will alter the code sequence
generated for "_export" functions.

Example:
C>compiler_name toaster /of

The macroSWOF will be predefined if "of" is selected.

of+
This option selects the generation of traceable stack frames for all functions regardless of
whether they contain calls or require stack frame setup. This option is intended for developers
of embedded systems (ROM-based applications).

To use Open Watcom’s "Dynamic Overlay Manager" (16-bit DOS only), you must compile
all modules using one of the "of" or "of+" options ("of" is sufficient).

For near functions, the following function prologue sequence is generated.

(16-bit only)

push BP
mov BP,SP

(32-bit only)
push EBP
mov EBP,ESP

For far functions, the following function prologue sequence is generated.

Compiler Options - Full Description 25

Open Watcom C/C++ User’s Guide

(16-bit only)

inc BP
push BP
mov BP,SP

(32-bit only)
inc EBP
push EBP
mov EBP,ESP

The BP/EBP value on the stack will be even or odd depending on the code model.

For 16-bit DOS systems, the Dynamic Overlay Manager uses this information to determine if
the return address on the stack is a short address (16-bit offset) or long address (32-bit
segment:offset).

Do not use this option for 16-bit Windows applications. It will alter the code sequence
generated for "_export" functions.

Example:
C>compiler_name toaster /of+

sg
This option is useful for 32-bit OS/2 and Win32 multi-threaded applications. It requests the
code generator to emit a run-time call at the start of any function that has more than 4K bytes
of automatic variables (variables located on the stack).

Under 32-bit OS/2, the stack is grown automatically in 4K pages for any threads, other than
the primary thread, using the stack "guard page" mechanism. The stack consists of in-use
committed pages topped off with a special guard page. A memory reference into the 4K
guard page causes the operating system to grow the stack by one 4K page and to add a new
4K guard page. This works fine when there is less than 4K of automatic variables in a
function. When there is more than 4K of automatic data, the stack must be grown in an
orderly fashion, 4K bytes at a time, until the stack has grown sufficiently to accommodate all
the automatic variable storage requirements. Hence the requirement for a stack-growing
run-time routine. The stack-growing run-time routine is calledGRO.
The "stack=" linker option specifies how much stack is available and committed for the
primary thread when an executable starts. The stack size parameter tobeginthread()
specifies how much stack is available for a child thread. The child thread starts with just 4k of
stack committed. The stack will not grow to be bigger than the size specified by the stack size
parameter.

26 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

Under 32-bit Windows (Win32), the stack is grown automatically in 4K pages for all threads
using a similar stack "guard page" mechanism. The stack consists of in-use committed pages
topped off with a special guard page. The techniques for growing the stack in an orderly
fashion are the same as that described above for OS/2.

The "stack=" linker option specifies how much stack is available for the primary thread when
an executable starts. The "commit stack=" linker directive specifies how much of that stack is
committed when the executable starts. If no "commit stack=" directive is used, it defaults to
the same value as the stack size. The stack size parameter tobeginthread() specifies
how much stack is committed for a child thread. If the size is set to zero, the size of the
primary thread stack is used for the child thread stack. When the child thread executes, the
stack space is not otherwise restricted.

The macroSWSG will be predefined if "sg" is selected.

st
This option causes the code generator to ensure that the first reference to the stack in a
function is to the stack "bottom" using the SS register. If the memory for this part of the stack
is not mapped to the task, a memory fault will occur involving the SS register. This permits
an operating system to allocate additional stack space to the faulting task.

Suppose that a function requires 100 bytes of stack space. The code generator usually emits
an instruction sequence to reduce the stack pointer by the required number of bytes of stack
space, thereby establishing a new stack bottom. When the "st" option is specified, the code
generator will ensure that the first reference to the stack is to a memory location with the
lowest address. If a memory fault occurs, the operating system can determine that it was a
stack reference (since the SS register is involved) and also how much additional stack space is
required.

See the description of the "sg" option for a more general solution to the stack allocation
problem. The macroSWST will be predefined if "st" is selected.

zw
(16-bit only) This option causes the compiler to generate the prologue/epilogue code
sequences required for Microsoft Windows applications. The following "fat"
prologue/epilogue sequence is generated for any functions declared to be "far _export" or "far
pascal".

Compiler Options - Full Description 27

Open Watcom C/C++ User’s Guide

far pascal func(...)farexportfunc(...)farexportpascalfunc(...)

push DS
pop AX
nop
inc BP
push BP
mov BP,SP
push DS
mov DS,AX
.
.
.
pop DS
pop BP
dec BP
retf n

The macro
WINDOWS will be predefined if "zw" is selected.

(32-bit only) This option causes the compiler to generate any special code sequences required
for 32-bit Microsoft Windows applications. The macro

WINDOWS andWINDOWS386 will be predefined if "zw" is selected.

zW (optimized)
(16-bit only) This option is similar to "zw" but causes the compiler to generate more efficient
prologue/epilogue code sequences in some cases. This option may be used for Microsoft
Windows applications code other than user callback functions. Any functions declared as "far
_export" will be compiled with the "fat" prologue/epilogue code sequence described under the
"zw" option.

 farexportfunc(...)farexportpascalfunc(...)
The following "skinny" prologue/epilogue sequence is generated for functions that are not
declared to be "far _export".

28 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

far pascal func(...)
far func(...)

inc BP
push BP
mov BP,SP
.
.
.
pop BP
dec BP
retf n

The macro
WINDOWS will be predefined if "zW" is selected.

zWs
(16-bit only) This option is similar to "zW" but causes the compiler to generate "smart
callbacks". This option may be used for Microsoft Windows user callback functions in
executables only. It is not permitted for DLLs. Normally, a callback function cannot be
called directly. You must use MakeProcInstance to obtain a function pointer with which to
call the callback function.

If you specify "zWs" then you do not need to use MakeProcInstance in order to call your own
callback functions. Any functions declared as "far _export" will be compiled with the "smart"
prologue code sequence described here.

The following example shows the usual prologue code sequence that is generated when the
"zWs" option is NOT used.

Compiler Options - Full Description 29

Open Watcom C/C++ User’s Guide

Example:
compiler_name winapp /mc /bt=windows /d1shortFARPASCALexportFunction1(shortvar1,

long varlong,
short var2)

{
0000 1e FUNCTION1 push ds
0001 58 pop ax
0002 90 nop
0003 45 inc bp
0004 55 push bp
0005 89 e5 mov bp,sp
0007 1e push ds
0008 8e d8 mov ds,ax

The following example shows the "smart" prologue code sequence that is generated when the
"zWs" option is used. The assumption here is that the SS register contains the address of
DGROUP.

Example:
compiler_name winapp /mc /bt=windows /d1 /zWsshortFARPASCALexportFunction1(shortvar1,

long varlong,
short var2)

{
0000 8c d0 FUNCTION1 mov ax,ss
0002 45 inc bp
0003 55 push bp
0004 89 e5 mov bp,sp
0006 1e push ds
0007 8e d8 mov ds,ax

2.3.2 Debugging/Profiling

This group of options deals with all the forms of debugging information that can be included
in an object file. Support for profiling of Pentium code is also described.

d0
(C++ only) No debugging information is included in the object file.

30 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

d1
Line number debugging information is included in the object file. This option provides
additional information to the Open Watcom Debugger (at the expense of larger object files
and executable files). Line numbers are handy when debugging your application with the
Open Watcom Debugger at the source code level. Code speed is not affected by this option.
To avoid recompiling, the Open Watcom Strip Utility can be used to remove debugging
information from the executable image.

d1+
(C only) Line number debugging information plus typing information for global symbols and
local structs and arrays is included in the object file. Although global symbol information can
be made available to the Open Watcom Debugger through a Open Watcom Linker option,
typing information for global symbols and local structs and arrays must be requested when the
source file is compiled. This option provides additional information to the Open Watcom
Debugger (at the expense of larger object files and executable files). Code speed is not
affected by this option. To avoid recompiling, the Open Watcom Strip Utility can be used to
remove debugging information from the executable image.

d2
In addition to line number information, local symbol and data type information is included in
the object file. Although global symbol information can be made available to the Open
Watcom Debugger through a Open Watcom Linker option, local symbol and typing
information must be requested when the source file is compiled. This option provides
additional information to the Open Watcom Debugger (at the expense of larger object files
and executable files).

By default, the compiler will select the "od" level of optimization if "d2" is specified (see the
description of the "od" option). Starting with version 11.0, the compiler now expands
functions in-line where appropriate. This means that symbolic information for the in-lined
function will not be available.

The use of this option will make the debugging chore somewhat easier at the expense of code
speed and size. To create production code, you should recompile without this option.

d2i
(C++ only) This option is identical to "d2" but does not permit in-lining of functions.
Functions are emitted as external out-of-line functions. This option can result in larger object
and/or executable files than with "d2" (we are discussing both "code" and "file" size here).

Compiler Options - Full Description 31

Open Watcom C/C++ User’s Guide

d2s
(C++ only) This option is identical to "d2" but does not permit in-lining of functions.
Functions are emitted as static out-of-line functions. This option can result in larger object
and/or executable files than with "d2" or "d2i" (we are discussing both "code" and "file" size
here). Link times are faster than "d2i" (fewer segment relocations) but executables are
slightly larger.

d2t
(C++ only) This option is identical to "d2" but does not include type name debugging
information. This option can result in smaller object and/or executable files (we are
discussing "file" size here).

d3
This option is identical to "d2" but also includes symbolic debugging information for
unreferenced type names. Note that this can result in very large object and/or executable files
when header files like WINDOWS.H or OS2.H are included.

d3i
(C++ only) This option is identical to "d3" but does not permit in-lining of functions.
Functions are emitted as external out-of-line functions. This option can result in larger object
and/or executable files than with "d3" (we are discussing both "code" and "file" size here).

d3s
(C++ only) This option is identical to "d3" but does not permit in-lining of functions.
Functions are emitted as static out-of-line functions. This option can result in larger object
and/or executable files than with "d3" or "d3i" (we are discussing both "code" and "file" size
here). Link times are faster than "d3i" (fewer segment relocations) but executables are
slightly larger.

ee
This option causes the compiler to generate a call to

EPI
 in the epilogue sequence at the

end of every function. This user-written routine can be used to collect/record profiling
information. Other related options are "ep[<number>]" on page 33 and "en". The macroSWEE will be predefined if "ee" is selected.

en
The compiler will emit the function name into the object code as a string of characters just
before the function prologue sequence is generated. The string is terminated by a byte count
of the number of characters in the string.

32 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

; void Toaster(int arg)

db "Toaster", 7
public Toaster
Toaster label byte

.

.

.
ret

This option is intended for developers of embedded systems (ROM-based applications). It
may also be used in conjunction with the "ep" option for special user-written profiling
applications. The macroSWEN will be predefined if "en" is selected.

ep[<number>]
This option causes the compiler to generate a call to a user-written

PRO
 routine in the

prologue sequence at the start of every function. This routine can be used to collect/record
profiling information. The optional argument <number> can be used to cause the compiler to
allocate that many bytes on the stack as a place for

PRO
 to store information. Other related

options are "ee" on page 32 and "en" on page 32. The macroSWEP will be predefined if
"ep" is selected.

et
(Pentium only) This option causes the compiler to generate code into the prolog of each
function to count exactly how much time is spent within that function, in clock ticks. This
option is valid only for Pentium compatible processors (i.e., the instructions inserted into the
code do not work on 486 or earlier architectures). The Pentium "rdtsc" opcode is used to
obtain the instruction cycle count.

At the end of the execution of the program, a file will be written to the same location as the
executable, except with a ".prf" extension. The contents of the file will look like this:

Example:
1903894223 1 main
1785232334 1376153 StageA
1882249150 13293 StageB
1830895850 2380 StageC
225730118 99 StageD

The first column is the total number of clock ticks spent inside of the function during the
execution of the program, the second column is the number of times it was called and the third
column is the individual function name. The total number of clock ticks includes time spent
within functions called from this function.

Compiler Options - Full Description 33

Open Watcom C/C++ User’s Guide

The overhead of the profiling can be somewhat intrusive, especially for small leaf functions
(i.e., it may skew your results somewhat).

h{w,d,c}
The type of debugging information that is to be included in the object file is one of "Open
Watcom", "DWARF" or "Codeview". The default is "DWARF".

If you wish to use the Microsoft Codeview debugger, then choose the "hc" option (this option
causes Codeview Level 4 information to be generated). It will be necessary to run the
Microsoft Debugging Information Compactor, CVPACK, on the executable once the linker
has created it. For information on requesting the linker to automatically run CVPACK, see
the section entitled "OPTION CVPACK" in the Open Watcom Linker User’s Guide.
Alternatively, you can run CVPACK from the command line.

When linking the application, you must also choose the appropriate Open Watcom Linker
DEBUG directive. See the Open Watcom Linker User’s Guide for more information.

s
Stack overflow checking is omitted from the generated code. By default, the compiler will
emit code at the beginning of every function that checks for the "stack overflow" condition.
This option can be used to disable this feature. The macroSWS will be predefined if "s"
is selected.

2.3.3 Preprocessor

This group of options deals with the compiler preprocessor.

d<name>[=text]
This option can be used to define a preprocessor macro from the command line. If =text is
not specified, then 1 is assumed. In other words, specifying /dDBGON is equivalent to
specifying /dDBGON=1 on the command line.

If =text is specified, then this option is equivalent to including the following line in your
source code.

#define name text

Consider the following example.

34 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

Example:dMODDATE="87.05.04"
The above example is equivalent to a line in the source file containing:

 #defineMODDATE"87.05.04"
d+

The syntax of any "d" option which follows on the command line is extended to include
C/C++ tokens as part of "text". The token string is terminated by a space character. This
permits more complex syntax than is normally allowed.

Example:/d+/dradx=x*3.1415926/180
This is equivalent to specifying the following in the source code.

Example:#defineradxx*3.1415926/180
Open Watcom C++ extends this feature by allowing parameterized macros. When a
parameter list is specified, the "=" character must not be specified. It also permits immediate
definition of the macro as shown in the second line of the example.

Example:/d+/drad(x)x*3.1415926/180/d+rad(x)x*3.1415926/180
This is equivalent to specifying the following in the source code.

Example:#definerad(x)x*3.1415926/180
fo[=<file_name>] (preprocessor)

The "fo" option is used with any form of the "p" (preprocessor) option to name the output file
drive, path, file name and extension. If the output file name is not specified, it is constructed
from the source file name. If the output file extension is not specified, it is ".i" by default.

Example:
C>compiler_name report /p /fo=d:\proj\prep\

Compiler Options - Full Description 35

Open Watcom C/C++ User’s Guide

A trailing "\" must be specified for directory names. If, for example, the option was specified
as fo=d:\proj\prep then the output file would be called d:\proj\prep.i. A default
filename extension must be preceded by a period (".").

Example:
C>compiler_name report /p /fo=d:\proj\prep\.cpr

pil
By default, #line directives embedded in source files are processed and will be used as a basis
for file name and line number information in error messages, __FILE__ and __LINE__
symbols, etc. The "pil" option causes the preprocessor to ignore #line directives and refer to
actual file names and line numbers.

p{e,l,c,w=<num>}
The input file is preprocessed and, by default, is written to the standard output file. The "fo"
option may be used to redirect the output to a file with default extension ".i".

Specify "pc" if you wish to include the original source comments in the Open Watcom C/C++
preprocessor output file.

(C++ Only) Specify "pe" if you wish to encrypt the original identifiers when they are written
to the Open Watcom C/C++ preprocessor output file.

Specify "pl" if you wish to include #line directives.

Specify "pcl" or "plc" if you wish both source comments and #line directives.

Use the "w=<num>" suffix if you wish to wish output lines to wrap at <num> columns. Zero
means no wrap.

Example:
C>compiler_name report /pcelw=80

The input file is preprocessed only. When only "p" is specified, source comments and #line
directives are not included. You must request these using the "c" and "l" suffixes. When the
output of the preprocessor is fed into the compiler, the #line directive enables the compiler
to issue diagnostics in terms of line numbers of the original source file.

The options which are supported when the Open Watcom C/C++ preprocessor is requested
are: "d", "fi", "fo", "i", "m?", and "u".

36 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

u<name>
The "u" option may be used to turn off the definition of a predefined macro. If no name is
specified then all predefined macros are undefined.

Example:
C>compiler_namereport/uMI386

2.3.4 Diagnostics

This group of options deals with the control of compiler diagnostics.

e<number>
The compiler will stop compilation after reaching <number> errors. By default, the compiler
will stop compilation after 20 errors.

ef
This option causes the compiler to display full path names for files in error messages.

eq
This option causes the compiler to not display error messages on the console; however, they
are still written to a file (see "fr[=<file_name>]" on page 47).

er
(C++ only) This option causes the C++ compiler to not recover from undefined symbol errors.
By default, the compiler recovers from "undefined symbol" errors by injecting a special entry
into the symbol table that prevents further issuance of diagnostics relating to the use of the
same name. Specify the "er" option if you want all uses of the symbol to be diagnosed.

Example:
struct S {
};

void foo(S *p) {
p->m = 1; // member ’m’ has not been declared in ’S’

}
void bar(S *p) {

p->m = 2; // no error unless "er" is specified
}

Compiler Options - Full Description 37

Open Watcom C/C++ User’s Guide

ew
(C++ only) This option causes the C++ compiler to generate equivalent but less verbose
diagnostic messages.

q
This option is equivalent to the "zq" option (see "zq" on page 41).

t=<num>
(C++ only) The "t" option is used to set the tab stop interval. By default, the compiler
assumes a tab stop occurs at multiples of 8 (1+n x 8 = 1, 9, 17, ... for n=0, 1, 2, ...). When the
compiler reports a line number and column number in a diagnostic message, the column
number has been adjusted for intervening tabs. If the default tab stop setting for your text
editor is not a multiple of 8, then you should use this option.

Example:
C>compiler_name report /t=4

w<number>
The compiler will issue only warning type messages of severity <number> or below. Type 1
warning messages are the most severe while type 3 warning messages are the least severe.
Specify "w0" to prevent warning messages from being issued. Specify "wx" to obtain all
warning messages.

wcd=<number>
The compiler will not issue the warning message indicated by <number>.

wce=<number>
The compiler will issue the warning message indicated by <number> despite any pragmas
that may have disabled it.

we
By default, the compiler will continue to create an object file when there are warnings
produced. This option can be used to treat all warnings as errors, thereby preventing the
compiler from creating an object file if there are warnings found within a module.

wo
(C only) (16-bit only) This option tells the compiler to emit warnings for things that will cause
problems when compiling code for use in overlays.

38 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

wx
This option sets the warning level to its maximum setting.

za
This option helps to ensure that the module to be compiled conforms to the ISO/ANSI C or
C++ programming language specification (depending on the compiler which is selected). The
macroNOEXTKEYS (no extended keywords) will be predefined if "za" is selected. The
"ou" option will be enabled (see "ou" on page 78). See also the description of the "ze" option.

When using the C compiler, there is an exception to the enforcement of the ISO C standard
programming language specification. The use of C++ style comments (// comment) are not
diagnosed.

ze
The "ze" option (default) enables the use of the following compiler extensions:

1. The requirement for at least one external definition per module is relaxed.

2. When using the C compiler, some forgiveable pointer type mismatches become
warnings instead of errors.

3. In-line math functions are allowed (note that errno will not be set by in-line
functions).

4. When using the C compiler, anonymous structs/unions are allowed (this is always
permitted in C++).

Example:
struct {

int a;
union {

int b;floataltb;
};
int c;

} x;

In the above example, "x.b" is a valid reference to the "b" field.

5. For C only, ISO function prototype scope rules are relaxed to allow the following
program to compile without any errors.

Compiler Options - Full Description 39

Open Watcom C/C++ User’s Guide

Example:voidfoo(structa*p);
struct a {

int b;
int c;

};

void bar(void)
{

struct a x;
foo(&x);

}

According to a strict interpretation of the ISO C standard, the function prototype
introduces a new scope which is terminated at the semicolon (;). The effect of this
is that the structure tag "a" in the function "foo" is not the same structure tag "a"
defined after the prototype. A diagnostic must be issued for a conforming ISO C
implementation.

6. A trailing comma (,) is allowed after the last constant in an enum declaration.

Example:
enum colour { RED, GREEN, BLUE, };

7. The ISO requirement that all enums have a base type of int is relaxed. The
motivation for this extension is conservation of storage. Many enums can be
represented by integral types that are smaller in size than an int.

Example:
enum colour { RED, GREEN, BLUE, };

void foo(void)
{

enum colour x;

x = RED;
}

In the example, "x" can be stored in an unsigned char because its values span the
range 0 to 2.

8. The ISO requirement that the base type of a bitfield be int or unsigned is relaxed.
This allows a programmer to allocate bitfields from smaller units of storage than an
int (e.g., unsigned char).

40 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

Example:
struct {

unsigned char a : 1;
unsigned char b : 1;
unsigned char c : 1;

} x;

struct {
unsigned a : 1;
unsigned b : 1;
unsigned c : 1;

} y;

In the above example, the size of "x" is the same size as an unsigned char whereas
the size of "y" is the same size as an unsigned int.

9. The following macros are defined.
 near,nearfar,far,SOMDLINK(16�bit)huge,hugebasedsegmentsegnameselfcdecl,cdecl,SOMLINK(16�bit)pascal,pascalfastcallfortran,fortraninlineinterrupt,interruptexportloaddssaveregsstdcallsyscall,SOMLINK(32�bit),SOMDLINK(32�bit)far16

See also the description of the "za" option.

zq
The "quiet mode" option causes the informational messages displayed by the compiler to be
suppressed. Normally, messages are displayed identifying the compiler and summarizing the
number of lines compiled. As well, a dot is displayed every few seconds while the code
generator is active, to indicate that the compiler is still working. These messages are all
suppressed by the "quiet mode" option. Error and warning messages are not suppressed.

Compiler Options - Full Description 41

Open Watcom C/C++ User’s Guide

zs
The compiler will check the source code only and omit the generation of object code. Syntax
checking, type checking, and so on are performed as usual.

2.3.5 Source/Output Control

This group of options deals with control over the input files and output files that the compiler
processes and/or creates.

ad[=<file_name>]
This option enables generation of auto dependancy infomation in a makefile syntax generating
a <target>:<depends...> list. If the auto depend file is not specified, it is constructed from the
source file name. If the depend extension is not specified, it is ".d" by default.

Example:
C>compiler_name report /ad=d:\proj\obj\

A trailing "\" must be specified for directory names. If, for example, the option was specified
as fo=d:\proj\obj then the dependancy file would be called d:\proj\obj.d.

A default filename extension must be preceded by a period (".").

Example:
C>compiler_name report /ad=d:\proj\obj\.dep

The file generated has content

Example:
<targetname>:<input source file> <included header files...>

included header files exclude those which come <watcom>/h.

adbs
When generating makefile style auto depend files, this option forces any slashes "/" or "\" to
be "\". Certain operations can cause mixed slashes, this forces the output to be appropriate for
the make used.

42 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

add[=<file_name>]
Set the first dependancy name in a makefile style auto depend file. The default for this is the
source name specified to compile. This file spec follows the rules specified for other files.
(see "ad[=<file_name>]" on page 42)

adhp[=<path_name>]
When including file with "" delimiters, the filename resulting in makefile type auto
dependancy files will have no path. This allows these files to be given a path, and said path
will may be relative. This path_name is prepended to the filename exactly, so a trailing slash
must be specified.

This issue only affects headers found in the current directory. If the header was found in the
source’s directory, it receives a path, which means there will be at least one
[IS_]PATH_CHAR in the path, otherwise it is found in the current directory.

let me illustrate....

Example:
source.obj: source.c header.h

This target rule will work when compiling within the source’s directory ONLY, otherwise
dependancy files source.c and header.h will not be found; no rule to make them; and make
fails.

Example:
output/source.obj: sourcepath/source.c header.h

(what is generated now, when compiling source.c within sourcepath)

This will also fail if the make evaluates this rule from some place other than sourcepath.

This will work, however, if the header was really found in the current directory. (no option
required)

(one possible intent... which will be generated now, if header.h is not in the current path, but
is with the source, and the compile is done outside sourcepath)

Example:
output/output.obj: sourcepath/source.c sourcepath/header.h

This rule can be consistantly generated by specifying -adhp=sourcepath/ . Then when the
header file is found in the current directory, especially when it is sourcepath, will not have had
a path, and will receive the default header path. The rule may then be processed from outside

Compiler Options - Full Description 43

Open Watcom C/C++ User’s Guide

that current directory. [-ahdp=$(SOMEVAR)/] may be specified... this will result in output
as $(SOMEVAR) which make may expand]

(another possible intent... which will result in referencing the same header file always, when
running a make from outside the current path specified when the compile was originally
invoked...)

Example:
output/output.obj: sourcepath/source.ccurrentpathatcompile/header.h

-adhp=currentpath/

This says currentpath, because the rule is generated based on the state of when the compile is
done, and should be viewed as past tense so that the rule specifies accurately what was
compiled...

adfs
When generating makefile style auto depend files, this option forces any slashes "/" or "\" to
be "/". Certain operations can cause mixed slashes, this forces the output to be appropriate for
the make used.

adt[=<target_name>]
This option enables generation of auto dependancy infomation in a makefile syntax. The
target name in the file can be specified. If the auto depend target is not specified, it is
constructed from the source file name. If the target extension is not specified, it is ".obj" by
default.

Example:
C>compiler_name report /adt=d:\proj\obj\

A trailing "\" must be specified for directory names. If, for example, the option was specified
as fo=d:\proj\obj then the dependancy file would be called d:\proj\obj.obj.

A default filename extension must be preceded by a period (".").

Example:
C>compiler_name report /adt=d:\proj\obj\.dep

The file generated has content

44 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

Example:
<targetname>:<input source file> <included header files...>

included header files exclude those which come <watcom>/h.

db
Use this option to generate browsing information. The browsing information is recorded in a
file whose name is constructed from the source file name and the extension ".mbr".

ez
(32-bit only) The compiler will generate an object file in Phar Lap Easy OMF-386 (object
module format) instead of the default Microsoft OMF. The macroSWEZ will be
predefined if "ez" is selected.

fc=<file_name>
(C++ only) The specified "batch" file contains a list of command lines to be processed. This
enables the processing of a number of source files together with options for each file with one
single invocation of the compiler. Only one "fc" option is allowed and no source file names
are permitted on the command line.

Example:
[batch.txt]
main /onatx /zp4
part1 part2 /onatx /zp4 /d1
part3 /onatx /zp4 /d2

C>compiler_name /fc=\watcom\h\batch.txt

Each line in the file is treated stand-alone. In other words, the options from one line do not
carry over to another line. However, any options specified on the command line or the
associated compiler environment variable will carry over to the individual command lines in
the batch file. When the compiler diagnoses errors in a source file, processing of subsequent
command lines is halted unless the "k" option was specified (see "k" on page 48).

fh[q][=<file_name>]
The compiler will generate/use a precompiled header for the first header file referenced by
#include in the source file. See the chapter entitled "Precompiled Headers" on page 127
for more information.

Compiler Options - Full Description 45

Open Watcom C/C++ User’s Guide

fhd
The compiler will store debug info for the pre-compiled header once (DWARF only). See the
chapter entitled "Precompiled Headers" on page 127 for more information.

fhr
(C++ only) This option will force the compiler to read the pre-compiled header if it appears to
be up-to-date; otherwise, it will read the header files included by the source code. It will
never write the pre-compiled header (even when it is out-of-date). See the chapter entitled
"Precompiled Headers" on page 127 for more information.

fhw
(C++ only) This option will force the compiler to write the pre-compiled header (even when it
appears to be up-to-date). See the chapter entitled "Precompiled Headers" on page 127 for
more information.

fhwe
(C++ only) This option will ensure that pre-compiled header warnings are not counted as
errors when the "we" (treat warnings as errors) option is specified.

fi=<file_name>
The specified file is included as if a

 #include"<filename>"
directive were placed at the start of the source file.

Example:
C>compiler_name report /fi=\watcom\h\stdarg.h

fo[=<file_name>]
When generating an object file, the "fo" option may be used to name the object file drive,
path, file name and extension. If the object file name is not specified, it is constructed from
the source file name. If the object file extension is not specified, it is ".obj" by default.

Example:
C>compiler_name report /fo=d:\proj\obj\

A trailing "\" must be specified for directory names. If, for example, the option was specified
as fo=d:\proj\obj then the object file would be called d:\proj\obj.obj.

46 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

A default filename extension must be preceded by a period (".").

Example:
C>compiler_name report /fo=d:\proj\obj\.dbo

fr[=<file_name>]
The "fr" option is used to name the error file drive, path, file name and extension. If the error
file name is not specified, it is constructed from the source file name. If the output file
extension is not specified, it is ".err" by default. If no part of the name is specified, then no
error file is produced (i.e., /fr disables production of an error file).

Example:
C>compiler_name report /fr=d:\proj\errs\

A trailing "\" must be specified for directory names. If, for example, the option was specified
as fr=d:\proj\errs then the output file would be called d:\proj\errs.err. A
default filename extension must be preceded by a period (".").

Example:
C>compiler_name report /fr=d:\proj\errs\.erf

ft
(C++ only) If the compiler cannot open a header file whose file name is longer than 8 letters
or whose file extension is longer than 3 letters, it will truncate the name at 8 letters and the
extension at 3 letters and try to open a file with the shortened name. This is the default
behaviour for the compiler.

For example, if the compiler cannot open the header file called strstream.h, it will
attempt to open a header file called strstrea.h.

fti
(C only) Whenever a file is open as a result of #include directive processing, an
informational message is printed. The message contains the file name and line number
identifying where the #include directive was located.

fx
(C++ only) This option can be used to disable the truncated header filename processing that
the compiler does by default (see "ft" above).

Compiler Options - Full Description 47

Open Watcom C/C++ User’s Guide

fzh
(C++ only) This option can be used to stop the compiler from automatically adding extensions
to include files. The default behaviour of the compiler is to search for the specified file, then
to try known extensions if the file specifier does not have an extension. Thus, #include
<string> could be matched by ’string’, ’string.h’ or ’string.hpp’ (see "fzs" below). The macroSWFZH will be defined when this switch is used.

fzs
(C++ only) This option can be used to stop the compiler from automatically adding extensions
to source files. The default behaviour of the compiler is to search for the specified file, then
to try known extensions if the file specifier does not have an extension. Thus, ’src_file’ could
be matched by ’src_file’, ’src_file.cpp’ or ’src_file.cc’ (see "fzh" above). The macroSWFZS will be defined when this switch is used.

i=<directory>
where "<directory>" takes the form

[d:]path;[d:]path...

The specified paths are added to the list of directories in which the compiler will search for
"include" files. See the section entitled "Open Watcom C/C++ #include File Processing" on
page 93 for information on directory searching.

k
(C++ only) This option instructs the compiler to continue processing subsequent source files
after an error has been diagnosed in the current source file. See the option "fc=<file_name>"
on page 45 for information on compiling multiple source files.

v
Open Watcom C will output function declarations to a file with the same filename as the C
source file but with extension ".def". The "definitions" file may be used as an "include" file
when compiling other modules in order to take advantage of the compiler’s function and
argument type checking.

zat
ISO C++ defines a number of alternative tokens that can be used instead of certain traditional
tokens. For example "and" instead of "&&", "or" instead of "||", etc. See section 2.5 of the
ISO C++ 98 standard for the complete list of such tokens. The "zat" option disables support
for these tokens so that the names "and", "or", etc are no longer reserved.

48 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

zf
Starting with Open Watcom 1.3, the scope of a variable declared in the initialization
expression of a for loop header is by default limited to the body of the loop. This is in
accordance with the ISO C++ standard. The "zf" option causes the compiler to revert to the
behavior it had before Open Watcom 1.3. In particular, it causes the scope of variables
declared in the initialization expression of a for loop header to extend beyond the loop.

Example:
#include <iostream>

void f()
{

for(int i = 0; i < 10; ++i) {
std::cout << i << "\n";

}
std::cout << "Value of i at loop termination: " << i <<

"\n";
}

The above code will not compile with Open Watcom 1.3 or later because the variable "i" is
out of scope in the last output statement. The "zf" option will allow such code to compile by
extending the scope of "i" beyond the loop.

zg
The "zg" option is similar to the "v" option except that function declarations will be output to
the "DEF" file using base types (i.e., typedefs are reduced to their base type).

Example:
typedef unsigned int UINT;
UINT f(UINT x)
{

return(x + 1);
}

If you use the "v" option, the output will be:

extern UINT f(UINT);

If you use the "zg" option, the output will be:

extern unsigned int f(unsigned int);

Compiler Options - Full Description 49

Open Watcom C/C++ User’s Guide

zl
By default, the compiler places in the object file the names of the C libraries that correspond
to the memory model and floating-point options that were selected. The Open Watcom
Linker uses these library names to select the libraries required to link the application. If you
use the "zl" option, the library names will not be included in the generated object file.

The compiler may generate external references for library code that conveniently cause the
linker to link in different code. One such case is: if you have any functions that pass or return
floating-point values (i.e., float or double), the compiler will insert an external reference that
will cause the floating-point formatting routines to be included in the executable. The "zl"
option will disable these external references.

Use this option when you wish to create a library of object modules which do not contain
Open Watcom C/C++ library name references.

zld
By default, the compiler places in the object file the names and time stamps of all the files
referenced by the source file. This file dependency information can then be used by WMAKE
to determine that this file needs to be recompiled if any of the referenced files has been
modified since the object file was created. This option causes the compiler to not emit this
information into the object file.

zlf
The "zlf" option tells the compilers to emit references for all default library information into
the compiled object file. See also the options "zl", "zld" and "zls".

zls
The "zls" option tells the compilers to remove automatically inserted symbols. These symbols
are usually used to force symbol references to be fixed up from the run-time libraries. An
example would be the symbol __DLLstart_, that is inserted into any object file that has a
DllMain() function defined within its source file.

2.3.6 Code Generation

This group of options deals with controlling some aspects of the code that is generated by the
compiler.

ecc
set default calling convention to __cdecl

50 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

ecd
set default calling convention to __stdcall

ecf
set default calling convention to __fastcall

ecp
set default calling convention to __pascal

ecr
set default calling convention to __fortran

ecs
set default calling convention to _Syscall

ecw
set default calling convention to __watcall (default)

ei
This option can be used to force the compiler to allocate at least an "int" for all enumerated
types. The macroSWEI will be predefined if "ei" is selected.

em
This option can be used to force the compiler to allocate the smallest storage unit required to
hold all possible values given for an enumerated list. This option is the default for the x86
architecture. The macroSWEM will be predefined if "em" is selected.

j
The default char type is changed from an unsigned to a signed quantity. The macrosCHARSIGNED andSWJ will be predefined if "j" is selected.

ri
Functions declared to return integral types such as chars and shorts are promoted to returning
ints. This allows non-ISO-conforming source code which does not properly declare the return
types of functions to work properly. The use of this option should be avoided.

Compiler Options - Full Description 51

Open Watcom C/C++ User’s Guide

xr
The "xr" option is used to to enable the use of the C++ feature called Run-Time Type
Information (RTTI). RTTI can only be used with classes that have virtual functions declared.
This restriction implies that if you enable RTTI, the amount of storage used for a class in
memory does not change. The RTTI information is added to the virtual function information
block so there will be an increase in the executable size if you choose to enable RTTI. There
is no execution penalty at all unless you use the dynamic_cast<> feature in which case, you
should be aware that the operation requires a lookup operation in order to perform the
conversion properly. You can mix and match modules compiled with and without "xr", with
the caveat that dynamic_cast<> and typeid() may not function (return NULL or throw an
exception) if used on a class instance that was not compiled with the "xr" option.

zc
The "zc" option causes the code generator to place literal strings and const items in the code
segment.

Example:
extern const int cvar = 1;
int var = 2;
const int ctable[5] = { 1, 2, 3, 4, 5 };
char *birds[3] = { "robin", "finch", "wren" };

In the above example, cvar and ctable and the strings "robin", "finch", etc. are
placed in the code segment. This option is supported in large data or flat memory models
only, or if the item is explicitly "far". The macroSWZC will be predefined if "zc" is
selected.

zp[{1,2,4,8,16}]
The "zp" option allows you to specify the alignment of members in a structure. The default is
"zp2" for the 16-bit compiler and "zp8" for 32-bit compiler. The alignment of structure
members is described in the following table. If the size of the member is 1, 2, 4, 8 or 16, the
alignment is given for each of the "zp" options. If the member of the structure is an array or
structure, the alignment is described by the row "x".

zp1 zp2 zp4 zp8 zp16

sizeof(member) \---------------------------------------
1 | 0 0 0 0 0
2 | 0 2 2 2 2
4 | 0 2 4 4 4
8 | 0 2 4 8 8
16 | 0 2 4 8 16
x | aligned to largest member

52 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

An alignment of 0 means no alignment, 2 means word boundary, 4 means doubleword
boundary, etc.

Note that packed structures are padded to ensure that consecutive occurrences of the same
structure in memory are aligned appropriately. This is illustrated when the following example
is compiled with "zp4". The amount of padding is determined as follows. If the largest
member of structure "s" is 1 byte then "s" is not aligned. If the largest member of structure "s"
is 2 bytes then "s" is aligned according to row 2. If the largest member of structure "s" is 4
bytes then "s" is aligned according to row 4. If the largest member of structure "s" is 8 bytes
then "s" is aligned according to row 8. At present, there are no scalar objects that can have a
size of 16 bytes. If the largest member of structure "s" is an array or structure then "s" is
aligned according to row "x". Padding is the inclusion of slack bytes at the end of a structure
in order to guarantee the alignment of consecutive occurrences of the same structure in
memory.

To understand why structure member alignment may be important, consider the following
example.

Example:
#include <stdio.h>
#include <stddef.h>typedefstructmemoel{

char date[9];structmemoel*prev,*next;
int refnumber;
char sex;

} memo;

Compiler Options - Full Description 53

Open Watcom C/C++ User’s Guide

void main()
{

printf("Offset of %s is %d\n",
"date", offsetof(memo, date));

printf("Offset of %s is %d\n",
"prev", offsetof(memo, prev));

printf("Offset of %s is %d\n",
"next", offsetof(memo, next));

printf("Offset of %s is %d\n","refnumber",offsetof(memo,refnumber));
printf("Offset of %s is %d\n",

"sex", offsetof(memo, sex));
printf("Size of %s is %d\n",

"memo", sizeof(memo));
printf("Number of padding bytes is %d\n",

sizeof(memo)
- (offsetof(memo, sex) + sizeof(char)));

}

In the above example, the default alignment "zp8" will cause the pointer and integer items to
be aligned on even addresses although the array "date" is 9 bytes in length. The items are
2-byte aligned when sizeof(item) is 2 and 4-byte aligned when sizeof(item) is 4.

On computer systems that have a 16-bit (or 32-bit) bus, improved performance can be
obtained when pointer, integer and floating-point items are aligned on an even boundary.
This could be done by careful rearrangement of the fields of the structure or it can be forced
by use of the "zp" option.

16-bit output when compiled zp1:
Offset of date is 0
Offset of prev is 9
Offset of next is 11Offsetofrefnumberis13
Offset of sex is 15
Size of memo is 16
Number of padding bytes is 0

16-bit output when compiled zp4:
Offset of date is 0
Offset of prev is 10
Offset of next is 12Offsetofrefnumberis14
Offset of sex is 16
Size of memo is 18
Number of padding bytes is 1

54 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

32-bit output when compiled zp1:
Offset of date is 0
Offset of prev is 9
Offset of next is 13Offsetofrefnumberis17
Offset of sex is 21
Size of memo is 22
Number of padding bytes is 0

32-bit output when compiled zp4:
Offset of date is 0
Offset of prev is 12
Offset of next is 16Offsetofrefnumberis20
Offset of sex is 24
Size of memo is 28
Number of padding bytes is 3

zpw
The compiler will output a warning message whenever padding is added to a struct/class for
alignment purposes.

zt<number>
The "data threshold" option is used to set the maximum size for data objects to be included in
the default data segment. This option can be used with the compact, large, and huge (16-bit)
memory models only. These are memory models where there can be more than one data
segment. Normally, all data objects whose size is less than or equal to the threshold value are
placed in the default data segment "_DATA" unless they are specifically declared to be far
items. When there is a large amount of static data, it is often useful to set the data threshold
size so that all objects larger than this size are placed in another (far) data segment. For
example, the option "zt100" causes all data objects larger than 100 bytes in size to be
implicitly declared as far and grouped in other data segments.

The default data threshold value is 32767. Thus, by default, all objects greater than 32767
bytes in size are implicitly declared as far and will be placed in other data segments. If the
"zt" option is specified without a size, the data threshold value is 256. The largest value that
can be specified is 32767 (a larger value will result in 256 being selected).

If the "zt" option is used to compile any module in a program, then you must compile all the
other modules in the program with the same option (and value).

Care must be exercised when declaring the size of objects in different modules. Consider the
following declarations in two different C files. Suppose we define an array in one module as
follows:

Compiler Options - Full Description 55

Open Watcom C/C++ User’s Guide

extern int Array[100] = { 0 };

and, suppose we reference the same array in another module as follows:

extern int Array[10];

Assuming that these modules were compiled with the option "zt100", we would have a
problem. In the first module, the array would be placed in another segment since
Array[100] is bigger than the data threshold. In the second module, the array would be
placed in the default data segment since Array[10] is smaller than the data threshold. The
extra code required to reference the object in another data segment would not be generated.

Note that this problem can also occur even when the "zt" option is not used (i.e., for objects
greater than 32767 bytes in size). There are two solutions to this problem: (1) be consistent
when declaring an object’s size, or, (2) do not specify the size in data reference declarations.

zv
(C++ only) Enable virtual function removal optimization.

2.3.7 80x86 Floating Point

This group of options deals with control over the type of floating-point instructions that the
compiler generates. There are two basic types — floating-point calls (FPC) or floating-point
instructions (FPI). They are selectable through the use of one of the compiler options
described below. You may wish to use the following list when deciding which option best
suits your requirements. Here is a summary of advantages/disadvantages to both.

FPC

1. not IEEE floating-point
2. not tailorable to processor
3. uses coprocessor if present; simulates otherwise
4. 32-bit/64-bit accuracy
5. runs somewhat faster if coprocessor present
6. faster emulation (fewer bits of accuracy)
7. leaner "math" library
8. fatter application code (calls to library rather than in-line instructions)
9. application cannot trap floating-point exceptions
10. ideal for ROM applications

56 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

FPI, FPI87

1. IEEE floating-point
2. tailorable to processor (see fp2, fp3, fp5, fp6)
3. uses coprocessor if present; emulates IEEE otherwise
4. up to 80-bit accuracy
5. runs "full-tilt" if coprocessor present
6. slower emulation (more bits of accuracy)
7. fatter "math" library
8. leaner application code (in-line instructions)
9. application can trap floating-point exceptions
10. ideal for general-purpose applications

To see the difference in the type of code generated, consider the following small example.

Example:
#include <stdio.h>
#include <time.h>

void main()
{clocktcstart,cend;

cstart = clock();
/* .

.

.
*/
cend = clock();
printf("%4.2f seconds to calculate\n",((float)cend�cstart)/CLOCKSPERSEC);

}

The following 32-bit code is generated by the Open Watcom C compiler (wcc386) using the
"fpc" option.

Compiler Options - Full Description 57

Open Watcom C/C++ User’s Guide

 mainpushebx
push edxcallclock
mov edx,eaxcallclockcallU4FS;unsigned4tofloatingsingle
mov ebx,eax
mov eax,edxcallU4FS;unsigned4tofloatingsingle
mov edx,eax
mov eax,ebxcallFSS;floatingsinglesubtract
mov edx,3c23d70aHcallFSM;floatingsinglemultiplycallFSFD;floatingsingletofloatingdouble
push edx
push eax
push offset L1callprintf
add esp,0000000cH
pop edx
pop ebx
ret

The following 32-bit code is generated by the Open Watcom C compiler (wcc386) using the
"fpi" option.

 mainpushebx
push edx
sub esp,00000010Hcallclock
mov edx,eaxcallclock
xor ebx,ebx
mov [esp],eax
mov +4H[esp],ebx
mov +8H[esp],edx
mov +0cH[esp],ebx
fild qword ptr [esp] ; integer to double
fild qword ptr +8H[esp] ; integer to double
fsubp st(1),st ; subtract
fmul dword ptr L2 ; multiply
sub esp,00000008H
fstp qword ptr [esp] ; store into memory
push offset L1callprintf
add esp,0000000cH
add esp,00000010H
pop edx
pop ebx
ret

58 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

fpc
All floating-point arithmetic is done with calls to a floating-point emulation library. If a
numeric data processor is present in the system, it will be used by the library; otherwise
floating-point operations are simulated in software. This option should be used for any of the
following reasons:

1. Speed of floating-point emulation is favoured over code size.
2. An application containing floating-point operations is to be stored in ROM and an

80x87 will not be present in the system.

The macroSWFPC will be predefined if "fpc" is selected.

Note: When any module in an application is compiled with the "fpc" option, then all
modules must be compiled with the "fpc" option.

Different math libraries are provided for applications which have been compiled with a
particular floating-point option. See the section entitled "Open Watcom C/C++ Math
Libraries" on page 136.

See the section entitled "The NO87 Environment Variable" on page 139 for information on
testing the floating-point simulation code on personal computers equipped with a coprocessor.

fpi
(16-bit only) The compiler will generate in-line 80x87 numeric data processor instructions
into the object code for floating-point operations. Depending on which library the code is
linked against, these instructions will be left as is or they will be replaced by special interrupt
instructions. In the latter case, floating-point will be emulated if an 80x87 is not present. This
is the default floating-point option if none is specified.

(32-bit only) The compiler will generate in-line 387-compatible numeric data processor
instructions into the object code for floating-point operations. When any module containing
floating-point operations is compiled with the "fpi" option, coprocessor emulation software
will be included in the application when it is linked.

For 32-bit Open Watcom Windows-extender applications or 32-bit applications run in
Windows 3.1 DOS boxes, you must also include the WEMU387.386 file in the [386enh]
section of the SYSTEM.INI file.

Compiler Options - Full Description 59

Open Watcom C/C++ User’s Guide

Example:
device=C:\WATCOM\binw\wemu387.386

Note that the WDEBUG.386 file which is installed by the Open Watcom Installation software
contains the emulation support found in the WEMU387.386 file.

Thus, a math coprocessor need not be present at run-time. This is the default floating-point
option if none is specified. The macros

FPI
 andSWFPI will be predefined if "fpi"

is selected.

Note: When any module in an application is compiled with a particular "floating-point"
option, then all modules must be compiled with the same option.

If you wish to have floating-point emulation software included in the application, you
should select the "fpi" option. A math coprocessor need not be present at run-time.

Different math libraries are provided for applications which have been compiled with a
particular floating-point option. See the section entitled "Open Watcom C/C++ Math
Libraries" on page 136.

See the section entitled "The NO87 Environment Variable" on page 139 for information on
testing the math coprocessor emulation code on personal computers equipped with a
coprocessor.

fpi87
(16-bit only) The compiler will generate in-line 80x87 numeric data processor instructions
into the object code for floating-point operations. An 8087 or compatible math coprocessor
must be present at run-time. If the "2" option is used in conjunction with this option, the
compiler will generate 287 and upwards compatible instructions; otherwise, the compiler will
generate 8087 compatible instructions.

(32-bit only) The compiler will generate in-line 387-compatible numeric data processor
instructions into the object code for floating-point operations. When the "fpi87" option is
used exclusively, coprocessor emulation software is not included in the application when it is
linked. A 387 or compatible math coprocessor must be present at run-time.

The macros
FPI

 andSWFPI87 will be predefined if "fpi87" is selected. See Note
with description of "fpi" option.

60 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

fp2
The compiler will generate in-line 80x87 numeric data processor instructions into the object
code for floating-point operations. For Open Watcom compilers generating 16-bit code, this
option is the default. For 32-bit applications, use this option if you wish to support those few
386 systems that are equipped with a 287 numeric data processor ("fp3" is the default for
Open Watcom compilers generating 32-bit code). However, for 32-bit applications, the use of
this option will reduce execution performance. Use this option in conjunction with the "fpi"
or "fpi87" options. The macroSWFP2 will be predefined if "fp2" is selected.

fp3
The compiler will generate in-line 387-compatible numeric data processor instructions into
the object code for floating-point operations. For 16-bit applications, the use of this option
will limit the range of systems on which the application will run but there are execution
performance improvements. For Open Watcom compilers generating 32-bit code, this option
is the default. Use this option in conjunction with the "fpi" or "fpi87" options. The macroSWFP3 will be predefined if "fp3" is selected.

fp5
The compiler will generate in-line 80x87 numeric data processor instructions into the object
code for floating-point operations. The sequence of floating-point instructions will be
optimized for greatest possible performance on the Intel Pentium processor. For 16-bit
applications, the use of this option will limit the range of systems on which the application
will run but there are execution performance improvements. Use this option in conjunction
with the "fpi" or "fpi87" options. The macroSWFP5 will be predefined if "fp5" is
selected.

fp6
The compiler will generate in-line 80x87 numeric data processor instructions into the object
code for floating-point operations. The sequence of floating-point instructions will be
optimized for greatest possible performance on the Intel Pentium Pro processor. For 16-bit
applications, the use of this option will limit the range of systems on which the application
will run but there are execution performance improvements. Use this option in conjunction
with the "fpi" or "fpi87" options. The macroSWFP6 will be predefined if "fp6" is
selected.

fpd
A subtle problem was detected in the FDIV instruction of Intel’s original Pentium CPU. In
certain rare cases, the result of a floating-point divide could have less precision than it should.
Contact Intel directly for more information on the issue.

Compiler Options - Full Description 61

Open Watcom C/C++ User’s Guide

As a result, the run-time system startup code has been modified to test for a faulty Pentium. If
the FDIV instruction is found to be flawed, the low order bit of the run-time system variablechipbug will be set.

 externunsignednearchipbug;
If the FDIV instruction does not show the problem, the low order bit will be clear. If the
Pentium FDIV flaw is a concern for your application, there are two approaches that you could
take:

1. You may test thechipbug variable in your code in all floating-point and
memory models and take appropriate action (such as display a warning message or
discontinue the application).

2. Alternately, you can use the "fpd" option when compiling your code. This option
directs the compiler to generate additional code whenever an FDIV instruction is
generated which tests the low order bit ofchipbug and, if on, calls the
software workaround code in the math libraries. If the bit is off, an in-line FDIV
instruction will be performed as before.

If you know that your application will never run on a defective Pentium CPU, or your analysis
shows that the FDIV problem will not affect your results, you need not use the "fpd" option.
The macroSWFPD will be predefined if "fpd" is selected.

2.3.8 Segments/Modules

This group of options deals with object file data structures that are generated by the compiler.

g=<codegroup>
The generated code is placed in the group called "<codegroup>". The default "text" segment
name will be "<codegroup>_TEXT" but this can be overridden by the "nt" option.

Example:
C>compiler_name report /g=RPTGROUP /s

(16-bit only) <<

This is useful when compiling applications for small code models where the total application
will contain more than 64 kilobytes of code. Each group can contain up to 64 kilobytes of
code. The application follows a "mixed" code model since it contains a mix of small and
large code (intra-segment and inter-segment calls). Memory models are described in the
chapter entitled "16-bit Memory Models" on page 145. The far keyword is used to describe

62 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

routines that are referenced from one group/segment but are defined in another
group/segment.

For small code models, the "s" option should be used in conjunction with the "g" option to
prevent the generation of calls to the C run-time "stack overflow check" routine (STK).
You must also avoid calls to other "small code" C run-time library routines since
inter-segment "near" calls to C library routines are not possible.

>> (16-bit only)

nc=<name>
The default "code" class name is "CODE". The small code model "_TEXT" segment and the
large code model "module_name_TEXT" segments belong to the "CODE" class. This option
allows you to select a different class name for these code segments. The name of the "code"
class is explicitly set to "<name>".

Note that the default "data" class names are "DATA" (for the "CONST", "CONST2" and
"_DATA" segments) and "BSS" (for the "_BSS" segment). There is no provision for
changing the data class names.

nd=<name>
This option permits you to define a special prefix for the "CONST", "CONST2", "_DATA",
and "_BSS" segment names. The name of the group to which these segments belong is also
changed from "DGROUP" to "<name>_GROUP". This option is especially useful in the
creation of 16-bit Dynamic Link Library (DLL) routines.

Example:
C>compiler_name report /nd=spec

In the above example, the segment names become "specCONST", "specCONST2",
"spec_DATA", and "spec_BSS" and the group name becomes "spec_GROUP".

By default, the data group "DGROUP" consists of the "CONST", "CONST2", "_DATA", and
"_BSS" segments. The compiler places certain types of data in each segment. The "CONST"
segment contains constant literals that appear in your source code.

Example:
char *birds[3] = { "robin", "finch", "wren" };

printf("Hello world\n");

In the above example, the strings "Hello world\n", "robin", "finch", etc. appear in the
"CONST" segment.

Compiler Options - Full Description 63

Open Watcom C/C++ User’s Guide

The "CONST2" segment contains initialized read-only data.

Example:
extern const int cvar = 1;
int var = 2;
int table[5] = { 1, 2, 3, 4, 5 };
char *birds[3] = { "robin", "finch", "wren" };

In the above example, the constant variable cvar is placed in the "CONST2" segment.

The "_BSS" segment contains uninitialized data such as scalars, structures, or arrays.

Example:
int var1;
int array1[400];

Other data segments containing data, specifically declared to be far or exceeding the data
threshold (see "zt" option), are named either "module_nameN_DATA" when using the C
compiler or "module_name_DATAN" when using the C++ compiler where "N" is some
integral number.

Example:
int far array2[400];

In the above example, array2 is placed in the segment "report11_DATA" (C) or
"report_DATA11" (C++) provided that the module name is "report".

The macroSWND will be predefined if "nd" is selected.

nm=<name>
By default, the object file name and the module name that is placed within it are constructed
from the source file name. When the "nm" option is used, the module name that is placed into
the object file is "<name>". For large code models, the "text" segment name is
"<name>_TEXT" unless the "nt" option is used.

In the following example, the preprocessed output from report.c is stored on drive "D"
under the name temp.c. The file is compiled with the "nm" option so that the module name
imbedded into the object file is "REPORT" rather than "TEMP".

Example:
C>compiler_name report /pl /fo=d:\temp.c
C>compiler_name d:\temp /nm=report /fo=report

Since the "fo" option is also used, the resultant object file is called report.obj.

64 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

nt=<name>
The name of the "text" segment is explicitly set to "<name>". By default, the "text" segment
name is "_TEXT" for small code models and "module_name_TEXT" for large code models.

Application Memory Code
Type Model Segment
----------- ------- -------------------16�bittinyTEXT32�bitflatTEXT16/32�bitsmallTEXT16/32�bitmediummodulenameTEXT16/32�bitcompactTEXT16/32�bitlargemodulenameTEXT16�bithugemodulenameTEXT

zm
The "zm" option instructs the code generator to place each function into a separate segment.

In small code models, the segment name is "_TEXT" by default.

(C only) In large code models, the segment name is composed of the function name
concatenated with the string "_TEXT".

(C++ only) In large code models, the segment name is composed of the module name
concatenated with the string "_TEXT" and a unique integral number.

The default string "_TEXT" can be altered using the "nt" option (see "nt=<name>").

The advantages to this option are:

1. Since each function is placed in its own segment, functions that are not required by
an application are omitted from the executable by the linker (when "OPTION
ELIMINATE" is specified).

2. This can result in smaller executables.
3. This benefit applies to both small and large code models.
4. This option allows you to create granular libraries without resorting to placing each

function in a separate file.

Compiler Options - Full Description 65

Open Watcom C/C++ User’s Guide

Example:
static int foo(int x)
{

return x - 1;
}

static int near foo1(int x)
{

return x + 1;
}

int foo2(int y)
{

return foo(y) * foo1(y-1);
}

int foo3(int x, int y)
{

return x + y * x;
}

The disadvantages to this option are:

1. The "near call" optimization for static functions in large code models is disabled
(e.g., the function foo in the example above will never be "near called". Static
functions will always be "far called" in large code models.

2. Near static functions will still be "near called" (e.g., the function foo1 is "near
called" in the example above). However, this can lead to problems at link time if
the caller function ends up in a different segment from the called function (the
linker will issue a message if this is the case).

3. The "common epilogue" optimization is lost.
4. The linker "OPTION ELIMINATE" must be specified when linking an application

to take advantage of the granularity inherent in object files/libraries compiled with
this option.

5. Any assumptions about relative position of functions are invalid. Consider the
following code which attempts to determine the size of a code region by subtracting
function addresses:

66 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

Example:regionsize=(unsignedlong)&function2�(unsigned
long)function1;

When "zm" is in effect,regionsize may be extremely large or even a negative
value. For the above code to work as intended, both function1 and
function2 (and every function intended to be located between them) must reside
in a single code segment.

This option can be used in paging environments where special segment ordering may be
employed. The "alloc_text" pragma is often used in conjunction with this option to place
functions into specific segments.

The macroSWZM will be predefined if "zm" is selected.

zmf
(C++ only) This option is identical to the "zm" option (see "zm" on page 65) except for the
following large code model consideration.

Instead of placing each function in a segment with a different name, the code generator will
place each function in a segment with the same name (the name of the module suffixed by
"_TEXT").

The advantages to this option are:

1. All functions in a module will reside in the same physical segment in an
executable.

2. The "near call" optimization for static functions in large code models is not
disabled (e.g., the function foo in the example above will be "near called". Static
functions will always be "near called" in large code models.

3. The problem associated with calling "near" functions goes away since all functions
in a module will reside in the same physical segment (e.g., the function foo1 is
"near" in the example above).

The disadvantages to this option are:

1. The size of a physical segment is restricted to 64K in 16-bit applications. Although
this may limit the number of functions that can be placed in the segment, the
restriction is only on a "per module" basis.

2. Although less constricting, the size of a physical segment is restricted to 4G in a
32-bit application.

Compiler Options - Full Description 67

Open Watcom C/C++ User’s Guide

2.3.9 80x86 Run-time Conventions

This group of options deals with the 80x86 run-time environment.

0
(16-bit only) The compiler will make use of only 8086 instructions in the generated object
code. This is the default. The resulting code will run on 8086 and all upward compatible
processors. The macroSW0 will be predefined if "0" is selected.

1
(16-bit only) The compiler will make use of 186 instructions in the generated object code
whenever possible. The resulting code probably will not run on 8086 compatible processors
but it will run on 186 and upward compatible processors. The macroSW1 will be
predefined if "1" is selected.

2
(16-bit only) The compiler will make use of 286 instructions in the generated object code
whenever possible. The resulting code probably will not run on 8086 or 186 compatible
processors but it will run on 286 and upward compatible processors. The macroSW2 will
be predefined if "2" is selected.

3
(16-bit only) The compiler will make use of some 386 instructions and FS or GS (if "zff" or
"zgf" options are used) in the generated object code whenever possible. The code will be
optimized for 386 processors. The resulting code probably will not run on 8086, 186 or 286
compatible processors but it will run on 386 and upward compatible processors. The macroSW3 will be predefined if "3" is selected.

4
(16-bit only) The compiler will make use of some 386 instructions and FS or GS (if "zff" or
"zgf" options are used) in the generated object code whenever possible. The code will be
optimized for 486 processors. The resulting code probably will not run on 8086, 186 or 286
compatible processors but it will run on 386 and upward compatible processors. The macroSW4 will be predefined if "4" is selected.

5
(16-bit only) The compiler will make use of some 386 instructions and FS or GS (if "zff" or
"zgf" options are used) in the generated object code whenever possible. The code will be
optimized for the Intel Pentium processor. The resulting code probably will not run on 8086,

68 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

186 or 286 compatible processors but it will run on 386 and upward compatible processors.
The macroSW5 will be predefined if "5" is selected.

6
(16-bit only) The compiler will make use of some 386 instructions and FS or GS (if "zff" or
"zgf" options are used) in the generated object code whenever possible. The code will be
optimized for the Intel Pentium Pro processor. The resulting code probably will not run on
8086, 186 or 286 compatible processors but it will run on 386 and upward compatible
processors. The macroSW6 will be predefined if "6" is selected.

3{r|s}
(32-bit only) The compiler will generate 386 instructions based on 386 instruction timings
(see "4", "5" and "6" below).

If the "r" suffix is specified, the following machine-level code strategy is employed.

• The compiler will pass arguments in registers whenever possible. This is the default
method used to pass arguments (unless the "bt=netware" option is specified).

• All registers except EAX are preserved across function calls.

• When any form of the "fpi" option is used, the result of functions of type "float" and
"double" is returned in ST(0).

• When the "fpc" option is used, the result of a function of type "float" is returned in
EAX and the result of a function of type "double" is returned in EDX:EAX.

• The resulting code will be smaller than that which is generated for the stack-based
method of passing arguments (see "3s" below).

• The default naming convention for all global functions is such that an underscore
character ("_") is suffixed to the symbol name. The default naming convention for all
global variables is such that an underscore character ("_") is prefixed to the symbol
name.

If the "s" suffix is specified, the following machine-level code strategy is employed.

• The compiler will pass all arguments on the stack.

• The EAX, ECX and EDX registers are not preserved across function calls.

• The FS and GS registers are not preserved across function calls.

Compiler Options - Full Description 69

Open Watcom C/C++ User’s Guide

• The result of a function of type "float" is returned in EAX. The result of a function of
type "double" is returned in EDX:EAX.

• The resulting code will be larger than that which is generated for the register method of
passing arguments (see "3r" above).

• The naming convention for all global functions and variables is modified such that no
underscore characters ("_") are prefixed or suffixed to the symbol name.

The "s" conventions are similar to those used by the MetaWare High C 386 compiler.

By default, "r" is selected if neither "r" nor "s" is specified.

The macroSW3 will be predefined if "3" is selected. The macroSW3R will be
predefined if "r" is selected (or defaulted). The macroSW3S will be predefined if "s" is
selected.

4{r|s}
(32-bit only) This option is identical to "3{r|s}" except that the compiler will generate 386
instructions based on 486 instruction timings. The code is optimized for 486 processors rather
than 386 processors. By default, "r" is selected if neither "r" nor "s" is specified. The macroSW4 will be predefined if "4" is selected. The macroSW3R will be predefined if "r"
is selected (or defaulted). The macroSW3S will be predefined if "s" is selected.

5{r|s}
(32-bit only) This option is identical to "3{r|s}" except that the compiler will generate 386
instructions based on Intel Pentium instruction timings. This is the default. The code is
optimized for Intel Pentium processors rather than 386 processors. By default, "r" is selected
if neither "r" nor "s" is specified. The macroSW5 will be predefined if "5" is selected.
The macroSW3R will be predefined if "r" is selected (or defaulted). The macroSW3S will be predefined if "s" is selected.

6{r|s}
(32-bit only) This option is identical to "3{r|s}" except that the compiler will generate 386
instructions based on Intel Pentium Pro instruction timings. The code is optimized for Intel
Pentium Pro processors rather than 386 processors. By default, "r" is selected if neither "r"
nor "s" is specified. The macroSW6 will be predefined if "6" is selected. The macroSW3R will be predefined if "r" is selected (or defaulted). The macroSW3S will be
predefined if "s" is selected.

70 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

mf
(32-bit only) The "flat" memory model (code and data up to 4 gigabytes) is selected. By
default, the 32-bit compiler will select this memory model unless the target system is Netware
in which case "small" is selected. The following macros will be predefined.

 M386FMM386FMFLAT
ms

The "small" memory model (small code, small data) is selected. By default, the 16-bit
compiler will select this memory model. When the target system is Netware, the 32-bit
compiler will select this memory model. The following macros will be predefined.

 MI86SMMI86SMM386SMM386SMSMALL
mm

The "medium" memory model (big code, small data) is selected. The following macros will
be predefined.

 MI86MMMEDIUM
mc

The "compact" memory model (small code, big data) is selected. The following macros will
be predefined.

 MI86CMMI86CMCOMPACT
ml

The "large" memory model (big code, big data) is selected. The following macros will be
predefined.

 MI86LMLARGE
Compiler Options - Full Description 71

Open Watcom C/C++ User’s Guide

mh
(16-bit only) The "huge" memory model (big code, huge data) is selected. The following
macros will be predefined.

 MI86HMHUGE
Memory models are described in the chapters entitled "16-bit Memory Models" on page 145
and "32-bit Memory Models" on page 229. Other architectural aspects of the Intel 86 family
such as pointer size are discussed in the sections entitled "Sizes of Predefined Types" on page
158 in the chapter entitled "16-bit Assembly Language Considerations" or "Sizes of
Predefined Types" on page 242 in the chapter entitled "32-bit Assembly Language
Considerations"

zd{f,p}
The "zdf" option allows the code generator to use the DS register to point to other segments
besides "DGROUP" This is the default in the 16-bit compact, large, and huge memory models
(except for 16-bit Windows applications).

The "zdp" option informs the code generator that the DS register must always point to
"DGROUP" This is the default in the 16-bit small and medium memory models, all of the
16-bit Windows memory models, and the 32-bit small and flat memory models. The macroSWZDF will be predefined if "zdf" is selected. The macroSWZDP will be predefined
if "zdp" is selected.

zdl
(32-bit only) The "zdl" option causes generation of code to load the DS register directly from
DGROUP (rather than the default run-time call). This option causes the generation of a
segment relocation. This option is used with the "zdp" option but not the "zdf" option.

zev
The "zev" option is an extension to the Watcom C compiler to allow arithmetic operations on
void derived types. This option has been added for compatibility with some Unix compilers
and is not ISO compliant. The use of this option should be avoided.

zf{f,p}
The "zff" option allows the code generator to use the FS register (default for all but flat
memory model). The "zfp" option informs the code generator that the FS register must not be
used (default in flat memory model). The macroSWZFF will be predefined if "zff" is
selected. The macroSWZFP will be predefined if "zfp" is selected.

72 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

zg{f,p}
The "zgf" option allows the code generator to use the GS register (default for all memory
models). The "zgp" option informs the code generator that the GS register must not be used.
The macroSWZGF will be predefined if "zgf" is selected. The macroSWZGP will be
predefined if "zgp" is selected.

zri
(32-bit only) The "zri" option inlines the code for floating point rounding. Normally a
function call is generated for each float to int conversion which may not be desirable.

The macroSWZRI will be predefined if "zri" is selected.

zro
The "zro" option omits the code for floating point rounding. This results in non-conformant
code - the rounding mode is not ISO/ANSI C compliant - but the code generated is very fast.

The macroSWZRO will be predefined if "zro" is selected.

zu
The "zu" option relaxes the restriction that the SS register contains the base address of the
default data segment, "DGROUP". Normally, all data items are placed into the group
"DGROUP" and the SS register contains the base address of this group. When the "zu" option
is selected, the SS register is volatile (assumed to point to another segment) and any global
data references require loading a segment register such as DS with the base address of
"DGROUP".

(16-bit only) This option is useful when compiling routines that are to be placed in a Dynamic
Link Library (DLL) since the SS register points to the stack segment of the calling application
upon entry to the function.

The macroSWZU will be predefined if "zu" is selected.

2.3.10 Optimizations

When specified on the command line, optimization options may be specified individually (oa,
oi) or the letters may be strung together (oailt).

Compiler Options - Full Description 73

Open Watcom C/C++ User’s Guide

oa
Alias checking is relaxed. When this option is specified, the code optimizer will assume that
global variables are not indirectly referenced through pointers. This assumption may reduce
the size of the code that is generated. The following example helps to illustrate this point.

Example:
extern int i;

void rtn(int *pi)
{

int k;
for(k = 0; k < 10; ++k) {

(*pi)++;
i++;

}
}

In the above example, if "i" and "*pi" referenced the same integer object then "i" would be
incremented by 2 each time through the "for" loop and we would call the pointer reference
"*pi" an alias for the variable "i". In this situation, the compiler could not bind the variable
"i" to a register without making sure that the "in-memory" copy of "i" was kept up-to-date. In
most cases, the above situation does not arise. Rarely would we reference the same variable
directly by name and indirectly through a pointer in the same routine. The "oa" option
instructs the code generator that such cases do not arise in the module to be compiled. The
code generator will be able to produce more efficient code when it does not have to worry
about the alias "problem".

The macroSWOA will be predefined if "oa" is selected.

ob
When the "ob" option is specified, the code generator will try to order the blocks of code
emitted such that the "expected" execution path (as determined by a set of simple heuristics)
will be straight through, with other cases being handled by jumps to separate blocks of code
"out of line". This will result in better cache utilization on the Pentium. If the heuristics do
not apply to your code, it could result in a performance decrease.

oc
This option may be used to disable the optimization where a "CALL" followed by a "RET"
(return) is changed into a "JMP" (jump) instruction.

(16-bit only) This option is required if you wish to link an overlayed program using the
Microsoft DOS Overlay Linker. The Microsoft DOS Overlay Linker will create overlay calls

74 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

for a "CALL" instruction only. This option is not required when using the Open Watcom
Linker.

The macroSWOC will be predefined if "oc" is selected.

od
Non-optimized code sequences are generated. The resulting code will be much easier to
debug when using the Open Watcom Debugger. By default, the compiler will select "od" if
"d2" is specified. If "d2" is followed by one of the other "o?" options then "od" is overridden.

Example:
C>compiler_name report /d2 /os

The macroSWOD will be predefined if "od" is selected.

oe=<num>
Certain user functions are expanded in-line. The criteria for which functions are selected for
in-line expansion is based on the "size" of the function in terms of the number of "tree nodes"
generated by the function. Functions are internally represented as tree structures, where each
operand and each operator is a node of the tree. For example, the statement a = -b * (c
+ d) can be represented as a tree with 8 nodes, one for each operand and operator.

The number of "nodes" generated corresponds closely with the number of operators used in an
expression. Functions which require more than "<num>" nodes are not expanded in-line. The
default number is 20. With larger "<num>" values, more (larger) functions will be expanded
in-line. This optimization is especially useful when locally-referenced functions are small in
size.

Example:
C>compiler_name dhrystone /oe

oh
This option enables repeated optimizations (which can result in longer compiles).

oi
Certain library functions are generated in-line. You must include the appropriate header file
containing the prototype for the desired function so that it will be generated in-line. The
functions that can be generated in-line are:

Compiler Options - Full Description 75

Open Watcom C/C++ User’s Guideabsdisabledivenablefabsfmemchrfmemcmpfmemcpyfmemsetfstrcatfstrcmpfstrcpyfstrleninpd(2)inpwinplabsldiv(2)lrotl(2)lrotr(2)
memchr memcmp memcpy memset (1) movedata outpd(2)outpwoutprotlrotr
strcat strchr strcmp (1) strcpy strlen

*1 16-bit only
*2 32-bit only

The macros
INLINEFUNCTIONS andSWOI will be predefined if "oi" is

selected.

oi+
(C++ only) This option encompasses "oi" but also sets inline_depth to its maximum (255). By
default, inline_depth is 3. The inline_depth can also be changed by using the C++inlinedepth pragma.

ok
This option enables flowing of register save (from prologue) down into the function’s flow
graph. This means that register save/restores will not be executed when it is not necessary (as
can be the case when a function consists of an if-else construct with a simple part that does
little and a more complex part that does a lot).

ol
Loop optimizations are performed. This includes moving loop-invariant expressions outside
the loops. The macroSWOL will be predefined if "ol" is selected.

ol+
Loop optimizations are performed including loop unrolling. This includes moving
loop-invariant expressions outside the loops and turning some loops into straight-line code.
The macroSWOL will be predefined if "ol+" is selected.

om
Generate in-line 80x87 code for math functions like sin, cos, tan, etc. If this option is
selected, it is the programmer’s responsibility to make sure that arguments to these functions
are within the range accepted by the fsin, fcos, etc. instructions since no run-time
check is made. For 16-bit, you must also include the "fp3" option to get in-line 80x87 code
(except for fabs). The functions that can be generated in-line are:

76 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

atan cos exp fabs log10 log sin sqrt tan

The macroSWOM will be predefined if "om" is selected.

on
This option allows the compiler to replace floating-point divisions with multiplications by the
reciprocal. This generates faster code, but the result may not be the same because the
reciprocal may not be exactly representable. The macroSWON will be predefined if "on"
is selected.

oo
By default, the compiler will abort compilation if it runs low on memory. This option forces
the compiler to continue compilation even when low on memory, however, this can result in
very poor code being generated. The macroSWOO will be predefined if "oo" is selected.

op
This option causes the compiler to store intermediate floating-point results into memory in
order to generate consistent floating-point results rather than keeping values in the 80x87
registers where they have more precision. The macroSWOP will be predefined if "op" is
selected.

or
This option enables reordering of instructions (instruction scheduling) to achieve better
performance on pipelined architectures such as the Intel 486 and Pentium processors. This
option is essential for generating fast code for the Intel Pentium processor. Selecting this
option will make it slightly more difficult to debug because the assembly language
instructions generated for a source statement may be intermixed with instructions generated
for surrounding statements. The macroSWOR will be predefined if "or" is selected.

os
Space is favoured over time when generating code (smaller code but possibly slower
execution). By default, the compiler selects a balance between "space" and "time". The
macroSWOS will be predefined if "os" is selected.

ot
Time is favoured over space when generating code (faster execution but possibly larger code).
By default, the compiler selects a balance between "space" and "time". The macroSWOT
will be predefined if "ot" is selected.

Compiler Options - Full Description 77

Open Watcom C/C++ User’s Guide

ou
This option forces the compiler to make sure that all function labels are unique. Thus the
compiler will not place two function labels at the same address even if the code for the two
functions are identical. This option is automatically selected if the "za" option is specified.
The macroSWOU will be predefined if "ou" is selected.

ox
The "obmiler" and "s" (no stack overflow checking) options are selected.

oz
This option prevents the compiler from omitting NULL pointer checks on pointer
conversions. By default, the compiler omits NULL pointer checks on pointer conversions
when it is safe to do so. Consider the following example.

struct B1 {

int b1;
};
struct B2 {

int b2;
};
struct D : B1, B2 {

int d;
};voidclearD(D*p)
{

p->d = 0;
B1 *p1 = p;
p1->b1 = 0;
B2 *p2 = p;
p2->b2 = 0;

}

In this example, the C++ compiler must ensure that p1 and p2 become NULL if p is NULL
(since no offset adjustment is allowed for a NULL pointer). However, the first executable
statement implies that p is not NULL since, in most operating environments, the executing
program would crash at the first executable statement if p was NULL. The "oz" option will
prevent the compiler from omitting the check for a NULL pointer.

The macroSWOZ will be predefined if "oz" is selected.

When "ox" is combined with the "on", "oa" and "ot" options ("onatx") and the "zp4" option,
the code generator will attempt to give you the fastest executing code possible irrespective of
architecture. Other options can give you architecture specific optimizations to further

78 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

improve the speed of your code. Note that specifying "onatx" is equivalent to specifying
"onatblimer" and "s". See the section entitled "Benchmarking Hints" on page 89 for more
information on generating fast code.

2.3.11 C++ Exception Handling

The "xd..." options disable exception handling. Consequently, it is not possible to use throw,
try, or catch statements, or to specify a function exception specification. If your program (or
a library which it includes) throws exceptions, then one of the "xs..." options should be used to
compile all the modules in your program; otherwise, any active objects created within the
module will not be destructed during exception processing.

Multiple schemes are possible, allowing experimentation to determine the optimal scheme for
particular circumstances. You can mix and match schemes on a module basis, with the
proviso that exceptions should be enabled wherever it is possible that a created object should
be destructed by the exception mechanism.

xd
This option disables exception handling. It is the default option if no exception handling
option is specified. When this option is specified (or defaulted):

• Destruction of objects is caused by direct calls to the appropriate destructors

• Destructor functions are implemented with direct calls to appropriate destructors to
destruct base classes and class members.

xdt
This option is the same as "xd" (see "xd").

xds
This option disables exception handling. When this option is specified:

• Destruction of objects is caused by direct calls to the appropriate destructors.

• Destruction of base classes and class members is accomplished by interpreting tables.

• This option, in general, generates smaller code, with increased execution time and with
more run-time system routines included by the linker.

Compiler Options - Full Description 79

Open Watcom C/C++ User’s Guide

xs
This option enables exception handling using a balanced scheme. When this option is
specified:

• Tables are interpreted to effect destruction of temporaries and automatic objects;
destructor functions are implemented with direct calls to appropriate destructors to
destruct base classes and class members.

xst
This option enables exception handling using a time-saving scheme. When this option is
specified:

• Destruction of temporaries and automatic objects is accomplished with direct calls to
appropriate destructors; destructor functions are implemented with direct calls to
appropriate destructors to destruct base classes and class members.

• This scheme will execute faster, but will use more space in general.

xss
This option enables exception handling using a space-saving scheme. When this option is
specified:

• Tables are interpreted to effect destruction of temporaries and automatic objects;
destruction of base classes and class members is accomplished by interpreting tables.

• This option, in general, generates smaller code, with increased execution time.

2.3.12 Double-Byte/Unicode Characters

This group of options deals with compile-time aspects of character sets used in the source
code.

zk{0,1,2,l}
This option causes the compiler to recognize double-byte characters in strings. When the
compiler scans a text string enclosed in quotes ("), it will recognize the first byte of a
double-byte character and suppress lexical analysis of the second byte. This will prevent the
compiler from misinterpreting the second byte as a "\" or quote (") character.

80 Compiler Options - Full Description

Open Watcom C/C++ Compiler Options

zk, zk0 These options cause the compiler to process strings for Japanese double-byte
characters (range 0x81 - 0x9F and 0xE0 - 0xFC). The characters in the range
A0 - DF are single-byte Katakana.

zk1 This option causes the compiler to process strings for Traditional Chinese and
Taiwanese double-byte characters (range 0x81 - 0xFC).

zk2 This option causes the compiler to process strings for Korean Hangeul
double-byte characters (range 0x81 - 0xFD).

zkl This option causes the compiler to process strings using the current code page.
If the local character set includes double-byte characters then string processing
will check for lead bytes.

The macroSWZK will be predefined if any "zk" option is selected.

zk0u
This option causes the compiler to process strings for Japanese double-byte characters (range
0x81 - 0x9F and 0xE0 - 0xFC). The characters in the range A0 - DF are single-byte
Katakana. All characters, including Kanji, in wide characters (L’c’) and wide strings
(L"string") are translated to UNICODE.

When the compiler scans a text string enclosed in quotes ("), it will recognize the first byte of
a double-byte character and suppress lexical analysis of the second byte. This will prevent the
compiler from misinterpreting the second byte as a "\" or quote (") character.

zku=<codepage>
Characters in wide characters (L’c’) and wide strings (L"string") are translated to UNICODE.
The UNICODE translate table for the specified code page is loaded from a file with the name
"UNICODE.cpn" where "cpn" is the code page number (e.g., zku=850 selects file
"UNICODE.850"). The compiler locates this file by searching the paths listed in the PATH
environment variable.

2.3.13 Compatibility with Microsoft Visual C++

This group of options deals with compatibility with Microsoft’s Visual C++ compiler.

vc...
The "vc" option prefix is used to introduce a set of Microsoft Visual C++ compatibility
options. At present, there is only one: vcap.

Compiler Options - Full Description 81

Open Watcom C/C++ User’s Guide

vcap
This options tells the compiler to allow _alloca() to be used in a parameter list. The optimizer
has to do extra work to allow this but since it is rare (and easily worked around if you can),
you have to ask the optimizer to handle this case. You also may get less efficient code in
some cases.

2.3.14 Compatibility with Older Versions of the 80x86 Compilers

This group of options deals with compatibility with older versions of Open Watcom’s 80x86
compilers.

r
This option instructs the compiler to generate function prologue and epilogue sequences that
save and restore any segment registers that are modified by the function. Caution should be
exercised when using this option. If the value of the segment register being restored matches
the value of a segment that was freed within the function, a general protection fault will occur
in protected-mode environments. By default, the compiler does not generate code to save and
restore segment registers. This option is provided for compatibility with the version 8.0
release. The macroSWR will be predefined if "r" is selected.

fpr
Use this option if you want to generate floating-point instructions that will be compatible with
version 9.0 or earlier of the compilers. For more information on floating-point conventions
see the sections entitled "Using the 80x87 to Pass Arguments" on page 221 and "Using the
80x87 to Pass Arguments" on page 310.

zz
Use this option if you want to generate __stdcall function names that will be compatible with
version 10.0 of the compilers. When this option is omitted, all C symbols (extern "C"
symbols in C++) are suffixed by "@nnn" where "nnn" is the sum of the argument sizes (each
size is rounded up to a multiple of 4 bytes so that char and short are size 4). When the
argument list contains "...", the "@nnn" suffix is omitted. This convention is compatible with
Microsoft. For more information on the __stdcall convention see the section entitled "Open
Watcom C/C++ Extended Keywords" on page 103.

82 Compiler Options - Full Description

3 The Open Watcom C/C++ Compilers

This chapter covers the following topics.

• Command line syntax (see "Open Watcom C/C++ Command Line Format")

• Environment variables used by the compilers (see "Environment Variables" on page
85)

• Examples of command line syntax (see "Open Watcom C/C++ Command Line
Examples" on page 86)

• Interpreting diagnostic messages (see "Compiler Diagnostics" on page 91)

• #include file handling (see "Open Watcom C/C++ #include File Processing" on page
93)

• Using the preprocessor built into the compilers (see "Open Watcom C/C++
Preprocessor" on page 96)

• System-dependent macros predefined by the compilers (see "Open Watcom C/C++
Predefined Macros" on page 97)

• Additional keywords supported by the compilers (see "Open Watcom C/C++ Extended
Keywords" on page 103)

• Based pointer support in the compilers (see "Based Pointers" on page 113)

• Notes about the Code Generator (see "The Open Watcom Code Generator" on page
124)

The Open Watcom C/C++ Compilers 83

Open Watcom C/C++ User’s Guide

3.1 Open Watcom C/C++ Command Line Format

The formal Open Watcom C/C++ command line syntax is shown below.

compiler_name [options] [file_spec] [options] [@extra_opts]

The square brackets [] denote items which are optional.

compiler_name is one of the Open Watcom C/C++ compiler command names.

WCC is the Open Watcom C compiler for 16-bit Intel platforms.
WPP is the Open Watcom C++ compiler for 16-bit Intel platforms.
WCC386 is the Open Watcom C compiler for 32-bit Intel platforms.
WPP386 is the Open Watcom C++ compiler for 32-bit Intel platforms.

file_spec is the file name specification of one or more files to be compiled. If file_spec is
specified as the single character ".", an input file is read from standard input and
the output file name defaults to stdin.obj.

If no drive is specified, the default drive is assumed.

If no path is specified, the current working directory is assumed. If the file is
not in the current directory, an adjacent "C" directory (i.e., ..\c) is searched if
it exists.

If no file extension is specified, the compiler will check for a file with one of the
following extensions in the order listed:

.CPP (C++ only)

.CC (C++ only)

.C (C/C++)

If a period "." is specified but not the extension, the file is assumed to have no
filename extension.

If only the compiler name is specified then the compiler will display a list of
available options.

options is a list of valid compiler options, each preceded by a slash ("/") or a dash ("−").
Options may be specified in any order.

84 Open Watcom C/C++ Command Line Format

The Open Watcom C/C++ Compilers

extra_opts is the name of an environment variable or file which contains additional
command line options to be processed. If the specified environment variable
does not exist, a search is made for a file with the specified name. If no file
extension is included in the specified name, the default file extension is ".occ".
A search of the current directory is made. If not successful, an adjacent "OCC"
directory (i.e., ..\occ) is searched if it exists.

3.2 Open Watcom C/C++ DLL-based Compilers

The compilers are also available in Dynamic Link Library (DLL) form.

WCCD is the DLL version of the Open Watcom C compiler for 16-bit Intel platforms.
WPPDI86 is the DLL version of the Open Watcom C++ compiler for 16-bit Intel

platforms.
WCCD386 is the DLL version of the Open Watcom C compiler for 32-bit Intel platforms.
WPPD386 is the DLL version of the Open Watcom C++ compiler for 32-bit Intel

platforms.

The DLL versions of the compilers can be loaded from the Open Watcom Integrated
Development Environment (IDE) and Open Watcom Make.

3.3 Environment Variables

Environment variables can be used to specify commonly used compiler options. There is one
environment variable for each compiler (the name of the environment variable is the same as
the compiler name). The Open Watcom C/C++ environment variable names are:

WCC used with the Open Watcom C compiler for 16-bit Intel platforms

Example:
C>set wcc=/d1 /ot

WPP used with the Open Watcom C++ compiler for 16-bit Intel platforms

Example:
C>set wpp=/d1 /ot

WCC386 used with the Open Watcom C compiler for 32-bit Intel platforms

Environment Variables 85

Open Watcom C/C++ User’s Guide

Example:
C>set wcc386=/d1 /ot

WPP386 used with the Open Watcom C++ compiler for 32-bit Intel platforms

Example:
C>set wpp386=/d1 /ot

The options specified in environment variables are processed before options specified on the
command line. The above examples define the default options to be "d1" (include line
number debugging information in the object file), and "ot" (favour time optimizations over
size optimizations).

Whenever you wish to specify an option that requires the use of an "=" character, you can use
the "#" character in its place. This is required by the syntax of the "SET" command.

Once a particular environment variable has been defined, those options listed become the
default each time the associated compiler is used. The compiler command line can be used to
override any options specified in the environment string.

These environment variables are not examined by the Open Watcom Compile and Link
utilities. Since the Open Watcom Compile and Link utilities pass the relevant options found
in their associated environment variables to the compiler command line, their environment
variable options take precedence over the options specified in the environment variables
associated with the compilers.

Hint: If you are running DOS and you use the same compiler options all the time, you
may find it handy to define the environment variable in your DOS system initialization
file, AUTOEXEC.BAT.

If you are running Windows NT, use the "System" icon in the Control Panel to define
environment variables.

If you are running OS/2 and you use the same compiler options all the time, you may find
it handy to define the environment variable in your OS/2 system initialization file,
CONFIG.SYS.

86 Environment Variables

The Open Watcom C/C++ Compilers

3.4 Open Watcom C/C++ Command Line Examples

The following are some examples of using Open Watcom C/C++ to compile C/C++ source
programs.

Example:
C>compiler_name report /d1 /s

The compiler processes report.c(pp) producing an object file which contains source line
number information. Stack overflow checking is omitted from the object code.

Example:
C>compiler_name /mm /fpc calc

The compiler compiles calc.c(pp) for the Intel "medium" memory model and generates
calls to floating-point library emulation routines for all floating-point operations. Memory
models are described in the chapter entitled "16-bit Memory Models" on page 145.

Example:
C>compiler_name kwikdraw /2 /fpi87 /oaxt

The compiler processes kwikdraw.c(pp) producing 16-bit object code for an Intel 286
system equipped with an Intel 287 numeric data processor (or any upward compatible
386/387, 486DX, or Pentium system). While the choice of these options narrows the number
of microcomputer systems where this code will execute, the resulting code will be highly
optimized for this type of system.

Example:
C>compiler_name /mf /3s calc

The compiler compiles calc.c(pp) for the Intel 32-bit "flat" memory model. The
compiler will generate 386 instructions based on 386 instruction timings using the stack-based
argument passing convention. The resulting code will be optimized for Intel 386 systems.
Memory models are described in the chapter entitled "32-bit Memory Models" on page 229.
Argument passing conventions are described in the chapter entitled "32-bit Assembly
Language Considerations" on page 235.

Example:
C>compiler_name kwikdraw /4r /fpi87 /oaimxt

The compiler processes kwikdraw.c(pp) producing 32-bit object code for an Intel
386-compatible system equipped with a 387 numeric data processor. The compiler will

Open Watcom C/C++ Command Line Examples 87

Open Watcom C/C++ User’s Guide

generate 386 instructions based on 486 instruction timings using the register-based argument
passing convention. The resulting code will be highly optimized for Intel 486 systems.

Example:
C>compiler_name ..\source\modabs /d2

The compiler processes ..\source\modabs.c(pp) (a file in a directory which is
adjacent to the current one). The object file is placed in the current directory. Included with
the object code and data is information on local symbols and data types. The code generated
is straight-forward, unoptimized code which can be readily debugged with the Open Watcom
Debugger.

Example:
C>set compiler_name=/i#\includes /mc
C>compiler_name \cprogs\grep.tst /fi=iomods.c

The compiler processes the program contained in the file \cprogs\grep.tst. The file
iomods.c is included as if it formed part of the source input stream. The include search
path and memory model options are defaults each time the compiler is invoked. The memory
model option could be overridden on the command line. After looking for an "include" file in
the current directory, the compiler will search each directory listed in the "i" path. See the
section entitled "Open Watcom C/C++ #include File Processing" on page 93 for more
information.

Example:
C>compiler_name grep /fo=..\obj\

The compiler processes the program contained in the file grep.c(pp) which is located in
the current directory. The object file is placed in the directory ..\obj under the name
grep.obj.

Example:
C>compiler_name /dDBG=1 grep /fo=..\obj\.dbo

The compiler processes the program contained in the file grep.c(pp) which is located in
the current directory. The macro "DBG" is defined so that conditional debugging statements
that have been placed in the source are compiled. The object file is placed in the directory
..\obj and its filename extension will be ".dbo" (instead of ".obj"). Selection of a different
filename extension permits easy identification of object files that have been compiled with
debugging statements.

Example:
C>compiler_name /g=GKS /s \gks\gopks

88 Open Watcom C/C++ Command Line Examples

The Open Watcom C/C++ Compilers

The compiler generates code for gopks.c(pp) and places it into the "GKS" group. If the
"g" option had not been specified, the code would not have been placed in any group.
Assume that this file contains the definition of the routine gopengks as follows:

void far gopengks(int workstation, long int h)
{

.

.

.
}

For a small code model, the routine gopengks must be defined in this file as far since it is
placed in another group. The "s" option is also specified to prevent a run-time call to the stack
overflow check routine which will be placed in a different code segment at link time. The
gopengks routine must be prototyped by C routines in other groups as

void far gopengks(int workstation, long int h);

since it will appear in a different code segment.

3.5 Benchmarking Hints

The Open Watcom C/C++ compiler contains many options for controlling the code to be
produced. It is impossible to have a certain set of compiler options that will produce the
absolute fastest execution times for all possible applications. With that said, we will list the
compiler options that we think will give the best execution times for most applications. You
may have to experiment with different options to see which combination of options generates
the fastest code for your particular application.

The recommended options for generating the fastest 16-bit Intel code are:

Pentium Pro /onatx /oh /oi+ /ei /zp8 /6 /fpi87 /fp6

Pentium /onatx /oh /oi+ /ei /zp8 /5 /fpi87 /fp5

486 /onatx /oh /oi+ /ei /zp8 /4 /fpi87 /fp3

386 /onatx /oh /oi+ /ei /zp8 /3 /fpi87 /fp3

286 /onatx /oh /oi+ /ei /zp8 /2 /fpi87 /fp2

186 /onatx /oh /oi+ /ei /zp8 /1 /fpi87

Benchmarking Hints 89

Open Watcom C/C++ User’s Guide

8086 /onatx /oh /oi+ /ei /zp8 /0 /fpi87

The recommended options for generating the fastest 32-bit Intel code are:

Pentium Pro /onatx /oh /oi+ /ei /zp8 /6 /fp6

Pentium /onatx /oh /oi+ /ei /zp8 /5 /fp5

486 /onatx /oh /oi+ /ei /zp8 /4 /fp3

386 /onatx /oh /oi+ /ei /zp8 /3 /fp3

The "oi+" option is for C++ only. Under some circumstances, the "ob" and "ol+"
optimizations may also give better performance with 32-bit Intel code.

Option "on" causes the compiler to replace floating-point divisions with multiplications by the
reciprocal. This generates faster code (multiplication is faster than division), but the result
may not be the same because the reciprocal may not be exactly representable.

Option "oe" causes small user written functions to be expanded in-line rather than generating
a call to the function. Expanding functions in-line can further expose other optimizations that
couldn’t otherwise be detected if a call was generated to the function.

Option "oa" causes the compiler to relax alias checking.

Option "ot" must be specified to cause the code generator to select code sequences which are
faster without any regard to the size of the code. The default is to select code sequences
which strike a balance between size and speed.

Option "ox" is equivalent to "obmiler" and "s" which causes the compiler/code generator to do
branch prediction ("ob"), generate 387 instructions in-line for math functions such as sin, cos,
sqrt ("om"), expand intrinsic functions in-line ("oi"), perform loop optimizations ("ol"),
expand small user functions in-line ("oe"), reorder instructions to avoid pipeline stalls ("or"),
and to not generate any stack overflow checking ("s"). Option "or" is very important for
generating fast code for the Pentium and Pentium Pro processors.

Option "oh" causes the compiler to attempt repeated optimizations (which can result in longer
compiles but more optimal code).

Option "oi+" causes the C++ compiler to expand intrinsic functions in-line (just like "oi") but
also sets the inline_depth to its maximum (255). By default, inline_depth is 3. The
inline_depth can also be changed by using the C++

inlinedepth pragma.

Option "ei" causes the compiler to allocate at least an "int" for all enumerated types.

90 Benchmarking Hints

The Open Watcom C/C++ Compilers

Option "zp8" causes all data to be aligned on 8 byte boundaries. The default is "zp2" for the
16-bit compiler and "zp8" for 32-bit compiler. If, for example, "zp1" packing was specified
then this would pack all data which would reduce the amount of data memory required but
would require extra clock cycles to access data that is not on an appropriate boundary.

Options "0", "1", "2", "3", "4", "5" and "6" emit Intel code sequences optimized for
processor-specific instruction set features and timings. For 16-bit Intel applications, the use of
these options may limit the range of systems on which the application will run but there are
execution performance improvements.

Options "fp2", "fp3", "fp5" and "fp6" emit Intel floating-point operations targetted at specific
features of the math coprocessor in the Intel series. For 16-bit Intel applications, the use of
these options may limit the range of systems on which the application will run but there are
execution performance improvements.

Option "fpi87" causes in-line Intel 80x87 numeric data processor instructions to be generated
into the object code for floating-point operations. Floating-point instruction emulation is not
included so as to obtain the best floating-point performance in 16-bit Intel applications.

For 32-bit Intel applications, the use of the "fp5" option will give good performance on the
Intel Pentium but less than optimal performance on the 386 and 486. The use of the "5"
option will give good performance on the Pentium and minimal, if any, impact on the 386 and
486. Thus, the following set of options gives good overall performance for the 386, 486 and
Pentium processors.

/onatx /oh /oi+ /ei /zp8 /5 /fp3

3.6 Compiler Diagnostics

If the compiler prints diagnostic messages to the screen, it will also place a copy of these
messages in a file in your current directory. The file will have the same file name as the
source file and an extension of ".err". The compiler issues two types of diagnostic messages,
namely warnings or errors. A warning message does not prevent the production of an object
file. However, error messages indicate that a problem is severe enough that it must be
corrected before the compiler will produce an object file. The error file is a handy reference
when you wish to correct the errors in the source file.

Just to illustrate the diagnostic features of Open Watcom C/C++, we will modify the "hello"
program in such a way as to introduce some errors.

Compiler Diagnostics 91

Open Watcom C/C++ User’s Guide

Example:
#include <stdio.h>

int main()
{

int x;
printf("Hello world\n");
return(y);

}

The equivalent C++ program follows:

Example:
#include <iostream.h>
#include <iomanip.h>

int main()
{

int x;
cout << "Hello world" << endl;
return(y);

}

In this example, we have added the lines:

int x;

and

return(y);

and changed the keyword void to int.

We compile the program with the "warning" option.

Example:
C>compiler_name hello /w3

For the C program, the following output appears on the screen.

hello.c(7): Error! E1011: Symbol ’y’ has not been declared
hello.c(5): Warning! W202: Symbol ’x’ has been defined, but not

referenced
hello.c: 8 lines, included 174, 1 warnings, 1 errors

For the C++ program, the following output appears on the screen.

92 Compiler Diagnostics

The Open Watcom C/C++ Compilers

hello.cpp(8): Error! E029: (col 13) symbol ’y’ has not been declared
hello.cpp(9): Warning! W014: (col 1) no reference to symbol ’x’
hello.cpp(9): Note! N392: (col 1) ’int x’ in ’int main(void)’

defined in: hello.cpp(6) (col 9)
hello.cpp: 9 lines, included 1628, 1 warning, 1 error

Here we see an example of both types of messages. An error and a warning message have
been issued. As indicated by the error message, we require a declarative statement for the
identifier y. The warning message indicates that, while it is not a violation of the rules of
C/C++ to define a variable without ever using it, we probably did not intend to do so. Upon
examining the program, we find that:

1. the variable x should have been assigned a value, and
2. the variable y has probably been incorrectly typed and should have been entered as

x.

The complete list of Open Watcom C/C++ diagnostic messages is presented in an appendix of
this guide.

3.7 Open Watcom C/C++ #include File Processing

When using the #include preprocessor directive, a header is identified by a sequence of
characters placed between the "<" and ">" delimiters (e.g., <file>) and a source file is
identified by a sequence of characters enclosed by quotation marks (e.g., "file"). Open
Watcom C/C++ makes a distinction between the use of "<>" or quotation marks to surround
the name of the file to be included. The search techniques for header files and source files are
slightly different. Consider the following example.

Example:
#include <stdio.h> /* a system header file */
#include "stdio.h" /* your own header or source file */

You should use "<" and ">" when referring to standard or system header files and quotation
marks when referring to your own header and source files.

The character sequence placed between the delimiters in an #include directive represents
the name of the file to be included. The file name may include drive, path, and extension.

It is not necessary to include the drive and path specifiers in the file specification when the file
resides on a different drive or in a different directory. Open Watcom C/C++ provides a
mechanism for looking up include files which may be located in various directories and disks
of the computer system. Open Watcom C/C++ searches directories for header and source files
in the following order (the search stops once the file has been located):

Open Watcom C/C++ #include File Processing 93

Open Watcom C/C++ User’s Guide

1. If the file specification enclosed in quotation marks ("file-spec") or angle brackets
(<file-spec>) contains the complete drive and path specification, that file is
included (provided it exists). No other searching is performed. The drive need not
be specified in which case the current drive is assumed.

2. If the file specification is enclosed in quotation marks, the current directory is
searched.

3. Next, if the file specification is enclosed in quotation marks, the directory of the
file containing the #include directive is searched. If the current file is also an
#include file, the directory of the parent file is searched next. This search
continues recursively through all the nested #include files until the original
source file’s directory is searched.

4. Next, if the file specification enclosed in quotation marks ("file-spec") or in angle
brackets (<file-spec>), each directory listed in the "i" path is searched (in the order
that they were specified).

5. Next, each directory listed in the <os>_INCLUDE environment variable is
searched (in the order that they were specified). The environment variable name is
constructed from the current build target name. The default build targets are:

DOS when the host operating system is DOS,

OS2 when the host operating system is OS/2,

NT when the host operating system is Windows NT/95, or

QNX when the host operating system is QNX.

For example, the environment variable OS2_INCLUDE will be searched if the
build target is "OS2". The build target would be OS/2 if:

1. the host operating system is OS/2 and the "bt" option was not specified,
or

2. the "bt=OS2" option was explicitly specified.

6. Next, each directory listed in the INCLUDE environment variable is searched (in
the order that they were specified).

7. Finally, if the file specification is enclosed in quotation marks, an adjacent "H"
directory (i.e., ..\h) is searched if it exists.

94 Open Watcom C/C++ #include File Processing

The Open Watcom C/C++ Compilers

In the above example, <stdio.h> and "stdio.h" could refer to two different files if
there is a stdio.h in the current directory and one in the Open Watcom C/C++ include file
directory (\WATCOM\H) and the current directory is not listed in an "i" path or the
INCLUDE environment variable.

The compiler will search the directories listed in "i" paths (see description of the "i" option)
and the INCLUDE environment variable in a manner analogous to that which the operating
system shell will use when searching for programs by using the PATH environment variable.

The "SET" command is used to define an INCLUDE environment variable that contains a list
of directories. A command of the form

SET INCLUDE=[d:]path;[d:]path...

is issued before running Open Watcom C/C++ the first time. The brackets indicate that the
drive "d:" is optional and the ellipsis indicates that any number of paths may be specified. For
Windows NT, use the "System" icon in the Control Panel to define environment variables.

We illustrate the use of the #include directive in the following example.

Example:
#include <stdio.h>
#include <time.h>
#include <dos.h>

#include "common.c"

int main()
{

initialize();updatefiles();createreport();
finalize();

}

#include "part1.c"
#include "part2.c"

If the above text is stored in the source file report.c in the current directory then we might
issue the following commands to compile the application.

Open Watcom C/C++ #include File Processing 95

Open Watcom C/C++ User’s Guide

Example:
C>rem -- Two places to look for include files
C>set include=c:\watcom\h;b:\headers
C>rem -- Now compile application specifying a
C>rem third location for include files
C>compiler_name report /fo=..\obj\ /i=..\source

In the above example, the "SET" command is used to define the INCLUDE environment
variable. It specifies that the \watcom\h directory (of the "C" disk) and the \headers
directory (a directory of the "B" disk) are to be searched.

The Open Watcom C/C++ "i" option defines a third place to search for include files. The
advantage of the INCLUDE environment variable is that it need not be specified each time
the compiler is run.

3.8 Open Watcom C/C++ Preprocessor

The Open Watcom C/C++ preprocessor forms an integral part of Open Watcom C/C++.
When any form of the "p" option is specified, only the preprocessor is invoked. No code is
generated and no object file is produced. The output of the preprocessor is written to the
standard output file, although it can also be redirected to a file using the "fo" option. Suppose
the following C/C++ program is contained in the file msgid.c.

Example:#defineIBMPC0#defineIBMPS21#ifTARGET==IBMPS2
char *SysId = { "IBM PS/2" };
#else
char *SysId = { "IBM PC" };
#endif

/* Return pointer to System Identification */

char *GetSysId()
{

return(SysId);
}

We can use the Open Watcom C/C++ preprocessor to generate the C/C++ code that would
actually be compiled by the compiler by issuing the following command.

96 Open Watcom C/C++ Preprocessor

The Open Watcom C/C++ Compilers

Example:
C>compiler_namemsgid/plc/fo/dTARGET=IBMPS2

The file msgid.i will be created and will contain the following C/C++ code.

#line 1 "msgid.c"

char *SysId = { "IBM PS/2" };
#line 9 "msgid.c"

/* Return pointer to System Identification */

char *GetSysId()
{

return(SysId);
}

Note that the file msgid.i can be used as input to the compiler.

Example:
C>compiler_name msgid.i

Since #line directives are present in the file, the compiler can issue error messages in terms
of the original source file line numbers.

3.9 Open Watcom C/C++ Predefined Macros

In addition to the standard ISO-defined macros supported by the Open Watcom C/C++
compilers, several additional system-dependent macros are also defined. These are described
in this section. See the Open Watcom C Language Reference manual for a description of the
standard macros.

The Open Watcom C/C++ compilers run on various host operating systems including DOS,
OS/2, Windows NT, Windows 95 and QNX. Any of the supported host operating systems can
be used to develop applications for a number of target systems. By default, the target
operating system for the application is the same as the host operating system unless some
option or combination of options is specified. For example, DOS applications are built on
DOS by default, OS/2 applications are built on OS/2 by default, and so on. But the flexibility
is there to build applications for other operating systems/environments.

Open Watcom C/C++ Predefined Macros 97

Open Watcom C/C++ User’s Guide

The macros described below may be used to identify the target system for which the
application is being compiled. (Note: In several places in the following text, a pair of
underscore characters appears as __ which resembles a single, elongated underscore.)

The Open Watcom C/C++ compilers support both 16-bit and 32-bit application development.
The following macros are defined for 16-bit and 32-bit target systems.

16-bit 32-bit

======== ========X86X86I86386MI86MI386MI86MI386MIX86MIX86
Notes:

1. The
X86

 identifies the target as an Intel environment.

2. The
I86,MI86 andMI86 macros identify the target as a 16-bit Intel

environment.

3. The
386,MI386 andMI386 macros identify the target as a 32-bit

Intel environment.

4. TheMIX86 macro is identically equal to 100 times the architecture compiler
option value (/0, /1, /2, /3, /4, /5, etc.). If "/5" (Pentium instruction timings) was
specified as a compiler option, then the value ofMIX86 would be 500.

The Open Watcom C/C++ compilers support application development for a variety of
operating systems. The following macros are defined for particular target operating systems.

Target Macros
====== ======================================
DOS
DOS,DOS,MSDOSOS/2OS2

QNX QNX,UNIXNetwareNETWARE,NETWARE386
NT NTWindowsWINDOWS,WINDOWS,WINDOWS386LinuxLINUX,UNIX

98 Open Watcom C/C++ Predefined Macros

The Open Watcom C/C++ Compilers

Notes:

1. The
DOS,DOS and MSDOS macros are defined when the build target is

"DOS" (16-bit DOS or 32-bit extended DOS).

2. The
OS2 macro is defined when the build target is "OS2" (16-bit or 32-bit

OS/2).

3. TheQNX and
UNIX macros are defined when the build target is "QNX"

(16-bit or 32-bit QNX).

4. TheNETWARE andNETWARE386 macros are defined when the build
target is "NETWARE" (Novell NetWare).

5. TheNT macro is defined when the build target is "NT" (Windows NT and
Windows 95).

6. The
WINDOWS macro is defined when the build target is "WINDOWS" or

one of the "zw", "zW", "zWs" options is specified (identifies the target operating
system as 16-bit Windows or 32-bit extended Windows but not Windows NT or
Windows 95).

7. The
WINDOWS macro is defined when the build target is "WINDOWS" or one of

the "zw", "zW", "zWs" options is specified and you are using a 16-bit compiler
(identifies the target operating system as 16-bit Windows).

8. The
WINDOWS386 macro is defined when the build target is "WINDOWS"

or the "zw" option is specified and you are using a 32-bit compiler (identifies the
target operating system as 32-bit extended Windows).

9. The
LINUX and
UNIX macros are defined when the build target is

"LINUX" (32-bit Linux).

The following macros are defined for the indicated options.

Open Watcom C/C++ Predefined Macros 99

Open Watcom C/C++ User’s Guide

Option Macro
====== ==================bmMTbrDLLfpiFPIfpi87FPIjCHARSIGNEDoiINLINEFUNCTIONSxrCPPRTTI(C++only)xsCPPUNWIND(C++only)xssCPPUNWIND(C++only)xstCPPUNWIND(C++only)zaNOEXTKEYSzwWINDOWSzWWINDOWSzWsWINDOWS

The following memory model macros are defined for the indicated memory model options.

Option All 16-bit only 32-bit only
====== =========== ================= =================mfFLAT M386FMM386FMmsSMALLMI86SMMI86SMM386SMM386SMmmMEDIUMMI86MMMI86MMM386MMM386MMmcCOMPACTMI86CMMI86CMM386CMM386CMmlLARGEMI86LMMI86LMM386LMM386LMmhHUGEMI86HMMI86HM

The following macros indicate which compiler is compiling the C/C++ source code.

__cplusplus Open Watcom C++ predefines the macrocplusplus to identify the
compiler as a C++ compiler.

__WATCOMC__
Open Watcom C/C++ predefines the macro

WATCOMC to identify the
compiler as one of the Open Watcom C/C++ compilers.

The value of the macro depends on the version number of the compiler. The
value is 100 times the version number (version 8.5 yields 850, version 9.0 yields
900, etc.). Note that for Open Watcom 1.0, the value of this macro is 1200, for
Open Watcom 1.1 it is 1210 etc.

__WATCOM_CPLUSPLUS__
Open Watcom C++ predefines the macro

WATCOMCPLUSPLUS to
identify the compiler as one of the Open Watcom C++ compilers.

100 Open Watcom C/C++ Predefined Macros

The Open Watcom C/C++ Compilers

The value of the macro depends on the version number of the compiler. The
value is 100 times the version number (version 10.0 yields 1000, version 10.5
yields 1050, etc.). Note that for Open Watcom 1.0, the value of this macro is
1200, for Open Watcom 1.1 it is 1210 etc.

The following macros are defined for compatibility with Microsoft.

__CPPRTTI Open Watcom C++ predefines the
CPPRTTI

 macro to indicate that C++
Run-Time Type Information (RTTI) is in force. This macro is predefined if the
Open Watcom C++ "xr" compile option is specified and is not defined
otherwise.

__CPPUNWIND
Open Watcom C++ predefines the

CPPUNWIND macro to indicate that C++
exceptions supported. This macro is predefined if any of the Open Watcom C++
"xs", "xss" or "xst" compile options are specified and is not defined otherwise.

_INTEGRAL_MAX_BITS
Open Watcom C/C++ predefines the

INTEGRALMAXBITS macro to
indicate that maximum number of bits supported in an integral type (see the
description of the "__int64" keyword in the next section). Its value is 64
currently.

_PUSHPOP_SUPPORTED
Open Watcom C/C++ predefines the

PUSHPOPSUPPORTED macro to
indicate that #pragma pack(push) and #pragma pack(pop) are
supported.

_STDCALL_SUPPORTED
Open Watcom C/C++ predefines theSTDCALLSUPPORTED macro to
indicate that the standard 32-bit Win32 calling convention is supported.

The following table summarizes the predefined macros supported by the compilers and the
values that the respective compilers assign to them. A "yes" under the column means that the
compiler supports the macro with the indicated value. Note that the C and C++ compilers
sometime support the same macro but with different values (including no value which means
the symbol is defined without a value).

Open Watcom C/C++ Predefined Macros 101

Open Watcom C/C++ User’s Guide

Predefined Macro Supported by Compiler
and Setting wcc wcc386 wpp wpp386

--------------------------- ------ ------ ------ ------386=1 Yes Yes3R=1 Yesbased=based Yes Yes Yes Yescdecl=cdecl Yes Yes Yes Yescdecl=cdecl Yes Yes Yes Yescplusplus=1 Yes YesCPPRTTI=1 Yes YesCPPUNWIND=1 Yes Yesexport=exportYes Yes Yes Yesfar16=far16 Yes Yes Yes Yesfar=far Yes Yes Yes Yesfar=far Yes Yes Yes Yesfastcall=fastcallYes Yes Yes YesFLAT=1 Yes Yesfortran=fortranYes Yes Yes Yesfortran=fortranYes Yes Yes YesFPI=1 Yes Yes Yes Yeshuge=huge Yes Yes Yes Yeshuge=huge Yes Yes Yes YesI86=1 Yes Yesinline=inlineYes Yes Yes YesINTEGRALMAXBITS=64Yes Yes Yes Yesinterrupt=interruptYesYesYesYesinterrupt=interruptYes Yes Yes Yesloadds=loaddsYes Yes Yes YesM386FM=1 YesM386FM=1 YesMI386=1 Yes YesMI386=1 Yes YesMI86=1 Yes YesMI86=1 Yes YesMI86SM=1 Yes YesMI86SM=1 Yes YesMIX86=0 Yes YesMIX86=500 Yes Yesnear=near Yes Yes Yes Yesnear=near Yes Yes Yes YesNT=1(onWin32platform)YesYesYesYespascal=pascalYes Yes Yes Yespascal=pascal Yes Yes Yes Yessaveregs=saveregsYes Yes Yes Yessegment=segmentYes Yes Yes Yessegname=segnameYes Yes Yes Yesself=self Yes Yes Yes YesSMALL=1 Yes YesSOMDLINK=far YesSOMDLINK=Syscall Yes YesSOMLINK=cdecl YesSOMLINK=Syscall Yes YesSTDCALLSUPPORTED=1 Yes YesSW0=1 Yes YesSW3R=1 Yes YesSW5=1 Yes YesSWFP287=1 YesSWFP2=1 Yes

102 Open Watcom C/C++ Predefined Macros

The Open Watcom C/C++ CompilersSWFP387=1 YesSWFP3=1 YesSWFPI=1 Yes Yes Yes YesSWMF=1 Yes YesSWMS=1 YesSWZDP=1 Yes Yes Yes YesSWZFP=1 Yes Yes Yes YesSWZGF=1 Yes YesSWZGP=1 Yes Yesstdcall=stdcallYes Yes Yes Yessyscall=syscallYes Yes Yes YesWATCOMCPLUSPLUS=1250 Yes YesWATCOMC=1250Yes Yes Yes YesX86=1 Yes Yes Yes Yes

3.10 Open Watcom C/C++ Extended Keywords

Open Watcom C/C++ supports the use of some special keywords to describe system
dependent attributes of functions and other object names. These attributes are inspired by the
Intel processor architecture and the plethora of function calling conventions in use by
compilers for this architecture. In keeping with the ISO C and C++ language standards, Open
Watcom C/C++ uses the double underscore (i.e., "__") or single underscore followed by
uppercase letter (e.g., "_S") prefix with these keywords. To support compatibility with other
C/C++ compilers, alternate forms of these keywords are also supported through predefined
macros.

__near Open Watcom C/C++ supports thenear keyword to describe functions and
other object names that are in near memory and pointers to near objects.

Open Watcom C/C++ predefines the macros near andnear to be equivalent
to thenear keyword.

__far Open Watcom C/C++ supports the
far keyword to describe functions and

other object names that are in far memory and pointers to far objects.

Open Watcom C/C++ predefines the macros far,
far and SOMDLINK

(16-bit only) to be equivalent to the
far keyword.

__huge Open Watcom C/C++ supports the
huge keyword to describe functions and

other object names that are in huge memory and pointers to huge objects. The
32-bit compilers treat these as equivalent to far objects.

Open Watcom C/C++ predefines the macros huge and
huge to be equivalent

to the
huge keyword.

Open Watcom C/C++ Extended Keywords 103

Open Watcom C/C++ User’s Guide

__based Open Watcom C/C++ supports thebased keyword to describe pointers to
objects that appear in other segments or the objects themselves. See the section
entitled "Based Pointers" on page 113 for an explanation of thebased
keyword.

Open Watcom C/C++ predefines the macrobased to be equivalent to thebased keyword.

__segment Open Watcom C/C++ supports thesegment keyword which is used when
describing objects of type segment. See the section entitled "Based Pointers" on
page 113 for an explanation of thesegment keyword.

Open Watcom C/C++ predefines the macrosegment to be equivalent to thesegment keyword.

__segname Open Watcom C/C++ supports thesegname keyword which is used when
describing segname constant based pointers or objects. See the section entitled
"Based Pointers" on page 113 for an explanation of thesegname keyword.

Open Watcom C/C++ predefines the macrosegname to be equivalent to thesegname keyword.

__self Open Watcom C/C++ supports theself keyword which is used when
describing self based pointers. See the section entitled "Based Pointers" on page
113 for an explanation of theself keyword.

Open Watcom C/C++ predefines the macroself to be equivalent to theself keyword.

__restrict Open Watcom C/C++ provides the __restrict type qualifier as an alternative to
the ISO C99 restrict keyword; it is supported even when C99 keywords aren’t
visible. This type qualifier is used as an optimization hint. Any object accessed
through a restrict qualified pointer may only be accessed through that pointer
and the compiler may assume that there will be no aliasing.

_Packed Open Watcom C/C++ supports the
Packed keyword which is used when

describing a structure. If specified before the struct keyword, the compiler will
force the structure to be packed (no alignment, no gaps) regardless of the setting
of the command-line option or the #pragma controlling the alignment of
members.

__cdecl Open Watcom C/C++ supports thecdecl keyword to describe C functions
that are called using a special convention.

104 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

Notes:

1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last
argument is pushed first. The calling routine will remove the
arguments from the stack.

3. Floating-point values are returned in the same way as structures.
When a structure is returned, the called routine returns a pointer in
register AX/EAX to the return value which is stored in the data
segment (DGROUP).

4. For the 16-bit compiler, registers AX, BX, CX and DX, and segment
register ES are not saved and restored when a call is made.

5. For the 32-bit compiler, registers EAX, ECX and EDX are not saved
and restored when a call is made.

Open Watcom C/C++ predefines the macros cdecl,cdecl,Cdecl and
SOMLINK (16-bit only) to be equivalent to thecdecl keyword.

__pascal Open Watcom C/C++ supports thepascal keyword to describe Pascal
functions that are called using a special convention described by a pragma in the
"stddef.h" header file.

Open Watcom C/C++ predefines the macros pascal,pascal andPascal to be equivalent to thepascal keyword.

__fortran Open Watcom C/C++ supports the
fortran keyword to describe functions

that are called from FORTRAN. It converts the name to uppercase letters and
suppresses the "_" which is appended to the function name for certain calling
conventions.

Open Watcom C/C++ predefines the macros fortran and
fortran to be

equivalent to the
fortran keyword.

__interrupt Open Watcom C/C++ supports the
interrupt keyword to describe a

function that is an interrupt handler.

Open Watcom C/C++ Extended Keywords 105

Open Watcom C/C++ User’s Guide

Example:
#include <i86.h>voidinterruptint10(unionINTPACKr)
{

.

.

.
}

The code generator will emit instructions to save all registers. The registers are
saved on the stack in a specific order so that they may be referenced using the
"INTPACK" union as shown in the DOS example above. The code generator
will emit instructions to establish addressability to the program’s data segment
since the DS segment register contents are unpredictable. The function will
return using an "IRET" (16-bit) or "IRETD" (32-bit) (interrupt return)
instruction.

Open Watcom C/C++ predefines the macros interrupt and
interrupt to

be equivalent to the
interrupt keyword.

__declspec(modifier)
Open Watcom C/C++ supports the

declspec keyword for compatibility
with Microsoft C++. The
declspec keyword is used to modify

storage-class attributes of functions and/or data. There are several modifiers that
can be specified with the
declspec keyword: thread, naked,

dllimport, dllexport,pragma("string"),cdecl,pascal,fortran,stdcall, andsyscall. These
attributes are a property only of the declaration of the object or function to
which they are applied. Unlike thenear and

far keywords, which
actually affect the type of object or function (in this case, 2- and 4-byte
addresses), these storage-class attributes do not redefine the type attributes of the
object itself. Thepragma modifier is supported by Open Watcom C++
only. The thread attribute affects data and objects only. The naked,pragma,cdecl,pascal,fortran,stdcall, andsyscall attributes affect functions only. The dllimport and
dllexport attributes affect functions, data, and objects. For more
information on the
declspec keyword, please see the section entitled "The

__declspec Keyword" on page 118.

__export Open Watcom C/C++ supports theexport keyword to describe functions
and other object names that are to be exported from a Microsoft Windows DLL,
OS/2 DLL, or Netware NLM. See also the description of the "zu" option.

106 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

Example:voidexportSetcolor(intcolor)
{

.

.

.
}

Open Watcom C/C++ predefines the macroexport to be equivalent to theexport keyword.

__loadds Open Watcom C/C++ supports the
loadds keyword to describe functions

that require specific loading of the DS register to establish addressability to the
function’s data segment. This keyword is useful in describing a function that
will be placed in a Microsoft Windows or OS/2 1.x Dynamic Link Library
(DLL). See also the description of the "nd" and "zu" options.

Example:voidexportloaddsSetcolor(intcolor)
{

.

.

.
}

If the function in an OS/2 1.x Dynamic Link Library requires access to private
data, the data segment register must be loaded with an appropriate value since it
will contain the DS value of the calling application upon entry to the function.

Open Watcom C/C++ predefines the macro
loadds to be equivalent to theloadds keyword.

__saveregs Open Watcom C/C++ recognizes thesaveregs keyword which is an
attribute used by C/C++ compilers to describe a function that must save and
restore all registers.

Open Watcom C/C++ predefines the macrosaveregs to be equivalent to thesaveregs keyword.

__stdcall (32-bit only) Thestdcall keyword may be used with function definitions,
and indicates that the 32-bit Win32 calling convention is to be used.

Open Watcom C/C++ Extended Keywords 107

Open Watcom C/C++ User’s Guide

Notes:

1. All symbols are preceded by an underscore character.

2. All C symbols (extern "C" symbols in C++) are suffixed by "@nnn"
where "nnn" is the sum of the argument sizes (each size is rounded up
to a multiple of 4 bytes so that char and short are size 4). When the
argument list contains "...", the "@nnn" suffix is omitted.

3. Arguments are pushed on the stack from right to left. That is, the last
argument is pushed first. The called routine will remove the
arguments from the stack.

4. When a structure is returned, the caller allocates space on the stack.
The address of the allocated space will be pushed on the stack
immediately before the call instruction. Upon returning from the call,
register EAX will contain address of the space allocated for the return
value. Floating-point values are returned in 80x87 register ST(0).

5. Registers EAX, ECX and EDX are not saved and restored when a call
is made.

__syscall (32-bit only) Thesyscall keyword may be used with function definitions,
and indicates that the calling convention used is compatible with functions
provided by 32-bit OS/2.

Notes:

1. Symbols names are not modified, that is, they are not adorned with
leading or trailing underscores.

2. Arguments are pushed on the stack from right to left. That is, the last
argument is pushed first. The calling routine will remove the
arguments from the stack.

3. When a structure is returned, the caller allocates space on the stack.
The address of the allocated space will be pushed on the stack
immediately before the call instruction. Upon returning from the call,
register EAX will contain address of the space allocated for the return
value. Floating-point values are returned in 80x87 register ST(0).

4. Registers EAX, ECX and EDX are not saved and restored when a call
is made.

108 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

Open Watcom C/C++ predefines the macrossyscall,System,
SOMLINK (32-bit only) and SOMDLINK (32-bit only) to be equivalent to thesyscall keyword.

__far16 (32-bit only) Open Watcom C/C++ recognizes the
far16 keyword which

can be used to define far 16-bit (far16) pointers (16-bit selector with 16-bit
offset) or far 16-bit function prototypes. This keyword can be used under 32-bit
OS/2 to call 16-bit functions from your 32-bit flat model program. Integer
arguments will automatically be converted to 16-bit integers, and 32-bit pointers
will be converted to far16 pointers before calling a special thunking layer to
transfer control to the 16-bit function.

Open Watcom C/C++ predefines the macros
far16 and
Far16 to be

equivalent to the
far16 keyword. This keyword is compatible with

Microsoft C.

In the OS/2 operating system (version 2.0 or higher), the first 512 megabytes of
the 4 gigabyte segment referenced by the DS register is divided into 8192 areas
of 64K bytes each. A far16 pointer consists of a 16-bit selector referring to one
of the 64K byte areas, and a 16-bit offset into that area.

A pointer declared as,

[type] __far16 *name;

defines an object that is a far16 pointer. If such a pointer is accessed in the
32-bit environment, the compiler will generate the necessary code to convert
between the far16 pointer and a "flat" 32-bit pointer.

For example, the declaration,
 charfar16*bufptr;

declares the object bufptr to be a far16 pointer to char.

A function declared as,

[type] __far16 func([arg_list]);

declares a 16-bit function. Any calls to such a function from the 32-bit
environment will cause the compiler to convert any 32-bit pointer arguments to
far16 pointers, and any int arguments from 32 bits to 16 bits. (In the 16-bit
environment, an object of type int is only 16 bits.) Any return value from the
function will have its return value converted in an appropriate manner.

Open Watcom C/C++ Extended Keywords 109

Open Watcom C/C++ User’s Guide

For example, the declaration,
 char*far16Scan(char*buffer,intlen,shorterr);

declares the 16-bit function Scan. When this function is called from the 32-bit
environment, the buffer argument will be converted from a flat 32-bit pointer
to a far16 pointer (which, in the 16-bit environment, would be declared as charfar*. The len argument will be converted from a 32-bit integer to a
16-bit integer. The err argument will be passed unchanged. Upon returning,
the far16 pointer (far pointer in the 16-bit environment) will be converted to a
32-bit pointer which describes the equivalent location in the 32-bit address
space.

_Seg16 (32-bit only) Open Watcom C/C++ recognizes theSeg16 keyword which has
a similar but not identical function as the

far16 keyword described above.
This keyword is compatible with IBM C Set/2 and IBM VisualAge C++.

In the OS/2 operating system (version 2.0 or higher), the first 512 megabytes of
the 4 gigabyte segment referenced by the DS register is divided into 8192 areas
of 64K bytes each. A far16 pointer consists of a 16-bit selector referring to one
of the 64K byte areas, and a 16-bit offset into that area.

Note thatSeg16 is not interchangeable with
far16.

A pointer declared as,

[type] * _Seg16 name;

defines an object that is a far16 pointer. Note that theSeg16 appears on the
right side of the * which is opposite to the

far16 keyword described above.

For example,
 char*Seg16bufptr;

declares the object bufptr to be a far16 pointer to char (the same as above).

TheSeg16 keyword may not be used to describe a 16-bit function. A
#pragma directive must be used instead. A function declared as,

[type] * _Seg16 func([parm_list]);

declares a 32-bit function that returns a far16 pointer.

110 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

For example, the declaration,
 char*Seg16Scan(char*buffer,intlen,shorterr);

declares the 32-bit function Scan. No conversion of the argument list will take
place. The return value is a far16 pointer.

__pragma Open Watcom C++ supports thepragma keyword to support in-lining of
member functions. Thepragma keyword must be followed by parentheses
containing a string that names an auxiliary pragma. Here is a simplified
example showing usage and syntax.

Example:#pragmaauxfastmul=\
"imul eax,edx" \
parm caller [eax] [edx] \
value struct;

struct fixed {
unsigned v;

};fixedpragma("fastmul")operator*(fixed,
fixed);

fixed two = { 2 };
fixed three = { 3 };

fixed foo()
{

return two * three;
}

See the chapters entitled "16-bit Pragmas" on page 171 and "32-bit Pragmas" on
page 259 for more information on pragmas.

__int64 Open Watcom C/C++ supports the
int64 keyword to define 64-bit integer

data objects.

Open Watcom C/C++ Extended Keywords 111

Open Watcom C/C++ User’s Guide

Example:staticint64bigInt;
Also supported are signed and unsigned 64-bit integer constants.

signed __int64 Use the "i64" suffix for a signed 64-bit integer constant.

Example:
12345i64
12345I64

unsigned __int64 Use the "ui64" suffix for a signed 64-bit integer constant.

Example:
12345Ui64
12345uI64

The run-time library supports formatting of
int64 items (see the description

of the printf library function).

Example:
#include <stdio.h>
#include <limits.h>

void main()
{ int64bigint;int64bigint2;bigint2=8I64*(LONGMAX+1I64);

for(bigint = 0;
bigint <= bigint2;
bigint += bigint2 / 16) {

printf("Hello world %Ld\n", bigint);
}

}

Restrictions

switch An
int64 expression cannot be used in a switch statement.

bit fields More than 32 bits in a 64-bit bitfield is not supported.

112 Open Watcom C/C++ Extended Keywords

The Open Watcom C/C++ Compilers

3.11 Based Pointers

Near pointers are generally the most efficient type of pointer because they are small, and the
compiler can assume knowledge about what segment of the computer’s memory the pointer
(offset) refers to. Far pointers are the most flexible because they allow the programmer to
access any part of the computer’s memory, without limitation to a particular segment.
However, far pointers are bigger and slower because of the additional flexibility.

Based pointers are a compromise between the efficiency of near pointers and the flexibility of
far pointers. With based pointers, the programmer takes responsibility to tell the compiler
which segment a near pointer (offset) belongs to, but may still access segments of the
computer’s memory outside of the normal data segment (DGROUP). The result is a pointer
type which is as small as and almost as efficient as a near pointer, but with most of the
flexibility of a far pointer.

An object declared as a based pointer falls into one of the following categories:

• the based pointer is in the segment described by another object,
• the based pointer, used as a pointer to another object of the same type (as in a linked
list), refers to the same segment,

• the based pointer is an offset to no particular segment, and must be combined explicitly
with a segment value to produce a valid pointer.

To support based pointers, the following keywords are provided:
 basedsegmentsegnameself

The following operator is also provided:

:>

These keywords and operator are described in the following sections.

Two macros, defined in malloc.h, are also provided:
 NULLSEGNULLOFF

They are used in a manner similar to NULL, but are used with objects declared assegment andbased respectively.

Based Pointers 113

Open Watcom C/C++ User’s Guide

3.11.1 Segment Constant Based Pointers and Objects

A segment constant based pointer or object has its segment value based on a specific, named
segment. A segment constant based object is specified as:

[type] __based(__segname("segment")) object_name;

and a segment constant based pointer is specified as:

[type] __based(__segname("segment")) *object-name;

where segment is the name of the segment in which the pointer or object is based. As
shown above, the segment name is always specified as a string. There are three special
segment names recognized by the compiler:

 "CODE""CONST""DATA"
The
"CODE"

 segment is the default code segment. The
"CONST" segment is the segment

containing constant values. The
"DATA"

 segment is the default data segment. If the
segment name is not one of the three recognized names, then a segment will be created with
that name. If a segment constant based object is being defined, then it will be placed in the
named segment. If a segment constant based pointer is being defined, then it can point at
objects in the named segment.

The following examples illustrate segment constant based pointers and objects.

Example:intbased(segname("CODE"))ival=3;intbased(segname("CODE"))*iptr;
ival is an object that resides in the default code segment. iptr is an object that resides in
the data segment (the usual place for data objects), but points at an integer which resides in the
default code segment. iptr is suitable for pointing at ival.

114 Based Pointers

The Open Watcom C/C++ Compilers

Example:charbased(segname("GOODTHINGS"))thing;
thing is an object which resides in the segment GOODTHINGS, which will be created if it
does not already exist. (The creation of segments is done by the linker, and is a method of
grouping objects and functions. Nothing is implicitly created during the execution of the
program.)

3.11.2 Segment Object Based Pointers

A segment object based pointer derives its segment value from another named object. A
segment object based pointer is specified as follows:

[type] __based(segment) *name;

where segment is an object defined as typesegment.
An object of typesegment may contain a segment value. Such an object is particularly
designed for use with segment object based pointers.

The following example illustrates a segment object based pointer:

Example:segment seg;charbased(seg)*cptr;
The object seg contains only a segment value. Whenever the object cptr is used to point to
a character, the actual pointer value will be made up of the segment value found in seg and
the offset value found in cptr. The object seg might be assigned values such as the
following:

• a constant value (e.g., the segment containing screen memory),
• the result of the library function _bheapseg,
• the segment portion of another pointer value, by casting it to the typesegment.

3.11.3 Void Based Pointers

A void based pointer must be explicitly combined with a segment value to produce a reference
to a memory location. A void based pointer does not infer its segment value from another
object. The :> (base) operator is used to combine a segment value and a void based pointer.

Based Pointers 115

Open Watcom C/C++ User’s Guide

For example, on a personal computer running DOS with a color monitor, the screen memory
begins at segment 0xB800, offset 0. In a video text mode, to examine the first character
currently displayed on the screen, the following code could be used:

Example:
extern void main()
{ segment screen;charbased(void)*scrptr;

screen = 0xB800;
scrptr = 0;
printf("Top left character is ’%c’.\n",

*(screen:>scrptr));
}

The general form of the :> operator is:

segment :> offset

where segment is an expression of typesegment, and offset is an expression of
typebased(void)*.

3.11.4 Self Based Pointers

A self based pointer infers its segment value from itself. It is particularly useful for structures
such as linked lists, where all of the list elements are in the same segment. A self based
pointer pointing to one element may be used to access the next element, and the compiler will
use the same segment as the original pointer.

The following example illustrates a function which will print the values stored in the last two
members of a linked list:

Example:
struct a {structabased(self)*next;

int number;
};

116 Based Pointers

The Open Watcom C/C++ Compilers

extern void PrintLastTwo(struct a far *list)
{segment seg;structabased(seg)*aptr;seg=FPSEG(list);aptr=FPOFF(list);for(;aptr!=NULLOFF;aptr=aptr�>next){if(aptr�>next==NULLOFF){

printf("Last item is %d\n",
aptr->number);}elseif(aptr�>next�>next==NULLOFF){

printf("Second last item is %d\n",
aptr->number);

}
}

}

The argument to the function PrintLastTwo is a far pointer, pointing to a linked list
structure anywhere in memory. It is assumed that all members of a particular linked list of
this type reside in the same segment of the computer’s memory. (Another instance of the
linked list might reside entirely in a different segment.) The object seg is given the segment
portion of the far pointer. The object aptr is given the offset portion, and is described as
being based in the segment stored in seg.

The expression aptr->next refers to the next member of the structure stored in memory
at the offset stored in aptr and the segment implied by aptr, which is the value stored in
seg. So far, the behavior is no different than if next had been declared as,

struct a *next;

The expression aptr->next->next illustrates the difference of using a self based pointer.
The first part of the expression (aptr->next) occurs as described above. However, using
the result to point to the next member occurs by using the offset value found in the next
member and combining it with the segment value of the pointer used to get to that member,
which is still the segment implied by aptr, which is the value stored in seg. If next had
not been declared usingbased(self), then the second pointing operation would
refer to the offset value found in the next member, but with the default data segment
(DGROUP), which may or may not be the same segment as stored in seg.

Based Pointers 117

Open Watcom C/C++ User’s Guide

3.12 The __declspec Keyword

Open Watcom C/C++ supports the
declspec keyword for compatibility with Microsoft

C++. The
declspec keyword is used to modify storage-class attributes of functions

and/or data.

__declspec(thread) is used to define thread local storage (TLS). TLS is the mechanism by
which each thread in a multithreaded process allocates storage for
thread-specific data. In standard multithreaded programs, data is shared among
all threads of a given process, whereas thread local storage is the mechanism for
allocating per-thread data.

Example:declspec(thread)staticinttlsdata=0;
The following rules apply to the use of the thread attribute.

• The thread attribute can be used with data and objects only.

• You can specify the thread attribute only on data items with static
storage duration. This includes global data objects (both static and
extern), local static objects, and static data members of classes.
Automatic data objects cannot be declared with the thread attribute.
The following example illustrates this error:

Example:#defineTLSdeclspec(thread)
void func1()
{TLSinttlsdata;// Wrong!
}intfunc2(TLSinttlsdata)//Wrong!
{returntlsdata;
}

• The thread attribute must be used for both the declaration and the
definition of a thread local object, whether the declaration and definition
occur in the same file or separate files. The following example illustrates
this error:

118 The __declspec Keyword

The Open Watcom C/C++ Compilers

Example:#defineTLSdeclspec(thread)externinttlsdata;//Thisgeneratesan
error, because theTLSinttlsdata;//declarationandthe
definition differ.

• Classes cannot use the thread attribute. However, you can instantiate
class objects with the thread attribute, as long as the objects do not need
to be constructed or destructed. For example, the following code
generates an error:

Example:#defineTLSdeclspec(thread)
TLS class A // Wrong! Classes are not
objects
{

// Code
};
A AObject;

Because the declaration of objects that use the thread attribute is
permitted, these two examples are semantically equivalent:

Example:#defineTLSdeclspec(thread)
TLS class B
{

// Code
} BObject; // Okay! BObject declared
thread local.

class C
{

// Code
};
TLS C CObject; // Okay! CObject declared
thread local.

• Standard C permits initialization of an object or variable with an
expression involving a reference to itself, but only for objects of non-static
extent. Although C++ normally permits such dynamic initialization of an
object with an expression involving a reference to itself, this type of
initialization is not permitted with thread local objects.

The __declspec Keyword 119

Open Watcom C/C++ User’s Guide

Example:#defineTLSdeclspec(thread)TLSinttlsi=tlsi; // C and C++
error
int j = j; // Okay in
C++; C errorTLSinttlsk=sizeof(tlsk);//OkayinC
and C++

Note that a sizeof expression that includes the object being initialized
does not constitute a reference to itself and is allowed in C and C++.

__declspec(naked) indicates to the code generator that no prologue or epilogue sequence is
to be generated for a function. Any statements other than "_asm" directives or
auxiliary pragmas are not compiled. _asm Essentially, the compiler will emit a
"label" with the specified function name into the code.

Example:
#include <stdio.h>intdeclspec(naked)foo(intx)
{ asm{#ifdefined(386)

inc eax
#else

inc ax
#endif

ret
}

}

void main()
{

printf("%d\n", foo(1));
}

The following rules apply to the use of the naked attribute.

• The naked attribute cannot be used in a data declaration. The following
declaration would be flagged in error.

120 The __declspec Keyword

The Open Watcom C/C++ Compilers

Example:declspec(naked)staticintdataobject=0;
__declspec(dllimport) is used to declare functions, data and objects imported from a DLL.

Example:#defineDLLImportdeclspec(dllimport)DLLImportvoiddllfunc();DLLImportintdlldata;
Functions, data and objects are exported from a DLL by use ofdeclspec(dllexport), theexport keyword (for whichdeclspec(dllexport) is the replacement), or through linker
"EXPORT" directives.

Note: When calling functions imported from other modules, it is not strictly
necessary to use the
declspec(dllimport) modifier to declare the

functions. This modifier however must always be used when importing data or
objects to ensure correct behavior.

__declspec(dllexport) is used to declare functions, data and objects exported from a DLL.
Declaring functions as dllexport eliminates the need for linker "EXPORT"
directives. The
declspec(dllexport) attribute is a replacement for theexport keyword.

__declspec(__pragma("string")) is used to declare functions which adhere to the
conventions described by the pragma identified by "string".

Example:

The __declspec Keyword 121

Open Watcom C/C++ User’s Guide

#include <stdio.h>#pragmaauxmystdcall"*"\
parm routine [] \
value struct struct caller [] \
modify [eax ecx edx];

struct list {
struct list *next;
int value;floatfltvalue;

};#defineSTDCALLdeclspec(pragma("mystdcall")
)

STDCALL struct list foo(int x, char *y, double z
);

void main()
{

int a = 1;
char *b = "Hello there";
double c = 3.1415926;
struct list t;

t = foo(a, b, c);
printf("%d\n", t.value);

}

struct list foo(int x, char *y, double z)
{

struct list tmp;

printf("%s\n", y);
tmp.next = NULL;
tmp.value = x;tmp.fltvalue=z;
return(tmp);

}

Thepragma modifier is supported by Open Watcom C++ only.

__declspec(__cdecl) is used to declare functions which conform to the Microsoft compiler
calling convention.

122 The __declspec Keyword

The Open Watcom C/C++ Compilers

__declspec(__pascal) is used to declare functions which conform to the OS/2 1.x and
Windows 3.x calling convention.

__declspec(__fortran) is used to declare functions which conform to the __fortran calling
convention.

Example:
#include <stdio.h>#defineDLLFuncdeclspec(dllimportfortran)#defineDLLDatadeclspec(dllimport)#ifdefcplusplus
extern "C" {
#endifDLLFuncintdllfunc(int,int,int);DLLDataintdlldata;#ifdefcplusplus
};
#endif

void main()
{printf("%d%d\n",dllfunc(1,2,3),dlldata
);
}

__declspec(__stdcall) is used to declare functions which conform to the 32-bit Win32
"standard" calling convention.

Example:
#include <stdio.h>#defineDLLFuncdeclspec(dllimportstdcall)#defineDLLDatadeclspec(dllimport)DLLFuncintdllfunc(int,int,int);DLLDataintdlldata;
void main()
{printf("%d%d\n",dllfunc(1,2,3),dlldata
);
}

The __declspec Keyword 123

Open Watcom C/C++ User’s Guide

__declspec(__syscall) is used to declare functions which conform to the 32-bit OS/2
__syscall calling convention.

3.13 The Open Watcom Code Generator

The Open Watcom Code Generator performs such optimizations as common subexpression
elimination, global flow analysis, and so on.

In some cases, the code generator can do a better job of optimizing code if it could utilize
more memory. This is indicated when a

Not enough memory to optimize procedure ’xxxx’

message appears on the screen as the source program is compiled. In such an event, you may
wish to make more memory available to the code generator.

A special environment variable may be used to obtain memory usage information or set
memory usage limits on the code generator. The WCGMEMORY environment variable may
be used to request a report of the amount of memory used by the compiler’s code generator
for its work area.

Example:
C>set WCGMEMORY=?

When the memory amount is "?" then the code generator will report how much memory was
used to generate the code.

It may also be used to instruct the compiler’s code generator to allocate a fixed amount of
memory for a work area.

Example:
C>set WCGMEMORY=128

When the memory amount is "nnn" then exactly "nnnK" bytes will be used. In the above
example, 128K bytes is requested. If less than "nnnK" is available then the compiler will quit
with a fatal error message. If more than "nnnK" is available then only "nnnK" will be used.

There are two reasons why this second feature may be quite useful. In general, the more
memory available to the code generator, the more optimal code it will generate. Thus, for two
personal computers with different amounts of memory, the code generator may produce
different (although correct) object code. If you have a software quality assurance requirement
that the same results (i.e., code) be produced on two different machines then you should use

124 The Open Watcom Code Generator

The Open Watcom C/C++ Compilers

this feature. To generate identical code on two personal computers with different memory
configurations, you must ensure that the WCGMEMORY environment variable is set
identically on both machines.

The second reason where this feature is useful is on virtual memory paging systems (e.g.,
OS/2) where an unlimited amount of memory can be used by the code generator. If a very
large module is being compiled, it may take a very long time to compile it. The code
generator will continue to allocate more and more memory and cause an excessive amount of
paging. By restricting the amount of memory that the code generator can use, you can reduce
the amount of time required to compile a routine.

The Open Watcom Code Generator 125

Open Watcom C/C++ User’s Guide

126 The Open Watcom Code Generator

4 Precompiled Headers

4.1 Using Precompiled Headers

Open Watcom C/C++ supports the use of precompiled headers to decrease the time required
to compile several source files that include the same header file.

4.2 When to Precompile Header Files

Using precompiled headers reduces compilation time when:

• You always use a large body of code that changes infrequently.

• Your program comprises multiple modules, all of which use the same first include file
and the same compilation options. In this case, the first include file along with all the
files that it includes can be precompiled into one precompiled header.

Because the compiler only uses the first include file to create a precompiled header, you may
want to create a master or global header file that includes all the other header files that you
wish to have precompiled. Then all source files should include this master header file as the
first #include in the source file. Even if you don’t use a master header file, you can benefit
from using precompiled headers for Windows programs by using #include
<windows.h> as the first include file, or by using #include <afxwin.h> as the first
include file for MFC applications.

The first compilation — the one that creates the precompiled header file — takes a bit longer
than subsequent compilations. Subsequent compilations can proceed more quickly by
including the precompiled header.

You can precompile C and C++ programs. In C++ programming, it is common practice to
separate class interface information into header files which can later be included in programs
that use the class. By precompiling these headers, you can reduce the time a program takes to
compile.

When to Precompile Header Files 127

Open Watcom C/C++ User’s Guide

Note: Although you can use only one precompiled header (.PCH) file per source file, you
can use multiple .PCH files in a project.

4.3 Creating and Using Precompiled Headers

Precompiled code is stored in a file called a precompiled header when you use the
precompiled header option (/fh or /fhq) on the command line. The /fh option causes the
compiler to either create a precompiled header or use the precompiled header if it already
exists. The /fhq option is similar but prevents the compiler from issuing informational or
warning messages about precompiled header files. The default name of the precompiled
header file is one of WCC.PCH, WCC386.PCH, WPP.PCH, or WPP386.PCH (depending
on the compiler used). You can also control the name of the precompiled header that is
created or used with the /fh=filename or /fhq=filename ("specify precompiled header
filename") options.

Example:
/fh=projectx.pch
/fhq=projectx.pch

4.4 The "/fh[q]" (Precompiled Header) Option

The /fh option instructs the compiler to use a precompiled header file with a default name of
WCC.PCH, WCC386.PCH, WPP.PCH, or WPP386.PCH (depending on the compiler used)
if it exists or to create one if it does not. The file is created in the current directory. You can
use the /fh=filename option to change the default name (and placement) of the precompiled
header. Add the letter "q" (for "quiet") to the option name to prevent the compiler from
displaying precompiled header activity information.

The following command line uses the /fh option to create a precompiled header.

Example:
wpp /fh myprog.cpp
wpp386 /fh myprog.cpp

The following command line creates a precompiled header named myprog.pch and places
it in the \projpch directory.

128 The "/fh[q]" (Precompiled Header) Option

Precompiled Headers

Example:
wpp /fh=\projpch\myprog.pch myprog.cpp
wpp386 /fh=\projpch\myprog.pch myprog.cpp

The precompiled header is created and/or used when the compiler encounters the first
#include directive that occurs in the source file. In a subsequent compilation, the compiler
performs a consistency check to see if it can use an existing precompiled header. If the
consistency check fails then the compiler discards the existing precompiled header and builds
a new one.

The /fhq form of the precompiled header option prevents the compiler from issuing warning
or informational messages about precompiled header files. For example, if you change a
header file, the compiler will tell you that it changed and that it must regenerate the
precompiled header file. If you specify /fhq then the compiler just generates the new
precompiled header file without displaying a message.

4.5 Consistency Rules for Precompiled Headers

If a precompiled header file exists (either the default file or one specified by /fh=filename), it
is compared to the current compilation for consistency. A new precompiled header file is
created and the new file overwrites the old unless the following requirements are met:

• The current compiler options must match those specified when the precompiled header
was created.

• The current working directory must match that specified when the precompiled header
was created.

• The name of the first #include directive must match the one that was specified when
the precompiled header was created.

• All macros defined prior to the first #include directive must have the same values as
the macros defined when the precompiled header was created. A sequence of
#define directives need not occur in exactly the same order because there are no
semantic order dependencies for #define directives.

• The value and order of include paths specified on the command line with /i options
must match those specified when the precompiled header was created.

• The time stamps of all the header files (all files specified with #include directives)
used to build the precompiled header must match those that existed when the
precompiled header was created.

Consistency Rules for Precompiled Headers 129

Open Watcom C/C++ User’s Guide

130 Consistency Rules for Precompiled Headers

5 The Open Watcom C/C++ Libraries

The Open Watcom C/C++ library routines are described in the Open Watcom C Library
Reference manual, and the Open Watcom C++ Class Library Reference manual.

5.1 Open Watcom C/C++ Library Directory Structure

Since Open Watcom C/C++ supports both 16-bit and 32-bit application development, libraries
are grouped under two major subdirectories. The LIB286 directory is used to contain
libraries for 16-bit application development. The LIB386 directory is used to contain
libraries for 32-bit application development.

For 16-bit application development, the Intel x86 processor-dependent libraries are placed
under the \WATCOM\LIB286 directory.

For 32-bit application development, the Intel 386 and upward-compatible
processor-dependent libraries are placed under the \WATCOM\LIB386 directory.

Since Open Watcom C/C++ also supports several operating systems, including DOS, OS/2,
Windows 3.x and Windows NT, system-dependent libraries are grouped under different
directories underneath the processor-dependent directories.

For DOS applications, the system-dependent libraries are placed in \WATCOM\LIB286\DOS
(16-bit applications) and \WATCOM\LIB386\DOS (32-bit applications).

For OS/2 applications, the system-dependent libraries are placed in
\WATCOM\LIB286\OS2 (16-bit applications) and \WATCOM\LIB386\OS2 (32-bit
applications).

For Microsoft Windows applications, the system-dependent libraries are placed in
\WATCOM\LIB286\WIN (16-bit applications) and \WATCOM\LIB386\WIN (32-bit
applications).

For Microsoft Windows NT applications, the system-dependent libraries are placed in
\WATCOM\LIB386\NT (32-bit applications).

Open Watcom C/C++ Library Directory Structure 131

Open Watcom C/C++ User’s Guide

For Novell NetWare 386 applications, the system-dependent libraries are placed in
\WATCOM\LIB386\NETWARE (32-bit applications).

\watcom

|
.-----------+----------------.
| |

lib286 lib386
| |

.-------+-------. .-------.-------+-------.-------.
| | | | | | | |

dos os2 win dos os2 win nt netware
| | | | | | | |

5.2 Open Watcom C/C++ C Libraries

Due to the many code generation strategies possible in the 80x86 family of processors, a
number of versions of the libraries are provided. You must use the libraries which coincide
with the particular architecture, operating system, and code generation strategy or model that
you have selected. For the type of code generation strategy or model that you intend to use,
refer to the description of the "m?" memory model compiler option. The various code models
supported by Open Watcom C/C++ are described in the chapters entitled "16-bit Memory
Models" on page 145 and "32-bit Memory Models" on page 229.

We have selected a simple naming convention for the libraries that are provided with Open
Watcom C/C++. Letters are affixed to the file name to indicate the particular strategy with
which the modules in the library have been compiled.

16-bit only

S denotes a version of the Open Watcom C/C++ libraries which have been
compiled for the "small" memory model (small code, small data).

M denotes a version of the Open Watcom C/C++ libraries which have been
compiled for the "medium" memory model (big code, small data).

C denotes a version of the Open Watcom C/C++ libraries which have been
compiled for the "compact" memory model (small code, big data).

L denotes a version of the Open Watcom C/C++ libraries which have been
compiled for the "large" memory model (big code, big data).

132 Open Watcom C/C++ C Libraries

The Open Watcom C/C++ Libraries

H denotes a version of the Open Watcom C/C++ libraries which have been
compiled for the "huge" memory model (big code, huge data).

MT denotes a version of the Open Watcom C/C++ libraries which may be used with
OS/2 multi-threaded applications.

DL denotes a version of the Open Watcom C/C++ libraries which may be used when
creating an OS/2 Dynamic Link Library.

32-bit only

3R denotes a version of the Open Watcom C/C++ libraries that will be used by
programs which have been compiled for the "flat/small" memory models using
the "3r", "4r" or "5r" option.

3S denotes a version of the Open Watcom C/C++ libraries that will be used by
programs which have been compiled for the "flat/small" memory models using
the "3s", "4s" or "5s" option.

The Open Watcom C/C++ 16-bit libraries are listed below by directory.

Under \WATCOM\LIB286\DOS

CLIBS.LIB (DOS small model support)
CLIBM.LIB (DOS medium model support)
CLIBC.LIB (DOS compact model support)
CLIBL.LIB (DOS large model support)
CLIBH.LIB (DOS huge model support)
GRAPH.LIB (model independent, DOS graphics support)

Under \WATCOM\LIB286\OS2

CLIBS.LIB (OS/2 small model support)
CLIBM.LIB (OS/2 medium model support)
CLIBC.LIB (OS/2 compact model support)
CLIBL.LIB (OS/2 large model support)
CLIBH.LIB (OS/2 huge model support)
CLIBMTL.LIB (OS/2 multi-thread, large model support)
CLIBDLL.LIB (OS/2 DLL, large model support)
DOSPMS.LIB (Phar Lap 286 PM small model support)
DOSPMM.LIB (Phar Lap 286 PM medium model support)
DOSPMC.LIB (Phar Lap 286 PM compact model support)
DOSPML.LIB (Phar Lap 286 PM large model support)
DOSPMH.LIB (Phar Lap 286 PM huge model support)

Open Watcom C/C++ C Libraries 133

Open Watcom C/C++ User’s Guide

Under \WATCOM\LIB286\WIN

CLIBS.LIB (Windows small model support)
CLIBM.LIB (Windows medium model support)
CLIBC.LIB (Windows compact model support)
CLIBL.LIB (Windows large model support)
WINDOWS.LIB (Windows API library)

The Open Watcom C/C++ 32-bit libraries are listed below by directory.

Under \WATCOM\LIB386\DOS

CLIB3R.LIB (flat/small models, "3r", "4r" or "5r" option)
CLIB3S.LIB (flat/small models, "3s", "4s" or "5s" option)
GRAPH.LIB (flat/small models, DOS graphics support)

The graphics library GRAPH.LIB is independent of the argument passing conventions.

Under \WATCOM\LIB386\OS2

CLIB3R.LIB (flat/small models, "3r", "4r" or "5r" option)
CLIB3S.LIB (flat/small models, "3s", "4s" or "5s" option)

Under \WATCOM\LIB386\WIN

CLIB3R.LIB (flat/small models, "3r", "4r" or "5r" option)
CLIB3S.LIB (flat/small models, "3s", "4s" or "5s" option)
WIN386.LIB (32-bit Windows API)

Under \WATCOM\LIB386\NT

CLIB3R.LIB (flat/small models, "3r", "4r" or "5r" option)
CLIB3S.LIB (flat/small models, "3s", "4s" or "5s" option)

5.3 Open Watcom C/C++ Class Libraries

The Open Watcom C/C++ Class Library routines are described in the Open Watcom C++
Class Library Reference manual.

The Open Watcom C++ 16-bit Class Libraries are listed below.

134 Open Watcom C/C++ Class Libraries

The Open Watcom C/C++ Libraries

Under \WATCOM\LIB286

(iostream and string class libraries)
PLIBS.LIB (small model support)
PLIBM.LIB (medium model support)
PLIBC.LIB (compact model support)
PLIBL.LIB (large model support)
PLIBH.LIB (huge model support)
PLIBMTL.LIB (OS/2 multi-thread, large model support)
PLIBDLL.LIB (OS/2 DLL, large model support)

(complex class library for "fpc" option)
CPLXS.LIB (small model support)
CPLXM.LIB (medium model support)
CPLXC.LIB (compact model support)
CPLXL.LIB (large model support)
CPLXH.LIB (huge model support)

(complex class library for "fpi..." options)
CPLX7S.LIB (small model support)
CPLX7M.LIB (medium model support)
CPLX7C.LIB (compact model support)
CPLX7L.LIB (large model support)
CPLX7H.LIB (huge model support)

These libraries are independent of the operating system (except those designated for OS/2).
The "7" designates a library compiled with the "7" option.

The Open Watcom C++ 32-bit Class Libraries are listed below.

Under \WATCOM\LIB386

(iostream and string class libraries)
PLIB3R.LIB (flat models, "3r", "4r" or "5r" option)
PLIB3S.LIB (flat models, "3s", "4s" or "5s" option)
PLIBMT3R.LIB (multi-thread library for OS/2 and Windows NT)
PLIBMT3S.LIB (multi-thread library for OS/2 and Windows NT)

(complex class library for "fpc" option)
CPLX3R.LIB (flat models, "3r", "4r" or "5r" option)
CPLX3S.LIB (flat models, "3s", "4s" or "5s" option)

(complex class library for "fpi..." options)
CPLX73R.LIB (flat models, "3r", "4r" or "5r" option)
CPLX73S.LIB (flat models, "3s", "4s" or "5s" option)

These libraries are independent of the operating system (except those designated for OS/2 and
Windows NT). The "3R" and "3S" suffixes refer to the argument passing convention used.
The "7" designates a library compiled with the "7" option.

Open Watcom C/C++ Class Libraries 135

Open Watcom C/C++ User’s Guide

5.4 Open Watcom C/C++ Math Libraries

In general, a Math library is required when floating-point computations are included in the
application. The Math libraries are operating-system independent.

For the 286 architecture, the Math libraries are placed under the \WATCOM\LIB286
directory.

For the 386 architecture, the Math libraries are placed under the \WATCOM\LIB386
directory.

An 80x87 emulator library, emu87.lib, is also provided which is both operating-system
and architecture dependent.

The following situations indicate that one of the Math libraries should be included when
linking the application.

1. When one or more of the functions described in the math.h header file is
referenced, then a Math library must be included.

2. If an application is linked and the message
 "fltusedisanundefinedreference"

appears, then a Math library must be included.

3. (16-bit only) If an application is linked and the message
 "init87emulatorisanundefinedreference"

appears, then one of the modules in the application was compiled with one of the
"fpi", "fpi87", "fp2", "fp3" or "fp5" options. If the "fpi" option was used, the 80x87
emulator library (emu87.lib) or the 80x87 fixup library (noemu87.lib)
should be included when linking the application.

If the "fpi87" option was used, the 80x87 fixup library noemu87.lib should be
included when linking the application.

The 80x87 emulator is contained in emu87.lib. Use noemu87.lib in place
of emu87.lib when the emulator is not wanted.

4. (32-bit only) If an application is linked and the message

136 Open Watcom C/C++ Math Libraries

The Open Watcom C/C++ Libraries

 "init387emulatorisanundefinedreference"
appears, then one of the modules in the application was compiled with one of the
"fpi", "fpi87", "fp2", "fp3" or "fp5" options. If the "fpi" option was used, the 80x87
emulator library (emu387.lib) should be included when linking the application.

If the "fpi87" option was used, the empty 80x87 emulator library noemu387.lib
should be included when linking the application.

The 80x87 emulator is contained in emu387.lib. Use noemu387.lib in
place of emu387.lib when the emulator is not wanted.

Normally, the compiler and linker will automatically take care of this. Simply ensure that the
WATCOM environment variable includes the location of the Open Watcom C/C++ libraries.

5.5 Open Watcom C/C++ 80x87 Math Libraries

One of the following Math libraries must be used if any of the modules of your application
were compiled with one of the Open Watcom C/C++ "fpi", "fpi87", "fp2", "fp3" or "fp5"
options and your application requires floating-point support for the reasons given above.

16-bit libraries:

MATH87S.LIB (small model)
MATH87M.LIB (medium model)
MATH87C.LIB (compact model)
MATH87L.LIB (large model)
MATH87H.LIB (huge model)
NOEMU87.LIB
DOS\EMU87.LIB (DOS dependent)
OS2\EMU87.LIB (OS/2 dependent)
WIN\EMU87.LIB (Windows dependent)
WIN\MATH87C.LIB (Windows dependent)
WIN\MATH87L.LIB (Windows dependent)

32-bit libraries:

MATH387R.LIB (flat/small models, "3r", "4r" or "5r" option)
MATH387S.LIB (flat/small models, "3s", "4s" or "5s" option)
DOS\EMU387.LIB (DOS dependent)
WIN\EMU387.LIB (Windows dependent)
OS2\EMU387.LIB (OS/2 dependent)
NT\EMU387.LIB (Windows NT dependent)

Open Watcom C/C++ 80x87 Math Libraries 137

Open Watcom C/C++ User’s Guide

The "fpi" option causes an 80x87 numeric data processor emulator to be linked into your
application in addition to any 80x87 math routines that were referenced. This emulator will
decode and emulate 80x87 instructions when an 80x87 is not present in the system or if the
environment variable NO87 has been set (this variable is described below).

For 32-bit Open Watcom Windows-extender applications or 32-bit applications run in
Windows 3.1 DOS boxes, you must also include the WEMU387.386 file in the [386enh]
section of the SYSTEM.INI file.

Example:
device=C:\WATCOM\binw\wemu387.386

Note that the WDEBUG.386 file which is installed by the Open Watcom Installation software
contains the emulation support found in the WEMU387.386 file.

When the "fpi87" option is used exclusively, the emulator is not included. In this case, the
application must be run on personal computer systems equipped with the numeric data
processor.

5.6 Open Watcom C/C++ Alternate Math Libraries

One of the following Math libraries must be used if any of the modules of your application
were compiled with the Open Watcom C/C++ "fpc" option and your application requires
floating-point support for the reasons given above. The following Math libraries include
support for floating-point which is done out-of-line through run-time calls.

16-bit libraries:

MATHS.LIB (small model)
MATHM.LIB (medium model)
MATHC.LIB (compact model)
MATHL.LIB (large model)
MATHH.LIB (huge model)
WIN\MATHC.LIB (Windows dependent)
WIN\MATHL.LIB (Windows dependent)

32-bit libraries:

MATH3R.LIB (flat/small models, "3r", "4r" or "5r" option)
MATH3S.LIB (flat/small models, "3s", "4s" or "5s" option)

Applications which are linked with one of these libraries do not require a numeric data
processor for floating-point operations. If one is present in the system, it will be used;

138 Open Watcom C/C++ Alternate Math Libraries

The Open Watcom C/C++ Libraries

otherwise floating-point operations are simulated in software. The numeric data processor
will not be used if the environment variable NO87 has been set (this variable is described
below).

5.7 The NO87 Environment Variable

If you have a numeric data processor (math coprocessor) in your system but you wish to test a
version of your application that will use floating-point emulation ("fpi" option) or simulation
("fpc" option), you can define the NO87 environment variable.

(16-bit only) The application must be compiled using the "fpc" (floating-point calls) option
and linked with the appropriate math?.lib library or the "fpi" option (default) and linked
with the appropriate math87?.lib and emu87.lib libraries.

(32-bit only) The application must be compiled using the "fpc" (floating-point calls) option
and linked with the appropriate math3?.lib library or the "fpi" option (default) and linked
with the appropriate math387?.lib library.

Using the "SET" command, define the environment variable as follows:

C>SET NO87=1

Now, when you run your application, the 80x87 will be ignored. To undefine the
environment variable, enter the command:

C>SET NO87=

5.8 The Open Watcom C/C++ Run-time Initialization
Routines

Source files are included in the package for the Open Watcom C/C++ application startup (or
initialization) sequence.

(16-bit only) The initialization code directories/files are listed below:

The Open Watcom C/C++ Run-time Initialization Routines 139

Open Watcom C/C++ User’s Guide

Under \WATCOM\SRC\STARTUP

WILDARGV.C (wild card processing for argv)
8087CW.C (value loaded into 80x87 control word)

Under \WATCOM\SRC\STARTUP\DOS (DOS initialization)

CSTRT086.ASM (startup for 16-bit apps)
DOS16M.ASM (startup code for Tenberry Software’s
DOS/16M)
CMAIN086.C (final part of initialization sequence)
MDEF.INC (macros included by assembly code)

Under \WATCOM\SRC\STARTUP\WIN (Windows initialization)

CSTRTW16.ASM (startup for 16-bit Windows apps)
LIBENTRY.ASM (startup for 16-bit Windows DLLs)
MDEF.INC (macros included by assembly code)

Under \WATCOM\SRC\STARTUP\OS2 (OS/2 initialization)

CMAIN086.C (final part of initialization sequence)
MAINO16.C (middle part of initialization sequence)
CSTRTO16.ASM (startup for 16-bit OS/2)
EXITWMSG.H (header file required by MAINO16.C)
WOS2.H (header file required by MAINO16.C)
INITFINI.H (header file required by MAINO16.C)
MDEF.INC (macros included by assembly code)

The following is a summary description of the startup files for DOS. The startup files for
Windows and OS/2 are similar. The assembler file CSTRT086.ASM contains the first part of
the initialization code and the remainder is continued in the file CMAIN086.C. It is
CMAIN086.C that calls your main routine (main).

The DOS16M.ASM file is a special version of the CSTRT086.ASM file which is required
when using the Tenberry Software, Inc. DOS/16M 286 DOS extender.

(32-bit only) The initialization code directories/files are listed below:

Under \WATCOM\SRC\STARTUP

WILDARGV.C (wild card processing for argv)
8087CW.C (value loaded into 80x87 control word)

140 The Open Watcom C/C++ Run-time Initialization Routines

The Open Watcom C/C++ Libraries

Under \WATCOM\SRC\STARTUP\386

CSTRT386.ASM (startup for most DOS Extenders)
CSTRTW32.ASM (startup for 32-bit Windows)
CSTRTX32.ASM (startup for FlashTek DOS Extender)
CMAIN386.C (final part of initialization sequence)

The assembler files CSTRT*.ASM contain the first part of the initialization code and the
remainder is continued in the file CMAIN386.C. It is CMAIN386.C that calls your main
routine (main).

The source code is provided for those who wish to customize the initialization sequence for
special applications.

The file wildargv.c contains an alternate form of "argv" processing in which wild card
command line arguments are transformed into lists of matching file names. Wild card
arguments are any arguments containing "*" or "?" characters unless the argument is placed
within quotes ("). Consider the following example in which we run an application called
"TOUCH" with the argument "*.c".

C>touch *.c

Suppose that the application was linked with the object code for the file wildargv.c.
Suppose that the files ap1.c, ap2.c and ap3.c are stored in the current directory. The
single argument "*.c" is transformed into a list of arguments such that:

argc == 4
argv[1] points to "ap1.c"
argv[2] points to "ap2.c"
argv[3] points to "ap3.c"

The source file wildargv.c must be compiled to produce the object file
wildargv.obj. This file must be specified before the Open Watcom C/C++ libraries in
the linker command file in order to replace the standard "argv" processing.

The Open Watcom C/C++ Run-time Initialization Routines 141

Open Watcom C/C++ User’s Guide

142 The Open Watcom C/C++ Run-time Initialization Routines

16-bit Topics

16-bit Topics

144

6 16-bit Memory Models

6.1 Introduction

This chapter describes the various 16-bit memory models supported by Open Watcom C/C++.
Each memory model is distinguished by two properties; the code model used to implement
function calls and the data model used to reference data.

6.2 16-bit Code Models

There are two code models;

1. the small code model and
2. the big code model.

A small code model is one in which all calls to functions are made with near calls. In a near
call, the destination address is 16 bits and is relative to the segment value in segment register
CS. Hence, in a small code model, all code comprising your program, including library
functions, must be less than 64K.

A big code model is one in which all calls to functions are made with far calls. In a far call,
the destination address is 32 bits (a segment value and an offset relative to the segment value).
This model allows the size of the code comprising your program to exceed 64K.

Note: If your program contains less than 64K of code, you should use a memory model
that employs the small code model. This will result in smaller and faster code since near
calls are smaller instructions and are processed faster by the CPU.

16-bit Code Models 145

16-bit Topics

6.3 16-bit Data Models

There are three data models;

1. the small data model,
2. the big data model and
3. the huge data model.

A small data model is one in which all references to data are made with near pointers. Near
pointers are 16 bits; all data references are made relative to the segment value in segment
register DS. Hence, in a small data model, all data comprising your program must be less than
64K.

A big data model is one in which all references to data are made with far pointers. Far
pointers are 32 bits (a segment value and an offset relative to the segment value). This
removes the 64K limitation on data size imposed by the small data model. However, when a
far pointer is incremented, only the offset is adjusted. Open Watcom C/C++ assumes that the
offset portion of a far pointer will not be incremented beyond 64K. The compiler will assign
an object to a new segment if the grouping of data in a segment will cause the object to cross a
segment boundary. Implicit in this is the requirement that no individual object exceed 64K
bytes. For example, an array containing 40,000 integers does not fit into the big data model.
An object such as this should be described as huge.

A huge data model is one in which all references to data are made with far pointers. This is
similar to the big data model. However, in the huge data model, incrementing a far pointer
will adjust the offset and the segment if necessary. The limit on the size of an object pointed
to by a far pointer imposed by the big data model is removed in the huge data model.

Notes:

1. If your program contains less than 64K of data, you should use the small data
model. This will result in smaller and faster code since references using near
pointers produce fewer instructions.

2. The huge data model should be used only if needed. The code generated in the
huge data model is not very efficient since a run-time routine is called in order to
increment far pointers. This increases the size of the code significantly and
increases execution time.

146 16-bit Data Models

16-bit Memory Models

6.4 Summary of 16-bit Memory Models

As previously mentioned, a memory model is a combination of a code model and a data
model. The following table describes the memory models supported by Open Watcom
C/C++.

Memory Code Data Default Default
Model Model Model Code Data

Pointer Pointer
-------- -------- -------- -------- --------
tiny small small near near
small small small near near
medium big small far near
compact small big near far
large big big far far
huge big huge far huge

6.5 Tiny Memory Model

In the tiny memory model, the application’s code and data must total less than 64K bytes in
size. All code and data are placed in the same segment. Use of the tiny memory model allows
the creation of a COM file for the executable program instead of an EXE file. For more
information, see the section entitled "Creating a Tiny Memory Model Application" in this
chapter.

6.6 Mixed 16-bit Memory Model

A mixed memory model application combines elements from the various code and data
models. A mixed memory model application might be characterized as one that uses the near,
far, or huge keywords when describing some of its functions or data objects.

For example, a medium memory model application that uses some far pointers to data can be
described as a mixed memory model. In an application such as this, most of the data is in a
64K segment (DGROUP) and hence can be referenced with near pointers relative to the
segment value in segment register DS. This results in more efficient code being generated and
better execution times than one can expect from a big data model. Data objects outside of the
DGROUP segment are described with the far keyword.

Mixed 16-bit Memory Model 147

16-bit Topics

6.7 Linking Applications for the Various 16-bit Memory
Models

Each memory model requires different run-time and floating-point libraries. Each library
assumes a particular memory model and should be linked only with modules that have been
compiled with the same memory model. The following table lists the libraries that are to be
used to link an application that has been compiled for a particular memory model.

Memory Run-time Floating-Point Floating-Point
Model Library Calls Library Library (80x87)
------- -------- -------------- ---------------
tiny CLIBS.LIB MATHS.LIB MATH87S.LIB+CSTARTT.OBJ +(NO)EMU87.LIB*

small CLIBS.LIB MATHS.LIB MATH87S.LIB
+(NO)EMU87.LIB*

medium CLIBM.LIB MATHM.LIB MATH87M.LIB
+(NO)EMU87.LIB*

compact CLIBC.LIB MATHC.LIB MATH87C.LIB
+(NO)EMU87.LIB*

large CLIBL.LIB MATHL.LIB MATH87L.LIB
+(NO)EMU87.LIB*

huge CLIBH.LIB MATHH.LIB MATH87H.LIB
+(NO)EMU87.LIB*

* One of emu87.lib or noemu87.lib will be used with the 80x87 math libraries
depending on the use of the "fpi" (include emulation) or "fpi87" (do not include emulation)
options.

6.8 Creating a Tiny Memory Model Application

Tiny memory model programs are created by compiling all modules with the small memory
model option and linking in the special initialization file "CSTART_T.OBJ". This file is
found in the Open Watcom C/C++ LIB286\DOS directory. It must be the first object file
specified when linking the program.

The following sequence will create the executable file "MYPROG.COM" from the file
"MYPROG.C":

148 Creating a Tiny Memory Model Application

16-bit Memory Models

Example:
C>wcc myprog /ms
C>wlink system com file myprog

Most of the details of linking a "COM" program are handled by the "SYSTEM COM"
directive (see the wlsystem.lnk file for details). When linking a "COM" program, the
message "Stack segment not found" is issued. This message may be ignored.

6.9 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open
Watcom run-time libraries. This segment is initialized with the hexadecimal byte pattern "01"
and is the first segment in group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized data in segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executable file.

In addition to these special segments, the following conventions are used by Open Watcom
C/C++.

1. The "CODE" class contains the executable code for your application. In a small
code model, this consists of the segment "_TEXT". In a big code model, this

Memory Layout 149

16-bit Topics

consists of the segments "<module>_TEXT" where <module> is the file name of
the source file.

2. The "FAR_DATA" class consists of the following:

(a) data objects whose size exceeds the data threshold in large data
memory models (the data threshold is 32K unless changed using the
"zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(c) literals whose size exceeds the data threshold in large data memory
models (the data threshold is 32K unless changed using the "zt"
compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.

You can override the default naming convention used by Open Watcom C/C++ to name
segments.

1. The Open Watcom C/C++ "nm" option can be used to change the name of the
module. This, in turn, changes the name of the code segment when compiling for a
big code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code
segment regardless of the code model used.

150 Memory Layout

7 16-bit Assembly Language Considerations

7.1 Introduction

This chapter will deal with the following topics.

1. The data representation of the basic types supported by Open Watcom C/C++.

2. The memory layout of a Open Watcom C/C++ program.

3. The method for passing arguments and returning values.

4. The two methods for passing floating-point arguments and returning floating-point
values.

One method is used when one of the Open Watcom C/C++ "fpi" or "fpi87" options
is specified for the generation of in-line 80x87 instructions. When the "fpi" option
is specified, an 80x87 emulator is included from a math library if the application
includes floating-point operations. When the "fpi87" option is used exclusively,
the 80x87 emulator will not be included.

The other method is used when the Open Watcom C/C++ "fpc" option is specified.
In this case, the compiler generates calls to floating-point support routines in the
alternate math libraries.

An understanding of the Intel 80x86 architecture is assumed.

7.2 Data Representation

This section describes the internal or machine representation of the basic types supported by
Open Watcom C/C++.

Data Representation 151

16-bit Topics

7.2.1 Type "char"

An item of type "char" occupies 1 byte of storage. Its value is in the following range.

0 <= n <= 255

Note that "char" is, by default, unsigned. The Open Watcom C/C++ compiler option "j" can
be used to change the default from unsigned to signed. If "char" is signed, an item of type
"char" is in the following range.

-128 <= n <= 127

You can force an item of type "char" to be unsigned or signed regardless of the default by
defining them to be of type "unsigned char" or "signed char" respectively.

7.2.2 Type "short int"

An item of type "short int" occupies 2 bytes of storage. Its value is in the following range.

-32768 <= n <= 32767

Note that "short int" is signed and hence "short int" and "signed short int" are equivalent. If
an item of type "short int" is to be unsigned, it must be defined as "unsigned short int". In this
case, its value is in the following range.

0 <= n <= 65535

7.2.3 Type "long int"

An item of type "long int" occupies 4 bytes of storage. Its value is in the following range.

-2147483648 <= n <= 2147483647

Note that "long int" is signed and hence "long int" and "signed long int" are equivalent. If an
item of type "long int" is to be unsigned, it must be defined as "unsigned long int". In this
case, its value is in the following range.

0 <= n <= 4294967295

152 Data Representation

16-bit Assembly Language Considerations

7.2.4 Type "int"

An item of type "int" occupies 2 bytes of storage. Its value is in the following range.

-32768 <= n <= 32767

Note that "int" is signed and hence "int" and "signed int" are equivalent. If an item of type
"int" is to be unsigned, it must be defined as "unsigned int". In this case its value is in the
following range.

0 <= n <= 65535

If you are generating code that executes in 16-bit mode, "short int" and "int" are equivalent,
"unsigned short int" and "unsigned int" are equivalent, and "signed short int" and "signed int"
are equivalent. This may not be the case in other environments where "int" and "long int" are
4 bytes.

7.2.5 Type "float"

A datum of type "float" is an approximate representation of a real number. Each datum of
type "float" occupies 4 bytes. If m is the magnitude of x (an item of type "float") then x can
be approximated if

2-126 <= m < 2128

or in more approximate terms if

1.175494e-38 <= m <= 3.402823e38

Data of type "float" are represented internally as follows. Note that bytes are stored in
memory with the least significant byte first and the most significant byte last.

+---+---------+---------------------+
| S | Biased | Significand |
| | Exponent| |
+---+---------+---------------------+
31 30-23 22-0

Data Representation 153

16-bit Topics

Notes

S S = Sign bit (0=positive, 1=negative)

Exponent The exponent bias is 127 (i.e., exponent value 1 represents 2-126; exponent
value 127 represents 20; exponent value 254 represents 2127; etc.). The
exponent field is 8 bits long.

Significand The leading bit of the significand is always 1, hence it is not stored in the
significand field. Thus the significand is always "normalized". The significand
field is 23 bits long.

Zero A real zero quantity occurs when the sign bit, exponent, and significand are all
zero.

Infinity When the exponent field is all 1 bits and the significand field is all zero bits then
the quantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then
the quantity is a special value called a NAN (Not-A-Number).

When the exponent field is all 0 bits and the significand field is non-zero then
the quantity is a special value called a "denormal" or nonnormal number.

7.2.6 Type "double"

A datum of type "double" is an approximate representation of a real number. The precision of
a datum of type "double" is greater than or equal to one of type "float". Each datum of type
"double" occupies 8 bytes. If m is the magnitude of x (an item of type "double") then x can be
approximated if

2-1022 <= m < 21024

or in more approximate terms if

2.2250738585072e-308 <= m <= 1.79769313486232e308

Data of type "double" are represented internally as follows. Note that bytes are stored in
memory with the least significant byte first and the most significant byte last.

154 Data Representation

16-bit Assembly Language Considerations

+---+---------+--------------------------------------+
| S | Biased | Significand |
| | Exponent| |
+---+---------+--------------------------------------+
63 62-52 51-0

Notes:

S S = Sign bit (0=positive, 1=negative)

Exponent The exponent bias is 1023 (i.e., exponent value 1 represents 2-1022; exponent
value 1023 represents 20; exponent value 2046 represents 21023; etc.). The
exponent field is 11 bits long.

Significand The leading bit of the significand is always 1, hence it is not stored in the
significand field. Thus the significand is always "normalized". The significand
field is 52 bits long.

Zero A double precision zero quantity occurs when the sign bit, exponent, and
significand are all zero.

Infinity When the exponent field is all 1 bits and the significand field is all zero bits then
the quantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then
the quantity is a special value called a NAN (Not-A-Number).

When the exponent field is all 0 bits and the significand field is non-zero then
the quantity is a special value called a "denormal" or nonnormal number.

7.3 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1. all segments not belonging to group "DGROUP" with class "CODE"

2. all other segments not belonging to group "DGROUP"

3. all segments belonging to group "DGROUP" with class "BEGDATA"

Memory Layout 155

16-bit Topics

4. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

6. all segments belonging to group "DGROUP" with class "STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Open
Watcom run-time libraries. This segment is initialized with the hexadecimal byte pattern "01"
and is the first segment in group "DGROUP" so that storing data at location 0 can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized data in segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executable file.

In addition to these special segments, the following conventions are used by Open Watcom
C/C++.

1. The "CODE" class contains the executable code for your application. In a small
code model, this consists of the segment "_TEXT". In a big code model, this
consists of the segments "<module>_TEXT" where <module> is the file name of
the source file.

2. The "FAR_DATA" class consists of the following:

(a) data objects whose size exceeds the data threshold in large data
memory models (the data threshold is 32K unless changed using the
"zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(c) literals whose size exceeds the data threshold in large data memory
models (the data threshold is 32K unless changed using the "zt"
compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.

You can override the default naming convention used by Open Watcom C/C++ to name
segments.

156 Memory Layout

16-bit Assembly Language Considerations

1. The Open Watcom C/C++ "nm" option can be used to change the name of the
module. This, in turn, changes the name of the code segment when compiling for a
big code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code
segment regardless of the code model used.

7.4 Calling Conventions for Non-80x87 Applications

The following sections describe the calling convention used when compiling with the "fpc"
compiler option.

7.4.1 Passing Arguments Using Register-Based Calling Conventions

How arguments are passed to a function with register-based calling conventions is determined
by the size (in bytes) of the argument and where in the argument list the argument appears.
Depending on the size, arguments are either passed in registers or on the stack. Arguments
such as structures are almost always passed on the stack since they are generally too large to
fit in registers. Since arguments are processed from left to right, the first few arguments are
likely to be passed in registers (if they can fit) and, if the argument list contains many
arguments, the last few arguments are likely to be passed on the stack.

The registers used to pass arguments to a function are AX, BX, CX and DX. The following
algorithm describes how arguments are passed to functions.

Initially, we have the following registers available for passing arguments: AX, DX, BX and
CX. Note that registers are selected from this list in the order they appear. That is, the first
register selected is AX and the last is CX. For each argument Ai, starting with the left most
argument, perform the following steps.

1. If the size of Ai is 1 byte, convert it to 2 bytes and proceed to the next step. If Ai is
of type "unsigned char", it is converted to an "unsigned int". If Ai is of type
"signed char", it is converted to a "signed int". If Ai is a 1-byte structure, the
padding is determined by the compiler.

2. If an argument has already been assigned a position on the stack, Ai will also be
assigned a position on the stack. Otherwise, proceed to the next step.

3. If the size of Ai is 2 bytes, select a register from the list of available registers. If a
register is available, Ai is assigned that register. The register is then removed from
the list of available registers. If no registers are available, Ai will be assigned a
position on the stack.

Calling Conventions for Non-80x87 Applications 157

16-bit Topics

4. If the size of Ai is 4 bytes, select a register pair from the following list of
combinations: [DX AX] or [CX BX]. The first available register pair is assigned
to Ai and removed from the list of available pairs. The high-order 16 bits of the
argument are assigned to the first register in the pair; the low-order 16 bits are
assigned to the second register in the pair. If none of the above register pairs is
available, Ai will be assigned a position on the stack.

5. If the type of Ai is "double" or "float" (in the absence of a function prototype),
select [AX BX CX DX] from the list of available registers. All four registers are
removed from the list of available registers. The high-order 16 bits of the argument
are assigned to the first register and the low-order 16 bits are assigned to the fourth
register. If any of the four registers is not available, Ai will be assigned a position
on the stack.

6. All other arguments will be assigned a position on the stack.

Notes:

1. Arguments that are assigned a position on the stack are padded to a multiple of 2
bytes. That is, if a 3-byte structure is assigned a position on the stack, 4 bytes will
be pushed on the stack.

2. Arguments that are assigned a position on the stack are pushed onto the stack
starting with the rightmost argument.

7.4.2 Sizes of Predefined Types

The following table lists the predefined types, their size as returned by the "sizeof" function,
the size of an argument of that type and the registers used to pass that argument if it was the
only argument in the argument list.

Basic Type "sizeof" Argument Registers
Size Used

char 1 2 [AX]
short int 2 2 [AX]
int 2 2 [AX]
long int 4 4 [DX AX]
float 4 8 [AX BX CX DX]
double 8 8 [AX BX CX DX]
near pointer 2 2 [AX]
far pointer 4 4 [DX AX]
huge pointer 4 4 [DX AX]

158 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

Note that the size of the argument listed in the table assumes that no function prototypes are
specified. Function prototypes affect the way arguments are passed. This will be discussed in
the section entitled "Effect of Function Prototypes on Arguments".

Notes:

1. Provided no function prototypes exist, an argument will be converted to a default
type as described in the following table.

Argument Type Passed As

char unsigned int
signed char signed int
unsigned char unsigned int
float double

7.4.3 Size of Enumerated Types

The integral type of an enumerated type is determined by the values of the enumeration
constants. In strict ISO/ANSI C mode, all enumerated constants are of type int. In the
extensions mode, the compiler will use the smallest integral type possible (excluding long
ints) that can represent all values of the enumerated type. For instance, if the minimum and
maximum values of the enumeration constants are in the range −128 and 127, the enumerated
type will be equivalent to a signed char (size = 1 byte). All references to enumerated
constants in the previous instance will have type signed char. An enumerated constant
is always promoted to an int when passed as an argument.

7.4.4 Effect of Function Prototypes on Arguments

Function prototypes define the types of the formal parameters of a function. Their appearance
affects the way in which arguments are passed. An argument will be converted to the type of
the corresponding formal parameter in the function prototype. Consider the following
example.

Calling Conventions for Non-80x87 Applications 159

16-bit Topics

void prototype(float x, int i);

void main()
{

float x;
int i;

x = 3.14;
i = 314;
prototype(x, i);
rtn(x, i);

}

The function prototype for prototype specifies that the first argument is to be passed as a
"float" and the second argument is to be passed as an "int". This results in the first argument
being passed in registers DX and AX and the second argument being passed in register BX.

If no function prototype is given, as is the case for the function rtn, the first argument will
be passed as a "double" and the second argument would be passed as an "int". This results in
the first argument being passed in registers AX, BX, CX and DX and the second argument
being passed on the stack.

Note that even though both prototype and rtn were called with identical argument lists,
the way in which the arguments were passed was completely different simply because a
function prototype for prototype was specified. Function prototyping is an excellent way
to guarantee that arguments will be passed as expected to your assembly language function.

7.4.5 Interfacing to Assembly Language Functions

Consider the following example.

Example:
void main()
{

long int x;
int i;
long int y;

x = 7;
i = 77;
y = 777;
myrtn(x, i, y);

}

160 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

myrtn is an assembly language function that requires three arguments. The first argument is
of type "long int", the second argument is of type "int" and the third argument is again of type
"long int". Using the rules for register-based calling conventions, these arguments will be
passed to myrtn in the following way:

1. The first argument will be passed in registers DX and AX leaving BX and CX as
available registers for other arguments.

2. The second argument will be passed in register BX leaving CX as an available
register for other arguments.

3. The third argument will not fit in register CX (its size is 4 bytes) and hence will be
pushed on the stack.

Let us look at the stack upon entry to myrtn.

Small Code Model
Offset

+----------------+
0 | return address | <- SP points here

+----------------+
2 | argument #3 |

| |
+----------------+

6 | |

Big Code Model
Offset

+----------------+
0 | return address | <- SP points here

| |
+----------------+

4 | argument #3 |
| |
+----------------+

8 | |

Notes:

1. The return address is the top element on the stack. In a small code model, the
return address is 1 word (16 bits); in a big code model, the return address is 2
words (32 bits).

Register SP cannot be used as a base register to address the third argument on the stack.
Register BP is normally used to address arguments on the stack. Upon entry to the function,

Calling Conventions for Non-80x87 Applications 161

16-bit Topics

register BP is set to point to the stack but before doing so we must save its contents. The
following two instructions achieve this.

push BP ; save current value of BP
mov BP,SP ; get access to arguments

After executing these instructions, the stack looks like this.

Small Code Model
Offset

+----------------+
0 | saved BP | <- BP and SP point here

+----------------+
2 | return address |

+----------------+
4 | argument #3 |

| |
+----------------+

8 | |

Big Code Model
Offset

+----------------+
0 | saved BP | <- BP and SP point here

+----------------+
2 | return address |

| |
+----------------+

6 | argument #3 |
| |
+----------------+

10 | |

As the above diagrams show, the third argument is at offset 4 from register BP in a small code
model and offset 6 in a big code model.

Upon exit from myrtn, we must restore the value of BP. The following two instructions
achieve this.

mov SP,BP ; restore stack pointer
pop BP ; restore BP

The following is a sample assembly language function which implements myrtn.

162 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

Small Memory Model (small code, small data)
DGROUP group
DATA,BSSTEXT

segment byte public ’CODE’
assume
CS:TEXT

assume DS:DGROUP
public myrtnmyrtnproc near
push BP ; save BP
mov BP,SP ; get access to arguments

;
; body of function
;

mov SP,BP ; restore SP
pop BP ; restore BP
ret 4 ; return and pop last argmyrtnendpTEXT
ends

Large Memory Model (big code, big data)
DGROUP group
DATA,BSSMYRTNTEXTsegmentbytepublic’CODE’

assume
CS:MYRTNTEXT

public myrtnmyrtnproc far
push BP ; save BP
mov BP,SP ; get access to arguments

;
; body of function
;

mov SP,BP ; restore SP
pop BP ; restore BP
ret 4 ; return and pop last argmyrtnendpMYRTNTEXTends

Notes:

1. Global function names must be followed with an underscore. Global variable
names must be preceded with an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those
used to pass arguments and return values. Note that segment registers only have to
saved and restored if you are compiling your application with the "r" option.

3. The direction flag must be clear before returning to the caller.

Calling Conventions for Non-80x87 Applications 163

16-bit Topics

4. In a small code model, any segment containing executable code must belong to the
segment "_TEXT" and the class "CODE". The segment "_TEXT" must have a
"combine" type of "PUBLIC". On entry, CS contains the segment address of the
segment "_TEXT". In a big code model there is no restriction on the naming of
segments which contain executable code.

5. In a small data model, segment register DS contains the segment address of the
group "DGROUP". This is not the case in a big data model.

6. When writing assembly language functions for the small code model, you must
declare them as "near". If you wish to write assembly language functions for the
big code model, you must declare them as "far".

7. In general, when naming segments for your code or data, you should follow the
conventions described in the section entitled "Memory Layout" in this chapter.

8. If any of the arguments was pushed onto the stack, the called routine must pop
those arguments off the stack in the "ret" instruction.

7.4.6 Functions with Variable Number of Arguments

A function prototype with a parameter list that ends with ",..." has a variable number of
arguments. In this case, all arguments are passed on the stack. Since no prototyping
information exists for arguments represented by ",...", those arguments are passed as described
in the section "Passing Arguments".

7.4.7 Returning Values from Functions

The way in which function values are returned depends on the size of the return value. The
following examples describe how function values are to be returned. They are coded for a
small code model.

1. 1-byte values are to be returned in register AL.

164 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

Example:TEXTsegmentbytepublic’CODE’assumeCS:TEXTpublicRet1Ret1procnear;charRet1()
mov AL,’G’
retRet1endpTEXTends
end

2. 2-byte values are to be returned in register AX.

Example:TEXTsegmentbytepublic’CODE’assumeCS:TEXTpublicRet2Ret2procnear;shortintRet2()
mov AX,77
retRet2endpTEXTends
end

3. 4-byte values are to be returned in registers DX and AX with the most significant
word in register DX.

Example:TEXTsegmentbytepublic’CODE’assumeCS:TEXTpublicRet4Ret4procnear;longintRet4()
mov AX,word ptr CS:Val4+0
mov DX,word ptr CS:Val4+2
ret

Val4 dd 7777777Ret4endpTEXTends
end

4. 8-byte values, except structures, are to be returned in registers AX, BX, CX and
DX with the most significant word in register AX.

Calling Conventions for Non-80x87 Applications 165

16-bit Topics

Example:
.8087TEXTsegmentbytepublic’CODE’assumeCS:TEXTpublicRet8Ret8procnear;doubleRet8()
mov DX,word ptr CS:Val8+0
mov CX,word ptr CS:Val8+2
mov BX,word ptr CS:Val8+4
mov AX,word ptr CS:Val8+6
ret

Val8: dq 7.7Ret8endpTEXTends
end

The ".8087" pseudo-op must be specified so that all floating-point constants are
generated in 8087 format. When using the "fpc" (floating-point calls) option,
"float" and "double" are returned in registers. See section "Returning Values in
80x87-based Applications" when using the "fpi" or "fpi87" options.

5. Otherwise, the caller allocates space on the stack for the return value and sets
register SI to point to this area. In a big data model, register SI contains an offset
relative to the segment value in segment register SS.

Example:TEXTsegmentbytepublic’CODE’assumeCS:TEXTpublicRetX
;;structintvalues{
; int value1, value2, value3, value4, value5;
; };
;RetXprocnear;structintvaluesRetX()

mov word ptr SS:0[SI],71
mov word ptr SS:4[SI],72
mov word ptr SS:8[SI],73
mov word ptr SS:12[SI],74
mov word ptr SS:16[SI],75
retRetXendpTEXTends
end

166 Calling Conventions for Non-80x87 Applications

16-bit Assembly Language Considerations

When returning values on the stack, remember to use a segment override to the
stack segment (SS).

The following is an example of a Open Watcom C/C++ program calling the above assembly
language subprograms.

#include <stdio.h>structintvalues{

int value1;
int value2;
int value3;
int value4;
int value5;

};

extern char Ret1(void);
extern short int Ret2(void);
extern long int Ret4(void);
extern double Ret8(void);externstructintvaluesRetX(void);
void main()
{structintvaluesx;

printf("Ret1 = %c\n", Ret1());
printf("Ret2 = %d\n", Ret2());
printf("Ret4 = %ld\n", Ret4());
printf("Ret8 = %f\n", Ret8());
x = RetX();
printf("RetX1 = %d\n", x.value1);
printf("RetX2 = %d\n", x.value2);
printf("RetX3 = %d\n", x.value3);
printf("RetX4 = %d\n", x.value4);
printf("RetX5 = %d\n", x.value5);

}

The above function should be compiled for a small code model (use the "ms" or "mc"
compiler option).

Calling Conventions for Non-80x87 Applications 167

16-bit Topics

7.5 Calling Conventions for 80x87-based Applications

When a source file is compiled by Open Watcom C/C++ with one of the "fpi" or "fpi87"
options, all floating-point arguments are passed on the 80x86 stack. The rules for passing
arguments are as follows.

1. If the argument is not floating-point, use the procedure described earlier in this
chapter.

2. If the argument is floating-point, it is assigned a position on the 80x86 stack.

7.5.1 Passing Values in 80x87-based Applications

Consider the following example.

Example:
extern void myrtn(int,float,double,long int);

void main()
{

float x;
double y;
int i;
long int j;

x = 7.7;
i = 7;
y = 77.77
j = 77;
myrtn(i, x, y, j);

}

myrtn is an assembly language function that requires four arguments. The first argument is
of type "int" (2 bytes), the second argument is of type "float" (4 bytes), the third argument is
of type "double" (8 bytes) and the fourth argument is of type "long int" (4 bytes). These
arguments will be passed to myrtn in the following way:

1. The first argument will be passed in register AX leaving BX, CX and DX as
available registers for other arguments.

2. The second argument will be passed on the 80x86 stack since it is a floating-point
argument.

168 Calling Conventions for 80x87-based Applications

16-bit Assembly Language Considerations

3. The third argument will also be passed on the 80x86 stack since it is a
floating-point argument.

4. The fourth argument will be passed on the 80x86 stack since a previous argument
has been assigned a position on the 80x86 stack.

Remember, arguments are pushed on the stack from right to left. That is, the rightmost
argument is pushed first.

Any assembly language function must obey the following rule.

1. All arguments passed on the stack must be removed by the called function.

The following is a sample assembly language function which implements myrtn.

Example:
.8087TEXTsegmentbytepublic’CODE’assumeCS:TEXTpublicmyrtnmyrtnprocnear

;
; body of function
;

ret 16 ; return and pop argumentsmyrtnendpTEXTends
end

Notes:

1. Function names must be followed by an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those
used to pass arguments and return values. Note that segment registers only have to
saved and restored if you are compiling your application with the "r" option. In
this example, AX does not have to be saved as it was used to pass the first
argument. Floating-point registers can be modified without saving their contents.

3. The direction flag must be clear before returning to the caller.

4. This function has been written for a small code model. Any segment containing
executable code must belong to the class "CODE" and the segment "_TEXT". On
entry, CS contains the segment address of the segment "_TEXT". The above
restrictions do not apply in a big code memory model.

Calling Conventions for 80x87-based Applications 169

16-bit Topics

5. When writing assembly language functions for a small code model, you must
declare them as "near". If you wish to write assembly language functions for a big
code model, you must declare them as "far".

7.5.2 Returning Values in 80x87-based Applications

Floating-point values are returned in ST(0) when using the "fpi" or "fpi87" options. All other
values are returned in the manner described earlier in this chapter.

170 Calling Conventions for 80x87-based Applications

8 16-bit Pragmas

8.1 Introduction

A pragma is a compiler directive that provides the following capabilities.

• Pragmas allow you to specify certain compiler options.

• Pragmas can be used to direct the Open Watcom C/C++ code generator to emit
specialized sequences of code for calling functions which use argument passing and
value return techniques that differ from the default used by Open Watcom C/C++.

• Pragmas can be used to describe attributes of functions (such as side effects) that are
not possible at the C/C++ language level. The code generator can use this information
to generate more efficient code.

• Any sequence of in-line machine language instructions, including DOS and BIOS
function calls, can be generated in the object code.

Pragmas are specified in the source file using the pragma directive. The following notation is
used to describe the syntax of pragmas.

keywords A keyword is shown in a mono-spaced courier font.

program-item A program-item is shown in a roman bold-italics font. A program-item is a
symbol name or numeric value supplied by the programmer.

punctuation A punctuation character shown in a mono-spaced courier font must be
entered as is.

A punctuation character shown in a roman bold-italics font is used to describe
syntax. The following syntactical notation is used.

Introduction 171

16-bit Topics

[abc] The item abc is optional.

{abc} The item abc may be repeated zero or more times.

a|b|c One of a, b or c may be specified.

a ::= b The item a is defined in terms of b.

(a) Item a is evaluated first.

The following classes of pragmas are supported.

• pragmas that specify options

• pragmas that specify default libraries

• pragmas that describe the way structures are stored in memory

• pragmas that provide auxiliary information used for code generation

8.2 Using Pragmas to Specify Options

Currently, the following options can be specified with pragmas:

unreferenced The "unreferenced" option controls the way Open Watcom C/C++ handles
unused symbols. For example,

#pragma on (unreferenced);

will cause Open Watcom C/C++ to issue warning messages for all unused
symbols. This is the default. Specifying

#pragma off (unreferenced);

will cause Open Watcom C/C++ to ignore unused symbols. Note that if the
warning level is not high enough, warning messages for unused symbols will not
be issued even if "unreferenced" was specified.

check_stack The "check_stack" option controls the way stack overflows are to be handled.
For example,

 #pragmaon(checkstack);
172 Using Pragmas to Specify Options

16-bit Pragmas

will cause stack overflows to be detected and
 #pragmaoff(checkstack);

will cause stack overflows to be ignored. When "check_stack" is on, Open
Watcom C/C++ will generate a run-time call to a stack-checking routine at the
start of every routine compiled. This run-time routine will issue an error if a
stack overflow occurs when invoking the routine. The default is to check for
stack overflows. Stack overflow checking is particularly useful when functions
are invoked recursively. Note that if the stack overflows and stack checking has
been suppressed, unpredictable results can occur.

If a stack overflow does occur during execution and you are sure that your
program is not in error (i.e. it is not unnecessarily recursing), you must increase
the stack size. This is done by linking your application again and specifying the
"STACK" option to the Open Watcom Linker with a larger stack size.

It is also possible to specify more than one option in a pragma as illustrated by
the following example.

 #pragmaon(checkstackunreferenced);
reuse_duplicate_strings (C only) (C Only) The "reuse_duplicate_strings" option controls the

way Open Watcom C handles identical strings in an expression. For example,
 #pragmaon(reuseduplicatestrings);

will cause Open Watcom C to reuse identical strings in an expression. This is
the default. Specifying

 #pragmaoff(reuseduplicatestrings);
will cause Open Watcom C to generate additional copies of the identical string.
The following example shows where this may be of importance to the way the
application behaves.

Using Pragmas to Specify Options 173

16-bit Topics

Example:
#include <stdio.h>#pragmaoff(reuseduplicatestrings)
void poke(char *, char *);

void main()
{

poke("Hello world\n", "Hello world\n");
}

void poke(char *x, char *y)
{

x[3] = ’X’;
printf(x);
y[4] = ’Y’;
printf(y);

}
/*
Default output:
HelXo world
HelXY world
*/

8.3 Using Pragmas to Specify Default Libraries

Default libraries are specified in special object module records. Library names are extracted
from these special records by the Open Watcom Linker. When unresolved references remain
after processing all object modules specified in linker "FILE" directives, these default libraries
are searched after all libraries specified in linker "LIBRARY" directives have been searched.

By default, that is if no library pragma is specified, the Open Watcom C/C++ compiler
generates, in the object file defining the main program, default libraries corresponding to the
memory model and floating-point model used to compile the file. For example, if you have
compiled the source file containing the main program for the medium memory model and the
floating-point calls floating-point model, the libraries "clibm" and "mathm" will be placed in
the object file.

If you wish to add your own default libraries to this list, you can do so with a library pragma.
Consider the following example.

#pragma library (mylib);

174 Using Pragmas to Specify Default Libraries

16-bit Pragmas

The name "mylib" will be added to the list of default libraries specified in the object file.

If the library specification contains characters such as ’\’, ’:’ or ’,’ (i.e., any character not
allowed in a C identifier), you must enclose it in double quotes as in the following example.

#pragma library ("\watcom\lib286\dos\graph.lib");
#pragma library ("\watcom\lib386\dos\graph.lib");

If you wish to specify more than one library in a library pragma you must separate them with
spaces as in the following example.

#pragma library (mylib "\watcom\lib286\dos\graph.lib");
#pragma library (mylib "\watcom\lib386\dos\graph.lib");

8.4 The ALLOC_TEXT Pragma (C Only)

The "alloc_text" pragma can be used to specify the name of the text segment into which the
generated code for a function, or a list of functions, is to be placed. The following describes
the form of the "alloc_text" pragma.#pragmaalloctext(seg_name, fn {, fn}) [;]

where description:

seg_name is the name of the text segment.

fn is the name of a function.

Consider the following example.

extern int fn1(int);
extern int fn2(void);#pragmaalloctext(mytext,fn1,fn2);

The code for the functions fn1 and fn2 will be placed in the segmentmytext. Note:
function prototypes for the named functions must exist prior to the "alloc_text" pragma.

The ALLOC_TEXT Pragma (C Only) 175

16-bit Topics

8.5 The CODE_SEG Pragma

The "code_seg" pragma can be used to specify the name of the text segment into which the
generated code for functions is to be placed. The following describes the form of the
"code_seg" pragma.#pragmacodeseg(seg_name [, class_name]) [;]

where description:

seg_name is the name of the text segment optionally enclosed in quotes. Also,segname
may be a macro as in:

 #definesegname"MYCODESEG"#pragmacodeseg(segname);
class_name is the optional class name of the text segment and may be enclosed in quotes.

Also,classname may be a macro as in:
 #defineclassname"MYCLASS"#pragmacodeseg("MYCODESEG",classname);

Consider the following example.
 #pragmacodeseg(mytext);
int incr(int i)
{

return(i + 1);
}

int decr(int i)
{

return(i - 1);
}

The code for the functions incr and decr will be placed in the segmentmytext.
To return to the default segment, do not specify any string between the opening and closing
parenthesis.

 #pragmacodeseg();
176 The CODE_SEG Pragma

16-bit Pragmas

8.6 The COMMENT Pragma

The "comment" pragma can be used to place a comment record in an object file or executable
file. The following describes the form of the "comment" pragma.

#pragma comment (comment_type [, "comment_string"]) [;]

where description:

comment_type specifies the type of comment record. The allowable comment types are:

lib Default libraries are specified in special object module records.
Library names are extracted from these special records by the
Open Watcom Linker. When unresolved references remain after
processing all object modules specified in linker "FILE" directives,
these default libraries are searched after all libraries specified in
linker "LIBRARY" directives have been searched.

The "lib" form of this pragma offers the same features as the
"library" pragma. See the section entitled "Using Pragmas to
Specify Default Libraries" on page 174 for more information.

"comment_string" is an optional string literal that provides additional information for some
comment types.

Consider the following example.

#pragma comment (lib, "mylib");

8.7 The DATA_SEG Pragma

The "data_seg" pragma can be used to specify the name of the segment into which data is to
be placed. The following describes the form of the "data_seg" pragma.

The DATA_SEG Pragma 177

16-bit Topics#pragmadataseg(seg_name [, class_name]) [;]

where description:

seg_name is the name of the data segment and may be enclosed in quotes. Also,segname may be a macro as in:
 #definesegname"MYDATASEG"#pragmadataseg(segname);

class_name is the optional class name of the data segment and may be enclosed in quotes.
Also,classname may be a macro as in:

 #defineclassname"MYCLASS"#pragmadataseg("MYDATASEG",classname);
Consider the following example.

 #pragmadataseg(mydata);
static int i;
static int j;

The data for i and j will be placed in the segmentmydata.
To return to the default segment, do not specify any string between the opening and closing
parenthesis.

 #pragmadataseg();
8.8 The DISABLE_MESSAGE Pragma (C Only)

The "disable_message" pragma disables the issuance of specified diagnostic messages. The
form of the "disable_message" pragma is as follows.#pragmadisablemessage(msg_num {, msg_num}) [;]

178 The DISABLE_MESSAGE Pragma (C Only)

16-bit Pragmas

where description:

msg_num is the number of the diagnostic message. This number corresponds to the
number issued by the compiler and can be found in the appendix entitled "Open
Watcom C Diagnostic Messages" on page 385. Make sure to strip all leading
zeroes from the message number (to avoid interpretation as an octal constant).

See also the description of "The ENABLE_MESSAGE Pragma (C Only)".

8.9 The DUMP_OBJECT_MODEL Pragma (C++ Only)

The "dump_object_model" pragma causes the C++ compiler to print information about the
object model for an indicated class or an enumeration name to the diagnostics file. For class
names, this information includes the offsets and sizes of fields within the class and within base
classes. For enumeration names, this information consists of a list of all the enumeration
constants with their values.

The general form of the "dump_object_model" pragma is as follows.#pragmadumpobjectmodelclass [;]#pragmadumpobjectmodelenumeration [;]
class ::= a defined C++ class free of errors
enumeration ::= a defined C++ enumeration name

This pragma is designed to be used for information purposes only.

8.10 The ENABLE_MESSAGE Pragma (C Only)

The "enable_message" pragma re-enables the issuance of specified diagnostic messages that
have been previously disabled. The form of the "enable_message" pragma is as follows.#pragmaenablemessage(msg_num {, msg_num}) [;]

The ENABLE_MESSAGE Pragma (C Only) 179

16-bit Topics

where description:

msg_num is the number of the diagnostic message. This number corresponds to the
number issued by the compiler and can be found in the appendix entitled "Open
Watcom C Diagnostic Messages" on page 385. Make sure to strip all leading
zeroes from the message number (to avoid interpretation as an octal constant).

See also the description of "The DISABLE_MESSAGE Pragma (C Only)" on page 178.

8.11 The ENUM Pragma

The "enum" pragma affects the underlying storage-definition for subsequent enum
declarations. The forms of the "enum" pragma are as follows.

#pragma enum int [;]
#pragma enum minimum [;]
#pragma enum original [;]
#pragma enum pop [;]

where description:

int Make int the underlying storage definition (same as the "ei" compiler option).

minimum Minimize the underlying storage definition (same as not specifying the "ei"
compiler option).

original Reset back to the original compiler option setting (i.e., what was or was not
specified on the command line).

pop Restore the previous setting.

The first three forms all push the previous setting before establishing the new setting.

180 The ENUM Pragma

16-bit Pragmas

8.12 The ERROR Pragma

The "error" pragma can be used to issue an error message with the specified text. The
following describes the form of the "error" pragma.

#pragma error "error text" [;]

where description:

"error text" is the text of the message that you wish to display.

You should use the ISO #error directive rather than this pragma. This pragma is provided for
compatibility with legacy code. The following is an example.

 #ifdefined(386)
...#elseifdefined(86)
...

#else#pragmaerror("neither386or86defined");
#endif

8.13 The EXTREF Pragma

The "extref" pragma is used to generate a reference to an external function or data item. The
form of the "extref" pragma is as follows.

#pragma extref name [;]

where description:

name is the name of an external function or data item. It must be declared to be an
external function or data item before the pragma is encountered. In C++, when
name is a function, it must not be overloaded.

This pragma causes an external reference for the function or data item to be emitted into the
object file even if that function or data item is not referenced in the module. The external

The EXTREF Pragma 181

16-bit Topics

reference will cause the linker to include the module containing that name in the linked
program or DLL.

This is useful for debugging since you can cause debugging routines (callable from within
debugger) to be included into a program or DLL to be debugged.

In C++, you can also force constructors and/or destructors to be called for a data item without
necessarily referencing the data item anywhere in your code.

8.14 The FUNCTION Pragma

Certain functions, such as those listed in the description of the "oi" and "om" options, have
intrinsic forms. These functions are special functions that are recognized by the compiler and
processed in a special way. For example, the compiler may choose to generate in-line code
for the function. The intrinsic attribute for these special functions is set by specifying the "oi"
or "om" option or using an "intrinsic" pragma. The "function" pragma can be used to remove
the intrinsic attribute for a specified list of functions.

The following describes the form of the "function" pragma.

#pragma function (fn {, fn}) [;]

where description:

fn is the name of a function.

Suppose the following source code was compiled using the "om" option so that when one of
the special math functions is referenced, the intrinsic form will be used. In our example, we
have referenced the function sin which does have an intrinsic form. By specifying sin in a
"function" pragma, the intrinsic attribute will be removed, causing the function sin to be
treated as a regular user-defined function.

#include <math.h>
#pragma function(sin);

double test(double x)
{

return(sin(x));
}

182 The FUNCTION Pragma

16-bit Pragmas

8.15 Setting Priority of Static Data Initialization (C++
Only)

The "initialize" pragma sets the priority for initialization of static data in the file. This priority
only applies to initialization of static data that requires the execution of code. For example,
the initialization of a class that contains a constructor requires the execution of the
constructor. Note that if the sequence in which initialization of static data in your program
takes place has no dependencies, the "initialize" pragma need not be used.

The general form of the "initialize" pragma is as follows.

#pragma initialize [before | after] priority [;]

priority ::= n | library | program

where description:

n is a number representing the priority and must be in the range 0-255. The larger
the priority, the later the point at which initialization will occur.

Priorities in the range 0-20 are reserved for the C++ compiler. This is to ensure that proper
initialization of the C++ run-time system takes place before the execution of your program.
The "library" keyword represents a priority of 32 and can be used for class libraries that
require initialization before the program is initialized. The "program" keyword represents a
priority of 64 and is the default priority for any compiled code. Specifying "before" adjusts
the priority by subtracting one. Specifying "after" adjusts the priority by adding one.

A source file containing the following "initialize" pragma specifies that the initialization of
static data in the file will take place before initialization of all other static data in the program
since a priority of 63 will be assigned.

Example:
#pragma initialize before program

If we specify "after" instead of "before", the initialization of the static data in the file will
occur after initialization of all other static data in the program since a priority of 65 will be
assigned.

Note that the following is equivalent to the "before" example

Setting Priority of Static Data Initialization (C++ Only) 183

16-bit Topics

Example:
#pragma initialize 63

and the following is equivalent to the "after" example.

Example:
#pragma initialize 65

The use of the "before", "after", and "program" keywords are more descriptive in the intent of
the pragmas.

It is recommended that a priority of 32 (the priority used when the "library" keyword is
specified) be used when developing class libraries. This will ensure that initialization of static
data defined by the class library will take place before initialization of static data defined by
the program. The following "initialize" pragma can be used to achieve this.

Example:
#pragma initialize library

8.16 The INLINE_DEPTH Pragma (C++ Only)

When an in-line function is called, the function call may be replaced by the in-line expansion
for that function. This in-line expansion may include calls to other in-line functions which
can also be expanded. The "inline_depth" pragma can be used to set the number of times this
expansion of in-line functions will occur for a call.

The form of the "inline_depth" pragma is as follows.#pragmainlinedepth[(] n [)] [;]

where description:

n is the depth of expansion. If n is 0, no expansion will occur. If n is 1, only the
original call is expanded. If n is 2, the original call and the in-line functions
invoked by the original function will be expanded. The default value for n is 3.
The maximum value for n is 255. Note that no expansion of recursive in-line
functions occur unless enabled using the "inline_recursion" pragma.

184 The INLINE_DEPTH Pragma (C++ Only)

16-bit Pragmas

8.17 The INLINE_RECURSION Pragma (C++ Only)

The "inline_recursion" pragma controls the recursive expansion of inline functions. The form
of the "inline_recursion" pragma is as follows.#pragmainlinerecursion[(] on | off [)] [;]

Specifying "on" will enable expansion of recursive inline functions. The depth of expansion
is specified by the "inline_depth" pragma. The default depth is 3. Specifying "off" suppresses
expansion of recursive inline functions. This is the default.

8.18 The INTRINSIC Pragma

Certain functions, those listed in the description of the "oi" option, have intrinsic forms.
These functions are special functions that are recognized by the compiler and processed in a
special way. For example, the compiler may choose to generate in-line code for the function.
The intrinsic attribute for these special functions is set by specifying the "oi" option or using
an "intrinsic" pragma.

The following describes the form of the "intrinsic" pragma.

#pragma intrinsic (fn {, fn}) [;]

where description:

fn is the name of a function.

Suppose the following source code was compiled without using the "oi" option so that no
function had the intrinsic attribute. If we wanted the intrinsic form of the sin function to be
used, we could specify the function in an "intrinsic" pragma.

#include <math.h>
#pragma intrinsic(sin);

double test(double x)
{

return(sin(x));
}

The INTRINSIC Pragma 185

16-bit Topics

8.19 The MESSAGE Pragma

The "message" pragma can be used to issue a message with the specified text to the standard
output without terminating compilation. The following describes the form of the "message"
pragma.

#pragma message ("message text") [;]

where description:

"message text" is the text of the message that you wish to display.

The following is an example.
 #ifdefined(386)

...
#else
#pragma message ("assuming 16-bit compile");
#endif

8.20 The ONCE Pragma

The "once" pragma can be used to indicate that the file which contains this pragma should
only be opened and processed "once". The following describes the form of the "once"
pragma.

#pragma once [;]

Assume that the file "foo.h" contains the following text.

186 The ONCE Pragma

16-bit Pragmas

Example:#ifndefFOOHINCLUDED#defineFOOHINCLUDED
#pragma once

.

.

.
#endif

The first time that the compiler processes "foo.h" and encounters the "once" pragma, it
records the file’s name. Subsequently, whenever the compiler encounters a #include
statement that refers to "foo.h", it will not open the include file again. This can help speed up
processing of #include files and reduce the time required to compile an application.

8.21 The PACK Pragma

The "pack" pragma can be used to control the way in which structures are stored in memory.
There are 4 forms of the "pack" pragma.

The following form of the "pack" pragma can be used to change the alignment of structures
and their fields in memory.

#pragma pack (n) [;]

where description:

n is 1, 2, 4, 8 or 16 and specifies the method of alignment.

The alignment of structure members is described in the following table. If the size of the
member is 1, 2, 4, 8 or 16, the alignment is given for each of the "zp" options. If the member
of the structure is an array or structure, the alignment is described by the row "x".

zp1 zp2 zp4 zp8 zp16

sizeof(member) \---------------------------------------
1 | 0 0 0 0 0
2 | 0 2 2 2 2
4 | 0 2 4 4 4
8 | 0 2 4 8 8
16 | 0 2 4 8 16
x | aligned to largest member

The PACK Pragma 187

16-bit Topics

An alignment of 0 means no alignment, 2 means word boundary, 4 means doubleword
boundary, etc. If the largest member of structure "x" is 1 byte then "x" is not aligned. If the
largest member of structure "x" is 2 bytes then "x" is aligned according to row 2. If the largest
member of structure "x" is 4 bytes then "x" is aligned according to row 4. If the largest
member of structure "x" is 8 bytes then "x" is aligned according to row 8. If the largest
member of structure "x" is 16 bytes then "x" is aligned according to row 16.

If no value is specified in the "pack" pragma, a default value of 2 is used. Note that the
default value can be changed with the "zp" Open Watcom C/C++ compiler command line
option.

The following form of the "pack" pragma can be used to save the current alignment amount
on an internal stack.

#pragma pack (push) [;]

The following form of the "pack" pragma can be used to save the current alignment amount
on an internal stack and set the current alignment.

#pragma pack (push, number) [;]

The following form of the "pack" pragma can be used to restore the previous alignment
amount from an internal stack.

#pragma pack (pop) [;]

8.22 The READ_ONLY_FILE Pragma

Explicit listing of dependencies in a makefile can often be tedious in the development and
maintenance phases of a project. The Open Watcom C/C++ compiler will insert dependency
information into the object file as it processes source files so that a complete snapshot of the
files necessary to build the object file are recorded. The "read_only_file" pragma can be used
to prevent the name of the source file that includes it from being included in the dependency
information that is written to the object file.

188 The READ_ONLY_FILE Pragma

16-bit Pragmas

This pragma is commonly used in system header files since they change infrequently (and,
when they do, there should be no impact on source files that have included them).

The form of the "read_only_file" pragma follows.#pragmareadonlyfile[;]

For more information on make dependencies, see the section entitled "Automatic Dependency
Detection (.AUTODEPEND)" in the Open Watcom C/C++ Tools User’s Guide.

8.23 The TEMPLATE_DEPTH Pragma (C++ Only)

The "template_depth" pragma provides a hard limit for the amount of nested template
expansions allowed so that infinite expansion can be detected.

The form of the "template_depth" pragma is as follows.#pragmatemplatedepth[(] n [)] [;]

where description:

n is the depth of expansion. If the value of n is less than 2, if will default to 2. If
n is not specified, a warning message will be issued and the default value for n
will be 100.

The following example of recursive template expansion illustrates why this pragma can be
useful.

Example:#pragmatemplatedepth(10);
template <class T>
struct S {

S<T*> x;
};

S<char> v;

The TEMPLATE_DEPTH Pragma (C++ Only) 189

16-bit Topics

8.24 The WARNING Pragma (C++ Only)

The "warning" pragma sets the level of warning messages. The form of the "warning" pragma
is as follows.

#pragma warning msg_num level [;]

where description:

msg_num is the number of the warning message. This number corresponds to the number
issued by the compiler and can be found in the appendix entitled "Open Watcom
C++ Diagnostic Messages" on page 427. Ifmsgnum is "*", the level of all
warning messages is changed to the specified level. Make sure to strip all
leading zeroes from the message number (to avoid interpretation as an octal
constant).

level is a number from 0 to 9 and represents the level of the warning message. When
a value of zero is specified, the warning becomes an error.

8.25 Auxiliary Pragmas

The following sections describe the capabilities provided by auxiliary pragmas.

8.25.1 Specifying Symbol Attributes

Auxiliary pragmas are used to describe attributes that affect code generation. Initially, the
compiler defines a default set of attributes. Each auxiliary pragma refers to one of the
following.

1. a symbol (such as a variable or function)
2. a type definition that resolves to a function type
3. the default set of attributes defined by the compiler

When an auxiliary pragma refers to a particular symbol, a copy of the current set of default
attributes is made and merged with the attributes specified in the auxiliary pragma. The
resulting attributes are assigned to the specified symbol and can only be changed by another
auxiliary pragma that refers to the same symbol.

190 Auxiliary Pragmas

16-bit Pragmas

An example of a type definition that resolves to a function type is the following.
 typedefvoid(*functype)();

When an auxiliary pragma refers to a such a type definition, a copy of the current set of
default attributes is made and merged with the attributes specified in the auxiliary pragma.
The resulting attributes are assigned to each function whose type matches the specified type
definition.

When "default" is specified instead of a symbol name, the attributes specified by the auxiliary
pragma change the default set of attributes. The resulting attributes are used by all symbols
that have not been specifically referenced by a previous auxiliary pragma.

Note that all auxiliary pragmas are processed before code generation begins. Consider the
following example.

code in which symbol x is referenced#pragmaauxy<attrs1>;
code in which symbol y is referenced
code in which symbol z is referenced#pragmaauxdefault<attrs2>;#pragmaauxx<attrs3>;

Auxiliary attributes are assigned to x, y and z in the following way.

1. Symbol x is assigned the initial default attributes merged with the attributes
specified by<attrs2> and<attrs3>.

2. Symbol y is assigned the initial default attributes merged with the attributes
specified by<attrs1>.

3. Symbol z is assigned the initial default attributes merged with the attributes
specified by<attrs2>.

8.25.2 Alias Names

When a symbol referred to by an auxiliary pragma includes an alias name, the attributes of the
alias name are also assumed by the specified symbol.

There are two methods of specifying alias information. In the first method, the symbol
assumes only the attributes of the alias name; no additional attributes can be specified. The
second method is more general since it is possible to specify an alias name as well as

Auxiliary Pragmas 191

16-bit Topics

additional auxiliary information. In this case, the symbol assumes the attributes of the alias
name as well as the attributes specified by the additional auxiliary information.

The simple form of the auxiliary pragma used to specify an alias is as follows.

#pragma aux (sym, alias) [;]

where description:

sym is any valid C/C++ identifier.

alias is the alias name and is any valid C/C++ identifier.

Consider the following example.
 #pragmaauxpushargsparm[];#pragmaaux(rtn,pushargs);

The routine rtn assumes the attributes of the alias namepushargs which specifies that
the arguments to rtn are passed on the stack.

Let us look at an example in which the symbol is a type definition.
 typedefvoid(functype)(int);#pragmaauxpushargsparm[];#pragmaaux(functype,pushargs);externfunctypertn1;externfunctypertn2;

The first auxiliary pragma defines an alias name calledpushargs that specifies the
mechanism to be used to pass arguments. The mechanism is to pass all arguments on the
stack. The second auxiliary pragma associates the attributes specified in the first pragma with
the type definition
functype. Since rtn1 and rtn2 are of type

functype,
arguments to either of those functions will be passed on the stack.

The general form of an auxiliary pragma that can be used to specify an alias is as follows.

192 Auxiliary Pragmas

16-bit Pragmas

#pragma aux (alias) sym aux_attrs [;]

where description:

alias is the alias name and is any valid C/C++ identifier.

sym is any valid C/C++ identifier.

aux_attrs are attributes that can be specified with the auxiliary pragma.

Consider the following example.
 #pragmaauxMSC"*" \

parm caller [] \
value struct float struct routine [ax]\
modify [ax bx cx dx es];#pragmaaux(MSC)rtn1;#pragmaaux(MSC)rtn2;#pragmaaux(MSC)rtn3;

The routines rtn1, rtn2 and rtn3 assume the same attributes as the alias nameMSC
which defines the calling convention used by the Microsoft C compiler. Whenever calls are
made to rtn1, rtn2 and rtn3, the Microsoft C calling convention will be used.

Note that if the attributes ofMSC change, only one pragma needs to be changed. If we had
not used an alias name and specified the attributes in each of the three pragmas for rtn1,
rtn2 and rtn3, we would have to change all three pragmas. This approach also reduces
the amount of memory required by the compiler to process the source file.

WARNING! The alias nameMSC is just another symbol. IfMSC appeared in your
source code, it would assume the attributes specified in the pragma forMSC.

8.25.3 Predefined Aliases

A number of symbols are predefined by the compiler with a set of attributes that describe a
particular calling convention. These symbols can be used as aliases. The following is a list of
these symbols.

Auxiliary Pragmas 193

16-bit Topics

__cdecl cdecl or cdecl defines the calling convention used by Microsoft
compilers.

__fastcall
fastcall or fastcall defines the calling convention used by Microsoft

compilers.

__fortran
fortran or fortran defines the calling convention used by Open

Watcom FORTRAN compilers.

__pascal pascal or pascal defines the calling convention used by OS/2 1.x and
Windows 3.x API functions.

__stdcall stdcall or stdcall defines the calling convention used by Microsoft
compilers.

__watcall watcall or watcall defines the calling convention used by Open
Watcom compilers.

The following describes the attributes of the above alias names.

8.25.3.1 Predefined "__cdecl" Alias
 #pragmaauxcdecl"*"\

parm caller [] \
value struct float struct routine [ax] \
modify [ax bx cx dx es]

Notes:

1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument is
pushed first. The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure
is returned, the called routine allocates space for the return value and returns a
pointer to the return value in register AX.

4. Registers AX, BX, CX and DX, and segment register ES are not saved and restored
when a call is made.

194 Auxiliary Pragmas

16-bit Pragmas

8.25.3.2 Predefined "__pascal" Alias
 #pragmaauxpascal"̂"\

parm reverse routine [] \
value struct float struct caller [] \
modify [ax bx cx dx es]

Notes:

1. All symbols are mapped to upper case.

2. Arguments are pushed on the stack in reverse order. That is, the first argument is
pushed first, the second argument is pushed next, and so on. The routine being
called will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure
is returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon
returning from the call, register AX will contain address of the space allocated for
the return value.

4. Registers AX, BX, CX and DX, and segment register ES are not saved and restored
when a call is made.

8.25.3.3 Predefined "__watcall" Alias
 #pragmaauxwatcall"*"\

parm routine [ax bx cx dx] \
value struct caller

Notes:

1. Symbol names are followed by an underscore character.

2. Arguments are processed from left to right. The leftmost arguments are passed in
registers and the rightmost arguments are passed on the stack (if the registers used
for argument passing have been exhausted). Arguments that are passed on the
stack are pushed from right to left. The calling routine will remove the arguments
if any were pushed on the stack.

3. When a structure is returned, the caller allocates space on the stack. The address of
the allocated space is put into SI register. The called routine then places the return

Auxiliary Pragmas 195

16-bit Topics

value there. Upon returning from the call, register AX will contain address of the
space allocated for the return value.

4. Floating-point values are returned using 80x86 registers ("fpc" option) or using
80x87 floating-point registers ("fpi" or "fpi87" option).

5. All registers must be preserved by the called routine.

8.25.4 Alternate Names for Symbols

The following form of the auxiliary pragma can be used to describe the mapping of a symbol
from its source form to its object form.

#pragma aux sym obj_name [;]

where description:

sym is any valid C/C++ identifier.

obj_name is any character string enclosed in double quotes.

When specifyingobjname, some characters have a special meaning:

where description:

* is unmodified symbol name

^ is symbol name converted to uppercase

! is symbol name converted to lowercase

is a placeholder for "@nnn", where nnn is size of all function parameters on the
stack.

\ next character is treated as literal

Several examples of source to object form symbol name translation follow:

In the following example, the name "MyRtn" will be replaced by "MyRtn_" in the object file.
 #pragmaauxMyRtn"*";

196 Auxiliary Pragmas

16-bit Pragmas

This is the default for all function names.

In the following example, the name "MyVar" will be replaced by "_MyVar" in the object file.
 #pragmaauxMyVar"*";

This is the default for all variable names.

In the following example, the lower case version "myrtn" will be placed in the object file.

#pragma aux MyRtn "!";

In the following example, the upper case version "MYRTN" will be placed in the object file.

#pragma aux MyRtn "^";

In the following example, the name "MyRtn" will be replaced by "_MyRtn@nnn" in the
object file. "nnn" represents the size of all function parameters.

 #pragmaauxMyRtn"*#";
In the following example, the name "MyRtn" will be replaced by "_MyRtn#" in the object
file.

 #pragmaauxMyRtn"*\#";
The default mapping for all symbols can also be changed as illustrated by the following
example.

 #pragmaauxdefault"*";
The above auxiliary pragma specifies that all names will be prefixed and suffixed by an
underscore character (’_’).

8.25.5 Describing Calling Information

The following form of the auxiliary pragma can be used to describe the way a function is to be
called.

Auxiliary Pragmas 197

16-bit Topics

#pragma aux sym far [;]
or

#pragma aux sym near [;]
or

#pragma aux sym = in_line [;]

in_line ::= { const | (seg id) | (offset id) | (reloff id)
| (float fpinst) | "asm" }

where description:

sym is a function name.

const is a valid C/C++ integer constant.

id is any valid C/C++ identifier.

fpinst is a sequence of bytes that forms a valid 80x87 instruction. The keyword float
must precede fpinst so that special fixups are applied to the 80x87
instruction.

seg specifies the segment of the symbol id.

offset specifies the offset of the symbol id.

reloff specifies the relative offset of the symbol id for near control transfers.

asm is an assembly language instruction or directive.

In the following example, Open Watcom C/C++ will generate a far call to the function
myrtn.

#pragma aux myrtn far;

Note that this overrides the calling sequence that would normally be generated for a particular
memory model. In other words, a far call will be generated even if you are compiling for a
memory model with a small code model.

In the following example, Open Watcom C/C++ will generate a near call to the function
myrtn.

#pragma aux myrtn near;

198 Auxiliary Pragmas

16-bit Pragmas

Note that this overrides the calling sequence that would normally be generated for a particular
memory model. In other words, a near call will be generated even if you are compiling for a
memory model with a big code model.

In the following DOS example, Open Watcom C/C++ will generate the sequence of bytes
following the "=" character in the auxiliary pragma whenever a call to mode4 is encountered.
mode4 is called an in-line function.

void mode4(void);
#pragma aux mode4 = \

0xb4 0x00 /* mov AH,0 */ \
0xb0 0x04 /* mov AL,4 */ \
0xcd 0x10 /* int 10H */ \
modify [AH AL];

The sequence in the above DOS example represents the following lines of assembly language
instructions.

mov AH,0 ; select function "set mode"
mov AL,4 ; specify mode (mode 4)
int 10H ; BIOS video call

The above example demonstrates how to generate BIOS function calls in-line without writing
an assembly language function and calling it from your C/C++ program. The C prototype for
the function mode4 is not necessary but is included so that we can take advantage of the
argument type checking provided by Open Watcom C/C++.

The following DOS example is equivalent to the above example but mnemonics for the
assembly language instructions are used instead of the binary encoding of the assembly
language instructions.

void mode4(void);
#pragma aux mode4 = \

"mov AH,0", \
"mov AL,4", \
"int 10H" \
modify [AH AL];

If a sequence of in-line assembly language instructions contains 80x87 floating-point
instructions, each floating-point instruction must be preceded by "float". Note that this is only
required if you have specified the "fpi" compiler option; otherwise it will be ignored.

The following example generates the 80x87 "square root" instruction.

Auxiliary Pragmas 199

16-bit Topics

double mysqrt(double);
#pragma aux mysqrt parm [8087] = \

float 0xd9 0xfa /* fsqrt */;

A sequence of in-line assembly language instructions may contain symbolic references. In the
following example, a near call to the function myalias is made whenever myrtn is called.

extern void myalias(void);
void myrtn(void);
#pragma aux myrtn = \

0xe8 reloff myalias /* near call */;

In the following example, a far call to the function myalias is made whenever myrtn is
called.

extern void myalias(void);
void myrtn(void);
#pragma aux myrtn = \

0x9a offset myalias seg myalias /* far call */;

8.25.5.1 Loading Data Segment Register

An application may have been compiled so that the segment register DS does not contain the
segment address of the default data segment (group "DGROUP"). This is usually the case if
you are using a large data memory model. Suppose you wish to call a function that assumes
that the segment register DS contains the segment address of the default data segment. It
would be very cumbersome if you were forced to compile your application so that the
segment register DS contained the default data segment (a small data memory model).

The following form of the auxiliary pragma will cause the segment register DS to be loaded
with the segment address of the default data segment before calling the specified function.

#pragma aux sym parm loadds [;]

where description:

sym is a function name.

Alternatively, the following form of the auxiliary pragma will cause the segment register DS
to be loaded with the segment address of the default data segment as part of the prologue
sequence for the specified function.

200 Auxiliary Pragmas

16-bit Pragmas

#pragma aux sym loadds [;]

where description:

sym is a function name.

8.25.5.2 Defining Exported Symbols in Dynamic Link Libraries

An exported symbol in a dynamic link library is a symbol that can be referenced by an
application that is linked with that dynamic link library. Normally, symbols in dynamic link
libraries are exported using the Open Watcom Linker "EXPORT" directive. An alternative
method is to use the following form of the auxiliary pragma.

#pragma aux sym export [;]

where description:

sym is a function name.

8.25.5.3 Defining Windows Callback Functions

When compiling a Microsoft Windows application, you must use the "zW" option so that
special prologue/epilogue sequences are generated. Furthermore, callback functions require
larger prologue/epilogue sequences than those generated when the "zW" compiler option is
specified. The following form of the auxiliary pragma will cause a callback
prologue/epilogue sequence to be generated for a callback function when compiled using the
"zW" option.

#pragma aux sym export [;]

where description:

sym is a callback function name.

Auxiliary Pragmas 201

16-bit Topics

Alternatively, the "zw" compiler option can be used to generate callback prologue/epilogue
sequences. However, all functions contained in a module compiled using the "zw" option will
have a callback prologue/epilogue sequence even if the functions are not callback functions.

8.25.5.4 Forcing a Stack Frame

Normally, a function contains a stack frame if arguments are passed on the stack or an
automatic variable is allocated on the stack. No stack frame will be generated if the above
conditions are not satisfied. The following form of the auxiliary pragma will force a stack
frame to be generated under any circumstance.

#pragma aux sym frame [;]

where description:

sym is a function name.

8.25.6 Describing Argument Information

Using auxiliary pragmas, you can describe the calling convention that Open Watcom C/C++
is to use for calling functions. This is particularly useful when interfacing to functions that
have been compiled by other compilers or functions written in other programming languages.

The general form of an auxiliary pragma that describes argument passing is the following.

#pragma aux sym parm { pop_info | reverse | {reg_set} } [;]

pop_info ::= caller | routine

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used
for argument passing. A register set is a list of registers separated by spaces and
enclosed in square brackets.

202 Auxiliary Pragmas

16-bit Pragmas

8.25.6.1 Passing Arguments in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be
used to pass arguments to a particular function.

#pragma aux sym parm {reg_set} [;]

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used
for argument passing. A register set is a list of registers separated by spaces and
enclosed in square brackets.

Register sets establish a priority for register allocation during argument list processing.
Register sets are processed from left to right. However, within a register set, registers are
chosen in any order. Once all register sets have been processed, any remaining arguments are
pushed on the stack.

Note that regardless of the register sets specified, only certain combinations of registers will
be selected for arguments of a particular type.

Note that arguments of type float and double are always pushed on the stack when the "fpi"
or "fpi87" option is used.

double Arguments of type double can only be passed in the following register
combination: AX:BX:CX:DX. For example, if the following register set was
specified for a routine having an argument of type double,

[AX BX SI DI]

the argument would be pushed on the stack since a valid register combination
for 8-byte arguments is not contained in the register set. Note that this method
for passing arguments of type double is supported only when the "fpc" option is
used. Note that this argument passing method does not include the passing of
8-byte structures.

far pointer A far pointer can only be passed in one of the following register pairs: DX:AX,
CX:BX, CX:AX, CX:SI, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX,
CX:DX, DX:DI, DI:SI, SI:BX, BX:AX, DS:CX, DS:DX, DS:DI, DS:SI,

Auxiliary Pragmas 203

16-bit Topics

DS:BX, DS:AX, ES:CX, ES:DX, ES:DI, ES:SI, ES:BX or ES:AX. For
example, if a far pointer is passed to a function with the following register set,

[ES BP]

the argument would be pushed on the stack since a valid register combination
for a far pointer is not contained in the register set.

long int, float
The only registers that will be assigned to 4-byte arguments (e.g., arguments of
type long int,) are: DX:AX, CX:BX, CX:AX, CX:SI, DX:BX, DI:AX, CX:DI,
DX:SI, DI:BX, SI:AX, CX:DX, DX:DI, DI:SI, SI:BX and BX:AX. For
example, if the following register set was specified for a routine with one
argument of type long int,

[ES DI]

the argument would be pushed on the stack since a valid register combination
for 4-byte arguments is not contained in the register set. Note that this argument
passing method includes 4-byte structures. Note that this argument passing
method includes arguments of type float but only when the "fpc" option is used.

int The only registers that will be assigned to 2-byte arguments (e.g., arguments of
type int) are: AX, BX, CX, DX, SI and DI. For example, if the following
register set was specified for a routine with one argument of type int,

[BP]

the argument would be pushed on the stack since a valid register combination
for 2-byte arguments is not contained in the register set.

char Arguments whose size is 1 byte (e.g., arguments of type char) are promoted to 2
bytes and are then assigned registers as if they were 2-byte arguments.

others Arguments that do not fall into one of the above categories cannot be passed in
registers and are pushed on the stack. Once an argument has been assigned a
position on the stack, all remaining arguments will be assigned a position on the
stack even if all register sets have not yet been exhausted.

204 Auxiliary Pragmas

16-bit Pragmas

Notes:

1. The default register set is [AX BX CX DX].

2. Specifying registers AH and AL is equivalent to specifying register AX.
Specifying registers DH and DL is equivalent to specifying register DX.
Specifying registers CH and CL is equivalent to specifying register CX. Specifying
registers BH and BL is equivalent to specifying register BX.

3. If you are compiling for a memory model with a small data model, or the "zdp"
compiler option is specified, any register combination containing register DS
becomes illegal. In a small data model, segment register DS must remain
unchanged as it points to the program’s data segment. Note that the "zdf" compiler
option can be used to specify that register DS does not contain that segment address
of the program’s data segment. In this case, register combinations containing
register DS are legal.

Consider the following example.

#pragma aux myrtn parm [ax bx cx dx] [bp si];

Suppose myrtn is a routine with 3 arguments each of type long int.

1. The first argument will be passed in the register pair DX:AX.
2. The second argument will be passed in the register pair CX:BX.
3. The third argument will be pushed on the stack since BP:SI is not a valid register

pair for arguments of type long int.

It is possible for registers from the second register set to be used before registers from the first
register set are used. Consider the following example.

#pragma aux myrtn parm [ax bx cx dx] [si di];

Suppose myrtn is a routine with 3 arguments, the first of type int and the second and third of
type long int.

1. The first argument will be passed in the register AX.
2. The second argument will be passed in the register pair CX:BX.
3. The third argument will be passed in the register set DI:SI.

Note that registers are no longer selected from a register set after registers are selected from
subsequent register sets, even if all registers from the original register set have not been
exhausted.

Auxiliary Pragmas 205

16-bit Topics

An empty register set is permitted. All subsequent register sets appearing after an empty
register set are ignored; all remaining arguments are pushed on the stack.

Notes:

1. If a single empty register set is specified, all arguments are passed on the stack.

2. If no register set is specified, the default register set [AX BX CX DX] is used.

8.25.6.2 Forcing Arguments into Specific Registers

It is possible to force arguments into specific registers. Suppose you have a function, say
"mycopy", that copies data. The first argument is the source, the second argument is the
destination, and the third argument is the length to copy. If we want the first argument to be
passed in the register SI, the second argument to be passed in register DI and the third
argument to be passed in register CX, the following auxiliary pragma can be used.

void mycopy(char near *, char *, int);
#pragma aux mycopy parm [SI] [DI] [CX];

Note that you must be aware of the size of the arguments to ensure that the arguments get
passed in the appropriate registers.

8.25.6.3 Passing Arguments to In-Line Functions

For functions whose code is generated by Open Watcom C/C++ and whose argument list is
described by an auxiliary pragma, Open Watcom C/C++ has some freedom in choosing how
arguments are assigned to registers. Since the code for in-line functions is specified by the
programmer, the description of the argument list must be very explicit. To achieve this, Open
Watcom C/C++ assumes that each register set corresponds to an argument. Consider the
following DOS example of an in-line function called scrollactivepgup.

void scrollactivepgup(char,char,char,char,char,char);
#pragma aux scrollactivepgup = \

"mov AH,6" \
"int 10h" \
parm [ch] [cl] [dh] [dl] [al] [bh] \
modify [ah];

The BIOS video call to scroll the active page up requires the following arguments.

1. The row and column of the upper left corner of the scroll window is passed in
registers CH and CL respectively.

206 Auxiliary Pragmas

16-bit Pragmas

2. The row and column of the lower right corner of the scroll window is passed in
registers DH and DL respectively.

3. The number of lines blanked at the bottom of the window is passed in register AL.

4. The attribute to be used on the blank lines is passed in register BH.

When passing arguments, Open Watcom C/C++ will convert the argument so that it fits in the
register(s) specified in the register set for that argument. For example, in the above example,
if the first argument to scrollactivepgup was called with an argument whose type was
int, it would first be converted to char before assigning it to register CH. Similarly, if an
in-line function required its argument in register pair DX:AX and the argument was of type
short int, the argument would be converted to long int before assigning it to register pair
DX:AX.

In general, Open Watcom C/C++ assigns the following types to register sets.

1. A register set consisting of a single 8-bit register (1 byte) is assigned a type of
unsigned char.

2. A register set consisting of a single 16-bit register (2 bytes) is assigned a type of
unsigned short int.

3. A register set consisting of two 16-bit registers (4 bytes) is assigned a type of
unsigned long int.

4. A register set consisting of four 16-bit registers (8 bytes) is assigned a type of
double.

8.25.6.4 Removing Arguments from the Stack

The following form of the auxiliary pragma specifies who removes from the stack arguments
that were pushed on the stack.

#pragma aux sym parm (caller | routine) [;]

Auxiliary Pragmas 207

16-bit Topics

where description:

sym is a function name.

"caller" specifies that the caller will pop the arguments from the stack; "routine" specifies that
the called routine will pop the arguments from the stack. If "caller" or "routine" is omitted,
"routine" is assumed unless the default has been changed in a previous auxiliary pragma, in
which case the new default is assumed.

8.25.6.5 Passing Arguments in Reverse Order

The following form of the auxiliary pragma specifies that arguments are passed in the reverse
order.

#pragma aux sym parm reverse [;]

where description:

sym is a function name.

Normally, arguments are processed from left to right. The leftmost arguments are passed in
registers and the rightmost arguments are passed on the stack (if the registers used for
argument passing have been exhausted). Arguments that are passed on the stack are pushed
from right to left.

When arguments are reversed, the rightmost arguments are passed in registers and the leftmost
arguments are passed on the stack (if the registers used for argument passing have been
exhausted). Arguments that are passed on the stack are pushed from left to right.

Reversing arguments is most useful for functions that require arguments to be passed on the
stack in an order opposite from the default. The following auxiliary pragma demonstrates
such a function.

#pragma aux rtn parm reverse [];

208 Auxiliary Pragmas

16-bit Pragmas

8.25.7 Describing Function Return Information

Using auxiliary pragmas, you can describe the way functions are to return values. This is
particularly useful when interfacing to functions that have been compiled by other compilers
or functions written in other programming languages.

The general form of an auxiliary pragma that describes the way a function returns its value is
the following.

#pragma aux sym value {no8087 | reg_set | struct_info} [;]
struct_info ::= struct {float | struct | (routine | caller) | reg_set}

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used
for argument passing. A register set is a list of registers separated by spaces and
enclosed in square brackets.

8.25.7.1 Returning Function Values in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be
used to return a function’s value.

#pragma aux sym value reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

Note that the method described below for returning values of type float or double is
supported only when the "fpc" option is used.

Depending on the type of the return value, only certain registers are allowed in reg_set.

Auxiliary Pragmas 209

16-bit Topics

1-byte For 1-byte return values, only the following registers are allowed: AL, AH, DL,
DH, BL, BH, CL or CH. If no register set is specified, register AL will be used.

2-byte For 2-byte return values, only the following registers are allowed: AX, DX, BX,
CX, SI or DI. If no register set is specified, register AX will be used.

4-byte For 4-byte return values (except far pointers), only the following register pairs
are allowed: DX:AX, CX:BX, CX:AX, CX:SI, DX:BX, DI:AX, CX:DI, DX:SI,
DI:BX, SI:AX, CX:DX, DX:DI, DI:SI, SI:BX or BX:AX. If no register set is
specified, registers DX:AX will be used. This form of the auxiliary pragma is
legal for functions of type float when using the "fpc" option only.

far pointer For functions that return far pointers, the following register pairs are allowed:
DX:AX, CX:BX, CX:AX, CX:SI, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX,
SI:AX, CX:DX, DX:DI, DI:SI, SI:BX, BX:AX, DS:CX, DS:DX, DS:DI, DS:SI,
DS:BX, DS:AX, ES:CX, ES:DX, ES:DI, ES:SI, ES:BX or ES:AX. If no
register set is specified, the registers DX:AX will be used.

8-byte For 8-byte return values (including functions of type double), only the following
register combination is allowed: AX:BX:CX:DX. If no register set is specified,
the registers AX:BX:CX:DX will be used. This form of the auxiliary pragma is
legal for functions of type double when using the "fpc" option only.

Notes:

1. An empty register set is not allowed.

2. If you are compiling for a memory model which has a small data model, any of the
above register combinations containing register DS becomes illegal. In a small
data model, segment register DS must remain unchanged as it points to the
program’s data segment.

8.25.7.2 Returning Structures

Typically, structures are not returned in registers. Instead, the caller allocates space on the
stack for the return value and sets register SI to point to it. The called routine then places the
return value at the location pointed to by register SI.

The following form of the auxiliary pragma can be used to specify the register that is to be
used to point to the return value.

210 Auxiliary Pragmas

16-bit Pragmas

#pragma aux sym value struct (caller|routine) reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

"caller" specifies that the caller will allocate memory for the return value. The address of the
memory allocated for the return value is placed in the register specified in the register set by
the caller before the function is called. If an empty register set is specified, the address of the
memory allocated for the return value will be pushed on the stack immediately before the call
and will be returned in register AX by the called routine. It is assumed that the memory for
the return value is allocated from the stack segment (the stack segment is contained in
segment register SS).

"routine" specifies that the called routine will allocate memory for the return value. Upon
returning to the caller, the register specified in the register set will contain the address of the
return value. An empty register set is not allowed.

Only the following registers are allowed in the register set: AX, DX, BX, CX, SI or DI. Note
that in a big data model, the address in the return register is assumed to be in the segment
specified by the value in the SS segment register.

If the size of the structure being returned is 1, 2 or 4 bytes, it will be returned in registers. The
return register will be selected from the register set in the following way.

1. A 1-byte structure will be returned in one of the following registers: AL, AH, DL,
DH, BL, BH, CL or CH. If no register set is specified, register AL will be used.

2. A 2-byte structure will be returned in one of the following registers: AX, DX, BX,
CX, SI or DI. If no register set is specified, register AX will be used.

3. A 4-byte structure will be returned in one of the following register pairs: DX:AX,
CX:BX, CX:AX, CX:SI, DX:BX, DI:AX, CX:DI, DX:SI, DI:BX, SI:AX, CX:DX,
DX:DI, DI:SI, SI:BX or BX:AX. If no register set is specified, register pair
DX:AX will be used.

The following form of the auxiliary pragma can be used to specify that structures whose size
is 1, 2 or 4 bytes are not to be returned in registers. Instead, the caller will allocate space on
the stack for the structure return value and point register SI to it.

Auxiliary Pragmas 211

16-bit Topics

#pragma aux sym value struct struct [;]

where description:

sym is a function name.

8.25.7.3 Returning Floating-Point Data

There are a few ways available for specifying how the value for a function whose type is float
or double is to be returned.

The following form of the auxiliary pragma can be used to specify that function return values
whose type is float or double are not to be returned in registers. Instead, the caller will
allocate space on the stack for the return value and point register SI to it.

#pragma aux sym value struct float [;]

where description:

sym is a function name.

In other words, floating-point values are to be returned in the same way structures are
returned.

The following form of the auxiliary pragma can be used to specify that function return values
whose type is float or double are not to be returned in 80x87 registers when compiling with
the "fpi" or "fpi87" option. Instead, the value will be returned in 80x86 registers. This is the
default behaviour for the "fpc" option. Function return values whose type is float will be
returned in registers DX:AX. Function return values whose type is double will be returned in
registers AX:BX:CX:DX. This is the default method for the "fpc" option.

#pragma aux sym value no8087 [;]

212 Auxiliary Pragmas

16-bit Pragmas

where description:

sym is a function name.

The following form of the auxiliary pragma can be used to specify that function return values
whose type is float or double are to be returned in ST(0) when compiling with the "fpi" or
"fpi87" option. This form of the auxiliary pragma is not legal for the "fpc" option.

#pragma aux sym value [8087] [;]

where description:

sym is a function name.

8.25.8 A Function that Never Returns

The following form of the auxiliary pragma can be used to describe a function that does not
return to the caller.

#pragma aux sym aborts [;]

where description:

sym is a function name.

Consider the following example.

#pragma aux exitrtn aborts;
extern void exitrtn(void);

void rtn()
{

exitrtn();
}

exitrtn is defined to be a function that does not return. For example, it may call exit to
return to the system. In this case, Open Watcom C/C++ generates a "jmp" instruction instead
of a "call" instruction to invoke exitrtn.

Auxiliary Pragmas 213

16-bit Topics

8.25.9 Describing How Functions Use Memory

The following form of the auxiliary pragma can be used to describe a function that does not
modify any memory (i.e., global or static variables) that is used directly or indirectly by the
caller.

#pragma aux sym modify nomemory [;]

where description:

sym is a function name.

Consider the following example.
 #pragmaoff(checkstack);
extern void myrtn(void);

int i = { 1033 };

extern Rtn() {
while(i < 10000) {

i += 383;
}
myrtn();
i += 13143;

};

To compile the above program, "rtn.c", we issue the following command.

C>wcc rtn /oai /d1
C>wpp rtn /oai /d1
C>wcc386 rtn /oai /d1
C>wpp386 rtn /oai /d1

For illustrative purposes, we omit loop optimizations from the list of code optimizations that
we want the compiler to perform. The "d1" compiler option is specified so that the object file
produced by Open Watcom C/C++ contains source line information.

We can generate a file containing a disassembly of rtn.obj by issuing the following
command.

C>wdis rtn /l /s /r

214 Auxiliary Pragmas

16-bit Pragmas

The "s" option is specified so that the listing file produced by the Open Watcom Disassembler
contains source lines taken from rtn.c. The listing file rtn.lst appears as follows.

Module: rtn.cGroup:’DGROUP’CONST,DATASegment:’TEXT’BYTE0026bytes#pragmaoff(checkstack);
extern void MyRtn(void);

int i = { 1033 };

extern Rtn()
{

0000 52
Rtnpush DX

0001 8b 16 00 00 movDX,i
while(i < 10000) {

0005 81 fa 10 27 L1 cmp DX,2710H
0009 7d 06 jge L2

i += 383;
}

000b 81 c2 7f 01 add DX,017fH
000f eb f4 jmp L1

MyRtn();
0011 89 16 00 00 L2 movi,DX
0015 e8 00 00 callMyRtn
0018 8b 16 00 00 movDX,i

i += 13143;
001c 81 c2 57 33 add DX,3357H
0020 89 16 00 00 movi,DX
};

0024 5a pop DX
0025 c3 ret

No disassembly errors

--Segment:’DATA’WORD0002bytes
0000 09 04

i
- ..

No disassembly errors

--

Let us add the following auxiliary pragma to the source file.

#pragma aux myrtn modify nomemory;

Auxiliary Pragmas 215

16-bit Topics

If we compile the source file with the above pragma and disassemble the object file using the
Open Watcom Disassembler, we get the following listing file.

Module: rtn.cGroup:’DGROUP’CONST,DATASegment:’TEXT’BYTE0022bytes#pragmaoff(checkstack);
extern void MyRtn(void);
#pragma aux MyRtn modify nomemory;

int i = { 1033 };

extern Rtn()
{

0000 52
Rtnpush DX

0001 8b 16 00 00 movDX,i
while(i < 10000) {

0005 81 fa 10 27 L1 cmp DX,2710H
0009 7d 06 jge L2

i += 383;
}

000b 81 c2 7f 01 add DX,017fH
000f eb f4 jmp L1

MyRtn();
0011 89 16 00 00 L2 movi,DX
0015 e8 00 00 callMyRtn

i += 13143;
0018 81 c2 57 33 add DX,3357H
001c 89 16 00 00 movi,DX
};

0020 5a pop DX
0021 c3 ret

No disassembly errors

--Segment:’DATA’WORD0002bytes
0000 09 04

i
- ..

No disassembly errors

--

Notice that the value of i is in register DX after completion of the "while" loop. After the call
to myrtn, the value of i is not loaded from memory into a register to perform the final
addition. The auxiliary pragma informs the compiler that myrtn does not modify any

216 Auxiliary Pragmas

16-bit Pragmas

memory (i.e., global or static variables) that is used directly or indirectly by Rtn and hence
register DX contains the correct value of i.

The preceding auxiliary pragma deals with routines that modify memory. Let us consider the
case where routines reference memory. The following form of the auxiliary pragma can be
used to describe a function that does not reference any memory (i.e., global or static variables)
that is used directly or indirectly by the caller.

#pragma aux sym parm nomemory modify nomemory [;]

where description:

sym is a function name.

Notes:

1. You must specify both "parm nomemory" and "modify nomemory".

Let us replace the auxiliary pragma in the above example with the following auxiliary pragma.

#pragma aux myrtn parm nomemory modify nomemory;

If you now compile our source file and disassemble the object file using WDIS, the result is
the following listing file.

Module: rtn.cGroup:’DGROUP’CONST,DATASegment:’TEXT’BYTE001ebytes#pragmaoff(checkstack);
extern void MyRtn(void);
#pragma aux MyRtn parm nomemory modify nomemory;

int i = { 1033 };

Auxiliary Pragmas 217

16-bit Topics

extern Rtn()
{

0000 52
Rtnpush DX

0001 8b 16 00 00 movDX,i
while(i < 10000) {

0005 81 fa 10 27 L1 cmp DX,2710H
0009 7d 06 jge L2

i += 383;
}

000b 81 c2 7f 01 add DX,017fH
000f eb f4 jmp L1

MyRtn();
0011 e8 00 00 L2 callMyRtn

i += 13143;
0014 81 c2 57 33 add DX,3357H
0018 89 16 00 00 movi,DX
};

001c 5a pop DX
001d c3 ret

No disassembly errors

--Segment:’DATA’WORD0002bytes
0000 09 04

i
- ..

No disassembly errors

--

Notice that after completion of the "while" loop we did not have to update i with the value in
register DX before calling myrtn. The auxiliary pragma informs the compiler that myrtn
does not reference any memory (i.e., global or static variables) that is used directly or
indirectly by myrtn so updating i was not necessary before calling myrtn.

8.25.10 Describing the Registers Modified by a Function

The following form of the auxiliary pragma can be used to describe the registers that a
function will use without saving.

#pragma aux sym modify [exact] reg_set [;]

218 Auxiliary Pragmas

16-bit Pragmas

where description:

sym is a function name.

reg_set is a register set.

Specifying a register set informs Open Watcom C/C++ that the registers belonging to the
register set are modified by the function. That is, the value in a register before calling the
function is different from its value after execution of the function.

Registers that are used to pass arguments are assumed to be modified and hence do not have to
be saved and restored by the called function. Also, since the AX register is frequently used to
return a value, it is always assumed to be modified. If necessary, the caller will contain code
to save and restore the contents of registers used to pass arguments. Note that saving and
restoring the contents of these registers may not be necessary if the called function does not
modify them. The following form of the auxiliary pragma can be used to describe exactly
those registers that will be modified by the called function.

#pragma aux sym modify exact reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

The above form of the auxiliary pragma tells Open Watcom C/C++ not to assume that the
registers used to pass arguments will be modified by the called function. Instead, only the
registers specified in the register set will be modified. This will prevent generation of the
code which unnecessarily saves and restores the contents of the registers used to pass
arguments.

Also, any registers that are specified in the value register set are assumed to be unmodified
unless explicitly listed in the exact register set. In the following example, the code
generator will not generate code to save and restore the value of the stack pointer register
since we have told it that "GetSP" does not modify any register whatsoever.

Auxiliary Pragmas 219

16-bit Topics

Example:
unsigned GetSP(void);#ifdefined(386)
#pragma aux GetSP = value [esp] modify exact [];
#else
#pragma aux GetSP = value [sp] modify exact [];
#endif

8.25.11 An Example

As mentioned in an earlier section, the following pragma defines the calling convention for
functions compiled by Microsoft C.

 #pragmaauxMSC"*" \
parm caller [] \
value struct float struct routine [ax]\
modify [ax bx cx dx es];

Let us discuss this pragma in detail.

"_*" specifies that all function and variable names are preceded by the underscore
character (_) when translated from source form to object form.

parm caller [] specifies that all arguments are to be passed on the stack (an empty register set
was specified) and the caller will remove the arguments from the stack.

value struct marks the section describing how the called routine returns structure
information.

float specifies that floating-point arguments are returned in the same
way as structures are returned.

struct specifies that 1, 2 and 4-byte structures are not to be returned in
registers.

routine specifies that the called routine allocates storage for the return
structure and returns with a register pointing at it.

[ax] specifies that register AX is used to point to the structure return
value.

modify [ax bx cx dx es]

220 Auxiliary Pragmas

16-bit Pragmas

specifies that registers AX, BX, CX, DX and ES are not preserved by the called
routine.

Note that the default method of returning integer values is used; 1-byte characters are returned
in register AL, 2-byte integers are returned in register AX, and 4-byte integers are returned in
the register pair DX:AX.

8.25.12 Auxiliary Pragmas and the 80x87

This section deals with those aspects of auxiliary pragmas that are specific to the 80x87. The
discussion in this chapter assumes that one of the "fpi" or "fpi87" options is used to compile
functions. The following areas are affected by the use of these options.

1. passing floating-point arguments to functions,
2. returning floating-point values from functions and
3. which 80x87 floating-point registers are allowed to be modified by the called

routine.

8.25.12.1 Using the 80x87 to Pass Arguments

By default, floating-point arguments are passed on the 80x86 stack. The 80x86 registers are
never used to pass floating-point arguments when a function is compiled with the "fpi" or
"fpi87" option. However, they can be used to pass arguments whose type is not floating-point
such as arguments of type "int".

The following form of the auxiliary pragma can be used to describe the registers that are to be
used to pass arguments to functions.

#pragma aux sym parm {reg_set} [;]

where description:

sym is a function name.

reg_set is a register set. The register set can contain 80x86 registers and/or the string
"8087".

Auxiliary Pragmas 221

16-bit Topics

Notes:

1. If an empty register set is specified, all arguments, including floating-point
arguments, will be passed on the 80x86 stack.

When the string "8087" appears in a register set, it simply means that floating-point arguments
can be passed in 80x87 floating-point registers if the source file is compiled with the "fpi" or
"fpi87" option. Before discussing argument passing in detail, some general notes on the use
of the 80x87 floating-point registers are given.

The 80x87 contains 8 floating-point registers which essentially form a stack. The stack
pointer is called ST and is a number between 0 and 7 identifying which 80x87 floating-point
register is at the top of the stack. ST is initially 0. 80x87 instructions reference these registers
by specifying a floating-point register number. This number is then added to the current value
of ST. The sum (taken modulo 8) specifies the 80x87 floating-point register to be used. The
notation ST(n), where "n" is between 0 and 7, is used to refer to the position of an 80x87
floating-point register relative to ST.

When a floating-point value is loaded onto the 80x87 floating-point register stack, ST is
decremented (modulo 8), and the value is loaded into ST(0). When a floating-point value is
stored and popped from the 80x87 floating-point register stack, ST is incremented (modulo 8)
and ST(1) becomes ST(0). The following illustrates the use of the 80x87 floating-point
registers as a stack, assuming that the value of ST is 4 (4 values have been loaded onto the
80x87 floating-point register stack).

+----------------+

0 | 4th from top | ST(4)
+----------------+

1 | 5th from top | ST(5)
+----------------+

2 | 6th from top | ST(6)
+----------------+

3 | 7th from top | ST(7)
+----------------+

ST -> 4 | top of stack | ST(0)
+----------------+

5 | 1st from top | ST(1)
+----------------+

6 | 2nd from top | ST(2)
+----------------+

7 | 3rd from top | ST(3)
+----------------+

222 Auxiliary Pragmas

16-bit Pragmas

Starting with version 9.5, the Open Watcom compilers use all eight of the 80x87 registers as a
stack. The initial state of the 80x87 register stack is empty before a program begins
execution.

Note: For compatibility with code compiled with version 9.0 and earlier, you can
compile with the "fpr" option. In this case only four of the eight 80x87 registers
are used as a stack. These four registers were used to pass arguments. The other
four registers form what was called the 80x87 cache. The cache was used for
local floating-point variables. The state of the 80x87 registers before a program
began execution was as follows.

1. The four 80x87 floating-point registers that form the stack are
uninitialized.

2. The four 80x87 floating-point registers that form the 80x87 cache are
initialized with zero.

Hence, initially the 80x87 cache was comprised of ST(0), ST(1), ST(2) and
ST(3). ST had the value 4 as in the above diagram. When a floating-point value
was pushed on the stack (as is the case when passing floating-point arguments),
it became ST(0) and the 80x87 cache was comprised of ST(1), ST(2), ST(3) and
ST(4). When the 80x87 stack was full, ST(0), ST(1), ST(2) and ST(3) formed
the stack and ST(4), ST(5), ST(6) and ST(7) formed the 80x87 cache. Version
9.5 and later no longer use this strategy.

The rules for passing arguments are as follows.

1. If the argument is not floating-point, use the procedure described earlier in this
chapter.

2. If the argument is floating-point, and a previous argument has been assigned a
position on the 80x86 stack (instead of the 80x87 stack), the floating-point
argument is also assigned a position on the 80x86 stack. Otherwise proceed to the
next step.

3. If the string "8087" appears in a register set in the pragma, and if the 80x87 stack is
not full, the floating-point argument is assigned floating-point register ST(0) (the
top element of the 80x87 stack). The previous top element (if there was one) is
now in ST(1). Since arguments are pushed on the stack from right to left, the
leftmost floating-point argument will be in ST(0). Otherwise the floating-point
argument is assigned a position on the 80x86 stack.

Consider the following example.

Auxiliary Pragmas 223

16-bit Topics

#pragma aux myrtn parm [8087];

void main()
{

float x;
double y;
int i;
long int j;

x = 7.7;
i = 7;
y = 77.77;
j = 77;
myrtn(x, i, y, j);

}

myrtn is an assembly language function that requires four arguments. The first argument of
type float (4 bytes), the second argument is of type int (2 bytes), the third argument is of type
double (8 bytes) and the fourth argument is of type long int (4 bytes). These arguments will
be passed to myrtn in the following way.

1. Since "8087" was specified in the register set, the first argument, being of type
float, will be passed in an 80x87 floating-point register.

2. The second argument will be passed on the stack since no 80x86 registers were
specified in the register set.

3. The third argument will also be passed on the stack. Remember the following rule:
once an argument is assigned a position on the stack, all remaining arguments will
be assigned a position on the stack. Note that the above rule holds even though
there are some 80x87 floating-point registers available for passing floating-point
arguments.

4. The fourth argument will also be passed on the stack.

Let us change the auxiliary pragma in the above example as follows.

#pragma aux myrtn parm [ax 8087];

The arguments will now be passed to myrtn in the following way.

1. Since "8087" was specified in the register set, the first argument, being of type
float will be passed in an 80x87 floating-point register.

224 Auxiliary Pragmas

16-bit Pragmas

2. The second argument will be passed in register AX, exhausting the set of available
80x86 registers for argument passing.

3. The third argument, being of type double, will also be passed in an 80x87
floating-point register.

4. The fourth argument will be passed on the stack since no 80x86 registers remain in
the register set.

8.25.12.2 Using the 80x87 to Return Function Values

The following form of the auxiliary pragma can be used to describe a function that returns a
floating-point value in ST(0).

#pragma aux sym value reg_set [;]

where description:

sym is a function name.

reg_set is a register set containing the string "8087", i.e. [8087].

8.25.12.3 Preserving 80x87 Floating-Point Registers Across Calls

The code generator assumes that all eight 80x87 floating-point registers are available for use
within a function unless the "fpr" option is used to generate backward compatible code (older
Open Watcom compilers used four registers as a cache). The following form of the auxiliary
pragma specifies that the floating-point registers in the 80x87 cache may be modified by the
specified function.

#pragma aux sym modify reg_set [;]

where description:

sym is a function name.

reg_set is a register set containing the string "8087", i.e. [8087].

Auxiliary Pragmas 225

16-bit Topics

This instructs Open Watcom C/C++ to save any local variables that are located in the 80x87
cache before calling the specified routine.

226 Auxiliary Pragmas

32-bit Topics

32-bit Topics

228

9 32-bit Memory Models

9.1 Introduction

This chapter describes the various 32-bit memory models supported by Open Watcom C/C++.
Each memory model is distinguished by two properties; the code model used to implement
function calls and the data model used to reference data.

9.2 32-bit Code Models

There are two code models;

1. the small code model and
2. the big code model.

A small code model is one in which all calls to functions are made with near calls. In a near
call, the destination address is 32 bits and is relative to the segment value in segment register
CS. Hence, in a small code model, all code comprising your program, including library
functions, must be less than 4GB.

A big code model is one in which all calls to functions are made with far calls. In a far call,
the destination address is 48 bits (a 16-bit segment value and a 32-bit offset relative to the
segment value). This model allows the size of the code comprising your program to exceed
4GB.

Note: If your program contains less than 4GB of code, you should use a memory model
that employs the small code model. This will result in smaller and faster code since near
calls are smaller instructions and are processed faster by the CPU.

32-bit Code Models 229

32-bit Topics

9.3 32-bit Data Models

There are two data models;

1. the small data model and
2. the big data model.

A small data model is one in which all references to data are made with near pointers. Near
pointers are 32 bits; all data references are made relative to the segment value in segment
register DS. Hence, in a small data model, all data comprising your program must be less than
4GB.

A big data model is one in which all references to data are made with far pointers. Far
pointers are 48 bits (a 16-bit segment value and a 32-bit offset relative to the segment value).
This removes the 4GB limitation on data size imposed by the small data model. However,
when a far pointer is incremented, only the offset is adjusted. Open Watcom C/C++ assumes
that the offset portion of a far pointer will not be incremented beyond 4GB. The compiler will
assign an object to a new segment if the grouping of data in a segment will cause the object to
cross a segment boundary. Implicit in this is the requirement that no individual object exceed
4GB.

Note: If your program contains less than 4GB of data, you should use the small data
model. This will result in smaller and faster code since references using near pointers
produce fewer instructions.

9.4 Summary of 32-bit Memory Models

As previously mentioned, a memory model is a combination of a code model and a data
model. The following table describes the memory models supported by Open Watcom
C/C++.

230 Summary of 32-bit Memory Models

32-bit Memory Models

Memory Code Data Default Default
Model Model Model Code Data

Pointer Pointer
-------- -------- -------- -------- --------

flat small small near near

small small small near near

medium big small far near

compact small big near far

large big big far far

9.5 Flat Memory Model

In the flat memory model, the application’s code and data must total less than 4GB in size.
Segment registers CS, DS, SS and ES point to the same linear address space (this does not
imply that the segment registers contain the same value). That is, a given offset in one
segment refers to the same memory location as that offset in another segment. Essentially, a
flat model operates as if there were no segments.

9.6 Mixed 32-bit Memory Model

A mixed memory model application combines elements from the various code and data
models. A mixed memory model application might be characterized as one that uses the near,
far, or huge keywords when describing some of its functions or data objects.

For example, a medium memory model application that uses some far pointers to data can be
described as a mixed memory model. In an application such as this, most of the data is in a
4GB segment (DGROUP) and hence can be referenced with near pointers relative to the
segment value in segment register DS. This results in more efficient code being generated and
better execution times than one can expect from a big data model. Data objects outside of the
DGROUP segment are described with the far keyword.

Mixed 32-bit Memory Model 231

32-bit Topics

9.7 Linking Applications for the Various 32-bit Memory
Models

Each memory model requires different run-time and floating-point libraries. Each library
assumes a particular memory model and should be linked only with modules that have been
compiled with the same memory model. The following table lists the libraries that are to be
used to link an application that has been compiled for a particular memory model. Currently,
only libraries for the flat/small memory model are provided.

Memory Run-time Floating-Point Floating-Point
Model Library Library (80x87) Library (f-p calls)
---------- ---------- --------------- -------------------
flat/small CLIB3R.LIB MATH387R.LIB MATH3R.LIB

CLIB3S.LIB MATH387S.LIB MATH3S.LIB
PLIB3R.LIB CPLX73R.LIB CPLX3R.LIB
PLIB3S.LIB CPLX73S.LIB CPLX3S.LIB

The letter "R" or "S" which is affixed to the file name indicates the particular strategy with
which the modules in the library have been compiled.

R denotes a version of the Open Watcom C/C++ 32-bit libraries which have been
compiled for the "flat/small" memory models using the "3r", "4r" or "5r" option.

S denotes a version of the Open Watcom C/C++ 32-bit libraries which have been
compiled for the "flat/small" memory models using the "3s", "4s" or "5s" option.

9.8 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1. all "USE16" segments. These segments are present in applications that execute in
both real mode and protected mode. They are first in the segment ordering so that
the "REALBREAK" option of the "RUNTIME" directive can be used to separate
the real-mode part of the application from the protected-mode part of the
application. Currently, the "RUNTIME" directive is valid for Phar Lap executables
only.

2. all segments not belonging to group "DGROUP" with class "CODE"

3. all other segments not belonging to group "DGROUP"

232 Memory Layout

32-bit Memory Models

4. all segments belonging to group "DGROUP" with class "BEGDATA"

5. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS"
or "STACK"

6. all segments belonging to group "DGROUP" with class "BSS"

7. all segments belonging to group "DGROUP" with class "STACK"

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized data in segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executable file.

In addition to these special segments, the following conventions are used by Open Watcom
C/C++.

1. The "CODE" class contains the executable code for your application. In a small
code model, this consists of the segment "_TEXT". In a big code model, this
consists of the segments "<module>_TEXT" where <module> is the file name of
the source file.

2. The "FAR_DATA" class consists of the following:

(a) data objects whose size exceeds the data threshold in large data
memory models (the data threshold is 32K unless changed using the
"zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(c) literals whose size exceeds the data threshold in large data memory
models (the data threshold is 32K unless changed using the "zt"
compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.

You can override the default naming convention used by Open Watcom C/C++ to name
segments.

1. The Open Watcom C/C++ "nm" option can be used to change the name of the
module. This, in turn, changes the name of the code segment when compiling for a
big code model.

Memory Layout 233

32-bit Topics

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code
segment regardless of the code model used.

234 Memory Layout

10 32-bit Assembly Language
Considerations

10.1 Introduction

This chapter will deal with the following topics.

1. The data representation of the basic types supported by Open Watcom C/C++.

2. The memory layout of a Open Watcom C/C++ program.

3. The method for passing arguments and returning values.

4. The two methods for passing floating-point arguments and returning floating-point
values.

One method is used when one of the Open Watcom C/C++ "fpi" or "fpi87" options
is specified for the generation of in-line 80x87 instructions. When the "fpi" option
is specified, an 80x87 emulator is included from a math library if the application
includes floating-point operations. When the "fpi87" option is used exclusively,
the 80x87 emulator will not be included.

The other method is used when the Open Watcom C/C++ "fpc" option is specified.
In this case, the compiler generates calls to floating-point support routines in the
alternate math libraries.

An understanding of the Intel 80x86 architecture is assumed.

10.2 Data Representation

This section describes the internal or machine representation of the basic types supported by
Open Watcom C/C++.

Data Representation 235

32-bit Topics

10.2.1 Type "char"

An item of type "char" occupies 1 byte of storage. Its value is in the following range.

0 <= n <= 255

Note that "char" is, by default, unsigned. The Open Watcom C/C++ compiler option "j" can
be used to change the default from unsigned to signed. If "char" is signed, an item of type
"char" is in the following range.

-128 <= n <= 127

You can force an item of type "char" to be unsigned or signed regardless of the default by
defining them to be of type "unsigned char" or "signed char" respectively.

10.2.2 Type "short int"

An item of type "short int" occupies 2 bytes of storage. Its value is in the following range.

-32768 <= n <= 32767

Note that "short int" is signed and hence "short int" and "signed short int" are equivalent. If
an item of type "short int" is to be unsigned, it must be defined as "unsigned short int". In this
case, its value is in the following range.

0 <= n <= 65535

10.2.3 Type "long int"

An item of type "long int" occupies 4 bytes of storage. Its value is in the following range.

-2147483648 <= n <= 2147483647

Note that "long int" is signed and hence "long int" and "signed long int" are equivalent. If an
item of type "long int" is to be unsigned, it must be defined as "unsigned long int". In this
case, its value is in the following range.

0 <= n <= 4294967295

236 Data Representation

32-bit Assembly Language Considerations

10.2.4 Type "int"

An item of type "int" occupies 4 bytes of storage. Its value is in the following range.

-2147483648 <= n <= 2147483647

Note that "int" is signed and hence "int" and "signed int" are equivalent. If an item of type
"int" is to be unsigned, it must be defined as "unsigned int". In this case its value is in the
following range.

0 <= n <= 4294967295

If you are generating code that executes in 32-bit mode, "long int" and "int" are equivalent,
"unsigned long int" and "unsigned int" are equivalent, and "signed long int" and "signed int"
are equivalent. This may not be the case in other environments where "int" and "short int" are
2 bytes.

10.2.5 Type "float"

A datum of type "float" is an approximate representation of a real number. Each datum of
type "float" occupies 4 bytes. If m is the magnitude of x (an item of type "float") then x can
be approximated if

2-126 <= m < 2128

or in more approximate terms if

1.175494e-38 <= m <= 3.402823e38

Data of type "float" are represented internally as follows. Note that bytes are stored in
memory with the least significant byte first and the most significant byte last.

+---+---------+---------------------+
| S | Biased | Significand |
| | Exponent| |
+---+---------+---------------------+
31 30-23 22-0

Data Representation 237

32-bit Topics

Notes

S S = Sign bit (0=positive, 1=negative)

Exponent The exponent bias is 127 (i.e., exponent value 1 represents 2-126; exponent
value 127 represents 20; exponent value 254 represents 2127; etc.). The
exponent field is 8 bits long.

Significand The leading bit of the significand is always 1, hence it is not stored in the
significand field. Thus the significand is always "normalized". The significand
field is 23 bits long.

Zero A real zero quantity occurs when the sign bit, exponent, and significand are all
zero.

Infinity When the exponent field is all 1 bits and the significand field is all zero bits then
the quantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then
the quantity is a special value called a NAN (Not-A-Number).

When the exponent field is all 0 bits and the significand field is non-zero then
the quantity is a special value called a "denormal" or nonnormal number.

10.2.6 Type "double"

A datum of type "double" is an approximate representation of a real number. The precision of
a datum of type "double" is greater than or equal to one of type "float". Each datum of type
"double" occupies 8 bytes. If m is the magnitude of x (an item of type "double") then x can be
approximated if

2-1022 <= m < 21024

or in more approximate terms if

2.2250738585072e-308 <= m <= 1.79769313486232e308

Data of type "double" are represented internally as follows. Note that bytes are stored in
memory with the least significant byte first and the most significant byte last.

238 Data Representation

32-bit Assembly Language Considerations

+---+---------+--------------------------------------+
| S | Biased | Significand |
| | Exponent| |
+---+---------+--------------------------------------+
63 62-52 51-0

Notes:

S S = Sign bit (0=positive, 1=negative)

Exponent The exponent bias is 1023 (i.e., exponent value 1 represents 2-1022; exponent
value 1023 represents 20; exponent value 2046 represents 21023; etc.). The
exponent field is 11 bits long.

Significand The leading bit of the significand is always 1, hence it is not stored in the
significand field. Thus the significand is always "normalized". The significand
field is 52 bits long.

Zero A double precision zero quantity occurs when the sign bit, exponent, and
significand are all zero.

Infinity When the exponent field is all 1 bits and the significand field is all zero bits then
the quantity represents positive or negative infinity, depending on the sign bit.

Not Numbers When the exponent field is all 1 bits and the significand field is non-zero then
the quantity is a special value called a NAN (Not-A-Number).

When the exponent field is all 0 bits and the significand field is non-zero then
the quantity is a special value called a "denormal" or nonnormal number.

10.3 Memory Layout

The following describes the segment ordering of an application linked by the Open Watcom
Linker. Note that this assumes that the "DOSSEG" linker option has been specified.

1. all "USE16" segments. These segments are present in applications that execute in
both real mode and protected mode. They are first in the segment ordering so that
the "REALBREAK" option of the "RUNTIME" directive can be used to separate
the real-mode part of the application from the protected-mode part of the
application. Currently, the "RUNTIME" directive is valid for Phar Lap executables
only.

Memory Layout 239

32-bit Topics

2. all segments not belonging to group "DGROUP" with class "CODE"

3. all other segments not belonging to group "DGROUP"

4. all segments belonging to group "DGROUP" with class "BEGDATA"

5. all segments belonging to group "DGROUP" not with class "BEGDATA", "BSS"
or "STACK"

6. all segments belonging to group "DGROUP" with class "BSS"

7. all segments belonging to group "DGROUP" with class "STACK"

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized data in segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executable file.

In addition to these special segments, the following conventions are used by Open Watcom
C/C++.

1. The "CODE" class contains the executable code for your application. In a small
code model, this consists of the segment "_TEXT". In a big code model, this
consists of the segments "<module>_TEXT" where <module> is the file name of
the source file.

2. The "FAR_DATA" class consists of the following:

(a) data objects whose size exceeds the data threshold in large data
memory models (the data threshold is 32K unless changed using the
"zt" compiler option)

(b) data objects defined using the "FAR" or "HUGE" keyword,

(c) literals whose size exceeds the data threshold in large data memory
models (the data threshold is 32K unless changed using the "zt"
compiler option)

(d) literals defined using the "FAR" or "HUGE" keyword.

You can override the default naming convention used by Open Watcom C/C++ to name
segments.

240 Memory Layout

32-bit Assembly Language Considerations

1. The Open Watcom C/C++ "nm" option can be used to change the name of the
module. This, in turn, changes the name of the code segment when compiling for a
big code model.

2. The Open Watcom C/C++ "nt" option can be used to specify the name of the code
segment regardless of the code model used.

10.4 Calling Conventions for Non-80x87 Applications

The following sections describe the calling convention used when compiling with the "fpc"
compiler option.

10.4.1 Passing Arguments Using Register-Based Calling
Conventions

How arguments are passed to a function with register-based calling conventions is determined
by the size (in bytes) of the argument and where in the argument list the argument appears.
Depending on the size, arguments are either passed in registers or on the stack. Arguments
such as structures are almost always passed on the stack since they are generally too large to
fit in registers. Since arguments are processed from left to right, the first few arguments are
likely to be passed in registers (if they can fit) and, if the argument list contains many
arguments, the last few arguments are likely to be passed on the stack.

The registers used to pass arguments to a function are EAX, EBX, ECX and EDX. The
following algorithm describes how arguments are passed to functions.

Initially, we have the following registers available for passing arguments: EAX, EDX, EBX
and ECX. Note that registers are selected from this list in the order they appear. That is, the
first register selected is EAX and the last is ECX. For each argument Ai, starting with the left
most argument, perform the following steps.

1. If the size of Ai is 1 byte or 2 bytes, convert it to 4 bytes and proceed to the next
step. If Ai is of type "unsigned char" or "unsigned short int", it is converted to an
"unsigned int". If Ai is of type "signed char" or "signed short int", it is converted to
a "signed int". If Ai is a 1-byte or 2-byte structure, the padding is determined by
the compiler.

2. If an argument has already been assigned a position on the stack, Ai will also be
assigned a position on the stack. Otherwise, proceed to the next step.

3. If the size of Ai is 4 bytes, select a register from the list of available registers. If a
register is available, Ai is assigned that register. The register is then removed from

Calling Conventions for Non-80x87 Applications 241

32-bit Topics

the list of available registers. If no registers are available, Ai will be assigned a
position on the stack.

4. If the type of Ai is "far pointer", select a register pair from the following list of
combinations: [EDX EAX] or [ECX EBX]. The first available register pair is
assigned to Ai and removed from the list of available pairs. The segment value will
actually be passed in register DX or CX and the offset in register EAX or EBX. If
none of the above register pairs is available, Ai will be assigned a position on the
stack. Note that 8 bytes will be pushed on the stack even though the size of an item
of type "far pointer" is 6 bytes.

5. If the type of Ai is "double" or "float" (in the absence of a function prototype),
select a register pair from the following list of combinations: [EDX EAX] or [ECX
EBX]. The first available register pair is assigned to Ai and removed from the list
of available pairs. The high-order 32 bits of the argument are assigned to the first
register in the pair; the low-order 32 bits are assigned to the second register in the
pair. If none of the above register pairs is available, Ai will be assigned a position
on the stack.

6. All other arguments will be assigned a position on the stack.

Notes:

1. Arguments that are assigned a position on the stack are padded to a multiple of 4
bytes. That is, if a 3-byte structure is assigned a position on the stack, 4 bytes will
be pushed on the stack.

2. Arguments that are assigned a position on the stack are pushed onto the stack
starting with the rightmost argument.

10.4.2 Sizes of Predefined Types

The following table lists the predefined types, their size as returned by the "sizeof" function,
the size of an argument of that type and the registers used to pass that argument if it was the
only argument in the argument list.

Basic Type "sizeof" Argument Registers
Size Used

char 1 4 [EAX]
short int 2 4 [EAX]
int 4 4 [EAX]
long int 4 4 [EAX]
float 4 8 [EDX EAX]

242 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

double 8 8 [EDX EAX]
near pointer 4 4 [EAX]
far pointer 6 8 [EDX EAX]

Note that the size of the argument listed in the table assumes that no function prototypes are
specified. Function prototypes affect the way arguments are passed. This will be discussed in
the section entitled "Effect of Function Prototypes on Arguments".

Notes:

1. Provided no function prototypes exist, an argument will be converted to a default
type as described in the following table.

Argument Type Passed As

char unsigned int
signed char signed int
unsigned char unsigned int
short unsigned int
signed short signed int
unsigned short unsigned int
float double

10.4.3 Size of Enumerated Types

The integral type of an enumerated type is determined by the values of the enumeration
constants. In strict ISO/ANSI C mode, all enumerated constants are of type int. In the
extensions mode, the compiler will use the smallest integral type possible (excluding long
ints) that can represent all values of the enumerated type. For instance, if the minimum and
maximum values of the enumeration constants are in the range −128 and 127, the enumerated
type will be equivalent to a signed char (size = 1 byte). All references to enumerated
constants in the previous instance will have type signed char. An enumerated constant
is always promoted to an int when passed as an argument.

10.4.4 Effect of Function Prototypes on Arguments

Function prototypes define the types of the formal parameters of a function. Their appearance
affects the way in which arguments are passed. An argument will be converted to the type of
the corresponding formal parameter in the function prototype. Consider the following
example.

Calling Conventions for Non-80x87 Applications 243

32-bit Topics

void prototype(float x, int i);

void main()
{

float x;
int i;

x = 3.14;
i = 314;
prototype(x, i);
rtn(x, i);

}

The function prototype for prototype specifies that the first argument is to be passed as a
"float" and the second argument is to be passed as an "int". This results in the first argument
being passed in register EAX and the second argument being passed in register EDX.

If no function prototype is given, as is the case for the function rtn, the first argument will
be passed as a "double" and the second argument would be passed as an "int". This results in
the first argument being passed in registers EDX and EAX and the second argument being
passed in register EBX.

Note that even though both prototype and rtn were called with identical argument lists,
the way in which the arguments were passed was completely different simply because a
function prototype for prototype was specified. Function prototyping is an excellent way
to guarantee that arguments will be passed as expected to your assembly language function.

10.4.5 Interfacing to Assembly Language Functions

Consider the following example.

Example:
void main()
{

double x;
int i;
double y;

x = 7;
i = 77;
y = 777;
myrtn(x, i, y);

}

244 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

myrtn is an assembly language function that requires three arguments. The first argument is
of type "double", the second argument is of type "int" and the third argument is again of type
"double". Using the rules for register-based calling conventions, these arguments will be
passed to myrtn in the following way:

1. The first argument will be passed in registers EDX and EAX leaving EBX and
ECX as available registers for other arguments.

2. The second argument will be passed in register EBX leaving ECX as an available
register for other arguments.

3. The third argument will not fit in register ECX (its size is 8 bytes) and hence will
be pushed on the stack.

Let us look at the stack upon entry to myrtn.

Small Code Model
Offset

+----------------+
0 | return address | <- ESP points here

+----------------+
4 | argument #3 |

| |
+----------------+

12 | |

Big Code Model
Offset

+----------------+
0 | return address | <- ESP points here

| |
+----------------+

8 | argument #3 |
| |
+----------------+

16 | |

Notes:

1. The return address is the top element on the stack. In a small code model, the
return address is 1 double word (32 bits); in a big code model, the return address is
2 double words (64 bits).

Calling Conventions for Non-80x87 Applications 245

32-bit Topics

Register EBP is normally used to address arguments on the stack. Upon entry to the function,
register EBP is set to point to the stack but before doing so we must save its contents. The
following two instructions achieve this.

push EBP ; save current value of EBP
mov EBP,ESP ; get access to arguments

After executing these instructions, the stack looks like this.

Small Code Model
Offset

+----------------+
0 | saved EBP | <- EBP and ESP point here

+----------------+
4 | return address |

+----------------+
8 | argument #3 |

| |
+----------------+

16 | |

Big Code Model
Offset

+----------------+
0 | saved EBP | <- EBP and ESP point here

+----------------+
4 | return address |

| |
+----------------+

12 | argument #3 |
| |
+----------------+

20 | |

As the above diagrams show, the third argument is at offset 8 from register EBP in a small
code model and offset 12 in a big code model.

Upon exit from myrtn, we must restore the value of EBP. The following two instructions
achieve this.

mov ESP,EBP ; restore stack pointer
pop EBP ; restore EBP

The following is a sample assembly language function which implements myrtn.

246 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

Small Memory Model (small code, small data)
DGROUP group
DATA,BSSTEXT

segment byte public ’CODE’
assume
CS:TEXT

assume DS:DGROUP
public myrtnmyrtnproc near
push EBP ; save EBP
mov EBP,ESP ; get access to arguments

;
; body of function
;

mov ESP,EBP ; restore ESP
pop EBP ; restore EBP
ret 8 ; return and pop last argmyrtnendpTEXT
ends

Large Memory Model (big code, big data)
DGROUP group
DATA,BSSMYRTNTEXTsegmentbytepublic’CODE’

assume
CS:MYRTNTEXT

public myrtnmyrtnproc far
push EBP ; save EBP
mov EBP,ESP ; get access to arguments

;
; body of function
;

mov ESP,EBP ; restore ESP
pop EBP ; restore EBP
ret 8 ; return and pop last argmyrtnendpMYRTNTEXTends

Notes:

1. Global function names must be followed with an underscore. Global variable
names must be preceded with an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those
used to pass arguments and return values. Note that segment registers only have to
saved and restored if you are compiling your application with the "r" option.

3. The direction flag must be clear before returning to the caller.

Calling Conventions for Non-80x87 Applications 247

32-bit Topics

4. In a small code model, any segment containing executable code must belong to the
segment "_TEXT" and the class "CODE". The segment "_TEXT" must have a
"combine" type of "PUBLIC". On entry, CS contains the segment address of the
segment "_TEXT". In a big code model there is no restriction on the naming of
segments which contain executable code.

5. In a small data model, segment register DS contains the segment address of the
group "DGROUP". This is not the case in a big data model.

6. When writing assembly language functions for the small code model, you must
declare them as "near". If you wish to write assembly language functions for the
big code model, you must declare them as "far".

7. In general, when naming segments for your code or data, you should follow the
conventions described in the section entitled "Memory Layout" in this chapter.

8. If any of the arguments was pushed onto the stack, the called routine must pop
those arguments off the stack in the "ret" instruction.

10.4.6 Using Stack-Based Calling Conventions

Let us now consider the example in the previous section except this time we will use the
stack-based calling convention. The most significant difference between the stack-based
calling convention and the register-based calling convention is the way the arguments are
passed. When using the stack-based calling conventions, no registers are used to pass
arguments. Instead, all arguments are passed on the stack.

Let us look at the stack upon entry to myrtn.

Small Code Model
Offset

+----------------+
0 | return address | <- ESP points here

+----------------+
4 | argument #1 |

| |
+----------------+

12 | argument #2 |
| |
+----------------+

16 | argument #3 |
| |
+----------------+

24 | |

248 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

Big Code Model
Offset

+----------------+
0 | return address | <- ESP points here

| |
+----------------+

8 | argument #1 |
| |
+----------------+

16 | argument #2 |
| |
+----------------+

20 | argument #3 |
| |
+----------------+

28 | |

Notes:

1. The return address is the top element on the stack. In a small code model, the
return address is 1 double word (32 bits); in a big code model, the return address is
2 double words (64 bits).

Register EBP is normally used to address arguments on the stack. Upon entry to the function,
register EBP is set to point to the stack but before doing so we must save its contents. The
following two instructions achieve this.

push EBP ; save current value of EBP
mov EBP,ESP ; get access to arguments

After executing these instructions, the stack looks like this.

Calling Conventions for Non-80x87 Applications 249

32-bit Topics

Small Code Model
Offset

+----------------+
0 | saved EBP | <- EBP and ESP point here

+----------------+
4 | return address |

+----------------+
8 | argument #1 |

| |
+----------------+

16 | argument #2 |
| |
+----------------+

20 | argument #3 |
| |
+----------------+

28 | |

Big Code Model
Offset

+----------------+
0 | saved EBP | <- EBP and ESP point here

+----------------+
4 | return address |

| |
+----------------+

12 | argument #1 |
| |
+----------------+

20 | argument #2 |
| |
+----------------+

24 | argument #3 |
| |
+----------------+

32 | |

As the above diagrams show, the argument are all on the stack and are referenced by
specifying an offset from register EBP.

Upon exit from myrtn, we must restore the value of EBP. The following two instructions
achieve this.

mov ESP,EBP ; restore stack pointer
pop EBP ; restore EBP

250 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

The following is a sample assembly language function which implements myrtn.

Small Memory Model (small code, small data)
DGROUP group
DATA,BSSTEXT

segment byte public ’CODE’
assume
CS:TEXT

assume DS:DGROUP
public myrtn

myrtn proc near
push EBP ; save EBP
mov EBP,ESP ; get access to arguments

;
; body of function
;

mov ESP,EBP ; restore ESP
pop EBP ; restore EBP
ret
; return

myrtn endpTEXT
ends

Large Memory Model (big code, big data)
DGROUP group
DATA,BSSMYRTNTEXTsegmentbytepublic’CODE’

assume
CS:MYRTNTEXT

public myrtn
myrtn proc far

push EBP ; save EBP
mov EBP,ESP ; get access to arguments

;
; body of function
;

mov ESP,EBP ; restore ESP
pop EBP ; restore EBP
ret
; return

myrtn endpMYRTNTEXTends
Notes:

1. Global function names must not be followed with an underscore as was the case
with the register-based calling convention. Global variable names must not be
preceded with an underscore as was the case with the register-based calling
convention.

Calling Conventions for Non-80x87 Applications 251

32-bit Topics

2. All used 80x86 registers except registers EAX, ECX and EDX must be saved on
entry and restored on exit. Segment registers DS and ES must also be saved on
entry and restored on exit. Segment register ES does not have to be saved and
restored when using a memory model that is not a small data model. Note that
segment registers only have to be saved and restored if you are compiling your
application with the "r" option.

3. The direction flag must be clear before returning to the caller.

4. In a small code model, any segment containing executable code must belong to the
segment "_TEXT" and the class "CODE". The segment "_TEXT" must have a
"combine" type of "PUBLIC". On entry, CS contains the segment address of the
segment "_TEXT". In a big code model there is no restriction on the naming of
segments which contain executable code.

5. In a small data model, segment register DS contains the segment address of the
group "DGROUP". This is not the case in a big data model.

6. When writing assembly language functions for the small code model, you must
declare them as "near". If you wish to write assembly language functions for the
big code model, you must declare them as "far".

7. In general, when naming segments for your code or data, you should follow the
conventions described in the section entitled "Memory Layout" in this chapter.

8. The caller is responsible for removing arguments from the stack.

10.4.7 Functions with Variable Number of Arguments

A function prototype with a parameter list that ends with ",..." has a variable number of
arguments. In this case, all arguments are passed on the stack. Since no prototyping
information exists for arguments represented by ",...", those arguments are passed as described
in the section "Passing Arguments".

10.4.8 Returning Values from Functions

The way in which function values are returned depends on the size of the return value. The
following examples describe how function values are to be returned. They are coded for a
small code model.

1. 1-byte values are to be returned in register AL.

252 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

Example:TEXTsegmentbytepublic’CODE’assumeCS:TEXTpublicRet1Ret1procnear;charRet1()
mov AL,’G’
retRet1endpTEXTends
end

2. 2-byte values are to be returned in register AX.

Example:TEXTsegmentbytepublic’CODE’assumeCS:TEXTpublicRet2Ret2procnear;shortintRet2()
mov AX,77
retRet2endpTEXTends
end

3. 4-byte values are to be returned in register EAX.

Example:TEXTsegmentbytepublic’CODE’assumeCS:TEXTpublicRet4Ret4procnear;intRet4()
mov EAX,7777777
retRet4endpTEXTends
end

4. 8-byte values, except structures, are to be returned in registers EDX and EAX.
When using the "fpc" (floating-point calls) option, "float" and "double" are
returned in registers. See section "Returning Values in 80x87-based Applications"
when using the "fpi" or "fpi87" options.

Calling Conventions for Non-80x87 Applications 253

32-bit Topics

Example:
.8087TEXTsegmentbytepublic’CODE’assumeCS:TEXTpublicRet8Ret8procnear;doubleRet8()
mov EDX,dword ptr CS:Val8+4
mov EAX,dword ptr CS:Val8
ret

Val8: dq 7.7Ret8endpTEXTends
end

The ".8087" pseudo-op must be specified so that all floating-point constants are
generated in 8087 format.

5. Otherwise, the caller allocates space on the stack for the return value and sets
register ESI to point to this area. In a big data model, register ESI contains an
offset relative to the segment value in segment register SS.

Example:TEXTsegmentbytepublic’CODE’assumeCS:TEXTpublicRetX
;;structintvalues{
; int value1, value2, value3, value4, value5;
; };
;RetXprocnear;structintvaluesRetX()

mov dword ptr SS:0[ESI],71
mov dword ptr SS:4[ESI],72
mov dword ptr SS:8[ESI],73
mov dword ptr SS:12[ESI],74
mov dword ptr SS:16[ESI],75
retRetXendpTEXTends
end

When returning values on the stack, remember to use a segment override to the
stack segment (SS).

The following is an example of a Open Watcom C/C++ program calling the above assembly
language subprograms.

254 Calling Conventions for Non-80x87 Applications

32-bit Assembly Language Considerations

#include <stdio.h>structintvalues{

int value1;
int value2;
int value3;
int value4;
int value5;

};

extern char Ret1(void);
extern short int Ret2(void);
extern long int Ret4(void);
extern double Ret8(void);externstructintvaluesRetX(void);
void main()
{structintvaluesx;

printf("Ret1 = %c\n", Ret1());
printf("Ret2 = %d\n", Ret2());
printf("Ret4 = %ld\n", Ret4());
printf("Ret8 = %f\n", Ret8());
x = RetX();
printf("RetX1 = %d\n", x.value1);
printf("RetX2 = %d\n", x.value2);
printf("RetX3 = %d\n", x.value3);
printf("RetX4 = %d\n", x.value4);
printf("RetX5 = %d\n", x.value5);

}

The above function should be compiled for a small code model (use the "mf", "ms" or "mc"
compiler option).

Note: Returning values from functions in the stack-based calling convention is the same
as returning values from functions in the register-based calling convention when using the
"fpc" option.

Calling Conventions for Non-80x87 Applications 255

32-bit Topics

10.5 Calling Conventions for 80x87-based Applications

When a source file is compiled by Open Watcom C/C++ with one of the "fpi" or "fpi87"
options, all floating-point arguments are passed on the 80x86 stack. The rules for passing
arguments are as follows.

1. If the argument is not floating-point, use the procedure described earlier in this
chapter.

2. If the argument is floating-point, it is assigned a position on the 80x86 stack.

Note: When compiling using the "fpi" or "fpi87" options, the method used for passing
floating-point arguments in the stack-based calling convention is identical to the method
used in the register-based calling convention. However, when compiling using the "fpi" or
"fpi87" options, the method used for returning floating-point values in the stack-based
calling convention is different from the method used in the register-based calling
convention. The register-based calling convention returns floating-point values in ST(0),
whereas the stack-based calling convention returns floating-point values in EDX and
EAX.

10.5.1 Passing Values in 80x87-based Applications

Consider the following example.

Example:
extern void myrtn(int,float,double,long int);

void main()
{

float x;
double y;
int i;
long int j;

x = 7.7;
i = 7;
y = 77.77
j = 77;
myrtn(i, x, y, j);

}

256 Calling Conventions for 80x87-based Applications

32-bit Assembly Language Considerations

myrtn is an assembly language function that requires four arguments. The first argument is
of type "int" (4 bytes), the second argument is of type "float" (4 bytes), the third argument is
of type "double" (8 bytes) and the fourth argument is of type "long int" (4 bytes).

When using the stack-based calling conventions, all of the arguments will be passed on the
stack. When using the register-based calling conventions, the above arguments will be passed
to myrtn in the following way:

1. The first argument will be passed in register EAX leaving EBX, ECX and EDX as
available registers for other arguments.

2. The second argument will be passed on the 80x86 stack since it is a floating-point
argument.

3. The third argument will also be passed on the 80x86 stack since it is a
floating-point argument.

4. The fourth argument will be passed on the 80x86 stack since a previous argument
has been assigned a position on the 80x86 stack.

Remember, arguments are pushed on the stack from right to left. That is, the rightmost
argument is pushed first.

Any assembly language function must obey the following rule.

1. All arguments passed on the stack must be removed by the called function.

The following is a sample assembly language function which implements myrtn.

Example:
.8087TEXTsegmentbytepublic’CODE’assumeCS:TEXTpublicmyrtnmyrtnprocnear

;
; body of function
;

ret 16 ; return and pop argumentsmyrtnendpTEXTends
end

Calling Conventions for 80x87-based Applications 257

32-bit Topics

Notes:

1. Function names must be followed by an underscore.

2. All used 80x86 registers must be saved on entry and restored on exit except those
used to pass arguments and return values. Note that segment registers only have to
saved and restored if you are compiling your application with the "r" option. In
this example, EAX does not have to be saved as it was used to pass the first
argument. Floating-point registers can be modified without saving their contents.

3. The direction flag must be clear before returning to the caller.

4. This function has been written for a small code model. Any segment containing
executable code must belong to the class "CODE" and the segment "_TEXT". On
entry, CS contains the segment address of the segment "_TEXT". The above
restrictions do not apply in a big code memory model.

5. When writing assembly language functions for a small code model, you must
declare them as "near". If you wish to write assembly language functions for a big
code model, you must declare them as "far".

10.5.2 Returning Values in 80x87-based Applications

When using the stack-based calling conventions with "fpi" or "fpi87", floating-point values
are returned in registers. Single precision values are returned in EAX, and double precision
values are returned in EDX:EAX.

When using the register-based calling conventions with "fpi" or "fpi87", floating-point values
are returned in ST(0). All other values are returned in the manner described earlier in this
chapter.

258 Calling Conventions for 80x87-based Applications

11 32-bit Pragmas

11.1 Introduction

A pragma is a compiler directive that provides the following capabilities.

• Pragmas allow you to specify certain compiler options.

• Pragmas can be used to direct the Open Watcom C/C++ code generator to emit
specialized sequences of code for calling functions which use argument passing and
value return techniques that differ from the default used by Open Watcom C/C++.

• Pragmas can be used to describe attributes of functions (such as side effects) that are
not possible at the C/C++ language level. The code generator can use this information
to generate more efficient code.

• Any sequence of in-line machine language instructions, including DOS and BIOS
function calls, can be generated in the object code.

Pragmas are specified in the source file using the pragma directive. The following notation is
used to describe the syntax of pragmas.

keywords A keyword is shown in a mono-spaced courier font.

program-item A program-item is shown in a roman bold-italics font. A program-item is a
symbol name or numeric value supplied by the programmer.

punctuation A punctuation character shown in a mono-spaced courier font must be
entered as is.

A punctuation character shown in a roman bold-italics font is used to describe
syntax. The following syntactical notation is used.

Introduction 259

32-bit Topics

[abc] The item abc is optional.

{abc} The item abc may be repeated zero or more times.

a|b|c One of a, b or c may be specified.

a ::= b The item a is defined in terms of b.

(a) Item a is evaluated first.

The following classes of pragmas are supported.

• pragmas that specify options

• pragmas that specify default libraries

• pragmas that describe the way structures are stored in memory

• pragmas that provide auxiliary information used for code generation

11.2 Using Pragmas to Specify Options

Currently, the following options can be specified with pragmas:

unreferenced The "unreferenced" option controls the way Open Watcom C/C++ handles
unused symbols. For example,

#pragma on (unreferenced);

will cause Open Watcom C/C++ to issue warning messages for all unused
symbols. This is the default. Specifying

#pragma off (unreferenced);

will cause Open Watcom C/C++ to ignore unused symbols. Note that if the
warning level is not high enough, warning messages for unused symbols will not
be issued even if "unreferenced" was specified.

check_stack The "check_stack" option controls the way stack overflows are to be handled.
For example,

 #pragmaon(checkstack);
260 Using Pragmas to Specify Options

32-bit Pragmas

will cause stack overflows to be detected and
 #pragmaoff(checkstack);

will cause stack overflows to be ignored. When "check_stack" is on, Open
Watcom C/C++ will generate a run-time call to a stack-checking routine at the
start of every routine compiled. This run-time routine will issue an error if a
stack overflow occurs when invoking the routine. The default is to check for
stack overflows. Stack overflow checking is particularly useful when functions
are invoked recursively. Note that if the stack overflows and stack checking has
been suppressed, unpredictable results can occur.

If a stack overflow does occur during execution and you are sure that your
program is not in error (i.e. it is not unnecessarily recursing), you must increase
the stack size. This is done by linking your application again and specifying the
"STACK" option to the Open Watcom Linker with a larger stack size.

It is also possible to specify more than one option in a pragma as illustrated by
the following example.

 #pragmaon(checkstackunreferenced);
reuse_duplicate_strings (C only) (C Only) The "reuse_duplicate_strings" option controls the

way Open Watcom C handles identical strings in an expression. For example,
 #pragmaon(reuseduplicatestrings);

will cause Open Watcom C to reuse identical strings in an expression. This is
the default. Specifying

 #pragmaoff(reuseduplicatestrings);
will cause Open Watcom C to generate additional copies of the identical string.
The following example shows where this may be of importance to the way the
application behaves.

Using Pragmas to Specify Options 261

32-bit Topics

Example:
#include <stdio.h>#pragmaoff(reuseduplicatestrings)
void poke(char *, char *);

void main()
{

poke("Hello world\n", "Hello world\n");
}

void poke(char *x, char *y)
{

x[3] = ’X’;
printf(x);
y[4] = ’Y’;
printf(y);

}
/*
Default output:
HelXo world
HelXY world
*/

11.3 Using Pragmas to Specify Default Libraries

Default libraries are specified in special object module records. Library names are extracted
from these special records by the Open Watcom Linker. When unresolved references remain
after processing all object modules specified in linker "FILE" directives, these default libraries
are searched after all libraries specified in linker "LIBRARY" directives have been searched.

By default, that is if no library pragma is specified, the Open Watcom C/C++ compiler
generates, in the object file defining the main program, default libraries corresponding to the
memory model and floating-point model used to compile the file. For example, if you have
compiled the source file containing the main program for the flat memory model and the
floating-point calls floating-point model, the libraries "clib3r" and "math3r" will be placed in
the object file.

If you wish to add your own default libraries to this list, you can do so with a library pragma.
Consider the following example.

#pragma library (mylib);

262 Using Pragmas to Specify Default Libraries

32-bit Pragmas

The name "mylib" will be added to the list of default libraries specified in the object file.

If the library specification contains characters such as ’\’, ’:’ or ’,’ (i.e., any character not
allowed in a C identifier), you must enclose it in double quotes as in the following example.

#pragma library ("\watcom\lib286\dos\graph.lib");
#pragma library ("\watcom\lib386\dos\graph.lib");

If you wish to specify more than one library in a library pragma you must separate them with
spaces as in the following example.

#pragma library (mylib "\watcom\lib286\dos\graph.lib");
#pragma library (mylib "\watcom\lib386\dos\graph.lib");

11.4 The ALLOC_TEXT Pragma (C Only)

The "alloc_text" pragma can be used to specify the name of the text segment into which the
generated code for a function, or a list of functions, is to be placed. The following describes
the form of the "alloc_text" pragma.#pragmaalloctext(seg_name, fn {, fn}) [;]

where description:

seg_name is the name of the text segment.

fn is the name of a function.

Consider the following example.

extern int fn1(int);
extern int fn2(void);#pragmaalloctext(mytext,fn1,fn2);

The code for the functions fn1 and fn2 will be placed in the segmentmytext. Note:
function prototypes for the named functions must exist prior to the "alloc_text" pragma.

The ALLOC_TEXT Pragma (C Only) 263

32-bit Topics

11.5 The CODE_SEG Pragma

The "code_seg" pragma can be used to specify the name of the text segment into which the
generated code for functions is to be placed. The following describes the form of the
"code_seg" pragma.#pragmacodeseg(seg_name [, class_name]) [;]

where description:

seg_name is the name of the text segment optionally enclosed in quotes. Also,segname
may be a macro as in:

 #definesegname"MYCODESEG"#pragmacodeseg(segname);
class_name is the optional class name of the text segment and may be enclosed in quotes.

Also,classname may be a macro as in:
 #defineclassname"MYCLASS"#pragmacodeseg("MYCODESEG",classname);

Consider the following example.
 #pragmacodeseg(mytext);
int incr(int i)
{

return(i + 1);
}

int decr(int i)
{

return(i - 1);
}

The code for the functions incr and decr will be placed in the segmentmytext.
To return to the default segment, do not specify any string between the opening and closing
parenthesis.

 #pragmacodeseg();
264 The CODE_SEG Pragma

32-bit Pragmas

11.6 The COMMENT Pragma

The "comment" pragma can be used to place a comment record in an object file or executable
file. The following describes the form of the "comment" pragma.

#pragma comment (comment_type [, "comment_string"]) [;]

where description:

comment_type specifies the type of comment record. The allowable comment types are:

lib Default libraries are specified in special object module records.
Library names are extracted from these special records by the
Open Watcom Linker. When unresolved references remain after
processing all object modules specified in linker "FILE" directives,
these default libraries are searched after all libraries specified in
linker "LIBRARY" directives have been searched.

The "lib" form of this pragma offers the same features as the
"library" pragma. See the section entitled "Using Pragmas to
Specify Default Libraries" on page 262 for more information.

"comment_string" is an optional string literal that provides additional information for some
comment types.

Consider the following example.

#pragma comment (lib, "mylib");

11.7 The DATA_SEG Pragma

The "data_seg" pragma can be used to specify the name of the segment into which data is to
be placed. The following describes the form of the "data_seg" pragma.

The DATA_SEG Pragma 265

32-bit Topics#pragmadataseg(seg_name [, class_name]) [;]

where description:

seg_name is the name of the data segment and may be enclosed in quotes. Also,segname may be a macro as in:
 #definesegname"MYDATASEG"#pragmadataseg(segname);

class_name is the optional class name of the data segment and may be enclosed in quotes.
Also,classname may be a macro as in:

 #defineclassname"MYCLASS"#pragmadataseg("MYDATASEG",classname);
Consider the following example.

 #pragmadataseg(mydata);
static int i;
static int j;

The data for i and j will be placed in the segmentmydata.
To return to the default segment, do not specify any string between the opening and closing
parenthesis.

 #pragmadataseg();
11.8 The DISABLE_MESSAGE Pragma (C Only)

The "disable_message" pragma disables the issuance of specified diagnostic messages. The
form of the "disable_message" pragma is as follows.#pragmadisablemessage(msg_num {, msg_num}) [;]

266 The DISABLE_MESSAGE Pragma (C Only)

32-bit Pragmas

where description:

msg_num is the number of the diagnostic message. This number corresponds to the
number issued by the compiler and can be found in the appendix entitled "Open
Watcom C Diagnostic Messages" on page 385. Make sure to strip all leading
zeroes from the message number (to avoid interpretation as an octal constant).

See also the description of "The ENABLE_MESSAGE Pragma (C Only)".

11.9 The DUMP_OBJECT_MODEL Pragma (C++ Only)

The "dump_object_model" pragma causes the C++ compiler to print information about the
object model for an indicated class or an enumeration name to the diagnostics file. For class
names, this information includes the offsets and sizes of fields within the class and within base
classes. For enumeration names, this information consists of a list of all the enumeration
constants with their values.

The general form of the "dump_object_model" pragma is as follows.#pragmadumpobjectmodelclass [;]#pragmadumpobjectmodelenumeration [;]
class ::= a defined C++ class free of errors
enumeration ::= a defined C++ enumeration name

This pragma is designed to be used for information purposes only.

11.10 The ENABLE_MESSAGE Pragma (C Only)

The "enable_message" pragma re-enables the issuance of specified diagnostic messages that
have been previously disabled. The form of the "enable_message" pragma is as follows.#pragmaenablemessage(msg_num {, msg_num}) [;]

The ENABLE_MESSAGE Pragma (C Only) 267

32-bit Topics

where description:

msg_num is the number of the diagnostic message. This number corresponds to the
number issued by the compiler and can be found in the appendix entitled "Open
Watcom C Diagnostic Messages" on page 385. Make sure to strip all leading
zeroes from the message number (to avoid interpretation as an octal constant).

See also the description of "The DISABLE_MESSAGE Pragma (C Only)" on page 266.

11.11 The ENUM Pragma

The "enum" pragma affects the underlying storage-definition for subsequent enum
declarations. The forms of the "enum" pragma are as follows.

#pragma enum int [;]
#pragma enum minimum [;]
#pragma enum original [;]
#pragma enum pop [;]

where description:

int Make int the underlying storage definition (same as the "ei" compiler option).

minimum Minimize the underlying storage definition (same as not specifying the "ei"
compiler option).

original Reset back to the original compiler option setting (i.e., what was or was not
specified on the command line).

pop Restore the previous setting.

The first three forms all push the previous setting before establishing the new setting.

268 The ENUM Pragma

32-bit Pragmas

11.12 The ERROR Pragma

The "error" pragma can be used to issue an error message with the specified text. The
following describes the form of the "error" pragma.

#pragma error "error text" [;]

where description:

"error text" is the text of the message that you wish to display.

You should use the ISO #error directive rather than this pragma. This pragma is provided for
compatibility with legacy code. The following is an example.

 #ifdefined(386)
...#elseifdefined(86)
...

#else#pragmaerror("neither386or86defined");
#endif

11.13 The EXTREF Pragma

The "extref" pragma is used to generate a reference to an external function or data item. The
form of the "extref" pragma is as follows.

#pragma extref name [;]

where description:

name is the name of an external function or data item. It must be declared to be an
external function or data item before the pragma is encountered. In C++, when
name is a function, it must not be overloaded.

This pragma causes an external reference for the function or data item to be emitted into the
object file even if that function or data item is not referenced in the module. The external

The EXTREF Pragma 269

32-bit Topics

reference will cause the linker to include the module containing that name in the linked
program or DLL.

This is useful for debugging since you can cause debugging routines (callable from within
debugger) to be included into a program or DLL to be debugged.

In C++, you can also force constructors and/or destructors to be called for a data item without
necessarily referencing the data item anywhere in your code.

11.14 The FUNCTION Pragma

Certain functions, such as those listed in the description of the "oi" and "om" options, have
intrinsic forms. These functions are special functions that are recognized by the compiler and
processed in a special way. For example, the compiler may choose to generate in-line code
for the function. The intrinsic attribute for these special functions is set by specifying the "oi"
or "om" option or using an "intrinsic" pragma. The "function" pragma can be used to remove
the intrinsic attribute for a specified list of functions.

The following describes the form of the "function" pragma.

#pragma function (fn {, fn}) [;]

where description:

fn is the name of a function.

Suppose the following source code was compiled using the "om" option so that when one of
the special math functions is referenced, the intrinsic form will be used. In our example, we
have referenced the function sin which does have an intrinsic form. By specifying sin in a
"function" pragma, the intrinsic attribute will be removed, causing the function sin to be
treated as a regular user-defined function.

#include <math.h>
#pragma function(sin);

double test(double x)
{

return(sin(x));
}

270 The FUNCTION Pragma

32-bit Pragmas

11.15 Setting Priority of Static Data Initialization (C++
Only)

The "initialize" pragma sets the priority for initialization of static data in the file. This priority
only applies to initialization of static data that requires the execution of code. For example,
the initialization of a class that contains a constructor requires the execution of the
constructor. Note that if the sequence in which initialization of static data in your program
takes place has no dependencies, the "initialize" pragma need not be used.

The general form of the "initialize" pragma is as follows.

#pragma initialize [before | after] priority [;]

priority ::= n | library | program

where description:

n is a number representing the priority and must be in the range 0-255. The larger
the priority, the later the point at which initialization will occur.

Priorities in the range 0-20 are reserved for the C++ compiler. This is to ensure that proper
initialization of the C++ run-time system takes place before the execution of your program.
The "library" keyword represents a priority of 32 and can be used for class libraries that
require initialization before the program is initialized. The "program" keyword represents a
priority of 64 and is the default priority for any compiled code. Specifying "before" adjusts
the priority by subtracting one. Specifying "after" adjusts the priority by adding one.

A source file containing the following "initialize" pragma specifies that the initialization of
static data in the file will take place before initialization of all other static data in the program
since a priority of 63 will be assigned.

Example:
#pragma initialize before program

If we specify "after" instead of "before", the initialization of the static data in the file will
occur after initialization of all other static data in the program since a priority of 65 will be
assigned.

Note that the following is equivalent to the "before" example

Setting Priority of Static Data Initialization (C++ Only) 271

32-bit Topics

Example:
#pragma initialize 63

and the following is equivalent to the "after" example.

Example:
#pragma initialize 65

The use of the "before", "after", and "program" keywords are more descriptive in the intent of
the pragmas.

It is recommended that a priority of 32 (the priority used when the "library" keyword is
specified) be used when developing class libraries. This will ensure that initialization of static
data defined by the class library will take place before initialization of static data defined by
the program. The following "initialize" pragma can be used to achieve this.

Example:
#pragma initialize library

11.16 The INLINE_DEPTH Pragma (C++ Only)

When an in-line function is called, the function call may be replaced by the in-line expansion
for that function. This in-line expansion may include calls to other in-line functions which
can also be expanded. The "inline_depth" pragma can be used to set the number of times this
expansion of in-line functions will occur for a call.

The form of the "inline_depth" pragma is as follows.#pragmainlinedepth[(] n [)] [;]

where description:

n is the depth of expansion. If n is 0, no expansion will occur. If n is 1, only the
original call is expanded. If n is 2, the original call and the in-line functions
invoked by the original function will be expanded. The default value for n is 3.
The maximum value for n is 255. Note that no expansion of recursive in-line
functions occur unless enabled using the "inline_recursion" pragma.

272 The INLINE_DEPTH Pragma (C++ Only)

32-bit Pragmas

11.17 The INLINE_RECURSION Pragma (C++ Only)

The "inline_recursion" pragma controls the recursive expansion of inline functions. The form
of the "inline_recursion" pragma is as follows.#pragmainlinerecursion[(] on | off [)] [;]

Specifying "on" will enable expansion of recursive inline functions. The depth of expansion
is specified by the "inline_depth" pragma. The default depth is 3. Specifying "off" suppresses
expansion of recursive inline functions. This is the default.

11.18 The INTRINSIC Pragma

Certain functions, those listed in the description of the "oi" option, have intrinsic forms.
These functions are special functions that are recognized by the compiler and processed in a
special way. For example, the compiler may choose to generate in-line code for the function.
The intrinsic attribute for these special functions is set by specifying the "oi" option or using
an "intrinsic" pragma.

The following describes the form of the "intrinsic" pragma.

#pragma intrinsic (fn {, fn}) [;]

where description:

fn is the name of a function.

Suppose the following source code was compiled without using the "oi" option so that no
function had the intrinsic attribute. If we wanted the intrinsic form of the sin function to be
used, we could specify the function in an "intrinsic" pragma.

#include <math.h>
#pragma intrinsic(sin);

double test(double x)
{

return(sin(x));
}

The INTRINSIC Pragma 273

32-bit Topics

11.19 The MESSAGE Pragma

The "message" pragma can be used to issue a message with the specified text to the standard
output without terminating compilation. The following describes the form of the "message"
pragma.

#pragma message ("message text") [;]

where description:

"message text" is the text of the message that you wish to display.

The following is an example.
 #ifdefined(386)

...
#else
#pragma message ("assuming 16-bit compile");
#endif

11.20 The ONCE Pragma

The "once" pragma can be used to indicate that the file which contains this pragma should
only be opened and processed "once". The following describes the form of the "once"
pragma.

#pragma once [;]

Assume that the file "foo.h" contains the following text.

274 The ONCE Pragma

32-bit Pragmas

Example:#ifndefFOOHINCLUDED#defineFOOHINCLUDED
#pragma once

.

.

.
#endif

The first time that the compiler processes "foo.h" and encounters the "once" pragma, it
records the file’s name. Subsequently, whenever the compiler encounters a #include
statement that refers to "foo.h", it will not open the include file again. This can help speed up
processing of #include files and reduce the time required to compile an application.

11.21 The PACK Pragma

The "pack" pragma can be used to control the way in which structures are stored in memory.
There are 4 forms of the "pack" pragma.

The following form of the "pack" pragma can be used to change the alignment of structures
and their fields in memory.

#pragma pack (n) [;]

where description:

n is 1, 2, 4, 8 or 16 and specifies the method of alignment.

The alignment of structure members is described in the following table. If the size of the
member is 1, 2, 4, 8 or 16, the alignment is given for each of the "zp" options. If the member
of the structure is an array or structure, the alignment is described by the row "x".

zp1 zp2 zp4 zp8 zp16

sizeof(member) \---------------------------------------
1 | 0 0 0 0 0
2 | 0 2 2 2 2
4 | 0 2 4 4 4
8 | 0 2 4 8 8
16 | 0 2 4 8 16
x | aligned to largest member

The PACK Pragma 275

32-bit Topics

An alignment of 0 means no alignment, 2 means word boundary, 4 means doubleword
boundary, etc. If the largest member of structure "x" is 1 byte then "x" is not aligned. If the
largest member of structure "x" is 2 bytes then "x" is aligned according to row 2. If the largest
member of structure "x" is 4 bytes then "x" is aligned according to row 4. If the largest
member of structure "x" is 8 bytes then "x" is aligned according to row 8. If the largest
member of structure "x" is 16 bytes then "x" is aligned according to row 16.

If no value is specified in the "pack" pragma, a default value of 8 is used. Note that the
default value can be changed with the "zp" Open Watcom C/C++ compiler command line
option.

The following form of the "pack" pragma can be used to save the current alignment amount
on an internal stack.

#pragma pack (push) [;]

The following form of the "pack" pragma can be used to save the current alignment amount
on an internal stack and set the current alignment.

#pragma pack (push, number) [;]

The following form of the "pack" pragma can be used to restore the previous alignment
amount from an internal stack.

#pragma pack (pop) [;]

11.22 The READ_ONLY_FILE Pragma

Explicit listing of dependencies in a makefile can often be tedious in the development and
maintenance phases of a project. The Open Watcom C/C++ compiler will insert dependency
information into the object file as it processes source files so that a complete snapshot of the
files necessary to build the object file are recorded. The "read_only_file" pragma can be used
to prevent the name of the source file that includes it from being included in the dependency
information that is written to the object file.

276 The READ_ONLY_FILE Pragma

32-bit Pragmas

This pragma is commonly used in system header files since they change infrequently (and,
when they do, there should be no impact on source files that have included them).

The form of the "read_only_file" pragma follows.#pragmareadonlyfile[;]

For more information on make dependencies, see the section entitled "Automatic Dependency
Detection (.AUTODEPEND)" in the Open Watcom C/C++ Tools User’s Guide.

11.23 The TEMPLATE_DEPTH Pragma (C++ Only)

The "template_depth" pragma provides a hard limit for the amount of nested template
expansions allowed so that infinite expansion can be detected.

The form of the "template_depth" pragma is as follows.#pragmatemplatedepth[(] n [)] [;]

where description:

n is the depth of expansion. If the value of n is less than 2, if will default to 2. If
n is not specified, a warning message will be issued and the default value for n
will be 100.

The following example of recursive template expansion illustrates why this pragma can be
useful.

Example:#pragmatemplatedepth(10);
template <class T>
struct S {

S<T*> x;
};

S<char> v;

The TEMPLATE_DEPTH Pragma (C++ Only) 277

32-bit Topics

11.24 The WARNING Pragma (C++ Only)

The "warning" pragma sets the level of warning messages. The form of the "warning" pragma
is as follows.

#pragma warning msg_num level [;]

where description:

msg_num is the number of the warning message. This number corresponds to the number
issued by the compiler and can be found in the appendix entitled "Open Watcom
C++ Diagnostic Messages" on page 427. Ifmsgnum is "*", the level of all
warning messages is changed to the specified level. Make sure to strip all
leading zeroes from the message number (to avoid interpretation as an octal
constant).

level is a number from 0 to 9 and represents the level of the warning message. When
a value of zero is specified, the warning becomes an error.

11.25 Auxiliary Pragmas

The following sections describe the capabilities provided by auxiliary pragmas.

11.25.1 Specifying Symbol Attributes

Auxiliary pragmas are used to describe attributes that affect code generation. Initially, the
compiler defines a default set of attributes. Each auxiliary pragma refers to one of the
following.

1. a symbol (such as a variable or function)
2. a type definition that resolves to a function type
3. the default set of attributes defined by the compiler

When an auxiliary pragma refers to a particular symbol, a copy of the current set of default
attributes is made and merged with the attributes specified in the auxiliary pragma. The
resulting attributes are assigned to the specified symbol and can only be changed by another
auxiliary pragma that refers to the same symbol.

278 Auxiliary Pragmas

32-bit Pragmas

An example of a type definition that resolves to a function type is the following.
 typedefvoid(*functype)();

When an auxiliary pragma refers to a such a type definition, a copy of the current set of
default attributes is made and merged with the attributes specified in the auxiliary pragma.
The resulting attributes are assigned to each function whose type matches the specified type
definition.

When "default" is specified instead of a symbol name, the attributes specified by the auxiliary
pragma change the default set of attributes. The resulting attributes are used by all symbols
that have not been specifically referenced by a previous auxiliary pragma.

Note that all auxiliary pragmas are processed before code generation begins. Consider the
following example.

code in which symbol x is referenced#pragmaauxy<attrs1>;
code in which symbol y is referenced
code in which symbol z is referenced#pragmaauxdefault<attrs2>;#pragmaauxx<attrs3>;

Auxiliary attributes are assigned to x, y and z in the following way.

1. Symbol x is assigned the initial default attributes merged with the attributes
specified by<attrs2> and<attrs3>.

2. Symbol y is assigned the initial default attributes merged with the attributes
specified by<attrs1>.

3. Symbol z is assigned the initial default attributes merged with the attributes
specified by<attrs2>.

11.25.2 Alias Names

When a symbol referred to by an auxiliary pragma includes an alias name, the attributes of the
alias name are also assumed by the specified symbol.

There are two methods of specifying alias information. In the first method, the symbol
assumes only the attributes of the alias name; no additional attributes can be specified. The
second method is more general since it is possible to specify an alias name as well as

Auxiliary Pragmas 279

32-bit Topics

additional auxiliary information. In this case, the symbol assumes the attributes of the alias
name as well as the attributes specified by the additional auxiliary information.

The simple form of the auxiliary pragma used to specify an alias is as follows.

#pragma aux (sym, [far16] alias) [;]

where description:

sym is any valid C/C++ identifier.

alias is the alias name and is any valid C/C++ identifier.

The far16 attribute should only be used on systems that permit the calling of 16-bit code
from 32-bit code. Currently, the only supported operating system that allows this is 32-bit
OS/2. If you have any libraries of functions or APIs that are only available as 16-bit code and
you wish to access these functions and APIs from 32-bit code, you must specify the far16
attribute. If the far16 attribute is specified, the compiler will generate special code which
allows the 16-bit code to be called from 32-bit code. Note that a far16 function must be a
function whose attributes are those specified by one of the alias namescdecl orpascal. These alias names will be described in a later section.

Consider the following example.
 #pragmaauxpushargsparm[];#pragmaaux(rtn,pushargs);

The routine rtn assumes the attributes of the alias namepushargs which specifies that
the arguments to rtn are passed on the stack.

Let us look at an example in which the symbol is a type definition.
 typedefvoid(functype)(int);#pragmaauxpushargsparm[];#pragmaaux(functype,pushargs);externfunctypertn1;externfunctypertn2;

The first auxiliary pragma defines an alias name calledpushargs that specifies the
mechanism to be used to pass arguments. The mechanism is to pass all arguments on the
stack. The second auxiliary pragma associates the attributes specified in the first pragma with

280 Auxiliary Pragmas

32-bit Pragmas

the type definition
functype. Since rtn1 and rtn2 are of type

functype,
arguments to either of those functions will be passed on the stack.

The general form of an auxiliary pragma that can be used to specify an alias is as follows.

#pragma aux (alias) sym aux_attrs [;]

where description:

alias is the alias name and is any valid C/C++ identifier.

sym is any valid C/C++ identifier.

aux_attrs are attributes that can be specified with the auxiliary pragma.

Consider the following example.
 #pragmaauxHIGHC"*" \

parm caller [] \
value no8087 \
modify [eax ecx edx fs gs];#pragmaaux(HIGHC)rtn1;#pragmaaux(HIGHC)rtn2;#pragmaaux(HIGHC)rtn3;

The routines rtn1, rtn2 and rtn3 assume the same attributes as the alias name
HIGHC

which defines the calling convention used by the MetaWare High C compiler. Note that
register ES must also be specified in the "modify" register set when using a memory model
that is not a small data model. Whenever calls are made to rtn1, rtn2 and rtn3, the
MetaWare High C calling convention will be used.

Note that if the attributes of
HIGHC change, only one pragma needs to be changed. If we

had not used an alias name and specified the attributes in each of the three pragmas for
rtn1, rtn2 and rtn3, we would have to change all three pragmas. This approach also
reduces the amount of memory required by the compiler to process the source file.

Auxiliary Pragmas 281

32-bit Topics

WARNING! The alias name
HIGHC is just another symbol. If

HIGHC appeared in
your source code, it would assume the attributes specified in the pragma for

HIGHC.
11.25.3 Predefined Aliases

A number of symbols are predefined by the compiler with a set of attributes that describe a
particular calling convention. These symbols can be used as aliases. The following is a list of
these symbols.

__cdecl cdecl or cdecl defines the calling convention used by Microsoft
compilers.

__fastcall
fastcall or fastcall defines the calling convention used by Microsoft

compilers.

__fortran
fortran or fortran defines the calling convention used by Open

Watcom FORTRAN compilers.

__pascal pascal or pascal defines the calling convention used by OS/2 1.x and
Windows 3.x API functions.

__stdcall stdcall or stdcall defines a special calling convention used by the
Win32 API functions.

__syscall syscall or syscall defines the calling convention used by the 32-bit
OS/2 API functions.

__system system or system are identical tosyscall.
__watcall watcall or watcall defines the calling convention used by Open

Watcom compilers.

The following describes the attributes of the above alias names.

11.25.3.1 Predefined "__cdecl" Alias
 #pragmaauxcdecl"*"\

parm caller [] \
value struct float struct routine [eax] \
modify [eax ecx edx]

282 Auxiliary Pragmas

32-bit Pragmas

Notes:

1. All symbols are preceded by an underscore character.

2. Arguments are pushed on the stack from right to left. That is, the last argument is
pushed first. The calling routine will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure
is returned, the called routine allocates space for the return value and returns a
pointer to the return value in register EAX.

4. Registers EAX, ECX and EDX are not saved and restored when a call is made.

11.25.3.2 Predefined "__pascal" Alias
 #pragmaauxpascal"̂"\

parm reverse routine [] \
value struct float struct caller [] \
modify [eax ebx ecx edx]

Notes:

1. All symbols are mapped to upper case.

2. Arguments are pushed on the stack in reverse order. That is, the first argument is
pushed first, the second argument is pushed next, and so on. The routine being
called will remove the arguments from the stack.

3. Floating-point values are returned in the same way as structures. When a structure
is returned, the caller allocates space on the stack. The address of the allocated
space will be pushed on the stack immediately before the call instruction. Upon
returning from the call, register EAX will contain address of the space allocated for
the return value.

4. Registers EAX, EBX, ECX and EDX are not saved and restored when a call is
made.

11.25.3.3 Predefined "__stdcall" Alias
 #pragmaauxstdcall"*@nnn"\

parm routine [] \
value struct struct caller [] \
modify [eax ecx edx]

Auxiliary Pragmas 283

32-bit Topics

Notes:

1. All symbols are preceded by an underscore character.

2. All C symbols (extern "C" symbols in C++) are suffixed by "@nnn" where "nnn" is
the sum of the argument sizes (each size is rounded up to a multiple of 4 bytes so
that char and short are size 4). When the argument list contains "...", the "@nnn"
suffix is omitted.

3. Arguments are pushed on the stack from right to left. That is, the last argument is
pushed first. The called routine will remove the arguments from the stack.

4. When a structure is returned, the caller allocates space on the stack. The address of
the allocated space will be pushed on the stack immediately before the call
instruction. Upon returning from the call, register EAX will contain address of the
space allocated for the return value. Floating-point values are returned in 80x87
register ST(0).

5. Registers EAX, ECX and EDX are not saved and restored when a call is made.

11.25.3.4 Predefined "__syscall" Alias
 #pragmaauxsyscall"*"\

parm caller [] \
value struct struct caller [] \
modify [eax ecx edx]

Notes:

1. Symbols names are not modified, that is, they are not adorned with leading or
trailing underscores.

2. Arguments are pushed on the stack from right to left. That is, the last argument is
pushed first. The calling routine will remove the arguments from the stack.

3. When a structure is returned, the caller allocates space on the stack. The address of
the allocated space will be pushed on the stack immediately before the call
instruction. Upon returning from the call, register EAX will contain address of the
space allocated for the return value. Floating-point values are returned in 80x87
register ST(0).

4. Registers EAX, ECX and EDX are not saved and restored when a call is made.

284 Auxiliary Pragmas

32-bit Pragmas

11.25.3.5 Predefined "__watcall" Alias (register calling convention)
 #pragmaauxwatcall"*"\

parm routine [eax ebx ecx edx] \
value struct caller

Notes:

1. Symbol names are followed by an underscore character.

2. Arguments are processed from left to right. The leftmost arguments are passed in
registers and the rightmost arguments are passed on the stack (if the registers used
for argument passing have been exhausted). Arguments that are passed on the
stack are pushed from right to left. The calling routine will remove the arguments
if any were pushed on the stack.

3. When a structure is returned, the caller allocates space on the stack. The address of
the allocated space is put into ESI register. The called routine then places the
return value there. Upon returning from the call, register EAX will contain address
of the space allocated for the return value.

4. Floating-point values are returned using 80x86 registers ("fpc" option) or using
80x87 floating-point registers ("fpi" or "fpi87" option).

5. All registers must be preserved by the called routine.

11.25.3.6 Predefined "__watcall" Alias (stack calling convention)
 #pragmaauxwatcall"*"\

parm caller [] \
value no8087 struct caller \
modify [eax ecx edx 8087]

Notes:

1. All symbols appear in object form as they do in source form.

2. Arguments are pushed on the stack from right to left. That is, the last argument is
pushed first. The calling routine will remove the arguments from the stack.

3. When a structure is returned, the caller allocates space on the stack. The address of
the allocated space will be pushed on the stack immediately before the call

Auxiliary Pragmas 285

32-bit Topics

instruction. Upon returning from the call, register EAX will contain address of the
space allocated for the return value.

4. Floating-point values are returned only using 80x86 registers.

5. Registers EAX, ECX and EDX are not preserved by the called routine.

6. Any local variables that are located in the 80x87 cache are not preserved by the
called routine.

11.25.4 Alternate Names for Symbols

The following form of the auxiliary pragma can be used to describe the mapping of a symbol
from its source form to its object form.

#pragma aux sym obj_name [;]

where description:

sym is any valid C/C++ identifier.

obj_name is any character string enclosed in double quotes.

When specifyingobjname, some characters have a special meaning:

where description:

* is unmodified symbol name

^ is symbol name converted to uppercase

! is symbol name converted to lowercase

is a placeholder for "@nnn", where nnn is size of all function parameters on the
stack.

\ next character is treated as literal

Several examples of source to object form symbol name translation follow:

In the following example, the name "MyRtn" will be replaced by "MyRtn_" in the object file.

286 Auxiliary Pragmas

32-bit Pragmas

 #pragmaauxMyRtn"*";
This is the default for all function names.

In the following example, the name "MyVar" will be replaced by "_MyVar" in the object file.
 #pragmaauxMyVar"*";

This is the default for all variable names.

In the following example, the lower case version "myrtn" will be placed in the object file.

#pragma aux MyRtn "!";

In the following example, the upper case version "MYRTN" will be placed in the object file.

#pragma aux MyRtn "^";

In the following example, the name "MyRtn" will be replaced by "_MyRtn@nnn" in the
object file. "nnn" represents the size of all function parameters.

 #pragmaauxMyRtn"*#";
In the following example, the name "MyRtn" will be replaced by "_MyRtn#" in the object
file.

 #pragmaauxMyRtn"*\#";
The default mapping for all symbols can also be changed as illustrated by the following
example.

 #pragmaauxdefault"*";
The above auxiliary pragma specifies that all names will be prefixed and suffixed by an
underscore character (’_’).

11.25.5 Describing Calling Information

The following form of the auxiliary pragma can be used to describe the way a function is to be
called.

Auxiliary Pragmas 287

32-bit Topics

#pragma aux sym far [;]
or

#pragma aux sym near [;]
or

#pragma aux sym = in_line [;]

in_line ::= { const | (seg id) | (offset id) | (reloff id)
| "asm" }

where description:

sym is a function name.

const is a valid C/C++ integer constant.

id is any valid C/C++ identifier.

seg specifies the segment of the symbol id.

offset specifies the offset of the symbol id.

reloff specifies the relative offset of the symbol id for near control transfers.

asm is an assembly language instruction or directive.

In the following example, Open Watcom C/C++ will generate a far call to the function
myrtn.

#pragma aux myrtn far;

Note that this overrides the calling sequence that would normally be generated for a particular
memory model. In other words, a far call will be generated even if you are compiling for a
memory model with a small code model.

In the following example, Open Watcom C/C++ will generate a near call to the function
myrtn.

#pragma aux myrtn near;

Note that this overrides the calling sequence that would normally be generated for a particular
memory model. In other words, a near call will be generated even if you are compiling for a
memory model with a big code model.

288 Auxiliary Pragmas

32-bit Pragmas

In the following DOS example, Open Watcom C/C++ will generate the sequence of bytes
following the "=" character in the auxiliary pragma whenever a call to mode4 is encountered.
mode4 is called an in-line function.

void mode4(void);
#pragma aux mode4 = \

0xb4 0x00 /* mov AH,0 */ \
0xb0 0x04 /* mov AL,4 */ \
0xcd 0x10 /* int 10H */ \
modify [AH AL];

The sequence in the above DOS example represents the following lines of assembly language
instructions.

mov AH,0 ; select function "set mode"
mov AL,4 ; specify mode (mode 4)
int 10H ; BIOS video call

The above example demonstrates how to generate BIOS function calls in-line without writing
an assembly language function and calling it from your C/C++ program. The C prototype for
the function mode4 is not necessary but is included so that we can take advantage of the
argument type checking provided by Open Watcom C/C++.

The following DOS example is equivalent to the above example but mnemonics for the
assembly language instructions are used instead of the binary encoding of the assembly
language instructions.

void mode4(void);
#pragma aux mode4 = \

"mov AH,0", \
"mov AL,4", \
"int 10H" \
modify [AH AL];

A sequence of in-line assembly language instructions may contain symbolic references. In the
following example, a near call to the function myalias is made whenever myrtn is called.

extern void myalias(void);
void myrtn(void);
#pragma aux myrtn = \

0xe8 reloff myalias /* near call */;

In the following example, a far call to the function myalias is made whenever myrtn is
called.

Auxiliary Pragmas 289

32-bit Topics

extern void myalias(void);
void myrtn(void);
#pragma aux myrtn = \

0x9a offset myalias seg myalias /* far call */;

11.25.5.1 Loading Data Segment Register

An application may have been compiled so that the segment register DS does not contain the
segment address of the default data segment (group "DGROUP"). This is usually the case if
you are using a large data memory model. Suppose you wish to call a function that assumes
that the segment register DS contains the segment address of the default data segment. It
would be very cumbersome if you were forced to compile your application so that the
segment register DS contained the default data segment (a small data memory model).

The following form of the auxiliary pragma will cause the segment register DS to be loaded
with the segment address of the default data segment before calling the specified function.

#pragma aux sym parm loadds [;]

where description:

sym is a function name.

Alternatively, the following form of the auxiliary pragma will cause the segment register DS
to be loaded with the segment address of the default data segment as part of the prologue
sequence for the specified function.

#pragma aux sym loadds [;]

where description:

sym is a function name.

11.25.5.2 Defining Exported Symbols in Dynamic Link Libraries

An exported symbol in a dynamic link library is a symbol that can be referenced by an
application that is linked with that dynamic link library. Normally, symbols in dynamic link

290 Auxiliary Pragmas

32-bit Pragmas

libraries are exported using the Open Watcom Linker "EXPORT" directive. An alternative
method is to use the following form of the auxiliary pragma.

#pragma aux sym export [;]

where description:

sym is a function name.

11.25.5.3 Forcing a Stack Frame

Normally, a function contains a stack frame if arguments are passed on the stack or an
automatic variable is allocated on the stack. No stack frame will be generated if the above
conditions are not satisfied. The following form of the auxiliary pragma will force a stack
frame to be generated under any circumstance.

#pragma aux sym frame [;]

where description:

sym is a function name.

11.25.6 Describing Argument Information

Using auxiliary pragmas, you can describe the calling convention that Open Watcom C/C++
is to use for calling functions. This is particularly useful when interfacing to functions that
have been compiled by other compilers or functions written in other programming languages.

The general form of an auxiliary pragma that describes argument passing is the following.

#pragma aux sym parm { pop_info | reverse | {reg_set} } [;]

pop_info ::= caller | routine

Auxiliary Pragmas 291

32-bit Topics

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used
for argument passing. A register set is a list of registers separated by spaces and
enclosed in square brackets.

11.25.6.1 Passing Arguments in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be
used to pass arguments to a particular function.

#pragma aux sym parm {reg_set} [;]

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used
for argument passing. A register set is a list of registers separated by spaces and
enclosed in square brackets.

Register sets establish a priority for register allocation during argument list processing.
Register sets are processed from left to right. However, within a register set, registers are
chosen in any order. Once all register sets have been processed, any remaining arguments are
pushed on the stack.

Note that regardless of the register sets specified, only certain combinations of registers will
be selected for arguments of a particular type.

Note that arguments of type float and double are always pushed on the stack when the "fpi"
or "fpi87" option is used.

double Arguments of type double can only be passed in one of the following register
pairs: EDX:EAX, ECX:EBX, ECX:EAX, ECX:ESI, EDX:EBX, EDI:EAX,
ECX:EDI, EDX:ESI, EDI:EBX, ESI:EAX, ECX:EDX, EDX:EDI, EDI:ESI,
ESI:EBX or EBX:EAX. For example, if the following register set was specified
for a routine having an argument of type double,

[EBP EBX]

292 Auxiliary Pragmas

32-bit Pragmas

the argument would be pushed on the stack since a valid register combination
for 8-byte arguments is not contained in the register set. Note that this method
for passing arguments of type double is supported only when the "fpc" option is
used. Note that this argument passing method does not include the passing of
8-byte structures.

far pointer A far pointer can only be passed in one of the following register pairs:
DX:EAX, CX:EBX, CX:EAX, CX:ESI, DX:EBX, DI:EAX, CX:EDI, DX:ESI,
DI:EBX, SI:EAX, CX:EDX, DX:EDI, DI:ESI, SI:EBX, BX:EAX, FS:ECX,
FS:EDX, FS:EDI, FS:ESI, FS:EBX, FS:EAX, GS:ECX, GS:EDX, GS:EDI,
GS:ESI, GS:EBX, GS:EAX, DS:ECX, DS:EDX, DS:EDI, DS:ESI, DS:EBX,
DS:EAX, ES:ECX, ES:EDX, ES:EDI, ES:ESI, ES:EBX or ES:EAX. For
example, if a far pointer is passed to a function with the following register set,

[ES EBP]

the argument would be pushed on the stack since a valid register combination
for a far pointer is not contained in the register set.

int The only registers that will be assigned to 4-byte arguments (e.g., arguments of
type int) are: EAX, EBX, ECX, EDX, ESI and EDI. For example, if the
following register set was specified for a routine with one argument of type int,

[EBP]

the argument would be pushed on the stack since a valid register combination
for 4-byte arguments is not contained in the register set. Note that this argument
passing method includes 4-byte structures. Note that this argument passing
method also includes arguments of type float but only when the "fpc" option is
used.

char, short int
Arguments whose size is 1 byte or 2 bytes (e.g., arguments of type char and
short int as well as 2-byte structures) are promoted to 4 bytes and are then
assigned registers as if they were 4-byte arguments.

others Arguments that do not fall into one of the above categories cannot be passed in
registers and are pushed on the stack. Once an argument has been assigned a
position on the stack, all remaining arguments will be assigned a position on the
stack even if all register sets have not yet been exhausted.

Auxiliary Pragmas 293

32-bit Topics

Notes:

1. The default register set is [EAX EBX ECX EDX].

2. Specifying registers AH and AL is equivalent to specifying register AX.
Specifying registers DH and DL is equivalent to specifying register DX.
Specifying registers CH and CL is equivalent to specifying register CX. Specifying
registers BH and BL is equivalent to specifying register BX. Specifying register
EAX implies that register AX has been specified. Specifying register EBX implies
that register BX has been specified. Specifying register ECX implies that register
CX has been specified. Specifying register EDX implies that register DX has been
specified. Specifying register EDI implies that register DI has been specified.
Specifying register ESI implies that register SI has been specified. Specifying
register EBP implies that register BP has been specified. Specifying register ESP
implies that register SP has been specified.

3. If you are compiling for a memory model with a small data model, or the "zdp"
compiler option is specified, any register combination containing register DS
becomes illegal. In a small data model, segment register DS must remain
unchanged as it points to the program’s data segment. Note that the "zdf" compiler
option can be used to specify that register DS does not contain that segment address
of the program’s data segment. In this case, register combinations containing
register DS are legal.

4. If you are compiling for the flat memory model, any register combination
containing DS or ES becomes illegal. In a flat memory model, code and data reside
in the same segment. Segment registers DS and ES point to this segment and must
remain unchanged.

Consider the following example.

#pragma aux myrtn parm [eax ebx ecx edx] [ebp esi];

Suppose myrtn is a routine with 3 arguments each of type double.

1. The first argument will be passed in the register pair EDX:EAX.
2. The second argument will be passed in the register pair ECX:EBX.
3. The third argument will be pushed on the stack since EBP:ESI is not a valid

register pair for arguments of type double.

It is possible for registers from the second register set to be used before registers from the first
register set are used. Consider the following example.

#pragma aux myrtn parm [eax ebx ecx edx] [esi edi];

294 Auxiliary Pragmas

32-bit Pragmas

Suppose myrtn is a routine with 3 arguments, the first of type int and the second and third of
type double.

1. The first argument will be passed in the register EAX.
2. The second argument will be passed in the register pair ECX:EBX.
3. The third argument will be passed in the register set EDI:ESI.

Note that registers are no longer selected from a register set after registers are selected from
subsequent register sets, even if all registers from the original register set have not been
exhausted.

An empty register set is permitted. All subsequent register sets appearing after an empty
register set are ignored; all remaining arguments are pushed on the stack.

Notes:

1. If a single empty register set is specified, all arguments are passed on the stack.

2. If no register set is specified, the default register set [EAX EBX ECX EDX] is
used.

11.25.6.2 Forcing Arguments into Specific Registers

It is possible to force arguments into specific registers. Suppose you have a function, say
"mycopy", that copies data. The first argument is the source, the second argument is the
destination, and the third argument is the length to copy. If we want the first argument to be
passed in the register ESI, the second argument to be passed in register EDI and the third
argument to be passed in register ECX, the following auxiliary pragma can be used.

void mycopy(char near *, char *, int);
#pragma aux mycopy parm [ESI] [EDI] [ECX];

Note that you must be aware of the size of the arguments to ensure that the arguments get
passed in the appropriate registers.

11.25.6.3 Passing Arguments to In-Line Functions

For functions whose code is generated by Open Watcom C/C++ and whose argument list is
described by an auxiliary pragma, Open Watcom C/C++ has some freedom in choosing how
arguments are assigned to registers. Since the code for in-line functions is specified by the
programmer, the description of the argument list must be very explicit. To achieve this, Open
Watcom C/C++ assumes that each register set corresponds to an argument. Consider the
following DOS example of an in-line function called scrollactivepgup.

Auxiliary Pragmas 295

32-bit Topics

void scrollactivepgup(char,char,char,char,char,char);
#pragma aux scrollactivepgup = \

"mov AH,6" \
"int 10h" \
parm [ch] [cl] [dh] [dl] [al] [bh] \
modify [ah];

The BIOS video call to scroll the active page up requires the following arguments.

1. The row and column of the upper left corner of the scroll window is passed in
registers CH and CL respectively.

2. The row and column of the lower right corner of the scroll window is passed in
registers DH and DL respectively.

3. The number of lines blanked at the bottom of the window is passed in register AL.

4. The attribute to be used on the blank lines is passed in register BH.

When passing arguments, Open Watcom C/C++ will convert the argument so that it fits in the
register(s) specified in the register set for that argument. For example, in the above example,
if the first argument to scrollactivepgup was called with an argument whose type was
int, it would first be converted to char before assigning it to register CH. Similarly, if an
in-line function required its argument in register EAX and the argument was of type short int,
the argument would be converted to long int before assigning it to register EAX.

In general, Open Watcom C/C++ assigns the following types to register sets.

1. A register set consisting of a single 8-bit register (1 byte) is assigned a type of
unsigned char.

2. A register set consisting of a single 16-bit register (2 bytes) is assigned a type of
unsigned short int.

3. A register set consisting of a single 32-bit register (4 bytes) is assigned a type of
unsigned long int.

4. A register set consisting of two 32-bit registers (8 bytes) is assigned a type of
double.

296 Auxiliary Pragmas

32-bit Pragmas

11.25.6.4 Removing Arguments from the Stack

The following form of the auxiliary pragma specifies who removes from the stack arguments
that were pushed on the stack.

#pragma aux sym parm (caller | routine) [;]

where description:

sym is a function name.

"caller" specifies that the caller will pop the arguments from the stack; "routine" specifies that
the called routine will pop the arguments from the stack. If "caller" or "routine" is omitted,
"routine" is assumed unless the default has been changed in a previous auxiliary pragma, in
which case the new default is assumed.

11.25.6.5 Passing Arguments in Reverse Order

The following form of the auxiliary pragma specifies that arguments are passed in the reverse
order.

#pragma aux sym parm reverse [;]

where description:

sym is a function name.

Normally, arguments are processed from left to right. The leftmost arguments are passed in
registers and the rightmost arguments are passed on the stack (if the registers used for
argument passing have been exhausted). Arguments that are passed on the stack are pushed
from right to left.

When arguments are reversed, the rightmost arguments are passed in registers and the leftmost
arguments are passed on the stack (if the registers used for argument passing have been
exhausted). Arguments that are passed on the stack are pushed from left to right.

Reversing arguments is most useful for functions that require arguments to be passed on the
stack in an order opposite from the default. The following auxiliary pragma demonstrates
such a function.

Auxiliary Pragmas 297

32-bit Topics

#pragma aux rtn parm reverse [];

11.25.7 Describing Function Return Information

Using auxiliary pragmas, you can describe the way functions are to return values. This is
particularly useful when interfacing to functions that have been compiled by other compilers
or functions written in other programming languages.

The general form of an auxiliary pragma that describes the way a function returns its value is
the following.

#pragma aux sym value {no8087 | reg_set | struct_info} [;]
struct_info ::= struct {float | struct | (routine | caller) | reg_set}

where description:

sym is a function name.

reg_set is called a register set. The register sets specify the registers that are to be used
for argument passing. A register set is a list of registers separated by spaces and
enclosed in square brackets.

11.25.7.1 Returning Function Values in Registers

The following form of the auxiliary pragma can be used to specify the registers that are to be
used to return a function’s value.

#pragma aux sym value reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

Note that the method described below for returning values of type float or double is
supported only when the "fpc" option is used.

298 Auxiliary Pragmas

32-bit Pragmas

Depending on the type of the return value, only certain registers are allowed in reg_set.

1-byte For 1-byte return values, only the following registers are allowed: AL, AH, DL,
DH, BL, BH, CL or CH. If no register set is specified, register AL will be used.

2-byte For 2-byte return values, only the following registers are allowed: AX, DX, BX,
CX, SI or DI. If no register set is specified, register AX will be used.

4-byte For 4-byte return values (including near pointers), only the following register are
allowed: EAX, EDX, EBX, ECX, ESI or EDI. If no register set is specified,
register EAX will be used. This form of the auxiliary pragma is legal for
functions of type float when using the "fpc" option only.

far pointer For functions that return far pointers, the following register pairs are allowed:
DX:EAX, CX:EBX, CX:EAX, CX:ESI, DX:EBX, DI:EAX, CX:EDI, DX:ESI,
DI:EBX, SI:EAX, CX:EDX, DX:EDI, DI:ESI, SI:EBX, BX:EAX, FS:ECX,
FS:EDX, FS:EDI, FS:ESI, FS:EBX, FS:EAX, GS:ECX, GS:EDX, GS:EDI,
GS:ESI, GS:EBX, GS:EAX, DS:ECX, DS:EDX, DS:EDI, DS:ESI, DS:EBX,
DS:EAX, ES:ECX, ES:EDX, ES:EDI, ES:ESI, ES:EBX or ES:EAX. If no
register set is specified, the registers DX:EAX will be used.

8-byte For 8-byte return values (including functions of type double), only the following
register pairs are allowed: EDX:EAX, ECX:EBX, ECX:EAX, ECX:ESI,
EDX:EBX, EDI:EAX, ECX:EDI, EDX:ESI, EDI:EBX, ESI:EAX, ECX:EDX,
EDX:EDI, EDI:ESI, ESI:EBX or EBX:EAX. If no register set is specified, the
registers EDX:EAX will be used. This form of the auxiliary pragma is legal for
functions of type double when using the "fpc" option only.

Notes:

1. An empty register set is not allowed.

2. If you are compiling for a memory model which has a small data model, any of the
above register combinations containing register DS becomes illegal. In a small
data model, segment register DS must remain unchanged as it points to the
program’s data segment.

3. If you are compiling for the flat memory model, any register combination
containing DS or ES becomes illegal. In a flat memory model, code and data reside
in the same segment. Segment registers DS and ES point to this segment and must
remain unchanged.

Auxiliary Pragmas 299

32-bit Topics

11.25.7.2 Returning Structures

Typically, structures are not returned in registers. Instead, the caller allocates space on the
stack for the return value and sets register ESI to point to it. The called routine then places the
return value at the location pointed to by register ESI.

The following form of the auxiliary pragma can be used to specify the register that is to be
used to point to the return value.

#pragma aux sym value struct (caller|routine) reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

"caller" specifies that the caller will allocate memory for the return value. The address of the
memory allocated for the return value is placed in the register specified in the register set by
the caller before the function is called. If an empty register set is specified, the address of the
memory allocated for the return value will be pushed on the stack immediately before the call
and will be returned in register EAX by the called routine.

"routine" specifies that the called routine will allocate memory for the return value. Upon
returning to the caller, the register specified in the register set will contain the address of the
return value. An empty register set is not allowed.

Only the following registers are allowed in the register set: EAX, EDX, EBX, ECX, ESI or
EDI. Note that in a big data model, the address in the return register is assumed to be in the
segment specified by the value in the SS segment register.

If the size of the structure being returned is 1, 2 or 4 bytes, it will be returned in registers. The
return register will be selected from the register set in the following way.

1. A 1-byte structure will be returned in one of the following registers: AL, AH, DL,
DH, BL, BH, CL or CH. If no register set is specified, register AL will be used.

2. A 2-byte structure will be returned in one of the following registers: AX, DX, BX,
CX, SI or DI. If no register set is specified, register AX will be used.

300 Auxiliary Pragmas

32-bit Pragmas

3. A 4-byte structure will be returned in one of the following registers: EAX, EDX,
EBX, ECX, ESI or EDI. If no register set is specified, register EAX will be used.

The following form of the auxiliary pragma can be used to specify that structures whose size
is 1, 2 or 4 bytes are not to be returned in registers. Instead, the caller will allocate space on
the stack for the structure return value and point register ESI to it.

#pragma aux sym value struct struct [;]

where description:

sym is a function name.

11.25.7.3 Returning Floating-Point Data

There are a few ways available for specifying how the value for a function whose type is float
or double is to be returned.

The following form of the auxiliary pragma can be used to specify that function return values
whose type is float or double are not to be returned in registers. Instead, the caller will
allocate space on the stack for the return value and point register ESI to it.

#pragma aux sym value struct float [;]

where description:

sym is a function name.

In other words, floating-point values are to be returned in the same way structures are
returned.

The following form of the auxiliary pragma can be used to specify that function return values
whose type is float or double are not to be returned in 80x87 registers when compiling with
the "fpi" or "fpi87" option. Instead, the value will be returned in 80x86 registers. This is the
default behaviour for the "fpc" option. Function return values whose type is float will be
returned in register EAX. Function return values whose type is double will be returned in
registers EDX:EAX. This is the default method for the "fpc" option.

Auxiliary Pragmas 301

32-bit Topics

#pragma aux sym value no8087 [;]

where description:

sym is a function name.

The following form of the auxiliary pragma can be used to specify that function return values
whose type is float or double are to be returned in ST(0) when compiling with the "fpi" or
"fpi87" option. This form of the auxiliary pragma is not legal for the "fpc" option.

#pragma aux sym value [8087] [;]

where description:

sym is a function name.

11.25.8 A Function that Never Returns

The following form of the auxiliary pragma can be used to describe a function that does not
return to the caller.

#pragma aux sym aborts [;]

where description:

sym is a function name.

302 Auxiliary Pragmas

32-bit Pragmas

Consider the following example.

#pragma aux exitrtn aborts;
extern void exitrtn(void);

void rtn()
{

exitrtn();
}

exitrtn is defined to be a function that does not return. For example, it may call exit to
return to the system. In this case, Open Watcom C/C++ generates a "jmp" instruction instead
of a "call" instruction to invoke exitrtn.

11.25.9 Describing How Functions Use Memory

The following form of the auxiliary pragma can be used to describe a function that does not
modify any memory (i.e., global or static variables) that is used directly or indirectly by the
caller.

#pragma aux sym modify nomemory [;]

where description:

sym is a function name.

Consider the following example.

Auxiliary Pragmas 303

32-bit Topics

 #pragmaoff(checkstack);
extern void myrtn(void);

int i = { 1033 };

extern Rtn() {
while(i < 10000) {

i += 383;
}
myrtn();
i += 13143;

};

To compile the above program, "rtn.c", we issue the following command.

C>wcc rtn /oai /d1
C>wpp rtn /oai /d1
C>wcc386 rtn /oai /d1
C>wpp386 rtn /oai /d1

For illustrative purposes, we omit loop optimizations from the list of code optimizations that
we want the compiler to perform. The "d1" compiler option is specified so that the object file
produced by Open Watcom C/C++ contains source line information.

We can generate a file containing a disassembly of rtn.obj by issuing the following
command.

C>wdis rtn /l /s /r

The "s" option is specified so that the listing file produced by the Open Watcom Disassembler
contains source lines taken from rtn.c. The listing file rtn.lst appears as follows.

Module: rtn.cGroup:’DGROUP’CONST,DATASegment:’TEXT’BYTEUSE3200000036bytes#pragmaoff(checkstack);
extern void myrtn(void);

int i = { 1033 };

304 Auxiliary Pragmas

32-bit Pragmas

extern Rtn() {
0000 52
Rtnpush EDX

0001 8b 15 00 00 00 00 movEDX,i
while(i < 10000) {

0007 81 fa 10 27 00 00 L1 cmp EDX,00002710H
000d 7d 08 jge L2

i += 383;
}

000f 81 c2 7f 01 00 00 add EDX,0000017fH
0015 eb f0 jmp L1

myrtn();
0017 89 15 00 00 00 00 L2 movi,EDX
001d e8 00 00 00 00 callmyrtn
0022 8b 15 00 00 00 00 movEDX,i

i += 13143;
0028 81 c2 57 33 00 00 add EDX,00003357H
002e 89 15 00 00 00 00 movi,EDX

}
0034 5a pop EDX
0035 c3 ret

No disassembly errors

--Segment:’DATA’WORDUSE3200000004bytes
0000 09 04 00 00

i
-

No disassembly errors

--

Let us add the following auxiliary pragma to the source file.

#pragma aux myrtn modify nomemory;

If we compile the source file with the above pragma and disassemble the object file using the
Open Watcom Disassembler, we get the following listing file.

Module: rtn.cGroup:’DGROUP’CONST,DATASegment:’TEXT’BYTEUSE3200000030bytes#pragmaoff(checkstack);
#pragma aux myrtn modify nomemory;

Auxiliary Pragmas 305

32-bit Topics

extern void myrtn(void);

int i = { 1033 };

extern Rtn() {
0000 52
Rtnpush EDX

0001 8b 15 00 00 00 00 movEDX,i
while(i < 10000) {

0007 81 fa 10 27 00 00 L1 cmp EDX,00002710H
000d 7d 08 jge L2

i += 383;
}

000f 81 c2 7f 01 00 00 add EDX,0000017fH
0015 eb f0 jmp L1

myrtn();
0017 89 15 00 00 00 00 L2 movi,EDX
001d e8 00 00 00 00 callmyrtn

i += 13143;
0022 81 c2 57 33 00 00 add EDX,00003357H
0028 89 15 00 00 00 00 movi,EDX

}
002e 5a pop EDX
002f c3 ret

No disassembly errors

--Segment:’DATA’WORDUSE3200000004bytes
0000 09 04 00 00

i
-

No disassembly errors

--

Notice that the value of i is in register EDX after completion of the "while" loop. After the
call to myrtn, the value of i is not loaded from memory into a register to perform the final
addition. The auxiliary pragma informs the compiler that myrtn does not modify any
memory (i.e., global or static variables) that is used directly or indirectly by Rtn and hence
register EDX contains the correct value of i.

The preceding auxiliary pragma deals with routines that modify memory. Let us consider the
case where routines reference memory. The following form of the auxiliary pragma can be
used to describe a function that does not reference any memory (i.e., global or static variables)
that is used directly or indirectly by the caller.

306 Auxiliary Pragmas

32-bit Pragmas

#pragma aux sym parm nomemory modify nomemory [;]

where description:

sym is a function name.

Notes:

1. You must specify both "parm nomemory" and "modify nomemory".

Let us replace the auxiliary pragma in the above example with the following auxiliary pragma.

#pragma aux myrtn parm nomemory modify nomemory;

If you now compile our source file and disassemble the object file using WDIS, the result is
the following listing file.

Module: rtn.cGroup:’DGROUP’CONST,DATASegment:’TEXT’BYTEUSE320000002abytes#pragmaoff(checkstack);
#pragma aux myrtn parm nomemory modify nomemory;

extern void myrtn(void);

int i = { 1033 };

extern Rtn() {
0000 52
Rtnpush EDX

0001 8b 15 00 00 00 00 movEDX,i
while(i < 10000) {

0007 81 fa 10 27 00 00 L1 cmp EDX,00002710H
000d 7d 08 jge L2

i += 383;
}

000f 81 c2 7f 01 00 00 add EDX,0000017fH
0015 eb f0 jmp L1

Auxiliary Pragmas 307

32-bit Topics

myrtn();
0017 e8 00 00 00 00 L2 callmyrtn

i += 13143;
001c 81 c2 57 33 00 00 add EDX,00003357H
0022 89 15 00 00 00 00 movi,EDX

}
0028 5a pop EDX
0029 c3 ret

No disassembly errors

--Segment:’DATA’WORDUSE3200000004bytes
0000 09 04 00 00

i
-

No disassembly errors

--

Notice that after completion of the "while" loop we did not have to update i with the value in
register EDX before calling myrtn. The auxiliary pragma informs the compiler that myrtn
does not reference any memory (i.e., global or static variables) that is used directly or
indirectly by myrtn so updating i was not necessary before calling myrtn.

11.25.10 Describing the Registers Modified by a Function

The following form of the auxiliary pragma can be used to describe the registers that a
function will use without saving.

#pragma aux sym modify [exact] reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

Specifying a register set informs Open Watcom C/C++ that the registers belonging to the
register set are modified by the function. That is, the value in a register before calling the
function is different from its value after execution of the function.

308 Auxiliary Pragmas

32-bit Pragmas

Registers that are used to pass arguments are assumed to be modified and hence do not have to
be saved and restored by the called function. Also, since the EAX register is frequently used
to return a value, it is always assumed to be modified. If necessary, the caller will contain
code to save and restore the contents of registers used to pass arguments. Note that saving and
restoring the contents of these registers may not be necessary if the called function does not
modify them. The following form of the auxiliary pragma can be used to describe exactly
those registers that will be modified by the called function.

#pragma aux sym modify exact reg_set [;]

where description:

sym is a function name.

reg_set is a register set.

The above form of the auxiliary pragma tells Open Watcom C/C++ not to assume that the
registers used to pass arguments will be modified by the called function. Instead, only the
registers specified in the register set will be modified. This will prevent generation of the
code which unnecessarily saves and restores the contents of the registers used to pass
arguments.

Also, any registers that are specified in the value register set are assumed to be unmodified
unless explicitly listed in the exact register set. In the following example, the code
generator will not generate code to save and restore the value of the stack pointer register
since we have told it that "GetSP" does not modify any register whatsoever.

Example:
unsigned GetSP(void);#ifdefined(386)
#pragma aux GetSP = value [esp] modify exact [];
#else
#pragma aux GetSP = value [sp] modify exact [];
#endif

11.25.11 An Example

As mentioned in an earlier section, the following pragma defines the calling convention for
functions compiled by MetaWare’s High C compiler.

Auxiliary Pragmas 309

32-bit Topics

 #pragmaauxHIGHC"*" \
parm caller [] \
value no8087 \
modify [eax ecx edx fs gs];

Note that register ES must also be specified in the "modify" register set when using a memory
model with a non-small data model. Let us discuss this pragma in detail.

"*" specifies that all function and variable names appear in object form as they do in
source form.

parm caller [] specifies that all arguments are to be passed on the stack (an empty register set
was specified) and the caller will remove the arguments from the stack.

value no8087 specifies that floating-point values are to be returned using 80x86 registers and
not 80x87 floating-point registers.

modify [eax ecx edx fs gs] specifies that registers EAX, ECX, EDX, FS and GS are not
preserved by the called routine.

Note that the default method of returning integer values is used; 1-byte characters are returned
in register AL, 2-byte integers are returned in register AX, and 4-byte integers are returned in
register EAX.

11.25.12 Auxiliary Pragmas and the 80x87

This section deals with those aspects of auxiliary pragmas that are specific to the 80x87. The
discussion in this chapter assumes that one of the "fpi" or "fpi87" options is used to compile
functions. The following areas are affected by the use of these options.

1. passing floating-point arguments to functions,
2. returning floating-point values from functions and
3. which 80x87 floating-point registers are allowed to be modified by the called

routine.

11.25.12.1 Using the 80x87 to Pass Arguments

By default, floating-point arguments are passed on the 80x86 stack. The 80x86 registers are
never used to pass floating-point arguments when a function is compiled with the "fpi" or
"fpi87" option. However, they can be used to pass arguments whose type is not floating-point
such as arguments of type "int".

310 Auxiliary Pragmas

32-bit Pragmas

The following form of the auxiliary pragma can be used to describe the registers that are to be
used to pass arguments to functions.

#pragma aux sym parm {reg_set} [;]

where description:

sym is a function name.

reg_set is a register set. The register set can contain 80x86 registers and/or the string
"8087".

Notes:

1. If an empty register set is specified, all arguments, including floating-point
arguments, will be passed on the 80x86 stack.

When the string "8087" appears in a register set, it simply means that floating-point arguments
can be passed in 80x87 floating-point registers if the source file is compiled with the "fpi" or
"fpi87" option. Before discussing argument passing in detail, some general notes on the use
of the 80x87 floating-point registers are given.

The 80x87 contains 8 floating-point registers which essentially form a stack. The stack
pointer is called ST and is a number between 0 and 7 identifying which 80x87 floating-point
register is at the top of the stack. ST is initially 0. 80x87 instructions reference these registers
by specifying a floating-point register number. This number is then added to the current value
of ST. The sum (taken modulo 8) specifies the 80x87 floating-point register to be used. The
notation ST(n), where "n" is between 0 and 7, is used to refer to the position of an 80x87
floating-point register relative to ST.

When a floating-point value is loaded onto the 80x87 floating-point register stack, ST is
decremented (modulo 8), and the value is loaded into ST(0). When a floating-point value is
stored and popped from the 80x87 floating-point register stack, ST is incremented (modulo 8)
and ST(1) becomes ST(0). The following illustrates the use of the 80x87 floating-point
registers as a stack, assuming that the value of ST is 4 (4 values have been loaded onto the
80x87 floating-point register stack).

Auxiliary Pragmas 311

32-bit Topics

+----------------+

0 | 4th from top | ST(4)
+----------------+

1 | 5th from top | ST(5)
+----------------+

2 | 6th from top | ST(6)
+----------------+

3 | 7th from top | ST(7)
+----------------+

ST -> 4 | top of stack | ST(0)
+----------------+

5 | 1st from top | ST(1)
+----------------+

6 | 2nd from top | ST(2)
+----------------+

7 | 3rd from top | ST(3)
+----------------+

Starting with version 9.5, the Open Watcom compilers use all eight of the 80x87 registers as a
stack. The initial state of the 80x87 register stack is empty before a program begins
execution.

Note: For compatibility with code compiled with version 9.0 and earlier, you can
compile with the "fpr" option. In this case only four of the eight 80x87 registers
are used as a stack. These four registers were used to pass arguments. The other
four registers form what was called the 80x87 cache. The cache was used for
local floating-point variables. The state of the 80x87 registers before a program
began execution was as follows.

1. The four 80x87 floating-point registers that form the stack are
uninitialized.

2. The four 80x87 floating-point registers that form the 80x87 cache are
initialized with zero.

Hence, initially the 80x87 cache was comprised of ST(0), ST(1), ST(2) and
ST(3). ST had the value 4 as in the above diagram. When a floating-point value
was pushed on the stack (as is the case when passing floating-point arguments),
it became ST(0) and the 80x87 cache was comprised of ST(1), ST(2), ST(3) and
ST(4). When the 80x87 stack was full, ST(0), ST(1), ST(2) and ST(3) formed
the stack and ST(4), ST(5), ST(6) and ST(7) formed the 80x87 cache. Version
9.5 and later no longer use this strategy.

The rules for passing arguments are as follows.

312 Auxiliary Pragmas

32-bit Pragmas

1. If the argument is not floating-point, use the procedure described earlier in this
chapter.

2. If the argument is floating-point, and a previous argument has been assigned a
position on the 80x86 stack (instead of the 80x87 stack), the floating-point
argument is also assigned a position on the 80x86 stack. Otherwise proceed to the
next step.

3. If the string "8087" appears in a register set in the pragma, and if the 80x87 stack is
not full, the floating-point argument is assigned floating-point register ST(0) (the
top element of the 80x87 stack). The previous top element (if there was one) is
now in ST(1). Since arguments are pushed on the stack from right to left, the
leftmost floating-point argument will be in ST(0). Otherwise the floating-point
argument is assigned a position on the 80x86 stack.

Consider the following example.

#pragma aux myrtn parm [8087];

void main()
{

float x;
double y;
int i;
long int j;

x = 7.7;
i = 7;
y = 77.77;
j = 77;
myrtn(x, i, y, j);

}

myrtn is an assembly language function that requires four arguments. The first argument of
type float (4 bytes), the second argument is of type int (4 bytes), the third argument is of type
double (8 bytes) and the fourth argument is of type long int (4 bytes). These arguments will
be passed to myrtn in the following way.

1. Since "8087" was specified in the register set, the first argument, being of type
float, will be passed in an 80x87 floating-point register.

2. The second argument will be passed on the stack since no 80x86 registers were
specified in the register set.

Auxiliary Pragmas 313

32-bit Topics

3. The third argument will also be passed on the stack. Remember the following rule:
once an argument is assigned a position on the stack, all remaining arguments will
be assigned a position on the stack. Note that the above rule holds even though
there are some 80x87 floating-point registers available for passing floating-point
arguments.

4. The fourth argument will also be passed on the stack.

Let us change the auxiliary pragma in the above example as follows.

#pragma aux myrtn parm [eax 8087];

The arguments will now be passed to myrtn in the following way.

1. Since "8087" was specified in the register set, the first argument, being of type
float will be passed in an 80x87 floating-point register.

2. The second argument will be passed in register EAX, exhausting the set of
available 80x86 registers for argument passing.

3. The third argument, being of type double, will also be passed in an 80x87
floating-point register.

4. The fourth argument will be passed on the stack since no 80x86 registers remain in
the register set.

11.25.12.2 Using the 80x87 to Return Function Values

The following form of the auxiliary pragma can be used to describe a function that returns a
floating-point value in ST(0).

#pragma aux sym value reg_set [;]

where description:

sym is a function name.

reg_set is a register set containing the string "8087", i.e. [8087].

314 Auxiliary Pragmas

32-bit Pragmas

11.25.12.3 Preserving 80x87 Floating-Point Registers Across Calls

The code generator assumes that all eight 80x87 floating-point registers are available for use
within a function unless the "fpr" option is used to generate backward compatible code (older
Open Watcom compilers used four registers as a cache). The following form of the auxiliary
pragma specifies that the floating-point registers in the 80x87 cache may be modified by the
specified function.

#pragma aux sym modify reg_set [;]

where description:

sym is a function name.

reg_set is a register set containing the string "8087", i.e. [8087].

This instructs Open Watcom C/C++ to save any local variables that are located in the 80x87
cache before calling the specified routine.

Auxiliary Pragmas 315

32-bit Topics

316 Auxiliary Pragmas

In-line Assembly Language

In-line Assembly Language

318

12 In-line Assembly Language

The chapters entitled "16-bit Pragmas" on page 171 and "32-bit Pragmas" on page 259 briefly
describe the use of the auxiliary pragma to create a sequence of assembly language
instructions that can be placed anywhere executable C/C++ statements can appear in your
source code. This chapter is devoted to an in-depth look at in-line assembly language
programming.

The reasons for resorting to in-line assembly code are varied:

• Speed - You may be interested in optimizing a heavily-used section of code.

• Size - You may wish to optimize a module for size by replacing a library function call
with a direct system call.

• Architecture - You may want to access certain features of the Intel x86 architecture that
cannot be done so with C/C++ statements.

There are also some reasons for not resorting to in-line assembly code.

• Portability - The code is not portable to different architectures.

• Optimization - Sometimes an optimizing compiler can do a better job of arranging the
instruction stream so that it is optimal for a particular processor (such as the 486 or
Pentium).

12.1 In-line Assembly Language Default Environment

In next table is description of the default in-line assembler environment in dependency on
C/C++ compilers CPU switch for x86 target platform.

In-line Assembly Language Default Environment 319

In-line Assembly Language

Compiler CPU FPU CPU extension

directive directive directives
-------- --------- --------- --------------------------
-0 .8086 .8087
-1 .186 .8087
-2 .286p .287
-3 .386p .387
-4 .486p .387
-5 .586p .387 .K3D+.MMX
-6 .686p .387 .K3D+.MMX+.XMM+.XMM2+.XMM3

This environment can be simply changed by appropriate directives.

Note:

This change is valid only for the block of assembly source code. After this block, default
setting is restored.

12.2 In-line Assembly Language Tutorial

Doing in-line assembly is reasonably straight-forward with Open Watcom C/C++ although
care must be exercised. You can generate a sequence of in-line assembly anywhere in your
C/C++ code stream. The first step is to define the sequence of instructions that you wish to
place in-line. The auxiliary pragma is used to do this. Here is a simple example based on a
DOS function call that returns a far pointer to the Double-Byte Character Set (DBCS)
encoding table.

Example:externunsignedshortfar*dbcstable(void);#pragmaauxdbcstable=\
"mov ax,6300h" \
"int 21h" \
value [ds si] \
modify [ax];

To set up the DOS call, the AH register must contain the hexadecimal value "63" (63h). A
DOS function call is invoked by interrupt 21h. DOS returns a far pointer in DS:SI to a table
of byte pairs in the form (start of range, end of range). On a non-DBCS system, the first pair
will be (0,0). On a Japanese DBCS system, the first pair will be (81h,9Fh).

320 In-line Assembly Language Tutorial

In-line Assembly Language

With each pragma, we define a corresponding function prototype that explains the behaviour
of the function in terms of C/C++. Essentially, it is a function that does not take any
arguments and that returns a far pointer to a unsigned short item.

The pragma indicates that the result of this "function" is returned in DS:SI (value [ds si]). The
pragma also indicates that the AX register is modified by the sequence of in-line assembly
code (modify [ax]).

Having defined our in-line assembly code, let us see how it is used in actual C code.

Example:
#include <stdio.h>externunsignedshortfar*dbcstable(void);#pragmaauxdbcstable=\

"mov ax,6300h" \
"int 21h" \
value [ds si] \
modify [ax];

void main()
{if(*dbcstable()!=0){

/*
we are running on a DOS system that
supports double-byte characters

*/
printf("DBCS supported\n");

}
}

Before you attempt to compile and run this example, consider this: The program will not
work! At least, it will not work in most 16-bit memory models. And it doesn’t work at all in
32-bit protected mode using a DOS extender. What is wrong with it?

We can examine the disassembled code for this program in order to see why it does not
always work in 16-bit real-mode applications.

In-line Assembly Language Tutorial 321

In-line Assembly Language

 if(*dbcstable()!=0){
/*

we are running on a DOS system that
supports double-byte characters

*/
0007 b8 00 63 mov ax,6300H
000a cd 21 int 21H
000c 83 3c 00 cmp word ptr [si],0000H
000f 74 0a je L1

printf("DBCS supported\n");
}

0011 be 00 00 mov si,offset L2
0014 56 push si
0015 e8 00 00 callprintf
0018 83 c4 02 add sp,0002H

}

After the DOS interrupt call, the DS register has been altered and the code generator does
nothing to recover the previous value. In the small memory model, the contents of the DS
register never change (and any code that causes a change to DS must save and restore its
value). It is the programmer’s responsibility to be aware of the restrictions imposed by certain
memory models especially with regards to the use of segmentation registers. So we must
make a small change to the pragma.

 externunsignedshortfar*dbcstable(void);#pragmaauxdbcstable=\
"push ds" \
"mov ax,6300h" \
"int 21h" \
"mov di,ds" \
"pop ds" \
value [di si] \
modify [ax];

If we compile and run this example with a 16-bit compiler, it will work properly. We can
examine the disassembled code for this revised program.

322 In-line Assembly Language Tutorial

In-line Assembly Language

 if(*dbcstable()!=0){
/*

we are running on a DOS system that
supports double-byte characters

*/
0008 1e push ds
0009 b8 00 63 mov ax,6300H
000c cd 21 int 21H
000e 8c df mov di,ds
0010 1f pop ds
0011 8e c7 mov es,di
0013 26 83 3c 00 cmp word ptr es:[si],0000H
0017 74 0a je L1

printf("DBCS supported\n");
}

0019 be 00 00 mov si,offset L2
001c 56 push si
001d e8 00 00 callprintf
0020 83 c4 02 add sp,0002H

If you examine this code, you can see that the DS register is saved and restored by the in-line
assembly code. The code generator, having been informed that the far pointer is returned in
(DI:SI), loads up the ES register from DI in order to reference the far data correctly.

That takes care of the 16-bit real-mode case. What about 32-bit protected mode? When using
a DOS extender, you must examine the accompanying documentation to see if the system call
that you wish to make is supported by the DOS extender. One of the reasons that this
particular DOS call is not so clear-cut is that it returns a 16-bit real-mode segment:offset
pointer. A real-mode pointer must be converted by the DOS extender into a protected-mode
pointer in order to make it useful. As it turns out, neither the Tenberry Software DOS/4G(W)
nor Phar Lap DOS extenders support this particular DOS call (although others may). The
issues with each DOS extender are complex enough that the relative merits of using in-line
assembly code are not worth it. We present an excerpt from the final solution to this problem.

Example:#ifndef386externunsignedshortfar*dbcstable(void);#pragmaauxdbcstable=\
"push ds" \
"mov ax,6300h" \
"int 21h" \
"mov di,ds" \
"pop ds" \
value [di si] \
modify [ax];

In-line Assembly Language Tutorial 323

In-line Assembly Language

#elseunsignedshortfar*dbcstable(void)
{

union REGPACK regs;staticshortdbcsdummy=0;
memset(®s, 0, sizeof(regs));if(IsPharLap()){PHARLAPblockpblock;

memset(&pblock, 0, sizeof(pblock));pblock.realeax=0x6300;/*getDBCSvectortable*/pblock.intnum=0x21;/* DOS call */
regs.x.eax = 0x2511; /* issue real-mode interrupt */regs.x.edx=FPOFF(&pblock);/*DS:EDX�>parameterblock*/regs.w.ds=FPSEG(&pblock);
intr(0x21, ®s);return(firstmeg(pblock.realds,regs.w.si));}elseif(IsDOS4G()){DPMIblockdblock;
memset(&dblock, 0, sizeof(dblock));
dblock.eax = 0x6300; /* get DBCS vector table */
regs.w.ax = 0x300; /* DPMI Simulate R-M intr */
regs.h.bl = 0x21; /* DOS call */
regs.h.bh = 0; /* flags */
regs.w.cx = 0; /* # bytes from stack */regs.x.edi=FPOFF(&dblock);regs.x.es=FPSEG(&dblock);
intr(0x31, ®s);
return(firstmeg(dblock.ds, dblock.esi));

} else {return(&dbcsdummy);
}

}

#endif

The 16-bit version will use in-line assembly code but the 32-bit version will use a C function
that has been crafted to work with both Tenberry Software DOS/4G(W) and Phar Lap DOS
extenders. The firstmeg function used in the example is shown below.

 #defineREALSEGMENT0x34
void far *firstmeg(unsigned segment, unsigned offset)
{

void far *meg1;if(IsDOS4G()){meg1=MKFP(FPSEG(&meg1),(segment<<4)+offset);
} else {meg1=MKFP(REALSEGMENT,(segment<<4)+offset);
}
return(meg1);

}

324 In-line Assembly Language Tutorial

In-line Assembly Language

We have taken a brief look at two features of the auxiliary pragma, the "modify" and "value"
attributes.

The "modify" attribute describes those registers that are modified by the execution of the
sequence of in-line code. You usually have two choices here; you can save/restore registers
that are affected by the code sequence in which case they need not appear in the modify list or
you can let the code generator handle the fact that the registers are modified by the code
sequence. When you invoke a system function (such as a DOS or BIOS call), you should be
careful about any side effects that the call has on registers. If a register is modified by a call
and you have not listed it in the modify list or saved/restored it, this can have a disastrous
affect on the rest of the code in the function where you are including the in-line code.

The "value" attribute describes the register or registers in which a value is returned (we use
the term "returned", not in the sense that a function returns a value, but in the sense that a
result is available after execution of the code sequence).

This leads the discussion into the third feature of the auxiliary pragma, the feature that allows
us to place the results of C expressions into specific registers as part of the "setup" for the
sequence of in-line code. To illustrate this, let us look at another example.

Example:externvoidBIOSSetCurPos(unsignedshortrowcol,unsignedcharpage);
#pragma aux BIOSSetCurPos = \

"push bp" \
"mov ah,2" \
"int 10h" \
"pop bp" \
parm [dx] [bh] \
modify [ah];

The "parm" attribute specifies the list of registers into which values are to be placed as part of
the prologue to the in-line code sequence. In the above example, the "set cursor position"
function requires three pieces of information. It requires that the cursor row value be placed
in the DH register, that the cursor column value be placed in the DL register, and that the
screen page number be placed in the BH register. In this example, we have decided to
combine the row and column information into a single "argument" to the function. Note that
the function prototype for BIOSSetCurPos is important. It describes the types and number
of arguments to be set up for the in-line code. It also describes the type of the return value (in
this case there is none).

Once again, having defined our in-line assembly code, let us see how it is used in actual C
code.

In-line Assembly Language Tutorial 325

In-line Assembly Language

Example:
#include <stdio.h>externvoidBIOSSetCurPos(unsignedshortrowcol,unsignedcharpage);
#pragma aux BIOSSetCurPos = \

"push bp" \
"mov ah,2" \
"int 10h" \
"pop bp" \
parm [dx] [bh] \
modify [ah];

void main()
{

BIOSSetCurPos((5 << 8) | 20, 0);
printf("Hello world\n");

}

To see how the code generator set up the register values for the in-line code, let us take a look
at the disassembled code.

BIOSSetCurPos((5 << 8) | 20, 0);

0008 ba 14 05 mov dx,0514H
000b 30 ff xor bh,bh
000d 55 push bp
000e b4 02 mov ah,02H
0010 cd 10 int 10H
0012 5d pop bp

As we expected, the result of the expression for the row and column is placed in the DX
register and the page number is placed in the BH register. The remaining instructions are our
in-line code sequence.

Although our examples have been simple, you should be able to generalize them to your
situation.

To review, the "parm", "value" and "modify" attributes are used to:

1. convey information to the code generator about the way data values are to be
placed in registers in preparation for the code burst (parm),

2. convey information to the code generator about the result, if any, from the code
burst (value), and

3. convey information to the code generator about any side effects to the registers
after the code burst has executed (modify). It is important to let the code generator

326 In-line Assembly Language Tutorial

In-line Assembly Language

know all of the side effects on registers when the in-line code is executed;
otherwise it assumes that all registers, other than those used for parameters, are
preserved. In our examples, we chose to push/pop some of the registers that are
modified by the code burst.

12.3 Labels in In-line Assembly Code

Labels can be used in in-line assembly code. Here is an example.

Example:externvoiddisablevideo(unsigned);#pragmaauxdisablevideo=\
"again: in al,dx" \

"test al,8" \
"jz again" \
"mov dx,03c0h" \
"mov al,11h" \
"out dx,al" \
"mov al,0" \
"out dx,al" \
parm [dx] \
modify [al dx];

12.4 Variables in In-line Assembly Code

To finish our discussion, we provide examples that illustrate the use of variables in the in-line
assembly code. The following example illustrates the use of static variable references in the
auxiliary pragma.

Example:
#include <stdio.h>

static short rowcol;staticunsignedcharpage;
Variables in In-line Assembly Code 327

In-line Assembly Language

extern void BIOSSetCurPos(void);
#pragma aux BIOSSetCurPos = \"movdx,rowcol"\"movbh,page"\

"push bp" \
"mov ah,2" \
"int 10h" \
"pop bp" \
modify [ah bx dx];

void main()
{ rowcol=(5<<8)|20;page=0;

BIOSSetCurPos();
printf("Hello world\n");

}

The only rule to follow here is that the auxiliary pragma must be defined after the variables
are defined. The in-line assembler is passed information regarding the sizes of variables so
they must be defined first.

If we look at a fragment of the disassembled code, we can see the result.
 rowcol=(5<<8)|20;
0008 c7 06 00 00 14 05 movwordptrrowcol,0514Hpage=0;
000e c6 06 00 00 00 movbyteptrpage,00H

BIOSSetCurPos();
0013 8b 16 00 00 movdx,rowcol
0017 8a 3e 00 00 movbh,page
001b 55 push bp
001c b4 02 mov ah,02H
001e cd 10 int 10H
0020 5d pop bp

The following example illustrates the use of automatic variable references in the auxiliary
pragma. Again, the auxiliary pragma must be defined after the variables are defined so the
pragma is placed in-line with the function.

328 Variables in In-line Assembly Code

In-line Assembly Language

Example:
#include <stdio.h>

void main()
{

short rowcol;unsignedcharpage;
extern void BIOSSetCurPos(void);

pragma aux BIOSSetCurPos = \"movdx,rowcol"\"movbh,page"\
"push bp" \
"mov ah,2" \
"int 10h" \
"pop bp" \
modify [ah bx dx];

 rowcol=(5<<8)|20;page=0;
BIOSSetCurPos();
printf("Hello world\n");

}

If we look at a fragment of the disassembled code, we can see the result.
 rowcol=(5<<8)|20;
000e c7 46 fc 14 05 mov word ptr -4H[bp],0514Hpage=0;
0013 c6 46 fe 00 mov byte ptr -2H[bp],00H

BIOSSetCurPos();
0017 8b 96 fc ff mov dx,-4H[bp]
001b 8a be fe ff mov bh,-2H[bp]
001f 55 push bp
0020 b4 02 mov ah,02H
0022 cd 10 int 10H
0024 5d pop bp

You should try to avoid references to automatic variables as illustrated by this last example.
Referencing automatic variables in this manner causes them to be marked as volatile and the
optimizer will not be able to do a good job of optimizing references to these variables.

Variables in In-line Assembly Code 329

In-line Assembly Language

12.5 In-line Assembly Language using _asm

There is an alternative to Open Watcom’s auxiliary pragma method for creating in-line
assembly code. You can use one of the _asm or __asm keywords to imbed assembly code
into the generated code. The following is a revised example of the cursor positioning example
introduced above.

Example:
#include <stdio.h>

void main()
{unsignedshortrowcol;unsignedcharpage;rowcol=(5<<8)|20;page=0;asm{movdx,rowcolmovbh,page

push bp
mov ah,2
int 10h
pop bp

};
printf("Hello world\n");

}

The assembly language sequence can reference program variables to retrieve or store results.
There are a few incompatibilities between Microsoft and Open Watcom implementation of
this directive.

__LOCAL_SIZE is not supported by Open Watcom C/C++. This is illustrated in the
following example.

Example:

330 In-line Assembly Language using _asm

In-line Assembly Language

void main()
{

int i;
int j;asm{

push bp
mov bp,spsubsp,LOCALSIZE

};
}

structure references are not supported by Open Watcom C/C++. This is illustrated in the
following example.

Example:
#include <stdio.h>

struct rowcol {
unsigned char col;
unsigned char row;

};

void main()
{structrowcolpos;unsignedcharpage;pos.row=5;pos.col=20;page=0;asm{movdl,pos.colmovdh,pos.rowmovbh,page

push bp
mov ah,2
int 10h
pop bp

};
printf("Hello world\n");

}

In-line Assembly Language using _asm 331

In-line Assembly Language

12.6 In-line Assembly Directives and Opcodes

It is not the intention of this chapter to describe assembly-language programming in any
detail. You should consult a book that deals with this topic. However, we present a list of the
directives, opcodes and register names that are recognized by the assembler built into the
compiler’s auxiliary pragma processor.

332 In-line Assembly Directives and Opcodes

In-line Assembly Language

.186 .286 .286c .286p .287
.386
.386p .387 .486 .486p .586
.586p
.686 .686p .8086 .8087 aaa
aad
aam aas adc add addpd
addps
addsd addss addsubpd addsubps ah
al
and andnpd andnps andpd andps
arpl
ax bh bl bound bp
bsf
bsr bswap bt btc btr
bts
bx byte call callf cbw
cdq
ch cl clc cld clflush
cli
clts cmc cmova cmovae cmovb
cmovbe
cmovc cmove cmovg cmovge cmovl
cmovle
cmovna cmovnae cmovnb cmovnbe cmovnc
cmovne
cmovng cmovnge cmovnl cmovnle cmovno
cmovnp
cmovns cmovnz cmovo cmovp cmovpe
cmovpo
cmovs cmovz cmp cmpeqpd cmpeqps
cmpeqsd
cmpeqss cmplepd cmpleps cmplesd cmpless
cmpltpd
cmpltps cmpltsd cmpltss cmpneqpd cmpneqps
cmpneqsd
cmpneqss cmpnlepd cmpnleps cmpnlesd cmpnless
cmpnltpd
cmpnltps cmpnltsd cmpnltss cmpordpd cmpordps
cmpordsd
cmpordss cmppd cmpps cmps cmpsb
cmpsd
cmpss cmpsw cmpunordpd cmpunordps cmpunordsd
cmpunordss
cmpxchg cmpxchg8b comisd comiss cpuid
cr0
cr2 cr3 cr4 cs cvtdq2pd

In-line Assembly Directives and Opcodes 333

In-line Assembly Language

cvtdq2ps
cvtpd2dq cvtpd2pi cvtpd2ps cvtpi2pd cvtpi2ps
cvtps2dq
cvtps2pd cvtps2pi cvtsd2si cvtsd2ss cvtsi2sd
cvtsi2ss
cvtss2sd cvtss2si cvttpd2dq cvttpd2pi cvttps2dq
cvttps2pi
cvttsd2si cvttss2si cwd cwde cx
daa
das db dd dec df
dh
di div divpd divps divsd
divss
dl dp dr0 dr1 dr2
dr3
dr6 dr7 ds dup dw
dword
dx eax ebp ebx ecx
edi
edx emms enter es esi
esp
f2xm1 fabs fadd faddp far
fbld
fbstp fchs fclex fcmovb fcmovbe
fcmove

334 In-line Assembly Directives and Opcodes

In-line Assembly Language

fcmovnb fcmovnbe fcmovne fcmovnu fcmovu
fcom
fcomi fcomip fcomp fcompp fcos
fdecstp
fdisi fdiv fdivp fdivr fdivrp
femms
feni ffree fiadd ficom ficomp
fidiv
fidivr fild fimul fincstp finit
fist
fistp fisttp fisub fisubr fld
fld1
fldcw fldenv fldenvd fldenvw fldl2e
fldl2t
fldlg2 fldln2 fldpi fldz fmul
fmulp
fnclex fndisi fneni fninit fnop
fnrstor
fnrstord fnrstorw fnsave fnsaved fnsavew
fnstcw
fnstenv fnstenvd fnstenvw fnstsw fpatan
fprem
fprem1 fptan frndint frstor frstord
frstorw
fs fsave fsaved fsavew fscale
fsetpm
fsin fsincos fsqrt fst fstcw
fstenv
fstenvd fstenvw fstp fstsw fsub
fsubp
fsubr fsubrp ftst fucom fucomi
fucomip
fucomp fucompp fwait fword fxam
fxch
fxrstor fxsave fxtract fyl2x fyl2xp1
gs
haddpd haddps hsubpd hsubps hlt
idiv
imul in inc ins insb
insd
insw int into invd invlpg
iret
iretd iretdf iretf ja jae
jb
jbe jc jcxz je jecxz
jg
jge jl jle jmp jmpf
jna

In-line Assembly Directives and Opcodes 335

In-line Assembly Language

jnae jnb jnbe jnc jne
jng
jnge jnl jnle jno jnp
jns
jnz jo jp jpe jpo
js
jz .k3d lahf lar lddqu
ldmxcsr
lds lea leave les lfence
lfs
lgdt lgs lidt lldt lmsw
lock
lods lodsb lodsd lodsw loop
loopd
loope looped loopew loopne loopned
loopnew
loopnz loopnzd loopnzw loopw loopz
loopzd
loopzw lsl lss ltr maskmovdqu
maskmovq
maxpd maxps maxsd maxss mfence
minpd
minps minsd minss mm0 mm1
mm2

336 In-line Assembly Directives and Opcodes

In-line Assembly Language

mm3 mm4 mm5 mm6 mm7
.mmx
monitor mov movapd movaps movd
movddup
movdq2q movdqa movdqu movhlps movhpd
movhps
movlhps movlpd movlps movmskpd movmskps
movntdq
movnti movntpd movntps movntq movq
movq2dq
movs movsb movsd movshdup movsldup
movss
movsw movsx movupd movups movzx
mul
mulpd mulps mulsd mulss mwait
near
neg .no87 nop not offset
or
orpd orps out outs outsb
outsd
outsw oword packssdw packsswb packuswb
paddb
paddd paddq paddsb paddsw paddusb
paddusw
paddw pand pandn pause pavgb
pavgusb
pavgw pcmpeqb pcmpeqd pcmpeqw pcmpgtb
pcmpgtd
pcmpgtw pextrw pf2id pf2iw pfacc
pfadd
pfcmpeq pfcmpge pfcmpgt pfmax pfmin
pfmul
pfnacc pfpnacc pfrcp pfrcpit1 pfrcpit2
pfrsqit1
pfrsqrt pfsub pfsubr pi2fd pi2fw
pinsrw
pmaddwd pmaxsw pmaxub pminsw pminub
pmovmskb
pmulhrw pmulhuw pmulhw pmullw pmuludq
pop
popa popad popf popfd por
prefetch
prefetchnta prefetcht0 prefetcht1 prefetcht2 prefetchw
psadbw
pshufd pshufhw pshuflw pshufw pslld
pslldq
psllq psllw psrad psraw psrld
psrldq

In-line Assembly Directives and Opcodes 337

In-line Assembly Language

psrlq psrlw psubb psubd psubq
psubsb
psubsw psubusb psubusw psubw pswapd
ptr
punpckhbw punpckhdq punpckhqdq punpckhwd punpcklbw
punpckldq
punpcklqdq punpcklwd push pusha pushad
pushd
pushf pushfd pushw pword pxor
qword
rcl rcpps rcpss rcr rdmsr
rdpmc
rdtsc rep repe repne repnz
repz
ret retd retf retfd retn
rol
ror rsm rsqrtps rsqrtss sahf
sal
sar sbb scas scasb scasd
scasw
seg seta setae setb setbe
setc
sete setg setge setl setle
setna

338 In-line Assembly Directives and Opcodes

In-line Assembly Language

setnae setnb setnbe setnc setne
setng
setnge setnl setnle setno setnp
setns
setnz seto setp setpe setpo
sets
setz sfence sgdt shl shld
short
shr shrd shufpd shufps si
sidt
sldt smsw sp sqrtpd sqrtps
sqrtsd
sqrtss ss st stc std
sti
stmxcsr stos stosb stosd stosw
str
sub subpd subps subsd subss
sysenter
sysexit tbyte test tr3 tr4
tr5
tr6 tr7 ucomisd ucomiss unpckhpd
unpckhps
unpcklpd unpcklps verr verw wait
wbinvd
word wrmsr xadd xchg xlat
xlatb
xorpd xorps .xmm xmm0 xmm1
.xmm2
xmm2 .xmm3 xmm3 xmm4 xmm5
xmm6
xmm7 xor

A separate assembler is also included with this product and is described in the Open Watcom
C/C++ Tools User’s Guide

In-line Assembly Directives and Opcodes 339

In-line Assembly Language

340 In-line Assembly Directives and Opcodes

Structured Exception Handling in
C

Structured Exception Handling in C

342

13 Structured Exception Handling

Microsoft-style Structured Exception Handling (SEH) is supported by the Open Watcom C
compiler only. MS SEH is supported under the Win32, Win32s and OS/2 platforms. You
should not confuse SEH with C++ exception handling. The Open Watcom C++ compiler
supports the standard C++ syntax for exception handling.

The following sections introduce some of the aspects of SEH. For a good description of SEH,
please refer to Advanced Windows NT by Jeffrey Richter (Microsoft Press, 1994). You may
also wish to read the article "Clearer, More Comprehensive Error Processing with Win32
Structured Exception Handling" by Kevin Goodman in the January, 1994 issue of Microsoft
Systems Journal.

13.1 Termination Handlers

We begin our look at SEH with a simple model. In this model, there are two blocks of code
— the "guarded" block and the "termination" block. The termination code is guaranteed to be
executed regardless of how the "guarded" block of code is exited (including execution of any
"return" statement).

 try{
/* guarded code */
.
.
.

}finally{
/* termination handler */
.
.
.

}

The _finally block of code is guaranteed to be executed no matter how the guarded block is
exited (break, continue, return, goto, or longjmp()). Exceptions to this are calls to abort(),
exit() or _exit() which terminate the execution of the process.

There can be no intervening code between try and finally blocks.

Termination Handlers 343

Structured Exception Handling in C

The following is a contrived example of the use of _try and _finally.

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>

int docopy(char *in, char *out)
{FILE*infile=NULL;FILE*outfile=NULL;

char buffer[256];
 try{infile=fopen(in,"r");if(infile==NULL)return(EXITFAILURE);outfile=fopen(out,"w");if(outfile==NULL)return(EXITFAILURE);while(fgets((char*)buffer,255,infile)!=NULL){fputs((char*)buffer,outfile);

}
}finally{if(infile!=NULL){

printf("Closing input file\n");fclose(infile);
}if(outfile!=NULL){

printf("Closing output file\n");fclose(outfile);
}
printf("End of processing\n");

}return(EXITSUCCESS);
}

void main(int argc, char **argv)
{

if(argc < 3) {printf("Usage:mv[infilename][outfilename]\n");exit(EXITFAILURE);
}
exit(docopy(argv[1], argv[2]));

}

344 Termination Handlers

Structured Exception Handling

The try block ignores the messy details of what to do when either one of the input or output
files cannot be opened. It simply tests whether a file can be opened and quits if it cannot. The
finally block ensures that the files are closed if they were opened, releasing the resources
associated with open files. This simple example could have been written in C without the use
of SEH.

There are two ways to enter the finally block. One way is to exit the try block using a
statement like return. The other way is to fall through the end of the try block and into the
finally block (the normal execution flow for this program). Any code following the finally
block is only executed in the second case. You can think of the finally block as a special
function that is invoked whenever an exit (other than falling out the bottom) is attempted from
a corresponding try block.

More formally stated, a local unwind occurs when the system executes the contents of a
finally block because of the premature exit of code in a try block.

Note: Kevin Goodman describes "unwinds" in his article. "There are two types of
unwinds: global and local. A global unwind occurs when there are nested functions and
an exception takes place. A local unwind takes place when there are multiple handlers
within one function. Unwinding means that the stack is going to be clean by the time your
handler’s code gets executed."

The try/finally structure is a rejection mechanism which is useful when a set of statements is
to be conditionally chosen for execution, but not all of the conditions required to make the
selection are available beforehand. It is an extension to the C language. You start out with
the assumption that a certain task can be accomplished. You then introduce statements into
the code that test your hypothesis. The try block consists of the code that you assume, under
normal conditions, will succeed. Statements like if ... return can be used as tests. Execution
begins with the statements in the try block. If a condition is detected which indicates that the
assumption of a normal state of affairs is wrong, a return statement may be executed to cause
control to be passed to the statements in the finally block. If the try block completes execution
without executing a return statement (i.e., all statements are executed up to the final brace),
then control is passed to the first statement following the try block (i.e., the first statement in
the finally block).

In the following example, two sets of codes and letters are read in and some simple sequence
checking is performed. If a sequence error is detected, an error message is printed and
processing terminates; otherwise the numbers are processed and another pair of numbers is
read.

Termination Handlers 345

Structured Exception Handling in C

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>

void main(int argc, char **argv)
{readfile(fopen(argv[1],"r"));
}
 voidreadfile(FILE*input)
{

int line = 0;
char buffer[256];
char icode;
char x, y;

if(input == NULL) {
printf("Unable to open file\n");
return;

}
 try{

for(;;) {
line++;
if(fgets(buffer, 255, input) == NULL) break;
icode = buffer[0];
if(icode != ’1’) return;
x = buffer[1];
line++;
if(fgets(buffer, 255, input) == NULL) return;
icode = buffer[0];
if(icode != ’2’) return;
y = buffer[1];
process(x, y);

}
printf("Processing complete\n");
fclose(input);
input = NULL;

}
 finally{

if(input != NULL) {
printf("Invalid sequence: line = %d\n", line);
fclose(input);

}
}

}

346 Termination Handlers

Structured Exception Handling

void process(char x, char y)
{

printf("processing pair %c,%c\n", x, y);
}

The above example attempts to read a code and letter. If an end of file occurs then the loop is
terminated by the break statement.

If the code is not 1 then we did not get what we expected and an error condition has arisen.
Control is passed to the first statement in the finally block by the return statement. An error
message is printed and the open file is closed.

If the code is 1 then a second code and number are read. If an end of file occurs then we are
missing a complete set of data and an error condition has arisen. Control is passed to the first
statement in the finally block by the return statement. An error message is printed and the
open file is closed.

Similarly if the expected code is not 2 an error condition has arisen. The same error handling
procedure occurs.

If the second code is 2, the values of variables x and y are processed (printed). The for loop
is repeated again.

The above example illustrates the point that all the information required to test an assumption
(that the file contains valid pairs of data) is not available from the start. We write our code
with the assumption that the data values are correct (our hypothesis) and then test the
assumption at various points in the algorithm. If any of the tests fail, we reject the hypothesis.

Consider the following example. What values are printed by the program?

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>

void main(int argc, char **argv)
{

int ctr = 0;

Termination Handlers 347

Structured Exception Handling in C

while(ctr < 10) {

printf("%d\n", ctr);try{
if(ctr == 2) continue;
if(ctr == 3) break;

}finally{
ctr++;

}

ctr++;
}
printf("%d\n", ctr);

}

At the top of the loop, the value of ctr is 0. The next time we reach the top of the loop, the
value of ctr is 2 (having been incremented twice, once by the finally block and once at the
bottom of the loop). When ctr has the value 2, the continue statement will cause the finally
block to be executed (resulting in ctr being incremented to 3), after which execution
continues at the top of the while loop. When ctr has the value 3, the break statement will
cause the finally block to be executed (resulting in ctr being incremented to 4), after which
execution continues after the while loop. Thus the output is:

0
2
3
4

The point of this exercise was that after the finally block is executed, the normal flow of
execution is resumed at the break, continue, return, etc. statement and the normal behaviour
for that statement occurs. It is as if the compiler had inserted a function call just before the
statement that exits the try block.

 try{if(ctr==2)invokefinallyblock()continue;if(ctr==3)invokefinallyblock()break;
}

There is some overhead associated with local unwinds such as that incurred by the use of
break, continue, return, etc. To avoid this overhead, a new transfer keyword called _leave
can be used. The use of this keyword causes a jump to the end of the try block. Consider the
following modified version of an earlier example.

348 Termination Handlers

Structured Exception Handling

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>

void main(int argc, char **argv)
{readfile(fopen(argv[1],"r"));
}
 voidreadfile(FILE*input)
{

int line = 0;
char buffer[256];
char icode;
char x, y;

if(input == NULL) {
printf("Unable to open file\n");
return;

}
 try{

for(;;) {
line++;
if(fgets(buffer, 255, input) == NULL) break;
icode = buffer[0];if(icode!=’1’)leave;
x = buffer[1];
line++;if(fgets(buffer,255,input)==NULL)leave;
icode = buffer[0];if(icode!=’2’)leave;
y = buffer[1];
process(x, y);

}
printf("Processing complete\n");
fclose(input);
input = NULL;

}
 finally{

if(input != NULL) {
printf("Invalid sequence: line = %d\n", line);
fclose(input);

}
}

}

Termination Handlers 349

Structured Exception Handling in C

void process(char x, char y)
{

printf("processing pair %c,%c\n", x, y);
}

There are two ways to enter the finally block. One way is caused by unwinds — either local
(by the use of break, continue, return, or goto) or global (more on global unwinds later). The
other way is through the normal flow of execution (i.e., simply by falling through the bottom
of the try block). There is a function called AbnormalTermination that can be used to
determine which of these two methods was used to enter the finally block. If the function
returns TRUE (1) then the finally block was entered using the first method; if the function
returns FALSE (0) then the finally block was entered using the second method. This
information may be useful in some circumstances. For example, you may wish to avoid
executing any code in a finally block if the block was entered through the normal flow of
execution.

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>

void main(int argc, char **argv)
{readfile(fopen(argv[1],"r"));
}
 voidreadfile(FILE*input)
{

int line = 0;
char buffer[256];
char icode;
char x, y;

if(input == NULL) {
printf("Unable to open file\n");
return;

}

350 Termination Handlers

Structured Exception Handling

 try{
for(;;) {

line++;
if(fgets(buffer, 255, input) == NULL) break;
icode = buffer[0];
if(icode != ’1’) return;
x = buffer[1];
line++;
if(fgets(buffer, 255, input) == NULL) return;
icode = buffer[0];
if(icode != ’2’) return;
y = buffer[1];
process(x, y);

}
printf("Processing complete\n");

}
 finally{

if(AbnormalTermination())
printf("Invalid sequence: line = %d\n", line);

fclose(input);
}

}

void process(char x, char y)
{

printf("processing pair %c,%c\n", x, y);
}

In the above example, we reverted back to the use of the return statement since the execution
of a _leave statement is considered part of the normal flow of execution and is not considered
an "abnormal termination" of the try block. Note that since it is not possible to determine
whether the finally block is executing as the result of a local or global unwind, it may not be
appropriate to use the AbnormalTermination function as a way to determine what has gone
on. However, in our simple example, we expect that nothing could go wrong in the
"processing" routine.

Termination Handlers 351

Structured Exception Handling in C

13.2 Exception Filters and Exception Handlers

We would all like to create flawless software but situations arise for which we did not plan.
An event that we did not expect which causes the software to cease to function properly is
called an exception. The computer can generate a hardware exception when the software
attempts to execute an illegal instruction. We can force this quite easily in C by dereferencing
a NULL pointer as shown in the following sample fragment of code.

Example:
char *nullp = NULL;

*nullp = ’\1’;

We can also generate software exceptions from software by calling a special function for this
purpose. We will look at software exceptions in more detail later on.

Given that exceptions are generally very difficult to avoid in large software projects, we can
acknowledge that they are a fact of life and prepare for them. A mechanism similar to
try/finally has been devised that makes it possible to gain control when an exception occurs
and to execute procedures to handle the situation.

The exception handling mechanism involves the pairing up of a _try block with an _except
block. This is illustrated in the following example.

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>

void main(int argc, char **argv)
{

char *nullp = NULL;

printf("Attempting illegal memory reference.\n");try{
*nullp = ’\1’;

}except(EXCEPTIONEXECUTEHANDLER){
printf("Oh no! We had an exception!\n");

}
printf("We recovered fine...\n");

}

In this example, any exception that occurs while executing "inside" the try block will cause
the except block to execute. Unlike the finally block, execution of the except block occurs

352 Exception Filters and Exception Handlers

Structured Exception Handling

only when an exception is generated and only when the expression after the _except keyword
evaluates to
EXCEPTIONEXECUTEHANDLER. The expression can be quite complex and

can involve the execution of a function that returns one of the permissible values. The
expression is called the exception "filter" since it determines whether or not the exception is to
be handled by the except block. The permissible result values for the exception filer are:

EXCEPTION_EXECUTE_HANDLER
meaning "I will handle the exception".

EXCEPTION_CONTINUE_EXECUTION
meaning "I want to resume execution at the point where the exception was
generated".

EXCEPTION_CONTINUE_SEARCH
meaning "I do not want to handle the exception so continue looking down the
try/except chain until you find an exception handler that does want to handle the
exception".

13.3 Resuming Execution After an Exception

Why would you want to resume execution of the instruction that caused the exception? Since
the exception filter can involve a function call, that function can attempt to correct the
problem. For example, if it is determined that the exception has occurred because of the
NULL pointer dereference, the function could modify the pointer so that it is no longer
NULL.

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>

char *NullP = NULL;

int filter(void)
{

if(NullP == NULL) {
NullP = malloc(20);return(EXCEPTIONCONTINUEEXECUTION)

}return(EXCEPTIONEXECUTEHANDLER)
}

Resuming Execution After an Exception 353

Structured Exception Handling in C

void main(int argc, char **argv)
{

printf("Attempting illegal memory reference.\n");try{
*NullP = ’\1’;

}
 except(filter()){

printf("Oh no! We had an exception!\n");
}
printf("We recovered fine...\n");

}

Unfortunately, this is does not solve the problem. Understanding why it does not involves
looking at the sequence of computer instructions that is generated for the expression in
question.

*NullP = ’\1’;moveax,dwordptrNullP

mov byte ptr [eax],01H

The exception is caused by the second instruction which contains a pointer to the referenced
memory location (i.e., 0) in register EAX. This is the instruction that will be repeated when
the filter returns
EXCEPTIONCONTINUEEXECUTION. Since EAX did not get changed

by our fix, the exception will reoccur. Fortunately, NullP is changed and this prevents our
program from looping forever. The moral here is that there are very few instances where you
can correct "on the fly" a problem that is causing an exception to occur. Certainly, any
attempt to do so must involve a careful inspection of the computer instruction sequence that is
generated by the compiler (and this sequence usually varies with the selection of compiler
optimization options). The best solution is to add some more code to detect the problem
before the exception occurs.

13.4 Mixing and Matching _try/_finally and _try/_except

Where things really get interesting is in the interaction between try/finally blocks and
try/except blocks. These blocks can be nested within each other. In an earlier part of the
discussion, we talked about global unwinds and how they can be caused by exceptions being
generated in nested function calls. All of this should become clear after studying the
following example.

354 Mixing and Matching _try/_finally and _try/_except

Structured Exception Handling

Example:
#include <stdio.h>
#include <stdlib.h>
#include <excpt.h>voidfunclevel4(void)
{

char *nullp = NULL;

printf("Attempting illegal memory reference\n");try{
*nullp = ’\1’;

}finally{
if(AbnormalTermination())printf("Unwindinfunclevel4\n");

}printf("Normalreturnfromfunclevel4\n");
}voidfunclevel3(void)
{try{funclevel4();

}finally{
if(AbnormalTermination())printf("Unwindinfunclevel3\n");

}printf("Normalreturnfromfunclevel3\n");
}voidfunclevel2(void)
{try{try{funclevel3();

}except(EXCEPTIONCONTINUESEARCH){printf("Exceptionneverhandledinfunclevel2\n");
}

}finally{
if(AbnormalTermination())printf("Unwindinfunclevel2\n");

}printf("Normalreturnfromfunclevel2\n");
}voidfunclevel1(void)
{try{funclevel2();

}finally{
if(AbnormalTermination())printf("Unwindinfunclevel1\n");

}printf("Normalreturnfromfunclevel1\n");
}

Mixing and Matching _try/_finally and _try/_except 355

Structured Exception Handling in Cvoidfunclevel0(void)
{try{try{funclevel1();

}except(EXCEPTIONEXECUTEHANDLER){printf("Exceptionhandledinfunclevel0\n");
}

}finally{
if(AbnormalTermination())printf("Unwindinfunclevel0\n");

}printf("Normalreturnfromfunclevel0\n");
}
void main(int argc, char **argv)
{try{try{funclevel0();

}except(EXCEPTIONEXECUTEHANDLER){
printf("Exception handled in main\n");

}
}finally{

if(AbnormalTermination())
printf("Unwind in main\n");

}
printf("Normal return from main\n");

}

In this example,

1. main calls
funclevel0

2.
funclevel0 calls
funclevel1

3.
funclevel1 calls
funclevel2

4.
funclevel2 calls
funclevel3

5.
funclevel3 calls
funclevel4

It is in
funclevel4 where the exception occurs. The run-time system traps the exception

and performs a search of the active try blocks looking for one that is paired up with an except
block.

When it finds one, the filter is executed and, if the result isEXCEPTIONEXECUTEHANDLER, then the except block is executed after performing a
global unwind.

356 Mixing and Matching _try/_finally and _try/_except

Structured Exception Handling

If the result is
EXCEPTIONCONTINUEEXECUTION, the run-time system resumes

execution at the instruction that caused the exception.

If the result is
EXCEPTIONCONTINUESEARCH, the run-time system continues its search

for an except block with a filter that returns one of the other possible values. If it does not
find any exception handler that is prepared to handle the exception, the application will be
terminated with the appropriate exception notification.

Let us look at the result of executing the example program. The following messages are
printed.

Attempting illegal memory referenceUnwindinfunclevel4Unwindinfunclevel3Unwindinfunclevel2Unwindinfunclevel1Exceptionhandledinfunclevel0Normalreturnfromfunclevel0
Normal return from main

The run-time system searched down the try/except chain until it got to
funclevel0 which

had an except filter that evaluated to
EXCEPTIONEXECUTEHANDLER. It then performed

a global unwind in which the try/finally blocks of
funclevel4,funclevel3,funclevel2, and

funclevel1 were executed. After this, the exception handler infunclevel0 did its thing and execution resumed in
funclevel0 which returned back

to main which returned to the run-time system for normal program termination. Note the use
of the built-in AbnormalTermination function in the finally blocks of each function.

This sequence of events permits each function to do any cleaning up that it deems necessary
before it is wiped off the execution stack.

13.5 Refining Exception Handling

The decision to handle an exception must be weighed carefully. It is not necessarily a
desirable thing for an exception handler to handle all exceptions. In the previous example, the
expression in the exception filter in

funclevel0 always evaluates toEXCEPTIONEXECUTEHANDLER which means it will snag every exception that comes its
way. There may be other exception handlers further on down the chain that are better
equipped to handle certain types of exceptions. There is a way to determine the exact type of
exception using the built-in GetExceptionCode() function. It may be called only from
within the exception handler filter expression or within the exception handler block. Here is a
description of the possible return values from the GetExceptionCode() function.

Refining Exception Handling 357

Structured Exception Handling in C

Value Meaning

EXCEPTION_ACCESS_VIOLATION
The thread tried to read from or write to a virtual address for which
it does not have the appropriate access.

EXCEPTION_BREAKPOINT
A breakpoint was encountered.

EXCEPTION_DATATYPE_MISALIGNMENT
The thread tried to read or write data that is misaligned on
hardware that does not provide alignment. For example, 16-bit
values must be aligned on 2-byte boundaries; 32-bit values on
4-byte boundaries, and so on.

EXCEPTION_SINGLE_STEP
A trace trap or other single-instruction mechanism signaled that
one instruction has been executed.

EXCEPTION_ARRAY_BOUNDS_EXCEEDED
The thread tried to access an array element that is out of bounds
and the underlying hardware supports bounds checking.

EXCEPTION_FLT_DENORMAL_OPERAND
One of the operands in a floating-point operation is denormal. A
denormal value is one that is too small to represent as a standard
floating-point value.

EXCEPTION_FLT_DIVIDE_BY_ZERO
The thread tried to divide a floating-point value by a floating-point
divisor of zero.

EXCEPTION_FLT_INEXACT_RESULT
The result of a floating-point operation cannot be represented
exactly as a decimal fraction.

EXCEPTION_FLT_INVALID_OPERATION
This exception represents any floating-point exception not included
in this list.

EXCEPTION_FLT_OVERFLOW
The exponent of a floating-point operation is greater than the
magnitude allowed by the corresponding type.

358 Refining Exception Handling

Structured Exception Handling

EXCEPTION_FLT_STACK_CHECK
The stack overflowed or underflowed as the result of a
floating-point operation.

EXCEPTION_FLT_UNDERFLOW
The exponent of a floating-point operation is less than the
magnitude allowed by the corresponding type.

EXCEPTION_INT_DIVIDE_BY_ZERO
The thread tried to divide an integer value by an integer divisor of
zero.

EXCEPTION_INT_OVERFLOW
The result of an integer operation caused a carry out of the most
significant bit of the result.

EXCEPTION_PRIV_INSTRUCTION
The thread tried to execute an instruction whose operation is not
allowed in the current machine mode.

EXCEPTION_NONCONTINUABLE_EXCEPTION
The thread tried to continue execution after a non-continuable
exception occurred.

These constants are defined by including WINDOWS.H in the source code.

The following example is a refinement of the
funclevel1() function in our previous

example.

Example:

Refining Exception Handling 359

Structured Exception Handling in C

#include <windows.h>voidfunclevel0(void)
{try{try{funclevel1();

}except((GetExceptionCode()==EXCEPTIONACCESSVIOLATION)?EXCEPTIONEXECUTEHANDLER:EXCEPTIONCONTINUESEARCH
) {printf("Exceptionhandledinfunclevel0\n");

}
}finally{

if(AbnormalTermination())printf("Unwindinfunclevel0\n");
}printf("Normalreturnfromfunclevel0\n");

}

In this version, only an "access violation" will be handled by the exception handler in thefunclevel0() function. All other types of exceptions will be passed on to main (which
can also be modified to be somewhat more selective about the types of exceptions it should
handle).

More information on the exception that has occurred can be obtained by the use of the
GetExceptionInformation() function. The use of this function is also restricted. It
can be called only from within the filter expression of an exception handler. However, the
return value of GetExceptionInformation() can be passed as a parameter to a filter
function. This is illustrated in the following example.

Example:

360 Refining Exception Handling

Structured Exception HandlingintGetCode(LPEXCEPTIONPOINTERSexceptptrs)
{

return (exceptptrs->ExceptionRecord->ExceptionCode);
}voidfunclevel0(void)
{try{try{funclevel1();

}except(
(GetCode(GetExceptionInformation())==EXCEPTIONACCESSVIOLATION)?EXCEPTIONEXECUTEHANDLER:EXCEPTIONCONTINUESEARCH
) {printf("Exceptionhandledinfunclevel0\n");

}
}finally{

if(AbnormalTermination())printf("Unwindinfunclevel0\n");
}printf("Normalreturnfromfunclevel0\n");

}

The return value of GetExceptionInformation() is a pointer to anEXCEPTIONPOINTERS structure that contains pointers to two other structures: anEXCEPTIONRECORD structure containing a description of the exception, and a CONTEXT
structure containing the machine-state information. The filter function can make a copy of the
structures if a more permanent copy is desired. Check your Win32 SDK documentation for
more information on these structures.

13.6 Throwing Your Own Exceptions

You can use the same exception handling mechanisms to deal with software exceptions raised
by your application. The RaiseException() function can be used to throw your own
application-defined exceptions. The first argument to this function is the exception code. It
would be wise to define your exception codes so that they do not collide with system defined
ones. The following example shows how to throw an exception.

Throwing Your Own Exceptions 361

Structured Exception Handling in C

Example:#defineMYEXCEPTION((DWORD)123L)RaiseException(MYEXCEPTION,EXCEPTIONNONCONTINUABLE,
0, NULL);

In this example, the GetExceptionCode() function, when used in an exception handler
filter expression or in the body of an exception handler, would return the value 123.

See the Win32 SDK documentation for more information on the arguments to the
RaiseException() function.

362 Throwing Your Own Exceptions

Embedded Systems

Embedded Systems

364

14 Creating ROM-based Applications

14.1 Introduction

This chapter provides information for developers who wish to write applications to be placed
in read-only memory (ROM).

14.2 ROMable Functions

The following functions in the Open Watcom C/C++ library are not dependent on any
operating system. Therefore they can be used for embedded applications. The math functions
are listed here because they are ROMable, however you must supply a differentmatherr
function if you are not running in the DOS, OS/2 or Windows NT environment.

abs acos alloca
asctime asin atan
atan2 atexit atof
atoi atol bsearch cabs ceil chainintrclear87control87coscosh difftimedisablediv enableexpfabs floor fmemccpyfmemchrfmemcmpfmemcpyfmemicmpfmemmovefmemsetfmod FPOFFFPSEGfpresetfrexp fstrcatfstrchrfstrcmpfstrcpyfstrcspnfstricmpfstrlenfstrlwrfstrncatfstrncmpfstrncpyfstrnicmpfstrnsetfstrpbrkfstrrchrfstrrevfstrsetfstrspnfstrstrfstrtokfstruprgmtime
hypot inp inpw
int86 (1) int86x (1) int386 (2)
int386x (2) intr isalnum
isalpha isascii iscntrl

ROMable Functions 365

Embedded Systems

isdigit isgraph islower
isprint ispunct isspace
isupper isxdigit itoa
j0 j1 jn
labs ldexp ldiv
lfind localeconv log log10 longjmplrotllrotrlsearchltoa
matherr mblen mbstowcs
mbtowc memccpy memchr
memcmp memcpy memicmp memmovememsetMKFP
modf movedata offsetof
outp outpw pow qsort rand rotlrotr segreadsetjmp
setlocale sin sinh
sprintf sqrt srand sscanfstackavailstatus87
strcat strchr strcmp
strcmpi strcoll strcpy
strcspn strdup strerror
stricmp strlen strlwr
strncat strncmp strncpy
strnicmp strnset strpbrk
strrchr strrev strset
strspn strstr strtod
strtok strtol strtoul
strupr strxfrm swab
tan tanh tolower
toupper ultoa utoa vaargvaendvastart
vsprintf vsscanf wcstombs
wctomb y0 y1
yn

* (1) 16-bit libraries
* (2) 32-bit libraries

366 ROMable Functions

Creating ROM-based Applications

14.3 System-Dependent Functions

The following functions in the C/C++ library directly or indirectly make use of operating
system functions. They cannot be used on systems that are not running on one of the DOS,
OS/2 or Windows NT operating systems.

abort access assert bdos beginthreadbiosdiskbiosequiplistbioskeybrdbiosmemsizebiosprinterbiosserialcombiostimeofday
calloc cgets chdir
chmod chsize clearerr
clock close closedir
cprintf cputs creat
cscanf ctime cwait delay dosallocmemdosclosedoscreatdoscreatnewdosfindfirstdosfindnextdosfreememdosgetdatedosgetdiskfreedosgetdrivedosgetfileattrdosgetftimedosgettimedosgetvectdoskeepdosopendosreaddossetblockdossetdatedossetdrivedossetfileattrdossetftimedossettimedossetvectdoswritedosexterrdup dup2 endthread
eof execl (1) execle (1)
execlp (1) execlpe (1) execv (1)
execve (1) execvp (1) execvpe (1) exit exit fclose
fcloseall fdopen feof ferrorfflush ffreefheapchkfheapgrow(1)fheapminfheapsetfheapshrinkfheapwalk
fgetc fgetpos fgets
filelength fileno flushall fmallocfopen fprintf
fputc fputs fread freallocfree freopen
fscanf fseek fsetpos
fstat ftell fwrite
getc getch getchar
getche getcmd getcwd
getenv getpid gets halloc heapchkheapgrowheapminheapsetheapshrinkheapwalkhfree intdos

System-Dependent Functions 367

Embedded Systems

intdosx isatty kbhit
localtime lock locking lseek makepathmallocmkdir mktime nfreenheapchknheapgrownheapminnheapsetnheapshrinknheapwalknmallocnreallocnosound
open opendir perror
printf putc putch
putchar putenv puts
raise read readdir
realloc remove rename
rewind rmdir sbrk scanf searchenvsetbuf
setmode setvbuf signal
sleep sopen sound
spawnl spawnle spawnlp
spawnlpe spawnv spawnve spawnvpspawnvpesplitpath
stat strftime system
tell time tmpfile
tmpnam tzset umask
ungetc ungetch unlink
unlock utime vfprintf
vfscanf vprintf vscanf
wait write

* (1) 16-bit libraries

14.4 Modifying the Startup Code

Source files are included in the package for the Open Watcom C/C++ application start-up (or
initialization) sequence. These files are described in the section entitled "The Open Watcom
C/C++ Run-time Initialization Routines" on page 139. The startup code will have to be
modified if you are creating a ROMable application or you are not running in a DOS, OS/2,
QNX, or Windows environment.

368 Modifying the Startup Code

Creating ROM-based Applications

14.5 Choosing the Correct Floating-Point Option

If there will be a math coprocessor chip in your embedded system, then you should compile
your application with the "fpi87" option and one of "fp2", "fp3" or "fp5" depending on which
math coprocessor chip will be in your embedded system. If there will not be a math
coprocessor chip in your embedded system, then you should compile your application with the
"fpc" option. You should not use the "fpi" option since that will cause extra code to be linked
into your application to decode and emulate the 80x87 instructions contained in your
application.

Choosing the Correct Floating-Point Option 369

Embedded Systems

370 Choosing the Correct Floating-Point Option

Appendices

Appendices

372

Use of Environment Variables

A. Use of Environment Variables

In the Open Watcom C/C++ software development package, a number of environment
variables are used. This appendix summarizes their use with a particular component of the
package.

A.1 FORCE

The FORCE environment variable identifies a file that is to be included as part of the source
input stream. This variable is used by Open Watcom C/C++.

SET FORCE=[d:][path]filename[.ext]

The specified file is included as if a

#include "[d:][path]filename[.ext]"

directive were placed at the start of the source file.

Example:
C>set force=\watcom\h\common.cnv
C>wcc report

The FORCE environment variable can be overridden by use of the Open Watcom C/C++ "fi"
option.

A.2 INCLUDE

The INCLUDE environment variable describes the location of the C and C++ header files
(files with the ".h" filename extension). This variable is used by Open Watcom C/C++.

SET include=[d:][path];[d:][path]...

INCLUDE 373

Appendices

The INCLUDE environment string is like the PATH string in that you can specify one or
more directories separated by semicolons (";").

A.3 LIB

The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM"
directive is recommended over the use of this environment variable.

The LIB environment variable is used to select the libraries that will be used when the
application is linked. This variable is used by the Open Watcom Linker (WLINK.EXE). The
LIB environment string is like the PATH string in that you can specify one or more
directories separated by semicolons (";").

If you have the 286 development system, 16-bit applications can be linked for DOS,
Microsoft Windows, OS/2, and QNX depending on which libraries are selected. If you have
the 386 development system, 32-bit applications can be linked for DOS Extender systems,
Microsoft Windows and QNX.

A.4 LIBDOS

The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM"
directive is recommended over the use of this environment variable.

If you are developing a DOS application, the LIBDOS environment variable must include the
location of the 16-bit Open Watcom C/C++ DOS library files (files with the ".lib" filename
extension). This variable is used by the Open Watcom Linker (WLINK.EXE). The default
installation directory for the 16-bit Open Watcom C/C++ DOS libraries is
\WATCOM\LIB286\DOS. The LIBDOS environment variable must also include the
location of the 16-bit Open Watcom C/C++ math library files. The default installation
directory for the 16-bit Open Watcom C/C++ math libraries is \WATCOM\LIB286.

Example:
C>set libdos=c:\watcom\lib286\dos;c:\watcom\lib286

374 LIBDOS

Use of Environment Variables

A.5 LIBWIN

The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM"
directive is recommended over the use of this environment variable.

If you are developing a 16-bit Microsoft Windows application, the LIBWIN environment
variable must include the location of the 16-bit Open Watcom C/C++ Windows library files
(files with the ".lib" filename extension). This variable is used by the Open Watcom Linker
(WLINK.EXE). If you are developing a 32-bit Microsoft Windows application, see the
description of the LIBPHAR environment variable. The default installation directory for the
16-bit Open Watcom C/C++ Windows libraries is \WATCOM\LIB286\WIN. The LIBWIN
environment variable must also include the location of the 16-bit Open Watcom C/C++ math
library files. The default installation directory for the 16-bit Open Watcom C/C++ math
libraries is \WATCOM\LIB286.

Example:
C>set libwin=c:\watcom\lib286\win;c:\watcom\lib286

A.6 LIBOS2

The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM"
directive is recommended over the use of this environment variable.

If you are developing an OS/2 application, the LIBOS2 environment variable must include
the location of the 16-bit Open Watcom C/C++ OS/2 library files (files with the ".lib"
filename extension). This variable is used by the Open Watcom Linker (WLINK.EXE). The
default installation directory for the 16-bit Open Watcom C/C++ OS/2 libraries is
\WATCOM\LIB286\OS2. The LIBOS2 environment variable must also include the
directory of the OS/2 DOSCALLS.LIB file which is usually \OS2. The LIBOS2
environment variable must also include the location of the 16-bit Open Watcom C/C++ math
library files. The default installation directory for the 16-bit Open Watcom C/C++ math
libraries is \WATCOM\LIB286.

Example:
C>set libos2=c:\watcom\lib286\os2;c:\watcom\lib286;c:\os2

LIBOS2 375

Appendices

A.7 LIBPHAR

The use of the WATCOM environment variable and the Open Watcom Linker "SYSTEM"
directive is recommended over the use of this environment variable.

If you are developing a 32-bit Windows or DOS Extender application, the LIBPHAR
environment variable must include the location of the 32-bit Open Watcom C/C++ DOS
Extender library files or the 32-bit Open Watcom C/C++ Windows library files (files with the
".lib" filename extension). This variable is used by the Open Watcom Linker (WLINK.EXE).
The default installation directory for the 32-bit Open Watcom C/C++ DOS Extender libraries
is \WATCOM\LIB386\DOS. The default installation directory for the 32-bit Open Watcom
C/C++ Windows libraries is \WATCOM\LIB386\WIN. The LIBPHAR environment
variable must also include the location of the 32-bit Open Watcom C/C++ math library files.
The default installation directory for the 32-bit Open Watcom C/C++ math libraries is
\WATCOM\LIB386.

Example:
C>set libphar=c:\watcom\lib386\dos;c:\watcom\lib386

or
C>set libphar=c:\watcom\lib386\win;c:\watcom\lib386

A.8 NO87

The NO87 environment variable is checked by the Open Watcom run-time math libraries that
include floating-point emulation support. Normally, these libraries will detect the presence of
a numeric data processor (80x87) and use it. If you have a numeric data processor in your
system but you wish to test a version of your application that will use floating-point
emulation, you can define the NO87 environment variable. Using the "SET" command,
define the environment variable as follows:

SET NO87=1

Now, when you run your application, the 80x87 will be ignored. To undefine the
environment variable, enter the command:

SET NO87=

376 NO87

Use of Environment Variables

A.9 PATH

The PATH environment variable is used by DOS "COMMAND.COM" or OS/2 "CMD.EXE"
to locate programs.

PATH [d:][path];[d:][path]...

The PATH environment variable should include the disk and directory of the Open Watcom
C/C++ binary program files when using Open Watcom C/C++ and its related tools.

If your host system is DOS:

The default installation directory for 16-bit Open Watcom C/C++ and 32-bit Open Watcom
C/C++ DOS binaries is called \WATCOM\BINW.

Example:
C>path c:\watcom\binw;c:\dos;c:\windows

If your host system is OS/2:

The default installation directories for 16-bit Open Watcom C/C++ and 32-bit Open Watcom
C/C++ OS/2 binaries are called \WATCOM\BINP and \WATCOM\BINW.

Example:
[C:\]path c:\watcom\binp;c:\watcom\binw

If your host system is Windows NT:

The default installation directories for 16-bit Open Watcom C/C++ and 32-bit Open Watcom
C/C++ Windows NT binaries are called \WATCOM\BINNT and \WATCOM\BINW.

Example:
C>path c:\watcom\binnt;c:\watcom\binw

The PATH environment variable is also used by the following programs in the described
manner.

1. Open Watcom Compile and Link to locate the 16-bit Open Watcom C/C++ and
32-bit Open Watcom C/C++ compilers and the Open Watcom Linker.

2. "WD.EXE" to locate programs and debugger command files.

PATH 377

Appendices

A.10 TMP

The TMP environment variable describes the location (disk and path) for temporary files
created by the 16-bit Open Watcom C/C++ and 32-bit Open Watcom C/C++ compilers and
the Open Watcom Linker.

SET TMP=[d:][path]

Normally, Open Watcom C/C++ will create temporary spill files in the current directory.
However, by defining the TMP environment variable to be a certain disk and directory, you
can tell Open Watcom C/C++ where to place its temporary files. The same is true of the Open
Watcom Linker temporary file.

Consider the following definition of the TMP environment variable.

Example:
C>set tmp=d:\watcom\tmp

The Open Watcom C/C++ compiler and Open Watcom Linker will create its temporary files
in d:\watcom\tmp.

A.11 WATCOM

In order for the Open Watcom Linker to locate the 16-bit Open Watcom C/C++ and 32-bit
Open Watcom C/C++ library files, the WATCOM environment variable should be defined.
The WATCOM environment variable is used to locate the libraries that will be used when the
application is linked. The default directory for 16-bit Open Watcom C/C++ and 32-bit Open
Watcom C/C++ files is "\WATCOM".

Example:
C>set watcom=c:\watcom

A.12 WCC

The WCC environment variable can be used to specify commonly-used options for the 16-bit
C compiler.

SET WCC=/option1 /option2 ...

378 WCC

Use of Environment Variables

These options are processed before options specified on the command line. The following
example defines the default options to be "d1" (include line number debug information in the
object file) and "ox" (compile for maximum number of code optimizations).

Example:
C>set wcc=/d1 /ox

Once the WCC environment variable has been defined, those options listed become the
default each time the WCC command is used.

A.13 WCC386

The WCC386 environment variable can be used to specify commonly-used options for the
32-bit C compiler.

SET WCC386=/option1 /option2 ...

These options are processed before options specified on the command line. The following
example defines the default options to be "d1" (include line number debug information in the
object file) and "ox" (compile for maximum number of code optimizations).

Example:
C>set wcc386=/d1 /ox

Once the WCC386 environment variable has been defined, those options listed become the
default each time the WCC386 command is used.

A.14 WCL

The WCL environment variable can be used to specify commonly-used WCL options.

SET WCL=/option1 /option2 ...

These options are processed before options specified on the command line. The following
example defines the default options to be "mm" (compile code for medium memory model),
"d1" (include line number debug information in the object file), and "ox" (compile for
maximum number of code optimizations).

WCL 379

Appendices

Example:
C>set wcl=/mm /d1 /ox

Once the WCL environment variable has been defined, those options listed become the
default each time the WCL command is used.

A.15 WCL386

The WCL386 environment variable can be used to specify commonly-used WCL386 options.

SET WCL386=/option1 /option2 ...

These options are processed before options specified on the command line. The following
example defines the default options to be "3s" (compile code for stack-based argument
passing convention), "d1" (include line number debug information in the object file), and "ox"
(compile for maximum number of code optimizations).

Example:
C>set wcl386=/3s /d1 /ox

Once the WCL386 environment variable has been defined, those options listed become the
default each time the WCL386 command is used.

A.16 WCGMEMORY

The WCGMEMORY environment variable may be used to request a report of the amount of
memory used by the compiler’s code generator for its work area.

Example:
C>set WCGMEMORY=?

When the memory amount is "?" then the code generator will report how much memory was
used to generate the code.

It may also be used to instruct the compiler’s code generator to allocate a fixed amount of
memory for a work area.

380 WCGMEMORY

Use of Environment Variables

Example:
C>set WCGMEMORY=128

When the memory amount is "nnn" then exactly "nnnK" bytes will be used. In the above
example, 128K bytes is requested. If less than "nnnK" is available then the compiler will quit
with a fatal error message. If more than "nnnK" is available then only "nnnK" will be used.

There are two reasons why this second feature may be quite useful. In general, the more
memory available to the code generator, the more optimal code it will generate. Thus, for two
personal computers with different amounts of memory, the code generator may produce
different (although correct) object code. If you have a software quality assurance requirement
that the same results (i.e., code) be produced on two different machines then you should use
this feature. To generate identical code on two personal computers with different memory
configurations, you must ensure that the WCGMEMORY environment variable is set
identically on both machines.

The second reason where this feature is useful is on virtual memory paging systems (e.g.,
OS/2) where an unlimited amount of memory can be used by the code generator. If a very
large module is being compiled, it may take a very long time to compile it. The code
generator will continue to allocate more and more memory and cause an excessive amount of
paging. By restricting the amount of memory that the code generator can use, you can reduce
the amount of time required to compile a routine.

A.17 WD

The WD environment variable can be used to specify commonly-used Open Watcom
Debugger options. This environment variable is not used by the Windows version of the
debugger, WDW.

SET WD=/option1 /option2 ...

These options are processed before options specified on the command line. The following
example defines the default options to be "noinvoke" (do not execute the profile.dbg
file) and "reg=10" (retain up to 10 register sets while tracing).

WD 381

Appendices

Example:
C>set wd=/noinvoke /reg#10

Once the WD environment variable has been defined, those options listed become the default
each time the WD command is used.

A.18 WDW

The WDW environment variable can be used to specify commonly-used Open Watcom
Debugger options. This environment variable is used by the Windows version of the
debugger, WDW.

SET WDW=/option1 /option2 ...

These options are processed before options specified in the WDW prompt dialogue box. The
following example defines the default options to be "noinvoke" (do not execute the
profile.dbg file) and "reg=10" (retain up to 10 register sets while tracing).

Example:
C>set wdw=/noinvoke /reg#10

Once the WDW environment variable has been defined, those options listed become the
default each time the WDW command is used.

A.19 WLANG

The WLANG environment variable can be used to control which language is used to display
diagnostic and program usage messages by various Open Watcom software tools. The two
currently-supported values for this variable are "English" or "Japanese".

SET WLANG=English
SET WLANG=Japanese

Alternatively, a numeric value of 0 (for English) or 1 (for Japanese) can be specified.

382 WLANG

Use of Environment Variables

Example:
C>set wlang=0

By default, Japanese messages are displayed when the current codepage is 932 and English
messages are displayed otherwise. Normally, use of the WLANG environment variable
should not be required.

A.20 WPP

The WPP environment variable can be used to specify commonly-used options for the 16-bit
C++ compiler.

SET WPP=/option1 /option2 ...

These options are processed before options specified on the command line. The following
example defines the default options to be "d1" (include line number debug information in the
object file) and "ox" (compile for maximum number of code optimizations).

Example:
C>set wpp=/d1 /ox

Once the WPP environment variable has been defined, those options listed become the default
each time the WPP command is used.

A.21 WPP386

The WPP386 environment variable can be used to specify commonly-used options for the
32-bit C++ compiler.

SET WPP386=/option1 /option2 ...

These options are processed before options specified on the command line. The following
example defines the default options to be "d1" (include line number debug information in the
object file) and "ox" (compile for maximum number of code optimizations).

WPP386 383

Appendices

Example:
C>set wpp386=/d1 /ox

Once the WPP386 environment variable has been defined, those options listed become the
default each time the WPP386 command is used.

384 WPP386

Open Watcom C Diagnostic Messages

B. Open Watcom C Diagnostic Messages

The following is a list of all warning and error messages produced by the Open Watcom C
compilers. Diagnostic messages are issued during compilation and execution.

The messages listed in the following sections contain references to %s, %d and %u. They
represent strings that are substituted by the Open Watcom C compilers to make the error
message more exact. %d and %u represent a string of digits; %s a string, usually a symbolic
name.

Consider the following program, named err.c, which contains errors.

Example:
#include <stdio.h>

void main()
{

int i;
float i;

i = 383;
x = 13143.0;
printf("Integer value is %d\n", i);
printf("Floating-point value is %f\n", x);

}

If we compile the above program, the following messages will appear on the screen.

err.c(6): Error! E1034: Symbol ’i’ already defined
err.c(9): Error! E1011: Symbol ’x’ has not been declared
err.c: 12 lines, included 191, 0 warnings, 2 errors

The diagnostic messages consist of the following information:

1. the name of the file being compiled,
2. the line number of the line containing the error (in parentheses),
3. a message number, and
4. text explaining the nature of the error.

Open Watcom C Diagnostic Messages 385

Appendices

In the above example, the first error occurred on line 6 of the file err.c. Error number
1034 (with the appropriate substitutions) was diagnosed. The second error occurred on line 9
of the file err.c. Error number 1011 (with the appropriate substitutions) was diagnosed.

The following sections contain a complete list of the messages. Run-time messages (messages
displayed during execution) do not have message numbers associated with them.

B.1 Warning Level 1 Messages

W100 Parameter %d contains inconsistent levels of indirection

The function is expecting something like char ** and it is being passed a
char * for instance.

W101 Non-portable pointer conversion

This message is issued whenever you convert a non-zero constant to a pointer.

W102 Type mismatch (warning)

This message is issued for a function return value or an assignment where both
types are pointers, but they are pointers to different kinds of objects.

W103 Parameter count does not agree with previous definition (warning)

You have either not enough parameters or too many parameters in a call to a
function. If the function is supposed to have a variable number of parameters,
then you can ignore this warning, or you can change the function declaration and
prototypes to use the ",..." to indicate that the function indeed takes a variable
number of parameters.

W104 Inconsistent levels of indirection

This occurs in an assignment or return statement when one of the operands has
more levels of indirection than the other operand. For example, a char ** is
being assigned to a char *.

Solution: Correct the levels of indirection or use a void *.

386 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

W105 Assignment found in boolean expression

An assignment of a constant has been detected in a boolean expression. For
example: "if(var = 0)". It is most likely that you want to use "==" for testing
for equality.

W106 Constant out of range - truncated

This message is issued if a constant cannot be represented in 32 bits or if a
constant is outside the range of valid values that can be assigned to a variable.

W107 Missing return value for function ’%s’

A function has been declared with a function return type, but no return
statement was found in the function. Either add a return statement or change
the function return type to void.

W108 Duplicate typedef already defined

A duplicate typedef is not allowed in ISO C. This warning is issued when
compiling with extensions enabled. You should delete the duplicate typedef
definition.

W109 not used

unused message

W110 ’fortran’ pragma not defined

You have used the fortran keyword in your program, but have not defined a
#pragma for fortran.

W111 Meaningless use of an expression

The line contains an expression that does nothing useful. In the example "i =
(1,5);", the expression "1," is meaningless.

Warning Level 1 Messages 387

Appendices

W112 Pointer truncated

A far pointer is being passed to a function that is expecting a near pointer, or a
far pointer is being assigned to a near pointer.

W113 Pointer type mismatch

You have two pointers that either point to different objects, or the pointers are of
different size, or they have different modifiers.

W114 Missing semicolon

You are missing the semicolon ";" on the field definition just before the right
curly brace "}".

W115 &array may not produce intended result

The type of the expression "&array" is different from the type of the expression
"array". Suppose we have the declaration char buffer[80] Then the
expression (&buffer + 3) will be evaluated as (buffer + 3 *
sizeof(buffer)) which is (buffer + 3 * 80) and not (buffer +
3 * 1) which is what most people expect to happen. The address of operator
"&" is not required for getting the address of an array.

W116 Attempt to return address of auto variable

This warning usually indicates a serious programming error. When a function
exits, the storage allocated on the stack for auto variables is released. This
storage will be overwritten by further function calls and/or hardware interrupt
service routines. Therefore, the data pointed to by the return value may be
destroyed before your program has a chance to reference it or make a copy of it.

W117 ’##’ tokens did not generate a single token (rest discarded)

When two tokens are pasted together using ##, they must form a string that can
be parsed as a single token.

388 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

W118 Label ’%s’ has been defined but not referenced

You have defined a label that is not referenced in a goto statement. It is possible
that you are missing the case keyword when using an enumerated type name as a
case in a switch statement. If not, then the label can be deleted.

W119 Address of static function ’%s’ has been taken

This warning may indicate a potential problem when the program is overlayed.

W120 lvalue cast is not standard C

A cast operation does not yield an lvalue in ISO C. However, to provide
compatibility with code written prior to the availability of ISO compliant C
compilers, if an expression was an lvalue prior to the cast operation, and the cast
operation does not cause any conversions, the compiler treats the result as an
lvalue and issues this warning.

W121 Text following pre-processor directives is not standard C

Arbitrary text is not allowed following a pre-processor directive. Only
comments are allowed following a pre-processor directive.

W122 Literal string too long for array - truncated

The supplied literal string contains more characters than the specified dimension
of the array. Either shorten the literal string, or increase the dimension of the
array to hold all of the characters from the literal string.

W123 ’//’ style comment continues on next line

The compiler has detected a line continuation during the processing of a C++
style comment ("//"). The warning can be removed by switching to a C style
comment ("/**/"). If you require the comment to be terminated at the end of the
line, make sure that the backslash character is not the last character in the line.

Warning Level 1 Messages 389

Appendices

Example:
#define XX 23 // comment start \
comment \
end

int x = XX; // comment start ...\
comment end

W124 Comparison result always %d

The line contains a comparison that is always true (1) or false (0). For example
comparing an unsigned expression to see if it is >= 0 or < 0 is redundant. Check
to see if the expression should be signed instead of unsigned.

W125 Nested include depth of %d exceeded

The number of nested include files has reached a preset limit, check for
recursive include statements.

W126 Constant must be zero for pointer compare

A pointer is being compared using == or != to a non-zero constant.

W127 trigraph found in string

Trigraph expansion occurs inside a string literal. This warning can be disabled
via the command line or #pragma warning directive.

Example:
// string expands to "(?]?????"!
char *e = "(???)???-????";
// possible work-arounds
char *f = "(" "???" ")" "???" "-" "????";
char *g = "(\?\?\?)\?\?\?-\?\?\?\?";

W128 %d padding byte(s) added

The compiler has added slack bytes to align a member to the correct offset.

390 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

W129 #endif matches #if in different source file ’%s’

This warning may indicate a #endif nesting problem since the traditional usage
of #if directives is confined to the same source file. This warning may often
come before an error and it is hoped will provide information to solve a
preprocessing directive problem.

W130 Possible loss of precision

This warning indicates that you may be converting a argument of one size to
another, different size. For instance, you may be losing precision by passing a
long argument to a function that takes a short. This warning is initially disabled.
It must be explicitly enabled with #pragma enable_message(130) or option
"-wce=130". It can be disabled later by using #pragma disable_message(130).

W131 No prototype found for function ’%s’

A reference for a function appears in your program, but you do not have a
prototype for that function defined. Implicit prototype will be used, but this will
cause problems if the assumed prototype does not match actual function
definition.

W132 No storage class or type specified

When declaring a data object, either storage class or data type must be given. If
no type is specified, int is assumed. If no storage class is specified, the default
depends on scope (see the C Language Reference for details). For instance

Example:
auto i;

is a valid declaration, as is

Example:
short i;

However,

Warning Level 1 Messages 391

Appendices

Example:
i;

is not a correctly formed declaration.

W133 Symbol name truncated for ’%s’

Symbol is longer than the object file format allows and has been truncated to fit.
Maximum length is 255 characters for OMF and 1024 characters for COFF or
ELF object files.

W134 Shift amount negative

The right operand of a left or right shift operator is a negative value. The result
of the shift operation is undefined.

Example:
int a = 1 << -2;

The value of ’a’ in the above example is undefined.

W135 Shift amount too large

The right operand of a left or right shift operator is a value greater than or equal
to the width in bits of the type of the promoted left operand. The result of the
shift operation is undefined.

Example:
int a = 1 >> 123;

The value of ’a’ in the above example is undefined.

W136 Comparison equivalent to ’unsigned == 0’

Comparing an unsigned expression to see whether it is <= 0 is equivalent to
testing for == 0. Check to see if the expression should be signed instead of
unsigned.

392 Warning Level 1 Messages

Open Watcom C Diagnostic Messages

W137 Extern function ’%s’ redeclared as static

The specified function was either explicitly or implicitly declared as extern and
later redeclared as static. This is not allowed in ISO C and may produce
unexpected results with ISO compliant compilers.

Example:
int bar(void);

void foo(void)
{

bar();
}

static int bar(void)
{

return(0);
}

W138 No newline at end of file

ISO C requires that a non-empty source file must include a newline character at
the end of the last line. If no newline was found, it will be automatically
inserted.

B.2 Warning Level 2 Messages

W200 ’%s’ has been referenced but never assigned a value

You have used the variable in an expression without previously assigning a
value to that variable.

W201 Unreachable code

The statement will never be executed, because there is no path through the
program that causes control to reach this statement.

Warning Level 2 Messages 393

Appendices

W202 Symbol ’%s’ has been defined, but not referenced

There are no references to the declared variable. The declaration for the variable
can be deleted.

In some cases, there may be a valid reason for retaining the variable. You can
prevent the message from being issued through use of #pragma
off(unreferenced).

W203 Preprocessing symbol ’%s’ has not been declared

The symbol has been used in a preprocessor expression. The compiler assumes
the symbol has a value of 0 and continues. A #define may be required for the
symbol, or you may have forgotten to include the file which contains a
#define for the symbol.

B.3 Warning Level 3 Messages

W300 Nested comment found in comment started on line %u

While scanning a comment for its end, the compiler detected /* for the start of
another comment. Nested comments are not allowed in ISO C. You may be
missing the */ for the previous comment.

W301 not used

unused message

W302 Expression is only useful for its side effects

You have an expression that would have generated the warning "Meaningless
use of an expression", except that it also contains a side-effect, such as ++, −−,
or a function call.

394 Warning Level 3 Messages

Open Watcom C Diagnostic Messages

W303 Parameter ’%s’ has been defined, but not referenced

There are no references to the declared parameter. The declaration for the
parameter can be deleted. Since it is a parameter to a function, all calls to the
function must also have the value for that parameter deleted.

In some cases, there may be a valid reason for retaining the parameter. You can
prevent the message from being issued through use of #pragma
off(unreferenced).

This warning is initially disabled. It must be specifically enabled with #pragma
enable_message(303) or option "-wce=303". It can be disabled later by using
#pragma disable_message(303).

W304 Return type ’int’ assumed for function ’%s’

If a function is declared without specifying return type, such as

Example:
foo(void);

then its return type will be assumed to be int

W305 Type ’int’ assumed in declaration of ’%s’

If an object is declared without specifying its type, such as

Example:
register count;

then its type will be assumed to be int

W306 Assembler warning: ’%s’

A problem has been detected by the in-line assembler. The message indicates
the problem detected.

Warning Level 3 Messages 395

Appendices

W307 Obsolete non-prototype declarator

Function parameter declarations containing only empty parentheses, that is,
non-prototype declarations, are an obsolescent language feature. Their use is
dangerous and discouraged.

Example:
int func();

W308 Unprototyped function ’%s’ called

A call to an unprototyped function was made, preventing the compiler from
checking the number of function arguments and their types. Use of
unprototyped functions is obsolescent, dangerous and discouraged.

Example:
int func();

void bar(void)
{

func(4, "s"); /* possible argument
mismatch */
}

B.4 Error Messages

E1000 BREAK must appear in while, do, for or switch statement

A break statement has been found in an illegal place in the program. You may
be missing an opening brace { for a while, do, for or switch statement.

E1001 CASE must appear in switch statement

A case label has been found that is not inside a switch statement.

396 Error Messages

Open Watcom C Diagnostic Messages

E1002 CONTINUE must appear in while, do or for statement

The continue statement must be inside a while, do or for statement. You may
have too many } between the while, do or for statement and the continue
statement.

E1003 DEFAULT must appear in switch statement

A default label has been found that is not inside a switch statement. You may
have too many } between the start of the switch and the default label.

E1004 Misplaced ’}’ or missing earlier ’{’

An extra } has been found which cannot be matched up with an earlier {.

E1005 Misplaced #elif directive

The #elif directive must be inside an #if preprocessing group and before the
#else directive if present.

E1006 Misplaced #else directive

The #else directive must be inside an #if preprocessing group and follow all
#elif directives if present.

E1007 Misplaced #endif directive

A preprocessing directive has been found without a matching #if directive.
You either have an extra or you are missing an #if directive earlier in the file.

E1008 Only 1 DEFAULT per switch allowed

You cannot have more than one default label in a switch statement.

E1009 Expecting ’%s’ but found ’%s’

A syntax error has been detected. The tokens displayed in the message should
help you to determine the problem.

Error Messages 397

Appendices

E1010 Type mismatch

For pointer subtraction, both pointers must point to the same type. For other
operators, both expressions must be assignment compatible.

E1011 Symbol ’%s’ has not been declared

The compiler has found a symbol which has not been previously declared. The
symbol may be spelled differently than the declaration, or you may need to
#include a header file that contains the declaration.

E1012 Expression is not a function

The compiler has found an expression that looks like a function call, but it is not
defined as a function.

E1013 Constant variable cannot be modified

An expression or statement has been found which modifies a variable which has
been declared with the const keyword.

E1014 Left operand must be an ’lvalue’

The operand on the left side of an "=" sign must be a variable or memory
location which can have a value assigned to it.

E1015 ’%s’ is already defined as a variable

You are trying to declare a function with the same name as a previously declared
variable.

E1016 Expecting identifier

The token following "->" and "." operators must be the name of an identifier
which appears in the struct or union identified by the operand preceding the "->"
and "." operators.

398 Error Messages

Open Watcom C Diagnostic Messages

E1017 Label ’%s’ already defined

All labels within a function must be unique.

E1018 Label ’%s’ not defined in function

A goto statement has referenced a label that is not defined in the function. Add
the necessary label or check the spelling of the label(s) in the function.

E1019 Tag ’%s’ already defined

All struct, union and enum tag names must be unique.

E1020 Dimension cannot be 0 or negative

The dimension of an array must be positive and non-zero.

E1021 Dimensions of multi-dimension array must be specified

All dimensions of a multiple dimension array must be specified. The only
exception is the first dimension which can declared as "[]".

E1022 Missing or misspelled data type near ’%s’

The compiler has found an identifier that is not a predefined type or the name of
a "typedef". Check the identifier for a spelling mistake.

E1023 Storage class of parameter must be register or unspecified

The only storage class allowed for a parameter declaration is register.

E1024 Declared symbol ’%s’ is not in parameter list

Make sure that all the identifiers in the parameter list match those provided in
the declarations between the start of the function and the opening brace "{".

Error Messages 399

Appendices

E1025 Parameter ’%s’ already declared

A declaration for the specified parameter has already been processed.

E1026 Invalid declarator

A syntax error has occurred while parsing a declaration.

E1027 Invalid storage class for function

If a storage class is given for a function, it must be static or extern.

E1028 Variable ’%s’ cannot be void

You cannot declare a void variable.

E1029 Expression must be ’pointer to ...’

An attempt has been made to de-reference (*) a variable or expression which is
not declared to be a pointer.

E1030 Cannot take the address of an rvalue

You can only take the address of a variable or memory location.

E1031 Name ’%s’ not found in struct/union %s

The specified identifier is not one of the fields declared in the struct or union.
Check that the field name is spelled correctly, or that you are pointing to the
correct struct or union.

E1032 Expression for ’.’ must be a ’structure’ or ’union’

The compiler has encountered the pattern "expression" "." "field_name" where
the expression is not a struct or union type.

400 Error Messages

Open Watcom C Diagnostic Messages

E1033 Expression for ’->’ must be ’pointer to struct or union’

The compiler has encountered the pattern "expression" "->" "field_name" where
the expression is not a pointer to struct or union type.

E1034 Symbol ’%s’ already defined

The specified symbol has already been defined.

E1035 static function ’%s’ has not been defined

A prototype has been found for a static function, but a definition for the static
function has not been found in the file.

E1036 Right operand of ’%s’ is a pointer

The right operand of "+=" and "−=" cannot be a pointer. The right operand of
"−" cannot be a pointer unless the left operand is also a pointer.

E1037 Type cast must be a scalar type

You cannot type cast an expression to be a struct, union, array or function.

E1038 Expecting label for goto statement

The goto statement requires the name of a label.

E1039 Duplicate case value ’%s’ found

Every case value in a switch statement must be unique.

E1040 Field width too large

The maximum field width allowed is 16 bits.

E1041 Field width of 0 with symbol not allowed

A bit field must be at least one bit in size.

Error Messages 401

Appendices

E1042 Field width must be positive

You cannot have a negative field width.

E1043 Invalid type specified for bit field

The types allowed for bit fields are signed or unsigned varieties of char, short
and int.

E1044 Variable ’%s’ has incomplete type

A full definition of a struct or union has not been given.

E1045 Subscript on non-array

One of the operands of "[]" must be an array.

E1046 Incomplete comment

The compiler did not find */ to mark the end of a comment.

E1047 Argument for # must be a macro parm

The argument for the stringize operator "#" must be a macro parameter.

E1048 Unknown preprocessing directive ’#%s’

An unrecognized preprocessing directive has been encountered. Check for
correct spelling.

E1049 Invalid #include directive

A syntax error has been encountered in a #include directive.

E1050 Not enough parameters given for macro ’%s’

You have not supplied enough parameters to the specified macro.

402 Error Messages

Open Watcom C Diagnostic Messages

E1051 Not expecting a return value for function ’%s’

The specified function is declared as a void function. Delete the return
statement, or change the type of the function.

E1052 Expression has void type

You tried to use the value of a void expression inside another expression.

E1053 Cannot take the address of a bit field

The smallest addressable unit is a byte. You cannot take the address of a bit
field.

E1054 Expression must be constant

The compiler expects a constant expression. This message can occur during
static initialization if you are trying to initialize a non-pointer type with an
address expression.

E1055 Unable to open ’%s’

The file specified in an #include directive could not be located. Make sure
that the file name is spelled correctly, or that the appropriate path for the file is
included in the list of paths specified in the INCLUDE environment variable or
the "-I" option on the command line.

E1056 Too many parameters given for macro ’%s’

You have supplied too many parameters for the specified macro.

E1057 Modifiers disagree with previous definition of ’%s’

You have more than one definition or prototype for the variable or function
which have different type modifiers.

Error Messages 403

Appendices

E1058 Cannot use typedef ’%s’ as a variable

The name of a typedef has been found when an operand or operator is expected.
If you are trying to use a type cast, make sure there are parentheses around the
type, otherwise check for a spelling mistake.

E1059 Invalid storage class for non-local variable

A variable with module scope cannot be defined with the storage class of auto or
register.

E1060 Invalid type

An invalid combination of the following keywords has been specified in a type
declaration: const, volatile, signed, unsigned, char, int, short, long, float and
double.

E1061 Expecting data or function declaration, but found ’%s’

The compiler is expecting the start of a data or function declaration. If you are
only part way through a function, then you have too many closing braces "}".

E1062 Inconsistent return type for function ’%s’

Two prototypes for the same function disagree.

E1063 Missing operand

An operand is required in the expression being parsed.

E1064 Out of memory

The compiler has run out of memory to store information about the file being
compiled. Try reducing the number of data declarations and or the size of the
file being compiled. Do not #include header files that are not required.

For the 16-bit C compiler, the "-d2" option causes the compiler to use more
memory. Try compiling with the "-d1" option instead.

404 Error Messages

Open Watcom C Diagnostic Messages

E1065 Invalid character constant

This message is issued for an improperly formed character constant.

E1066 Cannot perform operation with pointer to void

You cannot use a "pointer to void" with the operators +, −, ++, −−, += and −=.

E1067 Cannot take address of variable with storage class ’register’

If you want to take the address of a local variable, change the storage class from
register to auto.

E1068 Variable ’%s’ already initialized

The specified variable has already been statically initialized.

E1069 Ending \" missing for string literal

The compiler did not find a second double quote to end the string literal.

E1070 Data for aggregate type must be enclosed in curly braces

When an array, struct or union is statically initialized, the data must be enclosed
in curly braces {}.

E1071 Type of parameter %d does not agree with previous definition

The type of the specified parameter is incompatible with the prototype for that
function. The following example illustrates a problem that can arise when the
sequence of declarations is in the wrong order.

Example:

Error Messages 405

Appendices

/* Uncommenting the following line will
eliminate the error */

/* struct foo; */

void fn1(struct foo *);

struct foo {
int a,b;

};

void fn1(struct foo *bar)
{

fn2(bar);
}

The problem can be corrected by reordering the sequence in which items are
declared (by moving the description of the structure foo ahead of its first
reference or by adding the indicated statement). This will assure that the first
instance of structure foo is defined at the proper outer scope.

E1072 Storage class disagrees with previous definition of ’%s’

The previous definition of the specified variable has a storage class of static.
The current definition must have a storage class of static or extern.

Alternatively, a variable was previously declared as extern and later defined as
static.

E1073 Invalid option ’%s’

The specified option is not recognized by the compiler.

E1074 Invalid optimization option ’%s’

The specified option is an unrecognized optimization option.

E1075 Invalid memory model ’%s’

Memory model option must be one of "ms", "mm", "mc", "ml", "mh" or "mf"
which selects the Small, Medium, Compact, Large, Huge or Flat memory model.

406 Error Messages

Open Watcom C Diagnostic Messages

E1076 Missing semicolon at end of declaration

You are missing a semicolon ";" on the declaration just before the left curly
brace "{".

E1077 Missing ’}’

The compiler detected end of file before finding a right curly brace "}" to end
the current function.

E1078 Invalid type for switch expression

The type of a switch expression must be integral.

E1079 Expression must be integral

An integral expression is required.

E1080 Expression must be arithmetic

Both operands of the "*", "/" and "%" operators must be arithmetic. The
operand of the unary minus must also be arithmetic.

E1081 Expression must be scalar type

A scalar expression is required.

E1082 Statement required after label

The C language definition requires a statement following a label. You can use a
null statement which consists of just a semicolon (";").

E1083 Statement required after ’do’

A statement is required between the do and while keywords.

Error Messages 407

Appendices

E1084 Statement required after ’case’

The C language definition requires a statement following a case label. You can
use a null statement which consists of just a semicolon (";").

E1085 Statement required after ’default’

The C language definition requires a statement following a default label. You
can use a null statement which consists of just a semicolon (";").

E1086 Expression too complicated, split it up and try again

The expression contains too many levels of nested parentheses. Divide the
expression up into two or more sub-expressions.

E1087 Missing matching #endif directive

You are missing a to terminate a #if, #ifdef or #ifndef preprocessing
directive.

E1088 Invalid macro definition, missing)

The right parenthesis ")" is required for a function-like macro definition.

E1089 Missing) for expansion of ’%s’ macro

The compiler encountered end-of-file while collecting up the argument for a
function-like macro. A right parenthesis ")" is required to mark the end of the
argument(s) for a function-like macro.

E1090 Invalid conversion

A struct or union cannot be converted to anything. A float or double cannot be
converted to a pointer and a pointer cannot be converted to a float or double.

E1091 %s

This is a user message generated with the #error preprocessing directive.

408 Error Messages

Open Watcom C Diagnostic Messages

E1092 Cannot define an array of functions

You can have an array of pointers to functions, but not an array of functions.

E1093 Function cannot return an array

A function cannot return an array. You can return a pointer to an array.

E1094 Function cannot return a function

You cannot return a function. You can return a pointer to a function.

E1095 Cannot take address of local variable in static initialization

You cannot take the address of an auto variable at compile time.

E1096 Inconsistent use of return statements

The compiler has found a return statement which returns a value and a return
statement that does not return a value both in the same function. The return
statement which does not return a value needs to have a value specified to be
consistent with the other return statement in the function.

E1097 Missing ? or misplaced :

The compiler has detected a syntax error related to the "?" and ":" operators.
You may need parenthesis around the expressions involved so that it can be
parsed correctly.

E1098 Maximum struct or union size is 64K

The size of a struct or union is limited to 64K so that the compiler can represent
the offset of a member in a 16-bit register.

E1099 Statement must be inside function. Probable cause: missing {

The compiler has detected a statement such as for, while, switch, etc., which
must be inside a function. You either have too many closing braces "}" or you
are missing an opening brace "{" earlier in the function.

Error Messages 409

Appendices

E1100 Definition of macro ’%s’ not identical to previous definition

If a macro is defined more than once, the definitions must be identical. If you
want to redefine a macro to have a different definition, you must #undef it
before you can define it with a new definition.

E1101 Cannot #undef ’%s’

The special macros
LINE,FILE,DATE,TIME,STDC,FUNCTION and
func, and the identifier "defined",

cannot be deleted by the #undef directive.

E1102 Cannot #define the name ’defined’

You cannot define a macro called defined.

E1103 ## must not be at start or end of replacement tokens

There must be a token on each side of the "##" (token pasting) operator.

E1104 Type cast not allowed in #if or #elif expression

A type cast is not allowed in a preprocessor expression.

E1105 ’sizeof’ not allowed in #if or #elif expression

The sizeof operator is not allowed in a preprocessor expression.

E1106 Cannot compare a struct or union

A struct or union cannot be compared with "==" or "!=". You must compare
each member of a struct or union to determine equality or inequality. If the
struct or union is packed (has no holes in it for alignment purposes) then you
can compare two structs using memcmp.

E1107 Enumerator list cannot be empty

You must have at least one identifier in an enum list.

410 Error Messages

Open Watcom C Diagnostic Messages

E1108 Invalid floating-point constant

The exponent part of the floating-point constant is not formed correctly.

E1109 Cannot take sizeof a bit field

The smallest object that you can ask for the size of is a char.

E1110 Cannot initialize variable with storage class of extern

A storage class of extern is used to associate the variable with its actual
definition somewhere else in the program.

E1111 Invalid storage class for parameter

The only storage class allowed for a parameter is register.

E1112 Initializer list cannot be empty

An initializer list must have at least one item specified.

E1113 Expression has incomplete type

An attempt has been made to access a struct or union whose definition is not
known, or an array whose dimensions are not known.

E1114 Struct or union cannot contain itself

You cannot have a struct or union contain itself. You can have a pointer in the
struct which points to an instance of itself. Check for a missing "*" in the
declaration.

E1115 Incomplete enum declaration

The enumeration tag has not been previously defined.

Error Messages 411

Appendices

E1116 An id list not allowed except for function definition

A function prototype must contain type information.

E1117 Must use ’va_start’ macro inside function with variable parameters

Thevastart macro is used to setup access to the parameters in a function
that takes a variable number of parameters. A function is defined with a variable
number of parameters by declaring the last parameter in the function as "...".

E1118 ***FATAL*** %s

A fatal error has been detected during code generation time. The type of error is
displayed in the message.

E1119 Internal compiler error %d

A bug has been encountered in the C compiler. Please report the specified
internal compiler error number and any other helpful details about the program
being compiled to compiler developers so that we can fix the problem.

E1120 Parameter number %d - invalid register in #pragma

The designated registers cannot hold the value for the parameter.

E1121 Procedure ’%s’ has invalid return register in #pragma

The size of the return register does not match the size of the result returned by
the function.

E1122 Illegal register modified by ’%s’ #pragma

For the 16-bit C compiler: The BP, CS, DS, and SS registers cannot be
modified in small data models. The BP, CS, and SS registers cannot be
modified in large data models.

For the 32-bit C compiler: The EBP, CS, DS, ES, and SS registers cannot be
modified in flat memory models. The EBP, CS, DS, and SS registers cannot be
modified in small data models. The EBP, CS, and SS registers cannot be
modified in large data models.

412 Error Messages

Open Watcom C Diagnostic Messages

E1123 File must contain at least one external definition

Every file must contain at least one global object, (either a data variable or a
function). This message is only issued in strict ANSI mode (-za).

E1124 Out of macro space

The compiler ran out of memory for storing macro definitions.

E1125 Keyboard interrupt detected

The compile has been aborted with Ctrl/C or Ctrl/Break.

E1126 Array, struct or union cannot be placed in a register

Only scalar objects can be specified with the register class.

E1127 Type required in parameter list

If the first parameter in a function definition or prototype is defined with a type,
then all of the parameters must have a type specified.

E1128 Enum constant is out of range %s

All of the constants must fit into appropriate value range.

E1129 Type does not agree with previous definition of ’%s’

You have more than one definition of a variable or function that do not agree.

E1130 Duplicate name ’%s’ not allowed in struct or union

All the field names in a struct or union must be unique.

E1131 Duplicate macro parameter ’%s’

The parameters specified in a macro definition must be unique.

Error Messages 413

Appendices

E1132 Unable to open work file: error code = %d

The compiler tries to open a new work file by the name "__wrkN__.tmp" where
N is the digit 0 to 9. This message will be issued if all of those files already
exist.

E1133 Write error on work file: error code = %d

An error was encountered trying to write information to the work file. The disk
could be full.

E1134 Read error on work file: error code = %d

An error was encountered trying to read information from the work file.

E1135 Seek error on work file: error code = %d

An error was encountered trying to seek to a position in the work file.

E1136 not used

unused message

E1137 Out of enum space

The compiler has run out of space allocated to store information on all of the
enum constants defined in your program.

E1138 Filename required on command line

The name of a file to be compiled must be specified on the command line.

E1139 Command line contains more than one file to compile

You have more than one file name specified on the command line to be
compiled. The compiler can only compile one file at a time. You can use the
Open Watcom Compile and Link utility to compile multiple files with a single
command.

414 Error Messages

Open Watcom C Diagnostic Messages

E1140 _leave must appear in a _try statement

The _leave keyword must be inside a _try statement. The _leave keyword
causes the program to jump to the start of the _finally block.

E1141 Expecting end of line but found ’%s’

A syntax error has been detected. The token displayed in the message should
help you determine the problem.

E1142 Too many bytes specified in #pragma

There is an internal limit on the number of bytes for in-line code that can be
specified with a pragma. Try splitting the function into two or more smaller
functions.

E1143 Cannot resolve linkage conventions for routine ’%s’ #pragma

The compiler cannot generate correct code for the specified routine because of
register conflicts. Change the registers used by the parameters of the pragma.

E1144 Symbol ’%s’ in pragma must be global

The in-line code for a pragma can only reference a global variable or function.
You can only reference a parameter or local variable by passing it as a parameter
to the in-line code pragma.

E1145 Internal compiler limit exceeded, break module into smaller pieces

The compiler can handle 65535 quadruples, 65535 leaves, and 65535 symbol
table entries and literal strings. If you exceed one of these limits, the program
must be broken into smaller pieces until it is capable of being processed by the
compiler.

E1146 Invalid initializer for integer data type

Integer data types (int and long) can be initialized with numeric expressions or
address expressions that are the same size as the integer data type being
initialized.

Error Messages 415

Appendices

E1147 Too many errors: compilation aborted

The compiler stops compiling when the number of errors generated exceeds the
error limit. The error limit can be set with the "-e" option. The default error
limit is 20.

E1148 Expecting identifier but found ’%s’

A syntax error has been detected. The token displayed in the message should
help you determine the problem.

E1149 Expecting constant but found ’%s’

The #line directive must be followed by a constant indicating the desired line
number.

E1150 Expecting \"filename\" but found ’%s’

The second argument of the #line directive must be a filename enclosed in
quotes.

E1151 Parameter count does not agree with previous definition

You have either not enough parameters or too many parameters in a call to a
function. If the function is supposed to have a variable number of parameters,
then you are missing the ", ..." in the function prototype.

E1152 Segment name required

A segment name must be supplied in the form of a literal string to the
__segname() directive.

E1153 Invalid __based declaration

The compiler could not recognize one of the allowable forms of __based
declarations. See the C Language Reference document for description of all the
allowable forms of __based declarations.

416 Error Messages

Open Watcom C Diagnostic Messages

E1154 Variable for __based declaration must be of type __segment or pointer

A based pointer declaration must be based on a simple variable of type
__segment or pointer.

E1155 Duplicate external symbol %s

Duplicate external symbols will exist when the specified symbol name is
truncated to 8 characters.

E1156 Assembler error: ’%s’

An error has been detected by the in-line assembler. The message indicates the
error detected.

E1157 Variable must be ’huge’

A variable or an array that requires more than 64K of storage in the 16-bit
compiler must be declared as huge.

E1158 Too many parm sets

Too many parameter register sets have been specified in the pragma.

E1159 I/O error reading ’%s’: %s

An I/O error has been detected by the compiler while reading the source file.
The system dependent reason is also displayed in the message.

E1160 Attempt to access far memory with all segment registers disabled in ’%s’

The compiler does not have any segment registers available to access the desired
far memory location.

E1161 No identifier provided for ’-D’ option

The command line option "-D" must be followed by the name of the macro to be
defined.

Error Messages 417

Appendices

E1162 Invalid register pegged to a segment in ’%s’

The register specified in a #pragma data_seg, or a __segname expression must
be a valid segment register.

E1163 Invalid octal constant

An octal constant cannot contain the digits 8 or 9.

E1164 Invalid hexadecimal constant

The token sequence "0x" must be followed by a hexadecimal character (0-9, a-f,
or A-F).

E1165 Unexpected ’)’. Probable cause: missing ’(’

A closing parenthesis was found in an expression without a corresponding
opening parenthesis.

E1166 Symbol ’%s’ is unreachable from #pragma

The in-line assembler found a jump instruction to a label that is too far away.

E1167 Division or remainder by zero in a constant expression

The compiler found a constant expression containing a division or remainder by
zero.

E1168 Cannot end string literal with backslash

The argument to a macro that uses the stringize operator ’#’ on that argument
must not end in a backslash character.

Example:
#define str(x) #x
str(@#\)

418 Error Messages

Open Watcom C Diagnostic Messages

E1169 Invalid __declspec declaration

The only valid __declspec declarations are "__declspec(thread)",
"__declspec(dllexport)", and "__declspec(dllimport)".

E1170 Too many storage class specifiers

You can only specify one storage class specifier in a declaration.

E1171 Expecting ’%s’ but found end of file

A syntax error has been detected. The compiler is still expecting more input
when it reached the end of the source program.

E1172 Expecting struct/union tag but found ’%s’

The compiler expected to find an identifier following the struct or union
keyword.

E1173 Operand of __builtin_isfloat() must be a type

The __builtin_isfloat() function is used by the va_arg macro to determine if a
type is a floating-point type.

E1174 Invalid constant

The token sequence does not represent a valid numeric constant.

E1175 Too many initializers

There are more initializers than objects to initialize. For example int X[2] = { 0,
1, 2 }; The variable "X" requires two initializers not three.

E1176 Parameter %d, pointer type mismatch

You have two pointers that either point to different objects, or the pointers are of
different size, or they have different modifiers.

Error Messages 419

Appendices

E1177 Modifier repeated in declaration

You have repeated the use of a modifier like "const" (an error) or "far" (a
warning) in a declaration.

E1178 Type qualifier mismatch

You have two pointers that have different "const" or "volatile" qualifiers.

E1179 Parameter %d, type qualifier mismatch

You have two pointers that have different const or "volatile" qualifiers.

E1180 Sign specifier mismatch

You have two pointers that point to types that have different sign specifiers.

E1181 Parameter %d, sign specifier mismatch

You have two pointers that point to types that have different sign specifiers.

E1182 Missing \\ for string literal

You need a ’\’ to continue a string literal across a line.

E1183 Expecting ’%s’ after ’%s’ but found ’%s’

A syntax error has been detected. The tokens displayed in the message should
help you to determine the problem.

E1184 Expecting ’%s’ after ’%s’ but found end of file

A syntax error has been detected. The compiler is still expecting more input
when it reached the end of the source program.

E1185 Invalid register name ’%s’ in #pragma

The register name is invalid/unknown.

420 Error Messages

Open Watcom C Diagnostic Messages

E1186 Storage class of ’for’ statement declaration not register or auto

The only storage class allowed for the optional declaration part of a for
statement is auto or register.

E1187 No type specified in declaration

A declaration specifier must include a type specifier.

Example:
auto i;

E1188 Symbol ’%s’ declared in ’for’ statement must be object

Any identifier declared in the optional declaration part of a for statement must
denote an object. Functions, structures, or enumerations may not be declared in
this context.

Example:
for(int i = 0, j(void); i < 5; ++i) {

...
}

E1189 Unexpected declaration

Within a function body, in C99 mode a declaration is only allowed in a
compound statement and in the opening clause of a for loop. Declarations are
not allowed after if, while, or switch statement, etc.

Example:
void foo(int a)
{

if(a > 0)
int j = 3;

}

In C89 mode, declarations within a function body are only allowed at the
beginning of a compound statement.

Error Messages 421

Appendices

Example:
void foo(int a)
{

++a;
int j = 3;

}

B.5 Informational Messages

I2000 Not enough memory to fully optimize procedure ’%s’

The compiler did not have enough memory to fully optimize the specified
procedure. The code generated will still be correct and execute properly. This
message is purely informational.

I2001 Not enough memory to maintain full peephole

Certain optimizations benefit from being able to store the entire module in
memory during optimization. All functions will be individually optimized but
the optimizer will not be able to share code between functions if this message
appears. The code generated will still be correct and execute properly. This
message is purely informational. It is only printed if the warning level is greater
than or equal to 4.

The main reason for this message is for those people who are concerned about
reproducing the exact same object code when the same source file is compiled
on a different machine. You may not be able to reproduce the exact same object
code from one compile to the next unless the available memory is exactly the
same.

I2002 ’%s’ defined in: %s(%u)

This informational message indicates where the symbol in question was defined.
The message is displayed following an error or warning diagnostic for the
symbol in question.

422 Informational Messages

Open Watcom C Diagnostic Messages

Example:
static int a = 9;
int b = 89;

The variable ’a’ is not referenced in the preceding example and so will cause a
warning to be generated. Following the warning, the informational message
indicates the line at which ’a’ was declared.

I2003 source conversion type is ’%s’

This informational message indicates the type of the source operand, for the
preceding conversion diagnostic.

I2004 target conversion type is ’%s’

This informational message indicates the target type of the conversion, for the
preceding conversion diagnostic.

I2005 Including file ’%s’

This informational message indicates that the specified file was opened as a
result of #include directive processing.

B.6 Pre-compiled Header Messages

H3000 Error reading PCH file

The pre-compiled header file does not follow the correct format.

H3001 PCH file header is out of date

The pre-compiled header file is out of date with the compiler. The current
version of the compiler is expecting a different format.

Pre-compiled Header Messages 423

Appendices

H3002 Compile options differ with PCH file

The command line options are not the same as used when making the
pre-compiled header file. This can effect the values of the pre-compiled
information.

H3003 Current working directory differs with PCH file

The pre-compiled header file was compiled in a different directory.

H3004 Include file ’%s’ has been modified since PCH file was made

The include files have been modified since the pre-compiled header file was
made.

H3005 PCH file was made from a different include file

The pre-compiled header file was made using a different include file.

H3006 Include path differs with PCH file

The include paths have changed.

H3007 Preprocessor macro definition differs with PCH file

The definition of a preprocessor macro has changed.

H3008 PCH cannot have data or code definitions.

The include files used to build the pre-compiled header contain function or data
definitions. This is not currently supported.

B.7 Miscellaneous Messages and Phrases

424 Miscellaneous Messages and Phrases

Open Watcom C Diagnostic Messages

M4000 Code size

String used in message construction.

M4001 Error!

String used in message construction.

M4002 Warning!

String used in message construction.

M4003 Note!

String used in message construction.

M4004 (Press return to continue)

String used in message construction.

Miscellaneous Messages and Phrases 425

Appendices

426 Miscellaneous Messages and Phrases

Open Watcom C++ Diagnostic Messages

C. Open Watcom C++ Diagnostic Messages

The following is a list of all warning and error messages produced by the Open Watcom C++
compilers. Diagnostic messages are issued during compilation and execution.

The messages listed in the following sections contain references to %N, %S, %T, %s, %d
and %u. They represent strings that are substituted by the Open Watcom C++ compilers to
make the error message more exact. %d and %u represent a string of digits; %N, %S, %T and
%s a string, usually a symbolic name.

Consider the following program, named err.cpp, which contains errors.

Example:
#include <stdio.h>

void main()
{

int i;
float i;

i = 383;
x = 13143.0;
printf("Integer value is %d\n", i);
printf("Floating-point value is %f\n", x);

}

If we compile the above program, the following messages will appear on the screen.

File: err.cpp
(6,12): Error! E042: symbol ’i’ already defined

’i’ declared at: (5,9)
(9,5): Error! E029: symbol ’x’ has not been declared
err.cpp: 12 lines, included 174, no warnings, 2 errors

The diagnostic messages consist of the following information:

1. the name of the file being compiled,
2. the line number and column of the line containing the error (in parentheses),
3. a message number, and

Open Watcom C++ Diagnostic Messages 427

Appendices

4. text explaining the nature of the error.

In the above example, the first error occurred on line 6 of the file err.cpp. Error number
042 (with the appropriate substitutions) was diagnosed. The second error occurred on line 9
of the file err.cpp. Error number 029 (with the appropriate substitutions) was diagnosed.

The following sections contain a complete list of the messages. Run-time messages (messages
displayed during execution) do not have message numbers associated with them.

A number of messages contain a reference to the ARM. This is the "Annotated C++
Reference Manual" written by Margaret A. Ellis and Bjarne Stroustrup and published by
Addison-Wesley (ISBN 0-201-51459-1).

C.1 Diagnostic Messages

000 internal compiler error

If this message appears, please report the problem directly to the Open Watcom
development team. See http://www.openwatcom.org/.

001 assignment of constant found in boolean expression

An assignment of a constant has been detected in a boolean expression. For
example: "if(var = 0)". It is most likely that you want to use "==" for testing
for equality.

002 constant out of range; truncated

This message is issued if a constant cannot be represented in 32 bits or if a
constant is outside the range of valid values that can be assigned to a variable.

Example:
int a = 12345678901234567890;

428 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

003 missing return value

A function has been declared with a non-void return type, but no return
statement was found in the function. Either add a return statement or change
the function return type to void.

Example:
int foo(int a)
{

int b = a + a;
}

The message will be issued at the end of the function.

004 base class ’%T’ does not have a virtual destructor

A virtual destructor has been declared in a class with base classes. However,
one of those base classes does not have a virtual destructor. A delete of a
pointer cast to such a base class will not function properly in all circumstances.

Example:
struct Base {

~Base();
};
struct Derived : Base {

virtual ~Derived();
};

It is considered good programming practice to declare virtual destructors in all
classes used as base classes of classes having virtual destructors.

005 pointer or reference truncated

The expression contains a transfer of a pointer value to another pointer value of
smaller size. This can be caused by __near or __far qualifiers (i.e., assigning a
far pointer to a near pointer). Function pointers can also have a different size
than data pointers in certain memory models. This message indicates that some
information is being lost so check the code carefully.

Diagnostic Messages 429

Appendices

Example:externintfar*foo();intfar*pfar=foo();intnear*pnear=pfar;//truncated
006 syntax error; probable cause: missing ’;’

The compiler has found a complete expression (or declaration) during parsing
but could not continue. The compiler has detected that it could have continued
if a semicolon was present so there may be a semicolon missing.

Example:
enum S {
} // missing ’;’

class X {
};

007 ’&array’ may not produce intended result

The type of the expression ’&array’ is different from the type of the expression
’array’. Suppose we have the declaration char buffer[80]. Then the
expression (&buffer + 3) will be evaluated as (buffer + 3 *
sizeof(buffer)) which is (buffer + 3 * 80) and not (buffer +
3 * 1) which is what one may have expected. The address-of operator ’&’ is
not required for getting the address of an array.

008 returning address of function argument or of auto or register variable

This warning usually indicates a serious programming error. When a function
exits, the storage allocated on the stack for auto variables is released. This
storage will be overwritten by further function calls and/or hardware interrupt
service routines. Therefore, the data pointed to by the return value may be
destroyed before your program has a chance to reference it or make a copy of it.

Example:
int *foo()
{

int k = 123;
return &k; // k is automatic variable

}

430 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

009 option requires a file name

The specified option is not recognized by the compiler since there was no file
name after it (i.e., "-fo=my.obj").

010 asm directive ignored

The asm directive (e.g., asm("mov r0,1");) is a non-portable construct. The
Open Watcom C++ compiler treats all asm directives like comments.

011 all members are private

This message warns the programmer that there will be no way to use the
contents of the class because all accesses will be flagged as erroneous (i.e.,
accessing a private member).

Example:
class Private {

int a;
Private();
~Private();
Private(const Private&);

};

012 template argument cannot be type ’%T’

A template argument can be either a generic type (e.g., template < class
T >), a pointer, or an integral type. These types are required for expressions
that can be checked at compile time.

013 unreachable code

The indicated statement will never be executed because there is no path through
the program that causes control to reach that statement.

Example:
void foo(int *p)
{

*p = 4;
return;
*p = 6;

}

The statement following the return statement cannot be reached.

Diagnostic Messages 431

Appendices

014 no reference to symbol ’%S’

There are no references to the declared variable. The declaration for the variable
can be deleted. If the variable is a parameter to a function, all calls to the
function must also have the value for that parameter deleted.

In some cases, there may be a valid reason for retaining the variable. You can
prevent the message from being issued through use of #pragma
off(unreferenced), or adding a statement that assigns the variable to itself.

015 nested comment found in comment started on line %u

While scanning a comment for its end, the compiler detected /* for the start of
another comment. Nested comments are not allowed in ISO/ANSI C. You may
be missing the */ for the previous comment.

016 template argument list cannot be empty

An empty template argument list would result in a template that could only
define a single class or function.

017 label ’%s’ has not been referenced by a goto

The indicated label has not been referenced and, as such, is useless. This
warning can be safely ignored.

Example:
int foo(int a, int b)
{unrefed:

return a + b;
}

018 no reference to anonymous union member ’%S’

The declaration for the anonymous member can be safely deleted without any
effect.

432 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

019 ’break’ may only appear in a for, do, while, or switch statement

A break statement has been found in an illegal place in the program. You may
be missing an opening brace { for a while, do, for or switch statement.

Example:
int foo(int a, int b)
{

break; // illegal
return a+b;

}

020 ’case’ may only appear in a switch statement

A case label has been found that is not inside a switch statement.

Example:
int foo(int a, int b)
{

case 4: // illegal
return a+b;

}

021 ’continue’ may only appear in a for, do, or while statement

The continue statement must be inside a while, do or for statement. You may
have too many } between the while, do or for statement and the continue
statement.

Example:
int foo(int a, int b)
{

continue; // illegal
return a+b;

}

022 ’default’ may only appear in a switch statement

A default label has been found that is not inside a switch statement. You may
have too many } between the start of the switch and the default label.

Diagnostic Messages 433

Appendices

Example:
int foo(int a, int b)
{

default: // illegal
return a+b;

}

023 misplaced ’}’ or missing earlier ’{’

An extra } has been found which cannot be matched up with an earlier {.

024 misplaced #elif directive

The #elif directive must be inside an #if preprocessing group and before the
#else directive if present.

Example:
int a;
#else
int c;#elifINIF
int b;
#endif

The #else, #elif, and #endif statements are all illegal because there is no #if that
corresponds to them.

025 misplaced #else directive

The #else directive must be inside an #if preprocessing group and follow all
#elif directives if present.

Example:
int a;
#else
int c;#elifINIF
int b;
#endif

The #else, #elif, and #endif statements are all illegal because there is no #if that
corresponds to them.

434 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

026 misplaced #endif directive

A #endif preprocessing directive has been found without a matching #if
directive. You either have an extra #endif or you are missing an #if directive
earlier in the file.

Example:
int a;
#else
int c;#elifINIF
int b;
#endif

The #else, #elif, and #endif statements are all illegal because there is no #if that
corresponds to them.

027 only one ’default’ per switch statement is allowed

You cannot have more than one default label in a switch statement.

Example:
int translate(int a)
{

switch(a) {
case 1:

a = 8;
break;

default:
a = 9;
break;

default: // illegal
a = 10;
break;
}
return a;

}

Diagnostic Messages 435

Appendices

028 expecting ’%s’ but found ’%s’

A syntax error has been detected. The tokens displayed in the message should
help you to determine the problem.

029 symbol ’%N’ has not been declared

The compiler has found a symbol which has not been previously declared. The
symbol may be spelled differently than the declaration, or you may need to
#include a header file that contains the declaration.

Example:
int a = b; // b has not been declared

030 left expression must be a function or a function pointer

The compiler has found an expression that looks like a function call, but it is not
defined as a function.

Example:
int a;
int b = a(12);

031 operand must be an lvalue

The operand on the left side of an "=" sign must be a variable or memory
location which can have a value assigned to it.

Example:
void foo(int a)
{

(a + 1) = 7;
int b = ++ (a + 6);

}

Both statements within the function are erroneous, since lvalues are expected
where the additions are shown.

436 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

032 label ’%s’ already defined

All labels within a function must be unique.

Example:
void bar(int *p)
{
label:

*p = 0;
label:

return;
}

The second label is illegal.

033 label ’%s’ is not defined in function

A goto statement has referenced a label that is not defined in the function. Add
the necessary label or check the spelling of the label(s) in the function.

Example:
void bar(int *p)
{
labl:

*p = 0;
goto label;

}

The label referenced in the goto is not defined.

034 dimension cannot be zero

The dimension of an array must be non-zero.

Example:
int array[0]; // not allowed

Diagnostic Messages 437

Appendices

035 dimension cannot be negative

The dimension of an array must be positive.

Example:
int array[-1]; // not allowed

036 dimensions of multi-dimension array must be specified

All dimensions of a multiple dimension array must be specified. The only
exception is the first dimension which can declared as "[]".

Example:
int array[][]; // not allowed

037 invalid storage class for function

If a storage class is given for a function, it must be static or extern.

Example:
auto void foo()
{
}

038 expression must have pointer type

An attempt has been made to de-reference a variable or expression which is not
declared to be a pointer.

Example:
int a;
int b = *a;

039 cannot take address of an rvalue

You can only take the address of a variable or memory location.

438 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
char c;
char *p1 = & & c; // not allowed
char *p2 = & (c+1); // not allowed

040 expression for ’.’ must be a class, struct or union

The compiler has encountered the pattern "expression" "." "field_name" where
the expression is not a class, struct or union type.

Example:
struct S
{

int a;
};
int &fun();
int a = fun().a;

041 expression for ’->’ must be pointer to class, struct or union

The compiler has encountered the pattern "expression" "->" "field_name" where
the expression is not a pointer to class, struct or union type.

Example:
struct S
{

int a;
};
int *fun();
int a = fun()->a;

042 symbol ’%S’ already defined

The specified symbol has already been defined.

Example:
char a = 2;
char a = 2; // not allowed

Diagnostic Messages 439

Appendices

043 static function ’%S’ has not been defined

A prototype has been found for a static function, but a definition for the static
function has not been found in the file.

Example:
static int fun(void);
int k = fun();
// fun not defined by end of program

044 expecting label for goto statement

The goto statement requires the name of a label.

Example:
int fun(void)
{

goto;
}

045 duplicate case value ’%s’ found

Every case value in a switch statement must be unique.

Example:
int fun(int a)
{

switch(a) {
case 1:

return 7;
case 2:

return 9;
case 1: // duplicate not allowed

return 7;
}
return 79;

}

440 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

046 bit-field width is too large

The maximum field width allowed is 16 bits in the 16-bit compiler and 32 bits in
the 32-bit compiler.

Example:
struct S
{

unsigned bitfield :48; // too wide
};

047 width of a named bit-field must not be zero

A bit field must be at least one bit in size.

Example:
struct S {

int bitfield :10;
int :0; // okay, aligns to int
int h :0; // error, field is named

};

048 bit-field width must be positive

You cannot have a negative field width.

Example:
struct S
{

unsigned bitfield :-10; // cannot be negative
};

049 bit-field base type must be an integral type

The types allowed for bit fields are signed or unsigned varieties of char, short
and int.

Diagnostic Messages 441

Appendices

Example:
struct S
{

float bitfield : 10; // must be integral
};

050 subscript on non-array

One of the operands of ’[]’ must be an array or a pointer.

Example:
int array[10];
int i1 = array[0]; // ok
int i2 = 0[array]; // same as above
int i3 = 0[1]; // illegal

051 incomplete comment

The compiler did not find */ to mark the end of a comment.

052 argument for # must be a macro parm

The argument for the stringize operator ’#’ must be a macro parameter.

053 unknown preprocessing directive ’#%s’

An unrecognized preprocessing directive has been encountered. Check for
correct spelling.

Example:#igoofed//notvalid
054 invalid #include directive

A syntax error has been encountered in a #include directive.

Example:
#include // no header file
#include stdio.h

Both examples are illegal.

442 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

055 not enough parameters given for macro ’%s’

You have not supplied enough parameters to the specified macro.

Example:
#define mac(a,b) a+b
int i = mac(123); // needs 2 parameters

056 not expecting a return value

The specified function is declared as a void function. Delete the return value, or
change the type of the function.

Example:
void fun()
{

return 14; // not expecting return value
}

057 cannot take address of a bit-field

The smallest addressable unit is a byte. You cannot take the address of a bit
field.

Example:
struct S
{ int bits :6;

int bitfield :10;
};
S var;
void* p = &var.bitfield; // illegal

058 expression must be a constant

The compiler expects a constant expression. This message can occur during
static initialization if you are trying to initialize a non-pointer type with an
address expression.

Diagnostic Messages 443

Appendices

059 unable to open ’%s’

The file specified in an #include directive could not be located. Make sure that
the file name is spelled correctly, or that the appropriate path for the file is
included in the list of paths specified in the INCLUDE or INCLUDE
environment variables or in the "i=" option on the command line.

060 too many parameters given for macro ’%s’

You have supplied too many parameters for the specified macro. The extra
parameters are ignored.

Example:
#define mac(a,b) a+b
int i = mac(1,2,3); // needs 2 parameters

061 cannot use __based or __far16 pointers in this context

The use of __based and __far16 pointers is prohibited in throw expressions and
catch statements.

Example:externintbased(segname("myseg"))*pi;
void bad()
{

try {
throw pi;}catch(intfar16*p16){
*p16 = 87;
}

}

Both the throw expression and catch statements cause this error to be diagnosed.

062 only one type is allowed in declaration specifiers

Only one type is allowed for the first part of a declaration. A common cause of
this message is that there may be a missing semi-colon (’;’) after a class
definition.

444 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
class C
{
public:

C();
} // needs ";"

int foo() { return 7; }

063 out of memory

The compiler has run out of memory to store information about the file being
compiled. Try reducing the number of data declarations and or the size of the
file being compiled. Do not #include header files that are not required.

064 invalid character constant

This message is issued for an improperly formed character constant.

Example:
char c = ’12345’;
char d = ’’’;

065 taking address of variable with storage class ’register’

You can take the address of a register variable in C++ (but not in ISO/ANSI C).
If there is a chance that the source will be compiled using a C compiler, change
the storage class from register to auto.

Example:
extern int foo(char*);
int bar()
{

register char c = ’c’;
return foo(&c);

}

Diagnostic Messages 445

Appendices

066 ’delete’ expression size is not allowed

The C++ language has evolved to the point where the delete expression size is
no longer required for a correct deletion of an array.

Example:
void fn(unsigned n, char *p) {

delete [n] p;
}

067 ending " missing for string literal

The compiler did not find a second double quote to end the string literal.

Example:char*a="noendingquote;
068 invalid option

The specified option is not recognized by the compiler.

069 invalid optimization option

The specified option is an unrecognized optimization option.

070 invalid memory model

Memory model option must be one of "ms", "mm", "mc", "ml", "mh" or "mf"
which selects the Small, Medium, Compact, Large, Huge or Flat memory model.

071 expression must be integral

An integral expression is required.

Example:

446 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

int foo(int a, float b, int *p)
{

switch(a) {
case 1.3: // must be integral

return p[b]; // index not integer
case 2:

b <<= 2; // can only shift integers
default:

return b;
}

}

072 expression must be arithmetic

Arithmetic operations, such as "/" and "*", require arithmetic operands unless
the operation has been overloaded or unless the operands can be converted to
arithmetic operands.

Example:
class C
{
public:

int c;
};
C cv;
int i = cv / 2;

073 statement required after label

The C language definition requires a statement following a label. You can use a
null statement which consists of just a semicolon (";").

Example:
extern int bar(int);
void foo(int a)
{

if(a) goto ending;
bar(a);

ending:
// needs statement following

}

Diagnostic Messages 447

Appendices

074 statement required after ’do’

A statement is required between the do and while keywords.

075 statement required after ’case’

The C language definition requires a statement following a case label. You can
use a null statement which consists of just a semicolon (";").

Example:
int foo(int a)
{

switch(a) {
default:

return 7;
case 1: // needs statement following

}
return 18;

}

076 statement required after ’default’

The C language definition requires a statement following a default label. You
can use a null statement which consists of just a semicolon (";").

Example:
int foo(int a)
{

switch(a) {
case 7:

return 7;
default:

// needs statement following
}
return 18;

}

448 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

077 missing matching #endif directive

You are missing a #endif to terminate a #if, #ifdef or #ifndef preprocessing
directive.

Example:
#if 1
int a;
// needs #endif

078 invalid macro definition, missing ’)’

The right parenthesis ")" is required for a function-like macro definition.

Example:#definebadmac(a,b
079 missing ’)’ for expansion of ’%s’ macro

The compiler encountered end-of-file while collecting up the argument for a
function-like macro. A right parenthesis ")" is required to mark the end of the
argument(s) for a function-like macro.

Example:
#define mac(a, b) a+b
int d = mac(1, 2

080 %s

This is a user message generated with the #error preprocessing directive.

Example:
#error my very own error message

081 cannot define an array of functions

You can have an array of pointers to functions, but not an array of functions.

Diagnostic Messages 449

Appendices

Example:
typedef int TD(float);
TD array[12];

082 function cannot return an array

A function cannot return an array. You can return a pointer to an array.

Example:
typedef int ARR[10];
ARR fun(float);

083 function cannot return a function

You cannot return a function. You can return a pointer to a function.

Example:
typedef int TD();
TD fun(float);

084 function templates can only have type arguments

A function template argument can only be a generic type (e.g., template <
class T >). This is a restriction in the C++ language that allows compilers to
automatically instantiate functions purely from the argument types of calls.

085 maximum class size has been exceeded

The 16-bit compiler limits the size of a struct or union to 64K so that the
compiler can represent the offset of a member in a 16-bit register. This error
also occurs if the size of a structure overflows the size of an unsigned integer.

Example:
struct S
{

char arr1[0xfffe];
char arr2[0xfffe];
char arr3[0xfffe];
char arr4[0xfffffffe];

};

450 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

086 definition of macro ’%s’ not identical to previous definition

If a macro is defined more than once, the definitions must be identical. If you
want to redefine a macro to have a different definition, you must #undef it
before you can define it with a new definition.

Example:
#define CON 123
#define CON 124 // not same as previous

087 initialization of ’%S’ must be in file scope

A file scope variable must be initialized in file scope.

Example:
void fn()
{

extern int v = 1;
}

088 default argument for ’%S’ declared outside of class definition

Problems can occur with member functions that do not declare all of their
default arguments during the class definition. For instance, a copy constructor is
declared if a class does not define a copy constructor. If a default argument is
added later on to a constructor that makes it a copy constructor, an ambiguity
results.

Example:
struct S {

S(S const &, int);
// S(S const &); <-- declared by compiler

};
// ambiguity with compiler
// generated copy constructor
// S(S const &);
S::S(S const &, int = 0)
{
}

Diagnostic Messages 451

Appendices

089 ## must not be at start or end of replacement tokens

There must be a token on each side of the "##" (token pasting) operator.

Example:
#define badmac(a, b) ## a ## b

090 invalid floating-point constant

The exponent part of the floating-point constant is not formed correctly.

Example:
float f = 123.9E+Q;

091 ’sizeof’ is not allowed for a bit-field

The smallest object that you can ask for the size of is a char.

Example:
struct S
{ int a;

int b :10;
} v;
int k = sizeof(v.b);

092 option requires a path

The specified option is not recognized by the compiler since there was no path
after it (i.e., "-i=d:\include;d:\path").

093 must use ’va_start’ macro inside function with variable arguments

Thevastart macro is used to setup access to the parameters in a function
that takes a variable number of parameters. A function is defined with a variable
number of parameters by declaring the last parameter in the function as "...".

452 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#include <stdarg.h>
int foo(int a, int b)
{valistargs;vastart(args,a);vaend(args);

return b;
}

094 ***FATAL*** %s

A fatal error has been detected during code generation time. The type of error is
displayed in the message.

095 internal compiler error %d

A bug has been encountered in the compiler. Please report the specified internal
compiler error number and any other helpful details about the program being
compiled to the Open Watcom development team so that we can fix the
problem. See http://www.openwatcom.org/.

096 argument number %d - invalid register in #pragma

The designated registers cannot hold the value for the parameter.

097 procedure ’%s’ has invalid return register in #pragma

The size of the return register does not match the size of the result returned by
the function.

098 illegal register modified by ’%s’ #pragma

For the 16-bit Open Watcom C/C++ compiler: The BP, CS, DS, and SS
registers cannot be modified in small data models. The BP, CS, and SS registers
cannot be modified in large data models.

For the 32-bit Open Watcom C/C++ compiler: The EBP, CS, DS, ES, and SS
registers cannot be modified in flat memory models. The EBP, CS, DS, and SS
registers cannot be modified in small data models. The EBP, CS, and SS
registers cannot be modified in large data models.

Diagnostic Messages 453

Appendices

099 file must contain at least one external definition

Every file must contain at least one global object, (either a data variable or a
function).

Note: This message has been disabled starting with Open Watcom v1.4. The
ISO 1998 C++ standard allows empty translation units.

100 out of macro space

The compiler ran out of memory for storing macro definitions.

101 keyboard interrupt detected

The compilation has been aborted with Ctrl/C or Ctrl/Break.

102 duplicate macro parameter ’%s’

The parameters specified in a macro definition must be unique.

Example:
#define badmac(a, b, a) a ## b

103 unable to open work file: error code = %d

The compiler tries to open a new work file by the name "__wrkN__.tmp" where
N is the digit 0 to 9. This message will be issued if all of those files already
exist.

104 write error on work file: error code = %d

An error was encountered trying to write information to the work file. The disk
could be full.

105 read error on work file: error code = %d

An error was encountered trying to read information from the work file.

454 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

106 token too long; truncated

The token must be less than 510 bytes in length.

107 filename required on command line

The name of a file to be compiled must be specified on the command line.

108 command line contains more than one file to compile

You have more than one file name specified on the command line to be
compiled. The compiler can only compile one file at a time. You can use the
Open Watcom Compile and Link utility to compile multiple files with a single
command.

109 virtual member functions are not allowed in a union

A union can only be used to overlay the storage of data. The storage of virtual
function information (in a safe manner) cannot be done if storage is overlaid.

Example:
struct S1{ int f(int); };
struct S2{ int f(int); };
union un { S1 s1;

S2 s2;
virtual int vf(int);

};

110 union cannot be used as a base class

This restriction prevents C++ programmers from viewing a union as an
encapsulation unit. If it is necessary, one can encapsulate the union into a class
and achieve the same effect.

Example:
union U { int a; int b; };
class S : public U { int s; };

Diagnostic Messages 455

Appendices

111 union cannot have a base class

This restriction prevents C++ programmers from viewing a union as an
encapsulation unit. If it is necessary, one can encapsulate the union into a class
and inherit the base classes normally.

Example:
class S { public: int s; };
union U : public S { int a; int b; };

112 cannot inherit an undefined base class ’%T’

The storage requirements for a class type must be known when inheritance is
involved because the layout of the final class depends on knowing the complete
contents of all base classes.

Example:
class Undefined;
class C : public Undefined {

int c;
};

113 repeated direct base class will cause ambiguities

Almost all accesses will be ambiguous. This restriction is useful in catching
programming errors. The repeated base class can be encapsulated in another
class if the repetition is required.

Example:
class Dup
{

int d;
};
class C : public Dup, public Dup
{

int c;
};

456 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

114 templates may only be declared in namespace scope

Currently, templates can only be declared in namespace scope. This simple
restriction was chosen in favour of more freedom with possibly subtle
restrictions.

115 linkages may only be declared in file scope

A common source of errors for C and C++ result from the use of prototypes
inside of functions. This restriction attempts to prevent such errors.

116 unknown linkage ’%s’

Only the linkages "C" and "C++" are supported by Open Watcom C++.

Example:
extern "APL" void AplFunc(int*);

117 too many storage class specifiers

This message is a result of duplicating a previous storage class or having a
different storage class. You can only have one of the following storage classes,
extern, static, auto, register, or typedef.

Example:
extern typedef int (*fn)(void);

118 nameless declaration is not allowed

A type was used in a declaration but no name was given.

Example:
static int;

119 illegal combination of type specifiers

An incorrect scalar type was found. Either a scalar keyword was repeated or the
combination is illegal.

Diagnostic Messages 457

Appendices

Example:
short short x;
short long y;

120 illegal combination of type qualifiers

A repetition of a type qualifier has been detected. Some compilers may ignore
repetitions but strictly speaking it is incorrect code.

Example:
const const x;
struct S {

int virtual virtual fn();
};

121 syntax error

The C++ compiler was unable to interpret the text starting at the location of the
message. The C++ language is sufficiently complicated that it is difficult for a
compiler to correct the error itself.

122 parser stack corrupted

The C++ parser has detected an internal problem that usually indicates a
compiler problem. Please report this directly to the Open Watcom development
team. See http://www.openwatcom.org/.

123 template declarations cannot be nested within each other

Currently, templates can only be declared in namespace scope. Furthermore, a
template declaration must be finished before another template can be declared.

124 expression is too complicated

The expression contains too many levels of nested parentheses. Divide the
expression up into two or more sub-expressions.

458 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

125 invalid redefinition of the typedef name ’%S’

Redefinition of typedef names is only allowed if you are redefining a typedef
name to itself. Any other redefinition is illegal. You should delete the duplicate
typedef definition.

Example:
typedef int TD;
typedef float TD; // illegal

126 class ’%T’ has already been defined

This message usually results from the definition of two classes in the same
scope. This is illegal regardless of whether the class definitions are identical.

Example:
class C {
};
class C {
};

127 ’sizeof’ is not allowed for an undefined type

If a type has not been defined, the compiler cannot know how large it is.

Example:
class C;
int x = sizeof(C);

128 initializer for variable ’%S’ cannot be bypassed

The variable may not be initialized when code is executing at the position
indicated in the message. The C++ language places these restrictions to prevent
the use of uninitialized variables.

Example:

Diagnostic Messages 459

Appendices

int foo(int a)
{

switch(a) {
case 1:

int b = 2;
return b;

default: // b bypassed
return b + 5;
}

}

129 division by zero in a constant expression

Division by zero is not allowed in a constant expression. The value of the
expression cannot be used with this error.

Example:
int foo(int a)
{

switch(a) {
case 4 / 0: // illegal

return a;
}
return a + 2;

}

130 arithmetic overflow in a constant expression

The multiplication of two integral values cannot be represented. The value of
the expression cannot be used with this error.

Example:
int foo(int a)
{

switch(a) {
case 0x7FFF * 0x7FFF * 0x7FFF: // overflow

return a;
}
return a + 2;

}

460 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

131 not enough memory to fully optimize procedure ’%s’

The indicated procedure cannot be fully optimized with the amount of memory
available. The code generated will still be correct and execute properly. This
message is purely informational (i.e., buy more memory).

132 not enough memory to maintain full peephole

Certain optimizations benefit from being able to store the entire module in
memory during optimization. All functions will be individually optimized but
the optimizer will not be able to share code between functions if this message
appears. The code generated will still be correct and execute properly. This
message is purely informational (i.e., buy more memory).

133 too many errors: compilation aborted

The Open Watcom C++ compiler sets a limit to the number of error messages it
will issue. Once the number of messages reaches the limit the above message is
issued. This limit can be changed via the "/e" command line option.

134 too many parm sets

An extra parameter passing description has been found in the aux pragma text.
Only one parameter passing description is allowed.

135 ’friend’, ’virtual’ or ’inline’ modifiers may only be used on functions

This message indicates that you are trying to declare a strange entity like an
inline variable. These qualifiers can only be used on function declarations and
definitions.

136 more than one calling convention has been specified

A function cannot have more than one #pragma modifier applied to it. Combine
the pragmas into one pragma and apply it once.

Diagnostic Messages 461

Appendices

137 pure member function constant must be ’0’

The constant must be changed to ’0’ in order for the Open Watcom C++
compiler to accept the pure virtual member function declaration.

Example:
struct S {

virtual int wrong(void) = 91;
};

138 based modifier has been repeated

A repeated based modifier has been detected. There are no semantics for
combining base modifiers so this is not allowed.

Example:
char *ptr;charbased(void)based(ptr)*a;

139 enumeration variable is not assigned a constant from its enumeration

In C++ (as opposed to C), enums represent values of distinct types. Thus, the
compiler will not automatically convert an integer value to an enum type if you
are compiling your source in strict ISO/ANSI C++ mode. If you have
extensions enabled, this message is treated as a warning.

Example:
enum Days { sun, mod, tues, wed, thur, fri, sat };
enum Days day = 2;

140 bit-field declaration cannot have a storage class specifier

Bit-fields (along with most members) cannot have storage class specifiers in
their declaration. Remove the storage class specifier to correct the code.

Example:
class C
{
public:

extern unsigned bitf :10;
};

462 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

141 bit-field declaration must have a base type specified

A bit-field cannot make use of a default integer type. Specify the type int to
correct the code.

Example:
class C
{
public:

bitf :10;
};

142 illegal qualification of a bit-field declaration

A bit-field can only be declared const or volatile. Qualifications like friend are
not allowed.

Example:
struct S {

friend int bit1 :10;
inline int bit2 :10;
virtual int bit3 :10;

};

All three declarations of bit-fields are illegal.

143 duplicate base qualifier

The compiler has found a repetition of base qualifiers like protected or virtual.

Example:
struct Base { int b; };
struct Derived : public public Base { int d; };

144 only one access specifier is allowed

The compiler has found more than one access specifier for a base class. Since
the compiler cannot choose one over the other, remove the unwanted access
specifier to correct the code.

Diagnostic Messages 463

Appendices

Example:
struct Base { int b; };
struct Derived : public protected Base { int d; };

145 unexpected type qualifier found

Type specifiers cannot have const or volatile qualifiers. This shows up in new
expressions because one cannot allocate a const object.

146 unexpected storage class specifier found

Type specifiers cannot have auto or static storage class specifiers. This shows
up in new expressions because one cannot allocate a static object.

147 access to ’%S’ is not allowed because it is ambiguous

There are two ways that this error can show up in C++ code. The first way a
member can be ambiguous is that the same name can be used in two different
classes. If these classes are combined with multiple inheritance, accesses of the
name will be ambiguous.

Example:
struct S1 { int s; };
struct S2 { int s; };
struct Der : public S1, public S2
{

void foo() { s = 2; }; // s is ambiguous
};

The second way a member can be ambiguous involves multiple inheritance. If a
class is inherited non-virtually by two different classes which then get combined
with multiple inheritance, an access of the member is faced with deciding which
copy of the member is intended. Use the ’::’ operator to clarify what member is
being accessed or access the member with a different class pointer or reference.

Example:
struct Top { int t; };
struct Mid : public Top { int m; };
struct Bot : public Top, public Mid
{

void foo() { t = 2; }; // t is ambiguous
};

464 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

148 access to private member ’%S’ is not allowed

The indicated member is being accessed by an expression that does not have
permission to access private members of the class.

Example:
struct Top { int t; };
class Bot : private Top
{

int foo() { return t; }; // t is private
};
Bot b;
int k = b.foo(); // foo is private

149 access to protected member ’%S’ is not allowed

The indicated member is being accessed by an expression that does not have
permission to access protected members of the class. The compiler also requires
that protected members be accessed through a derived class to ensure that an
unrelated base class cannot be quietly modified. This is a fairly recent change to
the C++ language that may cause Open Watcom C++ to not accept older C++
code. See Section 11.5 in the ARM for a discussion of protected access.

Example:
struct Top { int t; };
struct Mid : public Top { int m; };
class Bot : protected Mid
{
protected:

// t cannot be accessed
int foo() { return t; };

};
Bot b;
int k = b.foo(); // foo is protected

150 operation does not allow both operands to be pointers

There may be a missing indirection in the code exhibiting this error. An
example of this error is adding two pointers.

Diagnostic Messages 465

Appendices

Example:
void fn()
{

char *p, *q;

p += q;
}

151 operand is neither a pointer nor an arithmetic type

An example of this error is incrementing a class that does not have any
overloaded operators.

Example:
struct S { } x;
void fn()
{

++x;
}

152 left operand is neither a pointer nor an arithmetic type

An example of this error is trying to add 1 to a class that does not have any
overloaded operators.

Example:
struct S { } x;
void fn()
{

x = x + 1;
}

153 right operand is neither a pointer nor an arithmetic type

An example of this error is trying to add 1 to a class that does not have any
overloaded operators.

466 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S { } x;
void fn()
{

x = 1 + x;
}

154 cannot subtract a pointer from an arithmetic operand

The subtract operands are probably in the wrong order.

Example:
int fn(char *p)
{

return(10 - p);
}

155 left expression must be arithmetic

Certain operations like multiplication require both operands to be of arithmetic
types.

Example:
struct S { } x;
void fn()
{

x = x * 1;
}

156 right expression must be arithmetic

Certain operations like multiplication require both operands to be of arithmetic
types.

Example:
struct S { } x;
void fn()
{

x = 1 * x;
}

Diagnostic Messages 467

Appendices

157 left expression must be integral

Certain operators like the bit manipulation operators require both operands to be
of integral types.

Example:
struct S { } x;
void fn()
{

x = x ^ 1;
}

158 right expression must be integral

Certain operators like the bit manipulation operators require both operands to be
of integral types.

Example:
struct S { } x;
void fn()
{

x = 1 ^ x;
}

159 cannot assign a pointer value to an arithmetic item

The pointer value must be cast to the desired type before the assignment takes
place.

Example:
void fn(char *p)
{

int a;

a = p;
}

468 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

160 attempt to destroy a far object when data model is near

Destructors cannot be applied to objects which are stored in far memory when
the default memory model for data is near.

Example:
struct Obj
{ char *p;

~Obj();
};

Obj far obj;

The last line causes this error to be displayed when the memory model is small
(switch -ms), since the memory model for data is near.

161 attempt to call member function for far object when the data model is near

Member functions cannot be called for objects which are stored in far memory
when the default memory model for data is near.

Example:
struct Obj
{ char *p;

int foo();
};

Obj far obj;
int integer = obj.foo();

The last line causes this error to be displayed when the memory model is small
(switch -ms), since the memory model for data is near.

162 template type argument cannot have a default argument

This message was produced by earlier versions of the Open Watcom C++
compiler. Support for default template arguments was added in version 1.3 and
this message was removed at that time.

Diagnostic Messages 469

Appendices

163 attempt to delete a far object when the data model is near

delete cannot be used to deallocate objects which are stored in far memory when
the default memory model for data is near.

Example:
struct Obj
{ char *p;
};

void foo(Obj far *p)
{

delete p;
}

The second last line causes this error to be displayed when the memory model is
small (switch -ms), since the memory model for data is near.

164 first operand is not a class, struct or union

The offsetof operation can only be performed on a type that can have members.
It is meaningless for any other type.

Example:
#include <stddef.h>

int fn(void)
{

return offsetof(double, sign);
}

165 syntax error: class template cannot be processed

The class template contains unbalanced braces. The class definition cannot be
processed in this form.

166 cannot convert right pointer to type of left operand

The C++ language will not allow the implicit conversion of unrelated class
pointers. An explicit cast is required.

470 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
class C1;
class C2;

void fun(C1* pc1, C2* pc2)
{

pc2 = pc1;
}

167 left operand must be an lvalue

The left operand must be an expression that is valid on the left side of an
assignment. Examples of incorrect lvalues include constants and the results of
most operators.

Example:
int i, j;
void fn()
{

(i - 1) = j;
1 = j;

}

168 static data members are not allowed in an union

A union should only be used to organize memory in C++. Enclose the union in
a class if you need a static data member associated with the union.

Example:
union U
{

static int a;
int b;
int c;

};

169 invalid storage class for a member

A class member cannot be declared with auto, register, or extern storage class.

Diagnostic Messages 471

Appendices

Example:
class C
{

auto int a; // cannot specify auto
};

170 declaration is too complicated

The declaration contains too many declarators (i.e., pointer, array, and function
types). Break up the declaration into a series of typedefs ending in a final
declaration.

Example:
int ************p;

Example:
// transform this to ...
typedef int ****PD1;
typedef PD1 ****PD2;
PD2 ****p;

171 exception declaration is too complicated

The exception declaration contains too many declarators (i.e., pointer, array, and
function types). Break up the declaration into a series of typedefs ending in a
final declaration.

172 floating-point constant too large to represent

The Open Watcom C++ compiler cannot represent the floating-point constant
because the magnitude of the positive exponent is too large.

Example:
float f = 1.2e78965;

173 floating-point constant too small to represent

The Open Watcom C++ compiler cannot represent the floating-point constant
because the magnitude of the negative exponent is too large.

472 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
float f = 1.2e-78965;

174 class template ’%S’ cannot be overloaded

A class template name must be unique across the entire C++ program.
Furthermore, a class template cannot coexist with another class template of the
same name.

175 range of enum constants cannot be represented

If one integral type cannot be chosen to represent all values of an enumeration,
the values cannot be used reliably in the generated code. Shrink the range of
enumerator values used in the enum declaration.

Example:
enum E
{ e1 = 0xFFFFFFFF
, e2 = -1
};

176 ’%S’ cannot be in the same scope as a class template

A class template name must be unique across the entire C++ program. Any
other use of a name cannot be in the same scope as the class template.

177 invalid storage class in file scope

A declaration in file scope cannot have a storage class of auto or register.

Example:
auto int a;

178 const object must be initialized

Constant objects cannot be modified so they must be initialized before use.

Diagnostic Messages 473

Appendices

Example:
const int a;

179 declaration cannot be in the same scope as class template ’%S’

A class template name must be unique across the entire C++ program. Any
other use of a name cannot be in the same scope as the class template.

180 template arguments must be named

A member function of a template class cannot be defined outside the class
declaration unless all template arguments have been named.

181 class template ’%S’ is already defined

A class template cannot have its definition repeated regardless of whether it is
identical to the previous definition.

182 invalid storage class for an argument

An argument declaration cannot have a storage class of extern, static, or typedef.

Example:
int foo(extern int a)
{

return a;
}

183 unions cannot have members with constructors

A union should only be used to organize memory in C++. Allowing union
members to have constructors would mean that the same piece of memory could
be constructed twice.

Example:
class C
{

C();
};
union U
{

int a;
C c; // has constructor

};

474 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

184 statement is too complicated

The statement contains too many nested constructs. Break up the statement into
multiple statements.

185 ’%s’ is not the name of a class or namespace

The right hand operand of a ’::’ operator turned out not to reference a class type
or namespace. Because the name is followed by another ’::’, it must name a
class or namespace.

186 attempt to modify a constant value

Modification of a constant value is not allowed. If you must force this to work,
take the address and cast away the constant nature of the type.

Example:
static int const con = 12;
void foo()
{

con = 13; // error
(int)&con = 13; // ok

}

187 ’offsetof’ is not allowed for a bit-field

A bit-field cannot have a simple offset so it cannot be referenced in an offsetof
expression.

Example:
#include <stddef.h>
struct S
{

unsigned b1 :10;
unsigned b2 :15;
unsigned b3 :11;

};
int k = offsetof(S, b2);

Diagnostic Messages 475

Appendices

188 base class is inherited with private access

This warning indicates that the base class was originally declared as a class as
opposed to a struct. Furthermore, no access was specified so the base class
defaults to private inheritance. Add the private or public access specifier to
prevent this message depending on the intended access.

189 overloaded function cannot be selected for arguments used in call

Either conversions were not possible for an argument to the function or a
function with the right number of arguments was not available.

Example:
class C1;
class C2;
int foo(C1*);
int foo(C2*);
int k = foo(5);

190 base operator operands must be " __segment :> pointer "

The base operator (:>) requires the left operand to be of type __segment and the
right operand to be a pointer.

Example:charbased(void)*pcb;charfar*pcf=pcb;//needs:>operator
Examples of typical uses are as follows:

Example:constsegmentmySegAbs=0x4000;charbased(void)*cbv=24;charfar*cfp1=mySegAbs:>cbv;charfar*cfp2=segname("DATA"):>cbv;
191 expression must be a pointer or a zero constant

In a conditional expression, if one side of the ’:’ is a pointer then the other side
must also be a pointer or a zero constant.

476 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
extern int a;
int *p = (a > 7) ? &a : 12;

192 left expression pointer type cannot be incremented or decremented

The expression requires that the scaling size of the pointer be known. Pointers
to functions, arrays of unknown size, or void cannot be incremented because
there is no size defined for functions, arrays of unknown size, or void.

Example:
void *p;
void *q = p + 2;

193 right expression pointer type cannot be incremented or decremented

The expression requires that the scaling size of the pointer be known. Pointers
to functions, arrays of unknown size, or void cannot be incremented because
there is no size defined for functions, arrays of unknown size, or void.

Example:
void *p;
void *q = 2 + p;

194 expression pointer type cannot be incremented or decremented

The expression requires that the scaling size of the pointer be known. Pointers
to functions, arrays of unknown size, or void cannot be incremented because
there is no size defined for functions, arrays of unknown size, or void.

Example:
void *p;
void *q = ++p;

195 ’sizeof’ is not allowed for a function

A function has no size defined for it by the C++ language specification.

Diagnostic Messages 477

Appendices

Example:
typedef int FT(int);

unsigned y = sizeof(FT);

196 ’sizeof’ is not allowed for type void

The type void has no size defined for it by the C++ language specification.

Example:
void *p;
unsigned size = sizeof(*p);

197 type cannot be defined in this context

A type cannot be defined in certain contexts. For example, a new type cannot be
defined in an argument list, a new expression, a conversion function identifier,
or a catch handler.

Example:
extern int goop();
int foo()
{

try {
return goop();
} catch(struct S { int s; }) {
return 2;
}

}

198 expression cannot be used as a class template parameter

The compiler has to be able to compare expressions during compilation so this
limits the complexity of expressions that can be used for template parameters.
The only types of expressions that can be used for template parameters are
constant integral expressions and addresses. Any symbols must have external
linkage or must be static class members.

478 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

199 premature end-of-file encountered during compilation

The compiler expects more source code at this point. This can be due to missing
parentheses (’)’) or missing closing braces (’}’).

200 duplicate case value ’%s’ after conversion to type of switch expression

A duplicate case value has been found. Keep in mind that all case values must
be converted to the type of the switch expression. Constants that may be
different initially may convert to the same value.

Example:
enum E { e1, e2 };
void foo(short a)
{

switch(a) {
case 1:
case 0x10001: // converts to 1 as short

break;
}

}

201 declaration statement follows an if statement

There are implicit scopes created for most control structures. Because of this, no
code can access any of the names declared in the declaration. Although the code
is legal it may not be what the programmer intended.

Example:
void foo(int a)
{

if(a)
int b = 14;

}

202 declaration statement follows an else statement

There are implicit scopes created for most control structures. Because of this, no
code can access any of the names declared in the declaration. Although the code
is legal it may not be what the programmer intended.

Diagnostic Messages 479

Appendices

Example:
void foo(int a)
{

if(a)
int c = 15;
else
int b = 14;

}

203 declaration statement follows a switch statement

There are implicit scopes created for most control structures. Because of this, no
code can access any of the names declared in the declaration. Although the code
is legal it may not be what the programmer intended.

Example:
void foo(int a)
{

switch(a)
int b = 14;

}

204 ’this’ pointer is not defined

The this value can only be used from within non-static member functions.

Example:
void *fn()
{

return this;
}

205 declaration statement cannot follow a while statement

There are implicit scopes created for most control structures. Because of this, no
code can access any of the names declared in the declaration. Although the code
is legal it may not be what the programmer intended.

480 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void foo(int a)
{

while(a)
int b = 14;

}

206 declaration statement cannot follow a do statement

There are implicit scopes created for most control structures. Because of this, no
code can access any of the names declared in the declaration. Although the code
is legal it may not be what the programmer intended.

Example:
void foo(int a)
{

do
int b = 14;
while(a);

}

207 declaration statement cannot follow a for statement

There are implicit scopes created for most control structures. Because of this, no
code can access any of the names declared in the declaration. Although the code
is legal it may not be what the programmer intended. A for loop with an initial
declaration is allowed to be used within another for loop, so this code is legal
C++:

Example:
void fn(int **a)
{

for(int i = 0; i < 10; ++i)
for(int j = 0; j < 10; ++j)

a[i][j] = i + j;
}

The following example, however, illustrates a potentially erroneous situation.

Diagnostic Messages 481

Appendices

Example:
void foo(int a)
{

for(; a<10;)
int b = 14;

}

208 pointer to virtual base class converted to pointer to derived class

Since the relative position of a virtual base can change through repeated
derivations, this conversion is very dangerous. All C++ translators must report
an error for this type of conversion.

Example:
struct VBase { int v; };
struct Der : virtual public VBase { int d; };
extern VBase *pv;
Der *pd = (Der *)pv;

209 cannot use far pointer in this context

Only near pointers can be thrown when the data memory model is near.

Example:externintfar*p;
void foo()
{

throw p;
}

When the small memory model (-ms switch) is selected, the throw expression is
diagnosed as erroneous. Similarly, only near pointers can be specified in catch
statements when the data memory model is near.

210 returning reference to function argument or to auto or register variable

The storage for the automatic variable will be destroyed immediately upon
function return. Returning a reference effectively allows the caller to modify
storage which does not exist.

482 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
class C
{

char *p;
public:

C();
~C();

};

C& foo()
{Cautovar;returnautovar;//notallowed
}

211 #pragma attributes for ’%S’ may be inconsistent

A pragma attribute was changed to a value which matches neither the current
default not the previous value for that attribute. A warning is issued since this
usually indicates an attribute is being set twice (or more) in an inconsistent way.
The warning can also occur when the default attribute is changed between two
pragmas for the same object.

212 function arguments cannot be of type void

Having more than one void argument is not allowed. The special case of one
void argument indicates that the function accepts no parameters.

Example:
void fn1(void) // OK
{
}
void fn2(void, void, void) // Error!
{
}

213 class template requires more parameters for instantiation

The class template instantiation has too few parameters supplied so the class
cannot be instantiated properly.

Diagnostic Messages 483

Appendices

214 class template requires fewer parameters for instantiation

The class template instantiation has too many parameters supplied so the class
cannot be instantiated properly.

215 no declared ’operator new’ has arguments that match

An operator new could not be found to match the new expression. Supply the
correct arguments for special operator new functions that are defined with the
placement syntax.

Example:
#include <stddef.h>

struct S {void*operatornew(sizet,char);
};

void fn()
{

S *p = new (’a’) S;
}

216 wide character string concatenated with a simple character string

There are no semantics defined for combining a wide character string with a
simple character string. To correct the problem, make the simple character
string a wide character string by prefixing it with a L.

Example:
char *p = "1234" L"5678";

217 ’offsetof’ is not allowed for a static member

A static member does not have an offset like simple data members. If this is
required, use the address of the static member.

484 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#include <stddef.h>
class C
{
public:

static int stat;
int memb;

};intsize1=offsetof(C,stat);//notallowedintsize2=offsetof(C,memb);//ok
218 cannot define an array of void

Since the void type has no size and there are no values of void type, one cannot
declare an array of void.

Example:
void array[24];

219 cannot define an array of references

References are not objects, they are simply a way of creating an efficient alias to
another name. Creating an array of references is currently not allowed in the
C++ language.

Example:
int& array[24];

220 cannot define a reference to void

One cannot create a reference to a void because there can be no void variables to
supply for initializing the reference.

Example:
void& ref;

Diagnostic Messages 485

Appendices

221 cannot define a reference to another reference

References are not objects, they are simply a way of creating an efficient alias to
another name. Creating a reference to another reference is currently not allowed
in the C++ language.

Example:
int & & ref;

222 cannot define a pointer to a reference

References are not objects, they are simply a way of creating an efficient alias to
another name. Creating a pointer to a reference is currently not allowed in the
C++ language.

Example:
char& *ptr;

223 cannot initialize array with ’operator new’

The initialization of arrays created with operator new can only be done with
default constructors. The capability of using another constructor with arguments
is currently not allowed in the C++ language.

Example:
struct S
{

S(int);
};
S *p = new S[10] (12);

224 ’%N’ is a variable of type void

A variable cannot be of type void. The void type can only be used in restricted
circumstances because it has no size. For instance, a function returning void
means that it does not return any value. A pointer to void is used as a generic
pointer but it cannot be dereferenced.

486 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

225 cannot define a member pointer to a reference

References are not objects, they are simply a way of creating an efficient alias to
another name. Creating a member pointer to a reference is currently not allowed
in the C++ language.

Example:
struct S
{

S();
int &ref;

};

int& S::* p;

226 function ’%S’ is not distinct

The function being declared is not distinct enough from the other functions of
the same name. This means that all function overloads involving the function’s
argument types will be ambiguous.

Example:
struct S {

int s;
};
extern int foo(S*);
extern int foo(S* const); // not distinct enough

227 overloaded function is ambiguous for arguments used in call

The compiler could not find an unambiguous choice for the function being
called.

Example:
extern int foo(char);
extern int foo(short);
int k = foo(4);

Diagnostic Messages 487

Appendices

228 declared ’operator new’ is ambiguous for arguments used

The compiler could not find an unambiguous choice for operator new.

Example:
#include <stdlib.h>
struct Der
{

int s[2];void*operatornew(sizet,char);void*operatornew(sizet,short);
};
Der *p = new(10) Der;

229 function ’%S’ has already been defined

The function being defined has already been defined elsewhere. Even if the two
function bodies are identical, there must be only one definition for a particular
function.

Example:
int foo(int s) { return s; }
int foo(int s) { return s; } // illegal

230 expression on left is an array

The array expression is being used in a context where only pointers are allowed.

Example:
void fn(void *p)
{

int a[10];

a = 0;
a = p;
a++;

}

488 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

231 user-defined conversion has a return type

A user-defined conversion cannot be declared with a return type. The "return
type" of the user-defined conversion is implicit in the name of the user-defined
conversion.

Example:
struct S {

int operator int(); // cannot have return type
};

232 user-defined conversion must be a function

The operator name describing a user-defined conversion can only be used to
designate functions.

Example:
// operator char can only be a function
int operator char = 9;

233 user-defined conversion has an argument list

A user-defined conversion cannot have an argument list. Since user-defined
conversions can only be non-static member functions, they have an implicit this
argument.

Example:
struct S {

operator int(S&); // cannot have arguments
};

234 destructor cannot have a return type

A destructor cannot have a return type (even void). The destructor is a special
member function that is not required to be identical in form to all other member
functions. This allows different implementations to have different uses for any
return values.

Diagnostic Messages 489

Appendices

Example:
struct S {

void* ~S();
};

235 destructor must be a function

The tilde (’~’) style of name is reserved for declaring destructor functions.
Variable names cannot make use of the destructor style of names.

Example:
struct S {

int ~S; // illegal
};

236 destructor has an argument list

A destructor cannot have an argument list. Since destructors can only be
non-static member functions, they have an implicit this argument.

Example:
struct S {

~S(S&);
};

237 ’%N’ must be a function

The operator style of name is reserved for declaring operator functions.
Variable names cannot make use of the operator style of names.

Example:
struct S {

int operator+; // illegal
};

238 ’%N’ is not a function

The compiler has detected what looks like a function body. The message is a
result of not finding a function being declared. This can happen in many ways,
such as dropping the ’:’ before defining base classes, or dropping the ’=’ before
initializing a structure via a braced initializer.

490 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct D B { int i; };

239 nested type class ’%s’ has not been declared

A nested class has not been found but is required by the use of repeated ’::’
operators. The construct "A::B::C" requires that ’A’ be a class type, and ’B’ be
a nested class within the scope of ’A’.

Example:
struct B {

static int b;
};
struct A : public B {
};
int A::B::b = 2; // B not nested in A

The preceding example is illegal; the following is legal

Example:
struct A {

struct B {
static int b;
};

};
int A::B::b = 2; // B nested in A

240 enum ’%s’ has not been declared

An elaborated reference to an enum could not be satisfied. All enclosing scopes
have been searched for an enum name. Visible variable declarations do not
affect the search.

Example:
struct D {

int i;
enum E { e1, e2, e3 };

};enumEenumvar;//Enotvisible
Diagnostic Messages 491

Appendices

241 class or namespace ’%s’ has not been declared

The construct "A::B::C" requires that ’A’ be a class type or a namespace, and
’B’ be a nested class or namespace within the scope of ’A’. The reference to ’A’
could not be satisfied. All enclosing scopes have been searched for a class or
namespace name. Visible variable declarations do not affect the search.

Example:
struct A{ int a; };

int b;
int c = B::A::b;

242 only one initializer argument allowed

The comma (’,’) in a function like cast is treated like an argument list comma
(’,’). If a comma expression is desired, use parentheses to enclose the comma
expression.

Example:
void fn()
{

int a;

a = int(1, 2); // Error!
a = int((1, 2)); // OK

}

243 default arguments are not part of a function’s type

This message indicates that a declaration has been found that requires default
arguments to be part of a function’s type. Either declaring a function typedef or
a pointer to a function with default arguments are examples of incorrect
declarations.

Example:
typedef int TD(int, int a = 14);
int (*p)(int, int a = 14) = 0;

492 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

244 missing default arguments

Gaps in a succession of default arguments are not allowed in the C++ language.

Example:
void fn(int = 1, int, int = 3);

245 overloaded operator cannot have default arguments

Preventing overloaded operators from having default arguments enforces the
property that binary operators will only be called from a use of a binary
operator. Allowing default arguments would allow a binary operator + to
function as a unary operator +.

Example:
class C
{
public:

C operator +(int a = 10);
};

246 left expression is not a pointer to a constant object

One cannot assign a pointer to a constant type to a pointer to a non-constant
type. This would allow a constant object to be modified via the non-constant
pointer. Use a cast if this is absolutely necessary.

Example:
char* fun(const char* p)
{

char* q;
q = p;
return q;

}

247 cannot redefine default argument for ’%S’

Default arguments can only be defined once in a program regardless of whether
the value of the default argument is identical.

Diagnostic Messages 493

Appendices

Example:
static int foo(int a = 10);
static int foo(int a = 10)
{

return a+a;
}

248 using default arguments would be overload ambiguous with ’%S’

The declaration declares enough default arguments that the function is
indistinguishable from another function of the same name.

Example:
void fn(int);
void fn(int, int = 1);

Calling the function ’fn’ with one argument is ambiguous because it could match
either the first ’fn’ without any default arguments or the second ’fn’ with a
default argument applied.

249 using default arguments would be overload ambiguous with ’%S’ using default
arguments

The declaration declares enough default arguments that the function is
indistinguishable from another function of the same name with default
arguments.

Example:
void fn(int, int = 1);
void fn(int, char = ’a’);

Calling the function ’fn’ with one argument is ambiguous because it could match
either the first ’fn’ with a default argument or the second ’fn’ with a default
argument applied.

250 missing default argument for ’%S’

In C++, one is allowed to add default arguments to the right hand arguments of a
function declaration in successive declarations. The message indicates that the
declaration is only valid if there was a default argument previously declared for
the next argument.

494 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
void fn1(int , int);
void fn1(int , int = 3);
void fn1(int = 2, int); // OK

void fn2(int , int);
void fn2(int = 2, int); // Error!

251 enum references must have an identifier

There is no way to reference an anonymous enum. If all enums are named, the
cause of this message is most likely a missing identifier.

Example:
enum { X, Y, Z }; // anonymous enum
void fn()
{

enum *p;
}

252 class declaration has not been seen for ’~%s’

A destructor has been used in a context where its class is not visible.

Example:
class C;

void fun(C* p)
{

p->~S();
}

253 ’::’ qualifier cannot be used in this context

Qualified identifiers in a class context are allowed for declaring friend member
functions. The Open Watcom C++ compiler also allows code that is qualified
with its own class so that declarations can be moved in and out of class
definitions easily.

Diagnostic Messages 495

Appendices

Example:
struct N {

void bar();
};
struct S {

void S::foo() { // OK
}
void N::bar() { // error
}

};

254 ’%S’ has not been declared as a member

In a definition of a class member, the indicated declaration must already have
been declared when the class was defined.

Example:
class C
{
public:

int c;
int goop();

};
int C::x = 1;C::notdecled(){}

255 default argument expression cannot use function argument ’%S’

Default arguments must be evaluated at each call. Since the order of evaluation
for arguments is undefined, a compiler must diagnose all default arguments that
depend on other arguments.

Example:
void goop(int d)
{

struct S {
// cannot access "d"
int foo(int c, int b = d)

{
return b + c;
};

};
}

496 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

256 default argument expression cannot use local variable ’%S’

Default arguments must be evaluated at each call. Since a local variable is not
always available in all contexts (e.g., file scope initializers), a compiler must
diagnose all default arguments that depend on local variables.

Example:
void goop(void)
{

int a;
struct S {
// cannot access "a"
int foo(int c, int b = a)

{
return b + c;
};

};
}

257 access declarations may only be ’public’ or ’protected’

Access declarations are used to increase access. A private access declaration is
useless because there is no access level for which private is an increase in
access.

Example:
class Base
{

int pri;
protected:

int pro;
public:

int pub;
};
class Derived : public Base
{

private: Base::pri;
};

Diagnostic Messages 497

Appendices

258 cannot declare both a function and variable of the same name (’%N’)

Functions can be overloaded in C++ but they cannot be overloaded in the
presence of a variable of the same name. Likewise, one cannot declare a
variable in the same scope as a set of overloaded functions of the same name.

Example:
int foo();
int foo;
struct S {

int bad();
int bad;

};

259 class in access declaration (’%T’) must be a direct base class

Access declarations can only be applied to direct (immediate) base classes.

Example:
struct B {

int f;
};
struct C : B {

int g;
};
struct D : private C {

B::f;
};

In the above example, "C" is a direct base class of "D" and "B" is a direct base
class of "C", but "B" is not a direct base class of "D".

260 overloaded functions (’%N’) do not have the same access

If an access declaration is referencing a set of overloaded functions, then they all
must have the same access. This is due to the lack of a type in an access
declaration.

498 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
class C
{

static int foo(int); // private
public:

static int foo(float); // public
};

class B : private C
{
public: C::foo;
};

261 cannot grant access to ’%N’

A derived class cannot change the access of a base class member with an access
declaration. The access declaration can only be used to restore access changed
by inheritance.

Example:
class Base
{
public:

int pub;
protected:

int pro;
};
class Der : private Base
{

public: Base::pub; // ok
public: Base::pro; // changes access

};

262 cannot reduce access to ’%N’

A derived class cannot change the access of a base class member with an access
declaration. The access declaration can only be used to restore access changed
by inheritance.

Diagnostic Messages 499

Appendices

Example:
class Base
{
public:

int pub;
protected:

int pro;
};
class Der : public Base
{

protected: Base::pub; // changes access
protected: Base::pro; // ok

};

263 nested class ’%N’ has not been defined

The current state of the C++ language supports nested types. Unfortunately, this
means that some working C code will not work unchanged.

Example:
struct S {

struct T;
T *link;

};

In the above example, the class "T" will be reported as not being defined by the
end of the class declaration. The code can be corrected in the following manner.

Example:
struct S {

struct T;
T *link;
struct T {
};

};

264 user-defined conversion must be a non-static member function

A user-defined conversion is a special member function that allows the class to
be converted implicitly (or explicitly) to an arbitrary type. In order to do this, it
must have access to an instance of the class so it is restricted to being a
non-static member function.

500 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S
{

static operator int();
};

265 destructor must be a non-static member function

A destructor is a special member function that will perform cleanup on a class
before the storage for the class will be released. In order to do this, it must have
access to an instance of the class so it is restricted to being a non-static member
function.

Example:
struct S
{

static ~S();
};

266 ’%N’ must be a non-static member function

The operator function in the message is restricted to being a non-static member
function. This usually means that the operator function is treated in a special
manner by the compiler.

Example:
class C
{
public:

static operator =(C&, int);
};

267 ’%N’ must have one argument

The operator function in the message is only allowed to have one argument. An
operator like operator ~ is one such example because it represents a unary
operator.

Diagnostic Messages 501

Appendices

Example:
class C
{
public: int c;
};
C& operator~(const C&, int);

268 ’%N’ must have two arguments

The operator function in the message must have two arguments. An operator
like operator += is one such example because it represents a binary operator.

Example:
class C
{
public: int c;
};
C& operator += (const C&);

269 ’%N’ must have either one argument or two arguments

The operator function in the message must have either one argument or two
arguments. An operator like operator + is one such example because it
represents either a unary or a binary operator.

Example:
class C
{
public: int c;
};
C& operator+(const C&, int, float);

270 ’%N’ must have at least one argument

The operator new and operator new [] member functions must have at least one
argument for the size of the allocation. After that, any arguments are up to the
programmer. The extra arguments can be supplied in a new expression via the
placement syntax.

502 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
#include <stddef.h>

struct S {void*operatornew(sizet,char);
};

void fn()
{

S *p = new (’a’) S;
}

271 ’%N’ must have a return type of void

The C++ language requires that operator delete and operator delete [] have a
return type of void.

Example:
class C
{
public:

int c;
C* operator delete(void*);
C* operator delete [](void*);

};

272 ’%N’ must have a return type of pointer to void

The C++ language requires that both operator new and operator new [] have a
return type of void *.

Example:
#include <stddef.h>
class C
{
public:

int c;C*operatornew(sizetsize);C*operatornew[](sizetsize);
};

Diagnostic Messages 503

Appendices

273 the first argument of ’%N’ must be of type size_t

The C++ language requires that the first argument for operator new and
operator new [] be of the type "size_t". The definition for "size_t" can be
included by using the standard header file <stddef.h>.

Example:
void *operator new(int size);
void *operator new(double size, char c);
void *operator new [](int size);
void *operator new [](double size, char c);

274 the first argument of ’%N’ must be of type pointer to void

The C++ language requires that the first argument for operator delete and
operator delete [] be a void *.

Example:
class C;
void operator delete(C*);
void operator delete [](C*);

275 the second argument of ’%N’ must be of type size_t

The C++ language requires that the second argument for operator delete and
operator delete [] be of type "size_t". The two argument form of operator delete
and operator delete [] is optional and it can only be present inside of a class
declaration. The definition for "size_t" can be included by using the standard
header file <stddef.h>.

Example:
struct S {

void operator delete(void *, char);
void operator delete [](void *, char);

};

276 the second argument of ’operator ++’ or ’operator --’ must be int

The C++ language requires that the second argument for operator ++ be int.
The two argument form of operator ++ is used to overload the postfix operator
"++". The postfix operator "--" can be overloaded similarly.

504 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
class C {
public:

long cv;
};
C& operator ++(C&, unsigned);

277 return type of ’%S’ must allow the ’->’ operator to be applied

This restriction is a result of the transformation that the compiler performs when
the operator -> is overloaded. The transformation involves transforming the
expression to invoke the operator with "->" applied to the result of operator ->.

Example:
struct S {

int a;
S *operator ->();

};

void fn(S &q)
{

q->a = 1; // becomes (q.operator ->())->a = 1;
}

278 ’%N’ must take at least one argument of a class/enum or a reference to a
class/enum

Overloaded operators can only be defined for classes and enumerations. At least
one argument, must be a class or an enum type in order for the C++ compiler to
distinguish the operator from the built-in operators.

Example:
class C {
public:

long cv;
};
C& operator ++(unsigned, int);

Diagnostic Messages 505

Appendices

279 too many initializers

The compiler has detected extra initializers.

Example:
int a[3] = { 1, 2, 3, 4 };

280 too many initializers for character string

A string literal used in an initialization of a character array is viewed as
providing the terminating null character. If the number of array elements isn’t
enough to accept the terminating character, this message is output.

Example:
char ac[3] = "abc";

281 expecting ’%s’ but found expression

This message is output when some bracing or punctuation is expected but an
expression was encountered.

Example:
int b[3] = 3;

282 anonymous struct/union member ’%N’ cannot be declared in this class

An anonymous member cannot be declared with the same name as its containing
class.

Example:
struct S {

union {
int S; // Error!
char b;
};

};

506 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

283 unexpected ’%s’ during initialization

This message is output when some unexpected bracing or punctuation is
encountered during initialization.

Example:
int e = { { 1 };

284 nested type ’%N’ cannot be declared in this class

A nested type cannot be declared with the same name as its containing class.

Example:
struct S {

typedef int S; // Error!
};

285 enumerator ’%N’ cannot be declared in this class

An enumerator cannot be declared with the same name as its containing class.

Example:
struct S {

enum E {
S, // Error!
T
};

};

286 static member ’%N’ cannot be declared in this class

A static member cannot be declared with the same name as its containing class.

Example:
struct S {

static int S; // Error!
};

Diagnostic Messages 507

Appendices

287 constructor cannot have a return type

A constructor cannot have a return type (even void). The constructor is a
special member function that is not required to be identical in form to all other
member functions. This allows different implementations to have different uses
for any return values.

Example:
class C {
public:

C& C(int);
};

288 constructor cannot be a static member

A constructor is a special member function that takes raw storage and changes it
into an instance of a class. In order to do this, it must have access to storage for
the instance of the class so it is restricted to being a non-static member function.

Example:
class C {
public:

static C(int);
};

289 invalid copy constructor argument list (causes infinite recursion)

A copy constructor’s first argument must be a reference argument. Furthermore,
any default arguments must also be reference arguments. Without the reference,
a copy constructor would require a copy constructor to execute in order to
prepare its arguments. Unfortunately, this would be calling itself since it is the
copy constructor.

Example:
struct S {

S(S const &); // copy constructor
};

508 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

290 constructor cannot be declared const or volatile

A constructor must be able to operate on all instances of classes regardless of
whether they are const or volatile.

Example:
class C {
public:

C(int) const;
C(float) volatile;

};

291 constructor cannot be virtual

Virtual functions cannot be called for an object before it is constructed. For this
reason, a virtual constructor is not allowed in the C++ language. Techniques for
simulating a virtual constructor are known, one such technique is described in
the ARM p.263.

Example:
class C {
public:

virtual C(int);
};

292 types do not match in simple type destructor

A simple type destructor is available for "destructing" simple types. The
destructor has no effect. Both of the types must be identical, for the destructor
to have meaning.

Example:
void foo(int *p)
{

p->int::~double();
}

Diagnostic Messages 509

Appendices

293 overloaded operator is ambiguous for operands used

The Open Watcom C++ compiler performs exhaustive analysis using formalized
techniques in order to decide what implicit conversions should be applied for
overloading operators. Because of this, Open Watcom C++ detects ambiguities
that may escape other C++ compilers. The most common ambiguity that Open
Watcom C++ detects involves classes having constructors with single arguments
and a user-defined conversion.

Example:
struct S {

S(int);
operator int();
int a;

};

int fn(int b, int i, S s)
{

// i : s.operator int()
// OR S(i) : s
return b ? i : s;

}

In the above example, "i" and "s" must be brought to a common type.
Unfortunately, there are two common types so the compiler cannot decide which
one it should choose, hence an ambiguity.

294 feature not implemented

The compiler does not support the indicated feature.

295 invalid friend declaration

This message indicates that the compiler found extra declaration specifiers like
auto, float, or const in the friend declaration.

Example:
class C
{

friend float;
};

510 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

296 friend declarations may only be declared in a class

This message indicates that a friend declaration was found outside a class scope
(i.e., a class definition). Friends are only meaningful for class types.

Example:
extern void foo();
friend void foo();

297 class friend declaration needs ’class’ or ’struct’ keyword

The C++ language has evolved to require that all friend class declarations be of
the form "class S" or "struct S". The Open Watcom C++ compiler accepts the
older syntax with a warning but rejects the syntax in pure ISO/ANSI C++ mode.

Example:
struct S;
struct T {

friend S; // should be "friend class S;"
};

298 class friend declarations cannot contain a class definition

A class friend declaration cannot define a new class. This is a restriction
required in the C++ language.

Example:
struct S {

friend struct X {
int f;
};

};

299 ’%T’ has already been declared as a friend

The class in the message has already been declared as a friend. Remove the
extra friend declaration.

Diagnostic Messages 511

Appendices

Example:
class S;
class T {

friend class S;
int tv;
friend class S;

};

300 function ’%S’ has already been declared as a friend

The function in the message has already been declared as a friend. Remove the
extra friend declaration.

Example:
extern void foo();
class T {

friend void foo();
int tv;
friend void foo();

};

301 ’friend’, ’virtual’ or ’inline’ modifiers are not part of a function’s type

This message indicates that the modifiers may be incorrectly placed in the
declaration. If the declaration is intended, it cannot be accepted because the
modifiers can only be applied to functions that have code associated with them.

Example:
typedef friend (*PF)(void);

302 cannot assign right expression to element on left

This message indicates that the assignment cannot be performed. It usually
arises in assignments of a class type to an arithmetic type.

Example:
struct S
{ int sv;
};
S s;
int foo()
{

int k;
k = s;
return k;

}

512 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

303 constructor is ambiguous for operands used

The operands provided for the constructor did not select a unique constructor.

Example:
struct S {

S(int);
S(char);

};

S x = S(1.0);

304 class ’%s’ has not been defined

The name before a ’::’ scope resolution operator must be defined unless a
member pointer is being declared.

Example:
struct S;

int S::* p; // OK
int S::a = 1; // Error!

305 all bit-fields in a union must be named

This is a restriction in the C++ language. The same effect can be achieved with
a named bitfield.

Example:
union u
{ unsigned bit1 :10;

unsigned :6;
};

306 cannot convert expression to type of cast

The cast is trying to convert an expression to a completely unrelated type. There
is no way the compiler can provide any meaning for the intended cast.

Diagnostic Messages 513

Appendices

Example:
struct T {
};

void fn()
{

T y = (T) 0;
}

307 conversion ambiguity: [expression] to [cast type]

The cast caused a constructor overload to occur. The operands provided for the
constructor did not select a unique constructor.

Example:
struct S {

S(int);
S(char);

};

void fn()
{

S x = (S) 1.0;
}

308 an anonymous class without a declarator is useless

There is no way to reference the type in this kind of declaration. A name must
be provided for either the class or a variable using the class as its type.

Example:
struct {

int a;
int b;

};

309 global anonymous union must be declared static

This is a restriction in the C++ language. Since there is no unique name for the
anonymous union, it is difficult for C++ translators to provide a correct
implementation of external linkage anonymous unions.

514 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
static union {

int a;
int b;

};

310 anonymous struct/union cannot have storage class in this context

Anonymous unions (or structs) declared in class scopes cannot be static. Any
other storage class is also disallowed.

Example:
struct S {

static union {
int iv;
unsigned us;
};

};

311 union contains a protected member

A union cannot have a protected member because a union cannot be a base class.

Example:
static union {

int iv;
protected:

unsigned sv;
} u;

312 anonymous struct/union contains a private member ’%S’

An anonymous union (or struct) cannot have member functions or friends so it
cannot have private members since no code could access them.

Example:
static union {

int iv;
private:

unsigned sv;
};

Diagnostic Messages 515

Appendices

313 anonymous struct/union contains a function member ’%S’

An anonymous union (or struct) cannot have any function members. This is a
restriction in the C++ language.

Example:
static union {

int iv;
void foo(); // error
unsigned sv;

};

314 anonymous struct/union contains a typedef member ’%S’

An anonymous union (or struct) cannot have any nested types. This is a
restriction in the C++ language.

Example:
static union {

int iv;
unsigned sv;
typedef float F;
F fv;

};

315 anonymous struct/union contains an enumeration member ’%S’

An anonymous union (or struct) cannot have any enumeration members. This is
a restriction in the C++ language.

Example:
static union {

int iv;
enum choice { good, bad, indifferent };
choice c;
unsigned sv;

};

516 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

316 anonymous struct/union member ’%s’ is not distinct in enclosing scope

Since an anonymous union (or struct) provides its member names to the
enclosing scope, the names must not collide with other names in the enclosing
scope.

Example:
int iv;
unsigned sv;
static union {

int iv;
unsigned sv;

};

317 unions cannot have members with destructors

A union should only be used to organize memory in C++. Allowing union
members to have destructors would mean that the same piece of memory could
be destructed twice.

Example:
struct S {

int sv1, sv2, sv3;
};
struct T {

~T();
};
static union
{

S su;
T tu;

};

318 unions cannot have members with user-defined assignment operators

A union should only be used to organize memory in C++. Allowing union
members to have assignment operators would mean that the same piece of
memory could be assigned twice.

Diagnostic Messages 517

Appendices

Example:
struct S {

int sv1, sv2, sv3;
};
struct T {

int tv;
operator = (int);
operator = (float);

};
static union
{

S su;
T tu;

} u;

319 anonymous struct/union cannot have any friends

An anonymous union (or struct) cannot have any friends. This is a restriction in
the C++ language.

Example:
struct S {

int sv1, sv2, sv3;
};
static union {

S su1;
S su2;
friend class S;

};

320 specific versions of template classes can only be defined in file scope

Currently, specific versions of class templates can only be declared at file scope.
This simple restriction was chosen in favour of more freedom with possibly
subtle restrictions.

Example:

518 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

template <class G> class S {
G x;

};

struct Q {
struct S<int> {
int x;
};

};

void foo()
{

struct S<double> {
double x;
};

}

321 anonymous union in a function may only be static or auto

The current C++ language definition only allows auto anonymous unions. The
Open Watcom C++ compiler allows static anonymous unions. Any other
storage class is not allowed.

322 static data members are not allowed in a local class

Static data members are not allowed in a local class because there is no way to
define the static member in file scope.

Example:
int foo()
{

struct local {
static int s;
};

local lv;

lv.s = 3;
return lv.s;

}

Diagnostic Messages 519

Appendices

323 conversion ambiguity: [return value] to [return type of function]

The cast caused a constructor overload to occur. The operands provided for the
constructor did not select a unique constructor.

Example:
struct S {

S(int);
S(char);

};

S fn()
{

return 1.0;
}

324 conversion of return value is impossible

The return is trying to convert an expression to a completely unrelated type.
There is no way the compiler can provide any meaning for the intended return
type.

Example:
struct T {
};

T fn()
{

return 0;
}

325 function cannot return a pointer based on __self

A function cannot return a pointer that is based on __self.

Example:voidbased(self)*fn(unsigned);
520 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

326 defining ’%S’ is not possible because its type has unknown size

In order to define a variable, the size must be known so that the correct amount
of storage can be reserved.

Example:
class S;
S sv;

327 typedef cannot be initialized

Initializing a typedef is meaningless in the C++ language.

Example:
typedef int INT = 15;

328 storage class of ’%S’ conflicts with previous declaration

The symbol declaration conflicts with a previous declaration with regard to
storage class. A symbol cannot be both static and extern.

329 modifiers of ’%S’ conflict with previous declaration

The symbol declaration conflicts with a previous declaration with regard to
modifiers. Correct the program by using the same modifiers for both
declarations.

330 function cannot be initialized

A function cannot be initialized with an initializer syntax intended for variables.
A function body is the only way to provide a definition for a function.

331 access permission of nested class ’%T’ conflicts with previous declaration

Example:
struct S {

struct N; // public
private:

struct N { // private
};

};

Diagnostic Messages 521

Appendices

332 *** FATAL *** internal error in front end

If this message appears, please report the problem directly to the Open Watcom
development team. See http://www.openwatcom.org/.

333 cannot convert argument to type specified in function prototype

It is impossible to convert the indicated argument in the function.

Example:
extern int foo(int&);

extern int m;
extern int n;

int k = foo(m + n);

In the example, the value of "m+n" cannot be converted to a reference (it could
be converted to a constant reference), as shown in the following example.

Example:
extern int foo(const int&);

extern int m;
extern int n;

int k = foo(m + n);

334 conversion ambiguity: [argument] to [argument type in prototype]

An argument in the function call could not be converted since there is more than
one constructor or user-defined conversion which could be used to convert the
argument.

Example:

522 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

struct S;

struct T
{

T(S&);
};

struct S
{

operator T();
};

S s;
extern int foo(T);
int k = foo(s); // ambiguous

In the example, the argument "s" could be converted by both the constructor in
class "T" and by the user-conversion in class "S".

335 cannot be based on based pointer ’%S’

A based pointer cannot be based on another based pointer.

Example:segments;voidbased(s)*p;voidbased(p)*q;
336 declaration specifiers are required to declare ’%N’

The compiler has detected that the name does not represent a function. Only
function declarations can leave out declaration specifiers. This error also shows
up when a typedef name declaration is missing.

Example:
x;
typedef int;

Diagnostic Messages 523

Appendices

337 static function declared in block scope

The C++ language does not allow static functions to be declared in block scope.
This error can be triggered when the intent is to define a static variable. Due to
the complexities of parsing C++, statements that appear to be variable
definitions may actually parse as function prototypes. A work-around for this
problem is contained in the example.

Example:
struct C {
};
struct S {

S(C);
};
void foo()
{

static S a(C()); // function prototype!
static S b((C()));// variable definition

}

338 cannot define a __based reference

A C++ reference cannot be based on anything. Based modifiers can only be
used with pointers.

Example:segments;voidfn(intbased(s)&x);
339 conversion ambiguity: conversion to common pointer type

A conversion to a common base class of two different pointers has been
attempted. The pointer conversion could not be performed because the
destination type points to an ambiguous base class of one of the source types.

340 cannot construct object from argument(s)

There is not an appropriate constructor for the set of arguments provided.

524 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

341 number of arguments for function ’%S’ is incorrect

The number of arguments in the function call does not match the number
declared for the indicated non-overloaded function.

Example:
extern int foo(int, int);
int k = foo(1, 2, 3);

In the example, the function was declared to have two arguments. Three
arguments were used in the call.

342 private base class accessed to convert cast expression

A conversion involving the inheritance hierarchy required access to a private
base class. The access check did not succeed so the conversion is not allowed.

Example:
struct Priv
{

int p;
};
struct Der : private Priv
{

int d;
};

extern Der *pd;
Priv *pp = (Priv*)pd;

343 private base class accessed to convert return expression

A conversion involving the inheritance hierarchy required access to a private
base class. The access check did not succeed so the conversion is not allowed.

Example:

Diagnostic Messages 525

Appendices

struct Priv
{

int p;
};
struct Der : private Priv
{

int d;
};

Priv *foo(Der *p)
{

return p;
}

344 cannot subtract pointers to different objects

Pointer subtraction can be performed only for objects of the same type.

Example:
#include <stddef.h>ptrdifftdiff(float*fp,int*ip)
{

return fp - ip;
}

In the example, a diagnostic results from the attempt to subtract a pointer to an
int object from a pointer to a float object.

345 private base class accessed to convert to common pointer type

A conversion involving the inheritance hierarchy required access to a private
base class. The access check did not succeed so the conversion is not allowed.

Example:

526 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

struct Priv
{

int p;
};
struct Der : private Priv
{

int d;
};

int foo(Der *pd, Priv *pp)
{

return pd == pp;
}

346 protected base class accessed to convert cast expression

A conversion involving the inheritance hierarchy required access to a protected
base class. The access check did not succeed so the conversion is not allowed.

Example:
struct Prot
{

int p;
};
struct Der : protected Prot
{

int d;
};

extern Der *pd;
Prot *pp = (Prot*)pd;

347 protected base class accessed to convert return expression

A conversion involving the inheritance hierarchy required access to a protected
base class. The access check did not succeed so the conversion is not allowed.

Example:

Diagnostic Messages 527

Appendices

struct Prot
{

int p;
};
struct Der : protected Prot
{

int d;
};

Prot *foo(Der *p)
{

return p;
}

348 cannot define a member pointer with a memory model modifier

A member pointer describes how to access a field from a class. Because of this
a member pointer must be independent of any memory model considerations.

Example:
struct S;

int near S::*mp;

349 protected base class accessed to convert to common pointer type

A conversion involving the inheritance hierarchy required access to a protected
base class. The access check did not succeed so the conversion is not allowed.

Example:
struct Prot
{

int p;
};
struct Der : protected Prot
{

int d;
};

int foo(Der *pd, Prot *pp)
{

return pd == pp;
}

528 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

350 non-type parameter supplied for a type argument

A non-type parameter (e.g., an address or a constant expression) has been
supplied for a template type argument. A type should be used instead.

351 type parameter supplied for a non-type argument

A type parameter (e.g., int) has been supplied for a template non-type argument.
An address or a constant expression should be used instead.

352 cannot access enclosing function’s auto variable ’%S’

A local class member function cannot access its enclosing function’s automatic
variables.

Example:
void goop(void)
{

int a;
struct S
{
int foo(int c, int b)

{
return b + c + a;
};

};
}

353 cannot initialize pointer to non-constant with a pointer to constant

A pointer to a non-constant type cannot be initialized with a pointer to a constant
type because this would allow constant data to be modified via the non-constant
pointer to it.

Example:
extern const int *pic;
extern int *pi = pic;

Diagnostic Messages 529

Appendices

354 pointer expression is always >= 0

The indicated pointer expression will always be true because the pointer value is
always treated as an unsigned quantity, which will be greater or equal to zero.

Example:
extern char *p;
unsigned k = (0 <= p); // always 1

355 pointer expression is never < 0

The indicated pointer expression will always be false because the pointer value
is always treated as an unsigned quantity, which will be greater or equal zero.

Example:
extern char *p;
unsigned k = (0 >= p); // always 0

356 type cannot be used in this context

This message is issued when a type name is being used in a context where a
non-type name should be used.

Example:
struct S {

typedef int T;
};

void fn(S *p)
{

p->T = 1;
}

357 virtual function may only be declared in a class

Virtual functions can only be declared inside of a class. This error may be a
result of forgetting the "C::" qualification of a virtual function’s name.

530 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
virtual void foo();
struct S
{

int f;
virtual void bar();

};
virtual void bar()
{

f = 9;
}

358 ’%T’ referenced as a union

A class type defined as a class or struct has been referenced as a union (i.e.,
union S).

Example:
struct S
{

int s1, s2;
};
union S var;

359 union ’%T’ referenced as a class

A class type defined as a union has been referenced as a struct or a class (i.e.,
class S).

Example:
union S
{

int s1, s2;
};
struct S var;

360 typedef ’%N’ defined without an explicit type

The typedef declaration was found to not have an explicit type in the declaration.
If int is the desired type, use an explicit int keyword to specify the type.

Diagnostic Messages 531

Appendices

Example:
typedef T;

361 member function was not defined in its class

Member functions of local classes must be defined in their class if they will be
defined at all. This is a result of the C++ language not allowing nested function
definitions.

Example:
void fn()
{

struct S {
int bar();
};

}

362 local class can only have its containing function as a friend

A local class can only be referenced from within its containing function. It is
impossible to define an external function that can reference the type of the local
class.

Example:
extern void ext();
void foo()
{

class S
{
int s;
public:
friend void ext();
int q;
};

}

363 local class cannot have ’%S’ as a friend

The only classes that a local class can have as a friend are classes within its own
containing scope.

532 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct ext
{

goop();
};
void foo()
{

class S
{
int s;
public:
friend class ext;
int q;
};

}

364 adjacent >=, <=, >, < operators

This message is warning about the possibility that the code may not do what was
intended. An expression like "a > b > c" evaluates one relational operator to a 1
or a 0 and then compares it against the other variable.

Example:
extern int a;
extern int b;
extern int c;
int k = a > b > c;

365 cannot access enclosing function’s argument ’%S’

A local class member function cannot access its enclosing function’s arguments.

Example:
void goop(int d)
{

struct S
{
int foo(int c, int b)

{
return b + c + d;
};

};
}

Diagnostic Messages 533

Appendices

366 support for switch ’%s’ is not implemented

Actions for the indicated switch have not been implemented. The switch is
supported for compatibility with the Open Watcom C compiler.

367 conditional expression in if statement is always true

The compiler has detected that the expression will always be true. If this is not
the expected behaviour, the code may contain a comparison of an unsigned
value against zero (e.g., unsigned integers are always greater than or equal to
zero). Comparisons against zero for addresses can also result in trivially true
expressions.

Example:
#define TEST 143
int foo(int a, int b)
{

if(TEST) return a;
return b;

}

368 conditional expression in if statement is always false

The compiler has detected that the expression will always be false. If this is not
the expected behaviour, the code may contain a comparison of an unsigned
value against zero (e.g., unsigned integers are always greater than or equal to
zero). Comparisons against zero for addresses can also result in trivially false
expressions.

Example:
#define TEST 14-14
int foo(int a, int b)
{

if(TEST) return a;
return b;

}

534 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

369 selection expression in switch statement is a constant value

The expression in the switch statement is a constant. This means that only one
case label will be executed. If this is not the expected behaviour, check the
switch expression.

Example:
#define TEST 0
int foo(int a, int b)
{

switch (TEST) {
case 0:

return a;
default:

return b;
}

}

370 constructor is required for a class with a const member

If a class has a constant member, a constructor is required in order to initialize it.

Example:
struct S
{

const int s;
int i;

};

371 constructor is required for a class with a reference member

If a class has a reference member, a constructor is required in order to initialize
it.

Example:
struct S
{

int& r;
int i;

};

Diagnostic Messages 535

Appendices

372 inline member friend function ’%S’ is not allowed

A friend that is a member function of another class cannot be defined. Inline
friend rules are currently in flux so it is best to avoid inline friends.

373 invalid modifier for auto variable

An automatic variable cannot have a memory model adjustment because they are
always located on the stack (or in a register). There are also other types of
modifiers that are not allowed for auto variables such as thread-specific data
modifiers.

Example:
int fn(int far x)
{

int far y = x + 1;
return y;

}

374 object (or object pointer) required to access non-static data member

A reference to a member in a class has occurred. The member is non-static so in
order to access it, an object of the class is required.

Example:
struct S {

int m;
static void fn()
{
m = 1; // Error!
}

};

375 user-defined conversion has not been declared

The named user-defined conversion has not been declared in the class of any of
its base classes.

536 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S {

operator int();
int a;

};

double fn(S *p)
{

return p->operator double();
}

376 virtual function must be a non-static member function

A member function cannot be both a static function and a virtual function. A
static member function does not have a this argument whereas a virtual function
must have a this argument so that the virtual function table can be accessed in
order to call it.

Example:
struct S
{

static virtual int foo(); // error
virtual int bar(); // ok
static int stat(); // ok

};

377 protected base class accessed to convert argument expression

A conversion involving the inheritance hierarchy required access to a protected
base class. The access check did not succeed so the conversion is not allowed.

Example:
class C
{
protected:

C(int);
public:

int c;
};

int cfun(C);

int i = cfun(14);

The last line is erroneous since the constructor is protected.

Diagnostic Messages 537

Appendices

378 private base class accessed to convert argument expression

A conversion involving the inheritance hierarchy required access to a private
base class. The access check did not succeed so the conversion is not allowed.

Example:
class C
{

C(int);
public:

int c;
};

int cfun(C);

int i = cfun(14);

The last line is erroneous since the constructor is private.

379 delete expression will invoke a non-virtual destructor

In C++, it is possible to assign a base class pointer the value of a derived class
pointer so that code that makes use of base class virtual functions can be used.
A problem that occurs is that a delete has to know the correct size of the type in
some instances (i.e., when a two argument version of operator delete is defined
for a class). This problem is solved by requiring that a destructor be defined as
virtual if polymorphic deletes must work. The delete expression will virtually
call the correct destructor, which knows the correct size of the complete object.
This message informs you that the class you are deleting has virtual functions
but it has a non-virtual destructor. This means that the delete will not work
correctly in all circumstances.

Example:

538 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

#include <stddef.h>

struct B {
int b;voidoperatordelete(void*,sizet);
virtual void fn();
~B();

};
struct D : B {

int d;voidoperatordelete(void*,sizet);
virtual void fn();
~D();

};

void dfn(B *p)
{

delete p; // could be a pointer to D!
}

380 ’offsetof’ is not allowed for a function

A member function does not have an offset like simple data members. If this is
required, use a member pointer.

Example:
#include <stddef.h>

struct S
{

int fun();
};

int s = offsetof(S, fun);

381 ’offsetof’ is not allowed for an enumeration

An enumeration does not have an offset like simple data members.

Diagnostic Messages 539

Appendices

Example:
#include <stddef.h>

struct S
{

enum SE { S1, S2, S3, S4 };
SE var;

};

int s = offsetof(S, SE);

382 could not initialize for code generation

The source code has been parsed and fully analysed when this error is emitted.
The compiler attempted to start generating object code but due to some problem
(e.g., out of memory, no file handles) could not initialize itself. Try changing
the compilation environment to eliminate this error.

383 ’offsetof’ is not allowed for an undefined type

The class type used in offsetof must be completely defined, otherwise data
member offsets will not be known.

Example:
#include <stddef.h>

struct S {
int a;
int b;
int c[offsetof(S, b)];

};

384 attempt to override virtual function ’%S’ with a different return type

A function cannot be overloaded with identical argument types and a different
return type. This is due to the fact that the C++ language does not consider the
function’s return type when overloading. The exception to this rule in the C++
language involves restricted changes in the return type of virtual functions. The
derived virtual function’s return type can be derived from the return type of the
base virtual function.

540 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct B {

virtual B *fn();
};
struct D : B {

virtual D *fn();
};

385 attempt to overload function ’%S’ with a different return type

A function cannot be overloaded with identical argument types and a different
return type. This is due to the fact that the C++ language does not consider the
function’s return type when overloading.

Example:
int foo(char);
unsigned foo(char);

386 attempt to use pointer to undefined class

An attempt was made to indirect or increment a pointer to an undefined class.
Since the class is undefined, the size is not known so the compiler cannot
compile the expression properly.

Example:
class C;
extern C* pc1;
C* pc2 = ++pc1; // C not defined

int foo(C*p)
{

return p->x; // C not defined
}

387 expression is useful only for its side effects

The indicated expression is not meaningful. The expression, however, does
contain one or more side effects.

Diagnostic Messages 541

Appendices

Example:
extern int* i;
void func()
{

*(i++);
}

In the example, the expression is a reference to an integer which is meaningless
in itself. The incrementation of the pointer in the expression is a side effect.

388 integral constant will be truncated during assignment or initialization

This message indicates that the compiler knows that a constant value will not be
preserved after the assignment. If this is acceptable, cast the constant value to
the appropriate type in the assignment.

Example:
unsigned char c = 567;

389 integral value may be truncated during assignment or initialization

This message indicates that the compiler knows that all values will not be
preserved after the assignment. If this is acceptable, cast the value to the
appropriate type in the assignment.

Example:
extern unsigned s;
unsigned char c = s;

390 cannot generate default constructor to initialize ’%T’ since constructors were
declared

A default constructor will not be generated by the compiler if there are already
constructors declared. Try using default arguments to change one of the
constructors to a default constructor or define a default constructor explicitly.

542 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
class C {

C(const C&);
public :

int c;
};
C cv;

391 assignment found in boolean expression

This is a construct that can lead to errors if it was intended to be an equality
(using "==") test.

Example:
int foo(int a, int b)
{

if(a = b) {
return b;
}
return a; // always return 1 ?

}

392 definition: ’%F’

This informational message indicates where the symbol in question was defined.
The message is displayed following an error or warning diagnostic for the
symbol in question.

Example:
static int a = 9;
int b = 89;

The variable ’a’ is not referenced in the preceding example and so will cause a
warning to be generated. Following the warning, the informational message
indicates the line at which ’a’ was declared.

393 included from %s(%u)

This informational message indicates the line number of the file including the
file in which an error or warning was diagnosed. A number of such messages
will allow you to trace back through the #include directives which are currently
being processed.

Diagnostic Messages 543

Appendices

394 reference object must be initialized

A reference cannot be set except through initialization. Also references cannot
be 0 so they must always be initialized.

Example:
int & ref;

395 option requires an identifier

The specified option is not recognized by the compiler since there was no
identifier after it (i.e., "-nt=module").

396 ’main’ cannot be overloaded

There can only be one entry point for a C++ program. The "main" function
cannot be overloaded.

Example:
int main();
int main(int);

397 ’new’ expression cannot allocate a void

Since the void type has no size and there are no values of void type, one cannot
allocate an instance of void.

Example:
void *p = new void;

398 ’new’ expression cannot allocate a function

A function type cannot be allocated since there is no meaningful size that can be
used. The new expression can allocate a pointer to a function.

Example:
typedef int tdfun(int);
tdfun *tdv = new tdfun;

544 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

399 ’new’ expression allocates a const or volatile object

The pool of raw memory cannot be guaranteed to support const or volatile
semantics. Usually const and volatile are used for statically allocated objects.

Example:typedefconstintconint;conint*p=newconint;
400 cannot convert right expression for initialization

The initialization is trying to convert an argument expression to a completely
unrelated type. There is no way the compiler can provide any meaning for the
intended conversion.

Example:
struct T {
};

T x = 0;

401 conversion ambiguity: [initialization expression] to [type of object]

The initialization caused a constructor overload to occur. The operands
provided for the constructor did not select a unique constructor.

Example:
struct S {

S(int);
S(char);

};

S x = 1.0;

402 class template ’%S’ has already been declared as a friend

The class template in the message has already been declared as a friend.
Remove the extra friend declaration.

Diagnostic Messages 545

Appendices

Example:
template <class T>

class S;

class X {
friend class S;
int f;
friend class S;

};

403 private base class accessed to convert initialization expression

A conversion involving the inheritance hierarchy required access to a private
base class. The access check did not succeed so the conversion is not allowed.

404 protected base class accessed to convert initialization expression

A conversion involving the inheritance hierarchy required access to a protected
base class. The access check did not succeed so the conversion is not allowed.

405 cannot return a pointer or reference to a constant object

A pointer or reference to a constant object cannot be returned.

Example:
int *foo(const int *p)
{

return p;
}

406 cannot pass a pointer or reference to a constant object

A pointer or reference to a constant object could not be passed as an argument.

Example:
int *bar(int *);
int *foo(const int *p)
{

return bar(p);
}

546 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

407 class templates must be named

There is no syntax in the C++ language to reference an unnamed class template.

Example:
template <class T>

class {
};

408 function templates can only name functions

Variables cannot be overloaded in C++ so it is not possible to have many
different instances of a variable with different types.

Example:
template <class T>

T x[1];

409 template argument ’%S’ is not used in the function argument list

This restriction ensures that function templates can be bound to types during
overload resolution. Functions currently can only be overloaded based on
argument types.

Example:
template <class T>

int foo(int *);
template <class T>

T bar(int *);

410 destructor cannot be declared const or volatile

A destructor must be able to operate on all instances of classes regardless of
whether they are const or volatile.

411 static member function cannot be declared const or volatile

A static member function does not have an implicit this argument so the const
and volatile function qualifiers cannot be used.

Diagnostic Messages 547

Appendices

412 only member functions can be declared const or volatile

A non-member function does not have an implicit this argument so the const
and volatile function qualifiers cannot be used.

413 ’const’ or ’volatile’ modifiers are not part of a function’s type

The const and volatile qualifiers for a function cannot be used in typedefs or
pointers to functions. The trailing qualifiers are used to change the type of the
implicit this argument so that member functions that do not modify the object
can be declared accurately.

Example:
// const is illegal
typedef void (*baddcl)() const;

struct S {
void fun() const;
int a;

};

// "this" has type "S const *"
void S::fun() const
{

this->a = 1; // Error!
}

414 type cannot be defined in an argument

A new type cannot be defined in an argument because the type will only be
visible within the function. This amounts to defining a function that can never
be called because C++ uses name equivalence for type checking.

Example:
extern foo(struct S { int s; });

415 type cannot be defined in return type

This is a restriction in the current C++ language. A function prototype should
only use previously declared types in order to guarantee that it can be called
from other functions. The restriction is required for templates because the
compiler would have to wait until the end of a class definition before it could
decide whether a class template or function template is being defined.

548 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
template <class T>

class C {
T value;
} fn(T x) {
C y;

y.x = 0;
return y;
};

A common problem that results in this error is to forget to terminate a class or
enum definition with a semicolon.

Example:
struct S {

int x,y;
S(int, int);

} // missing semicolon ’;’

S::S(int x, int y) : x(x), y(y) {
}

416 data members cannot be initialized inside a class definition

This message appears when an initialization is attempted inside of a class
definition. In the case of static data members, initialization must be done
outside the class definition. Ordinary data members can be initialized in a
constructor.

Example:
struct S {

static const int size = 1;
};

417 only virtual functions may be declared pure

The C++ language requires that all pure functions be declared virtual. A pure
function establishes an interface that must consist of virtual functions because
the functions are required to be defined in the derived class.

Diagnostic Messages 549

Appendices

Example:
struct S {

void foo() = 0;
};

418 destructor is not declared in its proper class

The destructor name is not declared in its own class or qualified by its own class.
This is required in the C++ language.

419 cannot call non-const function for a constant object

A function that does not promise to not modify an object cannot be called for a
constant object. A function can declare its intention to not modify an object by
using the const qualifier.

Example:
struct S {

void fn();
};

void cfn(const S *p)
{

p->fn(); // Error!
}

420 memory initializer list may only appear in a constructor definition

A memory initializer list should be declared along with the body of the
constructor function.

421 cannot initialize member ’%N’ twice

A member cannot be initialized twice in a member initialization list.

422 cannot initialize base class ’%T’ twice

A base class cannot be constructed twice in a member initialization list.

550 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

423 ’%T’ is not a direct base class

A base class initializer in a member initialization list must either be a direct base
class or a virtual base class.

424 ’%N’ cannot be initialized because it is not a member

The name used in the member initialization list does not name a member in the
class.

425 ’%N’ cannot be initialized because it is a member function

The name used in the member initialization list does not name a non-static data
member in the class.

426 ’%N’ cannot be initialized because it is a static member

The name used in the member initialization list does not name a non-static data
member in the class.

427 ’%N’ has not been declared as a member

This message indicates that the member does not exist in the qualified class.
This usually occurs in the context of access declarations.

428 const/reference member ’%S’ must have an initializer

The const or reference member does not have an initializer so the constructor is
not completely defined. The member initialization list is the only way to
initialize these types of members.

429 abstract class ’%T’ cannot be used as an argument type

An abstract class can only exist as a base class of another class. The C++
language does not allow an abstract class to be used as an argument type.

Diagnostic Messages 551

Appendices

430 abstract class ’%T’ cannot be used as a function return type

An abstract class can only exist as a base class of another class. The C++
language does not allow an abstract class to be used as a return type.

431 defining ’%S’ is not possible because ’%T’ is an abstract class

An abstract class can only exist as a base class of another class. The C++
language does not allow an abstract class to be used as either a member or a
variable.

432 cannot convert to an abstract class ’%T’

An abstract class can only exist as a base class of another class. The C++
language does not allow an abstract class to be used as the destination type in a
conversion.

433 mangled name for ’%S’ has been truncated

The name used in the object file that encodes the name and full type of the
symbol is often called a mangled name. The warning indicates that the mangled
name had to be truncated due to limitations in the object file format.

434 cannot convert to a type of unknown size

A completely unknown type cannot be used in a conversion because its size is
not known. The behaviour of the conversion would be undefined also.

435 cannot convert a type of unknown size

A completely unknown type cannot be used in a conversion because its size is
not known. The behaviour of the conversion would be undefined also.

436 cannot construct an abstract class

An instance of an abstract class cannot be created because an abstract class can
only be used as a base class.

552 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

437 cannot construct an undefined class

An instance of an undefined class cannot be created because the size is not
known.

438 string literal concatenated during array initialization

This message indicates that a missing comma (’,’) could have made a quiet
change in the program. Otherwise, ignore this message.

439 maximum size of segment ’%s’ has been exceeded for ’%S’

The indicated symbol has grown in size to a point where it has caused the
segment it is defined inside of to be exhausted.

440 maximum data item size has been exceeded for ’%S’

A non-huge data item is larger than 64k bytes in size. This message only occurs
during 16-bit compilation of C++ code.

441 function attribute has been repeated

A function attribute (like the __export attribute) has been repeated. Remove the
extra attribute to correct the declaration.

442 modifier has been repeated

A modifier (like the far modifier) has been repeated. Remove the extra modifier
to correct the declaration.

443 illegal combination of memory model modifiers

Memory model modifiers must be used individually because they cannot be
combined meaningfully.

444 argument name ’%N’ has already been used

The indicated argument name has already been used in the same argument list.
This is not allowed in the C++ language.

Diagnostic Messages 553

Appendices

445 function definition for ’%S’ must be declared with an explicit argument list

A function cannot be defined with a typedef. The argument list must be explicit.

446 user-defined conversion cannot convert to its own class or base class

A user-defined conversion cannot be declared as a conversion either to its own
class or to a base class of itself.

Example:
struct B {
};
struct D : private B {

operator B();
};

447 user-defined conversion cannot convert to void

A user-defined conversion cannot be declared as a conversion to void.

Example:
struct S {

operator void();
};

448 expecting identifier

An identifier was expected during processing.

449 symbol ’%S’ does not have a segment associated with it

A pointer cannot be based on a member because it has no segment associated
with it. A member describes a layout of storage that can occur in any segment.

450 symbol ’%S’ must have integral or pointer type

If a symbol is based on another symbol, it must be integral or a pointer type. An
integral type indicates the segment value that will be used. A pointer type
means that all accesses will be added to the pointer value to construct a full
pointer.

554 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

451 symbol ’%S’ cannot be accessed in all contexts

The symbol that the pointer is based on is in another class so it cannot be
accessed in all contexts that the based pointer can be accessed.

452 cannot convert class expression to be copied

A convert class expression could not be copied.

453 conversion ambiguity: multiple copy constructors

More than one constructor could be used to copy a class object.

454 function template ’%S’ already has a definition

The function template has already been defined with a function body. A
function template cannot be defined twice even if the function body is identical.

Example:
template <class T>

void f(T *p)
{
}

template <class T>
void f(T *p)
{
}

455 function templates cannot have default arguments

A function template must not have default arguments because there are certain
types of default arguments that do not force the function argument to be a
specific type.

Example:
template <class T>

void f2(T *p = 0)
{
}

Diagnostic Messages 555

Appendices

456 ’main’ cannot be a function template

This is a restriction in the C++ language because "main" cannot be overloaded.
A function template provides the possibility of having more than one "main"
function.

457 ’%S’ was previously declared as a typedef

The C++ language only allows function and variable names to coexist with
names of classes or enumerations. This is due to the fact that the class and
enumeration names can still be referenced in their elaborated form after the
non-type name has been declared.

Example:
typedef int T;
int T(int) // error!
{
}

enum E { A, B, C };
void E()
{

enum E x = A; // use "enum E"
}

class C { };
void C()
{

class C x; // use "class C"
}

458 ’%S’ was previously declared as a variable/function

The C++ language only allows function and variable names to coexist with
names of classes or enumerations. This is due to the fact that the class and
enumeration names can still be referenced in their elaborated form after the
non-type name has been declared.

556 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
int T(int)
{
}
typedef int T; // error!

void E()
{
}
enum E { A, B, C };

enum E x = A; // use "enum E"

void C()
{
}
class C { };

class C x; // use "class C"

459 private base class accessed to convert assignment expression

A conversion involving the inheritance hierarchy required access to a private
base class. The access check did not succeed so the conversion is not allowed.

460 protected base class accessed to convert assignment expression

A conversion involving the inheritance hierarchy required access to a protected
base class. The access check did not succeed so the conversion is not allowed.

461 maximum size of DGROUP has been exceeded for ’%S’ in segment ’%s’

The indicated symbol’s size has caused the DGROUP contribution of this
module to exceed 64k. Changing memory models or declaring some data as far
data are two ways of fixing this problem.

462 type of return value is not the enumeration type of function

The return value does not have the proper enumeration type. Keep in mind that
integral values are not automatically converted to enum types like the C
language.

Diagnostic Messages 557

Appendices

463 linkage must be first in a declaration; probable cause: missing ’;’

This message usually indicates a missing semicolon (’;’). The linkage
specification must be the first part of a declaration if it is used.

464 ’main’ cannot be a static function

This is a restriction in the C++ language because "main" must have external
linkage.

465 ’main’ cannot be an inline function

This is a restriction in the C++ language because "main" must have external
linkage.

466 ’main’ cannot be referenced

This is a restriction in the C++ language to prevent implementations from having
to work around multiple invocations of "main". This can occur if an
implementation has to generate special code in "main" to construct all of the
statically allocated classes.

467 cannot call a non-volatile function for a volatile object

A function that does not promise to not modify an object using volatile
semantics cannot be called for a volatile object. A function can declare its
intention to modify an object only through volatile semantics by using the
volatile qualifier.

Example:
struct S {

void fn();
};

void cfn(volatile S *p)
{

p->fn(); // Error!
}

558 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

468 cannot convert pointer to constant or volatile objects to pointer to void

You cannot convert a pointer to constant or volatile objects to ’void*’.

Example:
extern const int* pci;
extern void *vp;

int k = (pci == vp);

469 cannot convert pointer to constant or non-volatile objects to pointer to volatile
void

You cannot convert a pointer to constant or non-volatile objects to ’volatile
void*’.

Example:
extern const int* pci;
extern volatile void *vp;

int k = (pci == vp);

470 address of function is too large to be converted to pointer to void

The address of a function can be converted to ’void*’ only when the size of a
’void*’ object is large enough to contain the function pointer.

Example:voidfarfoo();voidnear*v=&foo;
471 address of data object is too large to be converted to pointer to void

The address of an object can be converted to ’void*’ only when the size of a
’void*’ object is large enough to contain the pointer.

Example:intfar*ip;voidnear*v=ip;
Diagnostic Messages 559

Appendices

472 expression with side effect in sizeof discarded

The indicated expression will be discarded; consequently, any side effects in that
expression will not be executed.

Example:
int a = 14;
int b = sizeof(a++);

In the example, the variable a will still have a value 14 after b has been
initialized.

473 function argument(s) do not match those in prototype

The C++ language requires great precision in specifying arguments for a
function. For instance, a pointer to char is considered different than a pointer
to unsigned char regardless of whether char is an unsigned quantity. This
message occurs when a non-overloaded function is invoked and one or more of
the arguments cannot be converted. It also occurs when the number of
arguments differs from the number specified in the prototype.

474 conversion ambiguity: [expression] to [class object]

The conversion of the expression to a class object is ambiguous.

475 cannot assign right expression to class object

The expression on the right cannot be assigned to the indicated class object.

476 argument count is %d since there is an implicit ’this’ argument

This informational message indicates the number of arguments for the function
mentioned in the error message. The function is a member function with a this
argument so it may have one more argument than expected.

477 argument count is %d since there is no implicit ’this’ argument

This informational message indicates the number of arguments for the function
mentioned in the error message. The function is a member function without a
this argument so it may have one less argument than expected.

560 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

478 argument count is %d for a non-member function

This informational message indicates the number of arguments for the function
mentioned in the error message. The function is not a member function but it
could be declared as a friend function.

479 conversion ambiguity: multiple copy constructors to copy array ’%S’

More than one constructor to copy the indicated array exists.

480 variable/function has the same name as the class/enum ’%S’

In C++, a class or enum name can coexist with a variable or function of the same
name in a scope. This warning is indicating that the current declaration is
making use of this feature but the typedef name was declared in another file.
This usually means that there are two unrelated uses of the same name.

481 class/enum has the same name as the function/variable ’%S’

In C++, a class or enum name can coexist with a variable or function of the same
name in a scope. This warning is indicating that the current declaration is
making use of this feature but the function/variable name was declared in
another file. This usually means that there are two unrelated uses of the same
name. Furthermore, all references to the class or enum must be elaborated (i.e.,
use ’class C’ instead of ’C’) in order for subsequent references to compile
properly.

482 cannot create a default constructor

A default constructor could not be created, because other constructors were
declared for the class in question.

Example:
struct X {

X(X&);
};
struct Y {

X a[10];
};
Y yvar;

In the example, the variable "yvar" causes a default constructor for the class "Y"
to be generated. The default constructor for "Y" attempts to call the default
constructor for "X" in order to initialize the array "a" in class "Y". The default

Diagnostic Messages 561

Appendices

constructor for "X" cannot be defined because another constructor has been
declared.

483 attempting to access default constructor for %T

This informational message indicates that a default constructor was referenced
but could not be generated.

484 cannot align symbol ’%S’ to segment boundary

The indicated symbol requires more than one segment of storage and the
symbol’s components cannot be aligned to the segment boundary.

485 friend declaration does not specify a class or function

A class or function must be declared as a friend.

Example:
struct T {

// should be class or function declaration
friend int;

};

486 cannot take address of overloaded function

This message indicates that an overloaded function’s name was used in a context
where a final type could not be found. Because a final type was not specified,
the compiler cannot select one function to use in the expression. Initialize a
properly-typed temporary with the appropriate function and use the temporary in
the expression.

Example:
int foo(char);
int foo(unsigned);
extern int (*p)(char);
int k = (p == &foo); // fails

The first foo can be passed as follows:

562 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
int foo(char);
int foo(unsigned);
extern int (*p)(char);

// introduce temporary
static int (*temp)(char) = &foo;

// ok
int k = (p == temp);

487 cannot use address of overloaded function as a variable argument

This message indicates that an overloaded function’s name was used as a
argument for a "..." style function. Because a final function type is not present,
the compiler cannot select one function to use in the expression. Initialize a
properly-typed temporary with the appropriate function and use the temporary in
the call.

Example:
int foo(char);
int foo(unsigned);intellipfun(int,...);intk=ellipfun(14,&foo);//fails

The first foo can be passed as follows:

Example:
int foo(char);
int foo(unsigned);intellipfun(int,...);
static int (*temp)(char) = &foo; // introduce
temporaryintk=ellipfun(14,temp);//ok

488 ’%N’ cannot be overloaded

The indicated function cannot be overloaded. Functions that fall into this
category include operator delete.

Diagnostic Messages 563

Appendices

489 symbol ’%S’ has already been initialized

The indicated symbol has already been initialized. It cannot be initialized twice
even if the initialization value is identical.

490 delete expression is a pointer to a function

A pointer to a function cannot be allocated so it cannot be deleted.

491 delete of a pointer to const data

Since deleting a pointer may involve modification of data, it is not always safe
to delete a pointer to const data.

Example:
struct S { };
void fn(S const *p, S const *q) {

delete p;
delete [] q;

}

492 delete expression is not a pointer to data

A delete expression can only delete pointers. For example, trying to delete an
int is not allowed in the C++ language.

Example:
void fn(int a)
{

delete a; // Error!
}

493 template argument is not a constant expression

The compiler has found an incorrect expression provided as the value for a
constant value template argument. The only expressions allowed for scalar
template arguments are integral constant expressions.

564 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

494 template argument is not an external linkage symbol

The compiler has found an incorrect expression provided as the value for a
pointer value template argument. The only expressions allowed for pointer
template arguments are addresses of symbols. Any symbols must have external
linkage or must be static class members.

495 conversion of const reference to volatile reference

The constant value can be modified by assigning into the volatile reference.
This would allow constant data to be modified quietly.

Example:
void fn(const int &rci)
{

int volatile &r = rci; // Error!
}

496 conversion of volatile reference to const reference

The volatile value can be read incorrectly by accessing the const reference. This
would allow volatile data to be accessed without correct volatile semantics.

Example:
void fn(volatile int &rvi)
{

int const &r = rvi; // Error!
}

497 conversion of const or volatile reference to plain reference

The constant value can be modified by assigning into the plain reference. This
would allow constant data to be modified quietly. In the case of volatile data,
any access to the plain reference will not respect the volatility of the data and
thus would be incorrectly accessing the data.

Diagnostic Messages 565

Appendices

Example:
void fn(const int &rci, volatile int &rvi)
{

int &r1 = rci; // Error!
int &r2 = rvi; // Error!

}

498 syntax error before ’%s’; probable cause: incorrectly spelled type name

The identifier in the error message has not been declared as a type name in any
scope at this point in the code. This may be the cause of the syntax error.

499 object (or object pointer) required to access non-static member function

A reference to a member function in a class has occurred. The member is
non-static so in order to access it, an object of the class is required.

Example:
struct S {

int m();
static void fn()
{
m(); // Error!
}

};

500 object (or object pointer) cannot be used to access function

The indicated object (or object pointer) cannot be used to access function.

501 object (or object pointer) cannot be used to access data

The indicated object (or object pointer) cannot be used to access data.

502 cannot access member function in enclosing class

A member function in enclosing class cannot be accessed.

566 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

503 cannot access data member in enclosing class

A data member in enclosing class cannot be accessed.

504 syntax error before type name ’%s’

The identifier in the error message has been declared as a type name at this point
in the code. This may be the cause of the syntax error.

505 implementation restriction: cannot generate thunk from ’%S’

This implementation restriction is due to the use of a shared code generator
between Open Watcom compilers. The virtual this adjustment thunks are
generated as functions linked into the virtual function table. The functions rely
on knowing the correct number of arguments to pass on to the overriding virtual
function but in the case of ellipsis (...) functions, the number of arguments
cannot be known when the thunk function is being generated by the compiler.
The target symbol is listed in a diagnostic message. The work around for this
problem is to recode the source so that the virtual functions make use of the
va_list type found in the stdarg header file.

Example:

Diagnostic Messages 567

Appendices

#include <iostream.h>
#include <stdarg.h>

struct B {
virtual void fun(char *, ...);

};
struct D : B {

virtual void fun(char *, ...);
};
void B::fun(char *f, ...)
{valistargs;vastart(args,f);

while(*f) {cout<<vaarg(args,char)<<endl;
++f;
}vaend(args);

}
void D::fun(char *f, ...)
{valistargs;vastart(args,f);

while(*f) {cout<<vaarg(args,int)<<endl;
++f;
}vaend(args);

}

The previous example can be changed to the following code with corresponding
changes to the contents of the virtual functions.

Example:

568 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

#include <iostream.h>
#include <stdarg.h>

struct B {
void fun(char *f, ...)
{valistargs;vastart(args,f);fun(f,args);vaend(args);
}virtualvoidfun(char*,valist);

};
~b
struct D : B {

// this can be removed since using B::fun
// will result in the same behaviour//sincefunisavirtualfunction
void fun(char *f, ...)
{valistargs;vastart(args,f);fun(f,args);vaend(args);
}virtualvoidfun(char*,valist);

};
~bvoidB::fun(char*f,valistargs)
{

while(*f) {cout<<vaarg(args,char)<<endl;
++f;
}

}
~bvoidD::fun(char*f,valistargs)
{

while(*f) {cout<<vaarg(args,int)<<endl;
++f;
}

}

Diagnostic Messages 569

Appendices

~b
// no changes are required for users of the class
B x;
D y;

void dump(B *p)
{

p->fun("1234", ’a’, ’b’, ’c’, ’d’);
p->fun("12", ’a’, ’b’);

}

~b
void main()
{

dump(&x);
dump(&y);

}

506 conversion of __based(void) pointer to virtual base class

An __based(void) pointer to a class object cannot be converted to a pointer to
virtual base class, since this conversion applies only to specific objects.

Example:
struct Base {};
struct Derived : virtual Base {};Derivedbased(void)*pderived;Basebased(void)*pbase=pderived;//error

The conversion would be allowed if the base class were not virtual.

507 class for target operand is not derived from class for source operand

A member pointer conversion can only be performed safely when converting a
base class member pointer to a derived class member pointer.

508 conversion ambiguity: [pointer to class member] to [assignment object]

The base class in the original member pointer is not a unique base class of the
derived class.

570 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

509 conversion of pointer to class member involves a private base class

The member pointer conversion required access to a private base class. The
access check did not succeed so the conversion is not allowed.

510 conversion of pointer to class member involves a protected base class

The member pointer conversion required access to a protected base class. The
access check did not succeed so the conversion is not allowed.

511 item is neither a non-static member function nor data member

A member pointer can only be created for non-static member functions and
non-static data members. Static members can have their address taken just like
their file scope counterparts.

512 function address cannot be converted to pointer to class member

The indicated function address cannot be converted to pointer to class member.

513 conversion ambiguity: [address of function] to [pointer to class member]

The indicated conversion is ambiguous.

514 addressed function is in a private base class

The addressed function is in a private base class.

515 addressed function is in a protected base class

The addressed function is in a protected base class.

516 class for object is not defined

The left hand operand for the "." or ".*" operator must be of a class type that is
completely defined.

Diagnostic Messages 571

Appendices

Example:
class C;

int fun(C& x)
{

return x.y; // class C not defined
}

517 left expression is not a class object

The left hand operand for the ".*" operator must be of a class type since member
pointers can only be used with classes.

518 right expression is not a pointer to class member

The right hand operand for the ".*" operator must be a member pointer type.

519 cannot convert pointer to class of member pointer

The class of the left hand operand cannot be converted to the class of the
member pointer because it is not a derived class.

520 conversion ambiguity: [pointer] to [class of pointer to class member]

The class of the pointer to member is an ambiguous base class of the left hand
operand.

521 conversion of pointer to class of member pointer involves a private base class

The class of the pointer to member is a private base class of the left hand
operand.

522 conversion of pointer to class of member pointer involves a protected base class

The class of the pointer to member is a protected base class of the left hand
operand.

572 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

523 cannot convert object to class of member pointer

The class of the left hand operand cannot be converted to the class of the
member pointer because it is not a derived class.

524 conversion ambiguity: [object] to [class object of pointer to class member]

The class of the pointer to member is an ambiguous base class of the left hand
operand.

525 conversion of object to class of member pointer involves a private base class

The class of the pointer to member is a private base class of the left hand
operand.

526 conversion of object to class of member pointer involves a protected base class

The class of the pointer to member is a protected base class of the left hand
operand.

527 conversion of pointer to class member from a derived to a base class

A member pointer can only be converted from a base class to a derived class.
This is the opposite of the conversion rule for pointers.

528 form is ’#pragma inline_recursion en’ where ’en’ is ’on’ or ’off’

This pragma indicates whether inline expansion will occur for an inline function
which is called (possibly indirectly) a subsequent time during an inline
expansion. Either ’on’ or ’off’ must be specified.

529 expression for number of array elements must be integral

The expression for the number of elements in a new expression must be integral
because it is used to calculate the size of the allocation (which is an integral
quantity). The compiler will not automatically convert to an integer because of
rounding and truncation issues with floating-point values.

Diagnostic Messages 573

Appendices

530 function accessed with ’.*’ or ’->*’ can only be called

The result of the ".*" and "->*" operators can only be called because it is often
specific to the instance used for the left hand operand.

531 left operand must be a pointer, pointer to class member, or arithmetic

The left operand must be a pointer, pointer to class member, or arithmetic.

532 right operand must be a pointer, pointer to class member, or arithmetic

The right operand must be a pointer, pointer to class member, or arithmetic.

533 neither pointer to class member can be converted to the other

The two member pointers being compared are from two unrelated classes. They
cannot be compared since their members can never be related.

534 left operand is not a valid pointer to class member

The specified operator requires a pointer to member as the left operand.

Example:
struct S;
void fn(int S::* mp, int *p)
{

if(p == mp)
p[0] = 1;

}

535 right operand is not a valid pointer to class member

The specified operator requires a pointer to member as the right operand.

Example:
struct S;
void fn(int S::* mp, int *p)
{

if(mp == p)
p[0] = 1;

}

574 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

536 cannot use ’.*’ nor ’->*’ with pointer to class member with zero value

The compiler has detected a NULL pointer use with a member pointer
dereference.

537 operand is not a valid pointer to class member

The operand cannot be converted to a valid pointer to class member.

Example:
struct S;
int S::* fn()
{

int a;
return a;

}

538 destructor can be invoked only with ’.’ or ’->’

This is a restriction in the C++ language. An explicit invocation of a destructor
is not recommended for objects that have their destructor called automatically.

539 class of destructor must be class of object being destructed

Destructors can only be called for the exact static type of the object being
destroyed.

540 destructor is not properly qualified

An explicit destructor invocation can only be qualified with its own class.

541 pointers to class members reference different object types

Conversion of member pointers can only occur if the object types are identical.
This is necessary to ensure type safety.

Diagnostic Messages 575

Appendices

542 operand must be pointer to class or struct

The left hand operand of a ’->*’ operator must be a pointer to a class. This is a
restriction in the C++ language.

543 expression must have void type

If one operand of the ’:’ operator has void type, then the other operand must also
have void type.

544 expression types do not match for ’:’ operator

The compiler could not bring both operands to a common type. This is
necessary because the result of the conditional operator must be a unique type.

545 cannot create an undefined type with ’operator new’

A new expression cannot allocate an undefined type because it must know how
large an allocation is required and it must also know whether there are any
constructors to execute.

546 delete of a pointer to an undefined type

A delete expression cannot safely deallocate an undefined type because it must
know whether there are any destructors to execute. In spite of this, the
ISO/ANSI C++ Working Paper requires that an implementation support this
usage.

Example:
struct U;

void foo(U *p, U *q) {
delete p;
delete [] q;

}

576 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

547 cannot access ’%S’ through a private base class

The indicated symbol cannot be accessed because it requires access to a private
base class.

548 cannot access ’%S’ through a protected base class

The indicated symbol cannot be accessed because it requires access to a
protected base class.

549 ’sizeof’ operand contains compiler generated information

The type used in the ’sizeof’ operand contains compiler generated information.
Clearing a struct with a call to memset() would invalidate all of this information.

550 cannot convert ’:’ operands to a common reference type

The two reference types cannot be converted to a common reference type. This
can happen when the types are not related through base class inheritance.

551 conversion ambiguity: [reference to object] to [type of opposite ’:’ operand]

One of the reference types is an ambiguous base class of the other. This
prevents the compiler from converting the operand to a unique common type.

552 conversion of reference to ’:’ object involves a private base class

The conversion of the reference operands requires a conversion through a
private base class.

553 conversion of reference to ’:’ object involves a protected base class

The conversion of the reference operands requires a conversion through a
protected base class.

554 expression must have type arithmetic, pointer, or pointer to class member

This message means that the type cannot be converted to any of these types,
also. All of the mentioned types can be compared against zero (’0’) to produce a
true or false value.

Diagnostic Messages 577

Appendices

555 expression for ’while’ is always false

The compiler has detected that the expression will always be false. If this is not
the expected behaviour, the code may contain a comparison of an unsigned
value against zero (e.g., unsigned integers are always greater than or equal to
zero). Comparisons against zero for addresses can also result in trivially false
expressions.

556 testing expression for ’for’ is always false

The compiler has detected that the expression will always be false. If this is not
the expected behaviour, the code may contain a comparison of an unsigned
value against zero (e.g., unsigned integers are always greater than or equal to
zero). Comparisons against zero for addresses can also result in trivially false
expressions.

557 message number ’%d’ is invalid

The message number used in the #pragma does not match the message number
for any warning message. This message can also indicate that a number or ’*’
(meaning all warnings) was not found when it was expected.

558 warning level must be an integer in range 0 to 9

The new warning level that can be used for the warning can be in the range 0 to
9. The level 0 means that the warning will be treated as an error (compilation
will not succeed). Levels 1 up to 9 are used to classify warnings. The -w option
sets an upper limit on the level for warnings. By setting the level above the
command line limit, you effectively ignore all cases where the warning shows
up.

559 function ’%S’ cannot be defined because it is generated by the compiler

The indicated function cannot be defined because it is generated by the
compiler. The compiler will automatically generate default constructors, copy
constructors, assignment operators, and destructors according to the rules of the
C++ language. This message indicates that you did not declare the function in
the class definition.

578 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

560 neither environment variable nor file found for ’@’ name

The indirection operator for the command line will first check for an
environment variable of the name and use the contents for the command line. If
an environment variable is not found, a check for a file with the same name will
occur.

561 more than 5 indirections during command line processing

The Open Watcom C++ compiler only allows a fixed number nested indirections
using files or environment variables, to prevent runaway chains of indirections.

562 cannot take address of non-static member function

The only way to create a value that described the non-static member function is
to use a member pointer.

563 cannot generate default ’%S’ because class contains either a constant or a
reference member

An assignment operator cannot be generated because the class contains members
that cannot be assigned into.

564 cannot convert pointer to non-constant or volatile objects to pointer to const
void

A pointer to non-constant or volatile objects cannot be converted to ’const
void*’.

565 cannot convert pointer to non-constant or non-volatile objects to pointer to
const volatile void

A pointer to non-constant or non-volatile objects cannot be converted to ’const
volatile void*’.

566 cannot initialize pointer to non-volatile with a pointer to volatile

A pointer to a non-volatile type cannot be initialized with a pointer to a volatile
type because this would allow volatile data to be modified without volatile
semantics via the non-volatile pointer to it.

Diagnostic Messages 579

Appendices

567 cannot pass a pointer or reference to a volatile object

A pointer or reference to a volatile object cannot be passed in this context.

568 cannot return a pointer or reference to a volatile object

A pointer or reference to a volatile object cannot be returned.

569 left expression is not a pointer to a volatile object

One cannot assign a pointer to a volatile type to a pointer to a non-volatile type.
This would allow a volatile object to be modified via the non-volatile pointer.
Use a cast if this is absolutely necessary.

570 virtual function override for ’%S’ is ambiguous

This message indicates that there are at least two overrides for the function in the
base class. The compiler cannot arbitrarily choose one so it is up to the
programmer to make sure there is an unambiguous choice. Two of the
overriding functions are listed as informational messages.

571 initialization priority must be number 0-255, ’library’, or ’program’

An incorrect module initialization priority has been provided. Check the User’s
Guide for the correct format of the priority directive.

572 previous case label defined %L

This informational message indicates where a preceding case label is defined.

573 previous default label defined %L

This informational message indicates where a preceding default label is defined.

574 label defined %L

This informational message indicates where a label is defined.

580 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

575 label referenced %L

This informational message indicates where a label is referenced.

576 object thrown has type: %T

This informational message indicates the type of the object being thrown.

577 object thrown has an ambiguous base class %T

It is illegal to throw an object with a base class to which a conversion would be
ambiguous.

Example:
struct ambiguous{ };
struct base1 : public ambiguous { };
struct base2 : public ambiguous { };
struct derived : public base1, public base2 { };

foo(derived &object)
{

throw object;
}

The throw will cause an error to be displayed because an object of type
"derived" cannot be converted to an object of type "ambiguous".

578 form is ’#pragma inline_depth level’ where ’level’ is 0 to 255

This pragma sets the number of times inline expansion will occur for an inline
function which contains calls to inline functions. The level must be a number
from zero to 255. When the level is zero, no inline expansion occurs.

579 pointer or reference truncated by cast

The cast expression causes a conversion of a pointer value to another pointer
value of smaller size. This can be caused by __near or __far qualifiers (i.e.,
casting a far pointer to a near pointer). Function pointers can also have a
different size than data pointers in certain memory models. Because this
message indicates that some information is being lost, check the code carefully.

Diagnostic Messages 581

Appendices

580 cannot find a constructor for given initializer argument list

The initializer list provided for the new expression does not uniquely identify a
single constructor.

581 variable ’%N’ can only be based on a string in this context

All of the based modifiers can only be applied to pointer types. The only based
modifier that can be applied to non-pointer types is the
’__based(__segname("WATCOM"))’ style.

582 memory model modifiers are not allowed for class members

Class members describe the arrangement and interpretation of memory and, as
such, assume the memory model of the address used to access the member.

583 redefinition of the typedef name ’%S’ ignored

The compiler has detected that a slightly different type has been assigned to a
typedef name. The type is functionally equivalent but typedef redefinitions
should be precisely identical.

584 constructor for variable ’%S’ cannot be bypassed

The variable may not be constructed when code is executing at the position the
message indicated. The C++ language places these restrictions to prevent the
use of unconstructed variables.

585 syntax error; missing start of function body after constructor initializer

Member initializers can only be used in a constructor’s definition.

Example:
struct S {

int a;
S(int x = 1) : a(x)
{
}

};

582 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

586 conversion ambiguity: [expression] to [type of default argument]

A conversion to an ambiguous base class was detected in the default argument
expression.

587 conversion of expression for default argument is impossible

A conversion to a unrelated class was detected in the default argument
expression.

588 syntax error before template name ’%s’

The identifier in the error message has been declared as a template name at this
point in the code. This may be the cause of the syntax error.

589 private base class accessed to convert default argument

A conversion to a private base class was detected in the default argument
expression.

590 protected base class accessed to convert default argument

A conversion to a protected base class was detected in the default argument
expression.

591 operand must be an lvalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a
cast cannot be assigned into because a brand new value is always created.
Assigning a new value to a temporary is a meaningless operation.

592 left operand must be an lvalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a
cast cannot be assigned into because a brand new value is always created.
Assigning a new value to a temporary is a meaningless operation.

Diagnostic Messages 583

Appendices

593 right operand must be an lvalue (cast produces rvalue)

The compiler is expecting a value which can be assigned into. The result of a
cast cannot be assigned into because a brand new value is always created.
Assigning a new value to a temporary is a meaningless operation.

594 construct resolved as a declaration/type

The C++ language contains language ambiguities that force compilers to rely on
extra information in order to understand certain language constructs. The extra
information required to disambiguate the language can be deduced by looking
ahead in the source file. Once a single interpretation has been found, the
compiler can continue analysing source code. See the ARM p.93 for more
details. This warning is intended to inform the programmer that an ambiguous
construct has been resolved in a certain direction. In this case, the construct has
been determined to be part of a type. The final resolution varies between
compilers so it is wise to change the source code so that the construct is not
ambiguous. This is especially important in cases where the resolution is more
than three tokens away from the start of the ambiguity.

595 construct resolved as an expression

The C++ language contains language ambiguities that force compilers to rely on
extra information in order to understand certain language constructs. The extra
information required to disambiguate the language can be deduced by looking
ahead in the source file. Once a single interpretation has been found, the
compiler can continue analysing source code. See the ARM p.93 for more
details. This warning is intended to inform the programmer that an ambiguous
construct has been resolved in a certain direction. In this case, the construct has
been determined to be part of an expression (a function-like cast). The final
resolution varies between compilers so it is wise to change the source code so
that the construct is not ambiguous. This is especially important in cases where
the resolution is more than three tokens away from the start of the ambiguity.

596 construct cannot be resolved

The C++ language contains language ambiguities that force compilers to rely on
extra information in order to understand certain language constructs. The extra
information required to disambiguate the language can be deduced by looking
ahead in the source file. Once a single interpretation has been found, the
compiler can continue analysing source code. See the ARM p.93 for more
details. This warning is intended to inform the programmer that an ambiguous
construct could not be resolved by the compiler. Please report this to the Open

584 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Watcom developement team so that the problem can be analysed. See
http://www.openwatcom.org/.

597 encountered another ambiguous construct during disambiguation

The C++ language contains language ambiguities that force compilers to rely on
extra information in order to understand certain language constructs. The extra
information required to disambiguate the language can be deduced by looking
ahead in the source file. Once a single interpretation has been found, the
compiler can continue analysing source code. See the ARM p.93 for more
details. This warning is intended to inform the programmer that another
ambiguous construct was found inside an ambiguous construct. The compiler
will correctly disambiguate the construct. The programmer is advised to change
code that exhibits this warning because this is definitely uncharted territory in
the C++ language.

598 ellipsis (...) argument contains compiler generated information

A class with virtual functions or virtual bases is being passed to a function that
will not know the type of the argument. Since this information can be encoded
in a variety of ways, the code may not be portable to another environment.

Example:
struct S
{ virtual int foo();
};

static S sv;

extern int bar(S, ...);

static int test = bar(sv, 14, 64);

The call to "bar" causes a warning, since the structure S contains information
associated with the virtual function for that class.

599 cannot convert argument for ellipsis (...) argument

This argument cannot be used as an ellipsis (...) argument to a function.

Diagnostic Messages 585

Appendices

600 conversion ambiguity: [argument] to [ellipsis (...) argument]

A conversion ambiguity was detected while converting an argument to an
ellipsis (...) argument.

601 converted function type has different #pragma from original function type

Since a #pragma can affect calling conventions, one must be very careful
performing casts involving different calling conventions.

602 class value used as return value or argument in converted function type

The compiler has detected a cast between "C" and "C++" linkage function types.
The calling conventions are different because of the different language rules for
copying structures.

603 class value used as return value or argument in original function type

The compiler has detected a cast between "C" and "C++" linkage function types.
The calling conventions are different because of the different language rules for
copying structures.

604 must look ahead to determine whether construct is a declaration/type or an
expression

The C++ language contains language ambiguities that force compilers to rely on
extra information in order to understand certain language constructs. The extra
information required to disambiguate the language can be deduced by looking
ahead in the source file. Once a single interpretation has been found, the
compiler can continue analysing source code. See the ARM p.93 for more
details. This warning is intended to inform the programmer that an ambiguous
construct has been used. The final resolution varies between compilers so it is
wise to change the source code so that the construct is not ambiguous.

605 assembler: ’%s’

An error has been detected by the #pragma inline assembler.

586 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

606 default argument expression cannot reference ’this’

The order of evaluation for function arguments is unspecified in the C++
language document. Thus, a default argument must be able to be evaluated
before the ’this’ argument (or any other argument) is evaluated.

607 #pragma aux must reference a "C" linkage function ’%S’

The method of assigning pragma information via the #pragma syntax is provided
for compatibility with Open Watcom C. Because C only allows one function per
name, this was adequate for the C language. Since C++ allows functions to be
overloaded, a new method of referencing pragmas has been introduced.

Example:#pragmaauxthisinSIparmcaller[si][ax];
struct S {voidpragma("thisinSI")foo(int);voidpragma("thisinSI")foo(char);
};

608 assignment is ambiguous for operands used

An ambiguity was detected while attempting to convert the right operand to the
type of the left operand.

Example:
struct S1 {

int a;
};

struct S2 : S1 {
int b;

};

struct S3 : S2, S1 {
int c;

};

S1* fn(S3 *p)
{

return p;
}

Diagnostic Messages 587

Appendices

In the example, class S1 occurs ambiguously for an object or pointer to an
object of type S3. A pointer to an S3 object cannot be converted to a pointer to
an S1 object.

609 pragma name ’%s’ is not defined

Pragmas are defined with the #pragma aux syntax. See the User’s Guide for the
details of defining a pragma name. If the pragma has been defined then check
the spelling between the definition and the reference of the pragma name.

610 ’%S’ could not be generated by the compiler

An error occurred while the compiler tried to generate the specified function.
The error prevented the compiler from generating the function properly so the
compilation cannot continue.

611 ’catch’ does not immediately follow a ’try’ or ’catch’

The catch handler syntax must be used in conjunction with a try block.

Example:
void f()
{

try {
// code that may throw an exception
} catch(int x) {
// handle ’int’ exceptions
} catch(...) {
// handle all other exceptions
}

}

612 preceding catch specified ’...’

Since an ellipsis "..." catch handler will handle any type of exception, no further
catch handlers can exist afterwards because they will never execute. Reorder the
catch handlers so that the "..." catch handler is the last handler.

588 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

613 argument to extern "C" function contains compiler generated information

A class with virtual functions or virtual bases is being passed to a function that
will not know the type of the argument. Since this information can be encoded
in a variety of ways, the code may not be portable to another environment.

Example:
struct S
{ virtual int foo();
};

static S sv;

extern "C" int bar(S);

static int test = bar(sv);

The call to "bar" causes a warning, since the structure S contains information
associated with the virtual function for that class.

614 previous try block defined %L

This informational message indicates where a preceding try block is defined.

615 previous catch block defined %L

This informational message indicates where a preceding catch block is defined.

616 catch handler can never be invoked

Because the handlers for a try block are tried in order of appearance, the type
specified in a preceding catch can ensure that the current handler will never be
invoked. This occurs when a base class (or reference) precedes a derived class
(or reference); when a pointer to a base class (or reference to the pointer)
precedes a pointer to a derived class (or reference to the pointer); or, when
"void*" or "void*&" precedes a pointer or a reference to the pointer.

Diagnostic Messages 589

Appendices

Example:
struct BASE {};
struct DERIVED : public BASE {};

foo()
{

try {
// code for try
} catch(BASE b) { // [1]
// code
} catch(DERIVED) { // warning: [1]
// code
} catch(BASE* pb) { // [2]
// code
} catch(DERIVED* pd) {// warning: [2]
// code
} catch(void* pv) { // [3]
// code
} catch(int* pi) { // warning: [3]
// code
} catch(BASE& br) { // warning: [1]
// code
} catch(float*& pfr) {// warning: [3]
// code
}

}

Each erroneous catch specification indicates the preceding catch block which
caused the error.

617 cannot overload extern "C" functions (the other function is ’%S’)

The C++ language only allows you to overload functions that are strictly C++
functions. The compiler will automatically generate the correct code to
distinguish each particular function based on its argument types. The extern "C"
linkage mechanism only allows you to define one "C" function of a particular
name because the C language does not support function overloading.

590 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

618 function will be overload ambiguous with ’%S’ using default arguments

The declaration declares a function that is indistinguishable from another
function of the same name with default arguments.

Example:
void fn(int, int = 1);
void fn(int);

Calling the function ’fn’ with one argument is ambiguous because it could match
either the first ’fn’ with a default argument applied or the second ’fn’ without
any default arguments.

619 linkage specification is different than previous declaration ’%S’

The linkage specification affects the binding of names throughout a program. It
is important to maintain consistency because subtle problems could arise when
the incorrect function is called. Usually this error prevents an unresolved
symbol error during linking because the name of a declaration is affected by its
linkage specification.

Example:
extern "C" void fn(void);
void fn(void)
{
}

620 not enough segment registers available to generate ’%s’

Through a combination of options, the number of available segment registers is
too small. This can occur when too many segment registers are pegged. This
can be fixed by changing the command line options to only peg the segment
registers that must absolutely be pegged.

621 pure virtual destructors must have a definition

This is an anomaly for pure virtual functions. A destructor is the only special
function that is inherited and allowed to be virtual. A derived class must be able
to call the base class destructor so a pure virtual destructor must be defined in a
C++ program.

Diagnostic Messages 591

Appendices

622 jump into try block

Jumps cannot enter try blocks.

Example:
foo(int a)
{if(a)gototrlab;

try {trlab:
throw 1234;
} catch(int) {if(a)gototrlab;
}if(a)gototrlab;

}

All the preceding goto’s are illegal. The error is detected at the label for forward
jumps and at the goto’s for backward jumps.

623 jump into catch handler

Jumps cannot enter catch handlers.

Example:
foo(int a)
{if(a)gotocalab;

try {if(a)gotocalab;
} catch(int) {calab:
}if(a)gotocalab;

}

All the preceding goto’s are illegal. The error is detected at the label for forward
jumps and at the goto’s for backward jumps.

592 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

624 catch block does not immediately follow try block

At least one catch handler must immediately follow the "}" of a try block.

Example:
extern void goop();
void foo()
{

try {
goop();
} // a catch block should follow!

}

In the example, there were no catch blocks after the try block.

625 exceptions must be enabled to use feature (use ’xs’ option)

Exceptions are enabled by specifying the ’xs’ option when the compiler is
invoked. The error message indicates that a feature such as try, catch, throw, or
function exception specification has been used without enabling exceptions.

626 I/O error reading ’%s’: %s"

When attempting to read data from a source or header file, the indicated system
error occurred. Likely there is a hardware problem, or the file system has
become corrupt.

627 text following pre-processor directive

A #else or #endif directive was found which had tokens following it rather than
an end of line. Some UNIX style preprocessors allowed this, but it is not legal
under standard C or C++. Make the tokens into a comment.

628 expression is not meaningful

This message indicates that the indicated expression is not meaningful. An
expression is meaningful when a function is invoked, when an assignment or
initialization is performed, or when the expression is casted to void.

Diagnostic Messages 593

Appendices

Example:
void foo(int i, int j)
{

i + j; // not meaningful
}

629 expression has no side effect

The indicated expression does not cause a side effect. A side effect is caused by
invoking a function, by an assignment or an initialization, or by reading a
volatile variable.

Example:
int k;
void foo(int i, int j)
{

i + j, // no side effect (note comma)
k = 3;

}

630 source conversion type is ’%T’

This informational message indicates the type of the source operand, for the
preceding conversion diagnostic.

631 target conversion type is ’%T’

This informational message indicates the target type of the conversion, for the
preceding conversion diagnostic.

632 redeclaration of ’%S’ has different attributes

A function cannot be made virtual or pure virtual in a subsequent declaration.
All properties of a function should be described in the first declaration of a
function. This is especially important for member functions because the
properties of a class are affected by its member functions.

594 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S {

void fun();
};

virtual void S::fun()
{
}

633 template class instantiation for ’%T’ was %L

This informational message indicates that the error or warning was detected
during the instantiation of a class template. The final type of the template class
is shown as well as the location in the source where the instantiation was
initiated.

634 template function instantiation for ’%S’ was %L

This informational message indicates that the error or warning was detected
during the instantiation of a function template. The final type of the template
function is shown as well as the location in the source where the instantiation
was initiated.

635 template class member instantiation was %L

This informational message indicates that the error or warning was detected
during the instantiation of a member of a class template. The location in the
source where the instantiation was initiated is shown.

636 function template binding for ’%S’ was %L

This informational message indicates that the error or warning was detected
during the binding process of a function template. The binding process occurs at
the point where arguments are analysed in order to infer what types should be
used in a function template instantiation. The function template in question is
shown along with the location in the source code that initiated the binding
process.

Diagnostic Messages 595

Appendices

637 function template binding of ’%S’ was %L

This informational message indicates that the error or warning was detected
during the binding process of a function template. The binding process occurs at
the point where a function prototype is analysed in order to see if the prototype
matches any function template of the same name. The function template in
question is shown along with the location in the source code that initiated the
binding process.

638 ’%s’ defined %L

This informational message indicates where the class in question was defined.
The message is displayed following an error or warning diagnostic for the class
in question.

Example:
class S;
int foo(S*p)
{

return p->x;
}

The variable p is a pointer to an undefined class and so will cause an error to be
generated. Following the error, the informational message indicates the line at
which the class S was declared.

639 form is ’#pragma template_depth level’ where ’level’ is a non-zero number

This pragma sets the number of times templates will be instantiated for nested
instantiations. The depth check prevents infinite compile times for incorrect
programs.

640 possible non-terminating template instantiation (use "#pragma template_depth
%d" to increase depth)

This message indicates that a large number of expansions were required to
complete a template class or template function instantiation. This may indicate
that there is an erroneous use of a template. If the program will complete given
more depth, try using the suggested #pragma in the error message to increase the
depth. The number provided is double the previous value.

596 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

641 cannot inherit a partially defined base class ’%T’

This message indicates that the base class was in the midst of being defined
when it was inherited. The storage requirements for a class type must be known
when inheritance is involved because the layout of the final class depends on
knowing the complete contents of all base classes.

Example:
struct Partial {

struct Nested : Partial {
int n;
};

};

642 ambiguous function: %F defined %L

This informational message shows the functions that were detected to be
ambiguous.

Example:
int amb(char); // will be ambiguous
int amb(unsigned char); // will be ambiguous
int amb(char, char);
int k = amb(14);

The constant value 14 has an int type and so the attempt to invoke the function
amb is ambiguous. The first two functions are ambiguous (and will be
displayed); the third is not considered (nor displayed) since it is declared to have
a different number of arguments.

643 cannot convert argument %d defined %L

This informational message indicates the first argument which could not be
converted to the corresponding type for the declared function. It is displayed
when there is exactly one function declared with the indicated name.

644 ’this’ cannot be converted

This informational message indicates the this pointer for the function which
could not be converted to the type of the this pointer for the declared function.
It is displayed when there is exactly one function declared with the indicated
name.

Diagnostic Messages 597

Appendices

645 rejected function: %F defined %L

This informational message shows the overloaded functions which were rejected
from consideration during function-overload resolution. These functions are
displayed when there is more than one function with the indicated name.

646 ’%T’ operator can be used

Following a diagnosis of operator ambiguity, this information message indicates
that the operator can be applied with operands of the type indicated in the
message.

Example:
struct S {

S(int);
operator int();
S operator+(int);

};
S s(15);
int k = s + 123; // "+" is ambiguous

In the example, the "+" operation is ambiguous because it can implemented as
by the addition of two integers (with S::operator int applied to the
second operand) or by a call to S::operator+. This informational message
indicates that the first is possible.

647 cannot #undef ’%s’

The predefined macroscplusplus,DATE,FILE,LINE,STDC,TIME,FUNCTION and
func

cannot be undefined using the #undef directive.

Example:#undefcplusplus#undefDATE#undefFILE#undefLINE#undefSTDC#undefTIME#undefFUNCTION#undeffunc
All of the preceding directives are not permitted.

598 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

648 cannot #define ’%s’

The predefined macroscplusplus,DATE,FILE,LINE,STDC, and
TIME cannot be defined using the

#define directive.

Example:#definecplusplus1#defineDATE2#defineFILE3#defineLINE4#defineSTDC5#defineTIME6
All of the preceding directives are not permitted.

649 template function ’%F’ defined %L

This informational message indicates where the function template in question
was defined. The message is displayed following an error or warning diagnostic
for the function template in question.

Example:
template <class T>

void foo(T, T *)
{
}

void bar()
{

foo(1); // could not instantiate
}

The function template for foo cannot be instantiated for a single argument
causing an error to be generated. Following the error, the informational message
indicates the line at which foo was declared.

Diagnostic Messages 599

Appendices

650 ambiguous function template: %F defined %L

This informational message shows the function templates that were detected to
be ambiguous for the arguments at the call point.

651 cannot instantiate %S

This message indicates that the function template could not be instantiated for
the arguments supplied. It is displayed when there is exactly one function
template declared with the indicated name.

652 rejected function template: %F defined %L

This informational message shows the overloaded function template which was
rejected from consideration during function-overload resolution. These
functions are displayed when there is more than one function or function
template with the indicated name.

653 operand cannot be a function

The indicated operation cannot be applied to a function.

Example:
int Fun();
int j = ++Fun; // illegal

In the example, the attempt to increment a function is illegal.

654 left operand cannot be a function

The indicated operation cannot be applied to the left operand which is a
function.

Example:
extern int Fun();
void foo()
{

Fun = 0; // illegal
}

In the example, the attempt to assign zero to a function is illegal.

600 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

655 right operand cannot be a function

The indicated operation cannot be applied to the right operand which is a
function.

Example:
extern int Fun();
void foo()
{

void* p = 3[Fun]; // illegal
}

In the example, the attempt to subscript a function is illegal.

656 define this function inside its class definition (may improve code quality)

The Open Watcom C++ compiler has found a constructor or destructor with an
empty function body. An empty function body can usually provide optimization
opportunities so the compiler is indicating that by defining the function inside its
class definition, the compiler may be able to perform some important
optimizations.

Example:
struct S {

~S();
};

S::~S() {
}

657 define this function inside its class definition (could have improved code quality)

The Open Watcom C++ compiler has found a constructor or destructor with an
empty function body. An empty function body can usually provide optimization
opportunities so the compiler is indicating that by defining the function inside its
class definition, the compiler may be able to perform some important
optimizations. This particular warning indicates that the compiler has already
found an opportunity in previous code but it found out too late that the
constructor or destructor had an empty function body.

Diagnostic Messages 601

Appendices

Example:
struct S {

~S();
};
struct T : S {

~T() {}
};

S::~S() {
}

658 cannot convert address of overloaded function ’%S’

This information message indicates that an address of an overloaded function
cannot be converted to the indicated type.

Example:
int ovload(char);
int ovload(float);
int routine(int (*)(int);
int k = routine(ovload);

The first argument for the function routine cannot be converted, resulting in
the informational message.

659 expression cannot have void type

The indicated expression cannot have a void type.

Example:
main(int argc, char* argv)
{

if((void)argc) {
return 5;
} else {
return 9;
}

}

Conditional expressions, such as the one illustrated in the if statement cannot
have a void type.

602 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

660 cannot reference a bit field

The smallest addressable unit is a byte. You cannot reference a bit field.

Example:
struct S
{ int bits :6;

int bitfield :10;
};
S var;
int& ref = var.bitfield; // illegal

661 cannot assign to object having an undefined class

An assignment cannot be be made to an object whose class has not been defined.

Example:
class X; // declared, but not defined
extern X& foo(); // returns reference (ok)
extern X obj;
void goop()
{

obj = foo(); // error
}

662 cannot create member pointer to constructor

A member pointer value cannot reference a constructor.

Example:
class C {

C();
};
int foo()
{

return 0 == &C::C;
}

Diagnostic Messages 603

Appendices

663 cannot create member pointer to destructor

A member pointer value cannot reference a destructor.

Example:
class C {

~C();
};
int foo()
{

return 0 == &C::~C;
}

664 attempt to initialize a non-constant reference with a temporary object

A temporary value cannot be converted to a non-constant reference type.

Example:
struct C {

C(C&);
C(int);

};

C & c1 = 1;
C c2 = 2;

The initializations of c1 and c2 are erroneous, since temporaries are being
bound to non-const references. In the case of c1, an implicit constructor call is
required to convert the integer to the correct object type. This results in a
temporary object being created to initialize the reference. Subsequent code can
modify this temporary’s state. The initialization of c2, is erroneous for a
similar reason. In this case, the temporary is being bound to the non-const
reference argument of the copy constructor.

665 temporary object used to initialize a non-constant reference

Ordinarily, a temporary value cannot be bound to a non-constant reference.
There is enough legacy code present that the Open Watcom C++ compiler issues
a warning in cases that should be errors. This may change in the future so it is
advisable to correct the code as soon as possible.

604 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

666 assuming unary ’operator &’ not overloaded for type ’%T’

An explicit address operator can be applied to a reference to an undefined class.
The Open Watcom C++ compiler will assume that the address is required but it
does not know whether this was the programmer’s intention because the class
definition has not been seen.

Example:
struct S;

S * fn(S &y) {
// assuming no operator ’&’ defined
return &y;

}

667 ’va_start’ macro will not work without an argument before ’...’

The warning indicates that it is impossible to access the arguments passed to the
function without declaring an argument before the "..." argument. The "..." style
of argument list (without any other arguments) is only useful as a prototype or if
the function is designed to ignore all of its arguments.

Example:
void fn(...)
{
}

668 ’va_start’ macro will not work with a reference argument before ’...’

The warning indicates that taking the address of the argument before the "..."
argument, which ’va_start’ does in order to access the variable list of arguments,
will not give the expected result. The arguments will have to be rearranged so
that an acceptable argument is declared before the "..." argument or a dummy int
argument can be inserted after the reference argument with the corresponding
adjustments made to the callers of the function.

Example:

Diagnostic Messages 605

Appendices

#include <stdarg.h>

void fn(int &r, ...)
{valistargs;

// address of ’r’ is address of
// object ’r’ references so//’vastart’willnotworkproperlyvastart(args,r);vaend(args);

}

669 ’va_start’ macro will not work with a class argument before ’...’

This warning is specific to C++ compilers that quietly convert class arguments
to class reference arguments. The warning indicates that taking the address of
the argument before the "..." argument, which ’va_start’ does in order to access
the variable list of arguments, will not give the expected result. The arguments
will have to be rearranged so that an acceptable argument is declared before the
"..." argument or a dummy int argument can be inserted after the class argument
with the corresponding adjustments made to the callers of the function.

Example:
#include <stdarg.h>

struct S {
S();

};

void fn(S c, ...)
{valistargs;

// Open Watcom C++ passes a pointer to
// the temporary created for passing
// ’c’ rather than pushing ’c’ on the//stackso’vastart’willnotwork
// properlyvastart(args,c);vaend(args);

}

606 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

670 function modifier conflicts with previous declaration ’%S’

The symbol declaration conflicts with a previous declaration with regard to
function modifiers. Either the previous declaration did not have a function
modifier or it had a different one.

Example:#pragmaauxneverreturnsaborts;
void fn(int, int);voidpragma("neverreturns")fn(int,int);

671 function modifier cannot be used on a variable

The symbol declaration has a function modifier being applied to a variable or
non-function. The cause of this may be a declaration with a missing function
argument list.

Example:int(*pascalok)();int(*pascalnotok);
672 ’%T’ contains the following pure virtual functions

This informational message indicates that the class contains pure virtual function
declarations. The class is definitely abstract as a result and cannot be used to
declare variables. The pure virtual functions declared in the class are displayed
immediately following this message.

Example:
struct A {

void virtual fn(int) = 0;
};

A x;

673 ’%T’ has no implementation for the following pure virtual functions

This informational message indicates that the class is derived from an abstract
class but the class did not override enough virtual function declarations. The
pure virtual functions declared in the class are displayed immediately following
this message.

Diagnostic Messages 607

Appendices

Example:
struct A {

void virtual fn(int) = 0;
};
struct D : A {
};

D x;

674 pure virtual function ’%F’ defined %L

This informational message indicates that the pure virtual function has not been
overridden. This means that the class is abstract.

Example:
struct A {

void virtual fn(int) = 0;
};
struct D : A {
};

D x;

675 restriction: standard calling convention required for ’%S’

The indicated function may be called by the C++ run-time system using the
standard calling convention. The calling convention specified for the function is
incompatible with the standard convention. This message may result whenpascal is specified for a default constructor, a copy constructor, or a
destructor. It may also result when parm reverse is specified in a #pragma
for the function.

676 number of arguments in function call is incorrect

The number of arguments in the function call does not match the number
declared for the function type.

608 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
extern int (*pfn)(int, int);
int k = pfn(1, 2, 3);

In the example, the function pointer was declared to have two arguments. Three
arguments were used in the call.

677 function has type ’%T’

This informational message indicates the type of the function being called.

678 invalid octal constant

The constant started with a ’0’ digit which makes it look like an octal constant
but the constant contained the digits ’8’ and ’9’. The problem could be an
incorrect octal constant or a missing ’.’ for a floating constant.

Example:
int i = 0123456789; // invalid octal constant
double d = 0123456789; // missing ’.’?

679 class template definition started %L

This informational message indicates where the class template definition started
so that any problems with missing braces can be fixed quickly and easily.

Example:
template <class T>

struct S {
void f1() {
// error missing ’}’
};

template <class T>
struct X {
void f2() {
}
};

Diagnostic Messages 609

Appendices

680 constructor initializer started %L

This informational message indicates where the constructor initializer started so
that any problems with missing parenthesis can be fixed quickly and easily.

Example:
struct S {

S(int x) : a(x), b(x // missing parenthesis
{
}

};

681 zero size array must be the last data member

The language extension that allows a zero size array to be declared in a class
definition requires that the array be the last data member in the class.

Example:
struct S {

char a[];
int b;

};

682 cannot inherit a class that contains a zero size array

The language extension that allows a zero size array to be declared in a class
definition disallows the use of the class as a base class. This prevents the
programmer from corrupting storage in derived classes through the use of the
zero size array.

Example:
struct B {

int b;
char a[];

};
struct D : B {

int d;
};

610 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

683 zero size array ’%S’ cannot be used in a class with base classes

The language extension that allows a zero size array to be declared in a class
definition requires that the class not have any base classes. This is required
because the C++ compiler must be free to organize base classes in any manner
for optimization purposes.

Example:
struct B {

int b;
};
struct D : B {

int d;
char a[];

};

684 cannot catch abstract class object

C++ does not allow abstract classes to be instantiated and so an abstract class
object cannot be specified in a catch clause. It is permissible to catch a
reference to an abstract class.

Example:
class Abstract {
public:

virtual int foo() = 0;
};

class Derived : Abstract {
public:

int foo();
};

int xyz;

void func(void) {
try {
throw Derived();
} catch(Abstract abstract) { // object
xyz = 1;
}

}

The catch clause in the preceding example would be diagnosed as improper,
since an abstract class is specified. The example could be coded as follows.

Diagnostic Messages 611

Appendices

Example:
class Abstract {
public:

virtual int foo() = 0;
};

class Derived : Abstract {
public:

int foo();
};

int xyz;

void func(void) {
try {
throw Derived();
} catch(Abstract & abstract) { // reference
xyz = 1;
}

}

685 non-static member function ’%S’ cannot be specified

The indicated non-static member function cannot be used in this context. For
example, such a function cannot be used as the second or third operand of the
conditional operator.

Example:
struct S {

int foo();
int bar();
int fun();

};

int S::fun(int i) {
return (i ? foo : bar)();

}

Neither foo nor bar can be specified as shown in the example. The example
can be properly coded as follows:

612 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S {

int foo();
int bar();
int fun();

};

int S::fun(int i) {
return i ? foo() : bar();

}

686 attempt to convert pointer or reference from a base to a derived class

A pointer or reference to a base class cannot be converted to a pointer or
reference, respectively, of a derived class, unless there is an explicit cast. The
return statements in the following example will be diagnosed.

Example:
struct Base {};
struct Derived : Base {};

Base b;

Derived* ReturnPtr() { return &b; }
Derived& ReturnRef() { return b; }

The following program would be acceptable:

Example:
struct Base {};
struct Derived : Base {};

Base b;

Derived* ReturnPtr() { return (Derived*)&b; }
Derived& ReturnRef() { return (Derived&)b; }

687 expression for ’while’ is always true

The compiler has detected that the expression will always be true.
Consequently, the loop will execute infinitely unless there is a break statement
within the loop or a throw statement is executed while executing within the loop.
If such an infinite loop is required, it can be coded as for(;) without causing
warnings.

Diagnostic Messages 613

Appendices

688 testing expression for ’for’ is always true

The compiler has detected that the expression will always be true.
Consequently, the loop will execute infinitely unless there is a break statement
within the loop or a throw statement is executed while executing within the loop.
If such an infinite loop is required, it can be coded as for(;) without causing
warnings.

689 conditional expression is always true (non-zero)

The indicated expression is a non-zero constant and so will always be true.

690 conditional expression is always false (zero)

The indicated expression is a zero constant and so will always be false.

691 expecting a member of ’%T’ to be defined in this context

A class template member definition must define a member of the associated
class template. The complexity of the C++ declaration syntax can make this
error hard to identify visually.

Example:
template <class T>

struct S {
typedef int X;
static X fn(int);
static X qq;
};

template <class T>
S<T>::X fn(int) {// should be ’S<T>::fn’

return fn(2);
}

template <class T>
S<T>::X qq = 1; // should be ’S<T>::q’

S<int> x;

614 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

692 cannot throw an abstract class

An abstract class cannot be thrown since copies of that object may have to be
made (which is impossible);

Example:structabstractclass{abstractclass(int);
virtual int foo() = 0;

};

void goop()
{throwabstractclass(17);
}

The throw expression is illegal since it specifies an abstract class.

693 cannot create pre-compiled header file ’%s’

The compiler has detected a problem while trying to open the pre-compiled
header file for write access.

694 error occurred while writing pre-compiled header file

The compiler has detected a problem while trying to write some data to the
pre-compiled header file.

695 error occurred while reading pre-compiled header file

The compiler has detected a problem while trying to read some data from the
pre-compiled header file.

696 pre-compiled header file being recreated

The existing pre-compiled header file may either be corrupted or is a version
that the compiler cannot use due to updates to the compiler. A new version of
the pre-compiled header file will be created.

Diagnostic Messages 615

Appendices

697 pre-compiled header file being recreated (different compile options)

The compiler has detected that the command line options have changed enough
so the contents of the pre-compiled header file cannot be used. A new version of
the pre-compiled header file will be created.

698 pre-compiled header file being recreated (different #include file)

The compiler has detected that the first #include file name is different so the
contents of the pre-compiled header file cannot be used. A new version of the
pre-compiled header file will be created.

699 pre-compiled header file being recreated (different current directory)

The compiler has detected that the working directory is different so the contents
of the pre-compiled header file cannot be used. A new version of the
pre-compiled header file will be created.

700 pre-compiled header file being recreated (different INCLUDE path)

The compiler has detected that the INCLUDE path is different so the contents of
the pre-compiled header file cannot be used. A new version of the pre-compiled
header file will be created.

701 pre-compiled header file being recreated (’%s’ has been modified)

The compiler has detected that an include file has changed so the contents of the
pre-compiled header file cannot be used. A new version of the pre-compiled
header file will be created.

702 pre-compiled header file being recreated (macro ’%s’ is different)

The compiler has detected that a macro definition is different so the contents of
the pre-compiled header file cannot be used. The macro was referenced during
processing of the header file that created the pre-compiled header file so the
contents of the pre-compiled header may be affected. A new version of the
pre-compiled header file will be created.

616 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

703 pre-compiled header file being recreated (macro ’%s’ is not defined)

The compiler has detected that a macro has not been defined so the contents of
the pre-compiled header file cannot be used. The macro was referenced during
processing of the header file that created the pre-compiled header file so the
contents of the pre-compiled header may be affected. A new version of the
pre-compiled header file will be created.

704 command line specifies smart windows callbacks and DS not equal to SS

An illegal combination of switches has been detected. The windows smart
callbacks option cannot be combined with either of the build DLL or DS not
equal to SS options.

705 class ’%N’ cannot be used with #pragma dump_object_model

The indicated name has not yet been declared or has been declared but not yet
been defined as a class. Consequently, the object model cannot be dumped.

706 repeated modifier is ’%s’

This informational message indicates what modifier was repeated in the
declaration.

Example:typedefintfarFARINT;FARINTfar*p;//repeatedfarmodifier
707 semicolon (’;’) may be missing after class/enum definition

This informational message indicates that a missing semicolon (’;’) may be the
cause of the error.

Example:
struct S {

int x,y;
S(int, int);

} // missing semicolon ’;’

S::S(int x, int y) : x(x), y(y) {
}

Diagnostic Messages 617

Appendices

708 cannot return a type of unknown size

A value of an unknown type cannot be returned.

Example:
class S;
S foo();

int goo()
{

foo();
}

In the example, foo cannot be invoked because the class which it returns has not
been defined.

709 cannot initialize array member ’%S’

An array class member cannot be specified as a constructor initializer.

Example:
class S {
public:

int arr[3];
S();

};
S::S() : arr(1, 2, 3) {}

In the example, arr cannot be specified as a constructor initializer. Instead, the
array may be initialized within the body of the constructor.

Example:
class S {
public:

int arr[3];
S();

};
S::S()
{

arr[0] = 1;
arr[1] = 2;
arr[2] = 3;

}

618 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

710 file ’%s’ will #include itself forever

The compiler has detected that the file in the message has been #include from
within itself without protecting against infinite inclusion. This can happen if
#ifndef and #define header file protection has not been used properly.

Example:#includeFILE
711 ’mutable’ may only be used for non-static class members

A declaration in file scope or block scope cannot have a storage class of
mutable.

Example:
mutable int a;

712 ’mutable’ member cannot also be const

A mutable member can be modified even if its class object is const. Due to the
semantics of mutable, the programmer must decide whether a member will be
const or mutable because it cannot be both at the same time.

Example:
struct S {

mutable const int * p; // OK
mutable int * const q; // error

};

713 left operand cannot be of type bool

The left hand side of an assignment operator cannot be of type bool except for
simple assignment. This is a restriction required in the C++ language.

Example:
bool q;

void fn()
{

q += 1;
}

Diagnostic Messages 619

Appendices

714 operand cannot be of type bool

The operand of both postfix and prefix "--" operators cannot be of type bool.
This is a restriction required in the C++ language.

Example:
bool q;

void fn()
{

--q; // error
q--; // error

}

715 member ’%N’ has not been declared in ’%T’

The compiler has found a member which has not been previously declared. The
symbol may be spelled differently than the declaration, or the declaration may
simply not be present.

Example:
struct X { int m; };

void fn(X *p)
{

p->x = 1;
}

716 integral value may be truncated

This message indicates that the compiler knows that all values will not be
preserved after the assignment or initialization. If this is acceptable, cast the
value to the appropriate type in the assignment or initialization.

Example:
char inc(char c)
{

return c + 1;
}

620 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

717 left operand type is ’%T’

This informational message indicates the type of the left hand side of the
expression.

718 right operand type is ’%T’

This informational message indicates the type of the right hand side of the
expression.

719 operand type is ’%T’

This informational message indicates the type of the operand.

720 expression type is ’%T’

This informational message indicates the type of the expression.

721 virtual function ’%S’ cannot have its return type changed

This restriction is due to the relatively new feature in the C++ language that
allows return values to be changed when a virtual function has been overridden.
It is not possible to support both features because in order to support changing
the return value of a function, the compiler must construct a "wrapper" function
that will call the virtual function first and then change the return value and
return. It is not possible to do this with "..." style functions because the number
of parameters is not known.

Example:
struct B {
};
struct D : virtual B {
};

struct X {
virtual B *fn(int, ...);

};
struct Y : X {

virtual D *fn(int, ...);
};

Diagnostic Messages 621

Appendices

722 __declspec(’%N’) is not supported

The identifier used in the __declspec declaration modifier is not supported by
Open Watcom C++.

723 attempt to construct a far object when data model is near

Constructors cannot be applied to objects which are stored in far memory when
the default memory model for data is near.

Example:
struct Obj
{ char *p;

Obj();
};

Obj far obj;

The last line causes this error to be displayed when the memory model is small
(switch -ms), since the memory model for data is near.

724 -zo is an obsolete switch (has no effect)

The -zo option was required in an earlier version of the compiler but is no longer
used.

725 "%s"

This is a user message generated with the #pragma message preprocessing
directive.

Example:
#pragma message("my very own warning");

726 no reference to formal parameter ’%S’

There are no references to the declared formal parameter. The simplest way to
remove this warning in C++ is to remove the name from the argument
declaration.

622 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
int fn1(int a, int b, int c)
{

// ’b’ not referenced
return a + c;

}
int fn2(int a, int /* b */, int c)
{

return a + c;
}

727 cannot dereference a pointer to void

A pointer to void is used as a generic pointer but it cannot be dereferenced.

Example:
void fn(void *p)
{

return *p;
}

728 class modifiers for ’%T’ conflict with class modifiers for ’%T’

A conflict between class modifiers for classes related through inheritance has
been detected. A conflict will occur if two base classes have class modifiers that
are different. The conflict can be resolved by ensuring that all classes related
through inheritance have the same class modifiers. The default resolution is to
have no class modifier for the derived base.

Example:structcdeclB1{
void fn(int);

};structstdcallB2{
void fn(int);

};
struct D : B1, B2 {
};

Diagnostic Messages 623

Appendices

729 invalid hexadecimal constant

The constant started with a ’0x’ prefix which makes it look like a hexadecimal
constant but the constant was not followed by any hexadecimal digits.

Example:
unsigned i = 0x; // invalid hex constant

730 return type of ’operator ->’ will not allow ’->’ to be applied

This restriction is a result of the transformation that the compiler performs when
the operator -> is overloaded. The transformation involves transforming the
expression to invoke the operator with "->" applied to the result of operator ->.
This warning indicates that the operator -> can never be used as an overloaded
operator. The only way the operator can be used is to explicitly call it by name.

Example:
struct S {

int a;
void *operator ->();

};

void *fn(S &q)
{

return q.operator ->();
}

731 class should have a name since it needs a constructor or a destructor

The class definition does not have a class name but it includes members that
have constructors or destructors. Since the class has C++ semantics, it should be
have a name in case the constructor or destructor needs to be referenced.

Example:
struct P {

int x,y;
P();

};

typedef struct {
P c;
int v;

} T;

624 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

732 class should have a name since it inherits a class

The class definition does not have a class name but it inherits a class. Since the
class has C++ semantics, it should be have a name in case the constructor or
destructor needs to be referenced.

Example:
struct P {

int x,y;
P();

};

typedef struct : P {
int v;

} T;

733 cannot open pre-compiled header file ’%s’

The compiler has detected a problem while trying to open the pre-compiled
header file for read/write access.

734 invalid second argument to va_start

The second argument to the va_start macro should be the name of the argument
just before the "..." in the argument list.

735 ’//’ style comment continues on next line

The compiler has detected a line continuation during the processing of a C++
style comment ("//"). The warning can be removed by switching to a C style
comment ("/**/"). If you require the comment to be terminated at the end of the
line, make sure that the backslash character is not the last character in the line.

Example:
#define XX 23 // comment start \
comment \
end

int x = XX; // comment start ...\
comment end

Diagnostic Messages 625

Appendices

736 cannot open file ’%s’ for write access

The compiler has detected a problem while trying to open the indicated file for
write access.

737 implicit conversion of pointers to integral types of same size

The compiler allows, when extensions are enabled, implicit conversions between
pointers to integral types when the size of the integral types are the same. Thus,
conversions from unsigned char to either char or signed char would be
allowed. This is an extension as the ISO/ANSI Draft Working Paper permits
implicit conversions only when the types pointed at are identical.

According to the ISO/ANSI Draft Working Paper, a string literal is an array of
char. Consequently, it is illegal to initialize or assign the pointer resulting from
that literal to a pointer of either unsigned char or signed char, since these
pointers point at objects of a different type. When extensions are enabled, this
condition is diagnosed as a warning; otherwise, it is an error.

738 option requires a number

The specified option is not recognized by the compiler since there was no
number after it (i.e., "-w=1"). Numbers must be non-negative decimal numbers.

739 option -fc specified more than once

The -fc option can be specified at most once on a command line.

740 option -fc specified in batch file of commands

The -fc option cannot be specified on a line in the batch file of command lines
specified by the -fc option on the command line used to invoke the compiler.

741 file specified by -fc is empty or cannot be read

The file specified using the -fc option is either empty or an input/output error
was diagnosed for the file.

626 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

742 cannot open file specified by -fc option

The compiler was unable to open the indicated file. Most likely, the file does
not exist. An input/output error is also possible.

743 input/output error reading the file specified by -fc option

The compiler was unable to open the indicated file. Most likely, the file does
not exist. An input/output error is also possible.

744 ’%N’ does not have a return type specified (int assumed)

In C++, operator functions should have an explicit return type specified. In
future revisions of the ISO/ANSI C++ standard, the use of default int type
specifiers may be prohibited so removing any dependencies on default int early
will prevent problems in the future.

Example:
struct S {

operator = (S const &);
operator += (S const &);

};

745 cannot initialize reference to non-constant with a constant object

A reference to a non-constant object cannot be initialized with a reference to a
constant type because this would allow constant data to be modified via the
non-constant pointer to it.

Example:
extern const int *pic;
extern int & ref = pic;

746 processing %s

This informational message indicates where an error or warning was detected
while processing the switches specified on the command line, in environment
variables, in command files (using the ’@’ notation), or in the batch command
file (specified using the -fc option).

Diagnostic Messages 627

Appendices

747 class ’%T’ has not been defined

This informational message indicates a class which was not defined. This is
noted following an error or warning message because it often helps to a user to
determine the cause of that diagnostic.

748 cannot catch undefined class object

C++ does not allow abstract classes to be copied and so an undefined class
object cannot be specified in a catch clause. It is permissible to catch a
reference to an undefined class.

749 class ’%T’ cannot be used since its definition has errors

The analysis of the expression could not continue due to previous errors
diagnosed in the class definition.

750 function prototype in block scope missing ’extern’

This warning can be triggered when the intent is to define a variable with a
constructor. Due to the complexities of parsing C++, statements that appear to
be variable definitions may actually parse as a function prototype. A
work-around for this problem is contained in the example. If a prototype is
desired, add the extern storage class to remove this warning.

Example:
struct C {
};
struct S {

S(C);
};
void foo()
{

S a(C()); // function prototype!
S b((C()));// variable definition

int bar(int);// warning
extern int sam(int); // no warning

}

628 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

751 function prototype is ’%T’

This informational message indicates what the type of the function prototype is
for the message in question.

752 class ’%T’ contains a zero size array

This warning is triggered when a class with a zero sized array is used in an array
or as a class member. This is a questionable practice since a zero sized array at
the end of a class often indicates a class that is dynamically sized when it is
constructed.

Example:
struct C {

C *next;
char name[];

};

struct X {
C q;

};

C a[10];

753 invalid ’new’ modifier

The Open Watcom C++ compiler does not support new expression modifiers but
allows them to match the ambient memory model for compatibility. Invalid
memory model modifiers are also rejected by the compiler.

Example:
int *fn(unsigned x)
{returnnewinterruptint[x];
}

754 ’__declspec(thread)’ data ’%S’ must be link-time initialized

This error message indicates that the data item in question either requires a
constructor, destructor, or run-time initialization. This cannot be supported for
thread-specific data at this time.

Diagnostic Messages 629

Appendices

Example:
#include <stdlib.h>

struct C {
C();

};
struct D {

~D();
};Cdeclspec(thread)c;Ddeclspec(thread)d;intdeclspec(thread)e=rand();

755 code may not work properly if this module is split across a code segment

The "zm" option allows the compiler to generate functions into separate
segments that have different names so that more than 64k of code can be
generated in one object file. Unfortunately, if an explicit near function is coded
in a large code model, the possibility exists that the linker can place the near
function in a separate code segment than a function that calls it. This would
cause a linker error followed by an execution error if the executable is executed.
The "zmf" option can be used if you require explicit near functions in your code.

Example:
// These functions may not end up in the
// same code segment if the -zm option
// is used. If this is the case, the near
// call will not work since near functions
// must be in the same code segment to
// execute properly.staticintnearnearfn(intx)
{

return x + 1;
}intfarfn(inty)
{returnnearfn(y*2);
}

630 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

756 #pragma extref: symbol ’%N’ not declared

This error message indicates that the symbol referenced by #pragma extref has
not been declared in the context where the pragma was encountered.

757 #pragma extref: overloaded function ’%S’ cannot be used

An external reference can be emitted only for external functions which are not
overloaded.

758 #pragma extref: ’%N’ is not a function or data

This error message indicates that the symbol referenced by #pragma extref
cannot have an external reference emitted for it because the referenced symbol is
neither a function nor a data item. An external reference can be emitted only for
external functions which are not overloaded and for external data items.

759 #pragma extref: ’%S’ is not external

This error message indicates that the symbol referenced by #pragma extref
cannot have an external reference emitted for it because the symbol is not
external. An external reference can be emitted only for external functions which
are not overloaded and for external data items.

760 pre-compiled header file being recreated (debugging info may change)

The compiler has detected that the module being compiled was used to create
debugging information for use by other modules. In order to maintain
correctness, the pre-compiled header file must be recreated along with the object
file.

761 octal escape sequence out of range; truncated

This message indicates that the octal escape sequence produces an integer that
cannot fit into the required character type.

Diagnostic Messages 631

Appendices

Example:
char *p = "\406";

762 binary operator ’%s’ missing right operand

There is no expression to the right of the indicated binary operator.

763 binary operator ’%s’ missing left operand

There is no expression to the left of the indicated binary operator.

764 expression contains extra operand(s)

The expression contains operand(s) without an operator

765 expression contains consecutive operand(s)

More than one operand found in a row.

766 unmatched right parenthesis ’)’

The expression contains a right parenthesis ")" without a matching left
parenthesis.

767 unmatched left parenthesis ’(’

The expression contains a left parenthesis "(" without a matching right
parenthesis.

768 no expression between parentheses ’()’

There is a matching set of parenthesis "()" which do not contain an expression.

769 expecting ’:’ operator in conditional expression

A conditional expression exists without the ’:’ operator.

632 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

770 expecting ’?’ operator in conditional expression

A conditional expression exists without the ’?’ operator.

771 expecting first operand in conditional expression

A conditional expression exists without the first operand.

772 expecting second operand in conditional expression

A conditional expression exists without the second operand.

773 expecting third operand in conditional expression

A conditional expression exists without the third operand.

774 expecting operand after unary operator ’%s’

A unary operator without being followed by an operand.

775 ’%s’ unexpected in constant expression

’%s’ not allowed in constant expression

776 assembler: ’%s’

A warning has been issued by the #pragma inline assembler.

777 expecting ’id’ after ’::’ but found ’%s’

The ’::’ operator has an invalid token following it.

Example:
#define fn(x) ((x)+1)

struct S {
int inc(int y) {
return ::fn(y);
}

};

Diagnostic Messages 633

Appendices

778 only constructors can be declared explicit

Currently, only constructors can be declared with the explicit keyword.

Example:
int explicit fn(int x) {

return x + 1;
}

779 const_cast type must be pointer, member pointer, or reference

The type specified in a const_cast operator must be a pointer, a pointer to a
member of a class, or a reference.

Example:
extern int const *p;longlp=constcast<long>(p);

780 const_cast expression must be pointer to same kind of object

Ignoring const and volatile qualification, the expression must be a pointer to the
same type of object as that specified in the const_cast operator.

Example:
extern int const * ip;long*lp=constcast<long*>(ip);

781 const_cast expression must be lvalue of the same kind of object

Ignoring const and volatile qualification, the expression must be an lvalue or
reference to the same type of object as that specified in the const_cast operator.

Example:
extern int const i;long&lr=constcast<long&>(i);

782 expression must be pointer to member from same class in const_cast

The expression must be a pointer to member from the same class as that
specified in the const_cast operator.

634 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct B {

int ib;
};
struct D : public B {
};
extern int const B::* imb;intD::*imdconstcast<intD::*>(imb);

783 expression must be member pointer to same type as specified in const_cast

Ignoring const and volatile qualification, the expression must be a pointer to
member of the same type as that specified in the const_cast operator.

Example:
struct B {

int ib;
long lb;

};intD::*imdconstcast<intD::*>(&B::lb);
784 reinterpret_cast expression must be pointer or integral object

When a pointer type is specified in the reinterpret_cast operator, the expression
must be a pointer or an integer.

Example:
extern float fval;long*lp=constcast<long*>(fval);

The expression has float type and so is illegal.

785 reinterpret_cast expression cannot be casted to reference type

When a reference type is specified in the reinterpret_cast operator, the
expression must be an lvalue (or have reference type). Additionally, constness
cannot be casted away.

Diagnostic Messages 635

Appendices

Example:
extern long f;
extern const long f2;long&lr1=constcast<long&>(f+2);long&lr2=constcast<long&>(f2);

Both initializations are illegal. The first cast expression is not an lvalue. The
second cast expression attempts to cast away constness.

786 reinterpret_cast expression cannot be casted to pointer to member

When a pointer to member type is specified in the reinterpret_cast operator, the
expression must be a pointer to member. Additionally, constness cannot be
casted away.

Example:
extern long f;
struct S {

const long f2;
S();

};longS::*mp1=constcast<longS::*>(f);longS::*mp2=constcast<longS::*>(&S::f2);
Both initializations are illegal. The first cast expression does not involve a
member pointer. The second cast expression attempts to cast away constness.

787 only integral arithmetic types can be used with reinterpret_cast

Pointers can only be casted to sufficiently large integral types.

Example:
void* p;floatf=reinterpretcast<float>(p);

The cast is illegal because float type is specified.

636 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

788 only integral arithmetic types can be used with reinterpret_cast

Only integral arithmetic types can be casted to pointer types.

Example:
float flt;void*p=reinterpretcast<void*>(flt);

The cast is illegal because flt has float type which is not integral.

789 cannot cast away constness

A cast or implicit conversion is illegal because a conversion to the target type
would remove constness from a pointer, reference, or pointer to member.

Example:
struct S {

int s;
};
extern S const * ps;
extern int const S::* mps;
S* ps1 = ps;
S& rs1 = *ps;
int S::* mp1 = mps;

The three initializations are illegal since they are attempts to remove constness.

790 size of integral type in cast less than size of pointer

An object of the indicated integral type is too small to contain the value of the
indicated pointer.

Example:
int x;charp=reinterpretcast<char>(&x);
char q = (char)(&x);

Both casts are illegal since a char is smaller than a pointer.

Diagnostic Messages 637

Appendices

791 type cannot be used in reinterpret_cast

The type specified with reinterpret_cast must be an integral type, a pointer type,
a pointer to a member of a class, or a reference type.

Example:
void* p;floatf=reinterpretcast<float>(p);void*q=(reinterpretcast<void>(p),p);

The casts specify illegal types.

792 only pointers can be casted to integral types with reinterpret_cast

The expression must be a pointer type.

Example:
void* p;floatf=reinterpretcast<float>(p);void*q=(reinterpretcast<void>(p),p);

The casts specify illegal types.

793 only integers and pointers can be casted to pointer types with reinterpret_cast

The expression must be a pointer or integral type.

Example:
void* x;void*p=reinterpretcast<void*>(16);void*q=(reinterpretcast<void*>(x),p);

The casts specify illegal types.

794 static_cast cannot convert the expression

The indicated expression cannot be converted to the type specified with the
static_cast operator. Perhaps reinterpret_cast or dynamic_cast should be used
instead;

638 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

795 static_cast cannot be used with the type specified

A static cast cannot be used with a function type or array type.

Example:
typedef int fun(int);
extern int poo(long);inti=(staticcast<fun)(poo))(22);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

796 static_cast cannot be used with the reference type specified

The expression could not be converted to the specified type using static_cast.

Example:
long lng;int&ref=staticcast<int&>(lng);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

797 static_cast cannot be used with the pointer type specified

The expression could not be converted to the specified type using static_cast.

Example:
long lng;int*ref=staticcast<int*>(lng);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

798 static_cast cannot be used with the member pointer type specified

The expression could not be converted to the specified type using static_cast.

Example:
struct S {

long lng;
};intS::*mp=staticcast<intS::*>(&S::lng);

Perhaps reinterpret_cast or dynamic_cast should be used instead;

Diagnostic Messages 639

Appendices

799 static_cast type is ambiguous

More than one constructor and/or used-defined conversion function can be used
to convert the expression to the indicated type.

800 cannot cast from ambiguous base class

When more than one base class of a given type exists, with respect to a derived
class, it is impossible to cast from the base class to the derived class.

Example:
struct Base { int b1; };
struct DerA public Base { int da; };
struct DerB public Base { int db; };
struct Derived public DerA, public DerB { int d; }
Derived* foo(Base* p)
{returnstaticcast<Derived*>(p);
}

The cast fails since Base is an ambiguous base class for Derived.

801 cannot cast to ambiguous base class

When more than one base class of a given type exists, with respect to a derived
class, it is impossible to cast from the derived class to the base class.

Example:
struct Base { int b1; };
struct DerA public Base { int da; };
struct DerB public Base { int db; };
struct Derived public DerA, public DerB { int d; }
Base* foo(Derived* p)
{

return (Base*)p;
}

The cast fails since Base is an ambiguous base class for Derived.

640 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

802 can only static_cast integers to enumeration type

When an enumeration type is specified with static_cast, the expression must be
an integer.

Example:
enum sex { male, female };sexfather=staticcast<sex>(1.0);

The cast is illegal because the expression is not an integer.

803 dynamic_cast cannot be used with the type specified

A dynamic cast can only specify a reference to a class or a pointer to a class or
void. When a class is referenced, it must have virtual functions defined within
that class or a base class of that class.

804 dynamic_cast cannot convert the expression

The indicated expression cannot be converted to the type specified with the
dynamic_cast operator. Only a pointer or reference to a class object can be
converted. When a class object is referenced, it must have virtual functions
defined within that class or a base class of that class.

805 dynamic_cast requires class ’%T’ to have virtual functions

The indicated class must have virtual functions defined within that class or a
base class of that class.

806 base class for type in dynamic_cast is ambiguous (will fail)

The type in the dynamic_cast is a pointer or reference to an ambiguous base
class.

Example:
struct A { virtual void f(){}; };
struct D1 : A { };
struct D2 : A { };
struct D : D1, D2 { };

A *foo(D *p) {
// will always return NULLreturn(dynamiccast<A*>(p));

}

Diagnostic Messages 641

Appendices

807 base class for type in dynamic_cast is private (may fail)

The type in the dynamic_cast is a pointer or reference to a private base class.

Example:
struct V { virtual void f(){}; };
struct A : private virtual V { };
struct D : public virtual V, A { };

V *foo(A *p) {
// returns NULL if ’p’ points to an ’A’
// returns non-NULL if ’p’ points to a ’D’return(dynamiccast<V*>(p));

}

808 base class for type in dynamic_cast is protected (may fail)

The type in the dynamic_cast is a pointer or reference to a protected base class.

Example:
struct V { virtual void f(){}; };
struct A : protected virtual V { };
struct D : public virtual V, A { };

V *foo(A *p) {
// returns NULL if ’p’ points to an ’A’
// returns non-NULL if ’p’ points to a ’D’return(dynamiccast<V*>(p));

}

809 type cannot be used with an explicit cast

The indicated type cannot be specified as the type of an explicit cast. For
example, it is illegal to cast to an array or function type.

810 cannot cast to an array type

It is not permitted to cast to an array type.

642 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:typedefintarraytype[5];
int array[5];int*p=(arraytype)array;

811 cannot cast to a function type

It is not permitted to cast to a function type.

Example:typedefintfuntype(void);void*p=(funtype)0;
812 implementation restriction: cannot generate RTTI info for ’%T’ (%d classes)

The information for one class must fit into one segment. If the segment size is
restricted to 64k, the compiler may not be able to emit the correct information
properly if it requires more than 64k of memory to represent the class hierarchy.

813 more than one default constructor for ’%T’

The compiler found more than one default constructor signature in the class
definition. There must be only one constructor declared that accepts no
arguments.

Example:
struct C {

C();
C(int = 0);

};
C cv;

814 user-defined conversion is ambiguous

The compiler found more than one user-defined conversion which could be
performed. The indicated functions that could be used are shown.

Diagnostic Messages 643

Appendices

Example:
struct T {

T(S const&);
};
struct S {

operator T const& ();
};
extern S sv;
T const & tref = sv;

Either the constructor or the conversion function could be used; consequently,
the conversion is ambiguous.

815 range of possible values for type ’%T’ is %u to %u

This informational message indicates the range of values possible for the
indicated unsigned type.

Example:
unsigned char uc;
if(uc >= 0);

Being unsigned, the char is always >= 0, so a warning will be issued. Following
the warning, this informational message indicates the possible range of values
for the unsigned type involved.

816 range of possible values for type ’%T’ is %d to %d

This informational message indicates the range of values possible for the
indicated signed type.

Example:
signed char c;
if(c <= 127);

Because the value of signed char is always <= 127, a warning will be issued.
Following the warning, this informational message indicates the possible range
of values for the signed type involved.

644 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

817 constant expression in comparison has value %d

This informational message indicates the value of the constant expression
involved in a comparison which caused a warning to be issued.

Example:
unsigned char uc;
if(uc >= 0);

Being unsigned, the char is always >= 0, so a warning will be issued. Following
the warning, this informational message indicates the constant value (0 in this
case) involved in the comparison.

818 constant expression in comparison has value %u

This informational message indicates the value of the constant expression
involved in a comparison which caused a warning to be issued.

Example:
signed char c;
if(c <= 127);

Because the value of char is always <= 127, a warning will be issued. Following
the warning, this informational message indicates the constant value (127 in this
case) involved in the comparison.

819 conversion of const reference to non-const reference

A reference to a constant object is being converted to a reference to a
non-constant object. This can only be accomplished by using an explicit orconstcast cast.

Example:externintconst&constref;int&nonconstref=constref;
Diagnostic Messages 645

Appendices

820 conversion of volatile reference to non-volatile reference

A reference to a volatile object is being converted to a reference to a
non-volatile object. This can only be accomplished by using an explicit orconstcast cast.

Example:externintvolatile&volatileref;int&nonvolatileref=volatileref;
821 conversion of const volatile reference to plain reference

A reference to a constant and volatile object is being converted to a reference to
a non-volatile and non-constant object. This can only be accomplished by using
an explicit orconstcast cast.

Example:externintconstvolatile&constvolatileref;int&nonconstvolatileref=constvolatileref;
822 current declaration has type ’%T’

This informational message indicates the type of the current declaration that
caused the message to be issued.

Example:externintnearfoo(int);externintfarfoo(int);
823 only a non-volatile const reference can be bound to temporary

The expression being bound to a reference will need to be converted to a
temporary of the type referenced. This means that the reference will be bound to
that temporary and so the reference must be a non-volatile const reference.

Example:
extern int * pi;
void * & r1 = pi; // error
void * const & r2 = pi; // ok
void * volatile & r3 = pi; // error
void * const volatile & r4 = pi;// error

646 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

824 conversion of pointer to member across a virtual base

In November 1995, the Draft Working Paper was amended to disallow pointer to
member conversions when the source class is a virtual base of the target class.
This situation is treated as a warning (unless -za is specified to require strict
conformance), as a temporary measure. In the future, an error will be diagnosed
for this situation.

Example:
struct B {

int b;
};

struct D : virtual B {
int d;

};intB::*mpb=&B::b;intD::*mpd=mpb;//conversionacrossa
virtual base

825 declaration cannot be in the same scope as namespace ’%S’

A namespace name must be unique across the entire C++ program. Any other
use of a name cannot be in the same scope as the namespace.

Example:
namespace x {

int q;
};
int x;

826 ’%S’ cannot be in the same scope as a namespace

A namespace name must be unique across the entire C++ program. Any other
use of a name cannot be in the same scope as the namespace.

Example:
int x;
namespace x {

int q;
};

Diagnostic Messages 647

Appendices

827 File: %s

This informative message is written when the -ew switch is specified on a
command line. It indicates the name of the file in which an error or warning was
detected. The message precedes a group of one or more messages written for the
file in question. Within each group, references within the file have the format
(line[,column]).

828 %s

This informative message is written when the -ew switch is specified on a
command line. It indicates the location of an error when the error was detected
either before or after the source file was read during the compilation process.

829 %s: %s

This informative message is written when the -ew switch is specified on a
command line. It indicates the location of an error when the error was detected
while processing the switches specified in a command file or by the contents of
an environment variable. The switch that was being processed is displayed
following the name of the file or the environment variable.

830 %s: %S

This informative message is written when the -ew switch is specified on a
command line. It indicates the location of an error when the error was detected
while generating a function, such as a constructor, destructor, or assignment
operator or while generating the machine instructions for a function which has
been analysed. The name of the function is given following text indicating the
context from which the message originated.

831 possible override is ’%S’

The indicated function is ambiguous since that name was defined in more than
one base class and one or more of these functions is virtual. Consequently, it
cannot be decided which is the virtual function to be used in a class derived from
these base classes.

648 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

832 function being overridden is ’%S’

This informational message indicates a function which cannot be overridden by
a virtual function which has ellipsis parameters.

833 name does not reference a namespace

A namespace alias definition must reference a namespace definition.

Example:
typedef int T;
namespace a = T;

834 namespace alias cannot be changed

A namespace alias definition cannot change which namespace it is referencing.

Example:
namespace ns1 { int x; }
namespace ns2 { int x; }
namespace a = ns1;
namespace a = ns2;

835 cannot throw undefined class object

C++ does not allow undefined classes to be copied and so an undefined class
object cannot be specified in a throw expression.

836 symbol has different type than previous symbol in same declaration

This warning indicates that two symbols in the same declaration have different
types. This may be intended but it is often due to a misunderstanding of the C++
declaration syntax.

Example:
// change to:
// char *p;
// char q;
// or:
// char *p, *q;
char* p, q;

Diagnostic Messages 649

Appendices

837 companion definition is ’%S’

This informational message indicates the other symbol that shares a common
base type in the same declaration.

838 syntax error; default argument cannot be processed

The default argument contains unbalanced braces or parenthesis. The default
argument cannot be processed in this form.

839 default argument started %L

This informational message indicates where the default argument started so that
any problems with missing braces or parenthesis can be fixed quickly and easily.

Example:
struct S {

int f(int t= (4+(3-7), // missing parenthesis
);

};

840 ’%N’ cannot be declared in a namespace

A namespace cannot contain declarations or definitions of operator new or
operator delete since they will never be called implicitly in a new or delete
expression.

Example:
namespace N {

void *operator new(unsigned);
void operator delete(void *);

};

841 namespace cannot be defined in a non-namespace scope

A namespace can only be defined in either the global namespace scope (file
scope) or a namespace scope.

650 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct S {

namespace N {
int x;
};

}

842 namespace ’::’ qualifier cannot be used in this context

Qualified identifiers in a class context are allowed for declaring friend
functions. A namespace qualified name can only be declared in a namespace
scope that encloses the qualified name’s namespace.

Example:
namespace M {

namespace N {
void f();
void g();
namespace O {

void N::f() {
// error

}
}
}
void N::g() {

// OK
}

}

843 cannot cast away volatility

A cast or implicit conversion is illegal because a conversion to the target type
would remove volatility from a pointer, reference, or pointer to member.

Example:
struct S {

int s;
};
extern S volatile * ps;
extern int volatile S::* mps;
S* ps1 = ps;
S& rs1 = *ps;
int S::* mp1 = mps;

The three initializations are illegal since they are attempts to remove volatility.

Diagnostic Messages 651

Appendices

844 cannot cast away constness and volatility

A cast or implicit conversion is illegal because a conversion to the target type
would remove constness and volatility from a pointer, reference, or pointer to
member.

Example:
struct S {

int s;
};
extern S const volatile * ps;
extern int const volatile S::* mps;
S* ps1 = ps;
S& rs1 = *ps;
int S::* mp1 = mps;

The three initializations are illegal since they are attempts to remove constness
and volatility.

845 cannot cast away unaligned

A cast or implicit conversion is illegal because a conversion to the target type
would add alignment to a pointer, reference, or pointer to member.

Example:
struct S {

int s;
};externSunaligned*ps;externintunalignedS::*mps;
S* ps1 = ps;
S& rs1 = *ps;
int S::* mp1 = mps;

The three initializations are illegal since they are attempts to add alignment.

846 subscript expression must be integral

Both of the operands of the indicated index expression are pointers. There may
be a missing indirection or function call.

652 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
int f();
int *p;
int g() {

return p[f];
}

847 extension: non-standard user-defined conversion

An extended conversion was allowed. The latest draft of the C++ working paper
does not allow a user-defined conversion to be used in this context. As an
extension, the WATCOM compiler supports the conversion since substantial
legacy code would not compile without the extension.

848 useless using directive ignored

This warning indicates that for most purposes, the using namespace directive
can be removed.

Example:
namespace A {

using namespace A; // useless
};

849 base class virtual function has not been overridden

This warning indicates that a virtual function name has been overridden but in
an incomplete manner, namely, a virtual function signature has been omitted in
the overriding class.

Example:
struct B {

virtual void f() const;
};
struct D : B {

virtual void f();
};

Diagnostic Messages 653

Appendices

850 virtual function is ’%S’

This message indicates which virtual function has not been overridden.

851 macro ’%s’ defined %L

This informational message indicates where the macro in question was defined.
The message is displayed following an error or warning diagnostic for the macro
in question.

Example:
#define mac(a,b,c) a+b+c

int i = mac(6,7,8,9,10);

The expansion of macro mac is erroneous because it contains too many
arguments. The informational message will indicate where the macro was
defined.

852 expanding macro ’%s’ defined %L

These informational messages indicate the macros that are currently being
expanded, along with the location at which they were defined. The message(s)
are displayed following a diagnostic which is issued during macro expansion.

853 conversion to common class type is impossible

The conversion to a common class is impossible. One or more of the left and
right operands are class types. The informational messages indicate these types.

Example:
class A { A(); };
class B { B(); };
extern A a;
extern B b;
int i = (a == b);

The last statement is erroneous since a conversion to a common class type is
impossible.

654 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

854 conversion to common class type is ambiguous

The conversion to a common class is ambiguous. One or more of the left and
right operands are class types. The informational messages indicate these types.

Example:
class A { A(); };
class B : public A { B(); };
class C : public A { C(); };
class D : public B, public C { D(); };
extern A a;
extern D d;
int i = (a == d);

The last statement is erroneous since a conversion to a common class type is
ambiguous.

855 conversion to common class type requires private access

The conversion to a common class violates the access permission which was
private. One or more of the left and right operands are class types. The
informational messages indicate these types.

Example:
class A { A(); };
class B : private A { B(); };
extern A a;
extern B b;
int i = (a == b);

The last statement is erroneous since a conversion to a common class type
violates the (private) access permission.

856 conversion to common class type requires protected access

The conversion to a common class violates the access permission which was
protected. One or more of the left and right operands are class types. The
informational messages indicate these types.

Diagnostic Messages 655

Appendices

Example:
class A { A(); };
class B : protected A { B(); };
extern A a;
extern B b;
int i = (a == b);

The last statement is erroneous since a conversion to a common class type
violates the (protected) access permission.

857 namespace lookup is ambiguous

A lookup for a name resulted in two or more non-function names being found.
This is not allowed according to the C++ working paper.

Example:
namespace M {

int i;
}
namespace N {

int i;
using namespace M;

}
void f() {

using namespace N;
i = 7; // error

}

858 ambiguous namespace symbol is ’%S’

This informational message shows a symbol that conflicted with another symbol
during a lookup.

859 attempt to static_cast from a private base class

An attempt was made to static_cast a pointer or reference to a private base class
to a derived class.

656 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct PrivateBase {
};

struct Derived : private PrivateBase {
};

extern PrivateBase* pb;
extern PrivateBase& rb;Derived*pd=staticcast<Derived*>(pb);Derived&rd=staticcast<Derived&>(rb);

The last two statements are erroneous since they would involve a static_cast
from a private base class.

860 attempt to static_cast from a protected base class

An attempt was made to static_cast a pointer or reference to a protected base
class to a derived class.

Example:
struct ProtectedBase {
};

struct Derived : protected ProtectedBase {
};

extern ProtectedBase* pb;
extern ProtectedBase& rb;Derived*pd=staticcast<Derived*>(pb);Derived&rd=staticcast<Derived&>(rb);

The last two statements are erroneous since they would involve a static_cast
from a protected base class.

861 qualified symbol cannot be defined in this scope

This message indicates that the scope of the symbol is not nested in the current
scope. This is a restriction in the C++ language.

Diagnostic Messages 657

Appendices

Example:
namespace A {

struct S {
void ok();
void bad();
};
void ok();
void bad();

};
void A::S::ok() {
}
void A::ok() {
}
namespace B {

void A::S::bad() {
// error!
}
void A::bad() {
// error!
}

};

862 using declaration references non-member

This message indicates that the entity referenced by the using declaration is not
a class member even though the using declaration is in class scope.

Example:
namespace B {

int x;
};
struct D {

using B::x;
};

863 using declaration references class member

This message indicates that the entity referenced by the using declaration is a
class member even though the using declaration is not in class scope.

658 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct B {

int m;
};
using B::m;

864 invalid suffix for a constant

An invalid suffix was coded for a constant.

Example:int64a[]={
0i7, // error
0i8,
0i15, // error
0i16,
0i31, // error
0i32,
0i63, // error
0i64,

};

865 class in using declaration (’%T’) must be a base class

A using declaration declared in a class scope can only reference entities in a
base class.

Example:
struct B {

int f;
};
struct C {

int g;
};
struct D : private C {

B::f;
};

Diagnostic Messages 659

Appendices

866 name in using declaration is already in scope

A using declaration can only reference entities in other scopes. It cannot
reference entities within its own scope.

Example:
namespace B {

int f;
using B::f;

};

867 conflict with a previous using-decl ’%S’

A using declaration can only reference entities in other scopes. It cannot
reference entities within its own scope.

Example:
namespace B {

int f;
using B::f;

};

868 conflict with current using-decl ’%S’

A using declaration can only reference entities in other scopes. It cannot
reference entities within its own scope.

Example:
namespace B {

int f;
using B::f;

};

869 use of ’%N’ requires build target to be multi-threaded

The compiler has detected a use of a run-time function that will create a new
thread but the current build target indicates only single-threaded C++ source
code is expected. Depending on the user’s environment, enabling
multi-threaded applications can involve using the "-bm" option or selecting
multi-threaded applications through a dialogue.

660 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

870 implementation restriction: cannot use 64-bit value in switch statement

The use of 64-bit values in switch statements has not been implemented.

871 implementation restriction: cannot use 64-bit value in case statement

The use of 64-bit values in case statements has not been implemented.

872 implementation restriction: cannot use __int64 as bit-field base type

The use of __int64 for the base type of a bit-field has not been implemented.

873 based function object cannot be placed in non-code segment "%s".

Use __segname with the default code segment "_CODE", or a code segment
with the appropriate suffix (indicated by informational message).

Example:intbased(segname("foo"))f(){return1;}
Example:intbased(segname("CODE"))f(){return1;}

874 Use a segment name ending in "%s", or the default code segment "_CODE".

This informational message explains how to use __segname to name a code
segment.

875 RTTI must be enabled to use feature (use ’xr’ option)

RTTI must be enabled by specifying the ’xr’ option when the compiler is
invoked. The error message indicates that a feature such as dynamic_cast, or
typeid has been used without enabling RTTI.

876 ’typeid’ class type must be defined

The compile-time type of the expression or type must be completely defined if it
is a class type.

Diagnostic Messages 661

Appendices

Example:
struct S;
void foo(S *p) {

typeid(*p);
typeid(S);

}

877 cast involves unrelated member pointers

This warning is issued to indicate that a dangerous cast of a member pointer has
been used. This occurs when there is an explicit cast between sufficiently
unrelated types of member pointers that the cast must be implemented using a
reinterpret_cast. These casts were illegal, but became legal when the new-style
casts were added to the draft working paper.

Example:
struct C1 {

int foo();
};
struct D1 {

int poo();
};

typedef int (C1::* C1mp)();

C1mp fmp = (C1mp)&D1::poo;

The cast on the last line of the example would be diagnosed.

878 unexpected type modifier found

A __declspec modifier was found that could not be applied to an object or could
not be used in this context.

Example:declspec(thread)structS{
};

662 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

879 invalid bit-field name ’%N’

A bit-field can only have a simple identifier as its name. A qualified name is
also not allowed for a bit-field.

Example:
struct S {

int operator + : 1;
};

880 %u padding byte(s) added

This warning indicates that some extra bytes have been added to a class in order
to align member data to its natural alignment.

Example:
#pragma pack(push,8)
struct S {

char c;
double d;

};
#pragma pack(pop);

881 cannot be called with a ’%T *’

This message indicates that the virtual function cannot be called with a pointer
or reference to the current class.

882 cast involves an undefined member pointer

This warning is issued to indicate that a dangerous cast of a member pointer has
been used. This occurs when there is an explicit cast between sufficiently
unrelated types of member pointers that the cast must be implemented using a
reinterpret_cast. In this case, the host class of at least one member pointer was
not a fully defined class and, as such, it is unknown whether the host classes are
related through derivation. These casts were illegal, but became legal when the
new-style casts were added to the draft working paper.

Diagnostic Messages 663

Appendices

Example:
struct C1 {

int foo();
};
struct D1;

typedef int (C1::* C1mp)();
typedef int (D1::* D1mp)();

C1mp fn(D1mp x) {
return (C1mp) x;

}
// D1 may derive from C1

The cast on the last line of the example would be diagnosed.

883 cast changes both member pointer object and class type

This warning is issued to indicate that a dangerous cast of a member pointer has
been used. This occurs when there is an explicit cast between sufficiently
unrelated types of member pointers that the cast must be implemented using a
reinterpret_cast. In this case, the host classes of the member pointers are related
through derivation and the object type is also being changed. The cast can be
broken up into two casts, one that changes the host class without changing the
object type, and another that changes the object type without changing the host
class.

Example:
struct C1 {

int fn1();
};
struct D1 : C1 {

int fn2();
};

typedef int (C1::* C1mp)();
typedef void (D1::* D1mp)();

C1mp fn(D1mp x) {
return (C1mp) x;

}

The cast on the last line of the example would be diagnosed.

664 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

884 virtual function ’%S’ has a different calling convention

This error indicates that the calling conventions specified in the virtual function
prototypes are different. This means that virtual function calls will not function
properly since the caller and callee may not agree on how parameters should be
passed. Correct the problem by deciding on one calling convention and change
the erroneous declaration.

Example:
struct B {virtualvoidcdeclfoo(int,int);
};
struct D : B {

void foo(int, int);
};

885 #endif matches #if in different source file

This warning may indicate a #endif nesting problem since the traditional usage
of #if directives is confined to the same source file. This warning may often
come before an error and it is hoped will provide information to solve a
preprocessing directive problem.

886 preprocessing directive found %L

This informational message indicates the location of a preprocessing directive
associated with the error or warning message.

887 unary ’-’ of unsigned operand produces unsigned result

When a unary minus (’-’) operator is applied to an unsigned operand, the result
has an unsigned type rather than a signed type. This warning often occurs
because of the misconception that ’-’ is part of a numeric token rather than as a
unary operator. The work-around for the warning is to cast the unary minus
operand to the appropriate signed type.

Diagnostic Messages 665

Appendices

Example:
extern void u(int);
extern void u(unsigned);
void fn(unsigned x) {

u(-x);
u(-2147483648);

}

888 trigraph expansion produced ’%c’

Trigraph expansion occurs at a very low-level so it can affect string literals that
contain question marks. This warning can be disabled via the command line or
#pragma warning directive.

Example:
// string expands to "(?]?~????"!
char *e = "(???)???-????";
// possible work-arounds
char *f = "(" "???" ")" "???" "-" "????";
char *g = "(\?\?\?)\?\?\?-\?\?\?\?";

889 hexadecimal escape sequence out of range; truncated

This message indicates that the hexadecimal escape sequence produces an
integer that cannot fit into the required character type.

Example:
char *p = "\x0aCache Timings\x0a";

890 undefined macro ’%s’ evaluates to 0

The ISO C/C++ standard requires that undefined macros evaluate to zero during
preprocessor expression evaluation. This default behaviour can often mask
incorrectly spelled macro references. The warning is useful when used in
critical environments where all macros will be defined.

Example:#ifPRODUCTI0N//shouldbePRODUCTION
#endif

666 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

891 char constant has value %u (more than 8 bits)

The ISO C/C++ standard requires that multi-char character constants be
accepted with an implementation defined value. This default behaviour can
often mask incorrectly specified character constants.

Example:
int x = ’\0x1a’; // warning
int y = ’\x1a’;

892 promotion of unadorned char type to int

This message is enabled by the hidden -jw option. The warning may be used to
locate all places where an unadorned char type (i.e., a type that is specified as
char and neither signed char nor unsigned char). This may cause portability
problems since compilers have freedom to specify whether the unadorned char
type is to be signed or unsigned. The promotion to int will have different
values, depending on the choice being made.

893 switch statement has no case labels

The switch statement referenced in the warning did not have any case labels.
Without case labels, a switch statement will always jump to the default case
code.

Example:
void fn(int x)
{

switch(x) {
default:
++x;
}

}

894 unexpected character (%u) in source file

The compiler has encountered a character in the source file that is not in the
allowable set of input characters. The decimal representation of the character
byte is output for diagnostic purposes.

Diagnostic Messages 667

Appendices

Example:
// invalid char ’\0’

895 ignoring whitespace after line splice

The compiler is ignoring some whitespace characters that occur after the line
splice. This warning is useful when the source code must be compiled with
other compilers that do not allow this extension.

Example:
#define XXXX int \
x;

XXXX

896 empty member declaration

The compiler is warning about an extra semicolon found in a class definition.
The extra semicolon is valid C++ but some C++ compilers do not accept this as
valid syntax.

Example:
struct S { ; };

897 ’%S’ makes use of a non-portable feature (zero-sized array)

The compiler is warning about the use of a non-portable feature in a declaration
or definition. This warning is available for environments where diagnosing the
use of non-portable features is useful in improving the portability of the code.

Example:
struct D {

int d;
char a[];

};

898 in-class initialization is only allowed for const static integral members

668 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

Example:
struct A {

static int i = 0;
};

899 cannot convert expression to target type

The implicit cast is trying to convert an expression to a completely unrelated
type. There is no way the compiler can provide any meaning for the intended
cast.

Example:
struct T {
};

void fn()
{

bool b = T;
}

900 unknown template specialization of ’%S’

Example:
template<class T>
struct A { };

template<class T>
void A<T *>::f() {
}

901 wrong number of template arguments for ’%S’

Example:
template<class T>
struct A { };

template<class T, class U>
struct A<T, U> { };
}

Diagnostic Messages 669

Appendices

902 cannot explicitly specialize member of ’%S’

Example:
template<class T>
struct A { };

template<>
struct A<int> {

void f();
};

template<>
void A<int>::f() {
}

903 specialization arguments for ’%S’ match primary template

Example:
template<class T>
struct A { };

template<class T>
struct A<T> { };

904 partial template specialization for ’%S’ ambiguous

Example:
template<class T, class U>
struct A { };

template<class T, class U>
struct A<T *, U> { };

template<class T, class U>
struct A<T, U *> { };

A<int *, int *> a;

670 Diagnostic Messages

Open Watcom C++ Diagnostic Messages

905 static assertion failed ’%s’

Example:staticassert(false,"false");
906 Exported templates are not supported by Open Watcom C++

Example:
export template< class T >
struct A {
};

907 redeclaration of member function ’%S’ not allowed

Example:
struct A {

void f();
void f();

};

908 candidate defined %L

909 Invalid register name ’%s’ in #pragma

The register name is invalid/unknown.

910 Archaic syntax: class/struct missing in explicit template instatiation

Archaic syntax has been used. The standard requires a class or struct keyword
to be used.

Example:
template< class T >
class MyTemplate { };

template MyTemplate< int >;

Diagnostic Messages 671

Appendices

Example:
template class MyTemplate< int >;

672 Diagnostic Messages

Open Watcom C/C++ Run-Time Messages

D. Open Watcom C/C++ Run-Time Messages

The following is a list of error messages produced by the Open Watcom C/C++ run-time
library. These messages can only appear during the execution of an application built with one
of the C run-time libraries.

D.1 Run-Time Error Messages

Assertion failed: %s, file %s, line %d

This message is displayed whenever an assertion that you have made in your
program is not true.

Stack Overflow!

Your program is trying to use more stack space than is available. If you believe
that your program is correct, you can increase the size of the stack by using the
"option stack=nnnn" when you link the program. The stack size can also be
specified with the "k" option if you are using WCL or WCL386.

Floating-point support not loaded

You have called one of the printf functions with a format of "%e", "%f", or
"%g", but have not passed a floating-point value. The compiler generates a
reference to the variable "_fltused_" whenever you pass a floating-point value to
a function. During the linking phase, the extra floating-point formatting routines
will also be brought into your application when "_fltused_" is referenced.
Otherwise, you only get the non floating-point formatting routines.

*** NULL assignment detected

This message is displayed if any of the first 32 bytes of your program’s data
segment has been modified. The check is performed just before your program
exits to the operating system. All this message means is that sometime during
the execution of your program, this memory was modified.

Run-Time Error Messages 673

Appendices

To find the problem, you must link your application with debugging information
and use Open Watcom Debugger to monitor its execution. First, run the
application with Open Watcom Debugger until it completes. Examine the first
16 bytes of the data segment ("examine __nullarea") and press the space bar to
see the next 16 bytes. Any values that are not equal to ’01’ have been modified.
Reload the application, set watch points on the modified locations, and start
execution. Open Watcom Debugger will stop when the specified location(s)
change in value.

D.2 errno Values and Their Meanings

The following errors can be generated by the C run-time library. These error codes
correspond to the error types defined in errno.h.

ENOENT No such file or directory

The specified file or directory cannot be found.

E2BIG Argument list too big

The argument list passed to the spawn..., exec... or system functions
requires more than 128 bytes, or the environment information exceeds 32K.

ENOEXEC Exec format error

The executable file has an invalid format.

EBADF Bad file number

The file handle is not a valid file handle value or it does not correspond to an
open file.

ENOMEM Not enough memory

There was not enough memory available to perform the specified request.

EACCES Permission denied

You do not have the required (or correct) permissions to access a file.

EEXIST File exists

674 errno Values and Their Meanings

Open Watcom C/C++ Run-Time Messages

An attempt was made to create a file with the O_EXCL (exclusive) flag when
the file already exists.

EXDEV Cross-device link

An attempt was made to rename a file to a different device.

EINVAL Invalid argument

An invalid value was specified for one of the arguments to a function.

ENFILE File table overflow

All the FILE structures are in use, so no more files can be opened.

EMFILE Too many open files

There are no more file handles available, so no more files can be opened. The
maximum number of file handles available is controlled by the "FILES=" option
in the "CONFIG.SYS" file.

ENOSPC No space left on device

No more space is left for writing on the device, which usually means that the
disk is full.

EDOM Argument too large

An argument to a math function is not in the domain of the function.

ERANGE Result too large

The result of a math function could not be represented (too small, or too large).

EDEADLK Resource deadlock would occur

A resource deadlock would occur with regards to locked files.

errno Values and Their Meanings 675

Appendices

D.3 Math Run-Time Error Messages

The following errors can be generated by the math functions in the C run-time library. These
error codes correspond to the exception types defined in math.h and returned by the
matherr function when a math error occurs.

DOMAIN Domain error

An argument to the function is outside the domain of
the function.

OVERFLOW Overflow range error

The function result is too large.

PLOSS Partial loss of significance

A partial loss of significance occurred.

SING Argument singularity

An argument to the function has a bad value (e.g.,
log(0.0)).

TLOSS Total loss of significance

A total loss of significance occurred. An argument to
a function was too large to produce a meaningful
result.

UNDERFLOW Underflow range error

The result is too small to be represented.

676 Math Run-Time Error Messages

Index

<

#define 599, 619 <os>_INCLUDE environment variable 23, 94
#elif 434-435
#else 434-435, 593
#endif 391, 434-435, 449, 593, 665
#error 181, 269, 449 \
#if 391, 434-435, 449, 665
#ifdef 449
#ifndef 449, 619

\H directory 94#include 93, 436, 442, 444-445, 543, 616, 619
#line 36
#pragma 104, 110, 608, 622
#pragma extref 631

A#pragma warning 390, 666
#undef 451, 598

AbnormalTermination 350-351, 357
abort() 343

- aborts (pragma) 213, 302
access violation 360
addressing arguments 161, 246, 249
alias name (pragma) 191, 279-zo 622
alias names

cdecl 194, 282
fastcall 194, 282
fortran 194, 2823
pascal 194, 282
stdcall 194, 282
syscall 282

__386__ 98 system 282
watcall 194, 282

aliasing 74
alloc_text 67
alloc_text pragma 175, 2638
_alloca() 82
argument list (pragma) 202, 291
arguments

8087CW.C 139-140 removing from the stack 208, 297
80x87 emulator 136 arguments on the stack 206, 295

677

Index

__asm 120, 330
assembly language

Cautomatic variables 328
directives 332
in-line 319
labels 327 C directory 84
opcodes 332 C libraries
variables 327 compact 132, 137

auto 404-405, 409, 421, 445, 457, 464, 471, 473, flat 137-138, 232
510, 519 huge 132, 137

AUTODEPEND 188, 276 large 132, 137
AUTOEXEC.BAT 86 medium 132, 137
auxiliary pragma 190, 278 small 132, 137-138, 232

C/C++ libraries
flat 133
small 133

B callback functions 201
calling convention

MetaWare High C 281, 309
Microsoft C 193, 220base operator 115

calling conventions 151, 235__based 104, 113, 444
calling functions_based macro 41

far 197, 287based pointers 113
near 197, 287segment constant 114

calling information (pragma) 197, 287segment object 115
case 389, 396, 408, 433, 448, 479, 580self 116
catch 79, 444, 482, 589, 592-593, 611, 628void 115
cdecl 104-106, 194, 280, 282benchmarking 89
cdecl alias name 194, 282_bheapseg 115
cdecl macro 41big code model 145, 229
char 51, 109-110, 402, 404, 441, 626, 637, 667big data model 146, 230

size of 158, 242BINNT directory 377
char type 152, 236BINP directory 377
__CHAR_SIGNED__ 51, 99BINW directory 377
check_stack option 172, 260BIOS call 206, 296
class 439, 455-456, 476, 492, 531, 588, 597, 671bool 619-620

BSS 63break 343, 347-348, 350, 396, 433, 613-614
CODE 63, 149, 156, 233, 240BSS class 63
DATA 63_BSS segment 63
FAR_DATA 150, 156, 233, 240

class information 179, 267
CLIB3R.LIB 134
CLIB3S.LIB 134

678

Index

CLIBC.LIB 133-134 continue 343, 348, 350, 397, 433
CLIBDLL.LIB 133 conventions
CLIBH.LIB 133 80x87 168, 170, 256, 258
CLIBL.LIB 133-134 non-80x87 157, 241
CLIBM.LIB 133-134 __cplusplus 100
CLIBMTL.LIB 133 CPLX3R.LIB 135
CLIBS.LIB 133-134 CPLX3S.LIB 135
CMAIN086.C 140 CPLX73R.LIB 135
CMAIN386.C 141 CPLX73S.LIB 135
CODE class 63, 149, 156, 233, 240 CPLX7C.LIB 135
code generation 124 CPLX7H.LIB 135

memory requirements 124, 380 CPLX7L.LIB 135
code models CPLX7M.LIB 135

big 145, 229 CPLX7S.LIB 135
small 145, 229 CPLXC.LIB 135

code segment 52 CPLXH.LIB 135
code_seg pragma 176, 264 CPLXL.LIB 135
command line format 84 CPLXM.LIB 135
command line options CPLXS.LIB 135

compiler 84 __CPPRTTI 101
environment variable 85 __CPPUNWIND 101
options file 85 CSTRT086.ASM 140

command name CSTRT386.ASM 141
compiler 7, 84 CSTRTO16.ASM 140

comment pragma 177, 265 CSTRTW16.ASM 140
compact memory model 147, 230 CSTRTW32.ASM 141
compact model CSTRTX32.ASM 141

libraries 132, 137 CVPACK 34
__COMPACT__ 71
compile time 125, 381
compiler

features 83 D
compiling

command line format 84
using DLL compilers 85

DATA class 63compiling options 7, 13, 21
data modelsCONFIG.SYS 86

big 146, 230console application 21-22
huge 146const 398, 404, 463-464, 509-510, 545, 547-548,
small 146, 230550-551, 619, 634-635

data representation 151, 235CONST segment 63
_DATA segment 63CONST2 segment 63
data types 151, 235const_cast 634-635
data_seg pragma 177, 265CONTEXT 361

679

Index

Debugging Information Compactor 34 DOS16M.ASM 140
debugging information format 34 __DOS__ 23, 98-99
__declspec 106, 118, 622, 662 DOSCALLS.LIB 375
__declspec(dllexport) 121 DOSPMC.LIB 133
__declspec(dllimport) 121 DOSPMH.LIB 133
default 397, 408, 433, 435, 448, 580 DOSPML.LIB 133
default filename extension 84 DOSPMM.LIB 133
default libraries DOSPMS.LIB 133

using pragmas 174, 262 double 404, 408
delete 429, 446, 470, 538, 564, 576, 650 size of 158, 242
DGROUP group 63 double type 154, 238
diagnostic messages DPMI example 323

language 382 DS segment register 106-107
diagnostics dump_object_model pragma 179, 267

errno 674 dynamic link library 22, 63, 73, 107
error 93 exporting functions 106
matherr 676 dynamic_cast 641-642, 661
Open Watcom C/C++ 91
run-time 674, 676
warning 93

directives E
assembly language 332

directories
C 84

ELIMINATE linker option 65-66OCC 85
emu387.lib 137disable_message pragma 178, 266
emu87.lib 136, 139disabling error file 47
emulatorDLL 22, 63, 73, 107

80x87 136exporting functions 106
floating-point 136DLL compilers 85

enable_message pragma 179, 267dllexport 106, 121
English diagnostic messages 382dllimport 106
enum 399, 410, 414, 473, 491, 495__DLLstart_ 22
enum pragma 180, 268do 396-397, 407, 433, 448
enumerated typesDOS 23-24, 98-99

size of 159, 243initialization 139
enumerationDOS Extender

information 179, 267286 140
values 179, 267Tenberry Software 140

environment stringDOS subdirectory 131
86DOS-dependent functions 367
= substitute 86DOS/16M 140

environment variableinitialization 139
command line options 85DOS/4GW example 323

680

Index

environment variables 85 ERRNO.H 674
<os>_INCLUDE 23, 94 MATH.H 676
FORCE 373 error file 47
INCLUDE 94-96, 373-374, 444 .err 91
LIB 374 disabling 47
LIBDOS 374 error messages 385
LIBOS2 375 error pragma 181, 269
LIBPHAR 375-376 _except 352-353
LIBWIN 375 exception handling 20, 79
NO87 138-139, 376 EXCEPTION_ACCESS_VIOLATION 358
OS2_INCLUDE 94 EXCEPTION_BREAKPOINT 358
PATH 81, 95, 374, 377 EXCEPTION_CONTINUE_EXECUTION
TMP 378 353-354, 357
use 373 EXCEPTION_CONTINUE_SEARCH 353, 357
WATCOM 137, 374-376, 378 EXCEPTION_EXECUTE_HANDLER 353,
WCC 85, 378-379 356-357
WCC386 85, 379 EXCEPTION_FLT_DENORMAL_OPERAND
WCGMEMORY 124-125, 380-381 358
WCL 379-380 EXCEPTION_FLT_DIVIDE_BY_ZERO 358
WCL386 380 EXCEPTION_FLT_INEXACT_RESULT 358
WD 381-382 EXCEPTION_FLT_INVALID_OPERATION
WDW 382 358
WINDOWS_INCLUDE 23 EXCEPTION_FLT_OVERFLOW 358
WLANG 382-383 EXCEPTION_FLT_STACK_CHECK 359
WPP 85, 383 EXCEPTION_FLT_UNDERFLOW 359
WPP386 86, 383-384 EXCEPTION_INT_OVERFLOW 359

__EPI 32 EXCEPTION_NONCONTINUABLE_EXCEPTI
errno 674 ON 359

E2BIG 674 EXCEPTION_POINTERS 361
EACCES 674 EXCEPTION_PRIV_INSTRUCTION 359
EBADF 674 EXCEPTION_RECORD 361
EDEADLK 675 EXCEPTION_SINGLE_STEP 358
EDOM 675 execution
EEXIST 674 fastest 78
EINVAL 675 _exit() 343
EMFILE 675 EXITWMSG.H 140
ENFILE 675 explicit 634
ENOENT 674 __export 106-107, 121, 553
ENOEXEC 674 export (pragma) 201, 291
ENOMEM 674 _export functions 25-29
ENOSPC 675 _export macro 41
ERANGE 675 exporting symbols in dynamic link libraries 201,
EXDEV 675 290

error codes extension

681

Index

default 84 floating-point emulator 136
extern 118, 393, 400, 406, 411, 438, 457, 471, floating-point in ROM 369

474, 521, 628 _fltused_ 136
external references 181, 269 for 347, 396-397, 409, 421, 433, 481
extref pragma 181, 269 FORCE environment variable 373

fortran 105-106, 123, 194, 282, 387
fortran alias name 194, 282
fortran macro 41
__FPI__ 60, 99F
frame (pragma) 202, 291
friend 463, 495, 511, 561, 651
function pragma 182, 270

far 55, 62, 64, 89, 103, 106, 147, 231, 429, 553, function prototypes
557, 581 effect on arguments 159, 243

far (pragma) 197, 287 functions
far call 145, 229 DOS-dependent 367
far macro 41 in ROM 365
far pointer OS/2-dependent 367

size of 158, 242 returning values 164, 252
__far16 109-110, 280, 444 Windows NT-dependent 367
_far16 macro 41
FAR_DATA class 150, 156, 233, 240
fastcall 194, 282
fastcall alias name 194, 282 G
_fastcall macro 41
fastest 16-bit code 89
fastest 32-bit code 90
fastest code 78 GetExceptionCode 357
FDIV bug 61 GetExceptionInformation 360-361
filename extension 84 goto 343, 350, 389, 399, 401, 437, 440
_finally 343-344, 415 GRAPH.LIB 133-134
flat memory model 230 __GRO
flat model stack growing 26

libraries 133, 137-138, 232 group
__FLAT__ 71 DGROUP 63
float 198, 404, 408, 510, 526, 635-637 guard page 26

size of 158, 242
float type 153, 237
floating-point

consistency of options 59-60 H
fltused 136
__init_387_emulator 136
__init_87_emulator 136

header fileoption 60

682

Index

including 93 DOS 139
searching 93 DOS/16M 139

High C calling convention 309 OS/2 139
huge 103, 147, 231, 417 Windows 139
huge data model 146 initialize pragma 183, 271
huge macro 41 inline 461
huge memory model 147 _inline macro 41
huge model inline_depth pragma 184, 272

libraries 132, 137 __INLINE_FUNCTIONS__ 76, 99
__HUGE__ 72 inline_recursion pragma 185, 273

int 92, 109, 391, 395, 402, 404, 441, 463, 504,
526, 529, 531, 564, 597, 605-606, 667

size of 158, 242
int type 153, 237I
__int64 111-112, 661
_INTEGRAL_MAX_BITS 101
__interrupt 105-106

__I86__ 98 interrupt macro 41
if 421, 602 interrupt routine 105
in-line 80x87 floating-point instructions 199 intrinsic pragma 185, 273
in-line assembly invoking Open Watcom C/C++ 84

in pragmas 197, 287 ISO/ANSI compatibility 39
in-line assembly language 319

automatic variables 328
directives 332
labels 327 J
opcodes 332
variables 327

in-line assembly language instructions
using mnemonics 199, 289 Japanese diagnostic messages 382

in-line functions 199, 289
in-line functions (pragma) 206, 295
include

directive 93 K
header file 93
source file 93

INCLUDE environment variable 94-96, 373-374,
keywords444

__based 104include file
__cdecl 104searching 93
__declspec 106, 118__init_387_emulator 136
__export 106__init_87_emulator 136
__far 103INITFINI.H 140
__far16 109initialization

683

Index

__fortran 105 library path 378
__huge 103 LIBWIN environment variable 375
__int64 101, 111 line directive 36
__interrupt 105 __LINUX__ 23, 98-99
__loadds 107 __loadds 107
__near 103 loadds (pragma) 200, 290
_Packed 104 _loadds macro 41
__pascal 105 loading DS before calling a function 200, 290
__pragma 111 loading DS in prologue sequence of a function
__restrict 104 200, 290
__saveregs 107 __LOCAL_SIZE 330
_Seg16 110 long 404
__segment 104 long double
__segname 104 size of 158, 242
__self 104 long float
__stdcall 107 size of 158, 242
__syscall 108 long int

size of 158, 242
long int type 152, 236
longjmp() 343

L

M
L 484
language 382
large memory model 147, 230
large model _M_386FM 71

libraries 132, 137 _M_386SM 71
__LARGE__ 71 _M_I386 98
_leave 348, 351, 415 _M_I86 98
LIB environment variable 374 _M_I86CM 71
LIB286 136 M_I86HM 72
LIB386 136 M_I86LM 71
LIBDOS environment variable 374 M_I86MM 71
LIBENTRY.ASM 140 _M_I86SM 71
LIBOS2 environment variable 375 _M_IX86 98
LIBPHAR environment variable 375-376 macros
libraries 131 __386__ 98

80x87 math 137 _based 41
alternate math 138 cdecl 41
class 134 __CHAR_SIGNED__ 51, 99
directory structure 131 __COMPACT__ 71, 100
math 136 __cplusplus 100

684

Index

__CPPRTTI 101 pascal 41
__CPPUNWIND 101 _PUSHPOP_SUPPORTED 101
_DLL 22 __QNX__ 98
_DOS 98 _saveregs 41
__DOS__ 98 _segment 41
_export 41 _self 41
far 41 __SMALL__ 71, 100
_far16 41 SOMDLINK 41
_fastcall 41 SOMLINK 41
__FLAT__ 71, 100 _stdcall 41
fortran 41 _STDCALL_SUPPORTED 101
__FPI__ 60, 99 __SW_3R 70
huge 41 __SW_6 69-70
__HUGE__ 72, 100 __SW_BD 22
__I86__ 98 __SW_BM 22
_inline 41 __SW_BR 22
__INLINE_FUNCTIONS__ 76, 99 __SW_BW 24
_INTEGRAL_MAX_BITS 101 __SW_EE 32
interrupt 41 __SW_EI 51
__LARGE__ 71, 100 __SW_EM 51
__LINUX__ 98 __SW_EN 33
_loadds 41 __SW_EP 33
_M_386CM 100 __SW_EZ 45
_M_386FM 71, 100 __SW_FP2 61
_M_386LM 100 __SW_FP3 61
_M_386MM 100 __SW_FP5 61
_M_386SM 100 __SW_FP6 61
_M_I386 98 __SW_FPC 59
_M_I86 98 __SW_FPD 62
_M_I86CM 71, 100 __SW_FPI 60
_M_I86HM 72, 100 __SW_FPI87 60
_M_I86LM 71, 100 __SW_J 51
_M_I86MM 71, 100 __SW_ND 64
_M_I86SM 71, 100 __SW_OA 74
_M_IX86 98 __SW_OC 75
__MEDIUM__ 71, 100 __SW_OD 75
MSDOS 98 __SW_OF 25
_MT 22 __SW_OI 76
near 41 __SW_OL 76
__NETWARE_386__ 98 __SW_OM 77
__NETWARE__ 98 __SW_ON 77
NO_EXT_KEYS 39, 99 __SW_OO 77
__NT__ 98 __SW_OP 77
__OS2__ 98 __SW_OR 77

685

Index

__SW_OS 77 MDEF.INC 140
__SW_OT 77 medium memory model 147, 230
__SW_OU 78 medium model
__SW_OZ 78 libraries 132, 137
__SW_R 82 __MEDIUM__ 71
__SW_S 34 memory
__SW_SG 27 first megabyte 324
__SW_ST 27 memory layout 149, 155, 232, 239
__SW_ZC 52 memory model 87
__SW_ZK 81 memory models
__SW_ZM 67 16-bit 145
_syscall 41 32-bit 229
__UNIX__ 98 compact 147, 230
__WATCOM_CPLUSPLUS__ 100 creating tiny applications 148
__WATCOMC__ 100 flat 230-231
_WINDOWS 98 huge 147
__WINDOWS_386__ 28, 98 large 147, 230
__WINDOWS__ 28-29, 98 libraries 148, 232
__X86__ 98 medium 147, 230

MAINO16.C 140 mixed 147, 231
math coprocessor 138 small 147, 230

option 60 tiny 147
math functions 365 message 622
MATH387R.LIB 137 message pragma 186, 274
MATH387S.LIB 137 messages
MATH3R.LIB 138 errno 674
MATH3S.LIB 138 matherr 676
MATH87C.LIB 137 run-time 674, 676
MATH87H.LIB 137 MetaWare
MATH87L.LIB 137 High C calling convention 70, 281, 309
MATH87M.LIB 137 Microsoft
MATH87S.LIB 137 C calling convention 193, 220
MATHC.LIB 138 mixed memory model 147, 231
matherr 676 modify exact (pragma) 218-219, 308-309

DOMAIN 676 modify nomemory (pragma) 214, 217, 303, 306
OVERFLOW 676 modify reg_set (pragma) 225, 315
PLOSS 676 MSDOS 23-24, 98-99
SING 676 _MT 22
TLOSS 676 mutable 619
UNDERFLOW 676

MATHH.LIB 138
MATHL.LIB 138
MATHM.LIB 138
MATHS.LIB 138

686

Index

:> 115
operator + 493, 502

N operator ++ 504
operator += 502
operator -> 505, 624
operator delete 503-504, 538, 563, 650naked 106, 120
operator delete [] 503-504namespace 492, 649-651
operator new 484, 486, 488, 502-504, 650near 103, 106, 147, 231, 429, 581
operator new [] 502-504near (pragma) 197, 287
operator ~ 501near call 145, 229
optimization 186, 274near macro 41
options 7near pointer

0 68size of 158, 242
1 68NETWARE subdirectory 132
2 68__NETWARE_386__ 24, 98-99
3 68__NETWARE__ 98-99
3r, 3s 69new 464, 478, 484, 502, 544, 573, 576, 582, 650
4 68no8087 (pragma) 209, 298
4r, 4s 70NO87 environment variable 138-139, 376
5 68NO_EXT_KEYS 39, 99
5r, 5s 70noemu387.lib 137
6 69noemu87.lib 136
6r, 6s 70NT subdirectory 131
ad 42__NT__ 23, 98-99
adbs 42NULL 113
add 43_NULLOFF 113
adfs 44_NULLSEG 113
adhp 43numeric data processor 138
adt 44option 60
bc 21
bd 22
bg 22
bm 22O
br 22
bt 22, 94
bw 24
C++ exception handling 20object model 179, 267
check_stack 172, 260OCC directory 85
code generation 17occ file extension 85
compatibility with older versions 21offsetof 470, 475, 540
compatibility with Visual C++ 20, 81once pragma 186, 274
d 34opcodes
d+ 35assembly language 332
d0 30operator 490

687

Index

d1 31 fp3 61, 137, 369
d1+ 31 fp5 61, 137, 369
d2 31 fp6 61
d2i 31 fpc 59, 138-139, 255, 369
d2s 32 fpd 61
d2t 32 fpi 59, 137-139, 369
d3 32 fpi87 60, 137-138, 369
d3i 32 fpr 82
d3s 32 fr 47
db 45 ft 47
debugging/profiling 14 fti 47
diagnostics 15 fx 47
double-byte characters 20 fzh 48
e 37 fzs 48
ecc 50 g 62
ecd 51 hc 34
ecf 51 hd 34
ecp 51 hw 34
ecr 51 i 48, 94, 96
ecs 51 j 51
ecw 51 k 48
ee 32 mc 71
ef 37 mf 71
ei 51 mh 72
em 51 ml 71
en 32 mm 71
ep 33 ms 71
eq 37 nc 63
er 37 nm 64
et 33 nt 63, 65
ew 38 oa 74
ez 45 ob 74
fc 45 oc 74
fh 45 od 75
fhd 46 oe 75
fhq 45 of 24
fhr 46 of+ 25
fhw 46 oh 75
fhwe 46 oi 75
fi 46 oi+ 76
floating point 18 ok 76
floating-point in ROM 369 ol 76
fo 35, 46 ol+ 76
fp2 61, 137, 369 on 77

688

Index

oo 77 xr 52
op 77 xs 80
optimizations 19 xss 80
or 77 xst 80
os 77 za 39
ot 77 zat 48
ou 78 zc 52
ox 78 zdf 72
oz 78 zdl 72
p 36 zdp 72
pc 36 ze 39
pe 36 zev 72
pil 36 zf 49
pl 36 zff 72
preprocessor 15 zfp 72
pw 36 zg 49
q 38 zgf 73
r 82, 163, 169, 247, 252, 258 zgp 73
reuse_duplicate_strings 173, 261 zk 80
ri 51 zk0u 81
RTTI 52 zku 81
run-time conventions 18 zl 50
s 34 zld 50
segments/modules 18 zlf 50
sg 26 zls 50
source/output control 16 zm 65
st 27 zmf 67
t 38 zp 52
target specific 13 zpw 55
u 37 zq 41
unreferenced 172, 260 zri 73
using pragmas 172, 260 zro 73
v 48 zs 42
vc 81 zt 55
vcap 82 zu 73
w 38 zv 56
wcd 38 zW 27-28
wce 38 zWs 29
we 38 zz 82
wo 38 options file
wx 39 command line options 85
xd 79 OS/2
xds 79 DOSCALLS.LIB 375
xdt 79 initialization 139

689

Index

OS/2-dependent functions 367 PLIBMTL.LIB 135
OS2 subdirectory 131 PLIBS.LIB 135
__OS2__ 23, 98-99 pragma 106, 111, 122, 171, 259, 573, 581, 596
OS2_INCLUDE environment variable 94 alloc_text 67
overview of contents 3 pragma options 172, 260

__pragma("string") 106
pragmas

= const 197, 287
aborts 213, 302P
alias name 192, 281
alloc_text 175, 263
alternate name 196, 286

pack pragma 187, 275 auxiliary 190, 278
_Packed 104 calling information 197, 287
parm (pragma) 203, 292 code_seg 176, 264
parm caller (pragma) 207, 297 comment 177, 265
parm nomemory (pragma) 217, 306 data_seg 177, 265
parm reg_set (pragma) 221, 311 describing argument lists 202, 291
parm reverse (pragma) 208, 297 describing return value 209, 298
parm routine (pragma) 207, 297 disable_message 178, 266
pascal 105-106, 194, 280, 282 dump_object_model 179, 267
pascal alias name 194, 282 enable_message 179, 267
pascal functions 27-28 enum 180, 268
pascal macro 41 error 181, 269
passing arguments 157, 241 export 201, 291

1 byte 157, 241 extref 181, 269
2 bytes 157, 241 far 197, 287
4 bytes 241 frame 202, 291
8 bytes 158, 242 function 182, 270
far pointers 158, 242 in-line assembly 197, 287
in 80x87 registers 222, 311 in-line functions 206, 295
in 80x87-based applications 168, 256 initialize 183, 271
in registers 157, 241 inline_depth 184, 272
of type double 158, 242 inline_recursion 185, 273

PATH environment variable 81, 95, 374, 377 intrinsic 185, 273
Pentium bug 61 loadds 200, 290
Phar Lap example 323 message 186, 274
PLIB3R.LIB 135 modify exact 218-219, 308-309
PLIB3S.LIB 135 modify nomemory 214, 217, 303, 306
PLIBC.LIB 135 modify reg_set 225, 315
PLIBDLL.LIB 135 near 197, 287
PLIBH.LIB 135 no8087 209, 298
PLIBL.LIB 135 notation used to describe 171, 259
PLIBM.LIB 135 once 186, 274

690

Index

pack 187, 275
parm 203, 292

Qparm caller 207, 297
parm nomemory 217, 306
parm reg_set 221, 311
parm reverse 208, 297 __QNX__ 23, 98-99
parm routine 207, 297
read_only_file 188, 276
specifying default libraries 174, 262
struct caller 209-210, 298, 300 R
struct float 209, 212, 298, 301
struct routine 209-210, 298, 300
template_depth 189, 277
value 209-210, 212, 298, 300-301 RaiseException 361-362
value [8087] 213, 302 read_only_file pragma 188, 276
value no8087 212, 301 real-mode memory 324
value reg_set 225, 314 register 399, 404-405, 411, 413, 421, 445, 457,
warning 190, 278 471, 473

precompiled headers 127 reinterpret_cast 635-636
compiler options 128 restrict 104
rules 129 return 343, 345, 347-348, 350-351, 387, 403, 409,
uses 127 429, 431, 443
using 128 return value (pragma) 209, 298

predefined macros returning values from functions 164, 252
see macros 22 reuse_duplicate_strings option 173, 261

predefined types ROM-based functions 365
size of 158, 242 ROMable code 365

predictable code size 124, 380 startup 368
preprocessor 35-36, 38, 96 RTTI 52

#line directives 36 run-time
encryption 36 error messages 386, 428, 673-674
source comments 36 messages 673

primary thread 26 run-time initialization 139
printf 112
private 476, 497, 515
__PRO 33
protected 463, 465, 515 S
public 476
_PUSHPOP_SUPPORTED 101

save/restore segment registers 82
__saveregs 107
_saveregs macro 41
_Seg16 110

691

Index

segment 104, 113, 115-116 signed char 158, 242
_BSS 63 signed int 158, 242
CONST 63 signed long int 158, 242
CONST2 63 signed short int 158, 242
_DATA 63 unsigned char 158, 242
_TEXT 63-64, 149, 156, 233, 240 unsigned int 158, 242

_segment macro 41 unsigned long int 158, 242
segment ordering 149, 155, 232, 239 unsigned short int 158, 242
segment references 104 sizeof 120, 410
__segname 104, 113, 418, 661 small code model 145, 229
segname references 104 small data model 146, 230
__self 104, 113, 520 small memory model 147, 230
_self macro 41 small model
self references 104 libraries 132-133, 137-138, 232
SET 85, 373 __SMALL__ 71

INCLUDE environment variable 95-96 software quality assurance 124, 381
NO87 environment variable 139 SOMDLINK 103, 109

short 402, 404, 441 SOMDLINK macro 41
short int SOMLINK 105, 109

size of 158, 242 SOMLINK macro 41
short int type 152, 236 source file
side effects of functions 214, 303 including 93
signed 402, 404, 441 searching 93
signed char 626, 667 SS segment register 73

size of 158, 242 stack frame 202, 291
signed int stack frame (pragma) 202, 291

size of 158, 242 stack growing 26
signed long int stack overflow 34, 63

size of 158, 242 stack touching 27
signed short int stack-based calling convention 248

size of 158, 242 80x87 considerations 256
size of returning values from functions 255

char 158, 242 stacking arguments 206, 295
double 158, 242 startup code 368
enumerated types 159, 243 static 118, 393, 400-401, 406, 438, 440, 457, 464,
far pointer 158, 242 474, 484, 515, 519, 521, 524, 537
float 158, 242 static_cast 638, 641, 657
int 158, 242 stdcall 106-107, 194, 282
long double 158, 242 stdcall alias name 194, 282
long float 158, 242 _stdcall macro 41
long int 158, 242 _STDCALL_SUPPORTED 101
near pointer 158, 242 __STK
predefined types 158, 242 stack overflow 63
short int 158, 242

692

Index

struct 104, 399-402, 408-411, 413, 419, 439, 450, __SW_ON 77
476, 531, 671 __SW_OO 77

struct caller (pragma) 209-210, 298, 300 __SW_OP 77
struct float (pragma) 209, 212, 298, 301 __SW_OR 77
struct routine (pragma) 209-210, 298, 300 __SW_OS 77
structured exception handling 343 __SW_OT 77
__SW_0 68 __SW_OU 78
__SW_1 68 __SW_OZ 78
__SW_2 68 __SW_R 82
__SW_3 68, 70 __SW_S 34
__SW_3R 70 __SW_SG 27
__SW_3S 70 __SW_ST 27
__SW_4 68, 70 __SW_ZC 52
__SW_5 69-70 __SW_ZDF 72
__SW_6 69-70 __SW_ZDP 72
__SW_BD 22 __SW_ZFF 72
__SW_BM 22 __SW_ZFP 72
__SW_BR 22 __SW_ZGF 73
__SW_BW 24 __SW_ZGP 73
__SW_EE 32 __SW_ZK 81
__SW_EI 51 __SW_ZM 67
__SW_EM 51 __SW_ZRI 73
__SW_EN 33 __SW_ZRO 73
__SW_EP 33 __SW_ZU 73
__SW_EZ 45 switch 389, 396-397, 401, 409, 421, 433, 435,
__SW_FP2 61 440, 535
__SW_FP3 61 symbol attributes 190, 278
__SW_FP5 61 symbolic references in in-line code sequences
__SW_FP6 61 200, 289
__SW_FPC 59 __syscall 106, 108-109, 124, 282
__SW_FPD 62 syscall alias name 282
__SW_FPI 60 _syscall macro 41
__SW_FPI87 60 system 109, 282
__SW_FZH 48 system alias name 282
__SW_FZS 48 system initialization
__SW_J 51 Windows NT 86
__SW_ND 64 system initialization file
__SW_OA 74 AUTOEXEC.BAT 86
__SW_OC 75 CONFIG.SYS 86
__SW_OD 75
__SW_OF 25
__SW_OI 76
__SW_OL 76
__SW_OM 77

693

Index

size of 158, 242
unsigned short int

T size of 158, 242
USE16 segments 232, 239
using 658-660
using namespace 653template_depth pragma 189, 277

Tenberry Software
DOS/16M 140

_TEXT segment 63-64, 149, 156, 233, 240
Vthis 480, 489-490, 537, 547-548, 560, 567, 597

thread 106, 118-119
threads

growing the stack 26 va_arg 419
throw 79, 444, 482, 581, 593, 613-615, 649 value (pragma) 209-210, 212, 298, 300-301
tiny memory model 147 value [8087] (pragma) 213, 302
tiny memory model applications 148 value no8087 (pragma) 212, 301
TMP environment variable 378 value reg_set (pragma) 225, 314
try 79, 343-344, 352, 415, 589, 592-593 variable argument lists 164, 252
typedef 457, 459, 474, 492, 521 virtual 463, 537-538, 594
typeid 661 void 92, 387, 400, 403, 429, 443, 477-478, 483,
types 485-486, 489, 503, 508, 544, 554, 576,

char 152, 236 602, 623, 641
double 154, 238 volatile 404, 463-464, 509, 545, 547-548, 558,
float 153, 237 594, 634-635
int 153, 237
long int 152, 236
short int 152, 236

W

U
warning messages 385
warning pragma 190, 278
watcall 194, 282

union 399-402, 408-411, 413, 419, 439, 450, watcall alias name 194, 282
455-456, 531 WATCOM environment variable 137, 374-376,

__UNIX__ 23-24, 98-99 378
unreferenced option 172, 260 __WATCOM_CPLUSPLUS__ 100
unsigned 402, 404, 441, 450 __WATCOMC__ 100
unsigned char 626, 667 WCC 379

size of 158, 242 WCC environment variable 85, 378-379
unsigned int WCC options

size of 158, 242 nm 150, 157, 233, 241
unsigned long int

694

Index

nt 150, 157, 234, 241
WCC386 379

XWCC386 environment variable 85, 379
WCC386 options

nm 150, 157, 233, 241
nt 150, 157, 234, 241 __X86__ 98

WCGMEMORY environment variable 124-125,
380-381

WCL environment variable 379-380
WCL386 environment variable 380
WD environment variable 381-382
WDW environment variable 382
while 348, 396-397, 407, 409, 421, 433, 448
WILDARGV.C 139-140
WIN subdirectory 131
WIN386.LIB 134
Windows 24, 98-99

initialization 139
Windows NT

system initialization 86
Windows NT-dependent functions 367
Windows SDK

Microsoft 134
WINDOWS.LIB 134
__WINDOWS_386__ 24, 28, 98-99
__WINDOWS__ 28-29, 98-99
WINDOWS_INCLUDE environment variable 23
WLANG environment variable 382-383
WOS2.H 140
WPP 383
WPP environment variable 85, 383
WPP options

nm 150, 157, 233, 241
nt 150, 157, 234, 241

WPP386 384
WPP386 environment variable 86, 383-384
WPP386 options

nm 150, 157, 233, 241
nt 150, 157, 234, 241

695

