
SilverStream eXtend Workbench

Tutorial: Developing Web Services

Version 4.0

Jun 2002

Copyright ©2002 SilverStream Software, Inc. All rights reserved.

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, Inc.

SilverStream and jBroker are registered trademarks and SilverStream eXtend is a trademark of SilverStream Software, Inc.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times
remain solely and exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The
Software is protected by copyright laws and international treaty provisions. You shall not remove any copyright notices or other
proprietary notices from the Software or its documentation, and you must reproduce such notices on all copies or extracts of the Software
or its documentation. You do not acquire any rights of ownership in the Software.

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Ant Copyright ©1999 The Apache Software
Foundation. All rights reserved. Xalan Copyright ©1999 The Apache Software Foundation. All rights reserved. Xerces Copyright
©1999-2000 The Apache Software Foundation. All rights reserved. Jakarta-Regexp, Ant, Xalan and Xerces software is licensed by The
Apache Software Foundation and redistribution and use of Jakarta-Regexp, Ant, Xalan and Xerces in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the
above copyright notices, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This
product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta
Project", "Jakarta-Regexp", "Xerces", “Xalan”, "Ant" and "Apache Software Foundation" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please contact apache@apache.org
<mailto:apache@apache.org>. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their
name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS PROVIDED “AS IS” AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the
above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions, and the disclaimer that follows these conditions in the documentation and/or other materials
provided with the distribution. 3. The name "JDOM" must not be used to endorse or promote products derived from this software without
prior written permission. For written permission, please contact license@jdom.org <mailto:license@jdom.org>. 4. Products derived
from this software may not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org <mailto:pm@jdom.org>). THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans,
JavaServer Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris, NEO, Joe,
Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet,
SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going,
SunWorkShop, XView, Java WorkShop, the Java Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries.

IBM JikesTM and Bean Scripting Framework (BSF) Copyright ©2001, International Business Machines Corporation and others. All
Rights Reserved. This software contains code in executable form obtained pursuant to, and the use of which is subject to, the IBM Public
License, a copy of which may be obtained at http://oss.software.ibm.com/developerworks/opensource/license10.html. Source code for
JikesTM is available at <http://oss.software.ibm.com/developerworks/opensource/jikes/>. Source code for BSF is available at
http://oss.software.ibm.com/developerworks/projects/bsf.

SilverStream eXtend Workbench software contains Sun NetBeans software that has been modified by SilverStream. The source code for
such software may be found at http://www.silverstream.com/workbenchdownload together with the Sun Public License that governs the
use of such modified software. The Original Code is NetBeans. The Initial Developer of the Original Code is Sun Microsystems, Inc.
Portions Copyright 1997-2000 Sun Microsystems, Inc. All Rights Reserved. The Contributor to Covered Code is SilverStream Software,
Inc.

Graph Layout Toolkit and Graph Editor Toolkit (C) 1992 - 2001 Tom Sawyer Software, Oakland, California, All Rights Reserved.

This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All
Rights Reserved.

Contents
About This Book vii
Purpose vii
Audience vii
Prerequisites vii
Organization viii

Lesson 1 Registries and WSDL for Web Services 1
What you will learn 1

What you will do 1
Registries for Web Services 1

About registries 2
Browsing registries in Workbench 2

EXERCISE 1-1: Create a profile for a public registry 2
EXERCISE 1-2: Search for businesses 4

Information about businesses 5
Examining the information for a service 6

EXERCISE 1-3: Examine the services for a business 6
Information about services 8

Using the WSDL Editor 9
EXERCISE 1-4: Create a WSDL file for the Calculator Web Service 9

Tools for inserting elements 11
EXERCISE 1-5: Add a binding element 12
EXERCISE 1-6: Add a service element 13

Stylized view 15
EXERCISE 1-7: Change the Stylized view 16

WSDL Editor toolbar 17
EXERCISE 1-8: Generate a Java remote interface from WSDL 18

About publishing 21
Summary of what you’ve done 22

Lesson 2 Creating a Web Service 23
What you will learn 23

What you will do 23
Web Services using J2EE 24

JAX-RPC and RMI 24
Workbench and jBroker Web 24

Defining a WAR project for the service 25
EXERCISE 2-1: Set up directories for your project 25
iii

iv

Contents
EXERCISE 2-2: Create a new project 26
EXERCISE 2-3: Add source code to the project 28
EXERCISE 2-4: Add the jBroker Web libraries to the project 28
EXERCISE 2-5: Build the project 31

Generating Web Service code 31
EXERCISE 2-6: Run the Web Service Wizard 32

Getting ready to deploy 38
About the deployment descriptor 38

EXERCISE 2-7: Build the archive 38
EXERCISE 2-8: Examine the deployment descriptor 39

Deploying the project 41
EXERCISE 2-9: Deploy the project 41

Updating the J2EE server’s classpath 44
Testing the Web Service 45

EXERCISE 2-10: Edit the test client code 45
EXERCISE 2-11: Test the Web Service with the generated client 46

Summary of what you’ve done 46

Lesson 3 Creating a Client Application for a Web Service 49
What you will learn 49

What you will do 49
Getting information about a Web Service 50
Setting up your project 50

EXERCISE 3-1: Set up a project directory and get the WSDL file 50
EXERCISE 3-2: Create a new project 51
EXERCISE 3-3: Set up a classpath for building the project 52

Generating client code from WSDL 53
EXERCISE 3-4: Generate client code from WSDL 53

Wizard results 56
Editing and testing the client application 56

EXERCISE 3-5: Edit the test client code 57
EXERCISE 3-6: Test the Web Service with the generated client 58

Summary of what you’ve done 59

Lesson 4 Using Web Services in a J2EE Web Application 61
What you will learn 61

What you will do 61
Defining a WAR project for the Web Service client application 62

EXERCISE 4-1: Create a new project 62
EXERCISE 4-2: Add the jBroker Web libraries to the project 64

Adding Web Service client code to the project 66
EXERCISE 4-3: Generate the client code for the Calculator Web

Tutorial: Building a Web Application
Service 67
Creating a form that calls the Calculator Web Service 67

EXERCISE 4-4: Create a new JSP page 68
EXERCISE 4-5: Edit the JSP page 70
EXERCISE 4-6: Create a second JSP page to include in

magicnumber.jsp 72
EXERCISE 4-7: Write a JavaBean to process the form 73

Deploying and testing the WAR 78
About the deployment descriptor 78

EXERCISE 4-8: Build the archive 78
EXERCISE 4-9: Edit the deployment descriptor 78

Deploying the project 81
EXERCISE 4-10: Deploy the project 81
EXERCISE 4-11: Test the Calculator Client application 84

Summary of what you’ve done 85

Lesson 5 Testing Techniques 87
What you will learn 87

What you will do 87
Viewing the WSDL in your browser 87

EXERCISE 5-1: View the WSDL for the deployed Web Service 88
Inspecting message traffic with TcpTunnel 89

EXERCISE 5-2: Edit the client code to redirect messages to TcpTunnel
89

EXERCISE 5-3: Run the client and observe the message traffic with
TcpTunnel 90

Summary of what you’ve done 91
v

vi

Contents

About This Book
Purpose

This tutorial shows you how to use SilverStream eXtend Workbench to develop a Web Service.
You will learn about:

• Web Services and WSDL

• Registry Manager

• WSDL Editor

• Web Service Wizard

• Workbench projects

• Web applications packaged in J2EE WARs

Audience

This tutorial is for developers who want an introduction to Workbench projects while learning
about building a Web Service.

Prerequisites

Experience This tutorial assumes you are a Java programmer who wants to use Workbench
to develop J2EE applications. It assumes you have the following background:

• Experience with the Java programming language

• Understanding of the general structure of XML

• Understanding of a graphical development environment

• General understanding of J2EE concepts such as servlets

• Understanding of how browsers and application servers interact in Web applications

Software In addition to the Workbench software, you need:

• A J2EE application server for deploying the application

If you already have this software, you can deploy the standards-based J2EE WAR to your
application server using Workbench deployment commands when available or your server’s
deployment tools.
vii

About This Book
If you don’t have the required software, you can download the trial version of the SilverStream
eXtend Application Server from www.silverstream.com/appserv-download.

Organization

Here’s a summary of the lessons you’ll find in this book:

Lesson Description

1 Registries and WSDL for
Web Services

Introduces the Registry Manager and the WSDL Editor

2 Creating a Web Service Teaches how to use the Web Service Wizard to generate
the files that wrap your Java class as a Web Service and
how to deploy the Web Service as a WAR

3 Creating a Client
Application for a Web
Service

Teaches how to use the Web Service Wizard to generate
files that a client application uses to call a remote Web
Service

4 Using Web Services in a
J2EE Web Application

Teaches how to build a Web application with a JSP page
and JavaBean that call a Web Service; this client
application uses the same code as was generated in the
previous lesson

5 Testing Techniques Demonstrates how a Web Service can return WSDL and
how to use the TcpTunnel tool for viewing the SOAP
messages sent between the client and the Web Service
viii

http://www.silverstream.com/appserv-download

1
 Registries and WSDL for Web Services Lesson 1
What you will learn
This lesson describes the Workbench tools for working with online registries for Web Services.
It also shows you how to use the WSDL Editor to create a file that describes a Web Service and
can be published in a registry.

You will learn about:

• Registries for Web Services

• Browsing registries in Workbench

• Using the WSDL Editor

What you will do
1. Create a profile for a public registry

2. Search for businesses

3. Examine the services for a business

4. Create a WSDL file for the Calculator Web Service

5. Add a binding element

6. Add a service element

7. Change the Stylized view

8. Generate a Java remote interface from WSDL

How long will it take? About 20 minutes

NOTE You don’t need to be running your J2EE application server for this lesson.

Registries for Web Services
When you want to make a Web Service publicly available or you want to find Web Services you
can use, you use a registry. This lesson shows you how to identify a set of registries and how to
search for offerings in those registries using the Registry Manager.
1

1 Registries and WSDL for Web Services
About registries

A Web Service registry is a repository of information about Web Services and other services. It
supports finding and publishing information about a business and its services.

When providers create a Web Service, they can publish information about that service and their
business in a registry so prospective consumers can discover the service and learn how to use it.
When consumers want to find a Web Service, they can query the registry to find the services and
businesses that fit their needs, and retrieve information about using those services.

Registries store this business and Web Service information in a standard XML-based format
such as Universal Description, Discovery, and Integration (UDDI) or Electronic Business
eXtensible Markup Language (ebXML). Typically businesses hosting registries provide Web
page or GUI interfaces to publish to and query the registry. Other tools can use standard APIs to
present their own interfaces.

Browsing registries in Workbench
The Registry Manager is on the Registries tab of the Navigation Pane. It displays registered
businesses in the top panel and services in the lower panel. You can get listings from one or
more registries.

To use the Registry Manager, you define profiles for the registries you want to access. (Profiles
for several major registries are already defined for you.) Then you search for businesses or
services by specifying a search string. Businesses or services that begin with that string are
displayed in the browser.

EXERCISE 1-1: Create a profile for a public registry

In this exercise you’ll look at the profile for the IBM Public Registry that is defined for you
when Workbench is installed.

1. Start Workbench. You can use the SilverStream eXtend Workbench shortcut on the
Windows Start menu.

2. Select Edit>Profiles from the menu.
2 Browsing registries in Workbench

Tutorial: Building a Web Application
3. In the Profiles dialog, select the Registries tab.

4. Select IBM Public Registry in the Profile name dropdown list box.

5. Click the Edit button to look at the profile. The profile has these values:

6. Click OK to close the Edit a Registry Profile dialog.

7. (Optional) Look at the profiles for the other registries that have been set up for you.

Option Value

Profile name IBM Public Registry

Registry type UDDI

Inquiry URL http://www-3.ibm.com/services/uddi/inquiryapi

Publish URL https://www-3.ibm.com/services/uddi/protect/publishapi

User name
Credential

Blank

Later if you create an account with IBM, you can fill in your
account information to enable publishing to the IBM registry.

Include in Registry
Search

Selected

You can prevent a registry from being searched by clearing
this check box; you don’t have to delete the profile
Browsing registries in Workbench 3

1 Registries and WSDL for Web Services
8. Click OK to close the Profiles dialog.

EXERCISE 1-2: Search for businesses

In this exercise you’ll search for registered businesses whose names begin with X.

1. In the Navigation Pane, select the Registries tab.

The pane has two subpanes: Business and Service.

2. In the Business text box, type the letter X and click the curved blue arrow beside the text
box.

TIP You can enter multiple search terms by separating them with a vertical bar (|). For
example, to find businesses that begin with X and W, type X|W.

The Registry Manager searches the registries you’ve defined. This can take a while, so be
patient; the search can take from 15 seconds to 4 or 5 minutes. You can stop the search and
look at partial results by clicking the red Stop button. When the button is no longer red, the
search is done.

The results are displayed in the Business Pane. The first-level nodes in the expandable tree
are registries, and the next level are business names.

3. Scroll through the list or collapse the top-level nodes to see which registries returned
results. You can make the pane wider or longer for better viewing.

4. Expand the nodes for various businesses to see what information they provide.
4 Browsing registries in Workbench

Tutorial: Building a Web Application
5. Find XMethods—it’s in both registries—and expand its node to find out about its
offerings.

Information about businesses

The information in a registry is self-supplied. A business tells you what they want you to know
and selects their own categories.

The business section of a registry might include these types of information:

Information Icon Description

Business name Business name used in this registry

Description — A short phrase describing the business

Categories Categories to which the business belongs

Classification schemes come from at least three sources:
NAICS codes for industry segments, UNSPSC for product
and service classifications, and geographic information
Browsing registries in Workbench 5

1 Registries and WSDL for Web Services
TIP Try other searches using the Advanced Search options (click the binoculars button). For
more information about Advanced Search, see Registry Manager in the Tools Guide.

Examining the information for a service
Web Services are just a subset of the types of services that a business might publish in a registry.
A business might list services such as sales and support contact information, as well as
programmed Web Services.

EXERCISE 1-3: Examine the services for a business

In this exercise you’ll find out about the information available for a service and how to get a
WSDL file for a service if one is available.

1. In the Business Pane of the Registry Manager, find the XMethods node and expand it to
show its list of services.

2. Click the XMethods Barnes and Noble Quote service.

The Registry Manager retrieves information about the service and displays it in the
Service Pane.

Identifiers Information about the business, such as a DUNS number

Services A list of services offered by the business, such as Web
Services callable via HTTP and other services such as sales
and technical support contact information

You can select a service name to display its details in the
lower pane

Information Icon Description
6 Examining the information for a service

toolsRegManager.html

Tutorial: Building a Web Application
3. Expand the nodes in the Service Pane to see all of the information. You can resize the pane
so you can see more of the information at once.

4. To retrieve the WSDL file that describes this service, highlight the line with the tModel
icon—it says XMethods Book Quote.

5. Click the Retrieve WSDL icon in the toolbar above the Service text box.

The WSDL file for the Book Quote service opens in the WSDL Editor. For information
about the WSDL Editor, see “Using the WSDL Editor” on page 9.

For the Book Quote service you could also click the Overview URL link to display the
WSDL in your browser. A browser that understands XML is required.
Examining the information for a service 7

1 Registries and WSDL for Web Services
Information about services

In the Service Pane, you can find out the technical details of a service offering. For a
programmatically accessible service, the details include the URL for accessing the service and
where to find information about the methods the service offers.

A service entry in a registry might include these types of information:

TIP You can search for services without searching for businesses first. The basic search finds
matches in service names, and Advanced Search (binoculars button) matches other
services data. For more information, see Registry Manager in the Tools Guide.

Information Icon Description

Service name The name of the service

Business name The business offering the service

Description — A short phrase describing the service

Binding The URL for invoking the service

tModel Data describing the service

A UDDI registry stores the data as a tModel, which is a set of
name/value pairs; the tModel node may be followed by a
description

Overview URL — The URL of a document describing how to use the tModel
data

For a Web Service, this is usually a WSDL document.

Categories Categories for the service

The categorization has two parts: a name (for example, uddi-
org:types) and a value (for example, wsdlSpec). The value
wsdlSpec specifies that a WSDL document is available for the
service. Other types of services can use other classification
schemes.
8 Examining the information for a service

toolsRegManager.html

Tutorial: Building a Web Application
Using the WSDL Editor
The WSDL Editor is an XML editor with extra features for handling WSDL elements. Most of
the time, you will use WSDL definitions for Web Services that you get from registries or that
you generate with the Web Service Wizard. However, if you need to edit a WSDL file, the editor
comes in handy.

In Lesson 2, “Creating a Web Service”, you’ll build a Calculator Web Service. The Web Service
Wizard generates WSDL to describe the service, so it’s not necessary to create one from scratch.
But for this lesson, that’s what you’ll do.

EXERCISE 1-4: Create a WSDL file for the Calculator Web Service

In this exercise you’ll create a new WSDL file that describes the Calculator Web Service.

1. In Workbench, select File>New from the menu.

2. In the New File dialog, select the Web Services tab, highlight WSDL, and click OK.

3. In the WSDL Wizard, specify this information:

Option Value

Definition Name CalculatorService

Target Namespace urn:CalculatorImpl

Documentation The four basic arithmetic operations

Include WSDL template Selected

If you don’t include the template, the wizard uses
the definition name to name the file; but the other
fields are ignored and the new file is empty
Using the WSDL Editor 9

1 Registries and WSDL for Web Services
4. Click Finish.

Workbench starts the WSDL Editor and displays the beginning of a WSDL Web Service
definition in the Edit Pane. If you compared this opening text with the file generated by
the Web Service Wizard, you would see minor differences—but don’t worry about it.

5. Select the following XML text and paste it into the editor on a blank line above the
definitions end tag </definitions>. It’s rather long because it defines request and response
messages for all four arithmetic operations.

NOTE You could also use the editor’s tools to insert the message and portType elements.
These tools are described in the next section.

<types/>
<message name="subtractRequest">
<part name="arg0" type="xsd:double"/>
<part name="arg1" type="xsd:double"/>

</message>
<message name="subtractResponse">
<part name="arg2" type="xsd:double"/>

</message>
<message name="divideRequest">
<part name="arg3" type="xsd:double"/>
<part name="arg4" type="xsd:double"/>

</message>
<message name="divideResponse">
<part name="arg5" type="xsd:double"/>

</message>
<message name="DivideFault">
<part name="reason" type="xsd:string"/>
<part name="x" type="xsd:double"/>
<part name="y" type="xsd:double"/>

</message>
<message name="addRequest">
<part name="arg6" type="xsd:double"/>
<part name="arg7" type="xsd:double"/>
10 Using the WSDL Editor

Tutorial: Building a Web Application
</message>
<message name="addResponse">
<part name="arg8" type="xsd:double"/>

</message>
<message name="multiplyRequest">
<part name="arg9" type="xsd:double"/>
<part name="arg10" type="xsd:double"/>

</message>
<message name="multiplyResponse">
<part name="arg11" type="xsd:double"/>

</message>
<portType name="CalculatorImplWS">
<operation name="subtract">
<input message="tns:subtractRequest"/>
<output message="tns:subtractResponse"/>

</operation>
<operation name="divide">
<input message="tns:divideRequest"/>
<output message="tns:divideResponse"/>
<fault message="tns:DivideFault" name="fault1"/>

</operation>
<operation name="add">
<input message="tns:addRequest"/>
<output message="tns:addResponse"/>

</operation>
<operation name="multiply">
<input message="tns:multiplyRequest"/>
<output message="tns:multiplyResponse"/>

</operation>
</portType>

Tools for inserting elements

The editor has dialogs to assist you with inserting top-level WSDL elements. The WSDL in the
editor is missing two important elements: binding and service. You’ll use the editor tools to add
them.
Using the WSDL Editor 11

1 Registries and WSDL for Web Services
EXERCISE 1-5: Add a binding element

In this exercise you’ll add a binding element, which specifies how messaging is handled.

1. In the Edit Pane near the end of the file, click to set the insertion point on a blank line
between the end tags for portType and definitions.

</portType>
[insertion point here]
</definitions>

2. Right-click to display the WSDL popup menu, select Insert WSDL Element, then select
Binding from the second menu.

3. In the Binding dialog, specify this information:

Option Value

Name CalculatorBinding

Documentation SOAP Binding for Calculator service

Port Type CalculatorImplWS

TIP Use the dropdown list box to select a port type defined in
the file

Binding Protocol SOAP Binding

Style: rpc

Transport: http://schemas.xmlsoap.org/soap/http
12 Using the WSDL Editor

Tutorial: Building a Web Application
The filled-in dialog looks like this:

4. Click OK.

The XML inserted in the file includes binding information for each operation defined in
the portType element.

EXERCISE 1-6: Add a service element

In this exercise you’ll add a service element, which specifies the URL a client application uses
to invoke the deployed Web Service.

1. In the Edit Pane near the end of the file, click to set the insertion point on a blank line
between the end tags for binding and definitions.

</binding>
[insertion point here]
</definitions>
Using the WSDL Editor 13

1 Registries and WSDL for Web Services
2. Right-click to display the WSDL popup menu, select Insert WSDL Element, then select
Service from the second menu.

3. In the Service dialog, specify this information:

4. Click Add to add a line for port information.

5. Enter these values to describe the port:

Option Value

Name CalculatorService

Documentation URL for locally deployed Calculator Web Service

Option Value

Name CalculatorPort

Binding CalculatorBinding

TIP Use the dropdown list box to select a binding defined in the
file

Address Type SOAP

TIP Use the dropdown list box to select a type

Location http://localhost/ProverbsCloud/Calculator/CalculatorImpl

NOTE Location is the URL where the Web Service will be
deployed. For this lesson, use the sample URL above; you
don’t need a working URL yet.
14 Using the WSDL Editor

Tutorial: Building a Web Application
The filled-in dialog looks like this:

6. Click OK.

This XML is inserted in the file:
<service name="CalculatorService">
<documentation>
URL for locally deployed Calculator Web Service

</documentation>
<port name="CalculatorPort" binding="CalculatorBinding">
<soap:address
location="http://localhost/ProverbsCloud/Calculator/CalculatorImpl"/>

</port>
</service>

The rest of this lesson shows you how to use some more features of the WSDL Editor.

Stylized view

The WSDL Editor has a second pane that displays the XML content of the WSDL document in
a report format. You can customize the content and layout using XSL style sheets. You cannot
edit in the Stylized view.
Using the WSDL Editor 15

1 Registries and WSDL for Web Services
EXERCISE 1-7: Change the Stylized view

In this exercise you’ll look at the views that are provided and find out where you can add your
own custom view.

1. With the WSDL file open in the Edit Pane, click the Stylized tab at the bottom of the pane.

The format of the WSDL changes to the Details view, which presents the information in a
more readable format.

2. Right-click in the editing area, then select Stylesheets on the popup menu and Summary
on the second menu.
16 Using the WSDL Editor

Tutorial: Building a Web Application
Another formatted view appears.

3. Right-click again in the editing area, then select Stylesheets on the popup menu and
Custom on the second menu.

In the Select Style Sheet dialog, you can choose the default style sheet: Details, Summary,
or a custom style sheet. You can create your own XSL style sheets to present the
information in different ways.

4. Click Cancel to close the dialog.

5. Click the XML tab to return to the editable view.

6. Save the file in a convenient directory, for example c:\WorkbenchProjects. Its name is
CalculatorService.wsdl. Then close the file.

WSDL Editor toolbar

When you open the WSDL Editor, several buttons are added to the main toolbar.

You can:

• Validate the XML against the WSDL DTD

• Publish the WSDL to a UDDI registry defined in the Workbench registry profiles; you
need an account with the registry you select

• Generate a Java class that matches the methods defined in the WSDL file

The next exercise will show you how to generate a Java class from WSDL.
Using the WSDL Editor 17

1 Registries and WSDL for Web Services
EXERCISE 1-8: Generate a Java remote interface from WSDL

In this exercise you’ll create a remote interface and other Web Service classes from a WSDL
specification. You could use the resulting Java files to create a new Web Service or client
application.

NOTE You need an open project for this exercise. You can use any project, since you won’t be
taking this any further than generating the code. Skip to Step 7 if you have an open
project and want to generate the files there.

1. In Workbench, close any open projects and select File>New Project from the menu.

2. In the New Project Wizard, select JAR and then click OK.

3. In the Project Name field, type CalcWSDLTest.

4. Click the ellipses beside the Project Location field and select a directory where you want
to put Workbench projects, then type a new directory name (such as CalcWSDL). The
Project Location field should end up with a value like this:

C:\WorkbenchProjects\CalcWSDL

The rest of the dialog is filled in automatically.
18 Using the WSDL Editor

Tutorial: Building a Web Application
5. Click Next. If the project location directory doesn’t exist, confirm that you want to create
it.

6. On the last panel, check the project details then click Finish.

7. Select File>Recent Files and open CalculatorService.wsdl again.

8. In the WSDL toolbar, click the Generate Java Class button.

Workbench displays the project location panel of the Web Service Wizard.

9. Fill in the panel as shown below. The only value you should have to specify is the calc
package.
Using the WSDL Editor 19

1 Registries and WSDL for Web Services
Once you click Next, Workbench displays the class-generation and SOAP options panel
of the Web Service Wizard.

10. Examine the settings on this panel (you don’t need to change any of them).
20 Using the WSDL Editor

Tutorial: Building a Web Application
These settings tell the wizard to generate stub classes for a Web Service client. It will put
the generated files in the src\calc directory and add them to your project. You will learn
more about these options in Lesson 2, “Creating a Web Service” and Lesson 3, “Creating a
Client Application for a Web Service”.

11. Click Finish.

When the wizard finishes generating its output, you’ll find the generated files in the
src\calc directory under the project root directory.

Typically you use a WSDL file as the starting point for generating stubs (including a remote
interface and related classes) for a client application. However, if you generate skeletons, you’ll
have all you need to begin building a Web Service. The other code you need is a class that
implements the remote interface with the business logic for the Web Service methods.

About publishing

Workbench also provides facilities for publishing information about your service.

For most registries, you need to set up an account before you can publish. The registry profiles
can store the URL for publishing and your ID and password.

TIP To publish, you open a WSDL file describing your service in the Edit Pane. The toolbar
for the WSDL Editor includes a Publish to Registry button. It displays a dialog that lets
you specify the registry, the business name, and the service URL. For more information,
see Registry Manager in the Tools Guide.
Using the WSDL Editor 21

toolsRegManager.html

1 Registries and WSDL for Web Services
Summary of what you’ve done

Using Workbench tools You used these tools in Workbench:

• Registry profiles (Edit>Profiles)

• Registry Manager (Registries tab of Navigation Pane)

• WSDL Editor

Next lesson In the next lesson you will learn about the Web Service Wizard. You’ll create a
project and develop the code for the Calculator Web Service.
22 Summary of what you’ve done

2
 Creating a Web Service Lesson 2
What you will learn
In this lesson you’ll learn how to set up a WAR project for a Web Service and run the Web
Service Wizard to generate SOAP processing code for the service. All you need to provide is the
Java class that implements the methods that users of your service will call—in this sample, it
will be a Calculator with these simple methods: add, subtract, multiply, and divide. Then you’ll
deploy the Calculator Web Service and test it with test tools provided by the wizard.

You will learn about:

• Web Services using J2EE

• Defining a WAR project for the service

• Generating Web Service code

• Getting ready to deploy

• Updating the J2EE server’s classpath

• Testing the Web Service

What you will do
1. Set up directories for your project

2. Create a new project

3. Add source code to the project

4. Add the jBroker Web libraries to the project

5. Build the project

6. Run the Web Service Wizard

7. Build the archive

8. Examine the deployment descriptor

9. Deploy the project

10. Edit the test client code

11. Test the Web Service with the generated client

How long will it take? About 15 minutes

NOTE You do need to run your J2EE application server to deploy the Web Service you create
in this lesson.
23

2 Creating a Web Service
Web Services using J2EE
A Web Service is a component available on a remote server. Its interface is known, and you can
call its methods via a standardized messaging protocol.

In the J2EE world, you make a Web Service available by deploying it as a servlet in a Web
archive (WAR) on a J2EE application server. A client application makes a remote method call
using SOAP XML messages. The SOAP dispatcher on the remote server receives the messages
and directs the method call to the Web Service servlet. The Web Service wraps the return value
as a SOAP message and sends it back to the client.

JAX-RPC and RMI

SilverStream supports the J2EE model for developing Web Services, which is based on JAX-
RPC (Java API for XML-based RPC) and RMI (Java Remote Method Invocation). The business
method signatures are declared in a remote interface. The service uses a skeleton class and the
client uses a stub to manage the communication between the service and the client application.

Skeleton and tie The Web Service’s skeleton class implements the remote interface. The
skeleton receives a SOAP request, translates arguments from XML to Java data types, and calls
the business method. The Web Service can also include a tie class that extends the skeleton and
delegates the method call to another class that implements the business method.

Stub The client application uses a stub class that also implements the remote interface. When
the client calls a method defined in the remote interface, the stub directs the call to the Web
Service using an URL it has stored and transmits the method call as a SOAP message.

You don’t need to worry about the implementation details of these classes; SilverStream
provides tools that generate this code.

Workbench and jBroker Web

Workbench SilverStream eXtend Workbench provides a Web Service Wizard that
generates the code for the communication between the Web Service and the client application.
For the Web Service, all you need to provide is code for the business methods. For the client that
calls a Web Service, you can generate the code from a WSDL file, which is an XML description
of a Web Service.
24 Web Services using J2EE

new http://java.sun.com/xml/jaxrpc
new http://java.sun.com/xml/jaxrpc

Tutorial: Building a Web Application
jBroker Web jBroker Web is a JAX-RPC implementation that provides compilers and
runtime support for Web Services on a J2EE application server. It’s included in Workbench, and
the Web Service Wizard uses its compilers to generate Web Service code. As you’ll see, your
deployed applications require access to jBroker Web and related API JARs.

jBroker Web includes command-line tools that invoke its compilers directly, but you will not
use them in this tutorial. For more information, see the jBroker Web help.

The rest of this lesson teaches you how to build a Web Service, leading you through project
setup, generating code with the wizard, and deploying and testing the result.

Defining a WAR project for the service
The Web Service Wizard in Workbench starts with a source object that implements or defines
the business methods that you want to make available. There are several possible starting points
in this process. You might begin with:

• A Java class that implements your business methods

• An interface that specifies signatures for your business methods

• An EJB session bean

• A WSDL service definition that specifies the operations of the Web Service

The Calculator Web Service uses the CalculatorImpl class, which defines methods for basic
arithmetic. It also uses the DivideFault class, which handles divide-by-zero exceptions.

In this section you’ll create a WAR project for the Calculator Web Service. First you’ll do a little
directory setup. Then you’ll start Workbench to create the project file and add
CalculatorImpl.java to the project.

EXERCISE 2-1: Set up directories for your project

In this exercise you will create directories for your source files.

1. Using your operating system tools, create a root directory for your project called
CalculatorWS. You can put it at the root level of your disk drive or in a subdirectory of
your choosing. The sample paths in the tutorial assume that you create CalculatorWS in
the WorkbenchProjects directory. On Windows, it would look like this:

c:\WorkbenchProjects\CalculatorWS

2. In the CalculatorWS directory, create a subdirectory called src, and in the src directory,
create a package subdirectory called calc.
Defining a WAR project for the service 25

new ../../jbroker-web/README.html

2 Creating a Web Service
3. Copy the files CalculatorImpl.java and DivideFault.java from the Workbench-install-
dir\docs\tutorial\TutorialFiles\webservices directory to the CalculatorWS\src\calc
project directory.

You now have a directory structure like this:

WorkbenchProjects\CalculatorWS\src\calc

EXERCISE 2-2: Create a new project

In this exercise you will start Workbench and use the New Project Wizard to create a project for
the Calculator Web Service.

1. Start Workbench. You can use the SilverStream eXtend Workbench shortcut on the
Windows Start menu.
OR
If Workbench is already running and a project is open, select File>Close Project from the
menu. If prompted to close open files, click Yes.

2. Select File>New Project from the menu.

3. In the New Project Wizard, select WAR and then click OK.

4. In the Project Name field, type Calculator.

5. Click the ellipses beside the Project Location field and select the CalculatorWS
directory you created in EXERCISE 2-1: “Set up directories for your project”. When you
click OK, the rest of the dialog is filled in automatically.
26 Defining a WAR project for the service

Tutorial: Building a Web Application
6. In the Project J2EE Version field, specify J2EE 1.2 (WAR 2.2) so your application will
run on any server that supports J2EE 1.2 or 1.3.

7. Click Next.

8. When the wizard asks if it should create the WEB-INF directory, click Yes.

The wizard summarizes the project information.

NOTE If another project was open when you selected New Project, you might see a
panel about adding the project to the current project. If this happens, do not check
the Add this project option. Click Next to go to the summary panel.

9. Click Finish.

In the Navigation Pane, the Project tab displays the new project. You can use either a
Source Layout view or an Archive Layout view.
Defining a WAR project for the service 27

2 Creating a Web Service
EXERCISE 2-3: Add source code to the project

In this exercise you will add the src directory to the project and specify where it will be in the
J2EE archive.

1. In the Navigation Pane, click the Directory tab.

2. Navigate to the WorkbenchProjects/CalculatorWS/src directory.

3. Right-click the src directory and select Add to Project.

4. In the Add to Project dialog, select Add the files to the archive at this location. In the
text box, type WEB-INF/classes. Leave Include subdirectories selected.

5. Click OK.

EXERCISE 2-4: Add the jBroker Web libraries to the project

The Web Service uses classes in jbroker-web.jar and supporting JARs for SOAP message
processing. In this exercise you will add these JARs to the archive for runtime access and to the
project classpath for compile-time access.

1. In Workbench, select Project>Project Settings from the menu.

2. Select the Contents tab and click the Add Entry button.

3. In the Select Contents dialog, navigate to the directory Workbench-install-
directory/compilelib, then highlight the following files and click Open:

• jaxrpc-api.jar

• jbroker-web.jar

• saaj-api.jar
28 Defining a WAR project for the service

Tutorial: Building a Web Application
• xerces.jar

The Add to Project dialog will prompt you for information about each file, one at a time.

4. When you’re prompted about jaxrpc-api.jar, select Add the file to the archive at this
location. In the text box, type WEB-INF/lib/jaxrpc-api.jar. Then click OK.

5. When you’re prompted about jbroker-web.jar, select Add the file to the archive at this
location. In the text box, type WEB-INF/lib/jbroker-web.jar. Then click OK.

6. When you’re prompted about saaj-api.jar, select Add the file to the archive at this
location. In the text box, type WEB-INF/lib/saaj-api.jar. Then click OK.

7. When you’re prompted about xerces.jar, select Add the file to the archive at this
location. In the text box, type WEB-INF/lib/xerces.jar. Then click OK.

The WEB-INF/lib directory of the archive will now include these JARs.

8. Select the Classpath/Dependencies tab and click the Add Entry button.

9. In the Add to Classpath dialog, find the directory Workbench-install-directory/compilelib
again, then highlight the following files and click Open then OK.

• jaxrpc-api.jar

• jbroker-web.jar

• saaj-api.jar

• xerces.jar
Defining a WAR project for the service 29

2 Creating a Web Service
The Classpath/Dependencies tab should look something like this:

NOTE An archive of J2EE classes is already on the WAR’s classpath. Its path uses an
environment variable whose value is the Workbench install directory. The
variable was defined when you installed Workbench.

10. Click OK to close the Project Settings dialog.

The project now includes references to the required JARs. When you build the archive,
these JARs will be included. The JARs are also on the classpath for building the archive.

11. In the Navigation Pane, select the Project tab to see the project contents. Select Source
layout, expand src, and select the calc directory. It contains CalculatorImpl.java and
DivideFault.java. Click the Workbench-install-directory/compilelib entry to see jbroker-
web.jar and the other JARs in the lower pane.

The expanded Source layout looks something like this:
30 Defining a WAR project for the service

Tutorial: Building a Web Application
EXERCISE 2-5: Build the project

The Web Service Wizard uses compiled files, so you need to build the project before invoking it.

• Select Project>Build from the menu.

If you get errors, the problem is probably in the classpath. Make sure you successfully
completed EXERCISE 2-4: “Add the jBroker Web libraries to the project”.

Generating Web Service code
To convert your source object into a Web Service, you run the Web Service Wizard. It generates
code that enables the server to translate XML SOAP requests into method calls for your source
object.

TIP The Web Service Wizard requires that you have an open project. It puts the files it
generates in that project.

About the URL for the Web Service When you run the wizard, one of the pieces of
information you will provide is the URL that clients use to access the service. The URL has
several parts:

Part Description Example

Server URL for the server, including the port number
(if not the default port 80) and any server-
specific data

TIP For a SilverStream server, include the
database to which you deployed the WAR

http://localhost/Pr
overbsCloud/

http://www.mydo
main.com:8080/

Web application URL for the WAR

TIP For a SilverStream server, this is a relative
URL that you specify in the deployment
plan

Calculator/

Servlet mapping URL for the servlet; this is the URL pattern
assigned in the Servlet Mapping section of the
deployment descriptor

CalculatorImpl
Generating Web Service code 31

2 Creating a Web Service
For example, when you deploy this Web Service to a local SilverStream server, the URL will be
something like this:

http://localhost:80/ProverbsCloud/Calculator/CalculatorImpl

EXERCISE 2-6: Run the Web Service Wizard

In this exercise you’ll generate classes that turn CalculatorImpl into a Web Service.

1. With your project open in Workbench, select File>New from the menu.

2. In the New File dialog, select the Web Services tab, select New Web Service, and click
OK.

Workbench displays the project location panel of the Web Service Wizard.

3. You can accept the defaults on this panel (as shown below) and click Next.
32 Generating Web Service code

Tutorial: Building a Web Application
4. When the class selection panel displays, highlight class calc.CalculatorImpl and click
Next.

NOTE By default, the wizard displays the compiled classes of your project. You can
optionally list classes located elsewhere (such as in an archive) and filter the list
to show only specific kinds of classes.
Generating Web Service code 33

2 Creating a Web Service
5. When the method selection panel displays, click Add All to use all four calculator
methods. Then click Next.

The class generation and SOAP options panel displays.

6. In the Service address text box, specify the URL a client uses to access your service.

The URL varies depending on your deployment server, as described in “About the URL
for the Web Service” on page 31. For example, the URL for an application deployed to the
ProverbsCloud database on a SilverStream server at www.mydomain.com might be:

http://www.mydomain.com/ProverbsCloud/Calculator/CalculatorImpl
34 Generating Web Service code

Tutorial: Building a Web Application
7. Click Finish.

Wizard results

After you run the wizard, several files are added to the calc directory of your project. Because
the wizard adds them to a project directory, they are automatically part of the project.

When you select all the generation options in the wizard, your project includes these files. The
Java files are in the calc package directory.

File Description Where used

CalculatorImplWS.java A remote interface that has
declarations for the methods of
your source object. It extends
java.rmi.Remote. Each of the
methods throws
RemoteException.

Web Service and
client program

CalculatorImplWS_ServiceSkelet
on.java

A jBroker Web class that
processes SOAP messages on the
server. You should never need to
modify this class.

Web Service
Generating Web Service code 35

2 Creating a Web Service
CalculatorImplWS_ServiceTieSk
eleton.java

A jBroker Web class that extends
the ServiceSkeleton with a
setTarget() method for identifying
the object that implements the
Web Service methods. You should
never need to modify this class.

Web Service

CalculatorImplWSTie.java A delegator class that extends the
TieSkeleton and sets the tie’s
target to
CalculatorImplWSDelegate.

Web Service

CalculatorImplWSDelegate.java A delegator class that implements
the remote interface and calls the
methods of the source object. It
implements all the constructors of
the source object.

Web Service

CalculatorImplWSService.java A Service interface used by JAX-
RPC clients to obtain the stub for
the Web Service. You should
never need to modify this class.

Client program

CalculatorImplWSServiceImpl.ja
va

A Service implementation class
that handles instantiation of the
stub (CalculatorImplWS_Stub).
You should never need to modify
this class.

Client program

CalculatorImplWS_Stub.java A jBroker Web class that
processes SOAP messages on the
client. You should never need to
modify this class.

Client program

File Description Where used
36 Generating Web Service code

Tutorial: Building a Web Application
The delegator classes CalculatorImplWSDelegate and CalculatorImplWSTie work together to
bind the source object to the SOAP-processing objects. You don't have to edit anything to
produce a working Web Service.

The binding—the URL for accessing the Web Service—is part of the code in the stub. You can
override this URL in the client code that instantiates the stub.

NOTE If you run the wizard again, all these files get regenerated. Therefore if you need to
change the code, it is better to define a class that extends the delegator class than to edit
the generated code.

If the business logic isn’t written If you had started this process with an interface
instead of an implementation—if CalculatorImpl.java didn’t exist and you had only the file
CalculatorImplWS.java—you would need to write the business logic at this point. You could
extend CalculatorImplWSTie or CalculatorImplWS_ServiceTieSkeleton and implement the
business logic there, or write another class and set the target of CalculatorImplWSTie to point
to it.

CalculatorImplWSClient.java A standalone Java program for
testing the Web Service. After you
edit the code, use it to verify that
the deployed Web Service works.
The sample code is a model for
code in a client program.

Testing only

CalculatorImplWS.wsdl An XML description of the Web
Service for publishing in a
registry.

This file is saved in the src
directory of the project, not in the
calc package directory.

Registry

File Description Where used
Generating Web Service code 37

2 Creating a Web Service
Getting ready to deploy
Workbench can build and deploy archives for any J2EE application server. These instructions
provide the information you need to deploy this tutorial application. For details and server-
specific information, see Workbench Deployment Instructions. (You can also use your own
server tools to deploy.)

To deploy your Web Service, you will:

1. Build the archive

2. Look at servlet information that the wizard inserted in the deployment descriptor

3. Create a server profile (already done if you’ve deployed other applications to your server
in Workbench)

4. Create a server-specific file with runtime deployment information

5. Specify Workbench deployment settings

6. Deploy to your server

About the deployment descriptor

When you created the project, Workbench created an XML descriptor file appropriate to the
type of archive you selected. For a WAR, the file is called web.xml.

When you open web.xml for editing, the Deployment Descriptor Editor shows the XML
elements in an expandable tree structure. You can also look at the raw XML. The editor uses the
project’s compiled code to determine what to show, which is why you build the archive first. If
it isn’t already built, Workbench offers to build it for you.

EXERCISE 2-7: Build the archive

In this exercise you’ll include the generated WSDL file at the root of the archive, then build the
archive. Lesson 5, “Testing Techniques” explains the reason for including the WSDL file.

1. Select Project>Add to Project>File from the menu.

2. In the Add to Project dialog, find the src directory under the project root, highlight
CalculatorImplWS.wsdl, and click Open.
38 Getting ready to deploy

tutallDeploy.html

Tutorial: Building a Web Application
3. In the second Add to Project dialog, select Add the file to the root of the archive and
click OK.

4. In Workbench, select Project>Build and Archive from the menu to create a deployable
archive for your project.

EXERCISE 2-8: Examine the deployment descriptor

The wizard inserts information about the main servlet for the Web Service into the deployment
descriptor. In this exercise you’ll take a look at that information so you’ll know where to find
and change it if you ever need to.

1. In the Navigation Pane, right-click the project file Calculator.spf and select Open
Deployment Descriptor from the popup menu.

NOTE You can also find web.xml in any Source or Archive view and double-click it to
open it.

If Workbench displays the Select Build Option dialog, accept the defaults and click OK.

Workbench opens web.xml in the Edit Pane. The editor displays the Descriptor tab,
showing the types of information the descriptor can include.
Getting ready to deploy 39

2 Creating a Web Service
2. Notice the CalculatorImpl item under the Servlets heading. It was added by the wizard.

3. Right-click CalculatorImpl and select Properties from the popup menu.

The property sheet displays the deployment properties for the servlet.

4. Notice that the value for Servlet class is calc.CalculatorImplWSTie. This is the class
that will run when the Web Service is invoked.

5. Back in the Edit Pane, find and highlight the CalculatorImpl item in the Servlet
Mapping section.
40 Getting ready to deploy

Tutorial: Building a Web Application
The property sheet now displays the mapping properties.

6. Notice that the value for URL pattern is CalculatorImpl, the same as the servlet’s name.
You will use this value in the URL that accesses the Web Service.

7. Close the deployment descriptor by clicking the button in the upper-right corner of the
editor or selecting File>Close from the menu.

Deploying the project

If you’ve done another Workbench tutorial, most of your deployment setup has already been
done. This exercise gives you the main steps and provides the project-specific information
you’ll need to deploy this project. For detailed deployment instructions for all the supported
servers, see Workbench Deployment Instructions.

EXERCISE 2-9: Deploy the project

1. If you haven’t created a profile for your server, select Edit>Profiles from the menu and
create one now.

For information, see the server profile procedure in the deployment instructions.

2. Use the following information to create the server-specific part of the deployment process.

For most J2EE servers, the server-specific deployment information is in a separate file,
usually in XML format. For some servers, you need to add it to your project so that it is
built into the archive.
Getting ready to deploy 41

tutallDeploy.html
tutallDeploy.html#Definingaserverprofile

2 Creating a Web Service
For more information and exercises with detailed steps, select the section for your
server in the deployment instructions.

Server What to do What to specify

SilverStream Create a SilverStream
deployment plan. In
the Deployment Plan
Editor, set values on
the property sheet for
the Web Archive
item.

Enabled — True

Deployed object name — Calculator

Server Profile — Select the profile you
defined from the dropdown list box

Session timeout — 5 minutes, the default

URLs — Calculator, the default

Sun Reference
Implementation

Create a runtime
deployment
descriptor called sun-
j2ee-ri.xml with the
content at right. Put it
in a directory called
META-INF and add
the file to the project.

<?xml version="1.0"
encoding="Cp1252"?>

<j2ee-ri-specific-information>
<server-name></server-name>
<rolemapping />
<web>

<display-
name>Calculator</display-name>

<context-
root>Calculator</context-root>

</web>
</j2ee-ri-specific-information>

Jakarta Tomcat — —

BEA WebLogic Create a WebLogic
descriptor called
weblogic.xml with
the content at right.
Add it to the project
in the WEB-INF
directory.

<!DOCTYPE weblogic-web-app
PUBLIC "-//BEA
Systems, Inc.//DTD Web
Application 6.0//EN"
"http://www.bea.com/servers/wls6
10/dtd/
weblogic-web-jar.dtd">

<weblogic-web-app>
<description>

Calculator Web Service
</description>
<weblogic-version>
</weblogic-version>

</weblogic-web-app>
42 Getting ready to deploy

tutallDeploy.html#Settingupyourdeploymentenvironment
tutallDeploy.html#Settingupyourdeploymentenvironment

Tutorial: Building a Web Application
3. Specify deployment settings for your server by selecting Project>Deployment Settings
from the menu.

On the Server Profiles tab, select the server profile you defined above. If you have a
secure server, specify values for User name and Password.

On the Deployment Info tab, specify additional application-specific information, as
follows.

NOTE For these tutorials, do not check Enable Rapid Deployment. For information on
how to use rapid deployment with your server, see Archive Deployment in the
Tools Guide.

IBM WebSphere — —

Oracle9iAS — —

Server Option and Value

SilverStream SilverStream Deployment Plan — Select the plan you
defined in Step 2

Overwrite existing deployment — Selected

Verbosity — 3

Ignore compile errors — Not selected (if JSP pages don’t
compile successfully during deployment, don’t deploy the
archive)

Sun Reference
Implementation

—

Jakarta Tomcat —

BEA WebLogic WebLogic Application Name — Calculator; used in the URL
for accessing the Web application

Server What to do What to specify
Getting ready to deploy 43

toolsDeployment.html

2 Creating a Web Service
For more details, select the section for your server in the deployment instructions.

4. Click Deploy in the Deployment Settings dialog.

OR

Click OK in Deployment Settings and select Project>Deploy Archive from the menu.

Workbench displays progress messages, errors, and warnings on the Deploy tab of the
Output Pane.

TIP For most server types, full deployment will fail if your server is not running. For
some servers you need to restart after deployment. For details, see the section for
your server in the deployment instructions.

Updating the J2EE server’s classpath
Before running the Web Service, there is one more thing to do. You must make sure that the
deployed WAR has runtime access to the following archives required by jBroker Web:

• jbroker-web.jar, which contains the jBroker Web API classes

• jaxrpc-api.jar and saaj-api.jar, which contain the Java API classes for XML-based RPC
and SOAP processing

• xerces.jar or another XML parser

How you set up this access depends on the type of J2EE server you use:

If you deployed to one of the following servers, you must add the required JARs to the server’s
classpath. (Consult your server documentation to learn about adding to the classpath.)

• BEA WebLogic

• IBM WebSphere

IBM WebSphere Node Name — Leave blank or specify a node you’ve set up on
your server

Oracle9iAS Deployment Name — Calculator; used in the URL for
accessing the Web application

Target Path — Leave blank or specify a path you’ve set up on
your server

Website Name — Accept the default value or specify a name
you’ve set up on your server

Server Option and Value
44 Updating the J2EE server’s classpath

tutallDeploy.html#Settingupyourdeploymentenvironment
tutallDeploy.html#Settingupyourdeploymentenvironment
tutallDeploy.html#Settingupyourdeploymentenvironment

Tutorial: Building a Web Application
• Jakarta Tomcat

• Oracle9i

If you deployed to the SilverStream eXtend Application Server, you don’t need to add those
JARs to the server’s classpath (the fact that they are in the WEB-INF/lib directory in the WAR
is sufficient for the SilverStream server).

Testing the Web Service
The Web Service Wizard generates a Java class for testing the Web Service. After you make a
few modifications to the template code, you can run the program to see what happens.

EXERCISE 2-10: Edit the test client code

1. In the Navigation Pane, find CalculatorImplWSClient.java and double-click it to open it
in the editor. In Source Layout, it’s in the src/calc directory; in Archive Layout, it’s in
WEB-INF/classes/calc.

2. In the process() method, replace the four commented System.out.println() statements
with this code. Do not remove the call to getRemote().

This new code gets arguments from the command line (or uses default values) and calls
the CalculatorImpl methods.

double x, y;
if (args.length == 2)
{

x = new Double(args[0]).doubleValue();
y = new Double(args[1]).doubleValue();

}
else
{

x = 4.0;
y = 5.0;

}
System.out.println("Add = " + remote.add(x, y));
System.out.println("Divide = " + remote.divide(x, y));
System.out.println("Multiply = " + remote.multiply(x, y));
System.out.println("Subtract = " + remote.subtract(x, y));

3. Select Project>Compile from the menu to save and compile the file.

4. Close the file.
Testing the Web Service 45

2 Creating a Web Service
EXERCISE 2-11: Test the Web Service with the generated client

1. Select Project>Run Web Service Client Class from the menu.

The selection list in the Web Service Wizard Client Runner window displays the test client
class. If your project included other compiled classes with main() methods, they would be
listed too.

2. In the Arguments text box, type two numbers, which are the input for the Calculator’s
arithmetic operations. For example, you might type:

4.0 5.5

3. Click Run.

The output from the System.out.println() methods displays in the output box.

4. Click Close when you are done.

Congratulations. You’ve successfully deployed and tested a Web Service.

Summary of what you’ve done

Developing the application In this lesson you built and deployed a WAR for a Web
Service that provides several methods for basic arithmetic. You edited the code of the generated
client program and ran the client to test the Web Service.

Using Workbench tools You used these tools in Workbench:

• New Project Wizard (File>New Project)
46 Summary of what you’ve done

Tutorial: Building a Web Application
• Add to Project menu item (Project>Add to Project)

• Project Settings dialog (Project>Project Settings)

• Web Service Wizard (File>New, Web Services tab)

• Deployment tools (Open Deployment Descriptor on project popup menu, Edit>Profiles,
Project>Deployment Settings, Project>Deploy Archive)

• Web Service Wizard Client Runner window (Project>Run Web Service Client Class)

Next lesson In the next lesson you will learn about generating client code from a WSDL file
that describes a Web Service.
Summary of what you’ve done 47

2 Creating a Web Service
48 Summary of what you’ve done

3
 Creating a Client Application for a Web
Service Lesson 3
What you will learn
When working with Web Services, there are two basic roles:

• The service provider who writes and deploys a service

• The service consumer who writes a client application that calls the methods offered by the
service

In Lesson 2, “Creating a Web Service” you played the role of provider and deployed the
Calculator Web Service. In this lesson you’ll be a service consumer and use the Web Service
Wizard to generate code that calls the Calculator Web Service.

This lesson uses WSDL generated in Lesson 2, “Creating a Web Service” as its starting point.
Although much of the code you need was already generated in that lesson, this lesson will
proceed as if you had no source code for the Web Service, only a description file in Web
Services Description Language (WSDL) format.

You will learn about:

• Getting information about a Web Service

• Setting up your project

• Generating client code from WSDL

What you will do
1. Set up a project directory and get the WSDL file

2. Create a new project

3. Set up a classpath for building the project

4. Generate client code from WSDL

5. Edit the test client code

6. Test the Web Service with the generated client

How long will it take? About 15 minutes

NOTE This lesson assumes you completed Lesson 2, “Creating a Web Service” and deployed
the Calculator Web Service. When you test this project, the J2EE application server
where the Calculator Web Service is deployed needs to be running.
49

3 Creating a Client Application for a Web Service
Getting information about a Web Service
Web Services Description Language (WSDL) is a standard way to exchange information about
a deployed Web Service. A WSDL file is an XML document that specifies the methods, data
types, and URL of the Web Service. It allows the service to be described in an abstract, reusable
way.

There are several scenarios for getting a WSDL file. You might:

• Get a WSDL file directly from a vendor who is deploying a service you want to use—for
example, from a Web page or via e-mail

• Define a WSDL specification for a service jointly with business partners

• Use the Registry Manager to download a WSDL file from a public registry

Once you have a WSDL file for a Web Service, you can use Workbench’s Web Service Wizard
to generate client code that invokes the service. The generated files include a remote interface,
service classes, a stub, and a client program for testing.

Calculator Web Service In this lesson imagine that you got a WSDL file for the Calculator
Web Service from another developer or business. In reality, you generated it in Lesson 2,
“Creating a Web Service”.

Setting up your project
The client program you will build is a simple Java program, not a J2EE application stored in an
archive. In Workbench you have to choose an archive type, so you’ll choose a JAR project.
When you run the application, you can use either the command line or the Client Runner
window. You won’t need to build and deploy an archive—just compile the files.

EXERCISE 3-1: Set up a project directory and get the WSDL file

1. Using your operating system tools, create a root directory for your project called
CalculatorClient. You can put it at the root level of your disk drive or in a subdirectory of
your choosing. The sample paths in this tutorial assume you created CalculatorClient in
the WorkbenchProjects directory. On Windows, it would look like this:

c:\WorkbenchProjects\CalculatorClient

2. Copy the file CalculatorImplWS.wsdl to the CalculatorClient directory. You’ll find this
file in the src directory of the project for Lesson 2, “Creating a Web Service”—for
example, c:\WorkbenchProjects\CalculatorWS\src.
50 Getting information about a Web Service

Tutorial: Building a Web Application
NOTE You can also get this file from Workbench-install-
directory\docs\tutorial\TutorialFiles\webservices. If you do, it is important to
open the file and edit the URL in the soap:address element at the end of the file to
specify the URL where the Calculator Web Service is deployed.

EXERCISE 3-2: Create a new project

In this exercise you will start Workbench and use the New Project Wizard to create a project for
a client application that uses the Calculator Web Service.

1. Start Workbench. You can use the SilverStream eXtend Workbench shortcut on the
Windows Start menu.
OR
If Workbench is already running and a project is open, select File>Close Project from the
menu. If prompted to close open files, click Yes.

2. Select File>New Project from the menu.

3. In the New Project Wizard, select JAR and then click OK.

4. On the next panel, in the Project Name text box type CalculatorClient.
Setting up your project 51

3 Creating a Client Application for a Web Service
5. Click the ellipses beside the Project Location text box and select the CalculatorClient
directory you created in EXERCISE 3-1: “Set up a project directory and get the WSDL
file”. When you click OK, the rest of the panel is filled in automatically.

6. Click Next, check the project specifications on the final panel, then click Finish.

In the Navigation Pane, the Project tab displays the new project.

EXERCISE 3-3: Set up a classpath for building the project

In this exercise you will use the Project Settings dialog to specify a compile-time classpath. For
Web Services and Web Service clients, the classpath needs to include jbroker-web.jar and some
supporting JARs.

1. With your project open, choose Project>Project Settings from the menu.

2. Select the Classpath/Dependencies tab.

3. Click the Add Entry button.

4. In the Add to Classpath dialog, navigate to the Workbench-install-directory/compilelib
directory. Highlight the following files and click Open then OK.

• jaxrpc-api.jar

• jbroker-web.jar
52 Setting up your project

Tutorial: Building a Web Application
• saaj-api.jar

• xerces.jar

Now the Classpath/Dependencies tab should look something like this:

5. Click OK to close the Project Settings dialog.

Generating client code from WSDL
In Lesson 2, “Creating a Web Service”, you created a new Web Service starting with a Java
class. Here you’ll start with a WSDL file that represents an existing Web Service.

EXERCISE 3-4: Generate client code from WSDL

1. With your project open in Workbench, select File>New from the menu.

2. In the New File dialog, click the Web Services tab, select Existing Web Service, and
click OK.
Generating client code from WSDL 53

3 Creating a Client Application for a Web Service
Workbench displays the project location panel of the Web Service Wizard.

3. Fill in the panel as shown below. The only value you should have to specify is the calc
package.

Once you click Next, Workbench displays the WSDL file selection panel of the Web
Service Wizard. The file CalculatorImplWS.wsdl that you saved in the project root
directory appears in the WSDL Files in Project list box.

4. Highlight CalculatorImplWS.wsdl so that it appears in the WSDL file or URL to use
box. Then click Next.
54 Generating client code from WSDL

Tutorial: Building a Web Application
The class generation and SOAP options panel displays.

5. Examine the settings on this panel (you don’t need to change any of them).

6. Click Finish.
Generating client code from WSDL 55

3 Creating a Client Application for a Web Service
Wizard results

After you run the wizard, a new directory src is added to your project. The calc package
directory under it contains several new files. The Generate stubs option produces these files for
use in a client application:

Editing and testing the client application

Code to instantiate the stub The generated client code obtains the stub by calling a
method of the Service object (which is obtained via JNDI). The code looks like this:

public CalculatorImplWS getRemote(String[] args) throws Exception
{

InitialContext ctx = new InitialContext();

File Description

CalculatorImplWS.java A remote interface that has declarations for the methods
specified in the WSDL file. It extends java.rmi.Remote.
Each of the methods throws RemoteException.

CalculatorImplWSService.ja
va

A Service interface used by JAX-RPC clients to obtain the
stub for the Web Service. You should never need to modify
this class.

CalculatorImplWSServiceIm
pl.java

A Service implementation class that handles instantiation
of the stub (CalculatorImplWSBinding_Stub). You should
never need to modify this class.

CalculatorImplWSBinding_S
tub.java

A jBroker Web class that processes SOAP messages on the
client. You should never need to modify this class.

CalculatorImplWSClient.jav
a

A standalone Java program for accessing the Web Service.
After you edit the code, use it to call methods of the Web
Service.

DivideFault.java An exception class thrown by the divide() method in the
remote interface for this project. This file is specific to this
project.

DivideFaultMarshaler.java A marshaler that serializes and deserializes the
DivideFault data type when it needs to be sent in a SOAP
message. This file is specific to this project.
56 Generating client code from WSDL

Tutorial: Building a Web Application
String lookup = "xmlrpc:soap:calc.CalculatorImplWSService";
CalculatorImplWSService service = (CalculatorImplWSService)ctx.lookup(lookup);
CalculatorImplWS remote = (CalculatorImplWS)service.getCalculatorImplWSPort();

return remote;
}

About the binding When you created the Calculator Web Service in Lesson 2, “Creating a
Web Service”, you specified the binding—the URL for the Web Service—according to where
you were going to deploy the Web Service. For the Calculator client, the wizard gets that
binding from the WSDL and includes it in the generated stub.

If the URL changes, you can override the binding in the stub like this:

public CalculatorImplWS getRemote(String[] args) throws Exception
{

InitialContext ctx = new InitialContext();

String lookup = "xmlrpc:soap:calc.CalculatorImplWSService";
CalculatorImplWSService service = (CalculatorImplWSService)ctx.lookup(lookup);
CalculatorImplWS remote = (CalculatorImplWS)service.getCalculatorImplWSPort();

((javax.xml.rpc.Stub)remote)._setProperty("javax.xml.rpc.service.endpoint.address",
"http://www.myserver.com:80/Calculator/CalculatorImpl");

return remote;
}

For now, the original binding is what you want. Before you run the test client, all you need to do
is edit the calls to the Web Service. You did these same steps when you tested the Web Service
in Lesson 2, “Creating a Web Service”.

EXERCISE 3-5: Edit the test client code

In this exercise you’ll use the same client test code as you used for testing the Web Service in
Lesson 2, “Creating a Web Service”.

1. In the Navigation Pane, find CalculatorImplWSClient.java and double-click it to open it
in the Edit Pane. In Source Layout, it’s in the src/calc directory.

2. In the process() method, replace the four commented System.out.println() statements
with the following code. Do not remove the call to getRemote().
Generating client code from WSDL 57

3 Creating a Client Application for a Web Service
This new code gets arguments from the command line (or uses default values) and calls
the four Calculator methods.

double x, y;
if (args.length == 2)
{

x = new Double(args[0]).doubleValue();
y = new Double(args[1]).doubleValue();

}
else
{

x = 4.0;
y = 5.0;

}
System.out.println("Add = " + remote.add(x, y));
System.out.println("Divide = " + remote.divide(x, y));
System.out.println("Multiply = " + remote.multiply(x, y));
System.out.println("Subtract = " + remote.subtract(x, y));

3. Save the file.

4. Select Project>Build from the menu.

The Build tab of the Output Pane should report a successful build.

EXERCISE 3-6: Test the Web Service with the generated client

1. Select Project>Run Web Service Client Class from the menu.

The selection list in the Web Service Wizard Client Runner window displays the test client
class. If your project included other compiled classes with main() methods, they would be
listed too.

2. In the Arguments text box, type two numbers—for example:
4.0 5.5
58 Generating client code from WSDL

Tutorial: Building a Web Application
3. Click Run.

The output from the System.out.println() methods displays in the output box.

4. Click Close when you are done.

Congratulations. You’ve successfully invoked the publicly available Calculator Web Service.

Summary of what you’ve done

Developing the application In this lesson you used a Web Service description (WSDL)
file to generate code that accesses a Web Service.

Using Workbench tools You used these tools in Workbench:

• New Project Wizard (File>New Project)

• Project Settings dialog (Project>Project Settings)

• Web Service Wizard (File>New, Web Services tab)

• Web Service Wizard Client Runner window (Project>Run Web Service Client Class)

Next lesson In the next lesson you will learn about building a Web application as a client for
the Calculator Web Service.
Summary of what you’ve done 59

3 Creating a Client Application for a Web Service
60 Summary of what you’ve done

4
 Using Web Services in a J2EE Web
Application Lesson 4
What you will learn
This lesson teaches you how to create a J2EE Web application that is a client of a Web Service.
The Web application is a single JSP page. The JavaBean for the page has methods that
instantiate a remote object and call the Calculator Web Service from Lesson 2, “Creating a Web
Service”.

You will learn about:

• Defining a WAR project for the Web Service client application

• Adding Web Service client code to the project

• Creating a form that calls the Calculator Web Service

• Deploying and testing the WAR

What you will do
1. Create a new project

2. Add the jBroker Web libraries to the project

3. Generate the client code for the Calculator Web Service

4. Create a new JSP page

5. Edit the JSP page

6. Create a second JSP page to include in magicnumber.jsp

7. Write a JavaBean to process the form

8. Build the archive

9. Edit the deployment descriptor

10. Deploy the project

11. Test the Calculator Client application

How long will it take? About 20 minutes

NOTE You need to run your J2EE application server to deploy the WAR you create in this
lesson. The Web Service you deployed in Lesson 2, “Creating a Web Service” must
also be running.
61

4 Using Web Services in a J2EE Web Application
Defining a WAR project for the Web Service client application
In this section you’ll create a WAR project for a Web application whose pages call the
Calculator Web Service.

In the previous lesson you created the project directory, then defined the project in Workbench.
This time you’ll let Workbench create the project root directory.

EXERCISE 4-1: Create a new project

In this exercise you will start Workbench and use the New Project Wizard to create a project for
a Web application.

1. Start Workbench. You can use the SilverStream eXtend Workbench shortcut on the
Windows Start menu.
OR
If Workbench is already running and a project is open, select File>Close Project from the
menu. If prompted to close open files, click Yes.

2. Select File>New Project from the menu.

3. In the New Project Wizard, select WAR and then click OK.

4. In the Project Name field, type CalcWARClient.
62 Defining a WAR project for the Web Service client application

Tutorial: Building a Web Application
5. Specify the full path for a project root directory called CalcWARClient in the Project
Location text box.

You can type something like c:\WorkbenchProjects\CalcWARClient, or you can click
the ellipses to select a parent directory in the Choose Directory dialog. Then you can type
the new directory name in the Project Location text box after the selected directory.

As you type, you see the rest of the dialog filled in automatically.

6. In the Project J2EE Version field, specify J2EE 1.2 (WAR 2.2) so your application will
run on any server that supports J2EE 1.2 or 1.3.

7. Click Next.

8. When the wizard asks if it should create the project root and WEB-INF directories, click
Yes.

The wizard summarizes the project information.

9. Click Finish.

In the Navigation Pane, the Project tab displays the new project.
Defining a WAR project for the Web Service client application 63

4 Using Web Services in a J2EE Web Application
EXERCISE 4-2: Add the jBroker Web libraries to the project

The Web Service client uses classes in jbroker-web.jar and supporting JARs for SOAP message
processing. In this exercise you will add these JARs to the archive for runtime access and to the
project classpath for compile-time access.

1. With your project open, select Project>Project Settings from the menu.

2. Select the Contents tab and click the Add Entry button.

3. In the Select Contents dialog, navigate to the directory Workbench-install-
directory/compilelib, then highlight the following files and click Open:

• jaxrpc-api.jar

• jbroker-web.jar

• saaj-api.jar

• xerces.jar

The Add to Project dialog will prompt you for information about each file, one at a time.

4. When you’re prompted about jaxrpc-api.jar, select Add the file to the archive at this
location. In the text box, type WEB-INF/lib/jaxrpc-api.jar. Then click OK.

5. When you’re prompted about jbroker-web.jar, select Add the file to the archive at this
location. In the text box, type WEB-INF/lib/jbroker-web.jar. Then click OK.

6. When you’re prompted about saaj-api.jar, select Add the file to the archive at this
location. In the text box, type WEB-INF/lib/saaj-api.jar. Then click OK.
64 Defining a WAR project for the Web Service client application

Tutorial: Building a Web Application
7. When you’re prompted about xerces.jar, select Add the file to the archive at this
location. In the text box, type WEB-INF/lib/xerces.jar. Then click OK.

The WEB-INF/lib directory of the archive will now include these JARs.

8. Select the Classpath/Dependencies tab and click the Add Entry button.

9. In the Add to Classpath dialog, find the directory Workbench-install-directory/compilelib
again, then highlight the following files and click Open then OK.

• jaxrpc-api.jar

• jbroker-web.jar

• saaj-api.jar

• xerces.jar
Defining a WAR project for the Web Service client application 65

4 Using Web Services in a J2EE Web Application
The Classpath/Dependencies tab should look something like this:

10. Click OK to close the Project Settings dialog.

Adding Web Service client code to the project
There are several classes that the Calculator WAR Client needs for accessing the Calculator Web
Service:

• CalculatorImplWS.java

• CalculatorImplWSService.java

• CalculatorImplWSServiceImpl.java

• CalculatorImplWSBinding_Stub.java

• DivideFault.java

• DivideFaultMarshaler.java

If you did Lesson 2, “Creating a Web Service” or Lesson 3, “Creating a Client Application for
a Web Service”, the client files already exist in a calc package in those projects. Those lessons
also explain what each file does. Although you could copy the files to this project or add them
from their current location, instead you’ll use the WSDL file from Lesson 2, “Creating a Web
Service” to generate them again—it’s quick and easy to do.
66 Adding Web Service client code to the project

Tutorial: Building a Web Application
EXERCISE 4-3: Generate the client code for the Calculator Web Service

In this exercise you’ll generate the client code from the WSDL file for the Web Service. This
exercise is a synopsis of the same steps you did in Lesson 3, “Creating a Client Application for
a Web Service”. For pictures and information about the results of the Web Service Wizard, see
that lesson.

1. Using your system tools, copy the file CalculatorImplWS.wsdl to the CalcWARClient
directory. You’ll find this file in the src directory of the project for Lesson 2, “Creating a
Web Service”—for example, c:\WorkbenchProjects\CalculatorWS\src.

TIP If you didn’t do Lesson 2, “Creating a Web Service” and will use someone else’s
deployed Calculator Web Service, you can get the file from the Workbench-install-
directory\docs\tutorial\TutorialFiles\webservices directory. If you use this file, it
is important to open it and edit the URL in the soap:address element at the end of
the file to specify the URL where the Calculator Web Service is deployed.

2. In Workbench, select File>New from the menu.

3. In the New File dialog, click the Web Services tab, select Existing Web Service, and
click OK.

Workbench displays the project location panel of the Web Service Wizard.

4. Specify the package calc and click Next.

5. When the WSDL file selection panel displays, highlight CalculatorImplWS.wsdl and
click Next.

The class generation and SOAP options panel displays.

6. Examine the settings on this panel (you don’t need to change any of them), then click
Finish.

Your project should now contain the client code for calling the Calculator Web Service.

Creating a form that calls the Calculator Web Service
A JSP page with a form uses a companion JavaBean to manage the data in the form fields.
Properties of the JavaBean store the entered values and make them available to methods in the
bean for further processing.
Creating a form that calls the Calculator Web Service 67

4 Using Web Services in a J2EE Web Application
The simple application in this lesson uses that approach. When the user submits the form with
data, the associated JavaBean stores the submitted values. When the JSP page is redisplayed, it
tests whether data was submitted. If so, it calls a method of the JavaBean that invokes the
Calculator Web Service. When the application successfully calculates the “magic number”, a
second JSP fragment is included in the original page to display the result.

With the exercises in this section, you’ll create these files:

EXERCISE 4-4: Create a new JSP page

In this exercise you will use the JSP Wizard to create a new page.

1. In Workbench, select File>New from the menu.

2. In the New File dialog, select JSP and click OK.

Workbench displays the JSP Wizard.

File Description

magicnumber.jsp The main page of the application with an input form

MagicNumberBean.java JavaBean that handles the data from magicnumber.jsp

calcnumber.jsp JSP fragment that displays the calculated result via an
include directive in magicnumber.jsp
68 Creating a form that calls the Calculator Web Service

Tutorial: Building a Web Application
3. Fill out the first panel of the wizard with this information:

Now the first panel looks like this:

4. Click Next.

5. On the second panel, leave Add to open WAR project selected.

6. Specify where to put the file in the project and the archive:

• For Base directory, specify the full path for a new jsps directory—for example,
c:\WorkbenchProjects\CalcWARClient\jsps. You can select another project directory
path from the dropdown list and edit it.

• For Package, leave it blank. In this project the JSP pages are at the root of the archive.

• Leave Add the files to the root of the archive selected.

Option Value

JSP name magicnumber (don’t specify the jsp extension)

Page title Magic Number

Content type HTML (the default)

Template Standard JSP template (the default)

Other options Use session, Thread safe, Form-based page
Creating a form that calls the Calculator Web Service 69

4 Using Web Services in a J2EE Web Application
7. Click Finish.

8. When the JSP Wizard dialog reports that it is done creating the JSP page, click OK.

The new file is open in the Edit Pane. In the Navigation Pane you can see
magicnumber.jsp in the jsps directory of the Source layout and at the archive root of the
Archive Layout.

EXERCISE 4-5: Edit the JSP page

In this exercise you’ll write the HTML and JSP code for a form that provides data for a
calculation.

NOTE You can copy the code for this exercise from the file CutAndPasteCode.txt in the
Workbench-install-directory/docs/tutorial/TutorialFiles/webservices directory.
OR
If you don’t want to do these editing steps, you can use the correctly edited file
magicnumber-sample.jsp in the same directory. Use your operating system tools to
copy it to your project’s jsps directory and rename it magicnumber.jsp, replacing the
file you just created with the JSP Wizard.

1. With magicnumber.jsp open in the Edit Pane, add these lines after </head>:
<jsp:useBean id="magicnumber" class="com.client.MagicNumberBean"/>
<jsp:setProperty name="magicnumber" property="*"/>
70 Creating a form that calls the Calculator Web Service

Tutorial: Building a Web Application
2. Add these lines between <body> and </body>, replacing the existing text:
<h1>Your Magic Number</h1>

<p>Your magic number changes every day.</p>

<form method="post">
<table>
<tr>

<td>Your age</td>
<td>

<input type="text" name="age" value="<%= magicnumber.getAge() %>"
>

</td>
</tr>
<tr>

<td>Day of month you were born</td>
<td>

<input type="text" name="birthday" value="<%=
magicnumber.getBirthday() %>" >

</td>
</tr>
<tr>

<td>Hour you went to bed last night</td><td>
<input type="text" name="bedtime" value="<%=

magicnumber.getBedtime() %>" >
</td>

</tr>
<tr>

<td span="2">
<input type="submit" name="Submit" value="Submit">

</td>
</tr>
</table>

</form>

<%
if (request.getParameter("age") != null)
{

magicnumber.calcNumber();
%>

<%@ include file="calcnumber.jsp" %>
<%

}
%>

3. Save and close the file.
Creating a form that calls the Calculator Web Service 71

4 Using Web Services in a J2EE Web Application
EXERCISE 4-6: Create a second JSP page to include in magicnumber.jsp

In this exercise you’ll create a JSP fragment that is included in magicnumber.jsp when there is
a calculated result to display.

NOTE You can copy the code for this exercise from the file CutAndPasteCode.txt in the
Workbench-install-directory/docs/tutorial/TutorialFiles/webservices directory.
OR
If you don’t want to do these editing steps, you can use the correctly edited file
calcnumber-sample.jsp in the same directory. Use your operating system tools to
copy it to the project’s jsps directory and rename it calcnumber.jsp.

1. In Workbench, select File>New from the menu.

2. In the New File dialog, select JSP and click OK.

Workbench displays the JSP Wizard.

3. For JSP name, specify calcnumber. The rest of the values don’t matter since you’ll be
replacing all the generated code.

4. Click Next.

5. On the second panel, leave Add to open WAR project selected.

6. Specify where to put the file in the project and the archive:

• For Base directory, specify the full path for the jsps directory—for example,
c:\WorkbenchProjects\CalcWARClient\jsps. You can use the dropdown list box or the
Browse button to select it.

• For Package, leave it blank. In this project the JSP pages are at the root of the archive.

• Leave Add the files to the root of the archive selected.

7. Click Finish.

8. When the JSP Wizard dialog reports that it is done creating the JSP page, click OK.

The file is open in the Edit Pane. In the Navigation Pane you can see that calcnumber.jsp
has been added to the jsps directory in the Source layout and the archive root in the
Archive layout.

9. Edit the file, replacing all the contents with this code:
<h2>Drumroll...</h2>

<table>
<tr>
<td>Your number is:</td>
<td><%= magicnumber.getMagicNumber() %></td>
</tr>
72 Creating a form that calls the Calculator Web Service

Tutorial: Building a Web Application
<tr>
<td span="2">Did you expect a winning lottery number?</td>
</tr>
</table>

As you can see, the code is not a complete HTML page. It will be included in the other
JSP page.

10. Save and close the file.

EXERCISE 4-7: Write a JavaBean to process the form

In this exercise you’ll create a new Java source file by using the Java Class Wizard and then
copy in the code for the JavaBean. (An alternative would be to use the JavaBean Wizard
provided by Workbench. It is most useful when you’re creating your own JavaBeans from
scratch.)

NOTE You can copy the code for this exercise from the file CutAndPasteCode.txt in the
Workbench-install-directory/docs/tutorial/TutorialFiles/webservices directory.
OR
If you don’t want to do these editing steps, you can use the correctly edited file
MagicNumberBean-sample.java in the same directory. Use your operating system
tools to create a directory called com\client under the src directory of your project, copy
the file there, and rename it MagicNumberBean.java.

1. In Workbench, select File>New from the menu.
Creating a form that calls the Calculator Web Service 73

4 Using Web Services in a J2EE Web Application
2. In the New File dialog, select Java file and click OK.

3. In the Java Class Wizard, specify these values:

Option Value

Class name MagicNumberBean (don’t specify the java extension)

Base class Leave blank

Create class or interface Class (the default)

Template Standard Java class template (the default)

Other options Public scope, Create default constructor, Serializable
74 Creating a form that calls the Calculator Web Service

Tutorial: Building a Web Application
4. Click Next.

5. When the wizard prompts for interfaces to add, click Next to skip to the next panel.

6. When the wizard prompts for additional imports, click Next to skip to the next panel.

7. On the next panel, leave Add to open project selected.

8. Specify where to put the file in the project and the archive:

• For Base directory, specify the full path for the src directory—for example,
c:\WorkbenchProjects\CalcWARClient\src. You will find this path on the dropdown
list.

• For Package, specify com.client.

• Select Add the files to the archive with this prefix and specify WEB-INF/classes as
the prefix.
Creating a form that calls the Calculator Web Service 75

4 Using Web Services in a J2EE Web Application
9. Click Finish.

10. When the Java Class Wizard dialog reports that it is done creating the new Java file, click
OK.

The file MagicNumberBean.java is open in the Edit Pane.

11. In the Edit Pane, add these import statements after the package statement:
import javax.naming.InitialContext;
import calc.*;

12. Replace the constructor, which looks like this:
public MagicNumberBean()
{

/** @todo: implement this constructor */
}

with these property variables, constructor, and getter and setter methods. The properties
with their getter and setter methods correspond to fields in the form in magicnumber.jsp.

private int age=0;
private int birthday=0;
private int bedtime=0;
private double magicNumber=0.0;

public MagicNumberBean() { }
public int getAge() { return this.age; }
public void setAge(int age) { this.age=age; }
76 Creating a form that calls the Calculator Web Service

Tutorial: Building a Web Application
public int getBirthday() { return this.birthday; }
public void setBirthday(int day) { this.birthday=day; }

public int getBedtime() { return this.bedtime; }
public void setBedtime(int bedtime) { this.bedtime=bedtime; }

public double getMagicNumber() { return this.magicNumber; }
public void setMagicNumber(double num) { this.magicNumber=num; }

13. Before the final closing } for the class, add the calcNumber() and getCalculatorRemote()
methods, which have the code for calling the Web Service.

public void calcNumber()
{

double result=0;
try
{

CalculatorImplWS remote = getCalculatorRemote();

result = remote.add(age, birthday);
if (result != 0)
{

result = remote.multiply(result, bedtime);
}
setMagicNumber(result);

}
catch (Exception _e)
{

System.out.println("*** Error calculating number ***");
_e.printStackTrace();

}
}

private CalculatorImplWS getCalculatorRemote() throws Exception
{

InitialContext ctx = new InitialContext();

String lookup = "xmlrpc:soap:calc.CalculatorImplWSService";
CalculatorImplWSService service =

(CalculatorImplWSService)ctx.lookup(lookup);
CalculatorImplWS remote =

(CalculatorImplWS)service.getCalculatorImplWSPort();

return remote;
}

14. Save and close the file.
Creating a form that calls the Calculator Web Service 77

4 Using Web Services in a J2EE Web Application
Deploying and testing the WAR
To deploy the application, you need to specify:

• Information in the deployment descriptor about the starting servlet or JSP page

• Information your server needs in the format it expects

You will do this next.

About the deployment descriptor

When you created the project, Workbench created an XML descriptor file appropriate to the
type of archive you selected. For a WAR, the file is called web.xml.

When you open web.xml for editing, the Deployment Descriptor Editor shows the XML
elements in an expandable tree structure. You can also look at the raw XML. The editor uses the
project’s compiled code to determine what to show, which is why you build the archive first. If
it isn’t already built, Workbench offers to build it for you.

EXERCISE 4-8: Build the archive

• In Workbench, select Project>Rebuild All and Archive from the menu to create a
deployable archive for your project.

EXERCISE 4-9: Edit the deployment descriptor

In this exercise you’ll identify the JSP page that is the entry point for the application.

1. In the Navigation Pane, right-click the project file CalcWARClient.spf and select Open
Deployment Descriptor from the popup menu.

NOTE If Workbench displays the Select Build Option dialog, select No, don’t build
now and click OK. You can set options that cause this dialog to always or never
display.

Workbench opens web.xml in the Edit Pane. The editor displays the Descriptor tab,
showing the types of information the descriptor can include.
78 Deploying and testing the WAR

Tutorial: Building a Web Application
2. Right-click Web Archive and select Properties from the popup menu.

3. On the property sheet, specify CalcWARClient for Display Name.

4. In the Edit Pane, right-click Servlets and select Add from the popup menu.

5. On the property sheet, specify these values:

Option Value

Servlet name magicnumber

Type JSP

JSP file magicnumber.jsp
Deploying and testing the WAR 79

4 Using Web Services in a J2EE Web Application
6. In the Edit Pane, right-click Servlet Mapping and select Add from the popup menu.

7. On the property sheet, specify these values:

8. In the Edit Pane, right-click Welcome Files and select Add from the popup menu.

9. On the property sheet, specify these values:

10. Save and close the deployment descriptor.

Option Value

Servlet name magicnumber

URL pattern magicnumber

Option Value

Welcome File magicnumber.jsp
80 Deploying and testing the WAR

Tutorial: Building a Web Application
Deploying the project

If you’ve done the previous lessons, most of your deployment setup has already been done. This
exercise gives you the main steps and provides the project-specific information you’ll need to
deploy this project. For detailed deployment instructions for all the supported servers, see
Workbench Deployment Instructions.

EXERCISE 4-10: Deploy the project

1. If you haven’t created a profile for your server, select Edit>Profiles and create one now.

For information, see the server profile procedure in the deployment instructions.

2. Use the following information to create the server-specific part of the deployment process.

For more information and exercises with detailed steps, select the section for your
server in the deployment instructions.

Server What to do What to specify

SilverStream Create a SilverStream
deployment plan and
set values on the
property sheet for the
Web Archive item.

Enabled — True

Deployed object name —
CalcWARClient

Server Profile — Select the profile you
defined from the dropdown list box

Session timeout — 5 minutes, the default

URLs — CalcWARClient, the default

Excluded JSPs — calcnumber.jsp
Deploying and testing the WAR 81

tutallDeploy.html
tutallDeploy.html#Definingaserverprofile
tutallDeploy.html#Settingupyourdeploymentenvironment
tutallDeploy.html#Settingupyourdeploymentenvironment

4 Using Web Services in a J2EE Web Application
3. Specify deployment settings for your server by selecting Project>Deployment Settings
from the menu.

On the Server Profiles tab, select the server profile you defined above. If you have a
secure server, specify values for User name and Password.

On the Deployment Info tab, specify additional application-specific information, as
follows.

Sun Reference
Implementation

Create a runtime
deployment
descriptor called sun-
j2ee-ri.xml with the
content at right. Put it
in a directory called
META-INF and add
the file to the project.

<?xml version="1.0"
encoding="Cp1252"?>

<j2ee-ri-specific-information>
<server-name></server-name>
<rolemapping />
<web>

<display-
name>CalcWARClient</display-
name>

<context-
root>CalcWARClient</context-
root>

</web>
</j2ee-ri-specific-information>

Jakarta Tomcat — —

BEA WebLogic Create a WebLogic
descriptor called
weblogic.xml with
the content at right.
Add it to the project
in the WEB-INF
directory.

<!DOCTYPE weblogic-web-app
PUBLIC "-//BEA
Systems, Inc.//DTD Web
Application 6.0//EN"
"http://www.bea.com/servers/wls6
10/dtd/
weblogic-web-jar.dtd">

<weblogic-web-app>
<description>

Calculator Client
</description>
<weblogic-version>
</weblogic-version>

</weblogic-web-app>

IBM WebSphere — —

Oracle9iAS — —

Server What to do What to specify
82 Deploying and testing the WAR

Tutorial: Building a Web Application
NOTE For these tutorials, do not check Enable Rapid Deployment. For information on
how to use rapid deployment with your server, see Archive Deployment in the
Tools Guide.

For more details, select the section for your server in the deployment instructions.

4. Click Deploy in the Deployment Settings dialog.

OR

Click OK in Deployment Settings and select Project>Deploy Archive from the menu.

Workbench displays progress messages, errors, and warnings on the Deploy tab of the
Output Pane.

Server Option and Value

SilverStream SilverStream Deployment Plan — Select the plan you
defined in Step 2

Overwrite existing deployment — Selected

Verbosity — 3

Ignore compile errors — Not selected (if JSP pages don’t
compile successfully during deployment, don’t deploy the
archive)

Sun Reference
Implementation

—

Jakarta Tomcat —

BEA WebLogic WebLogic Application Name — CalculatorWARClient; used
in the URL for accessing the Web application

IBM WebSphere Node Name — Leave blank or specify a node you’ve set up on
your server

Oracle9iAS Deployment Name — CalculatorWARClient; used in the
URL for accessing the Web application

Target Path — Leave blank or specify a path you’ve set up on
your server

Website Name — Accept the default value or specify a name
you’ve set up on your server
Deploying and testing the WAR 83

tutallDeploy.html#Settingupyourdeploymentenvironment
toolsDeployment.html

4 Using Web Services in a J2EE Web Application
TIP For most server types, full deployment will fail if your server is not running. For
some servers you need to restart after deployment. For details, see the section for
your server in the deployment instructions.

EXERCISE 4-11: Test the Calculator Client application

1. Open your browser and enter the URL for the application. It will generally include:

For example, if the application is deployed to a local SilverStream server in a database
called ProverbsCloud and the URL for the application is CalcWARClient, the URL would
be:

http://localhost/ProverbsCloud/CalcWARClient

You see the welcome page with a form for specifying the calculation data.

2. Enter some values (integers only) in the form and click Submit.

The results, displayed by calcnumber.jsp, appear below the form.

Part of URL Description Typical value

Server URL for the server, including the
port number (if not the default port
80) and any server-specific data

TIP For a SilverStream server,
include the database to which
you deployed the WAR

http://localhost/Prov
erbsCloud/

http://www.mydoma
in.com:8080/

Web application URL for the WAR

TIP For a SilverStream server, this is
a relative URL that you specify
in the deployment plan

CalcWARClient/

Page (Optional) URL for the page you
want to view; if blank the application
displays the welcome page specified
in the deployment descriptor

(blank)
84 Deploying and testing the WAR

tutallDeploy.html#Settingupyourdeploymentenvironment
tutallDeploy.html#Settingupyourdeploymentenvironment

Tutorial: Building a Web Application
Summary of what you’ve done

Developing the application In this lesson you built a Web application that displayed a
form to users, used the form data when it called the Calculator Web Service, and presented the
results of the calculation on the same JSP page.

Using Workbench tools You used these tools in Workbench:

• New Project Wizard (File>New Project)

• Project Settings dialog (Project>Project Settings)

• Web Service Wizard (File>New, Web Services tab)

• JSP Wizard and Editor

• Java Class Wizard and Editor

• Deployment tools (Open Deployment Descriptor on project popup menu, Edit>Profiles,
Project>Deployment Settings, Project>Deploy Archive)
Summary of what you’ve done 85

4 Using Web Services in a J2EE Web Application
Next lesson In the next lesson you will learn about additional tools for testing Web
Services.
86 Summary of what you’ve done

5
 Testing Techniques Lesson 5
What you will learn
This lesson teaches you how to use tools for testing your Web Service. You will learn about:

• Viewing the WSDL in your browser

• Inspecting message traffic with TcpTunnel

You’ll use the project for the Calculator Web Service you developed in Lesson 2, “Creating a
Web Service”.

What you will do
1. View the WSDL for the deployed Web Service

2. Edit the client code to redirect messages to TcpTunnel

3. Run the client and observe the message traffic with TcpTunnel

How long will it take? About 10 minutes

NOTE You need to run your J2EE application server to query the Calculator Web Service you
deployed in Lesson 2, “Creating a Web Service”.

Viewing the WSDL in your browser
As you’ve seen, the Web Service Wizard adds several Java classes to your project. In addition,
the wizard’s Generate WSDL file option adds a WSDL file to the project. The WSDL file
describes your Web Service for clients that don’t have access to the actual Web Service code. In
Source layout it’s in the src directory, and in Archive layout it’s in the WEB-INF/classes
directory.

If you type the URL for the Web Service in your browser, the jBroker Web code on the server
gets a plain GET request, not a SOAP message. So instead of running a Web Service method and
returning a SOAP message, it displays the WSDL for the Web Service. With this feature, you
can use the Web to give other developers the information they need to develop a client
application that calls your Web Service.

NOTE Another way of sharing information about a deployed Web Service is in a registry,
described in Lesson 1, “Registries and WSDL for Web Services”.
87

5 Testing Techniques
EXERCISE 5-1: View the WSDL for the deployed Web Service

This procedure requires a browser that understands and displays XML, such as Internet
Explorer 5 and later.

1. If the application server where you deployed the Calculator Web Service isn’t running,
start it now.

2. Open your Internet Explorer browser.

3. In Lesson 2, “Creating a Web Service” you specified an URL for the Web Service
binding—for example, http://localhost/ProverbsCloud/Calculator/CalculatorImpl. Go
to that URL in the browser.

The browser displays the WSDL for the Web Service.
88 Viewing the WSDL in your browser

Tutorial: Building a Web Application
Inspecting message traffic with TcpTunnel
One of the tools in jBroker Web is TcpTunnel, a console that displays SOAP request and
response messages and HTTP headers sent between a client and a Web Service. The basic steps
for using TcpTunnel are:

1. Alter the binding URL for the Web Service in the client code to redirect requests to
TcpTunnel using localhost and a unique port number.

2. Start TcpTunnel with arguments specifying the new port number and the original server
name and port number.

3. Run the client program and observe the messages on the TcpTunnel console.

These exercises provide detailed steps for running the Calculator client with TcpTunnel. The
steps show you how to include the altered binding URL in the test client’s code; you could also
change the client code to accept the URL as a command-line argument.

EXERCISE 5-2: Edit the client code to redirect messages to TcpTunnel

In this exercise you’ll change the binding URL in the client to redirect message traffic through
TcpTunnel.

1. Start Workbench and open the Calculator project in the CalculatorWS directory.

TIP If you opened that project recently, you can use the File>Recent Files menu item.

2. Open CalculatorImplWS_Stub.java in the editor. Find and highlight the binding URL
and copy it to the clipboard. The URL is the second string in a line that looks like this:

new com.sssw.jbroker.web.Binding("soap",
"http://localhost/ProverbsCloud/Calculator/CalculatorImpl"),

3. Close the file.

4. Open CalculatorImplWSClient.java in the editor.

5. Edit the getRemote() method to include code for setting the binding, then paste in the
URL from the stub:

public CalculatorImplWS getRemote(String[] args) throws Exception
{

InitialContext ctx = new InitialContext();

String lookup = "xmlrpc:soap:calc.CalculatorImplWSService";
CalculatorImplWSService service = (CalculatorImplWSService)ctx.lookup(lookup);
CalculatorImplWS remote = (CalculatorImplWS)service.getCalculatorImplWSPort();

((javax.xml.rpc.Stub)remote)._setProperty("javax.xml.rpc.service.endpoint.address",
"http://localhost/ProverbsCloud/Calculator/CalculatorImpl");
Inspecting message traffic with TcpTunnel 89

5 Testing Techniques
return remote;
}

6. In the pasted URL, change the server and port to localhost:9090 but keep the rest of the
Web Service's real URL. The port 9090 is an arbitrary unused port number.

The resulting line of code looks like this:
((javax.xml.rpc.Stub)remote)._setProperty("javax.xml.rpc.service.endpoint.address",

"http://localhost:9090/ProverbsCloud/Calculator/CalculatorImpl");

7. Save the file and close it.

8. Select Project>Build to recompile CalculatorImplWSClient.

EXERCISE 5-3: Run the client and observe the message traffic with TcpTunnel

In this exercise you’ll start TcpTunnel and run the test client with the Client Runner window.

1. Start TcpTunnel by opening a DOS window in the Workbench-install-
directory\bin\win32 directory and typing a command in this format:

tcptunnel 9090 server-with-deployed-web-service port

For example, if the Web Service was deployed to localhost:80, type:
tcptunnel 9090 localhost 80

If the service was deployed to www.myweb.com, type:
tcptunnel 9090 www.myweb.com 80

2. In Workbench, run the test client the same way you did in Lesson 2, “Creating a Web
Service”: select Project>Run Web Service Client Class from the menu, select the
CalculatorImplWSClient class, enter two numbers as arguments, and click Run.

3. Look at the TcpTunnel console window to see the HTTP headers and SOAP messages
being exchanged.

The left pane contains the SOAP requests made by the client, and the right pane displays
the responses from the Web Service.
90 Inspecting message traffic with TcpTunnel

Tutorial: Building a Web Application
Summary of what you’ve done

Developing the application In this lesson you found out how to display WSDL for a Web
Service published using jBroker Web and you learned how to examine the SOAP message
traffic using TcpTunnel.

Using Workbench tools You used these tools in Workbench:

• Edit Pane

• TcpTunnel (jBroker Web command-line tool)

What’s next Congratulations. You’ve finished building the Calculator Web Service and a
client Web application for it.

To learn more about J2EE and Workbench, try the WAR tutorial.
Summary of what you’ve done 91

5 Testing Techniques
92 Summary of what you’ve done

Index
A
archives

JAR project (tutorial) 50
WAR project (tutorial) 25, 62

C
Calculator Web Service (tutorial)

creating 23
deploying 41
deployment descriptor 38
generating client code 49
running test client 45, 56

CalculatorClient application (tutorial)
about 61
deploying 81
deployment descriptor 78
JavaServer Pages for user interface 67
testing 84
Web Service client code 66

J
Java class

creating (tutorial) 73
JavaServer Pages

for Web Service client (tutorial) 67
JavaBean for form (tutorial) 67

JAX-RPC
support for (tutorial) 24

jBroker Web
adding libraries to project (tutorial) 28
defined (tutorial) 24

N
Navigation Pane

Registry tab (tutorial) 2

P
projects

creating (tutorial) 25
JAR (tutorial) 50
WAR for Web Service client (tutorial) 62

T
TcpTunnel

testing Web Service (tutorial) 89
tutorials

developing a Web Service 23
Web Service Wizard, client code 49

U
URLs

Web Service (tutorial) 31

W
Web applications

Web Service client (tutorial) 61
Web Service Wizard

generating client code (tutorial) 49, 53, 66
generating from source object (tutorial) 31
list of generated files (tutorial) 35, 56

Web Services
client WAR application (tutorial) 61
creating (tutorial) 23
generating client code (tutorial) 49
JAX-RPC support (tutorial) 24
project classpath (tutorial) 28
registries (tutorial) 1
registries, about publishing (tutorial) 21
registries, business information (tutorial) 5
registries, service information (tutorial) 6
registry profiles (tutorial) 2
RMI model (tutorial) 24
skeleton, tie, stub classes (tutorial) 24
93

Index
testing message traffic (tutorial) 89
UDDI, defined (tutorial) 2
Wizard, available in WSDL Editor (tutorial) 18
WSDL, about (tutorial) 50
WSDL, creating client from (tutorial) 49
WSDL, getting from Web Service (tutorial) 87

WSDL Editor
about (tutorial) 9
inserting elements (tutorial) 11
stylized view (tutorial) 15
toolbar (tutorial) 17
94

	Tutorial: Developing Web Services
	Contents
	About This Book
	Purpose
	Audience
	Prerequisites
	Organization

	Registries and WSDL for Web Services
	What you will learn
	What you will do

	Registries for Web Services
	About registries

	Browsing registries in Workbench
	EXERCISE 1-1: Create a profile for a public registry
	EXERCISE 1-2: Search for businesses
	Information about businesses

	Examining the information for a service
	EXERCISE 1-3: Examine the services for a business
	Information about services

	Using the WSDL Editor
	EXERCISE 1-4: Create a WSDL file for the Calculator Web Service
	Tools for inserting elements
	EXERCISE 1-5: Add a binding element
	EXERCISE 1-6: Add a service element

	Stylized view
	EXERCISE 1-7: Change the Stylized view

	WSDL Editor toolbar
	EXERCISE 1-8: Generate a Java remote interface from WSDL

	About publishing

	Summary of what you’ve done

	Creating a Web Service
	What you will learn
	What you will do

	Web Services using J2EE
	JAX-RPC and RMI
	Workbench and jBroker Web

	Defining a WAR project for the service
	EXERCISE 2-1: Set up directories for your project
	EXERCISE 2-2: Create a new project
	EXERCISE 2-3: Add source code to the project
	EXERCISE 2-4: Add the jBroker Web libraries to the project
	EXERCISE 2-5: Build the project

	Generating Web Service code
	EXERCISE 2-6: Run the Web Service Wizard

	Getting ready to deploy
	About the deployment descriptor
	EXERCISE 2-7: Build the archive
	EXERCISE 2-8: Examine the deployment descriptor

	Deploying the project
	EXERCISE 2-9: Deploy the project

	Updating the J2EE server’s classpath
	Testing the Web Service
	EXERCISE 2-10: Edit the test client code
	EXERCISE 2-11: Test the Web Service with the generated client

	Summary of what you’ve done

	Creating a Client Application for a Web Service
	What you will learn
	What you will do

	Getting information about a Web Service
	Setting up your project
	EXERCISE 3-1: Set up a project directory and get the WSDL file
	EXERCISE 3-2: Create a new project
	EXERCISE 3-3: Set up a classpath for building the project

	Generating client code from WSDL
	EXERCISE 3-4: Generate client code from WSDL
	Wizard results
	Editing and testing the client application
	EXERCISE 3-5: Edit the test client code
	EXERCISE 3-6: Test the Web Service with the generated client

	Summary of what you’ve done

	Using Web Services in a J2EE Web Application
	What you will learn
	What you will do

	Defining a WAR project for the Web Service client application
	EXERCISE 4-1: Create a new project
	EXERCISE 4-2: Add the jBroker Web libraries to the project

	Adding Web Service client code to the project
	EXERCISE 4-3: Generate the client code for the Calculator Web Service

	Creating a form that calls the Calculator Web Service
	EXERCISE 4-4: Create a new JSP page
	EXERCISE 4-5: Edit the JSP page
	EXERCISE 4-6: Create a second JSP page to include in magicnumber.jsp
	EXERCISE 4-7: Write a JavaBean to process the form

	Deploying and testing the WAR
	About the deployment descriptor
	EXERCISE 4-8: Build the archive
	EXERCISE 4-9: Edit the deployment descriptor

	Deploying the project
	EXERCISE 4-10: Deploy the project
	EXERCISE 4-11: Test the Calculator Client application

	Summary of what you’ve done

	Testing Techniques
	What you will learn
	What you will do

	Viewing the WSDL in your browser
	EXERCISE 5-1: View the WSDL for the deployed Web Service

	Inspecting message traffic with TcpTunnel
	EXERCISE 5-2: Edit the client code to redirect messages to TcpTunnel
	EXERCISE 5-3: Run the client and observe the message traffic with TcpTunnel

	Summary of what you’ve done

	Index

