The New C Standard

An Economic and Cultural Commentary

Derek M. Jones
derek@knosof.co.uk

Copyright ©2002,2003,2004,2005 Derek M. Jones. All rights reserved.

CHANGES

CHANGES

Copyright © 2005 Derek Jones -5
The material in the C99 subsections is copyright © 1ISO. The material in the C90 and C*+ sections that is
quoted from the respective language standards is copyright © 1SO.

Credits and permissions for quoted material is given where that material appears.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE PARTICULAR WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN.

Commentary
The phraset the time of writingis sometimes used. For this version of the material this time should be
taken to mean no later than December 2004.

5 Aug 2005 1.0b Many hyperlinks added. pdf searching through page 782 speeded up.
Various typos fixed (over 70% reported by Tom Plum).
16 Jun 2005 1.0a Improvements to character set discussion (thanks to Kent Karlsson), margin
references, C99 footnote number typos, and various other typos fixed.
30 May 2005 1.0 1Initial release.

v 1.0b August 5, 2005

README

README

-4 This book probably needs one of these.

Commentary
While it was written sequentially, starting at sentence 1 and ending with sentence 2022, readers are unlikely
to read it in this way.

At some point you ought to read all of sentence 0 (the introduction).

The conventions used in this book are discussed on the following pages.

There are several ways in which you might approach the material in this book, including the following:

* You have read one or more sentences from the C Standard and want to learn more about them. In
this case simply locate the appropriate C sentence in this book, read the associated commentary, and
follow any applicable references.

* You want to learn about a particular topic. This pdf is fully searchable. Ok, the search options
are not as flexible as those available in a search engine. The plan is to eventually produce separate
html versions of each C sentence and its associated commentary. For the time being only the pdf is
available.

For anybody planning to print a (double sided) paper copy. Using 80stimek produces a stack of paper
that is 9.2cm (3.6inches) deep.

August 5, 2005 v 1.0b

Preface

Preface

The New C Standard: An economic and cultural commentary -3

Commentary
This book contains a detailed analysis of the International Standard for the C lang§tiageluding the
library from a number of perspectives. The organization of the material is unusual in that it is based on
the actual text of the published C Standard. The unit of discussion is the individual sentences from the C
Standard (2022 of them).

Readers are assumed to have more than a passing familiarity with C.

C90

My involvement with C started in 1988 with the implementation of a C to Pascal translator (written in
Pascal). In 1991 my company was one of the three companies that were joint first, in the world, in having
their C compiler formally validated. My involvement with the world of international standards started in
1988 when | represented the UK at a WG14 meeting in Seattle. | continued to head the UK delegation at
WG14 meetings for another six years before taking more of a back seat role.

C++

Having never worked on a#€ compiler or spent a significant amount of time studyirg @y view on this
language has to be considered as a C only one. While | am a member of theHla@! | rarely attend
meetings and have only been to one IS@ Standard meeting.

There is a close association between C andatid the aim of this subsection is the same as the C90 one:
document the differences.

Other Languages

The choice ofother languageso discuss has been driven by those languages in common use today (e.g.,
Java), languages whose behavior for particular constructs is very different from C (e.g., Perl or APL), and
languages that might be said to have been an early influence on the design of C (mostly BCPL and Algol
68).

The discussion in these subsections is also likely to have been influenced by my own knowledge and
biases. Writing a compiler for a language is the only way to get to know it in depth and while | have used
many other languages | can only claim to have expertise in a few of them. Prior to working with C | had
worked on compilers and source code analyzers for Algol 60, Coral 66, Snobol 4, CHILL, and Pascal. All of
these languages might be labeled as imperative 3GLs. Since starting work with C the only other languages
I have been involved in at the professional compiler writer level are Cobol and SQL.

Common Implementations

The perceived needs of customers drive translator and processor vendors to design and produce produc
The two perennial needs of performance and compatibility with existing practice often result in vendors
making design choices that significantly affect how developers interact with their products. The common
implementation subsections discuss some the important interactions, primarily by looking at existing imple-
mentations and at times research projects (although it needs to be remembered that many of research ide
never make it into commercial products).
| have written code generators for Intel 8086, Motorola 68000, Versal (very similar to the Zilog Z80),

Concurrent 3200, Sun SPARC, Motorola 88000, and a variety of virtual machines. In their day these
processors have been incorporated in minicomputers or desktop machines. The main hole in my cv. is ¢
complete lack of experience in generating code for DSPs and vector processors (i.e., the discussion is base
purely on book learning in these cases).

-31The document analysed is actually WG14/N1124 (available for public download from the WG14 wehisiteen-std.org/
jtcl/sc22/wgl4/), plus the response to DR #251. This document consists of the 1999 version of the ISO C Standard with the edits
from TC1 and TC2 applied to it (plus a few typos corrections).

v 1.0b August 5, 2005

www.open-std.org/jtc1/sc22/wg14/
www.open-std.org/jtc1/sc22/wg14/

Preface

Coding Guidelines

Writing coding guidelines is a very common activity. Whether these guidelines provide any benefit other
than satisfying the itch that caused their author to write them is debatable. My own itch scratchings are based
on having made a living, since 1991, selling tools that provide information to developers about possible
problems in C source code.

The prime motivating factor for these coding guidelines subsections is money (other coding guideline
documents often use technical considerations to label particular coding constructs or practjoed as
or bad). The specific monetary aspect of software of interest to me is reducing the cost of source code
ownership. Given that most of this cost is the salary of the people employed to work on it, the performance
characteristics of human information processing is the prime consideration.

Software developer interaction with source code occurs over a variety of timescales. My own interests
and professional experience primarily deals with interactions whose timescale are measured in seconds.
For this reason these coding guidelines discuss issues that are of importance over this timescale. While
interactions that occur over longer timescales (e.g., interpersonal interaction) are important, they are not the
primary focus of these coding guideline subsections. The study of human information processing, within
the timescale of interest, largely falls within the field of cognitive psychology and an attempt has been made
to underpin the discussion with the results of studies performed by researchers in this field.

The study of software engineering has yet to outgrow the mathematical roots from which it originated.
Belief in the mathematical approach has resulted in a research culture where performing experiments is
considered to be unimportant and every attempt is made to remove human characteristics from considera-
tion. Industry’s insatiable demand for software developers has helped maintain the academic status quo by
attracting talented individuals with the appropriate skills away from academia. The end result is that most
of the existing academic software engineering research is of low quality and suffers from the problem of
being carried out by people who don't have the ability to be mathematicians or the common sense to be
practicing software engineers. For this reason the results of this research have generally been ignored.

Existing models of human cognitive processes provide a general framework against which ideas about the
mental processes involved in source code comprehension can be tested. However, these cognitive models
are not yet sophisticated enough (and the necessary empirical software engineering data is not available) to
enable optimal software strategies to be calculated. The general principles driving the discussion that occurs
in these coding guidelines subsections include:

1. the more practice people have performing some activity the better they become at performing it.

Our attitude towards what we listen to is determined by our habits. We expect things to be said in the Way$ineta-
which we are accustomed to talk ourselves: things that are said some other way do not seem the sanmgstcs adok Ii
but seem rather incomprehensible. . . . Thus, one needs already to have been educated in the way to approach
each subject.

Many of the activities performed during source code comprehension (e.g., reasoning about sequences
of events and reading) not only occur in the everyday life of software developers but are likely to have
been performed significantly more often in an everyday context. Using existing practice provides a
benefit purely because it is existing practice. For a change to existing practice to be worthwhile the
total benefit has to be greater than the total cost (which needs to include relearning costs),

2. when performing a task people make implicitly cost/benefit trade-offs. One reason people make
mistakes is because they are not willing to pay a cost to obtain more accurate information than they
already have (e.g., relying on information available in their head rather expending effort searching for
it in the real world). While it might be possible to motivate people to make them more willing pay a
greater cost for less benefit the underlying trade-off behavior remains the same,

3. people’s information processing abilities are relatively limited and cannot physically be increased
(this is not to say that the cognitive strategies used cannot be improved to make the most efficient use

August 5, 2005 v 1.0b

Preface

of these resources). In many ways the economics of software development is the economics of humar

attention.

Usage

Software engineering is an experimental, not a theoretical discipline, and an attempt has been made to bas
the analysis of C on what software developers and language translators do in practice.

The source code for many of the tools used to extract the information needed to create these figures an
tables is available for download from the book’s web site.

Table -3.1: Occurrences of various constructs in this book.

Quantity

Kind of information

2,022
1,600
1,450
228
208
1,721

C language sentences

C library paragraphs

Citations to published books and papers
Tables

Figures

Unique cross-reference entries

v 1.0b August 5, 2005

Acknowledgment

Acknowledgments

-2 The New C Standard: An economic and cultural commentary

Commentary

Thanks to Sean Corfield:¢rfield.org) and later Gavin Halliday for many interesting discussions on
implementing C90. Also thanks to Clive Feather, the UK C panel, the members of WG14, and my consulting
customers who were the source of many insights.

Clive Feather reviewed most of the material in this book. Fred Tydeman reviewed the floating-point
material in all subsections. Frank Griswold provided a detailed review of over half of+then@terial.
Stephen Parker reviewed a very early draft of some of the coding guidelines. Ken Odgers converted the C99
troff to xml.

Most of the work on the scripts and style sheets/macros used for the layout was done by Vic Kirk. Thanks
to the authors of TeXlive, grap, pic, graphviz, and a variety of 'nix based tools.

Marilyn Rash ¢rocean@shore.net) copyedited 75% of the material.

Thanks to the librarians of Reading, Surrey, and Warwick Universities for providing access to their col-
lections of Journals. Thanks to all those people who made their papers available online (found via Altavista
and later Google and Citeseer).

August 5, 2005 v 1.0b

corfield.org
rrocean@shore.net

Conventions

Conventions

information This is a sentence from WG14/N1124, the number on the inside margin (it would be in a bound book) is the -1
defined here sentence number and this wording has been deletedadded from/to the wording in C99 by the response to a
defect report.

Commentary
This is some insightful commentary on the above sentence. We might also say something relating to this
another jssye in another sentence (see sentence number and reference heading in the outside margin—it would |
in a bound book).
Terms and phrases, suchtdah, visually appear as just demonstrated.

Rationalt Thjs s a quote from the Rationale document produced by the C Committee to put a thoughtful spin on the
wording in the standard.

Various fonts and font-styles are used to denote source code examples+e:q), keywords (e.g.else),
syntax terminals (e.ginteger-constant), complete or partial file names (e.ggbj), programs (e.g.,
make), program options (e.g5xs1234), C Standard identifiers (e.guchar_t), library functions (e.g.,
malloc) and macros (e.goffsetof).

The headers that appear indented to the left, displayed in a bold Roman font, appear in the C Standar
between the two C sentences that they appear between in this book.

C90

This section deals with the C90 version of the standard. Specifically, how it differs from the C99 version of
the above sentence. These sections only appear if there is a semantic difference (in some cases the wor
may have changed slightly, leaving the meaning unchanged).

98 . . .
DR #9817 This is the text of a DR (defect report) submitted to the ISO C Standard committee.

Response
The committee’s response to this DR is that this question is worth repeating at this point in the book.

This is where we point out what the difference, if any (note the change bar), and what the developer might
do, if anything, about it.

C++

1.1p1 _ o . -
P This is a sentence from the-€standard specifying behavior that is different from the above C99 sentence. The

1.1p1 in the outside margin is the clause and paragraph number of this quote irtttHet&hdard.

This is where we point out what the difference is, and what the developer might do, if anything, about it.
You believed the hype that the two languages are compatible? Get real!

Other Languages

Developers are unlikely to spend their entire professional life using a single language. This section some
times gives a brief comparison between the C way of doing things and other languages.

c t received . .
°$T?f§ bﬁfo?ﬁz We vote against the adoption of the proposed new COBOL standard because we have lost some of our source

code and don't know whether the requirements in the proposed new standard would invalidate this source.

v 1.0b August 5, 2005

SSOrs

Conventions

Common Implementations

Discussion of how implementations handle the above sentence. For instance, only processors with 17 bit
integers can implement this requirement fully (note the text in the outside column—flush left or flush right
to the edge of the page—providing a heading that can be referenced from elsewhereys extensions

to support 16 bit processors in this area (the text in the outside margin is pushed towards the outside of the
page, indicating that this is where a particular issue is discussed; the text appearing in a smaller point size
is a reference to material appearing elsewhere {the number is the C sentence number}). franslated |

This is a quote from the document referenced in the outside sidebar. ggfd’\‘ew C Stan-

Coding Guidelines

General musings on how developers use constructs associated with the above sentence. Some of these
sections recommend that a particular form of the construct described in the above sentence not be used.

-11

Do it this way and save money.

A possible deviation from the guideline, for a described special case.

Something to look out for during a code review. Perhaps a issue that requires a trade off among

different issues, or that cannot be automated.

Example
An example, in source code of the above sentence.

The examples in this book are generally intended to illustrate some corner of the language. As a general
rule it is considered good practice for authors to give examples that readers should follow. Unless stated
otherwise, the examples in this book always break this rule.

1 struct {float mem;} main(void)
2 {
3 int blah; /* The /* form of commenting describes the C behavior */
4 // The // form of commenting describes the C++ behavior
.

Usage

A graph or table giving the number of occurrences (usually based on this book’s benchmark programs)
of the constructs discussed in the above C sentence.

August 5, 2005 v 1.0b

Conventions

v 1.0b August 5, 2005

Table of Contents

Introduction 0
1. Scope 1
2. Normative references 18
3. Terms, definitions, and symbols 30
G 7 35...
G 70 39.
G 20 40.
3 41
G 702 42
G 70 44. ..
B 46
B 49
B e 51
BB i 53
B 58
G 70 2700 P 59
B o 60
G 70 0 62
B e e 63
G 7K 64...
B A0 65
0 0 PP 66
Bl e e 67
B L e e 68
B 69
G 700 1L T 71...
G 700 1 PP 12. ..
G 0 PR 73...
G 700 0 4. ..
B T 2 o 5. ..
B L7 3 76...
B8 8. ..
B L0 e 80...
4. Conformance 82
5. Environment 104
5.1 Conceptual MOdElS . ..o 107...
5.1.1 Translation enVirONmMENt ottt et e 107..
5.1.1.1 Program SITUCTUIE ittt e e et e et e e et ettt eees 107. ..
5.1.1.2 Translation Phasesttt e 115...

Conventions

5.1, 0.3 DIagNOSTICS ..ttt 144. .
5.1.2 EXECUtiON €NVIFONMENES . ..ttt ettt ettt e ettt e e e iiee e 147 ..
5.1.2.1 Freestanding enVirONMENTttt e i 153..
5.1.2.2 HoSted nVIrONMENTo ot e e 156 ..
5.1.2.3 Program eXECULIONt ettt e e e e e 182..
5.2 Environmental conSIiderations e 212 ..
5. 2. L CNaAraCter SIS ...ttt e 212 ..
5.2.1.1 Trigraph SEQUENCES ...\ttt ettt et 230...
5.2.1.2 Multibyte charaCters i e 235..
5.2.2 Character display SEmMantiCsouiuut 249...
5.2.3 Signals and interruptst 267..
5.2.4 Environmental limits e 270..
5.2 4. 1 Translation IMits 273.
5.2.4.2 Numerical limits e 297..
6. Language 381
B.1 NOTAtION ... 381..
5.2 G0N PES o vttt ettt e e e e 387...
6.2.1 Scopes Of IdeNtifierS 387...
6.2.2 Linkages of identifiers i 417..
6.2.3 Name spaces of identifiers i 435...
6.2.4 Storage durations of ObjJects e 445. ..
8.2, 0 T PSS ittt e e AB9 L
6.2.6 Representations Of tyPesottt 565...
B.2.6.1 GENEIAl . ..ottt 565..
B.2.6. 2 INTEOEI By PSS ..ottt ettt 589..
6.2.7 Compatible type and composite typet 627...
8.3 CONVEISIONS . .ttt et e e e e e e e 649 ..
6.3.1 ArithmetiC operands ...ttt 655. .
6.3.1.1 Boolean, characters, and integersouiiiiiiiiiiiiiinnannann, 655...
6.3.1.2 BOOIaN tYPe .. o e 676. .
6.3.1.3 Signed and UnSigned iINtEEISttt 678...
6.3.1.4 Real floating and integer e 632 ..
6.3.1.5 Real floating typest 691..
6.3.1.6 COMPIEX tYPES vttt e e 695. .
6.3.1.7 Real and COMPIEXttt e e 696 . .
6.3.1.8 Usual arithmetiCc CONVEISIONSt i 698 ..
6.3.2 Other Operands e 717...
6.3.2.1 Lvalues, arrays, and function designators ALTL
B.3.2. 2 VO o 736.
B.3.2. 3 P oINS . oottt e 739..
6.4 Lexical BlemeNntS e 766 ..
B.4. 1 KEYWOISttt ettt e et e e e e e e 783..
B.4. 2 ldeNtifIErS . .. e 187..
B.4.2.1 GeNEIAl ...t 787..
6.4.2.2 Predefined identifiers e 805 ..
6.4.3 Universal charaCter Names it 810...
B.4.4 CONSEANTS . ..ottt 817..
6.4.4.1 Integer CONSTANTSttt et 820...
6.4.4.2 Floating CONStaNtSttt 836..
6.4.4.3 Enumeration CONSIANTSttt i 857...

v 1.0b August 5, 2005

Conventions

6.4.4.4 Character CONSIANTS e e e 860...
6.4.5 String [Iteralst e 889..
B.4.6 PUNCIUAIONSttt e et e 906. .
B.4.7 Header NAMESttt e e 912...
6.4.8 Preprocessing NUMDEISttt e 921...
6.4.9 COMMENESttt e e ettt e e e e e e et e 927..

B, 0 EXPIS S ONS ittt ittt et e e 933..
B.5.1 Primary XPreSSIONSttt ettt ettt et e ettt e 967...
6.5.2 POSHIX OPBratorst 9717...

6.5.2.1 Array SUDSCIIPING . ..o 979..

6.5.2.2 Function calls 989..

6.5.2.3 Structure and union MEMDEIS 1021..

6.5.2.4 Postfix increment and decrement operatorsoviiiiiiiiiiia.. 1036..

6.5.2.5 Compound lIterals 1044.
6.5.3 UNAry OPeratorSttt e 1070.

6.5.3.1 Prefix increment and decrement 0peratorsooiiiiiiiiiiiiia... 1071..

6.5.3.2 Address and indirection Operators ...t 1078 .

6.5.3.3 Unary arithmetic Operatorsoiiiiiiiiiiiiii i, 1091.

6.5.3.4 The Sizeof Operator e 1108.
6.5.4 CaSt OPEIAIOrSt e 1123.
6.5.5 Multiplicative Operators 1133
6.5.6 AddItIVE OPEIatOrSttt e 1143
6.5.7 Bitwise Shift Operators ...t 1171
6.5.8 Relational Operatorsoiiiiiti e e 1187.
6.5.9 Equality OPeratorst e 1202.
6.5.10 Bitwise AND OPEratorttt e 1224
6.5.11 Bitwise exclusive OR OpEratoreeuuiia e ee e 1230.
6.5.12 Bitwise inclusive OR Operatoruiiiit it eiiianns 1234
6.5.13 Logical AND OPEIatOr ..\ttt ittt et 1238
6.5.14 Logical OR OPEratOrttt e e e e e 1246.
6.5.15 Conditional OPEratort 1254.
6.5.16 ASSIgNMENT OPEIAtOrSottt ittt ettt et 1278 .

6.5.16.1 Simple assSignmentttt e 1286 .

6.5.16.2 Compound asSIgNMENtttt 1300..
6.5.17 COMMA OPEIALON . ..\ttt ettt e et et e 1303.

6.6 CONSIANT EXPIESSIONS . . ottt ettt et e et e et e e e 1312..

6.7 DeClarations o 1338.
6.7.1 Storage-class SPeCIfiers e 1354..
B.7.2 TYPE SPECITIEIS .ot 1368.

6.7.2.1 Structure and union Specifiersco i 1380.

6.7.2.2 Enumeration SPeCIfiers 1429.

B. 7. 2. 3 Ta0S .« o oottt e 1444.
6.7.3 Type qQUalIfiErsS e 1466

6.7.3.1 Formal definition of restrict e 1492
6.7.4 FUNCHION SPECITIEIS ...\ttt e e e 1512.
B.7.5 DI aratOrS ...ttt 1537.

6.7.5. 1 Pointer declaratorso e 1549.

6.7.5.2 Array deClaratorsoiiiiiai 1553.

6.7.5.3 Function declarators (including prototypes)ccoiiiiiiiinenennn. 1581.
B. 7.0 TY P NMAIMIS ..ttt ittt it et e e 1613.

August 5, 2005 v 1.0b

Conventions

6.7.7 Type definitioNs 1618
6.7.8 Initialization o e 1630
6.8 Statements and blocKsS 1696. .
6.8.1 Labeled statements 1711.
6.8.2 Compound Statement e 1718..
6.8.3 Expression and null statements 1720..
6.8.4 Selection statemeNntS i 1728.
6.8.4.1 Theif statementt e 1732.
6.8.4.2 The switCh statement i e e 1737.
6.8.5 lteration StatemMENtS ittt e e 1752,
6.8.5.1 The while statemento i et 1758.
6.8.5.2 Thedostatement ...t e 1759.
6.8.5.3 The for statement o e 1760.
6.8.6 JUMP StatEMENTSo 1768..
6.8.6.1 The goto Statementt 1773.
6.8.6.2 The continue sStatemeNt i e 1778 .
6.8.6.3Thebreak statement i e 1782..
6.8.6.4 The return statement i e 1785.
6.9 External definitionst 1794
6.9.1 Function definitionst e 1805.
6.9.2 External object definitions 1832.
6.10 Preprocessing dir€CliVES e e e 1838..
6.10.1 Conditional INCIUSION i e 1851
6.10.2 Source file INCIUSION e 1877.
6.10.3 MACro replaCcement e 1899.
6.10.3.1 Argument SUBbSHIEULION i e 1925
6.10.3.2 The # OPEIAIOr 1930.
6.10.3.3 The #H OperalOr o et e e 1938.
6.10.3.4 Rescanning and furtherreplacement ... 1948..
6.10.3.5 Scope of macro definitions ... 1954.
6.10.4 LiNe CONMIOlt e e e 1965
B.10. 5 Brror dir€CtiVE . ..ottt 1973.
6.10.6 Pragma direCtiVettt e 1974.
6.10.7 NUILAIrECHVE ... e e e 1983
6.10.8 Predefined Macro NAMESttt e e et e e 1984..
6.10.9 Pragma OPEIatorttt ettt ettt et e e 2009..
6.11 Future language direCtioNSt e 2013..
B.11.1 Floating tyPeS . .. e ettt ettt e 2013.
6.11.2 Linkages of identifiers 2014
6.11.3 EXIErNaAl NAMES ...\ttt e 2015.
6.11.4 Character €SCape SEUUEINCESttt ettt ettt et iee s 2016. ..
6.11.5 Storage-class SPecCifiers e 2018..
6.11.6 Function declarators ...ttt 2019.
6.11.7 Function definitions i 2020.
6.11.8 Pragma direCtiVesS i 2021.
6.11.9 Predefined Macro NAMESttt e e et 2022..

v 1.0b August 5, 2005

Introduction m

Introduction

0 With the introduction of new devices and extended character sets, new features may be added to this Inter- Introduction
national Standard. Subclauses in the language and library clauses warn implementors and programmers of
usages which, though valid in themselves, may conflict with future additions.

Certain features are obsolescent, which means that they may be considered for withdrawal in future revisions
of this International Standard. They are retained because of their widespread use, but their use in new
implementations (for implementation features) or new programs (for language [6.11] or library features [7.26])
is discouraged.

This International Standard is divided into four major subdivisions:

— preliminary elements (clauses 1-4);

— the characteristics of environments that translate and execute C programs (clause 5);

— the language syntax, constraints, and semantics (clause 6);

— the library facilities (clause 7).

Examples are provided to illustrate possible forms of the constructions described. Footnotes are provided to
emphasize consequences of the rules described in that subclause or elsewhere in this International Standard.
References are used to refer to other related subclauses. Recommendations are provided to give advice or
guidance to implementors. Annexes provide additional information and summarize the information contained
in this International Standard. A bibliography lists documents that were referred to during the preparation of
the standard.

The language clause (clause 6) is derived from “The C Reference Manual”.

The library clause (clause 7) is based on the 1984 /usr/group Standard.

1. Effort invested in producing the C Standard 5
2. Updates to C90 7
3. Introduction 12
4. Translation environment 12
4.1, DeVeloper EXPECIAtIONSttt e e 12
4.2. The language SPeCifiCationot e e 13
4.3. Implementation ProdUCES e e e e e 13
4.4, Translation teChNOIOQYo e e 14
4.4.1. Translator OPtiMIZAtiONS.ottt e e e 16

5. Execution environment 18
5.1. HOSt ProCessor CharaCteriStiCsttt e e et 19
5.1.1. Overcoming performance bottlenecks 21

B 2. RUNIME [DrarY e 24
6. Measuring implementations 25
6.1. SPEC beNChMarkso e e 26
6.2. Other benChmarkso e 26
6.3. ProCEeSSOr MEASUIEIMEINTS\ttt ettt ettt et e e et e et e e e e et et 27
7. Introduction 27
8. Source code cost drivers 28
8.1. Guideline CoSt/bENEfit 29
8.1.1. WAt IS the COSE?ttt e e e e 29
8.1.2. What is the benefit? 30
8.1.3. SafEr SO AN 2 . . . 30

8.2. Code development’s place in the UNIVEISE i 30
8.3, SHtAffiNg ... 31
8.3.1. Training NEW Staff. e 32

8.4. RetUIM ON INVESTMENT . .. ettt e et et 33
8.4.1. Some economiCs BaCKgrOUNd.o e e 33
8.4.1.1. DiscoUNting fOr tiMEo e 33
8.4.1.2. Taking risk iNtO @CCOUNL i e e e aaees 34
8.4.1.3. Net Present Value e e 34

August 5, 2005 v 1.0b

_ Introduction

8.4.1.4. Estimating discount rate and risk 35

8.5, REUSING SO WA ..ttt e e e e e e e e 35
8.6. USING @nOther [aNQUAGEttt e e e e e e 35
B 7. TS Aty ..o 36
8.8, SOftWAIE MBS .\ttt et e e 38
9. Background to these coding guidelines 38
9.1. Culture, knowledge, and behavior 39
9.1.1. AIMS @nd MOLIVALIONottt et e e e e e 42
9.2. Selecting guideline recommendationst e 43
9.2.1. Guideline recommendations must be enforceable it 46
9.2.1.1. Uses of adherence to guidelines 47
9.2.1.2. DEVIALIONS . .. ettt ettt ettt e e e e e e e e a7
0.2.2. COUB FBVIBWS . .« ettt ettt et et et e e et e e e e e e e e e e 49
9.2.3. GUIdENINE WOITINGottt e e e e e e e 49
9.3. Relationship among gUIdEliNeS 50
9.4. How do guideline recommendations WOrK?ooiuin e 50
9.5, Developer differEnCeS 50
9.6. What do these guidelines apply 107 i e e 51
9.7. When to enforce the guidelines i e e e e e 53
9.8. Other coding guidelines dOCUMENTSttt e 54
9.8.1. Those that stand out from the Crowd i 55
9.8.1.1. Bell Laboratories and the SESS e 55
0.8. 1. 2. MIS R A o s 55
0.8 2. A .t e e 56
0.9, SOfWAIE INSPECIONS ...ttt et e e et e e e e e 56
10. Applications 57
10.1. Impact of application dOmMain o 57
O 2 A o]][To7= 1T I =T ot T g 410 P 58
10.3. Software arChiteCtUIe e e e 58
10.3.1. Software EVOIULIONttt e e e e e e e e 59
11. Developers 60
11.1. What do developers 02 e e e e 60
11.1.1. Program understanding, NMOL.ttt et 61
11.1.1.1. Comprehension as relevanCeouiiir it et 63
11.1.2. The act of Writing SOfWArE oo e 63
10,2, ProdUCHIVIEY ... et e et e e e e e e e 64
12. The new(ish) science of people 64
12.1. Brief history of cognitive pSYChOIOgYottt 65
12.2. Evolutionary pSyCholOgy 65
12.3. EXperimental StUdIESt e e e 66
12.3.1. The importance Of EXPeriMENtS e 66
12.4. The psychology Of programmingi et e 67
12.4. 0. StUAENt SUD ECES . ..ottt e e e 67
12.4.2. Other eXperimental ISSUESttt 68
12.5. What question is being answered?t e 68
12.5.1. Base rate NEQIECE. .. oottt e 68
12.5.2. The conjunction fallaCy e 70
12.5.3. Availability NEUFISHIC e 71
13. Categorization 73
13.1. Category fOrmation e 74
13.1.1. The Defining-attribute theory e e 76
13.1.2. The Prototype theory e e e e 76
13.1.3. The Exemplar-based theory e 76
13.1.4. The Explanation-based theory e 77

v 1.0b August 5, 2005

Introduction m

13.2. Measuring SIMIIAIILY et e e e e e 77
13.2.1. Predicting categorization performanCevuuiriii i e 79
13.3. Cultural background and use of information 81
14. Decision making 83
14.1. DeCisSion-making Strategiesttt e 84
14.1.1. The weighted additive rule. e 84
14.1.2. The equal Weight NEUFISHICo e e 84
14.1.3. The frequency of good and bad features heuristiC......... ... 85
14.1.4. The majority of confirming dimensions heuristic.............. ... i 85
14.1.5. The satisficing heuristiC.o e 85
14.1.6. The lexicographiC heUrIStIC e 86
14.1.6.1. The elimination-by-aspects heuristiC i i 86
14.1.7. The habitual heUFIStIC.o e 86
14.2. SElECNG @ SHAEAY . .. vttt ettt e et e e e 87
14.2.1. Task COMPIEXILYottt e e e e e e e 87
14.2.2. RESPONSE MOAE. . ..ottt ettt et e ettt e e e et e et e e ettt e et 87
14.2.3. Information diSPlayo e 88
14.2.4. Agenda effects 89
14.2.5. Matching and ChOOSINGottt e e e e e e i 89
14.3. The developer as deCiSION MaKETt 89
14.3.1. Cognitive effort VS. CCUIACYottt e e e 20
14.3.2. Which attributes are considered important? e 91
14.3.3. EMOLIONAl fACIOrSottt e 91
14.3.4. OVErCONfIAENCE e e e e e 91
14.4. The impact of guideline recommendations on decision Makingcooviiiiiiiiieeineinnns 93
14.5. Management's impact on developers’ decision making ... 93
14.5.1. Effects Of INCENLIVES o 94
14.5.2. EffeCts Of tImMe PresSUNe ..o .ottt e e e e e 94
14.5.3. Effects of decision impoOrtanCe e 94
14.5.4. Effects Of trainingo i 94
14.5.5. Having to JUStify 0eCISIONSttt e e e e e 95
14.6. Another theory about decision making 96
15. Expertise 96
15, KNOW A .. oottt e e 98
15.1.1. Declarative KNOWIEAQEo e e e 98
15.1.2. Procedural KNOWIEBAQEo e e e e e e e 98
15.2. EUCALION ...ttt ettt ettt e et et e e e 99
15.2.0. Learned sKillso e 99
15.2.2. Cultural SKillS. 100
TR T @8 1T L1 o = o 1] P 100
15.3.1. Transfer of expertise to differentdomains..............o i 100
15.4. EXpertise as Mental Sl e e 100
15.5. Software development EXPertiSEttt e e 100
15.6. Software developer EXPertiSEiu it e 102
15.6.1. Is software expertise Worth acquIring?ot e 104
15,7, CodiNg SEYIE .ttt e 104
16. Human characteristics 105
16.1. Physical CharaCteriStiCSt e e e e 107
16.2. Mental CharaCteriStiCSttt 108
16.2.1. Computational power of the brain. 109
G |V = o T Y 110
16.2.2.1. Visual manipulationoiii i 115
16.2.2.2. LONGEr tErM MEIMOIIES . ..o\ttt ettt ettt e e e e e e e e e e ees 116
16.2.2.3. Serial OFder e e 117

August 5, 2005 v 1.0b

_ Introduction

defect report o

culture of Co

16.2.2.4. FOIQEIING . ..ottt ettt ettt et e e e e e e e e 117
16.2.2.5. Organized KNOWIEdget e e e 119
16.2.2.6. Errors caused by memory overflow ... 120
16.2.2.7. Memory and code COMPreNeNSIONttt 120
16.2.2.8. MEMOIY @nd @0ING vttt et ettt e e 121
16, 2.3, A NION . . .ot e e e e 121
16.2.4. AULOMALIZALIONottt et e e et e e e e e 122
16.2.5. Cognitive SWItCH e 123
16.2.6. Cognitive effOrt. 124
G A ¥4 = g T =T 0 125
16.2.7.1. SKill-based Mistakesouiuiii i e 126
16.2.7.2. Rule-based mistakes i e 126
16.2.7.3. Knowledge-based mistakes e 126
16.2.7.4. DELECHNG EITOIS . ..ottt ittt ettt e et e et 127
G 8 ST = 1 o == 127
16.2.8. Heuristics and DIaSes e 127
16.2.8. 1. REASONMING ...ttt ittt e e e ettt e ettt e e e e e e 128
16.2.8.2. RAIONAIIYt e 128
16.2.8.3. RISK @Sy MM Oty ...\ttt e e e e e e e 129
16.2.8.4. Framing effeCts 130
16.2.8.5. Context effeCtS s 131
16.2.8.6. Endowment effeCt 132
16.2.8.7. Representative NeUrIStICo.ouu e 132
16.2.8.8. ANCROIING ..ot 134
16.2.8.9. Belief MaiNtenanCet e 135
16.2.8.10. Confirmation biasoiiii i e e 140
16.2.8.11. Age-related reasoning abilityo e 142
16,3, PeISONAIILY ...\ttt e e e 142
17. Introduction 143
17.1. Characteristics Of the Source Code e 144
17.2. What Source code t0 MEASUIE?ttt et et ettt e et eens 144
17.3. How were the measurements Made?iniiriti i et 145
Commentary

This book is about the latest version of the C Standard, ISO/IEC 9899:1999 plus TC1 and TC2 (these
contain wording changes derived from WG14'’s responses to defect reports). It is structured as a detailec
systematic analysis of that entire language standard (clauses 1-6 in detail; clause 7, the library, is only
covered briefly). A few higher-level themes run through all this detail, these are elaborated on below. This
book is driven by existing developer practices, not ideal developer practices (whatever they might be). How
developers use computer languages is not the only important issue; the writing of translators for them anc
the characteristics of the hosts on which they have to be executed are also a big influence on the languag
specification.

Every sentence in the C Standard appears in this book (under the section heading C99). Each of thes
sentences are followed by a Commentary section, and sections dealing with €9Qtker Languages,
Common Implementations, Coding Guidelines, Example, and Usage as appropriate. A discussion of eacl
of these sections follows.

Discussions about the C language (indeed all computer languages), by developers, are often strongl
influenced by the implementations they happen to use. Other factors include the knowledge, beliefs anc
biases (commonly known as folklore, or idiom) acquired during whatever formal education or training
developers have had and the culture of the group that they current work within. In an attempt to simplify
discussions your author has attempted to separate out these various threads.

Your author has found that a common complaint made about his discussion of C is that it centers on what

4 v 1.0b August 5, 2005

1 Effort invested in producing the C Standard Introductim

the standard says, not on how particular groups of developers use the language. No apology is made for this
outlook. There can be no widespread discussion about C until all the different groups of developers start
using consistent terminology, which might as well be that of the standard. While it is true that your author’s
involvement in the C Standards’ process and association with other like-minded people has resulted in a
strong interest in unusual cases that rarely, if ever, occur in practice, he promises to try to limit himself to
situations that occur in practice, or at least only use the more obscure cases when they help to illuminate the
meaning or intent of the C Standard.

No apologies are given for limiting the discussion of language extensions. If you want to learn the details
of specific extensions, read your vendors’ manuals.

Always remember the definitive definition is what the words in the C Standard say. In responding to
defect reports the C committee have at times used the ptiragetent of the Committed his phrase hasdefect report
been used when the wording in the standard is open to more than one possible interpretation and where
committee members can recall discussions (via submitted papers, committee minutes, or committee email)
in which the intent was expressed. The Committee has generally resisted suggestions to rewrite existing,
unambiguous, wording to reflect intent (when the wording has been found to specify different behavior than
originally intended).

As well as creating a standards document the C committee also produced a rationale. This rationale docu-Rationale
ment provides background information on the thinking behind decisions made by the Committee.

Wording that appears within a sectioned area like this wording is a direct quote from the rationale (the
document used was WG14/N937, dated 17 March 2001).

No standard is perfect (even formally defined languages contain mistakes and amiigijtidhere is a
mechanism for clarifying the wording in ISO standards, defect reports (DRs as they are commonly«cakedgport
The text of C99 DRs are called out where applicable.

1 Effort invested in producing the C Standard

The ANSI Committee which produced C90, grew from 13 members at the inaugural meeting, in June 1983,
to around 200 members just prior to publication of the first Standard. During the early years about 20 people
would attend meetings. There was a big increase in numbers once drafts started to be sent out for public
review and meeting attendance increased to 50 to 60 people. Meetings occurred four times a year for six
years and lasted a week (in the early years meetings did not always last a week). People probably had to put,
say, a week'’s effort into reading papers and preparing their positions before a meeting. So in round numbers
let's say:

(20 people x 1.3 weeks x 3 meetings x 1 years) +
(20 people x 1.7 weeks x 4 meetings x 2 years) +
(50 people x 2.0 weeks x 4 meetings x 3 years) = 1,540 person weeks (not quite 30 years)

What about the 140 people not included in this calculation— how much time did they invest? If they
spent just a week a year keeping up with the major issues, then we have 16 person years of effort. On top
of this we have the language users and implementors reviewing drafts that were made available for public
review. Not all these sent in comments to the Committee, but it is not hard to imagine at least another 4
person years of effort. This gives the conservative figure of 50 person years of effort to produce C90.

Between the publication of C90 and starting work on the revision of C99, the C committee met twice
a year for three days; meeting attendance tended to vary between 10 and 20. There was also a significant
rise in the use of email during this period. There tended to be less preparation work that needed to be done
before meetings— say 2 person years of effort.

The C99 work was done at the ISO level, with the USA providing most of the active committee mem-
bership. The Committee met twice a year for five years. Membership numbers were lower, at about 20 per

August 5, 2005 v 1.0b 5

_ Introduction 1 Effort invested in producing the C Standard

ISO

X3J11o0

ISO
JTC 1 |y Information
Technology
TC 1 SC2
(Screw Threads) SC 7
TC2 (Software and
(Rolling Bearings) gineering
SC22 L P;ogrammmg
TC 243 SC23
(Civil Defence) WG 3
WG 4
TC 244 a6 conon
T(L'fla";mug) WG s
ooy (FORTRAN)
WG 14
©
WG 15

(POSIX)

WG 21
(C++)

Figure 0.1: The ISO Technical Committee structure— JTC (Joint Technical Committee, with the IEC in this case), TC (Tech-
nical Committee), SC (Standards Committee), WG (Working Group).

meeting. This gives a figure of 8 person years. During development of C99 there was a significant amount of
discussion on the C Standard’s email list; just a week per year equates to more than 2 person years (the Ul
and Japanese national bodies had active working groups, many of whose members did not attend meetings

Adding these numbers up gives a conservative total of 62 person years of effort that was invested in the
C99 document. This calculation does not include the cost of traveling or any support cost (the duplication
bill for one committee mailing was approximately $5,000).

The C committee structure

The three letters ISO are said to be derived from the Gissekmeaning “the same” (the official English
term used is International Organization for Standardization, not a permutation of these words that gives the
ordering 1SO). Countries pay to be members of ISO (or to be exact, standards organizations in different
countries pay). The size of the payment depends on a country’s gross domestic product (a measure of ec
nomic size) and the number of ISO committees they want to actively participate in. Within each country,
standards’ bodies (there can be more than one) organize themselves in different ways. In many countries |
is possible for their national standards’ body(s) to issue a document as a standard in that country. The initia
standards work on C was carried out by one such national body — ANSI (American National Standards
Institute). The document they published was only a standard in the USA. This document subsequently wen!
through the process to become an International Standard. As of January 2003, ISO has 138 national stal
dards bodies as members, a turnover of 150 million Swiss Francs, and has published 13,736 Internatione
Standards (by 188 technical committees, 550 subcommittees, and 2,937 working groups)(se& Figure

The documents published by ISO may be formally labeled as having a particular status. These labels
include Standard, Technical Report (Type 1, 2, or 3), and a draft of one of these kinds of documents (there
are also various levels of draft). The documents most commonly seen by the public are Standards and Typ
2 Technical Reports. A Type 2 Technical Report (usually referred to as simply a TR) is a document that
is believed to be worth publishing as an ISO Standard, but the material is not yet sufficiently mature to be
published as a standard. It is a kind of standard in waiting.

6 v 1.0b August 5, 2005

2 Updates to C90 Introduction m

C90
C90 was the first version of the C Standard, known as ISO/IEC 9899:1990(E) (Ritthigives a history
of prestandard development). It has now been officially superseded by C99. The C90 sections ask the
guestion: What are the differences, if any, between the C90 Standard and the new C99 Standard?
Text such this occurs (with a bar in the margin) when a change of wording can lead to a developer visible
change in behavior of a program.
Possible differences include:

» C90 said X was black, C99 says X is white.

» C99 has relaxed a requirement specified in C90.

« C99 has tightened a requirement specified in C90.

» C99 contains a construct that was not supported in C90.

If a construct is new in C99 this fact is only pointed out in the first sentence of any paragraph discussing

it. This section is omitted if the wording is identical (word for word, or there are minor word changes that

do not change the semantics) to that given in C99. Sometimes sentences have remained the same but have
changed their location in the document. Such changes have not been highlighted.

The first C Standard was created by the US ANSI Committee X3J11 (since renamed as NCITS J11). Thisxai1
document is sometimes called C89 after its year of publication as an ANSI standard (The shell and utilities
portion of POSIM68! specifies a c89 command, even although this standard references the ISO C Standard,
not the ANSI one.). The published document was known as ANSI X3.159-1989.

This ANSI standard document was submitted, in 1990, to ISO for ratification as an International Standard.
Some minor editorial changes needed to be made to the document to accommodate 1SO rules (a sed script
was used to make the changes to the troff sources from which the camera-ready copy of the ANSI and ISO
standards was created). For instance, the word Standard was replaced by International Standard and some
major section numbers were changed. More significantly, the Rationale ceased to be included as part of the
document (and the list of names of the committee members was removed). After publication of this ISO
standard in 1990, ANSI went through its procedures for withdrawing their original document and adopting
the ISO Standard. Subsequent purchasers of the ANSI standard see, for instance, the words International
Standard not just Standard.

2 Updates to C90

Part of the responsibility of an ISO Working Group is to provide answers to queries raised against any pefet report
lished standard they are responsible for. During the early 1990s, the appropriate ISO procedure seemed to

be the one dealing with defects, and it was decided to create a Defect Report log (entries are commonly
known asDRs). These procedures were subsequently updated and defect reports were riatenpreda-

tion requestdy ISO. The C committee continues to use the telefectand DR, as well as the new term
interpretation request

Standards Committees try to work toward a publication schedule. As the (self-imposed) deadline for
publication of the C Standard grew nearer, several issues remained outstanding. Rather than delay the
publication date, it was agreed that these issues should be the subject of an Amendment to the Standard.
The purpose of this Amendment was to address issues from Denmark (readable trigraphs), Japan (additional
support for wide character handling), and the UK (tightening up the specification of some constructs whose
wording was considered to be ambiguous). The title of the AmendmenCwiegrity.

As work on DRs (this is how they continue to be referenced in the official WG14 log) progressed, it
became apparent that the issues raised by the UK, to be handled by the Amendment, were best dealt with
via these same procedures. It was agreed that the UK work item would be taken out of the Amendment and
converted into a series of DRs. The title of the Amendment remained the same even though the material
that promoted the choice of title was no longer included within it.

August 5, 2005 v1.0b 7

_ Introduction 2 Updates to C90

To provide visibility for those cases in which a question had uncovered problems with wording in the pub-
lished standard the Committee decided to publish collections of DRs. The ISO document containing such
corrections is known as a Technical Corrigenddr@)and two were published for C90. A TC is normative
and contains edits to the existing standard’s wording only, not the original question or any rationale behind
the decision reached. An alternative to a TC is a Record of RespBRea(non-normative document.

Wording from the Amendment, the TCs and decisions on defect reports that had not been formally
published were integrated into the body of the C99 document.

A determined group of members of X3J11, the ANSI Committee, felt that C could be made more attrac-
tive to numerical programmers. To this end it was agreed that this Committee should work toward producing
a technical report dealing with numerical issues.

NCEG The Numerical C Extensions GrouNCEG was formed on May 10, 1989; its official designation was
X3J11.1. The group was disbanded on January 4, 1994. The group produced a number of internal, commi
tee reports, but no officially recognized Technical Reports were produced. Topics covered included: com-
pound literals and designation initializers, extended integers via a header, complex arithmetic, restricted
pointers, variable length arrays, data parallel C extensions (a considerable amount of time was spent ol
discussing the merits of different approaches), and floating-point C extensions. Many of these reports were

base doc-1 sed as the base documents for constructs introduced into C99.

Support for parallel threads of execution was not addressed by NCEG because there was already an ANS
Committee, X3H5, working toward standardizing a parallelism model and Fortran and C language bindings
to it.

C++
Many developers view € as a superset of C and expect to be able to migrate C coderto/thile this
book does not get involved in discussing the major redesigns that are likely to be needed to make effective
use of G+, it does do its best to dispel the myth of C being a subset-ef There may be a language that
is common to both, but these sections tend to concentrate on the issues that need to be considered whe
translating C source using aranslator.

What does the € Standard, ISO/IEC 14882:1998(E), have to say about constructs that are in C99?

» Wording is identical Say no more.

* Wording is similar. Slight English grammar differences, use of terminology differences and other
minor issues. These are sometimes pointed out.

« Wording is different but has the same meanifige sequence of words is too different to claim they
are the same. But the meaning appears to be the same. These are not pointed out unless they highlig
a C+ view of the world that is different from C.

« Wording is different and has a different meaningere the G+ wording is quoted, along with a
discussion of the differences.

* No C+ sentence can be associated with a C99 sentenus.often occurs because of a construct that
does not appear in ther€Standard and this has been pointed out in a previous sentence occurring
before this derived sentence.

There is a stylized form used to comment source code associated witli*Chehavior */— and G+—
// behavior.

The precursor to € was known as C with Classes. While it was being developedeRisted in an
environment where there was extensive C expertise and C source code. Attempts by Stroustrup to introduc
incompatibilities were met by complaints from his usé#s?

The intertwining of C and &, in developers mind-sets, in vendors shipping a single translator with a
language selection option, and in the coexistence of translation units written in either language making up
one program means that it is necessary to describe any differences between the two.

8 v 1.0b August 5, 2005

2 Updates to C90 Introduction m

The April 1989 meeting of WG14 was asked two questions by ISO: (1) shouldt#thiau@uage be stan-
dardized, and (2) was WG14 the Committee that should do the work? The decision on (1) was very close,
some arguing that-€ had not yet matured sufficiently to warrant being standardized, others arguing that
working toward a standard would stabilize the language (constant changes to its specification and implemen-
tation were causing headaches for developers using it for mission-critical applications). Having agreed that
there should be a+€ Standard WG14 was almost unanimous in stating that they were not the Committee
that should create the standard. During April 1991 WG21, the 1SC8@andard’s Committee was formed;
they met for the first time two months later.

In places additional background information of+@ provided. Particularly where different concepts,
or terminology, are used to describe what is essentially the same behavior.

In a few places constructs available ir+Cbut not C, are described. The rationale for this is that a C
developer, only having a+€ translator to work with, might accidentally use a+@onstruct. Many €r
translators offer a C compatibility mode, which often does little more than switch off support for a-few C
constructs. This description may also provide some background about why things are different in C

Everybody has a view point, even the creator of Bjarne Stroustrup. But the final say belongs to the
standards’ body that oversees the development of language standards, SC22. The following was the initial
position.

Resolutions Prepared at the Plenary Meeting of
ISO/IEC JTC 1/SC22
Vienna, Austria
September 23—-29, 1991
Resolution AK Differences between C anid-C

Notwithstanding that C and € are separate languages, ISO/IEC JTC1/SC22 directs WG21 to document
differences in accordance with ISO/IEC TR 10176.

Resolution AL WG14 (C) and WG21+€ Coordination

While recognizing the need to preserve the respective and different goals of CrankbO/IEC JTC1/SC22
directs WG14 and WG21 to ensure, in current and future development of their respective languages, that
differences between C and-Care kept to the minimum. The word "differences" is taken to refer to strictly
conforming programs of C which either are invalid programs i+ @©r have different semantics in+€

This position was updated after work on the first Gtandard had been completed, but too late to have any
major impact on the revision of the C Standard.

Resolutions Prepared at the Eleventh Plenary Meeting of
ISO/IEC JTC 1/SC22
Snekkersten, Denmark
August 24-27, 1998
Resolution 98-6: Relationship Between the Work of WG21 and that of WG14

Recognizing that the user communities of the C and @nguages are becoming increasingly divergent,
ISO/IEC JTC 1/SC22 authorizes WG21 to carry out future revisions of ISO/IEC 14882:1998 (Programming
Language €+) without necessarily adopting new C language features contained in the current revision to
ISO/IEC 9899:1990 (Programming Language C) or any future revisions thereof.

ISO/IEC JTC 1/SC22 encourages WG14 and WG21 to continue their close cooperation in the future.

August 5, 2005 v 1.0b 9

_ Introduction 3 Introduction

Other Languages

Why are other languages discussed in this book? Developers are unlikely to spend their entire working life
using a single language (perhaps some Cobol and Fortran programmers may soon achieve this).

C is not the only programming language in the world (although some developers act as if it were). Char-
acteristics of other languages can help sharpen a developer's comprehension of the spirit (design, flavo
world-view) of C. Some of C’s constructs could have been selected in several alternative ways, others
interrelate to each other.

The functionality available in C can affect the way an algorithm is coded (not forgetting individual per-
sonal differenced¥’®:1070) Sections of source may only be written that way because that is how things are
done in C; they may be written differently, and have different execution time charactefistits) other
languages. Appreciating the effects of C language features in the source they write can be very difficult for
developers to do; rather like a fish trying to understand the difference between water and dry land.

Some constructs are almost universal to all programming languages, others are unique to C (and ofter
C++). Some constructs are common to a particular class of languages— algorithmic, functional, imperative,
formal, and so on. The way things are done in C is not always the only way of achieving the same result,
or the same algorithmic effect. Sometimes C is unique. Sometimes C is similar to what other languages do
Sometimes there are languages that do things very differently from C, either in implementing the same idea
or in having a different view of the world.

It is not the intent to claim that C or any other language is better or worse because it has a particular
design philosophy, or contains a particular construct. Neither is this subsection intended as a survey of wha
other languages do. No attempt is made to discuss any other language in any way apart from how it is
similar or different from C. Other languages are looked at from the C point of view.

Developers moving from C to another language will, for a year or so (or longer depending on the time
spent using the new language), tend to use that language in a C-like style (much the same as people learnir
English tend to initially use the grammar and pronunciations of their native language; something that fluent
speakers have no trouble hearing).

Your author’s experience with many C developers is that they tend to Have e only language worth
knowing attitude This section is unlikely to change that view and does not seek to. Some knowledge of
how other languages do things never hurt.

There are a few languages that have stood the test of time, Cobol and Fortran for example. While Pasca
and Ada may have had a strong influence on the thinking about how to write maintainable, robust code,
they have come and gone in a relatively short period of time. At the time of this writing there are six
implementations of Ada 95. A 1995 surf®}! of language usage found 49.5 million lines of Ada 83
(C89 32.5 million, other languages 66.18 million) in DoD weapon systems. The lack of interest in the
Pascal standard is causing people to ask whether it should be withdrawn as a recognized standard (IS¢
rules require that a standard be reviewed every five years). The Java language is making inroads into th
embedded systems market (the promise of it becoming the lingua franca of the Internet does not seem t
have occurred). It is also trendy, which keeps it in the public eye. Lisp continues to have a dedicated user
base 40 years after its creation. A paper praising its use, over C, has even beerl3#fitten.

The references for the other languages mentioned in this book are!®22dalgol 6813471 APL,[634]
BCPL 18I CHILL, 638 Cobol[14 Fortran82 Lispl®3% (Schem&93]), Modula-2[%2¢! Pascal®1 per[1375]
PL/1[613 Snobol 4% and SQL21]

References for the implementation of languages that have significant differences from C includ&hPL,
functional languageld934 and ML

Common Implementations

10 v 1.0b August 5, 2005

3 Introduction Introduction m

1BV IVIathematical
1954 FORmula TRANslating System

FORTRAN

COBOL

1960 First officially published version
COBOL 68
1968 published by USASI
FORTRAN 66

1966 ANSI X3.9-1966

COBOL
1974 ANSI X3.23-1974
1977 FORTRAN 77 COBOL The C Programming Language

‘ ANSI X3.9-1978 ISO 1989:1978 by Kernighan & Ritchie

1979 Stroustrup starts work on C with classes

1980 FORTRAN ISO 1539-1980(E)

1983 ANSI C committee formed
\
1985 COBOL The C++ Programming Language
" ISO 1989:1985 by Bjarne Stroustrup
1989 ANSI C Standard ANSI X3.159-1989 WG4 turns down offer

to standardise C++

Control of C Stdndard moves to
1990 ISO/IEC JTC 1/SC22 WG14 ISO/IEC JTC 1/SC22 WG2I formed
v ISO/IEC 9899:4990 published

1991 Fortran 90 ISO 1539:1991(E)
\ 4

Intrinsic Functions
1192 ISO 1989:1985/Amd.1:1992

Corrections ISO/IEC 9899/COR1:1994

1994 ISO 1989:1985/Amd.2:1994 Technical Corrigendum 1

ISO/IEC 989/ AMD1:1995

1995 Amendment 1 Work starts on

revising the C Standard

* C Integgjty
1996 ISO/IEC 9899/COR1:1996
Technical Corrigendum 2
v

1997 Fortran 95 ISO/IEC 1539-1:1997

The Java Language Specific:

v
Conditional Compilation .
1(198 ISO/IEC 1539-3:1998 C++ ISO/IEC 14882:1998

ISO/IEC 9899:1999 replaces Java withdrawn from ISO z

1999 ISO/IEC 9899:1990 ECMA standardization proc

2000 Varying Length Character Strings
+ ISO/IEC 1539-2:2000

2002

v
ISO/IEC TR18037 ISO/IEC 14882/TC1:2003

2003 Embedded C Technical Corrigendum 1

* ISO/IEC TR18015
2004 C++ Performance

Figure 0.2: Outline history of the C language and a few long-lived languages. (BK€kdescribes the earliest history of
Fortran.)

August 5, 2005 v 1.0b 11

_ Introduction 4 Translation environment

developer
expectations

3 Introduction

This subsection gives an overview of translator implementation issues. The specific details are discussed il
the relevant sentence. The following are the main issues.

 Translation environmenfThis environment is defined very broadly here. It not only includes the lan-
guage specification (dialects and common extensions), but customer expectations, known translatior
technology and the resources available to develop and maintain translators. Like any other application
development project, translators have to be written to a budget and time scale.

» Execution environmentThis includes the characteristics of the processor that will execute the pro-
gram image (instruction set, number of registers, memory access characteristics, etc.), and the runtime
interface to the host environment (storage allocation, function calling conventions, etc.).

» Measuring implementation8leasurements on the internal working of translators is not usually pub-
lished. However, the execution time characteristics of programs, using particular implementations,
is of great interest to developers and extensive measurements are made (many of which have bee
published).

4 Translation environment

The translation environment is where developers consider their interaction with an implementation to oc-
cur. Any requirement that has existed for a long period of time (translators, for a variety of languages,
have existed for more than 40 years; C for 25 years) establishes practices for how things should be done
accumulates a set of customer expectations, and offers potential commercial opportunities.

Although the characteristics of the language that need to be translated have not changed significantly
several other important factors have changed. The resources available to a translator have significantl
increased and the characteristics of the target processors continue to change. This increase in resources &
need to handle new processor characteristics has created an active code optimization research community

4.1 Developer expectations
Developers have expectations about what language constructs mean and how implementations will proces
them. At the very least developers expect a translator to accept their existing source code and generate to
program image from it, the execution time behavior being effectively the same as the last implementation
they used. Implementation vendors want to meet developer expectations whenever possible; it reduces th
support overhead and makes for happier customers. Authors of translators spend a lot of time discussin
what their customers expect of their product; however, detailed surveys of customer requirements are rarel
carried out. What is available is existing source code. It is this existing code base that is often taken
as representing developers expectations (translators should handle it without complaint, creating program
that deliver the expected behavior).

Three commonly encountered expectations are good performance, low code expansion ratio, and nc
surprising behavior; the following describes these expectations in more detail.

1. C has a reputation for efficiencitis possible to write programs that come close to making optimum
usage of processor resources. Writing such code manually relies on knowledge of the processol
and how the translator used maps constructs to machine code. Very few developers know enougt
about these subjects to be able to consistently write very efficient programs. Your author sometimes
has trouble predicting the machine code that would be generated when using the compilers he hac
written. As a general rule, your author finds it safe to say that any ideas developers have about the
most efficient construct to use, at the statement level, are wrong. A cost effective solution is to not
worry about statement level efficiency issues and let the translator look after things.

2. C has a reputation for compactnesghe ratio of machine code instructions per C statement is of-
ten a small number compared to other languages. It could be said that C is a WYSIWYG language,

12 v 1.0b August 5, 2005

4 Translation environment Introductiom

the mapping from C statement to machine code being simple and obvious (leaving aside what an

optimizer might subsequently do). This expectation was used by some members of WG14 as an ar-
gument against allowing the equality operator to have operands with structure type; a single operator

potentially causing a large amount of code, a comparison for each member, to be generated. The
introduction of theinline function-specifier has undermined this expectation to some degrelem{ égﬁgr
pending on whethetnline is thought of as a replacement for function-like macros, or the mhmntj

of functions that would not have been implemented as macros).

3. C has a reputation for being a consistent languadgevelopers can usually predict the behavior
of the code they write. There are few dark corners whose accidental usage can cause constructs to
behave in unexpected ways. While the C committee can never guarantee that there would never be
any surprising behaviors, it did invest effort in trying to ensure that the least-surprising behaviors
occurred.

4.2 The language specification

The C Standard does not specify everything that an implementation of it has to do. Neither does it preveﬁrhon im-
vendors from adding their own extensions. C is not a registered trademark that is policed to ensure iR "\egﬁmgﬂggz
mentations follow its requirements; unlike Ada, which until recently was a registered trademark, ownedspsgification
the US Department of Defense, which required that an implementation pass a formal validation procedure
before allowing it to be called Ada. The C language also has a history— it existed for 13 years before a
formally recognized standard was ratified.

The commercial environments in which C was originally used have had some influence on its specifica-
tion. The C language started life on comparatively small platforms and the source code of a tramstator (
the portable C compil&°ll) was available for less than the cost of writing a new one. Smaller hardware
vendors without an established customer base, were keen to promote portability of applications to their
platform. Thus, there were very few widely accepted extensions to the base language. In this environment
vendors tended to compete more in the area of available library functions. For this reason, significant de-
veloper communities, using different dialects of C, were not created. Established hardware vendors are
not averse to adding language extensions specific to their platforms, which resulted in several widely used
dialects of both Cobol and Fortran.

Implementation vendors have found that they can provide a product that simply follows the requirements
contained in the C Standard. While some vendors have supplied options to support for some prestandard
language features, the number of these features is small.

Although old source code is rarely rewritten, it still needs a host to run on. The replacement of old hosts
by newer ones means that either existing source has to be ported, or new software acquired. In both cases
it is likely that the use of prestandard C constructs will diminish. Many of the programs making use of C
language dialects, so common in the 1980s, are now usually only seen executing on very old hosts. The few
exceptions are discussed in the relevant sentences.

4.3 Implementation products

Translators are software products that have customers like any other application. The companies that pro-
duce them have shareholders to satisfy and, if they are to stay in business, need to take commercial issues
into account. It has always been difficult to make money selling translators and the continuing improvement
in the quality of Open Source C translators makes it even harder. Vendors who are still making most of
their income by selling translators, as opposed to those who have to supply one as part of a larger sale, need
to be very focused and tend to operate within specific markets. For instance, some choose to concentrate
on the development process (speed of translation, integrated development environment, and sophisticated
debugging tools), others on the performance of the generated machine code (Kuck & Associates, purchased
by Intel, for parallelizing scientific and engineering applications, Code Play for games developers targeting
the Intel x86 processor family). There are even specialists within niches. For instance, within the embedded
systems market Byte Craft concentrates on translators for 8-bit processors. Vendors who are still making

August 5, 2005 v 1.0b 13

_ Introduction 4 Translation environment

GCC

translation tech-
nology

most of their income from selling other products (e.g., hardware or operating systems) sometimes include
a translator as a loss leader. Given its size there is relatively little profit for Microsoft in selling+a C/C
translator; having a translator gives the company greater control over its significantly more profitable prod-
ucts (written in those languages) and, more importantly, mind-share of developers producing products for
its operating systems.

It is possible to purchase a license for a C translator front-end from several companies. While writing
one from scratch is not a significant undertaking (a few person years), writing anything other than a straight-
forward code generator can require a large investment. By their very nature, many optimization techniques
deal with special cases, looking to fine-tune the use of processor resources. Ensuring that correct code |
generated, for all the myriad different combinations of events that can occur, is very time-consuming and
expensive.

The performance of generated machine code is rarely the primary factor in a developers’ selection of
which translator to purchase, if more than one is available to choose from. Factors such as implicit Vendor
preference (nobody is sacked for buying Microsoft), preference for the development environment provided,
possessing existing code that is known to work well with a particular vendor’s product, and many other
possible issues. For this reason optimization techniques often take many years to find their way from
published papers to commercial products, if at'afe!

Companies whose primary business is the sale of translators do not seem to grow beyond a certain poin
The largest tend to have a turnover in the tens of millions of dollars. The importance of translators to
companies in other lines of business has often led to these companies acquiring translator vendors, bot
for the expertise of their staff and for their products. Several database companies have acquired translatc
vendors to use their expertise and technology in improving the performance of the database products (the
translators subsequently being dropped as stand-alone products).

Overall application performance is often an issue in the workstation market. Here vendors, such as HP
SGl, and IBM, have found it worthwhile investing in translator technology that improves the quality of
generated code for their processors. Potential customers evaluating platforms using benchmarks will be
looking at numbers that are affected by both processor and translator performance— the money to be mad
from multiple hardware sales being significantly greater than that from licensing a translator to relatively
few developers. These companies consider it worthwhile to have an in-house translator development group

GCC, the GNU C compilér??Z (now renamed the GNU Compiler Collection; the tegotwill be used
here to refer to the C compiler), was distributed in source code form long before Linux and the rise of the
Open Source movement. Its development has been checkered, but it continues to grow from strength tc
strength. This translator was designed to be easily retargeted to a variety of different processors. Severe
processor vendors have provided, or funded ports of the back end to their products. Over time the opti
mizations performed by GCC have grown more sophisticated. This has a lot to do with researchers using
GCC as the translator on which to implement and test their optimization ideas. On those platforms where
its generated machine code does not rank first in performance, it usually ranks second.

The source code to several other C translators has also been released under some form of public us
license. These includécc*U along withvpo (very portable optimizét'?), the SGIPRO C compil&#-84
(which performs many significant optimizations), the TenDRA €/@roject!*4 Watcom('38l Extensible
Interactive C (an interpretef$?! and the Trimaran compiler systeffl.

The lesson to be drawn from these commercial realities is that developers should not expect a highly
competitive market in language translators. Investing large amounts of money in translator development is
unlikely to be recouped purely from sales of translators (some vendors make the investment to boost the
sales of their processors). Developers need to work with what they are given.

4.4 Translation technology

Translators for C exist within a community of researchers (interested in translation techniques) and also
translators for other languages. Some techniques have become generally accepted as the way some constr
is best implemented; some are dictated by trends that come and go. This book does not aim to documer

14 v 1.0b August 5, 2005

4 Translation environment Introductiom

every implementation technique, but it may discuss the following.

« How implementations commonly map constructs for execution by processors.
« Unusual processor characteristics, which affect implementations.

« Common extensions in this area.

* Possible trade-offs involved in implementing a construct.

» The impact of common processor architectures on the C language.

In the early days of translation technology vendors had to invest a lot of effort simply to get them to run
within the memory constraints of the available development environments. Many existed as a collection of
separate programs, each writing output to be read by the succeeding phase, the last phase being assembler
code that needed to be processed by an assembler.

Ever since the first Fortran transldf8rthe quality of machine code produced has been compared to hand-
written assembler. Initially translators were only asked to not produce code that was significantly worse than
handwritten assembler; the advantages of not having to retrain developers (in new assembly languages) and
rewrite applications outweigh the penalties of less performance. The fact that processors changed frequently,
but software did not, was a constant reminder of the advantages of using a machine-independent language.
Whether most developers stopped making the comparison against handwritten assembler because fewer of
them knew any assembler, or because translators simply got better is an open issue. In some application
domains the quality of code produced by translators is nowhere near that of handwritten a$58fhatet
many developers still need to write in machine code to be able to create usable applications.

Much of the early work on translators was primarily concerned with different language constructs and
parsing them. A lot of research was done on various techniques for parsing grammars and tools for com-
pressing their associated data tables. The work done at Carnegie Mellon on the PQCE&Stajrctduced
many of the ideas commonly used today. By the time C came along there were some generally accepted
principles about how a translator should be structured.

A C translator usually operates in several phases. The first phase (calfemhthendby compiler writerstzofootnote
and often the parser by developers) performs syntax and semantic analysis of the source code and builds a
tree representation (usually based on the abstract syntax); it may also map operations to an intermediate form
(some translators have multiple intermediate forms, which get progressively lower as constructs proceed
through the translation process) that has a lower-level representation than the source code but a higher-level
than machine code. The last phase (often calledh#tok-endby compiler writers or theode generatoby
developers) takes what is often a high-level abstract machine code (an intermediate code) and maps it to
machine code (it may generate assembler or go directly to object code). Operations, such as stora@‘éﬂ%ﬁ%t
and optimizations on the intermediate code, could be part of one of these phases, or be a separate phase
(sometimes called thmiddle-endoy compiler writers).

The advantage of generating machine code from intermediate code is a reduction in the cost of retarget-
ing the translator to a new processor; the front-end remains virtually the same and it is often possible to
reuse substantial parts of later passes. It becomes cost effective for a vendor to offer a translator that can
generate machine code for different processors from the same source code. Many translators have a single
intermediate code. GCC currently has one, called RTL (register transfer language), but may soon have more
(a high-level, machine-independent, RTL, which is then mapped to a more machine specific form of RTL).
Automatically deriving code generators from processor descrigtiShsounds very attractive. However,
until recently new processors were not introduced sufficiently often to make it cost effective to remove the
human compiler written from the process. The cost of creating new processors, with special purpose in-
struction sets, is being reduced to the point where custom processors are likely to become very common and
automatic derivation of code generators is essential to keep these cost8 Gditii.

The other advantage of breaking the translator into several components is that it offers a solution to
the problem caused by a common host limitation. Many early processors limited the amount of memory

August 5, 2005 v 1.0b 15

_ Introduction 4 Translation environment

translator opti-
mizations

available to a program (64 K was a common restriction). Splitting a translator into independent components
(the preprocessor was usually split off from the syntax and semantics processing as a separate progran
enabled each of them to occupy this limited memory in turn. Today most translators have many megabytes
of storage available to them; however, many continue to have internal structures designed when storag
limitations were an important issue.

There are often many different ways of translating C source into machine code. Developers invariably
want their programs to execute as quickly as possible and have been sold on the idea of translators the
perform code optimization. There is no commonly agreed on specification for exactly what a translator
needs to do to be classified as optimizing, although claims made in a suitably glossy brochure is often
sufficient for many developers.

4.4.1 Translator optimizations

Traditionally optimizations have been aimed at reducing the time needed to execute a program (this is
what the termincreasing program performands usually intended to mean) or reducing the size of the
program image (this usually means the amount of storage occupied during program execution— consisting
of machine code instructions, some literal values, and object storage). Many optimizations have the effect
of increasing performance and reducing size. However, there are some optimizations that involve making &
trade-off between performance and size.

The growth in mobile phones and other hand-held devices containing some form of processor have cre
ated a new optimization requirement— power minimization. Software developers want to minimize the
amount of electrical power required to execute a program. This optimization requirement is likely to be new
to readers; for this reason a little more detail is given at the end of this subsection.

Some of the issues associated with generating optimal machine code for various constructs are discusse
within the sentences for those constructs. In some cases transformations are performed on a relativel
high-level representation and are relatively processor-independent (see Bacon, Graham, afféi f8harp
a review). Once the high-level representation is mapped to something closer to machine code, the opti
mizations can become very dependent on the characteristics of the target processor (Bonk &d#l Riide
look at number crunchers). The general techniques used to perform optimizations at different levels of
representation can be found in various bo§Ks?-507]

The problems associated with simply getting a translator written became tractable during the 1970s.
Since then the issues associated with translators have been the engineering problem of being able to proce
existing source code and the technical problem of generating high-quality machine code. The focus of
code optimization research continues to evolve. It started out concentrating on expressions, then basi
blocks, then complete functions and now complete programs. Hardware characteristics have not stood stil
either. Generating optimized machine code can now require knowledge of code and data cache behavior
speculative execution, dependencies between instructions and their operands. There is also the issue
processor vendors introducing a range of products, all supporting the same instruction set but at different
price levels and different internal performance enhancements; optimal instruction selection can now vary
significantly across a single processor family.

Sometimes all the information about some of the components used by a program will not be known until
it is installed on the particular host that executes it; for instance, any additional instructions supported over
those provided in the base instruction set for that processor, the relative timings of instructions for that
processor model, and the version of any dynamic linked libraries. These can also change because of othe
systems software updates. Also spending a lot of time during application installation generating an optimal
executable program is not always acceptable to end users. One solution is to perform optimizations on the
program while it is executing. Because most of the execution time usually occurs within a small percentage
of a program’s machine code, an optimizer only needs to concentrate on these areas. Experimental systen
are starting to deliver interesting resufts}

Thorug!?%2 has shown that a linear (in the number of nodes and vertices in the control flow graph)
algorithm for register allocation exists that is within a factor of seven (six if no short-circuit evaluation is

16 v 1.0b August 5, 2005

4 Translation environment Introductiom

100 — . =
I Mediabench
[SPEC
75 —
5]
g
§ 50 —
5}
faw
25 —
0l ﬂ
]
add sub mult div and or xor sll srl sra fadd fsub fmul fdiv fabs total

Instruction type

Figure 0.3: Percentage dfivial computations during program execution of the SPEC and MediaBench benchmarks for various
kinds of operation. Adapted from Yi and Lil[4*23]

used) of the optimal solution for any C program that does not cogtains.

One way of finding the optimal machine code, for a given program, is to generate all possible combina-
tions of instruction and to measure which is best. Mas8&tirdesigned and built auperoptimizeto do
just that. Various strategies are used to prune the use of instruction sequences known to be nonoptimal and
the programs were kept small to ensure realistic running times.

Code optimization is a, translation time, resource-hungry process. To reduce the quantity of analysis that
needs to be performed, optimizers have started to use information on a programs’ runtime characteristics.
This profile information enables optimizers to concentrate resources on frequently executed sections of code
(it also provides information on the most frequent control flow path in conditional statements, enabling the
surrounding code to be tuned to this most likely c&¥€)!42IHowever, the use of profile information does
not always guarantee better performaHég.

The stability of execution profiles, that is the likelihood that a particular data set will always highlight
the same sections of a program as being frequently executed is an important issue. A study by@Hhilimbi
found that data reference profiles, important for storage optimization, were stable, while some other re-
searchers have found that programs exhibit different behaviors during different parts of their exétition.

Optimizers are not always able to detect all possible savings. A study by Yi and4#jaraced the
values of instruction operands during program execution. They found that a significant number of operations
could have been optimized (see Fig0r8) had one of their operand values been known at translation time
(e.g., adding/subtracting zero, multiplying by 1, subtracting/dividing two equal values, or dividing by a
power of 2).

Power consumption optimize
. ower con-
The following discussion is based one that can be found in Hsu, Kremer and#&labhe dominant P sumption

source of power consumption in digital CMOS circuits (the fabrication technology used in mass-produced
processors) is the dynamic power dissipatiBnwhich is based on three factors:

Px CV?F 0.1)

whereC' is the effective switching capacitandé,the supply voltage, anfl the clock speed. A number of
technical issues prevent the voltage from being arbitrarily reduced, but there are no restrictions on reducing
the clock speed (although some chips have problems running at too low a rate).

For cpu bound programs simply reducing the clock speed does not usually lead to any significant saving
in total power consumption. A reduction in clock speed often leads to a decrease in performance and the
program takes longer to execute. The product of dynamic power consumption and time taken to execute

August 5, 2005 v 1.0b 17

_ Introduction 5 Execution environment

remains almost unchanged (because of the linear relationship between dynamic power consumption an
clock speed). However, random access memory is clocked at a rate that can be an order of magnitude les
than the processor clock rate.

For memory-intensive applications a processor can be spending most of its time doing nothing but waiting
for the results of load instructions to appear in registers. In these cases a reduction in processor clock rat
will have little impact on the performance of a program. Program execution fiinean be written as:

T = Tcpu_busy + Tmemory_busy + Tcpu_and_mem_busy (02)
An analysis (using a processor simulation) of the characteristics of the following code:

1 for (j =0; j <n; j++)
2 for (i = 0; i < n; i++)
3 accu += A[i][j];

found that (without any optimization) the percentage of time spentin the various subsysteropuvdmisy0.01%
memory_busy93.99% cpu_and_mem_bus§.00%

Given these performance characteristics, a factor of 10 reduction in the clock rate and a voltage reductior
from 1.65 to 0.90 would reduce power consumption by a factor of 3, while only slowing the program down
by 1% (these values are based on the Crusoe TM5400 processor).

Performing optimizations changes the memory access characteristics of the loop, as well as potentially
reducing the amount of time a program takes to execute. Some optimizations and their effect on the perfor
mance of the preceding code fragment include the following:

array 986
row-major » Reversing the order of the loop control variables (arrays in C are stored in row-major order) creates

orseer spatial locality, and values are more likely to have been preloaded into the caehdiusy18.93%,
memory_busy73.66%, cpu_and_mem_besy41%

loop unrolling 1760 » Loop unrolling increases the amount of work done per loop iteration (decreasing loop housekeeping
basic block 1699 overhead and potentially increasing the number of instructions in a basic blguk) busy0.67%,
memory_busy65.60%, cpu_and_mem_besB.73%

* Prefetching data can also be a worthwhile optimizatiopu_busy0.67%, memory_busy4.04%,
cpu_and_mem_bus25.29%

These ideas are still at the research stage and have yet to appear in commercially available translator
(support, in the form of an instruction to change frequency/voltage, also needs to be provided by processo
vendors).

At the lowest level processors are built from transistors, which are grouped together to form logic gates.
In CMOS circuits power is dissipated in a gate when its output changes (i.e., it goes from 0 to 1, or from 1 to
0). Vendors interested in low power consumption try to minimize the number of gate transitions made during
the operation of a processor. Translators can also help here. Machine code instructions consist of sequenc
of zeros and ones. Differences in bit patterns between adjacent instructions, encountered during prograr
execution, cause gate transitions. The Hamming distance between two binary values (instructions) is the
number of places at which their bit settings differ. Ordering instructions to minimize the total Hamming
distance over the entire sequence will reduce power consumption in the instruction decoding area of a
processor. Simulations based on such a reordering have shown savings of 13%f¢720%.

5 Execution environment

environment 104 Tyyg kinds of execution environment are specified in the C Standard, hosted and freestanding. These ten
to affect implementations in terms of the quantity of resources provided (functionality to support library
requirements— e.g., I/0, memory capacity, etc.).

18 v 1.0b August 5, 2005

5 Execution environment Introductiom

There are classes of applications that tend to occur in only one of these environments, which can make it
difficult to classify an issue as being application- or environment-based.

For hosted environments C programs may need to coexist with programs written in a variety of languages.
Vendors often define a set of conventions that programs need to follow; for instance, how parameters are
passed. The popularity of C for systems development means that such conventions are often expressed in C
terms. So it is the implementations of other languages that have to adapt themselves to the C view of how
things should work.

Existing environments have affected the requirements in the C Standard library. Unlike some languages
the C language has tried to take the likely availability of functionality in different environments into account.
For instance, the inability of some hosts to support signals has meant that there is no requirement that any
signal handling (other than function stubs) be provided by an implementation. Minimizing the dependency
on constructs being supported by a host environment enables C to be implemented on a wide variety of
platforms. This wide implementability comes at the cost of some variability in supported constructs.

5.1 Host processor characteristics
It is often recommended that developers ignore the details of host processor characteristics. Howevetiodip€sssors
language was, and continues to be, designed for efficient mapping to commonly available processors. MAR§-c""
of the benchmarks by which processor performance is measured are written in C. A detailed analy$i85§f,.C
needs to include a discussion of processor characteristics.

Many developers continue to show a strong interest in having their programs execute as quickly as pos-
sible, and write code that they think will achieve this goal. Developer interest in processor characteristics
is often driven by this interest in performance and efficiency. Developer interest in performance could be
considered to be part of the culture of programming. It does not seem to be C specific, although this lan-
guages’ reputation for efficiency seems to exacerbate it. There is sometimes a customer-driven requirement
for programs to execute within resource constraints (execution time and memory being the most common
constrained resources). In these cases detailed knowledge of processor characteristics may help developers
tune an application (although algorithmic tuning invariably yields higher returns on investment). However,
the information given in this book is at the level of a general overview. Developers will need to read
processor vendors’ manuals, very carefully, before they can hope to take advantage of processor-specific
characteristics by changing how they write source code.

The following are the investment issues, from the software development point of view, associated with
processor characteristics:

« Making effective use of processor characteristics usually requires a great deal of effort (for an in-
depth tutorial on getting the best out of a particular processdt&&Epr an example of performance
forecasting aimed at future processord®¥8e The return on investment of this effort is often small (if
not zero). Experience shows that few developers invest the time needed to systematically learn about
individual processor characteristics. Preferring, instead, to rely on what they already know, articles
in magazines, and discussions with other developers. A small amount of misguided investment is no
more cost effective than overly excessive knowledgeable investment.

« Processors change more frequently than existing code. Although there are some application do-
mains where it appears that the processor architecture is relatively fixed (e.g., the Intel x86 and IBM
360/370/3080/3090/etc.), the performance characteristics of different members of the same family can
still vary dramatically. Within the other domains new processor architectures are still being regularly
introduced. The likelihood of a change of processor remains an important issue.

« The commercial availability of translators capable of producing machine code, the performancex@fator per-
which is comparable to that of handwritten assembler (this is not true in some dd¥hene s aumance
study'33%! found that in many cases translator generated machine code was a factor of 5-8 times
slower than hand crafted assembler) means that any additional return on developer resource invest-
ment is likely to be low.

August 5, 2005 v 1.0b 19

_ Introduction 5 Execution environment

DSP
processors

300,000 —

X 4 bits
. e 8 bits
§ A 16bfts
S 200,000 - 32 bits
8
3
3
2
£ 100,000 o\
o N & . .
= X %,a&%’d’r“ .

\ [
Jan 90 Jan 91 Jan 92 Jan 93 Jan 94 Jan 95 Jan 96 Jan 97 Jan 98 Jan 99 Jan 00 Jan 01

Year

Figure 0.4: Monthly unit sales of microprocessors having a given bus width. Adapted from #iP@yusing data supplied by
Turley).

Commercial and application considerations have caused hardware vendors to produce processors aimed
several different markets. It can be said that there are often family characteristics of processors within a
given market, although the boundaries are blurred at times. It is not just the applications that are executec
on certain kinds of processors. Often translator vendors target their products at specific kinds of processor:
For instance, a translator vendor may establish itself within the embedded systems market. The processor ¢
chitectures can have a dramatic effect on the kinds of problems that machine code generators and optimize!
need to concern themselves with. Sometimes the relative performance of programs written in C, comparec
to handwritten assembler, can be low enough to question the use of C at all.

20

» General purpose processofBhese are intended to be capable of running a wide range of applications.

The processor is a significant, but not dominant, cost in the complete computing platform. The
growing importance of multimedia applications has led many vendors to extend existing architectures
to include instructions that would have previously only been found in DSP procé$88rsThe
market size can vary from tens of millions (Intel X8&°%)) to hundreds of millions (ARNA?78l),

Embedded processorghese are used in situations where the cost of the processor and its supporting
chip set needs to be minimized. Processor costs can be reduced by reducing chip pin-out (which re
duces the width of the data bus) and by reducing the number of transistors used to build the processol
The consequences of these cost savings are that instructions are often implemented using slower tec
nigues and there may not be any performance enhancers such as branch prediction or caches (or eve
multiple and divide instructions, which have to be emulated in software). Some vendors offer a range
of different processors, others a range of options within a single family, using the same instruction set
(i.e., the price of an Intel i960 can vary by an order of magnitude, along with significant differentiation

in its performance, packaging, and level of integration). The total market size is measured in billions
of processors per year (see FigQrd).

Digital Signal Processors (DSPAs the name suggests, these processors are designed for manipu-
lating digital signals— for instance, decoding MPEG data streams, sending/receiving data via phone
lines, and digital filtering types of applications. These processors are specialized to perform this par-
ticular kind of application very well; it is not intended that nondigital signal-processing applications
ever execute on them. Traditionally DSPs have been used in applications where dataflow is the domi:
nating factof!1”) making the provision of handcrafted library routines crucial. Recently new markets,

v 1.0b August 5, 2005

5 Execution environment Introductiom

such as telecoms and the automobile industry have started to use DSPs in a big way, and their appli-
cations have tended to be dominated by control flow, reducing the importance of libraries.[&fhujo
contains an up-to-date discussion on generating machine code for DSPs. The total worldwide market
in 1999 was 0.6 billion processdf€?®l individual vendors expect to sell hundreds of millions of
units.

Application Specific Instruction-set Processors (ASNte that the acronym ASIC is often heard,

this refers to an Application Specific Integrated Circuit— a chip that may or may not contain an
instruction-set processor. These processors are designed to execute a specific program. The general
architecture of the processor is fixed, but the systems developer gets to make some of the perfor-
mance/resource usage (transistors) trade-off decisions. These decisions can involve selecting the
word length, number of registers, and selecting between various possible instrif¢ioiitie cost

of retargeting a translator to such program-specific ASIPs has to be very low to make it worthwhile.
Processor description driven code generators are starting to dfpeatich take the description

used to specify the processor characteristics and build a translator for it. While the market for ASICs
exceeds $10 billion a year, the ASIP market is relatively small (but growing).

* Number crunchersThe quest for ever-more performance has led to a variety of designs that attempt
to spread the load over more than one processor. Technical problems associated with finding sufficient
work, in existing source code (which tends to have a serial rather than parallel form) to spread over
more than one processor has limited the commercial viability of such designs. They have only proven
cost effective in certain, application-specific domains where the computations have a natural mapping
to multiple processors. The cost of the processor is often a significant percentage of the complete
computing device. The market is small and the customers are likely to be individually known to the
vendorl*®! The use of clusters of low-price processors, as used in Beowulf, could see the demise of
processors specifically designed for this maFk&t.

There are differences in processor characteristics within the domains just described. Processor design
evolves over time and different vendors make different choices about the best way to use available resources
(on chip transistors). For a detailed analysis of the issues involved for the Sun UltraSPARC processor,
see[.1429]

The profile of the kinds of instructions generated for different processors can differ in both their stati@struction
and their dynamic characteristics, even within the same domain. This was shown quite dramaticallyy By oer
Davidson, Rabung, and Whallé¥/] who measured static and dynamic instruction frequencies for nine
different processors using the same translator (generating code for the different processors) on the same
source files (see Figu@b). For a comparison of RISC processor instruction counts, based on the SPEC
benchmarks, see McMahan and L[&8]

The following are the lessons to be learned from the later discussions on processor details:

» Source code that makes the best use of one particular processor is unlikely to make the best use of
any other processor.

» Making the best use of a particular processor requires knowledge of how it works and measurements
of the program running on it. Without the feedback provided by the measurement of dynamic program
behavior, it is almost impossible to tune a program to any host.

5.1.1 Overcoming performance bottlenecks
There continues to be a market for processors that execute programs more quickly than those currently avail-
able. There is a commercial incentive to build higher-performance processors. Processor design has reached
the stage where simply increasing the processor clock rate does not increase rate of program €xé8ution.
A processor contains a variety of units, any one of which could be the bottleneck that prevents other units
from delivering full performance. Some of these bottlenecks, and their solutions, can have implications

August 5, 2005 v 1.0b 21

_ Introduction 5 Execution environment

cache

Digital VAX-11 X

g Harris HCX-9
=}
3
g] Nat.Semj. 32016 X &T3B1S X
= Motorola 68020
Q Intel 80386 X
2 5|
a Concurrent 3230 X Clipper X
A — IBM RT
1 —
i 6 7 8 9 10

Static frequency

Figure 0.5: Dynamic/static frequency afall instructions. Adapted from Davidsé#.’}

3,000 —
1,000 —
8
S 100
% CPU
£
&
10 —|
DRAM
1
\ \ \ \
1980 1985 1990 1995 2000

Year

Figure 0.6: Relative performance of CPU against storage (DRAM), 1980==1. Adapted from Herrf&Ssy.

at the source code level (less than perfect branch predi€itihsnd others don't (the possibility of there
being insufficient pins to support the data bandwidth required; pin count has only been increasing at 16%
per yeatt’)),

Data and instructions have to be delivered to the processor, from storage, to keep up with the rate it
handles them. Using faster memory chips to keep up with the faster processors is not usually cost effective
Figure0.6shows how processor performance has outstripped that of DRAM (the most common kind of stor-
age used). See Dietz and Matf§fl for measurements of access times to elements of arrays of various sizes,
for 13 different Intel x86 compatible processors whose clock rates ranged from 100 MHz to 1700 MHz.

A detailed analysis by Agarwal, Hrishikesh, Keckler, and Bufgdound that delays caused by the
time taken for signals to travel through on-chip wires (12—32 cycles to travel the length of a chip using
35nm CMOS technology, clocked at 10GHz), rather than transistor switching speed, was likely to be a
major performance factor in future processors. Various methods have been pRsSosedet around this
problem, but until such processor designs become available in commercially significant quantities they are
not considered further here.

Cache

A commonly used solution to the significant performance difference between a processor and its storage
is to place a small amount of faster storageaahe between them. Caching works because of locality of
reference. Having accessed storage location X, a program is very likely to access a location close to X in
the very near future. Research has shéffhthat even with a relatively small cache (i.e., a few thousand

22 v 1.0b August 5, 2005

5 Execution environment Introductiom

bytes) it is possible to obtain significant reductions in accesses to main storage.

Modern, performance-based processors have two or more caches. A level 1 cache (cafleckitis),
which can respond within a few clock cycles (two on the Pentium 4, four on the UltraSPARC IIl), but is
relatively small (8 K on the Pentium 4, 64 K on the UltraSPARC lll), and a level 2 cache (calldd?the
cachg which is larger but not as quick (256 K/7 clocks on the Pentium 4). Only a few processors have
further levels of cache. Main storage is significantly larger, but its contents are likely to be more than 250
clock cycles away.

Developer optimization of memory access performance is simplest when targeting processors that contain
a cache, because the hardware handles most of the details. However, there are still cases where developers
may need to manually tune memory access performance (e.g., application domains where large, sophisti-
cated hardware caches are too expensive, or where customers are willing to pay for their applications to
execute as fast as possible on their existing equipment). Cache behavior when a processor is executing
more than one program at the same time can be quite cordple®

The locality of reference used by a cache applies to both instructions and data. To maximize locality of
reference, translators need to organize instructions in the order that an executing program is most likely to
need them and allocate object storage so that accesses to them always fill the cache with values that will
be needed next. Knowing which machine code sequences are most frequently executed requires execution
profiling information on a program. Obtaining this information requires effort by the developer. It is neces-
sary to instrument and execute a program on a representative set of data. This data, along with the original
source is used by some translators to create a program image having a better locality of reference. It is also
possible to be translator-independent by profiling and reorganizing the basic blocks contained in executable
programs. Tomiyama and Yasulifd8¥ used linear programming to optimize the layout of basic blocks in
storage and significantly increased the instruction cache hit rate. Running as a separate pass after transla-
tion also reduces the need for interactive response times; the analysis took more than 10 hours on a 85 MHz
microSPARC-II.

Is the use of a cache by the host processor something that developers need to take into account? Although
every effort has been made by processor vendors to maximize cache performance and translator vendors are
starting to provide the option to automatically tune the generated code based on profiling infofPAdtion,
sometimes manual changes to the source (by developers) can make a significant difference. It is important
to remember that any changes made to the source may only make any significant changes for one particular
processor implementation. Other implementations within a processor family may share the same instruction
set but they could have different cache behaviors. Cache-related performance issues are even starting to
make it into the undergraduate teaching curricul(ifi.

A comparison by Bahar, Calder, and Grunw&ldshowed that code placement by a translator could im-
prove performance more than a hardware-only solution; the two combined can do even better. In some cases
the optimizations performed by a translator can affect cache behavior, for instance loop unrolling. Translaroling
tors that perform such optimizations are starting to become commercially avéf&biEhe importance of
techniques for tuning specific kinds of applications are starting to be recognized (transaction processing as
in Figure0.8*Y numerical computatiofs®7).

Specific cases of how optimizers attempt to maximize the benefits provided by a processors’ cache are
discussed in the relevant C sentences. In practice these tend to be reorganizations of the sequence of in-
structions executed, not reorganizations of the data structures use&#°dnpebvides an example of how
reorganization of a data structure can improve performance on the Pentium 4:

1 struct {

2 float x, vy, z, r, g, b;

3 } a_screen_3D[1000];

4 struct {

5 float x[1000], y[1000], z[1000];
6 float r[1000], g[1000], b[1000];
7 } b_screen_3D;

August 5, 2005 v 1.0b 23

_ Introduction 6 Measuring implementations

storage
dividing up

processor
pipeline

signal in- 189
terrupt

abstract ma-
chine processing

library

8 struct {

9 float x[4], v[4], z[4];
10 float r[4], gl[4], b[4];
11 } c_screen_3D[250];

The structure declaration used farscreen_3D might seem the obvious choice. However, it is likely that
operations will involve either the tuple y, andz, or the tupler, g, andb. A cache line on the Pentium
4 is 64 bytes wide, so a fetch of one of theelements will cause the correspondingz, andb elements
to be loaded. This is a waste of resource usage if they are not accessed. It is likely that all elements of the
array will be accessed in sequence and the structure declaration useddoeen_3D makes use of this
algorithmic information. An access to an elementkokill cause subsequent elements to be loaded into
the cache line, ready for the next iteration. The structure declaration, suggested by Irfescioren_3D
makes use of a Pentium 4 specific characteristic; reading/writing 16 bytes from/to 16-byte aligned storage
is the most efficient way to use the storage pipeline. Intel points to a possible 10% to 20% performance
improvement through modifications that optimize cache usage; a sufficiently large improvement to warrant
using the nonobvious, possibly more complex, data structures in some competitive markets.

Dividing up storage

Many host operating systems provide the ability for programs to make use of more storage than the hos
has physical memory (so-call@dtual memory. This virtual memory is divided up into units callpdges
which can beswappedout of memory to disk when it is not need&tfl There is a severe performance
penalty on accesses to data that has been swapped out to disk (i.e., some other page needs to be swapj
out and the page holding the required data items swapped back into memory from disk). Developers car
organize data accesses to try to minimize this penalty. Having translators do this automatically, or even
having them insert code into the program image to perform the swapping at points that are known to be not
time-critical is a simpler solutiol6!

Speeding up instruction execution

A variety of techniques are used to increase the number of instructions executed per second. Most prc
cessors are capable of executing more than one instruction at the same time. The most common techniqu
and one that can affect program behavior, is instrugpipelining Pipelining breaks instruction execution
down into a series of stages (see Figdrd. Having a different instruction processed by each stage at the
same time does not change the execution time of a single instruction. But it does increase the overall rate
of instruction execution because an instruction can complete at the end of every processor cycle. Many
processors break down the stages shown in Figufeven further. For instance, the Intel Pentium 4 has a
20-stage pipeline.

The presence of a pipeline can affect program execution, depending on processor behavior when ar
exception is raised during instruction execution. A discussion on this issue is given elsewhere.

Other techniques for increasing the number of instructions executed per second indudée(Very
Long Instruction Word) in which multiple operations are encoded in one long instruction, and parallel
execution in which a processor contains more than one instruction pipgfitleThese techniques have no
more direct impact on program behavior than instruction pipelining. In practice it has proven difficult for
translator to find long instruction sequences that can be executed in some concurrent fashion. Some hel
from the developer is still needed for these processors to approach peak performance.

5.2 Runtime library
An implementations’ runtime library handles those parts of a program that are not directly translated to
machine code. Calls to the functions contained in this library may occur in the source or be generated by &
translator (i.e., to some internal routine to handle arithmetic operations on values @bhgdong). The
runtime library may be able to perform the operation completely (e.g., the trigonometric functions) or may
need to call other functions provided by the host environment (e.g., O/S function, not C implementation
functions).

These issues are covered briefly in the discussion of the library functions.

24 v 1.0b August 5, 2005

6 Measuring implementations Introducti(m

Stage 1 Fetch 1 Fetch 2 Fetch 3 Fetch 4 Fetch 5 Fetch 6
Stage 2 Decode 1 Decode 2 Decode 3 Decode 4 Decode 5
Stage 3 Execute 1 Execute 2 Execute 3 Execute 4
Memory Memory Memory
Stage 4
access 1 access 2 access 3
Write Write
Stage 5
back 1 back 2
\J
time 1 time 2 time 3 time 4 time 5 time 6

Figure 0.7: Simplified diagram of some typical stages in a processor instruction pipeline: Instruction fetch, decode, execute,
memory access, and write back.

6 Measuring implementations

Although any number of different properties of an implementation might be measured, the most commasalyiring im-
measured is execution time performance of the generated program image. In an attempt to limit the apRgREFR1o"S
of factors influencing the results, various organizations have created sets of test progtaenshmarks- mage

that are generally accepted within their domain. Some of these test programs are discussed below (SPEC,
the Transaction Processing council, Embedded systems, Linpack, and DSPSTONE). In some application
areas the size of the program image can be important, but there are no generally accepted benchmarks for
comparing size of program image. The growth in sales of mobile phones and other hand-held devices has sig-
nificantly increased the importance of minimizing the electrical energy consumed by a program (the energy
consumption needs of different programs performing the same function are starting to be c&f¥¥hared

A good benchmark will both mimic the characteristics of the applications it is intended to be representa-
tive of, and be large enough so that vendors cannot tune their products to perform well on it without also
performing well on the real applications. The extent to which the existing benchmarks reflect realistic ap-
plication usage is open to debate. Not only can different benchmarks give different results, but the same
benchmark can exhibit different behavior with different ingétl Whatever their shortcomings may be the
existing benchmarks are considered to be the best available (they are used in almost all published research).

It has long been an accepted truism that programs spend most of their time within loops and in particular
a small number of such loops. Traditionally most processor-intensive applications, that were commlésﬁ'éier Yent
important, have been scientific or engineering based. A third kind of application domain has now become
commercially more important (in terms of hardware vendors making sales)— data-oriented applications
such as transaction processing and data mining.

Some data-oriented applications share a characteristic with scientific and engineering applications in that
a large proportion of their time is spent executing a small percentage of the code. However, it has been
found that for Online Transaction Processing (OLTP), specifically the TPC-B benchmarks, the situatimnsis
more complicatel?®¥ Recent measurements of four commercial databases running on an Intel Pentium
processor showed that the processor spends 60% of its time Btallsee Figure®.8).

A distinction needs to be made between characteristics that are perceived, by developers, to make a
difference and those that actually do make a difference to the behavior of a program. Discussion within these
Common Implementation sections is concerned with constructs that have been shown, by measurement, to
make a difference to the execution time behavior of a program. Characteristics that relate to perceived

August 5, 2005 v 1.0b 25

_ Introduction 6 Measuring implementations

SPEC
benchmarks

benchmarks

10% Sequential Range Selection 10% Indexed Range Selection Join

100% 100% 100%

I I o I I
I o Y ° I
80% — " | — s . ° — | e B .
. . . : . hd hd °
o o H R e
E : ° Y M °
- o . . .
£ 60%— H —] —]
=
o o]
2] o]
5 g N
= 40% — o]]] o o] o]
o) o) o] o] o] o) o]
= o] o] o) o) o] o] o] o]
o o] o] o] o] o] o] o] Q
o] o] o] o] o] o] o] o]
o] o] o) o) o] o] o) o]
20% — o o] o] o] — — 0 o] o] o]
o] o] o] o] o] o] o] o] Q
o] o] o] o] o] = o] o] o] o]
o] o] o) o) o] = o] o] o] o) o]
o] o] o] o] o] o) o] o] o] o] o]
o] o] o] o] o] o] o] o] o] o] Q
O‘ (‘j (‘j (‘j (‘j (‘j (‘j (‘j O‘ (‘j O‘
A B C D B C D A B C D
o Computation T Memory stalls ¢ Branch mispredictions mm Resource stalls

Figure 0.8: Execution time breakdown, by four processor components (bottom of graphs) for three different application queries
(top of graphs). Adapted from Ailamaki!!

differences fall within the realm of discussions that occur in the Coding guideline sections.

The measurements given in the Common Implementation sections tend to be derived from the charactel
istics of a program while it is being executed— dynamic measurements. The measurements given in the
Usage sections tend to be based on what appears in the source code— static measurements.

6.1 SPEC benchmarks

Processor performance based on the SPEC (Standard Performance Evaluation Corperatipag . org)
benchmarks are frequently quoted by processor and implementation vendors. Academic research on opt
mizers often base their performance evaluations on the programs in the SPEC suite. SPEC benchmark
cover a wide range of performance evaluations: graphics, NFS, mailservers, aritPEPlle CPU bench-

marks are the ones frequently used for processor and translator measurements.

The SPEC CPU benchmarks are broken down into two groups, the integer and the floating-point pro-
grams; these benchmarks have been revised over the years, the major releases being in 1989, 1992, 19
and 2000. A particular set of programs is usually denoted by combining the names of these components
For instance, SPECint95 is the 1995 integer SPEC benchmark and SPECfp2000 is the 2000 floating-poin
benchmark.

The SPEC CPU benchmarks are based on publicly available source code (written in C for the integer
benchmarks and, predominantly, Fortran and C for the floating-point). The names of the programs are
known and versions of the source code are available on the Internet. The actual source code used by SPE
may differ slightly because of the need to be able to build and execute identical programs on a wide range
of platforms (any changes needed to a program’s source to enable it to be built are agreed to by the SPEC
membership).

A study by Saavedra and SniftH!! investigated correlations between constructs appearing in the source
code and execution time performance of benchmarks that included SPEC.

6.2 Other benchmarks

The SPEC CPU benchmarks had their origins in the Unix market. As such they were and continue to be
aimed at desktop and workstation platforms. Other benchmarks that are often encountered, and the rational
used in their design, include the following:

26 v 1.0b August 5, 2005

www.spec.org

7 Introduction Introduction m

+ DSPSTONE33%js 3 DSP-oriented set of benchmarks,

« The characteristics of programs written for embedded applications are very difféfeiithe EDN
Embedded Microprocessor Benchmarking Consortium (EEMBC, pronounced Embassy. eembc .
org), was formed in 1997 to develop standard performance benchmarks for the embedded market
(e.g., telecommunications, automotive, networking, consumer, and office equipment). They currently
have over 40 members and their benchmark results are starting to become known.

+ MediaBencH® is a set of benchmarks targeted at a particular kind of embedded application— mul-
timedia and communications. It includes programs that process data in various formats, including
JPEG, MPEG, GSM, and postscript.

« The Olden benchmalR? attempts to measure the performance of architectures based on a disttilast@ehchmark
memory.

» The Stanford ParalleL Applications for SHared memory (SPLASH, now in its second release as
SPLASH-2'412)) 'is a suite of parallel applications intended to facilitate the study of centralized and
distributed shared-address-space multiprocessors.

« The TPC-B benchmark from the Transaction Processing Performance Council (TPC). TPC-B

TPC-B models a banking database system that keeps track of customers’ account balances, as well as%%aﬂqg{ﬁgww
per branch and teller. Each transaction updates a randomly chosen account balance, which includes updating

the balance of the branch the customer belongs to and the teller from which the transaction is submitted. It

also adds an entry to the history table which keeps a record of all submitted transactions.

6.3 Processor measurements
Processor vendors also measure the characteristics of executing programs. Their reason is to gain insights
that will enable them to build better products, either faster versions of existing processors or new processors.
What are these measurements based on? The instructions executed by a processor are generated by transla-
tors, which may or may not be doing their best with the source they are presented with. Translator vendors
may, or may not, have tuned their output to target processors with known characteristics. Fortunately this
book does not need to concern itself further with this problem.

Processor measurements have been used to compare different prdé&swesjict how many instruc-
tions a processor might be able to issue at the same¥fiteand tune arithmetic operatiof8% Processor
vendors are not limited to using benchmarks or having access to source code to obtain useful information;
Led’88 measured the instruction characteristics of several well-known Windows NT applications.

Coding Guidelines

7 Introduction
The intent of these coding guidelines is to help management minimize the cost of ownership of thecsoy g@delines
code they are responsible for. The guidelines take the form of prepackaged recommendations of wHiEpfuction
source constructs to use, or not use, when more than one option is available. These coding guidelines sit at
the bottom layer of what is potentially a complex, integrated software development environment.

Adhering to a coding guideline is an immediate cost. The discussion in these coding guidelines’ sections
is intended to help ensure that this cost payment is a wise investment yielding savings later.

The discussion in this section provides the background material for what appears in other coding guide-
line sections. It is also the longest section of the book and considers the following:

» The financial aspects of software development and getting the most out of any investment in adhering
to coding guidelines.

August 5, 2005 v 1.0b 27

www.eembc.org
www.eembc.org

_ Introduction 8 Source code cost drivers

coding guidelines
cost drivers

» Selecting, adhering to, and deviating from guidelines.
» Applications and their influence on the source that needs to be written.
« Developers’; bounding the limits, biases, and idiosyncrasies of their performance.

There are other Coding guideline subsections containing lengthy discussions. Whenever possible sucl
discussions have been integrated into the C sentence-based structure of this book (i.e., they occur in th
relevant C sentences).

The term used in this book to describe people whose jobs involve writing source csoftware de-
veloper The termprogrammertends to be associated with somebody whose only job function is to write
software. A typist might spend almost 100% of the day typing. People do not spend all their time di-
rectly working on source code (in most studies, the time measured on this activity rarely rises above 25%),
therefore the term programmer is not appropriate. The term software developer, usually shortiEved to
oper, was chosen because it is relatively neutral, but is suggestive of somebody whose primary job function
involves working with source code.

Developers often object to following coding guidelines, which are often viewed as restricting creative
freedom, or forcing them to write code in some unnatural way. Creative freedom is not something that
should be required at the source code implementation level. While particular ways of doing things may
appeal to individual developers, such usage can be counter-productive. The cost to the original develope
may be small, but the cost to subsequent developers (through requiring more effort by them to work with
code written that way) may not be so small.

8 Source code cost drivers

Having source code occupy disk space rarely costs very much. The cost of ownership for source code is
incurred when it is used. Possible uses of source code include:

« modifications to accommodate customer requests which can include fixing faults;
* major updates to create new versions of a product; and

* ports to new platforms, which can include new versions of platforms already supported.

These coding guideline subsections are applicable during initial implementation and subsequent modifica
tions at the source code level. They do not get involved in software design issues, to the extent that these ar
programming language-independent. The following are the underlying factors behind these cost drivers:

< Developer characteristics (human factord)evelopers fail to deduce the behavior of source code
constructs, either through ignorance of C or because of the limits in human information processing
(e.g., poor memory of previously read code, perception problems leading to identifiers being misread,
or information overload in short-term memory) causing faults to be introduced. These issues are dealt
with here in the Coding guideline subsections.

 Translator characteristicsA change of translator can result in a change of behavior. Changes can
include using a later version of the translator originally used, or a translator from a different vendor.
Standards are rarely set in stone and the C Standard is certainly not. Variations in implementation
behavior permitted by the standard means that the same source code can produce different result
Even the same translator can have its’ behavior altered by setting different options, or by a newer re-
lease. Differences in translator behavior are discussed in Commentary and Common Implementations
subsections. Portability to#€ and C90 translators is dealt with in their respective sections.

» Host characteristicsJust like translator behavior this can vary between releases (updates to system
libraries) and host vendors. The differences usually impact the behavior of library calls, not the
language. These issues are dealt with in Common Implementation sections.

28 v 1.0b August 5, 2005

8 Source code cost drivers Introductitm

« Application characteristicsPrograms vary in the extent to which they need to concern themselves
with the host on which they execute— for instance, accessing memory ports. They can also place
different demands on language constructs— for instance, floating-point or dynamic memory alloca-
tion. These issues are dealt with under Usage, indirectly under Common Implementations atfjti®ere
in Coding Guideline sections.

 Product testing.The complexity of source code can influence the number of test cases that need to
be written and executed. This complexity can be affected by design, algorithmic and source gode
construct selection issues. The latter can be the subject of coding guidelines. gwdelmes

testability

Covering all possible source code issues is impossible. Frequency of occurrence is used to provide a cutoff
filter. The main purpose of the information in the Usage sections is to help provide evidence for Rat
filtering to apply.
8.1 Guideline cost/benefit
When a guideline is first encountered it is educational. It teaches developers about a specific [asobienmelines
that others have encountered and that they are likely to encounter. This is a one-time learning cost (tR&t"®
developers are likely to have to pay at some time in their careers). People do forget, so there may be a
relearning cost. (These oversights are the sort of thing picked up by an automated guideline enforcement
tool, jogging the developers memory in the process.)

Adhering to guidelines requires an investment in the form of developer’s time. Like all investments it
needs to be made on the basis that a later benefit will provide an adequate return. It is important to bear
in mind that failure to recoup the original investment is not the worst that can happen. The value of lost
opportunity through being late to market with a product can equal the entire development budget. It is
management’s responsibility to select those coding guidelines that have a return on investment applcable
to a particular project.

A set of guidelines can be viewed as a list of recommended coding practices, the economic cost/benefit
of which has been precalculated and found to be acceptable. This precalculation, ideally, removes the need
for developers to invest in performing their own calculations. (Even in many situations where they are not
worthwhile, the cost of performing the analysis is greater than the cost of following the guideline.)

Researchel® 1254 are only just starting to attempt to formally investigate the trade-off involved between
the cost of creating maintainable software and the cost of maintaining software.

A study by Visaggi#3%2 performed a retrospective analysis of a reengineering process that had been
applied to a legacy system containing 1.5 M lines. The following is his stated aim:

1. Guidelines are provided for calculating the quality and economic scores for each component; These caYispggid***”

reused in other projects, although they can and must also be continually refined with use;

2. A model for determining the thresholds on each axis is defined; the model depends on the quality and
economics policy adopted by the organization intending to renew the legacy system;

3. A decision process is included, that helps to establish which renewal process should be carried out for each
component; this process may differ for components belonging to the same quadrant and depends on the targets
the organization intends to attain with the renewal process.

8.1.1 What is the cost?
Guidelines may be more or less costly to follow (in terms of modifying, or not using, constructscenggyuidelines
their lack of conformance to a guideline is known). Estimating any cost change caused by having to usé"® ¢
constructs not prohibited by a guideline will vary from case to case. It is recognized that the costs of
following a guideline recommendation can be very high in some cases. One solution is the deviations
mechanism, which is discussed elsewhere. o deviations
Guidelines may be more or less easy to flag reliably from a static analysis tool point of view. The quality
of static analysis tools is something that developers need to evaluate when making a purchase decision.

August 5, 2005 v 1.0b 29

_ Introduction 8 Source code cost drivers

These coding guidelines recognize the difficulties in automating some checks by indicating that some should
code reviewso be performed as part of code reviews.
All guidelines are given equal weight in terms of the likelihood of not adhering to them causing a fault.
Without data correlating a guideline not being followed to the probability of the containing code causing a
fault, no other meaningful options are available.

8.1.2 What is the benefit?
coding guidelines What is the nature of the benefit obtained from an investment in adhering to coding guidelines? These coding
the benefit guidelines assume that the intended final benefit is always financial. However, the investment proposal may
not list financial benefits as the immediate reason for making it. Possible other reasons include:

» mandated by some body (e.g., regulatory authority, customer Q/A department);

« legal reasons— companies want to show that they have used industry best practices, whatever the
are, in the event of legal action being taken against them;

» a mechanism for controlling source code: The purpose of this control may be to reduce the depen-
dency on a particular vendor’s implementation (portability issues), or it may be an attempt to over-
come inadequacies in developer training.

Preventing a fault from occurring is a benefit. How big is this benefit (i.e., what would the cost of the
fault have been? How is the cost of a fault measured?) Is it in terms of the cost of the impact on the
end user of experiencing the fault in the program, or is it the cost to the vendor of having to deal with it
being uncovered by their customers (which may include fixing it)? Measuring the cost to the end user is
very difficult to do, and it may involve questions that vendors would rather have left unasked. To simplify
matters these guidelines are written from the point of view of the vendor of the product containing software.
The cost we consider is the cost to fix the fault multiplied by the probability of the fault needing to be fixed
(fault is found and customer requirements demand a fix).

8.1.3 Safer software?

coding guidelines Coding guidelines, such as those given in this book, are often promoted as part of the package of measure
safersoftware 14 he ysed during the development of safety-critical software.

The fact that adherence to guideline recommendations may reduce the number of faults introduced intc
the source by developers is primarily an economic issue. The only difference between safety critical soft-
ware and other kinds of software is the level of confidence required that a program will behave as intended
Achieving a higher level of confidence often involves a higher level of cost. While adherence to guideline
recommendations may reduce costs and enable more confidence level boosting tasks to be performed, fi
the same total cost, management may instead choose to reduce costs and not perform any additional task:

Claiming that adhering to coding guidelines makes programs safer suggests that the acceptance criteri
being used are not sufficient to achieve the desired level of confidence on their own (i.e., reliance is being
placed on adherence to guideline recommendations reducing the probability of faults occurring in sections
of code that have not been fully tested).

An often-heard argument is that some language constructs are the root cause of many faults in program
and that banning the use of these constructs leads to fewer faults. While banning the use of these construc
may prevent them from being the root cause of faults, there is rarely any proof that the alternative constructs
used will not introduce as many faults, if not more, than the constructs they replace.

This book does not treaiafety-criticalas being a benefit of adherence to guideline recommendations in
its own right.

8.2 Code development’s place in the universe

development Coding guidelines need to take account of the environment in which they will be applied. There are a variety
context of reasons for creating programs. Making a profit is a common rationale and the only one considered by

30 v 1.0b August 5, 2005

8 Source code cost drivers Introductitm

these coding guidelines. Writing programs for enjoyment, by individuals, involves reasons of a personal
nature, which are not considered in this book.

A program is created by developers who will have a multitude of reasons for doing what they do. Training
and motivating these developers to align there interests with that of the organization that employsotg)gim] is
outside the scope of this book, although staffing issues are discussed. guidelines

Programs do not exist in isolation. While all applications will want fault-free software, the importﬁarf{'&ge
assigned to faults can depend on the relative importance of the software component of the total package.
This relative importance will also influence the percentage of resources assigned to software development
and the ability of the software manager to influence project time scales.

The kind of customers an organization sells to, can influence the software development process. There
are situations where effectively there is a single customer. For instance, a large organization paying for the
development of a bespoke application will invariably go through a formal requirements analysis, specifica-
tion, design, code, test, and handover procedure. Much of the research on software development practices
has been funded by and for such development projects. Another example is software that is invisible to the
end user, but is part of a larger product. Companies and projects differ as to whether software controls the
hardware or vice versa (the hardware group then being the customer).

MostOpen Sourceoftware development has a single customer, the author of the softffat®! In this
case the procedures followed are likely to be completely different from those followed by paying customers.
In a few cases Open Source projects involving many developers have flourished. Severdi$tutiee
investigated some of the group dynamics of such cooperative development (where the customer seems to
be the members of a core team of developers working on the project). While the impact of this form of
production on traditional economic structures is widely thought to be signifitahthese guidelines still
treat it as a form of production, which has different cost/benefit cost drivers; whether the motivating factors
for individual developers are really any different is not discussed here.

When there are many customers, costs are recouped over many customers, who usually pay less than
the development cost of the software. In a few cases premium prices can be charged by market leaders, or
by offering substantial customer support. The process used for development is hot normally visible to the
customer. Development tends to be led by marketing and is rarely structured in any meaningful formal way;
in fact too formal a process could actively get in the way of releasing new products in a timely fashion.

Research by Carni&t® of 12 firms (five selling into the mass market, seven making narrow/direct sales)
involved in packaged software development showed that the average firm has been in business for three
years, employed 20 people, and had revenues of $1 million (1995 figures).

As pointed out by Carmel and others, time to market in a competitive environment can be crucial. Being
first to market is often a significant advantage. A vendor that is first, even with a very poorly architected,
internally, application often gets to prosper. Although there may be costs to pay later, at least the company
is still in business. A later market entrant may have a wonderful architected product, that has scope for
future expansion and minimizes future maintenance costs, but without customers it has no future.

A fundamental problem facing software process improvement is how best to allocate limited resources,
to obtain optimal results. Large-scale systems undergo continuous enhancement and subcontractors may
be called in for periods of time. There are often relatively short release intervals and a fixed amount of
resources. These characteristics prohibit revolutionary changes to a system. Improvements have to be made
in an evolutionary fashion.

Coding guidelines need to be adaptable to these different development environments. Recognizing that
guideline recommendations will be adapted, it is important that information on the interrelationship between
them is made available to the manager. These interrelationships need to be taken into account when tailoring
a set of guideline recommendations.

8.3 Staffing

The culture of information technology appears to be one of high staff turi&ll€with reported annuakoding guidelines
turnover rates of 25% to 35% in Fortune 500 companies). staffing

August 5, 2005 v 1.0b 31

_ Introduction 8 Source code cost drivers

developer
training

If developers cannot be retained on a project new ones need to be recruited. There are generally mor:
vacancies than there are qualified developers to fill them. Hiring staff who are less qualified, either in
application-domain knowledge or programming skill, often occurs (either through a conscious decision
process or because the developer’s actual qualifications were not appreciated). The likely competence ¢
future development staff may need to be factored into the acceptable complexity of source code.

A regular turnover of staff creates the need for software that does not require a large investment in upfront
training costs. While developers do need to be familiar with the source they are to work on, companies want
to minimize familiarization costs for new staff while maximizing their productivity. Source code level
guideline recommendations can help reduce familiarization costs in several ways:

» Not using constructs whose behavior varies across translator implementations means that recruitmen
does not have to target developers with specific implementation experience, or to factor in the cost of
retraining— it will occur, usually through on-the-job learning.

» Minimizing source complexity helps reduce the cognitive effort required from developers trying to
comprehend it.

« Increased source code memorability can reduce the number of times developers need to reread th
same source.

* Visible source code that follows a consistent set of idioms can take advantage of people’s natural
ability to categorize and make deductions based on these categorizes.

Implementing a new project is seen, by developers, as being much more interesting and rewarding that mair
taining existing software. It is common for the members of the original software to move on to other projects
once the one they are working is initially completed. Studies by Couger and &8ltiewestigated various
approaches to motivating developers working on maintenance activities. They identified the following two
factors:

1. The motivating potential of the jplbased on skill variety required, the degree to which the job
requires completion as a whole (task identity), the impact of the job on others (task significance),
degree of freedom in scheduling and performing the job, and feedback from the job (used to calculate
aMotivating Potential ScoreMPS).

2. What they called an individual's growth need strength (GN&}ed on a person’s need for personal
accomplishment, to be stimulated and challenged.

The research provided support for the claim that MPS and GNS could be measured and that jobs could b
tailored, to some degree, to people. Management’s role was to organize the work that needed to be done <
as to balance the MPS of jobs against the GNS of the staff available.

It is your author’s experience that very few companies use any formally verified method for measuring
developer characteristics, or fitting their skills to the work that needs to be done. Project staffing is often
based on nothing more than staff availability and a date by which the tasks must be completed.

8.3.1 Training new staff
Developers new to a project often need to spend a significant amount of time (often months) building up their
knowledge base of a program’s source cB#&! One solution is a training program, complete with well-
documented introductions, road maps of programs, and how they map to the application domain, all taught
by well-trained teachers. While this investment is cost effective if large numbers of people are involved,
most source code is worked on by a relatively small number of people. Also most applications evolve over
time. Keeping the material up-to-date could be difficult and costly, if not completely impractical. In short,
the cost exceeds the benefit.

In practice new staff have to learn directly from the source code. This may be supplemented by documen
tation, provided it is reasonably up-to-date. Other experienced developers who have worked on the source
may also be available for consultation.

32 v 1.0b August 5, 2005

8 Source code cost drivers Introductitm

8.4 Return on investment

The risk of investing in the production of software is undertaken in the expectation of receiving a return rol
that is larger than the investment. Economists have produced various models that provide an answer for the
question: “What return should | expect from investing so much money at such and such risk over a period

of time?”

Obtaining reliable estimates of the risk factors, the size of the financial investment, and the time required
is known to be very difficult. Thankfully, they are outside the scope of this book. However, given the
prevailing situation within most development groups, where nobody has had any systematic cost/benefit
analysis training, an appreciation of the factors involved can provide some useful background.

Minimizing the total cost of a software product (e.g., balancing the initial development costs against
subsequent maintenance costs) requires that its useful life be known. The risk factors introduced by third
parties (e.g., competitive products may remove the need for continued development, customers may not
purchase the product) mean that there is the possibility that any investment made during development will
never be realized during maintenance because further work on the product never occurs.

The physical process of writing source code is considered to be so sufficiently unimportant that doubling
the effort involved is likely to have a minor impact on development costs. This is the opposite case to
how most developers view the writing process. It is not uncommon for developers to go to great lengths
to reduce the effort needed during the writing process, paying little attention to subsequent effects of their
actions; reports have even been published on the subjéét.

8.4.1 Some economics background
Before going on to discuss some of the economic aspects of coding guidelines, we need to cover some of Npv
the basic ideas used in economics calculations. The primary quantity that is used in this book is Net Present
Value (NPV).

8.4.1.1 Discounting for time
A dollar today is worth more than a dollar tomorrow. This is because today’s dollar can be invested and

start earning interest immediately. By tomorrow it will have increased in value. The present Raljief
a future payoff(, can be calculated from:

PV = discount factorxC (0.3)

where thediscountfactor is less than one. It is usually represented by:

discount factor = (0.4)

1+7r
wherer is known as the rate of return; representing the amount of reward demanded by investors for accept-
ing a delayed payment. The rate of return is often callediibeount rateor theopportunity cosof capital.
It is often quoted over a period of a year, and the calculatioPfigrovern years becomes:

C
PV = (0.5)
By expressing all future payoffs in terms of present value, it is possible to compare them on an equal footing.
Example (from Raff§%8l). A manager has the choice of spending $250,000 on the purchase of a test
tool, or the same amount of money on hiring testers. It is expected that the tool will make an immediate
cost saving of $500,000 (by automating various test procedures). Hiring the testers will result in a saving of
$750,000 in two years time. Which is the better investment (assuming a 10% discount rate)?

August 5, 2005 v 1.0b 33

_ Introduction 8 Source code cost drivers

$500, 000

PV”“:ZTIBI®5:$mm0m (0.6)
$750,000
PV testers = (Ij;3i1655A4,$619,835 0.7)

Based on these calculations, hiring the testers is the better option (has the greatest present value).

8.4.1.2 Taking risk into account
The previous example did not take risk into account. What if the tool did not perform as expected, what if
some of the testers were not as productive as hoped? A more realistic calculation of present value needs t
take the risk of future payoffs not occurring as expected into account.

A risky future payoff is not worth as much as a certain future payoff. The risk is factored into the discount
rate to create aeffective discount ratek = r+6 (wherer is the risk-free rate anfla premium that depends
on the amount of risk). The formulae for present value becomes:

C
PV = 1+ k" ©8)
Recognizing that both andf can vary over time we get:
' return;
PV = : 0.9
v ; 1+ k; 0.9)

wherereturn; is the return during periotl
Example. Repeating the preceding example, but assuming a 15% risk premium for the testers option.

$500, 000
PVioot = m = $500, 000 (0.10)
PV sestors = 0000 450, 000 (0.11)

(14 0.10 + 0.15)2
Taking this risk into account shows that buying the test tool is the better option.
8.4.1.3 Net Present Value

Future payoffs do not just occur, an investment needs to be made. A quantity caliéettReessent Value
(NPV) is generally considered to lead to the better investment decidiShk.is calculated as:

NPV = PV — investment cost (0.12)

Example (from Raff§%8)). A coding reading initiative is expected to cost $50,000 to implement. The
expected payoff, in two years time, is $100,000. Assuming a discount rate of 10%, we get:

$100, 000
1x102

Several alternatives to NPV, their advantages and disadvantages, are described in Chapter five 6F8realey
and by Raffd1%88 One commonly seen rule within rapidly changing environments is the payback rule. This
requires that the investment costs of a project be recovered within a specified period. The payback perioc
is the amount of time needed to recover investment costs. A shorter payback period being preferred to ¢
longer one.

NPV = — $50,000 = $32, 645 (0.13)

34 v 1.0b August 5, 2005

8 Source code cost drivers Introductitm

8.4.1.4 Estimating discount rate and risk
The formulae for calculating value are of no use unless reliable figures for the discount rate and the impact
of risk are available. The discount rate represents the risk-free element and the closest thing to a risk-free
investment is government bonds and securities. Information on these rates are freely available. Governments
face something of a circularity problem in how they calculate the discount rate for their own investments.
The US government discusses these issues @uidelines and Discount Rates for Benefit-Cost Analysis
of Federal Program$3®l and specifies a rate of 7%.

Analyzing risk is a much harder problem. Information on previous projects carried out within the com-
pany can offer some guidance on the likelihood of developers meeting productivity targets. In a broader
context the market conditions also need to be taken into account, for instance: how likely is it that other
companies will bring out competing products? Will demand for the application still be there once develop-
ment is complete?

One way of handling these software development risks is for companies to treat these activities in the
same way that options are used to control the risk in a portfolio of stocks. Some very sophisticated models
and formula for balancing the risks involved in holding a range of assets (e.g., stocks) have been developed.
The match is not perfect in that these methods rely on a liquid market, something that is difficult to achieve
using people (moving them to a new project requires time for them to become productive). A number of
researchef®®1257.1410have started to analyze some of the ways these methods might be applied to creating
and using options within the software development process.

8.5 Reusing software

It is rare for a single program to handle all the requirements of a complete application. An application

is often made up of multiple programs and generally there is a high degree of similarity in many of the
requirements for these programs. In other cases there may be variations in a hardware/software product.
Writing code tailored to each program or product combination is expensive. Reusing versions of the same
code in multiple programs sounds attractive.

In practice code reuse is a complex issue. How to identify the components that might be reusable, how
much effort should be invested in writing the original source to make it easy to reuse, how costs and benefits
should be apportioned are a few of the questions.

A survey of the economic issues involved in software reuse is provided by Wildls These coding
guidelines indirectly address code reuse in that they recommend against the use of constructs that can vary
between translator implementations.

8.6 Using another language

A solution that is sometimes proposed to get around problems in C that are seen as the root cause of many
faults is to use another language. Commonly proposed languages include Pascal, Ada, and recently Java.
These languages are claimed to have characteristics, such as strong typing, that help catch faults early and
reduce maintenance costs.

In 1987 the US Department of Defense mandated Ada (DoD Directive 3405.1) as the language in which Ada
bespoke applications, written for it, had to be written. The aim was to make major cost savings over the full “*>"™
lifetime of a project (implementation and maintenance, throughout its operational life); the higher costs of
using Ada during implementati&d®! being recovered through reduced maintenance costs over its working
lifetime [143% However, a crucial consideration had been overlooked in the original cost analysis. Many
projects are canceled before they become operati&idf2%! If the costs of all projects, canceled or opera-
tional, are taken into account, Ada is not the most cost-effective option. The additional cost incurred during
development of projects that are canceled exceeds the savings made on projects that become operational.
The directive mandating the use of Ada was canceled in ¥§%7.

Proposals to use other languages sometimes have more obvious flaws in their arguments. An analysis of
why Lisp should be uséti® is based on how that language overcomes some of the C-inherent problems,
while overlooking its own more substantial weaknesses (rather like proposing that people hop on one leg as
a solution to wearing out two shoes by walking on two).

August 5, 2005 v 1.0b 35

_ Introduction 8 Source code cost drivers

coding o
guidelines
the benefit

coding guidelines
testability

The inability to think through a reasoned argument, where choice of programming language is concerned
is not limited to academic pap&¥! (5.3.11 Safe Subsets of Programming languages).

The use of software in applications where there is the possibility of loss of life, or serious injury, is
sometimes covered by regulations. These regulations often tend to be about process— making sure the
various checks are carried out. But sometimes subsets of the C language have been defined (sometime
called by the name safe subsets). The associated coding guideline is that constructs outside this subset n
be used. Proof for claiming that use of these subsets result in safer programs is nonexistent. The benefit c
following coding guidelines is discussed elsewhere.

8.7 Testability

This subsection is to provide some background on testing programs. The purpose of testing is to achieve
a measurable degree of confidence that a program will behave as expected!®girevides a practical
introduction to testing.

Testing is often written about as if its purpose were to find faults in applications. Many authors quote
figures for the cost of finding a fault, looking for cost-effective ways of finding them. This outlook can
lead to an incorrectly structured development process. For instance, a perfect application will have an
infinite cost per fault found, while a very badly written application will have a very low cost per fault
found. Other figures often quoted involve the cost of finding faults in different phases of the development
process. In particular, the fact that the cost per fault is higher, the later in the process it is discovered. This
observation about relative costs often occurs purely because of how development costs are accounted fc
On a significant development effort equipment and overhead costs tend to be fixed, and there is often ¢
preassigned number of people working on a particular development phase. These costs are not likely tc
vary by much, whether there is a single fault found or 100 faults. However, it is likely that there will be
significantly fewer faults found in later phases because most of them will have been located in earlier phases
Given the fixed costs that cannot be decreased, and the smaller number of faults, it is inevitable that the cos
per fault will be higher in later phases.

Many of the faults that exist in source code are never encountered by users of an application. Examples
of such faults are provided in a study by Chou, Yang, Chelf, Hallem, and E4f§levho investigated the
history of faults in the Linux kernel (found using a variety of static analysis tools). The source of different
releases of the Linux kernel is publicly available (for this analysis 21 snapshots of the source over a sever
year period were used). The results showed how faults remained in successive releases of code that was us
for production work in thousands (if not hundreds of thousands) of computers. The average fault lifetime,
before being fixed, or the code containing it ceasing to exist was 1.8 years.

The following three events need to occur for a fault to become an application failure:

1. A program needs to execute the statement containing the fault.
2. The result of that execution needs to infect the subsequent data values, another part of the program.
3. The infected data values must propagate to the output.

The probability of a particular fault affecting the output of an application for a given input can be found by
multiplying together the probability of the preceding three events occurring for that set of input values. The
following example is taken from Vods3¢!

#include <math.h>
#include <stdio.h>

1

2

3

4 void quadratic_root(int a, int b, int c)

5 /%

6 * If one exists print one integral solution of:
7 * axA2 + bx +¢c =0

8 */

9 |

36 v 1.0b August 5, 2005

8 Source code cost drivers

Introductitm

10 int d,

11 X;

12

13 if (a != 0)

14 {

15 d=(b *b) - (5*a*c); /* Fault, should multiply by 4. *
16 if (d < 0)

17 x = 0;

18 else

19 x = (sqrt(d) / (2 * a)) - b;

20 }

21 else

22 x = -(c / b);

23

24 if ((@a*x*x+b *x+c)==0)

25 printf("%d is an integral solution\n", x);
26 else

27 printf("There is no integral solution\n");
28 }

Execution of the functiomuadratic_root has four possibilities:

1. The fault is not executed (e.gwadratic_root(0, 3, 6)).

2. The fault is executed but does not infect any of the data (@ugdratic_root(3, 2, 0)).

3. The fault is executed and the data is infected, but it does not affect the outpuifedratic_root (1,

-1, -12)).

4. The fault is executed and the infected data causes the output to be incorreqtiéglgatic_root (10,

0, 10)).

This program illustrates the often-seen situations of a program behaving as expected because the input
values used were not sufficient to turn a fault in the source code into an application failure during program

execution.

Testing by execution examines the source code in a different way than is addressed by these coding
guidelines. One looks at only those parts of the program (in translated form) through which flow of control

passes and applies specific values, the other examines source code in symbolic form.

A study by Adam8! looked at faults found in applications over time. The results showed (seeaple
that approximately one third of all detected faults occurred on average every 5,000 years of execution time.
Only around 2% of faults occurred every five years of execution time.

Table 0.1: Percentage of reported problems having a given mean time to first problem occurrence (in months, summed over
all installations of a product) for various products (numbered 1 to 9), e.g., 28.8% of the reported faults in product 1 were, on
average, first reported after 19,000 months of program execution time (another 34.2% of problems were first reported after

60,000 months). From Adantd.

Product 19 60 190 600 1,900 6,000 19,000 60,000
1 07 12 21 50 10.3 17.8 28.8 34.2
2 07 15 32 45 9.7 18.2 28.0 34.3
3 04 14 28 6.5 8.7 18.0 285 33.7
4 01 03 20 44 11.9 18.7 28.5 34.2
5 07 14 29 44 9.4 18.4 28,5 34.2
6 03 08 21 50 11.5 20.1 28.2 32.0
7 06 14 27 45 9.9 18.5 28.5 34.0
8 11 14 27 6.5 111 18.4 271 31.9
9 00 05 1.9 5.6 12.8 20.4 27.6 31.2

August 5, 2005 v 1.0b

37

_ Introduction 9 Background to these coding guidelines

metrics
introduction

COCOMO

coding guidelines
background to

coding o
guidelines
the benefit

8.8 Software metrics

In a variety of engineering disciplines, it is possible to predict, to within a degree of uncertainty, various
behaviors and properties of components by measuring certain parameters and matching these measureme
against known behaviors of previous components having similar measurements. A number of software met
rics (software measurements does not sound as scientific) are based on the number of lines of source coc
Comments are usually excluded from this count. What constitutes a line is at times fiercely dé8ated.

The most commonly used count is based on a simple line count, ignoring issues such as multiple statement
on one line or statements spanning more than one line.

The results from measurements of software are an essential basis for any theoretical 4?faliis:-
ever, some of the questions people are trying to answer with measurements of source code have seriol
flaws in their justification. Two commonly asked questions are the effort needed to implement a program
(before it is implemented) and the number of faults in a program (before it is shipped to customers). Fenton
attempted to introduce a degree of rigour into the use of métfit4%s!

The COCOMO project (COnstructive COst Model, the latest release is known as COCOMO 1) is a
research effort attempting to produce an Open Source, public domain, software cost, effort, and schedule
for developing new software development. Off-the-shelf, untuned models have been up to 600% inaccurate
in their estimates. After Bayesian tuning models that are within 30% of the actual figures 71% of the time
have been builg?®! Effort estimation is not the subject of this book and is not discussed further.

These attempts to find meaningful measures all have a common goal — the desire to predict. However
most existing metrics are based on regression analysis models, they are not causal models. To build thes
models, a number of factors believed to affect the final result are selected, and a regression analysis i
performed to calculate a correlation between them and the final results. Models built in this way will
depend on the data from which they were built and the factors chosen to correlate against. Unlike a causa
model (which predicts results based on “telling the std#§#) there is no underlying theory that explains
how these factors interact. For a detailed critique of existing attempts at program defect prediction based or
measures of source code and fault history, see Féifdn.

The one factor that existing fault-prediction models ignore is the human brain/mind. The discussion
in subsequent sections should convince the reader that source code complexity only exists in the mind o
the reader. Without taking into account the properties in the reader’s mind, it is not possible to calculate
a complexity value. For instance, one frequently referenced metric is Halstead'’s software science metric
which uses the idea of theolumeof a function. Thisvolumeis calculated by counting the operators
and operands appearing in that function. There is no attempt to differentiate functions containing a few
complex expressions from functions containing many simple expressions; provided the total and unique
operand/operator count is the same, they will be assigned the same complexity.

9 Background to these coding guidelines

These coding guidelines are conventional, if a little longer than most, in the sense that they contain the usua
exhortation not to use a construct, to do things a particular way, or to watch out for certain problems. They
are unconventional because of the following:

» An attempt has been made to consider the impact of a prohibition— do the alternatives have worse
cost/benefit?

 Deviations are suggested— experience has shown that requiring a yes/no decision on following a
guideline recommendation can result in that recommendation being ignored completely. Suggesting
deviations can lead to an increase in guideline recommendations being followed by providing a safety
valve for the awkward cases.

« Economics is the only consideration— it is sometimes claimed that following guideline recommenda-
tions imbues software with properties such as being better or safer. Your author does not know of any
way of measuring betterness in software. The case for increased safety is discussed elsewhere.

38 v 1.0b August 5, 2005

9 Background to these coding guidelines Introductm

* An attempt has been made to base those guideline recommendations that relate to human factors on
the experimental results and theories of cognitive psychology. °,§§32§3’,§gy
It's all very well giving guideline recommendations for developers to follow. But, how do they do their job.
How were they selected? When do they apply? These are the issues discussed in the following sections.

9.1 Culture, knowledge, and behavior

Every language has a culture associated with its use. A culture entails thinking about and doing certaitare of
things in a certain walf”"! How and why these choices originally came about may provide some interesting
historical context and might be discussed in other sections of this book, but they are generally not relevant
to Coding guideline sections.

Cultureis perhaps too grand a word for the common existing practices of C developers. Developers are
overconfident and insular enough already without providing additional blankets to wrap themselves in. The
termexisting practicas both functional and reduces the possibility of aggrandizement.

Existing practices could be thought of as a set of assumptions and expectations about how things are done
(in C). The termC styleis sometimes used to describe these assumptions and expectations. However, this
term has so many different meanings, for different developers, in different contexts, that its use is very prone
to misunderstanding and argument. Therefore every effort will be made to stay away from the corg%g(mgof
style in this book. guidelines

In many ways existing practice israeme machin&?2 Developers read existing code, learn about the’ ™"
ideas it contains, and potentially use those ideas to write new code. Particular ways of writing code need
not be useful to the program that contains them. They only need to appear to be useful to the developer who
writes the code, or fit in with a developers preferred way of doing things. In some cases developers do not
thoroughly analyze what code to write, they follow the lead of others. Software development has its fads
and fashions, just like any other information-driven ende&ddr.

Before looking at the effect of existing practice on coding guidelines we ought to ask what constitutes
existing practice. As far as the guideline recommendations in this book are concerned, what constitutes
existing practice is documented in the Usage subsections. Developers are unlikely to approach this issue in
such a scientific way. They will have worked in one or more application domains, been exposed to a variety
of source code, and discussed C with a variety of other developers. While some companies might choose to
tune their guidelines to the practices that apply to specific application domains and working enviroﬁi«@?ﬁj{g’,
the guideline recommendations in this book attempt to be generally applicable.

Existing practices are not always documented and, in some cases, developers cannot even state wihgiitheayhing
are. Experienced developers sometimes use expressions shehGevay of doing thingor | feel. When
asked what is meant by these expressions, they are unable to provide a coherent answer. This kind of human
behavior (knowing something without being able to state what it is) has been duplicated in the laboratory.

« A study by Lewicki, Hill and Bizof®! demonstrated the effect of implicit learning on subjects expec-
tations, even when performing a task that contained no overt learning component. In this study, while
subjects watched a computer screen a letter was presented in one of four possible locations. Subjects
had to press the button corresponding to the location of the letter as quickly as possible. The sequence
of locations used followed a consistent, but complex, pattern. The results showed subjects’ response
times continually improving as they gained experience. The presentation was divided into 17 seg-
ments of 240 trials (a total of 4,080 letters), each segment was separated by a 10-second break. The
pattern used to select the sequence of locations was changed after the 15th segment (subjects were
not told about the existence of any patterns of behavior). When the pattern changed, the response
times immediately got worse. After completing the presentation subjects were interviewed to find out
if they had been aware of any patterns in the presentation; they had not.

* A study by Reber and Kass$t’Y compared implicit and explicit pattern detection. Subjects wereter patterns
asked to memorize sets of words containing the leRe& T, V, or X. Most of these words had beerd™Piicit learning

August 5, 2005 v 1.0b 39

_ Introduction 9 Background to these coding guidelines

generated using a finite state grammar. However, some of the sets contained words that had not bee
generated according to the rules of this grammar. One group of subjects thought they were taking
part in a purely memory-based experiment; the other group was also told to memorize the words but
was also told of the existence of a pattern to the letter sequences and that it would help them in the
task if they could deduce this pattern. The performance of the group that had not been told about the
presence of a pattern almost exactly mirrored that of the group who had been told on all sets of words
(pattern words only, pattern plus non-pattern words, non-pattern words only). Without being told to
do so, subjects had used patterns in the words to help perform the memorization task.

« A study carried out by Berry and BroadbBtt! asked subjects to perform a task requiring decision
making using numerical quantities. In these experiments subjects were told that they were in charge
of a sugar production factory. They had to control the rate of sugar production to ensure it kept at
the target rate of 9,000 tons. The only method of control available to them was changing the size of
the workforce. Subjects were not told anything about the relationship between the current production
rate, the number of workers and previous production rates. The starting point was 600 workers and an
output rate of 6,000 tons. Subjects had to specify the number of workers they wished to employ and
were then told the new rate of production (interaction was via a terminal connected to a computer).
At the end of the experiment, subjects had to answer a questionnaire about the task they had jusi
performed. The results showed that although subjects had quickly learned to keep the rate of sugal
production close to the desired level, they were unable to verbalize how they achieved this goal.

The studies performed by these and other researchers demonstrate that it is possible for people to perfort
quite complex tasks using knowledge that they are not consciously aware of having. By working with other
C developers and reading existing C source code, developers obtain the nonverbalized knowledge that is pa
of the unwritten culture of C. This knowledge is expressed by developers having expectations and making
assumptions about software development in C.

Another consequence of being immersed within existing practice is that developers use the characteris
tics of different entities to form categories. This categorization provides a mechanism for people to make
generalizations based on relatively small data sets. A developer working with C source code which has
been written by other people will slowly build up a set of assumptions and expectations of the general
characteristics of this code.

A study by Nisbett, Krantz, Jepson and Kulfdd illustrates peoples propensity to generalize, based on
past experience. Subjects were given the following scenario. (Some were told that three samples of eacl
object was encountered, while other subjects were told that 20 samples of each object was encountered.)

Imagine that you are an explorer who has landed on a little-known island in the Southeastern Pacific.
You encounter several new animals, people, and objects. You observe the properties of your "samples”
and you need to make guesses about how common these properties would be in other animals| people,
or objects of the same type:

1. suppose you encounter a new bird, the shreeble. It is blue in color. What percent of all shreebles
on the island do you expect to be blue?

2. suppose the shreeble you encounter is found to nest in a eucalyptus tree, a type of tree that is
fairly common on this island. What percentage of all shreebles on the island do you expgct to
nest in a eucalyptus tree?

3. suppose you encounter a native, who is a member of a tribe called the Barratos. He is|obese.
What percentage of the male Barratos do you expect to be obese?

4. suppose the Barratos man is brown in color. What percentage of male Barratos do you expect be
brown (as opposed to red, yellow, black, or white)?

40 v 1.0b August 5, 2005

9 Background to these coding guidelines Introductm

100 —
z S==_ _ _ Floridium-Conductivity
8, = Floridium-Color
i] Barratos-Color
= Shreeble-Nests
2 Shreeble-Color
> 80— ‘
] Barratos-Obesity
=
8
=]
8
=
£
g
= 60 —|
2
=
=
(=¥ J—
19}
&
-
5]
5 40—
2
5}
¥

1 3 20

Cases in sample

Figure 0.9: Percentage of population estimated to have the sample property against the number of cases in the sample. Adapted
from Nisbettl970]

5. suppose you encounter what the physicist on your expedition describes as an extremely rare
element called floridium. Upon being heated to a very high temperature, it burns with a green
flame. What percentage of all samples of floridium found on the island do you expect to|burn
with a green flame?

6. suppose the samples of floridium, when drawn into a filament, is found to conduct electricity.
What percentage of all samples of floridium found on the island do you expect to conduct elec-
tricity?

The results show that subjects used their knowledge of the variability of properties in estimating the
probability that an object would have that property. For instance, different samples of the same element are
not expected to exhibit different properties, so the number of cases in a sample did not influence estimated
probabilities. However, people are known to vary in their obesity, so the estimated probabilities were much
lower for the single sample than the 20 case sample.

The lesson to be learned here is a general one concerning the functionality of objects and functions that
are considered to form a category. Individual members of a category (e.g., a source file or structure type
created by a developer) should have properties that would not be surprising to somebody who was only
familiar with a subset of the members (see Figu®.

Having expectations and making assumptions (or more technically, using inductive reasoning) can be
useful in a slowly changing world (such as the one inhabited by our ancestors). They provide a framework
from which small amounts of information can be used to infer, seemingly unconnected (to an outsider),
conclusions. Is there a place for implicit expectations and assumptions in software development? A strong
case can be made for saying that any thought process that is not based on explicit knowledge (which can be
stated) should not be used when writing software. In practice use of such knowledge, and inductive reason-
ing based on it, appears to play an integral role in human thought processes. A guideline recommendation

August 5, 2005 v 1.0b 41

_ Introduction 9 Background to these coding guidelines

statement 1696
visual layout

declaration 1338
visual layout

identifier 787
syntax
developer
motivations

cogni- o
tive effort

belief main- o
tenance

cost/accuracy
trade-off

that developers not use such thought processes may be difficult, if not impossible, to adhere to.

These coding guidelines don’t seek to change what appears to be innate developer (human) behavio
The approach taken by these guidelines is to take account of the thought processes that developers use, a
to work within them. If developers have expectations and make assumptions, then the way to deal with
them is to find out what they are and to ensure that, where possible, source code follows them (or at leas
does not exhibit behavior that differs significantly from that expected). This approach means that these
recommendations are tuned to the human way of comprehending C source code.

The issue of implicit knowledge occurs in several coding guidelines.

9.1.1 Aims and motivation
What are developers trying to do when they read and write source code? They are attempting to satisfy ¢
variety of goals. These goals can be explicit or implicit. One contribution cognitive psychology can make
is to uncover the implicit goals, and perhaps to provide a way of understanding their effects (with the aim
of creating guideline recommendations that minimize any undesirable consequences). Possible develope
aims and motives include (roughly from higher level to lower level) the following:

 Performing their role in a development project (with an eye on promation, for the pleasure of doing a
good job, or doing a job that pays for other interests).

 Carrying out a program-modification task.
 Extracting information from the source by explicitly choosing what to pay attention to.

» Minimizing cognitive effort; for instance, using heuristics rather than acquiring all the necessary
information and using deductive logic.

« Maximizing the pleasure they get out of what they are doing.

* Belief maintenance: studies have found that people interpret evidence in ways that will maintain their
existing beliefs.

The act of reading and writing software has an immediate personal cost. It is the cognitive load on a
developer’s brain (physical effort is assumed to be small enough that it has no significant cost, noticeable tc
the developer). Various studies have shown that people try to minimize cognitive effort when performing
tasksl** A possible consequence of minimizing this effort is that people’s actions are not always those
that would be predicted on the basis of correct completion of the task at hand. In other words, people make
mistakes because they do not invest sufficient effort to carry out a task correctly.

When attempting to solve a problem, a person’s cognitive system is assumed to make cost/accurac)
trade-offs. The details of how it forms an estimate of the value, cost, and risk associated with an action,
and carries out the trade-off analysis is not known. A study by Fu and‘@¥gyrovides a good example
of the effects of these trade-offs on the decisions made by people when performing a task. Subjects wer
given the task of copying a pattern of colored blocks (on a computer-generated display). To carry out the
task subjects had to remember the color of the block to be copied and its position in the target pattern, &
memory effort. A perceptual-motor effort was introduced by graying out the various areas of the display
where the colored blocks were visible. These grayed out areas could be made temporarily visible using
various combinations of keystrokes and mouse movements. When performing the task, subjects had the
choice of expending memory effort (learning the locations of different colored blocks) or perceptual-motor
effort (using keystrokes and mouse movements to uncover different areas of the display). A subject’s total
effort was equal to the sum of the perceptual motor effort and the memory storage and recall effort. The
extremes of possible effort combinations are: (1) minimize the memory effort by remembering the color and
position of a single block, which requires the perceptual-motor effort of uncovering the grayed out area for
every block, or (2) minimize perceptual effort by remembering information on as many blocks as possible
(this requires uncovering fewer grayed areas).

42 v 1.0b August 5, 2005

9 Background to these coding guidelines Introductm

The subjects were splitinto three groups. The experiment was arranged such that one group had to expend
a low effort to uncover the grayed out areas, the second acted as a control, and the third had to expend a
high effort to uncover the grayed out areas. The results showed that the subjects who had to expend a high
perceptual-motor effort, uncovered grayed out area fewer times than the other two groups. These subjects
also spent longer looking at the areas uncovered, and moved more colored blocks between uncoverings. The
subjects faced with a high perceptual-motor effort reduced their total effort by investing in memory effort.
Another consequence of this switch of effort investment, to use of memory, was an increase in errors made.

When reading source code, developers may be faced with the same kind of decision. Having looked at
and invested effort in memorizing information about a section of source code, should they invest perceptual-
motor effort when looking at a different section of source that is affected by the previously read source
to verify the correctness of the information in their memory? A commonly encountered question is the C
language type of an object. A developer has to decide between searching for the declaration or relying on
information in memory.

A study by Schunn, Reder, Nhouyvanisvong, Richards, and Strofftiidound that a subject’'s degree
of familiarity with a problem was a better predictor, than retrievability of an answer, of whether subjects
would attempt to retrieve or calculate the answer to a problem.

. .. . L . . . o effort vs.

The issue of cognitive effort vs. accuracy in decision making is also discussed elsewhere. accuracy

Experience shows that many developers believe that effadgencyis an important attribute of code
quality. This belief is not unique to the culture of C and has a long histétyWhile efficiency remains an
issue in some application domains, these coding guidelines often treat efficiency as a cause of undesirable
developer behavior that needs to be considered (with a view handling the possible consequences).

Experience also shows that when presented with a choice developer decisions are affected by their ey min-
estimates of the amount of typing they will need to perform. Typing minimization behavior can include ™?z%"
choosing abbreviated identifier names, using cut-and-paste to copy sections of code, using keyboard short-
cuts, and creating editor macros (which can sometimes require significantly more effort than they save).

Experience has shown that some developers equate visual compactness of source code with ruatiagcom-
efficiency of the translated program. While there are some languages where such a correlation exists; (g’ oue
some implementations of Basic, mostly interpreter based and seen in early hobbiest computers, perform
just in time translation of the source code), it does not exist for C. This is an issue that needs to be covered
during developer education.

9.2 Selecting guideline recommendations

No attempt has been made to keep the number of guideline recommendations within a prescribed limitgliiisne rec-
not expected that developers should memorize them. Managers are expected to select guidelines bA3BeL4R1NS
their cost effectiveness for particular projects.

Leaving the number of guideline recommendations open-ended does not mean that any worthwhile sound-
ing idea has been written up as a guideline. Although the number of different coding problems that could be
encountered is infinite, an endless list of guidelines would be of little practical use. Worthwhile recommen-
dations are those that minimize both the likelihood of faults being introduced by a developer or the effort
needed by subsequent developers to comprehend the source code. Guideline recommendations covering
situations that rarely occur in practice are wasted effort (not for the developers who rarely get to see them,
but for the guideline author and tool vendors implementing checks for them).

These coding guidelines are not intended to recommend against the use of constructs that are obviouglyines
faults (i.e., developers have done something by mistake and would want to modify the code if the usag®! s
was pointed out to them). For instance, a guideline recommending against the use of uninitialized objects is
equivalent to a guideline recommending against faults (i.e., pointless). Developers do not need to be given
recommendations not to use these constructs. Guidelines either recommend against the use of constructs
that are intentionally used (i.e., a developer did not use them by mistake) in a conforming program (any con-
structs that would cause a conforming translator to issue a diagnostic are not included), or they recommend
that a particular implementation technique be used.

August 5, 2005 v 1.0b 43

_ Introduction 9 Background to these coding guidelines

developer o
program com-
prehension

experimental o
studies

Usage o
1

These guidelines deal with the use of C language constructs, not the design decisions behind their sele
tion. It is not the intent to discuss how developers choose to solve the higher-level design and algorithmic
issues associated with software development. These guidelines deal with instances of particular construct
at the source code level.

Source code faults are nearly always clichés; that is, developers tend to repeat the mistakes of other
and their own previous mistakes. Not every instance of a specific construct recommended against by ¢
guideline (e.g., an assignment operator in a conditional expressforix = y)) need result in a fault.
However, because a sufficient number of instances have caused faults to occur in the past, it is considere
to be worthwhile recommending against all usage of a construct.

Guidelines covering a particular construct cannot be considered in isolation from the rest of the language
The question has to be asked, of each guideline: “if developers are not allowed do this, what are they going
to do instead?” A guideline that effectively forces developers into using an even more dangerous construct
is a lot more than simply a waste of time. For instance, your authors experience is that placing too many
restrictions on how enumerated constants are defined leads to developers using macro names instead—
counterproductive outcome.

Selecting guideline recommendations based on the preceding criteria requires both a detailed inventory o
software faults for the C language (no distinction is made between faults that are detected in the source an
faults that are detected as incorrect output from a program) and some measure of developer comprehensic
effort. Developer comprehension is discussed elsewhere. There have been relatively few reliable studie:
of software faults (Knuth’é?! log of faults in X is one such; see Frederi¢t®! for a survey). Some of
those that have been published have looked at faults that occur during initial develdi3fieand faults
that occur during the evolution of an application, its maintenance pEfb&3?!

Guidelines that look worthy but lack empirical evidence for their cost effectiveness should be regarded
with suspicion. The field of software engineering has a poor track record for experimental research. Stud
ied840.1436lhave found that most published papers in software related disciplines do not include any exper-
imental validation. Whenever possible this book quotes results based on empirical studies (for the mea
surements by the author, either the raw data or the source code of the programs that generated the data ¢
available from the authBf*™!). Sometimes results from theoretical derivations are used. As a last resort,
common practices and experience are sometimes quoted. Those studies that have investigated issues re
ing to coding practices have often used very inexperienced subjects (students studying at a university). The
results of these inexperienced subject-based studies have been ignored.

« A study by Thayer, Lipow, and NelsB#%®! looked at several Jovial (a Fortran-like language) projects
during their testing phase. It was advanced for its time, using tools to analyze the source and being
rigorous in the methodology of its detailed measurements. The study broke new ground: “Based on
error histories seen in the data, define sets of error categories, both causative and symptomatic, to b
applied in the analysis of software problem reports and their closure.” Unfortunately, the quality of
this work was not followed up by others and the detail provided is not sufficient for our needs here.

« Hattort>3U provides an extensive list of faults in C source code found by a static analysis tool. The
tool used was an earlier version of one of the tools used to gather the usage information for this book.

+ Perry!%%2 Jooked at the modification requests for a 1 MLOC system that contained approximately
15% to 20% new code for each release. As well as counting the number of occurrences of each fault
category, a weight was given to the effort required to fix them.

44 v 1.0b August 5, 2005

9 Background to these coding guidelines

Introductm

Table 0.2: Fault categories ordered by frequency of occurrence. The last column is the rank position after the fault fix weighting
factor is taken into account. Based on Péj2]

Rank Fault Description % Total Fix Rank Fault Description % Total Fix
Faults Rank Faults Rank
1 internal functionality 25.0 13 12 error handling 3.3 6
2 interface complexity 11.4 10 13 primitive’s misuse 2.4 11
3 unexpected dependencies 8.0 4 14 dynamic data use 2.1 15
4 low-level logic 7.9 17 15 resource allocation 15 2
5 design/code complexity 7.7 3 16 static data design 1.0 19
6 other 5.8 12 17 performance 0.9 1
7 change coordinates 49 14 18 unknown interactions 0.7 5
8 concurrent work 4.4 9 19 primitives unsupported 0.6 19
9 race conditions 4.3 7 20 IPC rule violated 0.4 16
10 external functionality 3.6 8 21 change management 0.3 21
complexity
11 language pitfalls i.e., use 3.5 18 22 dynamic data design 0.3 21

of = when == intended

Looking at the results (shown in Talle?) we see that although performance is ranked 17th in terms

of number of occurrences, it moves up to first when the effort to fix is taken into account. Resource
allocation also moves up the rankings. The application measured has to operate in realtime, so perfor-
mance and resource usage will be very important. The extent to which the rankings used in this case
apply to other application domains is likely to depend on the application domain. Perry also measured
the underlying causes (see Tabl&) and the means of fault prevention (see Tdb.

Table 0.3: Underlying cause of faults. Theone givercategory occurs because sometimes both the fault and the underlying
cause are the same. For instaaaguage pitfalls or low-level logic Based on Perri-032

Rank Cause Description % Total Fix
Causes Rank

1 Incomplete/omitted design 25.2 3
2 None given 20.5 10
3 Lack of knowledge 17.8 8
4 Ambiguous design 9.8 9
5 Earlier incorrect fix 7.3 7
6 Submitted under duress 6.8 6
7 Incomplete/omitted requirements 5.4 2
8 Other 4.1 4
9 Ambiguous requirements 2.0 1
10 Incorrect modifications 11 5

August 5, 2005

v 1.0b

45

_ Introduction 9 Background to these coding guidelines

Table 0.4: Means of fault prevention. The last column is the rank position after the fault fix weighting factor is taken into
account. Based on Per32]

Rank Means Description % Ob- Fix
served Rank

1 Application walk-through 245 8
2 Provide expert/clearer documentation 15.7 3
3 Guideline enforcement 13.3 10
4 Requirements/design templates 10.0 5
5 Better test planning 9.9 9
6 Formal requirements 8.8 2
7 Formal interface specifications 7.2 4
8 Other 6.9 6
9 Training 2.2 1
10 Keep document/code in sync 15 7

« A study by Glasé" looked at what he callepersistent software errorsGlass appears to make an
implicit assumption that faults appearing late in development or during operational use are somehow
different from those found during development. The data came from analgoiitggare problem
reportsfrom two large projects. There was no analysis of faults found in these projects during devel-
opment.

Your author knows of no study comparing differences in faults found during early development, different
phases of testing and operational use. Until proven otherwise, these Coding guideline subsections treat th
faults found during different phases of development as having the same characteristics.

Usage o More detailed information on the usage of particular C constructs is given in the Usage sections of this
book. While this information provides an estimate of the frequency-of-occurrence of these constructs, it
does not provide any information on their correlation to occurrences of faults. These frequency of oc-
currence measurements were used in the decision process for deciding when particular constructs migt
warrant a guideline (the extent to which frequency of occurrence might affect developer performance. Note

;ﬁgg;n';g() that power law of learning is not considered here.
The selection of these guidelines was also influenced by the intended audience of developers, the type
of programs they work on, and the priorities of the environment in which these developers work as follows:
» Developers are assumed to have imperfect memory, work in a fashion that minimizes their cognitive
load, are not experts in C language and are liable to have incorrect knowledge about what they think
C constructs mean; and have an incomplete knowledge base of the sources they are working or
Although there may be developers who are experts in C language and the source code they are workin
on, it is assumed here that such people are sufficiently rare that they are not statistically significant;
coding o in general these Coding guideline subsections ignore them. A more detailed discussion is given
gué(i\/eelli)rgsz elsewhere.
coding o Applications are assumed to be large (over 50 KLOC) and actively worked on by more than one
gulg]lell?es developer.
» Getting the software right is only one of the priorities in any commercial development group. Costs
coding o and time scales need to be considered. Following coding guidelines is sometimes a small componen
guidelines of what can also be a small component in a big project.

cost drivers

9.2.1 Guideline recommendations must be enforceable

guideline rec- A guideline recommendation that cannot be enforced is unlikely to be of any use. Enforcement introduces

gmmendation several practical issues that constrain the recommendations made by guidelines, including the following:

46 v 1.0b August 5, 2005

9 Background to these coding guidelines Introductm

 Detecting violationslt needs to be possible to deduce (by analyzing source code) whether a guideline
is, or is not, being adhered to. The answer should always be the same no matter who is asking the
question (i.e., the guidelines should be unambiguous).

< Removing violations.There needs to be a way of rewriting the source so that no guideline is vio-
lated. Creating a situation where it is not possible to write a program without violating one or other
guidelines debases the importance of adhering to guidelines and creates a work environment that
encourages the use of deviations.

« Testing modified programdesting can be a very expensive process. The method chosen, by deyeédeiine rec-
opers, to implement changes to the source may be based on minimizing the possible impact qSEfEIaon
parts of a program, the idea being to reduce the amount of testing that needs to be done (or 8%} cost
that appears to be needed to be done). Adhering to a guideline should involve an amount of effort that
is proportional to the effort used to make changes to the source. Guidelines that could require a major
source restructuring effort, after a small change to the source, are unlikely to be adhered to.

The procedures that might be followed in checking conformance to guidelines are not discussed in this book.
A number of standards have been published dealing with this ig<tf8 6321

A project that uses more than a handful of guidelines will find it uneconomical and impractical to enforce
them without some form of automated assistance. Manually checking the source code against all guidelines
is likely to be expensive and error prone (it could take a developer a working week simply to learn the guide-
lines, assuming 100 rules and 20 minutes study of each rule). Recognizing that some form of automated
tool will be used, the wording for guidelines needs to be algorithmic in style.

There are situations where adhering to a guideline can get in the way of doing what needs to be done.
Adhering to coding guidelines rarely has the highest priority in a commercial environment. Experience has
shown that these situations can lead either to complete guideline recommendations being ignored, or be the
thin end of the wedge that eventually leads to the abandonment of adherence to any coding guideline. The
solution is to accept that guidelines do need to be broken at times. This fact should not be swept under the
carpet, but codified into a deviations mechanism.

9.2.1.1 Uses of adherence to guidelines
While reducing the cost of ownership may be the aim of these guideline recommendations, others may see
them as having other uses. For instance, from time to time there are calls for formal certification of source
code to some coding guideline document or other. Such certification has an obvious commercial benefit to
the certification body and any associated tools vendors. Whether such certification provides a worthwhile
benefit to purchasers of software is debat&é!

Goodhart's lal! deals with the impact of external, human pressure on measurement and is applicable
here. One of its forms is: “When a measure becomes a target, it ceases to be a good measure.'&tththern
describes how the use of a rating system changed the nature of university research and teaching.

Whether there is a greater economic benefit, to a company, in simply doing what is necessary to gain
some kind of external recognition of conformance to a coding guideline document (i.e., giving little weight
to the internal cost/benefit analysis at the source code level), or in considering adherence to guideline rec-
ommendations as a purely internal cost/benefit issue is outside the scope of this book.

9.2.1.2 Deviations
A list of possible deviations should be an integral part of any coding guideline. This list is a continuation Ofieviations
the experience and calculation that forms part of every guideline. coding guidelines
The arguments made by the advocates of Total Quality Manag&hfeappear to be hard to argue
against. The relentless pursuit of quality is to be commended for some applications, such as airborne systems

0.1professor Charles Goodhart, FBA, was chief adviser to the Bank of England and his “law” was originally aimed at financial
measures (i.e., “As soon as the government attempts to regulate any particular set of financial assets, these become unreliable as
indicators of economic trends.”).

August 5, 2005 v 1.0b 47

_ Introduction 9 Background to these coding guidelines

developer o
expertise

and medical instruments. Even in other, less life-threatening, applications, quality is often promoted as a
significant factor in enhancing customer satisfaction. Who doesn’t want fault-free software? However,
in these quality discussions, the most important factor is often overlooked— financial and competitive
performance— (getting a product to market early, even if it contains known faults, is often much more
important than getting a fault-free product to market later). Delivering a fault-free product to market late
can result in financial ruin, just as delivering a fault prone product early to market. These coding guidelines
aim of reducing the cost of software ownership needs to be weighed against the broader aim of creating
value in a timely fashion. For instance, the cost of following a particular guideline may be much greater
than normal, or an alternative technique may not be available. In these situations a strong case can be mac
for not adhering to an applicable guideline.

There is another practical reason for listing deviations. Experience shows that once a particular guideline
has not been adhered to in one situation, developers find it easier not to adhere to it in other situations
Management rarely has access to anybody with sufficient expertise to frame a modified guideline (deviation)
appropriate to the situation, even if that route is contemplated. Experience shows that developers rarely
create a subset of an individual guideline to ignore; the entire guideline tends to be ignored. A deviation can
stop adherence to a particular guideline being an all-or-nothing decision, helping to prevent the leakage of
nonadherence. Deviations can provide an incremental sequence (increasing in cost and benefit) of decisio
points.

Who should decide when a deviation can be used? Both the authors of the source code and their imme
diate managers may have a potential conflict of interest with the longer-term goals of those paying for the
development as follows:

» They may be under pressure to deliver a release and see use of a deviation as a short-cut.

« They may not be the direct beneficiaries of the investment being made in adhering to coding guide-
lines. Redirecting their resources to other areas of the project may seem attractive.

« They may not have the skill or resources needed to follow a guideline in a particular case. Admitting
one’s own limitations is always hard to do.

The processes that customers (which may be other departments within the same company) put in place t
ensure that project managers and developers follow agreed-on practices are outside the scope of this boc
Methods for processing deviation requests include:

« referring all requests to an expert. This raises the question of how qualifiedx@ertmust be to
make technical decisions on deviations.

» making deviation decisions during code review.
« allowing the Q/A department to have the final say about which deviations are acceptable.

However, permission for the use of a deviation is obtained, all uses need to be documented. That is, eacl
source construct that does not adhere to the full guideline, but a deviation of that guideline, needs to be
documented. This documentation may simply be a reference to one location where the rationale for that
deviation is given. Creating this documentation offers several benefits:

« It ensures that a minimum amount of thought has been given to the reasons for use of a deviation.

« It may provide useful information to subsequent developers. For instance, it can provide an indication
of the number of issues that may need to be looked at when porting to a new translator, and the
rationale given with a deviation can provide background information on coding decisions.

« It provides feedback to management on the practical implications of the guidelines in force. For
instance, is more developer training required and/or should particular guidelines be reviewed (and
perhaps reworded)?

48 v 1.0b August 5, 2005

9 Background to these coding guidelines Introductm

Information given in the documentation for a deviation may need to include the following:

» The cost/benefit of following the deviation rather than the full guideline, including cost estimates.
 The risks associated with using the deviation rather than the full guideline recommendation.
» The alternative source code constructs and guidelines considered before selecting the deviation.

9.2.2 Code reviews
Some coding guidelines are not readily amenable to automatic enforcement. This can occur eithefod2@eviews
cause they involve trade-offs among choices, or because commercial tool technology is not yet sufficiently
advanced. The solution adopted here is to structure those guidelines that are not amenable to automatic
enforcement so that they can be integrated into a code review process.

It is expected that those guideline recommendation capable of being automatically checked will have
been enforced before the code is reviewed. Looking at the output of static analysis tools during code review
is usually an inefficient use of human resources. It makes sense for the developers writing the source code
to use the analysis tools regularly, not just prior to reviews.

These coding guidelines are not intended to cover all the issues that should be covered during reviews.
Problems with the specification, choice of algorithms, trade-offs in using constructs, agreement with the
specification, are among the other issues that should be considered.

The impact of code reviews goes beyond the immediate consequences of having developers read and
comment on each other’s code. Knowing that their code is to be reviewed by others can affect developer’s
decision— making strategy. Even hypothetical questions raised during a code review can change su‘b@%@@%nt
decision making®!

Code reviews are subject to the same commercial influences as other development activities; they require
an investment of resources (the cost) to deliver benefits. Code reviews are widely seen as a good idea and
are performed by many development groups. The most common rationale given for having code reviews is
that they are a cost effective means of detecting faults. A recent réti@as questioned this assumption,
based on the lack of experimental evidence showing it to be true. Another reason for performing code
reviews is the opportunity it provides for more senior developers to educate junior staff about the culture of
a development group.

Organizations that have a formal review procedure often follow a three-stage process of preparation,
collection, and repair. During preparation, members of the review team read the source looking for as many
defects as possible. During review the team as a whole looks for additional defects and collates a list of
agreed-on defects. Repair is the resolution of these defects by the author of the source.

Studies by Porter, Siy, Mockuss, and V8t##-100to determine the best form for code reviews found
that: inspection interval and effectiveness of defect detection were not significantly affected by team size
(large vs. small), inspection interval and effectiveness of defect detection were not significantly affected by
the number of sessions (single vs. multiple), and the effectiveness of defect detection was not improved by
performing repairs between sessions of two-session inspections (however, inspection interval was signifi-
cantly increased). They concluded that single-session inspections by small teams were the most efficient
because their defect-detection rate was as good as other formats, and inspection interval was the same or
less.

9.2.3 Guideline wording
The wording used in the guideline recommendations is short and to the point (and hopefully unambiguous).
It does assume some degree of technical knowledge.

There are several standards dealing with the wording used in the specification of computer languages,
including: Guidelines for the preparation of programming language stand&f3sandGuidelines for the
preparation of conformity clauses in programming language stand&feis

The principles of designing and documenting procedures to be carried out by others are thoroughly
covered by Degani and Wiengf®!

August 5, 2005 v 1.0b 49

_ Introduction 9 Background to these coding guidelines

9.3 Relationship among guidelines

coding guidelines INdividual guideline recommendations do not exist in isolation. They are collected together to form a set of

relationship
among

guideline rec-
ommendations
how they work

developer
differences

coding guidelines. Several properties are important in a set of guideline recommendations, including:

* It must be possible to implement the required algorithmic functionality without violating any of the
guidelines in a set.

» Consistency among guidelines within a set is a worthwhile aim.

» Being able to enforce all the members in a set of guidelines using the same processes is a worthwhile
aim.

As a complete set, the guideline recommendations in this book do not meet all of these requirements, bu
it is possible to create a number of sets that do meet them. It is management’s responsibility to select the
subset of guidelines applicable to their development situation.

9.4 How do guideline recommendations work?

How can adhering to these coding guidelines help reduce the cost of software ownership? The following
are possible mechanisms:

¢ Reduce the number of faults introduced into source code by recommending against the use of con
structs known to have often been the cause of faults in the past. For instance, by recommending
against the use of an assignment operator in a conditional expressidi, = y).

» Developers have different skills and backgrounds. Adhering to guidelines does not make developers
write good code, but these recommendations can help prevent them from writing code that will be
more costly than necessary to maintain.

» Developers’ programming experience is often limited, so they do not always appreciate all the implica-
tions of using constructs. Guideline recommendations provide a prebuilt knowledge net. For instance,
they highlight constructs whose behavior is not as immutable as developers might have assumed. The
most common response your author hears from developers is “Oh, | didn’t know that”.

The primary purpose of coding guidelines is not usually about helping the original author of the code
(although as a user of that code they can be of benefit to that person). Significantly more time and effort are
spent maintaining existing programs than in writing new ones. For code maintenance, being able to easily
extract information from source code, in order to predict the behavior of a program (sometimes called
program comprehensignis an important issue.

Does reducing the cognitive effort needed to comprehend source code increase the rate at which deve
opers comprehend it and/or reduce the number of faults they introduce into it? While there is no direct
evidence proving that it does, these coding guideline subsections assume that it does.

9.5 Developer differences
To what extent do individual developer differences affect the selection and wording of coding guidelines?

To answer this question some of the things we would need to know include the following:
* the attributes that vary between developers,

+ the number of developers (ideally the statistical distribution) having these different attributes and to
what extent they possess them, and

« the affect these attribute differences have on developers’ performance when working with source
code.

50 v 1.0b August 5, 2005

9 Background to these coding guidelines Introductm

Psychologists have been studying and measuring various human attributes for many years. These studies
are slowly leading to a general understanding of how human cognitive processes operate. Unfortunately,
there is no experimentally verified theory about the cognitive processes involved in software development.
So while a lot of information on the extent of the variation in human attributes may be known, how these
differences affect developers’ performance when working with source code is unknown.

The overview of various cognitive psychology studies, appearing later in this introduction, is not primar-
ily intended to deal with differences between developers. It is intended to provide a general description
of the characteristics of the mental processing capabilities of the human mind. Strengths, weaknesses, and
biases in these capabilities need to be addressed by guidelines. Sometimes the extent of individuals’ ca-
pabilities do vary significantly in some areas. Should guidelines address the lowest common denominator
(anybody could be hired), or should they assume a minimum level of capability (job applicants need to be
tested to ensure they are above this level)?

What are the costs involved in recommending that the capabilities required to comprehend source code
not exceed some maximum value? Do these costs exceed the likely benefits? At the moment these questions
are somewhat hypothetical. There are no reliable means of measuring developers’ different capabilities, as
they relate to software development, and the impact of these capabilities on the economics of software
development is very poorly understood. Although the guideline recommendations do take account of the
capability limitations of developers, they are frustratingly nonspecific in setting boundaries.

These guidelines assume some minimum level of knowledge and programming competence on the part
of developers. They do not require any degree of expertise (the issue of expertise is discussed elsé\}mgs@éﬁf

» A study by Monaghdf!® 92%|ooked at measures for discriminatiagility andstylethat are relevant
to representational and strategy differences in people’s problem solving.

« A study by Oberlander, Cox, Monaghan, Stenning, and T9irinvestigated student responses to
multimodal (more than one method of expression, graphical and sentences here) logic teaching. They
found that students’ preexisting cognitive styles affected both the teaching outcome and the structure
of their logical discourse.

« A study by MacLeod, Hunt and Mathe®®! looked at sentence—picture comprehension. They found
one group of subjects used a comprehension strategy that fit a linguistic model, while another group
used a strategy that fit a pictorial-spatial model. A psychometric test of subjects showed a high
correlation between the model a subject used and their spatial ability (but not their verbal ability).
Sentence—picture comprehension is discussed in more detail elsewhere. In most cases C soungewasela-
tionships

ally appears, to readers, in a single mode, linear text. Although some tools are capable of d|splay|n§
alternative representations of the source, they are not in widespread use. The extent to which a devel-

oper’s primary mode of thinking may affect source code comprehension in this form is unknown.

The effect of different developer personalities is discussed elsewhere, as are working memory, readi Eﬁ%ﬁ%ﬁh,
rate of information processing, the affects of age, and cultural differences. Although most developgfs,

male*!? gender differences are not discussed. g span
computational
9.6 What do these guidelines apply to? ss7identifier

information

A program (at least those addressed by these Coding guidelines) is likely to be built from many souseeifiss.
Each source file is passed through eight phases of translation. Do all guidelines apply to every saotigeadile

abili
during every phase of translation? No, they do not. Guideline recommendations are created for a y&;&eﬁ/
t
of different reasons and the rationale for the recommendation may only be applicable in certain casesafor
Instance cuIthral d\ffer.)
coding guidelines

what applied to?
108 SQUIC flles

» Reduce the cognitive effort needed to comprehend a program usually apply to the visible sourGeree
That is, the source code as viewed by a reader, for example, in an editor. The result of preproaessmgess
ing

August 5, 2005 v 1.0b 51

_ Introduction 9 Background to these coding guidelines

may be a more complicated expression, or sequence of nested constructs than specified by a guid
line recommendation. But, because developers are not expected to have to read the output of the
preprocessor, any complexity here may not be relevant,

« Common developer mistakes may apply during any phase of translation. The contexts should be
apparent from the wording of the guideline and the construct addressed.

« Possible changes in implementation behavior can apply during any phase of translation. The contexts
should be apparent from the wording of the guideline and the construct addressed.

< During preprocessing, the sequence of tokens output by the preprocessor can be significantly differen
from the sequence of tokens (effectively the visible source) input into it. Some guideline recommen-
dations apply to the visible source, some apply to the sequence of tokens processed during syntax an
semantic analysis, and some apply during other phases of translation.

« Different source files may be the responsibility of different development groups. As such, they may
be subject to different commercial requirements, which can affect management’s choice of guidelines
applied to them.

« The contents of system headers are considered to be opaque and outside the jurisdiction of thes
guideline recommendations. They are provided as part of the implementation and the standard gives
implementations the freedom to put more or less what they like into them (they could even contain

prseadet 1877 some form of precompiled tokens, not source code). Developers are not expected to modify system
headers.

» Macros defined by an implementation (e.g., specified by the standard). The sequence of tokens thes
macros expand to is considered to be opaque and outside the jurisdiction of these coding guidelines
These macros could be defined in system headers (discussed previously) or internally within the trans
lator. They are provided by the implementation and could expand to all manner of implementation-
defined extensions, unspecified, or undefined behaviors. Because they are provided by an implemer
tation, the intended actual behavior is known, and the implementation supports it. Developers can use
these macros at the level of functionality specified by the standard and not concern themselves with
implementation details.

Applying these reasons in the analysis of source code is something that both automated guideline enforce
ment tools and code reviewers need to concern themselves with.

It is possible that different sets of guideline recommendations will need to be applied to different source
files. The reasons for this include the following:

» The cost effectiveness of particular recommendations may change during the code’s lifetime. During
initial development, the potential savings may be large. Nearer the end of the application’s useful life,
the savings achieved from implementing some recommendations may no longer be cost effective.

» The cost effectiveness of particular coding guidelines may vary between source files. Source contain:
ing functions used by many different programs (e.qg., application library functions) may need to have a
higher degree of portability, or source interfacing to hardware may need to make use of representation
information.

« The source may have been written before the introduction of these coding guidelines. It may not be
cost effective to modify the existing source to adhere to all the guidelines that apply to newly written
code.

Itis management’s responsibility to make decisions regarding the cost effectiveness of applying the different
guidelines under differing circumstances.

Some applications contain automatically generated source code. Should these coding guidelines appl
to this kind of source code? The answer depends on how the generated source is subsequently used. If it

52 v 1.0b August 5, 2005

9 Background to these coding guidelines Introductm

treated as an invisible implementation detail (i.e., the fact that C is generated is irrelevant), then C guideline
recommendations do not apply (any more than assembler guidelines apply to C translators that chose to
generate assembler as an intermediate step on the way to object code). If the generated source is to be
worked on by developers, just like human-written code, then the same guidelines should be applied to it as
to human written code.

9.7 When to enforce the guidelines

Enforcing guideline recommendations as soon as possible (i.e., while developers are writing the cad@jghaselines
several advantages, including: when to enforce

« Providing rapid feedback has been sh&&# to play an essential role in effective learning. Hav-
ing developers check their own source provides a mechanism for them to obtain this kind of rapid
feedback.

« Once code-related decisions have been made, the cost of changing them increases as time goes by
and other developers start to make use of them.

» Developers’ acceptance is increased if their mistakes are not made public (i.e., they perform the
checking on their own code as it is written).

It is developers’ responsibility to decide whether to check any modified source before using the compiler,
or only after a large number of modifications, or at some other decision point. Checking in source to a
version-control system is the point at which its adherence to guidelines stops being a private affair.

To be cost effective, the process of checking source code adherence to guideline recommendations needs
to be automated. However, the state of the art in static analysis tools has yet to reach the level of sophisti-
cation of an experienced developer. Code reviews are the suggested mechanism for checking adherence to
some recommendations. An attempt has been made to separate out those recommendations that are proba-
bly best checked during code review. This is not to say that these guideline recommendations should not be
automated, only that your author does not think it is practical with current, and near future, static analysis
technology.

The extent to which guidelines are automatically enforceable, using a tool, depends on the sophistication
of the analysis performed; for instance, in the following (use of uninitialized objects is not listed as a
guideline recommendation, but it makes for a simple example):

extern int glob;
extern int g(void);

void f(void)
{

int loc;

if (glob == 3)

loc = 4;
if (glob == 3)

loc++; /* Does loc have a defined value here? */
if (glob == 4)

loc--; /* Does loc have a defined value here? */
if (g() == 2)

loc = 9;
if (g() == glob)

++loc;

© 0 N e O A W N e

PR R R R R R R
N o o0 b W N P O

}

i
3

The existing value oloc is modified when certain conditions are true. Knowing that it has a defined value
requires analysis of the conditions under which the operations are performed. A static analysis tool might:
(1) mark objects having been assigned to and have no knowledge of the conditions involved; (2) mark

August 5, 2005 v 1.0b 53

_ Introduction 9 Background to these coding guidelines

objects as assigned to when particular conditions hold, based on information available within the function
that contains their definition; (3) the same as (2) but based on information available from the complete
program.

9.8 Other coding guidelines documents

coding guidelines The writing of coding guideline documents is a remarkably common activity. Publicly available documents

other documents

discussing C inc|ud@23,531,576,640,698,729,876,905,906,1048,1049,1083,1087,1093,1219a’1ﬁﬁeihere are significantly
more documents internally available within companies. Such guideline documents are seen agbaihg a
thing to have. Unfortunately, few organizations invest the effort needed to write technically meaningful or
cost-effective guidelines, they then fail to make any investment in enforcingfem.

The following are some of the creators of coding guideline include:

« Software development compani&§! Your author’s experience with guideline documents written
by development companies is that at best they contain well-meaning platitudes and at worse consist
of a hodge-podge of narrow observations based on their authors’ experiences with another language

« Organizations, user groups and consortia that are users of soft&fel41 Here the aim is usually
to reduce costs for the organization, not software development companies. Coding guidelines are
rarely covered in any significant detail and the material usually forms a chapter of a much larger
document. Herrmarit?® provides a good review of the approaches to software safety and reliability
promoted by the transportation, aerospace, defense, nuclear power, and biomedical industries througl
their published guidelines.

« National and international standard®® Perceived authority is an important attribute of any guide-
lines document. Several user groups and consortia are actively involved in trying to have their docu-
ments adopted by national, if not international, standards bodies. The effort and very broad spectrum
of consensus needed for publication as an International Standard means that documents are likely t
be first adopted as National Standards.

The authors of some coding guideline documents see them as a way of making developers write gooc
programs (whatever they are). Your author takes the view that adherence to guidelines can only help prever
mistakes being made and reduce subsequent costs.

Most guideline recommendations specify subsets, not supersets, of the language they apply to. The terr
safe subseit sometimes used. Perhaps this approach is motivated by the idea that a language already ha
all the constructs it needs, the desire not to invent another language, or simply an unwillingness to invest
in the tools that would be needed to handle additional constructs (e.g., adding strong typing to a weakly
typed language). The guidelines in this book have been written as part of a commentary on the C Standarc
As such, they restrict themselves to constructs in that document and do not discuss recommendations th:
involve extensions.

Experience with more strongly typed languages suggests that strong typing does detect some kinds o
faults before program execution. Although experimental tool support for stronger type checking of C source
is starting to apped?3? 961 1166}jjttle experience in its use is available for study. This book does not specify
any guideline recommendations that require stronger type checking than that supported by the C Standard

Several coding guideline documents have been written fof2C- 543, 769,892-894,1004, 105} j5 interesting
to note that these coding guideline documents concentrate almost exclusively on the object-oriented feature
of C+ and those constructs not available in C. It is almost as if their authors believe that developers using
C+ will not make any of the mistakes that C developers make, despite one language almost being a superse
of the other.

Coding guideline documents for other languages include EdaCobol[*®°! Fortranl’#3 Prolog[?8®!
and SQL#07]

0-2f your author is told about the existence of coding guidelines while visiting a companies site, he always asks to see a copy; the
difficulty his hosts usually have in tracking down a copy is testament to the degree to which they are followed.

54 v 1.0b August 5, 2005

9 Background to these coding guidelines Introductm

9.8.1 Those that stand out from the crowd

The aims and methods used to produce coding guidelines documents vary. Many early guideline documents
concentrated on giving advice to developers about how to write efficientl&StH&he availability of pow-

erful processors, coupled with large quantities of source code, has changed the modern (since the 1980s)
emphasis to one of maintainability rather than efficiency. When efficiency is an issue, the differences be-
tween processors and compilers makes it difficult to give general recommendations. Vendors’ reference
manuals sometimes provide useful background adf#A&@®! The Object Defect ClassificatiBA? covers a

wide variety of cases and has been shown to give repeatable results when used by differeft’Beople.

9.8.1.1 Bell Laboratories and the 5ESS

Bell Laboratories undertook a root-cause analysis of faults in the software for their 5ESS SwitchingnBytsrements
tem 1428 The following were found to be the top three causes of faults, and their top two subcomponents:

1. Execution/oversight— 38%, which in turn was broken down into inadequate attention to details (75%)
and inadequate consideration to all relevant issues (11%).

2. Resource/planning— 19%, which in turn was broken down into not enough engineer time (76%) and
not enough internal support (4%).

3. Education/training— 15%, which in turn was broken down into area of technical responsibility (68%)
and programming language usage (15%).

In an attempt to reduce the number of faults, a set of “Code Fault Prevention Guidelines” and a “Coding
Fault Inspection Checklist” were written and hundreds of engineers were trained in their use. These guide-
line recommendations were derived from more than 600 faults found in a particular product. As such, they
could be said to be tuned to that product (nothing was said about how different root causes might evolve
over time).

Based on measurements of previous releases of the S5SESS software and engineering cost per house to
implement the guidelines (plus other bug inject countermeasures), it was estimated that for an investment
of US$100K, a saving of US$7 M was made in product rework and testing.

One of the interesting aspects of programs is that they can contain errors in logic and yet continue to
perform their designated function; that is, faults in the source do not always show up as a perceived fault by
the user of a program. Static analysis of code provides an estimate of the number of potential faults, but not
all of these will result in reported faults.

Why did the number of faults reported in the 5ESS software drop after the introduction of these guideline
recommendations? Was it because previous root causes were a good measure of future root-cause faults?

The guideline recommendations created do not involve complex constructs that required a deep knowl-
edge of C. They are essentially a list of mistakes made by developers who had incomplete knowledge of
C. The recommendations could be looked on as C language knowledge tuned to the reduction of faults in
a particular application program. The coding guideline authors took the approach that it is better to avoid a
problem area than expect developers to have detailed knowledge of the C language (and know how to deal
with problem areas).

In several places in the guideline document, it is pointed out that particular faults had costly consequences.
Although evidence that adherence to a particular set of coding guidelines would have prevented a costly fault
provides effective motivation for the use of those recommendations, this form of motivation (often seen in
coding guideline documents) is counter-productive when applied to individual guideline recommendations.
There is rarely any evidence to show that the reason for a particular coding error being more expensive that
another one is anything other than random chance.

9.8.1.2 MISRA

MISRA (Motor Industry Software Reliability Associatioaww.misra.org.uk) published a set oGuide- MISRA
lines for the use of the C language in Vehicle based softi#2r8%! These guideline recommendations

August 5, 2005 v 1.0b 55

www.misra.org.uk

_ Introduction 9 Background to these coding guidelines

Ada

coding guidelines
Ada o
using

ISO/IEC TR

were produced by a committee of interested volunteers and have become popular in several domains outsic
the automobile industry. For the most part, they are based on the implementation-defined, undefined, ant
unspecified constructs listed in Annex G of the C90 Standard. The guidelines relating to issues outside this
annex are not as well thought through (the technicalities of what is intended and the impact of following a
guideline recommendation).

There are now half a dozen tools’ vendors who offer products that claim to enforce compliance to the
MISRA guidelines. At the time of this writing these tools are not always consistent in their interpretation
of the wording of the guidelines. Being based on volunteer effort, MISRA does not have the resources
to produce a test suite or provide timely responses to questions concerning the interpretation of particular
guidelines.

9.8.2 Ada

Although the original purpose of the Ada language was to reduce total software ownership costs, its rigorous
type checking and handling of runtime errors subsequently made it, for many, the language of choice for
development of high-integrity systems. An ISO Technical Répdr(a TR does not have the status of a
standard) was produced to address this market.

The rationale given in many of tHeuidanceclauses of this TR is that of making it possible to perform
static analysis by recommending against the use of constructs that make such analysis difficult or impossible
to perform. Human factors are not explicitly mentioned, although this could be said to be the major issue in
some of the constructs discussed. Various methods are described as not being cost effective. The TR give
the impression that what it proposes is cost effective, although no such claim is made explicitly.

159422000 ..., it can be seen that there are four different reasons for needing or rejecting particular language features

software in-
spections
introduction

Reading
inspection
Reading 766
eye movement

within this context:

Language rules to achieve predictability,
Language rules to allow modelling,
Language rules to facilitate testing,
Pragmatic considerations.

S @ =

This TR also deals with the broader issues of verification techniques, code reviews, different forms of static
analysis, testing, and compiler validation. It recognizes that developers have different experience levels anc
sometimes (e.g., clause 5.10.3) recommends that some constructs only be used by experienced develope
(nothing is said about how experience might be measured).

9.9 Software inspections

Software inspections, technical reviews, program walk-throughs (whatever the name used), all involve peo
ple looking at source code with a view to improving it. Some of the guidelines in this book are specified for
enforcement during code reviews, primarily because automated tools have not yet achieved the sophistic:
tion needed to handle the constructs described.

Software inspections are often touted as a cost-effective method of reducing the number of defects in
programs. However, their cost effectiveness, compared to other methods, is starting to be questioned. For
survey of current methods and measurementsl/$8dor a detailed handbook on the subject, 8.

During inspections a significant amount of time is spent reading — reading requirements, design docu-
ments, and source code. The cost of, and likely mistakes made during, code reading are factors addresse
by some guideline recommendations. The following are different ways of reading source code, as it might
be applied during code reviews:

» Ad hoc reading techniquesThis is a catch-all term for those cases, very common in commercial
environments, where the software is simply given to developers. No support tools or guidance is

56 v 1.0b August 5, 2005

10 Applications Introduction m

given on how they should carry out the inspection, or what they should look for. This lack of support
means that the results are dependent on the skill, knowledge, and experience of the people at the
meeting.

Checklist reading. As its hame implies this reading technique compares source code constructs
against a list of issues. These issues could be collated from faults that have occurred in the past,
or published coding guidelines such as the ones appearing in this book. Readers are required to inter-
pret applicability of items on the checklist against each source code construct. This approach has the
advantage of giving the reader pointers on what to look for. One disadvantage is that it constrains the
reader to look for certain kinds of problems only.

Scenario-based readingike checklist reading, scenario-based reading provides custom guid&ce.
However, as well as providing a list of questions, a scenario also provides a description on how to
perform the review. Each scenario deals with the detection of the particular defects defined in the
custom guidance. The effectiveness of scenario-based reading techniques depends on the quality of
the scenarios.

 Perspective-based readinghis form of reading checks source code from the point of view of the
customers, or consumers, of a docuni&htThe rationale for this approach is that an application has
many different stakeholders, each with their own requirements. For instance, while everybody can
agree that software quality is important, reaching agreement on what the attributes of quality are can
be difficult (e.g., timely delivery, cost effective, correct, maintainable, testable). Scenarios are written,
for each perspective, listing activities and questions to ask. Experimental results on the effectiveness
of perspective-based reading of C source in a commercial environment are given by Laitenberger and
Jean-Marc DeBautd®!

» Defect-based readinddere different people focus on different defect classes. A scenario, consisting
of a set of questions to ask, is created for each defect class; for instance, invalid pointer dereferences
might be a class. Questions to ask could include; Has the lifetime of the object pointed to terminated?
Could a pointer have the null pointer value in this expression? Will the result of a pointer cast be
correctly aligned?

« Function-point reading. One stud{/® that compared checklist and perspective-based reading of
code, using professional developers in an industrial context, found that perspective-based reading had
a lower cost per defect found.

This book does not recommend any particular reading technique. It is hoped that the guideline recommen-
dations given here can be integrated into whatever method is chosen by an organization.

10 Applications

Several application issues can affect the kind of guideline recommendations that are considered to bgigjypiielines
cable. These include the application domain, the economics behind the usage, and how applications eviBRJg s
over time. These issues are discussed next.

The use of C as an intermediate language has led to support for constructs that simplify the job of
translation from other languages. Some of these constructs are specified in the standard (e.g., a trailing
comma in initializer lists), while others are provided as extensions gggs support for taking the addresgeinitalization
of labels and being able to specify tiregister storage class on objects’ declared with file scope, has
influenced the decision made by some translator implementors, of other languages to generate C rather than
machine codé3?)),

10.1 Impact of application domain

Does the application domain influence the characteristics of the source code? This question is important
because frequency of occurrence of constructs in source is one criterion used in selecting guideliné$'>®here
are certainly noticeable differences in language usage between some domains; for instance:

August 5, 2005 v 1.0b 57

_ Introduction 10 Applications

COCOMO o

development o
context

Usage o
1

software architec-
ture

« Floating point.Many applications make no use of any floating-point types, while some scientific and
engineering applications make heavy use of this data type.

« Large initializers. Many applications do not initialize objects with long lists of values, while the
device driver sources for the Linux kernel contain many long initializer lists.

There have been studies that looked at differences within different industries (e.g., banking, aerospace
chemicaf33). It is not clear to what extent the applications measured were unique to those industries (e.qg.,
some form of accounting applications will be common to all of them), or how representative the applications
measured might be to specific industries as a whole.

Given the problems associated with obtaining source code for the myriad of different application domains,
and the likely problems with separating out the effects of the domain from other influences, your author
decided to ignore this whole issue. A consequence of this decision is that these guideline recommendation
are a union of the possible issues that can occur across all application domains. Detailed knowledge of the
differences would be needed to build a set of guidelines that would be applicable to each application domain
Managers working within a particular application domain may want to select guidelines applicable to that
domain.

10.2 Application economics
Coding guidelines are applicable to applications of all sizes. However, there are economic issues associate
with the visible cost of enforcing guideline recommendations. For instance, the cost of enforcement is not
likely to be visible when writing new code (the incremental cost is hidden in the cost of writing the code).
However, the visible cost of ensuring that a large body of existing, previously unchecked, code can be
significant.

The cost/benefit of adhering to a particular guideline recommendation will be affected by the economic
circumstances within which the developed application sits. These circumstances include

» short/long expected lifetime of the application,
« relative cost of updating customers,
 quantity of source code,

¢ acceptable probability of application failure (adherence may not affect this probability, but often plays
well in any ensuing court case), and

¢ expected number of future changes/updates.

There are so many possible combinations that reliable estimates of the effects of these issues, on the app
cability of particular guidelines, can only be made by those involved in managing the development projects
(the COCOMO cost-estimation model uses 17 cost factors, 5 scale factors, a domain-specific factor, and :
count of the lines of code in estimating the cost of developing an application). The only direct economic
issues associated with guidelines, in this book, we discussed earlier and through the choice of application:
measured.

10.3 Software architecture
The termarchitectureis used in a variety of software development cont&%t3he analogy with buildings

is often made, “firm foundations laying the base for . . . ”. This building analogy suggests a sense of
03some developers like to refer to themselves as software architects. In the UK such usage is against the law, “ . . . punishable by &
fine not exceeding level 4 on the standard scale . . . ” (Architects Act 1997, Part IV):

Use of title “architect”.
20. — (1) A person shall not practise or carry on business under any name, style or title containing the word “architect” unless he
is a person registered under this Act.
(2) Subsection (1) does not prevent any use of the designation “naval architect”, “landscape architect” or “golf-course
architect”.

58 v 1.0b August 5, 2005

10 Applications Introduction m

direction and stability. Some applications do have these characteristics (in particular many of those studied
in early software engineering papers, which has led to the view that most applications are like this). Many
large government and institutional applications have this form (these applications are also the source of the
largest percentage of published application development research).

To remind readers, the primary aim of these coding guidelines is to minimize the cost of software owner-
ship. Does having a good architecture help achieve this aim? Is it possible to frame coding guidelines that
can help in the creation of good architecture? What is a good architecture?

What constitutes good software architecture is still being hotly debated. Perhaps it is not possible to
predict in advance what the best architecture for a given application is. However, experience shows that
in practice the customer can rarely specify exactly what it is they want in advance, and applications close
to what they require are obviously not close enough (or they would not be paying for a different one to
be written). Creating a good architecture, for a given application, requires knowledge of the whole and
designers who know how to put together the parts to make the whole. In practice applications are very likely
to change frequently; it might be claimed that applications only stop changing when they stop being used.
Experience has shown that it is almost impossible to predict the future direction of application changes.

The conclusion to be drawn, for these observations, is that there are reasons other than incompetence
for applications not to have any coherent architecture (although at the level of individual source files and
functions this need not apply). In a commercial environment, profitability is a much stronger motive than
the desire for coherent software architecture.

Software architecture, in the sense of organizing components into recognizable structures, is relevant
to reading and writing source in that developers’ minds also organize the information they hold. People
do not store information in long-term memory as unconnected facts. These coding guidelines asstiliftHat
having programs structured in a way that is compatible with how information is organized in developers’
minds, and having the associations between components of a program correspond to how developers make
associations between items of information, will reduce the cognitive effort of reading source code. Tf(g}gq’ﬂya-
architectural and organizational issues considered important by the guideline recommendations in this book
are those motivated by the characteristics of developers’ long-term memory storage and retrieval.

For a discussion of the pragmatics of software architecture, see Etbte.

10.3.1 Software evolution

Applications that continue to be used tend to be modified over time. Thesftmare evolutions some- application
times used to describe this process. Coding guidelines are intended to reduce the costs associated wift"°"
modifying source. What lessons can be learned from existing applications that have evolved?

There have been several studies that looked at the change histories of some very large (several million
line *>? or a hundred millioF%®!) programs over many yealf§?.514.9%87land significant growth over a few
yearsi*®?l Some studies have simply looked at the types of changes and their frequency. Others have tried
to correlate faults with the changes made. None have investigated the effect of source characteristics on the
effort needed to make the changes.

The one thing that is obvious from the data published to date: Researchers are still in the early stages of
working out which factors are associated with software evolution.

« A study®?l at Bell Labs showed the efficiency gains that could be achieved using developers who
had experience with previous releases over developers new to a project. The results indicer{tsé%ﬁﬁeaém
developers who had worked on previous releases spent 20% of their time in project discovery Work.

This 20% was put down as the cost of working on software that was evolving (the costs were much

higher for developers not familiar with the project).

« Another Bell Labs stud§*® looked at predicting the risk of introducing a fault into an existing soft-
ware system while performing an update on it. They found that the main predictors were the number
of source lines affected, developer experience, time needed to make the change, and an attribute they

August 5, 2005 v 1.0b 59

_ Introduction 11 Developers

coupling and 1805
cohesion

coding guidelines
developers

psychol- o
ogy of pro-
gramming

Usage o

1
developer o
differences

developers
what do they
do?

cogni- o
tive effort
cognitive load o

reading 766
kinds of

calleddiffusion Diffusion was calculated from the number of subsystems, modules, and files modi-
fied during the change, plus the number of developers involved in the work. BP8valso tried to

predict faults in an evolving application. He found that the fault potential of a module correlated with

a weighted sum of the contributions from all the times the module had been changed (recent changes
having the most weight). Similar findings were obtained by OhI§§6187]

+ Lehman has written a number of pap&8 on what he calls thiaws of software evolutiorAlthough
they sound plausible, these “laws” are based on empirical findings from relatively few projects.

« Kemerer and Slaughté®! briefly review existing empirical studies and also describe the analysis of
25,000 change events in 23 commercial software systems (Cobol-based) over a 20-year period.

» Other studies have looked at the interaction of module coupling and cohesion with product evolution.

11 Developers

The remainder of this coding guidelines subsection has two parts. This first major subsection discusses
the tasks that developers perform, the second (the following major subsection) is a review of psychology
studies carried out in human characteristics of relevance to reading and writing source code. There is ar
academic research field that goes under the generahtitlesychology of programminfew of the research
results from this field have been used in this book for reasons explained elsewhere. However, without being
able to make use of existing research applicable to commercial software development, your author has bee
forced into taking this two-part approach; which is far from ideal. A consequence of this approach is that
it is not possible to point at direct experimental evidence for some of the recommendations made in coding
guidelines. The most that can be claimed is that there is a possible causal link between specific researc
results, cognitive theories, and some software development activities.

Although these coding guidelines are aimed at a particular domain of software development, there is
no orientation toward developers having any particular kinds of mental attributes. It is hoped that this
discussion will act as a stimulus for research aimed at the needs of commercial software development
which cannot take place unless commercial software developers are willing to give up some of their time to
act as subjects (in studies). It is hoped that this book will persuade readers of the importance of volunteering
to take part in this research.

11.1 What do developers do?

In this book, we are only interested in developer activities that involve source code. Most 8ftiflidise

time spent on these activities does not usually rise above 25%, of the total amount of time developers spen
on all activities. The non-source code-related activities, the other 75%, are outside the scope of this book
In this book, the reason for reading source code is taken to be that developers want to comprehend prograr
behavior sufficiently well to be able to make changes to it. Reading programs to learn about software
development, or for pleasure, are not of interest here.

The source that is eventually modified may be a small subset of the source that has been read. Developel
often spend a significant amount of their time working out what needs to be modified and the impact the
changes will have on existing cofé!!

The tools used by developers to help them search and comprehend source tend to be relatively unsophis
cated8% This general lack of tool usage needs to be taken into account in that some of the tasks performed
in amanuatcomprehension process will be different from those carried out in a tool-assisted process.

The following properties are taken to be important attributes of source code, because they affect develope
cognitive effort and load:

¢ Readable.Source is both scanned, looking for some construct, and read in a booklike fashion. The

symbols appearing in the visible source need to be arranged so that they can be easily seen, recognize
and processed.

60 v 1.0b August 5, 2005

11 Developers Introduction m

« ComprehensibleHaving read a sequence of symbols in the source, their meaning needs to be com-
prehended.

+ Memorable With applications that may consist of many thousands of line of source code (100 KLOC
is common), having developers continually rereading what they have previously read because they
have forgotten the information they learned is not cost effective. Cognitive psychology has"ﬁg’,ﬁ;f’@er
come up with a model of human memory that can be used to calculate the memorability of source
code. One practical approach might be to measure developer performance in reconstructing the source
of a translation unit (an idea initially proposed by Shneiderf&A, who proposed a 90-10 rule—
a competent developer should be able to reconstruct functionally 90% of a translation unit after 10
minutes of study).

« Unsurprising.Developers have expectations. Meeting those expectations reduces the need to remem-
ber special cases, and it reduces the possibility of faults caused by developers making assumptions
(not checking that their expectations are true).

For a discussion of the issues involved in collecting data on developers’ activities and some findings, see
Dewayné®l and Bradad*®!

11.1.1 Program understanding, not

One of the first tasks a developer has to do when given source code is figure out what it does (the wodéleloper
understands often used by developers). What exactly does it mean to understanding a program? The Wgighension

understandingan be interpreted in several different ways; it could imply

« knowing all there is to know about a program. Internally (the source code and data structures) and
externally— its execution time behavior.

 knowing the external behavior of a program (or perhaps knowing the external behavior in a particular
environment), but having a limited knowledge of the internal behavior.

« knowing the internal details, but having a limited knowledge of the external behavior.

The concept ofinderstanding a prograns often treated as being a yes/no affair. In practice, a developer
will know more than nothing and less than everything about a program. Source code can be thought of as a
web of knowledge. By reading the source, developers acquire beliefs about it; these beliefs are influenced
by their existing beliefs. Existing beliefs (many might be considered to be knowledge rather than belpgfelmpinte-
the person holding them) can involve a programming language (the one the source is written in), general
computing algorithms, and the application domain.

When reading a piece of source code for the first time, a developer does not start with an empty set of
beliefs. Developers will have existing beliefs, which will affect the interpretation given to the source code
read. Developers learn about a program, a continuous process without a well-defined ending. This learning
process involves the creation of new beliefs and the modification of existing ones. Using aiteten- (
standing that implies a yes/no answer is not appropriate. Throughout this book, thedenprehensiois
used, nounderstanding

Program comprehension is not an end in itself. The purpose of the investment in acquiring this knowledge
(using the definition of knowledge as “belief plus complete conviction and conclusive justification”) is for
the developer to be in a position to be able predict the behavior of a program sufficiently well to be able to
change it. Program comprehension is not so much knowledge of the source code as the ability to predict
the effects of the constructs it contains (developers do have knowledge of the source code; for instance,
knowing which source file contains a declaration).

While this book does not directly get involved in theories of how people learn, program comprehen-
sion is a learning process. There are two main theories that attempt to explain learning. Empirical learn-
ing techniques look for similarities and differences between positive and negative examples of a concept.

August 5, 2005 v 1.0b 61

_ Introduction 11 Developers

Explanation-based learning techniques operate by generalizing from a single example, proving that the ex
ample is an instance of the concept. The proof is constructed by an inference process, making use of
domain theory, a set of facts, and logical implications. In explanation-based learning, generalizations retain
only those attributes of an example that are necessary to prove the example is an instance of the concej
Explanation-based learning is a general term for learning methods, such as knowledge compilation anc
chunking, that create new concepts that deductively follow from existing concepts. It has been argued that
a complete model of concept learning must have both an empirical and an explanation-based component.

What strategies do developers use when trying to build beliefs about (comprehend) a program? The
theories that have been proposed can be broadly grouped into the following:

« The top-down approachThe developer gaining a top-level understanding of what the program does.

Once this is understood, the developer moves down a level to try to understanding the components
that implement the top level. This process is repeated for every component at each level until the
lowest level is reached. A developer might chose to perform a depth-first or width-first analysis of
components.

» The bottom-up approachrlhis starts with small sequences of statements that build a description of

what they do. These descriptions are fitted together to form higher-level descriptions, and so on, until
a complete description of the program has been built.

« The opportunistic processors approachere developers use both strategies, depending on which

best suits the purpose of what they are trying to ach&Ve.

There have been a few empirical studies, using experienced (in the industrial sense) subjects, of how deve
opers comprehend code (the purely theoretically based models are not discussed here). Including:

62

« A study by Letovskif°! asked developers to talk aloud (their thoughts) as they went about the task of

adding a new feature to a program. He views developeka@sledge base understandersd builds
a much more thorough model than the one presented here.

« A study by Littman, Pinto, Letovsky and Solow#f! found two strategies in use by the developers

(minimum of five years’ experience) they observed: In a systematic strategy the developers seek to
obtain information about how the program behaves before modifying it; and in an as-needed strategy
developers tried to minimize the effort needed to study the program to be modified by attempting
to localize those parts of a program where the changes needed to be made. Littman et al. found tha
those developers using the systematic strategy outperformed those using the as-needed strategy for t
250-line program used in the experiment. They also noted the problems associated with attempting
to use the systematic strategy with much larger programs.

A study by Penningtdit?®! investigated the differences in comprehension strategies used by devel-
opers who achieved high and low levels of program comprehension. Those achieving high levels
of comprehension tended to think about both the application domain and the program (source code)
domain rather than just the program domain. Pennidf¥$halso studied mental representations of
programs; for small programs she found that professional programmers built models based on control
flow rather than data flow.

A study by von Mayrhauser and Vah$6 1367|ooked at experienced developers maintaining large,
40,000+ LOC applications and proposed an integrated code comprehension model. This model con
tained four major components, (1) program model, (2) situated model, (3) top-down model, and (4)
knowledge base.

« A study by Shaft and Vesséy?¥ gave professional programmer subjects source code from two dif-

ferent application domains (accounting and hydrology). The subjects were familiar with one of the
domains but not the other. Some of the subjects used a different comprehension strategy for the
different domains.

v 1.0b August 5, 2005

11 Developers Introduction m

11.1.1.1 Comprehension as relevance

Programming languages differ from human languages in that they are generally viewed, by developefggvance
as a means of one-way communication with a computer. Human languages have evolved for interactive
communication between two, or more, people who share common gfdund.

One of the reasons why developers sometimes find source code comprehension so difficult is that the
original authors did not write it in terms of a communication with another person. Consequently, many of
the implicit assumptions present in human communication may not be present in source code. Relevance is
a primary example. Sperber and Wil§8#! list the following principles of human communication:

Sperber and Wil-

Principle of relevance sorf1216]

1. Every act of ostensive communication communicates a presumption of its own optimal relevance.
Presumption of optimal relevance

1. The set of assumptiomsvhich the communicator intends to make manifest to the addressee is relevant
enough to make it worth the addressee’s while to process the ostensive stimulus.

2. The ostensive stimulus is the most relevant one the communicator could have used to comimunicate

A computer simply executes the sequence of instructions contained in a program image. It has no”&ﬁjﬁ%fg]b-
tion of application assumptions and relevance. The developer knows this and realizes that including such
information in the code is not necessary. A common mistake made by novice developers is to assume that
the computer is aware of their intent and will perform the appropriate operations. Teaching developers to
write code such that can be comprehended by two very different addressee’s is outside the scope of these
coding guidelines.

Source code contains lots of details that are relevant to the computer, but often of little relevance to a
developer reading it. Patterns in source code can be used as indicators of relevance; recognizing these
patterns is something that developers learn with experience. These coding guidelines do not discuss the
teaching of such recognition.

Developers often talk of thmtended meaningf source code, i.e., the meaning that the original author
of the code intended to convey. Code comprehension being an exercise in obtaining an intended meaning
that is assumed to exist. However, the only warranted assumption that can be made about source code is
that the operations specified in it contribute to a meaning.

11.1.2 The act of writing software

The model of developers sitting down to design and then write software on paper, iterating through several
versions before deciding their work is correct, then typing it into a computer is still talked about today. This
method of working may have been necessary in the past because access to computer terminals was often
limited and developers used paper implementations as a method of optimizing the resources available to
them (time with, and without, access to a computer).

Much modern software writing is done sitting at a terminal, within an editor. Often no written, paper
notes are used. Everything exists either in the developer’'s head or on the screen in front of him (or her).
However, it is not the intent of this book to suggest alternative working practices. Changing a system that
panders to people’s needs for short-term gratificdfithto one that delays gratification and requires more
intensive periods of a difficult, painful activity (thinking) is well beyond your author’s capabilities.

Adhering to guideline recommendation does not guarantee that high quality software will be written; it
can only help reduce the cost of ownership of the software that is written.

04The study of meaning and communication between people often starts with Grices rf*4%irbst readers might find Sperber
and Wilsoi'218] easier going.

August 5, 2005 v 1.0b 63

_ Introduction 12 The new(ish) science of people

ROl o

Alfred North
Whitehead

These coding guidelines assume that the cost of writing software is significantly less than the cost of
developer activities that occur later (testing, rereading, and modification by other developers). Adhering
to guideline may increase the cost of writing software. The purpose of this investment is to make savings
(which are greater than the costs by an amount proportional to the risk of the investment) in the cost of these
later activities.

It is hoped that developers will become sufficiently fluent in using these guideline recommendations
and that they will be followed automatically while entering code. A skilled developer should aim to be
able to automatically perform as much of the code-writing process as possible. Performing these tasks
automatically frees up cognitive resources for use on other problems associated with code development.

It is a profoundly erroneous truism . . . that we should cultivate the habit of thinking of what we are doing. The

(1861-1947) precise opposite is the case. Civilization advances by extending the number of important operations which we

developer o
flow

productivity
developer

expertise o

can perform without thinking about them.

It is not suggested that the entire software development process take place without any thinking. The
process of writing code can be compared to writing in longhand. The writer thinks of a sentence and his
hand automatically writes the words. It is only schoolchildren who need to concentrate on the actual process
of writing the words.

11.2 Productivity

Although much talked about, there has been little research on individual developer productivity. There is the
often quoted figure of a 25-to-1 productivity difference between developers; however, this is a misinterpreta-
tion of figures presented in two tables of a particular p&8&rHopefully the analysis by Prech@&f® will

finally put a stop to researchers quoting this large, incorrect, figure. The differences in performance found
by Prechelt are rarely larger than four, similar to the performance ranges found by the original research.

Few measurement programs based on individual developers have been undertaken; many measures &
based on complete projects, dividing some quantity (often lines of code) by the number of individuals work-
ing on them. See Scactf”! for a review of the empirical software productivity research and J&ties
provides a good discussion of productivity over the complete life cycle of a project. However, some of the
issues discussed (e.g., response time when editing source) are rooted in a mainframe environment and a
no longer relevant.

Are there any guideline recommendations that the more productive developers use that we can all learr
from? Your author knows of no published research that investigates productivity at this level of detail. Age-
related productivity issu€é® 119l gre not discussed in these coding guidelines. The subject of expertise is
discussed elsewhere.

12 The new(ish) science of people

Itis likely that the formal education of this book’s readership will predominantly have been based on the so-
calledhard sciencesThe wordhard being used in the sense of having theories backed by solid experimental
results, which are repeatable and have been repeated many times. These sciences, and many engineer
disciplines, have also been studied experimentally for a long period of time. The controversies surrounding
the basic theory, taught to undergraduates, have been worked through.

Psychology has none of those advantages. There are often unseen, complex interactions going on insic
the object being studied (people’s responses to questions and problems). Because of this, studies usin
slightly different experimental situations can obtain very different results. The field is also relatively new,
and the basic theory is still being argued over. Consequently, this book cannot provide a definitive account
of the underlying theories relating to the subject of immediate interest here— reading and writing source
code.

The results of studies, and theories, from psychology are starting to become more widely applied in other
fields. For instance, economists are starting to realize that people do not always make rational d&¢fions.
Researchers are also looking at the psychology of programming.

64 v 1.0b August 5, 2005

12 The new(ish) science of people Introductm

The subfield of psychology that is of most relevance to this book is cognitive psychology. The goal ofcognitive
cognitive psychology is to understand the nature of human intelligence and how it works. Other subfieffécholooy
include clinical psychology (understanding why certain thought malfunctions occur) and social psychology
(how people behave in groups or with other individu&fs).

12.1 Brief history of cognitive psychology

Topics of interest to cognitive psychology were discussed by the Greeks as part of their philosophical think-
ing. This connection with philosophy continued through the works of Descartes, Kant, Mill, and others.
In 1879, Wilhelm Wundt established the first psychology laboratory in Germany; this date is considered to
mark the start of psychology as an independent field. Wundt believed that the workings of the mind were
open to self-observation. The method involved introspection by trained observers under controlled condi-
tions. Unfortunately, different researchers obtained different results from these introspection experiments,
so the theory lost creditability.

During the 1920s, John Watson and others developed the theory kndethasiorism This theory was
based on the idea that psychology should be based on external behavior, not on any internal workings of the
mind. The theory is best known through its use of rats in various studies. Although widely accepted in the
US for a long time, behaviorism was not so dominant in Europe, where other theories were also developed.

Measurements on human performance were given a large boost by World War Il. The introduction of
technology, such as radar, required people to operate it. Information about how people were best trained to
use complex equipment, and how they could best maintain their attention on the job at hand, was needed.

Cognitive psychology grew into its current form through work carried out between 1950 and 1970. The
inner workings of the mind were center stage again. The invention of the computer created a device, the
operation of which was seen as a potential parallel for the human mind. Information theory as a way of
processing information started to be used by psychologists. Another influence was linguistics, in particular
Noam Chomsky’s theories for analyzing the structure of language. The information-processing approach to
cognitive psychology is based on carrying out experiments that measured human performance and building
models that explained the results. It does not concern itself with actual processes within the brain, or parts
of the brain, that might perform these functions.

Since the 1970s, researchers have been trying to create theories that explain human cognition in terms
of how the brain operates. These theories are knoweogaitive architecturesThe availability of brain
scanners (which enable the flow of blood through the brain to be monitored, equating blood flow to activity)
in the 1990s has created the research area of cognitive neuroscience, which looks at brain structure and
processes.

12.2 Evolutionary psychology

Human cognitive processes are part of the survival package that constitutes a human being. The cognitéu@onary
processes we have today exist because they increased (or at least did not decrease) the likelihood ofS§tiP'°%Y
ancestors passing on their genes thorough offspring. Exactly what edge these cognitive processes gave our
ancestors, over those who did not possess them, is a new and growing area of research &nolutiasary
psychology To quote one of the founders of the fiéidf!

i |
Evolutionary psychology is an approach to psychology, in which knowledge and principles from evolution%ﬁf/mde878

biology are put to use in research on the structure of the human mind. It is not an area of study, like vision,
reasoning, or social behavior. It is a way of thinking about psychology that can be applied to any topic within
it.

... all normal human minds reliably develop a standard collection of reasoning and regulatory circuits that
are functionally specialized and, frequently, domain-specific. These circuits organize the way we interpret
our experiences, inject certain recurrent concepts and motivations into our mental life, and provide universal

05For a good introduction to the subject covering many of the issues discussed here, se@agjitiive Psychology: A Student’s
Handbookby Eysenck and Keaf&2 or Cognitive Psychology and its Implicatiobg Andersori33]

August 5, 2005 v 1.0b 65

_ Introduction 12 The new(ish) science of people

conjunc- o
tion fallacy

Cosmide&™

experimental
studies

frames of meaning that allow us to understand the actions and intentions of others. Beneath the level of surface
variability, all humans share certain views and assumptions about the nature of the world and human action
by virtue of these human universal reasoning circuits.

These functionally specialized circuits (the theory often goes by the namemitsgve modularity hypoth-

esig work together well enough to give the impression of a powerful, general purpose processor at work.
Because they are specialized to perform a given task when presented with a problem that does not hav
the expected form (the use of probabilities rather than frequency counts in the conjunction fallacy) perfor-
mance is degraded (peoples behavior appears incompetent, or even irrational, if presented with a reasonir
problem). The following are the basic principles:

Principle 1. The brain is a physical system. It functions as a computer. Its circuits are designed to generate
behavior that is appropriate to your environmental circumstances.

Principle 2. Our neural circuits were designed by natural selection to solve problems that our ancestors faced
during our species’ evolutionary history.

Principle 3. Consciousness is just the tip of the iceberg; most of what goes on in your mind is hidden from
you. As a result, your conscious experience can mislead you into thinking that our circuitry is simpler than

it really is. Most problems that you experience as easy to solve are very difficult to solve— they require very
complicated neural circuitry.

Principle 4. Different neural circuits are specialized for solving different adaptive problems.

Principle 5. Our modern skulls house a stone age mind.

Although this field is very new and has yet to establish a substantial body of experimental results and theory
it is referred to throughout these coding guidelines. The standard reference is Barkow, Cosmides, anc
Tooby®U (Mithen®8! provides a less-technical introduction).

12.3 Experimental studies

Much of the research carried out in cognitive psychology has used people between the ages of 18 and 2:
studying some form of psychology degree, as their subjects. There has been discussion by psycholog
researchers on the extent to which these results can be extended to the general P8putimeever,

here we are interested in the extent to which the results obtained using such subjects is applicable to hov
developers behave?

Given that people find learning to program difficult, and there is such a high failure rate for programming
courseB3 it is likely that some kind of ability factors are involved. However, because of the lack of
studies investigating this issue, it is not yet possible to know what these programming ability factors might
be. There are a large number of developers who did not study for some form of a computing degree at
university, so the fact that experimental subjects are often students taking other kinds of courses is unlikely
to be an issue.

12.3.1 The importance of experiments
The theories put forward by the established sciences are based on experimental results. Being elegant is n
sufficient for a theory to be accepted; it has to be backed by experiments.

Software engineering abounds with theories, and elegance is often cited as an important attribute. How
ever, experimental results for these theories are often very thin on the ground. The computing field is
evolving so rapidly that researchers do not seem willing to invest significant amounts of their time gather-
ing experimental data when there is a high probability that many of the base factors will have completely
changed by the time the results are published.

Replication is another important aspect of scientific research; others should be able to duplicate the result
obtained in the original experiment. Replication of experiments within software research is relatively rare;
possible reasons include

66 v 1.0b August 5, 2005

12 The new(ish) science of people Introductm

« the pace of developments in computing means that there are often more incentives for trying new
ideas rather than repeating experiments to verify the ideas of others,

« the cost of performing an experiment can be sufficiently high that the benefit of replication is seen as
marginal, and/or

« the nature of experiments involving large-scale, commercial projects are very difficult to replicate.
Source code can be duplicated perfectly, so there is no need to rewrite the same software again.

A good practical example of the benefits of replication and the dangers of not doing any is given by
Brooks!*®8l Another important issue is the statistical power of experim@fts Experiments that fail can

be as important as those that succeed. Nearly all published, computing-related papers describe successes.
The benefits of publishing negative results (i.e., ideas that did not work) has been proposed by F&¢helt.

A study'%0 of 5,453 papers published in software engineering journals between 1993 and 2002 found that
only 1.9% reported controlled experiments (of which 72.6% used students only as subjects).

12.4 The psychology of programming

Studies on the psychology of programming have taken their lead from trends in both psychology andps@ftsiogy of
ware engineering. In the 1960s and 1970s, studies attempted to measure performance times for vaas™"9
tasks. Since then researchers have tried to build models of how people carry out the tasks involved with
various aspects of programming.

Several theories about how developers go about the task of comprehending source code have been pro-
posed. There have also been specific proposals about how to reduce developer error rates, or to improve
developer performance. Unfortunately, the experimental evidence for these theories and proposals is either
based on the use of inexperienced subjects or does not include sufficient data to enable statistically signifi-
cant conclusions to be drawn. A more detailed, critical analysis of the psychological study of programming
is given by Shelt'® (the situation does not seem to have changed since this paper was written 20 years
ago).

Several studies have investigated how novices write software. This is both an area of research interest
and of practical use in a teaching environment. The subjects taking part in these studies also have the
characteristics of the population under investigation (i.e., predominantly students). However, this book is
aimed at developers who have several years’ experience writing code; it is not aimed at novices and it does
not teach programming skills.

Lethbridge, Sim, and Sing&?®! discuss some of the techniques used to perform field studies inside
software companies.

12.4.1 Student subjects
Although cognitive psychology studies use university students as their subjects there is an important char-
acteristic they generally have, for these studies, that they don’t have for software development'$tdies.

That characteristic is experience— that is, years of practice performing the kinds of actions (e.g., reading
text, making decisions, creating categories, reacting to inputs) they are asked to carry out in the studies.
However, students, typically, have very little experience of writing software, perhaps 50 to 150 hours. Com-
mercial software developers are likely to have between 1,000 to 10,000 hours of experience. A study by
Moher and Schneid®8 compared the performance of students and professional developers in program
comprehension tasks. The results showed that experience was a significant predictor of performance level
(greater than aptitude in this study).

Reading and writing software is a learned skill. Any experiments that involve a skill-based performance
need to take into account the subjects’ skill level. The coding guidelines in this book are aimed at developers
in a commercial environment where it is expected that they will have at least two years’ experience in
software development.

Use of very inexperienced developers as subjects in studies means that there is often a strong learning
effect in the results. Student subjects taking part in an experiment often get better at the task because they

August 5, 2005 v 1.0b 67

_ Introduction 12 The new(ish) science of people

are learning as they perform it. Experienced developers have already acquired the skill in the task being
measured, so there is unlikely to be any significant learning during the experiment. An interesting insight
into the differences between experiments involving students and professional developers is provided by &
study performed by BasifP! and a replication of it by Ciolkowsk?3!

A note on differences in terminology needs to be made here. Many studies in the psychology of program-
ming use the phrassxpertto apply to a subject who is a third-year undergraduate or a graduate student (the
termnovicebeing applied to first-year undergraduates). In a commercial software development environment
a recent graduate is considered to besgicedeveloper. Somebody with five or more years of commercial
development experience might know enough to be callegkpert

12.4.2 Other experimental issues
When an experiment is performed, it is necessary to control all variables except the one being measured. |
is also necessary to be able to perform the experiments in a reasonable amount of time. Most commercia
programs contain thousands of lines of source code. Nontrivial programs of this size can contain any numbe
of constructs that could affect the results of an experiment; they would also require a significant amount of
effort to read and comprehend. Many experiments use programs containing less than 100 lines of source
In many cases, it is difficult to see how results obtained using small programs will apply to much larger
programs.

The power of the statistical methods used to analyze experimental data depends on the number of differer
measurements made. If there are few measurements, the statistical significance of any claim’s results will be
small. Because of time constraints many experiments use a small number of different programs, sometime
a single program. All that can be said for any results obtained for a single program is that the results apply
to that program; there is no evidence of generalization to any other programs.

Is the computer language used in experiments significant? The extent to which the natural language
spoken by a person, affects their thinking has been debated since Boas, Sapir, and Whorf developed th

aenguage 77 linguistic relativity hypothesi8*”l. In this book, we are interested in C, a member of the procedural com-
puter language family. More than 99.9% of the software ever written belongs to languages in this family.
However, almost as many experiments seem to use nonprocedural languages, as procedural ones. Whett
the language family of the experiment affects the applicability of the results to other language families is
unknown. However, it will have an effect on the degree of believability given to these results by developers
working in a commercial environment.

12.5 What question is being answered?

Many of the studies carried out by psychologists implicitly include a human language (often English) as
part of the experiment. Unless the experiments are carefully constructed, unexpected side-effects may b
encountered. These can occur because of the ambiguous nature of words in human language, or because
subjects expectations based on their experience of the nature of human communication.

The following three subsections describe famous studies, which are often quoted in introductory cognitive
psychology textbooks. Over time, these experiments have been repeated in various, different ways and th
underlying assumptions made by the original researchers has been challenged. The lesson to be learned fro
these studies is that it can be very difficult to interpret a subject’s answer to what appears to be a simple
question. Subjects simply may not have the intellectual machinery designed to answer the question in the
fashion it is phrased (base rate neglect), they may be answering a completely different question (conjunctior
fallacy), or they may be using a completely unexpected method to solve a problem (availability heuristic).

12.5.1 Base rate neglect
base rate neglect Given specific evidence, possible solutions to a problem can be ordered by the degree to which they are
jepresen@ o representative of that evidence (i.e., their probability of occurring as the actual solution, based on past
experience). While these representative solutions may appear to be more likely to be correct than less
representative solutions, for particular cases they may in fact be less likely to be the solution. Other factors
such as the prior probability of the solution, and the reliability of the evidence can affect the probability of
any solution being correct.

68 v 1.0b August 5, 2005

12 The new(ish) science of people Introductm

A series of studies, Kahneman and Tvel#y) suggested that subjects often seriously undervalue the
importance of prior probabilities (i.e., they neglected base-rates). The following is an example from one of
these studies. Subjects were divided into two groups, with one group of subjects being presented with the
following cover story:

A panel of psychologists have interviewed and administered personality tests to 30 engineers and
70 lawyers, all successful in their respective fields. On the basis of this information, thumbnail de-
scriptions of the 30 engineers and 70 lawyers have been written. You will find on your forms five
descriptions, chosen at random from the 100 available descriptions. For each description, please indi-
cate your probability that the person described is an engineer, on a scale from 0 to 100.

and the other group of subjects presented with identical cover story, except the prior probabilities were
reversed (i.e., they were told that the personality tests had been administered to 70 engineers and 30 lawyers).
Some of the descriptions provided were designed to be compatible with the subjects’ stereotype of engineers,
others were designed to be compatible with the stereotypes of lawyers, and one description was intended to
be neutral. The following are two of the descriptions used.

Jack is a 45-year-old man. He is married and has four children. He is generally conservative, ¢areful
and ambitious. He shows no interest in political and social issues and spends most of his free time on
his many hobbies which include home carpentry, sailing, and mathematical puzzles.

The probability that Jack is one of the 30 engineers in the sample of 100is ___ %.

Dick is a 30-year-old man. He is married with no children. A man of high ability and high motivation,
he promises to be quite successful in his field. He is well liked by his colleagues.
The probability that Dick is one of the 70 lawyers in the sample of 100 is %.

Following the five descriptions was this null description.

Suppose now that you are given no information whatsoever about an individual chosen at random
from the sample.

The probability that this man is one of the 30 engineers in the sample of 100 is %.

In both groups, half of the subjects were asked to evaluate, for each description, if the person described
was an engineer. The other subjects were asked the same question, except they were asked about lawyers.

The probability of a person being classified as an engineer, or lawyer, can be calculated using Bayes’
theorem. Assume that, after reading the description, the estimated probability of that person being an
engineer isP. The information that there are 30 engineers and 70 lawyers in the sample allows us to modify
the estimateP, to obtain a more accurate estimate (using all the information available to us). The updated
probability is0.3P/(0.3P + 0.7(1 — P)). If we are told that there are 70 engineers and 30 lawyers, the
updated probability i8.7P/(0.7P+0.3(1— P)). For different values of the estimalg we can plot a graph
using the two updated probabilities as thandy coordinates. If information on the number of engineers
and lawyers is not available, or ignored, the graph is a straight line (see BidWe

The results (see Figur@ 10 were closer to the straight line than the Bayesian line. The conclusion
drawn was that information on the actual number of engineers and lawyers in the sample (the base-rate) had
minimal impact on the subjective probability chosen by subjects.

August 5, 2005 v 1.0b 69

_ Introduction

12 The new(ish) science of people

conjunction fal-
lacy

5 100 — Z
Z
= X/
3 7
> - s
B ,
N /
- s
5]
1 s
g /
2 X
o /
L — X
°© /
2 7
= s
‘5 20— ’
E s
) /
= : T T
20 60 100

Probability of engineer (given 30)

Figure 0.10: Median judged probability of subjects choosing an engineer, for five descriptions and for the null description
(unfilled circle symbol). Adapted from Kahnem&A!

Later studie%?8l found that peoples behavior when making decisions that included a base-rate component
was complex. Use of base-rate information was found to depend on how problems and the given information
was framed (large between study differences in subject performance were also seen). For instance, in son
cases subjects were found to use their own experiences to judge the likelihood of certain events occurring
rather than the probabilities given to them in the studies. In some cases the ecological validity of using
Bayes’ theorem to calculate the probabilities of outcomes has been questioned.

To summarize: while people have been found to ignore base-rates when making some decisions, thi:
behavior is far from being universally applied to all decisions.

12.5.2 The conjunction fallacy

An experiment originally performed by Tversky and KahneR## presented subjects with the following
problem.

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student,
she was deeply concerned with issues of discrimination and social justice, and also participated in
anti-nuclear demonstrations.

Please rank the following statements by their probability, using 1 for the most probable and 8 fpr the
least probable.

(a) Linda is a teacher in elementary school.

(b) Linda works in a bookstore and takes Yoga classes.

(c) Linda is active in the feminist movement.

(d) Linda is a psychiatric social worker.

(e) Linda is a member of the League of Women \oters.

() Linda is a bank teller.

(9) Linda is an insurance sales person.

(h) Linda is a bank teller and is active in the feminist movement.

In a group of subjects with no background in probability or statistics, 89% judged that statement (h) was
more probable than statement (f). Use of simple mathematical logic shows that Linda cannot be a feminist
bank teller unless she is also a bank teller, implying that being only a bank teller is at least as likely, if
not more so, than being both a bank teller and having some additional attribute. When the subjects were
graduate students in the decision science program of the Stanford Business School (labeled as statistical
sophisticated by the experimenters), 85% judged that statement (h) was more probable than statement (f).

70 v 1.0b August 5, 2005

12 The new(ish) science of people Introductm

These results (a compound event being judged more probable than one of its components) have been
duplicated by other researchers performing different experiments. A recent series of'$fiftlie=nt as far
as checking subjects’ understanding of the warabability and whether statement (f) might be interpreted
to mearLinda is a bank teller and not active in the feminist moven(igmas not).

This pattern of reasoning has become knowthasconjunction fallacy

On the surface many of the subjects in the experiment appear to be reasoning in a nonrational way.
How can the probability of the eveit and Bbe greater than the probability of evel® However, further
studies have found that the likelihood of obtaining different answers can be affected by how the problem is
expressed. The effects of phrasing the problem in terms of gitbeability or frequencywere highlighted
in a study by Fiedlet® The original Tversky and Kahneman study wording was changed to the following:

There are 100 people who fit the description above. How many of them are:
(a) bank tellers?
(b) bank tellers and active in the feminist movement?

In this case, only 22% of subjects rated thenk teller and active in the feminist movemeption as
being more frequent than thxank telleronly option. When Fiedler repeated the experiment using wording
identical to the original Tversky and Kahneman experiment, 91% of subjects gave the feminist bank teller
option as more probable than the bank teller only option. A number of different explanations, for the
dependence of the conjunction fallacy on the wording of the problem, have been proposed.

Evolutionary psychologists have interpreted these results as showing that people are not very°§§{3ﬁg}@(,y
reasoning using probability. It is argued that, in our daily lives, events are measured in terms of their fre-
guency of occurrence (e.g., how many times fish were available at a particular location in the river). This
event-based measurement includes quantity, information not available when probabilities are used. Follow-
ing this argument through suggests that the human brain has become specialized to work with frequency
information, not probability information.

Hertwig and Gigerenz®PY point out that, in the Linda problem, subjects were not informed that they conjunc-
were taking part in an exercise in probability. Subjects therefore had to interpret the instructions; in ng&;‘i‘f‘iﬁ
ticular, what did the experimenter mean pxobability? Based on Grice®?! theory of conversational terpretation
reasoning, they suggested that the likely interpretation given to the prolzhbility would be along therelevance
lines of “something which, judged by present evidence, is likely to be true, to exist, or to happen,” (one of
the Oxford English dictionary contemporary definitions of the word), not the mathematical definition of the
word.

Grice’s theory was used to make the following predictions:

: [551]
Prediction 1: Probability judgments. If asked for probability judgments, people will infer its nonmathematid.d;ﬁm""g{
meanings, and the proportion of conjunction violations will be high as a result.

Prediction 2: Frequency judgments. If asked for frequency judgments, people will infer mathematical meanings,
and the proportion of conjunction violations will decrease as a result.

Prediction 3: Believability judgments. If the term “probability” is replaced by “believability”, then the propor-
tion of conjunction violations should be about as prevalent as in the probability judgment.

A series of experiments confirmed these predictions. A small change in wording caused subjects to have a
completely different interpretation of the question.

12.5.3 Availability heuristic

How do people estimate the likelihood of an occurrence of an event? The availability heuristic argues tl’_ltaz%yailabti_l—
ity heuristic

August 5, 2005 v 1.0b 71

_ Introduction 12 The new(ish) science of people

in making an estimate, people bring to mind instances of the event; the more instances brought to mind, the
more likely it is to occur. Tversky and Kahnenks#3! performed several studies in an attempt to verify that
people use this heuristic to estimate probabilities. Two of the more well-known experiments follow.

The first is judgment of word frequency; here subjects are first told that.

The frequency of appearance of letters in the English language was studied. A typical text was
selected, and the relative frequency with which various letters of the alphabet appeared in the first and
third positions in words was recorded. Words of less than three letters were excluded from the count.

You will be given several letters of the alphabet, and you will be asked to judge whether these |etters
appear more often in the first or in the third position, and to estimate the ratio of the frequency with
which they appear in these positions.

They were then asked the same question five times, using each of the letters (K, L, N, R, V).

Consider the letter R.
Is R more likely to appear in:

* the first position?
« the third position? (check one)

My estimate for the ratio of these two valuesis ___ :1.

Of the 152 subjects, 105 judged the first position to be more likely (47 the third position more likely).
The median estimated ratio was 2:1.

In practice, words containing the lettrin the third position occur more frequently in texts than words
with Rin the first position. This is true for all the lettersiz L, N, R, V.

The explanation given for these results was that subjects could more easily recall words beginning with
the letterR, for instance, than recall words having Rras the third letter. The answers given, being driven
by the availability of instances that popped into the subjects’ heads, not by subjects systematically counting
all the words they knew.

An alternative explanation of how subjects might have reached their conclusion was proposed by SedIimei
Hertwig, and Gigerenzét!® First they investigated possible ways in which the availability heuristic
might operate; Was it based on availability-by-number (the number of instances that could be recalled)
or availability-by-speed (the speed with which instances can be recalled). Subjects were told (the following
is an English translation, the experiment took place in Germany and used German students) either:

Your task is to recall as many words as you can in a certain time. At the top of the following page
you will see a letter. Write down as many words as possible that have this letter as the first (second)
letter.

or,

Your task is to recall as quickly as possible one word that has a particular letter as the first (second)
letter. You will hear first the position of the letter and then the letter. From the moment you hear the
letter, try to recall a respective word and verbalize this word.

72 v 1.0b August 5, 2005

13 Categorization Introduction m

Subjects answers were used to calculate an estimate of relative word frequency based on either availability-
by-number or on availability-by-speed. These relative frequencies did not correlate with actual frequency
of occurrence of words in German. The conclusion drawn was that the availability heuristic was not an ac-
curate estimator of word frequency, and that it could not be used to explain the results obtained by Tversky
and Kahneman.

If subjects were not using either of these availability heuristics, what mechanism are they using? Jonides
and Jone8%8] have shown, based on a large body of results, that subjects are able to judge the number of
many kinds of events in a way that reflects the actual relative frequencies of the events with some accuracy.

Sedimeier et dt'%8! proposed (what they called thegressed-frequencies hypothédisat (a) the fre-
guencies with which individual letters occur at different positions in words are monitored (by people while
reading), and (b) the letter frequencies represented in the mind are regressed toward the mean of all letter
frequencies. This is a phenomenon often encountered in frequency judgment tasks, where low frequencies
tend to be overestimated and high frequencies underestimated; although this bias affects the accuracy of the
absolute size of frequency judgments, it does not affect their rank order. Thus, when asked for the relative
frequency of a particular letter, subjects should be expected to give judgments of relative letter frequen-
cies that reflect the actual ones, although they will overestimate relative frequencies below the mean and
underestimate those above the mean — a simple regressed-frequency heuristic. The studies performed by
SedIimeier et al. consistently showed subjects’ judgments conforming best to the predictions of the regressed-
frequencies hypothesis.

While it is too soon to tell if the regressed-frequencies hypothesis is the actual mechanism used by
subjects, it does offer a better fit to experimental results than the availability heuristic.

13 Categorization
Children as young as four have been found to use categorization to direct the inferences thé§*haaiak, categorization
many different studies have shown that people have an innate desire to create and use categories (they have
also been found to be sensitive to the costs and benefits of using caté{ByieBy dividing items in the
world into categories of things, people reduce the amount of information they need #&°féHoy building
an indexed data structure that will enable them to lookup information on specific items they may not have
encountered before (by assigning that item to one or more categories and extracting information common
to items in those categories). For instance, a flying object with feathers and a beak might be assigned to the
categonybird, which suggests the information that it lays eggs and may be migratory.

Source code is replete with examples of categories; similar functions are grouped together in the same
source file, objects belonging to a particular category are defined as members of the same strucf(f‘r‘%?ﬁ'gaab,
and enumerated types are defined to represent a common set of symbolic names. s27stiuicture type

sequentially

People seem to have an innate desire to create categories (people have been found to expect, range
sequences to have certain attribdtéd, e.g., frequent alternation between different values, which fram® . ason
mathematical perspective represent regularity). There is the danger that developers, reading a pré@%ﬂ?&’
source code will create categories that the original author was not aware existedn@Wweagéegories mafl”ﬁa%%"“‘:
represent insights into the workings of a program, or they may be completely spurious (and a source of
subsequent incorrect assumptions, leading to faults being introduced).

Categories can be used in many thought processes without requiring significant cognitive effort (a built-
in operation). For instance, categorization can be used to perform inductive reasoning (the derivation of
generalized knowledge from specific instances), and to act as a memory aid (remembering the members of
a category). There is a limit on the cognitive effort that developers have available to be used and making use
of a powerful ability, which does not require a lot of effort, helps optimize the use of available resources.

There have been a number of stuéligd! looking at how people use so-calledtural categoriegi.e.,
those occurring in nature such as mammals, horses, cats, and birds) to make inductive judgments. Peo-
ple’'s use of categorical-based arguments (i.e., “Grizzly bears love onions.” and “Polar bears love onions.”
therefore “All bears love onions.”) have also been studigld.

Source code differs from nature in that it is created by people who have control over how it is organized.

August 5, 2005 v 1.0b 73

_ Introduction 13 Categorization

Recognizing that people have an innate ability to create and use categories, there is a benefit in trying tc
maximize positive use (developers being able to infer probable behaviors and source code usage based ¢
knowing small amounts of information) of this ability and to minimize negative use (creating unintended
categories, or making inapplicable inductive judgments).

Source code can be organized in a myriad of ways. The problem is finding the optimal organization,
which first requires knowing what needs to be optimized. For instance, | might decide to split some functions
I have written that manipulate matrices and strings into two separate source files. | could decide that the
functions | wrote first will go in the first file and those that | wrote later in the second file, or perhaps the
first file will contain those functions used on project X and the second file those functions used on project
Y. To an outside observer, a manatural organization might be to place the matrix-manipulation functions
in the first file and the string-manipulation functions in the second file.

In a project that grows over time, functions may be placed in source files on an as-written basis; a main-
tenance process that seeks to minimize disruption to existing code will keep this organization. When two
separate projects are merged into one, a maintenance process that seeks to minimize disruption to existir
code is unlikely to reorganize source file contents based on the data type being manipulated. This categc
rization process, based on past events, is a major factor in the difficulty developers have in comprehending
old source. Because category membership is based on historical events, developers either need knowled
of those events or they have to memorize information on large quantities of source. Program comprehensiot
changes from using category-based induction to relying on memory for events or source code.

Even when the developer is not constrained by existing practices the choice of source organization is no
always clear-cut. An organization based on the data type being manipulated is one possibility, or there may
only be a few functions and an organization based on functionality supported (i.e., printing) may be more
appropriate. Selecting which to use can be a difficult decision. The following subsections discuss some of
the category formation studies that have been carried out, some of the theories of category formation, anc
possible methods of calculating similarity to category.

Situations where source code categorization arise include: deciding which structure types should contair

declarations 1794 \which members, which source files should contain which object and function definitions, which source files
should be kept in which directories, whether functionality should go in a single function or be spread across
several functions, and what is the sequence of identifiers in an enumerated type?

Explicitly organizing source code constructs so that future readers can make use of their innate ability to
use categories, to perform inductive reasoning, is not meant to imply that other forms of reasoning are not
important. The results of deductive reasoning are generally the norm against which developer performance
is measured. However, in practice, developers do create categories and use induction. Coding guideline
need to take account of this human characteristic. Rather than treating it as an aberration that developer
need to be trained out of, these coding guidelines seek to make use of this innate ability.

13.1 Category formation

How categories should be defined and structured has been an ongoing debate within all sciences. Fc
instance, the methods used to classify living organisms into family, genus, species, and subspecies ha
changed over the years (e.g., most recently acquiring a genetic basis).

Categories do not usually exist in isolation. Category judgment is often organized according to a hierar-
chy of relationships between concepts— a taxonomy. For instance, Jack Russell, German Shepherd, an
Terrier belong to the category of dog, which in turn belongs to the category of mammal, which in turn
belongs to the category of living creature. Organizing categories into hierarchies means that an attribute of
a higher-level category can affect the perceived attributes of a subordinate category. This effect was illus
trated in a study by Stevens and Colié?! Subjects were asked to remember the information contained in
a series of maps (see Figwell). They were then asked questions such as: “Is X east or west of Y?”, and
“Is X north or south of Y?” Subjects gave incorrect answers 18% of the time for the congruent maps, but
45% of the time for the incongruent maps (15% for the homogeneous). They were using information about
the relative locations of the countries to answer questions about the city locations.

74 v 1.0b August 5, 2005

13 Categorization

Introduction m

Alpha Alpha Alpha
Country Country Country
[[o
z Z Z
° o o
X X
o Beta ° Beta o Beta
Y Y Y
Country Country Country
Alpha Alpha Alpha
Country Country Country
oZ oZ oZ
oY oY oY
oX X X
Beta Beta Beta
Country Country Country
Congruent Incongruent Homogeneous

Figure 0.11: Country boundaries distort judgment of relative city locations. Adapted from Stééfs.

Several studies have shown that people use around three levels of abstraction in creating hierarchical

relationships. Ros¢H3% called the highest level of abstraction theperordinate-level- for instance, the

general category furniture. The next level down is lfasic-level this is the level at which most catego-

rization is carried out— for instance, car, truck, chair, or table. The lowest level isuth@dinate-level

denoting specific types of objects. For instance, a family car, a removal truck, my favourite armchair, a

kitchen table. Rosch found that the basic-level categories had properties not shared by the other two cate-
gories; adults spontaneously name objects at this level. It is also the abstract level that children acquire first,
and category members tend to have similar overall shapes.

« A study by Markman and Wisniews# investigated how people view superordinate-level and basic-
level categories as being different. The results showed that basic-level categories, derived from the
same superordinate-level, had a common structure that made it easy for people to compare attributes;
for instance, motorcycle, car, and truck are basic-level categories of vehicle. They all share attributes
(so-calledalignable differencés for instance, number of wheels, method of steering, quantity of
objects that can be carried, size of engine, and driver qualifications that differ but are easily compared.
Superordinate-level categories differ from each other in that they do not share a common structure.
This lack of a common structure means it is not possible to align their attributes to differentiate them.
For these categories, differentiation occurs through the lack of a common structure. For instance, the
superordinate-level categories — vehicle, musical instrument, vegetable, and clothing — do not share
a common structure.

can affect the categories they create and use.

A study by Tanaka and Taylé#’4 showed that the quantity of a person’s knowledge and experience

A study by Johansen and Palm&f showed that representations of perceptual categories can change

with categorization experience. While these coding guidelines are aimed at experienced developers,

August 5, 2005

v 1.0b

75

_ Introduction 13 Categorization

breathes
eats
has skin

Animal

has fins

can swim
has gills
has feathers

is pink
is edible
spawns upstream

can sing is tall can bite

Canary

is yellow can’t fly is dangerous

Figure 0.12: Hypothetical memory structure for a three-level hierarchy. Adapted from C&fils.

they recognize that many experienced developers are likely to be inexperienced comprehenders o
much of the source code they encounter. The guidelines in this book take the default position that,
given a choice, they should assume an experienced developer who is inexperienced with the source
being read.

sructure type 5o There_ are Iikely to be differe_nt ways of categorizing the various components of source cod_e. These case:
o el are discussed in more detalil elsewhere._ Co_m_monahty and regulantles shared b_etween different s_e(_:tlon:

typedef name 1618 Of source code may lead developers to implicitly form categories that were not intended by the original

enusrel?gfrnaslﬁézrj suauthors. The extent to which the root cause is poor categorization by the original developers, or simply
devc.s'i‘!ﬁﬁ'y‘étﬂl 1335 UNrelated regularities, is not discussed in this book.

statement 1606 What method do people use to decide which, if any, category a particular item is a member of? Several
’ different theories have been proposed and these are discussed in the following subsections.

13.1.1 The Defining-attribute theory
The defining-attribute theory proposes that members of a category are characterized by a set of defining
attributes. This theory predicts that attributes should divide objects up into different concepts whose bound
aries are well defined. All members of the concept are equally representative. Also, concepts that are
a basic-level of a superordinate-level concept will have all the attributes of that superordinate level; for
instance, a sparrow (small, brown) and its superordinate bird (two legs, feathered, lays eggs).

Although scientists and engineers may create and use defining-attribute concept hierarchies, experiments
evidence shows that people do not naturally do so. Studies have shown that people do not treat categor
members as being equally representative, and some are rated as more typical thak-tihEssdence
that people do not structure concepts into the neat hierarchies required by the defining-attribute theory wa:s
provided by studies in which subjects verified membership of a more distant superordinate more quickly
than an immediate superordinate (according to the theory, the reverse situation should always be true).

13.1.2 The Prototype theory

In this theory, categories have a central description, the prototype, that represents the set of attributes o
the category. This set of attributes need not be necessary, or sufficient, to determine category membershi
The members of a category can be arranged in a typicality gradient, representing the degree to which the:
represent a typical member of that category. It is also possible for objects to be members of more than one
category (e.g., tomatoes as a fruit, or a vegetable).

13.1.3 The Exemplar-based theory

The exemplar-based theory of classification proposes that specific instanessmplarsact as the pro-
totypes against which other members are compared. Objects are grouped, relative to one another, base

76 v 1.0b August 5, 2005

13 Categorization Introduction m

on some similarity metric. The exemplar-based theory differs from the prototype theory in that specific
instances are the norm against which membership is decided. When asked to name particular members of a
category, the attributes of the exemplars are used as cues to retrieve other objects having similar attributes.

13.1.4 The Explanation-based theory

The explanation-based theory of classification proposes that there is an explanation for why categories have
the members they do. For instance, the biblical classification of foodcietin and uncleanis roughly
explained by saying that there should be a correlation between type of habitat, biological structure, and
form of locomotion; creatures of the sea should have fins, scales, and swim (sharks and eels don’t) and
creatures of the land should have four legs (ostriches don't).

From a predictive point of view, explanation-based categories suffer from the problem that they may
heavily depend on the knowledge and beliefs of the person who formed the category; for instance, the set
of objects a person would remove from their home while it was on fire.

Murphy and Medif?*®! discuss how people can use explanations to achieve conceptual coherence in
selecting the members of a category (see Tatde

Table 0.5: General properties of explanations and their potential role in understanding conceptual coherence. Adapted from
Murphy[#43]

Properties of Explanations Role in Conceptual Coherence
Explanation of a sort, specified over some do- Constrains which attributes will be included in a concept
main of observation representation

Focuses on certain relationships over others in detecting
attribute correlations

Simplify reality Concepts may be idealizations that impose more structure
than is objectively present

Have an external structure— fits in with (or do Stresses intercategory structure; attributes are considered

not contradict) what is already known essential to the degree that they play a part in related theo-
ries (external structures)

Have an internal structure— defined in part by Emphasizes mutual constraints among attributes. May sug-

relations connecting attributes gest how concept attributes are learned

Interact with data and observations in some way Calls attention to inference processes in categorization and
suggests that more than attribute matching is involved

13.2 Measuring similarity

The intent is for these guideline recommendations to be automatically enforceable. This requires A g0ron

rithm for calculating similarity, which is the motivation behind the following discussion. enereeatie

How might two objects be compared for similarity? For simplicity, the following discussion assumes
an object can have one of two values for any attribute, yes/no. The discussion is based on material in
Classification and Cognitioby W. K. Ested38!

To calculate the similarity of two objects, their corresponding attributes are matched. The product of theimilarity
similarity coefficient of each of these attributes is computed. A matching similarity coefficigntalue in ~ Productrule
the range one to infinity, and the same for every match), is assigned for matching attributes. A nonmatching
similarity coefficients; (a value in the range 0 to 1, and potentially different for each nonmatch), is assigned
for each nonmatching coefficient. For example, consider two birds that either have (plus sign), or do not have
(minus sign), some attribute (numbered 1 to 6) (see Tal@)e Their similarity, based on these attributes is
tXtXSg XtXS5 Xt.

August 5, 2005 v1.0b 77

_ Introduction 13 Categorization

similarity
contrast model

Table 0.6: Computation of pattern similarity. Adapted from Esf$]

Attribute 1 2 3 4 5 6
Starling + o+ - + o+ o+
Sandpiper + + o+ o+ +
Attribute similarity ¢ ¢t s3 t s5 ¢

When comparing objects within the same category the convention is to give the similarity coefficient,
for matching attributes, a value of one. Another convention is to give the attributes that differ the same
similarity coefficient,s. In the preceding case, the similarity becora&s

Sometimes the similarity coefficient for matches needs to be taken into account. For instance, in the
following two examples the similarity between the first two character sequentgsaile in the second
is t3s. Settingt to be one would result in both pairs of character sequences being considered to have the
same similarity, when in fact the second sequence would be judged more similar than the first. Studies or
same/different judgments show that both reaction time and error rates increase as a function of the numbe
of items being compardd*®! The value oft cannot always be taken to be unity.

A B A B CD
A E A E CD

The previous example computed the similarity of two objects to each other. If we have a category, we
can calculate a similarity to category measure. All the members of a category are listed. The similarity of
each member, compared with every other member, is calculated in turn and these values are summed fc
that member. Such a calculation is shown in Tdblé

Table 0.7: Computation of similarity to category. Adapted from Eg888!

Object Ro Bl Sw St Wu Sa Ch Fl Pe Similarity to Category

Robin 1 1 1 s st s s° s 5 342545425540
Bluebird 1 1 1 s st s 5P s 85 3425+ s +25% 456
Swallow 1 1 1 s st s s° 6 5 3425451425046
Starling s s s 1 32 s2 s s s 1435452453 455420
Vulture s st st 201 2 83 52 83 148243534351 450
Sandpiper s s s 2 801 st s st 14 3s+s24st+sd
Chicken s° 2 s s6 0 83 st 1 s 1 245453+ 4355+
Flamingo s6 6 s s 52 s s 1 s 14 25+ 52 4 2s° + 356
Penguin 2 2 sP ELE . N | s 1 245453 +5* 4355+

Some members of a category are often considered to be more typical of that category than other member
These typical members are sometimes treated as exemplars of that category, and serve as reference poi
when people are thinking about that category. While there is no absolute measure of typicality, it is possible
to compare the typicality of two members of a category. The relative typicality, within a category for two or
more objects is calculated from their ratios of similarity to category. For instance, taking the valas of
0.5, the relative typicality of Robin with respect to Vulture4sl4/(4.14 + 1.84) = 0.69, and the relative
typicality of Vulture with respect to Robin i584/(4.14 + 1.84) = 0.31.

Itis also possible to create derived categories from existing categories; for instance, large and small birds
For details on how to calculate typicality within those derived categories, seé’E$(@ghich also provides
experimental results).

An alternative measure of similarity is the contrast model. This measure of similarity depends positively
on the number of attributes two objects have in common, but negatively on the number of attributes that
belong to one but not the other.

78 v 1.0b August 5, 2005

13 Categorization Introduction m

Contrast Sim1a = af (F12) — bf (F1) — ¢f (F») (0.14)

whereF}s is the set of attributes common to objects 1 anéli2the set of attributes that object 1 has but not
object 2, andF;, the set of attributes that object 2 has but not object 1. The quantjtieandc are constants.
The functionf is some metric based on attributes; the one most commonly appearing in published research
is a simple count of attributes.

Taking the example given in Tab7, there are four features shared by the starling and sandpiper and
one that is unique to each of them. This gives:

Contrast Sim = 4a — 1b — 1c (0.15)

based on bird data we might take, for instance; 1, b = 0.5, ande = 0.25 giving a similarity of 3.25.
On the surface, these two models appear to be very different. However, some mathematical manipulation
shows that the two methods of calculating similarity are related.

Simyy = tM12gm N2 = Mz gn gne (0.16)

Taking the logarithm:

log(Sim12) = ni2log(t) + nq log(s) + nalog(s) (0.17)

lettinga = log(t), b = log(s), ¢ = log(s), and noting that the value ofis less than 1, we get:

log(Sim12) = a(niz) — b(n1) — c(na2) (0.18)

This expression for product similarity has the same form as the expression for contrast similarity. Although
b andc have the same value in this example, in a more general form the valdyeoofd be different.

13.2.1 Predicting categorization performance

Studies'3% have shown that the order in which people list exemplars of categories correlates with thigorization
relative typicality ratings. These results lead to the idea that relative typicality ratings could be interpre’fé'éf;’(‘j‘fg{}ﬁg
as probabilities of categorization responses. However, the algorithm for calculating similarity to category
values does not take into account the number of times a subject has encountered a member of the category
(which will control the strength of that member’s entry in the subject’'s memory).

For instance, based on the previous example of bird categories when asked to “name the bird which comes
most quickly to mind, Robin or Penguin”, the probability of Robin being the answiet4g'(4.14+4-2.80) =
0.60, an unrealistically low probability. If the similarity values are weighted according to the frequency of
each member’s entry in a subject's memory array (Estes estimated the figures given i.8gbike
probability of Robin becomek.24/(1.24 + 0.06) = 0.954, a much more believable probability.

August 5, 2005 v 1.0b 79

_ Introduction 13 Categorization

Table 0.8: Computation of weighted similarity to category. From E$%8S.

Object Similarity Formula s =0.5 Relative Frequency Weighted Similarity
Robin 3425+ 5 +255 456 4.14 0.30 1.24
Bluebird 3425+ s +25° 4+ 56 4.14 0.20 0.83
Swallow 3425+ 5t +255 45 4.14 0.10 0.41
Starling 14 354 52 4 5% 4 5% 4 256 2.94 0.15 0.44
Vulture 14524383 +3s* + 5 1.84 0.02 0.04
Sandpiper 14+3s+s2+st4+ 55 2.94 0.05 0.15
Chicken 245+ 83 +s*4+3s°+ 56 2.80 0.15 0.42
Flamingo 14 2s+ s2 4 2s® 4 3s6 2.36 0.01 0.02
Penguin 245+ 53451 +355 + 56 2.80 0.02 0.06

The need to use frequency weightings to calculate a weighted similarity value has been verified by Nosof-
sky!973]

The method of measuring similarity just described has been found to be a good predictor of the error
probability of people judging which category a stimulus belongs to. The following analysis is based on a
study performed by Shepard, Hovland, and Jenkirig.

A simpler example than the bird category is used to illustrate how the calculations are performed. Here,
the object attributes are color and shape, made up of the four combinations black/white, triangles/squares
Taking the case where the black triangle and black square have been assigned to category A, and the whi
triangle and white square have been assigned to category B, we geOTable

Table 0.9: Similarity to category (black triangle and black square assigned to category A; white triangle and white square
assigned to category B).

Stimulus Similarity to A Similarity to B
Dark triangle 1+s s+ 2
Dark square 1+s s+ 82
Light triangle s+ s2 1+s
Light square s+ 82 1+s

If a subject is shown a stimulus that belongs in category A, the expected probability of them assigning it
to that category is:

1+s N 1
(1+s)+(s+s2) "~ 1+s

(0.19)

Whens is 1 the expected probability is no better than a random choice; whe® the probability is a
certainty.

Assigning different stimulus to different categories can change the expected response probability; for
instance, by assigning the black triangle and the white square to category A and assigning the white triangle
and black square to category B, we get the category similarities shown indable

Table 0.10: Similarity to category (black triangle and white square assigned to category A; white triangle and black square
assigned to category B).

Stimulus Similarity to A Similarity to B
Dark triangle s+ s2 2s

Dark square 2s s+ 82
Light triangle 2s s+ 82
Light square s+ s2 2s

80 v 1.0b August 5, 2005

13 Categorization Introduction m

Figure 0.13: Representation of stimuli with shape in the horizontal plane and color in one of the vertical planes. Adapted from
Shepard!172]

If a subject is shown a stimulus that belongs in category A, the expected probability of them assigning it
to that category is:

1+ 52 N 1+ 52
(25) + (1 + s2) (1+s)2

(0.20)

For all values ofs between 0 and 1 (but not those two values), the probability of a subject assigning a
stimulus to the correct category is always less than for the category defined previously, in this case.

In the actual study performed by Shepard, Hovland, and JeR#&igsstimuli that had three attributes,
color/size/shape, were used. If there are two possible values for each of these attributes, there are eight
possible stimuli (see Figui@13).

Each category was assigned four different members. There are 70 different ways of taking four things
from a choice of eight8!/(4!4!)), creating 70 possible categories. However, many of these 70 different
categories share a common pattern; for instance, all having one attribute, like all black or all triangles. If
this symmetry is taken into account, there are only six different kinds of categories. One such selection of
six categories is shown in Figuéel4 the black circles denoting the selected attributes.

Having created these six categories, Shepard et al. trained and measured the performance of subjects in
assigning presented stimuli (one of the list of 70 possible combinations of four things— Bid&réo one
of them.

Este§® found a reasonable level of agreement between the error rates reported by Shepard et al. and the
rates predicted by the similarity to category equations. There is also a connection between categorization

eI E lecti
performance and Boolean complexity; this is discussed elsewhere. 1 Statement

syntax
13.3 Cultural background and use of information

The attributes used to organize information (e.g., categorize objects) has been found to vary acrosstdgdlization
ture$?’!l and between experts and non-experts. The following studies illustrate how different groups 6flural dit
people agree or differ in their categorization behavior (a cultural difference in the naming of objects is
discussed elsewhere): 787naming

cultural differences

« A study by Bailenson, Shum, and Col&Y asked US bird experts (average of 22.4 years bird watch-
ing), US undergraduates, and ordinary Itzaj (Maya Amerindians people from Guatemala) to sort two

August 5, 2005 v 1.0b 81

_ Introduction 13 Categorization

I II II

1Y \Y VI

Figure 0.14: One of the six unique configurations (i.e., it is not possible to rotate one configuration into another) of selecting
four times from eight possibilities. Adapted from Shep&#d?!

A A B
B+ A
AAD.AD

H L n 2 N
A A A/
/\m | a A A
BN N

A | O mm [

Figure 0.15: Example list of categories. Adapted from Shepaté?!

82 v 1.0b August 5, 2005

14 Decision making Introductiovm

sets (of US and Maya) of 104 bird species into categories. The results found that the categorization
choices made by the three groups of subjects were internally consistent within each group. The cor-
relation between the taxonomies, created by the categories, and a published scientific taxonomy of
US experts (0.60 US birds, 0.70 Maya birds), Itzaj (0.45, 0.61), and nonexperts (0.38, 0.34). The US
experts correlated highly with the scientific taxonomy for both sets of birds, the Itzaj only correlated
highly for Maya birds, and the nonexperts had a low correlation for either set of birds. The reasons
given for the Maya choices varied between the expert groups; US experts were based on scientific
taxonomy, Itzaj were based on ecological justifications (the birds relationship with its environment).
Cultural differences were found in that, for instance, US subjects were more likely to generalise from
songbirds, while the Itzaj were more likely to generalize from perceptually striking birds.

« A study by Proffitt, Coley, and Medif”8l told three kinds of tree experts (landscape gardeners, parks
maintenance workers, scientists researching trees) about a new disease that affected two kinds of tree
(e.g., Horsechestnut and Ohio buckeye). Subjects were then asked what other trees they thought
might also be affected by this disease. The results showed differences between kinds of experts in the
kinds of justifications given for the answers. For instance, landscapers and maintenance workers used
more causal/ecological explanations (tree distribution, mechanism of disease transmission, resistance,
and susceptibility) and fewer similarity-based justifications (species diversity and family size). For
taxonomists this pattern was reversed.

14 Decision making

Writing source code is not a repetitive process. Developers have to think about what they are going to
write, which means they have to make decisions. Achieving the stated intent of these coding gugccingrpes
(minimizing the cost of ownership source code) requires that they be included in this, developer, d&ﬁl&l%fas
making process. noduetion

There has been a great deal of research into how and why people make decisions in various contexts.
For instance, consumer research trying to predict how a shopper will decide among packets of soap powder
on a supermarket shelf. While the items being compared and their attributes vary (e.g., which soap will
wash the whitest, should arf statement or awitch statement be used; which computer is best), the same
underlying set of mechanisms appear to be used, by people, in making decisions.

The discussion in this section has been strongly influencethieyAdaptive Decision Makdry Payne,
Bettman, and Johnsdt8 The model of human decision making proposed by Payne et al. is based on the
idea that people balance the predicted cognitive effort required to use a particular decision-making strategy
against the likely accuracy achieved by that decision-making strategy. The book lists the following major
assumptions:

L . . 018]
 Decision strategies are sequences of mental operations that can be usefully represented as produégtf’éfﬂg
of the form IF (condition 1, . . ., condition n) THEN (action 1, . . . , action m).
» The cognitive effort needed to reach a decision using a particular strategy is a function of the number and
type of operators (productions) used by that strategy, with the relative effort levels of various strategies
contingent on task environments.

« Different strategies are characterized by different levels of accuracy, with the relative accuracy levels of
various strategies contingent on task environments.

» As aresult of prior experiences and training, a decision maker is assumed to have more than one strategy
(sequence of operations) available to solve a decision problem of any complexity.

« Individuals decide how to decide primarily by considering both the cognitive effort and the accuracy of
the various strategies.

» Additional considerations, such as the need to justify a decision to others or the need to minimize the
conflict inherent in a decision problem, may also impact strategy selection.

August 5, 2005 v 1.0b 83

_ Introduction 14 Decision making

e The decision of how to decide is sometimes a conscious choice and sometimes a learned contingency
among elements of the task and the relative effort and accuracy of decision strategies.

 Strategy selection is generally adaptive and intelligent, if not optimal.

14.1 Decision-making strategies
Before a decision can be made it is necessary to select a decision-making strategy. For instance, a develop
who is given an hour to write a program knows there is insufficient time for making complicated trade-offs
among alternatives. When a choice needs to be made, the likely decision-making strategy adopted would b
_ _ to compare the values of a single attribute, the estimated time required to write the code (a decision-making
lexicographic o . . L.
secjeuristic strategy based on looking at the characteristics of a single attribute is known as the lexicographic heuristic).

Researchers have found that people use a number of different decision-making strategies. In this sectio
we discuss some of these strategies and the circumstances under which people might apply them. Th
list of strategies discussed in the following subsections is not exhaustive, but it does cover many of the
decision-making strategies used when writing software.

The strategies differ in several ways. For instance, some make trade-offs among the attributes of the
alternatives (making it possible for an alternative with several good attributes to be selected instead of the
alternative whose only worthwhile attribute is excellent), while others make no such trade-offs. From the
human perspective, they also differ in the amount of information that needs to be obtained and the amoun
of (brain) processing needed to make a decision. A theoretical analysis of the cost of decision making is
given by Shugaft178l

14.1.1 The weighted additive rule
weighted additve The weighted additive rule requires the greatest amount of effort, but delivers the most accurate result. It
rule also requires that any conflicts among different attributes be confronted. Confronting conflict is something,
as we shall see later, that people do not like doing. This rule consists of the following steps:

1. Build a list of attributes for each alternative.
2. Assign a value to each of these attributes.

3. Assign a weight to each of these attributes (these weights could, for instance, reflect the relative
importance of that attribute to the person making the decision, or the probability of that attribute
occurring).

4. For each alternative, sum the product of each of its attributes’ value and weight.

5. Select the alternative with the highest sum.

An example, where this rule might be applied, is in deciding whether an equality test against zero should be
made before the division of two numbers inside a loop. Attributes might include performance and reliability.
If a comparison against zero is made the performance will be decreased by some amount. This disadvantag
will be given a high or low weight depending on whether the loop is time-critical or not. The advantage is
that reliability will be increased because the possibility of a divide by zero can be avoided. If a comparison
against zero is not made, there is no performance penalty, but the reliability could be affected (it is necessan
to take into account the probability of the second operand to the divide being zero).

14.1.2 The equal weight heuristic

The equal weight heuristic is a simplification of the weighted additive rule in that it assigns the same weight
to every attribute. This heuristic might be applied when accurate information on the importance of each
attribute is not available, or when a decision to use equal weights has been made.

84 v 1.0b August 5, 2005

14 Decision making Introductiovm

14.1.3 The frequency of good and bad features heuristic
People do not always have an evaluation function for obtaining the value of an attribute. A simple estimate
in terms of good/bad is sometimes all that is calculated (looking at things in black and white). By reducing
the range of attribute values, this heuristic is a simplification of the equal weight heuristic, which in turn is
a simplification of the weighted additive rule. This rule consists of the following steps:

1. List the good and bad attributes of every alternative.
2. Calculate the sum of each attributes good and the sum of its bad attributes.

3. Select the alternative with the highest count of either good or bad attributes, or some combination of
the two.

A coding context, where a good/bad selection might be applicable, occurs in choosing the type of an object.
If the object needs to hold a fractional part, it is tempting to use a floating type rather than an integer type
(perhaps using some scaling factor to enable the fractional part to be represented). Drawing up a list of good
and bad attributes ought to be relatively straight-forward; balancing them, to select a final type, might be a
little more contentious

14.1.4 The majority of confirming dimensions heuristic
While people may not be able to explicitly state an evaluation function that provides a numerical measure
of an attribute, they can often give a yes/no answer to the quedtiadhe value of attribute X greater (or
less) for alternative A compared to alternative.BPhis enables them to determine which alternative has
the most (or least) of each attribute. This rule consists of the following steps:

. Select a pair of alternatives.

. Compare each matching attribute in the two alternatives.

. Select the alternative that has the greater number of winning attributes.

. Pair the winning alternative with an uncompared alternative and repeat the compare/select steps.
5. Once all alternatives have been compared at least once, the final winning alternative is selected.

A WODN P

In many coding situations there are often only two viable alternatives. Pairwise comparison of their at-
tributes could be relatively easy to perform. For instance, when deciding whether to use a sequénce of
statements or switch statement, possible comparison attributes include efficiency of execution, readability,
ease of changeability (adding new cases, deleting, or merging existing ones).

14.1.5 The satisficing heuristic
The result of the satisficing heuristic depends on the order in which alternatives are checked and often deesficing
not check all alternatives. Such a decision strategy, when described in this way, sounds unusual, Qetidt ‘i{.ﬁ,ﬁ'g

simple to perform. This rule consists of the following steps:

1. Assign a cutoff, or aspirational, level that must be met by each attribute.
2. Perform the following for each alternative:

¢ Check each of its attributes against the cutoff level, rejecting the alternative if the attribute is
below the cutoff.
« If there are no attributes below the cutoff value, accept this alternative.

3. If no alternative is accepted, revise the cutoff levels associated the attributes and repeat the previous
step.

An example of the satisficing heuristic might be seen when selecting a library function to return some
information to a program. The list of attributes might include the amount of information returned and the
format it is returned in (relative to the format it is required to be in). Once a library function meeting the

developers’ minimum aspirational level has been found, additional effort is not usually invested in finding
a better alternative.

August 5, 2005 v 1.0b 85

_ Introduction 14 Decision making

14.1.6 The lexicographic heuristic

lexicographic The lexicographic heuristic has a low effort cost, but it might not be very accurate. It can also be intransitive;
_QS;‘{S'?S,? mak. With X preferred to Y, Y preferred to Z, and Z preferred to X. This rule consists of the following steps:
ing

1. Determine the most important attribute of all the alternatives.
2. Find the alternative that has the best value for the selected most important attribute.

3. If two or more alternatives have the same value, select the next most important attribute and repeat
the previous step using the set of alternatives whose attribute values tied.

4. The result is the alternative having the best value on the final, most important, attribute selected.

An example of the intransitivity that can occur, when using this heuristic, might be seen when writing
software for embedded applications. Here the code has to fit within storage units that occur in fixed-size
increments (e.g., 8K chips). It may be possible to increase the speed of execution of an application by
writing code for specific special cases; or have generalized code that is more compact, but slower. We migh
have the following, commonly seen, alternatives (see Taldl®.

Table 0.11: Storage/Execution performance alternatives.

Alternative Storage Needed Speed of Execution

X 7K Low
Y 15K High
Zz 10K Medium

Based on storage needed, X is preferred to Y. But because storage comes in 8K increments there i
no preference, based on this attribute, between Y and Z; however, Y is preferred to Z based on speed o
execution. Based on speed of execution Z is preferred to X.

14.1.6.1 The elimination-by-aspects heuristic
The elimination-by-aspects heuristic uses cutoff levels, but it differs from the satisficing heuristic in that

alternatives are eliminated because their attributes fall below these levels. This rule consists of the following
steps:
1. The attributes for all alternatives are ordered (this ordering might be based on some weighting scheme)

2. For each attribute in turn, starting with the most important, until one alternative remains:

» Select a cutoff value for that attribute.
« Eliminate all alternatives whose value for that attribute is below the cutoff.

3. Select the alternative that remains.

This heuristic is often used when there are resource limitations, for instance, deadlines to meet, performanc
levels to achieve, or storage capacities to fit within.

14.1.7 The habitual heuristic

The habitual heuristic looks for a match of the current situation against past situations, it does not contain any
evaluation function (although there are related heuristics that evaluate the outcome of previous decisions’
This rule consists of the step:

1. select the alternative chosen last time for that situation.

86 v 1.0b August 5, 2005

14 Decision making Introductiovm

Your author’s unsubstantiated claim is that this is the primary decision-making strategy used by software
developers.
Sticking with a winning solution suggests one of two situations:

1. So little is known that once a winning solution is found, it is better to stick with it than to pay the cost
(time and the possibility of failure) of looking for a better solution that might not exist.

2. The developer has extensively analyzed the situation and knows the best solution.

Coding decisions are not usually of critical importance. There are many solutions that will do a satisfactory
job. It may also be very difficult to measure the effectiveness of any decision, because there is a significant
delay between the decision being made and being able to measure its effect. In many cases, it is almost
impossible to separate out the effect of one decision from the effects of all the other decisions made (there
may be a few large coding decisions, but the majority are small ones).

A study by Kleid”?% describes how fireground commanders use their experience to size-up a situatieeognition-
very rapidly. Orders are given to the firefighters under their command without any apparent decisionsﬂg%igg{?qmﬁg
made (in their interviews they even found a fireground commander who claimed that neither he, nor other
commanders, ever made decisions; they knew what to do). Klein calls this strategnition-primed
decision making

14.2 Selecting a strategy

Although researchers have uncovered several decision-making strategies that people use, their existence
does not imply that people will make use of all of them. The strategies available to individuals can vary
depending on their education, training, and experience. A distinction also needs to be made between a
person’s knowledge of a strategy (through education and training) and their ability to successfully apply it
(perhaps based on experience).

The task itself (that creates the need for a decision to be made) can affect the strategy used. These task
effects include task complexity, the response mode (how the answer needs to be given), how the information
is displayed, and context. The following subsections briefly outline these effects.

14.2.1 Task complexity

In general the more complex the decision, the more people will tend to use simplifying heuristics. tafh@mplexity
following factors influence complexity: decision making

< Number of alternativesAs the number of alternatives that need to be considered grows, there are
shifts in the decision-making strategy used.

« Number of attributesIncreasing the number of attributes increases the confidence of people’s judg-
ments, but it also increases their variability. The evidence for changes in the quality of decision
making, as the number of attributes increases, is less clear-cut. Some studies show a decrease in qual-
ity; it has been suggested that people become overloaded with information. There is also the problem
of deciding what constitutes a high-quality decision.

» Time pressurePeople have been found to respond to time pressure in one of several ways. Some
respond by accelerating their processing of information, others respond by reducing the amount of
information they process (by filtering the less important information, or by concentrating on certain
kinds of information such as negative information), while others respond by reducing the range of
ideas and actions considered.

14.2.2 Response mode

There are several different response modes. For instance, a choice response mode frames the alternatives
in terms of different choices; a matching response mode presents a list of questions and answers and the

August 5, 2005 v 1.0b 87

_ Introduction 14 Decision making

decision maker has to provide a matching answer to a question; a bidding response mode requires a valu
to be given for buying or selling some object. There are also other response modes, that are not listed here

The choice of response mode, in some cases, has been shown to significantly influence the preferre
alternatives. In extreme cases, making a decision may result in X being preferred to Y, while the mathemat
ically equivalent decision, presented using a different response mode, can result in Y being preferred to X
For instance, in gambling situations it has been found that people will prefer X to Y when asked to select
between two gambles (where X has a higher probability of winning, but with lower amounts), but when
asked to bid on gambles they prefer Y to X (with Y representing a lower probability of winning a larger
amount).

Such behavior breaks what was once claimed to be a fundamental principle of rational decision theory,
procedure invarianceThe idea behind this principle was that people had an invariant (relatively) set of in-
ternal preferences that were used to make decisions. These experiments showed that sometimes preferenc
are constructed on the fly. Observed preferences are likely to take a person’s internal preferences and th
heuristics used to construct the answer into account.

Code maintenance is one situation where the task can have a large impact on how the answer is selecte
When small changes are made to existing code, many developers tend to operate in a matching mod
choosing constructs similar, if not identical, to the ones in the immediately surrounding lines of code. If
writing the same code from scratch, there is nothing to match, another response mode will necessarily nee
to be used in deciding what constructs to use.

A lot of the theoretical discussion on the reasons for these response mode effects has involved distinguiskt
ing between judgment and choice. People can behave differently, depending on whether they are asked t
make a judgment or a choice. When writing code, the difference between judgment and choice is not always
clear-cut. Developers may believe they are making a choice between two constructs when in fact they have
already made a judgment that has reduced the number of alternatives to choose between.

Writing code is open-ended in the sense that theoretically there are an infinite number of different ways
of implementing what needs to be done. Only half a dozen of these might be considered sensible ways
of implementing some given functionality, with perhaps one or two being commonly used. Developers
often limit the number of alternatives under consideration because of what they perceive to be overriding
external factors, such as preferring an inline solution rather than calling a library function because of alleged
quality problems with that library. One possibility is that decision making during coding be considered as a
two-stage process, using judgment to select the alternatives, from which one is chosen.

14.2.3 Information display

Studies have shown that how information, used in making a decision, is displayed can influence the choice
of a decision-making stratedy>” These issues include: only using the information that is visible (the
concreteness principle), the difference between available information and processable information (display
ing the price of one brand of soap in dollars per ounce, while another brand displays francs per kilogram),
the completeness of the information (people seem to weigh common attributes more heavily than unique
ones, perhaps because of the cognitive ease of comparison), and the format of the information (e.g., digit:
or words for numeric values).

What kind of information is on display when code is being written? A screen’s worth of existing code
is visible on the display in front of the developer. There may be some notes to the side of the display. All
other information that is used exists in the developer’s head.

Existing code is the result of past decisions made by the developer; it may also be modified by future
decisions that need to be made (because of a need to modify the behavior of this existing code). Fol
instance, the case in which another conditional statement needs to be added within a deeply nested series
conditionals. The information display (layout) of the existing code can affect the developer’s decision about
how the code is to be modified (a function, or macro, might be created instead of simply inserting the new
conditional). Here the information display itself is an attribute of the decision making (code wrapping, at
the end of a line, is an attribute that has a yes/no answer).

88 v 1.0b August 5, 2005

14 Decision making Introductiovm

in line or function or macro in line or function or macro
in line or function macro in line function or macro
in line function function macro

Figure 0.16: Decisions based on different pair-wise associations.

14.2.4 Agenda effects

The agenda effect occurs when the order in which alternatives are considered influences the final asstieestects
For instance, take alternatives X, Y, and Z and group them into some form of hierarchy before perforrfiifigj°a making
selection. When asked to choose between the pair [X, Y] and Z (followed by a choice between X and Y if

that pair is chosen) and asked to choose between the pair [X, Z] and Y (again followed by another choice if

that pair is chosen), an agenda effect would occur if the two final answers were different.

An example of the agenda effect is the following. When writing coding, it is sometimes necessary to
decide between writing in line code, using a macro, or using a function. These three alternatives can be
grouped into a natural hierarchy depending on the requirements. If efficiency is a primary concern, the first
decision may be betweehin line, macro] andfunction, followed by a decision betweein line
andmacro (if that pair is chosen). If we are more interested in having some degree of abstraction, the first
decision is likely to be betweelmacro, function] andin line (see Figurd.16).

In the efficiency case, if performance is important in the context of the decisianline, macro] is
likely to be selected in preferencefanction. Once this initial choice has been made other attributes can
be considered (since both alternatives have the same efficiency). We can now decide whether abstraction is
considered important enough to seheatro overin line.

If the initial choice had been betweg¢macro, function] andin line, the importance of efficiency
would have resulted iin 1ine being chosen (when paired wiflanction, macro appears less efficient by
association).

14.2.5 Matching and choosing

When asked to make a decision basednmatching a person is required to specify the value of somematching and
variable such that two alternatives are considered to be equivalent. For instance, how much time shouff°°s"9
be spent testing 200 lines of code to make it as reliable as the 500 lines of code that has had 10 hours of
testing invested in it? When asked to make a decision baseti@oe a person is presented with a set of
alternatives and is required to specify one of them.

A study by Tversky, Sattath, and SloWt®! investigated thgrominence hypothesid his proposes that
when asked to make a decision based on choice, people tend to use the prominent attributes of the options
presented (adjusting unweighted intervals being preferred for matching options). Their study suggested that
there were differences between the mechanisms used to make decisions for matching and choosing.

14.3 The developer as decision maker

The writing of source code would seem to require developers to make a very large number of decisions.
However, experience shows that developers do not appear to be consciously making many decisions con-
cerning what code to write. Most decisions being made involve issues related to the mapping from the
application domain, choosing algorithms, and general organizational issues (i.e., where functions or objects
should be defined).

Many of the coding-level decisions that need to be made occur again and again. Within a year or so,

August 5, 2005 v 1.0b 89

_ Introduction 14 Decision making

recognition- o
primed
decision making

attention o

1.0 — WADD
ﬁ‘ EQW
8 0.75
s
< MCD
§ 0.5 — LEX
5 ' EBA
Q
2
2 025
=
&

0 | | | |
0 50 100 150 200
Effort

Figure 0.17: Effort and accuracy levels for various decision-making strategies; EBA (Elimination-by-aspects heuristic), EQW
(equal weight heuristic), LEX (lexicographic heuristic), MCD (majority of confirming dimensions heuristic), RC (Random
choice), and WADD (weighted additive rule). Adapted from Pal}RE!

in full-time software development, sufficient experience has usually been gained for many decisions to be
reduced to matching situations against those previously seen, and selecting the corresponding solution. Fc
instance, the decision to use a seriesiffstatements or awitch statement might require the pattern
same variable tested against integer constant and more than two tests ard¢ortslue before awitch
statement is used. This is what KIEf! calls recognition-primed decision making. This code writing
methodology works because there is rarely a need to select the optimum alternative from those available.

Some decisions occur to the developer as code is being written. For instance, a developer may notice
that the same sequence of statements, currently being written, was written earlier in a different part of the
source (or perhaps it will occur to the developer that the same sequence of statements is likely to be neede
in code that is yet to be written). At this point the developer has to make a decision about making a decision
(metacognition). Should the decision about whether to create a function be put off until the current work
item is completed, or should the developer stop what they are currently doing to make a decision on whethel
to turn the statement sequence into a function definition? Remembering work items and metacognitive
decision processes are handled by a developer’s attention. The sulgéendibnis discussed elsewhere.

Just because developers are not making frequent, conscious decisions does not mean that their choic
are consistent and repeatable (they will always make the same decision). There are a number of both intern:
and external factors that may affect the decisions made. Researchers have uncovered a wide range of issu
a few of which are discussed in the following subsections.

14.3.1 Cognitive effort vs. accuracy

effort vs. accuracy People like to make accurate decisions with the minimum of effort. In practice, selecting a decision-making

decision making

cost/accuracy
trade-off

developer
flow

strategy requires trading accuracy against effort (or to be exact, expected effort making the decision; the
actual effort required can only be known after the decision has been made).

The fact that people do make effort/accuracy trade-offs is shown by the results from a wide range of
studies (this issue is also discussed elsewhere, and Payn&%¢l aliscuss this topic in detail). See
Figure0.17for a comparison.

The extent to which any significant cognitive effort is expended in decision making while writing code
is open to debate. A developer may be expending a lot of effort on thinking, but this could be related to
problem solving, algorithmic, or design issues.

One way of performing an activity that is not much talked aboutiois— performing an activity with-
out any conscious effort— often giving pleasure to the performer. A best-selling book on the subject of
flow(?%4l is subtitled “The psychology of optimal experience”, something that artistic performers often talk
about. Developers sometimes talkgafing with the flowor just letting the writing flowwhen writing code;

90 v 1.0b August 5, 2005

14 Decision making Introductiovm

something writers working in any medium might appreciate. However, it is your author’'s experience that
this method of working often occurs when deadlines approach and developers are faced with writing a lot
of code quickly. Code written usiniipw is often very much like a river; it has a start and an ending, but
between those points it follows the path of least resistance, and at any point readers rarely have any idea of
where it has been or where it is going. While works of fiction may gain from being written in this way, the
source code addressed by this book is not intended to be read for enjoyment. While developers may enjoy
spending time solving mysteries, their employers do not want to pay them to have to do so.

Code written usindlow is not recommended, and is not discussed further here. The use of intuition is
discussed elsewhere. o developer

intuition

14.3.2 Which attributes are considered important?

Developers tend to consider mainly technical attributes when making decisions. Economic attributes aieveloper
often ignored, or considered unimportant. No discussion about attributes would be complete without men- ™"
tioning fun. Developers have gotten used to the idea that they can enjoy themselves at workumloing
things. Alternatives that have a negative value for the fun attribute, and a large positive value for the time to
carry out attribute are often quickly eliminated.

The influence of developer enjoyment on decision making, can be seen in many developers’ preference
for writing code, rather than calling a library function. On a larger scale, the often-heard developer rec-
ommendation for rewriting a program, rather than reengineering an existing one, is motivated more by the
expected pleasure of writing code than the economics (and frustration) of reengineering.

One reason for the lack of consideration of economic factors is that many developers have no training, or
experience in this area. Providing training is one way of introducing an economic element into the attributes
used by developers in their decision making.

14.3.3 Emotional factors
Many people do not like being in a state of conflict and try to avoid it. Making a decision can create conflictjeveloper
by requiring one attribute to be traded off against another. For instance, having to decide wheth@#°ifg facters
more important for a piece of code to execute quickly or reliably. It has been argued that people wiﬂmgﬂ
strategies that involve difficult, emotional, value trade-offs.

Emotional factors relating to source code need not be limited to internal, private developer decision
making. During the development of an application involving more than one developer, particular parts
of the source are often considered todvenedby individual developer’s. A developer asked to work on
another developers source code, perhaps because that person is away, will sometimes feel the need to adopt
thestyleof that developer, making changes to the code in a way that is thought to be acceptable to the absent
developer. Another approach is to ensure that the changes stand out frommiiiescode. On the owning
developer’s return, the way in which changes were made is explained. Because they stand out, developers
can easily see what changes were madéeo code and decide what to do about them.

People do not like to be seen to make mistakes. It has been préifBstdit people have difficulty
using a decision-making strategy, that makes it explicit that there is some amount of error in the selected
alternative. This behavior occurs even when it can be shown that the strategy would lead to better, on
average, solutions than the other strategies available.

ule

14.3.4 Overconfidence
A person is overconfident when their belief in a proposition is greater than is warranted by the informati@anfidence
available to them. It has been argued that overconfidence is a useful attribute that has been selected for by
evolution. Individuals who overestimates their ability are more likely to undertake activities they would not
otherwise have been willing to do. Taylor and Brd¥f?! argue that a theory of mental health defined in
terms of contact with reality does not itself have contact with reality: “Rather, the mentally healthy person
appears to have the enviable capacity to distort reality in a direction that enhances self-esteem, maintains
beliefs in personal efficacy, and promotes an optimistic view of the future.”

Numerous studies have shown that most people are overconfident about their own abilities compared

August 5, 2005 v 1.0b 91

_ Introduction 14 Decision making

confirma- o
tion bias

with others. People can be overconfident in their ability for several reasons: confirmation bias can lead to
available information being incorrectly interpreted; a person’s inexpert calibration (the degree of correlation
between confidence and performance) of their own abilities is another reason. A recelit3tody also
highlighted the importance of the how, what, and whom of questioning in overconfidence studies. In some
cases, it has been shown to be possible to make overconfidence disappear, depending on how the questior
asked, or on what question is asked. Some results also show that there are consistent individual difference
in the degree of overconfidence.

Charles Darwin, . .
In The descentof ignorance more frequently begets confidence than does knowledge

man 1871, p. 3

A study by Glenberg and Epstéi#! showed the danger of a little knowledge. They asked students, who
were studying either physics or music, to read a paragraph illustrating some central principle (of physics or
music). Subjects were asked to rate their confidence in being able to accurately answer a question abot
the text. They were then presented with a statement drawing some conclusion about the text (it was eithe
true or false), which they had to answer. They then had to rate their confidence that they had answered the
question correctly. This process was repeated for a second statement, which differed from the first in having
the opposite true/false status.

The results showed that the more physics or music courses a subject had taken, the more confident the
were about their own abilities. However, a subject’s greater confidence in being able to correctly answer
a question, before seeing it, was not matched by a greater ability to provide the correct answer. In fact as
subjects’ confidence increased, the accuracy of the calibration of their own ability went down. Once they
had seen the question, and answered it, subjects were able to accurately calibrate their performance.

Subjects did not learn from their previous performances (in answering questions). They could have used
information on the discrepancy between their confidence levels before/after seeing previous questions tc
improve the accuracy of their confidence estimates on subsequent questions.

The conclusion drawn by Glenberg and Epstein was that subjects’ overconfidence judgments were base
on self-classification as an expert, within a domain, not the degree to which they comprehended the text.

A study by Lichtenstein and Fishh8f! discovered a different kind of overconfidence effect. As the
difficulty of a task increased, the accuracy of people’s estimates of their own ability (to perform the task)
decreased. In their study, Lichtenstein and Fishhoff asked subjects general knowledge questions. Th
questions were divided into two groups, hard and easy. The results in RdiB8eshow that subjects’
overestimated their ability (bottom scale) to correctly answer (actual performance, left scale) hard questions
On the other hand, they underestimated their ability to answer easy questions. The responses of a persc
with perfect self-knowledge are given by the solid line.

These, and subsequent results, show that the skills and knowledge that constitute competence in a parti
ular domain are the same skills needed to evaluate one’s (and other people’s) competence in that domai
People who do not have these skills and knowledge lack metacognition (the name given by cognitive psy-
chologists to the ability of a person to accurately judge how well they are performing). In other words, the
knowledge that underlies the ability to produce correct judgment is the same knowledge that underlies the
ability to recognize correct judgment.

Some very worrying results, about what overconfident people will do, were obtained in a study performed
by Arkes, Dawes, and Christenséf. This study found that subjects used a formula (that calculated the
best decision in a probabilistic context) provided to them as part of the experiment less when incentives
were provided or the subjects thought they had domain expertise. This behavior even continued when the
subjects were given feedback on the accuracy of their own decisions. The explanation, given by Arkes et al.
was that when incentives were provided, people changed decision-making strategies in an attempt to bee
the odds. Langé&® calls this behaviothe illusion of contral

Developers overconfidence and their aversion to explicit errors can sometimes be seen in the handling
of floating-point calculations. A significant amount of mathematical work has been devoted to discovering

92 v 1.0b August 5, 2005

14 Decision making Introductiovm

1.0 —

0.9 —

0.8 —

0.7 —|

0.6 —&

Proportion correct

0.5

l\‘

0.6 0.7 0.8 0.9 1.0

Subjects’ response

Figure 0.18: Calibration of hard and easy questions. Adapted from Lichten§&in.

the bounds on the errors for various numerical algorithms. Sometimes it has been proved that the error
in the result of a particular algorithm is the minimum error attainable (there is no algorithm whose result
has less error). This does not seem to prevent some developers from believing that they can design a more
accurate algorithm. Phrases, suchn@san errorandaverage error in the presentation of an algorithms

error analysis do not help. An overconfident developer could take this as a hint that it is possible to do better
for the conditions that prevail in his (or her) application (and not having an error analysis does not disprove

it is not better).

14.4 The impact of guideline recommendations on decision making

A set of guidelines can be more than a list of recommendations that provide a precomputed decision matrix.
A guidelines document can provide background information. Before making any recommendations, the
author(s) of a guidelines document need to consider the construct in detail. A good set of guidelines will
document these considerations. This documentation provides a knowledge base of the alternatives that
might be considered, and a list of the attributes that need to be taken into account. Ideally, precomputed
values and weights for each attribute would also be provided. At the time of this writing your author only
has a vague idea about how these values and weights might be computed, and does not have the raw data
needed to compute them.

A set of guideline recommendations can act as a lightening rod for decisions that contain an emotional
dimension. Adhering to coding guidelines being the justification for the decision that needs to bé'ﬁi@@%
Having to justify decisions can affect the decision-making strategy used. If developers are expected to
adhere to a set of guidelines, the decisions they make could vary depending on whether the code they write
is independently checked (during code review, or with a static analysis tool).

14.5 Management’s impact on developers’ decision making

Although lip service is generally paid to the idea that coding guidelines are beneficial, all developers seem
to have heard of a case where having to follow guidelines has been counterproductive. In practice, when first
introduced, guidelines are often judged by both the amount of additional work they create for developers and
the number of faults they immediately help locate. While an automated tool may uncover faults in existing
code, this is not the primary intended purpose of using these coding guidelines. The cost of adhering to
guidelines in the present is paid by developers; the benefit is reaped in the future by the owners of the
software. Unless management successfully deals with this cost/benefit situation, developers could decide it
is not worth their while to adhere to guideline recommendations.

What factors, controlled by management, have an effect on developers’ decision making? The following
subsections discuss some of them.

August 5, 2005 v 1.0b 93

_ Introduction 14 Decision making

14.5.1 Effects of incentives
Some deadlines are sufficiently important that developers are offered incentives to meet them. Studies, ol
use of incentives, show that their effect seems to be to make people work harder, not necessarily smarter.

Increased effort is thought to lead to improved results. Research by Paese and!SRidaskd that
increased effort led to increased confidence in the result, but without there being any associated increase i
decision accuracy.

Before incentives can lead to a change of decision-making strategies, several conditions need to be met

» The developer must believe that a more accurate strategy is required. Feedback on the accurac
of decisions is the first step in highlighting the need for a different strdt&gybut it need not be
sufficient to cause a change of strategy.

* Abetter strategy must be available. The information needed to be able to use alternative strategies ma
not be available (for instance, a list of attribute values and weights for a weighted average strategy).

¢ The developer must believe that they are capable of performing the strategy.

14.5.2 Effects of time pressure

Research by Payne, Bettman, and Johi$8fi,and others, has shown that there is a hierarchy of responses
for how people deal with time pressure:

1. They work faster.
2. If that fails, they may focus on a subset of the issues.
3. If that fails, they may change strategies (e.g., from alternative based to attribute based).

If the time pressure is on delivering a finished program, and testing has uncovered a fault that requires
changes to the code, then the weighting assigned to attributes is likely to be different than during initial
development. For instance, the risk of a particular code change impacting other parts of the program is
likely to be a highly weighted attribute, while maintainability issues are usually given a lower weighting as
deadlines approach.

14.5.3 Effects of decision importance
Studies investigating at how people select decision-making strategies have found that increasing the benef
for making a correct decision, or having to make a decision that is irreversible, influences how rigorously a
strategy is applied, not which strategy is app€d.

The same coding construct can have a different perceived importance in different contexts. For instance
defining an object at file scope is often considered to be a more important decision than defining one in
block scope. The file scope declaration has more future consequences than the one in block scope.

An irreversible decision might be one that selects the parameter ordering in the declaration of a library
function. Once other developers have included calls to this function in their code, it can be almostimpossible
(high cost/low benefit) to change the parameter ordering.

14.5.4 Effects of training
A developer’s training in software development is often done using examples. Sample programs are usec
to demonstrate the solutions to small problems. As well as learning how different constructs behave, and
how they can be joined together to create programs, developers also learn what attributes are considered:
be important in source code. They learn the implicit information that is not written down in the text books.
Sources of implicit learning include the following:

¢ The translator used for writing class exercis@dl.translators have their idiosyncrasies and beginners
are not sophisticated enough to distinguish these from truly generic behavior. A developer’s first
translator usually colors his view of writing code for several years.

94 v 1.0b August 5, 2005

14 Decision making Introductiovm

Personal experiences during the first few months of trainifitnere are usually several different

alternatives for performing some operation. A bad experience (perhaps being unable to get a program
that used a block scope array to work, but when the array was moved to file scope the program
worked) with some construct can lead to a belief that use of that construct was problem-prone and to
be avoided (all array objects being declared, by that developer, at file scope and never in block scope).

Instructor biasesThe person teaching a class and marking submitted solutions will impart their own
views on what attributes are important. Efficiency of execution is an attribute that is often considered
to be important. Its actual importance, in most cases, has declined from being crucial 50 years ago
to being almost a nonissue today. There is also the technical interest factor in trying to write code
as efficiently as possible. A related attribute is program size. Praise is more often given for short
programs, rather than longer ones. There are applications where the size of the code is important,
but generally time spent writing the shortest program is wasted (and may even be more difficult to
comprehend than a longer program).

Consideration for other developer®evelopers are rarely given practical training on how to read
code, or how to write code that can easily be read by others. Developers generally believe that any
difficulty others experience in comprehending their code is not caused by how they wrote it.

Preexisting behavior.Developers bring their existing beliefs and modes of working to writing C
source. These can range from behavior that is not software-specific, such as the inability to ignore
sunk costs (i.e., wanting to modify an existing piece of code, they wrote earlier, rather than throw it
away and starting again; although this does not seem to apply to throwing away code written by other
people), to the use of the idioms of another language when writing in C.

Technically basedMost existing education and training in software development tends to be based
on purely technical issues. Economic issues are not usually raised formally, although informally
time-to-completion is recognized as an important issue.

Unfortunately, once most developers have learned an initial set of attribute values and weightings for source
code constructs, there is usually a long period of time before any subsequent major tuning or relearning
takes place. Developers tend to be too busy applying their knowledge to question many of the underlying
assumptions they have picked up along the way.

Based on this background, it is to be expected that many developers will harbonayfesabout what
constitutes a good coding decision in certain circumstances. These coding guidelines cannot address all
coding myths. Where appropriate, coding myths commonly encountered by your author are discussed.

14.5.5 Having to justify decisions
Studies have found that having to justify a decision can affect the choice of decision-making strategy to bgstifying
used. For instance, Tetlock and Boettf&# found that subjects who were accountable for their decisions 9e¢sions
used a much wider range of information in making judgments. While taking more information into account
did not necessarily result in better decisions, it did mean that additional information that was both irrelevant
and relevant to the decision was taken into account.

It has been proposed, by Tverdk§#?! that the elimination-by-aspects heuristic is easy to justify. How-
ever, while use of this heuristic may make for easier justification, it need not make for more accurate
decisions.

A study performed by Simons8#?° showed that subjects who had difficulty determining which alter-
native had the greatest utility tended to select the alternative that supported the best overall reasons (for
choosing it).

Tetlock'?8% included an accountability factor into decision-making theory. One strategy that handles
accountability as well as minimizing cognitive effort is to select the alternative that the perspective audience
(i.e., code review members) is thought most likely to select. Not knowing which alternative they are likely

August 5, 2005 v 1.0b 95

_ Introduction 15 Expertise

developer o

developer
intuition

expertise

flow

to select can lead to a more flexible approach to strategies. The exception occurs when a person has alrea
made the decision; in this case the cognitive effort goes into defending that decision.

During a code review, a developer may have to justify why a particular decision was made. While
developers know that time limits will make it very unlikely that they will have to justify every decision, they
do not know in advance which decisions will have to be justified. In effect, the developer will feel the need
to be able to justify most decisions.

Requiring developers to justify why they have not followed a particular guideline recommendation can
be a two-edged sword. Developers can respond by deciding to blindly follow guidelines (the path of least
resistance), or they can invest effort in evaluating, and documenting, the different alternatives (not neces
sarily a good thing since the invested effort may not be warranted by the expected benefits). The extent
to which some people will blindly obey authority was chillingly demonstrated in a number of studies by
Milgram [8%€]

14.6 Another theory about decision making

The theory that selection of a decision-making strategy is based on trading off cognitive effort and accuracy
is not the only theory that has been proposed. Hammond, Hamm, Grassia, and Phpsoposed that an-

alytic decision making is only one end of a continuum; at the other end is intuition. They performed a study;,
using highway engineers, involving three tasks. Each task was designed to have specific characteristics (se
Table0.12). One task contained intuition-inducing characteristics, one analysis-inducing, and the third an
equal mixture of the two. For the problems studied, intuitive cognition outperformed analytical cognition
in terms of the empirical accuracy of the judgments.

Table 0.12: Inducement of intuitive cognition and analytic cognition, by task conditions. Adapted from Hanif8hd.

Task Characteristic Intuition-Inducing State of Analysis-Inducing State of Task
Task Characteristic Characteristic

Number of cues Large (>5) Small

Measurement of cues Perceptual measurement Objective reliable measurement

Distribution of cue values Continuous highly variable Unknown distribution; cues are
distribution dichotomous; values are discrete

Redundancy among cues High redundancy Low redundancy

Decomposition of task Low High

Degree of certainty in task Low certainty High certainty

Relation between cues and criterion Linear Nonlinear

Weighting of cues in environmental model Equal Unequal

Availability of organizing principle Unavailable Available

Display of cues Simultaneous display Sequential display

Time period Brief Long

One of the conclusions that Hammond et al. drew from these results is that “Experts should increase their
awareness of the correspondence between task and cognition”. A task having intuition-inducing character
istics is most likely to be out carried using intuition, and similarly for analysis-inducing characteristics.

Many developers sometimes talk of writing code intuitively. Discussion of intuition and flow of con-
sciousness are often intermixed. The extent to which either intuitive or analytic decision making (if that
is how developers operate) is more cost effective, or practical, is beyond this author’s ability to even start
to answer. It is mentioned in this book because there is a bona fide theory that uses these concepts ar
developers sometimes also refer to them.

Intuition can be said to be characterized by rapid data processing, low cognitive control (the consistency
with which a judgment policy is applied), and low awareness of processing. Its opposite, analysis, is char-
acterized by slow data processing, high cognitive control, and high awareness of processing.

15 Expertise

People are referred to as being experts, in a particular domain, for several reasons, including:

96 v 1.0b August 5, 2005

15 Expertise Introduction m

« Well-established figures, perhaps holding a senior position with an organization heavily involved in
that domain.

- Better at performing a task than the average person on the street.
« Better at performing a task than most other people who can also perform that task.

 Self-proclaimed experts, who are willing to accept money from clients who are not willing to take
responsibility for proposing what needs to be d&A8.

Schneidet!%? defines a high-performance skill as one for which (1) more than 100 hours of training are
required, (2) substantial numbers of individuals fail to develop proficiency, and (3) the performance of an
expert is qualitatively different from that of the novice.

In this section, we are interested in why some people (the experts) are able to give a task performance
that is measurably better than a non-expert (who can also perform the task).

There are domains in which those acknowledged as experts do not perform significantly better than those
considered to be non-expeR&] For instance, in typical cases the performance of medical experts was
not much greater than those of doctors after their first year of residency, although much larger differences
were seen for difficult cases. Are there domains where it is intrinsically not possible to become significantly
better than one’s peers, or are there other factors that can create a large performance difference between
expert and non-expert performances? One way to help answer this question is to look at domains where the
gap between expert and non-expert performance can be very large.

It is a commonly held belief that experts have some innate ability or capacity that enables them to do
what they do so well. Research over the last two decades has shown that while innate ability can be a factor
in performance (there do appear to be genetic factors associated with some athletic performances), the main
factor in acquiring expert performance is time sperdétiberate practicé*tl

Studies of the backgrounds of recognized experts, in many fields, found that the elapsed time between
them starting out and carrying out their best work was at least 10 years, often with several hours of deliberate
practice every day of the year. For instance, Ericsson, Krampe, and Teschl#8rfmmd that, in a study
of violinists (a perceptual-motor task), by age 20 those at the top level had practiced for 10,000 hours, those
at the next level down 7,500 hours, and those at the lowest level of expertise had practiced for 5,000 hours.
They also found similar quantities of practice being needed to attain expert performance levels in purely
mental activities (e.g., chess).

Deliberate practice is different from simply performing the task. It requires that people monitor their
practice with full concentration and obtain feedta®k on what they are doing (often from a professional
teacher). It may also involve studying components of the skill in isolation, attempting to improve on partic-
ular aspects. The goal of this practice being to improve performance, not to produce a finished product.

People often learn a skill for some purpose (e.g., chess as a social activity, programming to get a job)
without the aim of achieving expert performance. Once a certain level of proficiency is achieved, they
stop trying to learn and concentrate on using what they have learned (in work, and sport, a distinction is
made between training for and performing the activity). During everyday work, the goal is to produce a
product or to provide a service. In these situations people need to use well-established methods, not try
new (potentially dead-end, or leading to failure) ideas to be certain of success. Time spent on this kind of
practice does not lead to any significant improvement in expertise, although people may become very fluent
in performing their particular subset of skills.

What of individual aptitudes? In the cases studied by researchers, the effects of aptitude, if there are any,
have been found to be completely overshadowed by differences in experience and deliberate practice times.
What makes a person willing to spend many hours, every day, studying to achieve expert performance is
open to debate. Does an initial aptitude or interest in a subject lead to praise from others (the path to
musical and chess expert performance often starts in childhood), which creates the atmosphere for learning,
or are other issues involved? 1Q does correlate to performance during and immediately after training, but

August 5, 2005 v 1.0b 97

_ Introduction 15 Expertise

power law o
of learning

developer
knowledge

implicit o
learning

declarative knowl-
edge

procedural knowl-
edge

developer o

flow
automa- o
tization

the correlation reduces over the years. The IQ of experts has been found to be higher than the averag
population at about the level of college students.

In many fields expertise is acquired by memorizing a huge amount of, domain-specific, knowledge and
having the ability to solve problems using pattern-based retrieval on this knowledge base. The knowledge
is structured in a form suitable for the kind of information retrieval needed for problems in a dSfkin.

A study by Carlson, Khoo, Yaure, and Schneitf#é} examined changes in problem-solving activity as
subjects acquired a skill (trouble shooting problems with a digital circuit). Subjects started knowing nothing,
were given training in the task, and then given 347 problems to solve (in 28 individual, two-hour sessions,
over a 15-week period). The results showed that subjects made rapid improvements in some areas (and littl
thereafter), extended practice produced continuing improvement in some of the task components, subject
acquired the ability to perform some secondary tasks in parallel, and transfer of skills to new digital circuits
was substantial but less than perfect. Even after 56 hours of practice, the performance of subjects continue
to show improvements and had not started to level off. Where are the limits to continued improvements? A
study of workers producing cigars by Crossi¥hshowed performance improving according to the power
law of practice for the first five years of employment. Thereafter performance improvements slow; factors
cited for this slow down include approaching the speed limit of the equipment being used and the capability
of the musculature of the workers.

15.1 Knowledge

A distinction is often made between different kinds of knowledge. Declarative knowledge are the facts;
procedural knowledge are the skills (the ability to perform learned actions). Implicit memory is defined as
memory without conscious awareness— it might be considered a kind of knowledge.

15.1.1 Declarative knowledge

This consists of knowledge about facts and events. For instance, the keywords used to denote the intege
types arechar, short, int, andlong. This kind of knowledge is usually explicit (we know what we
know), but there are situations where it can be implicit (we make use of knowledge that we are not aware of
havind®!®l). The coding guideline recommendations in this book have the form of declarative knowledge.

It is the connections and relationships between the individual facts, for instance the relative sizes of
the integer types, that differentiate experts from novices (who might know the same facts). This kind of
knowledge is rather like web pages on the Internet; the links between different pages corresponding to the
connections between facts made by experts. Learning a subject is more about organizing information anc
creating connections between different items than it is about remembering information in a rotelike fashion.

This was demonstrated in a study by McKeithen, Reitman, Ruster, and Efittleyho showed that
developers with greater experience with a language organized their knowledge of language keywords in ¢
more structured fashion. Education can provide the list of facts, it is experience that provides the connections
between them.

The termknowledge basés sometimes used to describe a collection of information and links about a
given topic. The C Standard document is a knowledge base. Your author has a C knowledge base in hi
head, as do you the reader. This book is another knowledge base dealing with C. The difference betweel
this book and the C Standard document is that it contains significantly more explicit links connecting items,
and it also contains information on how the language is commonly implemented and used.

15.1.2 Procedural knowledge
This consists of knowledge about how to perform a task; it is often implicit.

Knowledge can start off by being purely declarative and, through extensive practice, becomes procedural
for instance, the process of learning to drive a car.

An experiment by Sweller, Mawer, and W&r§! showed how subjects’ behavior during mathematical
problem solving changed as they became more proficient. This suggested that some aspects of what the
were doing had been proceduralized.

There are various aspects of writing source code that can become proceduralized.

98 v 1.0b August 5, 2005

15 Expertise Introduction m

15.2 Education

What effect does education have on people who go on to become software developers? developer
education

Education should not be thought of as replacing the rules that people use for understanding the worlddayt 206 of Hol-
rather as introducing new rules that enter into competition with the old ones. People reliably distort the niewd et af>*®
rules in the direction of the old ones, or ignore them altogether except in the highly specific domains in which

they were taught.

Education can be thought of as trying to do two things (of interest to us here)— teach students skills (pro-
cedural knowledge) and providing them with information, considered important in the relevant field, to
memorize (declarative knowledge). To what extent does education in subjects not related to software devel-
opment affect a developer’s ability to write software?

Some subjects that are taught to students are claimed to teach general reasoning skills; for instance,
philosophy and logic. There are also subjects that require students to use specific reasoning skills, for
instance statistics requires students to think probabilistically. Does attending courses on these subjects
actually have any measurable effect on students’ capabilities, other than being able to answer questions
in an exam. That is, having acquired some skill in using a particular system of reasoning, do students
apply it outside of the domain in which they learnt it? Existing studies have supphedaaswer to this
questiori®8.9671 This No was even found to apply to specific skills; for instance, statistics (unless the
problem explicitly involves statistical thinking within the applicable domain) and IB¢fit.

A study by Lehman, Lempert, and NisB&! measured changes in students’ statistical, methodological,
and conditional reasoning abilities (about everyday-life events) between their first and third years. They
found that both psychology and medical training produced large effects on statistical and methodological
reasoning, while psychology, medical, and law training produced effects on the ability to perform condi-
tional reasoning. Training in chemistry had no affect on the types of reasoning studied. An examination
of the skills taught to students studying in these fields showed that they correlated with improvements in
the specific types of reasoning abilities measured. The extent to which these reasoning skills transferred to
situations that were not everyday-life events was not measured. Many studies have found that in’ gég{ésrae&lher
people do not transfer what they have learned from one domain to another. o

It might be said that passing through the various stages of the education process is more like a filter than a
learning exercise. Those that already have the abilities being the ones that dtiééeadvell-argued call
to arms to improve students’ general reasoning skills, through education, is provided by van'&&ider.

Good education aims to provide students with an overview of a subject, listing the principles and major
issues involved; there may be specific cases covered by way of examples. Software development does
require knowledge of general principles, but most of the work involves a lot of specific details: specific to
the application, the language used, and any existing source code, while developers may have been introduced
to the C language as part of their education. The amount of exposure is unlikely to have been sufficient for
the building of any significant knowledge base about the language.

15.2.1 Learned skills
Education provides students willslarned knowledgewnhich relates to the title of this subsectitgarned
skills. Learning a skill takes practice. Time spent by students during formal education practicingﬁ[fgj?er
programming skills is likely to total less than 60 hours. Six months into their first development job they
could very well have more than 600 hours of experience. Although students are unlikely to complete their
education with a lot of programming experience, they are likely to continue using the programming beliefs
and practices they have acquired. It is not the intent of this book to decry the general lack of good software
development training, but simply to point out that many developers have not had the opportunity to acquire
good habits, making the use of coding guidelines even more essential.

Can students be taught in a way that improves their general reasoning skills? This question is not directly
relevant to the subject of this book; but given the previous discussion, it is one that many developers will be

August 5, 2005 v 1.0b 99

_ Introduction 15 Expertise

developer 787
language
and culture
catego- o
rization
cultural differences

expertise

transfer to an-
other domain

software de-
velopment
expertise

asking. Based on the limited researched carried out to date the answer seems to be yes. Learning requirt
intense, quality practice. This would be very expensive to provide using human teachers, and researcher
are looking at automating some of the process. Several automated training aids have been produced to he
improve students’ reasoning ability and some seem to have a measurablé#ffect.

15.2.2 Cultural skills
Nisbett and Norenzay&%! provide an overview of culture and cognition. A more practical guide to cultural
differences and communicating with people from different cultures, from the perspective of US culture, is
provided by Wise, Hannaman, Kozumplik, Franke, and Le&¢&4.

Cultural skills include the use of language and category formation.

15.3 Creating experts
To become an expert a person needs motivation, time, economic resources, an established body of know
edge to learn from, and teachers to guide.

One motivation is to be the best, as in chess and violin playing. This creates the need to practice as mucl
as others at that level. Ericsson foli§¥l that four hours per day was the maximum concentrated training
that people could sustain without leading to exhaustion and burnout. If this is the level of commitme