
SilverStream eXtend Application Server

Facilities Guide

Version 4.0

July 2002

Copyright ©2002 SilverStream Software, Inc. All rights reserved.

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, Inc.

SilverStream and jBroker are registered trademarks and SilverStream eXtend is a trademark of SilverStream Software,
Inc.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall
at all times remain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You shall not
remove any copyright notices or other proprietary notices from the Software or its documentation, and you must reproduce
such notices on all copies or extracts of the Software or its documentation. You do not acquire any rights of ownership in
the Software.

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Ant Copyright ©1999 The
Apache Software Foundation. All rights reserved. Xalan Copyright ©1999 The Apache Software Foundation. All rights
reserved. Xerces Copyright ©1999-2000 The Apache Software Foundation. All rights reserved. Jakarta-Regexp, Ant,
Xalan and Xerces software is licensed by The Apache Software Foundation and redistribution and use of Jakarta-Regexp,
Ant, Xalan and Xerces in source and binary forms, with or without modification, are permitted provided that the following
conditions are met: 1. Redistributions of source code must retain the above copyright notices, this list of conditions and
the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The
end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This
product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "The Jakarta Project", "Jakarta-Regexp", "Xerces", "Xalan", "Ant" and "Apache Software Foundation" must
not be used to endorse or promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org <mailto:apache@apache.org>. 5. Products derived from this software
may not be called "Apache", nor may "Apache" appear in their name, without prior written permission of The Apache
Software Foundation. THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE
SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of
source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions
in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that follows these
conditions in the documentation and/or other materials provided with the distribution. 3. The name "JDOM" must not be
used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact license@jdom.org <mailto:license@jdom.org>. 4. Products derived from this software may not be called
"JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management
(pm@jdom.org <mailto:pm@jdom.org>). THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans,
Enterprise JavaBeans, JavaServer Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava
Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Manager,
Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer,
ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the
Java Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and other countries.

The software licensed hereby contains modified Sun NetBeans software which is available, together with the Sun Public
License pursuant to which such NetBeans software may be used, at http://www.silverstream.com/workbenchdownload.
Terms of this Agreement that differ from the terms of the Sun Public License are offered solely by SilverStream.

SilverStream eXtend Workbench software contains Sun NetBeans software that has been modified by SilverStream. The
source code for such software may be found at http://www.silverstream.com/workbenchdownload together with the Sun
Public License that governs the use of such modified software. The Original Code is NetBeans. The Initial Developer of
the Original Code is Sun Microsystems, Inc. Portions Copyright 1997-2000 Sun Microsystems, Inc. All Rights Reserved.
The Contributor to Covered Code is SilverStream Software, Inc.

IBM JikesTM and Bean Scripting Framework (BSF) Copyright ©2001, International Business Machines Corporation and
others. All Rights Reserved. This software contains code in executable form obtained pursuant to, and the use of which is
subject to, the IBM Public License, a copy of which may be obtained at
http://oss.software.ibm.com/developerworks/opensource/license10.html. Source code for JikesTM is available at
<http://oss.software.ibm.com/developerworks/opensource/jikes/>. Source code for BSF is available at
http://oss.software.ibm.com/developerworks/projects/bsf.

Copyright ©2001 Extreme! Lab, Indiana University License. http://www.extreme.indiana.edu. Permission is hereby
granted, free of charge, to any person obtaining a copy of the Indiana University software and associated Indiana
University documentation files (the "IU Software"), to deal in the IU Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the IU Software, and
to permit persons to whom the IU Software is furnished to do so, subject to the following conditions: The above copyright
notice and this permission notice shall be included in all copies or substantial portions of the IU Software. THE IU
SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE IU
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE IU SOFTWARE.

Graph Layout Toolkit and Graph Editor Toolkit ©1992 - 2001 Tom Sawyer Software, Oakland, California, All Rights
Reserved.

This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved.

SearchServer © 2000 Hummingbird Communications, Inc.

Copyright © 1994-2002 W3C® (Massachusetts Institute of Technology, Institut National de Recherche Informatique et
en Automatique, Keio University), all Rights Reserved. http: www.w3.org/consortium/legal. This W3C work (including
software, documents, or other related items) is being provided by the copyright holders under the following license. By
obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with
the following terms and conditions: Permission to use, copy, modify, and distribute this software and its documentation,
with or without modification, for any purpose and without fee or royalty is hereby granted, provided that you include the
following on ALL copies of the software and documentation or portions thereof, including modifications, that you make:
1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. 2. Any pre-existing
intellectual property disclaimers, notices, or terms and conditions. If none exist, a short notice of the following form
(hypertext is preferred, text is permitted) should be used within the body of any redistributed or derivative code:
"Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.
http://www.w3.org/Consortium/Legal/" 3. Notice of any changes or modifications to the W3C files, including the date
changes were made. (We recommend you provide URIs to the location from which the code is derived.) THIS
SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE
OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR
ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
SOFTWARE OR DOCUMENTATION. The name and trademarks of copyright holders may NOT be used in advertising
or publicity pertaining to the software without specific, written prior permission. Title to copyright in this software and
any associated documentation will at all times remain with copyright holders.

Contents
About This Book ix
Purpose ix
Audience ix
Prerequisites ix
Organization ix
Related resources x

Chapter 1 JSP Deployment to the File System 1
Using JSP pages 1

About JSP pages and Web applications 1
About file system deployment 2
Using eXtend Workbench 2

Setting up your application 3
Deploying your application to the file system 3

Creating the deployment plan 4
Deploying the application 4

Updating your application 5
Putting your application into production 7

Chapter 2 J2EE Archive Deployment 9
Deploying J2EE application client archives 9

Packaging application clients 10
Writing an application client deployment plan 10
Running SilverCmd DeployCAR 11

Deploying EJB archives 12
Packaging EJB components 12
Writing an EJB deployment plan 12
Tips for completing the EJB deployment plan 15
Deploying an EJB JAR 37
Restructuring EJB JAR files after deployment 39

Deploying Web archives (WARs) 40
Packaging a Web application 40
Writing a WAR deployment plan 40
Deploying a WAR file 42

Deploying resource adapter archives (RARs) 42
Packaging a RAR 42
Writing a RAR deployment plan 43
Deploying a RAR file 44
v

vi

Contents
Deploying enterprise archives (EARs) 44
Packaging an enterprise application 45
Writing an EAR deployment plan 45
Running SilverCmd DeployEAR 46

Specifying classpath JARs on the server 47
Accessing user-supplied JARs 47
Overriding server-supplied JARs 47

Chapter 3 Deployment Plan DTDs 49
About the deployment plan DTDs 49
Client JAR deployment plan DTD 50
EJB JAR deployment plan DTD 55
WAR deployment plan DTD 78
RAR deployment plan DTD 85
EAR deployment plan DTD 88

Chapter 4 SilverCmd Reference 95
Command locator 95
About SilverCmd 98

Running SilverCmd 98
Specifying values in input files and deployment plans 101

Alphabetical list of commands 102
AddCP 102
AddDatabase 105
Build 109
BuildWAR 111
ClearDefaultURL 112
ClearLog 113
ComGen 114
ConvertEJB 115
CreatePackage 116
Delete 117
DeployCAR 119
DeployEAR 120
DeployEAR12 123
DeployEJB 125
DeployEJB11 127
DeployRAR 129
DeployWAR 130
ExportSource 132
GetConsole 134
GetDefaultURL 135

SilverStream eXtend Application Server Facilities Guide
ImportClass 136
ImportMedia 138
ImportPage 140
ImportSource 141
ListCP 143
ModifyCP 144
ModifyTableList 145
Prefs 147
PrintLog 149
Publish 150
PublishFromFile 151
PublishToFile 153
QueryCP 155
RebuildJAR 156
RemoveCP 157
RemoveDatabase 158
ServerState 159
SetDefaultURL 161
SetSecurity 162
SetUserGroupInfo 163
SourceControl 172
Undeploy 176
ValidateEAR 177
ValidateEJB 178
ValidateEJB11 179

Chapter 5 SilverJ2EEClient and SilverJRunner 181
About SilverJ2EEClient 181

SilverJ2EEClient features 181
About SilverJRunner 182
Installing SilverJRunner and SilverJ2EEClient 183

Providing the SilverJRunner install page 183
Going to the SilverJRunner install page 183
Installing on Windows 184
Installing on UNIX or Linux 185
Installing from your SilverStream product CD 185

Starting SilverJRunner and SilverJ2EEClient 186
Running on Windows 186
Running on UNIX or Linux 189
Displaying a console window 192
Displaying your own splash screen 194
vii

viii

Contents
How SilverJRunner updates itself 194
SilverJ2EEClient in the development environment 194

Using startup options 195
Using - options 195
Using + options 199

Passing application arguments 200
Specifying the arguments to pass 200
Accessing the arguments from a form 201
Accessing the arguments from a client 201

Supporting access to secured EJBs 202

Chapter 6 Server Implementation Notes 203
J2EE containers 203

Web container 203
EJB containers 206
Client container 221

Session-level failover 222
EJB support for session-level failover 222
Web application support for session-level failover 223
Application client support for session-level failover 224

CORBA support 225
XML support 225

SilverStream XML support 225
Resources for learning about XML 228

Internationalization support 228
Database support 228
Client-side support 229

About This Book
Purpose

This book describes core facilities (tools, utilities, services) provided with the SilverStream
eXtend Application Server.

Audience

This book is for anyone who manages the SilverStream server or develops applications for it.

Prerequisites

This book assumes some familiarity with J2EE (Java 2 Enterprise Edition).

Organization

Here’s a summary of the topics you’ll find in this book:

Chapter Description

Chapter 1, “JSP
Deployment to the File
System”

How to deploy a JSP application to the file system for a quick
develop/test/refine cycle

Chapter 2, “J2EE Archive
Deployment”

How to deploy J2EE-compatible archive files to a
SilverStream server

Chapter 3, “Deployment
Plan DTDs”

Reference documentation about the DTDs (XML document
type definitions) used when deploying J2EE archives to a
SilverStream server

Chapter 4, “SilverCmd
Reference”

Reference documentation about the SilverStream command-
line tool SilverCmd and its utilities
ix

About This Book
Related resources

The SilverStream eXtend Application Server also provides several facilities that come with
their own documentation. These include:

• jBroker ORB

• jBroker MQ

• jBroker TM

• IBM XML4J

Chapter 5,
“SilverJ2EEClient and
SilverJRunner”

All about the facilities provided with the SilverStream server
to host Java-based clients: SilverJ2EEClient (for J2EE
applications) and SilverJRunner (for classic SilverStream
applications)

Chapter 6, “Server
Implementation Notes”

Details about the SilverStream server’s implementation of
various features, including its J2EE containers and its support
for CORBA, XML, and internationalization

Chapter Description
x

new ../../../jbroker/docs/index.html
new ../../../jbrokerMQ/docs/index.html
new ../xfiles/XML4J-3_1_0/docs/html/index.html
new ../../../jbrokerTM/docs/index.html

1
 JSP Deployment to the File System Chapter 1
This chapter describes how to use SilverStream’s JSP File System (JSP/FS) deployment to
speed your JSP development. With JSP/FS you can deploy your Web application to the file
system and instantly see the result of changes you make in the file system without
redeployment. The chapter contains these sections:

• Using JSP pages

• Setting up your application

• Deploying your application to the file system

• Updating your application

• Putting your application into production

Using JSP pages
This section provides a quick introduction to JSP pages and their deployment.

About JSP pages and Web applications

The JavaServer Pages technology is an important part of Sun’s J2EE platform, which
recommends using JSP pages (with supporting servlets) to provide the core of the user interface
of your application. JSP pages are typically used in Web-based J2EE applications (Web
applications). A Web application includes JSP pages, servlets, JavaBeans, utility classes,
images, and so on that are packaged in an archive called a Web application archive (WAR) file.
These applications are accessed by browser clients.

The SilverStream eXtend Application Server provides full support for JSP pages.

� For more information on JSP pages and how to write them, see the eXtend Workbench
help.
1

1 JSP Deployment to the File System
About file system deployment

To make your Web application available to users, you deploy it to an application server. Users
access your application by specifying appropriate URLs in their browser.

But when developing, testing, and refining your application, you want fast turnaround—you
want to make a change to your JSP pages and immediately see the result in a browser without
having to redeploy the application. Using JSP/FS, you can.

NOTE JSP/FS is meant only to enhance development. Don’t use it with your production
applications. For more information, see “Putting your application into production” on
page 7.

After deploying your application to the file system, you can create or change a JSP page, refresh
the browser, and immediately see the change. There is no need to redeploy.

Similarly, you can change any static resource in your application and see the change
immediately. (A static resource is any file that the server serves as is. Static resources include
HTML files, images files, and style sheets.)

The rest of this chapter describes how to deploy a Web application to the file system for an
accelerated development/test/refine loop.

NOTE Deploying JSP pages to the file system in a SilverStream cluster is not supported.

Using eXtend Workbench

If you are using SilverStream eXtend Workbench to do your development and deployment, you
don’t have to perform the procedures described in the rest of this chapter. You only need to
specify Enable Rapid Deployment in your project’s deployment settings when you deploy your
WAR (or EAR containing a WAR). Workbench will manage everything for you, including:

• Updating the deployment plan with the proper specification for JSP/FS

• Deploying the project to the file system

• Managing changes you make in your project’s files (including creating and removing a
RELOAD file as necessary, as described in “Making changes to Java source files” on
page 6)

You continue to work with your project’s files as usual. Changes will be reflected immediately
in your deployed application.

When you are ready to do your production deployment, simply deselect Enable Rapid
Deployment in your project’s deployment settings and redeploy.

� For more information, see the Workbench help.
2 Using JSP pages

eXtend Application Server Facilities Guide
Setting up your application
You begin development of your Web application as usual. First you set up your development
area using a directory structure that conforms to the format required for Web applications.

When you are ready to test and refine your application, you package your application in a WAR
file.

What must be in the WAR file You needn’t have created your JSP pages yet, though you
can have. To create your WAR file for file-system deployment, all you need is:

• Any supporting files needed by your Web application, such as

• Compiled servlet and utility classes, either as CLASS files (in WEB-INF/classes) or as
JAR files (in WEB-INF/lib)

• Tag libraries (typically in WEB-INF/tlds)

• A deployment descriptor for the application. The file must be named web.xml and must
be in the WEB-INF directory

The web.xml file must follow the format specified by the Sun J2EE Web application DTD
called web-app_2_2.dtd located in the Resources/DTDCatalog subdirectory of your
SilverStream installation. The Java Servlet Specification Version 2.2 provides complete
documentation on each tag. You can find this document on the Sun Java Web site at
http://java.sun.com/j2ee/docs.html.

Creating the WAR file You can create the WAR file using the archive tool of your choice.

For example, you can use SilverStream eXtend Workbench, Sun’s jar utility (located in the bin
directory of your SilverStream installation), or the SilverStream BuildWAR SilverCmd (but
don’t use the -d option to deploy the WAR).

Deploying your application to the file system
Once you have the WAR file, you are ready to deploy it to the file system. To deploy a J2EE
archive (such as a WAR file) for use with the SilverStream server, you create a deployment
plan, which is an XML file that specifies SilverStream-specific information about how to
manage the Web application and how it should be deployed.
Setting up your application 3

facSilverCmd.html#BuildWAR

1 JSP Deployment to the File System
Creating the deployment plan

A deployment plan for a WAR file must follow the format specified by deploy_war.dtd (or the
section on WAR files in deploy_ear.dtd), located in the Resources/DTDCatalog directory of
your SilverStream installation.

� For more information, see J2EE Archive Deployment.

The deployment plan for file-system deployment is the same as for standard database
deployment, with one exception: it includes a line within the <warJar> section that specifies that
you want the server to deploy the application to the file system. To deploy to the file system,
include this line in your deployment plan:

<deployToFilesystem type="Boolean">true</deployToFilesystem>

Example Here is JSPSampleDeplPlan.xml, a deployment plan that specifies that the
application is to be deployed to the file system:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE warJarOptions PUBLIC "-//SilverStream Software, Inc.//DTD J2EE
WAR Deployment Plan//EN" "deploy_war.dtd">
<?AgMetaXML 1.0?><warJarOptions isObject="true">
 <warJar isObject="true">
 <warJarName>C:\WorkbenchProjects\JSPSample\JSPSample.war</warJarName>
 <isEnabled type="Boolean">True</isEnabled>
 <deployToFilesystem type="Boolean">true</deployToFilesystem>
 <sessionTimeout type="String">5</sessionTimeout>
 <urls type="StringArray">
 <el>JSPSample</el>
 </urls>
 <deployedObject type="String">JSPSample</deployedObject>
 </warJar>
</warJarOptions>

Deploying the application

Now run the DeployWAR SilverCmd to deploy your application (you can also use DeployEAR,
as long as it includes your WAR file).

What happens The application is deployed to the file system as follows: the server expands
the WAR file in the directory /webapps/DBname/URL in the SilverStream installation directory,
where:

• DBname is the name of the database containing the application deployed to the file system

• URL is the URL specified in the deployment plan for the application (if you have specified
more than one, the first one is used)
4 Deploying your application to the file system

facArchiveDeploy.html
facSilverCmd.html#DeployWAR
facSilverCmd.html#DeployEAR

eXtend Application Server Facilities Guide
Example Here is the structure of the sample application whose deployment plan is shown
above (entries in bold are directories):

JSPSample
jsps (directory containing the JSP pages)
WEB-INF

web.xml (deployment descriptor)
classes (directory containing the supporting CLASS files)
tlds (directory containing the TLD files)

Here is the deployment command line:

SilverCmd DeployWAR localhost JSPSampleDB JSPSample.war -f JSPSampleDeplPlan.xml -o

After deploying this application to the file system, the WAR file is expanded in /webapps in the
SilverStream installation directory as follows:

SilverStreamInstallDir
webapps

JSPSampleDB (directory whose name is the deployment database)
JSPSample (directory whose name is the URL in the deployment plan)

com (directory where JSPs will be compiled -- see below)
jsps
WEB-INF

web.xml
classes
tlds

The subdirectories under webapps/JSPSampleDB/JSPSample make up the deployment area,
and you can work with the application there.

Updating your application
Once you have deployed your application to the file system, you can make changes in the
deployment area and immediately see the result of the changes.

What you can change You can:

• Change an existing JSP page

• Add a new JSP page

• Delete an existing JSP page

• Change, add, or delete a static resource
Updating your application 5

1 JSP Deployment to the File System
To see the result To see the result of your change, simply save the file(s) in the deployment
area, go to your browser, and specify the appropriate URL.

For example, to see the result of changing sample.jsp, you would specify an URL similar to this:

http://localhost/JSPSampleDB/JSPSample/jsps/sample.jsp

What the server does The SilverStream server checks to see whether the JSP page has
ever been accessed. If not, it compiles it and displays the result in the browser. The server stores
the resulting JAVA and CLASS files in the com/sssw/gen/jsp directory in the deployment area.

Similarly, the server checks to see whether the JSP page (the JSP source file) has been updated
since it was last accessed. If so, the file is recompiled and redisplayed.

Also, the server serves updated static resources as needed.

If there is an error If there are any JSP compilation errors for the requested page, the server
generates an HTML page describing the error and returns it with a 500 status code to the client.

If there is an error compiling a JSP page other than the one requested, the server cannot intercept
the failure. Depending on where in the compilation process the error occurred, you might see an
error message in the generated JSP page with a link that describes the error. You can prevent the
server from trying to compile JSP pages that are known to fail by using the <excludedJSPs> tag
in the deployment plan.

Making changes to Java source files Sometimes in the course of development you will
need to update utility classes, servlets, JAR files, and so on in the application and will want to
refresh your deployment area. Here is how to do that:

1. Make the changes in your development area.

2. Compile the classes and refresh any JARs that need updating.

3. Copy the updated CLASS and JAR files to the appropriate locations in the deployment
area.

4. Create a file named RELOAD (all uppercase) in the root of the deployment area.

In the sample deployment, you would create RELOAD in
webapps/JSPSampleDB/JSPSample.

TIP To easily create the file, open a DOS command prompt, cd to the directory, type copy
con RELOAD, then press Return, Ctrl+Z, Return.

5. Access your application in the browser.

The server will automatically reload the application, getting all the updated files, and
delete the RELOAD file.

You can now continue to make changes to JSP pages in the updated deployment area.
6 Updating your application

eXtend Application Server Facilities Guide
Redeploying the application to the file system After deploying to the file system,
you shouldn’t redeploy your application to the file system with DeployWAR. Work with your
application as described above. When you are ready to put your application into production,
follow the procedure in “Putting your application into production” on page 7.

If you do redeploy your application to the file system with DeployWAR, the server notices that
the deployment directory already exists in webapps. It renames that directory to
DeploymentDir.1, then redeploys the application to the file system. So the current application
continues to be DeploymentDir, with the previous version archived as DeploymentDir.1. If you
do the deployment again, DeploymentDir is renamed DeploymentDir.2, and so on. The current
application is always DeploymentDir, and the version before that is archived as the highest
numbered DeploymentDir.n. The server is responsive only to changes in DeploymentDir.

In the sample shown, if the application is deployed to the file system a second time,
webapps/JSPSampleDB/JSPSample is renamed to JSPSample.1, and the current application is
deployed to JSPSample.

Putting your application into production
JSP/FS is meant only for use in the development phase of your application. When you have
completed the application and are ready to put it into production, do the following:

1. Bring your development area up to date with the changes you made in the deployment
area.

2. Rebuild your WAR or EAR file.

3. Delete or comment out the <deployToFilesystem> line in the deployment plan.

4. Do a full deployment using DeployWAR or DeployEAR.
Putting your application into production 7

1 JSP Deployment to the File System
8 Putting your application into production

2
 J2EE Archive Deployment Chapter 2
This chapter describes how to deploy J2EE-compatible archive files to a SilverStream server. It
covers these topics:

• Deploying J2EE application client archives

• Deploying EJB archives

• Deploying Web archives (WARs)

• Deploying resource adapter archives (RARs)

• Deploying enterprise archives (EARs)

• Specifying classpath JARs on the server

Using eXtend Workbench This chapter focuses on deployment using the basic server
facilities. To learn about developing, packaging, and deploying with eXtend Workbench, see
the Workbench help.

Deploying J2EE application client archives
You use application client archive files to contain J2EE application clients (client classes and
supporting files) for deployment to a J2EE server.

� To learn about J2EE application clients and how to write them, see the eXtend
Workbench help.

� To deploy an application client archive file to your SilverStream server:

1. Package the Java classes that implement the application client in a J2EE-compatible JAR
file.

2. Write a SilverStream application client deployment plan. (Exception: you don’t need to
do this if your application client has no external references.)

3. Run SilverCmd DeployCAR.

(Deploying from eXtend Workbench runs this command for you.)
9

2 J2EE Archive Deployment
Packaging application clients

The application client archive must comply with Sun’s J2EE specification. For more
information, see:

• Java 2 Platform Enterprise Edition Specification, v1.2, Chapter 9, “Application Clients”

• J2EE Blueprints

� These publications are available from the Sun Java Web site at:

http://java.sun.com/j2ee/docs.html

Writing an application client deployment plan

The application client deployment plan includes information the SilverStream server needs to
provide the appropriate runtime environment for an application client. You supply this
deployment plan as an option to the SilverCmd DeployCAR command.

Application clients that reference EJBs, environment entries, or other external resource
references (such as databases) must have a deployment plan. Application clients without
external references do not require one.

Requirements of the plan

Your application client deployment plan must be an XML file based on the client JAR
deployment plan DTD that SilverStream provides:

deploy_car.dtd

Your plan must:

• Include a corresponding DOCTYPE statement

• Comply with the structure documented by this DTD

� For details on writing a deployment plan XML file that meets these requirements, see
Chapter 3, “Deployment Plan DTDs”:

To learn about See

The DOCTYPE statement and structure for
your application client deployment plan

“Client JAR deployment plan DTD” on
page 50
10 Deploying J2EE application client archives

new http://java.sun.com/j2ee/docs.html

eXtend Application Server Facilities Guide
Editing the plan

To create and edit your application client deployment plan, you can use either of the following:

• An XML editor or text editor of your choice

• The Deployment Plan Editor of eXtend Workbench

Overview of the plan

The application client deployment plan can specify:

• Environment entries

• Bean references

• Resource references

Running SilverCmd DeployCAR

Once you have the archive file and (if appropriate) the deployment plan, you can deploy the
client application to a SilverStream server using SilverCmd DeployCAR. This command
deploys the archive file to the Jars subdirectory of the EJB Jars & Media directory on the
SilverStream server. Once the deployed object is on the server, any application client can access
it using SilverJ2EEClient.

All application components are automatically available for client requests; you do not need to
restart the server.

� For more information on:

• Using SilverCmd DeployCAR, see “DeployCAR” on page 119

• Using SilverJ2EEClient, see Chapter 5, “SilverJ2EEClient and SilverJRunner”

A sample application client deployment
plan you can follow

“About the deployment plan DTDs” on
page 49

Where to find the DTD file “About the deployment plan DTDs” on
page 49

To learn about See
Deploying J2EE application client archives 11

2 J2EE Archive Deployment
Deploying EJB archives
You use EJB archive files to contain Enterprise JavaBeans (session beans, entity beans,
message-driven beans, and supporting files) for deployment to a J2EE server.

� To learn about Enterprise JavaBeans and how to write them, see the eXtend Workbench
help.

� To deploy an EJB archive file to your SilverStream server:

1. Package the Java classes that implement the beans, the appropriate interfaces, the primary
key classes (if necessary), and any other utility classes in a J2EE-compatible JAR file.

2. Write a SilverStream EJB deployment plan.

3. Run SilverCmd DeployEJB (to deploy to the 2.0 container) or SilverCmd DeployEJB11
(to deploy to the 1.1 container).

(Deploying from eXtend Workbench runs the appropriate command for you.)

Packaging EJB components

The EJB archive must comply with Sun’s Enterprise JavaBeans Specification, Version 1.1.

� This publication is available from the Sun Java Web site at:

http://java.sun.com/j2ee/docs.html

Writing an EJB deployment plan

The EJB deployment plan includes information that the SilverStream server’s EJB container
needs to provide the appropriate runtime environment for the beans. The deployment plan:

• Resolves any environment entry, resource, or bean reference dependencies

• Provides information about role mapping for the target operational environment

• Provides the container with other SilverStream-specific runtime information

Requirements of the plan

Your EJB deployment plan must be an XML file based on the deployment plan DTD that is
appropriate for the version of your archive. Use deploy-ejb_2_0.dtd for JARs that contain
EJB2.0 beans; use deploy-ejb_1_1.dtd for JARs that contain EJB1.1 beans.
12 Deploying EJB archives

new http://java.sun.com/j2ee/docs.html

eXtend Application Server Facilities Guide
The deployment plan must:

• Include a corresponding DOCTYPE statement

• Comply with the structure documented by this DTD

� For details on writing a deployment plan XML file that meets these requirements, see
Chapter 3, “Deployment Plan DTDs”:

Editing the plan

To create and edit your EJB deployment plan, you can use either of the following:

• An XML editor or text editor of your choice

• The Deployment Plan Editor of eXtend Workbench

To learn about See

The DOCTYPE statement and structure for
your EJB deployment plan

“EJB JAR deployment plan DTD” on
page 55

A sample EJB deployment plan you can
follow

“About the deployment plan DTDs” on
page 49

Where to find the DTD file “About the deployment plan DTDs” on
page 49
Deploying EJB archives 13

2 J2EE Archive Deployment
Overview of the plan

The following table summarizes the information you can include in the EJB deployment plan:

For this component The plan specifies

EJB JAR • Enabled or disabled

• Mapping of security roles to principals in the target
environment (when security roles are specified in the
deployment descriptor)

• Confidentiality and integrity cipher suites

Each EJB (regardless of
type)

• JNDI name

• Resource references

• EJB references

• Environment entries

• Instance pooling specifications

• Security configuration

Container-managed entity
beans

• The data source for each bean and for persistent fields

• How finder methods are mapped

• Data loading type (lazy or eager)

• Relationships (for 2.0 beans only)
14 Deploying EJB archives

eXtend Application Server Facilities Guide
Tips for completing the EJB deployment plan

This section describes some tips and examples for completing the EJB deployment plan. It
includes these sections:

• Supporting autoincrement

• Mapping CMP entity beans to a table

• Mapping persistent fields

• Using TRANSACTION_READ_COMMITTED isolation levels

• Mapping relationships

• Mapping a primary key

• Mapping for message-driven beans

• IOR configurations for EJB security

Supporting autoincrement

SilverStream supports autoincrement through the deployment plan’s autoInc element. When
autoInc is marked for a cmp-field, the database column that it maps to must support
autoincrement, as follows:

Mapping CMP entity beans to a table

You map a CMP entity bean to one (and only one) table. You use the beanPersistenceInfo
element of the deployment plan to map a bean to a table.

Database Requirement

Oracle You must provide a sequence name through
autoIncSequenceName element

Sybase, Microsoft, and
IBM DB2

The column has to be an identity column

Informix The column has to be a SERIAL type

IBM Cloudscape The column type has to be autoincrement type
Deploying EJB archives 15

2 J2EE Archive Deployment
Suppose that you had a deployment descriptor with an entry for an entity bean, like this:

<entity>
 <ejb-name>BEAN_NAME</ejb-name>
 . . .
</entity>

The corresponding entry in the SilverStream deployment plan would be in the
BeanPersistenceInfo node. It would look something like this:

<BeanPersistenceInfo>
 <beanName>BEAN_NAME</beanName>
 <dataSourceName>DATABASE_OR_POOL_NAME</dataSourceName>
 <sqlHandler>SQL_HANDLER</sqlHandler>
 <isolationLevel>ISOLATION_LEVEL</isolationLevel>
 <table>
 <name>DB_TABLE</name>
 . . .
 </table>
</BeanPersistenceInfo>

Notice that:

• The beanName element of the BeanPersistenceInfo node must match the ejb-name
element in the deployment descriptor (in this example, BEAN_NAME).

• The dataSourceName element is the name of the database or connection pool where the
table (in this example, DB_TABLE) resides.

• The sqlHandler element of the deployment plan can be one of the following:

For this database or class Valid sqlHandler element values

Oracle Oracle

IBM Cloudscape Cloudscape

Sybase Adaptive Server Anywhere AdaptiveServerAnywhere

Sybase Adaptive Server Enterprise AdaptiveServerEnterprise

Informix Informix

Microsoft SQL Server MicrosoftSQLServer

IBM DB2 DB2

Class that implements
com.sssw.shr.ejb2.api.
AgiEJBSqlHandler

The fully qualified name of the class
16 Deploying EJB archives

eXtend Application Server Facilities Guide
NOTE The sqlHandler element values are not case sensitive.

• The isolationLevel element identifies the isolation level to be used. SilverStream supports
TRANSACTION_READ_COMMITTED or TRANSACTION_SERIALIZABLE. When
TRANSACTION_ READ_COMMITTED isolation level is used, the container performs
checks to make sure no values are changed by other threads during a commit. If they are
changed, the container throws a concurrency violation exception.

If you have multiple beans (mapped to different tables) using different isolation levels you need
multiple pools—except for Oracle databases (see just below).

Use TRANSACTION_SERIALIZABLE with caution, as the likelihood of deadlock increases.

Exceptions for Oracle For Oracle databases, all READ SQL statements for
TRANSACTION_SERIALIZABLE are appended with FOR UPDATE to explicitly place a
write lock on the row.

Mapping persistent fields

The persistent fields (the cmp-field elements) listed in the deployment descriptor must be
mapped to a database column in the database table in the deployment plan. This enables the
container to persist the fields appropriately. Suppose your deployment descriptor looked like
this:

<entity>
 <ejb-name>BEAN_NAME</ejb-name>
 <cmp-field>field1</cmp-field>
 <cmp-field>field2</cmp-field>
 <cmp-field>field3</cmp-field>
 . . .
</entity>

The cmp-field elements in the deployment descriptor would have a corresponding elements in
the table node of the deployment plan—for example:

 <table>
 <name>DB_TABLE</name>
 <field>
 <cmpFieldName>field1</cmpFieldName>
 <columnName>COLUMN1</columnName>
 </field>
 <field>
 <cmpFieldName>field2</cmpFieldName>
 <columnName>COLUMN2</columnName>
 </field>
 . . .
 </table>
Deploying EJB archives 17

2 J2EE Archive Deployment
Notes about the deployment plan:

• The cmpFieldNames in the deployment plan must match the cmp-field elements in the
deployment descriptor.

• The columnName is an actual column name in the database. This field is case-sensitive
and must exactly match the database column name.

Using TRANSACTION_READ_COMMITTED isolation levels

When you specify TRANSACTION_READ_COMMITTED for the isolation level, you may be
able to specify some columns as deltaType columns in the deployment plan to improve
performance.

The deltaType element specifies whether the column data is used to maintain a count or a total,
such as total count or total sales. If you use this element, you should set up a database constraint
to guard against overflow/underflow. For example, suppose you have a column that contains the
quantity left for a specific product; many transactions may try to increase or decrease this
quantity. Instead of generating SQL like this:

UPDATE table SET quantity = ? WHERE col1=old_col1_value AND col2 =
old_col2_value

and

quantity = old_quantity

SilverStream will generate SQL like this:

UPDATE table SET quantity = quantity + ? WHERE col1=old_col1_value
AND col2 = old_col2_value

For this example, you would apply a constraint that does not allow the quantity to drop below
zero, and the column should not allow NULL.

Using the deltaType element appropriately can greatly reduce the possibility of a
CONCURRENCY_VIOLATION exception and improve performance. To use the deltaType
element:

• The column must represent a quantity—because the data type can only be a number type
like an int, a short, a float, a double, a BigDecimal, and so on.

• The field cannot be null.
18 Deploying EJB archives

eXtend Application Server Facilities Guide
Mapping relationships

A relationship can exist between two entity beans with CMP. This relationship is expressed via
the relationships node of the deployment descriptor. The relationship is mapped to real tables
via the relationsList node of the deployment plan.

Based on the contents of the deployment descriptor and the deployment plan, the container will
be able to generate the appropriate SQL code to traverse the tables and get and set the
appropriate values. To generate the SQL, the container needs to know the answers to these
questions:

• Does a relationship exist?

• What beans are involved in the relationship?

• What is the multiplicity of the relationship?

• What is the direction of the relationship (bidirectional or unidirectional)? If it is
unidirectional, which bean is the one that can access the other bean?

• How do you navigate the relationship?

• What are the foreign key/primary key relationships?

• Does the relationship support cascade delete?

The container gets the all of this information (except the foreign key mapping) from the
deployment descriptor relationships node. The relationships node contains the elements shown
here:

<relationships>
 <ejb-relation>
 <ejb-relationship-role>
 <multiplicity></multiplicity>
 <relationship-role-source>
 <ejb-name></ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name></cmr-field-name>
 <cmr-field-type></cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <multiplicity></multiplicity>
 <relationship-role-source>
 <ejb-name></ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name></cmr-field-name>
 <cmr-field-type></cmr-field-type>
 </cmr-field>
Deploying EJB archives 19

2 J2EE Archive Deployment
 </ejb-relationship-role>
 </ejb-relation>
 . . .
</relationships>

Note that:

• For each relationship there are exactly two ejb-relationship-role nodes.

• The multiplicity element determines whether the relationship is one-to-one, one-to-Many,
many-to-one, or many-to-many.

• For each cmr-field element in the deployment descriptor, there will be a corresponding set
or get method in the bean class. So the cmr-field element (or lack of) determines the
direction (unidirectional or bidirectional).

• The <ejb-relation-name> element is optional (according to the EJB specification).

• For a many-to-many relationship, a linkTable element (not shown here) is required.
SilverStream allows the linkTable element to be used in a one-to-many relationship but
does not recommend it.

Once you have the deployment descriptor, you’ll be able to create a new deployment plan or
complete an existing one.

How to express a one-to-one bidirectional relationship

This example illustrates how you would express a one-to-one bidirectional relationship for the
CustomerEJB (which maps to the CUSTOMER table) and the AddressEJB (which maps to the
ADDRESS table). The primary keys are CustomerID and AddressID respectively.

The deployment descriptor would look like this:

 <ejb-relation>
 <ejb-relationship-role>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>CustomerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>address</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>AddressEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>customer</cmr-field-name>
20 Deploying EJB archives

eXtend Application Server Facilities Guide
 </cmr-field>
 </ejb-relationship-role>
 </ejb-relation>

Some things to note about the deployment descriptor:

• The multiplicity element in both ejb-relationship-roles is One to indicate the one-to-one
relationship.

• Both ejb-relationship-role elements list cmr-field-names. This indicates that the
relationship is bidirectional. The cmr-field-names do not actually represent columns or
foreign keys in the related tables. You don’t know the actual names of the target columns
until deployment; the cmr-field-names are just entries that represent the direction of the
relationship.

Suppose you are ready to deploy the EJB JAR and now need to create the deployment plan that
would represent the CustomerEJB and AddressEJB EJBs. You might be mapping the
CustomerEJB and AddressEJB to a target database where the CUSTOMER table contained a
foreign key to the ADDRESS table; the foreign key field name is ADDRESS_ID. The relation
node of your deployment plan would look like this:

<relation>
 <relationRole>
 <beanName>CustomerEJB</beanName>
 <cmrFieldName>address</cmrFieldName>
 <columnNames>
 <el>ADDRESS_ID</el>
 </columnNames>
 </relationRole>
 <relationRole>
 <beanName>AddressEJB</beanName>
 <cmrFieldName>customer</cmrFieldName>
 </relationRole>
 </relation>

Some things to note about the deployment plan:

• The beanName in the deployment plan must exactly match the ejb-name element of the
deployment descriptor.

• The cmrFieldName of the deployment plan must exactly match the cmr-field-name of the
deployment descriptor.

• The deployment plan’s columnName element is the column name of the foreign key in the
table (CUSTOMER) to which it is mapped. This means that the container will construct
SQL so that it can navigate from the customer to the associated address and vice versa.

• The cmrFieldName of the AddressEJB is not mapped to a column name. This is because
the ADDRESS table does not (and should not) contain a foreign key to the CUSTOMER
table.
Deploying EJB archives 21

2 J2EE Archive Deployment
If your database should be set up so that the ADDRESS table contained a foreign key
CUSTOMER_ID, the deployment plan would look like this:

 <relation>
 <relationRole>
 <beanName>CustomerEJB</beanName>
 <cmrFieldName>address</cmrFieldName>
 </relationRole>
 <relationRole>
 <beanName>AddressEJB</beanName>

<cmrFielName>customer</cmrFieldName>
 <columnNames>
 <el>CUSTOMER_ID</el>
 </columnNames>
 </relationRole>
 </relation>

How to express a one-to-one unidirectional relationship

This example illustrates how you would express a one-to-one unidirectional relationship for
CustomerEJB (which maps to the CUSTOMER table) and AddressEJB (which maps to the
ADDRESS table). The primary keys are CustomerID and AddressID respectively.

The deployment descriptor would look like this:

<ejb-relation>
 <ejb-relationship-role>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>CustomerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>address</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>AddressEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 </ejb-relation>
22 Deploying EJB archives

eXtend Application Server Facilities Guide
Some things to note about the deployment descriptor:

• The multiplicity element in both ejb-relationship-roles is One to indicate the one-to-one
relationship.

• The CustomerEJB includes a cmr-field-name element (in this case, address), but the
AddressEJB does not. This indicates that the relationship is unidirectional—you can get to
the AddressEJB from the CustomerEJB but not vice versa. (The CustomerEJB will
include get and set methods for the ADDRESS table.)

• The cmr-field-name address does not actually represent a column in the AddressEJB.
When you create the deployment plan, you’ll have to map the address cmr-field to the
actual foreign key column.

This deployment plan shows how to map the cmr-field-name when the CUSTOMER table
includes the foreign key ADDRESS_ID:

 <relation>
 <relationRole>
 <beanName>CustomerEJB</beanName>
 <cmrFieldName>address</cmrFieldName>
 <columnNames>
 <el>ADDRESS_ID</el>
 </columnNames>
 </relationRole>
 <relationRole>
 <beanName>AddressEJB</beanName>
 </relationRole>
 </relation>

Some things to note about the deployment plan:

• The beanName in the deployment plan must exactly match the ejb-name element of the
deployment descriptor.

• The cmrFieldName of the deployment plan must exactly match the cmr-field-name of the
deployment descriptor (this also means that the deployment plan should not have a
cmrFieldName when the deployment descriptor does not have a cmr-field-name).

• The deployment plan’s columnName element is the column name of the foreign key in the
table (CUSTOMER) to which it is mapped. This means that the container will construct
SQL so that it can navigate from the customer to the associated address.

• The AddressEJB does not have a cmrFieldName or columnNames element, because the
ADDRESS table does not (and should not) contain a foreign key to the CUSTOMER
table.
Deploying EJB archives 23

2 J2EE Archive Deployment
Suppose that your existing database used a different structure and the ADDRESS table had the
foreign key CUSTOMER_ID. The deployment plan would look like this:

 <relation>
 <relationRole>
 <beanName>CustomerEJB</beanName>
 <cmrFieldName>address</cmrFieldName>
 </relationRole>
 <relationRole>
 <beanName>AddressEJB</beanName>
 <columnNames>
 <el>CUSTOMER_ID</el>
 </columnNames>
 </relationRole>
 </relation>

Notes about this deployment plan:

• The relationRole and cmrFieldNames exactly match the entries in the deployment
descriptor as noted above—but this time the columnName is not included in this node of
the relationRole element. This is because the foreign key is not in the CUSTOMER table.
(It’s in the ADDRESS table.)

• The relationship is still unidirectional, because only one cmrFieldName element is
present.

• You specify the foreign key in the table in which it belongs. The foreign key has nothing
to do with the direction of the relationship.

Expressing a one-to-many bidirectional relationship

This example uses the OrderEJB (which maps to the ORDER table) and the LineItemEJB
(which maps to the LINEITEM table). For each OrderEJB there can be many LineItems. You
can navigate from the ORDER table to the LINEITEM table and back.

The deployment descriptor looks like this:

<ejb-relation>
 <ejb-relationship-role>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>OrderEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>lineItems</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
24 Deploying EJB archives

eXtend Application Server Facilities Guide
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>LineItemEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>order</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 </ejb-relation>

Notes about the deployment descriptor:

• The multiplicity element for the OrderEJB is One and the multiplicity element for the
LineItemEJB is Many—one OrderEJB can have many related LineItemEJBs.

• The OrderEJB includes a cmr-field-name element (in this case, lineitems), and the
LineItemEJB also has a cmr-field-name element (in this case order). This indicates that
the relationship is bidirectional.

• The data type of the lineitems cmr-field-name element includes a data type specification (a
java.util.Collection) because more than one item can be returned.

Suppose that you are writing a deployment descriptor for the situation where:

• The OrderEJB bean maps to the ORDERS table (whose primary key is ORDERID)

• The LineItemEJB bean maps to the LINEITEM table (whose primary key is
LINEITEMID)

• The LINEITEM table has a foreign key ORDER_ID

In this case the deployment plan would look like this:

 <relation>
 <relationRole>
 <beanName>OrderEJB</beanName>
 <cmrFieldName>lineItems</cmrFieldName>
 </relationRole>
 <relationRole>
 <beanName>LineItemEJB</beanName>
 <cmrFieldName>order</cmrFieldName>
 <columnNames>
 <el>ORDER_ID</el>
 </columnNames>
 </relationRole>
 </relation>
Deploying EJB archives 25

2 J2EE Archive Deployment
Note the following:

• As always, the beanName has to be the same as the ejb-name of the deployment
descriptor, and the cmrFieldName has to be the same as cmr-field-name of the deployment
descriptor.

• The LineItemEJB contains a columnName element that maps to the foreign key.

• In a one-to-one relationship, the location of the foreign key may be in either table. In a
one-to-many relationship, the foreign key always resides on the Many side. The location
of the foreign key does not determine the direction of the relationship.

Expressing a one-to-many unidirectional relationship

This example illustrates how to express a One-to-Many unidirectional relationship. This
example uses the ProductEJB (which maps to the PRODUCT table) and the LineItemEJB
(which maps to the LINEITEM table). For each ProductEJB there can be many LineItemEJBs.
You can navigate from the LINEITEM table to the PRODUCT table but not back.

The deployment descriptor looks like this:

<ejb-relation>
 <ejb-relationship-role>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>ProductEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>LineItemEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>product</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 </ejb-relation>

• The multiplicity element for the ProductEJB is One and for the LineItemEJB is Many—
one ProductEJB can have many related LineItemEJBs.

• The LineItemEJB includes a cmr-field-name element (in this case, products), but the
ProductEJB does not have one. This indicates that the relationship goes in a single
direction from LineItem to Product.
26 Deploying EJB archives

eXtend Application Server Facilities Guide
Suppose that you are writing a deployment plan for the deployment descriptor above where:

• The ProductEJB bean maps to the PRODUCT table (whose primary key is PRODUCTID)

• The LineItemEJB bean maps to the LINEITEM table (whose primary key is
LINEITEMID)

• The LINEITEM table has a foreign key PRODUCT_ID

In this case the deployment plan would look like this:

<relation>
 <relationRole>
 <beanName>ProductEJB</beanName>
 </relationRole>
 <relationRole>
 <beanName>LineItemEJB</beanName>
 <cmrFieldName>product</cmrFieldName>
 <columnNames>
 <el>PRODUCT_ID</el>
 </columnNames>
 </relationRole>
 </relation>

Note the following:

• As always, the beanName must be the same as the ejb-name of the deployment descriptor,
and the cmrFieldName must be the same as the cmr-field-name of the deployment
descriptor.

• The LineItemEJB contains a columnNames element that maps to the foreign key.

Using a link table

It is possible to use a link table. For example, the link table might be PROD_LINEITEM, which
has the PRODUCT_ID and LINEITEM_ID, mapped to PRODUCTID and LINEITEMID
respectively. In that case the deployment plan would look like this:

 <relation>
 <linkTable>PROD_LINEITEM</linkTable>
 <relationRole>
 <beanName>ProductEJB</beanName>
 <columnNames>
 <el>PRODUCT_ID</el>
 </columnNames>
 </relationRole>
 <relationRole>
 <beanName>LineItemEJB</beanName>
 <cmrFieldName>product</cmrFieldName>
 <columnNames>
Deploying EJB archives 27

2 J2EE Archive Deployment
 <el>LINEITEM_ID</el>
 </columnNames>
 </relationRole>
 </relation>

How to express a many-to-many unidirectional relationship

This example illustrates how you would express a many-to-many unidirectional relationship for
the OrderEJB (which maps to the ORDER table) and the ProductEJB (which maps to the
PRODUCT table). The primary keys are OrderID and ProductID respectively. Many-to-many
relationships always use a linkTable.

The deployment descriptor would look like this:

<ejb-relation>
 <ejb-relationship-role>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>OrderEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>products</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>ProductEJB</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 </ejb-relation>

Note on the deployment descriptor:

• The multiplicity element for both ejb-relationship-roles is Many.

Suppose that you had to write a deployment plan where:

• The ProductEJB bean maps to the PRODUCT table (whose primary key is PRODUCTID)

• The OrderEJB bean maps to the ORDERS table (whose primary key is ORDERID)

• The link table is PROD_ORDER. The PROD_ORDER table’s primary key is
PRODUCT_ID and ORDER_ID (which are also foreign keys to the PRODUCT and
ORDER tables). Your deployment plan would look like this:
 <relation>
 <linkTable>PROD_ORDER</linkTable>
 <relationRole>
 <beanName>OrderEJB</beanName>
28 Deploying EJB archives

eXtend Application Server Facilities Guide
 <cmrFieldName>products</cmrFieldName>
 <columnNames>
 <el>ORDER_ID</el>
 </columnNames>
 </relationRole>
 <relationRole>
 <beanName>ProductEJB</beanName>
 <columnNames>
 <el>PRODUCT_ID</el>
 </columnNames>
 </relationRole>
 </relation>

Notes on the deployment plan:

• As always, the beanName must be the same as the ejb-name of the deployment descriptor,
and the cmrFieldName must be the same as the cmr-field-name of the deployment
descriptor.

• The relation node would include the linkTable element that specifies the actual name of
the database table.

• The relation roles for both OrderEJB and ProductEJB include foreign key mappings (via
the columnNames element) to the linkTable.

General restrictions on relationship mapping

Here are some things to keep in mind:

• You can use a single column as both a cmp-field and a cmr-field; but when the single
column is both a cmp-field and a cmr-field, the cmp-field should be Read-only. Calling a
set method on the cmp-field results in an Exception in this case.

• You cannot use the same database column for more than one cmp-field or cmr-field.

• The way to change a relationship is through its cmr-field (not the cmp-field).

Mapping a primary key

You specify the primary key for the entity bean using the primkey-field and/or the prim-key-
class elements. (The prim-key-class element is required, but the primkey-field is optional.) For
single-field primary keys, the primkey-field has to be one of the cmp-field.

If <primkey-field> is missing, it may be due to multifield primary keys or unknown primary
keys. If it is multifield key, <prim-key-class> specifies the class (which should have all fields
public), and the name must correspond to the field names of the entity bean class.
Deploying EJB archives 29

2 J2EE Archive Deployment
If the primkey-field element is missing and the prim-key-class element is java.lang.Object, this
is the unknown primary key class (see the EJB 2.0 specification section 10.8.3). In this case the
EJB container generates a unique key. The deployment plan supports this through the
primaryKey element.

First you must specify a primaryKeyClass element for the primaryKey. SilverStream supports
java.lang.String, java.lang.Integer, or java.lang.Long for primaryKeyClass in this case. If
primaryKeyClass is java.lang.String, the autoInc element is ignored, and the column has to be
able to store a 32-byte length of String data. If primaryKeyClass is java.lang.Integer or
java.lang.Long, autoInc is required—so that an autoincrement column can be used to generate
unique primary keys. In general, performance is better with autoincrement columns. The
following shows what a primary key class entry in the deployment plan might look like:

<primaryKey>
 <primaryKeyClass>java.lang.Integer</primaryKeyClass>
 <columnName>AUTO_INC_COL</columnName>
 </autoInc>
 </primaryKey>

Mapping for message-driven beans

Message-driven beans use a JMS server to transmit and consume messages. For the container to
locate the JMS server, you must specify at least the destinationName element and the
ConnectionFactoryName elements—for example:

<message>
 <destinationName>
 corbaname:iiop:JMSServer:3506#queue/queueName
 </destinationName>
 <connectionFactoryName>
 corbaname:iiop:JMSServer:3506#queue/xaConnectionFactory
 </connectionFactoryName>
 </message>

NOTE The specified ConnectionFactory must support global transactions.

IOR configurations for EJB security

This section describes the information you must supply in the deployment plan to support secure
invocations of the EJB. You supply the information via the iorSecurityConfig element of the
deployment plan. The iorSecurityConfig node is part of the entity and session elements.
30 Deploying EJB archives

eXtend Application Server Facilities Guide
Interoperable Object References

Every object that is remotely accessible using CORBA is referred to via an Interoperable Object
Reference or IOR. The IOR is a remote reference to an object; it can be stored (in the CORBA
naming service, for example) and subsequently converted to a stub that can be used to call the
remote object. So the IOR must contain all information the client ORB needs to construct a stub
for the remote object and to issue remote method calls on the stub. The information includes:

• One or more addresses (host IP address and TCP port number) at which the remote
object can be called. The server ORB will be listening at this address.

• The object identifier assigned to the remote object by the server ORB when the object
was created. The ORB uses this to find the object.

• The object’s type (that is, the list of remote interfaces the object implements). The client
uses this to determine what kind of stub to create.

• Security information for the object. The client uses this information to determine
whether a secure (encrypted) connection should be used for calls to the object, and
whether a client certficate, user name and password, or other caller ID and credential
information should be passed to the object on each call. This is the information specified
by the <iorSecurityConfig> element at deployment time (as described in detail just
below).

• Transactional information for the object. The client uses this to decide whether to
propagate two-phase commit transaction information to the object.

When the client looks up a remote CORBA object (such as an EJB) in the naming service (such
as via JNDI), what’s returned is the IOR for the object. The client calls
PortableRemoteObject.narrow() to convert the IOR into a stub. When the client attempts to call
a method on the stub, the client’s ORB uses the information obtained from the IOR to decide
what type of connection (encrypted or plain) to create; what server address and port number to
connect to, and whether or not to encode and send client identity, credentials, and transaction
information on the call. The server in turn verifies that the information supplied matches what
the IOR demands and then dispatches the call to the remote object.
Deploying EJB archives 31

2 J2EE Archive Deployment
Contents of the IOR security configuration

The IOR security configuration as supplied in the iorSecurityConfig element has three sections:

Transport configuration

The transport configuration, as supplied in the transportConfig element, tells the client whether
to use an encrypted communication channel (that is, SSL or TLS) for calls to the object—and if
so, which encryption algorithms should be used and whether the client must supply a client
certificate for authentication purposes. (This replaces the old usesSSL and cipherSuites
elements in SilverStream’s EJB 1.1 deployment plans.)

The contents of the <transportConfig> element are four attributes:

Section What it defines

 Transport configuration Whether an encrypted communications channel is to be used,
and if so defines the encryption parameters and certificate
information required

Authentication context
configuration

What kind of authentication mechanism (such as user name
and password) should be supplied on calls to this object, and
whether anonymous calls to the object are allowed.

Security attributes context
configuration

Whether or not caller identity propagation is supported for
this object

Attribute Description

Integrity Specifies whether the object supports or requires encryption using
an encryption algorithm that at least guarantees message
integrity—that can detect message corruption.

• If set to REQUIRED, the caller must use SSL (or TLS) and will
choose an appropriate cipher suite

• If set to SUPPORTED, the caller may use SSL (see below for
information on how the client makes the decision)
32 Deploying EJB archives

eXtend Application Server Facilities Guide
Note that these flags interact; for example, the client must use SSL (or TLS) if any of the flags
are set to REQUIRED. Similarly, it is legal to specify the use of SSL (by setting
establishTrustInClient to REQUIRED) but not specify any particular cipher suites (by setting
both integrity and confidentiality to none).

Client algorithm for choosing SSL If any of the four transportConfig flags is set to
REQUIRED, the client must use SSL for calls to the object. If none is REQUIRED but at least
one is SUPPORTED, the client must choose whether or not to use SSL. The client makes this
decision based on the -SS_USE_SSL flag to SilverJ2EEClient. If the flag is set to true, the calls
will use SSL; otherwise, they will not.

Confidentiality Specifies whether the object supports or requires encryption using
an encryption algorithm that at least guarantees message
confidentiality—that can prevent eavesdroppers from reading the
message.

• If set to REQUIRED, the caller must use SSL (or TLS) and will
choose an appropriate cipher suite

• If set to SUPPORTED, the caller may use SSL

establishTrustInClient Specifies whether the object requires that the client authenticate
using a client certificate (x.509).

• If set to REQUIRED, the client must supply a client certificate
when setting up the SSL connection to this object; this also
requires use of SSL (or TLS)

• If set to SUPPORTED, the client may supply a client certificate

establishTrustInServer Specifies whether the object’s server must be able to authenticate
itself to the client. At present the only mechanism for a server to
authenticate itself to the client is via the use of SSL (or TLS); so
this flag is equivalent to controlling use of SSL.

• If set to REQUIRED, the client must use SSL (or TLS) on calls
to this object

• If set to SUPPORTED, the client may use SSL

Attribute Description
Deploying EJB archives 33

2 J2EE Archive Deployment
Cipher suites The sets of cipher suites that are used for message integrity and message
protection may be explicitly specified in the deployment plan, using the integrityCipherSuites
and confidentialityCipherSuites elements respectively. If supplied, each element is a String
array of cipher suite names.

Authentication context configuration The asContext element describes the
authentication information that will be passed from the client to the server as part of each
method call on the object. This information is separate from any client certificate that may be
passed when the SSL connection is established. The asContext element has three subelements.

In this situation This happens

If the integrityCipherSuites element is
supplied

A cipher suite from the supplied list will be
used for calls to any object that supports or
requires integrity but does not support or
require confidentiality

If confidentialityCipherSuites element is
supplied

A cipher suite from the supplied list will be
used for calls to any object that supports or
requires confidentiality

If either element is not supplied The server will supply a default list of cipher
suites for that category

Subelement Description

authMethod The supported authentication method for callers. Possible values are:

• NONE—No caller authentication can be supplied on calls to this
object

• USERNAME_PASSWORD—A user name and password string
can be supplied on each call
34 Deploying EJB archives

eXtend Application Server Facilities Guide
Security attribute context configuration

The security attribute context configuration is specified in the <sasContext> element via
callerPropagation, an attribute indicating whether or not this object supports caller identity
propagation. Caller identity propagation is the ability for the client to propagate the caller’s
identity to the server without supplying any credentials, such as a password. This is only useful
if the server trusts the client and the client has already verified the caller’s identity—for
example, if the caller is another application server owned by the organization that has already
verified the client’s password. Possible values are:

The server determines whether the caller is trusted by the use of a list of trusted clients. The list
of trusted clients can be set using the SMC.

Suppose that multiple identities are supplied on the call (for example, a client certificate and
identity asserted via identity propagation). The identities are determined as follows:

1. If a client certificate was supplied, use it to obtain the caller’s identity.

2. If an identity was asserted via caller propagation, use it as the caller’s identity.

realm Supports a well-known realm named default. The default realm
matches any SilverStream-supported realm.

When the realm is specified as default, the user name and password
are passed as qualified names, so that the server can distinguish
LDAP user names from NT user names.

asContextRequired A boolean indicating whether or not the caller must supply a user
name and password. If true, the authMethod element must not be
NONE, and the caller must supply a user name and password on
each call to the object.

Value Means

NONE Caller propagation is not supported for this object

SUPPORTED The caller may propagate an identity (subject to the server verifying that
the caller is trusted)

REQUIRED The caller must propagate an identity

Subelement Description
Deploying EJB archives 35

2 J2EE Archive Deployment
3. If a user name and password were passed on the call, use them to obtain the caller’s
identity.

4. Otherwise, treat the caller as Anonymous.

IOR configuration examples

This section includes examples three IOR configurations.

Example 1 This example shows the IOR configuration for an object that:

• Is to be called using SSL with message confidentiality preserved (encryption)

• Supports passing caller identity via either client certificate or user name and password
<iorConfig>

<transportConfig>
<integrity>NONE</integrity>
<confidentiality>REQUIRED</confidentiality>
<establishTrustInClient>SUPPORTED</establishTrustInClient>
<establishTrustInServer>SUPPORTED</establishTrustInServer>

</transportConfig>
<asConfig>

<authMethod>USERNAME_PASSWORD</authMethod>
<realm>default</realm>
<asContextRequired>FALSE</asContextRequired>

</asConfig>
<sasConfig>

<callerPropagation>NONE</callerPropagation>
</sasConfig>

</iorConfig>

Example 2 This example shows the IOR configuration for an object that:

• Is to be called without SSL

• But requires caller authentication using user name and password
<iorConfig>

<transportConfig>
<integrity>NONE</integrity>
<confidentiality>NONE</confidentiality>
<establishTrustInClient>NONE</establishTrustInClient>
<establishTrustInServer>NONE</establishTrustInServer>

</transportConfig>
<asConfig>

<authMethod>USERNAME_PASSWORD</authMethod>
<realm>default</realm>
<asContextRequired>TRUE</asContextRequired>

</asConfig>
<sasConfig>
36 Deploying EJB archives

eXtend Application Server Facilities Guide
<callerPropagation>NONE</callerPropagation>
</sasConfig>

</iorConfig>

Example 3 This example shows the IOR configuration for an object that:

• Is to be called using SSL, with message confidentiality protection

• Passes a client certificate but supports caller propagation for server-to-server calls:
<iorConfig>

<transportConfig>
<integrity>NONE</integrity>
<confidentiality>REQUIRED</confidentiality>
<establishTrustInClient>REQUIRED</establishTrustInClient>
<establishTrustInServer>NONE</establishTrustInServer>

</transportConfig>
<asConfig>

<authMethod>NONE</authMethod>
<realm>default</realm>
<asContextRequired>FALSE</asContextRequired>

</asConfig>
<sasConfig>

<callerPropagation>SUPPORTED</callerPropagation>
</sasConfig>

</iorConfig>

Deploying an EJB JAR

After you package your EJB components in the archive file and create the deployment plan, you
are ready to deploy the EJB JAR using the SilverCmd DeployEJB command.

What happens when you deploy an EJB JAR

When you deploy the EJB JAR, the SilverStream server constructs a deployed object and a
remote EJB JAR in the SilverStream database. The original EJB JAR is not actually deployed;
it just provides the raw materials for the construction of the deployed object and remote JAR.

The deployed object includes the implementation classes for the bean’s remote and home
interfaces. It is used only by the SilverStream server.

The remote JAR file includes stub or reference classes that you can use to call the server-side
implementation classes. For convenience, the remote JAR also includes each bean’s home and
remote interface and any classes directly referenced by them. For example, it includes any
classes referenced as parameters or return values. In general, the remote JAR includes any of the
classes a caller needs to use the bean.
Deploying EJB archives 37

2 J2EE Archive Deployment
All clients should use the remote JAR. This includes SilverStream clients within the same
server, forms served to SilverJRunner by the same server, SilverStream clients within another
SilverStream server, and standalone Java programs. You need to include this remote JAR in
SilverStream forms, pages, and business objects. You need to add this JAR to your path if you
are accessing EJBs from an external client.
38 Deploying EJB archives

eXtend Application Server Facilities Guide
Restructuring EJB JAR files after deployment

If you deploy an EJB JAR and then later restructure the EJB JAR file (or restructure a utility
JAR file referenced by the EJB JAR), note the following:

If you Then you must

Restructure your EJB JAR by making any
of the following changes:

• By creating a utility JAR and changing
the EJB JAR’s manifest class-path
attribute to refer to the utility JAR

• By removing a utility JAR and removing
the reference to it in the EJB JAR’s
manifest class-path attribute

• By creating an EJB client JAR and
adding an <ejb-client-jar> tag to the
EJB JAR’s deployment descriptor

• By removing an EJB client JAR and
removing the <ejb-client-jar> tag from
the EJB JAR’s deployment descriptor

Do the following:

1. Resave and redeploy the EJB JAR.

2. Resave any objects (such as pages,
servlets, or forms) that reference the EJB
remote JAR.

3. Resave and redeploy any EARs or WARs
that reference the EJB remote JAR in
their deployment plans.

(Rebuilding the application database will
not accomplish this.)

Restructure a utility JAR referenced by the
EJB by making any of the following
changes:

• By creating a subutility JAR and
changing the utility JAR’s manifest
class-path attribute to refer to the
subutility JAR

• By removing a subutility JAR and
removing the reference to the subutility
JAR in the utility JAR’s manifest class-
path attribute
Deploying EJB archives 39

2 J2EE Archive Deployment
Deploying Web archives (WARs)
A Web archive file is a logical grouping of static HTML pages, servlets, JSP pages, and other
resources (images, sounds, and so on) that comprise a complete application.

� To learn about servlets or JSP pages and how to write them, see the eXtend Workbench
help.

� To deploy a WAR file to your SilverStream server:

1. Package the JSP source and other files for the application (including compiled servlet
classes and other supporting Java components, HTML documents, images, and so on) in a
J2EE-compatible WAR file.

2. Write a SilverStream WAR deployment plan.

3. Run SilverCmd DeployWAR.

(Deploying from eXtend Workbench runs this command for you.)

Packaging a Web application

The WAR must comply with Sun’s Java Servlet Specification, Version 2.2.

� This publication is available from the Sun Java Web site at:

http://java.sun.com/j2ee/docs.html

Writing a WAR deployment plan

The WAR deployment plan includes information about the contents of the WAR file and how it
should be managed in the SilverStream server environment. You supply this deployment plan as
an option to the SilverCmd DeployWAR command.

Requirements of the plan

Your WAR deployment plan must be an XML file based on the WAR deployment plan DTD that
SilverStream provides:

deploy_war.dtd

Your plan must:

• Include a corresponding DOCTYPE statement

• Comply with the structure documented by this DTD
40 Deploying Web archives (WARs)

new http://java.sun.com/j2ee/docs.html

eXtend Application Server Facilities Guide
� For details on writing a deployment plan XML file that meets these requirements, see
Chapter 3, “Deployment Plan DTDs”:

Editing the plan

To create and edit your WAR deployment plan, you can use either of the following:

• An XML editor or text editor of your choice

• The Deployment Plan Editor of eXtend Workbench

Overview of the plan

The WAR deployment plan can specify:

• One or more URLs for the WAR file

• Whether the WAR file is enabled or disabled

• Whether you want to deploy the application to the file system for a quick
develop/test/refine cycle (see Chapter 1, “JSP Deployment to the File System”)

• Mappings for deployment descriptor values such as environment variables, EJB
references, resource references, and role references

To learn about See

The DOCTYPE statement and structure for
your WAR deployment plan

“WAR deployment plan DTD” on page 78

A sample WAR deployment plan you can
follow

“About the deployment plan DTDs” on
page 49

Where to find the DTD file “About the deployment plan DTDs” on
page 49
Deploying Web archives (WARs) 41

2 J2EE Archive Deployment
Deploying a WAR file

After you package your Web application components in the archive file and create the
deployment plan, you are ready to deploy the WAR using the SilverCmd DeployWAR
command.

What happens when you deploy a WAR

DeployWAR deploys a WAR file to a SilverStream server. As part of the deployment process,
DeployWAR compiles all of the JSP pages in the WAR into Java source files and then compiles
these Java sources. It adds the result to the WAR file and uploads the WAR file to the server. (It
does not include the Java source files in the WAR.)

� For more information on using SilverCmd DeployWAR, see “DeployWAR” on page 130.

Deploying resource adapter archives (RARs)
A resource adapter archive (RAR) contains the software that allows J2EE components to
interact with enterprise information systems that reside outside the J2EE server.

� To learn about resource adapters and how to write them, see the eXtend Workbench help.

� To deploy a RAR file to your SilverStream server:

1. Obtain the RAR from a vendor.

OR

If you have written your own RAR, package the files in a J2EE-compatible RAR file.

2. Write a SilverStream RAR deployment plan.

3. Run SilverCmd DeployRAR.

(Deploying from eXtend Workbench runs this command for you.)

Packaging a RAR

For information about writing and packaging a RAR, see the J2EE Connector architecture
specification.

� This publication is available from the Sun Java Web site at:

http://jcp.org/jsr/detail/016.jsp
42 Deploying resource adapter archives (RARs)

new http://jcp.org/jsr/detail/016.jsp

eXtend Application Server Facilities Guide
Writing a RAR deployment plan

The RAR deployment plan includes information about the contents of the RAR file and how it
should be managed in the SilverStream server environment. You supply this deployment plan as
an option to the SilverCmd DeployRAR command.

Requirements of the plan

Your RAR deployment plan must be an XML file based on the SilverStream RAR deployment
plan:

deploy-rar_1_1.dtd

Your plan must:

• Include a corresponding DOCTYPE statement

• Comply with the structure documented by this DTD

� For details on writing a deployment plan XML file that meets these requirements, see
Chapter 3, “Deployment Plan DTDs”:

Editing the plan

To create and edit your RAR deployment plan, you can use either of the following:

• An XML editor or text editor of your choice

• The Deployment Plan Editor of eXtend Workbench

To learn about See

The DOCTYPE statement and structure for
your RAR deployment plan

“RAR deployment plan DTD” on page 85

Where to find the DTD file “About the deployment plan DTDs” on
page 49
Deploying resource adapter archives (RARs) 43

2 J2EE Archive Deployment
Overview of the plan

The RAR deployment plan can specify:

• The name of the resource adapter

• Information about the connection pool for the RAR including initial and maximum pool
sizes, user names and passwords, and wait and idle timeout values.

Deploying a RAR file

DeployRAR deploys a RAR file to a SilverStream server. As part of the deployment process,
DeployRAR:

• Uploads the RAR to the server

• Creates and configures any connection pools specified in the deployment plan

� For more information on using SilverCmd DeployRAR, see “DeployRAR” on page 129.

Deploying enterprise archives (EARs)
An enterprise archive (EAR) represents a J2EE application rather than a single J2EE module. It
is a collection of one or more of the J2EE deployable modules described earlier in this chapter
(application clients, EJBs, and WARs), packaged in a JAR file with the .EAR file extension.

� To deploy an EAR file to your SilverStream server:

1. Package the application components (application client JAR files, EJB JAR files, WAR
files) in a J2EE-compatible EAR file. Note that each component (and the EAR itself) must
include a deployment descriptor.

2. Write a SilverStream EAR deployment plan.

3. Run SilverCmd DeployEAR (to deploy J2EE 1.? EARs) or SilverCmd DeployEAR12
(to deploy J2EE1.2 EARs)

(Deploying from eXtend Workbench runs the appropriate command for you.)
44 Deploying enterprise archives (EARs)

eXtend Application Server Facilities Guide
Packaging an enterprise application

The following diagram shows how the components are combined to create an EAR before
deployment:

The EAR must comply with Sun’s J2EE specification. For more information, see Java 2
Platform Enterprise Edition Specification, v1.2, Chapter 8, “Application Assembly and
Deployment”.

� This publication is available from the Sun Java Web site at:

http://java.sun.com/j2ee/docs.html

Writing an EAR deployment plan

An EAR deployment plan provides a top-level view of the application’s contents as well as the
details for each J2EE deployable module (application client, EJB, WAR) that will be contained
in the EAR. It’s really a concatenation of the deployment plans for each of the J2EE modules it
contains.

You create the EAR deployment plan by copying the elements from these module deployment
plans into it.
Deploying enterprise archives (EARs) 45

new http://java.sun.com/j2ee/docs.html

2 J2EE Archive Deployment
Requirements of the plan

Your EAR deployment plan must be an XML file based on the EAR deployment plan that is
appropriate for the version of your archive. Use deploy-ear_1_2.dtd or deploy-ear_1_3.dtd.

Your plan must:

• Include a corresponding DOCTYPE statement

• Comply with the structure documented by this DTD

� For details on writing a deployment plan XML file that meets these requirements, see
Chapter 3, “Deployment Plan DTDs”:

Editing the plan

To create and edit your EAR deployment plan, you can use either of the following:

• An XML editor or text editor of your choice

• The Deployment Plan Editor of eXtend Workbench

Running SilverCmd DeployEAR

DeployEAR performs these tasks:

1. Opens the EAR file and extracts all the files to a local temporary directory.

2. For each application client archive, EJB JAR, or WAR, DeployEAR performs the
corresponding SilverCmd DeployXXX command to deploy that archive to the server.

� For more information on using SilverCmd DeployEAR, see “DeployEAR” on page 120.

To learn about See

The DOCTYPE statement and structure for
your EAR deployment plan

“EAR deployment plan DTD” on page 88

A sample EAR deployment plan you can
follow

“About the deployment plan DTDs” on
page 49

Where to find the DTD file “About the deployment plan DTDs” on
page 49
46 Deploying enterprise archives (EARs)

eXtend Application Server Facilities Guide
Specifying classpath JARs on the server
The SilverStream deployment plans for EJB 2.0, WAR 2.3, and EAR 1.3 support a
classpathJars element that you can use to adjust the list of JAR files on your application’s
classpath. This lets you do either of the following:

• Access user-supplied JARs that you’ve copied to the server

• Override server-supplied JARs used for XML parsing and transformation

� To learn about the syntax for classpathJars, see Chapter 3, “Deployment Plan DTDs”.

Accessing user-supplied JARs

You may have one or more commonly used JARs that you’d rather locate directly on the server
than deploy in multiple applications. You can copy such JARs to your SilverStream server’s
userlib directory and then list them as needed in an archive’s deployment plan via classpathJars
and its userlibJars subelement.

For example:

<classpathJars>
<userlibJars>

<el>MyJarA.jar</el>
<el>MyJarB.jar</el>

</userlibJars>
</classpathJars>

This will enable the deployed archive to find classes in the listed userlib JARs at runtime.

Overriding server-supplied JARs

By default, archives deployed to the SilverStream server have access to the standard J2EE 1.3
XML JARs for parsing and transformation. These are the crimson and xalan JARs:

• crimson-java_xml_pack_fall_2001.jar

• xalan-java_xml_pack_fall_2001.jar

In some circumstances, you might want to override the default XML JARs and specify others.
This involves:

1. Using classpathJars in an archive’s deployment plan to specify the
excludeJ2EEXMLJars subelement with a value of true.

This removes the default XML JARs from the application’s classpath.
Specifying classpath JARs on the server 47

2 J2EE Archive Deployment
2. Doing one of the following:

• Deploying your substitute XML JARs in the archive.

• Copying those JARs to your SilverStream server’s userlib directory and listing them
in the archive’s deployment plan via the userlibJars subelement of classpathJars.

Note that the userlib directory already contains several versions of common XML
JARs you might want to use.

For example:

<classpathJars>
<excludeJ2EEXMLJars>true</excludeJ2EEXMLJars>
<userlibJars>

<el>xerces-1_4_4.jar</el>
<el>xalan-2_3_1.jar</el>

</userlibJars>
</classpathJars>

This will enable the deployed archive to find classes in the listed userlib XML JARs (instead of
the default XML JARs) at runtime.
48 Specifying classpath JARs on the server

3
 Deployment Plan DTDs Chapter 3
This chapter provides reference documentation for the SilverStream deployment plan DTDs.
Topics include:

• About the deployment plan DTDs

• Client JAR deployment plan DTD

• EJB JAR deployment plan DTD

• WAR deployment plan DTD

• RAR deployment plan DTD

• EAR deployment plan DTD

Before you begin A basic understanding of XML is recommended for this chapter.

About the deployment plan DTDs
The SilverStream deployment plan DTD files are used when you deploy J2EE archives to the
SilverStream eXtend Application Server. These DTDs (XML document type definitions)
describe the structure you must follow when writing deployment plans (XML files) for
particular kinds of archives (client JARs, EJB JARs, WARs, and EARs).

DTD and sample XML files Here’s a summary of the names and locations of these files:

DTD documentation You can learn about the DTDs by looking at:

• The DTD files themselves (for comments about the elements they define)

• This chapter (for more detailed reference documentation about each element and how to
structure them in your XML files)

� For more information on writing and using SilverStream deployment plans, see Chapter
2, “J2EE Archive Deployment”.

To find Look here in your SilverStream install

The SilverStream deployment plan DTD
files

Resources\DTDCatalog directory

Sample deployment plan XML files that use
the DTDs

samples\SilverCmd directory
49

3 Deployment Plan DTDs
Client JAR deployment plan DTD
This section provides reference information about the SilverStream client JAR deployment plan
DTD:

• DTD file

• DOCTYPE statement

• Elements

DTD file There are two client JAR deployment plan DTDs:

DOCTYPE statement Specify the appropriate DOCTYPE statement based on your version
of the SilverStream eXtend Application Server:

Server version DTD file name

3.7.2 and lower deploy_car.dtd

3.7.3 and higher deploy-car_1_2.dtd

4.0 and higher deploy-car_1_3.dtd

Server
version DOCTYPE statement

3.7.2 and
lower

<!DOCTYPE carJarOptions PUBLIC "-//SilverStream Software, Inc.
//DTD J2EE CAR Deployment Plan//EN" "deploy_car.dtd">

3.7.3 and
higher

<!DOCTYPE carJarOptions PUBLIC "-//SilverStream Software, Inc.
//DTD J2EE CAR Deployment Plan 1.2//EN" "deploy-car_1_2.dtd">

4.0 and
higher

<!DOCTYPE carJarOptions PUBLIC "-//SilverStream Software, Inc.
//DTD J2EE CAR Deployment Plan 1.3//EN" "deploy-car_1_3.dtd">
50 Client JAR deployment plan DTD

eXtend Application Server Facilities Guide
Elements The elements defined by the client JAR deployment plan DTD are described
below (in alphabetical order):

• beanLink element
<!ELEMENT beanLink (#PCDATA)>

Specifies the JNDI name of an EJB referenced by the application client. The referenced
EJB can be located on a server other than the one on which the application client is
deployed.

Specifying the server host for a beanLink Whether you deploy your client JAR by
itself or in an EAR, you must be careful about how you specify the SilverStream server
host name for any EJB references you map—because the host name you type when
invoking SilverJ2EEClient must exactly match the host name that appears in the
beanLink elements of your deployment plan:

• Guidelines For instance, if the host name portion of the beanLink specifies
myserver:

<beanLink>sssw://myserver/RMI/sbOrderSummary</beanLink>

then the SilverJ2EEClient command line must also specify that name:
SilverJ2EEClient myserver snuckerby appclient Sam

Alternatively, they may both specify the IP address of that server or they may both
specify localhost (although it’s generally best to avoid using localhost). If you specify
the server’s port number (such as myserver:80) in one, you must specify it in both.

• Troubleshooting If there isn’t an exact match (such as if one specifies the server’s
host name while the other specifies its IP address), then a runtime error will occur
when your client tries to access an EJB:

java.rmi.RemoteException: Unable to get a valid session for a
request.

• For EARs If you decide to deploy your client JAR within an EAR, this matching
requirement still applies, whether you specify the host name in your EAR deployment
plan or on the SilverCmd DeployEAR command line.

• beanReference element
<!ELEMENT beanReference (name, beanLink)>

Container element for EJBs referenced by the application client.

• beanReferenceList element
<!ELEMENT beanReferenceList (beanReference*)>

Container element for any EJB references used by the application client.
Client JAR deployment plan DTD 51

3 Deployment Plan DTDs
• carJar element
<!ELEMENT carJar (version?, carJarName?, environmentList?,
beanReferenceList?, resourceReferenceList?, usesJars?)>

Container element.

• carJarName element
<!ELEMENT carJarName (#PCDATA)>

The name of the application client JAR.

• carJarOptions element
<!ELEMENT carJarOptions (carJar)>

The root element for the application client deployment plan.

• clientDataSource element
<!ELEMENT clientDataSource (jdbcURL?, jdbcDriver?,

jdbcUsername?,jdbcPassword?)>

Container element that describes access to a javax.sql.DataSource accessed by the
application client. Clients access data source resources directly, so the client must have the
appropriate JDBC drivers installed for the data sources it needs to access. These values are
passed as Strings. See the documentation for your particular data source for the correct
syntax for jdbcURL, jdbcDriver, jdbcUsername, and jdbcPassword.

• el element
<!ELEMENT el (#PCDATA)>

Element of a string array.

• environmentEntry element
<!ELEMENT environmentEntry (name, value)>

Container element that allows the deployer to provide or override deployment descriptor
environment entries.

• environmentList element
<!ELEMENT environmentList (environmentEntry*)>

Container element for zero or more environmentEntry elements.

• jdbcDriver element
<!ELEMENT jdbcDriver (#PCDATA)>

The name of the JDBC driver used to create a JDBC Connection to a specific database at
runtime.

• jdbcPassword element
<!ELEMENT jdbcPassword (#PCDATA)>

The password used when creating the JDBC connection.
52 Client JAR deployment plan DTD

eXtend Application Server Facilities Guide
• jdbcURL element
<!ELEMENT jdbcURL (#PCDATA)>

The JDBC URL used to create a connection to a specific database at runtime.

• jdbcUsername element
<!ELEMENT jdbcUsername (#PCDATA)>

The JDBC user name used when creating the JDBC connection.

• mailRefProperties element
<!ELEMENT mailRefProperties (el+)>

Specifies the set of name/value pairs to associate with a resource reference of type
javax.mail.Session, as determined by the JavaMail specification.

Some examples include:
mail.host
mail.from
mail.user
mail.store.protocol
mail.transport.protocol
mail.debug
mail.[protocol].host (for example, mail.http.host)
mail.[protocol].user (for example, mail.http.user)

• name element
<!ELEMENT name (#PCDATA)>

Specifies the name of an environment entry, a resource reference, or an EJB reference.
The name must match the name of an entry of the same type in the deployment descriptor,
(if it does not, you’ll get a warning message during deployment).

• resourceEnvReference
<!ELEMENT resourceEnvReference (name, resourceJNDIName)>

Maps a resource environment reference name to a JNDI name. Each occurrence of
resource-env-ref in the deployment descriptor should have one corresponding
resourceEnvReference in the deployment plan to specify the JNDI name. The name
element must be the same as the corresponding resource-env-ref-name in the deployment
descriptor.

• resourceEnvReferenceList
<!ELEMENT resourceEnvReferenceList (resourceEnvReference*)>

Container element for a list of resource environment references.
Client JAR deployment plan DTD 53

3 Deployment Plan DTDs
• resourceJNDIName element
<!ELEMENT resourceJNDIName (#PCDATA)>

The JNDI name for a resource reference. All resource references must contain a JNDI
name except javax.sql.DataSource and java.net.URL resource references.

The JNDI name can be located on a server other than the application client is on. To find a
resourceJNDIName, use this syntax:

<resourceJNDIName>sssw://server:port/RMI/JNDINameOfResource
</resourceJNDIName>

• resourceReference element
<!ELEMENT resourceReference (name, (clientDataSource|resourceURL|

resourceJNDIName|mailRefProperties))>

Container element for resource references. You must specify the resource reference name
(from the deployment descriptor) and one of the following:

• A data source for references of type javax.sql.DataSource

• An URL for references of type java.net.URL

• A JNDI name for references of type javax.jms.QueueConnectionFactory or
javax.jms.TopicConnectionFactory

• A String array (to be treated as an array of name/value pairs) for references of type
javax.mail.Session

• resourceReferenceList element
<!ELEMENT resourceReferenceList (resourceReference*)>

Container element for the set of resource references used by this application client.

• resourceURL element
<!ELEMENT resourceURL (#PCDATA)>

Specifies the URL that will be looked up at runtime for a specific JNDI name.

• usesJars element
<!ELEMENT usesJars (el+)>

A String array that lists other JARs that this JAR uses.

• value element
<!ELEMENT value (#PCDATA)>

An environment entry value. A value set in the deployment plan overrides a value set in
the deployment descriptor.

• version element
<!ELEMENT version (#PCDATA)>

Specifies the version number of this deployment plan. If it is not present, the version
number is assumed to be 0.0. Deployment plans with version 0.0 are associated with
SilverStream eXtend Application Server Version 3.7.2 and lower.
54 Client JAR deployment plan DTD

eXtend Application Server Facilities Guide
EJB JAR deployment plan DTD
This section provides reference information about the SilverStream EJB JAR deployment plan
DTD:

• DTD file

• DOCTYPE statement

• Elements

DTD file There are several EJB JAR deployment plan DTDs. Use the appropriate one for
your version of the SilverStream eXtend Application Server:

DOCTYPE statement Specify the DOCTYPE statement appropriate for your version of the
SilverStream eXtend Application Server:

Server version DTD file name

3.7.2 and lower deploy_ejb.dtd

3.7.3 and higher deploy-ejb_1_1.dtd

4.0 To deploy to the J2EE1.3 container use deploy-ejb_2_0.dtd To
deploy to the J2EE1.2 container use deploy-ejb_1_1.dtd

Server
version DOCTYPE statement

3.7.2 and
lower

<!DOCTYPE ejbJarOptions PUBLIC "-//SilverStream Software, Inc.
//DTD J2EE EJB Deployment Plan//EN" "deploy_ejb.dtd">

3.7.3 and
higher

<!DOCTYPE ejbJarOptions PUBLIC "-//SilverStream Software, Inc.
//DTD J2EE EJB Deployment Plan 1.1//EN" "deploy-ejb_1_1.dtd">

4.0 To deploy to the J2EE1.2 container:

<!DOCTYPE ejbJarOptions PUBLIC "-//SilverStream Software, Inc.
//DTD J2EE EJB Deployment Plan 1.1//EN" "deploy-ejb_1_1.dtd">

To deploy to the J2EE1.3 container:

<!DOCTYPE ejbJarOptions PUBLIC "-//SilverStream Software, Inc.
//DTD J2EE EJB Deployment Plan 2.0//EN" "deploy-ejb_2_0.dtd">
EJB JAR deployment plan DTD 55

3 Deployment Plan DTDs
Elements The elements defined by the EJB JAR deployment plan DTD are described below
(in alphabetical order):

• alternate column element
<!ELEMENT alternateColumn (#PCDATA)>

Specifies an alternate column with a SQL type of BIGINT to manage the handling of
BLOB type of data, when isolationLevel is TRANSACTION_READ_COMMITTED.

• asContext element
<!ELEMENT asContext (authMethod, realm, asContextRequired)>

Describes the authentication mechanism used to authenticate the client.

• asContextRequired element
<!ELEMENT asContextRequired (#PCDATA)>

Specifies whether the authentication method specified is required for client authentication.

• authMethod element
<!ELEMENT authMethod (#PCDATA)>

Specifies the authentication method. It can be one of these:
 <authMethod>NONE</authMethod>
 <authMethod>USERNAME_PASSWORD</authMethod>

• autoInc element
<!ELEMENT autoInc (autoIncSequenceName?, (schemaName?, autoIncTableName,
columnName)?)>

Specifies the support for an autoincrement column.

• For databases that support autoincrement (most databases), an empty autoInc element
is all that is required.

• For Oracle databases, the autoIncSequenceName element specifies the sequence name
used.

• For databases that do not support autoincrement, use the schemaName element,
autoIncTableName element, and columnName element to generate a unique number.

• autoIncSequenceName element
<!ELEMENT autoIncSequenceName (#PCDATA)>

Specifies the sequence name for an autoincrement column in an Oracle database.

• autoIncTableName element
<!ELEMENT autoIncTableName (#PCDATA)>

Specifies the name of the table containing the column columnName element, which is
used for maintaining the current values for an autoincrement column. Use this only for
databases that do not support autoincrement.
56 EJB JAR deployment plan DTD

eXtend Application Server Facilities Guide
• bean element
<!ELEMENT bean (beanName, beanJNDIName, usesSSL?, cipherSuites?,

resourceReferenceList?, environmentList?,
beanReferenceList?)>

Container element for common deployment information for session and entity beans.

• beanJNDIName element
<!ELEMENT beanJNDIName (#PCDATA)>

JNDI name of an EJB. The JNDI name is used by the container to register the bean within
the JNDI namespace. Any code that calls the bean must find it first using the JNDI name.
JNDI names must be unique within a server and across servers in a cluster. You should
consider using a hierarchical structure for naming your beans. You might even want to
include the company name (or initials) within the hierarchy to ensure that EJBs are
unique. Some examples include:

abccorp/samples/SalesDemo/Customers
com/sssw/samples/BankDemo/SessionBeans/AddCustomer
com/sssw/samples/BankDemo/EntityBeans/Customer

The JNDI lookup for the previous examples would be (respectively):
contextEnv.lookup(“RMI/abccorp/samples/SalesDemo/Customers”);
contextEnv.lookup(“RMI/com/sssw/samples/BankDemo/SessionBeans/

AddCustomer”);
contextEnv.lookup(“RMI/com/sssw/samples/BankDemo/EntityBeans/

Customer”);

• beanLink element
<!ELEMENT beanLink (#PCDATA)>

Specifies the JNDI name of a referenced EJB. That EJB can be located on another server.

Examples of specifying the JNDI name of an EJB:

• On the same server:
<beanLink>SBBankATM</beanLink>

• On a different server:
<beanLink>sssw://myServer:80/RMI/SBBankATM</beanLink>

When you specify a link to an EJB that resides on a different server, you have to copy the
remote JAR for the referenced bean to the server from which it is being referenced.

• beanLocalJNDIName element
<!ELEMENT beanLocalJNDIName (#PCDATA)>

Specifies the JNDI name of a local bean.

• beanLocalReferenceList element
<!ELEMENT beanLocalReferenceList (beanReference*)>

Specifies the mapping of EJB local references.
EJB JAR deployment plan DTD 57

3 Deployment Plan DTDs
• beanName element
<!ELEMENT beanName (#PCDATA)>

The name of an EJB. It corresponds to ejb-name from the deployment descriptor.

• beanPersistenceInfo element
<!ELEMENT beanPersistenceInfo (beanName, dataSourceName?, sqlHandler?,
delayInstantiation?, table)>

The beanPersistenceInfo element is the persistence info for a CMP entity bean. It contains:

• The name of the bean

• An optional data source name to override the one specified in beanPersistenceInfoList

• An optional SQL handler class name to override the one specified in
beanPersistenceInfoList

• An optional flag to delay the instantiation of the bean

• The description of a table this bean is deployed to

• beanPersistenceInfoList element
<!ELEMENT beanPersistenceInfoList (dataSourceName?, sqlHandler?,
isolationLevel?, beanPersistenceInfo+)>

Persistence info for all CMP entity beans in this JAR. It contains:

• An optional data source used by most (if not all) of the CMP entity beans

• An optional SQL handler class name to handle SQL-related works for most (if not all)
of the CMP entity beans

• An optional Isolation Level (default is
Connection.TRANSACTION_READ_COMMITTED)

• A list of persistence info for each bean

• beanReference element
<!ELEMENT beanReference (name, beanLink?)>

Container element for mapping an EJB reference to an EJB.

• beanReferenceList element
<!ELEMENT beanReferenceList (beanReference+)>

Container element for specifying a list of references to other EJBs.

• beansList element
<!ELEMENT beansList ((entity|session)+)>

Container element for one or more entity or session beans.
58 EJB JAR deployment plan DTD

eXtend Application Server Facilities Guide
• callerPropagation element
<!ELEMENT callerPropagation (#PCDATA)>

Specifies whether the target will accept propagated caller identities. Must be one of the
following:

<callerPropagation>NONE</callerPropagation>
<callerPropagation>SUPPORTED</callerPropagation>
<callerPropagation>REQUIRED</callerPropagation>

• classpathJars element
<!ELEMENT classpathJars (excludeJ2EEXMLJars?, userlibJars?)>

Allows a list of JAR files to be used in an application without deploying them to the
server. It also allows the user to disable the inclusion of the default XML JARs so that
different versions of XML parsers and XML transformation engines can be used.

• clientID element
<!ELEMENT clientID (#PCDATA)>

Specifies the JMS Client ID used for JMS Topic Connection.

• cmpFieldName element
<!ELEMENT cmpFieldName (#PCDATA)>

Specifies the CMP field name.

• cmrFieldName
<!ELEMENT cmrFieldName (#PCDATA)>

Specifies the CMR field name in a relationship.

• columnName element
<!ELEMENT columnName (#PCDATA)>

Specifies the database column name to which a CMP entity bean’s persistent field is
mapped. This name must match a name in the database table to which the entity bean is
bound, and must be the name by which the SilverStream server knows the column.

� See dataSrcTable element.

• columnNames element
<!ELEMENT columnNames (el+)>

Specifies a list of column names in the table used to define a relationship.

• confidentiality element
<!ELEMENT confidentiality (#PCDATA)>

Specifies whether the target supports privacy protected messages. Must be one of the
following:

<confidentiality>NONE</confidentiality>
<confidentiality>SUPPORTED</confidentiality>
<confidentiality>REQUIRED</confidentiality>
EJB JAR deployment plan DTD 59

3 Deployment Plan DTDs
• confidentialityCipherSuites element
<!ELEMENT confidentialityCipherSuites (el+)>

Specifies the names of the cipher suites to be used when confidentiality (in the
TransportConfig element) is specified for a session bean or an entity bean in the JAR.

• connectionFactoryName element
<!ELEMENT connectionFactoryName (#PCDATA)>

Specifies the JNDI name used to look up the JMS Connection Factory.

• dataSource element
<!ELEMENT dataSource (#PCDATA)>

Specifies the name of the database to associate with an EJB’s resource reference of type
javax.sql.DataSource.

• dataSourceName element
<!ELEMENT dataSourceName (#PCDATA)>

Specifies the name of the data source (database) to associate with a bean’s resource
reference of type javax.sql.DataSource.

• dataSrcTable element
<!ELEMENT dataSrcTable (#PCDATA)>

Specifies the name of a database table to associate with a CMP entity bean. If any
persistent fields are specified, this element must be specified. This is the primary table for
the bean.

• delayInstantiation element
<!ELEMENT delayInstantiation (#PCDATA)>

Specifies whether a CMP entity bean is instantiated immediately (FALSE—the default) or
only when required (TRUE).

This element determines how the server will retrieve and cache data during finder method
execution. Beans whose instantiation is delayed are called lazy beans.

Here are the possible scenarios:

Scenario Description

You set delay
instantiation to TRUE,
but the finder method is
not part of a transaction
context (an unspecified
context)

The server ignores the setting.

When you call a finder method, the server retrieves the
primary key and does not cache any of the data. If your
bean requires subsequent use of this data, the server must
retrieve the data at that point.
60 EJB JAR deployment plan DTD

eXtend Application Server Facilities Guide
• deployedObject element
<!ELEMENT deployedObject (#PCDATA)>

Name of the EJB deployed object to create on the SilverStream server. It is optional and
can also be specified on the command line (when deploying with SilverCmd DeployEJB).

When this element is not specified, deployment generates a name by appending the word
Deployed to the value of the ejbJarName element.

You set delay
instantiation to TRUE,
and the finder method is
part of a transaction
context

The server retrieves only the primary key for each of the
finder methods.

Any subsequent method calls on that bean cause the
server to access the database again to retrieve the data and
populate the fields for the bean.

Although this causes an additional trip to the database, it
can be more efficient in cases where the data is large or
the application is only interested in a single record. It
allows the application to do some processing to determine
which record it wants.

For applications that will only access a single bean, the
initial load time for all of the beans might not be worth it.

You set delay
instantiation to FALSE,
and the finder method is
part of a transaction
context

The server retrieves the primary keys, and also retrieves
all of the values for all of the persistent mapped fields for
each bean. The server caches this data.

If the client makes subsequent method calls for any of the
fields, the server will not need to retrieve any additional
data from the database (because it will have cached all of
the records).

Depending on your data, this might improve or degrade
your performance. It might degrade performance if the
bean has a lot of fields or the fields contain large amounts
of data. For example, if the beans you are retrieving
contain a BLOB field and you do not need access to all of
the records, this might not be the right strategy for your
application.

Scenario Description
EJB JAR deployment plan DTD 61

3 Deployment Plan DTDs
• destinationName element
<!ELEMENT destinationName (#PCDATA)>

Specifies the Queue or Topic Name. It must be specified like this:
corbaname:iiop:JMSServer:3506#queue/queueName

• ejbCreate element
<!ELEMENT ejbCreate (#PCDATA)>

Specifies the SQL statement to be used for ejbCreate (insert), substituting the one
generated by the container.

• ejbJar element
<!ELEMENT ejbJar (version?, isEnabled?, ejbJarName?, remoteAccessJar?,
deployedObject?, usesJars?, lenientSecurity?, beansList, roleMap?)>

Container element that includes the JAR-level information.

• ejbJarName element
<!ELEMENT ejbJarName (#PCDATA)>

Name of the EJB JAR to deploy. You may specify this in the deployment plan or on the
command line (when deploying with SilverCmd DeployEJB). Values specified on the
command line take precedence.

You can specify a full file path (if the JAR is on disk) or just the name. When you specify
just the name and the EJB JAR is not in the current directory, the EJB JAR is assumed to
be on the same database and server to which it is being deployed.

• ejbJarOptions element
<!ELEMENT ejbJarOptions (ejbJar)>

The root element of the EJB deployment plan.

• ejbLoad element
<!ELEMENT ejbLoad (#PCDATA)>

Specifies the SQL statement to be used for ejbLoad (select), substituting the one generated
by the container.

• ejbQL element
<!ELEMENT ejbQL (#PCDATA)>

The EJB QL for this finder.

• ejbRemove element
<!ELEMENT ejbRemove (#PCDATA)>

Specifies the SQL statement to be used for ejbRemove (delete), substituting the one
generated by the container.
62 EJB JAR deployment plan DTD

eXtend Application Server Facilities Guide
• ejbStore element
<!ELEMENT ejbStore (#PCDATA)>

Specifies the SQL statement to be used for ejbStore (update), substituting the one
generated by the container.

• el element
<!ELEMENT el (#PCDATA)>

Element of a String array.

• entity element
<!ELEMENT entity (dataSrcTable?, primaryKeyClass?, delayInstantiation?,
bean, nonModifyingMethodsList?,fieldMap?, finderMethodsList?)>

Container element for the description of entity bean–specific deployment information.

• environmentEntry element
<!ELEMENT environmentEntry (name, value)>

Container element that allows the deployer to provide or override deployment descriptor
environment entries.

• environmentList element
<!ELEMENT environmentList (environmentEntry+)>

Container element for any environmentEntry elements.

• establishTrustInClient element
<!ELEMENT establishTrustInClient (#PCDATA)>

Specifies whether the target (server) is capable of authenticating a client. If this is
REQUIRED, the server wants to see a client certificate. If it’s SUPPORTED, the server
will accept a client certificate if provided but allow the call anyway if not. It must be one
of the following:

<establishTrustInClient>NONE</establishTrustInClient>
<establishTrustInClient>SUPPORTED</establishTrustInClient>
<establishTrustInClient>REQUIRED</establishTrustInClient>

• establishTrustInServer element
<!ELEMENT establishTrustInServer (#PCDATA)>

Specifies whether the target (server) is capable of authenticating itself to a client. If this
value is SUPPORTED, the target supports one or more cipher suites that include a way to
securely identify the server to the client; the client will use SSL. This value can be:

<establishTrustInServer>NONE</establishTrustInServer>
<establishTrustInServer>SUPPORTED</establishTrustInServer>
EJB JAR deployment plan DTD 63

3 Deployment Plan DTDs
• excludeJ2EEXMLJars element
<!ELEMENT excludeJ2EEXMLJars (#PCDATA)>

Tells the EJB if it should include the default J2EE 1.3 XML JARs in the classloader for
this application. The default JAR files are the specific versions of crimson.jar and
xalan.jar that are used in the J2EE 1.3 CTS tests. If this element is set to TRUE, XML
parsing and XML transformation classes from crimson.jar and xalan.jar will not
automatically be made available to the application. This permits application developers to
package (or include via userlibJars) other versions of XML parsers and transformation
engines in their applications. If this element is absent or is FALSE, the default JARs will
automatically be made available to the application.

• field element
<!ELEMENT field (cmpFieldName, columnName, autoInc?, alternateColumn?)>

Specifies the mapping of a CMP field to a database column.
64 EJB JAR deployment plan DTD

eXtend Application Server Facilities Guide
• fieldMap element
<!ELEMENT fieldMap (fieldMapping+)>

The container element for the mapping of persistent fields to database columns. CMP
entity bean persistent fields can be mapped as follows:

Persistent field
type Description

Columns in a
primary table

You can map the persistent fields of each entity bean to
columns in the primary table. (The primary table is the table to
which the entity bean is mapped.)

You can map entity beans where a persistent field represents
another object. For example, suppose an entity bean contains a
persistent field called m_address that is an EmployeeAddress
object and has the following fields:

• m_street

• m_city

• m_state

According to the EJB specification, the field’s class must have
a public constructor with public member variables that are
primitive, well-known, Serializable, or compound.

When you map m_address, you actually map each of its
constituent parts to a specific database column. The m_street
field might map to the database column called street, the
m_city field might map to the database column called city, and
so on.

Persistent fields mapped to one or more fields in the primary
table are read-write.

Columns in related
tables

You can also map the persistent fields to columns in a different
table as long as the column is related to the primary table.
Persistent fields mapped this way are read-only.
EJB JAR deployment plan DTD 65

3 Deployment Plan DTDs
• fieldMapping element
<!ELEMENT fieldMapping (name, columnName?, foreignBeanName?,

primaryKeyClassSimple?, primaryKeyClass?,
homeInterfaceClass?, fieldMapping*)>

Container element for mapping a persistent field of a CMP entity bean to a database
column.

• finderMethod element
<!ELEMENT finderMethod (method, finderMethodType?,

whereClause?)>

Container element for defining a finder method.

• finderMethodsList element
<!ELEMENT finderMethodsList (finderMethod+)>

Container element for a list of finder methods defined for an entity bean.

Member variables in
other beans

You can map the persistent fields of one entity bean to the
persistent fields of a different entity bean. To accomplish this:

• The bean developer must declare the persistent field’s type
as the referenced bean’s remote interface.

• The referenced bean must be deployed in the same EJB JAR
file.

• At deployment time you map the persistent field(s) to the
referenced bean instead of a database table.

• At deployment time you map the persistent fields of the
referenced bean’s primary key to database columns in the
primary table.

Bean references are read-write.

The SilverStream server supports mapping only to an
individual bean reference. It directly supports many-to-one and
one-to-one relationships. A one-to-many relationship would
look like a Collection in the referring bean. You can implement
a one-to-many relationship programmatically.

Persistent field
type Description
66 EJB JAR deployment plan DTD

eXtend Application Server Facilities Guide
• finderMethodType element
<!ELEMENT finderMethodType (#PCDATA)>

Specifies one of these finder method types:

If the finderMethodType is not specified, it is assumed to be expression.

• foreignBeanName element
<!ELEMENT foreignBeanName (#PCDATA)>

Specifies the ejb-name of an EJB when a persistent field from one bean is bound to a field
in a different bean.

If your deployment descriptor includes a persistent field that has another bean’s remote
interface as its data type, you can map the persistent field to another bean. The other bean
is called the foreign bean. You can map to a single bean reference supporting many-to-one
and one-to-one relationships (but not one-to-many relationships).

The foreign bean must be in the same EJB JAR.

• homeInterfaceClass element
<!ELEMENT homeInterfaceClass (#PCDATA)>

Specifies the foreign bean’s fully qualified home interface class.

• initialPoolSize element
<!ELEMENT initialPoolSize (#PCDATA)>

Specifies the initial pool size for session or entity beans. The default is 0.

• integrity element
<!ELEMENT integrity (#PCDATA)>

Specifies whether the target supports integrity protected messages. It can be:
<integrity>NONE</integrity>
<integrity>SUPPORTED</integrity>
<integrity>REQUIRED</integrity>

Type Use it when

expression You want to create a finder method that is a classic SilverStream
expression (such as those used for Link clauses on SilverStream forms
and pages)

method • Arguments are compound or require processing

• You want to perform additional validation or error checking

• You want to include Order by, Distinct, and result count limits
EJB JAR deployment plan DTD 67

3 Deployment Plan DTDs
• integrityCipherSuites element
<!ELEMENT integrityCipherSuites (el+)>

Specifies the names of the cipher suites to be used, when integrity (in transportConfig) is
specified for a session bean or entity bean in the JAR.

• iorSecurityConfig element
<!ELEMENT iorSecurityConfig (transportConfig?, asContext?, sasContext?)>

Specifies the IOR security information for an EJB.

• isEnabled element
<!ELEMENT isEnabled (#PCDATA)>

The state of the EJB JAR.

EJB JARs created and deployed using SilverStream graphical tools are enabled by default.
If the deployment information is not complete, a deployed JAR cannot be enabled.

• isolationLevel element
<!ELEMENT isolationLevel (#PCDATA)>

Specifies the isolation level to be used. It can be:
<isolationLevel>TRANSACTION_READ_COMMITTED</isolationLevel>
<isolationLevel>TRANSACTION_SERIALIZABLE</isolationLevel>

The default value is TRANSACTION_READ_COMMITTED.

• jarFileName element
<!ELEMENT jarFileName (#PCDATA)>

Specifies the name of the JAR file that contains the classes.

• lenientSecurity element
<!ELEMENT lenientSecurity (#PCDATA)>

A boolean that specifies whether the EJB requires a lenient interpretation of the method
permission entries—that is, whether a method not listed in any method permission entry is
callable by all users (lenient) or no users (strict). The default is strict.

• linkTable column element
<!ELEMENT linkTable (schemaName?, name)>

Specifies the name of the link table used for a many-to-many relationship.

• mailRefProperties element
<!ELEMENT mailRefProperties (el+)>

Specifies the set of name/value pairs to associate with a resource reference of type
javax.mail.Session, as determined by the JavaMail specification.

Some examples include:
mail.host
mail.from
mail.user
68 EJB JAR deployment plan DTD

eXtend Application Server Facilities Guide
mail.store.protocol
mail.transport.protocol
mail.debug
mail.[protocol].host (for example, mail.http.host)
mail.[protocol].user (for example, mail.http.user)

• maxPoolSize element
<!ELEMENT maxPoolSize (#PCDATA)>

Specifies the maximum pool size for session, entity, or message driven beans. If omitted,
the default value for session beans is 500, for entity beans it is 0, and for message driven
beans it is 5.

• message element
<!ELEMENT message (destinationName, connectionFactoryName, userName?,
password?, serverSessionMaxMsgs?, maxPoolSize?, clientID?,
subscriptionName?, selectorAddon?, bean)>

Description of deployment information for a message-driven bean. It contains:

• The destination for this Message Driven Bean

• The JNDI name used to look up its JMS connection factory

• An optional user name and password for JMS connection

• An optional integer that specifies the maximum number of messages to be processed
by the ServerSession at a time

• An optional integer that specifies the maximum ServerSession pool size

• An optional Client ID for a topic

• An optional Subscription name for a topic

• An optional additional selector to be appended to the message selector in the
deployment descriptor

• A bean element for more bean info, including resource and environment entries

• maxSessionPoolSize element
<!ELEMENT maxSessionPoolSize (#PCDATA)>

Specifies the maximum pool size (number of instances) for a specific session bean. When
omitted, the default is 500.

• method element
<!ELEMENT method (name, methodParams?)>

Container element for specifying method descriptions for the nonModifyingMethodsList
element and the finderMethod element.
EJB JAR deployment plan DTD 69

3 Deployment Plan DTDs
• methodParams element
<!ELEMENT methodParams (el+)>

Specifies a list of method parameters for methods in the nonModifyingMethodsList and
finderMethod elements. The parameters list the data type. If the data type is not a native
Java type (int, char, and so on) or is not in the java.lang package, it must be a fully
qualified name.

• name element
<!ELEMENT name (#PCDATA)>

Specifies the name of one of the following:

• An environment entry, a resource reference, or an EJB reference. The name must
match the name of an entry of the same type in the deployment descriptor, or you’ll get
a warning message during deployment. (See environmentEntry element.)

• A persistent field as referred to in the bean code. (See fieldMapping element.)

• A method, see method element.

• nonSSSWPersistenceInfo element
<!ELEMENT nonSSSWPersistenceInfo (persistenceInfoFileName,
jarFileName,persistenceManagerClass)>

Specifies the use of a non-SilverStream Persistence Manager.

• nonModifyingMethodsList element
<!ELEMENT nonModifyingMethodsList (method+)>

Container element for the list of methods that do not modify fields in the database
associated with the bean.

Specifying these methods might improve performance—because each time a method is
called on an entity bean, the server checks all of the bean’s persistent fields to see if any of
them have been modified. If any have been modified, the server writes any changes to the
database. If you specify that a particular method does not modify a field, the server does
not perform this check.

• password element
<!ELEMENT password (#PCDATA)>

Specifies the password to be used to create a JMS Connection.

• persistenceInfo element
<!ELEMENT persistenceInfo (beanPersistenceInfoList, relationsList?)>

Specifies the information required by the SilverStream Persistence Manager. It contains:

• A list of persistence info for each CMP entity bean

• An optional list of relation information
70 EJB JAR deployment plan DTD

eXtend Application Server Facilities Guide
• persistenceInfoFileName element
<!ELEMENT persistenceInfoFileName (#PCDATA)>

Specifies the name of the file that contains the contents of non-SilverStream persistence
information. It will be read in as an array of bytes that will be passed to the non-
SilverStream Persistence Manager at runtime.

• persistenceManagerClass element
<!ELEMENT persistenceManagerClass (#PCDATA)>

Specifies the class name of the non-SilverStream Persistence Manager.

• poolingPolicy element
<!ELEMENT poolingPolicy (#PCDATA)>

Specifies the pooling policy to use for session or entity bean pooling. If the container
requests a bean from the pool when all the instances from the pool are active and the pool
has reached its maxPoolSize, the specified policy will take effect:

• If the CREATE policy is specified, a new bean instance will be created.

• If the FAIL policy is specified, the container will throw an exception.

The poolingPolicy element must be one of the following:
<poolingPolicy>CREATE</poolingPolicy>
<poolingPolicy>FAIL</poolingPolicy>

The default policy is CREATE.

• primaryKey element
<!ELEMENT primaryKey (primaryKeyClass, columnName?, autoInc?)>

Specifies the mapping of primary keys when the deployment descriptor’s prim-key-class
is java.lang.Object. SilverStream supports String, Integer, or Long for the
primaryKeyClass element in the deployment plan. If the primaryKeyClass element is
java.lang.String, the autoInc element is ignored and the column has to be able to store a
32-byte length of String data. If primaryKeyClass is java.lang.Integer or java.lang.Long,
autoInc is required—so that an autoincrement column can be used to generate unique
primary keys.

• primaryKeyClass element
<!ELEMENT primaryKeyClass (#PCDATA)>

Specifies the fully qualified primary key class for a CMP entity bean. This can be a user-
defined class or a standard data type like java.lang.Integer.

• primaryKeyClassSimple element
<!ELEMENT primaryKeyClassSimple (#PCDATA)>

Specifies whether the primary key class is a Java data type (TRUE) such as String or
Integer or a user-defined class (FALSE).
EJB JAR deployment plan DTD 71

3 Deployment Plan DTDs
• principalList element
<!ELEMENT principalList (el+)>

Specifies the name of the principals to be mapped to a role.

• realm element
<!ELEMENT realm (#PCDATA)>

Specifies the realm in which the user is authenticated. This can be the well-known realm
name (default), which matches any SilverStream-supported realm.

• recoverable element
<!ELEMENT recoverable (#PCDATA)>

Specifies whether a stateful session bean is recoverable or not. It can be:
<recoverable>TRUE</recoverable>
<recoverable>FALSE</recoverable>

The default value is FALSE.

• relation element
<!ELEMENT relation (linkTable?, relationRole, relationRole)>

Specifies the following relation information:

• An optional link table when the relationship is many-to-many

• The name of the relation

• The two roles that comprise the relation

• relationRole element
<!ELEMENT relationRole (beanName, cmrFieldName?, columnNames?)>

Defines a role within a relation and contains:

• The bean name (from the deployment descriptor) for the source of a role that
participates in the relationship. It needs to match that of the relationship-role-source in
ejb-relationship-role.

• The CMR field name for the role (from the deployment descriptor). It needs to match
that of cmr-field-name (or lack of). The deployer uses beanName and cmrFieldName
to match the relationship.

• A list of column names (that most frequently contains only one element) that the
container uses to manage the relationships. This is typically the foreign keys. For
many-to-many relationships, this is the foreign key column name in the link table that
corresponds to the primary key for the bean.

• relationsList element
<!ELEMENT relationsList (relation+)>

Contains the list of relations for which the user has specified deployment information.
72 EJB JAR deployment plan DTD

eXtend Application Server Facilities Guide
• remoteAccessJar element
<!ELEMENT remoteAccessJar (#PCDATA)>

Name to use for the remote EJB JAR created at deployment. The remote JAR file includes
stub or reference classes that you can use to call the server-side implementation classes.
All clients use the remote JAR.

This element is optional and can also be specified on the command line (when deploying
with SilverCmd DeployEJB). When this element is not specified, deployment generates a
name by appending the word Remote to the value of the ejbJarName element.

• resourceEnvReference element
<!ELEMENT resourceEnvReference (name, resourceJNDIName)>

Specifies the mapping of a resource environment reference name to a JNDI name. Each
occurrence of resource-env-ref in the deployment descriptor should have one
corresponding resourceEnvReference in the deployment plan, to specify the JNDI name.
The name element must be the same as the corresponding resource-env-ref-name in the
deployment descriptor.

• resourceEnvReferenceList element
<!ELEMENT resourceEnvReferenceList (resourceEnvReference*)>

Specifies a list of resource environment references.

• resourceJNDIName element
<!ELEMENT resourceJNDIName (#PCDATA)>

Specifies the JNDI name for an EJB’s resource reference of type
javax.jms.QueueConnectionFactory or javax.jms.TopicConnectionFactory.

To find a resourceJNDIName on a different server, use this syntax:
<resourceJNDIName>sssw://server:port/RMI/JNDINameOfResource

</resourceJNDIName>

• resourceReference element
<!ELEMENT resourceReference (name, (dataSource | resourceURL |

resourceJNDIName | mailRefProperties))>

Container element for resource references. You must specify the resource reference name
(from the deployment descriptor) and one of the following:

• A data source for references of type javax.sql.DataSource

• An URL for references of type java.net.URL

• A JNDI name for references of type javax.jms.QueueConnectionFactory or
javax.jms.TopicConnectionFactory

• A String array (to be treated as an array of name/value pairs) for references of type
javax.mail.Session
EJB JAR deployment plan DTD 73

3 Deployment Plan DTDs
• resourceReferenceList element
<!ELEMENT resourceReferenceList (resourceReference+)>

Container element for the list of resource references for an EJB.

• resourceURL
<!ELEMENT resourceURL (#PCDATA)>

Specifies the URL to associate with a bean’s resource reference of type java.net.URL.

• roleLink element
<!ELEMENT roleLink (#PCDATA)>

A reference to a defined security role. The roleLink element must contain one of the role
names defined in the roleMap element.

• roleMap element
<!ELEMENT roleMap (roleMapping+)>

Container element for EJB-level role mappings.

If the deployment descriptor defines security roles, the deployment plan must map those
roles to actual security groups or users on the target server.

• roleMapping element
<!ELEMENT roleMapping (name, userOrGroupName)>

Maps a single role to a user or group name.

• sasContext element
<!ELEMENT sasContext (callerPropagation)>

Describes the SasContextInfo security information.

• schemaName element
<!ELEMENT schemaName (#PCDATA)>

Specifies the schema name for a table. Some databases use the schema name to qualify a
table within a catalog.

• securityRoleRef element
<!ELEMENT securityRoleRef (name, roleLink)>

Specifies the mapping of a role reference to a security role. For every security-role-ref that
has no roleLink element specified in the deployment descriptor, there needs to be a
corresponding securityRoleRef element in the deployment plan, to specify the role itself.
The name element must be the same as the corresponding role-name in the deployment
descriptor.

• securityRoleReferenceList element
<!ELEMENT securityRoleReferenceList (securityRoleRef*)>

Specifies a list of security roles reference mappings for the bean.
74 EJB JAR deployment plan DTD

eXtend Application Server Facilities Guide
• selectorAddon element
<!ELEMENT selectorAddon (#PCDATA)>

Specifies the selector string to be appended to the message-selector specified in the
deployment descriptor.

• serverSessionMaxMsgs element
<!ELEMENT serverSessionMaxMsgs (#PCDATA)>

Specifies the maximum number of messages a JMS server session will handle at a time.
The default value is 1.

• session element
<!ELEMENT session (maxSessionPoolSize?, bean)>

Container for session bean description.

• sqlHandler element
<!ELEMENT sqlHandler (sqlType | (jarFileName, sqlHandlerClassName))>

Specifies the SQL handler used to handle all SQL-related operations.

• For a SilverStream-provided SQL handler, you need specify only the sqlType element.

• For a non-SilverStream-provided SQL handler, you must specify both the jarFileName
element (which specifies the name of JAR file that contains the class to be used) and
the sqlHandlerClassName element.

• sqlHandlerClassName element
<!ELEMENT sqlHandlerClassName (#PCDATA)>

Specifies the class name of a non-SilverStream-provided SQL handler is used to handle all
SQL-related operations.

• sqlStatement element
<!ELEMENT sqlStatement (#PCDATA)>

Specifies a SQL statement to be used instead of the SilverStream-generated SQL
statement.

• sqlSubstitution element
<!ELEMENT sqlSubstitution ((method | ejbCreate | ejbLoad | ejbStore |
ejbRemove), sqlStatement)>

Specifies the SQL statement to replace the SilverStream-generated SQL statement.

• sqlSubstitutionList element
<!ELEMENT sqlSubstitutionList (sqlSubstitution+)>

Specifies the list of SQL statements to replace SilverStream-generated statements.
EJB JAR deployment plan DTD 75

3 Deployment Plan DTDs
• sqlType element
<!ELEMENT sqlType (#PCDATA)>

Specifies the type of a SilverStream-provided SQL handler used to handle all SQL -elated
operations. It must be one of the following values: AdaptiveServerAnywhere,
AdaptiveServerEnterprise, CLOUDSCAPE, DB2, INFORMIX, MicrosoftSQLServer,
ORACLE, or the name of a user-defined class.

• sqlWhereClause element
<!ELEMENT sqlWhereClause (#PCDATA)>

Specifies the SQL WHERE clause for a (EJB 1.1) finder. The parameter index is
embedded in the WHERE clause. To specify a parameter index, use ?n, where n is the
index, starting from 1.

• subscriptionName element
<!ELEMENT subscriptionName (#PCDATA)>

Specifies the JMS Subscription name used for JMS Topic Connection.

• table element
<!ELEMENT table (schemaName?, name, field+)>

Specifies a table the CMP bean maps to.

• timeout element
<!ELEMENT timeout (#PCDATA)>

Specifies the timeout value, in minutes, for a stateful session bean. The default value is 5
minutes. If the bean has not been accessed in this amount of time, the container removes
the bean.

• TransportConfig element
<!ELEMENT transportConfig (integrity, confidentiality,
establishTrustInClient, establishTrustInServer)>

Specifies the properties of security mechanism.

• userlibJars element
<!ELEMENT userlibJars (el+)>

Lists any additional JAR files (found in the userlib directory on the server) that should be
made available to the application. The value is a StringArray of JAR names, relative to
(and contained within) the userlib directory.

• userName element
<!ELEMENT userName (#PCDATA)>

Specifies the user name to be used to create a JMS Connection.
76 EJB JAR deployment plan DTD

eXtend Application Server Facilities Guide
• userOrGroupName element
<!ELEMENT userOrGroupName (#PCDATA)>

The name of a principal in a security policy domain or a user group in the operational
environment. This is mapped to a role reference name from the deployment descriptor.
You can map a role reference to any of the security domains supported by the
SilverStream server.

• usesJars element
<!ELEMENT usesJars (el+)>

A list of JARs used by the deployed object.

• usesSSL element
<!ELEMENT usesSSL (#PCDATA)>

Specifies whether the deployed EJB uses SSL security. The default is FALSE.

If you want an EJB’s conversation with the server to be secure, you must specify that it
use SSL and one or more RSA cipher suites. Each EJB in a JAR can support a different
cipher suite. The JAR can also contain both beans that use SSL security and beans that do
not.

For a bean that specifies SSL and one or more cipher suites to contact the server securely,
you do not need to be running HTTPS—but there must be an RSA certificate installed on
the SilverStream server.

• value element
<!ELEMENT value (#PCDATA)>

Specifies the actual value of an environment entry.

• version element
<!ELEMENT version (#PCDATA)>

Specifies the version number of this deployment plan. If it is not present, the version
number will be assumed to be 0.0. Deployment plans with version 0.0 are associated with
SilverStream eXtend Application Server Version 3.7.2 and lower.

• whereClause element
<!ELEMENT whereClause (#PCDATA)>

Specifies a SilverStream WHERE clause for when finderMethodType is expression.

� For information on writing the WHERE clause, see the chapter on using
SilverStream expressions in the Programmer’s Guide of the SilverStream eXtend
Application Server’s Classic Development Help.
EJB JAR deployment plan DTD 77

3 Deployment Plan DTDs
WAR deployment plan DTD
This section provides reference information about the SilverStream WAR deployment plan
DTD:

• DTD file

• DOCTYPE statement

• Elements

DTD file There are multiple WAR deployment plan DTDs. Use the appropriate one for your
version of theSilverStream eXtend Application Server:

DOCTYPE statement Specify the DOCTYPE statement appropriate for your version of the
SilverStream eXtend Application Server:

Elements The elements defined by the WAR deployment plan DTD are described below (in
alphabetical order):

Server version DTD file name

3.7.2 and lower deploy_war.dtd

3.7.3 and higher deploy-war_2_2.dtd

4.0 and higher deploy-war_2_3.dtd

Server version DOCTYPE statement

3.7.2 and lower <!DOCTYPE warJarOptions PUBLIC "-//SilverStream
Software, Inc.
//DTD J2EE WAR Deployment Plan//EN"
"deploy_war.dtd">

3.7.3 and higher <!DOCTYPE warJarOptions PUBLIC "-//SilverStream
Software, Inc.
//DTD J2EE WAR Deployment Plan 2.2//EN" "deploy-
war_2_2.dtd">

4.0 and higher <!DOCTYPE warJarOptions PUBLIC "-//SilverStream
Software, Inc.
//DTD J2EE WAR Deployment Plan 2.3//EN" "deploy-
war_2_3.dtd">
78 WAR deployment plan DTD

eXtend Application Server Facilities Guide
• beanLink element
<!ELEMENT beanLink (#PCDATA)>

Specifies a link to a referenced EJB. This may be an internal name if the EJB is in the
same JAR, or a JNDI name if it’s in another JAR. The EJB can be located on another
server.

Examples of specifying the JNDI name of an EJB:

• On the same server:
<beanLink>SBBankATM</beanLink>

• On a different server:
<beanLink>sssw://myServer:80/RMI/SBBankATM</beanLink>

• beanLocalReferenceList element
<!ELEMENT beanLocalReferenceList (beanReference*)>

Container element for specifying a list of local references to EJBs.

• beanReference element
<!ELEMENT beanReference (name, beanLink)>

Container element for mapping an EJB reference to an EJB.

• beanReferenceList element
<!ELEMENT beanReferenceList (beanReference*)>

Container element for specifying a list of references to EJBs.

• classpathJars element
<!ELEMENT classpathJars (excludeJ2EEXMLJars?, userlibJars?)>

Lists the JAR files used in the application that should not be deployed to the server. Use
this to specify different versions of XML parsers and XML transformation engines other
than the defaults.

• contextParamEntry
<!ELEMENT contextParamEntry (name, value)>

Context parameter entry. This value overrides any value specified in the deployment
descriptor.

• contextParamsList element
<!ELEMENT contextParamsList (contextParamEntry+)>

List of context parameters that will be bound at runtime.

• dataSource element
<!ELEMENT dataSource (#PCDATA)>

Name of the database to associate with a resource reference of type javax.sql.DataSource.
WAR deployment plan DTD 79

3 Deployment Plan DTDs
• deployedObject element
<!ELEMENT deployedObject (#PCDATA)>

Name of the deployed object to create on the SilverStream server. When this element is
not specified, deployment generates a name by appending the word Deployed to the value
of the warJarName element.

• deployToFilesystem element
<!ELEMENT deployToFilesystem (#PCDATA)>

Whether or not the application should be deployed to the file system on the server. The
default is FALSE (no file system deployment).

• el element
<!ELEMENT el (#PCDATA)>

Element of a string array.

• environmentEntry element
<!ELEMENT environmentEntry (name, value)>

Container element that allows the deployer to provide environment entry deployment
values or to override values specified in the deployment descriptor.

• environmentList element
<!ELEMENT environmentList (environmentEntry*)>

Container element for any environmentEntry elements.

• excludedJSPs element
<!ELEMENT excludedJSPs (el+)>

List of JSP resources that should not be compiled. (Typically, JSP pageintended to be
included in other JSP pages should not be compiled on their own.)

• excludeJ2EEXMLJars
<!ELEMENT excludeJ2EEXMLJars (#PCDATA)>

Specifies whether the WAR should include the default J2EE 1.3 XML JARs in the
classloader for this application. The default JAR files are the specific versions of
crimson.jar and xalan.jar that are used in the J2EE 1.3 CTS tests.

• When this element is absent or is set to FALSE, the default JARs are automatically
made available to the application.

• When this element is set to TRUE, XML parsing and XML transformation classes
from crimson.jar and xalan.jar are not automatically available to the application; the
application developer must package (or include via the userlibJars element) other
versions of XML parsers and transformation engines in their application.

• filter element
<!ELEMENT filter (filterName, initParamsList)>

Specifies initialization parameters in the deployment descriptor.
80 WAR deployment plan DTD

eXtend Application Server Facilities Guide
• filterName element
<!ELEMENT filterName (#PCDATA)>

The name of the filter to which the initParamsList of the filter element is to be bound.

• filtersList element
<!ELEMENT filtersList (filter+)>

A list of filters that specify init params in the deployment descriptor.

• initParamEntry element
<!ELEMENT initParamEntry (name, value)>

A specific servlet initialization parameter entry.

• initParamsList element
<!ELEMENT initParamsList (initParamEntry+)>

A list of servlet initialization parameters that will be bound at runtime.

• isEnabled element
<!ELEMENT isEnabled (#PCDATA)>

The state of the WAR. When you disable a WAR, you make it inactive (means clients
cannot access it). It remains inactive until specifically enabled (server restarts do not
change the enabled/disabled state).

• mailRefProperties element
<!ELEMENT mailRefProperties (el+)>

Specifies the set of name/value pairs to associate with a resource reference of type
javax.mail.Session, as determined by the JavaMail specification.

Some examples include:
mail.host
mail.from
mail.user
mail.store.protocol
mail.transport.protocol
mail.debug
mail.[protocol].host (for example, mail.http.host)
mail.[protocol].user (for example, mail.http.user)

• name element
<!ELEMENT name (#PCDATA)>

Name of an environment entry, a resource reference, an EJB reference, a role mapping, or
a context parameter entry. The name must match the name of an entry of the same type in
the deployment descriptor (if it does not, you’ll get a warning message during
deployment).
WAR deployment plan DTD 81

3 Deployment Plan DTDs
• principalList element
<!ELEMENT principalList (el+)>

Specifies the name of the principals to be mapped to the role.

• recoverable
<!ELEMENT recoverable (#PCDATA)>

Specifies whether a component is recoverable. Values are:
<recoverable>TRUE</recoverable>
<recoverable>FALSE</recoverable>

Default value is FALSE.

• resourceEnvReference
<!ELEMENT resourceEnvReference (name, resourceJNDIName)>

Specifies the mapping of a resource environment reference to a JNDI name for
javax.jms.Queue or javax.jms.Topic references.

• resourceEnvReferenceList
<!ELEMENT resourceEnvReferenceList (resourceEnvReference*)>

Container element for a list of resource environment references.

• resourceJNDIName element
<!ELEMENT resourceJNDIName (#PCDATA)>

JNDI name for a resource reference. All resource references must contain a JNDI name
except for javax.sql.DataSource or java.net.URL resource references.

The JNDI name can be located on a server other than the one containing the WAR. When
accessing a different server, use this syntax:

<resourceJNDIName>sssw://server:port/RMI/JNDINameOfResource
</resourceJNDIName>

• resourceReference element
<!ELEMENT resourceReference (name, (dataSource | resourceURL |

resourceJNDIName | mailRefProperties))>

Container element for resource references. You must specify the resource reference name
(from the deployment descriptor) and one of the following:

• A data source for references of type javax.sql.DataSource

• An URL for references of type java.net.URL

• A JNDI name for references of type javax.jms.QueueConnectionFactory or
javax.jms.TopicConnectionFactory

• A String array (to be treated as an array of name/value pairs) for references of type
javax.mail.Session
82 WAR deployment plan DTD

eXtend Application Server Facilities Guide
• resourceReferenceList element
<!ELEMENT resourceReferenceList (resourceReference*)>

Container element for the set of resource references used by the WAR.

• resourceURL
<!ELEMENT resourceURL (#PCDATA)>

Specifies the URL that will be looked up at runtime for a specific JNDI name.

• roleLink element
<!ELEMENT roleLink (#PCDATA)>

A reference to a defined security role. It must contain the name of one of the role name
defined in the roleMap element.

• roleMap element
<!ELEMENT roleMap (roleMapping+)>

Container element for WAR-level role mappings. If the deployment descriptor defines
security roles, the deployment plan must map those roles to actual security groups or users
on the target server.

• roleMapping element
<!ELEMENT roleMapping (name, userOrGroupName)>

Maps a single role to a user or group name.

• securityRoleRef
<!ELEMENT securityRoleRef (name, roleLink)>

Container element that specifies the mapping of a role reference to a security role.

For every security-role-ref that has no role-link specified in the deployment descriptor,
there must be a corresponding securityRoleRef element in the deployment plan. The name
element must be the same as the corresponding role-name in the deployment descriptor.

• securityRoleReferenceList
<!ELEMENT securityRoleReferenceList (securityRoleRef*)>

Container element that provides a list of security role mappings.

• servlet element
<!ELEMENT servlet (servletName, initParamsList)>

A servlet that specifies initialization parameters in the deployment descriptor.

• servletName element
<!ELEMENT servletName (#PCDATA)>

The name of the servlet to which the initialization parameters list is to be bound.
WAR deployment plan DTD 83

3 Deployment Plan DTDs
• servletsList element
<!ELEMENT servletsList (servlet+)>

A list of servlets that specify initialization parameters in the deployment descriptor.

• sessionTimeout element
<!ELEMENT sessionTimeout (#PCDATA)>

Session timeout in minutes. Here is the hierarchy of session timeout precedence, from
highest to lowest:

• The timeout set programmatically with HttpSession.setMaxInactiveInterval() (in
seconds)

• The deployment plan (in minutes)

• The deployment descriptor (in minutes)

• The server’s default session timeout

• urls element
<!ELEMENT urls (el+)>

Location(s) at which the WAR is deployed on the server. The URL is database-relative.

• userlibJars
<!ELEMENT userlibJars (el+)>

Allows the deployer to list any additional JAR files (found in the userlib directory on the
server) so they will be made available to the application. The value is a StringArray of
JAR names, relative to (and contained within) the userlib directory.

• userOrGroupName element
<!ELEMENT userOrGroupName (#PCDATA)>

Name of a principal in a security policy domain or a user group in the operational
environment. This is mapped to a role reference name from the deployment descriptor.
You can map a role reference to any of the security domains supported by the
SilverStream server.

• usesJars element
<!ELEMENT usesJars (el+)>

List of JARs this WAR uses.

• value element
<!ELEMENT value (#PCDATA)>

An environment entry value. A value set in the deployment plan overrides a value set in
the deployment descriptor.

• version element
<!ELEMENT version (#PCDATA)>
84 WAR deployment plan DTD

eXtend Application Server Facilities Guide
Specifies the version number of this deployment plan. If it is not present, the version
number is assumed to be 0.0. Deployment plans with version 0.0 are associated with
SilverStream eXtend Application Server Version 3.7.2 and lower.

• warJar element
<!ELEMENT warJar (version?, warJarName?, isEnabled?,
deployToFilesystem?, sessionTimeout?, urls, deployedObject?, usesJars?,
excludedJSPs?, contextParamsList?, servletsList?,environmentList?,
beanReferenceList?, resourceReferenceList?, roleMap?)>

Container element for the WAR.

• warJarName element
<!ELEMENT warJarName (#PCDATA)>

Name of the WAR file to deploy. You may specify this in the deployment plan or on the
command line (when deploying with SilverCmd DeployWAR). Values specified on the
command line take precedence.

You can specify a full file path (if the WAR is on disk) or just the name. When you specify
just the name and the WAR is not in the current directory, the WAR is assumed to be on
the same database and server to which it is being deployed.

• warJarOptions element
<!ELEMENT warJarOptions (warJar)>

Root element of the WAR deployment plan.

RAR deployment plan DTD
This section provides reference information about the SilverStream resource adapter archive
deployment plan DTD:

• DTD file

• DOCTYPE statement

• Elements

DTD file The RAR deployment plan DTD is deploy-rar_1_0.dtd.

DOCTYPE statement The DOCTYPE statement for the RAR deployment plan is

<!DOCTYPE rarJarOptions PUBLIC
"-//SilverStream Software, Inc.//DTD J2EE RAR Deployment Plan 1.0//EN"
"deploy-rar_1_0.dtd">
RAR deployment plan DTD 85

3 Deployment Plan DTDs
Elements The elements defined by the client JAR deployment plan DTD are described
below (in alphabetical order):

• configProperty
<!ELEMENT configProperty (name, value)>

Container element for the ManagedConnectionFactory configuration properties.

• configPropertyList
<!ELEMENT configPropertyList (configProperty+)>

Container element for the list of connection pool configuration properties.

• connectionPool
<!ELEMENT connectionPool (poolName, user, password, xa, minPoolSize?,
maxPoolSize?, waitTimeout?, idleTimeout?, debug?, configPropertyList?)>

Container element for connection pool configuration properties.

• connectionPoolList
<!ELEMENT connectionPoolList (connectionPool+)>

Container element for connection pools associated with the resource adapter.

• debug
<!ELEMENT debug (#PCDATA)>

Specifies whether the connection pool should run in verbose mode. If it is in verbose
mode, informational and warning messages are written to the server console. The default
is FALSE (not verbose).

• extractDirectory
<!ELEMENT extractDirectory (#PCDATA)>

Specifies the directory (on the deployer’s machine). When this element is specified, the
contents of the RAR are extracted to this directory.

• idleTimeout
<!ELEMENT idleTimeout (#PCDATA)>

Specifies the number of seconds an unused connection remains in the pool before the
server destroys it. The default is 60 seconds. The value you specify will depend on the
type of applications that will rely on the connection pool. If you specify shorter timeout
periods, then the server might be forced to create connections more often—and creating
connections is an expensive operation. But if you specify a timeout that is too long, other
applications might be forced to wait for an available connection.

• isEnabled
<!ELEMENT isEnabled (#PCDATA)>

Specifies whether the RAR is enabled (the default) or not. You disable a deployed RAR
by setting this flag to FALSE and redeploying the RAR.
86 RAR deployment plan DTD

eXtend Application Server Facilities Guide
• maxPoolSize
<!ELEMENT maxPoolSize (#PCDATA)>

Specifies the maximum number of connections that can be created in the pool.

• minPoolSize
<!ELEMENT minPoolSize (#PCDATA)>

Specifies the minimum number of connections maintained in the pool.

• name
<!ELEMENT name (#PCDATA)>

Specifies the name of the ManagedConnectionFactory.

• password
<!ELEMENT password (#PCDATA)>

Specifies the password for the default connections created in the pool. A default
connection is created when users invoke ConnectionFactory.getConnection(). This is the
preferred method for obtaining a connection, because it allows the server to efficiently
pool connections.

• poolName
<!ELEMENT poolName (#PCDATA)>

Specifies the name of the connection pool added to the server. Use this name to administer
the connection pool.

• rarJar
<!ELEMENT rarJar (version?, isEnabled?, rarJarName?,
resourceAdapterName, extractDirectory?, connectionPoolList?)>

Specifies the main RAR element.

• rarJarName
<!ELEMENT rarJarName (#PCDATA)>

Specifies the name of the RAR file to be deployed. If the name is not specified in the
deployment plan, it must be entered on the command line.

• rarJarOptions
<!ELEMENT rarJarOptions (rarJar)>

The root element of the RAR deployment plan.

• resourceAdapterName
<!ELEMENT resourceAdapterName (#PCDATA)>

Specifies the name under which the resource adapter will be deployed in the server. This is
a logical name.
RAR deployment plan DTD 87

3 Deployment Plan DTDs
• user
<!ELEMENT user (#PCDATA)>

Specifies the user name for the default connections created in the pool. A default
connection is created when users invoke ConnectionFactory.getConnection(). This is the
preferred method for obtaining a connection, because it allows the server to efficiently
pool connections.

• value
<!ELEMENT value (#PCDATA)>

Specifies the value of the property of ManagedConnectionFactory identified by the name.

• version
<!ELEMENT version (#PCDATA)>

Specifies the version number of this deployment plan. If it is not present, the version
number is assumed to be 0.0. This value is automatically added when the deployment plan
is built using Workbench’s Deployment Plan Editor.

• waitTimeout
<!ELEMENT waitTimeout (#PCDATA)>

Specifies the maximum number of seconds the pool manager attempts to service a
connection request. If the connection can not be obtained in the specified number of
seconds, an exception is thrown.

• xa
<!ELEMENT xa (#PCDATA)>

Specifies whether the connections returned by the pool participate in the XA transactions.
The default is TRUE.

EAR deployment plan DTD
This section provides reference information about the SilverStream EAR deployment plan
DTD:

• DTD file

• DOCTYPE statement

• Elements
88 EAR deployment plan DTD

eXtend Application Server Facilities Guide
DTD file There are two EAR deployment plan DTDs. Use the appropriate one for your
version of the SilverStream eXtend Application Server:

DOCTYPE statement Specify the DOCTYPE statement appropriate for your version of the
SilverStream eXtend Application Server:

Elements The top-level elements defined by the EAR deployment plan DTD are described
below (in alphabetical order):

• alternateDeplDesc element
<!ELEMENT alternateDeplDesc (#PCDATA)>

Identifies a deployment descriptor to use for a specified module. Use this element when
you do not want to use the deployment descriptor in the specified module’s archive. The
alternate deployment descriptor that you specify must be in the EAR.

There are two situations when you might want to use this element:

• If you want to use the same module twice but want to configure the two uses differently

• If there are two instances of the module in the EAR (for example, two EJB JARs) and
you want to configure the modules differently

Server version DTD file name

3.7.2 and lower deploy_ear.dtd

3.7.3 and higher deploy-ear_1_2.dtd

4.0 and higher deploy-ear_1_3.dtd

Server
version DOCTYPE statement

3.7.2 and
lower

<!DOCTYPE earJarOptions PUBLIC "-//SilverStream Software,
Inc.//DTD J2EE EAR Deployment Plan//EN" "deploy_ear.dtd">

3.7.3 and
higher

<!DOCTYPE earJarOptions PUBLIC "-//SilverStream Software,
Inc.//DTD J2EE EAR Deployment Plan 1.2//EN" "deploy-
ear_1_2.dtd">

4.0 and
higher

<!DOCTYPE earJarOptions PUBLIC "-//SilverStream Software, Inc.
//DTD J2EE EAR Deployment Plan 1.3//EN" "deploy-ear_1_3.dtd">
EAR deployment plan DTD 89

3 Deployment Plan DTDs
• carJar element
<!ELEMENT carJar (version?, carJarName?, deployAs?, environmentList?,
beanReferenceList?,resourceReferenceList?, usesJars?)>

The main application client element.

• classpathJars element
<!ELEMENT classpathJars (excludeJ2EEXMLJars?, userlibJars?)>

This element allows a list of JAR files to be used in an application without deploying them
to the server. It also allows the user to disable the inclusion of the default XML JARs that
are used to pass the CTS tests.

• deployAs element
<!ELEMENT deployAs (#PCDATA)>

Overrides the name under which the module would normally be deployed. By default, the
EAR deployment process creates a deployment name that is a combination of the EAR
name and the module name. For EJB modules, this name (if specified) is also used as the
base name for the remote JAR. Use with caution.

• earJar element
<!ELEMENT earJar (version?, earJarName?, moduleList, usesJars?,
roleMap?)>

Container element for the list of J2EE modules and a top-level role map.

• earJarName element
<!ELEMENT earJarName (#PCDATA)>

Name of the EAR to deploy. You may specify this in the deployment plan or on the
command line (when deploying with SilverCmd DeployEAR). Values specified on the
command line take precedence. You can specify a full path (if the EAR is on disk) or just
the name. When you specify just the name and the EAR is not in the current directory, the
EAR is assumed to already exist in the same database and server to which it is being
deployed.

• earJarOptions element
<!ELEMENT earJarOptions (earJar)>

The root element for the EAR.

• ejbJar element
<!ELEMENT ejbJar (version?, isEnabled?, ejbJarName?,
deployAs?,remoteAccessJar?, deployedObject?, usesJars?,
lenientSecurity?, beansList, roleMap?)>

The main EJB element.

• el element
<!ELEMENT el (#PCDATA)>

Element of a string array.
90 EAR deployment plan DTD

eXtend Application Server Facilities Guide
• excludeJ2EEXMLJars element
<!ELEMENT excludeJ2EEXMLJars (#PCDATA)>

Specifies whether the EAR should include the default J2EE 1.3 XML JARs in the
classloader for the application. The default JAR files are the specific versions of
crimson.jar and xalan.jar that are used in the J2EE 1.3 CTS tests. If this element is set to
TRUE, XML parsing and XML transformation classes from crimson.jar and xalan.jar will
not automatically be made available to the application. This permits application
developers to package (or include via userlibJars) other versions of XML parsers and
transformation engines in their applications. If this element is absent or set to FALSE, the
default JARs will automatically be made available to the application.

• module element
<!ELEMENT module (ejbJar | warJar | carJar)>

Describes a specific J2EE module in the EAR.

The information contained in this element is the deployment plan for the specific module.
You should cut and paste the deployment plan from the application client JAR, EJB JAR,
or WAR to complete this section.

For EJBs, the beanName components of the bean element must be unique within the EAR
or you will encounter errors when deploying the EAR (because the bean names are used to
resolve bean references within an EAR).

• moduleList element
<!ELEMENT moduleList (module+)>

Container element for one or more J2EE deployable modules.

• name element
<!ELEMENT name (#PCDATA)>

The name of a role reference that must be mapped to a user or group name. It must match
the name of a role reference entry in the deployment descriptor (if it does not, a warning is
generated at deployment).

• order element
<!ELEMENT order (#PCDATA)>

Identifies the order of deployment of the modules. The smaller the number the higher its
deployment priority. Modules without the order element are deployed after ordered
modules.

• principalList element
<!ELEMENT principalList (el+)>

The principalList element specifies the name of the principals to be mapped to a role.
EAR deployment plan DTD 91

3 Deployment Plan DTDs
• rarJar element
<!ELEMENT rarJar (version?, isEnabled?, rarJarName?,
resourceAdapterName, extractDirectory?, connectionPoolList?)>

The main RAR element.

• roleMap element
<!ELEMENT roleMap (roleMapping+)>

Container for EAR-level role mappings.

You might consider mapping security roles at the EAR level and not within individual
modules (EJB JARs, WARs, and so on). This allows you to combine and simplify the
security settings for the constituent J2EE modules.

Here are the basic rules:

• If the individual modules do not contain any role maps, the EAR-level role map is used

• If some or all individual modules and the EAR both contain a role map:

And the roles are unique, the role map used for each module is a UNION of the
EAR-level role map and the module

And one or more of the roles are not unique, the module-level role map takes
precedence for the duplicate role and the unique roles are added to the role map

This example illustrates how a role map is determined when roles are not unique. If the
EAR-level role map contains the following values:

and an EJB module within the EAR contains this role map:

This role Is mapped to this userOrGroupName

EJBAdmin Zack

User Mary

This role Is mapped to this userOrGroupName

Admin Joe

User Helen
92 EAR deployment plan DTD

eXtend Application Server Facilities Guide
then the role map used for the EJBs will look like this:

In this case, the EJB module’s User role takes precedence. The Admin role is added to the
EJB’s role mapping, because it is inherited from the EAR’s role map.

• roleMapping element
<!ELEMENT roleMapping (name, userOrGroupName)>

Maps a single role to a user or group name.

• userOrGroupName element
<!ELEMENT userOrGroupName (#PCDATA)>

The name of a principal in a security policy domain or a user group in the operational
environment. This is mapped to a role reference name from the deployment descriptor.
You can map a role reference to any of the security domains supported by the
SilverStream server.

• userLibJars element
<!ELEMENT userlibJars (el+)>

Lists any additional JAR files that should be made available to the application. The JARs
must reside in the server’s userlib directory. The value is a StringArray of JAR names,
relative to (and contained within) the userlib directory.

• usesJars element
<!ELEMENT usesJars (el+)>

List of JARs used by this EAR.

• version element
<!ELEMENT version (#PCDATA)>

Specifies the version number of this deployment plan. If it is not present, the version
number will be assumed to be 0.0. Deployment plans with version 0.0 are associated with
SilverStream eXtend Application Server Version 3.7.2 and lower.

This role Is mapped to this userOrGroupName

Admin Joe

User Helen

EJBAdmin Zack
EAR deployment plan DTD 93

3 Deployment Plan DTDs
• warJar element
<!ELEMENT warJar (version?, warJarName, deployAs?, isEnabled?,
deployToFilesystem?, sessionTimeout?, urls?, deployedObject?, usesJars?,
excludedJSPs?, contextParamsList?, servletsList?, environmentList?,
beanReferenceList?, resourceReferenceList?, roleMap?)>

The main WAR element.
94 EAR deployment plan DTD

4
 SilverCmd Reference Chapter 4
This chapter describes the SilverCmd commands. It describes the purpose, syntax, and
arguments for each command, along with how to run SilverCmd—plus associated security and
authentication issues. It includes these sections:

• Command locator

• About SilverCmd

• Alphabetical list of commands

NOTE Not all SilverCmds listed in this reference are included with all editions of the
SilverStream eXtend Application Server.

Command locator
Click a command to display complete information:

Command Description

AddCP Adds a connection pool to the server

AddDatabase Deprecated. Registers a database with the specified server

Build Deprecated. Compiles SilverStream application components

BuildWAR Deprecated. Creates and deploys a J2EE-compatible Web
application archive from a local directory

ClearDefaultURL Clears a database or server default URL

ClearLog Clears records from the HTTP log, the error log, or the trace log

ComGen Deprecated. Generates COM-access classes from a COM Typelib

ConvertEJB Deprecated. Converts an EJB1.0-compatible JAR file to an
EJB1.1-compatible JAR file

CreatePackage Deprecated. Creates Java packages in the Objects directory

Delete Deprecated. Deletes application components from the server
95

4 SilverCmd Reference
DeployCAR Deploys a J2EE-compatible client application archive to a server

DeployEAR Deploys a J2EE-compatible Enterprise application archive (EAR)
to a server

DeployEAR12 Deprecated. Deploys a J2EE 1.2 EAR to a server

DeployEJB Deploys a J2EE 1.2 or 1.3 EJB JAR to a server

DeployEJB11 Deprecated. Deploys an EJB1.1 JAR to a server

DeployRAR Deploys a J2EE-compatible RAR file to the specified SilverStream
server

DeployWAR Deploys a J2EE-compatible Web archive (WAR) to a SilverStream
server

ExportSource Deprecated. Copies the Java source file for a business object or a
package to the local file system

GetConsole Redirects server console output to the local terminal

GetDefaultURL Displays the default URL for a database or server

ImportClass Deprecated. Imports class files to the server as business objects

ImportMedia Deprecated. Imports a media object (such as an image or a sound)
to a server

ImportPage Deprecated. Imports a static HTML page to a server, optionally
associating a set of URLs with the page

ImportSource Deprecated. Copies a Java source file to the Objects directory of a
server

ListCP Lists the active connection pools on a server

ModifyCP Modifies a subset of the configuration properties for a connection
pool

ModifyTableList Deprecated. Modifies the set of database tables available to the
SilverStream server for a specific database

Prefs Updates various compiler settings for the preferences file

Command Description
96 Command locator

eXtend Application Server Facilities Guide
PrintLog Displays records from the HTTP log, error log, or trace log

Publish Deprecated. Publishes items from one database or server to
another

PublishFromFile Deprecated. Copies items from a location on disk to a server and
database

PublishToFile Deprecated. Copies Java source files for any SilverStream
application component (such as forms, views, and media) and its
design metadata (if desired) from a server to the local file system

Use with PublishFromFile when you want to copy the application
components—as a complete unit—from one SilverStream server to
another. The resulting file format is only usable with
PublishFromFile

QueryCP Displays configuration properties for a connection pool

RebuildJAR Deprecated. Rebuilds SilverStream-generated JAR files

RemoveCP Removes a connection pool from a server

RemoveDatabase Deprecated. Removes a database from a server’s list of accessible
databases

ServerState Tests whether a server is running or shuts down the server

SetDefaultURL Sets the default URL for a database or server

SetSecurity Sets Read, Write, Protect, Select, and Execute security on
application objects

SetUserGroupInfo Creates, deletes, and sets properties for SilverStream users and
groups

SourceControl Deprecated. Performs source control tasks

Undeploy Undeploys any of the following J2EE archive types: EAR, EJB,
RAR, or WAR

ValidateEAR Validates the deployment descriptor within an EAR

Command Description
Command locator 97

4 SilverCmd Reference
About SilverCmd
SilverCmd provides a way to perform SilverStream operations from the command line. You can
use SilverCmd to automate many of the tasks associated with managing the components of a
SilverStream server.

Separate ports The SilverStream server lets you define separate runtime, design, and
administration ports for different types of users and operations. Some commands require you to
specify the design port, and others require you to specify the administration port. Specifying
an inappropriate port will result in a security error code. When necessary, the reference section
for each command lists the type of port you must specify.

� For more information about using separate ports, see the chapter on running the server in
the Administrator’s Guide.

Running SilverCmd

SilverCmd is located in the server’s bin directory. If you will be using SilverCmd frequently,
consider adding the server’s \bin directory to your system path for convenience.

Authentication If your SilverStream server is running in a restricted production
environment (as opposed to an unrestricted design environment), you will need to authenticate
yourself using the -U and -P options to run commands that access the server.

Running SilverCmd from the command prompt To run SilverCmd from the
command prompt, use this syntax:

SilverCmd command arguments

To display the list of commands type:

SilverCmd -?

OR
SilverCmd -h

ValidateEJB Validates an EJB JAR for correctness

ValidateEJB11 Validates an EJB 1.1 JAR for correctness

Command Description
98 About SilverCmd

admRun.html

eXtend Application Server Facilities Guide
To display the usage for a particular command use:

SilverCmd command -?

Normally when SilverCmd encounters an error, it stops execution, generates detailed error
messages explaining the failure, and displays the messages in the command prompt window. If
you specify -i, SilverCmd ignores the errors and continues execution. Here’s how you use the -i
option:

SilverCmd command -i

Running SilverCmd in execute mode You can run one or more SilverCmds from a file.
This is called execute mode. To run in execute mode, use this syntax:

SilverCmd Execute command-file

• Command-file format The command file is a text file, and it must be structured so that
each command is on its own line and contains the appropriate arguments. Do not specify
the SilverCmd keyword on each line in the command file—you specify SilverCmd only at
the command line. For example:

ClearLog localhost:80 -E -U myusername -P mypassword
Undeploy localhost:80 SilverMaster40 myEAR -U myusername -P mypassword
RemoveCP localhost:80 myPool -U myusername -P mypassword

The file can have any extension, but the you may want to use .SCD—because the
SilverStream installation program automatically creates a file association for files with an
.SCD extension for these files.

The commands execute in the order in which they appear in the file. Running in execute
mode is like repeatedly calling SilverCmd, except that when you run in execute mode you
can avoid any performance penalty associated with starting SilverCmd repeatedly.

• Using the i option in execute mode When you use the -i option in execute mode, you
can ignore errors from any one command and proceed with the command that follows in
the command-file. To use -i, specify it after the command-file name, like this:

SilverCmd Execute command-file -i

A subset of commands also allow you to specify the -i option. When used this way, -i
means to continue on error within the set of operations of that command—for example:

SetSecurity localhost mydb -f myfile.xml -i
About SilverCmd 99

4 SilverCmd Reference
• Using the -U and -P options The -U and -P options specify a user name and password
combination for SilverStream server authentication. When the server is running in a
restricted production environment, you must be authenticated to run commands that
access the server.

When you run SilverCmd in execute mode, you can run all of the command in the
command file as a single authenticated user by specifying the -U and -P options after the
command file, like this:

SilverCmd Execute command-file -U myusername -P mypassword

You can also run each command as a different authenticated user by specifying the -U and
-P options with each command like this:

ClearLog localhost:80 -E -U myusername -P mypassword
Undeploy localhost:80 SilverMaster40 myEAR -U myusername -P mypassword
RemoveCP localhost:80 myPool -U myusername -P mypassword

When you do not specify the -U and -P for each command, then the one specified at the
command line is used.

� For more information about supplying these values for each supported security
realm, see the chapter on setting up security in the Administrator’s Guide.

Logging messages to a file By default, SilverCmd logs informational messages,
warnings, and errors to the command window. You can write the messages to a file using the
standard redirect symbol (>). For example:

SilverCmd Execute command-file -i > SilverCmd.log
SilverCmd RebuildJAR localhost MyApp myJar > SilverCmd.log

Permission to write temporary files when deploying The SilverCmd deployment
commands (such as DeployEAR) generate temporary files on disk. These files are created in the
server’s installation directory, unless you have defined a HOME environment variable. If you
have a HOME variable, the temporary files are created in %HOME%\.silverstream. So if you
have a HOME environment variable defined, it must point to a reachable and writable location
in order to deploy successfully.
100 About SilverCmd

admSecurity.html

eXtend Application Server Facilities Guide
Specifying values in input files and deployment plans

Some commands require an input file or deployment plan (specified using the -f option); for
other commands, the -f option is optional and provided as a convenience. For example:

Input file and deployment plan format Input files and deployment plans must be in
XML format and must include a DOCTYPE statement. You do not need to be an XML expert
to create input files—there are sample XML files for many of the commands, and you can copy
and paste the required DOCTYPE statement from the appropriate sample into your own XML
input file:

The samples and DTDs are self-documenting. See them for the most up-to-date requirements.

Command line versus input file For commands where values can be specified at both
the command line and within an input file or deployment plan, values specified at the command
line override input file settings.

Command Description

AddDatabase Requires you to supply the database name, the database type, the user
name, the password, and the JDBC driver in an input file

Prefs Does not require an input file; you can specify a single preference at the
command line, or you can specify a list of preferences within an input
file

Undeploy Does not take an input file and will generate an error message if you
attempt to use it

Sample file Location

The DTD for each input file or deployment
plan

The server’s \Resources\DTDCatalog
directory

The XML sample for each file The server’s \samples\SilverCmd directory
About SilverCmd 101

4 SilverCmd Reference
Alphabetical list of commands

AddCP

Adds a connection pool to the SilverStream server.

Syntax
SilverCmd AddCP server[:port] poolName poolTypeFlag dataSourceOptions
[options]

The valid arguments are:

The valid options for all pool types are:

Server permissions DTD and sample input file

Modify server
configuration

None

Argument Description

server[:port] Specifies the name of the target server and the administration port

poolName Specifies the logical name for the pool

poolTypeFlag Specifies the type of pool to create. Values are:

-J—to create a JDBC connection pool

-C—to create a Connector connection pool

options Specifies any operating criteria for the command

Option Description

-? or -h Displays the usage message

-A username
and -W
password

Specifies user name and password for connection pool resource manager
authentication
102 Alphabetical list of commands

eXtend Application Server Facilities Guide
Adding JDBC1.0 connection pools To create a data source for a JDBC1.0 connection
pool, you can specify either the JDBC driver class name or the LDS Key.

To specify the JDBC driver class name, use these options:

-m minconn The minimum number of connections. The pool manager will attempt to
maintain this minimum number of transactions (this is a soft limit)

-t timeout The idle timeout in seconds. The default is 60 seconds. When set to -1,
idle timeout is disabled and no idle connections are ever closed

-U username
and -P
password

Specifies user name and password for SilverStream authentication

-w timeout The connection wait timeout in seconds. The default is 30 seconds. When
set to -1, clients are forced to wait until a connection becomes available

-v log level Specifies the logging level. The logging levels are:

• 0 - logging disabled

• 1 - basic ConnectionFactory operations and settings

• 2 - level 1 plus detailed output from connection pool manager

• 3 - level 2 plus exception stack traces and logging information from
underlying JDBC driver or Connector resource adapter

-N When used, the connections returned by the pool are not enlisted in XA
transactions

-x max conn The maximum number of connections allowed by the pool. The default is
10. Use -1 to create a pool with no maximum

Option Description

-d driver Specifies the fully qualified name of your JDBC driver class

Option Description
Alphabetical list of commands 103

4 SilverCmd Reference
To specify the LDS Key, use these options:

Adding JDBC2.0 connection pools To create a data source for a JDBC2.0 connection
pool, you can specify the JDBC LDS Key, the CPDS class name, or the XADS class name.

To specify the LDS key, use these options:

-j url Specifies the JDBC URL string defined by the driver vendor to connect to
your database

-a attributes (Optional) Specifies any additional URL attributes defined by the vendor
that you can use to customize the driver connection. For example:

cache=100

Option Description

-l lds key Specifies the LDS key

-j url Specifies the JDBC URL string defined by the driver vendor to connect to
your database

-a attributes (Optional) Specifies any additional URL attributes defined by the vendor
that you can use to customize the driver connection. For example:

cache=100

Option Description

-l lds key Specifies the LDS key

-p properties Specifies the data source configuration properties

The format for these properties is:

name=value

For example: name1=value1, name2=value2, name3=value3, . . .

For names and property values, see your driver documentation

Option Description
104 Alphabetical list of commands

eXtend Application Server Facilities Guide
To specify the CPDS class name, use this option:

To specify the XADS class name, use this option:

Adding connector connection pools To create a data source for a connector connection
pool, use these options:

AddDatabase

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Registers a SQL database with the specified SilverStream server.

Option Description

-k class name Specifies the fully qualified Connection Pool DataSource class name

Option Description

-g class name Specifies the fully qualified name of the XA DataSource class

Option Description

-r adapter Specifies the resource adapter name

-p properties Specifies the properties for the ManagedConnectionFactory using the
format:

name=value

For example: name1=value1, name2=value2, name3=value3, . . .

� See your Resource Adapter documentation for these values

Server permissions DTD and sample input file

Modify server
configuration

DTD: add_database.dtd

Sample: add_database_sample.xml
Alphabetical list of commands 105

4 SilverCmd Reference
Syntax
SilverCmd AddDatabase server[:port] -f file [options]

The valid arguments are:

The valid options are:

Argument Description

server[:port] Specifies the name of the target server and the administration port

-f file Specifies the input file containing the database and connection
information

If -s is also specified, the XML file must contain a System Tables node
describing the connection information for the database containing the
system tables

options Specifies any operating criteria for the command

Option Definition

-s Indicates that you want to store SilverStream’s system tables in a different
database from the one you are adding

If you want to store the system tables in a different database, the input file
must include a System Tables node that specifies the database name and
connection information for the different database

-U username
and -P
password

Specifies user name and password for SilverStream authentication

? Displays the usage message
106 Alphabetical list of commands

eXtend Application Server Facilities Guide
AddDatabase input file The AddDatabase command requires an input file. The input file
includes the following entries:

Entry Description

Database name Specifies the fully qualified database name

Username and Password Specifies the user account used by the SilverStream server
when accessing this database

The account must have read/write permissions for the
database

Platform Specifies the vendor name for the database—for example:
Oracle, DB2, or Sybase System 11

� For more information, see “Valid database connection
types” on page 108

Driver set Specifies the driver type for the database

Each database type has a default connection type that
SilverStream assumes if you do not specify a value

If you are using a value that is not in the list of database
type/connection type values, you must specify Other JDBC
Driver plus:

• The fully qualified package name for the JDBC driver

• The JDBC URL that tells the driver where to connect to the
specified database

• The URL attributes (which include properties like cache
size)

This syntax is driver-dependent
Alphabetical list of commands 107

4 SilverCmd Reference
The following nodes are optional:

Valid database connection types To connect to a database, the SilverStream server
needs either of the following:

• (a) The combination of:

• Platform name. Identifies the vendor and version of the database. For example,
Oracle 7 or Microsoft SQL Server 7.

AND

• Driver set. Identifies the database driver. It must include the package name so the
server can locate it.

OR

• (b) LDS key. The logical data source key. You can use this in place of the platform name
and driver set.

Entry Description

Table list Specifies a subset of the tables that should be made available to the
SilverStream server

You can modify this value later using the ModifyTableList command or
the SilverStream Designer

The table list can include:

• A list of table names (which must exactly match the names in the
database)

• A list of table name patterns

NOTE When you specify a pattern, you can use the % symbol to
match any number of characters, and the underscore (_)
character to specify that you want to match any one character

• A combination of names and patterns

System tables Stores SilverStream’s system tables in a different database from the one
you are adding

This section must include the following information about the database
where you want to store the system tables: the database, the user name,
the password, the database platform, and the driver set or the LDS key

This entry is required when you specify the -s argument at the command
line; otherwise, it is ignored
108 Alphabetical list of commands

eXtend Application Server Facilities Guide
SilverStream has defined strings that resolve to these values. See add_database_sample.xml in
the server’s \samples\SilverCmd directory for the complete listing of valid values.

Build

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Compiles the items in an entire database, a directory within the database, or a
specified item within a directory. You can only build the items located in the Forms, Pages,
Views, and Objects directories.

The Build command:

• Copies the specified item (or set of items) from the server to the following directory on the
local disk: SilverStream/compilecache/server/database/source

• Compiles the objects (using the Java compiler specified in the Designer’s preferences
file). Generates warning messages for items that cannot be compiled

• Saves (or uploads) the successfully compiled items (class files) back to the server

Syntax
SilverCmd Build server[:port] database [item] [options]

The valid arguments are:

Server permissions DTD and sample input file

Read/Write DTD: itemlist.dtd

Sample: build_sample.xml

Argument Description

server[:port] Specifies the name of the target SilverStream server and the design-time
port

database Specifies the name of the target SilverStream database
Alphabetical list of commands 109

4 SilverCmd Reference
The valid options are:

item Specifies the name of a single item to build. It must include the
SilverStream directory. For example:

SilverCmd Build localhost MyApp Forms/frmAccountType

options Specifies operating criteria for the command

Option Definition

-? Displays the usage message

-U
username
and -P
password

Specifies user name and password for SilverStream authentication

-c Removes any class files from the compile cache directory on the local
machine before executing the current command. If you are building the
Forms directory of your Examples database, SilverCmd removes the class
files from the compile cache directory under:

\host\database\classes\com\sssw\gen\forms

-f file Specifies an input file that contains the list of items to build

The input file format is based on the ItemList DTD

The file name must include a string array of item names. The file can have
any extension and can reside in any directory that is accessible to SilverCmd.
For example, you can specify:

SilverCmd Build localhost MyApp -f c:\build_sample.xml

-i Continues on error

Argument Description
110 Alphabetical list of commands

eXtend Application Server Facilities Guide
BuildWAR

Deprecated. Constructs a Web archive (WAR) file using the contents of a specified directory on
the local file system (including files and subdirectories). It also constructs the web.xml
deployment descriptor and by default adds an entry for each JSP page in the directory. You can
optionally provide a more detailed web.xml that may include information about any servlets or
tag libraries in the WAR. When you provide a web.xml, you must also include the information
about the JSP pages.

You can use the -n option to specify the location where BuildWAR should create the WAR file.
When you do not specify -n, the WAR is created in the TEMP directory. It is named
agwarXXXX.war (where XXXX is any four digits).

You can use the -d option to deploy the WAR to a SilverStream server after the WAR is
constructed. When you specify -d, the server and database arguments are required along with the
-u option and one or more URLs. If you do not specify the -u option, you must supply them in a
deployment plan file using the -f option.

Syntax
SilverCmd BuildWar server[:port] database rootDir [options]

The valid arguments are:

Server permissions DTD and sample input file

Write (when used to
deploy to the server)

DTD: deploy_war.dtd

Argument Description

server[:port] Specifies the name of the target SilverStream server and the
design-time port

Optional unless -d is specified

database Specifies the name of the target database

Optional unless -d is specified

rootDir Specifies the directory of files to be placed in the JAR

options Specifies any operating criteria for the command
Alphabetical list of commands 111

4 SilverCmd Reference
The valid options are:

ClearDefaultURL

Clears the default URL for the server or a database.

Syntax
SilverCmd ClearDefaultURL server[:port] [database] [options]

Option Description

-? Displays the usage message

 -U username and -P
password

Specifies the user name and password for SilverStream server
authentication

 -u baseURLList One or more base URLs for the WAR

They should be specified in a semicolon-separated list (for
example: url1;url2)

 -d Specifies that once the WAR is created, it should be deployed
on the target SilverStream server and database

Server and database arguments are required when -d is
specified

 -n Specifies the name for the WAR that is created

If not specified, a WAR is created in the temp directory and is
named AgwXXXX.war, where XXXX is any four digits

 -x Specifies that the web.xml file already exists in the web-inf
directory and should not be overwritten

 -o Specifies that an existing WAR of the same name on the
server should be overwritten with the current WAR

 -f Specifies the name of the SilverStream deployment plan file

Server permissions DTD and sample input file

Modify server settings None
112 Alphabetical list of commands

eXtend Application Server Facilities Guide
The valid arguments are:

The valid options are:

ClearLog

Removes records from the HTTP log, the error log, or the trace log. ClearLog can only delete
records when server logging output is specified as database (not file or user defined).

� For more information on specifying logging output using the SMC, see the chapter on

running the server in the Administrator’s Guide.

Syntax
SilverCmd ClearLog server:[port] logTypeFlags [options]

Argument Description

server[:port] Specifies the name of the target server and the administration port

database Specifies the SilverStream database whose default URL you want to clear.
If the database is not specified, ClearDefaultURL clears the server’s
default URL

options Specifies operating criteria for the command

Option Definition

-? or -h Displays the usage message

-U username
and -P
password

Specifies user name and password for SilverStream authentication

Server permissions DTD and sample input file

Modify server
configuration

None
Alphabetical list of commands 113

admRun.html

4 SilverCmd Reference
The valid arguments are:

The valid options are:

ComGen

Deprecated. Generates COM-access classes from a COM Typelib.

Syntax
SilverCmd ComGen typelib_path [options]

Argument Description

server[:port] Specifies the name of the target server and the administration port

logTypeFlags Values are:

-E—Removes records from the error log

-H—Removes records from the HTTP log

-T—Removes records from the trace log

You can specify any combination in a space or comma separated list

options Specifies operating criteria for the command

Option Definition

-? or -h Displays the usage message

-U username
and -P
password

Specifies user name and password for SilverStream authentication

Server permissions DTD and sample input file

None None
114 Alphabetical list of commands

eXtend Application Server Facilities Guide
The valid arguments are:

The valid options are:

ConvertEJB

Deprecated. Converts EJB 1.0 serialized deployment descriptors to EJB 1.1 XML deployment
descriptors.

Syntax
SilverCmd ConvertEJB OldEjbJarPath [NewEjbJarPath] [options]

Argument Description

typelib_path The type library for the COM component. The type library can be a
separate TLB file or a resource that is linked into the DLL or EXE

options Specifies operating criteria for the command

Option Description

-? or -h Displays the usage message

-l Lists all registered type libraries on your system

This option does not generate any code

-d dir Output directory

The output directory is the root directory under which the package
directory tree is created

-p pkg Output package

The Java package name for the generated classes

Server permissions DTD and sample input file

None None
Alphabetical list of commands 115

4 SilverCmd Reference
The valid arguments are:

The valid options are:

CreatePackage

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Creates a Java package of the specified name in the Objects directory of the target
database.

Syntax
SilverCmd CreatePackage server[:port] database package [options]

The valid arguments are:

Arguments Description

OldEjbJarPath Specifies the path for the existing EJB 1.0 JAR file

NewEjbJarPath Specifies the path for newly created EJB 1.1 JAR file

options Specifies operating criteria for the command

Option Description

-? Displays the usage message

-v Prints verbose output to the console window

Server permissions DTD and sample input file

Write None

Argument Description

server[:port] Specifies the name of the target SilverStream server and the design-
time port

database Specifies the name of the target database
116 Alphabetical list of commands

eXtend Application Server Facilities Guide
The valid options are:

This example creates the package com.myco.foo in the mydb database on the localhost server:

SilverCmd CreatePackage localhost mydb com.myco.foo

Delete

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Deletes the specified component(s) from the specified database and server.

NOTE Do not use Delete to remove deployed J2EE archives. Use Undeploy.

Syntax
SilverCmd Delete server[:port] database [item] [options]

package Specifies the name of the package to create

options Specifies operating criteria for the command

Option Definition

-? or -h Displays the usage message

-U username and
-P password

Specifies a user name and password for SilverStream authentication

Server permissions DTD and sample input file

Write DTD: itemlist.dtd

Sample: None

Argument Description
Alphabetical list of commands 117

4 SilverCmd Reference
The valid arguments are:

The valid options are:

Argument Description

server[:port] Specifies the name of the target SilverStream server and the design-
time port

database Specifies the name of the target database

item Specifies the name of the item to delete:

• To delete a form, page, or view, specify:

dir/item

where dir is Forms, Pages, or Views

• To delete a business object, specify:

Objects/packagename/item

• To delete a media item, specify:

Media/dir/item

where dir is JARs, Images, Sounds, or General

• To delete multiple items, use -f file

options Specifies operating criteria for the command

Option Description

-? or -h Displays the usage message

-f file Specifies an input file that contains the list of items to delete

The input file format is based on the ItemList DTD

The file name must include a string array of item names. The file can
have any extension and can reside in any directory accessible to
SilverCmd

-U username and
-P password

Specifies the user name and password for SilverStream authentication

-r Recursively deletes children of packages
118 Alphabetical list of commands

eXtend Application Server Facilities Guide
DeployCAR

Deploys a J2EE-compatible application client archive file to the specified SilverStream server.

The archive file must comply with the J2EE specification and must contain a manifest file that
includes a Main-Class entry.

The deployed object is given the same name as the archive unless you specify the -d option.

Syntax
SilverCmd DeployCAR server[:port] database jarfile

 [-f deployment_plan] [options]

The valid arguments are:

The valid options are:

Server permissions DTD and sample input file

Write to the EJB JARs &
Media directory of the
target database

DTD: deploy_car.dtd

Argument Description

server[:port] Specifies the name of the target SilverStream server and the design-time
port

database Specifies the name of the target SilverStream database

jarfile Specifies the name (and path) of the client application archive to deploy

options Specifies any operating criteria for the command

Option Description

-? or -h Displays the usage message

-d Specifies an alternate name for the deployed object

Use this option when you want to use the same client archive for
multiple deployments
Alphabetical list of commands 119

4 SilverCmd Reference
DeployEAR

Deploys an enterprise archive file (EAR) to a SilverStream server. You can use this to deploy
EARs of any supported J2EE version (unlike SilverCmd DeployEAR12, which deploys J2EE
1.2 EARs only).

DeployEAR performs these tasks:

1. Opens the EAR file and extracts all files to a local temporary directory.

2. Validates any EJBs (by calling SilverCmd ValidateEJB).

3. Examines the deployment plan’s DOCTYPE statement and performs the appropriate
SilverCmd DeployXXX corresponding to each archive and DOCTYPE. See “Deployment
Plan DTDs” on page 49 for information about DOCTYPE statements.

4. Passes the -o flag (if specified) to each of the DeployXXX commands:

• You might want to specify -o if you are redeploying an existing EAR.

• You might not want to specify -o if you are deploying an EAR name which has not
previously been deployed. This ensures that you will get an error if there’s one there
already that you might not want to overwrite.

-f deployment plan Specifies the name (and path) of the deployment plan

If the location is not specified, DeployCAR looks in the CAR’s
META-INF/silverstream.xml file by default

A deployment plan is only necessary when the application references
EJBs or external resources

-o Overwrites an existing deployed object of the same name

-U username and
-P password

Specifies user name and password for authentication by the server

-v verbose-level Specifies the level of messages to output. Values for verboseLevel are
0 for no messages (default) to 5 for the most messages

Server permissions DTD and sample input file

Write to the EJB JARs & Media directory
of the target database

DTD: See “EAR deployment plan DTD” on
page 88 for more information

Option Description
120 Alphabetical list of commands

eXtend Application Server Facilities Guide
Syntax
SilverCmd DeployEAR server[:port] database [EARFile]

-f deploymentPlan [options]

The valid arguments are:

The valid options are:

Argument Description

server[:port] Specifies the name of the target SilverStream server and the
design-time port

database Specifies the name of the target SilverStream database

EARFile Specifies the name and location (on disk) of the EAR file to
deploy

This value can also be specified in the deployment plan
(specified with -f). When specified in both places, the
command-line value is used

-f deploymentPlan Specifies the name and location (on disk) of the XML-based
deployment plan

� For more information on the structure of this file, see
Chapter 3, “Deployment Plan DTDs”

options Specifies any operating criteria for the command

Option Description

-? or -h Displays the usage message

-i Ignores errors when compiling JSP pages and deploys
whatever builds successfully

-l Specifies the name for the deployed EAR object on the
SilverStream server

By default, the EAR name is used
Alphabetical list of commands 121

4 SilverCmd Reference
-n Specifies that EJB validation should be skipped during
deployment. If not present, SilverCmd ValidateEJB is
executed before the EAR is deployed

-o If a deployed object (or remoteJar object for 1.2 deployments
only) already exists on the server, this flag forces that object to
be overwritten

-t Used for debugging JSP pages using non-Latin-1 character
sets: if specified, the JSP compiler outputs into the compile
cache an additional Java file with the extension -local (for
example, along with date_jsp_xxxxxxxxxxx.java, you will
also find date_jsp_xxxxxxxxxxx-local.java). The version of
the file with -local is in the machine's local character set,
instead of UTF-8

By default, you will find these files in
compilecache/server/database/temp/sources//archive/com/sss
w/gen/jsps

-U username and -P
password

Specifies user name and password for authentication by the
server

-v verbose-level The level of messages to write to the SilverCmd console
window. Values for verboseLevel are 0 for no messages
(default) to 5 for the most messages

Option Description
122 Alphabetical list of commands

eXtend Application Server Facilities Guide
DeployEAR12

Deprecated. Deploys an EAR file for J2EE 1.2 to a SilverStream server. DeployEAR performs
these tasks:

1. Opens the EAR file and extracts all of the files to a local temporary directory.

2. Passes the -o flag (if specified) to each of the DeployXXX commands:

• You might want to specify -o if you are redeploying an existing EAR.

• You might not want to specify -o if you are deploying an EAR name which has not
previously been deployed. This ensures that you will get an error if there’s one there
already that you might not want to overwrite.

Syntax
SilverCmd DeployEAR12 server[:port] database [EARFile 1.2 File]

-f deploymentPlan [options]

The valid arguments are:

Server permissions DTD and sample input file

Write to the EJB JARs & Media directory
of the target database

DTD: deploy-ear_1_2.dtd

Sample: deploy_ear_sample.xml

Argument Description

server[:port] Specifies the name of the target SilverStream server and the
design-time port

database Specifies the name of the target SilverStream database

EAR 1.2 File Specifies the name and location (on disk) of the EAR file to
deploy

This value can also be specified in the deployment plan. When
specified in both places, the deploymentPlan value takes
precedence
Alphabetical list of commands 123

4 SilverCmd Reference
The valid options are:

-f deploymentPlan Specifies the name and location (on disk) of the XML-based
deployment plan

� For more information on the structure of this file, see
Chapter 3, “Deployment Plan DTDs”

options Specifies any operating criteria for the command

Option Description

-? or -h Displays the usage message

-i Ignores errors when compiling JSP pages and deploys
whatever builds successfully

-l Specifies the name for the deployed EAR object on the
SilverStream server

By default, the EAR name is used

-o If a deployedObject or remoteJar object of the same name
already exists on the server, this flag forces that object to be
overwritten

-t Used for debugging JSP pages using non-Latin-1 character
sets: if specified, the JSP compiler outputs into the compile
cache an additional Java file with the extension -local (for
example, along with date_jsp_xxxxxxxxxxx.java, you will
also find date_jsp_xxxxxxxxxxx-local.java). The version of
the file with -local is in the machine's local character set,
instead of UTF-8

By default, you will find these files in
compilecache/server/database/temp/sources//archive/com/sss
w/gen/jsps

-U username and -P
password

Specifies user name and password for authentication by the
server

Argument Description
124 Alphabetical list of commands

eXtend Application Server Facilities Guide
DeployEJB

Deploys an EJB JAR on the specified SilverStream server.

You can use DeployEJB to deploy EJBs to either the J2EE 1.2 or J2EE 1.3 container (unlike
DeployEJB11, which only deploys EJBs to the 1.2 container). The EJB is deployed to the
appropriate container based on the DOCTYPE of the deployment plan. See “Deployment Plan
DTDs” on page 49 for information about which DOCTYPE statement corresponds to each EJB
container.

DeployEJB performs these tasks:

• Validates the EJB JAR (by calling SilverCmd ValidateEJB)

• Examines the DOCTYPE statement to determine the container to which to deploy the EJB

• Creates implementation classes for interfaces, and generates wrapper classes that handle
security and transactions

• For deployment to the 1.3 container, generates a deployed object and uploads it to the
server

• If the ejb-client-jar element is present in the deployment descriptor, generates stub classes
and puts them in the ejb-client-jar and uploads it to the server

NOTE For external Java clients, you must manually copy this ejb-client-jar to each
client that needs to access the deployed EJBs

• For deployment to the 1.2 container, processes the EJB JAR the same way as
DeployEJB11

• Enables the deployedObject for client access when allowed by the deployment plan

Syntax
SilverCmd DeployEJB server[:port] database [EJBFile] [-f deploymentPlan]
[options]

Server
permissions DTD and sample input file

Write to the EJB
JARs & Media
directory of the
target database

DTD: For deployment to the EJB 2.0 container, use
deploy-ejb_2_0.dtd. For deployment to the EJB1.1 container, use
deploy-ejb_1_1.dtd or deploy-ejb.dtd

Sample: For how to use the deploy-ejb.dtd, see
deploy_ejb_sample.xml
Alphabetical list of commands 125

4 SilverCmd Reference
The valid arguments are:

The valid options are:

Argument Description

server[:port] Specifies the name of the target SilverStream server and the design-
time port

database Specifies the name of the target database

EJBFile Specifies the name of the EJB archive to deploy

If not specified at the command line, the EJB archive must be specified
in the deployment plan

-f
deploymentPlan

Specifies the name of the deployment plan

See “Deployment Plan DTDs” on page 49 for information about how
the deployment plan should be structured

You can create this file using Workbench’s Deployment Plan Editor

options Specifies operating criteria for the command

Option Description

-? or -h Displays the usage message

-U username and
-P password

Specifies user name and password for server authentication

-o Specifies that when the ejbDeployedObject or ejbRemoteJar values
are used in the deploymentPlan and the object exists on the server,
the objects will be overwritten

-n Specifies that validation should be skipped. If not present, SilverCmd
ValidateEJB is executed before DeployEJB

-t Specifies that DeployEJB should write temporary Java files in the
local character set for debugging

-v verboseLevel The level of messages to write to the SilverCmd console window;
values for verboseLevel are 0 for no messages (default) to 5 for the
most messages
126 Alphabetical list of commands

eXtend Application Server Facilities Guide
DeployEJB11

Deprecated. Deploys an EJB 1.1 JAR on the specified SilverStream server.

DeployEJB performs these tasks:

• Creates implementation classes for the home and remote interfaces, and generates wrapper
classes that handle security and transactions

• Generates a deployed object that contains the implementation classes used by the
SilverStream server (this object remains on the server)

• Generates stub classes and puts them into a remote JAR that is used by the bean’s clients
(a copy of this remains on the server)

NOTE For external Java clients, you must manually copy this remote JAR to each client
that needs to access this deployed EJB, or you can specify the -R option to
automatically copy the remote JAR to a single client machine.

• Enables the deployedObject for client access when allowed by the deployment plan

Syntax
SilverCmd DeployEJB11 server[:port] database [ejbJar] [-d
ejbDeployedObject] [-r ejbRemoteJar] -f file [-R remoteJarPath] [options]

The valid arguments are:

Argument Description

server[:port] Specifies the name of the target SilverStream server and the design-
time port

database Specifies the name of the target database

ejbJar Specifies the name of the EJB archive to deploy

If not specified at the command line, the EJB archive must be specified
in the deployment plan

-f file Specifies the name of the deployment plan

See “Deployment Plan DTDs” on page 49 for information about how
the deployment plan should be structured

You can create this file using Workbench’s Deployment Plan Editor

options Specifies operating criteria for the command
Alphabetical list of commands 127

4 SilverCmd Reference
The valid options are:

Option Description

-? or -h Displays the usage message

-U username and
-P password

Specifies user name and password for server authentication

-o If an ejbDeployedObject or ejbRemoteJar argument is given and the
object exists on the server, this flag forces the object to be
overwritten

-d
ejbDeployedObject

Specifies the name for the deployed object created by the command

You can specify the name in the deployment plan or at the command
line. Values specified at the command line override deployment plan
values. If the name is not specified, SilverCmd generates a default
name by appending Deployed to the current name (for example,
xxxDeployed). If a JAR of this name already exists on the server, you
must specify the -o parameter to overwrite it

-r ejbRemoteJar Specifies the name to use for the remote JAR created by this
command. You can specify this name in the deployment plan or at
the command line. Values specified at the command line override
deployment plan values

If the name is not specified, SilverCmd generates a default name by
appending Remote to the current name (for example,
xxxRemote.JAR). If a JAR of this name already exists on the server,
you must specify the -o parameter to overwrite it. The remote JAR
file is enumerated only if the input file specifies that the JAR should
be enabled

-R remoteJarPath Creates a copy of the generated ejbRemoteJAR on the local drive in
the directory path given. The JAR will have the same name as the
remote JAR generated on the server

-v verboseLevel The level of messages to output. Values for verboseLevel are 0 for no
messages (default) to 5 for the most messages
128 Alphabetical list of commands

eXtend Application Server Facilities Guide
DeployRAR

Deploys a resource adapter archive (RAR) to the specified server and creates the associated
connection pool(s).

Syntax
SilverCmd DeployRAR server[:port] database RARFile [-f deployment plan]
[options]

The valid arguments are:

Server permissions DTD and sample input file

Write to the EJB JARs & Media
directory of the target database

None

Argument Description

server[:port] Specifies the name of the target SilverStream server and the design-time
port

database Specifies the name of the target database

RARFile Specifies the name of the RAR to deploy

-f
deploymentPlan

Specifies the name of the deployment plan. If a file is not specified,
DeployRAR looks for a file named silverstream.xml in the RAR’s
META-INF directory

You can create the RAR deployment plan using Workbench’s
Deployment Plan Editor

options Specifies operating criteria for the command
Alphabetical list of commands 129

4 SilverCmd Reference
The valid options are:

DeployWAR

Deploys a J2EE-compatible Web archive (WAR) to a SilverStream server.

DeployWAR performs these tasks:

• Compiles all JSP pages in the WAR into Java source files and then compiles these Java
sources

• Adds the compiled Java class files to the WAR file

• Uploads the WAR file to the SilverStream server

The deployed WAR can also contain standard servlet classes and other supporting Java source
files that were compiled separately, as well as HTML documents, images, and any other files
required by the application.

Option Definition

-U username and -P
password

Specifies user name and password for authentication by the
server

-o When specified, overwrites a resource adapter of the same
name deployed in the same database

-n resource adapter name Specifies the name that the resource adapter will be deployed
as on the server. This can also be specified in the deployment
plan

-d extract directory Specifies the directory (on the deployer’s machine) the
contents of the RAR file are extracted to during deployment.
This value can also be specified in the deployment plan

Files are extracted to the compilecache directory if -d is not
specified

-v verboseLevel The level of messages to output. Values for VerboseLevel are
0 for no messages (default) to 5 for the most messages

Server permissions DTD and sample input file

Write to the EJB JARs & Media
directory of the target database

None
130 Alphabetical list of commands

eXtend Application Server Facilities Guide
Syntax
SilverCmd DeployWAR server[:port] database [WARFile]

-f deploymentPlan [options]

The valid arguments are:

The valid options are:

Argument Description

server[:port] Specifies the name of the target SilverStream server and the
design-time port

database Specifies the name of the target database

WARFile Specifies the name of the WAR file to deploy

This value can be specified at either the command line or in
the deployment plan. Values specified at the command line
override deploymentPlan settings

-f deploymentPlan An XML-based file that specifies the SilverStream-specific
deployment information

options Specifies any operating criteria for the command

Option Description

-? or -h Displays the usage message

-i Ignores errors when compiling JSP pages and deploys
whatever builds successfully

-o If a deployedObject or remoteJar object already exists on the
server, this flag forces it to be overwritten
Alphabetical list of commands 131

4 SilverCmd Reference
ExportSource

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Copies the Java source file of a single business object from a SilverStream
application database to the specified location on disk as a text file.

Syntax
SilverCmd ExportSource server[:port] database [classname] [javafile]
[is-file] [options]

-t Used for debugging JSP pages using non-Latin-1 character
sets: if specified, the JSP compiler outputs into the compile
cache an additional Java file with the extension -local (for
example, along with date_jsp_xxxxxxxxxxx.java, you will
also find date_jsp_xxxxxxxxxxx-local.java). The version of
the file with -local is in the machine's local character set,
instead of UTF-8

By default, you will find these files in
compilecache/server/database/temp/sources/archive/com/sss
w/gen/jsps

-U username and -P
password

User name and password for authentication by the server

Server permissions DTD and sample input file

Read DTD: export_source.dtd

Sample: export_source_sample.xml

Option Description
132 Alphabetical list of commands

eXtend Application Server Facilities Guide
The valid arguments are:

The valid options are:

Argument Description

server[:port] Specifies the name of the source SilverStream server and the design-
time port

database Specifies the name of the source database

classname Specifies the name of the class to export

javafile Specifies the name of the local file

If you do not specify a fully qualified file name, ExportSource creates
the file in the current working directory

is-file Specifies a file that will be populated by ExportSource

The resulting file is in XML format and includes the metadata required
to recreate the object on a SilverStream server using the ImportSource
command

For example, if the object is a triggered business object, it includes the
metadata about the trigger and the object’s lifetime; if the file does not
exist, SilverCmd creates it

If you do not specify this file for a triggered business object, you must
manually create the import options file when you want to reimport the
object

It is not necessary to specify this option for nontriggered business
objects, because they do not have any associated metadata

options Specifies operating criteria for the command

Options Description

-? or -h Displays the usage message

-f file Specifies the file name of an input file

This input file can contain the item or directory to export as well as the
export source and options files
Alphabetical list of commands 133

4 SilverCmd Reference
GetConsole

Displays the contents of the specified server’s console in the SilverCmd console window.

Syntax
SilverCmd GetConsole server[:port] [options]

The valid arguments are:

The valid options are:

-U username and
-P password

User name and password for SilverStream authentication

-o Specifies that ExportSource should overwrite the Java file if it already
exists on disk

Server permissions DTD and sample input file

Read server configuration None

Argument Description

server[:port] Specifies the name and optionally the administration port number of
the target SilverStream server

options Specifies operating criteria for the command

Options Description

-? or -h Displays the usage message

-p Specifies the port to use for the server console socket connection

-U username and
-P password

Specifies user name and password for SilverStream authentication

Options Description
134 Alphabetical list of commands

eXtend Application Server Facilities Guide
GetDefaultURL

Displays the default URL for the specified database or server

Syntax
SilverCmd GetDefaultURL server[:port] database [options]

The valid arguments are:

The valid options are:

Server permissions DTD and sample input file

Read server configuration None

Argument Description

server[:port] Specifies the name and optionally the adminstration port of the target
server

database Specifies the name of the database whose default URL you want to get

options Specifies operating criteria for the command

Options Description

-? or -h Displays the usage message

-U username and
-P password

Specifies user name and password for SilverStream authentication
Alphabetical list of commands 135

4 SilverCmd Reference
ImportClass

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Copies Java class files to the Objects directory of the specified database.

You can use ImportClass to copy any kind of Java class including utility classes and
SilverStream’s triggered objects. You cannot use this command to import the class files for any
other type of SilverStream object (such as forms, views, or pages).

To import some types of triggered business object, you must provide additional information
about the object’s trigger. For example: a mail triggered business object requires data about the
mail account to which it responds, a servlet requires the URL specification, and so on. Values
for mail and table listeners can be specified at the command line; all others must be specified
within the input file. Server, cluster, and invoked business objects do not require additional
information. Values specified at the command line (specifically, the -t, -m, and -p options)
override settings in the input file.

Syntax
SilverCmd ImportClass server[:port] database classfile [options]

The valid arguments are:

Server permissions DTD and sample input file

Write DTD: import.dtd

Sample: import_sample.xml

Argument Description

server[:port] Specifies the name and optionally the design-time port number of the
target SilverStream server

database Specifies the name of the target SilverStream database

classfile Specifies the name of the class file to import

options Specifies operating criteria for the command
136 Alphabetical list of commands

eXtend Application Server Facilities Guide
The valid options are:

Option Definition

-? or -h Displays the usage message

-f file Specifies the file name of the input file that contains the metadata
information about the object you are importing

Used only if the object is a triggered business object

� For more information, see import.dtd in the server’s
Resources\DTDCatalog directory and import_sample.xml in the
samples\SilverCmd directory

-m account Specifies the mail account if loading an AgiMailListener object

Overrides input file specifications

-o Specifies that ImportClass should overwrite the class file if it already
exists on the server

-p Makes the triggered business object a server-lifetime object; that is, it
is instantiated once, not for each event (objects are event-lifetime by
default)

Overrides input file specifications

-t table Specifies a database table name if loading an AgiTableListener object

Overrides input file specifications

-U username and
-P password

Specifies the user name and password for SilverStream authentication
Alphabetical list of commands 137

4 SilverCmd Reference
ImportMedia

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Imports objects to the appropriate Media subdirectory on the SilverStream server.
The objects can include images, standard JARs, EJB JARs, and sounds.

NOTE You cannot modify imported JARs using the SilverStream Jar Designer. You must
make any modifications to the JAR file before importing it into SilverStream.

Importing JAR files that reference files in other JARs You may have to import a
JAR file that contains references to classes in other JAR files. The JAR you want to import must
contain a Class-path entry that lists the JARs containing the referenced classes. When this is
true, you:

1. Import the JARs containing the referenced files (the referenced JARs).

2. Import the primary JAR.

3. Add the primary JAR to any forms, pages, business objects, or deployment plans that use
the components in the primary JAR (added via the File>Jar files menu item.

If the JAR you are importing does not include a manifest file with a Class-path entry listing the
referenced JARs, do the following before trying to import the JAR:

1. Extract the manifest of the primary JAR (making sure that the path on extract matches the
manifest's path within the JAR).

2. Add the Class-path attribute to the manifest of the primary JAR.

3. Update the primary JAR with the new manifest file.

4. Follow the steps for importing JARs that already contain the Class-path entry outlined
above.

Syntax
SilverCmd ImportMedia server[:port] database fileOrDir... [options]

Server permissions DTD and sample input file

Write None
138 Alphabetical list of commands

eXtend Application Server Facilities Guide
The valid arguments are:

The valid options are:

Argument Description

server[:port] Specifies the name of the target SilverStream server and the design-
time port

database Specifies the name of the target SilverStream database into which you
want to import the media files

fileOrDir... Specifies the name of the file to import or the directory whose files are
to be imported

You can supply multiple files or directories at the command line

options Specifies operating criteria for the command

Option Description

-? or -h Displays the usage message

-U username and
-P password

Specifies user name and password for SilverStream authentication

-i Continues on error

-j Imports all specified files or the contents of all directories as JAR files
regardless of their extensions

-o If the media object exists on the server, this flag forces it to be
overwritten

-r For specified directories, recurses into the subdirectories
Alphabetical list of commands 139

4 SilverCmd Reference
ImportPage

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Imports a static HTML page to a SilverStream database. You can optionally
associate the HTML page with one or more URLs.

Syntax
SilverCmd ImportPage server[:port] database htmlfile [options]

The valid arguments are:

The valid options are:

Server permissions DTD and sample input file

Write None

Argument Description

server[:port] Specifies the name of the target SilverStream server and the design-
time port

database Specifies the name of the target SilverStream database

htmlfile Specifies the name of the HTML file to import

options Specifies operating criteria for the command

Option Description

-e URLElements Specifies a semicolon-separated list of database-relative URLs to
associate with the HTML file

-o Specifies that ImportPage should overwrite an existing HTML file of
the same name if necessary
140 Alphabetical list of commands

eXtend Application Server Facilities Guide
ImportSource

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Imports Java files to the business objects directory of the specified database and
server.

You can use ImportSource to copy source code for utility, EJB, and SilverStream’s triggered
objects. You cannot use this command to import the source for any other type of SilverStream
object (such as forms, views, or pages).

To import some types of triggered business objects, you must provide additional information
about the object’s trigger. For example: a mail-triggered business object requires data about the
mail account to which it should respond, a servlet requires the URL specification, and so on.
Values for mail and table listeners can be specified either at the command line or in an input file;
all other values must be specified within the input file. Server, cluster, and invoked business
objects do not require additional information. Values specified at the command line (specifically
the -t, -m, and -p options) override settings in input file. You can also set or modify these values
once the object is imported.

Syntax
SilverCmd ImportSource server[:port] database javafile [options]

The valid arguments are:

Server permissions DTD and sample input file

Write DTD: import.dtd

Sample: import_sample.xml

Argument Description

server[:port] Specifies the name of the target SilverStream server and the design-
time port

database Specifies the name of the target SilverStream database

javafile Specifies the location and name of the Java file to import

options Specifies operating criteria for the command
Alphabetical list of commands 141

4 SilverCmd Reference
The valid options are:

Option Description

-? or -h Displays the usage message

-f file Specifies the file name of the input file that contains the metadata
information about the object you are importing

Used only if the object is a triggered business object

� For more information, see import.dtd in the
Resources\DTDCatalog directory and import_sample.xml in the
samples\SilverCmd directory

-k Specifies that ImportSource should not overwrite existing metadata if
the class already exists on the server

-m account Specifies the mail account if loading an AgiMailListener object

Overrides input file specifications

-o Specifies that ImportSource should overwrite the source file if it
already exists on the server

-p Makes the triggered business object a server-lifetime object; that is, it is
instantiated once, not for each event (objects are event-lifetime by
default)

Overrides input file specifications

-t table Specifies a database table name if loading an AgiTableListener object

Overrides input file specifications

-U username and
-P password

Specifies the user name and password for SilverStream authentication
142 Alphabetical list of commands

eXtend Application Server Facilities Guide
ListCP

Lists the connection pools that are active on the specified server.

Syntax
SilverCmd ListCP server[:port] [options]

The valid arguments are:

The valid options are:

Server permissions DTD and sample input file

Read server configuration None

Argument Description

server[:port] Specifies the name of the server and the administration port for which
you want the connection pool listing

[options] Specifies operating criteria for the command

Option Definition

-? or -h Displays the usage message

-U username
and -P
password

Specifies the user name and password for SilverStream authentication
Alphabetical list of commands 143

4 SilverCmd Reference
ModifyCP

Modifies a subset of connection pool properties. To change properties not listed, you must
recreate the connection pool.

Syntax
SilverCmd ModifyCP server[:port] poolName [options]

The valid arguments are:

The valid options are:

Server permissions DTD and sample input file

Modify server
configuration

None

Argument Description

server[:port] Specifies the name of the target server and the administration port

poolName Specifies the name of the connection pool whose properties you want to
modify

options Specifies operating criteria for the command

Option Definition

-? or -h Displays the usage message

-m min conn The minimum number of connections. The pool manager will attempt to
maintain this minimum number of transactions (this is a soft limit)

-x max conn Specifies the maximum number of connections allowed by the pool. The
default is 10. Use -1 to create a pool with no maximum

-t timeout Specifies the idle timeout in seconds. The default is 60 seconds. When set
to -1, idle timeout is disabled and no idle connections are ever closed

-w timeout The connection wait timeout in seconds. The default is 30 seconds. When
set to -1, clients are forced to wait until a connection becomes available
144 Alphabetical list of commands

eXtend Application Server Facilities Guide
You must remove and recreate the connection pool to change these values.

ModifyTableList

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Defines the set of tables available to SilverStream for a specified database. The
ModifyTableList command requires an input file to specify the table names.

Modifying the set of tables for SilverMaster is not supported.

Syntax
SilverCmd ModifyTableList server[:port] database -f file [options]

-U username
and -P
password

Specifies the user name and password for SilverStream authentication

-v log level Specifies the logging level. The logging levels are:

• 0 - logging disabled

• 1 - basic connection factory operations and settings

• 2 - level 1 plus detailed output from connection pool manager

• 3 - level 2 plus exception stack traces and logging information from
underlying JDBC driver or Connector resource adapter

-N Disables debugging

Server permissions DTD and sample input file

Modify server
configuration

DTD: modify_table_list.dtd

Sample: modify_table_list_sample.xml

Option Definition
Alphabetical list of commands 145

4 SilverCmd Reference
The valid arguments are:

The valid options are:

Specifying tables in the input file Your input file specifies the tables you want to
include or make accessible to the server. The input file can include either a list of individual
table names to include, a list of table name patterns, or a combination.

When you specify a pattern, you can use the % symbol to match any number of characters and
the underscore (_) character to specify that you want to match any one character.

Argument Definition

server[:port] Specifies the name of the target SilverStream server and the
administration port

database Specifies the name of the database whose table list you want to modify

-f file Specifies a file containing the names of the database tables

See the modify_table_list_sample.xml file in the samples\SilverCmd
directory for an example

options Specifies operating criteria for the command

Option Definition

-? or -h Displays the usage message

-U username and
-P password

Specifies user name and password for SilverStream authentication
146 Alphabetical list of commands

eXtend Application Server Facilities Guide
Prefs

Updates the following compiler settings in the preferences file:

• Compiler name and directory

• Compiler flags

• Compile cache directory

• SilverStream debug flags

The preferences file contains additional information that is not settable from the Prefs command
line. Any compiler values not specified via the command line or in an input file are left
unchanged in the preferences file. To change any other settings, such as the default browser, you
must use the Edit>Preferences menu option in the Main Designer.

NOTE You should stop the Designer before executing the Prefs command. If the Designer is
running, the changes will not take effect.

Syntax
SilverCmd Prefs [options]

The valid options are:

Server permissions DTD and sample input file

None DTD: prefs.dtd

Sample: prefs_sample.xml

Option Description

-? or -h Displays the usage message

-a flags Sets the compiler-specific flags. It must be a quoted string

If compiler flags start with a hyphen (-), eliminate the space between the
-a and the flags. For example:

SilverCmd Prefs -c sj “-a-nodeprecated -noinline”
Alphabetical list of commands 147

4 SilverCmd Reference
Setting debug flags The DebugFlags option is a directive not to the compiler but to the
server. It specifies whether or not AgfForm.debugPrint() should print. An existing preferences
file might list the value as 0 or 1, but when you set this flag you should always set it to a boolean
value (true or false). You cannot change the debug flags option at the command line; you must
set it via the XML file specified, using the -f option.

-c name Sets the compiler type. The value must be one of the following:

• SunJavacInProc

• javac

• sj

• jikes

-d dir Sets the compiler’s directory

-f file Specifies an input file that contains the new compiler preferences

Values specified at the command line override input file settings

See the prefs_sample.xml file in the samples\SilverCmd directory for an
example that shows how to create one of these files

-g true/false Turns debugging information on or off

Debug is off (false) by default

-l Lists existing preferences to the console

You cannot specify -l with any other options; if you do, the other
options will not take effect

-s file Saves existing preferences to the specified file

You cannot specify -s with any other options, if you do, the other
options will not take effect

-t dir Sets the compile-cache directory

-r true/false Runs the rmi2iiop compiler in process (true) or not (false)

Option Description
148 Alphabetical list of commands

eXtend Application Server Facilities Guide
PrintLog

Displays records from the HTTP log, error log, or trace log to the SilverCmd console window.
Use the standard redirect symbol (>) to write the records to a file. PrintLog can only display
records when server logging output is specified as database (not file or user defined).

� For more information on specifying logging output using the SMC, see the chapter on
running the server in the Administrator’s Guide.

Syntax
SilverCmd PrintLog server[:port] logTypeFlags [options]

The valid arguments are:

The valid options are:

Server permissions DTD and sample input file

Read server configuration None

Argument Description

server[:port] Specifies the name of the target server and the administration port

logTypeFlags Values are:

-E—Removes records from the error log

-H—Removes records from the HTTP log

-T—Removes records from the trace log

You can specify any combination in a space or comma-separated list

options Specifies operating criteria for the command

Option Definition

-? or -h Displays the usage message

-U username
and -P
password

Specifies user name and password for SilverStream authentication
Alphabetical list of commands 149

admRun.html

4 SilverCmd Reference
Publish

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Publishes items from one database or server to another.

Syntax
SilverCmd Publish sourceserver[:port] sourcedatabase targetserver[:port]
targetdatabase -f file [options]

The valid arguments are:

The valid options are:

Server permissions DTD and sample input file

Read for the source database and
write for the destination database

DTD: itemlist.dtd

Sample: publish_sample.xml

Argument Definition

sourceserver[:port] Specifies the name of the source SilverStream server and the
design-time port

sourcedatabase Specifies the name of the source database

targetserver[:port] Specifies the name of the target SilverStream server and the
design-time port

targetdatabase Specifies the name of the target database

options Specifies operating criteria for the command

Option Definition

-? or -h Displays the usage message

-U username and -P
password

Specifies user name and password for source SilverStream server
for authentication
150 Alphabetical list of commands

eXtend Application Server Facilities Guide
PublishFromFile

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Publishes SilverStream components from the specified directory on disk to the
appropriate directory on the specified SilverStream server and database. You can only publish
items that were downloaded using PublishToFile (not exported) from a SilverStream server—
because they must be in the expected file format. SilverCmd places the objects in the
appropriate server directory. For example: forms are uploaded to the forms directory, pages to
the page directory, and so on.

� For more information, see “PublishToFile” on page 153.

If you are publishing items without their class files, you must build the objects after uploading
them.

-V and -Q Specifies user name and password for destination SilverStream
server for authentication; if not specified, values given for -U and
-P are used

-a Publishes the contents of the database

-f file Specifies the name of a file that specifies the publish list

You can specify -f only when -a is not specified

-c Forces an overwrite of read-only items in the destination database

This setting is ignored when the destination database is not part of
source control

-s Specifies that Publish should strip design information from the
items published

Server permissions DTD and sample input file

Write DTD: filelist.dtd

Sample: publish_from_file_sample.xml

Option Definition
Alphabetical list of commands 151

4 SilverCmd Reference
Syntax
SilverCmd PublishFromFile server[:port] database [fileorDir] [options]

The valid arguments are:

The valid options are:

Argument Definition

server[:port] Specifies the name of the target SilverStream server and the design-
time port

database Specifies the name of the target database

fileorDir Specifies the source file or directory to publish

options Specifies operating criteria for the command

Option Definition

-? or -h Displays the usage message

-U username and
-P password

Specifies user name and password for SilverStream authentication

-f file Specifies an input file that contains the list of items to upload

The file should be in the format specified by the FileList.DTD in the
SilverStream/DTDs directory

-s Specifies that SilverStream should copy items from the specified
directory recursively
152 Alphabetical list of commands

eXtend Application Server Facilities Guide
PublishToFile

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Downloads the components of an application database from the server to a
specified location on disk, or to the current working directory if no directory is specified. This
command is intended to be used in conjunction with PublishFromFile when you want to transfer
application components indirectly between servers. The resulting file format is not usable for
any other purpose.

Suppose, for example, that you have created an application that you want to install (not Publish)
on another server. You would use PublishToFile to obtain all of the application’s files including
all the necessary components (such as Java code, metadata information, and associated data like
HTML for pages, and so on). You might then create a script that runs the SilverCmd
PublishFromFile command to put them on the target server.

The PublishToFile operation maintains the server’s directory structure for the items it
downloads. For example, if you specify that the items should be downloaded to the C:\test
directory, SilverCmd downloads forms to the c:\test\Forms, pages to the c:\test\Pages, business
objects to the c:\test\Objects, and so on.

Syntax
SilverCmd PublishToFile server[:port] database [item] [options]

The valid arguments are:

Server permissions DTD and sample input file

Read DTD: filelist.dtd

Sample: publish_to_file_sample.xml

Argument Description

server[:port] Specifies the name of the target SilverStream server and the design-time
port

database Specifies the name of the target database
Alphabetical list of commands 153

4 SilverCmd Reference
The valid options are:

item The name of a single item to publish

Specifications include:

• For forms, views, or pages, use:

dir/itemname

• For business objects, use:

Objects/packagename/itemname

• For items in the Media directory:

Media/dir/itemname

where dir can be JARs, Images, Sounds, or General

options Specifies operating criteria for the command

Option Definition

-? or -h Displays the usage message

-U username
and -P
password

Specifies user name and password for SilverStream authentication

-c Specifies that the download should exclude the class files

-d dir Specifies the output directory. SilverCmd creates the directory if it does
not exist

-f Specifies an input file that contains a list of items to download

Argument Description
154 Alphabetical list of commands

eXtend Application Server Facilities Guide
QueryCP

Displays configuration properties for a connection pool.

Syntax
SilverCmd QueryCP server[:port] poolName [options]

The valid arguments are:

-s Specifies that SilverStream should strip the design metadata and the Java
source code

-x Specifies that the download should be in XML format instead of binary
(binary is the default)

Binary format is more compact and faster to read and write than XML
format. If you were building an installer (by downloading the objects and
then using Upload at install time to install them), you might want to use
binary format

Server permissions DTD and sample input file

Read server configuration None

Argument Description

server[:port] Specifies the name of the target SilverStream server and the design-time
port

poolName Specifies the connection pool name

options Specifies operating criteria for the command

Option Definition
Alphabetical list of commands 155

4 SilverCmd Reference
The valid options are:

RebuildJAR

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Rebuilds SilverStream-generated JAR files.

You might use RebuildJAR when certain components of your application that are part of a JAR
have changed or when you want to insert new packages or business objects into your JAR. For
example, you might have changed a GIF or added a new package as a subpackage. The
RebuildJAR operation discards the old items and inserts the new ones. You might think of
RebuildJAR as “edit existing JAR and save changes.”

You cannot use RebuildJAR to add or remove objects from the JAR. RebuildJAR takes the most
recent versions of the objects that exist in the current JAR. This means that for specific items
(such as Forms/form1 or Views/view1), the newer versions of these items (if any) replace the
existing ones. For directories (such as Forms, Views and so on), only the items that were in those
directories at the time of the JAR’s creation will be reinserted. This is not so for packages,
whose contents are dynamically regenerated each time you rebuild. For example, if the user
adds any new classes to a package, they will get inserted into the JAR—older versions of
existing classes substituted for newer ones and any deletions reflected in warning messages.

Restrictions You cannot rebuild JAR files created outside the SilverStream IDE.

Option Definition

-? or -h Displays the usage message

-a Displays all of the properties for a connection pool. When -a is not
specified, only the settable properties are displayed. Settable properties
include connection wait timeout, idle timeout, minimum, connections,
maximum connections, and debug

-U username
and -P
password

Specifies user name and password for SilverStream authentication

Server permissions DTD and sample input file

Read/Write None
156 Alphabetical list of commands

eXtend Application Server Facilities Guide
Syntax
SilverCmd RebuildJAR server[:port] database jarfile [options]

The valid arguments are:

RebuildJar supports the following options:

RemoveCP

Shuts down the specified connection pool and removes it so that the server does not try to restart
the connection pool during a server restart.

Syntax
SilverCmd RemoveCP server[:port] poolName [options]

Argument Definition

server[:port] Specifies the name of the source SilverStream server and the design-
time port

database Specifies the name of the source database

jarfile Specifies the name of the JAR file to rebuild

options Specifies operating criteria for the command

Options Description

-? or -h Displays the usage message

-U username and
-P password

Specifies user name and password for SilverStream authentication

Server permissions DTD and sample input file

Modify server
configuration

None
Alphabetical list of commands 157

4 SilverCmd Reference
The valid arguments are:

The valid options are:

RemoveDatabase

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Removes the database from the server’s list of accessible databases.

Syntax
SilverCmd RemoveDatabase server[:port] database [options]

Argument Description

server[:port] Specifies the target server and administration port

poolName Specifies the name of the connection pool to remove

options Specifies operating criteria for the command

Option Definition

-? or -h Displays usage message

-U username
and -P
password

Specifies user name and password for SilverStream authentication

Server permissions DTD and sample input file

Modify server
configuration

None
158 Alphabetical list of commands

eXtend Application Server Facilities Guide
The valid arguments are:

The valid options are:

ServerState

Manages the server’s state. Use it to shut down a server or test whether the server is currently
running.

NOTE ServerState can be run on any (runtime, design-time, or administration) port with the
isrunning action—if you have configured separate ports. If you run ServerState with
the shutdown action, you must specify the administration port.

Syntax
SilverCmd ServerState server[:port] action [options]

Argument Definition

server[:port] Specifies the name of the source server and the administration port

database Specifies the name of the database to remove

options Specifies operating criteria for the command

Option Definition

-? or -h Print the usage message

-U username and
-P password

Specifies user name and password for SilverStream authentication

Server permissions
DTD and sample
input file

Modify server configuration when the action is shutdown

Read server configuration with the action is isrunning

None
Alphabetical list of commands 159

4 SilverCmd Reference
The valid arguments are:

The valid options are:

Argument Definition

server[:port] Specifies the name of the source SilverStream server and the port. The
required port depends on which of the following two actions you
specify

action Specifies one of the following:

• isrunning—Returns a message when the server is (or is not)
running. You can run ServerState with the isrunning action on any
(runtime, design-time, or administration) port. This action must be
run as part of a batch file or script

• shutdown—Gracefully shuts down the SilverStream server. You
must enter the administration port when running this action;
otherwise, a security error code is returned

options Specifies operating criteria for the command

Option Definition

-? or -h Displays the usage message

-U username and
-P password

Specifies user name and password for SilverStream authentication

-d Deactivate the target server. For use only when action is shutdown

-r Restart the target server. For use only when action is shutdown
160 Alphabetical list of commands

eXtend Application Server Facilities Guide
SetDefaultURL

Sets the default URL for a server or database.

Syntax
SilverCmd SetDefaultURL server[:port] [database] [options] -e URL

The valid arguments are:

The valid options are:

Server permissions DTD and sample input file

Modify server configuration None

Argument Description

server[:port] Specifies the target SilverStream server and the design-time port

database Specifies the target SilverStream database; include only if setting a
database-default URL (see the examples below)

options Specifies operating criteria for the command

Option Definition

-? or -h Displays the usage message

-U username
and -P password

Specifies user name and password for SilverStream authentication

-e URL Specifies a server-relative URL (database/URL) or a database-relative
URL (URL)

Here is a server-relative URL:

/MyDatabase/SilverStream/Pages/pgHome.html

Here is a database-relative URL:

/SilverStream/Pages/pgHome.html
Alphabetical list of commands 161

4 SilverCmd Reference
Examples

Setting server-default URLs When setting a server-default URL, do not specify a
database name as an argument, and specify an URL using a server-relative URL.

For example, the following command sets a server-default URL for the server myServer:

SilverCmd SetDefaultURL myServer
-e /MyDatabase/SilverStream/Pages/pgHome.html

Setting database-default URLs When setting a database-default URL, specify the
database name as an argument, and use a database-relative URL.

For example, the following command sets a database-default URL for the database
myDatabase on the server myServer:

SilverCmd SetDefaultURL myServer myDatabase
-e /SilverStream/Pages/pgHome.html

SetSecurity

Sets Read, Write, Protect, Select, and Execute security permissions on the SilverStream server,
a database, a directory, or one or more objects. Certain permission types are applicable only for
certain types of items. For example, the Select permission is only applicable to tables.

You can also set permissions on the Security directory of a server. The Read permission on this
resource rules who can have access to user and group information such as lists of users and
groups and user/group properties. The Protect permission rules who can set the permissions on
the Security directory.

Syntax
SilverCmd SetSecurity server[:port] [database] -f file [options]

Server permissions DTD and sample input file

Set Permissions

Read Users and Groups

DTD: set_security.dtd

Sample: set_security_sample.xml
162 Alphabetical list of commands

eXtend Application Server Facilities Guide
The valid arguments are:

The valid options are:

SetUserGroupInfo

Creates and deletes SilverStream users and groups, adds users to groups, and sets properties for
both. This command has eight optional actions (listed in “Actions” on page 164).

NOTE If you have configured separate ports, you will need to specify the administration port
when running SetUserGroupInfo to change settings.

Argument Definition

server[:port] Specifies the name of the SilverStream server and the administration
port

database Specifies the name of the database

Do not specify this value when setting server permissions

-f file Specifies the fully qualified name for an input file whose contents
specify the security permissions information

options Specifies the operating criteria for the command

Option Definition

-? or -h Displays the usage message

-U username and
-P password

Specifies user name and password for SilverStream authentication

-i Continues on error

Server permissions DTD and sample input file

Modify server settings DTD: set_user_group_info.dtd

Sample: set_user_group_info_sample.xml
Alphabetical list of commands 163

4 SilverCmd Reference
Syntax
SilverCmd SetUserGroupInfo server[:port] [action action-parameters]
[options]

The valid arguments are:

The valid options are:

Actions The SetUserGroupInfo actions are:

Argument Description

server[:port] Specifies the name of the SilverStream server and the
administration port

action Specifies the action to perform—for example, CreateUser or
DeleteUser

For a list of actions, see “Actions” below

action-parameters Specifies any special operating criteria for the action

options Specifies operating criteria for the command

Option Description

-? or -h Displays the usage message

-f file Specifies the name of a file containing data for the
SetUserGroupInfo command

-i Continues on error

This is valid in batch mode only

-U username and -P
password

Specifies user name and password for SilverStream authentication

Action Description

AddUserToGroup Adds a user to a SilverStream security group

CreateGroup Creates a SilverStream security group
164 Alphabetical list of commands

eXtend Application Server Facilities Guide
AddUserToGroup action

Adds an existing user from a known security realm (such as NT) to an existing SilverStream
security group.

Syntax
SilverCmd SetUserGroupInfo server[:port] AddUserToGroup username
groupname [options]

The action-parameters are:

CreateUser Creates a SilverStream user or certificate

DeleteGroup Deletes a SilverStream group from the server

DeleteUser Deletes a SilverStream user from the server

DeleteUserFromGroup Deletes a SilverStream user from the specified SilverStream
group

SetGroupProperties Specifies properties for an existing SilverStream group

SetUserProperties Specifies properties for an existing SilverStream user

Action-parameter Description

username Specifies the name of the user to add. The name must be in a valid
login format

If the name includes spaces, it must be enclosed in quotes

� For more information about supplying these values for the
security realms, see the chapter on setting up security in the
Administrator’s Guide

groupname Specifies the name of the SilverStream group to which you want to
add the user

If the name includes spaces, it must be enclosed in quotes. It is case-
sensitive and must exactly match an existing groupname

Action Description
Alphabetical list of commands 165

admSecurity.html

4 SilverCmd Reference
Examples

This example shows how to add the NT user admin to the SilverStream group Admins:

SilverCmd SetUserGroupInfo localhost AddUserToGroup ntDomain1\admin Admins

This example shows how to add the NT user admin to the SilverStream group Our NT
Administrators:

SilverCmd SetUserGroupInfo localhost AddUserToGroup ntDomain1\admin "Our NT
Administrators"

CreateGroup action

Creates a SilverStream security group for the specified server.

Syntax
SilverCmd SetUserGroupInfo server[:port] CreateGroup -g groupname [-d
description]

The valid arguments are:

Examples

The following examples show how to create three distinct SilverStream groups: one called
Developers, one called Our Administrators, and one called Finance:

SilverCmd SetUserGroupInfo localhost CreateGroup -g Developers -d "Research
and Development Group"

SilverCmd SetUserGroupInfo localhost CreateGroup -g "Our Administrators" -d
"Our Admins"

SilverCmd SetUserGroupInfo http://myserver CreateGroup -g Finance

Argument Description

-g groupname Specifies the name of the group

This value is required. If the groupname includes spaces, it must be
enclosed in quotes

-d description Specifies a description for the group

This value is optional. If the description includes spaces, it must be
enclosed in quotes
166 Alphabetical list of commands

eXtend Application Server Facilities Guide
CreateUser action

Creates a SilverStream user by specifying a user name/password or a certificate user.

Syntax
SilverCmd SetUserGroupInfo server[:port] CreateUser -u username [-p
password] [-n full-name] [-d description]

OR
SilverCmd SetUserGroupInfo server[:port] CreateUser -c client-certificate-
file

The valid arguments are:

Argument Description

-u username Specifies the name by which the new user will be known to
the SilverStream server. This value is required except when
specifying a client certificate file

Note that this value is different from the -U and -P (uppercase)
parameters used for authenticating the user running
SilverCmd

-p password Specifies the user’s SilverStream password. This value is
optional

Note that this value is different from the -U and -P (uppercase)
parameters used for authenticating the user running
SilverCmd

-n full-name Specifies the user’s full name. If the name includes spaces, it
must be enclosed in quotes. This value is optional

-d description Specifies a description for the user. If the description includes
spaces, it must be enclosed in quotes. This value is optional

-c client-certificate-file Specifies the client certificate file
Alphabetical list of commands 167

4 SilverCmd Reference
Examples

This example shows how to create a new user:

SilverCmd SetUserGroupInfo http://myserver CreateUser -u user1 -p
MyPassword -n “John Doe" -d "Applications Developer"

SilverCmd SetUserGroupInfo localhost CreateUser -u user1 -n "John Doe"

SilverCmd SetUserGroupInfo localhost CreateUser -u user1

This example shows how to create a certificate user, given a client certificate file:

SilverCmd SetUserGroupInfo localhost CreateUser -c c:\certs\ClientCert1.cer

DeleteGroup action

Deletes a SilverStream group.

Syntax
SilverCmd SetUserGroupInfo server[:port] DeleteGroup groupname

The valid arguments are:

For example:

SilverCmd SetUserGroupInfo localhost DeleteGroup TestGroup

DeleteUser action

Deletes a SilverStream user from the system.

Syntax
SilverCmd SetUserGroupInfo server[:port] DeleteUser username

Argument Description

groupname Specifies the name of the group to delete. It must exactly match the
existing groupname (it is case-sensitive). If the name includes spaces, it
must be enclosed in quotes
168 Alphabetical list of commands

eXtend Application Server Facilities Guide
The valid arguments are:

For example:

SilverCmd SetUserGroupInfo http://myserver DeleteUser testUser1

To delete a certificate user:

SilverCmd SetUserGroupInfo localhost DeleteUser "CERT\\Jack Brown,
DigitalID Class 1 - Microsoft Full Service, VeriSign, Inc.
(28f52c889e8d6d8cf21d932d9b71z705)"

You must specify the complete distinguished name of the certificate user:

• The constant CERT\\ must be prepended to the distinguished name in order to
disambiguate it (CERT means Certificate Security Realm).

• The \\ signifies a security authority that is not present in this case.

• With NT, for example, the name would look something like this:
NT\domainname\user1

• With Certificate Security Realm, no authorities are specified.

You can specify the default security realm (via the SMC or by setting the
AgiAdmServer.PROP_DEFAULT_SECURITY_REALM property on the server object). If you
set the default to Certificate Security Realm (for example, by setting the property value to
CERT), there would be no need for the CERT\\ part, because it would be assumed by default.

DeleteUserFromGroup action

Deletes a user from a SilverStream group.

Syntax
SilverCmd SetUserGroupInfo server[:port] DeleteUserFromGroup username
groupname

Argument Description

username Specifies the name of the user to delete. It must exactly match an
existing username (it is case-sensitive). If the name includes spaces it
must be enclosed in quotes
Alphabetical list of commands 169

4 SilverCmd Reference
The valid arguments are:

For example:

SilverCmd SetUserGroupInfo localhost DeleteUserFromGroup ntDomain1\admin
Admins

SetGroupProperties action

Sets properties for a SilverStream group. Any properties that are not specified retain their
original values.

Syntax
SilverCmd SetUserGroupInfo server[:port] SetGroupProperties -g groupname [-
d description -l "is-locksmith"]

The valid arguments are:

Argument Description

username Specifies the name of the user to delete from the group.

It must exactly match an existing username (it is case-sensitive). If the
name includes spaces, it must be enclosed in quotes

groupname Specifies the name of the SilverStream group from which to delete the
user. It must exactly match an existing groupname (it is case-sensitive).
If the name includes spaces, it must be enclosed in quotes

Argument Description

-g groupname Specifies the name of the group. It must exactly match an existing
groupname (it is case-sensitive). If the name includes spaces, it must be
enclosed in quotes
170 Alphabetical list of commands

eXtend Application Server Facilities Guide
Examples
SilverCmd SetUserGroupInfo myserver SetGroupProperties -g testGroup -d
"This is a test group"

SilverCmd SetUserGroupInfo myserver SetGroupProperties -g "Our
Administrators" -l false

SetUserProperties action

Modifies properties for a SilverStream or certificate user. Values not specified are not modified.

Syntax
SilverCmd SetUserGroupInfo server[:port] SetUserProperties -u username -p
password -n full-name [-d description] [-l is-locksmith]

OR
SilverCmd SetUserGroupInfo server[:port] SetUserProperties -c certificate-
file [-l is-locksmith]

-d description Provides a description of the group. If the name includes spaces, it must
be enclosed in quotes

-l is-locksmith Specifies the locksmith value, which may be true or false

You may set is-locksmith on any type of group, not just SilverStream
groups

You can only grant Locksmith privileges if you have them—for
example, if you are a Locksmith

The value true means grant the privilege, and false means revoke the
privilege

Argument Description
Alphabetical list of commands 171

4 SilverCmd Reference
The valid arguments are:

Examples
SilverCmd SetUserGroupInfo localhost SetUserProperties -u jsmith -p "new
password" -l false
SilverCmd SetUserGroupInfo localhost SetUserProperties -u jsmith -n
"Jonathan H. Smith"
SilverCmd SetUserGroupInfo localhost SetUserProperties -u jsmith -d
"Principal Engineer" -p "new pwd"

SourceControl

Classic use only. This command is available for use with SilverStream Classic applications
only.

Deprecated. Performs source control tasks.

Argument Description

-u username Specifies the user name for the user whose properties you want to
change. This value is required and is not configurable

-p password Specifies a new password for the user

-n full-name Specifies a full name for the user. If the name includes spaces, it must
be enclosed in quotes

-d description Provides a description of the user. If the name includes spaces, it must
be enclosed in quotes

-l is-locksmith Specifies the Locksmith privilege value. You can give Locksmith
privileges to any type of user, not just SilverUser or CertificateUser.
You can only grant Locksmith privileges if you have them—for
example, if you are a Locksmith. The value true means grant the
privilege and false means revoke the privilege

-c certificate-file Specifies the certificate file for updating the certificate users. This is
a required value for certificate files and is not configurable
172 Alphabetical list of commands

eXtend Application Server Facilities Guide
Before you can run the SourceControl command, you must have one of the SilverStream
supported source control software packages installed and your SilverStream application
database set up to use it. You cannot set up a database for source control using the SourceControl
command-line tool.

Syntax
SilverCmd SourceControl server[:port] database action [item] [options]

The valid arguments are:

Server permissions DTD and sample input file

Read/Write DTD: itemlist.dtd

Sample: source_control_sample.xml

Argument Description

server[:port] Specifies the name of the target SilverStream server and the design-
time port

database Specifies the name of the target database that contains your
SilverStream application components

This database must already be configured to use a source control
system

action Specifies the source control action to execute

Valid values are Get, Checkin, Checkout, and Undocheckout

These values are not case-sensitive
Alphabetical list of commands 173

4 SilverCmd Reference
You can customize the source control operation (Get, Checkin, and so on) using the options
described in the following table:

item Specifies the name of the SilverStream application object on which you
want to perform the source control operation

The name must be specified using the SilverStream server’s directory
structure—for example, to specify perform a source control operation
on a form, use:

Forms/formname

To perform an operation on a JAR, use:

Media/Jars/jarname

To work with multiple items, you must specify them in an input file,
which you specify using the -f file argument

options Specifies operating criteria for the action

If you supply an option that is not valid for the current action,
SilverCmd executes the action and ignores any invalid options

See the table below for more information on the valid options

Option Description

-? or -h Displays the SourceControl usage message

-U username and
-P password

Specifies user name and password for SilverStream authentication

-c comment Specifies the comment to use for check-in operations. The text must be
in quotes. For example:

SilverCmd SourceControl Checkin -c “This is a
comment” localhost MyApp Forms/myForm

This option is only valid for check-in operations

Argument Description
174 Alphabetical list of commands

eXtend Application Server Facilities Guide
-d date Gets an object checked in on a specific date

Valid formats are:

-d 4/4/98
-d 4/4/1998
-d 1998-4-4
-d "4/4/98 3:33 pm"
-d "4/4/98 15:33"
-d "1998-4-4 15:33:33"

You can use period (.) or hyphen (-) in place of slash (/) anywhere in
the date portion. The month/day order is determined by the current
locale. Two-digit years are handled appropriately (98 means 1998; 02
means 2002)

This option is only valid with Get operations

-f file The name of an input file that specifies the items on which to perform
the source control operation. This is useful when you want to perform
an operation on multiple files

-l label Gets an object that has the specified label. The label must be in quotes.
For example:

SilverCmd SourceControl Get -l “Version 3.0 Beta”
localhost Examples3 Forms/myForm

-p password Specifies the source control password. This must match the password
exactly as configured in your source control system

The user name cannot be specified on the command line; it must be set
in the Source Control Settings dialog

If your source control access was set up to save your password, you do
not need to supply one. You can check the Source Control settings
from the Designer by choosing Source>Source Control Settings

SilverCmd generates an error message if the -p option is required but
not specified

Option Description
Alphabetical list of commands 175

4 SilverCmd Reference
This example illustrates how to check in a form called frmCasting:

SilverCmd SourceControl Checkin -c “updated code in FormActivate
event”localhost MyApp Forms/frmCasting

Undeploy

Undeploys a J2EE deployed object from a specified SilverStream server. You can use this
command to undeploy EARs, EJBs, RARs, CARs, and WARs.

Syntax
SilverCmd Undeploy server[:port] database archive [options]

The valid arguments are:

-v version Gets an object by its source control version

-o Confirms an action that will overwrite an existing file—for example, a
Get of a checked-out file

SilverCmd fails if the specified operation will overwrite an existing
file and the -y option is not specified

Server permissions DTD and sample input file

Modify server configuration None

Argument Description

server[:port] The target SilverStream server

database The database containing the deployed J2EE archive

archive The name of the J2EE object to undeploy.

Use the name exactly as shown in the SMC’s Deployed Object panel
(accessed via the Deployment icon).

options Specifies operating criteria for the command

Option Description
176 Alphabetical list of commands

eXtend Application Server Facilities Guide
The valid options are:

ValidateEAR

Validates the deployment descriptor within the specified EAR file. It reports any deployment
descriptor problems, missing application assembly components, and class-related problems.
The problems are written to the command window by default.

Use this command when you want to verify that the descriptor is correct before attempting to
deploy the EAR on the SilverStream server with DeployEAR.

Syntax
SilverCmd ValidateEAR earfile [options]

The valid arguments are:

Option Definition

-? or -h Displays the usage message

-U username and
-P password

Specifies user name and password for SilverStream authentication

-v verboseLevel The level of messages to output. Values for VerboseLevel are 0 for no
messages (default) to 5 for the most messages

Server permissions DTD and sample input file

None None

Argument Description

earfile Specifies the name of the EAR file to validate

options Specifies any operating criteria for the command
Alphabetical list of commands 177

4 SilverCmd Reference
The valid options are:

ValidateEJB

Validates the beans, the deployment plan, and the deployment descriptor. It is automatically
called by SilverCmd DeployEAR and DeployEJB and writes any errors or warnings to the
SilverCmd console window.

Syntax
SilverCmd ValidateEJB ejbJarFile deploymentPlan [options]

The valid arguments are:

The valid options are:

Option Description

-? or -h Displays the usage message

Server permissions DTD and sample input file

None None

Argument Description

ejbJarFile Specifies the EJB JAR file whose beans are to be validated

deploymentPlan Specifies the SilverStream server deployment plan

options Specifies operating criteria for the command

Option Description

-? or -h Displays the ValidateEJB usage message

-v verboseLevel The level of messages to output. Values for verboseLevel are 0 for no
messages (default) to 5 for the most messages
178 Alphabetical list of commands

eXtend Application Server Facilities Guide
ValidateEJB11

Validates the deployment descriptor within the specified EJB 1.1 JAR file. It reports any
deployment descriptor problems, missing application assembly components, and class-related
problems. The problems are written to the console window by default.

You might want to use this command if you are building your own EJB JAR and its descriptor
outside the SilverStream IDE and want to verify that the descriptor is correct before importing
the JAR to the SilverStream server.

Syntax
SilverCmd ValidateEJB11 ejbJarFile [options]

The valid arguments are:

The valid options are:

Server permissions DTD and sample input file

None None

Argument Description

ejbJarFile Specifies the EJB JAR file whose beans are to be validated

options Specifies any operating criteria for the command

Option Description

-? or -h Displays the ValidateEJB usage message

-c max Maximum number of catastrophic errors allowed per bean

The default is 1

-t max Maximum number of fatal errors allowed per bean

The default is 5
Alphabetical list of commands 179

4 SilverCmd Reference
If -c, -t, -n, or -w is not specified, the default maximum for the given type of error is used.

If a numeric value is specified for the switch, the SilverStream server allows up to that many
errors of the given type per bean and stops validating the bean when the limit is reached. If the
string value of all is specified for the switch, the SilverStream server registers all errors of the
given type.

-n max Maximum number of nonfatal errors allowed per bean

The default is 10

-w max Maximum number of warnings allowed per bean

The default is 15

Option Description
180 Alphabetical list of commands

5
 SilverJ2EEClient and SilverJRunner Chapter 5
This chapter describes the facilities provided with the SilverStream eXtend Application Server
to host Java-based clients: SilverJ2EEClient (for J2EE applications) and SilverJRunner (for
classic SilverStream applications). Topics include:

• About SilverJ2EEClient

• About SilverJRunner

• Installing SilverJRunner and SilverJ2EEClient

• Starting SilverJRunner and SilverJ2EEClient

• Using startup options

• Passing application arguments

• Supporting access to secured EJBs

About SilverJ2EEClient
If your production environment includes J2EE application clients, the user machines running
them will need to install and use SilverJ2EEClient. SilverJ2EEClient is a low-administration
J2EE application client container that hosts your clients with a robust set of supporting J2EE
services (including deployment, JNDI namespace access, and security authentication).

� To learn about J2EE application clients and how to write them, see the eXtend
Workbench help.

SilverJ2EEClient features

Users invoke SilverJ2EEClient to run J2EE application clients you’ve deployed to the
SilverStream server. The features that SilverJ2EEClient provides to support these clients
include:

• Container installation SilverJ2EEClient is easy to download from the SilverStream
server and install on user machines.

• Client deployment When the user starts a particular client, SilverJ2EEClient checks
whether the user machine already has the appropriate versions of that client’s deployed
JAR files. If not, it automatically downloads them from the SilverStream server.
181

5 SilverJ2EEClient and SilverJRunner
• Communication protocols When downloading JARs from the SilverStream server to a
user machine, SilverJ2EEClient uses HTTP (or HTTPS) as the communication protocol.
In all other cases (such as access to EJBs and other resources), it uses RMI-IIOP or RMI-
IIOP over SSL (for secured EJBs). Beyond that, you’re free to code your client classes to
use any communication protocols necessary for particular tasks.

• User authentication When SilverJ2EEClient connects to the SilverStream server to
download client JARs, it automatically handles any user authentication required (such as
by prompting for user name and password). Alternatively, it lets you pass user name and
password command-line options (to support authentication during RMI-IIOP
communication).

• Server access When accessing the SilverStream server, SilverJ2EEClient automatically
takes care of establishing an RMI session. You don’t need to write any code for this in
your client classes.

• Namespace access SilverJ2EEClient automatically provides a JNDI namespace for
your client. This gives your client classes access to environment entries, EJB references,
and resource references.

• Client portability Because SilverJ2EEClient handles the housekeeping, you are
insulated from having to write vendor-specific code in your client classes. Of course, you
can still choose to code vendor specifics (such as SilverStream API calls) if the situation
requires it (for example, when the functionality needed is not specified by J2EE). In that
case, consider a modular approach to isolate anything that isn’t standard J2EE.

About SilverJRunner
If your production environment includes SilverStream forms, the user machines running them
will need to install and use SilverJRunner. SilverJRunner is a low-administration Java client
that hosts your forms with support for the full set of form features, as well as encryption and
application file caching.

SilverJRunner is self-updating, so you just need to install it once per user machine.

� To learn about SilverStream forms, see the chapter on form basics in the Programmer’s
Guide of the server’s Classic Development Help.
182 About SilverJRunner

eXtend Application Server Facilities Guide
Installing SilverJRunner and SilverJ2EEClient
To minimize administration effort, the SilverStream server provides an installer that users can
download to set up the current version of SilverJRunner and SilverJ2EEClient. It also provides
an install page that users can browse to for easy selection of the appropriate installer flavor
(Windows, UNIX, or Linux).

The install page and installers are named after SilverJRunner, but they include SilverJ2EEClient
as well.

Providing the SilverJRunner install page

By default, the Enterprise Edition of the SilverStream server is set up to provide the
SilverJRunner install page and installers. The Developer Edition can be set up to provide them,
although by default it does not.

� For more information, see the SilverStream eXtend Application Server Installation
Guide.

Going to the SilverJRunner install page

By default, the SilverJRunner install page is available from your SilverStream server at the
following URL:

http://servername/SilverStream/Pages/SilverJRunner.html

You can instruct users to type this URL directly in their browsers, or you can supply a page that
links to it for easier access.

Using the install page Once displayed, the SilverJRunner install page provides links that
users can click to download:

• A Windows version of the SilverJRunner installer

• UNIX or Linux versions of the SilverJRunner installer (for supported platforms)

This page also includes instructions for using the installers and for starting SilverJRunner or
SilverJ2EEClient once installed.

Customizing the install page By default, the SilverJRunner install page is named
SilverJRunner.html and stored in the SilverMaster database under Pages. You’re free to
customize this page as necessary to suit the requirements of your environment and user
audience.
Installing SilverJRunner and SilverJ2EEClient 183

instIntro.html
instIntro.html

5 SilverJ2EEClient and SilverJRunner
If you need to restrict access to the SilverJRunner installers, you can secure this page or even
delete it from the server.

Providing direct access to the installers You may want to let users download a
SilverJRunner installer directly, without going to the SilverJRunner install page first. In that
case, you can instruct them to type one of the following URLs, or you can link to it from your
own pages.

These URLs all begin with:

http://servername/SilverStream/silverJRunnerInstall/

Installing on Windows

Once you download the Windows version of the SilverJRunner installer, you’ll have the
following file on your local machine:

SilverJRunnerInstall.exe

Run this file to install SilverJRunner, SilverJ2EEClient, and the supporting components they
require.

What gets installed When the installer is done, you’ll have a directory for SilverJRunner
on your local machine that contains:

• SilverJRunner and SilverJ2EEClient executables (SilverJRunner.exe and
SilverJ2EEClient.exe)

• SilverStream runtime files (ZIPs and JARs of API packages and supporting files)

• Java 2 Runtime Environment (JRE)

• Java HotSpot Performance Engine

• jBroker ORB (a Java-based CORBA ORB, set up as the default ORB for the machine)

SilverJRunner and SilverJ2EEClient should now be ready to use on this machine.

To link directly to Use this URL

Windows version of the SilverJRunner installer SilverJRunnerInstall.exe

UNIX (Solaris) version of the SilverJRunner installer SilverJRunnerInstallSolaris.sh

Linux version of the SilverJRunner installer SilverJRunnerInstallLinux.sh
184 Installing SilverJRunner and SilverJ2EEClient

eXtend Application Server Facilities Guide
Installing on UNIX or Linux

Once you download a UNIX or Linux version of the SilverJRunner installer, you’ll have the
following file on your local machine: SilverJRunnerInstallPlatform.sh. Run this file to install
SilverJRunner, SilverJ2EEClient, and the supporting components they require.

For example:

• In Solaris, type sh SilverJRunnerInstallSolaris.sh

• In Linux, type sh SilverJRunnerInstallLinux.sh

What gets installed When the installer is done, you’ll have a directory for SilverJRunner
on your local machine that contains:

• SilverJRunner and SilverJ2EEClient executables (SilverJRunner and SilverJ2EEClient)

• SilverStream runtime files (ZIPs and JARs of API packages and supporting files)

• Java 2 Runtime Environment (JRE)

• jBroker ORB (a Java-based CORBA ORB, set up as the default ORB for the machine)

SilverJRunner and SilverJ2EEClient should now be ready to use on this machine.

� For detailed information about UNIX or Linux platform support, see the SilverStream
eXtend Application Server Release Notes.

Installing from your SilverStream product CD

Another way to install SilverJRunner and SilverJ2EEClient is to use the SilverStream
installation (Setup) program from your SilverStream product CD. It provides choices to install
them (and supporting files) alone or along with other SilverStream components.

Installing SilverJRunner and SilverJ2EEClient this way is primarily for developers. The result
is the same as accessing the SilverJRunner install page (SilverJRunner.html) from the
SilverStream server to do the installation.

� For more information on using the SilverStream installation program, see the following
chapters in the Installation Guide:

• Installing SilverStream on Windows

• Installing SilverStream on UNIX (also applies to Linux)
Installing SilverJRunner and SilverJ2EEClient 185

new ../../relnotes.html
instWin.html
instUnix.html

5 SilverJ2EEClient and SilverJRunner
Starting SilverJRunner and SilverJ2EEClient
You can start SilverJRunner and SilverJ2EEClient in several different ways, depending on the
platform you’re using (Windows, UNIX, or Linux).

Running on Windows

In Windows, you can start SilverJRunner and SilverJ2EEClient by doing either of the
following:

• Using the executables

• Using SJR and SJC files

Using the executables You can start SilverJRunner from the command prompt by
invoking the executable program SilverJRunner.exe. Type:

installdirectory\bin\SilverJRunner [options]
[protocol://]hostname[:port] databasename formname [appargs]

You can start SilverJ2EEClient from the command prompt by invoking the executable program
SilverJ2EEClient.exe. Type:

installdirectory\bin\SilverJ2EEClient [options]
[protocol://]hostname[:port] databasename clientname [appargs]

where:

For this value You specify

installdirectory The root directory where SilverJRunner and SilverJ2EEClient are
installed on the user machine. For example:

c:\SilverJRunner

options (Optional) Startup options for controlling the execution of
SilverJRunner or SilverJ2EEClient. Specify zero or more of these. For
example:

-ss_username=sam -ss_password=icecream

� See “Using startup options” on page 195.

protocol (Optional) One of the following HTTP protocols:

• http:// (default)

• https:// (for SSL connections)
186 Starting SilverJRunner and SilverJ2EEClient

eXtend Application Server Facilities Guide
For example:

c:\SilverJRunner\bin\SilverJRunner
-ss_username=sam -ss_password=icecream
http://corporate:8080 sales frmMonthlyQuota
myarg -myswitch -y 2001

or

c:\SilverJRunner\bin\SilverJ2EEClient
-ss_username=sam -ss_password=icecream
http://corporate:8080 sales quotaclient
myarg -myswitch -y 2001

hostname The host name (or Internet address) of the SilverStream server to
access. For example:

corporate

port (Optional) The TCP/IP port number that server uses. For example:

8080

The default is 80.

databasename The name of the SilverStream database containing the object
(form/view or client deployment) to run. For example:

sales

formname (For SilverJRunner only) The name of the form (or view) to run. For
example:

frmMonthlyQuota

clientname (For SilverJ2EEClient only) The name of the J2EE application client
deployment to run. For example:

quotaclient

appargs (Optional) Application-specific arguments that you want to pass
through to your form or client for processing. Specify zero or more of
these. For example:

myarg -myswitch -y 2001

� See “Passing application arguments” on page 200.

For this value You specify
Starting SilverJRunner and SilverJ2EEClient 187

5 SilverJ2EEClient and SilverJRunner
If you don’t want to type the command every time, you can create a batch (BAT) file to issue it.

Using SJR and SJC files Another alternative to starting SilverJRunner and
SilverJ2EEClient from the command prompt is to use SJR and SJC files:

• SJRs are SilverJRunner application files in which you store all the arguments you’d
otherwise type. Opening an SJR file automatically invokes the SilverJRunner executable
SilverJRunner.exe and uses those arguments.

• SJCs are SilverJ2EEClient application files in which you store all the arguments you’d
otherwise type. Opening an SJC file automatically invokes the SilverJ2EEClient
executable SilverJ2EEClient.exe and uses those arguments.

The associations between the SJR file extension and SilverJRunner.exe and between the SJC
file extension and SilverJ2EEClient.exe are automatically set up in Windows when you install
SilverJRunner and SilverJ2EEClient.

� To create an SJR file:

1. Open a new text file in an editor of your choice.

2. Type the following on a single line:

[options] [protocol://]hostname[:port] databasename formname
[appargs]

For example:
-ss_username=sam -ss_password=icecream

http://corporate:8080 sales frmMonthlyQuota
myarg -myswitch -y 2001

3. Save this text file with the extension SJR. For example:
quota.sjr

� To create an SJC file:

1. Open a new text file in an editor of your choice.

2. Type the following on a single line:

[options] [protocol://]hostname[:port] databasename clientname
[appargs]

For example:
-ss_username=sam -ss_password=icecream

http://corporate:8080 sales quotaclient
myarg -myswitch -y 2001

3. Save this text file with the extension SJC. For example:
quota.sjc
188 Starting SilverJRunner and SilverJ2EEClient

eXtend Application Server Facilities Guide
Once you have an SJR or SJC file, you can:

• Create a Windows shortcut to launch it

• Send it to someone in e-mail

• Link to it from any HTML page—for instance:
Monthly Quota Form

or
Quota Client

Running on UNIX or Linux

In UNIX or Linux, you can start SilverJRunner and SilverJ2EEClient by doing either of the
following:

• Using the executables

• Executing the JRunner class yourself

Using the executables You can start SilverJRunner from the command prompt by
invoking the executable program SilverJRunner. Type:

installdirectory/bin/SilverJRunner [options]

[protocol://]hostname[:port] databasename formname [appargs]

You can start SilverJ2EEClient from the command prompt by invoking the executable program
SilverJ2EEClient. Type:

installdirectory/bin/SilverJ2EEClient [options]
[protocol://]hostname[:port] databasename clientname [appargs]
Starting SilverJRunner and SilverJ2EEClient 189

5 SilverJ2EEClient and SilverJRunner
where:

For this value You specify

installdirectory The root directory where SilverJRunner and SilverJ2EEClient are
installed on the user machine. For example:

/export/home/sam/SilverJRunner

options (Optional) Startup options for controlling the execution of
SilverJRunner or SilverJ2EEClient. Specify zero or more of these.
For example:

-ss_username=sam -ss_password=icecream

� See “Using startup options” on page 195.

protocol (Optional) One of the following HTTP protocols:

• http:// (default)

• https:// (for SSL connections)

hostname The host name (or Internet address) of the SilverStream server to
access. For example:

corporate

port (Optional) The TCP/IP port number that server uses. For example:

8888

The default is 8080.

databasename The name of the SilverStream database containing the object
(form/view or client deployment) to run. For example:

sales

formname (For SilverJRunner only) The name of the form (or view) to run. For
example:

frmMonthlyQuota
190 Starting SilverJRunner and SilverJ2EEClient

eXtend Application Server Facilities Guide
For example:

/export/home/sam/SilverJRunner/bin/SilverJRunner
-ss_username=sam -ss_password=icecream
http://corporate:8888 sales frmMonthlyQuota
myarg -myswitch -y 2001

or

/export/home/sam/SilverJRunner/bin/SilverJ2EEClient
-ss_username=sam -ss_password=icecream
http://corporate:8888 sales quotaclient
myarg -myswitch -y 2001

If you prefer to work in the desktop environment, you can set up an icon to issue the command
or run from your file manager.

Executing the JRunner class yourself The SilverJRunner and SilverJ2EEClient
executables both run the class com.sssw.jrunner.JRunner (from the SilverJRunner.jar file in
your SilverJRunner lib directory). An alternative way to start SilverJRunner or
SilverJ2EEClient is to execute this class yourself, either from the command prompt or in your
own script.

This sample script starts SilverJRunner:

export SILVERSTREAMROOT=/export/home/sam/SilverJRunner
export JRE_HOME=$SILVERSTREAMROOT/jre
export PATH=$JRE_HOME/bin:$PATH
$SILVERSTREAMROOT/jre/bin/java -cp

$SILVERSTREAMROOT/lib/SilverJRunner.jar:
$SILVERSTREAMROOT/lib/jndi.jar:
$SILVERSTREAMROOT/lib/ejb.jar:
$SILVERSTREAMROOT/lib/activation.jar:

clientname (For SilverJ2EEClient only) The name of the J2EE application client
deployment to run. For example:

quotaclient

appargs (Optional) Application-specific arguments that you want to pass
through to your form or client for processing. Specify zero or more of
these. For example:

myarg -myswitch -y 2001

� See “Passing application arguments” on page 200.

For this value You specify
Starting SilverJRunner and SilverJ2EEClient 191

5 SilverJ2EEClient and SilverJRunner
$SILVERSTREAMROOT/lib/mail.jar:
$SILVERSTREAMROOT/lib/pop3.jar:
$SILVERSTREAMROOT/lib/xerces.jar:
$SILVERSTREAMROOT/lib/xml4j.jar:
$SILVERSTREAMROOT/lib/javax_sql.zip:
$SILVERSTREAMROOT/lib/javax_trans.zip"

com.sssw.jrunner.JRunner -ss_root="$SILVERSTREAMROOT"
-ss_noconsole "$@" -SS_FORM

Note that:

• This script adds SilverJRunner.jar (as well as various other JARs and ZIPs) to the user’s
classpath. For SilverJRunner, make sure this is the only SilverStream Silver*.jar file on
the classpath. For SilverJ2EEClient, you must also add SilverApplication40.jar to the
classpath.

• "$@" includes any command-line arguments provided by the user (startup options, server
host, database, form/client, application arguments). If you execute the JRunner class from
the command prompt, be sure to type those arguments directly.

• -SS_FORM indicates that you want to run SilverJRunner. To run SilverJ2EEClient (the
default), simply remove -SS_FORM.

Displaying a console window

This section describes various ways to display console information on the screen when running
SilverJRunner or SilverJ2EEClient.

Using -ss_showconsole with SilverJRunner Normally, SilverJRunner displays
windows only for the forms (and views) that make up your application. But when necessary, you
can force it to display a Java console window as well. The console enables you to see the
System.out and System.err output from your application, which can be particularly useful if you
need to debug a problem on the client.

Include the option -ss_showconsole when starting SilverJRunner if you want to display the
console window.

� For details, see “Using startup options” on page 195.

Coding forms to display the console When developing a form in the SilverStream
Form Designer, you can use the showConsole() method of the agGeneral instance variable
(com.sssw.rt.form.PvHelperGeneral class) to display the Java console programmatically. In that
case, you won’t need the -ss_showconsole option when starting SilverJRunner.
192 Starting SilverJRunner and SilverJ2EEClient

eXtend Application Server Facilities Guide
Using the console version of SilverJRunner The SilverStream development
environment on Windows provides another way to display standard output and error messages
from SilverJRunner. SilverJRunner_c.exe (in the SilverStream server’s bin directory) is a
console version of SilverJRunner that you can invoke instead of the usual end-user executable
(SilverJRunner.exe). You can start it from the command prompt by typing:

silverstreamdirectory\bin\SilverJRunner_c [options]
[protocol://]hostname[:port] databasename formname [appargs]

For example:

c:\SilverStream\bin\SilverJRunner_c
-ss_username=sam -ss_password=icecream
http://corporate:8080 sales frmMonthlyQuota
myarg -myswitch -y 2001

Any standard output and error messages from SilverJRunner then display in the command
prompt window you’re running from. An advantage of this approach is that you can see
messages related to startup issues.

Using the console version of SilverJ2EEClient The SilverStream development
environment on Windows provides a way to display standard output and error messages from
SilverJ2EEClient. SilverJ2EEClient_c.exe (in the SilverStream server’s bin directory) is a
console version of SilverJ2EEClient that you can invoke instead of the usual end-user
executable (SilverJ2EEClient.exe). You can start it from the command prompt by typing:

silverstreamdirectory\bin\SilverJ2EEClient_c [options]
[protocol://]hostname[:port] databasename clientname [appargs]

For example:

c:\SilverStream\bin\SilverJ2EEClient_c
-ss_username=sam -ss_password=icecream
http://corporate:8080 sales quotaclient
myarg -myswitch -y 2001

Any standard output and error messages from SilverJ2EEClient then display in the command
prompt window you’re running from. That includes messages related to startup issues.
Starting SilverJRunner and SilverJ2EEClient 193

5 SilverJ2EEClient and SilverJRunner
Displaying your own splash screen

SilverJRunner and SilverJ2EEClient enable you to specify a JPG file of your choice as the
splash screen to display whenever they start up.

� To specify the splash screen image:

1. Install your JPG file on the user machine in one of the following ways:

• In the file system, on a path that ends with
com\sssw\jrunner\Splash.jpg

• In a JAR or ZIP file containing that path

2. Set the AGCLASSPATH environment variable to specify either:

• The path leading up to the com directory
set AGCLASSPATH=c:\myapp

• The path of the JAR or ZIP file
set AGCLASSPATH=c:\myapp\mysplash.jar

How SilverJRunner updates itself

Whenever you start SilverJRunner, it automatically checks that it’s the correct version for the
SilverStream server you’re accessing. It compares the local SilverApplicationXX.jar file
(located in the user machine’s SilverJRunner lib directory) with the one on the server. If they
don’t match, it downloads the server’s version of SilverApplicationXX.jar into the local cache
and uses that. (If the local cache already contains that version, the download is skipped.)

After SilverJRunner downloads a version of SilverApplicationXX.jar, it starts a second VM to
reload its classes from that file.

SilverJ2EEClient in the development environment

When you invoke SilverJ2EEClient (or SilverJ2EEClient_c) in your development environment
to test a client deployment, make sure the current directory is not the one containing your local
development version of that client (compiled classes, JARs, and so on). Doing so causes
classpath confusion that may prevent the client from running properly.
194 Starting SilverJRunner and SilverJ2EEClient

eXtend Application Server Facilities Guide
Using startup options
There are two kinds of options you can provide when starting SilverJRunner or
SilverJ2EEClient:

• - options These are options specific to SilverStream. They are passed to the JRunner
class.

• + options (Windows only) Some of these options are passed directly to the Java
interpreter (at which time the + characters are changed to - characters). Others are handled
by the SilverJRunner or SilverJ2EEClient executable to launch the Java interpreter.

Using - options

The following table describes the - options you can provide when starting SilverJRunner or
SilverJ2EEClient:

Option Description

-ss_username=username Specifies the user name to use when logging in to a
SilverStream server. For example:

-ss_username=sam

If you don’t supply this option and user authentication is
required, you’ll get a dialog prompting for user name and
password.

-ss_password=password Specifies the password to use when logging in to a
SilverStream server. For example:

-ss_password=icecream

If you don’t supply this option and user authentication is
required, you’ll get a dialog prompting for user name and
password.
Using startup options 195

5 SilverJ2EEClient and SilverJRunner
-ss_proxy=proxyserver Specifies a proxy server that you want to use. Include the
proxy server name and, optionally, its port number (the default
is 80). Examples:

-ss_proxy=corpproxy
-ss_proxy=corpproxy:8080

Using SSL To use SSL with a proxy server, simply specify
the HTTPS protocol for your SilverStream server:

SilverJRunner -ss_proxy=corpproxy
https://finance payroll frmSalary

or

SilverJ2EEClient -ss_proxy=corpproxy
https://finance payroll salaryclient

� To learn about configuring a SilverStream server for
SSL, see the chapter on setting up security in the
Administrator’s Guide.

-ss_dialect=locale (For SilverJRunner only) Sets the locale for use with
resourced strings. For example:

-ss_dialect=de_DE_EURO

Valid locales are defined by the Java VM. The default locale
is en_US for US English.

Option Description
196 Using startup options

admSecurity.html

eXtend Application Server Facilities Guide
-ss_keepalive (For SilverJRunner only) Used on Windows NT to prevent
forms from hanging when the network connection goes down.

How it works -ss_keepalive sets the socket option
SO_KEEPALIVE to true for TCP connections (the default is
false). A TCP packet (keepalive probe) is then sent out
periodically from SilverJRunner to the server to confirm that
the TCP connection is still alive. If the TCP connection has
died, a socket exception is thrown to prevent the thread from
blocking on socket read. This dead connection is then released
from SilverJRunner.

Setup requirements To use -ss_keepalive, you must set the
following registry key on the Windows NT machine running
SilverJRunner:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\Tcpip\Parameters\KeepAliveTime

KeepAliveTime is a socket parameter for TCP (don’t confuse
it with the SilverStream server’s KeepAlive property). It
controls how often the connection is tested. For example, you
might set it to 60000 milliseconds (one minute); the default is
two hours. Reboot the machine after you set KeepAliveTime.

Catching the exception You can code your forms to catch
the exception that’s thrown if the connection dies:

java.net.SocketException: Connection reset by
peer: JVM_recv in socket input stream read

Then you can perform whatever processing is needed for the
situation.

Option Description
Using startup options 197

5 SilverJ2EEClient and SilverJRunner
-ss_showconsole (For SilverJRunner only) Displays a Java console window for
the SilverJRunner session.

� For more information, see “Displaying a console
window” on page 192.

-c cachesize Specifies the size (in bytes) of the disk cache for
SilverJRunner or SilverJ2EEClient. This cache is used to hold
any downloaded JAR files needed to run a form/view or
client.

You can type the size in any of the following formats:

-c 2000000
-c 2000K
-c 2M

The default is 5M (usually enough for most applications).

-v (For SilverJRunner only) Required to run a view. This option
tells SilverJRunner that the formname you’ve supplied is the
name of a view.

If you omit -v, SilverJRunner won’t find your view (because it
will look for a form with that name).

-?

-h

-help

Displays usage information about SilverJRunner or
SilverJ2EEClient and how to start it.

Option Description
198 Using startup options

eXtend Application Server Facilities Guide
Using + options

The following table describes the SilverStream + options you can provide when starting
SilverJRunner or SilverJ2EEClient in Windows:

You can also pass standard VM options directly to the Java interpreter by specifying them as +
options. The + character is automatically converted to - as the option is passed.

For example, specifying:

+verbose

passes this option to the Java interpreter as:

-verbose

Option Description

+classic, +client,
and +server

Specifies the VM to use.

� For more information, see Specifying the VM to use.

+profile Turns on profiling for the session.

HotSpot troubleshooting If you’re running a version of the Sun
HotSpot JVM that doesn’t support the Java Virtual Machine Profiler
Interface (JVMPI), you’ll need to turn off HotSpot to do profiling.
Specify the following additional option to turn off HotSpot and use
the classic JVM instead:

+classic

If you upgrade the server Normally, SilverJRunner is self-
updating, which means at startup it checks to see if there is a newer
version on the server; if so, the newer version is automatically
downloaded to the client machine. However, if you start
SilverJRunner with the +profile option, it will not self-update. So if
you upgrade the SilverStream server, you should run SilverJRunner
without +profile one time to get the updated client.

� For more information, see the SilverStream Profiler chapter in
the Tools Guide of the server’s Classic Development Help.

+verbose:vmopts (For SilverJRunner_c or SilverJ2EEClient_c) Specifies that you
want to output only startup options to the screen, without all the
other information generated in verbose mode.
Using startup options 199

admRun.html#SpecifyingtheVMtouse

5 SilverJ2EEClient and SilverJRunner
Passing application arguments
When developing a SilverStream form or a J2EE application client, you can code it to look for
one or more application-specific arguments at runtime and then perform some processing based
on those arguments. To help you do that, this section describes how to:

1. Pass application arguments to a form when starting SilverJRunner or to a client when
starting SilverJ2EEClient

2. Enable the form or client to access and use those arguments

Specifying the arguments to pass

When starting SilverJRunner or SilverJ2EEClient, add any application arguments to the end of
the command (after the name of the form or client to run). For instance, to pass the arguments
-dollars and 2 to the frmRates form (in the service database on the custserv server), you specify:

SilverJRunner custserv service frmRates -dollars 2

To pass them to the client named rateclient, you specify:

SilverJ2EEClient custserv service rateclient -dollars 2

Here are some additional rules to keep in mind:

• Arguments before the form/client name are assumed to be startup options and are not
passed to the form or client.

• Arguments that begin with -ss_ are assumed to be startup options and are not passed to
the form or client (even if they are after the form/client name).

• Startup options not beginning with -ss_ (such as -c and -v) must be before the
form/client name. Otherwise, they are assumed to be application arguments and are passed
to the form or client.

� For more information on the command syntax, see “Starting SilverJRunner and
SilverJ2EEClient” on page 186.
200 Passing application arguments

eXtend Application Server Facilities Guide
Accessing the arguments from a form

You can access the application arguments that SilverJRunner passes by coding the
agGeneral.getArguments() method on your form (agGeneral is a variable that’s automatically
included on your form to provide an instance of the PvHelperGeneral class from
com.sssw.rt.form). The getArguments() method returns a string array containing the passed
application arguments.

For example, you might code the following for the form’s formActivate event:

// Get the arguments passed in from SilverJRunner
String[] passedArgs;
passedArgs = agGeneral.getArguments();

// Check those arguments, then use them
if (passedArgs != null && passedArgs.length == 2) {
 Field1.setText(passedArgs[0]);
 Field2.setText(passedArgs[1]);
}
else {
 agDialog.showMessage("Please supply exactly 2 args");
}

Accessing the arguments from a client

When SilverJ2EEClient starts a client, it invokes the main() method of the client’s main class
and passes any application arguments to that method as a String array. You can then read them
just as you would in any Java application.

� For sample client code that accesses passed application arguments, see the documentation
on J2EE application clients in the eXtend Workbench help.
Passing application arguments 201

5 SilverJ2EEClient and SilverJRunner
Supporting access to secured EJBs
An Enterprise JavaBean (EJB) deployed on the SilverStream server may be secured so that an
IIOP over SSL connection is automatically used when someone tries to access it. To support this
kind of connection, SilverJRunner and SilverJ2EEClient include the following JAR file of CA
(Certificate Authority) certificates: agrootca.jar (located in the SilverJRunner lib directory).

If you need to use a CA certificate that isn’t in this file, you must add it. Use the JAR editing tool
of your choice (such as the Sun JAR utility or WinZip).

� For more information on secured connections to EJBs, see the chapter on setting up
security in the Administrator’s Guide.
202 Supporting access to secured EJBs

admSecurity.html
admSecurity.html

6
 Server Implementation Notes Chapter 6
This chapter presents some implementation details about the SilverStream eXtend Application
Server that you may need to reference. Topics include:

• J2EE containers

• Session-level failover

• CORBA support

• XML support

• Internationalization support

J2EE containers
At the heart of the J2EE component model are containers. Containers are the runtime
environments supplied by J2EE platform providers such as SilverStream. Containers provide
life-cycle management and other services so that application developers can concentrate on the
presentation and business logic of their applications.

The SilverStream eXtend Application Server implements each of the three kinds of J2EE
container:

• Web container

• EJB containers

• Client container

Web container

The Web container contains Web applications, which are deployed in Web archive (WAR)
files. Each WAR you upload to a SilverStream server functions as a complete, standalone
application. The WAR file must contain all of the JSP pages, servlets, JavaBeans components,
utility classes, static HTML pages, images, and sounds used by the application.

Once you’ve uploaded a WAR file to the SilverStream server, each JSP page in the WAR
behaves like a servlet. The page is associated with an URL. When a Web client or SilverStream
object performs an operation on that URL, the SilverStream server finds the associated servlet,
instantiates it, and calls the init() and service() methods associated with the servlet. When the
servlet is about to be unloaded, the server calls the destroy() method.
203

6 Server Implementation Notes
The servlet context for any JSP page (or servlet) within the WAR is the WAR itself. That means
a JSP page or servlet cannot forward to (or include) a JSP page or servlet that resides in a
different WAR, since the WAR defines the boundaries of the application. (Similarly, a JSP page
cannot forward to (or include) a classic SilverStream dynamic page.)

JSP pages running on a SilverStream server are not persistent. A new instance of a JSP page
might be created for each HTTP request (depending on whether the JSP page is defined as
threadsafe in the deployment descriptor).

SilverStream uses the Servlet API to implement response buffering. SilverStream uses the
following methods of the ServletResponse interface to buffer response data:

• getBufferSize()

• setBufferSize()

• isCommitted()

• reset()

• flushBuffer()

If a servlet does not specify the length of its content by calling setContentLength(), the
SilverStream server uses HTTP 1.1 chunking to transfer the content as a series of chunks.

How URLs are processed

When a Web client or SilverStream object requests a resource in a WAR, the SilverStream
server breaks the request URL down into several components:

The following example shows the components of the URL for a WAR file deployed at myWar:

http://host/db/path/to/war/myWar/foo.jsp/pathinfo/for/jsp

Here the context path is /db/path/to/war, the servlet path is /myWar/foo.jsp, and the pathinfo
is /pathinfo/for/jsp.

Component Description

context path Identifies the WAR

servlet path Identifies the requested item (JSP page, servlet, or other resource) in the
WAR

pathinfo (Optional) Provides extra data to be passed to the servlet. In general,
performance is better when query parameters are passed to a request
instead of pathinfo data (because pathinfo slows down the lookup
process, but parameters do not).
204 J2EE containers

eXtend Application Server Facilities Guide
Dispatching requests within a WAR

A JSP page or servlet can forward to (or include) any other JSP page or servlet that resides in
the same WAR.

If you use the <jsp:forward> or <jsp:include> action, the target URL can be context-relative
or page-relative. A context-relative URL begins with a slash (/) and is interpreted relative to the
WAR. A page-relative URL does not begin with a slash and is interpreted relative to the current
page.

Suppose the complete URL for a JSP page is
http://localhost/myDatabase/jsptests/myjsps/test.jsp, and the URL you give to the WAR at
deployment time is jsptests. In this case you can forward a request to the page by embedding
the following tag in a JSP page in the same WAR:

<jsp:forward page="/myjsps/test.jsp"/>

In a servlet, if you use the getRequestDispatcher() method of the ServletContext object to
specify the target URL, the URL is context-relative. It must begin with a slash and is interpreted
relative to the WAR. To forward a request to
http://localhost/myDatabase/jsptests/myjsps/test.jsp, you could embed the following code in
a servlet in the same WAR:

ServletConfig sconfig = getServletConfig();
ServletContext sc = sconfig.getServletContext();
RequestDispatcher rd =

sc.getRequestDispatcher("/myjsps/test.jsp");
rd.forward(req, res);

The forward() method call passes the implicit request and response objects as arguments.

JSP pages and session management

The SilverStream server can use either cookies or URL rewriting to track sessions. SilverStream
uses cookies if the browser supports them and uses URL rewriting if the browser does not.

� For more information, see the section on session management in Server Configuration in
the Administrator’s Guide.
J2EE containers 205

admServer.html#Sessionmanagement

6 Server Implementation Notes
Dispatching requests to a WAR from a page or business object

Although each WAR defines a standalone application, the SilverStream server will allow you to
forward to a JSP page (or servlet) in a WAR from a classic SilverStream dynamic page or
business object running on the same server. In this case the URL you specify is server-relative.
The URL must begin with a slash followed by the name of the target database. For example, in
the pageRequestBegin event for a page, you could add this code to redirect the request to a JSP
page:

ServletConfig sconfig = getServletConfig();
ServletContext sc = sconfig.getServletContext();
RequestDispatcher rd = sc.getRequestDispatcher

("/myDatabase/jsptests/jspurl1/myjsps/test.jsp");
rd.forward(req, res);

EJB containers

The EJB container provides the runtime environment for EJB2.0 and EJB 1.1 Enterprise
JavaBeans. The runtime environment includes such low-level services as naming services,
remote access, security, and transaction support.

This section discusses the EJB 2.0 container and includes these topics:

• About existing EJB1.1 beans

• About the EJB 2.0 container

• About the EJB 1.1 container

• Calling EJBs

About existing EJB1.1 beans

If you have existing EJB 1.1 beans, you can deploy them to the EJB container, but first you’ll
have to update the deployment plan to use the correct DTD. For more information on EJB
deployment plans, see Chapter 3, “Deployment Plan DTDs”.

The SilverStream eXtend Workbench Deployment Plan Editor will convert the deployment
plan for you. For more information on using the Deployment Plan Editor convert deployment
plans, see the Workbench help.
206 J2EE containers

eXtend Application Server Facilities Guide
There are a few cases when you cannot deploy an existing EJB 1.1 bean to the SilverStream 2.0
container. For these cases (and to support backward compatibility), SilverStream supplies an
EJB 1.1-only container. You must use the EJB 1.1 container if your EJB 1.1 JARs contain CMP
entity beans and use SilverStream extensions to specify CMP details (such as expressions,
foreign bean mappings, and complex fields). These extensions are supported by the EJB 1.1
deployment plan, but not the 2.0 plan. These extensions are deprecated and should be upgraded
as soon as is possible. When you use Workbench to update the deployment plan for CMP entity
beans, you will need to update the WHERE Clause (because SilverStream expressions in finder
methods are not supported). Workbench converts the SilverStream expressions to a simple
expression that includes WHERE clause of the SQL statement and one or more input
parameters. This is similar to EJB-QL. The first input parameter from the finder is converted to
?1, the second is converted to ?2, and so on. For example:

 <sqlWhereClause>
 WHERE COL1=?1
 </sqlWhereClause>

� For more information on upgrading, see the Workbench help.

About the EJB 2.0 container

This section describes the features of the EJB2.0 container and includes these topics:

• EJBs supported by the EJB2.0 container

• EJB 2.0 container services

EJBs supported by the EJB2.0 container

The EJB2.0 container supports:

• Message-driven beans—Message-driven beans let you access messages from a queue or
a topic managed by the JMS message server.

• Session beans—Both stateful and stateless session beans.
J2EE containers 207

6 Server Implementation Notes
• Entity beans—Supports both bean-managed (BMP) and container-managed (CMP) entity
beans. It supports the following entity bean features.

Feature Description

Container-managed
persistence

Supports CMP via object-relational mapping, and supports
access to legacy systems through Resource Adapters. CMP
entity beans can comply with the EJB 1.1 or 1.2 persistence
model, but they cannot include SilverStream’s proprietary
features supported in earlier versions (such as foreign bean
mapping and WHERE clauses that use SilverStream’s
expression language).

Autoincrement fields Supports autoincrement fields in target databases via the
autoInc element in the deployment plan. If the target
database supports autoincrement fields, you need to add an
empty autoInc element to the deployment plan. For databases
that do not support autoincrement, you can use the
schemaName, autoIncTableName, and columnName
elements to generate a unique number. For Oracle databases,
you can use the autoIncSequenceName element to specify
the sequence name.

Concurrency Supports both optimistic and pessimistic concurrency. Use
the isolationLevel element of the deployment plan to specify
the concurrency strategy.

Controlling container-
generated SQL

To view the container-generated SQL in the server console,
start the server with +DSSSWEJBdebug=1. To override the
container-generated SQL, specify the SQL to use instead in
the sqlSubstitutionList element in the deployment plan. The
container does not perform any error checking on the
substituted SQL.

Data loading Supports both eager and lazy loading. Use the
delayInstantiation element in the deployment plan to specify
how to load data. The default is false (eager loading).

Link tables Supports link tables in many-to-many relationships only. Use
the linkTable element in the deployment plan.
208 J2EE containers

eXtend Application Server Facilities Guide
EJB 2.0 container services

This section describes the services provided when an EJB is deployed to the SilverStream
eXtend Application Server EJB 2.0 container.

Debugging

The EJB 2.0 container provides debugging support at both deployment time and runtime.

Deployment debugging support Deployment debugging support is provided through
the command-line tool SilverCmd. The following table describes the commands that are most
useful for debugging:

� For more information on SilverCmd, see Chapter 4, “SilverCmd Reference”

SilverCmd command Description

ValidateEJB Validates EJBs against the specification

Validates the deployment plan and the deployment descriptor

Is called by both SilverCmd DeployEAR and DeployEJB

Generates errors and warnings

DeployEAR Allows you to specify verbose level (-v). You can specify three
levels of messages:

• Low: specify 1

• Medium: specify 3

• High: specify 5

To skip validation, use -n

DeployEJB
J2EE containers 209

6 Server Implementation Notes
Runtime debugging support Runtime debugging support is provided through a server
startup switch or a command shell from the server console. The following table describes the
switches and how to use them:

Server switch Description

SSSWEJBDebug Lets you specify the types of messages the server should
output. Use this syntax when starting the server:

SilverServer +DSSSWEJBDebug=n

Valid values for n are:

• 1: Shows the SQL the container generates for CMP
entity beans (as an alternative, you can use sql.debug)

• 2: Shows transaction starts, commits, and rollbacks

• 4: Shows any Exceptions

• 8: Shows security

• 32: Shows the contents of the context pool

To specify more than one type of output Use the sum
of values. For example, to see SQL and Exceptions, use
the value 5.

Viewing messages You can view the messages for all
deployed beans or for a specific bean. To see values for a
subset of beans, use +DSSSWEJBDebugName
(described next).

SSSWEJBDebugName Lets you specify a single bean or a set of beans for which
you want to see EJB debug messages. Use this in
conjunction with the SSSWEJBDebug flag. The syntax
when starting the server is:

SilverServer +DSSSWEJBDebugName=name

where name:

• is the ejb-name element of the deployment descriptor

• is case-sensitive

• can be a single letter or a string (debug messages will
display for any bean whose name contains the letter or
string)
210 J2EE containers

eXtend Application Server Facilities Guide
Instance pooling

The EJB 2.0 container supports instance pooling for entity, stateless session, and message-
driven beans. Pooling is per bean and is specified in the deployment plan. To reconfigure the
pool size, you must redeploy the bean.

For entity and session beans, you specify values for the following elements:

Entity and stateless session bean pooling policies The EJB 2.0 container does
not create the instance pool when you deploy the bean; instead, it populates the pool as the need
for instances increases.

• When the poolingPolicy element is set to FAIL, the server throws an exception when
maximum pool size is exceeded.

• When the poolingPolicy element is set to CREATE, the server manages the pool as
follows:

• When the pool is empty, SilverStream does not wait for an instance to be freed; it
simply creates a new instance for the caller

• Until the pool reaches maximum pool size, the container returns all instances to the
pool when clients are finished with them

• When the pool is at maximum pool size, SilverStream discards the instances that are
freed

• When pool size is set to zero, instances are not reused

For message-driven beans, the container provides instance pooling by implementing the
ServerSessionPool interface.

Deployment plan element What you do

Initial pool size Set this to a number greater than zero to enable pooling

Maximum pool size Set the maximum number of unused instances in the pool

The default is 500 (for session beans), 0 for entity beans,
and 5 for message-driven beans

Pooling policy Define what happens when the maximum pool size is
reached

Values are CREATE and FAIL (described below)
J2EE containers 211

6 Server Implementation Notes
Load balancing

Load balancing is per session. All EJBs used within a single session reside on one server within
the cluster. Load balancing is transparent to the user; the client can do a normal JNDI lookup,
and the naming server selects the server for the bean to run on.

When using EJBs within a cluster, you must start your servers on different name service ports.
The default name service port is 54890. You can configure the name service port using the
SMC.

� For more information on SilverStream clustering mechanisms, see the Administrator’s
Guide.

Naming service

EJBs are registered in the root context of the Java Naming and Directory Interface (JNDI). If
you specify a hierarchical naming structure for JNDI names, bean references, resource
references, environment variables, or UserTransactions in the deployment plan, the container
creates any intermediate subcontexts that do not already exist.

By default, SilverStream registers bean references, environment variables, and resource
references in the java:comp/env context. You can follow the recommendations of the EJB
specification and store the objects in separate subcontexts, but SilverStream does not enforce
these naming conventions—so you can use the naming conventions that work best in your own
production environment.

Remote access

SilverStream supports access to EJBs via RMI/IIOP using the jBroker Object Request Broker
(ORB). jBroker is an enterprise-class Java-based CORBA ORB.

For portable look ups for EJBs, use the CORBA name syntax like this:

corbaname:iiop:host:port#name

For example:

corbaname:iiop:MyMachine:54520#MyEJB

To look up a local bean use:

EJBLocalHome/beanName

� For more information on jBroker, see the documentation included in the jBroker
subdirectory of the SilverStream installation directory.
212 J2EE containers

eXtend Application Server Facilities Guide
Security

The EJB 2.0 container manages security at runtime using:

• Authentication of principals

• Access authorization for EJB calls and resource manager access

• Secure communication with remote clients

Authentication and caller propagation

When you call an EJB residing on a SilverStream server, the container authenticates the user
and uses the caller’s identity for the duration of the caller’s session on that server. All method
calls run with the identity of that session. You can map a role name to a principal (user, group,
or list of principals) in the deployment plan.

Access authorization

Access authorization is defined by the security-role and method-permission elements specified
in the deployment descriptor. If you secure at least one method of a bean in the EJB JAR, you
must secure all methods—or the container assumes all methods with unspecified security are
restricted and cannot be called by any user. In addition, you can specify a set of methods that
should not be called using the exclude-list element of the deployment descriptor. When a
restricted method is called, the container throws an AccessRightsViolation exception.
Alternatively, you can choose a nonsecure mode by not securing any methods.

Secure communications

You can establish a secure connection between an EJB client and the SilverStream server using
SSL. The jBroker ORB provides the IIOP over SSL support for RSA only.

You do not need to be running HTTPS. The following are required:

• An RSA certificate must be installed on the server.

• The deployment plan must specify:

• One or more cipher suites for integrity and confidentiality (integrity and
confidentiality may have different sets of cipher suites)

• An iorSecurityConfig element for each session and entity bean

• For external and SilverJRunner clients, you also need the agrootca.jar as described in the
table in “Accessing the server” on page 219.

� For more information on establishing a secure connection between an EJB client and the
SilverStream server, see the chapter on setting up security in the Administrator’s Guide.
J2EE containers 213

6 Server Implementation Notes
Transaction support

The EJB 2.0 container supports distributed transactions via the jBroker Transaction Manager,
which fully implements Java Transaction Service (JTS).

If the transaction attribute is not specified in the deployment descriptor, the container uses the
Supports attribute as the default transaction attribute.

About the EJB 1.1 container

This section describes:

• EJBs supported by the EJB 1.1 container

• EJB 1.1 container services

EJBs supported by the EJB 1.1 container

The EJB 1.1 container supports the following Enterprise Java Beans:

• Session beans—stateful and stateless session beans.

• Entity beans—bean-managed (BMP) and container-managed (CMP). It supports the
following entity bean features.

Feature Description

Container-managed
persistence

Supports container managed persistence via object-relational
mapping. CMP entity beans must comply with EJB1.1
persistence and can contain SilverStream expressions
(although beans that use nonstandard container features are
not portable.)

Autoincrement fields Supports autoincrement fields automatically.

Concurrency Supports optimistic concurrency.

Data loading Supports both eager and lazy loading. Use the
delayInstantiation element in the deployment plan to specify
how to load data. The default is false (eager loading).

Removing entity
beans

Delays cleaning up remote object references for entity beans
until the associated session is invalidated or expires.
214 J2EE containers

eXtend Application Server Facilities Guide
EJB 1.1 container services

The following services are provided when an EJB is deployed to the SilverStream eXtend
Application Server:

Container service Description

Instance pooling Maintains a pool of idle/unused stateless session beans. This allows
the container to dynamically assign instances of a stateless session
bean to different clients, which allows for better performance and
scalability. You can define a maximum pool size for each stateless
session bean at deployment. The default is 500.

SilverStream does not create the instance pool when you deploy the
bean; instead it populates the pool as the need for instances
increases. It manages the pool as follows:

• The container returns all instances to the pool (unless the pool has
reached max pool size) when clients are finished with them.

• If the pool is at max pool size, the container discards the
instances that are freed.

• When the pool is empty, the container does not wait for an
instance to be freed; it simply creates a new instance for the
caller. When the client is finished with that instance, the
container discards it instead of putting it back in the pool. This
way the maximum pool size is never exceeded.

• To reconfigure the max pool size, you must redeploy the bean.

• It is valid to set the pool size to zero. When it is set to zero,
instances are never reused.
J2EE containers 215

6 Server Implementation Notes
Load balancing Load balancing is per session. All EJBs used within a single session
reside on one server within the cluster. Load balancing is
transparent to the user; the client can do a normal JNDI lookup, and
the naming server handles the selection of the server to run the bean
on.

When using EJBs within a cluster, you must start your servers on
different name service ports. The default name service port is
54890. You can configure the name service port using the SMC.

Failover is your responsibility the developer’s responsibility.

� For more information on SilverStream clustering
mechanisms, see the Administrator’s Guide.

Naming service EJBs are registered in the root context of the Java Naming and
Directory Interface (JNDI). If you specify a hierarchical naming
structure for JNDI names, bean references, resource references,
environment variables, or UserTransactions in the deployment plan,
the container creates any intermediate subcontexts that do not
already exist.

By default, the container registers bean references, environment
variables, and resource references in the java:comp/env context.
You can follow the recommendations of the EJB specification and
store the objects in separate subcontexts, but the container does not
enforce these naming conventions—so you can use the naming
conventions that work best in your own production environment.

Remote access The SilverStream server supports access to EJBs via RMI/IIOP
using the jBroker Object Request Broker (ORB). jBroker is an
enterprise-class Java-based CORBA ORB.

� For more information on jBroker, see the documentation
included in the jBroker subdirectory of the SilverStream installation
directory.

Container service Description
216 J2EE containers

eXtend Application Server Facilities Guide
Security • Support security at runtime using: Authentication of principals

• Access authorization for EJB calls and resource manager access

• Secure communication with remote clients

Authentication and caller propagation When you call an EJB
residing on a SilverStream server, the container authenticates the
user and uses the caller’s identity for the duration of the caller’s
session on that server. All method calls run with the identity of that
session. You can map a role name to a principal (user or group
name).

Access authorization Access authorization is defined by the
security-role and method-permission elements specified in the
deployment descriptor. If you secure at least one method of a bean
in the EJB JAR, you must secure all methods—or the container
assumes all methods with unspecified security are restricted and
cannot be called by any user. When a restricted method is called,
the container throws an AccessRightsViolation exception.
Alternatively, you can choose a nonsecure mode by not securing
any methods.

Secure communications You can establish a secure connection
between an EJB client and the SilverStream server using SSL. The
jBroker ORB provides the IIOP over SSL support for RSA only.

You do not need to be running HTTPS. The following are required:

• An RSA certificate must be installed on the server

• The deployment plan must specify SSL and one or more valid
cipher suites (per bean using IIOP over SSL)

• For external and SilverJRunner clients, you also need the
agrootca.JAR as described in the table in “Accessing the server”
on page 219

� For more information on establishing a secure connection
between an EJB client and the SilverStream server, see the chapter
on setting up security in the Administrator’s Guide.

Container service Description
J2EE containers 217

admSecurity.html

6 Server Implementation Notes
Calling EJBs

You can access EJBs from:

• J2EE components (EARs, EJBs, WARs, or application clients) that are deployed on the
same server as the EJB they are calling

• J2EE components deployed on a different server from the EJB they are calling

• Applications that are not deployed to a container (often referred to as standalone or
external clients)

Before a J2EE component or external client can find and use a deployed EJB, it must connect
to the server and establish a session. (The session allows the SilverStream server to authenticate
the user of the EJB.) When the application is finished using the EJB, it should end the session.

Transactions The EJB 1.1 container provides transaction support within a single
database. It does not support distributed transactions. It supports
user transactions via the javax.transaction.UserTransaction
interface. The container binds the UserTransaction to the JNDI
name RMI/SilverStream-UserTransaction. For session beans, the
UserTransaction is available as part of the bean environment
context or as a method on the javax.ejb.SessionContext.

If the transaction attribute is not specified in the deployment
descriptor, the container uses the Supported attribute as the default
transaction attribute.

Container service Description
218 J2EE containers

eXtend Application Server Facilities Guide
Accessing the server

How you access the SilverStream server depends on the type and location of your client, as
described below:

Client type What to do

A J2EE component
deployed on the
same SilverStream
eXtend Application
Server as the target
EJB

No explicit connection is required. The SilverStream server
automatically establishes and manages the session.

J2EE components
calling EJBs on a
different
SilverStream eXtend
Application Server

The J2EE component must explicitly connect and establish a
session by calling a variant of the
com.sssw.rt.util.AgRuntime.connect() method—for example:

AgrServerSession mySess =
AgRuntime.connect(otherHost);

Use a full specification to the other server name in the
javax.naming.InitialContext.lookup() method.

Connecting to a remote server inside a firewall To call an EJB
that resides on a server inside a firewall that filters out HTTP
traffic, use the connectRMI() method of the com.sssw.rt.util
AgRuntime class instead of connect(). This establishes an
RMI/IIOP connection to the server instead of an HTTP connection.
J2EE containers 219

6 Server Implementation Notes
External clients The external client must explicitly establish a session as described
above. In addition, an external client accessing an EJB needs a JAR
that contains the EJB’s interfaces (for compile-time references) and
the container-generated stubs (for runtime). The nature of the JAR
you use depends on the version of the EJB container you are
accessing:

• For the EJB 2.0 container, you should create an EJB client
JAR when you develop your EJBs and make sure the
deployment descriptor includes the ejb-client-jar element. When
this element is present, the container generates stub classes,
places the stubs in the client JAR, and uploads the client JAR to
the server.

• For the EJB 1.1 container, external clients must use the EJB
Remote JAR, which is created by the container during
deployment. For more information, see Chapter 2, “J2EE
Archive Deployment”.

Downloading the JAR from the server Since both the EJB
client JAR and the Remote EJB JAR are generated by the container
and reside on the server, you can use the SilverCmd PublishToFile
utility to download either JAR from the server to the desired
location on disk. Put the disk location of the appropriate JAR on
the classpath of the external client. Remember that you must
download an updated version each time you make changes to the
EJB and redeploy it.

Client type What to do
220 J2EE containers

eXtend Application Server Facilities Guide
Client container

J2EE application clients are the standard way to provide Java-based clients that run on user
machines and access J2EE servers. They are hosted by a client container that (at minimum)
provides JNDI namespace access. Beyond that, the J2EE specification allows for a wide range
of client container implementations, from basic to robust.

The SilverStream server supplies a client container named SilverJ2EEClient that users can
invoke to run J2EE application clients you’ve deployed to the SilverStream server.
SilverJ2EEClient provides a robust set of supporting services, including:

• Easy container installation

• Automated client deployment to user machines

• User authentication and session housekeeping

• JNDI namespace access

� For details, see Chapter 5, “SilverJ2EEClient and SilverJRunner”.

External clients using
SSL

External clients using SSL must have access to the same JAR as
other external clients as described above—and must also have
access to agrootca.JAR. The agrootca.JAR file contains every
Certificate Authority (CA) that is supported (by default) on the
SilverStream server. This file is installed in the SilverStream
installation directory under the \lib subdirectory.

If you need to use a CA not in this file, you must add it to the file
and propagate this change to all SilverJRunner and external clients
that require this CA. You can modify this file using any tool that
allows you to modify the contents of a JAR file (such as Sun’s JAR
utility or Winzip).

SilverJRunner clients can automatically locate this file; but for
external Java clients, you must specify agrootca.JAR’s location
using the AGROOTCA system-level Java property.

Client type What to do
J2EE containers 221

6 Server Implementation Notes
Session-level failover
The SilverStream eXtend Application Server supports session-level failover for Web
applications (WARs) and stateful session beans (EJB JARs). Session-level failover refers to the
ability of an application to retain temporary user data (state) across server failures in a cluster.
The data is stored in a persistent storage repository (such as a database or file system shared by
the servers in the cluster) so that it can be recovered by any server in the cluster in the event of
a server failure.

To support session-level failover, you must have a hardware dispatcher installed as the
dispatcher for your cluster. All clients accessing the applications configured for session-level
failover should access the application via the cluster’s (hardware) dispatcher.

Failover support is not a mechanism for load-balancing EJBs belonging to a single session
across multiple servers.

EJB support for session-level failover

The EJB container supports session-level failover for stateful session beans (local and remote).
The stateful beans must meet these requirements:

• The recoverable element in the SilverStream deployment plan must be set to true.

• The session bean must support activate and passivate as described in the section on
instance passivation and conversational state in the EJB2.0 specification.

• The session bean’s methods must be transactional (specified in the deployment
descriptor). Changes to the session bean’s state that occur outside of a transaction are not
recoverable if the system crashes; changes to the session bean’s state that occur in the
context of a transaction are recoverable.

How session-level failover works for stateful session beans

If your session beans meet the requirements listed above and a failure occurs, the recovery
works like this:

1. At the end of each transaction that includes one or more recoverable stateful session
beans, the EJB container passivates and serializes all the recoverable beans used in the
transaction and saves them to the database (the AgSessBeans table in the SilverMaster
database.)

2. As long as the server is up, the client will continue to use the same server.
222 Session-level failover

eXtend Application Server Facilities Guide
3. If the client gets a communication failure on a remote call, it assumes the server failed.

• If the failure occurs between transactions, the client automatically chooses another
server in the cluster and retries the call to it. (It does not require a hardware dispatcher.)
The session bean’s state is then restored from the database on the new server just as
though the bean had been previously passivated.

• If the failure occurs when there is already a transaction in progress, the call is not
automatically retried, instead the transaction is rolled back and the client gets the
exception. It is the client’s responsibility to recover from a transaction rollback (for
example, the client can retry the call).

The performance of your EJB applications might be impacted if the recoverable session bean
does a lot of work in the ejbActivate() method. For example, if the session bean allocates and
caches a database connection.

Server settings to support session-level failover To support session-level failover
when using IIOP over SSL, you must also configure a range of ports for IIOP SSL
communications for the server.

� For more information on setting the range of ports, see the section on specifying ORB
settings in the Administrator’s Guide.

Web application support for session-level failover

The WAR container supports session-level failover. The Web application must meet the
following requirements:

• The distributable element is present in the deployment descriptor

• The recoverable element in the SilverStream deployment plan is set to true

• The components in the WAR follow the rules about distributable objects outlined in the
Servlet 2.3 specification.

• The objects written to the HTTPSession object must be Serializable. The SilverStream
server also supports failover of EJB references and UserTransaction objects.

• State cannot be stored in static or instance variables.
Session-level failover 223

6 Server Implementation Notes
How session-level failover works for Web applications

If your Web application meets the requirements listed above and a failure occurs, the session-
level failover recovery works like this:

1. On each HTTP request to the Web application, the server serializes the HTTPSession state
to the database (the AgSessBeans table of the SilverMaster) at the end of each request.

Because the container passivates, serializes, and saves the HTTPSession state to the
database at the end of each HTTP request, this can impact the overall performance of the
application.

2. As long as the server is up, the client requests will continue to be directed to the same
server.

3. If the server fails between requests and you have a hardware dispatcher, the dispatcher
detects the server failure and sends the next request to a different server.

• The new server restores the HTTPSession state from the database and the operation
continues without interruption.

• If the server fails during a request, the browser will eventually timeout the response.
When the user resubmits (assuming a hardware dispatcher), the resubmitted request
goes to a new server which restores the HTTPSession state as described above.

If you do not have a hardware dispatcher If you use the SilverStream software
dispatcher (instead of a hardware dispatcher), after the failure, the user will have to manually
return to the dispatcher to be re-dispatched. Once re-dispatched, the new server will not
automatically restore the state since the session ID cookie will be different.

When failover might not work Because the HTTPSession state is not transactional,
updates to the HTTPSession during a request can be lost under certain circumstances, for
example, if the server crashes during a request (but before the state is saved). But if the server
crashes after the state is saved, but before returning a reply, then the state can be recovered.

Application client support for session-level failover

A J2EE client application can access Web application components or EJBs that support session-
level failover as long as the Web components and EJBs meet the session-level failover
requirements described in the previous section. The J2EE client must initially connect to the
cluster’s (hardware) dispatcher like this:

Silverj2eeclient dispatcher-name:port database-name application-name

� For details on SilverJ2EE client, see Chapter 5, “SilverJ2EEClient and SilverJRunner”.
224 Session-level failover

eXtend Application Server Facilities Guide
CORBA support
The SilverStream server includes the jBroker ORB. jBroker is an enterprise-class Java-based
CORBA ORB. You can use the jBroker ORB from the SilverStream server, SilverJ2EEClient,
SilverJRunner, or any browser. You can use it to develop, deploy, and manage Java-based
CORBA applications. The SilverStream server uses the following subset of features:

• Bootstrap protocol

• COS naming

• Java objects by value

• Java RMI/IIOP

• Objects by value support for IDL

• IIOP over SSL

� For more information on jBroker, see the jBroker documentation available in the server’s
Core Help.

XML support
The XML language (eXtensible Markup Language) allows you to create XML documents that
can be used to exchange data between computer systems (of different types) and applications on
the Web. This section describes SilverStream use of and support for XML documents. It covers
the following topics:

• SilverStream XML support

• Resources for learning about XML

SilverStream XML support

SilverStream uses XML documents for the following:

• J2EE archive deployment descriptors and deployment plans

• SilverCmd input files

SilverStream automatically installs the IBM XML for Java parser (XML4J) into the
SilverStream lib subdirectory. XML4J supports XML’s core features, which you use within
your SilverStream applications.
CORBA support 225

new ../../../jbroker/docs/index.html

6 Server Implementation Notes
Using XML with SilverStream SilverStream explicitly supports XML for J2EE archive
deployment and for SilverCmd input files. If you use XML with SilverStream only for these
purposes, you don’t need to know anything about the XML parser; for information, see:

• Chapter 2, “J2EE Archive Deployment”

• Chapter 4, “SilverCmd Reference”

If you use the other features of XML4J, you should read the following about the XML parser,
and you need to be aware that SilverStream support can change over time. You can only use
XML4J for server-side applications. The XML library is not available to the SilverStream
client-side runtime environment.

About the XML parser
In 1999, IBM turned over XML4J to the Apache group (xml.apache.org). Apache renamed it
Xerces, and they now maintain it through Open Source development (with major contributions
from IBM and others). The com.ibm.xml.parsers tree was renamed org.apache.xerces.parsers.

Apache puts out regular releases, but does not really make a distinction between beta-quality
releases and production-quality releases. However, IBM takes certain releases of Xerces, tests
them for quality, adds backward-compatibility classes so you can continue to use the old class
names, and releases them as XML4J.

NOTE IBM is planning to remove the backward compatibility classes. So if you have been
using them, you should start using the org.apache.xerces.parsers classes instead.

As of the time of this writing, IBM’s current release is XML4J 3.1.0, which is the same code as
Xerces 1.2.0. In order to keep the XML support current, this version of the SilverStream eXtend
Application Server includes XML4J 3.1.0.

� For more information on XML4J’s features and API, see the IBM XML4J online help
(provided with SilverStream) or IBM’s Web site at
http://www.alphaworks.ibm.com/tech/xml4j.

Updating from XML4J 2.0.15 If you were using Version 2.0.15 of XML4J with
SilverStream eXtend Application Server Version 3.0, read the following information about
updating from XML4J Version 2.0.15.

The update from XML4J 2.0.15 to XML4J 3.1.0 should be easy, but there may be some code
changes you’ll have to make. The Apache group has renamed the com.ibm.xml tree to
org.apache.xerces, but IBM includes compatibility classes with the old names. This should
allow most existing code to continue to work.

There were some small changes, however. One change affects the DOM parser, and the other
affects the SAX parser.
226 XML support

new ../xfiles/XML4J-3_1_0/docs/html/index.html
new http://www.alphaworks.ibm.com/tech/xml4j

eXtend Application Server Facilities Guide
DOM parser com.ibm.xml.parsers.DOMParser no longer implements org.xml.sax.Parser.
This means that (a) you can’t use ParserFactory.makeParser() to construct this parser, and
(b) you can’t reference it as an org.xml.sax.Parser to call methods like setEntityResolver() or
setErrorHandler() on it—even though these methods still exist on the class.

However, these problems are easy to work around. Just replacing all instances of
org.xml.sax.Parser with com.ibm.xml.parsers.DOMParser and directly newing up a
com.ibm.xml.parser.DOMParser instead of using ParserFactory.makeParser() should do the
trick.

Thus the following old code:
org.xml.sax.Parser parser =
ParserFactory.makeParser("com.ibm.xml.parser.DOMParser");
parser.setErrorHandler(...);
parser.setEntityResolver(...);
parser.parse(...);
org.w3c.dom.Document d = ((DOMParser)parser).getDocument();

becomes:

com.ibm.xml.parser.DOMParser parser = new
com.ibm.xml.parser.DOMParser();
parser.setErrorHandler(...);
parser.setEntityResolver(...);
parser.parse(...);
org.w3c.dom.Document d = parser.getDocument();

You lose the flexibility that the Parser interface and the ParserFactory factory provided, but this
is unavoidable with the upgrade, since there is no common interface for DOM parsers as there
is for SAX parsers.

SAX parser This change has to do with the char arrays passed to your DocumentHandler
implementation in characters() and ignorableWhitespace(). In XML4J 2.0.15, the parser sent
them in such a way that it was often possible to use and store the char arrays directly, without
making a copy of the data. In 3.1.0, however, the char arrays are reused across calls; so if you
want to keep the data around, you must copy it. For example, you could create a new char array
and use System.arraycopy to copy the data into it, or you could simply do new String(ch, start,
length).
XML support 227

6 Server Implementation Notes
Resources for learning about XML

If you’re new to XML or just need to explore a specific XML topic, try the following
recommended learning resources:

Internationalization support
This section describes the following internationalization topics:

• Database support

• Client-side support

Database support

All JDBC drivers certified for use with the SilverStream server have been fully tested to support
Western/Eastern European and Asian languages.

� To use the multibyte version of the SilverStream JDBC-ODBC bridge
driver:

1. Add the following line to AgUserIni.props in your SilverStream/Resources directory:
com.sssw.srv.ambry.mbcs.AgOdbc=true

2. Restart the SilverStream server.

Resource Description Available at

SilverStream
DevCenter

An index to XML learning
and reference materials with
links to many documents
and Web sites

http://devcenter.silverstream.com/

Directory of XML
resources

— http://www.xmldir.com
228 Internationalization support

new http://www.xmldir.com
new http://devcenter.silverstream.com/

eXtend Application Server Facilities Guide
Client-side support

The SilverStream server includes runtime language libraries for Simplified and Traditional
Chinese, Czech, Dutch, English, French, German, Italian, Japanese, Korean, Norwegian,
Portuguese, Spanish, and Swedish.

If you encounter font-mapping problems in SilverJ2EEClient, SilverJRunner, or the
SilverStream Designer where the correct characters are not displaying, you can correct the
problem by editing the JRE’s font.properties file.

You must edit the font.properties.XX file in the jre/lib subdirectory of the SilverStream
installation directory, where XX is the two-character language encoding for the language you are
interested in. For example, you would change font.properties.ko for Korean. There are two
sections of interest in the file that appear one after the other. They are labeled name aliases and
for backward compatibility.

The original version of font.properties.ko is:

name aliases
#
alias.timesroman=serif
alias.helvetica=sansserif
alias.courier=monospaced
for backword compatibility
timesroman.0=Times New Roman,ANSI_CHARSET
helvetica.0=Arial,ANSI_CHARSET
courier.0=Courier New,ANSI_CHARSET
zapfdingbats.0=WingDings,SYMBOL_CHARSET

The name aliases section maps nonexistent font names to font mappings defined in the file. You
should uncomment those alias lines. This is the preferred way of handling the mapping. The
section for backward compatibility is the old way of mapping nonexistent font names to fonts
described in the file.

NOTE Make sure that you comment the first three lines of this section.

The updated version of the file would then be:

name aliases
#
alias.timesroman=serif
alias.helvetica=sansserif
alias.courier=monospaced
for backword compatibility
timesroman.0=Times New Roman,ANSI_CHARSET
helvetica.0=Arial,ANSI_CHARSET
courier.0=Courier New,ANSI_CHARSET
zapfdingbats.0=WingDings,SYMBOL_CHARSET
Internationalization support 229

6 Server Implementation Notes
230 Internationalization support

Index
A
AddCP command, SilverCmd 102
AddDatabase command, SilverCmd (deprecated) 105

input file requirements 107
AddUserToGroup action 165
agrootca.jar

with SilverJ2EEClient 202
with SilverJRunner 202

application arguments
passing from SilverJ2EEClient 200
passing from SilverJRunner 200

application clients 224
deploying archives 119
packaging 10
session-level failover 224
writing deployment plans 10

archives
J2EE deployment 9

asContextRequired 35
authentication

and SilverCmd 98
authMethod 34
autoincrement

EJBs 15

B
batch mode, SilverCmd 99
Build command, SilverCmd (deprecated) 109
BuildWAR command, SilverCmd (deprecated) 111
business objects

exporting 132
importing 136
importing source code 141

C
CARs (client JARs)

deploying 9
cipher suites 34

classpath JARs
specifying on the server 47

ClearDefaultURL command, SilverCmd 112
ClearLog command, SilverCmd 113
client container 221
client JAR deployment plan DTD 50, 85
CMP entity beans

mapping to a table 15
ComGen command, SilverCmd (deprecated) 114
compiler

setting preferences 147
Confidentiality

cipher suites 34
confidentiality 33
consoles

SilverJ2EEClient 192
SilverJRunner 192

containers, J2EE
about 203
client container 221
EJB container 206
Web container 203

ConvertEJB command, SilverCmd (deprecated) 115
CORBA

SilverStream support 225
CreateGroup action 166
CreatePackage command, SilverCmd (deprecated) 116
CreateUser action 167

D
databases

removing 158
debugging

EJBs 209
Delete command, SilverCmd (deprecated) 117
DeleteGroup action 168
DeleteUser action 168
DeleteUserFromGroup action 169
DeployCAR SilverCmd command 119
DeployEAR command, SilverCmd 120
DeployEAR12 command, SilverCmd (deprecated) 123
231

Index
DeployEJB command, SilverCmd 125
DeployEJB11 command, SilverCmd (deprecated) 127
Deploying

RARs 42
deploying

application client archives 9
EARs 44, 120
EJB JARs 37, 39
EJBs 12, 37, 125
EJBs JARs 125
J2EE archives 9
JSP pages to file system 1
SilverJ2EEClient 181
SilverJRunner 181
WARs 40, 130

deployment descriptor
for EJBs, converting from 1.0 115
validating 178, 179

deployment plan
EAR 45
EJB 12
EJB tips 15
for an application client 10
WAR 40, 43

DeployRAR command, SilverCmd 129
DeployWAR command, SilverCmd 130
dia 138
DOCTYPE statements

client JAR deployment plan DTD 50, 85
EAR deployment plan DTD 89
EJB JAR deployment plan DTD 55
WAR deployment plan DTD 78

double-byte character set version of JDBC-ODBC bridge
driver 228

downloading objects 151
DTDs (Document Type Definitions)

client JAR deployment plan 50, 85
deployment plan, about 49
deployment plan, files 49
deployment plan, reference documentation 49
deployment plan, samples 49
EAR deployment plan 88
EJB JAR deployment plan 55
WAR deployment plan 78

E
EAR deployment plan DTD 88
EARs

deploying 44
deployment plan 45
role maps 92

EJB JAR deployment plan DTD 55
EJB JARs

deploying 37, 125
rebuilding 156
restructuring after deployment 39

EJBs (Enterprise Java Beans)
SilverJ2EEClient access via IIOP over SSL 202
SilverJRunner access via IIOP over SSL 202

EJBs (Enterprise JavaBeans)
about 15
access authorization 213
asContextRequired 35
authentication context configuration 32
authMethod 34
cipher suites 34
confidentiality 33
container 206
converting from 1.0 115
debugging 209
deploying 12, 37, 125
deploying EJB JARs 37
deployment plan 12
establishTrustInClient 33
instance pooling 211
integrity 32
IOR configuration examples 36
IOR configurations 30
isolation levels 18
lazy beans 60
load balancing 212
mapping CMP entity beans 15
mapping persistent fields 17
packaging 12
primary key mapping 29
realm 35
rebuilding JARs 156
relationship mapping 19
restructuring JAR files 39
restructuring JAR files after deployment 39
232

SilverStream eXtend Application Server Facilities Guide
security 213
security and caller propagation 213, 217
security attribute context 35
security attribute context configuration 32
session-level failover 222
supporting autoincrement 15
transaction support 214
transport configuration 32

entity beans
delaying instantiation 60

error logging
SilverCmd 100

execute mode
SilverCmd 99

ExportSource command, SilverCmd (deprecated) 132

F
failover 222
file system

deploying JSP pages to 1
font.properties files 229
forms

accessing arguments passed from
SilverJRunner 200

G
GetConsole command, SilverCmd 134
GetDefaultURL command, SilverCmd 135
groups

creating 166
deleting 168
managing 163
setting properties for 170

I
IBM XML for Java parser 225
images

importing 138
ImportClass command, SilverCmd (deprecated) 136
importing

objects 153

ImportMedia command, SilverCmd (deprecated) 138
ImportPage command, SilverCmd (deprecated) 140
ImportSource command, SilverCmd (deprecated) 141
install page, SilverJRunner (and SilverJ2EEClient) 183
instance pooling

EJBs 211
Integrity

attribute 32
cipher suites 34

internationalization support for the server 228
IOR configurations 30
isolation levels

specifying 18

J
J2EE

application clients, accessing arguments passed from
SilverJ2EEClient 200

archive deployment 9
client container 221
containers 203
EJB container 206
Web container 203

JARs
importing 138
on application classpath 47
rebuilding 156

Java packages
creating 116

JRunner
installing 183
starting 186
when to use 181

JRunner class
starting SilverJ2EEClient with 189
starting SilverJRunner with 189

JSP pages
compiling 130
deploying 130
deploying to the file system 1
implementation in Web container 203
URLs for JSP pages running in SilverStream 204

JSP/FS 1
233

Index
L
lazy beans 14

entity beans 60
link tables 27
ListCP command, SilverCmd 143
load balancing 212

M
managing users and groups 163
message-driven beans

mapping 30
ModifyCP command, SilverCmd 144
ModifyTableList command, SilverCmd

(deprecated) 145
multibyte version of JDBC-ODBC bridge driver 228

O
objects, deleting 117

P
pages

importing static 140
persistent fields

mapping 17
preferences, setting 147
Prefs command, SilverCmd 147
primary keys 29
PrintLog command, SilverCmd 149
Publish command, SilverCmd (deprecated) 150
PublishFromFile command, SilverCmd

(deprecated) 151
PublishToFile command, SilverCmd (deprecated) 153

Q
QueryCP command, SilverCmd 155

R
RARs

deploying 42
deployment plans 43
packaging 42

realm
EJBs 35

RebuildJAR command, SilverCmd (deprecated) 156
relationships

EJB mapping 19
general restrictions 29
link tables 27
many-to-many unidirectional 28
one-to-many bidirectional 24
one-to-many unidirectional 26
one-to-one bidirectional 20
one-to-one unidirectional 22

RemoveCP command, SilverCmd 157
RemoveDatabase command, SilverCmd

(deprecated) 158
removing databases 158
role maps

EARs 92
running SilverCmd 98
runtime language libraries 229

S
sample input files, for SilverCmd 101
security

and EJBs 213, 217
EJBs 213
IOR configurations 30
setting permissions 162

security attribute context configuration 35
server

shutting down 159
ServerState command, SilverCmd 159
session beans

session-level failover 222
session-level failover 222, 224

EJB support 222
web applications 223

SetDefaultURL command, SilverCmd 161
234

SilverStream eXtend Application Server Facilities Guide
SetGroupProperties action 170
SetSecurity command, SilverCmd 162
SetUserGroupInfo command, SilverCmd 163

AddUserToGroup action 165
CreateGroup action 166
CreateUser action 167
DeleteGroup action 168
DeleteUser action 168
DeleteUserFromGroup action 169
SetGroupProperties action 170
SetUserProperties action 171

SetUserProperties action 171
shutting down servers 159
SilverCmd 95

about 98
AddCP command 102
AddDatabase command (deprecated) 105
AddDatabase driver set 107
AddDatabase example input file 107
AddDatabase valid database connection types 108
and XML files 101
Build command (deprecated) 109
BuildWAR command (deprecated) 111
ClearDefaultURL command 112
ClearLog command 113
ComGen command (deprecated) 114
ConvertEJB command (deprecated) 115
CreatePackage command (deprecated) 116
Delete command (deprecated) 117
DeployCAR 11
DeployCAR command 119
DeployEAR 46
DeployEAR command 120
DeployEAR12 command (deprecated) 123
DeployEJB command 125
DeployEJB11 command (deprecated) 127
DeployRAR command 129
DeployWAR 42, 44
DeployWAR command 130
DTDs 101
execute mode 99
ExportSource command (deprecated) 132
-f option 101
GetConsole command 134
GetDefaultURL command 135

ImportClass command (deprecated) 136
ImportMedia command (deprecated) 138
ImportPage command (deprecated) 140
ImportSource command (deprecated) 141
input files 101
ListCP command 143
logging messages 100
ModifyCP command 144
ModifyTableList command (deprecated) 145
Prefs command 147
PrintLog command 149
Publish command (deprecated) 150
PublishFromFile command (deprecated) 151
PublishToFile command (deprecated) 153
QueryCP command 155
RebuildJAR command (deprecated) 156
RemoveCP command 157
RemoveDatabase command (deprecated) 158
running 98
running in batch mode 99
sample input files 101
ServerState command 159
SetDefaultURL command 161
SetSecurity command 162
SetUserGroupInfo command 163
SourceControl command (deprecated) 172
Undeploy command 176
ValidateEAR command 177
ValidateEJB command 178
ValidateEJB11 command 179

SilverJ2EEClient
about 181
accessing secured EJBs 202
application arguments 200
communication protocols 182
console version 192
development environment notes 194
features 181
installing 183
JRunner class 189
SJC files 186
specifying a splash screen 194
starting 186
startup options 195
when to use 181
235

Index
SilverJRunner
about 182
accessing secured EJBs 202
application arguments 200
console window 192
installing 183
JRunner class 189
SJR files 186
specifying a splash screen 194
starting 186
startup options 195
when to use 181

SilverStream objects, exporting 132
SJC files

starting SilverJ2EEClient with 186
SJR files, starting SilverJRunner with 186
sounds

importing 138
SourceControl command, SilverCmd (deprecated) 172
splash screen

specifying for SilverJ2EEClient 194
specifying for SilverJRunner 194

sqlHandler element values 16
SSL

EJB attributes 33
startup options

+ startup options, SilverJ2EEClient 195
+ startup options, SilverJRunner 195
- startup options, SilverJ2EEClient 195
- startup options, SilverJRunner 195
SilverJ2EEClient 195
SilverJRunner 195

T
transactions

EJBs 214

U
Undeploy command, SilverCmd 176
URLs

setting default 161
userlib directory, for application classpath JARs 47

users
adding to groups 165
creating 167
deleting 168
deleting from groups 169
managing 163
setting properties for 171

V
ValidateEAR command, SilverCmd 177
ValidateEJB command, SilverCmd 178
ValidateEJB11 command, SilverCmd 179

W
WAR deployment plan DTD 78
WARs

deploying 40
deployment plan 40, 43

web applications
session-level failover 223

Web container 203

X
XML

and SilverCmd input files 101
using in SilverStream 225

XML JARs
overriding on the server 47

XML4J, IBM XML for Java parser 225
236

	Facilities Guide
	Contents
	Chapter 1 JSP Deployment to the File System 1
	Chapter 2 J2EE Archive Deployment 9
	Chapter 3 Deployment Plan DTDs 49
	Chapter 4 SilverCmd Reference 95
	Chapter 5 SilverJ2EEClient and SilverJRunner 181
	Chapter 6 Server Implementation Notes 203

	About This Book
	Purpose
	Audience
	Prerequisites
	Organization
	Related resources

	JSP Deployment to the File System
	Using JSP pages
	About JSP pages and Web applications
	About file system deployment
	Using eXtend Workbench

	Setting up your application
	Deploying your application to the file system
	Creating the deployment plan
	Deploying the application

	Updating your application
	Putting your application into production

	J2EE Archive Deployment
	Deploying J2EE application client archives
	Packaging application clients
	Writing an application client deployment plan
	Running SilverCmd DeployCAR

	Deploying EJB archives
	Packaging EJB components
	Writing an EJB deployment plan
	Tips for completing the EJB deployment plan
	Deploying an EJB JAR
	Restructuring EJB JAR files after deployment

	Deploying Web archives (WARs)
	Packaging a Web application
	Writing a WAR deployment plan
	Deploying a WAR file

	Deploying resource adapter archives (RARs)
	Packaging a RAR
	Writing a RAR deployment plan
	Deploying a RAR file

	Deploying enterprise archives (EARs)
	Packaging an enterprise application
	Writing an EAR deployment plan
	Running SilverCmd DeployEAR

	Specifying classpath JARs on the server
	Accessing user-supplied JARs
	Overriding server-supplied JARs

	Deployment Plan DTDs
	About the deployment plan DTDs
	Client JAR deployment plan DTD
	EJB JAR deployment plan DTD
	WAR deployment plan DTD
	RAR deployment plan DTD
	EAR deployment plan DTD

	SilverCmd Reference
	Command locator
	About SilverCmd
	Running SilverCmd
	Specifying values in input files and deployment plans

	Alphabetical list of commands
	AddCP
	AddDatabase
	Build
	BuildWAR
	ClearDefaultURL
	ClearLog
	ComGen
	ConvertEJB
	CreatePackage
	Delete
	DeployCAR
	DeployEAR
	DeployEAR12
	DeployEJB
	DeployEJB11
	DeployRAR
	DeployWAR
	ExportSource
	GetConsole
	GetDefaultURL
	ImportClass
	ImportMedia
	ImportPage
	ImportSource
	ListCP
	ModifyCP
	ModifyTableList
	Prefs
	PrintLog
	Publish
	PublishFromFile
	PublishToFile
	QueryCP
	RebuildJAR
	RemoveCP
	RemoveDatabase
	ServerState
	SetDefaultURL
	SetSecurity
	SetUserGroupInfo
	SourceControl
	Undeploy
	ValidateEAR
	ValidateEJB
	ValidateEJB11

	SilverJ2EEClient and SilverJRunner
	About SilverJ2EEClient
	SilverJ2EEClient features

	About SilverJRunner
	Installing SilverJRunner and SilverJ2EEClient
	Providing the SilverJRunner install page
	Going to the SilverJRunner install page
	Installing on Windows
	Installing on UNIX or Linux
	Installing from your SilverStream product CD

	Starting SilverJRunner and SilverJ2EEClient
	Running on Windows
	Running on UNIX or Linux
	Displaying a console window
	Displaying your own splash screen
	How SilverJRunner updates itself
	SilverJ2EEClient in the development environment

	Using startup options
	Using - options
	Using + options

	Passing application arguments
	Specifying the arguments to pass
	Accessing the arguments from a form
	Accessing the arguments from a client

	Supporting access to secured EJBs

	Server Implementation Notes
	J2EE containers
	Web container
	EJB containers
	Client container

	Session-level failover
	EJB support for session-level failover
	Web application support for session-level failover
	Application client support for session-level failover

	CORBA support
	XML support
	SilverStream XML support
	Resources for learning about XML

	Internationalization support
	Database support
	Client-side support

	Index

